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ABSTRACT 

Climate change due to the increase of greenhouse gas emissions is considered to be one 

of the major challenges to mankind in the 21st century. It will lead to changes in 

precipitation, atmospheric moisture, increase in evaporation and probably a higher 

frequency of extreme events. The consequences of these phenomena will have an 

influence on many aspects of human society. Particularly at river deltas, coastal regions 

and developing countries, the impacts of climate change to socio-economic development 

become more serious. So there is a need for a robust and accurate estimation of the 

variation of natural factors due to climate change, at least in the hydrological cycle and 

flooding events to provide a strong basis for mitigating the impacts of climate change and 

to adapt to these challenges.  

Vietnam is located in the region of the south East Asia monsoon. As most of the 

population work in agriculture and inhabitants essentially concentrate at the coastal plain, 

Vietnam is expected to be one of the countries most heavily affected by the consequences 

of climate change in the end of 21st century. These challenges urge Vietnam to have 

suitable policies which help to improve public awareness, as well as capacity to respond 

to climate change. In order to provide complete insights for local authority to establish 

better adaptation strategies against the climate change, the PhD thesis focuses on 

simulating the long term variation of runoff factors for a river system in central Vietnam, 

the Vu Gia Thu Bon river.  

The first part of this study concentrates on constructing a hydrological model which 

becomes an efficient tool for assessing the variation of stream flow in the future.  Due to 

its advantages, the fully deterministic distributed hydrological model, which is expected 

to overcome the difficulties in hydrological modelling at large catchment and the lack of 

data, is chosen for applying in Vu Gia Thu Bon catchment. The model is set up over Vu 

Gia Thu Bon catchment, approximately 10,350 km2. This model considers mostly the 

runoff factors, from surface flow to groundwater flow, from infiltration to evapo-

transpiration. This model is calibrated and validated against daily data and monthly data 

in the period of 1991-2000 and 2001-2010, respectively. The second part is to evaluate 

the impact of climate factor changes on runoff at the end of the 21st century. For this 
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purpose, 3 climate scenarios (CCSM3.0, MIROC- 3.2, ECHAM 5) for the period 2091-

2100 were estimated from the present observations of the period 1991-2000 by using 

delta change factors obtained from downscaling process. These scenarios were input to 

the validated hydrological model for determining the runoff in the future. The change 

tendency is shown by the difference in the present and future peak flow, base flow and 

return period. In the third part, a hydraulic model has been developed for the flood prone 

area (1,780 km2) to map the inundation area corresponding with the previously described 

streamflow variations. Scale variability of inundation area under the impact of climate 

change was evaluated to demonstrate the severe consequences of global warming at Vu 

Gia Thu Bon catchment. Finally, flood and land use maps are analyzed to estimate 

damages caused by the streamflow increase.  
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RESUME 

Le changement climatique dû à l'augmentation des émissions de gaz à effet de serre est 

considéré comme l'un des principaux défis pour les êtres humains dans 21ème siècle. Il 

conduira à des changements dans les précipitations, l'humidité atmosphérique, 

augmentation de l'évaporation et probablement augmenter la fréquence des événements 

extrêmes. Les conséquences de ces phénomènes auront une influence sur de nombreux 

aspects de la société humaine. Particulièrement à deltas des fleuves, les régions côtières 

et les pays en développement, les impacts du changement climatique au développement 

socio-économique sont plus graves. Donc, il y a une nécessité d'avoir une estimation 

robuste et précise de la variation des facteurs naturels dus au changement climatique, 

au moins dans les événements de cycle et d'inondation hydrologiques pour fournir une 

base solide pour atténuer les impacts du changement climatique et s'adapter à ces défis. 

Le Vietnam est situé dans la région de la mousson en Asie du Sud. La plupart de la 

population travaille dans l'agriculture et habitants essentiellement se concentrer à la 

plaine côtière, le Vietnam est prévu l'un des pays les plus durement touchés par les 

conséquences du changement climatique à la fin du 21e siècle. Ces défis exhorter le 

Vietnam d'avoir une des politiques appropriées qui contribuent à améliorer la 

sensibilisation du public, ainsi que la capacité à répondre aux changements climatiques. 

Afin de donner un aperçu complet de l'autorité locale d'établir de meilleures stratégies 

d'adaptation contre le changement climatique, la thèse accent sur la simulation de la 

variation à long terme des facteurs de ruissellement pour un système de rivière au 

Vietnam système fluvial central, Vu Gia Thu Bon. 

La première partie de cette étude se concentre pour construire un modèle hydrologique 

qui est l'outil d'évaluation de la variation de débit d'eau à l'avenir. En raison de ses 

avantages, le modèle hydrologique distribué totalement déterministe, qui devrait à 

surmonter les difficultés dans la modélisation hydrologique aux grands bassins versant 

et aux zones manquée données, est choisi pour appliquer dans Vu Gia Thu Bon bassin 

versant. Le modèle est mis en place au cours Vu Gia Thu Bon versant, à environ 10,350 

km2. Ce modèle considère la plupart des facteurs de ruissellement, de l'écoulement de 

surface vers les eaux souterraines flux, de l'infiltration de l'évapo transpiration. Ce modèle 
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est calibré et validé avec les données quotidiennes et les données mensuelles pour la 

période de 1991-2000 et 2001-2010, respectivement. La deuxième partie est d'évaluer 

l'impact des changements des facteurs climatiques à ruisseler à la fin du 21e siècle. A cet 

effet, trois scénarios climatiques (de CCSM3.0, MIROC- 3.2, ECHAM 5) dans la période 

de 2091 à 2100 ont été calculés sur la base d'observation actuelle de la période de 1991 

à 2000 en utilisant les facteurs de changement delta lesquelles l'obtention du processus 

de régionalisation. Ces scénarios ont été saisis au modèle hydrologique validé pour 

déterminer la course au large à l'avenir. La tendance de changement est montrée par la 

différence dans le présent et l'avenir de débit de pointe, le débit de base et la période de 

retour. En troisième partie, un modèle hydraulique ont été développés pour les 

inondations zone sujette (1,780 km2) pour cartographier la zone d'inondation 

correspondant à des variations de flux ci-dessus. Échelle variabilité de zone d'inondation 

sous l'impact du changement climatique a été évaluée à démontrer des conséquences 

catastrophiques du réchauffement climatique à Vu Gia Thu Bon bassin versant. En 

dernière partie, la carte des inondations et de l'utilisation des terres carte sont analysés 

afin de compter les dommages causant l'augmentation du débit des cours d'eau. 
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Chapter 1     INTRODUCTION 

 

1.1 Context 

The natural environment is obviously the human living space. All components of natural 

environment such as climate, weather, and natural resource, have an influence on human 

survival and economic activity (Johnson et al., 1997). However, beside positive effects, 

the natural environment includes natural hazards, which frequently bring undesirable 

impacts to human society. In the last decade (2003-2013), there are annually 383 natural 

disaster events globally, which killed a significant number of people (98,923) and made 

more than 205.13 million victims. Like other indicators, natural disaster claimed 153.24 

billion US$ from worldwide economy (Guha-sapir et al., 2013). These figures demonstrate 

the catastrophic characteristic of natural disasters.  

 

Figure 1.1 Top 10 counties by number of reported events in 2013(Guha-sapir et al., 2013) 
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Amongst these natural disasters, disasters related to hydrological factors, such as flood 

and wet mass movement, have become the most common and destructive. Each year, 

this kind of natural disaster causes tremendous losses and social disruption worldwide. 

The following statistics are used to show the damage of extreme flood events during the 

last century. In 1913 at Ohio, US statewide flooding of rivers killed at least 428 people. In 

1953 in spring season, northwest Europe, storm followed by floods devastated North Sea 

coastal areas, Netherlands hit hardest 1794 dead; In August, 1954 in Teheran, Iran flood 

rains resulted in some 10,000 deaths; On December, 1959, in Fréjus, France flood 

caused by collapse of Malpasset Dam left 412 dead. On November, 1970 in Est of 

Pakistan: 20,099 kill by cyclone-driven tidal wave from bay of Bengal and over 100,000 

people missing. During the months of 1971, in Ha Noi, Viet Nam heavy rains flooded the 

Red river delta, killing 100,000 people. August 1975, an estimated 80,000 to 200,000 

people killed by flood and subsequent time in Yangtze River. 1988, heaviest monsoon in 

70 years killed more than 1,300. Floods inundated three-fourths of country, leaving 30 

million homeless. During the summer of 1997, Central and Northeast China heavy 

flooding of Yangtze river killed more 3,000 and left 14 million homeless, estimated 

damages exceeded US$ 20 billion. In the year of 1999, southwest Mexico, heavy rains 

killed at least 360 people, and on  November and December Viet Nam, devastating floods 

caused US$ 285 million in damage and killed more than 700 people, in the same in 

northern Venezuela, heavy rains caused catastrophic flooding and mudslide, killing an 

estimated 5,000 to 20,000 people. On February 2000, Southeast Africa, deadly floods in 

Mozambique and Zimbabwe, killing more than 700 people and leaving 280,000 homeless, 

and at least 235 people dead in Thailand, Laos, Viet Nam and Cambodia. The summer 

of 2002 is registered with more than 2,000 deaths in China, India, Nepal and Bangladesh 

by flooding. In 2004, flood killed more than 2,000 people in Dominican Republic and Haiti, 

and 1,800 dead in India, Nepal and Bangladesh. in February 2005, flooding in 

Afghanistan, India, and Pakistan killed more than 800 people, and July, a record 37 in 

rain of in a 24 hour period and a week of monsoon rains left 1,000 dead in western India. 

In 2007, monsoon rain and flooding left 660 people dead. On July 2010, Massive flooding 

in Pakistan, following two days of record rainfall, kills over 1,600 people. In 2011, Floods 

caused by Tropical Storm Washi kill 1 268 people in Philippine. And lastly May 2014, 

Serbia, Bosnia and Herzegovina, the countries are hit with the heaviest rains and flooding 

in over a century. At least 44 people are killed in the flood.  In the 21,610 people killed by 

natural disaster in 2013, deaths from flood had the largest share (9,819), representing 

45.4 % of global disaster mortality. This phenomena have had negative effects on 

people's lives (32 million deaths) and the world economy which lost around 53.2 billion 
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US$ over last years Besides the tangible damage, the flood also brings to people the 

intangible consequences (Markantonis & Meyer, 2011) which are not traded in in a market 

and are far more difficult to assess in monetary terms. Through the impact above, we 

might recognize the severe characteristics of flood hazard to human development. 

 

Figure 1.2  Top 10 counties in the terms of disaster mortality in 2013 and distributed by type (Guha-sapir 

et al., 2013) 

Even the destructivity of flood disaster, the people could not eliminate completely the 

natural negative impacts to human development.  It always ask the human to look for the 

way to adapt well with natural hazard, so it has been proposed to understand as much as 

possible the substance of these natural phenomenon. Based on these knowledge, we 

might find out an efficient model as well as mitigate highly the damaging effects. However, 

these works require lots of human strength as well as social investment. 
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Figure 1.3 Top 10 countries by victims in 2013 and distributed by disaster type (Guha-sapir et al., 2013) 

Unfortunately, the regions, where have been hugely influenced by flood hazards, are 

mostly poor and developing countries. The geographical location, meteorological 

condition, poor infrastructure, the low awareness of people, the lack of governmental 

policy towards flood disaster are seen as leading factors which have made the flood 

consequences at these countries become more devastating and  more catastrophic. 

Amongst of the top 10 countries, in terms of disaster mortality in 2013, five countries are 

classified as low income or low middle income economies. The statistics in 2013 show 

that Asia is the continent which will affected mostly by natural disasters with around 40.7 

% events, 82.3 % of global reported disaster mortality, more than 90.1% of global disaster 

victims (Guha-sapir et al., 2013). And between 1987 and 1997, 44% of all flood disasters 
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worldwide affected Asia, claiming 228 000 lives, roughly 93% of all flood related deaths 

worldwide (Bich et al., 2011).   

Nowadays, Natural movement happens more frequently in an abnormal trend and seems 

to unfollow the previous rules. These changes come from its interior property as well as 

the consequences of the impacts of human activities. These negative variations seemly 

make increasing the destructivity of natural catastrophe towards human being. In recent 

years, the negative effects of natural disasters are apparently more severe and more 

catastrophic. The graphs in Figure 1.4 show the dramatic increase of natural disasters in 

the 3 last decades. 

 

Figure 1.4 Statistics of loss events worldwide 1980 -2013 (http://preventionweb.net/go/36162) 

One of suitable explications for these increases is Climate change. This terminology 

appeared late 1950s (Agrawala, 1998). There are a lot of definitions of this phenomenon 

but commonly it could be understood as a change in the state of the climate that can be 

identified (e.g. using statistical tests) by changes in the mean and/or the variability of its 

properties, and that persists for an extended period, typically decades or longer. It refers 

to any changes in climate over time whether due to natural variability or as a result of 

human activity (IPCC, 2007). The climate change is related closely with global warming 

phenomenon caused mostly by the increasing concentration of green gases in the 

atmosphere (EPA, 2014). Reasons of greenhouse gases emission can be classified in 

two types, natural variability and human impact. The first type is seen as a normal part of 

the Earth’s natural variability, which is related to the interactions among the atmosphere, 

ocean, and land, as well as changes in the amount of solar radiation reaching the earth. 
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The geologic record includes significant evidence for large-scale climate changes in 

Earth’s past (NOAA National Weather Service, 2007). The natural variability is believed 

to be a main factor which helps the life exist on the earth. However, in recent years, with 

the economic development and the industrialization, humans have created a huge 

influence on  global warming, at least in late 1950s, human activities have released large 

amounts of carbon dioxide and others greenhouses gases into the atmosphere. This 

leads to the planet warm up so quickly. Climate change is estimated like one of biggest 

challenges to the human beings due to serious impacts on production, life and 

environment on a global scale. Higher temperature and sea level rising will cause 

inundation and water salinity which can bring negative effects to agriculture and high risks 

to industry and socio-economic systems in the future. This problem has been predicted 

to continue leading to comprehensive and deep changes in global development and 

security especially energy, water, food, society, job, diplomacy, culture, economy and 

trade. 

According to the Fourth Assessment Report of the Intergovernmental Committee for 

Climate Change (IPCC, 2007) (R K Pachauri & Reisinger, 2007) the average surface 

temperature of the Earth is likely to increase  from 1.1 to 6.4°C by the end of the 21st 

century, relative to 1980-1999, 1.8°C to 4.0°C with the best estimate of IPCC, (2007) also 

forecasts a global average sea level rise of between 0.18m and 0.59m in the period 2080 

to 2099, related to the years 1980 to 1999 (Table 1.2). It will lead to changes in 

precipitation, atmospheric moisture, increase in evaporation and probably raise the 

frequency of extreme events. These changes may strongly affect many factors on a global 

scale. The variation of temperature and rainfall is expected to result in changes in the 

hydrological cycle. As a result, many areas will be inundated and saltwater intrusion in 

coastal area will become more serious. Natural disasters such as storms and floods will 

increase in terms of frequency and severity, which will cause damages in many areas. 

On the other hand, dry seasons may start earlier and will be more violent (Nguyen et al., 

2009) .Based on the estimation of river runoff variability of 1200 catchments on all over 

the world, Arnell, (2003) predicted that by the 2020s, the change in runoff due to climate 

change in approximately a third of catchments is less than that due to natural variability 

by the 2080s this fall to between 10% and 30%. The change leads to runoff increases in 

high latitudes, east Africa and south and east Asia, and decreases in southern and 

eastern  Europe, western Russia, north Africa and the Middle East, central and southern 

Africa, much of North America, much of south America, and south and east Asia. The 

consequences of these phenomenon will have an influence on human society e.g the 

reduction of agriculture production, increased risk on animals, the destruction of 
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infrastructure, socio-economic damages, enhanced water conflicts, poverty, war... Stern, 

(2008) shows that the costs of extreme weather alone could reach 0.5% - 1% of world 

GDP by the middle of the century, and will keep rising as the world continues to warm. In 

Europe the costs of a 100 year storm event could double by the 2080s with climate 

change ($50/€40 billion in the future compared with $25/€20 billion today), while average 

storm losses were estimated to increase by only 16% – 68% over the same period. 

Economic loss suffered by the Pacific region could range from 2.9% to as high as 12.7% 

of annual GDP by 2100 (ADB, 2013) . 

 

Figure 1.5  Global GHG emissions (in GtCO2-eq per year) in the absence of additional climate policies: six 

illustrative SRES marker scenarios (colored lines) and 80th percentile range of recent scenarios published 

since SRES  (post-SRES) (gray shaded area). Dashed lines show the full range of post- SRES scenarios. 

The emissions include CO2, CH4, N2O and F-gases. {WGIII 1.3, 3.2, Figure SPM.4} (Barker et al., 2007) 

 



 Chapter 1 - Introduction 

29 

 

Table 1.1. The human and economic losses from disasters of Viet Nam in the period of 1989-2011 

(http://www.wpro.who.int/vietnam/topics/emergencies/factsheet/en/#) 

Year 

Deaths 

including 

missing 

Injured 
People 

affected 

Houses 

destroyed 

Houses 

damaged 

Total 

estimated 

damage US$ 

(1,000) 

1989 959 1,359 5,635,000 84,283 5,824 21,000 

1990 384 308 510,000 10,614 1,112 725 

1991 492 236 316,478 14,989 1,335 57,200 

1992 287 33 178,234 7,320 1,445 66,100 

1993 270 52 41,520 25,154 13,974 75,000 

1994 361 34 393,000 5,917 6,093 253,300 

1995 269 51 423,000 9,747 1,288 107,200 

1996 1,056 591 1,051,206 74,856 17 751,420 

1997 3,692 907 3,697,225 108,749 1,181 887,000 

1998 647 97 2,520,665 13,380 17,406 121,900 

1999 799 576 7,039,150 52,583 30,495 309,500 

2000 592 215 5,027,505 12,198 7,432 291,035 

2001 392 95 1,785,895 10,602 13,817 171,900 

2002 147 116 2,733,500 75,739 76,914 284,200 

2003 148 81 402,946 6,441 9,504 105,000 

2004 231 23 535,951 4,766 16,725 38,000 

2005 324 31 851,900 3,320 23,037 346,370 

2006 579 2,010 2,994,720 75,010 140,855 1,099,000 

2007 353 322 1,599,755 13,465 42,081 981,000 

2008 411 163 776,330 5,148 9,945 673,500 

2009 356 1,006 3,607,820 65,034 170 1,065,200 

2010 221 103 1,522,710 6,054 Not available 704,700 

2011 76 2 Not available 222 94,465 92,300 
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Climate change will affect everyone but developing countries will be hit hardest, soonest 

and have the least capacity to respond. South East Asia is particularly vulnerable to the 

impacts of climate change with its extensive, heavily populated coastlines, large 

agricultural sectors and large sections of the population living under $2 or even $1 a day. 

The study by the ADB on the economics of climate change for South East Asia is the first 

regional report on the impacts, vulnerabilities, costs, opportunities and policy options for 

South East Asia, and, on this regional scale, globally. In southeast Asia, this number could 

reach to 6.7% of annual GDB by 2100 (ADB, 2009). Particularly at river deltas, coastal 

regions and developing countries, the impacts of climate change to socio-economic 

development are more serious.  

 

Figure 1.6. Climate change Vulnerability map over Southeast Asia (Economy and Environment Program 

for Southeast Asia) 

It is a very welcome contribution for policymakers, businesses, academics and civil 

society. It increases the national understanding in each country of the challenge of 

development in the face of a more hostile climate. It provides important perspectives on 

the regional interdependencies of climate change impacts and policies and thus can help 
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in the pooling of regional resources to address shared challenges; for example, the 

development of public goods for adaptation (including new technologies, disaster and risk 

management and water resource management) in the region. This is particularly 

important, given that the climate is likely to change significantly in South East Asia in the 

next 20 or 30 years.  

Table 1.2 Projected global average surface warming and sea level rise at the end of the 21st century 

(Barker et al., 2007). 

 

There is a need to have a robust and accurate estimation of variation of natural factors 

due to climate change, at least in the hydrological cycle and flooding events to provide a 

strong basis for mitigating the impacts of climate change and adapt to these challenges. 

 

1.2  Challenges in central Vietnam 

Vietnam is situated in the region of the south East Asia monsoon, so this country 

frequently suffers from natural disasters. It is estimated as one of the most disaster-prone 

countries in the world. The country suffers from many kinds of natural disasters. Like other 

parts of the world, among the disasters, flood is ranked first in terms of affected areas, 

severity, frequency and losses it causes to society. In the past, a large inundation in 1945 

led to famine for a long period and caused more than two million deaths. In 1964, large 

floods caused inundation of large areas in Central Vietnam from Quang Binh to Phu Yen. 

In 1971 the historical largest flood broke down dykes and caused severe inundation in 

many provinces in Bac Bo plain. Also in Central Vietnam, flood in Ca and La rivers broke 

down dykes and led to the severe inundation in 1978. A large flood caused inundation in 
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Vu Gia - Thu Bon, Huong and Tra Khuc rivers in 1999 caused significant losses in human 

life and property in Da Nang City, and in Thua Thien Hue, Quang Nam, and Quang Ngai 

provinces.  Additionally, Viet Nam is still a developing country with many social economic 

problems such as the infrastructure is underdeveloped, people’s awareness with natural 

disasters is still weak. Consequently, Viet Nam is estimated being in the countries which 

are high vulnerability versus natural disaster. As statistic, during the period 1989-2009, 

the natural disaster annually killed around 510 people and caused damage of more than 

5,175 billion VND. 

Moreover, natural disasters in Vietnam are forecasted to increase in term of frequency 

and intensity in the next year. It will cause serious damages for the country. In addition, 

with a coastline of around 3,440 Km and most of the population work in agriculture and 

inhabitants essentially concentrate at the coastal plain, Vietnam is among the countries 

most heavily affected by the consequences of climate change. In the last report of ADB 

about the economy of climate change for southeast Asia, this agency projects that Viet 

Nam is likely to suffer more from climate change than the global average and Viet Nam 

could suffer a loss equivalent to more than 6% of GDP annually by 2100, more than 

double the global average loss (ADB, 2013). According to the assessment of Vietnam 

government, in late 21st century, Vietnam's yearly mean temperature will increase from 

2°C to 3°C, the total yearly and seasonal rainfall will increase while the rainfall in dry 

seasons will decrease, the sea level could rise 0.75m to 1m compared to the 1980-1999 

period. About 10% to 12% of Vietnam's population will be directly impacted and country 

could lose around 10% of GDP (Viet Nam government, 2011). These challenges urge 

Vietnam to have suitable policies and measures to improve public awareness, as well as 

capacity to respond to climate change.  

Table 1.3:  Statistic of disaster damages in Central Vietnam in recent year.                                     

(Source: Flood prevention center in Vietnam central region) 

Year 
Dead 

(Persons) 

Injured  

(Persons) 

Missing  

(Persons) 
Domicile Class room Hospital 

Property 

 (Million USD) 

1999 737 476 56 1,043,029 6,344 95 350 

2004 77 53 33 228,010 635 81 349 

2007 47 122 2 32,580 296 68 97.5 

2009 303 1,308 9 373,740 7,423 158 1,094 
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1.3 Aims and objectives of the research 

Efforts to aid the local population to strengthen its adaptive competence against natural 

disasters, also could mitigate the impact of climate change on regional socio economic 

conditions, this study focuses on the objectives as follows: 

1. Construct a hydrological model to simulate the hydrology in Vu Gia Thu Bon 

catchment which is one of the large catchments located at coastal region of Viet 

Nam central. The objective is seen as the first and most fundamental to study the 

hydrological regime of a catchment. For this objective, a model, which could 

translate as accurately as possible the hydrologic characteristic of the catchment by 

using mathematic method, is established. The model will be calibrated and validated 

against observed data to prove the model efficiency. Based on validated model, the 

modeler can simulate different scenarios corresponding to parameter changes. 

From the simulated results, modelers could represent historic events and predict the 

change trend of hydrological factors in study catchment.  

2. Assess the long term variation of runoff factors in the Vu Gia Thu Bon river system 

under the impact of climate change. The second objective concentrates on 

analyzing the change tendency in the future of runoff factor in the catchment. By 

applying the statistical laws to predicted run off, the analysis might help to find out 

the future extreme events. The extreme events are analyzed in this study including 

flood and drought events which might affect significantly the social economic 

development of catchment. Besides, the seasonal shift phenomena is also 

dissected to give a concrete view of change in the future hydrological regime.  

3. Realize flood modellings which could present detailed flood maps and scale 

effects under the effect of climate change.  

4. Evaluate the hydrological risks, the impact on hydrological disaster and propose 

the solution to adapt with the variation of climate.  

 

1.4 Research strategy 

Regarding to the hydrological catastrophe, constructing the prevention plan for natural 

disasters related to climate change requires accurate assessments in this domain. For 

the moment, most estimations about climate change at global scale, as well as at regional 

scale are likely to base on scenarios from the Intergovernmental Committee for Climate 

Change (IPCC – 2007) (Barker et al., 2007). From these climate scenarios, the challenge 
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is to derive and generate realistic forecasts for the hydrological processes. This task is 

challenging and requests many steps before reaching the objective which could be the 

flood frequency changes in order to improve design and mitigation measures. In the case 

of large catchments, this analysis is an essential tool for the development of master plans 

and for the development of a real strategy on land use and economic development. The 

challenge consists in creating a coherent chain of tools, with a sufficient accuracy, being 

able to start from the data produced by the Global Circulation Models (GCM) and to 

generate hydrographs in the analyzed catchment for the new climate conditions.  

 

Figure 1.7. Proposed methodology for estimating the impact of climate change. 

A research strategy is outlined to complete all study objectives (Figure 1.7). This 

conceptual strategy is developed referred on a study that was applied successfully to 

assess the climate change in Europe. However, in this study, it is transformed and 

completed in order to evaluate overall variations in the hydrological regime in the future 
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at developing countries, particularly to be suitable with this study area. The strategy of 

Rojas et al., (2013) , which was applied to European countries, mainly focussed on the 

flood extreme events. Nevertheless, in a developing region like this catchment, the 

economy depends significantly on agriculture so the drought risk assessment is also 

important to predict the impact of climate change towards the regional social economic 

development. Both disasters in this study, flood and drought, are defined based on the 

results of hydrological simulation by using different statistical law.  

The proposed approach could be then formulated as follow: 

 GCM produces data according to different climate scenarios; 

 The data are transformed through downscaling methods in order to fit with the 

catchment size and the requested scale for hydrological analysis; 

 A deterministic distributed hydrological model, validated under actual climate 

conditions, is then used for future climate simulation; 

 The new simulated flood and drought events are analyzed and compared with 

the frequencies observed for the actual conditions; 

 The differences between actual and future conditions allow assessing the 

potential impact of climate change. 

The added value of this approach is on the use of a deterministic distributed hydrological 

model which offers the possibility to asses in an accurate way the consequences of future 

conditions. The main hypothesis, that could be easily accepted, is that the hydrological 

processes simulated under the actual climate will keep a similar dynamic in the future. 

 

1.5 Structure of the thesis 

In order to concretize the research strategy shown in Figure 1.7, the thesis is organized 

in six chapters which roughly adhere to the principal objectives 

Chapter 1 introduces the context of natural disasters, flood risk and climate change, in 

global and Viet Nam scale. The chapter also presents the objectives of research and 

suggested solutions to accomplish these objectives. Chapter 2 describes generally the 

Vu Gia Thu Bon catchment, the hydrological characteristic and data situation in this 

model. This part also includes the analysis related to the uncertainty of the lack of data 

when doing this study. Chapter 3 and chapter 4 aim to prepare necessary tools for 

modeling the impact of climate change to stream flow and flood plain in Vu Gia Thu Bon 

catchment. In those chapters, chapter 3 is presumed as the focus to solve the first 
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objective of thesis. This chapter concentrates on establishing a perfected hydrological 

model that could describe much as much possible the hydrological regime in the study 

area. In this chapter, the hydrological process will be presented broadly to serve for this 

purpose. It also compares the efficiency of each kind of model to choose the best one for 

simulating the hydrological process. The selected model – deterministic distributed model 

will be dissected more details about the mathematical algorithm and its components, and 

analyzed the data requirement and the uncertainty. Chapter 4 focuses on the flood 

modeling. It will also compare to choose the best model for flood modeling, the coupling 

2D/1D model. Model component, data requirement and the uncertainty are also analyzed 

for this kind of model. Chapter 5 will present the methodology to simulate the impact of 

climate change to this catchment. This will sketch several points about Global Circulation 

Model, Regional Circulation Model and explain why we need to apply the downscaling 

step for the climate data. The part also defines the climate scenarios which will be applied 

for estimating the change in the future. These scenarios will be input in validated 

hydrological model to evaluate the change in the future. The future stream flow will be 

analyzed by using several statistical laws to find out the extreme events, as flood and 

drought events. The run off variations will be put in flood model to present the change in 

flood plain. Based on these changes, flood and drought risks are determined by 

overlapping with the land use and population distribution. From these risks, the basic 

adaptation and mitigation will be proposed. Chapter 6 will summary the principal 

conclusion of the study, highlight the contribution of the research and suggest 

recommendations for further study.
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Chapter 2  THE VU GIA THU BON CATCHMENT 

The chapter describes generally the Vu Gia Thu Bon catchment. It also provides the 

Meteo-hydrological characteristic, social economy and natural disaster of the catchment. 

The chapter as well communicates the challenge of local people towards natural 

phenomena at present and in the future. Difficulties in simulating the hydrological cycle 

of this catchment are likewise discussed in this chapter to find out the best solution for 

these problems.    

 

2.1 General 

The Vu Gia Thu Bon is a large river system in central region of Viet Nam which originates 

on the eastern side of the Truong Son mountain range and drains to the ocean near the 

cities of Da Nang and Hoi An (Figure 2.1). The river basin covers 10,350 km2 and extends 

from 14°90´to 16°20´N and from 107°20´to 108°70´E. The basin surrounded by Cu De 

basin to the north; Laos to the west; Tra Bong Basin ( part of the Se San Basin) to the 

south; Tam Ky basin to the east and eastern sea. (RETA 6470, 2011). 

This system has two main rivers, i.e., the Vu Gia and Thu Bon rivers that flow through 

many complex topographies, the relatively narrow mountainous area with a maximum 

elevation of 2,600 m at Ngoc Linh mountain that features a large number of steep 

tributaries, and the flat coastal zone at downstream prone to annual flooding consisting 

of a complex interconnected coastal river system. 

Due to mountainous and hilly area accounts for a large area of over 60% of the total area, 

the Vu Gia  Thu Bon river basin lies at elevation of 552m and has an average slope of 

25%. The river and stream network, which is typical for this region in mountainous areas, 

is really complex. However, due to its geological structure, the horizontal dissection of the 

basin is not much thus its river and stream network is undeveloped with the river density 

of 0.47km/km2. The upper of the basin has a slope of over 30%; due to it consists of 

granite slopes and sharp mountain peaks, the river and stream network can be expanded 

in low areas and constant flows are not seen in the mountain slopes, the average density 
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of rivers is 0.38km/km2. In the downstream area, the rivers flow within coastal low-lying 

plains where are composed of sandy and red soils so the rivers run tenuously, with the 

density of 0.57km/km2. The river network in the basin has tributaries grade IV and its 78 

tributaries with the main stem of over 10 km are divided into 4 grade: 19 – graded I, 360- 

grade II, 22-grade III and 2-grade IV (Vu et al., 2011). 

 

Figure 2.1 Vu Gia - Thu Bon catchment. 

 

2.2 Hydro meteorological characteristics. 

The system locates at a tropical monsoon climate region where weather phenomena, rain 

and storm happen so complicatedly. The region’s climate divides clearly into two seasons, 

warm winters, dry summers affected by dry westerly winds and a strong monsoon 

impacted rainy season with typhoons. The climate pattern in Vu Gia Thu Bon basin is 

influenced by Truong Son mountain with quite high rainfall. The average humidity is 84%. 

Northeast winds flow from October to March with an average velocity of 6 to 10 m/s. 

Southern, southeast, and southwest winds flow from May to August with an average 

velocity of 4 to 6 m/s. The average temperature is 25.4°C (Dang, 2009).The rainfall is 

obtained in an average of 2,612mm (in relevant to 27 billion m3 precipitation). The 

precipitation has shown increasing trends from north to south, from the low elevation area 

to the high one. The mean annual rainfall ranges significantly from 2000 mm in central 
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and downstream areas to more than 4,000 mm in southern mountainous areas. However, 

there is a difference in season, 65 – 80% of the annual rainfall drops in September – 

December. Seriously, the 40-50% of total annual rainfall drops in two months, October 

and November (RETA 6470, 2011). It leads to the flood disaster occurring frequently at 

this period.  Due to the difference in rainfall distribution, the flow in Vu Gia Thu Bon varies 

significantly between seasons. The flood season generally lasts from October to 

December corresponding with the highest rainfall period. The flow in this short time 

occupies approximately 62.5 to 69.2% the total yearly flow.  

 

Figure 2.2 Total annual, monsoon season and dry season rainfall observed in different rain gauges in Vu 

Gia – Thu Bon river basin (Dang, 2009) 

The combination of big flow intensity happening in short time and slope topography leads 

to the flood catastrophe in the catchment is high intensity, short occurrence time, large 

amplitude and sharp crest. Every year, floods hit this catchment in 4-5 times, even 7 – 8 

times in the Vu Gia – Thu bon river system. And as the statistic over previous time, they 

accounted that more than 50% flood events are higher than dangerous warning flood 

lever. Highest floods are often seen in October and November, that are caused by various 

weather patterns such as hurricanes, tropical depression, cold air, northeast monsoon 

resulting in heavy rains for many days, while water permeability of soil is saturated  
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because early floods, rains and water level in rivers and streams is dramatically high(Vu 

et al., 2011). 

Table 2.1 Properties of flood flows of rivers in Quang Nam (Vu et al., 2011) 

Properties Thạnh Mỹ 

(1,850 km2) 

Nông Sơn 

(3,155 km2) Season Characteristic 

Flood 

season 

Q (m3/s) 300 734 

M(l/s/Km2) 162 233 

Time of occurrence  10-12 10-12 

% compared to the year 62.6 68.2 

Highest 

month 

Q (m3/s) 385 978 

M(l/s/Km2) 208 310 

Time of occurrence 11 11 

% compared to the year 26.7 30.3 

 

 

Figure 2.3 Average monthly flow at Nong Son station (Dang, 2009) 
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Figure 2.4 Average monthly flow at Thanh My station (Dang, 2009) 

Conversely, the dry season lasts in the remaining period when the rainfall is only 20- 35 

% of annual amount. The driest period usually falls in the period of February and April. 

The precipitation measures annually in this time around 3-5% of total rainfall. The sub 

chronic floods usually come in the May and June under the secondary rainfall peak, which 

is pronounced towards the north-western part of the area. 

Table 2.2. Properties of dry season flow of rivers in Quang Nam(Vu et al., 2011) 

Properties Thạnh Mỹ 

(1,850 km2) 

Nông Sơn 

(3,155 km2) Season Characteristic 

Dry 

season 

Q (m3/s) 59.9 114 

M(l/s/Km2) 32.4 36.1 

Appearance time 1-9 1-9 

% compared to the year 37.4 31.8 

Driest 

month 

Q (m3/s) 38.1 68 

M(l/s/Km2) 20.6 21.6 

Appearance time 4 8 

% compared to the year 2.65 2.11 
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2.3 Economy and livelihoods 

The study area is considered as the most dynamical economic region in Vietnam central. 

This region has experienced active changes with an average growth rate of 10 per cent 

and an economic structure of high transformation towards industrialization and 

modernization (Nguyen, 2011). The regional economy consists of many composition, 

agriculture, forestry, fishery, industry, handicraft and services. However, the regional 

economy still depends strongly on agriculture. The labor in this sector occupies more than 

52% of total labor market. In agricultural sector, the cropping activities account 70% of 

the total value of agricultural output. Rice is the dominant staple crop and is mainly planted 

in the lowland areas. The planted areas for other staple crops, including maize, sweet 

potato and cassava are relatively small, being also mainly concentrated on the lowland 

districts and some midland districts near lowland areas (Nguyen, 2011) .The industry has  

been developed but  the proposition of this component in local economy is still small. 

Mostly, the industrial zone concentrates on Da Nang city and coastal areas.  Tourism and 

service are quite small. These economic parts have not been adequately developed 

towards regional potentiality while there are many celebrated world cultural heritages 

such as Hoi An ancient town, My Son Temple in this river basin. 

 

Figure 2.5a. Labor structure, 2.5b. Sector contributions to the economy of Quang Nam province in 2014 

(Quang Nam, 2014). 



Chapter 2 – The Vu Gia Thu Bon catchment 

43 

 

The population in the region reaches 1,472,000 persons in 2014. GDP per capita is 

around 1670 USD and the rate of poverty households is 12,1% (GDP per person is lower 

225 USD) (Quang Nam, 2014). 

 

2.4 Vulnerability  

Due to the violence of climatological events, the fragile economic condition and the 

underdeveloped infrastructure, the natural disasters related to river flow deeply affect the 

population in this region. In addition, the farming habits formed agricultural production 

and cultural customs also have a negative influence on the prevention of inhabitants 

against natural catastrophes. Furthermore, local authorities although have made efforts 

to prepare for these disasters and to overcome the damage, these works seem still 

insufficient. They have not yet had a complete strategy to help population avoid the 

catastrophic effects. Consequently, the population in central Vietnam, especially in Vu 

GiaThu Bon basin, annually sustains considerable damages to people and property. The 

socio-economy of this region is strongly affected by natural disasters. As a result, the 

flood and inundation are seen as the biggest disaster for the catchment. The hydrological 

catastrophe causes many damages towards the human’s lives and property over 

catchment. In ten years, it left 602 people dead; 33 missing; 1,550 injured and costed 

VND 9,578 billions in damage to property and infrastructures (Vu et al., 2011).  

 

Figure 2.6 Flood and drought frequency at Southeast Asia (event per year from 1980-2000) (Yusuf & 

Francisco, 2009) 

According to recent five years statistics from 2003 to 2007, flood and storm disaster loses 

in Quang Nam province are estimated average up to 6.26% of the GDP. In years with 

excessive rain and flood, losses can sum up to 18-20% of the GDP and severely crash 

human lives and property (Vu et al., 2011). Moreover, similar to other regions in Viet Nam, 
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Vu Gia Thu Bon's economy depends greatly on agriculture, particularly on rice production. 

As a result, the run off regime of this river system not only affects socio economy in flood 

season, but also causes impacts on water resources, drought disaster, and salinity in dry 

season. According to the prediction of IPCC's scenario, under the impact of global 

warming, sea level increase, the change in hydrological cycle, flood and drought disaster, 

abnormal phenomenon such as phenomena El Nino and La Nina in Vu Gia Thu Bon basin 

will happen more frequently and more extremely (Nguyen, 2011). It makes the 

consequences of natural disasters to people, livelihood, social economic development 

become more severe. 

 

2.5 Historical flood disasters 

Due to the hydrological feature and vulnerability of Vu Gia Thu Bon catchment, the flood 

catastrophe frequently occurs and causes severe damages for local population and 

economy in history. In 1964, a flood event lasted in many days of beginning November 

and caused the inundation overall the catchment. This historical flood killed more than 

6000 people, destroyed a lot of villages. 

The flood happening in one week of November 1999 inundated heavily the downstream 

districts of Quang Nam province and Da Nang city, especially mostly areas were sunk 

deeply at 1.0-2.0m water depth in many days. The water overflowed the road, railway. 

Many locations and villages were isolated. The traffic and communication were 

interrupted. Almost all of the lakes in the catchment passed the designed capacity. They 

faced broken risk and led to destroy many inhabitant areas. In 1999, the flood killed 118 

people and damaged 758 VND billions for local economy (Table 1.3). Although the local 

authority have had many solutions to reduce actively the impact of natural disasters, the 

flood event in 2007 inundated heavily 125 per 233 communes of Quang Nam. It affected 

roughly to 200,000 households. Communication and power supply were cut off in many 

areas. Most roads there were blocked, transportation on the highway 1A was obstructed 

for 40 hours. The damage caused by this flood is very great. In total, 47 people were 

killed; the infrastructures were damaged dramatically. These natural catastrophes in this 

year cost about 2,000 VND billion. Recently, in 2009, after several heavy rainfall and 

tropical low pressure, many parts of region were sunk completely in water. People and 

property were damage severely. The event killed 52 habitants, collapsed 5,200 houses, 

around 3,500 VND billion were lost. These damages have been very substantial with the 
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underdeveloped economy as Vu Gia Thu Bon catchment (Nguyen, 2011; RETA 6470, 

2011; Vu et al., 2011). 

 

2.6 Data availability 

2.6.1 Topography and river geometry 

The topography data is generally required for distributed hydrological and hydraulic 

modelling. However, this kind of data is rarely available at large catchment and poor 

countries. Nowadays, there are a lot of online DEMs. Although their accuracy is still a big 

question but these free data sources are very helpful for areas with the lack of data. For 

example, the famous free data source of topography is SRTM DEM of NASA which can 

easily download from the website http://www.cgiar-csi.org/. As information introducing at 

this website, this DEM covers over 80% of the globe. This data is currently distributed 

free of charge by USGS and available for downloading from the National Map Seamless 

Data Distribution System, or the USGS ftp site. The SRTM data is available as 3 arc 

second (approx. 90m resolution) DEMs. One arc second data product was also produced, 

but it is not available for all countries. The vertical error of the DEM’s is reported to be 

less than 16m. The data currently being distributed by NASA/USGS contains “no-data” 

holes where water or heavy shadow prevented the quantification of elevation. These are 

generally small holes, which nevertheless render the data less useful, especially in 

hydrological modelling fields. From origin, resample data with 250m, 500m, 1000 m also 

released on this website. The accuracy of this DEM has been demonstrated in many 

previous projects. The second source of free topography data is 30 m ASTER GDEM 

which is joint product developed and made available to the public by the Ministry of 

Economy, Trade, and Industry (METI) of Japan and the United States National 

Aeronautics and Space Administration (NASA).  It is generated from data collected from 

the Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), a 

space borne earth observing optical instrument. The ASTER GDEM covers land surfaces 

between 83°N and 83°S. Although, The ASTER GDEM is newer and is built with smaller 

grid size than SRTM DEM, its quality is not as confident as SRTM DEM. Hence, using 

ASTER GDEM is not popular as SRTM DEM. Besides that, there are DEMs which benefit 

from two projects of LUCCi and Vie 08-P1. The first from LUCCi covers overall Vu Gia 

Thu Bon catchment. This data presents topography at the catchment with 15 m resolution. 

The second has smaller grid size than the first one, 10m. Unfortunately, it only expresses 

for Quang Nam province. The lack of data is an important part of this catchment which 

http://www.cgiar-csi.org/
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contains the downstream part of Vu Gia branch. However this data is very helpful for 

constructing the river geography at upstream parts. 

 

Figure 2.7: Topography as 15m DEM resolution from LUCCi project. 

The river network in this catchment is very complicated and affects significantly on the 

regional socio economic development. However, the profile of this river system has not 

been yet measured completely. It causes many difficulties for studying hydrological and 

hydraulic phenomena related to this system. At study area, data for river profile only exists 

at downstream part (186 cross sections). This data is inherited from the last study. 

However, the density of this data is not very high. Average 1 km long of river is 

represented by 1 cross section. Moreover, they mainly concentrated on two principal 

branches, Vu Gia and Thu Bon. Consequently, the characteristics of river are not clear 

enough to simulate accurately the hydrological and hydraulic phenomenon of the river 
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system, at least with the mountainous regions. The issue was solved by relying on the 

DEM 10 m of Vie 08-P1 project.  

  

2.6.2 Land use and soil maps 

This area covers 10,350 Km2 and situates at a dynamic region which has a diversified 

economic structure. Thus, the land use map also varies frequently. Determining a general 

land use map over time have met many difficulties. Currently, there are a lot of land use 

maps which come from locality or online sources. Nevertheless, their contents are not 

concrete to evaluate the consequence of flood events and to determine the roughness 

coefficient in the catchment. The land use map was selected for this study originated from 

LUCCI project. This data was resampled to 9 kinds of land uses (Figure 2.8). The 

proportion of each land use is shown in Table 2.3. This map is transferred into raster data 

under different resolutions to make it suitable with calculated objectives.  

Table 2.3. Percentage of land use at Vu Gia Thu Bon catchment 

Land use Percentage (%) 

Unused mountain land 11.48 

Natural forest 49.20 

Planted forest 12.85 

Rural settlement 10.53 

Annual crops 4.69 

Rice 6.32 

Urban 1.70 

Perennial crops 2.95 

Water body 0.28 
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Figure 2.8: Land use map at Vu Gia Thu Bon catchment. 

Table 2.4. Percentage of soil at Vu Gia Thu Bon catchment. 

Soil type Percentage (%) 

Clay 34.61 

Silt loam 48.72 

Loamy sand 11.54 

Light clay 2.73 

Sand 2.40 



Chapter 2 – The Vu Gia Thu Bon catchment 

49 

 

The soil map is supplied by Vie 08-P1 project which describes 44 types of soil of 

catchment. This map is resampled to 5 principal soils types as the Figure 2.9. In these 

components, clay and silt loam are more than 80 % of total (Table 2.4). Hence, they are 

judged to be two factors deciding on the infiltration and base flow in this catchment.  

 

  Figure 2.9: Soil map at Vu Gia Thu Bon catchment. 

 

2.6.3 Ground water 

The ground water data is provided by the Central Viet Nam Division of Water Resources 

Planning and Investigation. This data is described preliminary ground water distributed 

situation of Quang Nam and Da Nang via two reports. These reports also accompany by 

the ground water level process at 27 wells over catchments.  However, most of the holes 
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are in flat area, concentrating mainly on the downstream parts. There is not any hole 

being mountainous area. 

 

2.6.4 Hydrometric data 

The data is supported by the Hydro meteorological Center in mid central Viet Nam. The 

Availability of data type is listed in the Figure 2.10.  

 

   Figure 2.10: River network and hydro meteorological station at Vu Gia Thu Bon catchment. 

There are 2 national rainfall stations which can measure hourly data. They are Da Nang 

station, representative for coastal area and Tra My station, served mountainous region. 

Other stations, including Tien Phuoc, Kham Duc, Hiep Duc, Hien, Thanh My, Nong Son, 

Que Son, Hoi Khanh, Ai Nghia, Giao Thuy, Cam Le, Cau Lau , are  popular rain gauge 
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stations which operate manually due to the volunteer of local people. Thus, the observed 

step is long, 12h in flood reason, daily in remaining days. Besides that, the data, 

measured from popular station, contains many potential uncertainties. The water level is 

observed at 6 stations long two main branches of river system, Vu Gia and Thu Bon. 

