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Intelligence [cs.AI]. Université Pierre et Marie Curie, 2015. <tel-01252289>

HAL Id: tel-01252289

https://hal.inria.fr/tel-01252289

Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Résumé / French Summary

T a commencé avec une idée simple : d’après
arwin, l’évolution a dessiné toutes les espèces que
l’on connait ; en tant que processus itératif, elle res-

semble à un algorithme qui pourrait être exécuté sur un
ordinateur ; par conséquent, pourquoi ne pas utiliser de
l’évolution artificielle pour dessiner des animaux artificiels,
en d’autres termes, des robots  ette idée simple a ins-
piré les scientifiques dès l’apparition des premiers ordina-
teurs (Turing 0 ; Holland ), et a donné naissance
dans les années 0 au domaine de la « robotique évolution-
niste » (Evolutionary Robotics) (liff et al.  ; Meyer,
Husbands et al.  ; Nolfi et loreano 00 ; ongard
0 ; oncieux, redeche et al. 0).

Armée d’une abstraction appropriée de l’évolution natu-
relle, la robotique évolutionniste devrait mener à des ma-
chines créatrices de machines (ou au moins à des algo-
rithmes générateurs de robots) qui égaleraient les capacités
de l’évolution naturelle pour concevoir des systèmes com-
plexes. Avoir accès à de telles techniques serait très utile
pour la robotique car concevoir des robots est très difficile,
en particulier des robots mobiles (Nolfi et loreano 00 ;
ongard 0). Il est même parfois argumenté que conce-
voir des robots « avancés » est si difficile que les humains
pourraient bientôt être incapables d’en concevoir la pro-
chaine génération. Par exemple, les robots marcheurs sont
un défi important de la robotique « traditionnelle » (Raibert
 ; Kajita et spiau 00) alors que les animaux ex-
cellent à la locomotion à pattes. es algorithmes évolution-
nistes pourraient concevoir des contrôleurs de robot qui se-
raient plus efficaces que les approches classiques, puisqu’un
processus similaire a mené aux impressionnantes capacités
des animaux. L’évolution artificielle pourraient même dessi-
ner le robot dans sa globalité, c’est à dire à la fois son contrô-
leur et son corps, de telle manière à ce que la stratégie de
contrôle et la moprhologie soient intimement liées (Pfeifer
et ongard 00 ; Pfeifer, Lungarella et al. 00). Un telle
intégration permettrait certainement à ces robots automati-
quement conçus d’être plus efficace que n’importe quel robot
conçu par un humain.

ependant, un jour de 00, une vidéo du robot ig og
est apparue en ligne (Raibert et al. 00). Alors que la robo-
tique évolutionniste se penchait sur des grandes questions
fondamentales sur l’évolution et l’embodiment (encorpora-
tion ou incarnation), la robotique mainstream a continué
de progresser. Pour beaucoup, le robot ig og marque un
tournant symbolique à cause de ses ses capacité locomotrices
sans précédent, presque animales, et ce sur des terrains aussi
divers que les sous-bois, les rochers, ou même des routes
verglacées. Néanmoins, au grand désespoir de la robotique
évolutionniste, la conception de ig og n’a pas impliqué
d’évolution artificielle : ce robot s’appuie sur une actuation
très réactive combinée avec des techniques de commande as-
sez classiques mais très bien réglées (Raibert  ; Raibert
et al. 00).

On pourrait argumenter que si l’entreprise qui a conçu
ig og souhaitait créer un nouveau robot, elle aurait à re-
commencer tout depuis le début, ce qui lui coûterait beau-
coup plus de temps et d’argent que si elle avait passé son
temps à travailler sur un processus de conception plus auto-

matisé. Peut-être. Mais l’ingénierie s’appuie sur une organi-
sation en modules réutilisables et sur beaucoup de « bonnes
pratiques » qui rendent la réutilisation possible, et parfois
même facile. ans les faits, oston ynamics, l’entreprise
qui a conçue le ig og, vient juste de sortir une version
plus petite de leur robot (appelée Spot), qui est basée sur
des technologies similaires. On pourrait aussi argumenter
que leur approche n’est utilisable que pour des robots qua-
drupèdes, mais oston ynamics a aussi démontré qu’ils
pouvaient faire un robot humanoïde s’inspirant de leurs tra-
vaux sur les robots quadrupèdes (Atlas).