Nevertheless, in comparison with river length, the density of gauging station is quite 

sparse. It seems that this network is still not enough to control the water level process for 

Vu Gia Thu Bon catchment. Furthermore, they mostly concentrate on the downstream 

part. This situation creates difficulty for flood managementas well for validating the model 

results. Over the catchment, there are only two stations having capacity for measuring 

the discharge data, Nong Son and Thanh My. They locate at the middle of Thu Bon and 

Vu Gia branches, respectively. So their data merely express partly the flow originating 

from upstream of each branch. At the downstream, where having a complicating river 

network, there is not any flow measured station. There is a big challenge for accounting 

the exchanged water between branches, also for evaluating the model performance. Sea 

levels at two river mounts, Hoi An and Son Tra, are benefited as downstream boundary 

conditions.  

 

2.7 Conclusion 

The Vu Gia Thu Bon is one of the largest catchments located at central of Viet Nam, 

which is annually confronted to severe damages due to natural disasters such as 

catastrophic flood and drought events. Furthermore, according to the prediction of IPCC's 

scenario (Pachauri & Reisinger 2007), under the impact of global warming, sea level 

increase, changes in hydrological cycle, abnormal phenomena, e.g phenomena El Nino 

and La Nina in Vu Gia Thu Bon basin, flood and drought disasters are forecasted to 

happen more frequently and more extremely. This situation will generate more severe 

consequences to people, livelihood, and social-economic development. Hence, in order 

to mitigate the impact of these catastrophes on the region, an efficient tool is required to 

help hydrologists and authorities to have a good understanding on what is happening in 

stream flow regime and its potential variations within the future. However, studying the 

hydrological process of this catchment meets several difficulties such as large scale, 

complicated river system, especially the lack of data for modelling. Due to these 

difficulties, there has not been yet a completed study of flood risk assessment and climate 

change over this catchment. Determining a high performance model, which is hoped to 

overcome above difficulties, is the main point in this study. Model selected and 

constructed process are showed in the next chapter.   
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Chapter 3   HYDROLOGICAL MODELLING 

This chapter sets out to develop an efficient model which can represent as accurately as 

possible the hydrological characteristics of the Vu Gia Thu Bon catchment. This model is 

considered as a basic tool for evaluating the variation of the catchment’s hydrologic 

process under the impact of climate change. In order to get background for selecting the 

most suitable model for Vu Gia Thu Bon catchment, an overview of the concepts and 

some of the main issues within hydrological modelling is first provided. After that, the 

chapter presents the model selection process. Based on available model and catchment’s 

real situation, deterministic distributed model – MIKE SHE is chosen for modelling 

purposes. Next, the chapter describes MIKE SHE model construction, sensitivity analysis, 

calibration and validation. Finally, the chapter presents the discussion of the model 

results, uncertainty and performance of MIKE SHE of model in representing the 

hydrological process at this catchment.  

 

3.1 Model definition 

Hydrology is a subject of great importance to human and environment, which deals with 

all phases of the earth’s water (Chow et al., 1988). There are lots of components and 

complex interactions with the hydrological system. Various definitions about the 

hydrological system were developed but in a simplified way, it can be said as a set of 

physical, chemical and/or biological processes acting upon an input variable or variables, 

to convert it (them) into an output variable (or variables) (Xu, 2002). This continuous 

converted process can be named hydrologic cycle what is the water transfer cycle, which 

occurs continuously in nature; the three important phases of the hydrologic cycle are: 

Evaporation and evapotranspiration, precipitation and runoff  (Raghunath, 2006).  

In order to reduce the negative impact of this system to human being, the people always 

study on this subject to understand more deeply its operation and could give relative 

prediction. However, with its complication, up till now, the people has just discovered a 

small part of this system. Nowadays, with the development of mathematics and computer 

science, model is seen as general and efficient tool for study what happen in hydrological 
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processes and the impact of modern anthropogenic factors on the hydrological system 

(Yu, 2002). A model is an expression to show a part of natural or human created world 

which can be in the form of a physical, analog or mathematical model (Dingman, 2002). 

Brooks et al., (2013) express that Hydrologic models, simplified representations of actual 

hydrologic systems, predict hydrologic responses and allow one to study the function and 

interaction of various inputs, and in so doing gain a better understanding of hydrologic 

events. Generally, model of the hydrologic system may be explained as a function which 

transforms input variables into output results (Xu, 2002).The model result can help us to 

have a better understanding of the hydrological phenomena operating in a catchment and 

of how change in the catchment may affect these phenomena. Furthermore, they help 

the hydrologist to have scientific evidences for forecasting future scenarios such as 

climate change or land use change, also for suggesting the constructive design in the 

catchment.  However, the model could not describe all components of hydrological 

system, as well as the relation between them. It only has the capacity to depict sketchily 

this system. Xu (2002) defined that hydrological model is simplified representation of a 

complex system which has a lot of variables e.g. rainfall, run off, evapo-transpiration, 

temperature, infiltration, soil, moisture,…etc. So this model represents an approximation 

of the actual system. It makes the model unable to translate well the happening in nature. 

Because of the limitation in calculated capacity, hydrological cycle of watershed is 

isolated for studying in watershed scale. This work is looked like one of basic 

simplifications when interrupting the spatial continuum of hydrological system.  

 

  Figure 3.1.  The watershed as a hydrologic system (Chow et al., 1988) 
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A watershed can be explained with a division by topographic or groundwater as the Figure 

3.1. It is defined as the terrain area contributing surface stream flow into a river network 

or any point of interest (Brutsaert, 2005; Chow et al., 1988; Dingman & Dingman, 1994; 

Linsley et al., 1949). Thus, when saying about hydrological model, we imply that this 

model simulate hydrological process for a small area or a catchment. 

 

Figure 3.2. Hydrological modelling schema for the catchment. 

  In a watershed scale, the hydrological model is constructed on simplified equation which 

is simply the statement of the law of conservation of (Raghunath, 2006) and is given by 

I = O + ΔS   

Where 

 I = inflow 

O = outflow 

ΔS = change in storage 



Chapter 3 – Hydrological modelling 

55 

 

The above equation shows that during a given period, at a catchment the total inflow into 

a given area must equal to the total outflow from the area plus the change is storage.  

The methodology for applying a model to simulate the hydrological cycle in a catchment 

in most case is in Figure 3.2. This methodology is summarized from the study of 

(Rochester, 2010; Xu, 2002; Yu, 2002). Follow this schema, problem definition is the first 

step and plays an important role in hydrological research. This step is to outline existed 

problems in the catchment. From that the hydrologist will specify model objectives which 

are the basis for model selection and data preparation. Hence, this step affects hugely 

kind of selected model, also decide model structure.  

The second factor influencing the model selection is data available. Regarding to 

Raghunath, (2006), adequate data and length of records are necessary for the analysis 

and design of any hydrologic project. The basic hydrological data required are: 

- Climatological data; 

- Hydro meteorological data like temperature, wind velocity, humidity, etc; 

- Precipitation records; 

- Stream-flow records; 

- Seasonal fluctuation of ground water table or piezometric heads; 

- Evaporation data; 

- Cropping pattern, crops and their consumptive use; 

- Water quality data of surface streams and ground water 

- Geomorphologic studies of the basin, like area, shape and slope of the basin, 

mean and median elevation, mean temperature (as well as highest and lowest 

temperature recorded) and other physiographic characteristics of the basin; 

stream density and drainage density; tanks and reservoirs. 

 

3.2 Model classification  

Up to date, many hydrological models have been developed with different theories to 

simulate catchment’s hydrological phenomenon. They have contributed significantly in 

getting more knowledge about hydrological phenomenon, as well forecasting the future 

scenario. They have provided logical proofs for strategists, authority ability to make 

reasonable decisions in mitigating the impact of hydrological disaster to human beings. 

However, the performance of hydrological models is not similar due to developing based 

on different theories, and serving different purposes.   
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Figure 3.3. Hydrological model classification (Singh, 1988) 

The capabilities and limitations of each model can be identified accurately relied on model 

classification. Proper classification is expected to be helpful for engineer, experts and 

research to understand the characteristics of model before deciding to employ them into 

their work (Harun et al., 2012). The model may be classified according to several criteria. 

Singh, (1988) distinguished hydrologic model as material and symbolic as Figure 3.3. 

Each major category can be subdivided into more detailed subcategories.  

 

3.2.1 Material model. 

As the definition of Chow et al., (1988), a material model (also called a physical model) is 

the way which use a similar system to represent the real system. The imitative system 

has similar properties with reality, but it is much easier to work. This kind of model includes 

scale model and analog model. Scale model (laboratory) is a system which represents 

the real system on a reduced scale. For example, this method is generally used to verify 

the hydraulic regime of spillway. And the system, which uses another physical substances 
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to introduce the characteristics of prototype, is called Analog model as flow of electric 

current which represent the flow of water.  The material model cost is quite expensive 

and not convenient for construction. But it could be applied to assist the researcher in 

replacing a phenomenon in an unfamiliar field or to construct experiments for typical 

system (Xu, 2002).  

 

3.2.2 Symbolic model, formal or abstract model. 

There are many definitions related to this distinction, but  Xu, (2002) stated that formal 

model is the way which uses a symbolic system to represent the structural properties of 

original system. Singh, (1988) divide this system into two major categories: 

nonmathematical and mathematical model. However, in literature, this kind of model has 

considered only on the mathematical aspect. Following this direction, Chow et al., (1988) 

specified abstract model use an mathematical equation to describe a natural system. This 

model is operated based on a mathematical relation which creates the linking between 

input and output variables. Because of the simplicity, advantage, mobilized characteristic, 

accurate relatively representation, this kind of model has been developed widespread 

nowadays. The linking between input and output variables are represented via different 

kinds of mathematical function which are able to consider on different aspects due to the 

viewpoint of developers, such as space, time, mathematical structure…. Hence, the 

symbolic mode genre is quite abundant. In order to classify models, it is necessary to 

consider what features they have in common and the respects in which they differ.   The 

current models are arranged as following distinctions which are often seen in the 

hydrological literature. 

a. The distinction between theoretical, conceptual and empirical models 

Relied on the presentation method of the hydrological cycle, the hydrological model can 

be classify into 3 subcategories. The degree of representation of the concerned physical 

model can stipulate hydrological model being in the below types: 

Empirical model is also called the black box model which mostly is independent with 

physical process. It is totally built on the experimentation or observed input-output 

correlation (Oogathoo, 2006). Empirical model attempt to represent relationship between 

input and output time series using transfer function. Obviously, the model structure 

building depends on the measurements for the model output variables (Willems, 2000). 

Hence, model parameters can be estimated only by using concurrent measurements of 

input and output. This is assessed as the simplest hydrological and could be constructed 
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quickly. In many situations, this kind of models can provide accurate answer and serve 

as a useful tool in decision making (Xu, 2002). However, this model has several weak 

points. The big limitation is that it is established for a specific catchment and time interval. 

Consequently, if the catchment characteristic change, it might not be suitable anymore. 

The limitation of this method also show at its efficiency when applying with other 

catchment or the outside events. However, it is still used for establishing general 

catchment characteristic or evaluating quickly the phenomena in catchment. Artificial 

Neural Networks (ANNs) is the later development of empirical model (Xu, 2002).   

Theoretical model (physically based model or white box model ) conversely are derived 

from physical law and assumptions and it has a logical structure similar to the real world 

system (Xu, 2002). In theory, most of model parameters could be measured on the reality. 

Hence, it is expected to reflect truly the catchment characteristic and to supply entire view 

of the catchment’s hydrological process for hydrologist. Although, this kind of model is 

quite complex and requires a numerous data, it has good point in simulating hydrological 

cycle. In the part of ….. the outstanding of this kind of model will be disserted in more 

details. Many hydrological models have been developed following this direction like MIKE 

SHE, SHETRAN, SWAT, TOPMODE.  

The intermediate type of empirical model and theoretical model is named conceptual 

model (grey box model). Generally speaking, conceptual model is considered by the 

physical law but in higher simplified form (Singh, 1988). Hence, the conceptual model 

does not have any true physical meaning (Rochester, 2010). The model parameters of 

this kind of model can not be determined directly and need calibration to get optimal value. 

The conceptual model have been developed and applied (e.g HYRROM, HBV,…) in 

reality due to its performance and simplicity.  

b. The distinction between linearity and non-linearity 

In the term of linearity, there are at least two meanings: linear in the system-theory sense 

and linear in the statistical regression sense Xu, (2002). The first definition is most widely 

used in hydrological modelling literature. Lewarne, (2009) stated that in linear models, 

there is a simple correlation between the input and output but for the nonlinear model, 

there is a chaos and an irreversibility that makes this model more difficult to study.  

c. The distinction between time factors of model 

In the term of temporal characteristic, the hydrological model may also be categorized 

into event based and continuous model according to the number of hydrologic events 

simulated (or simulated length). Event based model simulate only a specific event for a 
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short time phase (hours to days).  On the contrary, the model which can be applied to 

translate a series of hydrological event (long time simulation), is called continuous model 

(Harun et al., 2012). Evidently, the continuous model with more good points has been 

used in reality than event based model. 

The hydrological model can be divided into two types due to relationship between input 

and output factor with time, including time invariant and time variant model. A model is 

called time invariant model if its input-output relationship does not change with time. 

Inversely, if this relationship changes depending on time, this kind of model is time variant 

(Xu, 2002).  

d. The distinction between lumped and distributed model. 

The hydrological model can be organized in three categories due to the different concrete 

levels in representing spatially the catchment characteristics. In terms of spatial 

discretization, there are three primary spatial elements used: lumped, semi distributed 

and distributed models (Figure 3.4).  

The model, which uses the simplest way to express the catchments characteristics in 

space, is called lumped model.  This model assumes that all characteristics are constant 

across the catchment (Chow, 1972). Lumped parameter models are considered much 

simpler in their treatment of spatial variation. In this kind of model, each parameter is 

described by a value that is uniform for the whole catchment.  The parameters of lumped 

model could not be determined directly from physical characteristics of the catchment 

under consideration. They are generally determined via calibration (Chow, 1972; Madsen, 

2003). Consequently, this kind of model can not classify the hydrological process 

precisely. Moreover, the lumped model merely assess the catchment responses simply 

at the outlet without obviously counting for individual sub-basin responses(Cunderlik, 

2003).    

In contrast, distributed model is constructed in order to divide the catchment into sub 

units. Each unit represents of all physical characteristics for a real area. These kinds of 

models maintain the physical details at a given grid size and consider the distributed 

nature of hydrological properties such as soil type, slope and land use ( Refsgaard, 1997; 

Vansteenkiste et al., 2013). In principle, the parameters of distributed model could be 

gotten from the catchment data. For this reason, distributed model is evaluated to be able 

to translate the hydrologic process in a catchment more accurately and concretely. One 

more advantage of distributed model is that the outputs, such as water level, discharge, 

hydrological factors, could be perfectly extracted at anywhere in the catchment. These 
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efficiencies of distributed model help to overcome difficulties in the lack of observed data, 

which have a great significance for simulating the hydrological process at a large 

catchment, especially in developing countries. 

 

 

Figure 3.4. Graphic representation of geometrically – distributed and lumped models (Jones, 1997) . I is 

input and O is output. 

Beside the superiority, distributed model still exists weak points. Although the spatial input 

data such as topography, soil type, land use nowadays might be available, it is not really 

easy to find the spatial data for calibration or validation (Beven, 1996). This leads to the 

quality estimation of distributed model in the whole catchment being mostly unable, so 

the calibration and validation are able to merely carry out against the data at several 

gauging stations. Additionally, this model type commonly consists of more parameters 

than lumped models thus   the calibrated process is more complicated and difficult to 

achieve the acceptable values (Reed et al., 2004). However, Refsgaard (1997) noted that 

more detailed physically base and spatially distributed models are assumed to give a 
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detailed and potentially more correct description of the hydrological process in the 

catchment. As a result, they might provide more accurate prediction.  

For above reasons, an intermediary of two kind of model above has been developed to 

harmonize the conveniences together with inconveniences between simple and 

complicated spatial distribution. This is semi-distributed model, which is partly permitted 

to change in space with division of catchment into an amount of sub basin. Hence, semi-

distributed is seen as a more physically-based structure in comparison with the lumped 

model. However, it requires lesser amount of input data in contrast with the fully 

distributed model (Cunderlik, 2003).  

e. The distinction between deterministic and stochastic model. 

Relying the relation between model variable and random,  Chow et al., (1988) divided 

hydrological model into two sub model types. The first is the deterministic model which 

does not include elements of randomness. Every time you run the model with the same 

initial conditions you will get the same results. The second is stochastic model which 

includes elements of randomness. Every time you run the model, you are likely to get 

different results, even with the same initial conditions. A probabilistic model is one which 

incorporates some aspect of random variation. As a result, deterministic model is 

estimated to be more suitable in order to make a forecast while a stochastic model is 

frequently used to create a prediction (Chow et al., 1988; Harun et al., 2012).  

 

3.3 Hydrological model comparison 

3.3.1 Model overview 

With above theories, in recent years, many hydrological models have been developed. 

Their simulations help to represent a part of hydrological cycle. They demonstrated the 

usefulness in many aspect of human society. Following (Table 3) are the brief summary 

of several models which are used widely in current. In this table, the model is classified 

following the content of section 3.2. Besides, the data requirement is preliminarily 

expressed in order to supply a point of view for fitting the most suitable model with the 

catchment.  

The comparison in Table 3.1 is to provide an overview of available hydrological models 

which might be helpful for model selection process.  
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Table 3.1 Hydrological model availability.  

Name of model 
Attributed to / 

developped by 

Spatial   

representation 

Process 

representation 

System 

representation  
Data requirement Brief description 

HYRROM 

Hydrological Rainfall-

Runoff Model 

UK institute of 

Hydrology 

(UNESCO, 

1997) 

Lumped Conceptual Deterministic Precipitation 

  Flow simulated with simple        

representations of physical 

processes. Easy to use. Nine 

parameters available for 

calibration. 

SWM4               

Stanford Watershed 

Model 

U.S. 

Environmental 

Protection 

Agency 

(Crawford & 

Burges, 2004) 

Lumped (can be 

quasi-spatially 

variable) 

Quasi-physical 

but considered 

conceptual 

Deterministic 

Precipitation and potential 

evapotranspiration, 

radiation, temperature, 

cloud cover, wind, tide. 

Uses a soil moisture accounting 

procedure and represents 

hydrological processes within 

the drainage basin through 

storage and routing functions.  

HBV          

Hydrologiska Byråns 

Vattenbalansavdelning 

Swedish 

Meteorological 

and Hydrology 

Institute 

Lumped           

(can be modified 

to semi-distributed 

and elevation 

zones) 

Conceptual Deterministic 

Sub-basin division, 

altitude and land cover 

distribution, time series of 

precipitation and 

temperature. 

Originally a forecasting and 

simulation tool. Daily rainfall-

runoff model with conceptual 

numerical descriptions of 

hydrological processes at 

catchment scale. 

TOPMODEL 
University of 

Leeds, UK 

Semi-distributed - 

subdivision into 

small homogenous 

sub-basin 

units modelled 

separately  

Physically-based 

Deterministic, 

but can be run 

stochastically 

Topographic data, limited 

soil data, other parameters 

from direct measurement. 

Collection of concepts that 

can be used and adapted to 

specific study. Combines 

spatial variability of 

source-areas with average 

response of basin soil-water 

storage 
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SLURP                  

Semi-distributed Land 

Usebased Runoff 

Processes 

National 

Hydrology 

Research 

Institute, Canada 

Semi-distributed -

divides the 

watershed into 

hydrologically- 

consistent sub 

units known as 

aggregated 

simulation areas 

Conceptual       

(quasi physical) 
Deterministic 

Topographic data, land 

cover data, climate and 

hydrometric data. 

Continuous simulation 

model. Parameters related 

to land cover. Most important 

parameters in model include 

interception coefficients, 

depression storage, surface 

roughness, infiltration 

coefficient, groundwater 

conductivity and snowmelt 

rates.  

SWAT                      

Soil and Water 

Assessment Tool 

United States 

Department of 

Agriculture – 

Agriculture 

Research Service  

Semi-distributed 

(HRUs) – grid 

discretization at 

users choice. 

Physically-based Deterministic 

Multiple inputs ranging 

from precipitation, 

temperature, solar 

radiation, wind speed, 

PET, land cover, 

elevation, fertilizer. 

Available input at varying 

discretization 

River basin scale model 

developed to quantify impact of 

land management practices in 

large, complex watersheds. 

Daily time step. Divides 

catchment into HRUs where sub 

basins have homogenous 

climate, soil, management 

and land cover.  

HEC-HMS    

Hydrologic Engineering 

Center-Hydrologic 

Modeling System 

US Army Corps 

of Engineer 

Lumped, semi-

distributed 
Physically-based Deterministic 

Various parameter data 

for: Topography, 

Precipitation, temperature, 

land use, 

evapotranspiration, 

overland flow, unsaturated 

zone flow, saturated zone 

flow, groundwater. 

 It is designed to be applicable 

in a wide range of geographic 

areas for solving the widest 

possible range of problems. 

This includes large river basin 

water supply and flood 

hydrology, small urban or 

natural watershed runoff.  
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WATFLOOD 
University of 

Waterloo  

Lumped, semi-

distributed or 

Distributed 

Physically-based  Deterministic 

Radar rainfall data, 

LANDSAT or SPOT land 

use and/or land cover data. 

Gauged precipitation for 

infilling and calibration, 

flow, snow depth, 

temperature and radiation. 

Flood forecasting and long-term 

simulation using distributed 

precipitation data from radar or 

numerical weather models. 

Satellite data directly 

incorporated into model. 

Multiple processes modelled 

including interception, 

infiltration, snow accumulation 

and ablation, recharge, base 

flow. 

SHETRAN 
Newcastle 

University, UK 
distributed Physically-based Deterministic 

Various parameter data for: 

topography data, river 

geometrical data,   geological  

and land use data, 

hydrometric data, physical 

properties of the soil. 

The model comprises three 

main components, of each for 

water flow, sediment transport, 

and solute transport. These tree 

components is assumed to lie in 

a natural hierarchy. This model 

can be applied to parts of basins 

or a group of continuous basins. 

MIKE SHE  
DHI Water & 

Environment  

Lumped, semi-

distributed or 

Distributed 

Physically-based 

(with some 

components 

optional 

conceptual 

approach) 

Deterministic 

but with ability 

to run 

stochastically 

using a Monte-

Carlo 

autocalibration 

method. 

Various parameter data 

for: Topography, 

Precipitation, temperature, 

land use, 

evapotranspiration, 

overland flow, unsaturated 

zone flow, saturated zone 

flow, groundwater. 

Modular structure comprising 

six process orientated 

components representing 

physical processes of land phase 

of hydrological cycle. Data is 

input discretely in a horizontal 

orthogonal network of grid 

squares so that the parameters 

can be represented at a high 

spatial resolution. 
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3.3.2 Selection criteria 

The criteria for selecting a hydrological model depends on many factors. These criteria 

commonly change due to the purpose of study, such as planning or operation, which 

basically require different kinds of hydrological models (Plate, 2009). They also depend 

on real condition of catchment, data availability (Ng & Marsalek, 1992). However, these 

criteria concentrate generally on four fundamental following requirements (Cunderlik, 

2003): 

 Require model outputs important to the project and therefore to be estimated by 

the model; 

 Hydrologic process that needs to be modeled to estimate the desired outputs 

adequately; 

 Availability of input model; 

 Price. 

With any studies, the first requirement for choosing a hydrological model is how to 

describe the most accurately the processes of catchment in certain conditions. For this 

purpose, an insight was proposed that the more detailed the characteristic of catchment 

the model is, the more detailed and potentially more correct descriptions of hydrological 

process the model represents (Refsgaard, 1997; Vansteenkiste et al., 2013). 

Consequently, it could reduce the uncertainty of the model in simulating the hydrological 

events and forecasting for the future. Have not consider the economic problem and data 

availability, in order to choose a suitable hydrologic model for estimating the impact of 

climate change to hydrologic process of a catchment, Cunderlik, (2003) proposed that the 

selected model must have the capacity to answer under requirements: 

 The selected model could supply: 

- Simulated low peaks (stage, discharge), volumes and hydrographs at outlets 

of sub basins, and in the profiles of special interest within the main basin; 

- Simulated long flow sequences for water budget and drought analyses 

primarily for the main basin but preferably also for the individual sub basin; 

- Simulated extend of flooded area for different precipitation events and various 

antecedent basin conditions. 

 The main hydrologic processes that need to be captured in the structure of the 

hydrologic model in order to adequately estimate the required project’s output 

are: 
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- Single-event precipitation runoff transformation based on various antecedent 

basin conditions and spatial and temporal precipitation distribution; 

- Continuous precipitation run off transformation based on various antecedent 

basin condition and temporal precipitation distribution; 

- Snow accumulation and melt; 

- Interception and infiltration, soil moisture accounting; 

- Eva transpiration; 

- Regulated reservoir operation.  

Table 3.2a Standard for model selection proposed by WMO  (Wittwer, 2013) 

M
o
d
e

l 
ty

p
e

 

Question 1 

Catchment size? 

Small ( headwater) medium large 

Catchment model lumped semi distributed distributed 

Routing mostly not needed hydraulic/hydrology 
hydraulic, hydrology, gauge 

to gauge correlation 

Question 2 

Catchment relief? 

Flat/plain Moderate/hilly Pronounced/ Mountainous 

Catchment model lumped semi distributed distributed 

M
o
d
e

l 
fe

a
tu

re
s
 

Question 3 

Does soil wetness effect flood generation?  

no to some extent yes 

Soil water budget 

feature required 
not need recommended need 

Question 4 

Is snowmelt important for flood generation? 

no to some extent yes 

Snow module not need recommended need 

Question 5 

Is river regulation (reservoir/lake/ diversions) affecting floods? 

no to some extent yes 

Storage module not need recommended need 
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Table 3.2b Standard for model selection proposed by WMO  (Wittwer, 2013) 
D

a
ta

 r
e

q
u

ir
e
m

e
n
ts

 

Question 6 

What is the predominant flood causing rainfall?  

Seasonal frontal/ advective convective 

Recommended 

data resolution 
daily daily/hourly hourly/ sud-hour 

Question 7 

What is the required leadtime? 

Short Medium Long 

Required rainfall 

data 
Observed rainfall 

Rainfall nowcast is 

recommended (e.g 

radar) 

rainfall nowcast and/or 

forecast from NWPs is 

required 

C
o
n
s
tr

a
in

ts
 

Question 8 

Is distributed/ gridded data available? 

no yes   

  
Lumped model is 

only option 

semi-distributed/ 

distributed model is 

feasible 

  

Question 9 What is the level of capacity of the service? 

  low intermediate high 

  

only simple toll 

feasible 

(correlation, etc) 

run lumped/ black box 

simple model 
all option available 

 

Furthermore, towards large catchments where hydrological components are in interactive 

relations, the understanding completely the hydrological mechanics in large scale is 

inextricable. It leads to modeler could not define which one is the main factor affecting to 

stream flow. So for these cases, using a distributed model is need to simulate the rainfall 

runoff behavior (Wittwer, 2013).  

According to the report of WMO, a distributed hydrological model is expected to describe 

more accurate than others in where the topography varies much. This insight might rely 

on the catchment expression as grid scale of distributed model. Through that, these kind 

of model will present more truthfully the slope variation. The Table 3.2 indicate the 
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standards which WMO recommend to choose a model for simulating the hydrological 

cycle at a catchment (Wittwer, 2013).  

The criteria are applied to select the most suitable model for simulating the hydrological 

process of Vu Gia Thu Bon Catchment, also for assessing the impact of climate change 

to run off of this catchment. Comparing these standards with catchment situation, the 

deterministic distributed model is recognized as the best solution for hydrological 

modelling at this catchment. 

  

3.4 MIKE SHE model 

Comparing the criteria of Cunderlik, (2003) and the advantages/disadvantages at the 

section of 3.2 demonstrates the higher performance of fully distributed physically-based 

hydrological model forward other kinds of model in hydrological simulation. The structure 

of fully distributed physically-based hydrological model is a combination of the distributed 

characteristic and physical interpretation the hydrological process, hence it is expected 

to provide significant advantages over existing hydrological models for a wide range of 

application. This kind of model has the ability to apply to simulate in almost components 

of hydrological process. Furthermore these process are solve at the grid scale, thus it 

helps to overcome the data problem at large catchment, catchment with limited data as 

well. This advantage is highlighted as one of the most fascinating aspects of physically-

based distributed model. Consequently, the main interest of a fully distributed physically-

based hydrological model is to be able to provide hydrological information at any locations 

within the catchment. The catchment characteristics are able to input the model as 

detailed as possible, besides, it also helps to reflect the catchment nature truthfully, thus 

hoped to reduce the uncertainty in simulation and increase confidence in simulation. This 

possibility also allows to investigate in depth the hydrological dynamic of catchment. The 

model calibration can be ignorable because of describing in reality the physical 

hydrological components or this is able to realize with the simplest ways in comparison 

with any other models (Abbott et al., 1986).  Several tools are today available and could 

be used for such analysis. The typical of this kind of model is MIKE SHE developed and 

extended by DHI Water & Environment. 
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3.4.1 MIKE SHE philosophy 

Aims to provide scientific information for optimizing the water resource project planning, 

also for estimating the impact of urbanization, land use change, infrastructural 

development on hydrological process and on water resource development and 

management in Europe at the years of decade 70s, a new generation of hydrological 

model, which focuses on physically based distributed catchment model, is required. The 

model is hoped to have the potential to overcome many of the deficiencies related with 

simpler approaches at these time. The European Hydrological System- Système 

Hydrologique Européen or SHE was born in this situation to answers this requirement. 

After getting the success in modelling the hydrological phenomenon in Europe, SHE has 

become the starting point for many physically based spatially distributed hydrological 

models, such as SHETRAN, SHESED, MIKE SHE (Ewen et al., 2000).   SHE was a 

production of the corporation between three big European establishments in domain 

water modelling including the British Institute of Hydrology, UK, The Danish Hydraulic 

Institute and the French Consulting Company SOGREAH under the financial support of 

European Commission (Abbott et al., 1986).   

The SHE model was built fundamentally on the blueprint which proposed by Freeze and 

Harlan in 1969 for modelling hydrological cycle (Abbott et al., 1986). According to 

blueprint theory, the run off process is divided to many different parts and solved by 

corresponding equations. The using different equations focused on representing the most 

accurately the physical characteristics of each part in the catchment (Freeze & Harlan, 

1969). The algorithm is developed independently at three organizations under the form 

of software module, the Institute of Hydrology, UK is responsible for snowmelt, 

interception and evapotranspiration, overland flow and channel flow is constructed by 

SOGREAH and the Danish Hydraulic Institute is in charge of the flow components in 

unsaturated and saturated zone, and linking the module together(Abbott et al., 1986).  

After lots of tests to validate the quality of model with many case studies, the first version 

of SHE was become operational in 1982. From that time, the SHE model has been 

continued completing and extending by DHI Water & Environment with the new name, 

MIKE SHE. This model is kept developing to improve the quality simulation. Today, MIKE 

SHE is estimated as a high performance model for hydrological modelling. It includes a 

full suite of pre- and post-processing tools, plus a flexible mix of advanced and simple 

solution techniques for each of the hydrologic processes. MIKE SHE covers the major 

processes in the hydrologic cycle and includes process models for evapotranspiration, 

overland flow, unsaturated flow, groundwater flow, and channel flow and their 
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interactions. Each of these processes can be represented at different levels of spatial 

distribution and complexity, according to the goals of the modeling study, the availability 

of field data and the modeler's choices, (Butts et al., 2004; Graham & Butts, 2005a).The 

MIKE SHE user interface allows the user to intuitively build the model description based 

on the user's conceptual model of the watershed. The model data is specified in a variety 

of formats independent of the model domain and grid, including native GIS formats. At 

run time, the spatial data is mapped onto the numerical grid, which makes it easy to 

change the spatial discretization (Graham & Butts, 2005a).  

MIKE SHE uses MIKE 11 to simulate channel flow. The MIKE SHE/MIKE 11 coupling 

allows you to simulate large water bodies such as lakes and reservoirs, as well as flooded 

areas. If this option is used, MIKE SHE/MIKE 11 applies a simple flood-mapping 

procedure where MIKE SHE grid points, are linked to the nearest H-point in MIKE 11. 

Surface water stages are then calculated in MIKE SHE by comparing the water levels in 

the H-points with the surface topographic elevations. Conceptually, you can think of the 

flooded cells as "side storages", where MIKE 11 continues to route water downstream as 

1D flow. But, at the same time, the water is available to the rest of MIKE SHE for 

evaporation and infiltration. The effect of urban drainage and sewer systems on the 

surface/subsurface hydrology can be simulated in MIKE SHE model via the coupling with 

the MOUSE model and nowadays it develops to couple MIKE URBAN and MIKE SHE 

(DHI, 2012f).  

 

3.4.2 MIKE SHE architecture 

The preeminence of deterministic, physics-based, distributed model code in hydrological 

domain has already been demonstrated via analysis in the part of 3.3.  These good points 

have been concretized in MIKE SHE model. However, beside the capacity to translate 

accurately the hydrological process for catchment, the applicability of deterministic 

physics-based distributed model in reality confronts several difficulties. The requiring a 

significant amount of data or long execution time are the most important limitation when 

applying the physical base model. And one question, is it really necessary to simulate all 

hydrological components in one model? How it will improve the simulation quality when 

the just one or two hydrological processes dominate the watershed behavior (Graham & 

Butts, 2005). These two authors also give a judgment that a complete physics based flow 

description for all process in one model is rarely necessary. Over-parameterized 

description may occur for simple applications. Hence, in order to respond flexibly the 
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simulated ways can occur in practice, MIKE SHE has been developed with many 

simulated methods, such as lumped, conceptual. This integration is organized in modular 

approach which include several solution techniques to translate the different processes 

in nature. It can help to optimize the function of each component when simulating for a 

complicate catchment. Each of hydrological processes can be represented at different 

levels of spatial distribution and complexity, according to the goals of the modelling study, 

the availability of field data and the modeller's choices, (Butts et al., 2004).  The Figure 

3.5 presents a schematic overview of the processes in MIKE SHE model. According to 

that, hydrological process is divided into eight parts in MIKE SHE model. The description 

of these parts is briefed as follows. 

 

Figure 3.5. Schematic of MIKE SHE model (DHI, 2012e). 

a. Precipitation 

Precipitation is a key factor in hydrologic process. Hence, it is always the first data 

requirement with any rainfall run off model. This input data affects much on the simulation 

quality. In MIKE SHE, precipitation data can be input as a constant value or a time series 
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depend on data availability and simulation objective. MIKE SHE supplies three spatial 

distributed format for rainfall input, such as uniform, station based or full gridded spatial 

distribution. The first format generally is applied for a small catchment or lack of surveyed 

data. The second one is suitable with locality where the density of gauging station is 

relatively high. The famous of this type is Thiessen Polygons. The last one is the best in 

representing the precipitation data. It is expected to improve the simulated quality. 

However, this data is quite complicated to obtain because Precipitation is typically 

measured at only a few locations within a watershed. In fact, this data is not available. It 

is generally gotten via several interpolated methods (more about the rainfall distribution 

will be express at section of 3.5). MIKE SHE also provides a tool to correct the rainfall 

variation due to the elevation via Precipitation Lapse Rate. Snow melt is an important 

phenomena that can dramatically affect the spring runoff timing and volume. Therefore, 

a realistic description of the snow melt process is important.  In order to take into account 

the impact of snow the stream river, MIKE SHE includes a comprehensive snow melt 

module based on a modified degree-day method. Precipitation that occurs when the air 

temperature is below the freezing point accumulates as solid snow and does not infiltrate 

or contribute to runoff. The accumulated snow has a moisture content, and when the 

moisture content reaches a critical level, then additional melting contributes to runoff. For 

snow melt, the air temperature. The format of this data can be organized like precipitation. 

b. Evapotranspiration 

In water balance, the evapotranspiration is an important component. This factor is 

composed from evaporation and transpiration. Evaporation, which water changes from a 

liquid to gas or vapor. In hydrology, it is estimated as the primary pathway that water 

moves from the liquid state back into the water cycle as atmospheric water vapor. It 

occurs from free water surface including lakes, river, snow surface or from the soil. The 

evaporated amount might be affected by many factors such as temperature, humidity, 

wind, or soil wetness, soil hydraulic properties, groundwater table. In different way, the 

transpiration is decides by plant physiology - the depth of the roots, the ability of the roots 

to extract water from the soil or characteristics of leaves (Graham & Butts, 2005a). In 

MIKE SHE, the calculation of evapotranspiration uses meteorological and vegetative data 

to predict the total evapotranspiration and net rainfall due to many components: 

interception of rainfall by the canopy, drainage from the canopy to the soil surface, 

evaporation from the canopy surface, evaporation from the soil surface, and uptake of 

water by plant roots and its transpiration, based on soil moisture in the unsaturated root 
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zone (DHI, 2012e). MIKE SHE 2012 supplies three methods to determine the amount of 

actual evapotranspiration (ET). 

 Soil Vegetation Atmosphere Transfer ( SVAT) 

This model was developed based on a system what consist of two layer (soil and canopy) 

and their resistance network link (Shuttleworth & Wallace, 1985). This model includes a 

single, semi-transparent canopy layer located above the soil layer. In this model, actual 

evapotranspiration is calculated directly from standard meteorological and vegetation 

data. This process is not dependent on Reference evapotranspiration (Graham & Butts, 

2005a).   

 Kristensen and Jensen Method. 

In this method, the actual ET is estimated by using empirically derived equations 

Kristensen and Jensen (Kristensen & Jensen, 1975). This equation was established at 

the Royal Veterinary and Agricultural University in Denmark. The equation is a result of 

summarizing the field measurement.  The model uses the above equation to solve the 

relationship between the reference evapotranspiration rates, maximum root depth and 

leaf index of the plants to give the actual evapotranspiration and the actual soil moisture 

status. The precipitation is assumed not occur as snow because of considered 

temperature of model is above 0°C. The required data for this method is time series of 

the Reference ET, the leaf area index and the root depth, and other empirical parameters 

that control the distribution of ET with the system (Graham & Butts, 2005a). 

The mechanism of this method can be expressed as follow: firstly, the water intercepted 

by the leaves is removed from total rainfall. This number will drop into ground surface 

where it can infiltrate or pond. Based on the ponded at reference ET and the net rainfall, 

the model will calculate the evapotranspiration. If amount of evapotranspiration is till 

smaller than Reference ET at current time step, the water loss will be continue subtracting 

by transpiration. The ET distribution between unsaturated zone and saturated zone relies 

on root’s depth. The evapotranspiration is extracted from saturated zone only when the 

roots of vegetable are in contact with water table (DHI, 2012e). This is very important to 

calculate the evapotranspiration at swamps, wetlands, flood season…  Kristensen and 

Jensen Method is required when using the Richards equation and gravity flow methods 

in the unsaturated zone (Graham & Butts, 2005a). 

 Two Layer Water Balance Method. 



Chapter 3 – Hydrological modelling 

74 

 

Aims to reduce the complexity of simulating the transpiration process at water flow at 

unsaturated zone. MIKE SHE proposes a simplified water balance method. This method 

is Two Water Balance Model which divides the unsaturated zone in two part. The first is 

root zone where evapotranspiration mostly occurs. The second part is below the root 

zone, where does not affect much on the evapotranspiration process. This model is 

constructed based on the research of Yan & Smith (1994). The main objective of this 

model is to calculate the actual evapotranspiration and solve the relation between surface 

and ground water. The simulation process in Two Water Balance Method progresses as 

Kristensen and Jensen Method. Following that, the evapotranspiration is determined via 

the processes of intercepted water, then ponded water and finally transpiration from root 

zone. However, it does not take into account flow dynamics that is different with 

Kristensen and Jensen Method. The data requirement of this model is like Kristensen and 

Jensen Method including the time series for root depth, leaf area index and Reference 

Evapotranspiration (Graham & Butts, 2005a) .  

This method is particularly suitable with swamps or wetlands area where the ground water 

table is shallow. In these cases, the actual evapotranspiration rate is closed to the 

reference rate. In areas with the deeper and drier unsaturated zone, the Two Layers 

Water Balance Method is inefficient. However model result can be acceptable via 

calibration (Graham & Butts, 2005a).  

c. Unsaturated Flow 

Naturally, in unsaturated zone, the flow can be expressed with vertical and horizontal 

ways. However, under the domination of gravity, the vertical way gets upper hand. Hence, 

MIKE SHE assumes that there is only vertical flow in unsaturated zone and it ignores the 

lateral movement (Figure 3.6). This assumption is applicable for most situation. However, 

it may limit the validity of the flow direction in several case, such as on very steep hill 

slopes or in small scale models with lateral flow in the unsaturated zone where the 

intensity of lateral and vertical flow is roughly similar. The mechanism is imitated on cyclic 

functions in the soil moisture. The rainfall fulfill the soil moisture. Then, the water in this 

part will extracted for evapotranspiration and recharge to the groundwater table. 

Depending on deferent engines, the UZ flow component is able to simulate with four 

solution options as follows: 

 Richards Equation 

The full Richards equation (equation 3.1) is developed based on the continuity equation 

and Darcy’s law. The method uses the vertical gradient of hydraulic head, which includes 
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both a gravity and a pressure component, to represent the water movement in 

unsaturated zone.  The pressure head as a function of saturation (moisture retention 

curve) and hydraulic conductivity are necessary for this method. The evapotranspiration 

factor is calculated as a root extraction in the upper part of the unsaturated zone. The 

amount of total actual evapotranspiration is equals with the integral of the root extraction 

over the entire root zone depth. 

 

Figure 3.6. Vertical discretization in unsaturated zone. (DHI, 2012e) 
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Direct evaporation from the soil is considered only for the first node below the ground 

surface.  

 𝐶
𝜕Ψ

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾(𝜃)

𝜕Ψ

𝜕𝑧
) +

𝜕𝐾(𝜃)

𝜕𝑧
− 𝑆 (3.1) 

Where  is pressure head 

 is the volumetric soil moisture 

K() is the unsaturated hydraulic condictivity 

Z is the gravitational component 

S is the root extraction sink term 

T is the time component 

C is the soil water capacity 

This method is the most accurate for describing the flow in unsaturated zone. However, 

it is limited in computational time due to its complexity. It is primarily suitable for study of 

unsaturated zone flow dynamic. 

 Gravity Flow 

The limitation about the computational time of Richards equation method is improved with 

Gravity Flow method. By assumption that the gravity is the main role in vertical driving 

force, Gravity flow ignores the effect of pressure head term to vertical flow in unsaturated 

zone.   

 
𝜕𝜃

𝜕𝑡
= −

𝜕𝑞

𝜕𝑧
− 𝑆(𝑧) (3.2)  

Where  is the volumetric soil moisture 

K() is the unsaturated hydraulic condictivity 

Z is the gravitational component 

S is the root extraction sink term 

T is the time component 

In the Gravity Flow Module, Equation 3.2 is solved explicitly from the top of soil column 

downward.  At the top of soil column, the depth of overland water in the ground surface 

is hypothesized the amount of water available for infiltration, which is used as infiltration 

rate in the first step and as the maximum infiltration rate for the soil column. The data 

requirement of this method is only the conductivity –saturation relationship. 
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In comparison with full Richards equation, this simplified method is faster and more 

computationally stable. This is applicable for coarse soil which capillary pressure is quite 

small and for project focus on the accuracy of evapotranspiration, of recharge to 

groundwater, but do not care the dynamics in unsaturated zone. 

 Two-Layer Water Balance 

This method was presented at evapotranspiration part. Accordingly, the two layer water 

balance method divide the unsaturated zone in two part, root zone and below one. This 

assumes the unsaturated zone storage is inconsiderable. Thus two layer water balance 

method does not take into account this component in infiltration and it supposes all 

infiltrated flow recharge immediately to saturated zone. The simple of this engine helps 

to reduce lot of simulation time at least with the long simulation. This method is particularly 

suitable with swamps or wetlands area where the ground water table is shallow.  

 Lumped Unsaturated Zone Calculation (Column Classification) 

Lumped Unsaturated Zone Calculation is applicable in the case of identical unsaturated 

flow conditions. The unsaturated flow conditions in two cell is considered as identical if 

they answer completely two following conditions: 

- The first is identical soil and vegetation characteristics. 

- And the second is boundary conditions. 

In this context the flow in unsaturated zone can be calculated in one of cell which is as a 

representative of group. Then other cell can refer on the result of this cell. This method 

gives approximated accurate results for water balance simulation. It is not very accurate 

for local dynamics, because it does not account the influence of this procedure on the 

flow simulation. Applying Lumped Unsaturated Zone Calculation for unsaturated flow 

simulation helps to make this process shorter.  

In summary,  DHI (DHI, 2012e) releases comments as: The full Richards equation method 

is the most computationally intensive but also the most accurate when the unsaturated 

flow is dynamic. The simplified gravity flow procedure provides a suitable solution when 

you are primarily interested in the time varying recharge to the groundwater table based 

on actual precipitation and evapotranspiration and not dynamic in the unsaturated zone. 

The two simple layer water balance method is suitable when the water table is shallow 

and groundwater recharge is primarily influenced by evapotranspiration in the root zone. 

Lastly, Lumped Unsaturated Zone Calculation is suitable with long time simulation at 

homogeneous zone. 
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Besides, MIKE SHE also describes the flow through macropores in unsaturated soil which 

is important for many soil types. There are two selections of representing flow type in 

MIKE SHE, Simple bypass flow and full macropore flow.  

Simple bypass flow - A simple empirical function is used to describe simple bypass flow 

in macropores. The infiltration water is divided into one part that flows through the soil 

matrix and another part, which is routed directly to the groundwater table, as bypass flow. 

The bypass flow is calculated as a fraction of the net rainfall for each UZ time step. The 

actual bypass fraction is a function of a user-specified maximum fraction and the actual 

water content of the unsaturated zone, assuming that macropore flow occurs primarily in 

wet conditions (DHI, 2012e).  

Full Macropore Flow - Macropores are defined as a secondary, additional continuous pore 

domain in the unsaturated zone, besides the matrix pore domain representing the 

microporous bulk soil. Macropore flow is initiated when the capillary head in the micropore 

domain is higher than a threshold matrix pressure head, corresponding to the minimum 

pore size that is considered as belonging to the macropore domain. Water flow in the 

macropores is assumed to be laminar and not influenced by capillarity, thus 

corresponding to gravitational flow (DHI, 2012e).  

In order to overcome the capacity of 2-Layer WB and the Gravity Flow UZ solution 

methods about the capillarity simulation, DHI provides the The Green and Ampt infiltation 

function which is an analytical solution to the increased infiltration experienced in dry soils 

due to capillarity. 

The coupling the unsaturated zone to saturated zone is solved by an iterative mass 

balance procedure. This linking ensures a realistic description of water table fluctuations 

in situation with shallow soils. However, there is a difficulty in solving the linkage between 

the two saturated and unsaturated zone which are arisen from the fact that these two 

components are explicit coupled and run in parallel. This couple is not solved by a single 

matrix with an implicit flux coupling of the unsaturated zone and saturated zone differential 

equations. A great advantage of this kind of coupling is that, they are run with different 

time steps. It helps to optimize computational time at each other’s.  

d. Overland Flow 

The surface run off can be caused from ponded water which has the tendency to flow 

downhill towards the river system. The ponded water can be from the remaining rainfall 

water after the losses of infiltration and evapotranspiration, or river flow flood over their 

banks or groundwater flows onto the surface. The characteristics and quantity of this 



Chapter 3 – Hydrological modelling 

79 

 

hydrological components are defined by the topography and flow resistance as well as 

the losses due to evapotranspiration and infiltration along the flow path. MIKE SHE 

provides two methods for representing this main kind of component of hydrology. 

 Finite difference Method. 

MIKE SHE handles the St. Venant equations to solve the run off in the ground surface. 

However, because of complexity, this equation is simplified by ignoring momentum losses 

due to local and convective acceleration and lateral inflows perpendicular to flow 

direction. After simplifying, it becomes the diffusive wave approximation. This method is 

suitable with simulating the free surface flow, the shallow water depth or slow velocity of 

surface water. The diffusive wave approximation is solved by using two dimensions 

difference approach to represent the relationship between the rainfall, evapotranspiration, 

infiltration and the surface flow. For this method, it is necessary to supply into the model 

three parameters:  

- The Manning number which describes the friction of ground surface, 

- The detention storage – the parameter to limit the amount of water that can 

flow over the ground surface. It means that the overland flow process only 

occurs if the ponded water on the surface exceed this threshold. The detention 

storage is accounted for infiltration or evapotranspiration. This parameter also 

affects the exchange between overland flow and channel flow. This is like the 

threshold for exchange flow. 

- Initial water depth: In most cases it is the best to start your simulation with a 

dry surface and let the depressions fill up during a run in period. However, if 

you have significant wetlands or lakes this may not be feasible. So this 

parameters is need for the model reach quickly with balance condition.  

 Semi-distributed Overland flow 

An empirical relation between flow depth and surface detention, together with the 

Manning equation describing the discharge under turbulent flow condition is handled in 

MIKE SHE to describe the overland flow (Crawford & Linsley, 1966). This method is 

known as Semi-distributed Overland flow and is applied in many hydrological model such 

as SWM, HSPF, WATBAL. 

e. Channel Flow 

In theory, the MIKE SHE model has the ability to simulate accurately the stream and river 

flow as two dimension surface flow if the topography data is fine enough. However, in 
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fact, this requirement is very difficult to respond. The high resolution topography data is 

a big obstacle for applying this method. In generally, this data is not available at least with 

large catchment. Even If this data is available, the second problem is computation issue. 

With this kind of simulation, it is necessary to have a strong computer system and a longer 

simulation. In order to overcome this issue, the river flow is assumed as one dimension 

flow. This component is simulated by coupling with River hydraulic program MIKE 11 

which is professionally developed based on an implicit, finite difference scheme for the 

computation of unsteady flows in rivers and estuaries. Moreover, the coupling between 

1D and 2D model helps the MIKE SHE model can simulate a wide range of hydraulic 

control structure, such as weirs, gates and culverts… which the algorithm of MIKE SHE 

has been not developed yet. The coupling also gives the capacity to take into account the 

impact of tide to floodplain via boundary condition of MIKE11. 

 

Figure 3.7. MIKE 11 Branches and H-points in a MIKE SHE Grid with River Links 

The MIKE SHE/MIKE11 coupling is made via river links (Figure 3.7), which are located 

on the edges that separate adjacent grid cells. The river link network is created by MIKE 
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SHE's set-up program, based on a user-specified sub-set of the MIKE 11 river model, 

called the coupling reaches. The entire river system is always included in the hydraulic 

model, but MIKE SHE will only exchange water with the coupling reaches. Figure 3.7 

shows part of a MIKE SHE model grid with the MIKE SHE river links, the corresponding 

MIKE 11 coupling reaches, and the MIKE 11 H-points (DHI, 2012e).  

Exchange water between MIKE SHE and MIKE 11 is calculated by three principal 

different mechanisms (Figure 3.8): 1) Ground water exchange with MIKE 11. The river is 

located on the edge between two adjacent model grid cells. The river is considered a line 

source/sink to groundwater and the river is a one way sink for overland flow. 2) Flooding 

from MIKE 11 to MIKE SHE using flood codes.  

 

Figure 3.8. A typical simplified MIKE SHE River link cross section compared to the equivalent MIKE 11 

cross section (DHI, 2012e). 

The river has a wide cross section containing the flood plain and designated cell are 

“flooded” if the river water level is above the topography. 3) Direct Overbank spilling to 

and from MIKE 11. The river is line source/sink, but water above the bank elevation is 

allowed to flood onto the topography as overland flow. 

f. Pipe and Sewer Flow 

In urban area, the flow of urban drainage systems, sanitary and storm sewers have a 

significant effect on other component of hydrological process. They can drain both 

overland flow and ground water flow, and they can cause contamination of both surface 

water and groundwater (Graham & Butts, 2005a).  
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Figure 3.9. MIKE SHE to MIKE URBAN coupling linkage (DHI, 2012e). 

 

Figure 3.10. Linked mechanism between MIKE SHE and MIKE URBAN (DHI, 2012e).  

In MIKE SHE this component is represented relied on the coupling with MIKE URBAN. 

This coupling is basically developed on the coupling between MIKE SHE and MOUSE.  

MOUSE (MIKE URBAN) can help to solve the flow parts in branches and looped pipe 

networks, with a mixture of free surface and pressurized systems. The coupling operates 

as two independent systems. These two systems exchange information at each time step 

and take it as the initial condition for next step. The water exchange is through the link 

(Figure 3.9) between MIKE SHE SZ and MIKE URBAN, MIKE SHE Overland flow to MIKE 

URBAN, MIKE SHE Overland flow to MIKE URBAN Manhole, MIKE SHE  SZ drain flow 

to  MIKE URBAN Manhole, MIKE Paver area to MIKE URBAN Manhole, and MIKE 

URBAN Outlet to MIKE SHE (Figure 3.10). The exchange is calculated based on the 

following equation (3.3) 

 𝑄 = 𝐶. (𝐻𝑆𝐻𝐸 −𝐻𝑀𝑂𝑈𝑆𝐸)
𝐾 (3.3) 
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Where Q is the exchange between MIKE SHE and MIKE URBAN (MOUSE), C is 

the exchange coefficient, K is head different component. HSHE is the maximum value 

of the head in MIKE SHE cell, cell’s elevation, manhole’s elevation and HMOUSE is 

the maximum value of the head in MIKE URBAN pipe, cell’s elevation, manhole’s 

elevation 

g. Saturated zone flow 

Groundwater plays a significant role in the hydrological cycle. The stream flow in dry 

season is mainly from the discharge of this hydrological components. Simulating this 

component helps to solve better the water demand problem on dry season. Furthermore, 

this kind of flow has many interactions with other components of hydrological process. 

Taking into account of this component when simulating hydrological process is to reduce 

the uncertainty of model. The saturated zone module also provides the function to 

simulate the impact of pump station to saturated zone flow. In MIKE SHE, the saturated 

zone is only one component of an integrated groundwater/surface water model. One of 

the advantage of MIKE SHE is to put the saturated zone component in the interaction 

with all of the other components - overland flow, unsaturated flow, channel flow, and 

evapotranspiration (DHI, 2012e). The operation in saturated zone is described in MIKE 

SHE with two method. 

 Finite difference method. 

The saturated zone flow is basically calculated by on the following function, 3D Darcy 

equation (3.4). 
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  (3.4) 

Where Kxx, Kyy, Kzz is the hydraulic conductivity along the x,y  and z of axes of the 

model, which are assumed to be parallel to principle axes of hydraulic conductivity 

tensor, h is the hydraulic head, Q present the source/ sink terms, and Ss is specific 

storage coefficient.  

The above equation is solved by an iterative implicit finite different technique. There are 

two groundwater solutions/ techniques available (Butts & Overgaard, 2005):  a successive 

over-relaxation (SOR) technique and a preconditioned conjugate gradient (PCG) 

technique.  

In this method, the data input requirements are saturated area (Lower level, Upper level, 

Horizontal extent), characteristic of soil in this area (Horizontal hydraulic conductivity, 

Vertical hydraulic conductivity, Specific yield, Storage coefficient) Initial condition (Initial 
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potential head), Boundary conditions (Outer boundary conditions and Inner boundary 

conditions), Drainage.  

Finite difference method is a strong solution for estimating the groundwater flow. 

However, this method requires lots of data which is not always available for simulation. 

Furthermore, parameter estimation computational requirement is one of the biggest 

limitations of this method. To overcome these problems, MIKE SHE proposes Linear 

Reservoir Method. 

 

Figure 3.11. Model structure for MIKE SHE with the linear reservoir module for the saturated zone (DHI, 

2012e). 

 Linear Reservoir Method. 

Linear Reservoir Method is a lumped conceptual approach, which is construct on the 

linear relation between storage and time, as follows: 

 S=k.Q  (3.5) 
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Where S is storage in the reservoir with dimensions length, k is the time constant, 

and Q is the outflow the reservoir from reservoir with dimensions length/time. 

For calculating the groundwater flow, this method divides the catchment into several sub 

catchments as the Figure 3.11. Each such catchment is divided into a series of 

independent, shallow reservoir, plus one or more one, deep base flow reservoir…(DHI, 

2012e). Each component is divided into many parallel sub catchments as in Figure 3.12. 

Hence the data requires for this method is a map with the division of the model area into 

sub catchment, a map of interflow reservoir and a map of base flow reservoir. 

This method is primarily developed to provide a reliable, efficient instrument in the 

following fields of application: assessment of water balance and simulation of runoff for 

ungauged catchment; Prediction of hydrological effects on land use change; Flood 

prediction; Long term simulation like climate change assessment. 

 

Figure 3.12. Schematic flow diagram for sub catchment – based, linear reservoir flow module (DHI, 

2012e). 

h. Irrigation 

The Irrigation option is designed for presenting the water demand to irrigate the 

agriculture production in a catchment. It allows to specify a demand driven irrigation 

scheme with priorities. Activating the Irrigation option creates several sub-items in the 
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data tree for the irrigation parameters such as The Irrigation Command Areas are used 

to describe where the water comes from and how the irrigation water is applied to the 

model; The Irrigation Demand is used to describe when the water will be applied in the 

model; Irrigation priority which define the area having to irrigate firstly if the water supply 

is lower than demand.  

 

3.4.3 Performances of MIKE SHE 

With its performance, MIKE SHE has been used in a broad range of applications. It is 

being used operationally in many countries around the world by organizations ranging 

from universities and research centers to consulting engineers companies (Refsgaard et 

al., 1995). MIKE SHE has been used for the analysis, planning and management of a 

wide range of water resources and environmental and ecological problems related to 

surface water and groundwater, such as: River basin management and planning, Water 

supply design, management and optimization, irrigation and drainage, Soil and water 

management, groundwater management, interactive between water surface et ground 

water, ecological evaluations flood plain studies, impact of land use and climate change. 

Following part are several examples to prove the flexibility of MIKE SHE model in 

hydrological modeling. This review part will divide due to three big domains: about the 

applied topography, catchment modeling scale, simulated objective: 

a. Morphological diversity  

Throughout its history, the MIKE SHE model has validated its suitability with many 

topographical types. Andersen et al., (2001); Graham, & Butts (2005) applied the MIKE 

SHE model to simulate the hydrological process of Senegal River Basin. This model was 

developed on an area 375,000 km2, and included all of hydrologic components. The result 

was relatively preventative of the characteristic of this catchment with good obtained 

statistical coefficients. Thompson et al., (2004) used this model to simulate the 

hydrological system in lowland wet grassland in southeast England. These authors used 

MIKE SHE coupling with MIKE 11 to present the hydrologic factors in Elmley Marshes 

catchment. This research gave remarkable results in simulating surface flooding, 

groundwater and flow in the channel. The application of the coupled MIKE SHE/MIKE 11 

modelling system to the Elmley Marshes has demonstrated its potential to represent 

complex hydrological systems found within many wetland environments. By simulating 

the stream flow process at catchment (<100 km2) in China, and at in Hawaii, USA, the 

works of  Sahoo et al., (2006) and Zhang et al., (2008)  already proved the capacity of 
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MIKE SHE to describe the flow in mountainous region. This model is likely to be 

preeminent to simulate hydrology in semi-arid area with the studies of McMichael et al. 

(2006).  These demonstrations prove that MIKE SHE model have a strong ability for 

describing catchment hydrologic characteristics. This capacity is suitable for any 

topography, from lowland to mountainous or semi-arid area.  

b. Catchment modeling scale 

 Operating on a flexible mechanism, the size of cell in MIKE SHE can be changed flexibly 

to adapt with real situation. Thus, the algorithm does not limit the modeling scale of study 

area. It leads to the advantage for using this model in watershed hydrological simulation. 

Indeed, the MIKE SHE model has operated well in wide range of scale from small size to 

great size. There are a lot of case studies smaller than 100 km2 taking MIKE SHE for 

hydrological simulation. This has illustrated throughout research of Sahoo et al., (2006), 

Zhang et al., (2008). Conversely, towards large catchment, the MIKE SHE model is 

expected as an effective solution for overcoming the problem concerning with great size. 

Many studies used MIKE SHE as a way for reducing the uncertainty of catchment 

characteristic spatial distributions which might vary complicatedly over a big area. With 

its spatial distributed property, MIKE SHE has solved this problem in many catchment. It 

application was gotten the success for modelling the hydrological process at Senegal 

River Basin, which is cover a 375,000 km2 (Andersen et al., 2001), at 19,000 km2 of Kaidu 

Watershed (Ma et al., 2013) or 7,460 km2 of Seim Rive (Gelfan, 2010). Moreover, this 

spatial characteristic of MIKE SHE help it becomes a reasonable model for surmounting 

the lack of data which is always big obstacle for hydrological modelling at large catchment 

and developing country (Hundecha et al., 2002; Ma et al., 2013) 

c. Simulated objective:  

The MIKE SHE model has been used for: 

 Hydrological process.  

MIKE SHE model with its advantage in taking into account most of the components in 

catchment’s hydrology has been handled successfully to represent hydrological process 

for many locations all over the world. Especially, it can be used for special objectives such 

as snowmelt or flood simulation. Ma et al., (2013) accounted the snowmelt component in 

the run off of 19,000 km2 mountain area at Northwest China. Integrating as much as 

possible the hydrological components into model is necessary for assess the snowmelt 

flow, these authors said that after using MIKE SHE for their study. Extreme snowmelt 

floods of Seim River, which is a part of the Dnieper river basin and located in the steppe-
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forest physiographic zone of the European Russia, was represented perfectly in the 

environment of MIKE SHE. This study is realized by study of Gelfan (2010).  

 Flood analysis  

MIKE SHE calculates the overland flow cell by cell and can link with 1D model, hence this 

distributed model is expected to present accurately the flood event. Furthermore, the 

model can give the result as 2D data, so it helps this model has the advantage in mapping 

the flood area. In effect, this model has already proved its remarkable characteristic in 

many studies. Sen & Niedzielski, (2010) applied MIKE SHE for evaluating the flood 

phenomenon at the second largest river of Poland. Nielsen (2006), utilized the MIKE SHE 

for floodplain inundation and urban drainage assessment in South East Asia.  

 Impact of land use changes 

The MIKE SHE model have been also used for evaluating the impact of land use change 

to the catchment’s hydrology. Oogathoo, (2006) after comparing with others models, 

already selected MIKE SHE to evaluate the impact of management scenarios on the 

hydrological processes of the watershed by applying land-use increase/decrease 

percentages over Canagagigue Creek catchment, Ontario, Canada. Consequently, the 

study show that this model performed well in simulating runoff. Furthermore, it can be 

used to investigate diverse hydrological problems and watershed hydrology in a 

systematic way (Oogathoo, 2006). The capacity of MIKE SHE model in investigating the 

relation between land use change and hydrological process was confirmed in study of 

Wijesekara et al., (2014). It was realized to assess the consequence of land use change 

over 1,238 km2 of Elbow River, southern Alberta, Canada (Wijesekara et al., 2014). This 

study demonstrated the performance of MIKE SHE in presenting the impact of land due 

change on hydrological process. Through the result, the authors confirmed the advantage 

of this deterministic distributed model.  

 Ecosystem and water quality  

Diversity of MIKE SHE application has been also express via its ability in the impact of 

ecosystem on catchment’s hydrology. One evidence of this approach was showed in its 

application at Ecosystem Based Water Resources Management to Minimize 

Environmental Impacts from Agriculture Using State of the Art Modeling Tools in 

Strymonas Basin. This project used MIKE SHE to estimate to the impact of ecosystem to  

Strymonas Basin, in the south of Europe (Doulgeris et al., 2012; Halkidis & Papadimos, 

2007). The study over 16,747 km2 of this Balkan basin proved the flexibility of MIKE SHE 

model in representing the hydrological process. 
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 Groundwater analysis  

By accounting mostly hydrological components and especially possessing a good 

algorithm for ground water modelling, this model has been highlight as the best choice to 

simulate the ground water. In reality, many authors have been used MIKE SHE model for 

ground water study. Demetriou & Punthakey,(1998) used MIKE SHE to evaluate the 

groundwater management options for dealing with rising water table levels and land 

salinization problems in an Australian watershed. Based on modelling results they 

commented that because MIKE SHE is well suited to describe the dynamic interaction 

between the surface and subsurface water systems. It is the best choice for simulating 

the flow under the ground surface. The efficiency of this distributed hydrological model 

for ground water modeling was confirmed by the study of Liu et al., (2007). By testing the 

relation between surface and ground water over 91.76 km2 of Tarim basin in China, these 

authors indicated clearly the usefulness of MIKE SHE model for ground water modelling. 

Their successful application with MIKE SHE described an efficient method for analyzing 

groundwater dynamics and their response relationship to environmental factors. This 

judgment is important to consider groundwater pollution and ecological risk in arid areas. 

Moreover, certain studies also applied MIKE SHE to investigate ground water 

components in catchment scale (Jourde et al., 2007; Sonnenborg et al., 2003). The 

preeminence of this model was benefited to assess the exploitable groundwater 

resources of Denmark. By simulating the different scenarios on MIKE SHE, Henriksen et 

al., (2008) proposed completely ground water resource map over Denmark. The study 

also outlined the exploitable capacity for each region of this country. Furthermore, the 

model has as well been handled for calculating discussion of argents in ground water 

environment, such as the research of Thorsen et al., (2001). In this study, MIKE SHE was 

use as a basic tool for simulating the nitrate leaching to aquifer at catchment scale in 

Karup catchment, Denmark. Besides that, MIKE SHE has been used for determining the 

soil properties as well as their propagations. For example the construction of  Christiaens 

& Feyen, (2001) realized on MIKE SHE to build the soil hydraulic properties at Ohebach 

catchment, Germany. 

 Irrigation strategy  

Starting from land use distribution and vegetation function which can introduce mostly the 

characteristics of vegetable due to their growth process, this distributed model has made 

confidence for simulating the water demand of each plant. Based on these demand, water 

requirement for irrigation are easily calculated. In fact, the function of MIKE SHE has been 

already handled to determine the need of agricultural produced zone for water (Jayatilaka 
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et al., 1998). Singh et al., (1999) based on MIKE SHE result to design the irrigation plan 

for 694 ha tropical sub-humid area in India. After their works, they concluded that MIKE 

SHE is primarily proposed here as a planning tool and not as a real-time scheduling tool 

in irrigation planning.  

 Evapotranspiration analysis  

There have been lot of authors used MIKE SHE to simulate as well as determine this 

process in hydrological cycle. Vázquez & Feyen, (2003) evaluated the effect of potential 

evapotranspiration to hydrological cycle at a medium-size catchment. Vu et al., (2008) 

took MIKE SHE for determining this components over a large catchment in central 

Vietnam. 

 Climate change impact assessment  

Global warming is expected to affect mostly to catchment’s hydrological factors, ex. 

Precipitation, evapotranspiration, ground water, ecosystem…Hence, simulating the 

impact of this phenomena towards the stream flow requires a model which can represent 

the hydrological components of catchment as much as possible. The simulation 

responding above requirement is hoped to increase the predicted accuracy about the 

future flow variation. The condition is completely able to satisfy MIKE SHE model. The 

algorithm presented at previous parts demonstrates that MIKE SHE can simulate entirely 

the hydrological factors and their interactions. This advantage gives MIKE SHE a capacity 

to reduce the uncertainty when applying for a climate change modelling. In truth, many 

studies have chosen MIKE SHE as a basic tool for evaluating the impact of climate 

change to hydrological system in general, especially to stream flow. Bosson et al., (2012) 

applied MIKE SHE model for simulating the terrestrial hydrology associated with different 

climate over 180 km2 of Forsmark Catchment, Sweden. In this study, the change in future 

of temperature, rainfall, evapotranspiration were presented in MIKE SHE to count the 

change of flow in Swedish Forsmark catchment area. Mernild et al.,(2008) predicted the 

varied tendency of intra- and inter annual discharge from the snow and glacierized 

Zackenberg River drainage basin (512 km2; 20% glacier cover) in northeast Greenland. 

This study realized on MIKE SHE platform. By comparing the difference in present and 

climate scenario of 2071 – 2100, the result indicated the increasing tendency of snow 

melt at this catchment also made the increase of stream flow. Relied on the difference 

between two model, MIKE SHE and WetSpa, in projecting the impact of climate change 

for medium size catchment in Belgium, Vansteenkiste et al., (2013) gave a confirmation 

about the uncertainty concerning to modelling hydrological components in climate change 
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simulation. In this study, MIKE SHE covered the ground water component, conversely, 

the WetSpa did not. This difference leads to the fact that MIKE SHE simulates a maximum 

decrease of 30% in the flow minima, whereas the WetSpa model projects low flow 

decreases up to 73%. It also indicates that the ground water has a significant role in 

catchment hydrological process, thus it affects much on the flow of this catchment. Via 

result, these authors pointed out it is a need to take into account the ground water for 

climate change modelling and more hydrological components presents, smaller 

uncertainty the prediction will get. 

The complexity of groundwater flow process descriptions has a major role in low flow 

impact modelling and might even become larger than the uncertainty stemming from the 

climate modelling. Model predictions considering the groundwater flow physics 

encapsulate more detail and dynamics than the linear reservoir representation and seem 

more reliable, although it is not proven whether this is the case. Therefore, the impact 

predictions should be interpreted with care and only considered as being directive rather 

than precise in terms of future changes. With respect to high flow conditions, the models 

respond quite similar to the precipitation and evaporation changes. Small disagreements 

between the model high flow predictions were quantified and were negligible in 

comparison with the high uncertainty stemming from the climate scenarios. Thompson et 

al., (2013) used MIKE SHE to project the varied trend of flow for the biggest river system 

at Southeast Asia, Mekong river. Over an area of 795,000 km2 and taking into account 

mostly the hydrological factors in this catchment, this MIKE SHE model demonstrated its 

performance in modelling the impact of climate change for Mekong river. These strong 

points of fully deterministic distributed hydrological model – MIKE SHE model are 

expected to reduce a part of uncertainty when evaluating the impact of climate change to 

river flow and it also helps to translate better the climate scenarios in the future.  

 

3.5 The role of rainfall spatial distribution in hydrological 

modelling 

3.5.1 Introduction  

In hydrological research, the model has a significant role. According to studies of  Moon 

et al., (2004); Strauch et al., (2012) the modelling is a cheaper method and quite effective 

to provide a basic insight of hydrological process. Results from an accurate model will 

help us to be able to estimate the impact of natural phenomena to property and human, 
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to plan, prevent, as well as find solutions to mitigate damages from these hazards on 

human society. However, the accuracy of hydrological model depends deeply on the 

accuracy of many input factors, especially the rainfall, a key factor in hydrologic process, 

what Arnaud et al.,  (2002); Tao, (2009); Zhao et al., (2013) have confirmed that its spatial 

variability affects heavily on runoff generation and also on hydrologic process in a 

catchment. Beven & Hornberger, (1982) studied the impact of spatial rainfall on flow and 

found that spatial patterns significantly affect peak flow distribution and timing, but the 

impact on flow volume is not so much. Chaubey et al.,(1999) also noted that the spatial 

variability in rainfall may introduce significant uncertainty in model parameter during 

calibration process. While the accuracy of spatial rainfall distribution is decided by a 

characteristic of the study area and other factors, in particular, the rain gauge density. 

Many researchers have a same judgment that more dense measurement network will 

give better results in rainfall spatial distribution but have not yet reached a clear criterion 

about the numerous gauges per area . Tao, 2009 show that the best method to improve 

the quality of spatial rainfall estimation is to increase the density of monitoring network.  

Obled et al., (1994) recommended 5 rain gauges for 71 km2 for a basin in the South of 

France.  Segond et al., (2007) with the study at Lee catchment, UK suggested that for 

largely rural catchments, a network of 16 rain gauges seems appropriate at 1,000 km2 ; 

and between 4 and 7 gauges are required at 80-280 km2. Nonetheless, this requirement 

is so difficult to satisfy on large catchment, not least at developing countries where the 

infrastructure of the rainfall observation network is sparse and still in a low quality, this 

causes the inaccuracy when redistribute spatially the rainfall, influence on the simulated 

quality. Nicótina et al, (2008) demonstrated with the large catchment, the impact of rainfall 

spatial variability is more serious, in a catchment with area more than 3,500 km2, rainfall 

variability affects evidently on the output of flood modelling. From these reviews, to have 

an accurate hydrological model, the interpolating spatially rainfall data base on 

measurements is obvious.  

In the past, several interpolated methods have been utilized to re-construct spatially 

rainfall data. Almost methods concentrate in two types: Deterministic techniques and 

geostatistical techniques. The first type includes Thiessen polygon, inverse distance 

weighting (IDW), Spline is traditional method, is often applied in practice. These methods 

are very simple to set up, however their accuracy is not so high.  This has been 

demonstrated in studies of  Mair & Fares, (2010); Tobin et al., (2011). According to 

Goovaerts, (2000) the inaccuracy of these methods is from their non-geostatistical that 

does not allow the hydrologist to consider factors, such as topography, that can affect the 

catch a gage. In recent years, many studies have showed that there exists a crucial 
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relationship between rainfall and other factors, such as topography, temperature, wind, 

distance from the beach. Brunsdon et al., (2001) presented that the rainfall-altitude in 

Great Britain have a strong relationship, the height coefficient of rainfall varies from 1.5-

4.5mm/m depending the catchment.  From the database of 567 stations located in the 

alpine, Allamano et al., (2009) also proved the dependence of precipitation in Italy due to 

elevation, nevertheless, contrary to expectations, maximum annual precipitations of short 

duration are found to significantly decrease with elevation. This tendency also appears to 

have a geographic drift from the western to the eastern side of the alpine chain. Previous 

studies,  (Basist et al., 1994; Gouvas et al., 2009) have the same conclusion that 

precipitation typically increases with elevation.  Other directions are to take into account 

the effect of atmospheric, wind when reproduce spatial rainfall like the work of Johansson 

& Chen, (2003); Johnson & Hanson, (1995). So some authors have used geostatistical 

methods which are based on the theory of regionalized variables (Goovaerts, 1999) that 

could help to add interactions between rainfalls with any factors to enhance the quality of 

spatial rainfall distribution. The most famous method among them is kriging what has 

affirmed its preeminent in researches as   (Mair & Fares, 2010; Tao, 2009) and relatively 

new method that applies spatial regression for the goal of data redistribution, this 

method's name is geographically weighted regression (GWR), it has been used so 

popularly in recent years (Al-Ahmadi, 2013; Bostan & Akyürek, 2009; Lloyd, 2005).  With 

this method, Brunsdon et al., (2001) analyzed the effect of elevation with rainfall 

distribution and noted that in comparison with the traditional approaches, the 

geographical weight regression model has the advantage of being much simpler than the 

more complex of the multiple regression approaches and the geographical weight 

regression also provides a useful method for incorporating the varying relationship 

between rainfall and altitude. Chu, (2012) estimated that the GWR produces more 

desirable spatial distribution for model residuals and more accurate estimations than 

other methods.  

However, the runoff response in hydrological model with rainfall spatial interpolation 

methods is difference. Past studies have not yet concluded which method is the best in 

hydrological simulation. With hydrologists, it makes the uncertainty to select a rainfall 

interpolation method for their modelling. During the simulation for Vu Gia Thu Bon river 

catchment- Viet Nam, we also have similar difficulties in choosing the most suitable 

rainfall distribution to input the model. To solve this difficult, we tested several different 

interpolation methods - such as Thiessen polygons, Inverse-distance weight, Spline, 

Ordinary Kriging methods as well as integration of attitude, distance to the sea with 

geographically weight regression - base on MIKE SHE, an advanced integrated 

https://www.google.fr/search?q=thiessen+polygons&biw=1440&bih=738&tbm=isch&tbo=u&source=univ&sa=X&ei=bYLuUYquF-S34ASkpIHgCQ&sqi=2&ved=0CDYQsAQ
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hydrological modeling system from DHI. In this paper, we would like to introduce some 

experiences in selecting rainfall distribution method type for this catchment, also the 

runoff process reaction over rainfall interpolation method. The study has demonstrated 

the added value of each method and clearly identified the uncertainty bias introduced by 

the rainfall hypothesis within the hydrological modelling. The analysis demonstrates also 

the uncertainty of spatial distributed rainfall and their effects on runoff process simulation 

within the model. The analysis could be generalized and used as an operational method 

for large ungauged catchments. 

3.5.2 Methodology for rainfall spatial distribution 

The rainfall distribution methods were used in this study include Thiessen Polygon, 

Inverse Distance Weighting (IDW), Spline, Ordinary Kriging (OK), Geographically 

weighted regression (GWR). Thiessen Polygon is the method, which has been utilized by 

many hydrologists since its simplicity, straightforwardness. This method amounts at 

drawing around each gage a polygon of influence with the boundaries at a distance 

halfway between gage pairs so the gradient information is lost (Das & Saikia, 2009). 

 

Figure 3.13 Thiessen polygon 

a. The Thiessen polygon method (Figure 3.13) (equation 3.5) assumes that each 

precipitation gage does not get the same weight as in the arithmetic method.  
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 𝑃 =
∑ 𝑃𝑖𝐴𝑖
𝑛
𝑖

𝐴
  (3.5) 

Where Pi : the rainfall at station i. 

 Ai: the area of polygon at station i. 

 A : the total area of the catchment. 

 n: the number of rainfall station in the catchment.  

b. Inverse Distance weight method (IDW). Another common technique, the IDW was 

developed by the U.S National Weather Service in 1972, that interpolation method 

determines cell values by using a weight average of sample points in the neighborhood 

(Goovaerts, 2000). With IDW method (equation 3.6), the accuracy of interpolated value 

will decrease if the neighboring points unevenly distributed. There are many different 

forms of IDW interpolation, but the simplest form is proposed by Shepard (1968).  The 

Shepard method suggests the weight function wi as follows (Azpurua & Ramos, 2010) 

 𝑤𝑖 =
ℎ𝑖
−𝑝

∑ ℎ
𝑗
−𝑝𝑛

𝑗=0

 (3.6) 

where p is an arbitrary positive real number called the power parameter (typically p 

= 2) and hj are the distances from the dispersion points to the interpolation point, 

given by equation 3.7: 

 ℎ𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 (3.7) 

where (x, y) are the coordinates of the interpolation point and (xi, yi) are the 

coordinates of each dispersion point. The weight function varies with a value of unity 

at the dispersion point to a value close to zero as the distance to the dispersion point 

increase. The weight functions are normalized as a sum of the weights of the unit. 

Then, the interpolated value of the electric field P(x, y) is given by equation 3.8. 

 𝑃(𝑥,𝑦) = ∑ 𝑤𝑗𝑃(𝑥𝑗,𝑦𝑗)
𝑛
𝑗=0  (3.8) 

c. The Spline method is an interpolation method that estimates value using a 

mathematical function that minimize overall surface curvature, resulting in a smooth 

surface that passes exactly through the input points (Tao, 2009).  The algorithm used for 

the Spline tool uses the following formula ( equation 3.9) for the surface interpolation 

(ArcGIS, 2014). 
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 𝑃(𝑥,𝑦) = 𝑇(𝑥,𝑦) + ∑ 𝜆𝑗𝑅(𝑟𝑗)
𝑛
𝑗=1  (3.9) 

 

Where: j = 1, 2, ..., n 

n is the number of points. 
λj are coefficients found by the solution of a system of linear equations. 
rj is the distance from the point (x,y) to the jth point. 
T(x,y) and R(r) are defined differently, depending on the selected option. 

d. The Kriging method has been known as the best interpolation method that consists of 

a family of least-square linear regression algorithms used to estimate random fields from 

which observed data are considered to be drawn as a sampling of a field realization to be 

(Pierre Goovaerts, 1997, 1998; Tobin et al., 2011). The equation of this method is similar 

to IDW. But different with IDW, where the weight wi depends solely on the distance to the 

prediction location, the weights of Kriging are based not only on the distance between the 

measured points and the prediction location but also on the overall spatial arrangement 

of the measured points. To use the spatial arrangement in the weights, the spatial 

autocorrelation must be quantified. Thus, in ordinary kriging, the weight, wi, depends on 

a fitted model to the measured points, the distance to the prediction location, and the 

spatial relationships among the measured values around the prediction location (ArcGIS, 

2014).  

e. Geographically weighted regression,  a new method has been estimated to interpolate 

spatially rainfall, known as  Geographically weighted regression (Brunsdon et al., 1998) , 

that is a local spatial statistical method used to examine and determine the spatial non 

stationary, when the relationships among variables vary from location to location  

(Fotheringham et al., 2003). 

In this study, these above methods were applied to redistribute spatially rainfall in the 

environment of software ArcGIS 10.1. The effectiveness of each interpolation method 

was assessed by using cross-validation what temporarily removes one observation at a 

time from the dataset and re estimates the removed value from the remaining data by 

using each interpolation method (Mair & Fares, 2010). The root mean squared error 

(RMSE) (3.10), the correlation coefficient (R) (3.11), and Nash-Sutcliffe coefficient (E) 

(3.12) were utilized to evaluate the accuracy of each method. Then, the sensitivity of each 

rainfall interpolated technics with stream flow will be evaluated in MIKE SHE model. The 

smaller RMSE value is, the higher model performance will reach. The perfect value of 

RMSE is 0 (Moriasi et al. 2007).  The performance levels of R and E are classified in 
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Table 3.3. The optimal values of these two factors are all 1 (Safari et al. 2012; Wang et 

al. 2012) 

 RMSE=√
∑ (Xobs,i-Xmodel,i)

2n
i=1

n
 (3.10) 

 

 R =
∑ (Xobs,i-Xobs).(Xmodel,i-Xmodel)

n
i=1

√∑ (Xobs,i-Xobs)
2
.∑ (Xmodel,i-Xmodel)

2
n
i=1

n
i=1

 (3.11) 

 

 E = 1-
∑ (Xobs,i−Xmodel,i)

2n
i=1

∑ (Xobs,i-Xobs)
2

n
i=1

 (3.12) 

where the Xobs  is observed value and Xmodel is modelled value at time/ place i.  

Table 3.3.  Performance criteria for model evaluation. (S. Wang et al., 2012) 

Performance 

indicator 
Excellent Good Fair Poor 

E >0.85 0.65-0.85 0.5-0.65 <0.5 

R >0.95 0.85-0.95 0.75-0.85 <0.75 

 

3.5.3 Results 

a. Rainfall distributed method 

The annual rainfall distribution is shown at Figure 3.15. The statistical results (Table 3.4) 

demonstrate that most coefficients of Kriging and IDW methods are better than the 

obtainment with other methods. The RMSE and E of Kriging and IDW methods are almost 

stable in all stations in the catchment. The two results have no significant differences 

between mountainous area and delta area. It is likely to conclude that these methods do 

not depend so much on the rainfall station density. Kriging and IDW methods give 

acceptable results not only  at locations, which concentrate many stations like Hoi An, 

Cau Lau, Cam Le with a better interpolation quality, RMSE smallest, E>0.8 but also with 

Tra My, Hien station where E could reach 0.6. With other methods, these coefficients 

varied greatly according to location.  
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Table 3.4. Statistical coefficients of rainfall interpolation methods 

STATION   THIESSIEN GWR IDW KRIGING SPLINE 

TRAMY 

RMSE 22.93 20.93 22.15 20.37 28.68 

R 0.76 0.81 0.78 0.81 0.75 

E 0.57 0.63 0.59 0.65 0.32 

THANH MY 

RMSE 10.114 12.465 10.425 10.593 16.962 

R 0.88 0.828 0.872 0.869 0.77 

E 0.757 0.631 0.742 0.734 0.317 

NONG SON 

RMSE 15.635 11.63 12.602 11.884 15.574 

R 0.803 0.891 0.869 0.885 0.801 

E 0.618 0.789 0.752 0.779 0.621 

HOI AN 

RMSE 9.437 40.523 9.161 9.547 15.874 

R 0.925 0.388 0.923 0.919 0.856 

E 0.841 -1.937 0.85 0.837 0.549 

HIEN 

RMSE 15.101 32.117 14.061 14.284 45.25 

R 0.759 0.467 0.789 0.781 0.3 

E 0.551 -1.03 0.611 0.599 -3.029 

GIAO THUY 

RMSE 10.062 10.121 8.464 9.427 10.153 

R 0.923 0.908 0.938 0.921 0.92 

E 0.826 0.824 0.877 0.848 0.823 

CAU LAU 

RMSE 9.437 21.547 7.761 7.855 11.89 

R 0.925 0.573 0.951 0.949 0.88 

E 0.853 0.235 0.901 0.898 0.767 

CAM LE 

RMSE 7.441 11.037 7.187 8.015 7.17 

R 0.951 0.887 0.954 0.943 0.955 

E 0.903 0.786 0.909 0.887 0.91 
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This analysis helps to confirm once again the effectiveness of Kriging and IDW method 

in re-distributing spatially rainfall. This tendency is similar to many previous studies such 

as (Goovaerts, 2000)  while realizing rainfall interpolation for low density network in 

Portugal has the same conclusion about Kriging method, Goovaerts analyzed on the 

monthly rainfall and annual rainfall for a long period, but in this study, we used the daily 

rainfall, so perhaps it will supply a more real view about the change of rainfall with the 

small step of the Kriging, but the result of this simulation is so short, only 6 year, hence 

we could not affirm this trend. In his study, he also showed that the interpolated quality of 

Kriging method is better than Inverse Distance Weighting, it is opposite to our results, the 

cause may be is from the difference of catchment and station density. However, (Tao et 

al., 2009), after comparing the effect of interpolation methods in small catchment in high 

density of the rainfall station in Lyon, France, made a conclusion that at the same time, 

results from Kriging and IDW interpolation are not much different. His judgment 

contributes a part to confirm our result. 

                                      

Figure 3.14. Correlation between annual rainfall and altitude at Vu Gia Thu Bon gauging stations. 

Geographically weighted regression is a powerful technique and has been applied 

frequentlyin recent years,  nevertheless in this study, it had not yet proved its preeminent. 

Although this method carries out and statistically analyses for each point before giving 

the result as well as could take into account the effect of elevation to rainfall but in fact, 

the achievement has not been like expectation. The statistical coefficients in the Table 

3.3 have demonstrated that this method is not suitable with Vu Gia Thu Bon region. 

Imaging that under the geostatistical technique, the GWR method will help to mitigate the 

impact of density, and unequal distribution of the record network, but it is not right with 
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our catchment. This problem is showed that not at all stations the GWR gives the bad 

result, concretely, at central stations, and stations are covered by others, distance 

between these stations is relatively equal, such as  ThanhMy   E=0.63, Nong Son  E=079, 

GiaoThuy E=0.824, while E coefficient of other interpolation methods in these stations is 

lower, in contrast, with remote border stations are not covered by others, the E cofficient 

is so low, even smaller then 0.  

Meanwhile, traditional techniques depend significantly on the density of rainfall station, it 

leads Spline method to always get the worst result. Thiessen has been able to make the 

good interpolation, but only at several stations, the distance of these stations  with others 

is not so far. It is described concretely at Cam Le Station, or Ca Lau station when the 

distance from them to neighbours is smaller than 10 km. 

The Table 3.5 as well describes that Spline's and GWR's tendency are to increase the 

rainfall in comparison with measurement. The average annual rainfall intensity in the 

intepolation period also demonstrated this tendency. Among them, the Spline gave the 

largest intensity with the maximum 7,313.71 mm, next is GWR 6,838 mm against 4,469.3 

mm observed figure. The increase occurs mostly at upstream and mountaineous region 

this had been considered causing to raise the runoff in the hydrological simulated 

process.      

Table 3.5. Average daily rainfall (mm) in period 2005-2010. 

  Tra My Hien Nong Son Thanh My Cam Le Cau Lau 

Obs 2.24 7.78 9.23 6.63 6.44 7.21 

Thiessen 9.68 6.63 8.07 6.71 6.9 6.44 

GWR 9.35 13.28 7.81 8.05 7.62 7.52 

IDW 9.05 7.51 7.98 7.63 6.96 7.23 

Kriging 10.25 7.64 7.73 8.06 7.53 7.42 

Spline 14.48 15.88 8.21 9.22 7.26 7.14 
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Figure 3.15. The Annual rainfall interpolation result at 15 rain gauge station correspondent with Thiessen,  
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b. Effects of rainfall distribution to runoff 

The change in technique interpolating spatially rainfall in last step affected greatly on 

runoff factors in hydrological model.  The techniques give a good result in establishing 

rainfall distribution, they show again their quality in simulating the run off. It means that 

the IDW and Kriging method with the best quality in rainfall distribution, also bring the 

better simulations in hydrological model. Conversely, the simulation using the Spline, 

Thiessen, GWR gives bad result. 

Table 3.6. Statistical coefficients of MIKE SHE model corresponding with rainfall distribution method.  

    VU GIA BRANCH THU BON BRANCH 

    
QThanh 

My  

H Thanh 

My  

HHoi 

Khanh  

HAi 

Nghia 

HCam 

Le  

QNong 

Son  

HHiep 

Duc 

HNong 

Son  

HGiao 

Thuy  

HCau 

Lau  

T
H

IE
S

S
E

N
 RMSE 168.45 0.86 1.03 0.88 0.36 304.94 1.34 1.09 0.90 0.59 

R 0.87 0.77 0.71 0.67 0.83 0.89 0.83 0.80 0.77 0.82 

E 0.53 0.48 -0.01 0.30 -0.97 0.77 0.17 0.58 0.46 -0.09 

S
P

L
IN

E
 

RMSE 295.02 1.11 1.44 1.14 0.41 401.64 1.15 1.33 1.17 0.78 

R 0.80 0.73 0.65 0.63 0.84 0.87 0.79 0.77 0.73 0.80 

E -0.43 0.13 -0.97 -0.16 -1.57 0.61 0.38 0.38 0.09 -0.95 

ID
W

 

RMSE 132.58 0.80 0.99 0.83 0.34 341.43 1.45 1.08 0.90 0.52 

R 0.88 0.78 0.72 0.68 0.81 0.87 0.83 0.81 0.76 0.81 

E 0.71 0.55 0.08 0.38 -0.75 0.72 0.01 0.59 0.46 0.15 

K
R

IG
IN

G
 RMSE 160.92 0.84 1.02 0.86 0.34 298.73 1.30 1.07 0.92 0.59 

R 0.88 0.77 0.71 0.69 0.84 0.89 0.83 0.81 0.76 0.82 

E 0.57 0.50 0.00 0.34 -0.75 0.78 0.21 0.60 0.43 -0.09 

G
W

R
 

RMSE 436.53 1.24 1.36 1.11 0.47 594.67 1.19 1.26 1.16 0.85 

R 0.52 0.70 0.66 0.64 0.80 0.62 0.78 0.78 0.73 0.79 

E -2.13 -0.09 -0.76 -0.11 -2.37 0.14 0.35 0.44 0.10 -1.31 
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The analysis in 3.5.3a demonstrated the Spline, GWR method lead to increase the rainfall 

when interpolation, it means the runoff in theory will increase. The runoff parameters in 

MIKE SHE result also confirm this tendency. With the Spline, the average rainfall is largest 

cause the increasing of runoff parameters at Thanh My and Nong Son gauging station.  

 

Figure 3.16. Hydrograph at Thanh My gauging station during period of 9/2007-12/2007 with different 

rainfall interpolation methods. 

 

Figure 3.17. Hydrograph at Nong Son gauging station during period of 9/2007-12/2007 with different 

rainfall interpolation methods. 
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Comparing with measurement data, in period 15/9/2007 to 15/12/2007, scenario with 

Spline method's rainfall input give the largest peak flow reach to 10,670 m3/s while 

observed data only 8,410 m3/s, the difference is 26.9% at Nong Son, and 6,897.9 m3/s 

while observed data only 3,880 m3/s, the difference is 78% at Thanh My. Results of these 

differences, the statistical coefficients of this method are so small, Nash-Sutcliffe 

coefficient (comparing discharge) in this period at Nong Son is 0.61 and Thanh My is -

0.43. The scenario taking the rainfall input from result of GWR has received the same 

tendency, statistical index are so bad. Meanwhile IWD and Kriging present 

impressionably their ability. IDW scenario gives the peak discharge at Thanh My is 

4,405.99 m3/s against the measurement is 3,880 m3/s, the difference is only 13.6%, at 

Nong Son 6,784.4 m3/s lower than observation 19% . So it is not surprised when the 

Nash-Sutcliffe coefficient at two stations of this method is relatively high, obtain to 0.71 

and 0.72 respectively. Specially, Scenario with Kriging rainfall input could give at Nong 

Son station the Nash Sutcliffe coefficient lead to 0.78 and at Thanh My is 0.59 with the 

difference between observed and simulated discharge at Nong Son only 1.6 % and at 

Thanh My 15.9% . At others stations, with the water level also gives the same tendency, 

accordingly, all of that prove the accuracy of the IDW as well as Kriging technique in 

distributing rainfall, and the effectiveness on hydrological modelling (Table 3.6). Flood 

process as well reinforces our consideration on the accuracy of rainfall interpolation 

method. Hydrograph at Nong Son and Thanh My stations (Figure 3.16, 3.17) presented 

that rising limb of all simulations are earlier than observation but the time of peak flow 

exist longer. The difference occurs more seriously with the GWR and Spline methods 

when the time of peak flow maintains so long, and the falling limb is so slow. Thiessen, 

IDW, Kriging have the same trend. However, the hydrograph of model taking result of 

Kriging interpolation method is the closest with observation. 

c. Effects of rainfall cell size to runoff 

Beside the interpolation technique, we need to care another problem of rainfall input 

requirement when simulating the hydrological process for a catchment, it is the resolution 

of rainfall. This factor also affects the accuracy of model, this has been proved in many 

past studies, such as (Vaes et al., 2001), (Berne et al., 2004). 