Globalement, oston ynamics n’a pas complètement
résolu le problème de la locomotion, et, évidemment, elle
ne s’intéresse pas directement au problème de l’intelligence
artificielle « généraliste » (general artificial intelligence). Néan-
moins, la robotique évolutionniste n’a pas non plus résolu
le problème de la locomotion, en dépit d’un intérêt persis-
tant depuis ses débuts (Lewis et al.  ; Kodjabachian
et Meyer  ; Ijspeert, Hallam et al.  ; lune,
eckmann, Ofria et al. 00 ; Yosinski et al. 0), et l’in-
telligence artificielle généraliste apparaît toujours hors de
portée. ans tous les cas, étant donné l’état de l’art en ro-
botique évolutionnsite, il semble qu’un long chemin reste
à parcourir pour atteindre le niveau de ig og au niveau
de la locomotion. et exemple des capacités locomotrices
oblige à s’interroger sur les motivations initiales de la robo-
tique évolutionniste : est-ce que la robotique est vraiment
si difficile que la conception automatique sera la seule voie
possible  t sinon, que reste-t-il à la robotique évolution-
niste 

Il y a au moins un défi majeur de la robotique qui est
loin d’être résolu : l’adaptation en ligne à des situations vrai-
ment imprévues, que ce soit des pannes matérielles ou des
environnements particuliers. Malgré plus de 0 ans de re-
cherche en robotique, les robots sont toujours des systèmes
fragiles qui s’arrêtent facilement de fonctionner dans les
conditions difficiles (arlson et Murphy 00). ans les
systèmes actuellement déployés, l’approche pour gérer les
situations inattendue est essentiellement héritée de l’ingé-
nierie des systèmes critiques (e.g. les centrales nucléaires ou
les vaisseaux spatiaux) (Koren et Krishna 00). ans ces
contextes, la fiabilité est généralement atteinte grâce à sys-
tèmes experts (Koren et Krishna 00) ou des algorithmes
de machine learning qui établissent un diagnostic de la situa-
tion, couplés à des procédures d’urgence prédéfinies (Kluger
et Lovell 00), des algorithmes de planification (Russell et
Norvig 00), ou des algorithmes d’apprentissage (ongard
0). es approches basées sur les diagnostics sont fragiles
car elles combinent deux sources potentielles d’erreurs : les
erreurs dans le diagnostic, qui dépend fortement de capaci-
tés sensorielles avancées, et le nombre nécessairement fini
de plans possibles, qui ne peuvent couvrir tous les cas pos-
sibles qu’un robot peut rencontrer.

Les robots « bas coûts » exacerbent ces problèmes car ils
peuvent être cassés de très nombreuses manières (les maté-
riaux de bonne qualité sont chers), car ils ont des capacités
sensorielles limitées (les capteurs sont chers et augmentent
la complexité), et parce qu’ils visent typiquement des envi-
ronnements non contrôlés (e.g. les habitations, par opposi-
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tion aux usines, où les robots sont protégés de la plupart des
perturbations externes).

A première vue, l’apprentissage, et non l’évolution, appa-
raît être la solution intuitive pour créer des robots capables
de découvrir par eux-même des comportements nouveaux
dans des situations imprévues. Les animaux clairement s’ap-
puient sur l’apprentissage quand leur inhérente robustesse
est insuffisante pour faire face à la situation (Wolpert et al.
00), et non pas sur l’évolution, qui ne peut agir pendant
leur vie. Néanmoins, les algorithmes évolutionnistes ont
une importante caractéristique qui les distinguent de la plu-
part des algorithmes d’apprentissage existants : ils sont po-
tentiellement plus créatifs. n d’autres termes, nous consi-
dérons ici les algorithmes évolutionnistes comme des algo-
rithmes d’apprentissage créatifs.

Les algorithmes d’apprentissage ont une longue his-
toire qui s’étale sur l’ensemble de l’histoire de l’informa-
tique (Turing 0). Ils sont traditionnellement répartis
dans trois catégories (Haykin ) : l’apprentissage super-
visé (arlow ), pour lequel il y a une base de données
d’exemples d’entrées/sorties, l’apprentissage non supervisé,
pour lequel il y a seulement une base de donnée d’entrées,
et l’apprentissage par renforcement, (Sutton et arto ),
dans lequel l’agent reçoit des récompenses qui dépendent
de son comportement. ertaines idées plus récentes entrent
difficilement dans ce cadre, comme l’apprentissage semi-
supervisé (hapelle et al. 00), pour lequel seulement un
sous-ensemble des exemples sont étiquetés, l’apprentissage
actif (ohn et al.  ; aranes et Oudeyer 0), dans
lequel le robot joue un rôle actif dans la construction de
sa base d’apprentissage, et l’apprentissage intrinsèquement
motivé (Oudeyer et al. 00 ; aldassarre et Mirolli 0),
dans lequel le robot est plus dirigé par la curiosité que par la
recherche de la performance.