To consider the impact of rainfall resolution on hydrological process on Vu Gia Thu Bon 

catchment, in this study, we based on the Kriging method to interpolate rainfall with the 

resolution varies from 1000m, 2000m, 4000m, then consider their impact on runoff factors 

under the MIKE SHE model. The response of river run off against varied rainfall grid size 



Chapter 3 – Hydrological modelling 

105 

 

are demonstrated via hydrograph on the Vu Gia Thu Bon river system, ex Nong Son, 

Thanh My station at the Figure 3.18, 3.19. 

 

Figure 3.18. Hydrograph at Thanh My gauging station in period 9/2007-12/2007 with different rainfall 

resolutions. 

 

Figure 3.19. Hydrograph at Nong Son gauging station in period 9/2007-12/2007 with different rainfall 

resolutions. 
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The performance of each rainfall grid size is demonstrated at the Table 3.7. The results 

have shown that runoff parameters are almost similar between different input rainfall 

resolution scenarios. If the cell size of input rainfall is reduce, the runoff will increase. 

However, on Vu Gia Thu Bon catchment, this variation is very small. Simulate in period 

15/9/2007 to 15/12/2007, if the resolution of rainfall changed from 1,000m to 4,000, the 

volume at Thanh My reduced from 4.34 109m3 to 4.29 109m3 corresponding 1.08%,and 

volume at Nong Son  reduced from 6.65 109m3 to 6.49 109m3 corresponding 2.34%. The 

peak discharge also reduced only from 5,479 m3/s to 5,465 m3/s at Thanh My, and 8,275 

m3/s 8,078 m3/s at Nong Son. 

Table 3.7. Statistical coefficients of MIKE SHE model corresponding with rainfall resolution.  

    VU GIA BRANCH THU BON BRANCH 

    

QThanh 

My  

HThanh 

My  

HHoi 

Khanh  

HAi 

Nghia 

HCam 

Le  

QNong 

Son  

HHiep 

Duc 

HNong 

Son  

HGiao 

Thuy  

HCau 

Lau  

1
0
0
0

 m
 

RMSE 160.92 0.84 1.02 0.86 0.34 298.73 1.3 1.07 0.92 0.59 

R 0.88 0.77 0.71 0.69 0.84 0.89 0.83 0.81 0.76 0.82 

E 0.57 0.50 0.00 0.34 -0.75 0.78 0.21 0.60 0.43 -0.09 

2
0
0
0

 m
 

RMSE 160.14 0.84 1.02 0.87 0.36 299.06 1.30 1.06 0.93 0.60 

R 0.88 0.77 0.71 0.68 0.83 0.89 0.83 0.81 0.76 0.82 

E 0.58 0.50 0.01 0.32 -0.97 0.78 0.22 0.61 0.42 -0.13 

4
0
0
0

 m
 

RMSE 158.16 0.84 1.01 0.87 0.36 303.06 1.30 1.06 0.90 0.60 

R 0.88 0.77 0.72 0.68 0.82 0.89 0.83 0.81 0.77 0.82 

E 0.59 0.51 0.03 0.32 -0.91 0.78 0.21 0.61 0.46 -0.16 

 

This small change in runoff factors also presents that perhaps the effects of input rainfall 

resolution on hydrological modelling, here is MIKE SHE model, is not very significant. 

Nonetheless, on this study, we simulated on scenarios which the change of input rainfall 

resolution varies in small amplitudes, so the result has not yet expressed exactly the 
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tendency of runoff. Hence we could not see the important of rainfall resolution when 

simulating hydrological model. 

3.5.4 Conclusion 

The aims of this study was to estimate the accuracy of rainfall interpolation methods, and 

the response of hydrological model on each method, made a basis to choose the most 

suitable method for spatial rainfall distribution when simulating hydrological process. This 

study was considered based on the daily rainfall data in period 2005-2010, from 15 rainfall 

stations in area 10,350 km2 of Vu Gia Thu Bon catchment, Viet Nam central. The study 

showed the different quality of traditional methods and geostatistical methods, and 

confirm again the accuracy of Kriging technique in redistributing the rainfall, accordingly, 

it is the most suitable method for this catchment. This method reduces mostly the impact 

of rainfall station density, spatial distribution of rainfall station to the interpolation results. 

The results also present the important of rainfall station density when interpolating 

spatially rainfall as well as the impact of rainfall station distribution to the quality of 

interpolation method. With the traditional methods, the density of rainfall station is so 

important. The density is higher, the accuracy is higher, and spatial factor of rainfall could 

be completely ignored if the density of rainfall is high enough. However, the quantity of 

observed station in Vu Gia Thu Bon catchment is still so small that is able to describe 

qualitatively the rainfall phenomena. The analysis showed that with this catchment, to get 

a good interpolation result, the distance between two rainfall stations should be smaller 

than 10 km. In addition, geostatistical methods still require equal distribution of rainfall 

station. The location at edge of region will get worse result in comparing with the location 

in central where is covered by other stations. Similar to past studies, the change of rainfall 

distribution have the deep impact on runoff factors, not only on the quantity, but also on 

the shape of hydrograph. Accordingly, The Spline and GWR methods increase highly the 

rainfall, hence lead to increase the runoff, simultaneously, extent the falling limb process. 

It leads to the inaccuracy when applying these methods for hydrological modelling and 

the difficulty for hydrologist to calibrate the model. Although The Thiessen and IDW 

methods give good result, they showed the weak point in making the process of flood. 

Finally, Kriging gives the smallest disparity between model and observation. So this 

technique is suggested for interpolating spatially rainfall to make the input data to apply 

in hydrological modelling. The dependence of runoff parameters on input rainfall 

resolution is true. If reducing the cell size of input rainfall grid, it will give larger volume, 

and all give higher peak flow. However this variation is not so high.  
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This study has confirmed again the variation of rainfall over space and the interpolation 

method affects deeply the rainfall distribution so they all lead to uncertainty in hydrological 

modelling. Hence, selecting a suitable interpolation method is so important when 

simulating a hydrological process. The result of this section was already published at 3rd 

IAHR Europe Congress in Porto, Portugal April 2014 (Vo & Gourbesville, 2014d).   

 

3.6 Application to Vu Gia Thu Bon Catchment 

3.6.1 Input data and model setup 

The MIKE SHE model is built with all of the available model components, e.g overland 

flow, river and lake, unsaturated flow, evapotranspiration, saturated flow. As the result, 

the model is expected to describe accurately hydrological processes in Vu Gia Thu Bon 

catchment as well as to reduce the uncertainty when simulating future climate scenarios. 

The following data sets have been used: 

 Topography: The elevation data using in the model is taken from SRTM DEM 

with the horizontal resolution 90 m from NASA (Figure 2.7) (http://www.cgiar-

csi.org).  

 Rainfall: By analyzing the effect of spatial rainfall distribution to the stream flow, 

the study of Vo & Gourbesville, (2014b)  showed that the Kriging is the most 

suitable method to interpolate the rainfall distribution in this catchment. Hence, the 

simulations use the rainfall data that are re-distributed spatially based on daily 

rainfall data from 15 rain gauge stations with the Kriging method. 

 Evapotranspiration: Data are inherited from the study of Vu et al., (2008) .These 

authors calculated the potential evapotranspiration in Nong Son basin by using 

the Penman-Monteith equation. A monthly mean potential evapotranspiration for 

each vegetation type and average over the catchment were constructed. 

 Land use and Soil map: The land use and soil data are simplified from the data 

of project Land Use and Climate Change Interaction in Central Viet Nam (LUCCI), 

and project Impacts of Climate Change in Mi-Central Viet Nam (P1-08 VIE). The 

input data are defined with five types of soil (Figure 2.9) and nine types of land 

use (Figure 2.8).  

 Vegetation: the harvest schedule is set up for main plants such as forest, 

homestead, rice, sugarcane, and grass. Each kind of crop is specified by 

http://www.cgiar-csi.org/
http://www.cgiar-csi.org/
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vegetation property. The vegetation property in this simulation is taken from DHI 

results (DHI, 2012e).    

 River and lakes: In order to simulate better the river flows, MIKE SHE model is 

coupled with a hydrodynamic MIKE 11 model (1D model). The model is 

developed over 44 major branches with a length varying from 20 km to 202 km 

(Figure 2.10). The geometry of each river branch is specified via cross sections. 

The cross sections applied in this model are from two sources: few of them at 

downstream are taken from the measurements, and the remaining ones are 

extracted from the DEM. The initial bed resistance is set up with 

Strickler roughness coefficient (M) varying from 15 to 25 m1/3/s for upstream 

tributaries, and the value changing from 30 m1/3/s to 50 m1/3/s for downstream 

branches. 

 Overland flow: The overland flow appears after the net rainfall rate exceeds the 

infiltration capacity of the soil, water is then ponded on ground surface. The main 

parameter to calculate this flow is Strickler roughness coefficient (M). For Vu Gia 

Thu Bon, this parameter is determined depending on land use map and in 2 to 

90 m1/3/s (DHI, 2012f; T. Nguyen, 2005; Vieux, 2001) 

 Unsaturated zone: DHI suggested three methods for describing the flow in this 

zone: Richard’s equation, Gravity flow and 2 layers UZ. However the application 

demonstrate that the various approaches don’t provide very different results. For 

the current application, the simple two-layer water balance method is chosen to 

reduce the computational time. The physical property of each soil type is 

presented via the water content at saturation, water content at field capacity, 

water content at wilting point and saturated hydraulic conductivity.  

 Saturated zone: The groundwater is supplied by Central Viet Nam Division 

of Water Resources Planning and Investigation (http://www.ceviwrpi.gov.vn). The 

characteristic of aquifer is mainly presented by horizontal hydraulic and vertical 

hydraulic conductivities.  

 

3.6.2 Sensitivity analysis 

In principle, the parameters of distributed hydrological model should be assessable from 

catchment data (Refsgaard et al., 1995) but this principle is fully valid when the model is 

developed for a large catchment. Due to inaccurate input data as well as coarse simulated 

http://www.ceviwrpi.gov.vn/
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resolution, the distributed model could not represent precisely the physical property of 

catchment (Gurtz et al., 1999). These limitations lead to the reduction on the simulated 

performance of the model. In order to improve the weaknesses, the calibration is required 

to find an optimal set of parameter values that simulates the behavior of watershed as 

accurately as possible (Cunge, 2003; Guinot & Gourbesville, 2003). Calibrating a fully 

distributed model, which consists of many components and mutually dependent 

parameters, is really difficult. It requests modelers to attach special importance to many 

parameters, even several factors influence insignificantly hydrographs. Nevertheless, it is 

unnecessary for MIKE SHE calibration to apply for all parameters because the number of 

parameters subjected to adjustment during this process should be kept as small as 

possible according to the approach developed by Refsgaard et al., (1995). Only several 

parameters, which have great effects on the model, are chosen. These parameters are 

decided to rely on the results of sensitivity analysis process. Besides, the elasticity 

analysis or sensitivity ratio (SR) (3.13), which has been applied in many different models 

in science, engineering and economics for sensitivity analysis, is realized to exhibit more 

clearly the level of influence of each parameter towards river flow (EPA, 2001; Maidment 

& Hoogerwerf, 2002).  

 SR =
(
Y2−Y1
Y1

)∗100%

(
X2−X1
X1

)∗100%
 (3.13) 

Where Y1: the baseline value of the output variable using baseline values of input 

variables 

Y2: the value of the output variable after changing the value of one input 

variable 

X1: the baseline point estimate for an input variable 

X2: the value of the input variable after changing X1 

In addition, the sensitivity analysis also quantifies the dependent rate of runoff on the 

change of these parameters. As a result, these rates make the calibration more easy and 

allow obtain acceptable values quicker. It is seen to be a prior step of calibration process. 

For the model applied to the Vu Gia Thu Bon catchment, the sensitivity of each parameter 

is analyzed based on the response of discharge in Nong Son and Thanh My stations.  In 

a complex system as hydrology, the implying the magnitude change of several model 

parameters due to different ones is undeniable  (Muleta & Nicklow, 2005; Sivapalan et 

al., 1987; Wang et al., 2007). It is clear that accounting their interactions when estimating 

the sensitivity will be better (Mishra, 2009). However, with a model containing many 
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parameters as the MIKE SHE model applied to a large catchment, the evaluation of the 

interaction between model parameters during analyzing the sensitivity is complicated and 

requires many simulations. In this analysis, the sensitivity analysis is done manually by 

varying individually the values of parameters one by one. This method has been applied 

by many authors (Andersen et al., 2001; Refsgaard, 1997; Wang et al., 2012). The model 

is set up for a long period even so the sensitivity analysis process is only based on the 

runoff variation during the period of two typical years, 2003 for “dry year” and 2004 for 

“wet/flood year”. The parameter sensitivity is demonstrated via the variation tendency of 

base flow and peak flow at Vu Gia Thu Bon river system. Subsequently, the result of this 

process is expected to provide valuable information for the calibration process. 

 

3.6.3 Results 

a. Sensitivity analysis  

Most of the parameters in Vu Gia Thu Bon’s MIKE SHE model are analyzed in order to 

to estimate the runoff response. The results demonstrate the effects of the parameters 

on the simulated stream flows. These effects are not similar for all parameters. The results 

show that the difference is not only about the quantity but also about the timing of the 

peaks. The responses of river flow versus the variation of main parameters are showed 

at the Table 3.8a, 3.8b.  

Parameters for precipitation-dependent time step control are put forward to reduce the 

numerical instabilities (DHI, 2012f). These parameters define the maximum rainfall value 

per time step and they are expected to have a great impact on the river flows, at least on 

peak flows. In fact, the sensitivity analysis results on the Table 3.8a demonstrate the role 

of these factors to peak flow. Accordingly, if the Max precipitation depth per time step (P 

Max depth) increases, the peak flow will reduce. For the Vu Gia Thu Bon catchment, the 

reduced quantity is around 70 to 120 m3/s for an increase from 10 to 200 mm for P Max 

depth. This tendency happens similarly with Input precipitation rate requiring its own time 

step (P Input rate). However, the impact of P Input rate on runoff is not as high as the P Max depth. 

The increase of this factor from 0.1 to 10 mm/h leads to a reduction around 20-50 m3/s of 

peak flow at the catchment. An important aspect for this factor is related on simulation 

time. The smaller P Input rate is, longer the model is running. Regarding the correlation 

between Nong Son and Thanh My stations in connection with precipitation parameters, 

the results show that change at Nong Son station is generally two times higher as 

compared to Thanh My station. This difference might related to catchment characteristic. 
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Overland flow simulates the movement of ponded surface water across the topography. 

It can be used for calculating flow on a flood plain or runoff to streams (DHI, 2012f). In 

this case, the finite differences method is selected to solve the overland flow for Vu Gia 

Thu Bon catchment. The Manning number (M), which is equivalent to the Strickler 

roughness coefficient, is estimated as the basic factor of Overland flow module. 

Therefore, this part considers mostly the effects of Manning number to run off. In Vu Gia 

Thu Bon catchment, there are many kinds of land use and soil. These lead to have many 

corresponded Manning values. The differences of Manning values and their distributed 

areas imply the impact differences towards river runoff. The difference is showed at the 

Table 3.8a. Nevertheless, there is one common point that the change of Manning value 

affects highly the peak flow, but mostly not affects the base one. 

Besides, the Manning number (M) is used to represent for bed resistance in MIKE11 as 

well. The river flow seems quite sensible with the change of the bed resistance. It is 

expected to be the key factor in calibration process. Nevertheless, in Vu Gia Thu Bon 

Catchment, it seems that the bed resistance only affects flood flow, concretely the peak 

flow is significantly impacted in the interval of Manning values from 5 to 10 m1/3/s. If M 

value changes in this interval, the peak discharge could raise 200 m3/s at Thanh My and 

400 m3/s. The flow apparently do not change if the Manning value in MIKE 11 is higher 

than 10 m1/3/s. 

The unsaturated zone is usually heterogeneous and characterized by cyclic fluctuations 

in the soil moisture as water is replenished by rainfall and removed by evapotranspiration 

and recharge to the groundwater table. Hence, this process plays a significant role to river 

run off. Correspondingly, the variation of parameters in unsaturated zone will deeply 

impact the runoff factor, concretely on both flows as base flow and peak flow. For 

simulating the unsaturated zone of Vu Gia Thu Bon catchment, the two - layer - UZ soil 

method is used. In this model, the physical characteristics of each soil are supplied such 

as water content at saturation, at field capacity, at wilting point and saturated hydraulic 

conductivity, yet only saturated hydraulic conductivity (Kuz) has a huge impact on the flow. 

The response of flow versus the Kuz variation is expressed in the Table 3.8b. According 

to this table, the peak flow goes down quite quickly when increasing infiltration typical 

parameter. This change can reach more than 1,000 m3/s. Furthermore, the reduction of 

Kuz makes the base flow decrease. The response of base flow is small, around 10 to 20 

m3/s, but having a big value in comparison with observed base flows. With variation in 

soil distribution, the change in the amount of runoff against soil property variation in Thanh 

My and Nong Son is very different as presented in Table 3.8b. 

mk:@MSITStore:C:/Program%20Files%20(x86)/DHI/2012/bin/MikeShe.chm::/Flow_Model_Editor71.html#wp1117378
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Figure 3.20. Elasticity ranking of peak and base flow due to the input parameter changes.  
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Table 3.8a:  Response of stream flow versus the change in MIKE SHE model parameters at Vu Gia Thu 

Bon Catchment.  

  Thanh My Nong Son 

Module Type Parameter Unit 
∆base 

flow 

∆peak 

flow 

∆base 

flow 

∆peak 

flow 

Overland 

Natural forest M 

1 

m(1/3)/s 

        

5 1.83 190.16 0.98 26.4 

10 0.61 13.42 0.69 63.53 

20 0.88 32.73 0.88 -69.54 

50 0.42 11.88 0.29 -14.45 

Planted forest M 

1 

m(1/3)/s 

        

5 0.22 -15.66 1.57 95.25 

10 0.14 5.58 0.5 21.18 

20 0.12 3.1 0.48 20.13 

50 0.12 2.94 0.46 13.58 

Unused land M 

1 

m(1/3)/s 

        

5 0.04 3.85 0.67 49.74 

10 0.02 1.48 0.25 5.39 

20 -0.02 0.15 0.14 4.33 

50 0.01 -0.22 0.13 0.44 

Rural settlement, M 

1 

m(1/3)/s 

        

5 0.47 26.57 0.43 119.79 

10 0.15 -1.9 0.18 25.34 

20 0.13 -0.93 0.14 16.28 

50 0.18 4.1 0.21 12.6 

River flow Bed M 

5 

m(1/3)/s 

        

10 -0.22 236.22 -11.49 389.39 

20 0 -0.01 0.01 -9.61 

30 0 0.01 -0.01 9.61 

40 0 0 0 0 

Simulation 

parameters 

Precipitation 

dependent time 

step control 

P Max depth 

10 

mm 

        

20 -0.03 -4.36 -0.14 -10.33 

50 0.18 -5.78 -0.22 -14.46 

100 0.23 -35.58 -0.21 -72.3 

200 0.17 -10.81 0.14 -28.59 

P Input rate 

0.1 

mm 

per 

hour 

        

1 0.23 -6.96 0.22 -11.9 

2 0.2 -1.24 0.18 -6.52 

5 0.08 -12.15 -0.24 -13.51 

10 0.2 2.43 0.03 -20.19 
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Table 3.8b:  Response of stream flow versus the change in MIKE SHE model parameters at Vu Gia Thu 

Bon Catchment. (Continuing Table 3.8a) 

  Thanh My Nong Son 

Module Type Parameter Unit 
∆base 

flow 

∆peak 

flow 

∆base 

flow 

∆peak 

flow 

Unsaturated 

Clay Kuz 

1e-09 

m/s 

        

1e-08 -2.18 -17.46 -3.45 -53.39 

1e-07 -4.84 -66.43 -6.69 -166.38 

1e-06 -3.87 -280.98 -5.7 -332.43 

1e-05 -3.27 -476.99 -4.34 -592.19 

Light 

clay 
Kuz 

1e-08 

m/s 

        

1e-07 -0.42 -2.87 -0.47 -2.86 

1e-06 -0.34 -18.35 -0.08 -6.81 

1e-05 -0.18 -29.19 -0.26 -17.95 

1e-04 -0.02 4.46 0.03 17.44 

Suit 

loam 
Kuz 

1e-07 

m/s 

        

5e-07 -3.69 -249.9 -7.22 -428.98 

1e-06 -5.34 -317.53 -7.1 -459.5 

5e-06 -9.8 -1321.32 -14.28 -1648.9 

1e-05 -0.65 -132.79 -1.9 -494.44 

Loamy 

sand 
Kuz 

1e-08 

m/s 

        

1e-07 -0.17 -7.1 -0.92 -9.21 

1e-06 -2.16 -89.13 -1.83 -114.61 

5e-06 -1.12 -194.24 -1.19 -213.99 

1e-05 -0.17 -39.17 -0.31 -65.52 

Sand Kuz 

1e-08 

m/s 

        

1e-07 0 0 -0.07 -0.57 

1e-06 0 0.02 -0.24 -5.13 

1e-05 0 -0.01 -0.13 -3.74 

1e-04 0 0 0 0 

Saturated Aquifer Kh 

1e-05 

m/s 

        

2e-05 7.5 -169.43 12.45 -55.98 

4e-05 11.23 -104.78 18.68 -82.65 

6e-05 7.15 -92.3 12.46 -168.03 

8e-05 4.7 -98.18 8.69 -99.1 
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The groundwater plays a crucial role in the behavior of hydrological processes with the 

catchment. So, the variation of this component will influence significantly on the river flow, 

especially the base flow when the discharge from groundwater is seen as its principal 

source. The groundwater is represented in the saturated zone. The flow in saturated zone 

is characterized by aquifer property, in these, horizontal saturated hydraulic 

conductivity (Kh) proves the most influence on saturated flow. For this reason, in the 

model, only this factor is considered.  With Vu Gia Thu Bon, the results in Table 3.8b 

demonstrate the primary impact of this factor on peak flow. The peak flow tends to reduce 

quickly when increasing Kh. The reduction is so clear, when Kh rises from 1e-5 to 8e-5 m/s, 

the runoff goes down around 500 m3/s at both Thanh My and Nong Son stations. On the 

contrary, Kh increase in the interval of 1e-5 - 8e-5 m/s makes the base flow rise 

approximately at 30 m3/s at Thanh My and at 50 m3/s at Nong Son. In spite of the 

insignificant variation, it is quite important for adjusting the base flow. 

Eventually, the different response of flow factor due to the input parameter is compared 

to each other by the elasticity ranked at Figure 3.20. Following the above analysis, the 

saturated hydraulic conductivity of saturated zone is the first factor that modelers need to 

notice when playing with base flow. Besides, it is necessary to consider the role of the 

saturated hydraulic conductivity of clay, suit loam in unsaturated zone. The impact of 

these parameters to base flow discharge is not high but it is big enough for helping to get 

a better result. Because there are not many parameters affecting base flow, the 

suggestion is “try to calibrate base flow first before doing this process with peak flow”. 

Conversely, the peak discharge is affected by most of the parameters. The change 

quantity of the peak is affected by the parameter and sub catchment. Importantly, the 

interaction between these parameters with run off might be considered for obtaining a 

better simulation. 

b. Calibration and validation 

Based on the split-sample test  theory of  Klemeš, (1986), he MIKE SHE model is built for 

a period of 11 years period from 1990 to 2000 for calibration and from 2000 to 2010 for 

validation. In order to stabilize the model and establish proper initial conditions, the first 

year of each period is used for warming up the model. Hence, in this analysis, only ten 

years of daily data are taken to calibrate and validate the model. The calibration is done 

manually. This process, of course, is based on the results of the sensitivity analysis. Only 

a few of sensible model parameters are used for the calibration process. 

The Vu Gia-Thu Bon catchment has a complicated river system. Although the length of 

the two main rivers reaches to 200 km, there is only one flow measured station in the 
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middle of each main river:  Nong Son at Thu Bon branch and Thanh My at Vu Gia branch. 

This situation creates several difficulties for the comparison of the results between 

simulations and observations. Especially this is not only an inconvenient for predicting 

flood risk in the downstream region, but there is also a factor producing uncertainty when 

assessing the impact of climate change on the runoff. The lack of observation data for 

comparing simulation results degrades the performance of distributed model. Many 

hydrologists have suggested to realize calibration on multi-site, with not only the 

discharges but also the water levels (Wang et al., 2012). Accordingly, the water level at 

Ai Nghia station, Cam Le Station on Vu Gia branch and Hiep Duc, Giao Thuy, Cau Lau 

stations on Thu Bon branch as well are compared with the MIKE SHE model outputs in 

order to increase the confidence and simultaneously to reduce the uncertainty in 

projected climate scenario. The model assessment is performed with statistical measures 

of the root mean squared error (RMSE) (equation 3.10), the correlation coefficient (R) 

(Equation 3.11), and Nash-Sutcliffe coefficient (E) (Equation 3.12).  

On the other hand, to evaluate the accuracy of simulation on the aspect of distributing 

peak flow and low flow extreme values, Willems has developed a tool to make 

appearance of the performance of model by using graphical goodness of fit plots: the 

WETSPRO method (Willems, 2009). This comparison method his expected to increase 

the confidence on the simulation via scatterplot and extreme value distribution of peak 

flow and base flow. In the analysis, this method is used to assess the capacity of MIKE 

SHE to reproduce properly peak flow and low flow at Nong Son and Thanh My stations. 

MIKE SHE mode parameter values are varied based on the above sensitivity analysis. 

The optimal values reached from calibrated process are shown at Table 3.9. 

 Calibration and validation with discharge. 

Hydrographs in Figure 3.21, 3.22 demonstrate that the model simulates relatively 

accurately the runoff in Vu Gia Thu Bon catchment. Simulated base flows at two stations 

Nong Son and Thanh My is similar to the measurements. However, it seems that the peak 

of sub-main flood is not presented well. The quality of observation data may cause this 

limitation. In dry season, the data in these two stations is only captured once or twice per 

day, so it could not present precisely the time of sub-main flood appearance. It is really 

difficult to overcome the problem concerning to missing data, so the simulated base flow 

might be acceptable. Following the hydrographs, peak floods are almost the same to 

observation data. Occasionally, some peaks are higher than reality but the difference is 

not very high, it is reasonably acceptable. In theory, this problem could be completely 
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controlled. This issue seems uncomplicated with the simulation for small area and in short 

time. Otherwise, for ten years simulation in a large area, and model contained many 

parameters like this case, gaining a perfect result is really unrealizable. It needs to take 

more time to analyze and adjust parameters. One question is what is more rational? An 

acceptable result or higher performing model with long time calibration. It must be 

balanced carefully during calibration process (Cunge, 2003; Sahoo et al., 2006). In this 

study, considering on the reality of data and the computer’s restriction, the first one is 

more appreciated than the other. Furthermore, the more accurate MIKE SHE model in 

describing the run off in dry season than flood season might be understandable under the 

data aspect. The base flow is mainly composed from groundwater, so this component is 

not dependent so much on data factor, such as rainfall. Therefore, this component of 

runoff is more stable through long time and closer with the measurement if the model is 

set well. On the contrary, peak flow is influenced by many factors of hydrological process 

such as overland flow, unsaturated flow, groundwater flow, channel flow, evaporation, 

particularly the rainfall data. The time step of rainfall data input has a huge impact on 

concentration time, concretely to appearance time of peak discharge (Dendy, 1987). For 

this reason, the rainfall data input using large step might be the main cause of the 

differences of peak discharge in this MIKE SHE which uses daily rainfall input. The 

acceptability of this model can be explained by safe aspect. Based on this aspect, the 

little overestimation of model in wet season might increase the safety when simulating 

extreme flood events. The quality of this simulation is affirmed through validated period. 

The flow in ten years is regenerated approximately with the observation (Figure 3.21, 

3.22).  

The efficiency of MIKE SHE model is also shown through the statistical coefficients in 

Table 3.10. Daily and monthly discharges are compared between simulation and 

observation. These numbers prove the accuracy of this model in describing the 

hydrological process in Vu Gia Thu Bon catchment. The R and E coefficients at Nong 

Son and Thanh My in the calibration period are 0.92, 0.89 and 0.82, 0.78, respectively. 

In the validation period, these factors reduce, but not very low, R and E coefficients at 

Nong Son station is 0.92 and 0.82 and at Thanh My is 0.90 and 0.69. The RMSE 

coefficients at Nong Son and Thanh My in both periods are relatively small. In ten years, 

the RMSE of simulation are only 132.3 m3/s at Thanh My versus maximum observation 

4,440 m3/s-minimum observation 12.2 m3/s. The value at Nong Son is 288.7 m3/s versus 

maximum observation 8,920 m3/s-minimum observation 21.7 m3/s. While the RMSE of 

validation at Thanh My is 123.2 m3/s versus maximum observation 4540 m3/s-minimum 
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observation 20.2 m3/s and at Nong Son is 250.5 m3/s versus maximum observation 8,410 

m3/s-minimum observation 21.9 m3/s.  

Table 3.9.  Calibrated parameter values of MIKE SHE model. 

Key parameter Unit 
Optimal 

value 

* River bed resistance - Strickler Coefficient    

     - Tributary and upstream of Vu Gia m(1/3)/s 18 

     - Tributary and upstream of Thu Bon m(1/3)/s 25 

     - Linking branch m(1/3)/s 30 

      - Downstream m(1/3)/s 40 

* Overland flow - Strickler Coefficient    

     - Planted forest m(1/3)/s 5 

     - Rural settlement m(1/3)/s 8 

     - Rice m(1/3)/s 16 

     - Annual crops m(1/3)/s 8 

     - Perennial crops m(1/3)/s 8 

     - Unsed  land m(1/3)/s 5 

     - Natural forest m(1/3)/s 2 

     - Urban m(1/3)/s 90 

     - Water surface m(1/3)/s 33 

* Unsaturated flow - soil property    

    - Kuz-Clay m/s 1.2 10-8 

    - Kuz-Suit loam m/s 2.45 10-6 

    - Kuz-Loamy Sand m/s 8.5 10-6 

    - Kuz-Light clay m/s 2.085 10-4 

    - Kuz-Sand m/s 2.89 10-4 

* Saturated zone    

     - Kh- Horizontal hydraulic conductivity m/s 6.7 10-5 
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Because of these big differences between maximum and minimum values of observed 

data, the values of normalized root mean square error at these stations are quite small. 

These are lower than 0.05. If comparing the monthly data, the efficiency of model is 

proved more impressively by these indications (Table 3.10). 

Figure 3.23a shows the comparison plot of maximum value at Nong Son in calibrated 

period, which has relatively high scatter, yet almost simulated peak flows concentrate in 

the interval of the mean ± standard deviations and zero bias. These trends happen in the 

similar way with Thanh My station. But at Thanh My, the pilot (Figure 3.24a) shows a 

negative bias. The higher of bisector line expresses the peak discharge at Thanh My is 

underestimated, even so this disparity is quite small. These comparisons prove again the 

model performance in translating high values of run off. Furthermore, it is easy to 

recognize the performance of model via the frequency comparison. The Figure 3.25 

shows strongly the capacity of model in simulating the peak discharge value. The 

simulated and observed discharge values corresponded to return period of Thanh My and 

Nong Son are mostly similar. These analyses demonstrate the performance of MIKE SHE 

model to simulate the peak discharge for this catchment.  

Conversely, Figure 3.23b, 3.24b show the low flow value of simulation distribute higher 

dispersedly than peak flow. Even though simulated low flows are mostly in the interval of 

the mean ± standard deviations but they present a big negative bias. These negatives 

show underestimated trend of this MIKE SHE model with low flow. The trend is occurred 

similarly at both stations, Thanh My and Nong Son. The low flow underestimation is 

confirmed at the frequency comparison of Nong Son station (Figure 3.26b), but in the 

case of Thanh My station, the difference between observed and simulated frequencies is 

not so high (Figure 3.26a).  However, Vansteenkiste et al., (2014) gave a viewpoint that 

the underestimation of the most extreme low flows might help to forecast better the 

extreme tendency of dry season, that is why using this model is able to predict the most 

severe drought in dry season of Vu Gia Thu Bon catchment and helps to cope more 

actively the drought disaster.    

Throughout the results on describing the peak flows and base flows, this MIKE SHE 

model give an impressive capacity in representing the hydrological process in Vu Gia Thu 

Bon catchment. Its accuracy might contributes a significant part to forecast hydrological 

events occurring in this river basin.  
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Figure 3.21. Calibrated and validated hydrographs of discharge at Nong Son station. 
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 Figure 3.22. Calibrated and validated hydrographs of discharge at Nong Son station. 
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Figure 3.23.  MIKE SHE calibration versus observed nearly independent daily peak flow (a) and low flow 

(b) at Nong Son station after Box-Cox transformation (λ = 0.25) 

 

 

 

Figure 3.24.  MIKE SHE calibration versus observed nearly independent daily peak flow (a) and low flow 

(b) at Thanh My station after Box-Cox transformation (λ = 0.25) 
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Figure 3.25. The difference of peak flow empirical extreme value distributions between calibration and 

observation at Thanh My(a) and Nong Son (b). 

 

 

 

 

 

Figure 3.26. The difference of low flow empirical extreme value distributions between calibration and 

observation at Thanh My (a) and Nong Son (b). 
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Table 3.10.  Statistical indices of MIKE SHE model in Vu Gia Thu Bon catchment. 

 Station 

Calibration (1991-2000) Validation (2001-2010) 

Daily Monthly Daily Monthly 

RMSE R E RMSE R E RMSE R E RMSE R E 

W
a
te

r 
le

v
e
r 

  
  
  

  
  
  
  

  
  
  

  
  

  
  
  
  

  
  
  
  

  
  
  

  

(m
) 

Thanh My 0.77 0.86 0.67 0.52 0.97 0.77 0.68 0.83 0.61 0.32 0.94 0.86 

Ai Nghia 0.70 0.81 0.63 0.41 0.96 0.81 0.66 0.78 0.56 0.35 0.94 0.83 

Cam le 0.26 0.83 0.12 0.18 0.94 0.32 0.28 0.8 -0.46 0.2 0.94 -0.13 

Hiep Duc 0.77 0.89 0.77 0.44 0.97 0.88 0.91 0.83 0.59 0.63 0.92 0.67 

Nong Son 0.89 0.88 0.76 0.49 0.97 0,89 0.84 0.86 0.72 0.42 0.96 0.89 

Giao Thuy 0.85 0.85 0.61 0.6 0.97 0.73 0.73 0.82 0.6 0.4 0.95 0.82 

Cau Lau 0.44 0.84 0.56 0.16 0.96 0.9 0.47 0.83 0.16 0.2 0.97 0.25 

D
is

c
h

a
rg

e
 

(m
3
/s

) Thanh My 132.3 0.89 0.78 58.06 0.96 0.89 123.2 0.9 0.69 47.03 0.96 0.87 

Nong Son 288.7 0.92 0.82 160.4 0.97 0.86 250.5 0.91 0.82 131.0 0.97 0.87 

 Calibration and validation with water levels: 

In order to verify the efficiency of the MIKE SHE model for the Vu Gia Thu Bon catchment, 

the water levels recorded at several stations are compared with the results (Figure 3.27). 

However, the accuracy of simulated water levels is not good for discharges. Due to these 

differences, the statistical coefficients for water levels comparison between simulation 

and measurements are not as high as the ones obtained for the discharges (Table 3.10). 

The relation coefficient in all stations is around 0.8 to 0.9 but Nash-Sutcliffe coefficients 

are low and vary from 0.6 to 0.7 at the upstream station and get smaller in station under 

tidal effect. The source of this inaccuracy can be explained by the coarse resolution of 

topographic data, the lack of measured cross sections and the large distance between 

two computed sections (dx) in MIKE 11 (Vázquez et al., 2002). Despite the fact that 

statistical coefficients for water levels are still low, calibrating the model relying on these 

factors probably adds a certain value to show the correlative level of model result with 

real data. By mean of analysis above, we can judge that the flow in Vu Gia Thu Bon 

catchment is reproduced rather impressively by MIKE SHE. The presented capacity of 

this kind of mode allows to simulate easily the flood event or the variability of stream flow 

under the impact of climate change, especially with large catchment. 
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Figure 3.27a. Calibrated and validated hydrographs of water level. 
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Figure 3.27b. Calibrated and validated hydrographs of water level. 
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Figure 3.27c. Calibrated and validated hydrographs of water level. 
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Figure 3.27d. Calibrated and validated hydrographs of water level. 

c. Uncertainties 

 Although, trying to reflect the most truthfully the hydrological dynamic in the catchment, 

the model has not yet gained the optimal results when inaccuracies still remain. The 

statistical coefficients, such as Nash Sutcliffe and correlation coefficient (RMSE) are still 

weak. These coefficients could not get maximum values for many reasons. The model 

has many potential uncertainties for simulating hydrological processes. Uncertainty in 

hydrologic modelling may arise from several sources: model structure, parameters, initial 

conditions and observed data used to drive and evaluate the model (Liu & Gupta, 2007). 

One of the most important factors regarding the model structure which may have a 

significant influence on the model accuracy as well as on the uncertainty of simulation, is 

cell size issue (Egüen et al., 2012). The advantage of distributed hydrological model is to 

represent hydrological characteristics of catchment cell by cell. However, the resolution 

used in the model is still coarse due to the limitation of topographic data and computation 

time. The 90 m topographic grid data used may not describe precisely enough the surface 

of the catchment. Thus, it derives some differences of surface flows between reality and 

model. The land uses, the soil properties or the roughness coefficients, which are 
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simplified in order to optimize the calibration purpose, are the large causes of 

underestimation or overestimation for the model.  

Another issue influencing significantly the model uncertainty is the rainfall that is a key 

factor in the hydrological dynamic. Rainfall spatial variation affects heavily both runoff 

generation and hydrologic process in a catchment (Moon et al., 2004). The spatial 

variability in rainfall mays introduce a significant uncertainty in model parameters during 

the calibration process (Chaubey et al., 1999). The quality of spatial rainfall distribution 

usually depends on the characteristic of study area and other factors, in particular, the 

rain gauge density. Therefore, the network of rain gauge stations in Vu Gia Thu Bon is 

sparse, with, in average, one station for an area of 700 km2. In the constructed model, 

the rainfall inputs are re-interpolated and could be considered as a great source of 

uncertainty. Besides the spatial distribution, the time factor is also a great potential source 

for uncertainty (Dendy, 1987), especially within the Vu Gia Thu Bon catchment where the 

concentration time is short due to the steep topography. Using daily rainfall in this 

simulation probably affects the rising limb and the peak flow appearance. However, these 

data are the unique complete rainfall data set available for long-term simulations for the 

Vu Gia Thu Bon catchment. The analysis about the rainfall distribution in space and in 

time demonstrates again the impact of lack of data on the simulation uncertainty. 

The groundwater component cannot be ignored when simulating hydrological process 

(Winter, 1999). In terms of input data, the insufficiency of ground water data is seen as a 

major source of uncertainty for simulating hydrological processes. The quality of the 

groundwater data of Vu Gia Thu Bon catchment is not very good and the collected data 

do not present the groundwater properties concretely. For the whole catchment, the 

model integrates a unique geological layer.  

Regarding the modeling methods implemented in MIKE SHE, the selection of one or 

another method can potentially generate several sources of uncertainty. For example, 

there are three functions to select for unsaturated flow such as Richards equation, Gravity 

flow, 2 layers UZ. The Richards equation is supposed to be the best method for simulating 

unsaturated flow. However, in the current application, the 2 layer UZ is chosen due to the 

limited available data sets and the short processing time.  

The coupling between MIKE SHE and MIKE 11 contains additionally potential 

uncertainties. It could affect notably water exchanging between floodplain and riverbed. 

The number of simulating branches and intervals in MIKE 11 is considered as a main 

uncertainty source. In the model, the coupling between MIKE SHE and MIKE 11 is not 

set well due to the limited number of cross sections. Additionally, there is a difference 
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between overland flow and river flow, but in the analysis, the river network presented in 

MIKE 11 is merely over 44 large branches. Understandably, the set up manner the 

coupling between MIKE SHE/MIKE 11 is estimated holding a big uncertainty. 

An additional element affecting to the quality of hydrologic model concerns the time factor. 

Time step applied in the MIKE SHE model is fixed to one day. This time step is still high 

so it may not present thoroughly what the hydrological cycle is in the catchment. Besides, 

the timescale of model is limited to 10 years. The simulation time is considered not 

sufficient enough to bring adequately extreme events from natural phenomena.  

Unavoidably, simulating the stream flow at Vu Gia Thu Bon catchment will contain 

particular uncertainties. 

 

3.7 Conclusion 

With the aim of providing a tool able to simulate the hydrological process and estimate 

impacts of climate change on runoff in the Vu Gia Thu Bon river system, a deterministic 

distributed hydrological model based on MIKE SHE modeling system has been built. The 

model integrates most of the hydrological processes - from surface flow to groundwater 

flow, and evapotranspiration – and is expected to reproduce the hydrological cycle within 

the catchment. The model is hoped to produce a good assessment of the climate change 

impact over the region and with an estimated accuracy. One of the advantages of fully 

deterministic distributed model is the possibility to overcome the weakness and the lack 

of systematic data. The difference between actual and future runoff regime could be 

compared anywhere over the catchment. Hence, an overview of change in runoff regime 

in the whole catchment could be generated without difficulty. These points confirm the 

capacity of distributed models in modelling impact of climate change over the hydrological 

processes. The model is calibrated and validated against daily data and monthly data for 

the period 1991-2000 and 2001-2010, respectively. The performance of model is 

demonstrated via the hydrograph shapes and statistical indices comparing simulation 

results with data from seven gauging stations. The model efficiency is likewise confirmed 

by the capacity to predict extreme peak flow and base flow. However, the model still 

contains many uncertainties that are from many sources such as the model structure, the 

cell size and the input data. Eliminating these uncertain sources is likely to be impossible 

and that’s why it is requested to elaborate different models with various cell sizes, data 

accurate definition and solving algorithms in order to minimize the risk of uncertainty. 
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The limited data resources and the needed computer capacity reduce, in some extend, 

the application of deterministic distributed models and their performance. The calibration 

process is a compulsory and complex step in the model development. The sensitivity 

analysis appears as an essential step in order to support efficiently the calibration of the 

distributed hydrological model. The performed analysis suggests that the model 

comparisons should be carried out not only on the discharges but also on the water levels 

in all locations where measured data are available. The results of calibration confirm that 

it is necessary to compare the measurement and simulation at multi-sites. The multi-site 

calibration helps to increase the accuracy in translating what happens in the nature to 

model and in minimizing the global uncertainty of model as well. The analysis 

demonstrates likewise that the model validation versus extreme high and low values is 

quite important. The validation on extreme runoff value is helpful to reduce the uncertainty 

in simulations. 

The result of sensitivity analysis demonstrates the response of runoff factors versus the 

variation of model parameters. Besides, the variation of runoff due to parameter changes 

is quite different. In Vu Gia Thu Bon catchment, the peak flow is affected significantly by 

most of the model parameters while the base flow is merely influenced by horizontal 

saturated hydraulic conductivity of saturated zone and saturated hydraulic conductivity of 

unsaturated zone. The analysis has demonstrated the interest of the sensitivity analysis 

in the calibration of distributed hydrological model. At the same time, this process helps 

to determine a useful impact interval of each factor on the stream flows and contribute to 

simplify the calibration process. 

The results of sensitivity analysis, calibration and validation have been published at the 

19th IAHR-APD Congress 2014, Hanoi, Vietnam (Vo & Gourbesville, 2014a) also 

submitted at Journal of Hydroinformatics.    
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Chapter 4   FLOOD MAPPING 

In the previous chapter, the deterministic distributed model was used for simulating the 

hydrological process of Vu Gia Thu Bon catchment. Even if, this kind of model has the 

capacity to represent the inundation, the coarse resolution using in this hydrological 

model makes a big reduction in its flood area expressed efficiency. In order to present 

more accurately the flooding at downstream of Vu Gia Thu Bon catchment, there is a 

need to construct a hydraulic model with higher resolution in this area. The chapter 4 will 

describe the selected process, calibration, validation, also uncertainty analysis related to 

hydraulic model construction at the downstream of this catchment. 

 

4.1 Introduction 

As described above, climate change is predicted to occur more severely and with more 

complexity. Under the impact of the variation of weather factors, especially precipitation, 

extreme flood event is expected to increase not only in intensity but also in frequency. It 

is thought to have an influence on all aspects of human society in the next few years (R 

K Pachauri & Reisinger, 2007). Hence, responding actively with these changes is an 

urgent requirement today. EXCIMAP, (2007) that a prerequisite for effective and efficient 

flood risk management, is the in-depth knowledge of the prevailing hazards and risks 

throughout a river basin and areas of coastal flood risk. This includes information about 

the types of floods (river, coastal, lake and groundwater), the probability of a particular 

flood event, the flood magnitude expressed as flood extent, water depth or flow velocity, 

and finally, the probable magnitude of damage (life, property, economic activity). These 

basic information about the flood event can be gained through flood modelling and 

exhibited via flood map. Therefore, flood map is an effective tool in responding proactively 

to flood disaster in the period of preparation and planning of disaster prevention as well 

as in the emergency response phase (Moel et al., 2009). Constructing the flood map 

together with taking into account the impact of climate change are seen as useful and 

indispensable process to respond to this natural phenomenon. It might help the local 
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authority to have scientific evidences to suggest suitable policies and measures to reduce 

the impact of climate change.  

 

Figure 4.1. Different flood map types. (A) historical flood map; (B) flood extent map; (C) flood depth map; 

(D) flood danger map; (E) qualitative risk map; (F) quantitative risk (damage) map.(Moel et al., 2009) 

There are many definitions of flood map (Figure 4.1), but generally they can put in two 

fundamental types: Flood hazard map and flood risk map. Flood hazard map shows areas 

which could be flooded according to three probabilities (low, medium high) complemented 

with: type of flood, the flood extent; water depths or water level as appropriate; where 

appropriate, flow velocity or the relevant water flow direction (EXCIMAP, 2007). Besides 

that, this map can also indicate the dangerous level of flood disaster for specific region.  

This kind of flood map can be constructed via historical data, statistical and modelling 

tool, or image processing. On the contrary, the flood risk maps indicate the potential 

adverse consequences associated with floods under several probabilities, expressed in 

terms of: the indicative number of inhabitants potentially affected; types of economic 
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activities of the area potentially affected; installation which might cause accidental 

pollution in case of flooding potentially affected (EXCIMAP, 2007). The risk is generally 

calculated by integrating the flood hazard map with regional vulnerability (Schumann, 

2011). 

In this study, both of these flood maps will be generated to put a view of serious 

consequences due to flood disaster and climate change bring to the Vu Gia Thu Bon 

catchment. 

 

Figure 4.2. Conceptual framework for flood hazard and risk calculations  (Moel et al., 2009) 

 

4.2 Hydraulic modelling 

As mentioned in the section of 4.1, the flood hazard map is an essential document for 

assessing the impact of a flood event to society, flood risk mitigation, flood management 

as well. Due to its important Up to date, many mapping methods have been developed 

with different theories such as hydrologic, meteorological and geomorphologic 

approaches representing the hazard or risk of flood in scale of a catchment (Ho et al., 

2010). There are many pros and cons with each method. Flood tracking is a long-standing 

method which relies on the traces of past events to construct the map. This method is 

relatively simple, and could present the real event. However, its accuracy is not so high 

when determining the flood traces over the catchment, especially with historic flood event. 

Nowadays, the development of satellite system and image processing helps to overcome 
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the difficulty in surveying flood traces by above method. The flood map can be established 

by analyzing the satellite image data before and after flood events. This is known as an 

economical and efficient method for mapping flood hazard and dealing with the problem 

of inadequate data source in developing countries. The third method for flood mapping is 

via topography data by using GIS software. It has the limitation with the resolution of 

topography data. Finally, the flood map can be created by flood modelling (Figure 4.2). 

Although first three methods have good advantages with workload, there is a common 

weak point which concerns about their flexibility and their accuracy. It means that their 

produces do not take into account the effect of hydrological and hydraulic factors. Hence, 

they could not provide information related to stream flow such as speed or flood direction. 

These restrictions cause difficulties while forecasting the future scenario as well as 

assessing scale variability of inundation area under the impact of climate change. 

Conversely, the last method is realized by using a model which operates based on a 

mathematical relation between input and output hydrological variables(Moel et al., 2009). 

The link between input and output variables are represented via different kinds of 

mathematical function which are able to consider on different aspects due to the viewpoint 

of developers, such as space, time, mathematical structure... So flood mapping using the 

hydraulic model is expected to translate more accurately the happening of flood event 

including distribution due to time and space, as well as providing hydraulic information. 

Especially, this method allows simulating with different scenarios which help to forecast 

change tendency of flood map under the impact of catchment’s factor variations such as 

the construction, land use, or climate change. 

Within hydraulic model, they are divided into several types depending on their 

dimensionality, capabilities and assumption in modelling water movement (Hunter et al., 

2007; Wurbs, 1994). The cornerstone of these models is the fundamental governing 

equations of fluid dynamics—the continuity, momentum and energy equations (Anderson 

& Wendt, 1995). This equation is in fact known as the Navier-Stokes equations, which 

can be applied to solve complex fluid flows in the form of three dimensional (3D) hydraulic 

model (Bates & De Roo, 2000). However, this model is still so complicated to use for real 

case at this moment, so Navier-Stokes equations have been simplified  into the form of 

St Venant equations (Nguyen, 2012), generally known as shallow water equations 

(Hernández et al., 2013) that have been applied to build one dimensional and two 

dimensional hydraulic models reliable at a simplified level. With each kind of model, they 

have different advantages and disadvantages. To construct flood mapping for a region, 

the model selection depends on many factors, not least on the actual condition of 

catchment. 
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This chapter aims to compare pros and cons of above models to choose a hydraulic 

model which is the most suitable for the present condition of Vu Gia Thu Bon catchment. 

 

4.2.1 One dimensional hydraulic model 

a. Model definition 

One dimensional hydraulic model (1D model) has been the most widely used model for 

river flood modeling. This kind of model is developed on the assumption that flow in the 

channel and floodplain accurses with only the longitudinal direction (Bates et al., 2005). 

For this theory, in 1D model, hydraulic variables such as velocity, depth,.. are solved 

predominantly in one defined direction along the channel. Because channels are rarely 

straight, the computational direction is generally defined along the channel centerline 

(Zevenbergen et al., 2012). 1D model simulates the hydraulic components generally by 

solving the one dimensional St Venant equations that can express both continuity and the 

1D section averaged Navier Stokes Equation (4.1, 4.2). 

 
𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0 (4.1) 

 
𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢𝑄) + 𝑔𝐴 (

𝜕ℎ

𝜕𝑥
− 𝑆0) + 𝑔𝐴𝑆𝑓 = 0 (4.2) 

Where Q is the discharge, A is the cross sectional area, S0 is the bed slope, and Sf 

is the friction slope. One dimensional St Venant equations are commonly used with 

basic assumptions as follows: the pressure distribution is hydrostatic, the resistance 

relationship for unsteady flow is the same for steady flow, and the bed slope is 

sufficiently mild such that the cosine of the slope can be replaced by unity (Moore, 

2011; Stelling & Verwey, 2005).  

The necessary data to setup a 1D model normally consists of two categories that are 

boundary conditions and topographic data. The topographic data, which describes the 

geometry of river branch and floodplain, is defined by a series of cross section for example 

at Figure 4.3. Boundary conditions in 1D model can be defined at the upstream and 

downstream parts via discharge and water level data. Model results involving water level 

and discharge can be only obtained at each computation note, which depends on the 

cross section location, as well the stipulatedly calculated segment. This limitation of 

output result requires us need to decide the result extracted location before implementing 

the model.  
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Figure 4.3. MIKE 11 Model structure (Landrein, 2011) 

The 1D model nowadays has been used popularly in water flow modelling by its 

advantages such as short computation time, easy establishment, simple data 

requirement, stable operation, ability in describing the flow through hydraulic construction. 

However, this kind of model contains a big disadvantage that may not adequately 

describe lateral water diffusion. Consequently, it could not satisfactorily represent the flow 

part out of bank river, which is judged would no longer be 1D. 

 

Figure 4.4. MIKE 11 Quasi model structure (Landrein, 2011).  
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In order to reduce a part of the inaccuracy in describing the flood flow at floodplain, the 

1D model can be set up as Quasi 2D modeling. In this approach, floodplains are in parallel 

with main river network in 1D model, they are then connected to main river by link 

channels or spill units (Figure 4.4). The exchanged discharge between two parts is 

calculated using a weir equation.  

b. Available 1D hydraulic models 

 MASCARET 1-Dimensionnal free surface flow modelling 

MASCARET includes 1-Dimensionnal free surface flow modelling engines (Figure 4.5). 

This is a product of Electricité de France (EDF), based on the Saint-Venant equations, 

different modules can be used to model various phenomenon over large areas and for 

varied geometries: meshed or branched network, subcritical or supercritical flows, steady 

or unsteady flows. MASCARET can represent: Flood propagation and modelling of 

floodplains, Submersion wave resulting from dam break, Regulation of managed rivers, 

Flow in torrents, Canals wetting, Sediment Transport, Water quality (temperature, passive 

tracers ...). MASCARET is composed of three hydrodynamic engines, which can be 

coupled with the module CASIER for Quasi 2D model. The main aim of a calculation is 

the determination of water levels and flows in various branches of the hydraulic network. 

 

Figure 4.5. Typical example of a river and associated floodplain in MASCARET model 

(http://www.openTELEMAC.org/) 

http://www.opentelemac.org/
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This model has been applied to solve many problems in reality such as modelling of 

floodplain of the Adour river, Modelling the Old Rhine between Breisach and Kembs 

during low water (30 m3/s) for the study of issues related to the upstream travel of salmon 

in the Old Rhine. Breach simulation of the Bort-les-Orgues dam (France)…… 

(http://www.openTELEMAC.org/) 

 HEC RAS  

HEC RAS was developed by Hydrologic Engineering Center (Figure 4.6), which is a 

division of the Institute of Water Resources, U.S. Army Corps of Engineers for performing 

one dimensional steady and unsteady flow river hydraulics calculation based on basic 

equation of one dimensional model: Saint-Venant equation. This model was completed 

on an HEC 2 model, which was a product of the Corps’ Civil works Hydrologic Engineering 

Research and Development Program, but has many limited points. The first version of 

HEC RAS model appeared in July of 1995 and has been continuously improved until now. 

Nowadays, HEC RAS becomes the top of free 1D model widely applying for analyzing 

the hydraulic problem of river flow and floodplain such as: steady flow water surface 

profile computations, unsteady flow simulation, movable boundary sediment transport 

computations and water quality analysis.  

 

Figure 4.6. Example cross section layout of HEC RAS model (Brunner, 2010) 

 ISIS-1D 

ISIS-1D a module of ISIS software which is  a product of cooperation between Sir William 

Halcrow, his Partners and  Hydraulics Research Wallingford for modeling open channel 

and overbank flows in any network of channels. Any sensible looped or branched network 

http://www.opentelemac.org/
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can be modelled using ISIS, which incorporates a wide range of hydraulic units including 

a variety of conduit types, hydraulic structures, and so on. The first release of this model 

is 1995 (Baban, 2002) and has been continuing to complete up till now by Halcrow group. 

Same as others 1D hydraulic model, ISIS computes flow depths and discharges using a 

method relied on the equations for shallow water waves in open channels - the Saint-

Venant equations. ISIS model has two versions, free version and business one which can 

be applied to solve systems under both steady and unsteady flow conditions. The model 

describes river bed and floodplain via cross section system.  Hence, it transmits easily 

the topography at study area; gives the ability to simulate the variation of river bed as well 

as flexibly adds the construction on the river. The model result is given at the computation 

notes with discharge and water level. This model has been applied for river flow, flood 

modelling in England and over the world. 

 SRH-1D 

SRH-1D (Sedimentation and River Hydraulics - One Dimension) is a one-dimensional 

mobile boundary hydraulic and sediment transport computer model for rivers and 

manmade canals (Figure 4.7) (Huang & Greimann, 2012). Simulation capabilities include 

steady or unsteady flows, river control structures, looped river networks, cohesive and 

non-cohesive sediment transport, and lateral inflows. The model uses cross section 

based river information. The model simulates changes to rivers and canals caused by 

sediment transport. It can estimate sediment concentrations throughout a waterway given 

the sediment inflows, bed material, hydrology, and hydraulics of that waterway.  

 

Figure 4.7. Representation of river by discrete cross section (Huang & Greimann, 2012). 
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The first version of this model was released at the year of 2005 under name GSTAR-1D 

by US Bureau of Reclamation, Technical Service Center, it was changed to name SRH-

1D at 2007 and has been kept ameliorating up till now. The simulation capacity of this 

model has been demonstrated via lots of constructions. 

 MIKE 11 

MIKE 11 nowadays is known as one of the most famous of one dimensional hydraulic 

models for the simulation of flows, water quality and sediment transport in estuaries, 

rivers, irrigation systems, channels. MIKE 11 has been developed at DHI group with many 

main components called Hydrodynamic (HD) module besides others components such 

as Flood Forecasting, Advection-Dispersion, Water Quality and Non-cohesive sediment 

transport modules (DHI, 2012g). Constructing on the basic foundation of 1D hydraulic 

model, the Saint Venant equations, however  with a long historic and always improved by 

DHI expects, MIKE 11 provides a complete and effective design environment for 

engineering, water resources, water quality management and planning applications. The 

required data for one MIKE 11 HD (Simulation editor (.sim11)) generally is input 

throughout 4 basic components: Network Editor (.nwk11) for river system, Cross section 

Editor (.xns11) for describing topography of river bed and flood plain, this file also 

translates the characteristic concerning each cross section or river segment, all boundary 

information are defined by Boundary Editor (.bnd11), Parameter Editor (.HD11) for 

providing river hydraulic parameters to model. Model result of Mike11 HD is similar to 

other 1D models, they can only give discharge and water level information at calculated 

points. Model result is queried in MIKE VIEW, another module of DHI software. With its 

exceptional flexibility, speed and user friendly environment, MIKE 11 provides a complete 

and effective design environment for engineering, water resources, water quality 

management and planning applications. The simulated capacity of this model has been 

tested by many case studies in worldwide. 

 

4.2.2 Two dimensional hydraulic model 

a. Model definition 

Simulating the flow with one dimensional model has revealed many limitations, especially 

in flat floodplains where the flood wave propagation is not an one-dimensional 

phenomena. Due to the drawback of 1D model, in recent years with the advance in data 

availability, numerical methods and computational power, two dimensional hydraulic 

models (2D model) have increasingly been developed and applied for enhancing the 
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accuracy of flow modelling in out of river banks (Bates et al., 1998; Nicholas & Mitchell, 

2003; Tayefi et al., 2007). This kind of model is developed based on solving the bi-

dimensional shallow water equations (2D Saint Venant equations) which simulate flow 

components in the form of mass and momentum conservation (Eqution 4.3, 4.4, 4.5) 

(Ahmad & Simonovic, 1999) 

- Continuity 
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Where: 

ℎ(𝑥, 𝑦, 𝑡): water depth (m); 

𝜁(𝑥, 𝑦, 𝑡): surface elevation (m); 

𝑝, 𝑞(𝑥, 𝑦, 𝑡) : flux densities in x and y directions (m3/s/m) =(uh,vh); (u,v): depth 

averaged velocities in x and y directions; 

𝑐(𝑥, 𝑦): Chezy resistance (m1/2/s); 

𝑔: acceleration due to gravity (m/s2); 

𝑓(𝑣): wind friction factor;  

Ω(𝑥, 𝑦): Coriolis parameter, latitude dependent (S-1); 

𝑝𝑎(𝑥, 𝑦, 𝑡): atmospheric pressure (kg/m/m2). 

𝜌𝑤: density of water (kg/m3); 
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𝑥, 𝑦: space coordinates(m); 

𝑡: time (s); 

𝜏𝑥𝑥, 𝜏𝑥𝑦,𝜏𝑦𝑦: components of effective shear stress; 

𝜈, 𝜈𝑥, 𝜈𝑦(𝑥, 𝑦, 𝑡): wind speed and components in x and y direction (m/s). 

Above system of equations can be solved through three methods which define types of 

two dimensional models, these are finite element methods, finite volume method and 

finite different method.  

 

Figure 4.8. Element types and shapes (Zevenbergen et al., 2012). 

The first one, finite element method, is well suited for solving differential equations over 

complex domains (Zevenbergen et al., 2012). In this method, input information related to 

study area is expressed as an unstructured mesh or grid which typically has the shape of 

triangular or quadrilateral (Figure 4.11). Each element involves noted located at corners, 

mid sides and where velocity and depth are computed (Figure 4.8). Furthermore, several 

modes also add computation note at the center of each element, for example FST2HD 

model (Zevenbergen et al., 2012). In each element, the unknown variables in 2D Saint 

Venant equations are calculated approximately by the way of a linear combination of 

piecewise linear functions. At each computation note, there are many such functions, and 

each takes the value of one at one vertex and the value of zero at all other vertices. A 

global function based on this approximation is substituted into the governing partial 

differential equations. This equation is then integrated with weighting functions and the 
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resulting error is minimized to give coefficients for the trial functions that represent an 

approximate solution (Néelz & Pender, 2009; Wright, 2005). Due to use probably the 

unstructured mesh with different element shapes in describing the input data such as 

topography, roughness parameter, etc…, this method demonstrates the flexibility in 

simulating water flow at river bed and flood plain. Despite the reduction of computation 

node, this characteristic helps to increase the performance of 2D model while still keeping 

the accuracy of result at necessary locations. More detail that, there are a need to 

increase node density at the area of high velocity gradient (change in magnitude or 

direction, having structure), at river bed or important area. Inversely, at high altitude area 

where is rarely hit by flood event or at unimportant area, computation node density can 

be reduced. The Figure 4.9 displays the presence of model parameters by the mesh. 

The second method is finite volume method. With the same solution for dividing the 

computation space into many unstructured element, the finite volume element method 

solves the system of equations 4.3, 4.4, 4.5 at discretized element as finite element 

method. However, the control volume of each divided part is the key for calculating 

unknown variables (Néelz & Pender, 2009). By the advantages in terms of 

conservativeness, geometric flexibility and conceptual simplicity, this method is 

increasingly popular and has become the most widely used in the area of Shallow Water 

flow modelling(Néelz & Pender, 2009). 

 

Figure 4.9. Example finite element network layout (Zevenbergen et al., 2012) 
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The last one to solve 2D shallow water equation is finite different method. The method 

uses a structured grid of Δx and Δy ( Figure 4.11) increments over the domain to 

determine the values of velocity, depth and other variables by approximating derivatives 

with finite differences at each grid cell (Néelz & Pender, 2009; Zevenbergen et al., 2012) 

(Figure 4.10). The principle of this method relies on the Taylor series expansions which 

solve the 2D Saint Venant equations as a function of a finite number of neighboring point 

values. This solution is estimated to be more rapid due to using the structured grid (Néelz 

& Pender, 2009). However, the limit of this method is that using the fixed size of grid cell 

leads to the non-flexibility in expressing the simulation area. It means that the density of 

computed point is the same at important and unimportant areas, in river bed and flood 

plain, flood prone area and high altitude. It results in longer in simulation time. This 

problem can be seen clearly at using small cell size (fine DEM).  On the contrary, if 

applying a bigger cell size, the important areas such as river bed, flood prone area could 

not be described accurately. Several software packages overcome partly the above weak 

point by using finer grid cell at required locations.  

 

 Figure 4.10.  Example square grid cell for finite different method in MIKE 21 HD (Landrein, 2011) 
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Figure 4.11. Discretization scheme of finite different models (DHI, 2012b) .   

Flood modeling with 2-dimensional approach has demonstrated many strong points. The 

most important improvement of this kind of model is able to solve the biggest limitation of 

one dimensional model. That is the 2D model can represent lateral flow component. 

Hence, the flow on floodplain can be introduced more accurately in these models. The 

flexibility in introducing boundary condition is counted as another advantage of 2D model. 

Furthermore, on the output data aspect, 2D model might provide widely the data type 

than 1D model. However, 2D simulators also have disadvantages. Increasing 

computation time is seen as the largest limitation of 2D modelling. The 2D model is rarely 

applied in a large catchment with high resolution because of this drawback. The second 

shortcoming of 2D is concerned to data requirement. Data input quality and their 

resolutions are expected to influence much on the modeling result. Topography, land use, 

rainfall, etc … are not always available for all catchments. Moreover, the 2D model as 

well meets the difficulty in data for validation. It is really to find out the spatial data for 

calibrating 2D model in reality. Another weakness of 2D model is at present, it is very 

difficult to take into account the impact of construction towards the flows.   

b. Available 2D hydraulic models 

Almost present 2D hydraulic models are developed based on mathematical foundation of 

bi-dimensional Saint Venant equation. However, they exist good or not good points which 

depend on above different solutions. Following part will present briefly several typical 

models of each solution.  



Chapter 4 – Flood mapping 

 

148 

 

 TELEMAC 2D 

TELEMAC-2D was developed initially by the National Hydraulics and Environment 

Laboratory (Laboratoire National d’Hydraulique et Environnement - LNHE) of the 

Research and Development Directorate of the French Electricity Board (EDF-R&D), and 

is now managed by a consortium of other consultants and research institutes (EDF-R&D, 

2014). In this model, the system of Saint Venant equations can be solved by two methods, 

one is final element scheme and the other is final volume scheme (Néelz & Pender, 2009). 

This model can be applied in free-surface maritime or river hydraulics. The input data is 

prepared through Blue Knue which is an advanced data preparation, analysis, and 

visualization tool for hydraulic modelers (CHC, 2010). One of the good points of 

TELEMAC model is to allow users  to program particular functions of a simulation module 

that are not provided for the standard version of the TELEMAC system in the environment 

of FORTRAN. Other strong points of this free model are able to run in both system 

operations, Windown and Linux. It also permits to run simulation with multi core. The 

parallel regime of TELEMAC model helps to save in a lot of computational time. This is 

very important when using two dimensions for a lager catchment, as well for high 

resolution mesh. Thanks to these advantages, TELEMAC model has been utilized to 

solve many hydraulic problems in reality. 

 SRH2D model 

SRH-2D, Sedimentation and River Hydraulics – Two-Dimensional model, is a two-

dimensional (2D) hydraulic (Figure 4.12), sediment, temperature, and vegetation model 

for river systems under the development at the US Bureau of Reclamation (Lai, 2008). 

This model has been applied for river flow modeling since 2004. SRH-2D model algorithm 

is relied on solving 2D shallow water equations by finite volume method (Hogan, 2014). 

One of the salient features of SRH-2D is to allow the use of the most existing meshing 

methods available, such as the structured curvilinear mesh (pure quadrilaterals), 

conventional finite element mesh (purely triangles), Cartesian mesh (purely rectangular 

or square mesh), and the hybrid mixed element mesh (Lai, 2008). The data mesh used 

in SRH-2D can be prepared via SMS model or any mesh created tool which can give the 

quadrilaterals and triangles mesh data. This model has a wide range of application on 

hydraulic modeling. However, besides these good points, this model still exists limitations, 

such as with present version, this model is only able to install for window system and it 

does not have the capacity for run with many CPU in parallel. 
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Figure 4.12. Illustration of zonal partition and mesh layout in SRH2D model. (Lai, 2008) 

 TUFLOW 

TUFLOW is a product of the cooperation between WBM Oceanics Australia and The 

University of Queensland for simulating depth-averaged, two and one-dimensional free-

surface flows such as occurs from floods and tides. The first release of TUFLOW was in 

1990. The solution algorithm of TUFLOW is basically written by Stelling in 1984 which 

solves the full two-dimensional, depth averaged, momentum and continuity equations for 

free-surface flow by using the finite different method (Oceanics, 2003). In parallel with 

TUFLOW, a TUFLOW FV, which was developed on the finite volume numerical scheme, 

has been released. The new generation TUFLOW FV with the flexible mesh allows for 

seamless boundary fitting along complex coastlines or open channels as well as 

accurately and efficiently representing complex bathymetries with a minimum number of 

computational elements. The TUFLOW FV also adds a new important function that can 

do simulation with multi core processing. This improvement of TUFLOW FV helps 

reducing a lot of computed time(WBM, 2013). 

 ISIS 2D 

As ISIS 1D, ISIS 2D model is as well a product of Halcrow group, but focuses on 

simulating the two dimensional water flow. As other 2D hydraulic models, the basic of 

ISIS 2D is from Saint Venant equations. In ISIS 2D model, the calculated area is 

discretized to regular square grid cells. The water depth and velocity of each cell are 
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calculated approximately by using the finite different method. Hence, ISIS 2D is suitable 

for modelling hydraulic phenomenon in coastal, estuary and floodplain environments 

(CH2MHILL).  

 MIKE 21 

MIKE 21, is a modeling system for 2D free-surface flows, which was developed by DHI 

group. With two branches, MIKE 21 and MIKE 21 FM, this product of DHI is hoped to deal 

efficiently with the hydraulic and environmental phenomena in lakes, estuaries, bays, 

coastal areas and seas (DHI, 2012c). In the first one, MIKE 21 solves the 2D shallow 

water equations by applying the finite different method which is expected to give several 

limitations when modeling for a large catchment in high resolution. Understanding well 

this difficulty, MIKE 21 allows to simulate simultaneously two resolutions. It means that, 

at important locations, one more detail grid is applied to increase the simulated quality at 

these points. This solution helps reducing the computation time but still keep the quality 

at required locations. The second one, MIKE 21 FM, is a new release of DHI group for 

application within oceanographic, coastal and estuarine environments. This new 

modelling system is relied on flexible mesh approach for spatial discretization which 

focuses on solving Saint Venant equations with finite volume method(DHI, 2012a). The 

MIKE 21 is a package of complete software, so it is supported by a lot of accompanied 

tools for preparing input data, as well as representing the output result. DHI recently has 

provided a service to allow their clients to connect with the computational center of DHI 

to reduce the computation time of MIKE 21, unfortunately this service is not free. 

 

4.2.3 1D/2D coupling model  

a. Model definition 

Considering on above analysis of one and two dimensional models, each of these kinds 

of model have pros and coins in flood modeling. One question is how to benefit the good 

points of both and overcome the limitation each other. Computation time reduction but 

still keeping the accuracy are a big requirement if applying these kinds of models 

separately. At least in present situation, it is really difficult when doing it for a large 

catchment. In the case of 1D model, it meets the difficulty to present accurately the flood 

propagation in flood plain, even though it has the advantage in simulation time and 

memory requirement. Conversely, using only 2D model for a large catchment will increase 

a significant calculated point. It surely leads to the longer in simulation and the stronger 

computer capacity requirement. There are several studies demonstrated that the 
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computation time usually increases exponentially with the number of involved elements 

to the power of between 1.5 and 2 (Bladé et al., 2012).  Hence, the thorny issue has been 

settled by integrating two types of models in one. This solution has been realized via the 

coupling 1D/2D model (Figure 4.13). Following this technic, the flow is hypothesized to 

divide into two parts.  

The first is considered as river flow that mostly runs one dimensional direction (Figure 

4.14). This flow part is responsible of 1D model and defined inside of cross sections. 

Other parts, in floodplain, where the flow direction does not obey any definite rule, the 

flow is undertaken by 2D model. The approach is expected not only to reduce the 

computation time but also to increase the stability of modeling. This advantage might be 

explained as more stable of  1D model than 2D model if they is simulated for a same 

location (Bladé et al., 2012). Furthermore, using 1D/2D coupling model helps to overcome 

the limitation of 2D model in modelling the flow through hydraulic structure (Moore, 2011). 

For these advantages, this kind of simulation has become popular in recent years. 

 

Figure 4.13. 1D/2D coupling scheme in MIKE FLOOD model. (Landrein, 2011) 

The relation between two flow parts, interior and exterior of river bed, is introduced via 

their volume exchanges. The volume exchange generally is calculated due to the 

comparison of water level inside and outside of cross sections. The amount of volume 
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exchanging between 1D and 2D model is depended on the characteristics of linkage 

which is stipulated by model developers (Hernández et al., 2013). Several techniques 

have been developed to link 1D and 2D models. Therefore, almost are considered as 

lateral link where the 1D and  2D flows are linked by the junctions in the middle of 

segments (Liang et al., 2007). Herein, the volume exchange is determined by weir 

equation  (Hernández et al., 2013; Néelz & Pender, 2009).  

  

Figure 4.14. Flow direction connection at the downstream end of a 1D river reach. i is a 2D finite volume 

connected to boundary element j, which corresponds to section n of the 1D river reach (Bladé et al., 

2012). 

The second approach is longitudinal link (Figure 4.15). The relation between two models 

is considered as the form of boundary condition of each other.  The form of this coupling 

is expressed that 2D model connects with 1D model at the end and gets the 1D mode 

output volume for boundary condition. On the other side, the downstream boundary 

condition of 1D model parts will consider from water level at junction with 2D model 

(Fernandez-Nieto et al., 2010; Liang et al., 2007) 

The last one might call the vertical link (Figure 4.16). Toward this coupling, the 1D domain 

will be set up overlappedly 2D domain and joined continuously to grid points of 2D model. 

Both of them will operate independently until the water in 1D model reaching river bank 

level. From that time 2D model will receive the information for 2D model (Bladé et al., 

2012) (Fernandez-Nieto et al., 2010).    
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Figure 4.15. Lateral connection. i is a 2D finite volume connected to boundary element j, which 

corresponds to section r of the 1D river reach (Bladé et al., 2012). 

 

Figure 4.16. Vertical link scheme (Fernandez-Nieto et al., 2010) 

b. Literature reviews 

By the predominance, many coupling models have been developed and applied in reality. 

The MIKE FLOOD, a software of DHI which allows to couple 1D MIKE 11/ Mike urban 

and 2D MIKE 21/ MIKE 21 FM. Or the TELEMAC 2D model of EDF can link with 

MASCARET, a 1D model of its own. ISIS 1D model can be integrated with different 2D 
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models, such as ISIS 2D (CH2MHILL), DIVAST (Lin et al., 2006), TUFLOW (Oceanics, 

2003). 

 

4.3 Criteria for flood model selection  

Analyzing and choosing a reasonable flood model is necessary for flood mapping. It is 

seen as a hard work in an abundant world of hydraulic models as today. Especially, there 

is no existing definitive criteria which can be applied directly to yield a clear choice of 

method (Timbe Castro, 2007).  Hereafters are several suggested criteria for this purpose 

which are summarized on last studies (Landrein, 2011). 

- -What are the phenomena to study?  

- -What are the expected results/outputs?  

- -Study area, which is in upstream or downstream, urban or rural area, important 

or not. 

- Data availability and expected accuracy. 

- Work effects. 

 

4.4 Hydraulic modelling of Vu Gia Thu Bon Catchment 

4.4.1 Introduction 

This step aims to provide an overall view about which model type is suitable for flood 

mapping in Vu Gia Thu Bon catchment. The model selection is not only based on the 

modelling results in this step but also on other aspects presented on the part of 4.3. 

However, the first consideration is relied on the efficiency of each model with flood 

modelling process in Vu Gia Thu Bon. The models comparing here are the products of 

Danish Hydraulic Institute. They consist of 1D model and quasi 2D model with MIKE 11, 

2D model with MIKE 21HD, 1D/2D mode coupling with MIKE FLOOD. 

Due to catchment characteristics, the inundation frequently attacks at the downstream 

part of Vu Gia Thu Bon river system. Besides, the population and important economic 

bases concentrate merely at this area. As a result, it is not need to set up flood model for 

whole catchment.  Accordingly, above models are only compared at hollow areas which 

are around 1780 km2 at downstream on 10,350 km2 in total.  They are considered on the 

historical flood events occurring in the period of 10 – 15 November, 2007. 
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The hydrological boundary conditions used in these simulations are inherited from MIKE 

SHE model, which was calibrated and validated for the whole catchment. The 

components and the efficiency of MIKE SHE model are showed at the chapter 4. Others 

simulation data are treated from data available at Chapter 2 for suitable with each model 

type.  

 

4.4.2 Model setup 

a. One dimensional modelling 

The Vu Gia Thu Bon’s river network is so complicated. It flows through different terrain 

morphologies, mountain at the western and delta coastal region at eastern. It is composed 

from two main rivers, Vu Gia and Thu Bon rivers, which include lots of tributaries and 

linking branches. This river system is represented at 1D model approach by using MIKE 

11 as follows: 

 

Figure 4.17. MIKE 11 (1D) model set up for Vu Gia Thu Bon river downstream. 

 River network: This model is developed on 23 big rivers and linking branches at 

the downstream (Figure 4.17). Their lengths varied from 2 km to 55 km.  
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 Cross sections: The geometry of each river branch is specified via cross section. 

The cross section applied in this model is from two sources, few of them at the 

downstream are taken from the measurements, the remaining ones are extracted 

from the DEM.  

 Boundary conditions: The upstream boundary conditions are inherited from the 

MIKE SHE model and set up at 8 branches. The downstream ones are defined 

at the estuaries of Vu Gia and Thu Bon. These data are declared by sea level at 

Son Tra and Hoi An stations. 

 Hydrodynamic parameters: This part mainly focuses on riverbed resistance. 

These parameters are represented via Strickler roughness coefficient M. A 

common value M is set up for 23 branches and obtained via calibration process. 

The model result is returned for water level along each river.  

b. Quasi 2D modelling 

In order to improve the simulating capacity of one dimensional model, an external system 

is constructed beside main river system (Figure 4.18) for increasing the storage when 

water is over river banks.  

 

Figure 4.18. MIKE 11 Quasi (Quasi 2D) model set up for Vu Gia Thu Bon river downstream. 
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The new network is representative for floodplain along the river systems. The cross 

sections of new system are extracted from DEM 10m of P1-08 VIE project. The extracted 

technic is similar to the procedure applied for MIKE SHE model. The new is connected 

with old via links which are defined as the form of the link channel which therefore typically 

represents the embankment geometry between parallel rivers (e.g. main river branch and 

flood plain branch). Link channels do not require cross sections to be specified and are 

consequently simpler to use than regular channels (DHI, 2012g). The link is modelled as 

a single structure branch of only three computation calculation points (h-Q-h) (Figure 

4.19). The exchange volumes are calculated by Q/H relations that are based on link 

geometry.  

The boundary conditions are set up as the case of MIKE 11 in the section 4.4.2a.The bed 

resistances of the system are inherited from last MIKE 11 model for main river system.  

   

Figure 4.19. Longitudinal parameters and representation of a Link Channel (DHI, 2012g).  

c. Two dimensional modelling 

This approach is demonstrated by MIKE 21, 2D hydraulic model from DHI. The model is 

set up as the schema at the Figure 4.20 

 Topography: This bathymetry is described via rectangular grid with 30 meter 

resolution. This data is converted for DEM 30m that was resized for DEM 15m 

supplied by LUCCI project. In order to increase river bed description, the DEM is 

continued adjusting by merging the surveyed cross sections.  

 Source and sink: 17 sources are defined to transmit the flood runoff from exterior 

to the modelling domain. These sources are extracted at the outlet of 9 sub 

catchments and 8 river branches in MIKE SHE model.  

 Evapotranspiration: this factor is input with November value in the result of (Vu et 

al. , 2008).  
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 Precipitation: This simulation uses the rainfall data which is redistributed spatially 

based on daily rainfall data from 15 rain gauge stations with the Kriging method 

(Vo & Gourbesville, 2014d). 

 Resistance: This parameter is represented via Strickler roughness coefficient M. 

For Vu Gia Thu Bon, Strickler roughness coefficient is determined depending on 

Land use map and in 2 to 90 m1/3/s (DHI, 2012f; T. Nguyen, 2005; Vieux, 2001). 

 

Figure 4.20. MIKE 21 (2D) model set up for Vu Gia Thu Bon river downstream. 

d. 1D/2D coupling modelling 

The model is handled here from DHI group as well. This model is MIKE FLOOD which is 

developed on the coupling between 1D model to 2D model.  The model set up is shown 

via Figure 4.21. 

- 2D model – MIKE 21: This model is set up similarly as the last MIKE 21 mode in the 

section of 4.4.2.c. Therefore, there are several changes in data because in this case the 

river flow will be responsible for MIKE 11, using of a river bed integrated topography is 

not necessary. It might lead to wrong result when the river flow is simulated in the same 

time by two models, MIKE 21 and MIKE 11. Hence, this scenario just used DEM 30 m 

that reclassified from DEM 15 m of LUCCI project. Second change is in the source input. 
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Instead, using 17 sources as the last 2D model, this model only introduces 9 sources 

which are representatives of 9 upstream sub catchments. 

- 1D model – MIKE 11: This is benefits from the model in part of 4.4.2.a. Each river branch 

in MIKE 11 connects with MIKE 21 via a 2 lateral links (Figure 4.22).  

 

Figure 4.21. MIKE FLOOD (1D/2D coupling) model set up for Vu Gia Thu Bon river downstream. 

 

Figure 4.22.  Application of Lateral Links (DHI, 2012d) 
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4.4.3 Results 

Max water levels from MIKE 11 model (1D) and Quasi MIKE 11 (Quasi 2D) model are 

used to construct flood hazard maps by interpolated technic in ArcGIS. This process is 

taken place with the topography 30m. The results are shown at the Figure 4.24. In the 

case of MIKE 21 (2D) and MIKE FLOOD (1D/2D coupling, the flood hazard maps are 

extracted directly from model with the same cell size of input data. The result of these two 

models are shown at the Figure 4.24. 

Relying on the hydrographs at three stations (Figure 4.23), we recognize that there is a 

big difference between these scenarios. The water level augments of MIKE 21 structure 

in comparison with the others are quite big. The hydrographs of this model are entirely 

separated toward MIKE 11, Quasi MIKE 11, MIKE FLOOD models at Giao Thuy and Cau 

Lau stations (Figure 4.23). These differences lead to a disparity in peak water level of this 

kind of model compared to the remaining models (Figure 4.23). The average number is 

that the MIKE 21 mode peak is averagely higher than others 0.75 m at Ai Nghia, 2.73 m 

at Giao Thuy and especially 3.57 m at Cau Lau. These analysis demonstrate the 

uncertainty of MIKE 21, representative of two dimensional model in simulating flood 

event. These limitations might be from the topography quality which will be discussed at 

the part of 4.4.5. Following that, in this case due to the computation time this 2D model 

used a 30 m topography that resized from 15 m DEM and adjusted river bed area by 

adding cross section. Using 30 m DEM resolution here might not be enough to represent 

the topography at modelling area, at least at river bed area more detail about DEM quality 

presented at the section 4.4.5. The coarse resolution as this situation is potentially to 

reduce the performance of 2D algorithm. In addition, there does not exist a surveyed DEM 

that includes river bed is considered as a significant factor affecting on 2D model capacity. 

Although integrating the cross section in DEM helps to increase the river bed description 

but it is still not accurate enough. It seems that the low resolution affects not only the 

intensity of flood event but also the time factor. This issue is proved by the late of peak 

water level of MIKE 21 model in comparison with others. Almost peaks of water level of 

MIKE 21 model are slower than the remaining from 3h to 9h. This limitation also has a 

significant influence on the modelling quality of hydraulic model. 

The second model we note here is the MIKE 11 model. This one dimensional model is 

the simplest model for set up and modeling. The computation time is quite short. For run 

this 5 days flood event, MIKE 11 just spent less than 30 minute in comparison with more 

than 1 day of two dimensional models. However, beside these advantages, this kind of 

mode shows many weak points. These are mentioned at the last part and now are 
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confirmed by MIKE 11 results. Similar to the previous 2D model, the water levels of MIKE 

11 mode in this case are higher than Quasi 2D model and 1D/2D model coupling. 

Therefore, the intensity is not as big as MIKE 21 model, the higher only 1.85 m at Giao 

Thuy, 0.86 m at Cau Lau, and 1.89 m at Ai Nghia (Table 4.1). This point could be 

explained by the absence of modelling the lateral runoff factor. The river bank fix will make 

the water lever being higher than reality in the case of overbank of river flow. The next 

limitation of 1D model is that it does not supply a function to present the hydrological 

factors interior of study area such as rainfall or evapotranspiration. These are expected 

to affect significantly on the results. Particularly with a large study area as this scenario 

(1780 km2), the role of interior factors is not able to neglect. Combining two above 

problems, we could figure out that, water lever in 1D model (MIKE 11) is higher than 

Quasi 2D and, 1D/2D coupling modes because it is impossible to describe the flow 

exchanged with flood plain. Therefore, although this model only counts exterior flooding 

causes via boundary conditions, the water lever is still lower than MIKE 21 what put in all 

inside and outside resources. The results in MIKE 11 are lower 1.49 m at Giao Thuy, 3 m 

at Cau Lau, higher 0.51 at Ai Nghia than MIKE 21 (Table 4.1). This distinction proves the 

prominence of 1D model in introducing river flow than 2D model. Additionally, the 1D 

model meets the difficulty in constructing flood map. Instead of providing directly the flood 

map as 2D model, 1D model only gives the water level along the river. Then, from level, 

the flood maps are established by interpolating in GIS model.  

Regarding Quasi 2D model (Quasi 2D), the results at Figure 4.24 show that after taking 

a part of lateral river flow, the peak of water level is cutting down a lot in comparison with 

1D model (MIKE 11). The reduction is so big, around 1.56 m at Giao Thuy, 0.59 at Cau 

Lau, and 1.49 at Ai Nghia (Table 4.1). These numbers prove that a significant water 

quantity was partly transformed and stored in flood plain. This scenario seems more 

reasonable than 1D model which merely defines the water run inside river banks. But in 

the other side, the recession limb of MIKE 11 quasi is higher than MIKE 11. It means that 

after reaching to peak flow, the water in flood plain returns to supplement for main river 

flow. Other characters of Quasi MIKE 11 are similar to MIKE 11 model. 

Finally, MIKE FLOOD model which is coupling between 1D/2D coupling models. Let take 

a look at Figure 4.23, we can recognize that the hydrographs of MIKE FLOOD keep the 

same with the ones in MIKE 11. Yet, the measure is quite smaller than in MIKE 11. This 

disparity demonstrates the effect of coupling with 2D model.  These couplings allow the 

part of overbank water to be able to exchange easily with flood plain. The Figure 4.24 

also displays the difference between 1D/2D coupling and Quasi 2D model. It is pointed 
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out here via the lower of hydrographs of MIKE FLOOD than of MIKE 11 quasi. This 

inequability might cause from the link methods. One joints partly with flood plain, Quasi 

2D, one completely couple with flood plain. Likewise, not like the Quasi 2D model, the 2D 

model represents the flow part in flood plain with two directions. Hence, the flow exchange 

between two flow parts is better and more accurate. Besides that, the 1D/2D coupling can 

describe more precisely the flow sources than 1D model due to 2D model. In particular, 

the issue seems more impressive with distributed modes as Mike from DHI where the 

boundary extraction and input are very flexible. The extracted point can be defined easily, 

so it helps to simulate continuously the flow into 1D/2D coupling model. Furthermore, not 

only the outside flow sources, by coupling with 2D model, the 1D/2D coupling has the 

capacity to express the inside flow sources such as rainfall.  

Table 4.1. Variability of max water level due to model structure (m). 

Station 
Water level (m) 

1D model Quasi 2D model 2D model 1D/2D coupling  

Giao Thuy 11.973 10.411 13.4648 9.833 

Cau Lau 6.388 5.798 9.38699 5.265 

Ai Nghia 12.773 11.279 12.2609 10.489 

Table 4.2. Scale variability of inundation area due to model structure (hectare). 

Flood depth (m) <0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8 

1D model 3,720.51 3,909.60 7,430.31 10,330.38 3,741.93 307.17 

Quasi 2D model 3,339.81 3,922.20 6,585.84 6,765.39 1,970.28 261.63 

2D model 2,574 2,828.70 6,335.28 14,240.25 10,334.25 912.33 

1D/2D Coupling 3,354.48 3,449.60 5,564.07 4,965.48 1,838.25 31.23 

Table 4.3. Uncertainty of peak flooding event due to model structure (m). 

Station 
Peak water level appearance time  

1D model Quasi 2D model 2D model 1D/2D coupling  

Giao Thuy 11/11/2007 19:00 11/11/2007 19:00 11/11/2007 22:00 11/11/2007 19:00 

Cau Lau 11/11/2007 22:00 11/12/2007 1:00 11/12/2007 10:00 11/12/2007 4:00 

Ai Nghia 11/11/2007 19:00 11/11/2007 19:00 11/11/2007 0:00 11/11/2007 19:00 
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Figure 4.23. Hydrographs of water lever due to model structure. 
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Figure 4.24a. Flooding area variation due to model structure - 1D model and Quasi 2D model. 

 



Chapter 4 – Flood mapping 

 

165 

 

 

 

Figure 4.24b. Flooding area variation due to model structure – 2D model and 1D/2D coupling model. 
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The different hydrographs, peak flows appearance time lead to the uncertainties in 

determining the flood area. This point is shown very clear in the Figure 4.24 and Table 

4.2. There is an unevenness between flood maps. With the highest flood peak, the 2D 

model gives large flood area (Figure 4.24). The next serious one is 1D model when the 

total inundation area is 25,179.39 ha and deeply inundated area is 4,049.1 ha. These 

numbers are 19,505.34 ha; 2,231.91 ha and 15,848.64ha; 1,869.79ha with Quasi 2D 

model and 1D/2D coupling model respectively (Table 4.2).  

With these strong points, the flow simulated by 1D/2D coupling model is more confident 

than others, notably with a large catchment, complicated river networks, or lack of data 

areas. 

 

4.4.4 Model selection for Vu Gia Thu Bon catchment 

The previous part has demonstrated the performance of each kind of model towards flood 

modeling in the downstream part of Vu Gia Thu Bon river system. Therefore, in order to 

select a right model for this purpose, not only the model performance is considered. As 

shown in the section 4.3 the selected model needs to refer on several criteria. This part 

will concentrate to analyze more on data situation at Vu Gia Thu Bon catchment and 

computation time to choose a suitable model for flood mapping. 

The condition at the downstream part of this river system is the first consideration. It is a 

flat area with complicated river network. The main branches and linkage channels mix 

densely at this region. This completeness makes the flow become so turbulent. 

Consequently, it leads to the inaccuracy when simulating the flow at this area with 1D 

model. Furthermore, at flat regions, the water in river frequently overflows the riverbanks 

to flood plain. If fixing the flow only inside two riverbanks, the inaccuracy in water level is 

inevitable. Thinking about Quasi 2D model, nevertheless, as above analysis this model 

only helps to overcome partly of 1D model. It just increases the harmonized capacity of 

1D model. Other character is no changed. One more reason is that with a complex river 

as this case, it is impossible to pre-determine perfectly the flood plain for each branch. 

Many stream flows closely at a flat area lead to their effect area being not clear. In 

addition, how many links between main channel and lateral channel are enough to 

present the relation between them? It is very uncertain to set up them. Hence, applying 

the Quasi 2D model in this case might not very reasonable. One similar point of 1D model 

and Quasi 2D model is that it is not easy to introduce the interior flood cause such as 

rainfall. With a small area, this component can be forgotten, but with a large area as this 
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study, this component is expected as one of principal flood causes. Hence, ignoring 

interior factors with a 1780 km2 study area is not possible. At least, this region covers 6 

rainfall gauging stations where having the average annual rainfall from 2000 to 4000 mm, 

the passing over might cause a big inexactness. Besides, there is not a surveyed cross 

section which is enough to present well the flood plain. The measurement data, collected 

in this study, describe only the river bed. The cross sections using in last simulation are 

extracted from the DEM 10 m with the limit quantity. It is not expected to these data to 

express accurately the profile of flood plain. 