L’adaptation à des situations inconnues est un problème
typique d’apprentissage renforcement, car la plupart des ro-
bots ont une mission pour laquelle ils essaie de maximi-
ser leur performance. ien que l’apprentissage par renfor-
cement et la robotique évolutionniste soient inspirés par
des principes différents, ils s’attaquent tous deux à un pro-
blème similaire (Togelius et al. 00 ; Whiteson 0) : des
agents (e.g., des robots) obtiennent des récompenses (resp.
une fitness) par leur comportement dans leur environnement,
et on souhaite trouver la politique (resp. le comportement)
qui correspond à la somme de récompenses maximum (resp.
la fitness maximum). Au contraire des algorithmes basés
sur la différence temporelle (Sutton et arto ), mais
comme les algorithmes dits de direct policy search, la ro-
botique évolutionniste utilise la valeur globale de la poli-
tique, et ne construit pas d’estimation pour des paires états-
actions. ette approche holistique rendent les algorithmes
évolutionnistes potentiellement moins efficaces que les algo-
rithmes d’apprentissage par renforcement classiques car ils
ignorent toute l’information contenue dans les transitions
entre états durant la « vie » de l’agent. ependant, cette ap-
proche permet aussi à la robotique évolutionniste de mieux
gérer les problèmes issus de l’observabilité partielle et de l’ap-
prentissage avec des systèmes continus, comme le contrôle
de robot, où les actions et les états sont souvent difficiles à
définir.

e manière plus importante, l’avantage principal de la
robotique évolutionniste sur l’apprentissage par renforce-
ment est qu’il est possible d’évoluer non seulement les pa-

ramètres d’une politique, mais aussi sa structure (Stanley
et Miikkulainen 00 ; Stanley et Miikkulainen 00 ;
Whiteson 0), ce qui permet d’éviter la difficulté (et le
biais) liée au choix d’une représentation de la politique (e.g.,
dynamic movement primitives : Schaal 00 ; Ijspeert 00,
ou espace état-action discret : Sutton et arto ). ette
capacité à explorer des structure de politiques est ce qui rend
les algorithmes évolutionnistes plus créatifs que la plupart
des autres approches : en théorie, un algorithme évolution-
niste pourrait construire une structure de contrôle dont la
complexité serait limitée uniquement par la puissance de cal-
cul disponible. ien sûr, cet espace de recherche infini rend
les algorithmes évolutionnistes plus lents que d’autres algo-
rithmes plus contraints. L’évolution des espèces a nécessité
des milliards d’années et des milliards de milliards d’indivi-
dus ; on ne peut clairement pas utiliser le même temps pour
permettre à un robot d’apprendre !

La biologie pose presque la question symétrique à « com-
ment concevoir des algorithmes évolutionnistes qui ren-
draient les robots créatifs  » : qu’est-ce qui fait que l’évolu-
tion naturelle est un algorithme de recherche si créatif et
efficace  Pour réaliser la vision de la robotique évolution-
niste, les scientifiques ont besoin de comprendre la biologie
de l’évolution avec suffisamment de détails pour pouvoir la
simuler sur un ordinateur. Ils ont besoin d’une compréhen-
sion mécanistique. ependant, après 0 ans de recherche,
l’évolution est encore mal connue. ien sûr, on comprend
la génétique mieux que jamais (Roff 0 ; West-berhard
00), les expériences avec les bactéries donnent beaucoup
d’informations sur les principes de l’évolution (arrick et al.
00), et les fossiles sont une précieuse fenêtre sur les es-
pèces disparues (Morris ) ; mais on ne comprend tou-
jours pas vraiment ce qui rend les espèces si evolvable, c’est
à dire, comment elles peuvent rapidement et créativement
s’adapter à de nouveaux environnements. Une conséquence
directe est que les expériences avec l’évolution artificielle
ont l’air d’être plus lente que l’évolution naturelle (Wagner
et Altenberg  ; anzhaf et al. 00 ; Hu et anzhaf
00).

Ainsi, comprendre l’evolvabilité est un défi majeur de
la biologie qui une influence critique sur la robotique évo-
lutionniste. Il semble que le développement soit une clé
pour que les mutations affectent les phénotypes d’une ma-
nière qui soit à la fois exploratoire et non mortelle (West-
berhard 00 ; anzhaf et al. 00 ; Kirschner et Gerhart
00 ; Gerhart et Kirschner 00 ; Müller 00), mais on
ne sait pas quelles parties du processus de développement
doivent être copiées, ni celles qui doivent être abstraites, ou
celles qui doivent être ignorées. Il semble aussi que la modu-
larité et la hiérarchie sont des éléments clés de l’évolvabilité
car ces « bons principes d’ingéniérie » permettent à l’évolu-
tion de facilement réutiliser des modules fonctionnels dans
de nouveaux contextes (Simon  ; Lipson 00). e-
pendant, comment la modularité et la hiérarchie ont eux-
même évolué est une question ouverte (Wagner, Pavlicev et
al. 00). e plus, une meilleure compréhension des pres-
sions de sélection est requise pour répliquer les merveilles
de l’évolution naturelle dans un système artificiel. On ne sait
toujours pas vraiment comment les ailes sont apparues chez
les oiseaux (ial 00 ; yke et al. 0), mais, surtout,
la théorie de ce qui permet à l’évolution de créer de nou-
velles caractéristiques en est encore balbutiante (Kirschner
et Gerhart 00 ; Moczek 00). Pour toutes ces questions
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classiques, mais ouvertes, les scietifiques ont besoin de sé-
parer les concepts qui doivent être inclus dans l’évolution
artificielle de ceux qui ajoutent une complexité inutile.