On the other hand, two-dimensional model meets the difficulty of computational time and 

memory capacity. Although, in this catchment, there are several DEMs with the resolution 

higher than 30m such as DEM 10 from P1-08 VIE Project  and DEM 15 m from LUCCi 

Project. Therefore, if using this DEM for 1,780 km2, it is predicted to conclude that the 

simulation time will be several weeks. Furthermore, to solve around 8 to 17 million cells 

of DEM 15m or 10m, it definitely requires a strong computer. But it is not feasible in this 

situation. One more region is that, in theory, the algorithm of MIKE 21 does not limit the 

size of simulation. In fact, they recommend that this model is merely able to run well if the 

model is lower than one million of cell. This is one big limitation of 2D model. Indeed, two 

MIKE 21 models were built with the cell size of 10m and 15 m, but it could not run, even 

if just load the data. Thus, requiring a smaller cell for 2D modeling in the case of Vu Gia 

Thu Bon is not realizable.  

However, there are also problems with 30m selected resolution. The DEM is interpolated 

from DEM 15 m of LUCCi Project, so the question concerned to its quality is unavoidable. 

Furthermore, The DEM 15m does not present the topography at river bed. In other to 

improver this lack of data, the DEMs used in last MIKE 21 model are modified by taking 

into account the topography at river bed area. More detail, the survey cross sections, 

which benefit from MIKE 11, are divided into many points along the rivers. From these 

points, a raster is made and merged to old DEM. This technic helps us to dig the 

topography corresponding with observed data but the problem is that the density of cross 

section is so sparse. Average one cross section per km, these are not enough to express 

perfectly the change of river bed. Consequently, it reduces the capacity of water 

transportation of model. Nevertheless, the two dimensional model overcomes the 

limitations of one dimensional model.  

Recapitulating the model efficiency and real situation at Vu Gia Thu Bon, the 1D/2D 

coupling model is suggested as the most reasonable selection for flood modeling at this 
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region. This structure helps to overcome the lack of data as well as to simulate for a large 

catchment. 

 

4.5 Morphological uncertainty and flood modelling 

4.5.1 Introduction 

The important role of topography data in flood modelling has been proved by many 

studies  (Bates et al., 2003; Cook & Merwade, 2009; Haile & Rientjes, 2005). The 

accuracy of this data is expected affecting significantly water surface elevation and flood 

propagation. Digital Elevation Model (DEM) is one of the general topographic data using 

nowadays in hydraulic modelling. This data allows to represent efficiently ground surface 

and supplies a capacity to extract automatically hydrological features of catchment, thus 

it has many advantages such as processing efficiency, cost effectiveness, accuracy 

assessment in comparison with traditional methods based on topographic maps, field 

surveys or photographic interpretation (Teng et al., 2008). However, the accurate and 

high resolution topography data is not always available for all catchments, especially in 

poor countries and large catchments. The lack of an accurate DEM data leads many 

uncertainties in hydraulic modelling. Hence, testing and comparing the quality of DEM is 

a necessary step before using them in flood modelling. The issue is similar with Vu Gia 

Thu Bon river catchment. The flood mapping in this catchment faces with the lack of high 

resolution and accurate topography data. Hence, the aim of this study is to estimate the 

impact of topography on water surface elevations and flood inundation extents. The study 

also presents the uncertainties of topography data when modelling flood events. These 

simulations are carried out on MIKE 21 of DHI. The results might show strong and weak 

points of each kind of topography data. They could help modelers to get several 

judgments when deciding the resolution of topography, data source to build the flood map. 

This study is also expected to give some usefulness for flood modeling in the coastal part 

of a big catchment. 

 

4.5.2 Literature reviews. 

The DEM accuracy is decided by many aspects (Cook & Merwade, 2009; Horritt & Bates, 

2001; McDougall & Temple-Watts, 2012). Nevertheless, the resolution is the most 

important factor which has been considered. This factor is expected to affect the elevation 

of area, slope gradient, slope aspect and drainage gradient. Haile & Rientjes, (2005) 
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stated that by using a rectangular grid DEM structure, the elevation area covered by a 

grid element becomes a lumped property and is replaced by a single value. So, in a same 

area, high resolution DEM contains more grid cell than lower one. Hence, it is expected 

to present more details on the ground surface. It helps the hydraulic model being able to 

reflect more accurately the flood propagation in the catchment. This judgment has been 

demonstrated in many previous studies. Horritt & Bates, (2001) tested the difference in 

flood modelling against the spatial resolution from 10, 20, 50, 100, 250, 500 and 1000 m 

and concluded that the change in scale of DEM might have an influence on the model 

performance. The coarser resolution use, the lower model performance is. In the same 

way, Avanzia et al., (2013) simulated on different DEM grid sizes (10, 20, 40, 80m). The 

results show that the grid size affects not only the flood area but also the inundation time. 

The data with bigger grid gave a higher peak flood and maintained the inundation longer 

than smaller ones. Furthermore, the capacity of DEM to describe the river bed is also 

considered as a big source of uncertainty in river flood modeling. After constructing the 

flood inundation map for Strouds Creek in orange county, Texas, US, Cook & Merwade, 

(2009) reveals that most of the  topography datasets do not include bathymetry details of 

river channel. They counted that the inundation area in Strouds creek decreased 

approximately 30% if incorporating with surveyed cross section even if they simulated 

with 6m DEM resolution.  

Finally, the origin has been seen as one of key factors which have impacts on the DEM 

accuracy. There are lots of DEM generated technics, from traditional methods as 

cartography, ground survey, or modern as digital aerial photogrammetry, LiDAR. Each of 

them has different strong and weak points. Hence, they content potential uncertainties for 

DEM quality (Mason et al., 2011). Furthermore, the interpolated technics in creating or 

resampling the DEM also reduce significantly the accuracy of topography data (Vaze et 

al., 2010).  Comparing on DEM resampling from 3 different methods, nearest neigh, 

bilinear, and bicubic, the results of Haile & Rientjes, (2005) indicated that there is a huge 

variation between these scenarios. It proves that the interpolation methods should be 

considered when evaluating the quality of DEM.  

 

4.5.3 Methodology 

In order to minimize the impact of data accuracy on flood modelling results, the part will 

show the testing process of different DEM data on the aspect of resolution, bathymetry 
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described capacity and origin. These tests are realized in the downstream part of Vu Gia 

Thu Bon catchment via MIKE 21 model. 

In this study, MIKE 21 model is setup only for flood prone area instead of the whole 

catchment. This area (Figure 4.20) covers an area of 1,780 km2 at the downstream of Vu 

Gia Thu Bon catchment, where most of flooding events of the highest magnitude occur in 

history. 

The components to construct the MIKE 21 model are: 

 Topography: This bathymetry is described in the form of rectangular grid.  

 Source and sink: 17 sources are defined to input the flow of corresponding sub 

catchments at the upstream which is kindly small to simulate by river branches. 

These sources are extracted at the outlet of 17 sub catchments in MIKE SHE 

model (Vo & Gourbesville, 2014a).  

 Boundary: Two boundaries is set up at the downstream with the sea level data of 

Hoi An and Son Tra gauging stations.  

 Precipitation: This simulation uses the rainfall data which is redistributed spatially 

based on daily rainfall data from 15 rain gauge stations with Kriging method. 

 Resistance: This parameter is represented via Strickler roughness coefficient M. 

For Vu Gia Thu Bon, Strickler roughness coefficient is determined depending on 

Land use map and in 2 to 90 m1/3/s. 

4.5.4 Results 

a. Topography data (DEM) resolutions 

In order to estimate the effect of DEM resolution on flood propagation, this study has been 

realized with three different grid size DEMs, 30m, 50m, 90m. These are resampled from 

one original Dem 15m from LUCCI project. The resampling DEM grid size is expected to 

change significantly the quality of DEM.  

Firstly, this judgment is proved through the change of slope. The results shown in Figures 

4.25, 4.26 and Table 4.4 demonstrate this tendency. According that, the average slope 

of DEM 30 is higher than the remaining. And the maximum slope value of DEM 30m is 

multiplied approximately 3 times than the one of DEM 90m. The big difference in slope 

value is expected to impact on the lag time of flood event, the flood drainage velocity, 

inundated time and then have an effect on all model qualities.
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Figure 4.25. Slope distributed map against DEM resolution 
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The huge variation of slope value might be explained as the ground surface represented 

capacity of DEM because the DEM using rectangular grid structure represents the ground 

surface with the lumped property (Haile & Rientjes, 2005). The altitude value, expressed 

by the cell, is averaged of smaller cells in this area. Hence, DEM with small size can 

describe more concretely the surface, this principle is illustrated at the Figure 4.26.  

 

Figure 4.26. Different outlines of DEM resolution. 

Table 4.4. Slope variation due to the DEM resolution. 

Resolution 30m 50m 90m 

Max 30.62 21.47 10.49 

Min 0 0 0 

Mean 1.46 1.26 0.95 

Standard deviation 1.56 1.21 0.88 

The second factor related to DEM resolution is flow direction. The water will generally run 

in order to follow the best advantage ways. This principle is brought similarly into model.  

 

Figure 4.27. The effect of DEM resolution on flow factor. 
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Figure 4.28. Flow direction distributed map against DEM resolution. 
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Table 4.5. The varied percentage of flow direction against DEM grid size. 

Direction E SE S SW W NW N NE 

30m 17.53 7.87 15.33 7.21 16.79 7.99 18.2 9.09 

50m 17.95 7.13 16.13 6.08 17.55 7.3 19.45 8.41 

90m 18.22 6.58 15.21 5.51 17.51 7.46 20.79 8.72 

 

By comparing the cell altitude overall catchment, the model will determine the good 

direction for flow. As this reason, when changing the resolution, the altitude value of cell 

will change. Consequently, it leads to change the direction of run off. The Figure 4.27 is 

one example for this explanation. The variation of flow direction has a significant meaning 

with characteristics of flood events, especially the flood area, the magnitude, the time of 

event. Analyzing on three different resolutions in Vu Gia Thu Bon catchment, the result 

introduces that the flow direction is influenced seriously/ dramatically by the resolution of 

DEM (Figure 4.28, Table 4.5). It might lead to the big uncertainty when using a coarse 

DEM for flood modelling.   

 

 

Figure 4.29. Topographic description of DEM due to resolution. 
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Figure 4.30. The effects of DEM resolution on flood are at downstream of Vu Gia Thu Bon area  
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The detail level of DEM is demonstrated by the cross section extracting from different 

DEM resolutions. In the Figure 4.29, it is very easy to realize that the smallest expresses 

the most detail the shape of topography. With 30m scenario, the lowest point is 1.62m, in 

comparison with 4.01m in 50m scenario, and 4.32m in 90m scenario. These big 

differences will impact surely on flood discharge capacity. Besides that, relied on the 

shape of cross section in Figure 4.29, the small cell describes more concrete the river 

bank. Both of these factors will result in the model capacity in simulating the flood plain. 

The changes on DEM accuracy due to resolution result on the change of flood inundated 

area, are the peak of flood event and inundated time. The results, tested on three DEMs, 

have been displayed in the Figure 4.30. The results show that there is a big disparity 

between low and high resolution DEMs (Figure 4.30). The DEM 90m, with the no high 

quality, small average slope, and lowest capacity in expressing the topography, brings 

the largest inundated area.  According to the statistical number (Table 4.6), the inundation 

area of DEM 30m reduces around 1,895.71 ha in comparison with two remains. But it is 

more important when the difference occurs concentratedly at deep flood area, deeper 

than 1 m. The inequality is also presented at max flood depth, the max flood depth 

corresponding to DEM 30 m is higher approximately 0.25 m than DEM 90 m. These 

differences are expected to have more influence on flood risk prediction and flood 

management.  

Table 4.6. Scale variability of inundation area due to data resolutions (hectare). 

     Flood depth (m) 
<0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8 Total >0.5 

Resolution (m) 

90 2,841.48 3,040.74 7,014.60 16,027.47 14,934.80 5,346.81 46,364.42 

50 2,590 2914.25 6,688.50 16,056 15,382 5,244 46,284.78 

30 2,646.99 2,914.92 6,546.51 15,424.20 14,320.50 5,183.55 44,398.68 

b. River and non-river adjunct 

Not similar to 1D model, flood modelling using 2D hydraulic model depends significantly 

on quality of topography, especially the capacity of topography in representing the river 

bed (Hernández et al., 2013). Using the DEM low quality without adjusting river bed 

topography for flood modelling is expected to give a big uncertainty. Previous studies 

suggest that combining the DEM with measured cross section is necessary for improving 

the quality of DEM at area lack of data (Cook & Merwade, 2009). As presented, there is 

not available a DEM with describing details the river bed at Vu Gia Thu Bon catchment. 
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In order to overcome this problem, a 30m DEM  is adjusted by adding the river bed via 

measured cross section system. This issue is realized in ArcGIS (Figure 4.31). This 

improvement is hoped to increase the run out capacity of river. The results in Figure 4.32 

prove that after incorporating with the measure data, the river bed can move down around 

10m. It is really a significant space for flood flow.  

 

Figure 4.31. Topographic represented capacity of different DEM 

Comparison result, displayed at the Figure 4.33 and Table 4.7, demonstrates the 

difference in inundation areas between two DEMs, one origin and one adjunct. Obviously, 

the flood area will be reduced with the scenario which uses the adjusted DEM. However, 

the reduced number is very huge, around 11,707 ha decreasing with the DEM origin. 

Furthermore, the max flood depth changes from 26.6m to 23.32m. These reductions 

provide evidence to confirm the importance of DEM modification due to measured cross 

section. 

 

Figure 4.32. Difference in river description between origin and adjusted DEM 
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Figure 4.33. The difference of inundation area between adjusted and non-adjusted DEM 
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Table 4.7. Scale variability of inundation area due to DEM adjunct (hectare). 

Flood depth (m) <0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 Total>0.5 

30m adjusted 2,646.99 2,914.92 6,546.51 15,424.20 14,320.53 5,183.55 44,398.68 

30m original 2,706.48 3,031.29 6,399.09 15,674.04 25,843.41 5,149.44 56,097.27 

c. Topography data origin 

It is supposed that technic in creating DEM affects its accuracy (Vaze et al., 2010). It 

leads to impact on the flood modelling and flood propagation. In fact, there are lots of 

methods which have been used to create DEM. They may be from traditional or modern 

methods such as cartography, ground survey, digital aerial photogrammetry, 

interferometric SAR, airborne laser mapping technique (Mason et al., 2011) . However, 

each of them contains different pots and coins.  

In order to make clearly the uncertainty of DEM origin to flood extent, this part will present 

the different flood plain results corresponding to the DEM created method. This study 

realized on one uses 90m SRTM DEM and the other simulates on 90m DEM resampling 

from 15m DEM. The uncertainty is demonstrated via the difference in inundation areas in 

Table 4.8. The disparity between two scenarios is around 1,785.24 ha and flood max 

depth altered more than 1.84 m. The results of this study also confirm the influence of 

DEM created methods on the flood simulation. These uncertainties should be considered 

for flood modelling. 

 Table 4.8. Scale variability of inundation area due to DEM origin (hectare). 

Flood depth (m) <0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 Total>0.5 

90m resampling 2,841.48 3,040.74 7,014.6 16,027.5 14,934.8 5,346.81 46,364.42 

90m srtm 2,903.04 3,057.75 6,977.34 14,653.7 13,858.3 6,032.07 44,579.16 

 

4.5.5 Conclusion 

The role of quality and resolution towards flood mapping has been much discussed in the 

literature. The importance of these factors has been confirmed again by this study. By 

representing an historic flood event in 2007 using 2D hydraulic model – MIKE 21 with 

different topography data, this study demonstrates that the flood area and flood depth 

vary significantly due to topography data resolution. Although the high resolution 

topography data might describe more concretely and more accurately flood area, the 
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computation time related to data makes us consider to choose the reasonable resolution 

for our simulation. The flood propagation is also influenced by DEM accuracy, so with 

areas where do not have a good DEM, adding the observed cross section into DEM is 

necessary. The simulated result as well indicates that in order to reduce the uncertainty 

concerned to DEM created methods, it is necessary to simulate on many different data 

sources. In the case of this catchment, the 30m DEM resolution is suggested for using in 

hydraulic modelling. This resolution is evaluated to provide a more reasonable time 

consideration, as well as more acceptable results than others. Regarding to using the 

measured cross section incorporated DEM or not, this issue will be decided due to the 

kinds of used hydraulic model. Using the adjunct DEM is suggested in the case of 2D 

hydraulic model. Other case, if simulating with 1D/2D coupling, the DEM without river bed 

is more suitable. Because with 1D/2D model, the part of river flow is carried by 1D model. 

Hence, if applying the adjunct DEM here, it is probable that this flow part will be in charge 

of 1D and 2D as well. It might cause the flood peak reduction and give an inaccurate 

result. This analysis was published at 6th International Conference Water Resources and 

Sustainable Development (CIREDD2015), in Algiers, Algeria (Vo & Gourbesville, 2015a). 

 

4.5 Flood modelling 

The flood event in November 2007, which is one of the biggest damaged floods in the last 

decade, is selected to validate the MIKE FLOOD model. The MIKE FLOOD model is set 

up similar to the model in the section 4.4. The validation is implemented with water level 

of three stations at the downstream. Hydrographs of 3h water level at Figure 4.34 

demonstrate the capacity of this MIKE FLOOD model to reconstitute flood process 

occurring in downstream of Vu Gia Thu Bon Catchment. It seems that the simulated peak 

flows arrive earlier than the reality. This tendency occurs similarly at all three stations. 

The cause might be from the inaccuracy of hydrological model which could not reach 

100% performance while representing the hydrological process of catchment. The earlier 

of stream flow in MIKE SHE model results in unavoidably the faster in MIKE FLOOD 

model. However, the different time of peak flow between simulation and observation is 

not very big, just less than two time steps, hence this tendency might be acceptable in 

flood modelling. This earlier tendency of simulated peak flow is considered as a safety for 

flood prediction. The performance of model is also asserted via statistical index in Table 

4.9. Accordingly, the difference between the highest simulated water level at these three 

stations and observations is not significant. The number varies approximately from 10 to 

20 cm.  
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Figure 4.34. Model and observed hydrograph of water level.  
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Table 4.9.  Statistical indices of MIKE FLOOD model at downstream area of Vu Gia Thu Bon catchment. 

  Ai Nghia Giao Thuy Cau Lau 

R 0.852 0.903 0.919 

E 0.55 0.732 0.826 

RMSE (m) 1.082 0.961 0.622 

Delta H (m) 0.129 0.223 -0.125 

 

The correlation coefficients between simulation and observation reach relatively high, all 

station R index passed 0.85. The Nash-Sutcliffe coefficient could reach to 0.83. For the 

above persuasive evidences, this MIKE FLOOD model is completely applicable to 

construct flood plain as well as forecast their variation at Vu Gia Thu Bon Catchment. 
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Chapter 5   CLIMATE ASSESSMENT 

Relied on the climate data and validated model, this chapter will provide predictions about 

the flow variation at Vu Gia Thu Bon catchment in last years of this century. The flow 

variation will be analyzed in all aspects, such as peak flow, base flow, appearance time 

and frequency. These analysis will help to define the future tendency of this river system. 

The variation in runoff will lead to the change in inundation area. This step is undertaken 

by flood modelling. Finally, the chapter will demonstrate the change of flood risk map in 

future in comparison with present. These flood risk maps is constructed by overlapping 

the flood hazard maps on land use map of the catchment.  Above process will be 

concretized in this chapter as follows. 

 

5.1 Global Circulation Models and Regional Climate 

Models 

The response of hydrological factors to climate change has been studied since the middle 

of 20th century. Most assessments have been based primarily on a coupling approach 

between global atmospheric general circulation models (GCMs), which are designed to 

simulate the past and current climates. Then, they are used to predict the future state of 

global climate based on specific scenarios of greenhouse gas emission, and hydrological 

models. However, GCMs are generally operational with very coarse spatial resolution of 

the order of hundreds of kilometers because of the complicated characteristics and the 

limitation of computational capacity(Do et al., 2012). The data with a resolution of around 

200-500 km, taken from GCMs, might not be suitable to estimate the variation of 

hydrological factors in the future for regional impact studies. Most of the river basins on 

the world are smaller than typical resolution of the GCM (Raghavan et al., 2014), hence 

climate data with large cell size could not represent accurately the happening of future 

phenomena. Therefore, it leads to inaccuracies in hydrological models, particularly in area 

with complex climate conditions. In order to overcome this restriction, Regional Climate 

Models (RCMs) have been developed. The expectation is that RCMs with the finer 
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resolution could represent better the characteristic of climate at regional scale. The output 

of RCMs, which describes more accurately the local characteristics, is used as input in 

the hydrological model. 

 

Figure 5.1.   Schematic downscaling method.     

Downscaling (Figure 5.1) is an important technique that applies to convert the variations 

of climate change factors from large to smaller scale. There are two main types of 
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downscaling: Dynamical Downscaling (DD) and Statistical Downscaling (SD) techniques. 

Nevertheless, each method has advantages and disadvantages. Fowler et al., (2007) 

showed that DD method is used to produce RCM from large scale data of GCMs. Output 

data are typically resolved at around 0.5° (50 km) latitude and longitude scales, some 

projects may be reached to 10-20 km. Thus, they have abilities to more realistically 

describe regional climate features such as orographic precipitation, extreme events and 

regional scale anomalies. On contrast, this method still remains inconveniences with 

concern to computational ability, limitation in number of available  scenarios and strong 

dependence on GCM boundary forcing (Fowler et al., 2007). In this study we applied the 

RCM Weather Research and Forecasting (WRF) Model, developed at the National Center 

for Atmospheric Research (NCAR) in the USA, the WRF is suitable for a broad spectrum 

of applications across scales ranging from meters to thousands of kilometers. WRF allows 

researchers the ability to conduct simulations reflecting either real data or idealized 

configurations. The WRF software has a modular, hierarchical design that provides good 

portability and efficiency across a range of foreseeable parallel computer architectures. 

The model incorporates advanced numeric and data-assimilation techniques, a multiple 

nesting capability and numerous state-of-the-art physics options. Other than applications 

of weather forecasting, the model has found wide applications in climate research. 

 

5.2 Application to Vu Gia Thu Bon catchment. 

5.2.1 Global model 

Based on the SRES scenario of IPCC Fourth Assessment Report, lot of GCMs were built 

to describe the climate scenario in future. However, on the limitation about the time of 

thesis, there are only three GCMs having been analyzed for Vu Gia Thu Bon catchment.  

ECHAM5 is the firth-generation atmospheric general circulation model developed at the 

Max Planck Institute for Meteorology (MPIM) in is the most recent version in a series of 

ECHAM models evolving originally from the spectral weather prediction model of the 

European Centre for Medium Range Weather Forecasts (Roeckner et al., 2003).  

CCSM3 is the abbreviation of community climate system model version 3. It is the third 

general circulation model designed by National Center for Atmospheric Research, USA 

for climate research on high-speed supercomputers and select upper-end workstations 

(Yoshida et al., 2008). 
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MIROC3.2 medre is abbreviated from Model for Interdisciplinary Research on Climate. 

This general circulation model is developed by Center for Climate System Research 

(University of Tokyo), National Institute for Environmental Studies, and Frontier Research 

Center for Global Change (JAMSTEC), Japan (Randall et al., 2007).  

 

5.2.2 Regional Climate Models 

In this study, the Regional climate model is developed and supplied by Tropical Marine 

Science Institute, National University of Singapore (NUS). RCM WRF was run over a part 

of the VGTB river basin (Figure 2.1) at a horizontal resolution of 30 km. The model was 

driven by both of ERA40 reanalysis and the GCM ECHAM5, CCSM3.0 and MIROC-

medres. As for the physics options, the Kain-Fritsch scheme was used for the cumulus 

convection scheme, the Yonsei University scheme for the planetary boundary layer, 

Thomson scheme for the explicit moisture physics and RRTMG for both long and short 

wave radiations along with the NOAH land surface scheme for implementation of surface 

hydrology. The physics options were chosen from different parameterization sensitivity 

studies that best represented the climate of the region. Since the focus of this paper is 

more on the hydrology, these results are not being discussed in detail. A detailed 

description of the numerous physics options of the WRF model can be obtained from the 

documentation available at the WRF website: http://wrf-model.org/index.php 

The RCM WRF model was run for the period 1961-1990 using the ERA40 analysis to 

assess its performance of the present-day climate. Later, the model was run using the 3 

GCMs over the same period forced under the 20th century experiment to assess the 

model’s performance on the 30 year climatology of the present-day climate. The future 

climate simulation spans the period 2070-2099 driven by the above GCMs under the 

IPCC SRES A2 emission scenario. For simplicity in reading, the simulations of GCM 

ECHAM, CCSM and MIROC driven RCM WRF are being referred to as WRF/ECHAM, 

WRF/CCSM, WRF/MIROC. All climate simulations used the updating of sea surface 

temperatures, which is recommended for long term climate simulations. 

In order to assess the observed rainfall data in spatial scale, the gridded observational 

dataset is used in this study: The Asian Precipitation Highly Resolved Observational Data 

Integration Towards Evaluation of water resources data (APHRODITE). According to Vu 

et al., (2012), this APHRODITE dataset is among the best match with station data over 

the central highland region of Vietnam, which is the neighborhood of Vu Gia Thu Bon 

basin. The APHRODITE data was developed by the Research Institute for Humanity and 

http://wrf-model.org/index.php
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Nature and Meteorological Research Institute of Japan. This dataset provides 0.25o 

resolution information on rainfall and surface temperature over the monsoon Asia on a 

daily time scale for long period 1961-2007. This was created primarily with data obtained 

from a rain gauge observation network. The basic algorithm was adopted in (Xie, 2007). 

More information can be found from (Yatagai et al., 2012). 

 

Figure 5.2. Present day climate for temperature (oC) for (a) STATION (b) APHRODITE (c) WRF/ERA (d) 

WRF/ECHAM (e) WRF/CCSM (f) WRF/MIROC 

The present day climate variable temperature is shown in Figure 5.2. The Figure 5.2a 

shows the interpolation from station data in and out of the Vu Gia Thu Bon river basin 

using Kriging technique. The Figure 5.2b is the gridded dataset from APHRODITE and 

the model simulation from WRF are displayed in Figure 5.2c, d, e, f. 

The temperature simulation is quite homogenous for all the datasets compared to station 

and gridded data with lower temperature at the southwestern side of the domain where 

topography is higher as seen in Figure 2.7. The advance of using high resolution model 
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here is it can resolve well the high topography temperature. In overall, the WRF simulated 

data for present day climate is able to capture the temperature of the study domain. 

 

 

 

Figure 5.3. Present day climate for precipitation (mm/day) for (a) STATION (b) APHRODITE (c) 

WRF/ERA (d) WRF/ECHAM (e) WRF/CCSM (f) WRF/MIROC 

The same measurement was applied to precipitation at Figure 5.3. Precipitation is a very 

difficult variable to predict. Within observation data, there is huge different between station 

interpolation data (Figure 5.3a) and gridded data (Figure 5.3b), the average rainfall over 

the study domain in APHRODITE data is lower than the station data about 2-3 mm/day. 

The simulated dataset WRF/ERA (Figure 5.3c) is similar to WRF/CCSM (Figure 4e) also 

underestimates the station data of about 1mm/day. The WRF/ECHAM and WRF/MIROC 

are able to capture the magnitude of station data. In addition, the higher intensity of rainfall 

is found at high altitude area from southeastern side of the study domain and is able to 

be captured by all datasets. 
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Figure 5.4. Absolute anomaly temperature (oC) (1) and precipitation (%) (2) 2070-2099 scenario A2 with 

respected to baseline period 1961-1990. (a) WRF/ECHAM (b) WRF/CCSM (c) WRF/MIROC. 

The future climate change temperature and rainfall is assessed by downscaled GCM 

models under A2 scenario. Figure 5.4 shows the change in temperature (oC) and 

precipitation (%) for the future period 2070-2099 with respected to baseline period 1960-

1990 for 3 downscaled datasets. From Figure 5.4-1, it shows that future temperature for 

the Vu Gia Thu Bon region might increase about 2.0-3.2oC for all datasets. The lowest 

increase is WRF/CCSM (Figure 5.4-b1) at 2oC while the highest increase is WRF/MIROC 

(Figure 5.4-c1) at 3.2oC. Figure 5.4-2 shows an agreement in increasing future rainfall for 

all 3 datasets of about 10-50%. The high increasing rate is about the high topography 

area and lower rate near the coastal area. This is an important finding and should be put 

under notice because when intense rainfall occurs at the upstream on the mountain side, 

more and more probability for the downstream to be flooded, thus making the inundation 

situation here worst. 
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5.3 Future climate change results 

5.3.1 Responses of stream flow 

a. Future scenario setting. 

In other to assess the variation trend of river flows, the future meteorological factor is input 

in validated hydrological model (MIKE SHE). In this case of Vu Gia Thu Bon, two factors 

are accounted for this purpose. The first consideration is precipitation and the second one 

is evapotranspiration. 

 Future climate precipitation 

In order to assess the future climate precipitation, the delta factor approach is applied as 

in equation 5.1: 

 ∆= (
PmFU−PmPD

PmPD
) ∗ 100% (5.1)  

Where PmFU and PmPD are the monthly Precipitation for future (2070-2099) and 

present day climate (1961-1990) respectively. The Δ is assessed by months from 

January to December in %. This Δ is then added to the station historical data to 

represent the future climate precipitation. The same Δ factor approach has been 

applied in our previous studies by Raghavan et al., (2012, 2014); Liew et al., (2014) .  

The results are show at Table 5.1.  

Table 5.1.  Averaged rainfall delta change factors apply during the period 2091-2100 in Vu Gia Thu Bon 

catchment. 

GCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CCSM 21.81 11.07 22.59 11.18 0.07 8.17 17.31 33.79 55.56 91.04 61.5 9.49 

MIROC -2.11 -13.01 6.77 30.09 26.43 6.37 51.36 39.92 70.59 48.23 138.99 32.55 

ECHAM 8.25 -18.56 5.32 33.67 -5.13 19.31 1.13 -6.05 21.47 31.03 35.36 -9.17 

 

 Future climate evapotranspiration 

This factor is calculated by the support of climate change module in Mike Zero 

software(DHI, 2012f) 
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Figure 5.5. Mean monthly rainfall and evapotranspiration under actual and future climate change 

conditions. 

These simulations take place with hypothesis that there are no changes in land use, soil 

map and river networks in the future or these changes have minor effect on the stream 

flow over this catchment. 
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Figure 5.6.  Compared locations for the change of runoff. 

The global warming assumes to create the increase of precipitation and impact to 

evapotranspiration in Vu Gia Thu Bon catchment (ADB, 2013). Therefore, it is not 

surprising that the flow regime in this catchment extremely varies. The results obtained 

from MIKE SHE model for the end of this century indicate entirely this change. The runoff 

regime of rivers in Vu Gia Thu Bon system is not completely similar due to the 

complication of topography as well as the difference in spatial distribution of 

meteorological factors. In addition, the climate factors in the future is projected to vary 

differently at each sub catchment in this system. These drivers to different variability 

tendencies in stream flow in different branches and at different locations. In order to 

express more clearly these tendencies, in this study, the stream flow at different locations 

on two main rivers as well as at the outlet of large tributaries are compared (Table 5.2). 
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Table 5.2.  Compared catchment area corresponding with Figure 5.6. 

Location River Catchment area ( Km2) 

Thanh My station Vu Gia 1,850 

Hoi Khanh station Vu Gia 4,494 

Ai Nghia station Vu Gia 5,380 

Con branch outlet Vu Gia 640 

Bung branch outlet Vu Gia 2,420 

A Vuong branch outlet Vu Gia 762 

Thanh branch outlet Vu Gia 471 

Tuy Loan branch outlet Vu Gia 277 

Hiep Duc station Thu Bon 2,570 

Nong Son station Thu Bon 3,155 

Giao Thuy station Thu Bon 3,825 

Bong Mieu branch outlet Thu Bon 555 

 

5.3.2 Change in flood flow 

The variation of flood flow in Vu Gia Thu Bon river system is presented via the variation 

of flow measuring at locations in Table 5.2. According to hydrographs at these stations 

(Figure 5.7), it is easy to realize the considerable changes on the flow in wet season. The 

increase is at all months in rainy season. This tendency is similar to the conclusion of 

Bergstrom, et al (2001) that changes in extreme values of runoff can be more critical than 

mean value. This result is the consequence of precipitation rise which concentrates 

essentially in rainfall season (Figure 5.5). The water loss by evapotranspiration in the 

future is predicted to increase (Figure 5.5).  
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Figure 5.7a.  Baseline and future stream flows at Vu Gia Thu Bon catchment. 
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Figure 5.7b.  Baseline and future stream flows at Vu Gia Thu Bon catchment.  
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Figure 5.7c.  Baseline and future stream flows at Vu Gia Thu Bon catchment. 
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However, the rate is smaller than rainfall and the increase of evapotranspiration also 

mainly occurs in dry season, so it seems that these factors do not virtually affect/have an 

effect on the peak flow. Those results show that in the end of 21st century flood, discharge 

will highly go up. The increase happens at all compared locations, from upstream to 

downstream, main river to tributary. This tendency is the same at all three climate 

scenarios. Nevertheless, monthly discharge could reach 1,076 m3/s against the baseline 

401 m3/s at Thanh My (in November) and at Nong Son 1,976 m3/s compared with baseline 

823 m3/s. The increase is equivalent with the rate 168 % and 140 % at Thanh My and 

Nong Son, respectively. At downstream, the rise might be more extreme when the flow 

at Ai Nghia station could reach 1364 m3/s against with currently 457 m3/s, the rate is 

approximately 200%. At Giao Thuy station, these numbers are respectively with 3238 

m3/s in future and 1,293 m3/s in actual, the change is 151 %. The CCSM scenario also 

gives increasing trends. However, this trend is not as high as MIROC scenario. The 

maximum variation of CCSM scenario at Thanh My is only 145%, at NongSon is 119%. 

Whilst ECHAM scenario gives the smallest change. The maximum different percentage 

between the future and the baseline of this scenario is only 76% at Song Bung tributary. 

This difference indicates that MIROC scenario has a more extreme tendency than others. 

Across the variation in Figure 5.8, 5.9 one more thing is easy to recognize that the 

variation is unequal between locations. The trend is likely to be higher in sub catchments 

of Vu Gia river than the ones of Thu Bon river. The largest change could reach 225% at 

Song Bung branch of Vu Gia while this number is only 150% at Giao Thuy station in 

downstream of Thu Bon river. This inequality reveals clearly that there exists a huge 

difference in the variation of meteorological factors between locations in the future under 

the impact of climate change. Hence, estimating the variation of natural phenomenon in 

future needs to realize on many positions, at least with the large catchments. Moreover, 

the difference also helps to add more evidence to confirm the insight of previous studies 

that it is necessary to construct a climate model with output resolution as higher as 

possible or to downscale from coarse climate data to fine data corresponding with small 

sub catchment. (New, 2002; Hijmans, 2005) 

Based on hydrographs in Figure 5.7, it is easy to recognize that the change is not only on 

the magnitude, but also on the time. According to that, the flow in the future obtained via 

MIROC output data is likely to greatly augment on November. In other months of wet 

season, it also increases, but not as high. There have been a similar trend on the results 

of ECHAM and MIROC scenarios. The results from ECHAM scenario have the similar 

trend with MIROC. Because of the smaller quantitative change, the shape of ECHAM 
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looks slightly like the hydrographs in MIROC. The variation in ECHAM is quasi equal 

through the months of wet season. Conversely, CCSM scenario brings the increase in 

long time, almost at the whole season. The peak discharge in the period 2091-2100 

probably shifts from November to October, earlier around one month. The change in 

CCSM scenario is not very extremely like results of MIROC, but it is higher than ECHAM 

and pretty equal over season. Analyzing the change in the time of appearance is helpful 

for strategist as well as local authority to prepare plans to response to these changes. 

Because the damage caused by flood disaster depends on both, the time and intensity of 

inundation, this uncertainty helps to get a global point of view to suggest the most 

reasonable and safe prevention against the future flood catastrophes. 

 

 

Figure 5.8a.  Change in frequency of flood flow between period 1991- 2000 and 2091 and 2100. 
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Figure 5.8b.  Change in frequency of flood flow between period 1991- 2000 and 2091 and 2100. 

In other to assess more accurately the frequency of flood flow, the analysis normally 

based on a data time series longer than 30 years (Bergstrom et al., 2001; MeteoFrance, 

2014). But this condition is not easy to obtain not only on observed data but also on 

simulated result, such as this study. The “méthode du renouvelement” is a new issue 

what is generated by EDF group to solve the weakness when estimating the frequency 

for a short data time series (MeteoFrance, 2014) This method is developed by combining 

the Gumbel law and Exponential law to estimate the extreme flood value. It permits to 

evaluate the exceptional flood event for the case having less than ten years of data. In 

this study, the méthode du renouvelement is utilized under the support of Hydrolab 2010 

to analyze flood frequency in the future and baseline scenario. The change of frequency 

in Figure 5.8 indicates the violence of flood event in the end of this century. Average 
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change magnitude of discharge corresponding to return period 100 years is from 50% to 

150%, respectively with ECHAM and MIROC. The extreme change in magnitude of flood 

flow figure out the violence of natural catastrophe concerned on the inundation of VuGia 

Thu Bon catchment. In particular, the rate is huger at mountainous area, the change at 

several locations reaching to more 200%. It conducts to the flash flood event could 

happen more frequently and terribly.  

 

5.3.3 Change in low flow 

The drought and salinity situations occur essentially complicated in this region. Especially, 

with the pressure of high speed in social economic development and population increase, 

water requirement in dry season becomes more urgent. Currently, there have been 

several conflicts between localities concerning on this problem. So that it is necessary to 

estimate the runoff in dry season for the end of 21st century for this area. Fortunately, the 

results of this study present that under the change of climate. In comparison of low flow 

frequency showing in the Figure 5.9, the low flow demonstrates the increasing trend over 

the catchment. Even if the big increase of temperature as well as the evapotranspiration, 

the low flow in Vu Gia Thu Bon river system will almost increase with MIROC scenario. 

This is presented in Figure 5.9, 5.10. According to that, all of 8 months of dry season, the 

run off on both main rivers is predicted to highly rise. The variation is about from 20% to 

100 % with all MIROC scenarios. It leads to the mean flow in this period changing from 

64 m3/s (baseline) to 94m3/s (MIROC) at Thanh My station, from 66 m3/s (baseline) to 

104 m3/s (MIROC) at Ai Nghia station and from 114 m3/s (baseline) to 159 m3/s (MIROC) 

at Nong Son station, from 188 m3/s (baseline) to 256 m3/s (MIROC) at Giao Thuy station. 

This augmentation might help to reduce the pressure for water supply, irrigation, and 

mitigate the salinity. In contrast, the predictions with CCSM and ECHAM scenarios are 

not completely advantage as MIROC scenario. In these two scenarios, the increasing 

trend appears at a lot of locations but the variation is not very big. Conversely, the stream 

flow is to reduce at some locations. The reduction likely concentrates on the months of 

May and June. These are commonly estimated like the most severe period of dry season. 

Following to the projection of CCSM and ECHAM scenarios, several areas of this 

catchment will face big drought risks. These risks are more serious in regions of Thu Bon 

river when the base flow at 3 stations of this river is  on May with ECHAM scenario. The 

decreases approximately 1.5% at Hiep Duc, 2.8% at Nong Son and 0.4% at Giao Thuy 

demonstrate this tendency. The water deficit could also occur at the downstream of Vu 



Chapter 5 – Climate assessment 

201 

 

Gia river when the run off in May go down deeply at branches in the north  such as, Song 

Con branch, Song Tuy Loan branch with an amount from 7% to 30%. 

 

Figure 5.9a. Change in frequency of low flow between period 1991- 2000 and 2091 and 2100. 
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Figure 5.9b. Change in frequency of low flow between period 1991- 2000 and 2091 and 2100. 

 

5.3.4 Hydrological shift 

The variation of temporal factors in studying climate change is important. In fact, the 

movement of climate factors and runoff factors will have big influences on the decision to 

choose the harvest schedule, the types of cultivated crops, product plan and people 

activities. Vu Gia Thu Bon catchment is a large rice production with two main crops, 

Winter-Spring crop and Summer-Autumn crop,  those crop seasons happen annually 

during period December to April and May to October (Nay-Htoon et al., 2013). 

Unfortunately, the results of this study demonstrate that both of these main crop seasons 

will be impacted by earlier movement of runoff factors. Although, the earlier appearance 

tendency is not the same among 3 scenarios. Moreover, it describes a potentiality in the 

future. Figure 5.7, 5.9 show that the flood and dry seasons in the end of 21st century will 

come earlier than present. Lastly, the earlier movement of the seasons might bring 

negative impacts on harvest quantity, and product quality of this region. 
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Figure 5.10a.  Percentages of future monthly stream flow in comparing with present. 
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Figure 5.10b.  Percentages of future monthly stream flow in comparing with present. 

 

5.3.5 Uncertainties 

The uncertainties in estimating the impact of climate change on run off have been 

mentioned in previous studies. Source of these uncertainties might be from the 

uncertainty of hydrological model, downscaling process, climate model or greenhouse 

gas emission scenario  (Bastola et al., 2011; Minville, Brissette, & Leconte, 2008; 

Prudhomme et al., 2003; Taye & Willems, 2013). Until now, there have not been yet a 

clear solution for solving absolutely this problem rather than realizing a lot of simulations 

with many scenarios to reduce a part of uncertainty. In studying the response of river run 

off in Vu Gia Thu Bon catchment facing the global warming, the uncertainty is considered 

under the following aspects:  

 Hydrological model:  

In spite of trying to reflect the most truthfully what happens in hydrological cycle in the 

catchment, this MIKE SHE model has not yet gained the optimal result when there are 

still lots of inaccuracies. The statistical coefficients such as Nash Sutcliffe, correlation 

coefficient, RMSE are still weak. Because of many reasons, these indicators could not 

get maximum values. Hence, this model has many potential uncertainties to simulate the 

hydrological process. Uncertainty in hydrologic modelling may arise from several sources: 

model structure, parameters, initial conditions, and observational data used to drive and 

evaluate the model (Liu & Gupta, 2007).  

One of the most important factors of model structure, might influence significantly the 

accuracy of model as well as the uncertainty of simulation, is cell size issue (Egüen et al., 

2012). The advance of  this  distributed hydrological model is able to represent 

hydrological characteristic of catchment cell by cell. However, in fact, the resolution using 

in this model is still coarse due to the limitation of data and computation time. 90 m 

topography data using may not describe precisely the surface of the catchment. Thus, it 



Chapter 5 – Climate assessment 

205 

 

derives some differences of surface flow between reality and model. The land use, soil 

property or roughness coefficients, which are simplified so much to serve the calibration 

purpose, are the main causes of underestimation or overestimation of this model. Another 

issue influencing significantly the model uncertainty is the rainfall which is a key factor in 

hydrologic process. Rainfall spatial variation affects heavily both runoff generation and 

hydrologic processes in a catchment (Moon et al., 2004). The spatial variability in rainfall 

may introduce a significant uncertainty in model parameter during the calibration process 

(Chaubey et al., 1999). While the quality of spatial rainfall distribution usually depends on 

the characteristic of study area and other factors, in particular, the rain gauge density. 

Therefore, the network of rain gauge stations in Vu Gia Thu Bon is sparse, averagely one 

station observes for a large area 700 km2. In this model, the rainfall input even if already 

re-interpolated, it is considered as a great source of uncertainty. The ground water is an 

un-ignorable component when simulating hydrological process (Winter, 1999).  

In term of input data, the insufficiency of ground water data is seen as a major source of 

uncertainty for simulating hydrological process. Nevertheless, the quality of ground water 

data of Vu Gia Thu Bon catchment is not very good. The collected data do not present 

concretely the ground water property. For the whole catchment, the simulation has just 

one geological layer. Regarding to the method solving process in MIKE SHE, selecting 

the method for modelling components of model likewise adds several sources to 

uncertainty, when with one factor we can choose many methods to simulate. For 

example, there are three functions to select for unsaturated flow such as Richards 

equation, Gravity flow, 2 layer UZ. The Richards equation is estimated to be the best 

method for simulating unsaturated flow but for this study, the 2 layer UZ is chosen by the 

simple and short processing time. So, it is no surprising to say that the solved algorithm 

for a model component has a particular impact with model accuracy.  

The coupling between MIKE SHE/MIKE 11 additionally contains potential uncertainties. 

It could affect notably water exchanging between flood plain and river beds. The number 

of simulating branches and solved intervals in MIKE 11 is considered as a primary 

uncertainty source. In this model, the coupling between MIKE SHE/MIKE 11 is not set 

well. This is a result of cross section restricted quantity. Furthermore, there is a difference 

between overland and river flows, but in this study, the river network presented in MIKE 

11 is merely over at 44 branches. Understandably, the set up manner the coupling 

between MIKE SHE/MIKE 11 is estimated holding a big uncertainty. One more thing 

affecting to the quality of hydrologic model in reproducing hydrological process belongs 

to the time factors. Time step applying in this MIKE SHE model is one day. This time step 
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is still high so it might not present thoroughly what happen in hydrological cycle of a 

catchment. Besides, the timescale of model is only 10 years. The simulation time is seen 

to be not sufficient to bring adequately extreme events from natural phenomenon to 

model. Unavoidably, simulating the stream flow at Vu Gia Thu Bon catchment will contain 

particular uncertainties.  

 Downscale method:  

Downscaling is definitely indispensable. Nevertheless, the issues related to this process 

are admitted to be similar to the leading causes of uncertainty in estimating the climate 

change. Firstly, the difference between statistical and dynamic methods already has 

showed fatal evidences for this problem. Secondly, the size of climate data output is 

debatable factor for the inaccuracy of the projected scenarios. The technical complication 

and the limitation of computed capacity limit the output resolution. Moreover, climate data 

applied in this project is downscaled to 30 km. As this figure, it is still big in comparison 

with a catchment having the wide around of 100 km like Vu Gia Thu Bon, this data could 

not express perfectly the variation of climate factor in this catchment.  

 Climate scenario:  

The climate scenario is constituted from projection based on actual data. Thus, not 

surprisingly, these are estimated to be the biggest source of uncertainty. In this study, the 

uncertainty related on this issue is presented quite clearly. Using 3 scenarios ECHAM, 

CCSM, MIROC, even so the variation tendency among these ones is very different. The 

analysis in Part 5 shows that the difference is not only about the magnitude, but also 

about the happening time. The negative change of run off, such as base flow decrease 

or flood flow increase, influences significantly natural system and local society. However, 

determining an accurate simulation for the future seems not to be available until now so 

the definition of variation amplitude of run off seems to be an acceptable solution in 

evaluating the climate change. 

This study also has been realized on an assumption that there is no change on catchment 

characteristic in the end of 21st century. This assumption helps to reduce the complexity 

of simulation. But, in reality, it is not absolutely correct. In fact, to increase the accuracy 

of a climate change impact assessment, the change of land use, soil map, river networks, 

and harvest structures is needed to take into account. 
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5.4 Scale variability of inundation area 

5.4.1 Methodology 

The variation in river flow corresponding with climate change scenarios in the section 5.3 

are abstracted and input in turn into validated MIKE FLOOD model. Results from the 

model are expected to show scale variability of inundation area at flood prone area at the 

downstream of Vu Gia Thu Bon river system. 

 

5.4.2 Role of sea level increasing  

Sea level rising due to global warming is thought to accelerate seriously in the end of 21st 

century. This  increase will promote land loss, increasing flooding and salinization 

(Nicholls & Mimura, 1998). According to Fourth Assessment Report (AR4), the average 

sea level in period of 2080-2099 might be higher than the period of 1980-1999 from 0.18 

– 0.59 m depending on the scenario. This change  is projected to affect many millions 

more people on over the world, especially in coastal area (R K Pachauri & Reisinger, 

2007). Viet Nam, with more than 3,000 km of the coast, is expected to be affected 

severely by sea lever rising. The report of government predicts that, the averaged sea 

level of Viet Nam in the last year of 21st century will be higher than present from 0.49 to 

1.05m. They lead to the serious flooding overall nation, at least in coastal delta. In order 

to estimate the inundated variation due to sea level rising for Vu Gia Thu Bon coastal 

area, this part will show a comparison between two flooding simulations which take into 

account the effect of sea level and another doesn’t. 

Table 5.3. Peak water level of MIROC scenario with or without the effect of sea level rising. 

Station No sea level change IPCC AR4 95% 

Ai Nghia  14.616 14.627 

Giao Thuy 14.395 14.427 

Cau Lau 8.756 8.758 

The comparison is realized based on MIKE FLOOD model. The sea level change is the 

highest scenario from IPCC AR4 for this area (IPCC AR4 95%) which projects the regional 

future sea level might higher 0.552 m in comparison with present. 
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Figure 5.11.  The effect of sea level rising on scale variability of inundation area (MIROC scenario) 
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Table 5.4. Difference of inundation area due to the effect of sea level rising.  

Flood depth (m) < 0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 Total>0.5 

MIROC + No sea 

level change 
2,849.9 3,194.6 7,170.3 17,423.2 15,961.6 2,114.2 45,863.9 

MIROC + IPCC AR4 

95% 
2,847.5 3,192.8 7,173.5 17,356.1 16,107.6 2,116.2 45,946.3 

The Figure 5.11 demonstrates the impact of sea level change to the flood area at the 

downstream part of Vu Gia Thu Bon Catchment. Relying to the results of two simulations 

in the end of 21st centuary (MIROC scenario), which take into account the variation of sea 

level or not, we recognize that the sea level change affects not so much the flooding 

increase in future at Vu Gia Thu Bon Catchment. Although, accounting the 0.552 m of 

absolute sea level rising, the peak of water level seemly does not change (Table 5.3). 

The area of potentially deep flooding (>0.5m) in consideration of the sea level rise just 

increases 0.26% as compared to the one without sea level change (Table 5.4). If 

comparising with area of flooding higher than 2m, the difference is merely 0.36%. The 

insignificant effect of sea level change to flooding area at the downstream of Vu Gia Thu 

Bon catchment might be explained by the topography characteristic. The topography over 

this region is relatively narrow mountainous area on the upstream and the flat coastal 

zone at the downstream. The flood prone area has average altitude which is higher than 

the sea level, even if in future scenario. These comparisons prouve that the inundation of 

Vu Gia Thu Bon is primarily from river flow and this judgement is mostly similar in the 

future. The tendency looks like the same to the prediction of Viet Nam government 

(Monre, 2012) due to steep topography,  It is predicted that VietNam central would not be 

influenced significantly by the increase of sea level due to the sea level rise of 1m, only 

2.5% area will be inundated. 

 

5.4.3 Future Inundation 

The increase of flood flow demonstrated at the part of 5.3 certainly implies the 

enlargement of flood plain. The difference between the future and today show via the 

change of water level at downstream and the change of inundation area. The comparison 

is realized on the simulated result of the extreme flood event in November 1999 and its 

projecting scenarios in 2099 corresponding with CCSM, ECHAM, MIROC scenarios. The 

second comparison is on the 100 year return period flood event in the future and present. 



Chapter 5 – Climate assessment 

210 

 

The peak water level variation is expressed via the number at Table 5.5 corresponding to 

the real flood event, and Table 5.8 is used to describe for the flood event of 100 year 

return period.  Scale variability of inundation area under the impact of climate change at 

the downstream area of Vu Gia Thu Bon is explicitly showed at Figure 5.11, Figure 5.12a 

respectively and the figures in Table 5.6, 5.9 demonstrate the serious increase of flood 

area at Vu Gia Thu Bon downstream region under the impact of flood flow increase due 

to global warming. 

Table 5.5.  Peak water level comparison between future and baseline scenario (m). 

Station 1999 ECHAM CCSM MIROC 

Ai Nghia  11.773 12.94 13.61 14.616 

Giao Thuy 10.967 12.433 13.326 14.935 

Cau Lau 6.117 7.218 7.974 8.756 

Table 5.6.  Scale variability of inundation area due to climate scenario in the case of 1999 flood event 

base line scenario. (hectare)  

Area (ha) < 0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 total>0.5 

1999 4,124.43 3,911.13 5,910.75 6,534.45 2,548.80 31.86 18,936.99 

CCSM 3,679.38 4,179.96 8,898.84 13,518.45 7,083.63 617.76 34,298.64 

ECHAM 3,839.22 4,198.50 7,986.78 10,207.26 5,080.95 232.56 27,706.05 

MIROC 2,846.25 3,190.41 7,161.84 17,264.70 15,932.43 2114.37 45,663.75 

Table 5.7. Percentage change of future inundation area in comparison with 1999 flood event (Percent) 

  < 0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 total>0.5 

CCSM -10.79 6.87 50.55 106.88 177.92 1838.98 81.12 

ECHAM -6.92 7.35 35.12 56.21 99.35 629.94 46.31 

MIROC -30.99 -18.43 21.17 164.21 525.1 6536.44 141.14 

 The maps and numbers describe the serious impact of climate change to this area. It is 

predicted to have an extremely increasing trend of flood disaster in this region. The 

increase trend of discharge in hydrological model leads to raise almost water level at the 

downstream. The future water level at several cases can be roughly over 3 m than actual 

(Table 5.5, Table 5.8).  
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Figure 5.12a.  Scale variability of inundation area under the impact of climate change in the case of 1999 

flood event base line scenario. 
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Figure 5.12b.  Scale variability of inundation area under the impact of climate change in the case of 1999 

flood event base line scenario. 
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Thus, it is not surprising when the inundation area in the end of 21st augments is greatly 

in comparison with current ones at Vu Gia Thu Bon catchment. Total inundation area 

(corresponding flood depth >=0.5m) is minimum 46.31 % higher than 1999 flood event. 

Especially, the difference is really catastrophic with MIROC scenario when the future 

inundation area might be 141% higher than the 1999 flood event (Table 5.7).   

Table 5.8. Peak water level comparison between future and baseline scenario in the case of 100 years 

return period (m). 

Station Present ECHAM CCSM MIROC 

Ai Nghia  12.364 13.187 14.014 14.95 

Giao Thuy 11.945 12.957 13.983 15.188 

Cau Lau 6.856 7.65 8.58 9.402 

Table 5.9. Scale variability of inundation area due to climate scenario in case of 100 year return periods 

(hectare)  

Area (ha) < 0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 total>0.5 

Present 3,884.85 4,381.2 8,808.3 11,853.36 5,977.44 405.81 31,426.11 

CCSM 2,974.32 3,334.68 7,450.2 17,171.82 13,752.36 1,674.54 43,383.6 

ECHAM 3,412.26 3,888 8,825.67 14,985.9 8,457.03 907.02 37,063.62 

MIROC 2,535.84 2,937.15 6,560.82 16,661.34 20,034.36 3,057.3 49,250.97 

Table 5.10. Percentage change of future inundation area in comparison with present in case of 100 year 

return periods (Percent) 

  < 0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0 >=8.0 total>0.5 

CCSM -23.44 -23.89 -15.42 44.87 130.07 312.64 38.05 

ECHAM -12.16 -11.26 0.2 26.43 41.48 123.51 17.94 

MIROC -34.72 -32.96 -25.52 40.56 235.17 653.38 56.72 

The increasing trend is similar with 100 year return period event (Figure 5.13), however, 

the variation is not so great with the real scenario (Table 5.10). The maximum difference 

between future and present is MIROC. The flood area due to 100 year return period of 

MIROC just increases 56.72%.  
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Figure 5.13a. Scale variability of inundation area under the impact of climate change in the case of 100 

hundred year return period baseline scenario 
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Figure 5.13b. Scale variability of inundation area under the impact of climate change in the case of 100 

hundred year return period baseline scenario 
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More seriously, the heavy inundation area (deeper than 2m) could expand around 70% 

to 287% in comparison with 1999 flood event. The expansion of flood area in future is 

projected to make more damages for Vu Gia Thu Bon catchment. When the flood event 

occurring in 1999 caused catastrophic damages with 118 killed peoples, 159 injured 

peoples and lost more than 500 million USD of properties. If there is no changes,the 

damage related to flood catastrophe in future would be multiplied many times than now. 

Preparing a scenario to well adapt with this disaster is very necessary and urgent for the 

catchment.  

 

5.4.3 Potential risk 

The predicted damage due to flood disaster for the future is seem to be indispensable for 

mitigating the climate change impact. In this study, the flood hazard and land use map 

are overlapped together to evaluate the potential risk in Vu Gia Thu Bon catchment 

(Figure 5.14). This work realized in the resolution of 30m is hoped to provide overall view 

about the serious consequences of climate change for local population and authority.   

The water level considered here is higher than the flood depth of 0.5m. The uncertainty 

in the impact of climate change is as well showed via different impacts of climate scenario. 

The results are described at Figure 5.15 or the risks of 1999 historical event and its 

projected scenarios, Figure 5.16 for the risk of 100 year return period flood event in 

present and in the future. Look at these figures, the largest damages are from MIROC 

scenario. The statistic demonstrates that if this MIROC climate scenario happens in 

future, this region will be devastated catastrophically.  

Moreover, the damages are concreted for each type of land use at the Figure 5.15, 5.16 

and by the numbers at Table 5.11, 5.12.  The considered area situates at the downstream, 

so it is no surprise when damages from flood disaster mostly concentrate on the domain 

of rural settlement, annual crops, and specialized rice field. In 1999, three above land use 

types occupy roughly 88% of total flood area. This rate is not changed in the case of 100 

year return period flood event at present and future scenarios. In the biggest varied 

scenario, MIROC, inundated settlement area in the end of 21st century is predicted higher 

than three times in comparison with 1999 event. The increase of this kind of land use is 

around 12,193.51 hectare. With remain scenarios, the consequences for this domain are 

lower but the serious is not change.  
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Figure 5.14. The materials for flood risk mapping. 

The increasing flood area compared to 1999 flood event of ECHAM is 3,588 hectares and 

CCSM is 6,756 hectares. Besides that, regional primary crop plants will be affected 

significantly when this product area might be sunk deeply under flood flow. The statistics 

show that more than 34% specialized product rice will be flooded in the end of the Century 

with ECHAM. This area is 42% and 54% in CCSM and MIROC scenarios, respectively. 

The consequence of 100 year return period flood events is forecasted to be more awful. 

The events corresponding to this frequency are believed to damage more or less 60% 

rice product area (with MIROC project). The future situation is expected to risk gravely to 

the livelihoods of population at the downstream part of Vu Gia Thu Bon catchment.  If 

there is no changes in awareness, these potential risks will kill more people, destroy the 

harvest and damage more property of catchment.   
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Figure 5.15a. Flood risk map for 1999 historical event and its corresponding future scenarios  
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Figure 5.15b. Flood risk map for 1999 historical event and its corresponding future scenarios 
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Table 5.11. Potential risk area at Vu Gia Thu Bon against 0.5m flood depth of 1999 flood event and its 

corresponding future scenarios. 

  

Potential risk area (hectare) 

1999 CCSM Change ECHAM Change MIROC Change 

Cemetery 64.44 172.89 108.45 134.01 69.57 346.05 281.61 

Industrial zone 2.88 3.6 0.72 3.24 0.36 74.7 71.82 

Military 4.41 6.84 2.43 5.13 0.72 17.46 13.05 

Other annual crops 3,725.0 5,877.3 2,152.3 5,113.8 1,388.8 7,106.6 3,381.6 

Other perennial crops 0 0.09 0.09 0 0 0.27 0.27 

Other rice fields 76.86 167.49 90.63 112.86 36 299.07 222.21 

Other upland annual 

crops 
180.63 408.24 227.61 327.69 147.06 595.35 414.72 

Perennial cash crops 2.07 5.13 3.06 4.14 2.07 6.57 4.5 

Planted production forest 105.39 205.38 99.99 165.24 59.85 269.46 164.07 

Planted protection forest 76.23 122.13 45.9 98.91 22.68 244.35 168.12 

Protection forest 40.32 122.4 82.08 72.9 32.58 169.11 128.79 

Religion 0 0.09 0.09 0 0 0.18 0.18 

Rural settlement 6,848.2 13,604.7 6,756.5 10,437.1 3,588.9 19,041.7 12,193.5 

Special use water 

surface 
66.6 103.5 36.9 88.74 22.14 129.24 62.64 

Specialized rice field 4,425.5 8,766.6 4,341.6 7,070.0 2,644.6 11,269.6 6,844.1 

Unused flat land 523.26 697.41 174.15 622.98 99.72 866.7 343.44 

Unused mountain land 171.09 253.89 82.8 186.21 15.12 310.23 139.14 

Urban settlement 663.57 1,472.0 808.5 1,089.1 425.52 2,300.67 1,637.1 
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Figure 5.16a. Potential risk area at Vu Gia Thu Bon against 0.5m flood depth of 100 return period flood 

event and its corresponding future scenarios. 
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Figure 5.16b. Potential risk area at Vu Gia Thu Bon against 0.5m flood depth of 100 return period flood 

event and its corresponding future scenarios. 



Chapter 5 – Climate assessment 

223 

 

Table 5.12. Potential risk area at Vu Gia Thu Bon against 0.5m flood depth of 100 year return flood event 

and its corresponding future scenarios. 

  

Potential risk area (hectare) 

Present CCSM Change ECHAM Change MIROC Change 

Cemetery 162.18 283.95 121.77 192.15 29.97 532.53 370.35 

Industrial zone 3.33 25.11 21.78 4.14 0.81 106.56 103.23 

Military 5.94 11.61 5.67 7.11 1.17 25.2 19.26 

Other annual crops 5,468.4 6,861.1 1,392.7 6,179.2 710.82 7,401.2 1,932.8 

Other perennial crops 0 0.27 0.27 0.18 0.18 0.45 0.45 

Other rice fields 144.72 285.12 140.4 204.3 59.58 336.06 191.34 

Other upland annual 

crops 
394.38 527.22 132.84 436.86 42.48 665.73 271.35 

Perennial cash crops 4.5 6.57 2.07 5.94 1.44 6.57 2.07 

Planted production forest 192.15 257.49 65.34 221.31 29.16 292.14 99.99 

Planted protection forest 112.5 174.87 62.37 123.12 10.62 298.08 185.58 

Protection forest 111.51 162.9 51.39 137.61 26.1 184.41 72.9 

Religion 0 0.18 0.18 0.09 0.09 0.18 0.18 

Rural settlement 12,108.8 18,058.0 5,949.2 14,997.3 2,888.5 20,713.2 8,604.4 

Special use water surface 94.77 122.49 27.72 108.54 13.77 132.84 38.07 

Specialized rice field 8,110.1 10,809.4 2,699.3 9,444.2 1,334.2 12,033.5 3,923.4 

Unused flat land 669.78 821.16 151.38 730.8 61.02 937.08 267.3 

Unused mountain land 251.73 301.32 49.59 271.53 19.8 334.98 83.25 

Urban settlement 1,323.7 2,114.9 791.19 1,623.3 299.61 2,526.1 1,202.4 
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5.5 Conclusion 

Extreme climatic and hydrological events are predicted to happen more frequently in 

recent years because of man induced global warming (Pachauri et al., 2014). Despite 

that, these changes mostly bring the negative consequences to people lives. Thus, there 

is a need to rely on scientific evidences, so as to predict the future trend as well as to 

have accordingly mitigation plan. In order to evaluate the impacts of climate change on 

runoff of Vu Gia - Thu Bon river system, a deterministic hydrological model MIKE SHE 

model has been built. This model accounted mostly the runoff factors, from surface flow 

to groundwater flow, from infiltration to evapotranspiration. It is hoped to reduce a part of 

uncertainties when assessing the impact of climate change for the region. This model is 

calibrated and validated against daily data and monthly data in the period of 1990-2000 

and 2001-2010, respectively. The performance of model is showed via the shapes of 

hydrograph, and via goodness of fits with seven gauging stations in this catchment. These 

robust performances confirm the high efficiency of deterministic distributed hydrological 

models in simulating the hydrological process as well as in assessing the impact of 

climate change to the run off for a large catchment. 

The variation trend of run off factors in Vu Gia Thu Bon catchment under the impact of 

climate change is forecasted to become significantly. Results of modelling based on the 

change in precipitation, evapotranspiration with ECHAM, CCSM and MIROC models 

under A2 emission scenario in the period 2091-2100 demonstrate the increasing trend of 

climate variables. The great variability between baseline and future shows the serious 

impacts of climate change with this region. According to the analysis, the stream flow will 

change significantly in the whole catchment. The flow in the months of flood season could 

be increased averagely from 25% to 125% in comparison with present in all analyzed 

locations. In particular, the change could obtain up to 225 % at mountainous regions. On 

the contrary, at the locations of Thu Bon river, the drought in this period might happen 

more violent. The analysis gives the capacity that the base flow at several months in this 

catchment will decrease. Simultaneously, the change in temporal factors is presented 

clearly in this region. The above results indicate that the dry season is likely to be earlier 

in this catchment. Meanwhile the flood season extends and maintains longer. 

 The consequence of river flow change is expected to damage significantly local socio 

economic development and people at Vu Gia Thu Bon Catchment. In face of the context, 

this study is aiming to provide realistically scientific evidences about the impact of global 

warming to the catchment, especially the scale variability of inundation area and potential 
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risk of this catchment faced to the climate change. The variation of flood flow is utilized in 

hydraulic modelling to project the change of future inundation area. The methodology by 

combining distributed hydrological and hydraulic models is hoped to reduce the 

uncertainty and save the time to reflect the most accurately the change in stream flow 

and flood area in Vu Gia Thu Bon catchment. The inundated area results are overlapped 

with land use map to demonstrate the flood potential risks of this river system. This study 

also considers the role of sea level rising in the future by considering this factor in 

simulation or not.  

The study makes evidence that with a mountainous topography on the West, the steep 

river system and the average altitude of flood prone area higher than sea level, the main 

cause of inundation rising in future comes mostly from river flow which originate 

significantly from precipitation increase. This finding is very meaningful for the flood 

inundation simulation in future as well for the social economic development plan in this 

catchment. 

The simulated result demonstrates the significant impact of climate change to the 

downstream part of Vu Gia Thu Bon catchment. Accordingly, the flows corresponding 

with three GCMs scenarios take an increasing trend. This increase of stream flow makes 

the inundated situation at downstream parts occurring catastrophically.  

Total inundation area is roughly 46.31 % higher than 1999 flood event. More seriously, 

the inundation area deeper than 2m could expand around 70% in comparison with 

present scenario. The destruction of 100 year return period flood event at present is really 

awful for the catchment. Therefore, in future the destroyable characteristic of flood event 

having this frequency will be more violent. The peak water level of these events can be 

higher than present event from 2m to 4 m. It might make the inundation over catchment. 

The flood area corresponding with these floods can be more than now from 17% to 56%. 

Around 35% regional area is forecasted under the flood level in the end of this century. 

These figures confirm the violence of natural disaster in future, which is inherently fierce 

at the moment.  

In order to account the impact of future flood disaster due to climate change, also figure 

out which domain will be affect much by their impact, the flood risks are established by 

overlapping flood hazard into land use maps. The risk maps demonstrate the serious 

consequences due to natural catastrophes towards agricultural productions, especially 

rice production and rural settlement sin Vu Gia Thu Bon. Counting with flood level higher 

0.5 m, rural settlement, annual crops, and specialized rice field are three domains which 
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will be influenced greatly by the consequence of global warming. In the last years of 21st 

century, flood rural settlement area might be 19,041 hectare increasing 178% versus 

1999 flood event. This trend is similar to annual crops and specialized rice field, when 

their flood area are 7106 hectare, 91% and 11269 hectare, 156% respectively. Moreover, 

the destroyable magnitude of 100 year flood event is definitely so furious for the 

catchment. 

The above results are considered as a basis for local authorities to make strategies in 

order to mitigate the effect of climate change to this area and to help the population in Vu 

Gia Thu Bon Catchment prevent actively and adapt better with natural disasters in the 

end of this century. It is also useful to water resource agencies, irrigated management, 

and agricultural departments to get an insight on this phenomenon. From that they will 

reorganize the product scheme, harvest plan, as well as suitable structure of crop plans. 

The contents of this chapter were published at SimHydro 20140:Modelling of rapid 

transitory flows,11-13 June 2014, Sophia Antipolis. France (Vo & Gourbesville, 2014c), 

11th International Conference on Hydroinformatics HIC 2014, New York City, USA. (Vo 

& Gourbesville, 2014b), 22nd Hydrotechnical conference of the CSCE, April 29-May 2nd, 

Montral Canada. (Vo & Gourbesville, 2015c), 36th IAHR World Congress - The Hague, 

Netherlands, 28 June – 3 July, 2015 (Vo & Gourbesville, 2015b) and as well submitted at 

Journal of Hydro-environment Research and  Journal of La Houille Blanche. 
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Chapter 6      CONCLUSIONS AND PERSPECTIVES 

6.1 Conclusions 

There is a perception that extreme climatic and hydrological events have become more 

frequent in recent years. This phenomenon may be caused by man-induced global 

warming (Robson, 2002). Their impacts have been damaged significantly in many 

aspects of human society as life and property on a global scale. Many areas are expected 

to face risk of temperature, precipitation and sea level rising. The customs and life space 

will change greatly in future under these changes. Particularly at poor and developing 

countries, the impacts of climate change are thought to be more serious due to the 

vulnerability of these regions where the infrastructure and people awareness are still not 

enough to adapt with catastrophic natural disasters. Despite that, these changes mostly 

bring the negative consequences to people lives, completely eliminating this natural 

phenomenon is likely impossible. Thus, there is a need to rely on scientific evidences, so 

as to predict the future trend as well as to have accordingly mitigation plan. 

Vietnam is located in the region of the south East Asia monsoon. Most of the population 

work in agriculture and inhabitants essentially concentrate at the coastal plain, Vietnam 

is among the countries most heavily affected by the consequences of climate change. 

According to the assessment of Vietnam government, in late 21st century, Vietnam's 

yearly mean temperature will increase 2-3°C, the total yearly and seasonal rainfall will 

increase while the rainfall in dry seasons will decrease, the sea level could rise from 0.75 

to 1m as compared to the 1980-1999 period. About 10-12% of Vietnam's population would 

be directly impacted and country could lose around 10% of GDP. These challenges urge 

Vietnam to have a plan, suitable policies and measures to improve public awareness, as 

well as capacity to respond to climate change. Efforts to aid the local population to 

strengthen its adaptive competence against natural disasters, also increase the capacity 

in responding the climate change, this thesis is proposed to expectedly provide confident 

assessments of variation in hydrological regime within a river basin scale. The study is 

carried out at Vu Gia Thu Bon catchment, one of the large river systems at Viet nam 
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central where the economy lose annually around 6.26% of the GDP caused by natural 

disaster and in future this figure can reach 10% of the GDP under the climate change. 

 

6.1.1 Modelling 

The first part of this study concentrates on constructing a hydrological model which would 

be an efficient tool for assessing the variation of stream flow in the future. By the 

advantage of a deterministic distributed model, the MIKE SHE from DHI software is 

selected for the aim of representing the hydrological process of Vu Gia Thu Bon 

Catchment. This selection is hoped to overcome the difficulty concerning to the lack of 

data, as well as the large scale in simulating for a catchment as Vu Gia Thu Bon. The 

model is built over 10,350 Km2 of catchment and it considers mostly the runoff factors, 

from surface flow to groundwater flow, from infiltration to evapotranspiration. 

In deterministic hydrological modelling, rainfall can be defined as a major input data. 

Unfortunately, in this region, rainfall records are incomplete and not dense enough to 

accurately represent the reality of rainfall spatial distribution over large catchments. 

Hence, redistributing spatially the rainfall is required for hydrological modelling. In order 

to reduce the uncertainty related to the interpolated technics, the rainfall of 15 local 

meteorological stations over an area 10,350 km2 has been redistributed spatially with 

several different interpolation methods such as Thiessen polygons, Inverse-distance 

weight, Spline, Natural neighbor, Ordinary Kriging, Geographically weighted regression. 

The result demonstrates that the Kriging is the most suitable method for rainfall 

distribution at Vu Gia Thu Bon catchment. With only one station observed for average 

area of 700 km2, this density is quite sparse. Therefore, the grid size of rainfall interpolated 

data mostly does seemly not influence on run off simulation. Comparing in three grid 

sizes, eg 1000m, 2000m, 4000m, the difference between these three scenarios is not 

very significant, even if the 1000m scenario gives the best result.  

In order to make advantage for calibrating a complex distributed hydrological model, there 

is a need to estimate sensitivity analysis of parameters including in the model. Relied on 

the response of each parameter to river flow, as well their elasticity analysis, only several 

parameters, which have great effects on the model, are chosen for the purpose of 

calibration model. Following that, the variation of runoff due to parameter changes is quite 

different. In Vu Gia Thu Bon catchment, the peak flow is affected significantly by most of 

the model parameters while the base flow is merely influenced by horizontal saturated 

hydraulic conductivity of saturated and saturated hydraulic conductivity of unsaturated 



Chapter 6 – Conclusion and perspective 

229 

 

zones. The analysis has demonstrated the interest of the sensitivity analysis in the 

calibration of distributed hydrological model. At the same time, this process helps to 

determine a useful impact interval of each factor on the stream flows and contribute to 

simplify the calibration process. Based on these results, the MIKE SHE model is 

calibrated and validated against the daily and monthly data recorded at seven stations 

and for the periods of 1991-2000 and 2001-2010, respectively. The quality of the results 

is demonstrated with Nash Sutcliffe and correlation coefficients that reach 0.82 and 0.92 

respectively in discharge comparison. With the water levels, the obtained coefficients are 

lower but the quality of the results remains high: Nash Sutcliffe and correlation coefficients 

reach 0.77 and 0.89, respectively in the upstream part of the catchment. This analysis 

indicates again the performance of the deterministic distributed modeling approach in 

simulating hydrological processes and confirms the usefulness of this model with 

ungauged catchment or large catchment. Additionally, this analysis proves the role of 

multi calibration in increasing the accuracy of hydrological model for large catchment. 

Moreover, factors affecting potentially the model uncertainty are also analyzed. The 

model uncertainty might be from many sources, however, in this study, it is judged to not 

come from mode algorithm but caused from the lack of data, the large catchment scale 

and the limitation of computer. Using online topographical data, low rainfall observed 

station density, coarse rainfall measured time step, the lack of soil property, land cover, 

and ground water data potentializes the uncertainty for modelling the hydrology at a large 

catchment. An overview of above risks has been used to explain the uncertainty of this 

MIKE SHE model. Nevertheless, these limitations need to be considered and overcome 

in the future, at this moment, the constructed model has been proved its capacity for 

translating the hydrological process in Vu Gia Thu Bon catchment. 

Beside the purpose of assessing accurately the flood hazard for the catchment, the 

second part of the thesis is to establish a hydraulic model which can map the stream flow 

variation. Considering on flood prone area, topographic characteristic, historical flooding 

of the catchment, the hydraulic model is proposed to set up for only downstream area 

instead of the whole catchment. Throughout pros and cons of the present hydraulic 

models including 1D, Quasi 1D, 2D, and 1D/2D coupling models and testing results, it is 

seen that the last one is the most reasonable for flood modelling at this catchment.  The 

MIKE FLOOD is one model in the form of coupling between 1D (MIKE 11) and 2D (MIKE 

21) is built over 1,780 Km2 of catchment. The model is validated with the historical flood 

event in the year of 2007. The model shows its performance via high statistical index at 

three gauging stations, Ai Nghia, Giao Thuy, Cau Lau. Accordingly, the difference 
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between the highest simulated water level at these three stations and observations is not 

significant. The number varies approximately from 10 to 20 cm. Comparing 3h data, the 

correlation coefficients between simulation and observation reach relatively high, all 

stations R index passed 0.85. The Nash-Sutcliffe coefficient could reach to 0.83. For the 

above persuasive evidences, this MIKE FLOOD model is completely applicable to 

construct flood plain as well as forecast their variation at Vu Gia Thu Bon Catchment. In 

developing the MIKE FLOOD model, there are several uncertainties which have been 

demonstrated. With the most important role, the topographical data is considered as the 

big source of uncertainty towards flood mapping process of Vu Gia Thu Bon catchment. 

This judgment is based on the big variability after comparing with the flood map which is 

constructed from different resolutions, quality, and their origins. This analysis is hoped to 

add more evidence for the effect of topography to flood modelling. 

 

6.1.2 Climate change tendency and potential risk. 

The impact of climate change is evaluated by combining two above models. The first is 

to consider the variation of river flow due to the change in future. To assess the most 

negative consequences of climate change towards the region, the variation of climate 

factors using in this study is constructed on GCMs with extreme emission scenarios. 

Concretely, they are built under A2 scenario which assumes that a very heterogeneous 

world with continuously increasing global population and generally oriented economic 

growth that is more fragmented and slower than it other storyline. The rainfall and 

evapotranspiration in the period of 2091-2100 is calculated based on present observation 

of the period of 1991-2000 for three basic scenarios, e.g CCSM3.0, MIROC- 3.2, ECHAM 

5. The impacts of these factors, which change towards the stream flow of Vu Gia Thu Bon 

catchment, are counted via validated MIKE SHE model. Relied on the advantage of 

distributed model, the difference between present and future run off is able to compare at 

almost outlets of sub catchments and important points of two main branches of the 

system, Vu Gia and Thanh My. The comparison demonstrates that there exists a big 

change in the river flow due to the global warming in the end of 21st century. This change 

is not only on the flow quality but also on time appearance. According to the analysis, the 

stream flow will change significantly in the whole catchment. The flow in the months of 

flood season could be increased averagely from 25% to 125% in comparison with present 

in all analyzed locations. In particular, the change could obtain to 225 % at mountainous 

regions. The variation of run off leads the flood to happen more frequently and extremely. 
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The flow increase is predicted to occur in the whole catchment, but this tendency is more 

severe at mountainous region, especially at sub catchments of Vu Gia river when the 

results show that the future river flow at these areas is higher than present from two to 

three times. Due to the typical topography short and slope, it is forecasted that the 

catastrophes from flashflood obviously rise in area. There has been an increasing trend 

in the runoff of dry season in the end of 21st century. On the contrary, at the locations of 

Thu Bon river, the drought in this period might happen more violent. The analysis gives 

the capacity that the base flow at several months in this catchment will decrease. The 

decrease is showed the most clearly at the months of January – February and May – 

June. This phenomenon predictably makes the drought hazard in this region become 

more intricate and more imperative. Simultaneously, the change in temporal factors is 

presented clearly in this region. The above results indicate that the dry season is likely to 

be earlier in this catchment. Meanwhile the flood season extends and maintains longer.  

The significant flood increase is predicted to result definitely in the great enlargement of 

inundation area at Vu Gia Thu Bon catchment. It seems to exceed the imagination. The 

main cause of the flow increase in the future is determined not from sea level rise, it is 

from the inland flow. The increasing trend of discharge in hydrological model leads to 

raise almost water level at the downstream. The future water level at several cases can 

be roughly over 3 m than actual. Thus, it is not surprising when the inundation area in the 

end of 21st augments is greatly in comparison with current ones at Vu Gia Thu Bon 

catchment. Total inundation area (corresponding to flood depth >=0.5m) is minimum 

46.31 % higher than 1999 flood event. Especially, the difference is really catastrophic with 

MIROC scenario when the future inundation area might be 141% higher than the 1999 

flood event.  The increasing trend is similar with 100 year return period event, however, 

the variation is not so great with real scenario. The maximum difference between future 

and present is MIROC. The flood area due to 100 year return period of MIROC just 

increases 56.72%. More seriously, the heavy inundation area (deeper than 2m) could 

expand around 70% to 287% in comparison with 1999 flood event. The expansion of flood 

area in future is projected to make more damages for Vu Gia Thu Bon catchment. The 

increase of flood area is expected to ruin more gravely the catchment than actual. This 

study only considers on downstream area so it is not surprising when damages from flood 

disaster mostly concentrate on the domain of rural settlement, annual crops, and 

specialized rice field. In 1999, three above land use types occupy roughly 88% of total 

flood area. This rate is not changed in the case of 100 year return period flood event at 

present and future scenarios. The consequence due to flood disaster in the end of century 
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might be more critical than the one of historical flood event in 1999 many times. When 

the biggest varied scenario, MIROC, inundated settlement area in the end of 21st century 

is predicted higher than three times in comparison with 1999 event. The increasing of this 

kind of land use is around 12,193.51 hectare. With remain scenarios, the consequences 

for this domain are lower but the serious is not change. The increasing flood area 

compared to 1999 flood event of ECHAM is 3,588 hectares and CCSM is 6,756 hectares. 

Besides that, regional primary crop plants will be affected significantly when this product 

area might be sunk deeply under flood flow. The statistic show that more than 34% 

specialized product rice will be flooded in the end of century with ECHAM. This area is 

42% and 54% in CCSM and MIROC scenarios, respectively. The consequence of 100 

year return period flood events is forecasted more awful. The event corresponding with 

this frequency are believed to damage more or less 60% rice product area (with MIROC 

project). The future situation is expected to risk gravely to the livelihood of population at 

downstream part of Vu Gia Thu Bon catchment.  If there is no changes in awareness, 

these potential risks will kill more peoples, destroy the harvest and damage more property 

of catchment.   

The happening of climate change keeps going to complicated and severe. Determining 

exactly run off variation in the future is so difficult, at least with the limitation of computed 

capacity and data simulation at the moment. Hence, in this study, the result is only the 

prediction. It is merely hoped to provide one more scientific evidences for enhancing the 

population awareness to respond the climate change. It is also expected to be useful for 

local authority to plan the residential, produced area, as well propose the strategy to 

mitigate the consequence of this natural disaster. 

 

6.2 Recommendations and perspectives 

Natural environment plays a vital role towards the existence and development of human 

society. Hence, understanding about the climate change and its related problems has 

been considered as decided issue for our survival in the future. Nevertheless, the nature 

is a complex system. Completely assessing this system for predicting the future 

happening requires a long time simulation, necessary data, and great computation 

system. These capacities seem to be not available in present day. As these reasons, 

although this study has accomplished the proposal study objectives, outlined the variation 

trend of climate and hydrological factors in the end of 21st, also predicted the potential 

risks possibly caused by climate change for Vu Gia Thu Bon Catchment, there are still a 
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lot of uncertainties and problems needed to improve. Several issues will be suggested in 

following part to solve the remaining things.  

 

6.2.1 Hydrological modelling. 

As above discussions, because of the lack of simulated data, the model performance is 

still not perfect. It might result in the inaccurate prediction for future scenario. Therefore, 

trying to increase the model performance is one of priority for enhancing the confidence 

in climate change simulation. Actual topographic data using in this study is from online 

source. The quality of this data is not so high. With 90m of resolution, 16m of probable 

vertical error, it is not expected to describe truthfully the catchment topography. 

Simulating with better DEM quality is seen as one of solutions to augment the model 

efficiency. Srtm DEM 30m from NASA releasing in 2014 or 15 m from LUCCi project 

creating for this region is hoped to give better simulated result. Furthermore, the detail of 

other input data, such as land use, soil, vegetable growth, ground water, is low. These 

data were simplified in order to save the time calibration. In fact, they are able to express 

the fundamental characteristic of catchment, however to model reaching better efficient, 

their concreteness is more required. The density of cross section in 1D model decides its 

capacity in representing the river geometry. Increasing its density is also the objective in 

next time to enhance the reality of model. Besides that, the number of simulated branch 

now is limited at 44, it is really not the real branch quantify in this catchment, adding more 

branch for simulation is another solution to make this model become more accurate. At 

this moment, this MIKE SHE model has been validated merely against surface flows. In 

spite of taking into account the ground water, the MIKE SHE has not yet been compared 

with the measurement of this component. Thus, finding out the observed data served to 

confirm the quality of model on the aspect of describing the ground water has a great 

meaning for the catchment in developing socio economy. 

 

6.2.2 Hydraulic model.  

Like hydrological model, the resolution of topographic data has a significant role towards 

the accuracy of hydraulic model. Therefore, by low performance of computer, the present 

study just stays in simulating with the 30m data. Consequently, the flood propagation has 

not been expressed detail enough. Continuing to modelling with smaller cell size, such as 

15m, 10m, 5m is always targeted to make the flood map more accurate. The data input 
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at MIKE FLOOD now ignore the effect of infrastructure factors such as weir, bridge, street, 

and building. This makes the model not reflect well the reality. Taking into account the 

influence of infrastructure for hydraulic modelling plays an important role to improve the 

model quality.  

 

6.2.3 Flood hazard mapping and flood risk estimation 

In the scope of the thesis, there are only two flood maps corresponding with 1999 flood 

historical event and 100 year return period event being established. Constructing more 

flood event, as well with more frequency is necessary. This work helps to provide to local 

authority the diversity in responding actively with natural disaster. Moreover, the actual 

map merely supply the flood depth, flood area, other information will be presented in the 

next time. Regarding to the potential risks, the current calculation only introduces flood 

damage as the form of inundation area due to land use map. The more detail 

consequence of flood catastrophe will be assessed in the next period with a wide range 

of damage when having enough data, such as accommodation, property, productivity of 

vegetation. Based on these statistics, the damage curve will also be built as the basic tool 

for evaluating the impact of flood disaster in the catchment. Inversely, the drought disaster 

will likewise be distributed spatially overall the catchment to count the future water 

requirement and damage due to this natural phenomenon in this study area. 

 

6.2.4 Climate change  

The limitation of measured data implies that the simulation is carried out only in the period 

of ten years. As a result, predicted varied tendency contains a lot of uncertainties. 

Extending the simulated period is required to make clearer the future trend. As presenting 

about the uncertainty in climate scenario, hence modelling more than three GCMs and 

more Greenhouse gas emission scenarios as well as trying with other downscaling 

methods are necessary for reducing the uncertainty in climate modelling. In addition, the 

thesis results need to update with the new climate scenario IPCC’s AR 5 which has just 

been released in 2013. The simulating with new data will help to validate the last 

prediction about the climate change impact on Vu Gia Thu Bon catchment. The study at 

present only accounts the variation of factors related to meteorology, other factors are 

supposed to be not change. It is not reasonable, so accounting in modelling other factors 
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change such as land cover are considered to increase the reliability of climate change 

projection. 
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APPENDIX  

Appendix A: Rainfall and evapotranspiration data input. 

 

 

Figure A1a. Rainfall data in Vu Gia Thu Bon catchment in period of 1990 – 2010. 
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Figure A1b. Rainfall data in Vu Gia Thu Bon catchment in period of 1990 – 2010. 
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Figure A1c. Rainfall data in Vu Gia Thu Bon catchment in period of 1990 – 2010. 
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Figure A1d. Rainfall data in Vu Gia Thu Bon catchment in period of 1990 – 2010. 
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Figure A1e. Rainfall data in Vu Gia Thu Bon catchment in period of 1990 – 2010. 
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Figure A1f. Rainfall data in Vu Gia Thu Bon catchment in period of 1990 – 2010. 

 

 

  

 

Figure A2a. Avapo transpiration using for MIKE SHE model. 
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Figure A2b. Avapo transpiration using for MIKE SHE model. 

 

Appendix B: Program for spatially re-distributing rainfall 

(working in ArcGIS environment)  

B1. Inverse distance weighted method.  

import arcpy 

import os 

arcpy.CheckOutExtension("spatial") 

for k in range(1,n): 

    z=str(k) 

    bg=(k-1)*250 

    en=k*250 

    n = r"e:\\SIG\\n"+z 

    if not os.path.exists(n): os.makedirs(n) 

    t = r"e:\\SIG\\t"+z 

    if not os.path.exists(t): os.makedirs(t) 

    point = "C:\\Users\\Vongo0\\Desktop\\dailyrain1\\"+z+".shp" 

    for i in range(bg,en): 

        arcpy.env.extent=arcpy.Extent(0,0,165000,145000) 

        name=str(i) 

        field="P"+name 
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        raster= "e:\\SIG\\n"+z+"\\"+name 

        TXT= "e:\\SIG\\t"+z+"\\"+name.zfill(4)+".TXT" 

        arcpy.gp.Idw_sa(point, field, raster, "10000", "2", "VARIABLE 12", "") 

        arcpy.RasterToASCII_conversion(name, TXT) 

        mxd = arcpy.mapping.MapDocument("CURRENT") 

        df = arcpy.mapping.ListDataFrames(mxd)[0] 

        for lyr in arcpy.mapping.ListLayers(mxd, "", df): 

            if lyr.name.lower() == name: 

                arcpy.mapping.RemoveLayer(df, lyr) 

            arcpy.RefreshActiveView() 

 

B2. Kriging method.  

import arcpy 

import os 

arcpy.CheckOutExtension("spatial") 

for k in range(1,n): 

    z=str(k) 

    bg=(k-1)*250 

    en=k*250 

    n = r"e:\\SIG\\n"+z 

    if not os.path.exists(n): os.makedirs(n) 

    t = r"e:\\SIG\\t"+z 

    if not os.path.exists(t): os.makedirs(t) 

    point = "C:\\Users\\Vongo0\\Desktop\\dailyrain2\\"+z+".shp" 

    for i in range(bg,en): 

         arcpy.env.extent=arcpy.Extent(0,0,165000,145000) 

        name=str(i) 
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        field="P"+name 

        raster= "e:\\SIG\\n"+z+"\\"+name 

        variance= "e:\\SIG\\v"+z+"\\"+name 

        TXT= "e:\\SIG\\t"+z+"\\"+name.zfill(4)+".TXT" 

        arcpy.gp.Kriging_sa(point, field, raster, "Spherical 1000", "1000", "VARIABLE 

12", "") 

        arcpy.RasterToASCII_conversion(name, TXT) 

        mxd = arcpy.mapping.MapDocument("CURRENT") 

        df = arcpy.mapping.ListDataFrames(mxd)[0] 

        for lyr in arcpy.mapping.ListLayers(mxd, "", df): 

            if lyr.name.lower() == name: 

                arcpy.mapping.RemoveLayer(df, lyr) 

            arcpy.RefreshActiveView() 

 

B3. Spline method.  

import arcpy 

import os 

arcpy.CheckOutExtension("spatial") 

for k in range(1,n): 

    z=str(k) 

    bg=(k-1)*250 

    en=k*250 

    n = r"e:\\SIG\\n"+z 

    if not os.path.exists(n): os.makedirs(n) 

    t = r"e:\\SIG\\t"+z 

    if not os.path.exists(t): os.makedirs(t) 

    point = "C:\\Users\\Vongo0\\Desktop\\rain\\rain"+z+".shp" 
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    for i in range(bg,en): 

        arcpy.env.extent=arcpy.Extent(0,0,165000,145000) 

        name=str(i) 

        field="P"+name 

        raster= "e:\\SIG\\n"+z+"\\"+name 

        TXT= "e:\\SIG\\t"+z+"\\"+name.zfill(4)+".TXT" 

        arcpy.gp.Spline_sa(point, field, raster, "1000", "REGULARIZED", "0.1", "12") 

        arcpy.RasterToASCII_conversion(name, TXT) 

        mxd = arcpy.mapping.MapDocument("CURRENT") 

        df = arcpy.mapping.ListDataFrames(mxd)[0] 

        for lyr in arcpy.mapping.ListLayers(mxd, "", df): 

            if lyr.name.lower() == name: 

                arcpy.mapping.RemoveLayer(df, lyr) 

            arcpy.RefreshActiveView() 

 

B4. Geographically weighted regression method.  

import arcpy 

import os 

arcpy.CheckOutExtension("GeoStats") 

Point = "e:\\SIG\\point\\point.shp" 

for i in range(1,n): 

    z=str(i) 

    start=(i-1)*250 

    end=i*250 

     t = r"e:\\SIG\\txt\\t"+z 

    if not os.path.exists(t): os.makedirs(t) 

    Data = "e:\\SIG\\data\\"+z+".shp" 
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    for k in range(start,end): 

        n = r"e:\\SIG\\output\\n"+str(k) 

        if not os.path.exists(n): os.makedirs(n) 

        n1=n 

        Parameter = "e:\\SIG\\output\\n"+str(k)+"\\out.shp" 

        Pre = "e:\\SIG\\output\\n"+str(k)+"\\result.shp" 

        rain="P"+str(k) 

        arcpy.GeographicallyWeightedRegression_stats(Data, rain, "Z1000", 

Parameter, "ADAPTIVE", "BANDWIDTH PARAMETER", "", "50", "", n1, "1000", 

Point, "Z", Pre) 

        shapefile = "result" 

        raster="e:\\SIG\\output\\n"+str(k)+"\\raster" 

        arcpy.PointToRaster_conversion(shapefile, "Predicted", raster, 

"MOST_FREQUENT", "NONE", "4000") 

        TXT= "e:\\SIG\\txt\\t"+z+"\\"+str(k).zfill(4)+".TXT" 

        arcpy.RasterToASCII_conversion(raster, TXT) 

        mxd = arcpy.mapping.MapDocument("CURRENT") 

        df = arcpy.mapping.ListDataFrames(mxd)[0] 

        for lyr in arcpy.mapping.ListLayers(mxd, "", df): 

            if lyr.name.lower() == "z1000" or lyr.name.lower() == "out" or 

lyr.name.lower() == "intercept" or lyr.name.lower() == "result" or lyr.name.lower() == 

"raster": 

                arcpy.mapping.RemoveLayer(df, lyr) 

            arcpy.RefreshActiveView() 
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Appendix C: Make grid series .dfs2 for Mike model 

from ArcGIS output files. 

 

The performance of distributed model in simulating the hydrological process is 

undeniable. However, there are still several existing problems when building these kinds 

of models. One of them is distributed data following the time and the space. Spatial 

distributed data at a time might be completely constructed by the support of ArcGIS. 

Therefore, the tool, which could merge all these data files into one grid series file, has not 

appeared seemingly yet. It makes difficulties when representing the variation of spatial 

factors due to the time such as the topography, land use, soil map, precipitation.... etc. 

For example, Mike by DHI is one of distributed models. It supplies the function to input 

grid series ‘fully distributed or dfs2 file’, but how to build these kinds of data? This is really 

a big question, at least with a long project. It is to be hoped that this simple manual would 

take a small part to solve this limitation. 

 

C1. Define the difference between 2 format txts.  

ArcGIS could export data under txt file or ascii file. However, the format of these files 

could not input directly by Mike model. DHI produced a module in Mike Zero to convert 

txt file/ ascii file to dfs2, but it just apply for one step data. The mission is looking for a 

method to reform and combine txt files which Mike model can read.  

 

a) ARCGIS output format (Data for one step):  

ncols 6  

nrows 6  

xllcorner 842126.66487  

yllcorner 1776128.65037  

cellsize 50.00000  

NODATA_value -9999  

18.5770 18.5652 18.5550 18.5467 18.5403 18.5358  
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18.5502 18.5376 18.5267 18.5177 18.5107 18.5060  

18.5241 18.5105 18.4988 18.4891 18.4816 18.4764  

18.4987 18.4841 18.4715 18.4609 18.4527 18.4470  

18.4742 18.4585 18.4447 18.4332 18.4242 18.4179  

18.4508 18.4338 18.4188 18.4061 18.3960 18.3891 

 

 b) Txt file/ ascii file format requiring by Mike family (merged for many time steps)  

 

"VU GIA THU BON – VIET NAM" ""  

"Dim" 2  

"Geo" 

"PROJCS["WGS_1984_UTM_Zone_48N",GEOGCS["GCS_WGS_1984",DATUM["D_W

GS_1984",SPHEROID["WGS_1984",6378137,298.257223563]],PRIMEM["Greenwich",

0],UNIT["Degree",0.017453292519943295]],PROJECTION["Transverse_Mercator"],PA

RAMETER["False_Easting",500000],PARAMETER["False_Northing",0],PARAMETER["

Central_Meridian",105],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_

Of_Origin",0],UNIT["Meter",1]]" 108.197 16.0414 0.884237  

"Time" "EqudistantTimeAxis" "2007-11-10" "19:00:00" 5 86400  

"NoGridPoints" 6 6  

"Spacing" 50 50  

"NoStaticItems" 0  

"NoDynamicItems" 1  

"Item" "ArcView Grid Data" "Precipitation Rate" "mm/day"  

NoCustomBlocks 1  

"M21_Misc" 1 7 0.798237 0 -900 0 0 0 0  

"Delete" -1E-035  

"DataType" 0  

"tstep" 0 "item" 1 "layer" 0  
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18.577 18.5652 18.555 18.5467 18.5403 18.5358  

18.5502 18.5376 18.5267 18.5177 18.5107 18.506  

18.5241 18.5105 18.4988 18.4891 18.4816 18.4764  

18.4987 18.4841 18.4715 18.4609 18.4527 18.447  

18.4742 18.4585 18.4447 18.4332 18.4242 18.4179  

18.4508 18.4338 18.4188 18.4061 18.396 18.3891  

"tstep" 1 "item" 1 "layer" 0  

65.6212 65.5434 65.4755 65.4183 65.3727 65.3392  

65.5318 65.4491 65.3768 65.3159 65.2673 65.232  

65.4457 65.3576 65.2802 65.2149 65.163 65.1254  

65.3638 65.2694 65.1861 65.1157 65.0597 65.0194  

65.2868 65.1854 65.0953 65.0187 64.9577 64.9142  

65.2162 65.1067 65.0086 64.9246 64.8575 64.8098  

"tstep" 2 "item" 1 "layer" 0  

302.812 302.802 302.792 302.783 302.774 302.766  

302.836 302.826 302.816 302.807 302.798 302.789  

302.861 302.851 302.841 302.831 302.821 302.812  

302.887 302.875 302.865 302.854 302.845 302.835  

302.912 302.901 302.889 302.878 302.868 302.858  

302.938 302.926 302.914 302.902 302.892 302.882  

"tstep" 3 "item" 1 "layer" 0  

149.476 149.529 149.574 149.611 149.638 149.654  

149.158 149.217 149.268 149.309 149.34 149.359  

148.835 148.901 148.959 149.006 149.042 149.063  

148.506 148.581 148.646 148.701 148.742 148.766  

148.17 148.254 148.329 148.392 148.44 148.469  

147.825 147.92 148.006 148.079 148.136 148.171  
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"tstep" 4 "item" 1 "layer" 0  

7.93192 7.93278 7.93358 7.93434 7.93508 7.93582  

7.94639 7.94717 7.9479 7.94861 7.9493 7.95001  

7.96091 7.9616 7.96224 7.96287 7.96352 7.9642  

7.97549 7.97608 7.97662 7.97716 7.97773 7.97837  

7.99017 7.99062 7.99104 7.99147 7.99195 7.99253  

8.00495 8.00527 8.00553 8.00582 8.00618 8.00669 

 

C2. Reform the format.  

 

 

 

Change the format of each txt/ascii file by the Python code as follow (put all files txt/ascii 

in same folder, change corresponding information and run the code).  

 

for i in range(start step ,end step):  

name="C:\\Users\\TEMP.AQUACLOUD.002\\Desktop\\Ma2\\"+str(i)+".txt"  

s="tstep "  

f=open(name,"r+")  
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data=f.read()  

k=data.replace("ncols 6\nnrows 6\nxllcorner 842126.66487\nyllcorner 

1776128.65037\ncellsize 50\nNODATA_value -9999","*tstep* "+str(i)+" *item* 1 

*layer* 0")  

s=str(k)  

a=open(name,"r+")  

a.write(s)  

a.close() 

 

C3. Merge all to one file.  

For this step, after converting, need to establish the part for the first txt file that could 

provide general informationse.x coordinate system, time step, amount of step, type of 

data, unit… as below:  

 

"VU GIA THU BON – VIET NAM" ""  

"Dim" 2  

"Geo" 

"PROJCS["WGS_1984_UTM_Zone_48N",GEOGCS["GCS_WGS_1984",DATUM["D_W

GS_1984",SPHEROID["WGS_1984",6378137,298.257223563]],PRIMEM["Greenwich",

0],UNIT["Degree",0.017453292519943295]],PROJECTION["Transverse_Mercator"],PA

RAMETER["False_Easting",500000],PARAMETER["False_Northing",0],PARAMETER["

Central_Meridian",105],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_

Of_Origin",0],UNIT["Meter",1]]" 108.197 16.0414 0.884237  

"Time" "EqudistantTimeAxis" "2007-11-10" "19:00:00" 5 86400  

"NoGridPoints" 6 6  

"Spacing" 50 50  

"NoStaticItems" 0  

"NoDynamicItems" 1  

"Item" "ArcView Grid Data" "Precipitation Rate" "mm/day"  
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NoCustomBlocks 1  

"M21_Misc" 1 7 0.798237 0 -900 0 0 0 0  

"Delete" -1E-035  

"DataType" 0  

"tstep" 0 "item" 1 "layer" 0  

18.577 18.5652 18.555 18.5467 18.5403 18.5358  

18.5502 18.5376 18.5267 18.5177 18.5107 18.506  

18.5241 18.5105 18.4988 18.4891 18.4816 18.4764  

18.4987 18.4841 18.4715 18.4609 18.4527 18.447  

18.4742 18.4585 18.4447 18.4332 18.4242 18.4179  

18.4508 18.4338 18.4188 18.4061 18.396 18.3891  

Then go to Command Prompt, introduce the contained folder, call the command 

‘copy/a*.txt output.txt’  

 

C4. Make the dfs2 file.  

 

Open Mike Zero model => Open a new file => choose new grid series => choose ‘from 

AscII file” => introduce the file. 
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Appendix D: Simulation specification and model 

processing of MIKE SHE 

 

 

Figure D1. MIKE SHE model specification for Vu Gia Thu Bon simulation. 

 

 

Figure D2. Flood code map automatically created in MIKE SHE. 
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Figure D3. Difference between river bank and cross section in MIKE SHE. 

 

Appendix E: Flood model data input. 

 

 

Figure E1. Boundary condition setting in MIKE FLOOD.  
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Figure E2. Input data corresponding with the setting in Figure E1  
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Figure E3. Input data corresponding with the setting in Figure E1 
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Figure E4. Input data corresponding with the setting in Figure E1 

 

 

Appendix F: Data for climate change. 

 

 

 
 

 
 

Figure E4. Rainfall scenario for future variation estimation.  
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Figure E5. Rainfall scenario for future variation estimation.  
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Figure E6. Rainfall scenario for future variation estimation of river flow. 

 

 

 
 

Figure E7. Boundary data for future variation estimation of inundation area. 
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Figure E8. Boundary data for future variation estimation of inundation area. 
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Figure E9. Boundary data for future variation estimation of inundation area. 
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Appendix F: La méthode de renouvellement 

 

 

The “méthode du renouvelement” is a new issue what is generated by EDF group to solve 

the weakness when estimating the frequency for a short data time series (MeteoFrance, 

2014). The main principle of this method is to generalize the classical POT by allowing 

the exceedances over the threshold to follow a probability distribution which can differ 

from the Generalised Pareto Distribution (GPD). Weibull or gamma exceedances are 

sometimes preferred to GPD exceedances. The special case of exponential exceedances 

(which falls in the three families: GPD, Weibull and gamma) has a special interest since 

it allows exact inference for the (scalar) parameter and for the quantiles form OT data 

(only) (Deville & IRSN, 2015).  This method is generally used by hydrologists for 

estimating extreme values of inundation. It has a possibility to evaluate exceptional events 

(occurring is on average once every 5, 10, 20, 30, 50 and 100 years) for series with at 

least 10 years of data. Selecting all higher than a threshold event which keeps in general 

more than one event per year (MeteoFrance, 2014).  

Application:  Due to the limit of measured data in Vu Gia Thu Bon catchment, méthode 

du renouvelement is applied to estimate the change in frequency of extreme river flow 

between current period and future. In this study, the méthode du renouvelement is 

realized under the support of Hydrolab 2010 which is one small software writing on Excel 

environment by Professor J.P. LABORDE 
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Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.197 

 Mode= 1996.9305   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 833.67033   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 1090.52 1 0.0500 -1.097 1090.52 1082.2368 269.9264 1522.412 

Obs.3 1091.27 2 0.1500 -0.640 1091.27 1463.1006 854.04886 1868.1709 

Obs.2 1487.62 3 0.2500 -0.327 1487.62 1724.6252 1222.443 2138.2909 

Obs.5 1795.93 4 0.3500 -0.049 1795.93 1956.3968 1517.7452 2408.8606 

Obs.4 1828.38 5 0.4500 0.225 1828.38 2184.5152 1777.2019 2706.3564 

Obs.7 2064.04 6 0.5500 0.514 2064.04 2425.8015 2021.8383 3050.8221 

Obs.10 3025.13 7 0.6500 0.842 3025.13 2699.0068 2271.546 3468.147 

Obs.9 3738.24 8 0.7500 1.246 3738.24 3035.5998 2553.9387 4007.5483 

Obs.6 4040.23 9 0.8500 1.817 4040.23 3511.6768 2927.3122 4796.5199 

Obs.8 4692.34 10 0.9500 2.970 4692.34 4473.0941 3641.4448 6429.6941 

Figure F1. Frequency estimation of “la méthode de renouvellement“ for Thanh My station at present. 
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Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.244 

 Mode= 4093.446269   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1560.001   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 2861.99 1 0.0500 -1.097 2861.99 2381.83 861.80 3205.51 

Obs.3 3083.91 2 0.1500 -0.640 3083.91 3094.52 1954.84 3852.51 

Obs.5 3536.8 3 0.2500 -0.327 3536.8 3583.90 2644.19 4357.97 

Obs.1 3638.43 4 0.3500 -0.049 3638.43 4017.60 3196.77 4864.27 

Obs.7 4288.7 5 0.4500 0.225 4288.7 4444.46 3682.28 5420.96 

Obs.4 4695.02 6 0.5500 0.514 4695.02 4895.97 4140.05 6065.54 

Obs.10 4781.79 7 0.6500 0.842 4781.79 5407.20 4607.32 6846.45 

Obs.6 7870.32 8 0.7500 1.246 7870.32 6037.05 5135.74 7855.80 

Obs.9 8118.79 9 0.8500 1.817 8118.79 6927.91 5834.42 9332.16 

Obs.8 8188.22 10 0.9500 2.970 8188.22 8726.95 7170.73 12388.23 

 

Figure F2. Frequency estimation of “la méthode de renouvellement“ for Nong Son station at present. 
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Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.309 

 Mode= 6475.893136   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2344.77   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 4491.89 1 0.0500 -1.097 4491.89 3903.24 1618.54 5141.27 

Obs.2 4997.76 2 0.1500 -0.640 4997.76 4974.45 3261.44 6113.75 

Obs.3 5188.81 3 0.2500 -0.327 5188.81 5710.01 4297.58 6873.48 

Obs.5 5461.97 4 0.3500 -0.049 5461.97 6361.89 5128.14 7634.48 

Obs.4 7186.78 5 0.4500 0.225 7186.78 7003.49 5857.89 8471.22 

Obs.7 7233.02 6 0.5500 0.514 7233.02 7682.13 6545.95 9440.05 

Obs.10 8266.56 7 0.6500 0.842 8266.56 8450.54 7248.27 10613.82 

Obs.6 10413.2 8 0.7500 1.246 10413.2 9397.24 8042.53 12130.93 

Obs.8 12476 9 0.8500 1.817 12476 10736.25 9092.67 14349.98 

Obs.9 13804.2 10 0.9500 2.970 13804.2 13440.32 11101.23 18943.42 

 

Figure F3. Frequency estimation of “la méthode de renouvellement“ for Giao Thuy station at present. 
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Ajustement à une loi de Gumbel 

% U 

Anderson = 0.187 

 Mode= 2319.292968   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 812.728   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 1426.42 1 0.0500 -1.097 1426.42 1427.58 635.67 1856.69 

Obs.3 1751.87 2 0.1500 -0.640 1751.87 1798.87 1205.12 2193.77 

Obs.5 1781.4 3 0.2500 -0.327 1781.4 2053.83 1564.26 2457.10 

Obs.2 1791.06 4 0.3500 -0.049 1791.06 2279.78 1852.15 2720.88 

Obs.4 2423.93 5 0.4500 0.225 2423.93 2502.17 2105.08 3010.90 

Obs.7 2477.97 6 0.5500 0.514 2477.97 2737.39 2343.58 3346.71 

Obs.10 2974.79 7 0.6500 0.842 2974.79 3003.73 2587.01 3753.55 

Obs.6 3287.21 8 0.7500 1.246 3287.21 3331.87 2862.31 4279.40 

Obs.8 5128.73 9 0.8500 1.817 5128.73 3795.99 3226.30 5048.55 

Obs.9 5744.37 10 0.9500 2.970 5744.37 4733.25 3922.50 6640.70 

 

Figure F4. Frequency estimation of “la méthode de renouvellement“ for Cau Lau station at present. 

 

 

 

 

 



Appendix 

285 

 

 

   Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.211 

 Mode= 4373.553505   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1622.331667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 2591.24 1 0.0500 -1.097 2591.24 2593.55 1012.78 3450.14 

Obs.3 3073.05 2 0.1500 -0.640 3073.05 3334.71 2149.49 4122.99 

Obs.5 3299.34 3 0.2500 -0.327 3299.34 3843.64 2866.39 4648.64 

Obs.2 3450.6 4 0.3500 -0.049 3450.6 4294.67 3441.05 5175.17 

Obs.7 4867.19 5 0.4500 0.225 4867.19 4738.60 3945.96 5754.10 

Obs.4 5001.51 6 0.5500 0.514 5001.51 5208.14 4422.02 6424.44 

Obs.6 6077.25 7 0.6500 0.842 6077.25 5739.80 4907.96 7236.56 

Obs.10 6260.16 8 0.7500 1.246 6260.16 6394.82 5457.50 8286.24 

Obs.9 10084.7 9 0.8500 1.817 10084.7 7321.27 6184.09 9821.59 

Obs.8 10348.4 10 0.9500 2.970 10348.4 9192.20 7573.80 12999.76 

 

Figure F5. Frequency estimation of “la méthode de renouvellement“ for Hoi Khanh station at present.. 
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  Ajustement à une loi de Gumbel   

% U 

Anderson 

= 0.351 

 Mode= 3637.956033   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1300.054667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 2716.89 1 0.0500 -1.097 2716.89 2211.55 944.81 2897.98 

Obs.3 2866.14 2 0.1500 -0.640 2866.14 2805.48 1855.71 3437.16 

Obs.2 3079.32 3 0.2500 -0.327 3079.32 3213.31 2430.19 3858.40 

Obs.5 3237.72 4 0.3500 -0.049 3237.72 3574.75 2890.70 4280.33 

Obs.4 3645.79 5 0.4500 0.225 3645.79 3930.48 3295.30 4744.26 

Obs.7 4164.36 6 0.5500 0.514 4164.36 4306.75 3676.80 5281.43 

Obs.10 4455.05 7 0.6500 0.842 4455.05 4732.80 4066.20 5932.22 

Obs.6 5480.98 8 0.7500 1.246 5480.98 5257.69 4506.57 6773.38 

Obs.8 6340.91 9 0.8500 1.817 6340.91 6000.10 5088.83 8003.73 

Obs.9 7684.48 10 0.9500 2.970 7684.48 7499.37 6202.47 10550.56 

 

Figure F6. Frequency estimation of “la méthode de renouvellement“ for Cau Lau station at present. 
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Ajustement 

à une loi de 

Gumbel    

% U 

Anderson 

= 0.266 

 Mode= 3320.987703   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1293.639   Nb au départ (10) 

U 

Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 2287.58 1 0.0500 -1.097 2287.58 1901.62 641.13 2584.66 

Obs.3 2415.25 2 0.1500 -0.640 2415.25 2492.62 1547.53 3121.19 

Obs.5 2593.07 3 0.2500 -0.327 2593.07 2898.44 2119.19 3540.34 

Obs.1 3293.94 4 0.3500 -0.049 3293.94 3258.09 2577.42 3960.20 

Obs.7 3317.35 5 0.4500 0.225 3317.35 3612.07 2980.03 4421.83 

Obs.10 3735.59 6 0.5500 0.514 3735.59 3986.48 3359.64 4956.35 

Obs.4 4016.68 7 0.6500 0.842 4016.68 4410.43 3747.12 5603.93 

Obs.9 6155.76 8 0.7500 1.246 6155.76 4932.73 4185.32 6440.94 

Obs.8 6724.3 9 0.8500 1.817 6724.3 5671.48 4764.70 7665.22 

Obs.6 6906.76 10 0.9500 2.970 6906.76 7163.35 5872.85 10199.48 

 

Figure F7. Frequency estimation of “la méthode de renouvellement“ for Hiep Duc station at present. 
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Ajustement 

à une loi de 

Gumbel    
% U 

Anderson = 0.308 

 Mode= 2844.159577   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1219.674667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.3 1664.24 1 0.0500 -1.097 1664.24 1505.95 317.52 2149.93 

Obs.1 1701.84 2 0.1500 -0.640 1701.84 2063.16 1172.10 2655.78 

Obs.2 2078.05 3 0.2500 -0.327 2078.05 2445.77 1711.07 3050.97 

Obs.5 2645.42 4 0.3500 -0.049 2645.42 2784.86 2143.10 3446.82 

Obs.7 3091 5 0.4500 0.225 3091 3118.60 2522.69 3882.06 

Obs.4 3421.07 6 0.5500 0.514 3421.07 3471.61 2880.60 4386.02 

Obs.10 4106.64 7 0.6500 0.842 4106.64 3871.31 3245.93 4996.58 

Obs.6 5352.32 8 0.7500 1.246 5352.32 4363.75 3659.07 5785.73 

Obs.9 5446.06 9 0.8500 1.817 5446.06 5060.26 4205.32 6940.01 

Obs.8 6789.27 10 0.9500 2.970 6789.27 6466.83 5250.11 9329.37 

 

Figure F8. Frequency estimation of “la méthode de renouvellement“ for Thanh My station at 2091-2100 

with ECHAM scenario. 
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Ajustement 

à une loi de 

Gumbel    

% U 

Anderson 

= 0.265 

 Mode= 5639.892905   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2263.003   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.3 4319.93 1 0.0500 -1.097 4319.93 3156.95 951.93 4351.81 

Obs.2 4370.84 2 0.1500 -0.640 4370.84 4190.81 2537.53 5290.37 

Obs.5 4904.92 3 0.2500 -0.327 4904.92 4900.72 3537.54 6023.62 

Obs.1 5240.14 4 0.3500 -0.049 5240.14 5529.86 4339.14 6758.08 

Obs.7 6146.92 5 0.4500 0.225 6146.92 6149.09 5043.44 7565.63 

Obs.4 6698.46 6 0.5500 0.514 6698.46 6804.07 5707.51 8500.69 

Obs.10 7396.37 7 0.6500 0.842 7396.37 7545.68 6385.34 9633.52 

Obs.9 10966.9 8 0.7500 1.246 10966.9 8459.37 7151.89 11097.73 

Obs.8 10976.5 9 0.8500 1.817 10976.5 9751.68 8165.42 13239.39 

Obs.6 11378.6 10 0.9500 2.970 11378.6 12361.45 10103.94 17672.66 

 

Figure F9. Frequency estimation of “la méthode de renouvellement“ for Nong Son station at 2091-2100 

with ECHAM scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.321 

 Mode= 9128.603755   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 3192.267   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 6991.29 1 0.0500 -1.097 6991.29 5626.08 2515.61 7311.59 

Obs.2 7212.03 2 0.1500 -0.640 7212.03 7084.48 4752.31 8635.56 

Obs.3 7757.83 3 0.2500 -0.327 7757.83 8085.90 6162.96 9669.90 

Obs.5 8002.03 4 0.3500 -0.049 8002.03 8973.39 7293.72 10705.96 

Obs.7 10683.9 5 0.4500 0.225 10683.9 9846.90 8287.23 11845.12 

Obs.4 11141.7 6 0.5500 0.514 11141.7 10770.82 9223.98 13164.14 

Obs.10 11454.8 7 0.6500 0.842 11454.8 11816.97 10180.15 14762.14 

Obs.6 13837.7 8 0.7500 1.246 13837.7 13105.85 11261.48 16827.61 

Obs.8 16950.6 9 0.8500 1.817 16950.6 14928.83 12691.20 19848.71 

Obs.9 18907.3 10 0.9500 2.970 18907.3 18610.26 15425.73 26102.42 

 

Figure F10. Frequency estimation of “la méthode de renouvellement“ for Giao Thuy station at 2091-2100 

with ECHAM scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.213 

 Mode= 3516.674127   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1415.981   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 2340.49 1 0.0500 -1.097 2340.49 1963.08 583.37 2710.71 

Obs.2 2395.56 2 0.1500 -0.640 2395.56 2609.97 1575.50 3297.98 

Obs.5 2665.48 3 0.2500 -0.327 2665.48 3054.17 2201.21 3756.77 

Obs.3 2732.94 4 0.3500 -0.049 2732.94 3447.83 2702.78 4216.33 

Obs.7 4065.24 5 0.4500 0.225 4065.24 3835.28 3143.47 4721.63 

Obs.10 4196.49 6 0.5500 0.514 4196.49 4245.11 3558.98 5306.70 

Obs.6 4682.4 7 0.6500 0.842 4682.4 4709.14 3983.11 6015.52 

Obs.4 5526.03 8 0.7500 1.246 5526.03 5280.84 4462.75 6931.69 

Obs.8 8307.75 9 0.8500 1.817 8307.75 6089.46 5096.92 8271.75 

Obs.9 9576.11 10 0.9500 2.970 9576.11 7722.41 6309.87 11045.68 

 

Figure F11. Frequency estimation of “la méthode de renouvellement“ for Ai Nghia station at 2091-2100 

with ECHAM scenario. 
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Ajustement 

à une loi de 

Gumbel    

% U 

Anderson 

= 0.169 

 Mode= 6703.742741   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2518.625333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 4498.69 1 0.0500 -1.097 4498.69 3940.34 1486.24 5270.16 

Obs.1 4801.44 2 0.1500 -0.640 4801.44 5090.97 3250.95 6314.74 

Obs.3 5168.57 3 0.2500 -0.327 5168.57 5881.07 4363.92 7130.81 

Obs.5 5211.62 4 0.3500 -0.049 5211.62 6581.29 5256.06 7948.24 

Obs.10 7999.31 5 0.4500 0.225 7999.31 7270.46 6039.91 8847.01 

Obs.7 8048.56 6 0.5500 0.514 8048.56 7999.42 6778.99 9887.68 

Obs.6 9498.54 7 0.6500 0.842 9498.54 8824.81 7533.39 11148.48 

Obs.4 11124.9 8 0.7500 1.246 11124.9 9841.70 8386.54 12778.08 

Obs.9 16202.5 9 0.8500 1.817 16202.5 11279.99 9514.55 15161.66 

Obs.8 16618.3 10 0.9500 2.970 16618.3 14184.55 11672.03 20095.69 

 

Figure F12. Frequency estimation of “la méthode de renouvellement“ for Hoi Khanh station at 2091-2100 

with ECHAM scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.333 

 Mode= 4944.208216   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1744.899667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 4032.49 1 0.0500 -1.097 4032.49 3029.72 1329.53 3951.03 

Obs.3 4102.79 2 0.1500 -0.640 4102.79 3826.88 2552.12 4674.71 

Obs.2 4247.99 3 0.2500 -0.327 4247.99 4374.26 3323.18 5240.08 

Obs.5 4565.65 4 0.3500 -0.049 4565.65 4859.37 3941.26 5806.39 

Obs.4 5381.11 5 0.4500 0.225 5381.11 5336.83 4484.31 6429.06 

Obs.7 5908.66 6 0.5500 0.514 5908.66 5841.85 4996.34 7150.04 

Obs.10 5953.89 7 0.6500 0.842 5953.89 6413.68 5518.99 8023.51 

Obs.6 7107.29 8 0.7500 1.246 7107.29 7118.18 6110.04 9152.50 

Obs.8 8498.58 9 0.8500 1.817 8498.58 8114.62 6891.53 10803.84 

Obs.9 10365.2 10 0.9500 2.970 10365.2 10126.90 8386.23 14222.13 

 

Figure F13. Frequency estimation of “la méthode de renouvellement“ for Cau Lau station at 2091-2100 

with ECHAM scenario. 
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  Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.280 

 Mode= 4599.305525   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1836.531   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.3 3370.04 1 0.0500 -1.097 3370.04 2584.28 794.81 3553.97 

Obs.2 3443.05 2 0.1500 -0.640 3443.05 3423.31 2081.60 4315.66 

Obs.5 3531.52 3 0.2500 -0.327 3531.52 3999.43 2893.15 4910.71 

Obs.7 4639.28 4 0.3500 -0.049 4639.28 4510.01 3543.69 5506.77 

Obs.1 4766.95 5 0.4500 0.225 4766.95 5012.54 4115.26 6162.13 

Obs.10 5755.15 6 0.5500 0.514 5755.15 5544.09 4654.18 6920.97 

Obs.4 5783.32 7 0.6500 0.842 5783.32 6145.94 5204.27 7840.32 

Obs.9 8495.14 8 0.7500 1.246 8495.14 6887.44 5826.36 9028.59 

Obs.8 9211.41 9 0.8500 1.817 9211.41 7936.21 6648.89 10766.65 

Obs.6 10231.4 10 0.9500 2.970 10231.4 10054.16 8222.08 14364.45 

 

Figure F14. Frequency estimation of “la méthode de renouvellement“ for Hiep Duc station at 2091-2100 

with ECHAM scenario. 
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  Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.283 

 Mode= 4533.929861   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 1820.123333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.3 2985.51 1 0.0500 -1.097 2985.51 2536.91 763.42 3497.93 

Obs.1 3351.26 2 0.1500 -0.640 3351.26 3368.44 2038.72 4252.81 

Obs.7 3974.38 3 0.2500 -0.327 3974.38 3939.42 2843.02 4842.56 

Obs.2 4186.94 4 0.3500 -0.049 4186.94 4445.43 3487.74 5433.28 

Obs.5 4615.46 5 0.4500 0.225 4615.46 4943.48 4054.20 6082.79 

Obs.4 4763.2 6 0.5500 0.514 4763.2 5470.27 4588.31 6834.85 

Obs.9 7579.73 7 0.6500 0.842 7579.73 6066.75 5133.49 7745.99 

Obs.10 7597.56 8 0.7500 1.246 7597.56 6801.62 5750.03 8923.64 

Obs.8 7758.77 9 0.8500 1.817 7758.77 7841.02 6565.20 10646.18 

Obs.6 9885.52 10 0.9500 2.970 9885.52 9940.05 8124.34 14211.83 

 

Figure F15. Frequency estimation of “la méthode de renouvellement“ for Thanh My station at 2091-2100 

with CCSM scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.207 

 Mode= 12728.26875   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 3840.580333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 11562.3 1 0.0500 -1.097 11562.3 8514.43 4772.25 10542.24 

Obs.3 11733.9 2 0.1500 -0.640 11733.9 10269.00 7463.20 12135.09 

Obs.2 12091.7 3 0.2500 -0.327 12091.7 11473.80 9160.33 13379.49 

Obs.5 12712.2 4 0.3500 -0.049 12712.2 12541.54 10520.74 14625.96 

Obs.7 12830.8 5 0.4500 0.225 12830.8 13592.44 11716.02 15996.48 

Obs.4 16086.5 6 0.5500 0.514 16086.5 14704.01 12843.01 17583.37 

Obs.10 17549 7 0.6500 0.842 17549 15962.62 13993.38 19505.92 

Obs.8 19624 8 0.7500 1.246 19624 17513.25 15294.31 21990.85 

Obs.6 20376.5 9 0.8500 1.817 20376.5 19706.45 17014.38 25625.51 

Obs.9 22799.3 10 0.9500 2.970 22799.3 24135.54 20304.27 33149.27 

 

Figure F16. Frequency estimation of “la méthode de renouvellement“ for Nong Son station at 2091-2100 

with CCSM scenario. 
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Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.187 

 Mode= 12785.15068   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 5576.945333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 11562.3 1 0.0500 -1.097 11562.3 6666.19 1232.13 9610.80 

Obs.3 11733.9 2 0.1500 -0.640 11733.9 9214.03 5139.70 11923.80 

Obs.2 12091.7 3 0.2500 -0.327 12091.7 10963.53 7604.12 13730.80 

Obs.5 12712.2 4 0.3500 -0.049 12712.2 12514.00 9579.58 15540.81 

Obs.7 12830.8 5 0.4500 0.225 12830.8 14040.02 11315.25 17530.95 

Obs.4 16086.5 6 0.5500 0.514 16086.5 15654.14 12951.77 19835.29 

Obs.10 17549 7 0.6500 0.842 17549 17481.78 14622.23 22627.04 

Obs.8 19624 8 0.7500 1.246 19624 19733.46 16511.33 26235.44 

Obs.6 20376.5 9 0.8500 1.817 20376.5 22918.24 19009.06 31513.37 

Obs.9 22799.3 10 0.9500 2.970 22799.3 29349.77 23786.34 42438.70 

 

Figure F17. Frequency estimation of “la méthode de renouvellement“ for Giao Thuy station at 2091-2100 

with CCSM scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.287 

 Mode= 5374.599231   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2208.121333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 3856.89 1 0.0500 -1.097 3856.89 2951.87 800.33 4117.75 

Obs.3 4521.28 2 0.1500 -0.640 4521.28 3960.66 2347.48 5033.56 

Obs.5 4747.3 3 0.2500 -0.327 4747.3 4653.35 3323.23 5749.02 

Obs.2 4976.93 4 0.3500 -0.049 4976.93 5267.24 4105.39 6465.67 

Obs.7 5117.47 5 0.4500 0.225 5117.47 5871.45 4792.61 7253.64 

Obs.4 7086.55 6 0.5500 0.514 7086.55 6510.54 5440.57 8166.02 

Obs.10 8304.11 7 0.6500 0.842 8304.11 7234.17 6101.97 9271.37 

Obs.6 9084.84 8 0.7500 1.246 9084.84 8125.70 6849.93 10700.07 

Obs.8 9983.69 9 0.8500 1.817 9983.69 9386.67 7838.88 12789.80 

Obs.9 12345.1 10 0.9500 2.970 12345.1 11933.15 9730.38 17115.55 

 

Figure F18. Frequency estimation of “la méthode de renouvellement“ for Ai Nghia station at 2091-2100 

with CCSM scenario. 
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Ajustement 

à une loi de 

Gumbel    

% U 

Anderson 

= 0.299 

 Mode= 10134.93759   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 3880.884667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 7632.38 1 0.0500 -1.097 7632.38 5876.87 2095.42 7925.97 

Obs.3 8466.23 2 0.1500 -0.640 8466.23 7649.86 4814.62 9535.54 

Obs.5 8522.79 3 0.2500 -0.327 8522.79 8867.31 6529.56 10793.00 

Obs.7 9407.05 4 0.3500 -0.049 9407.05 9946.25 7904.24 12052.55 

Obs.2 9500.28 5 0.4500 0.225 9500.28 11008.18 9112.06 13437.44 

Obs.4 12525.6 6 0.5500 0.514 12525.6 12131.41 10250.89 15040.99 

Obs.6 14783.7 7 0.6500 0.842 14783.7 13403.23 11413.32 16983.71 

Obs.10 15974.7 8 0.7500 1.246 15974.7 14970.13 12727.91 19494.72 

Obs.8 17823.6 9 0.8500 1.817 17823.6 17186.35 14466.03 23167.53 

Obs.9 19272.1 10 0.9500 2.970 19272.1 21661.92 17790.45 30770.25 

 

Figure F19. Frequency estimation of “la méthode de renouvellement“ for Hoi Khanh station at 2091-2100 

with CCSM scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.217 

 Mode= 6617.730193   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2018.100667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.3 5976.34 1 0.0500 -1.097 5976.34 4403.49 2437.10 5469.04 

Obs.1 6223.02 2 0.1500 -0.640 6223.02 5325.47 3851.11 6306.04 

Obs.2 6719.96 3 0.2500 -0.327 6719.96 5958.55 4742.90 6959.93 

Obs.5 6895.03 4 0.3500 -0.049 6895.03 6519.61 5457.75 7614.91 

Obs.7 6980.7 5 0.4500 0.225 6980.7 7071.82 6085.82 8335.07 

Obs.4 7865.32 6 0.5500 0.514 7865.32 7655.92 6678.03 9168.93 

Obs.10 8898.24 7 0.6500 0.842 8898.24 8317.28 7282.50 10179.17 

Obs.8 9803.24 8 0.7500 1.246 9803.24 9132.08 7966.10 11484.92 

Obs.6 10184.4 9 0.8500 1.817 10184.4 10284.54 8869.94 13394.81 

Obs.9 12369.1 10 0.9500 2.970 12369.1 12611.88 10598.67 17348.31 

 

Figure F20. Frequency estimation of “la méthode de renouvellement“ for Cau Lau station at 2091-2100 

with CCSM scenario. 
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 Ajustement à une loi de Gumbel  
% U 

Anderson = 0.284 

 Mode= 6931.026036   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2678.821333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 5588.8 1 0.0500 -1.097 5588.8 3991.85 1381.67 5406.26 

Obs.3 5608.81 2 0.1500 -0.640 5608.81 5215.68 3258.62 6517.28 

Obs.7 6062.42 3 0.2500 -0.327 6062.42 6056.03 4442.38 7385.26 

Obs.5 6269.01 4 0.3500 -0.049 6269.01 6800.78 5391.27 8254.68 

Obs.1 7435.42 5 0.4500 0.225 7435.42 7533.79 6224.98 9210.61 

Obs.10 9333.99 6 0.5500 0.514 9333.99 8309.11 7011.06 10317.48 

Obs.4 10290.6 7 0.6500 0.842 10290.6 9187.00 7813.44 11658.47 

Obs.8 11199.9 8 0.7500 1.246 11199.9 10268.57 8720.85 13391.72 

Obs.9 11285.6 9 0.8500 1.817 11285.6 11798.34 9920.61 15926.91 

Obs.6 15869.5 10 0.9500 2.970 15869.5 14887.65 12215.32 21174.76 

 

Figure F21. Frequency estimation of “la méthode de renouvellement“ for Hiep Duc station at 2091-2100 

with CCSM scenario. 
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 Ajustement à une loi de Gumbel   

% U 

Anderson 

= 0.245 

 Mode= 5064.656669   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2251.619333   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 3028.07 1 0.0500 -1.097 3028.07 2594.21 400.28 3783.05 

Obs.2 3443.58 2 0.1500 -0.640 3443.58 3622.86 1977.90 4716.90 

Obs.3 3984.3 3 0.2500 -0.327 3984.3 4329.20 2972.88 5446.45 

Obs.7 4434.93 4 0.3500 -0.049 4434.93 4955.18 3770.45 6177.22 

Obs.5 4853.29 5 0.4500 0.225 4853.29 5571.30 4471.20 6980.71 

Obs.4 5071.5 6 0.5500 0.514 5071.5 6222.97 5131.93 7911.06 

Obs.10 5929.14 7 0.6500 0.842 5929.14 6960.86 5806.35 9038.19 

Obs.6 7413.28 8 0.7500 1.246 7413.28 7869.95 6569.05 10495.04 

Obs.9 11145.3 9 0.8500 1.817 11145.3 9155.76 7577.48 12625.93 

Obs.8 13611.3 10 0.9500 2.970 13611.3 11752.41 9506.24 17036.89 

 

Figure F22. Frequency estimation of “la méthode de renouvellement“ for Thanh My station at 2091-2100 

with MIROC scenario. 
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Ajustement 

à une loi de 

Gumbel    

% U 

Anderson 

= 0.291 

 Mode= 8490.429488   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 3524.373   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 5068.73 1 0.0500 -1.097 5068.73 4623.53 1189.45 6484.38 

Obs.3 6394.89 2 0.1500 -0.640 6394.89 6233.64 3658.85 7946.09 

Obs.4 7943.57 3 0.2500 -0.327 7943.57 7339.25 5216.25 9088.04 

Obs.5 7949.86 4 0.3500 -0.049 7949.86 8319.07 6464.66 10231.88 

Obs.10 8464.3 5 0.4500 0.225 8464.3 9283.45 7561.52 11489.55 

Obs.7 9107.81 6 0.5500 0.514 9107.81 10303.50 8595.73 12945.80 

Obs.1 9465.79 7 0.6500 0.842 9465.79 11458.48 9651.38 14710.05 

Obs.6 13792.9 8 0.7500 1.246 13792.9 12881.44 10845.20 16990.39 

Obs.8 17619 9 0.8500 1.817 17619 14894.08 12423.65 20325.80 

Obs.9 19100.9 10 0.9500 2.970 19100.9 18958.51 15442.68 27230.11 

 

Figure F23. Frequency estimation of “la méthode de renouvellement“ for Nong Son station at 2091-2100 

with MIROC scenario. 
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 Ajustement à une loi de Gumbel  
% U 

Anderson = 0.173 

 Mode= 13753.48249   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 5365.817   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 8954.5 1 0.0500 -1.097 8954.5 7866.17 2637.83 10699.30 

Obs.3 9805.75 2 0.1500 -0.640 9805.75 10317.55 6397.46 12924.74 

Obs.1 11759.9 3 0.2500 -0.327 11759.9 12000.82 8768.59 14663.33 

Obs.5 12814.4 4 0.3500 -0.049 12814.4 13492.59 10669.27 16404.82 

Obs.7 13425.4 5 0.4500 0.225 13425.4 14960.85 12339.23 18319.62 

Obs.10 13593.7 6 0.5500 0.514 13593.7 16513.86 13913.80 20536.73 

Obs.4 14256.4 7 0.6500 0.842 14256.4 18272.31 15521.01 23222.79 

Obs.6 17037.5 8 0.7500 1.246 17037.5 20438.75 17338.60 26694.58 

Obs.8 29526.4 9 0.8500 1.817 29526.4 23502.96 19741.77 31772.70 

Obs.9 31894.4 10 0.9500 2.970 31894.4 29691.01 24338.20 42284.42 

 

Figure F24. Frequency estimation of “la méthode de renouvellement“ for Giao Thuy station at 2091-2100 

with MIROC scenario. 
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Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.074 

 Mode= 6130.067716   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2920.072667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.3 3320.73 1 0.0500 -1.097 3320.73 2926.20 80.94 4467.99 

Obs.2 3323.47 2 0.1500 -0.640 3323.47 4260.24 2126.93 5679.07 

Obs.1 3731.35 3 0.2500 -0.327 3731.35 5176.27 3417.29 6625.21 

Obs.7 5172.78 4 0.3500 -0.049 5172.78 5988.09 4451.64 7572.92 

Obs.5 5191.43 5 0.4500 0.225 5191.43 6787.12 5360.43 8614.95 

Obs.10 5996.07 6 0.5500 0.514 5996.07 7632.26 6217.31 9821.50 

Obs.4 6555.03 7 0.6500 0.842 6555.03 8589.21 7091.96 11283.25 

Obs.6 8663.06 8 0.7500 1.246 8663.06 9768.18 8081.08 13172.60 

Obs.8 18604 9 0.8500 1.817 18604 11435.73 9388.89 15936.11 

Obs.9 20364.3 10 0.9500 2.970 20364.3 14803.25 11890.26 21656.58 

 

Figure F25. Frequency estimation of “la méthode de renouvellement“ for Ai Nghia station at 2091-2100 

with MIROC scenario. 
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 Ajustement à une loi de Gumbel  
% U 

Anderson = 0.114 

 Mode= 11125.53582   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 4974.817667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.1 5698.26 1 0.0500 -1.097 5698.26 5667.22 819.87 8293.91 

Obs.3 6724.23 2 0.1500 -0.640 6724.23 7939.98 4305.54 10357.18 

Obs.2 7143.67 3 0.2500 -0.327 7143.67 9500.59 6503.88 11969.09 

Obs.7 9143.86 4 0.3500 -0.049 9143.86 10883.66 8266.06 13583.67 

Obs.5 10025.6 5 0.4500 0.225 10025.6 12244.92 9814.33 15358.94 

Obs.10 11592.6 6 0.5500 0.514 11592.6 13684.77 11274.17 17414.50 

Obs.4 12544.6 7 0.6500 0.842 12544.6 15315.08 12764.27 19904.83 

Obs.6 16876.5 8 0.7500 1.246 16876.5 17323.66 14449.41 23123.63 

Obs.8 31486.1 9 0.8500 1.817 31486.1 20164.58 16677.47 27831.72 

Obs.9 32912.9 10 0.9500 2.970 32912.9 25901.72 20938.96 37577.47 

Figure F26. Frequency estimation of “la méthode de renouvellement“ for Hoi Khanh station at 2091-2100 

with MIROC scenario. 
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 Ajustement à une loi de Gumbel  

% U 

Anderson 

= 0.160 

 Mode= 7594.203496   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2631.049667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 5221.14 1 0.0500 -1.097 5221.14 4707.45 2143.81 6096.63 

Obs.3 5447.93 2 0.1500 -0.640 5447.93 5909.45 3987.29 7187.84 

Obs.1 6768.88 3 0.2500 -0.327 6768.88 6734.81 5149.93 8040.33 

Obs.5 6812.47 4 0.3500 -0.049 6812.47 7466.28 6081.90 8894.25 

Obs.7 7380.13 5 0.4500 0.225 7380.13 8186.22 6900.74 9833.14 

Obs.10 7520.45 6 0.5500 0.514 7520.45 8947.71 7672.81 10920.27 

Obs.4 7835.04 7 0.6500 0.842 7835.04 9809.94 8460.89 12237.34 

Obs.6 9196.15 8 0.7500 1.246 9196.15 10872.23 9352.11 13939.68 

Obs.8 15213.7 9 0.8500 1.817 15213.7 12374.72 10530.47 16429.66 

Obs.9 17808.7 10 0.9500 2.970 17808.7 15408.93 12784.26 21583.93 

Figure F27. Frequency estimation of “la méthode de renouvellement“ for Cau Lau station at 2091-2100 

with MIROC scenario. 
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 Ajustement à une loi de Gumbel 

% U 

Anderson 

= 0.332 

 Mode= 6863.59143   Taille n= 10 

I.C. à 

(en%)= 80 

 Gradex= 2816.654667   Nb au départ (10) U Gauss= 1.282 

Observations Valeurs Ordre de Fréquence Variable Valeur Valeur Borne Borne 

classées classées classement expérimentale réduite expérimentale théorique inférieure supérieure 

Obs.2 4198.7 1 0.0500 -1.097 4198.7 3773.19 1028.70 5260.37 

Obs.3 5496.47 2 0.1500 -0.640 5496.47 5059.98 3002.23 6428.56 

Obs.5 6668.34 3 0.2500 -0.327 6668.34 5943.58 4246.89 7341.19 

Obs.4 6672.42 4 0.3500 -0.049 6672.42 6726.64 5244.61 8255.35 

Obs.10 7063.93 5 0.4500 0.225 7063.93 7497.37 6121.21 9260.47 

Obs.7 7483.3 6 0.5500 0.514 7483.3 8312.58 6947.75 10424.29 

Obs.1 8417.08 7 0.6500 0.842 8417.08 9235.64 7791.41 11834.27 

Obs.6 11486.1 8 0.7500 1.246 11486.1 10372.86 8745.51 13656.70 

Obs.8 13709.3 9 0.8500 1.817 13709.3 11981.34 10007.00 16322.34 

Obs.9 14870.8 10 0.9500 2.970 14870.8 15229.61 12419.78 21840.21 

 

Figure F28. Frequency estimation of “la méthode de renouvellement“ for Hiep Duc station at 2091-2100 

with MIROC scenario. 