ans ce manuscrit, nous soutenons la thèse que l’évolu-
tion artificielle peut contribuer à la fois à la robotique et à
la biologie évolutionniste, en fournissant des nouveaux algo-
rithmes à la robotique et des nouveaux outils à la biologie.
L’adaptation est ainsi une question aux multiples facettes
que nous avons explorée à partir de différents points de vue,
quelques fois en biologie computationelle, et plus souvent
en intelligence artificielle et en robotique. ette approche
nous mène à deux questions symmétriques :

• Qu’est ce qui fait que les organismes naturels sont si « evol-
vable » ?

• Comment exploiter l ’évolution pour rendre les robots plus
adaptatifs ?

PRINCIPALES CONTRIBUTIONS

Évolution de réseaux de neurones plastiques

Contribution publiée dans : Tonelli P., and Mouret, J.-
. (0). On the Relationships between Generative Enco-
dings, Regularity, and Learning Abilities when Evolving Plas-
tic Artificial Neural Networks. PLoS ON () : e.
doi :0./journal.pone.00

L’évolution est un processus adaptatif important, mais
les adaptation comportementales mettent en jeu beaucoup
d’autres mécanismes et, en particulier, l’apprentissage. n
terme de capacités adaptatives pour des agents artificiels, il
serait utile de combiner les adaptations dues à l’évolution,
assez lente mais très exploratoires, avec celles de l’apprentis-
sage, plus rapide mais plus contraint.

es deux processus sont inévitablement entrelacés car
tous deux améliorent les capacités des individus à survivre
dans leur environnement : beaucoup d’adaptations compor-
tementales peuvent à la fois être le résultat de l’apprentissage
et de l’évolution. ependant, l’évolution et l’apprentissage
sont presque toujours étudiés indépendamment, que ce soit
en biologie (neuroscience contre biologie évolutionniste) ou
en intelligence artificielle (machine learning contre evolutio-
nary computation).

ans cette première contribution, on s’intéresse à une
question à l’intersection de l’évolution et de l’apprentissage :
comment est-ce que l’évolution peut mener à des indivi-
dus qui peuvent apprendre dans beaucoup de situations dif-
férentes  Plus précisément, comment est-ce que des ré-
seaux de neurones artificiels évolués par évolution artifi-
cielle peuvent-ils être capables d’apprendre dans des situa-
tions pour lesquelles ils n’ont jamais été directement sélec-
tionnés  Ou, avec un point de vue machine learning : com-
ment l’évolution peut-elle éviter le danger de sur-spécialiser
le mécanisme d’apprentissage, ce qui le limiterait à un sous-
ensemble particulier de situations 

Une hypothèse classique est que les capacités d’apprentis-
sage généralistes évoluent en raison d’une possible pression
de sélection directe à être capable de survivre dans des en-
vironnements changeant fréquemment. Néanmoins, cette
pression pourraient ne pas expliquer complètement l’ubi-
quité des capacités d’apprentissage généralistes chez les ani-
maux.

ans cette première contribution, nous avons exploré une

hypothèse alternative, qui est que le processus de développe-
ment des réseaux de neurones augmente significativement la
probabilité d’obtenir des réseaux capables d’apprendre dans
beaucoup de situations différentes. L’intuition sous-jacente
est que ce processus de développement rend plus probable
la répétition de la même structure d’apprentissage – même
si certaines répétitions n’ont aucun intérêt à court terme –
que la spécialisation de la structure d’apprentissage.

n utilisant une tâche de conditionnement opérant
simple ( associations à apprendre), nous avons comparé
trois manières d’encoder des réseaux de neurones plastiques :
un encodage direct (Mouret et oncieux 0a), un en-
codage développemental inspiré par les modèles de neu-
roscience (Mouret, oncieux et Girard 00), et un en-
codage développemental inspiré par les gradients morpho-
gènes, similaire à HyperNAT (Stanley, ’Ambrosio et al.
00). Nous avons lancé l’évolution de ces réseaux de neu-
rones en faisant varier le nombre d’exemples d’associations
utilisés dans la fonction de fitness, puis nous avons évalué
les capacités d’apprentissage en demandant aux meilleurs
réseaux d’apprendre d’autres associations, c’est à dire des
associations que le réseau n’a pas été sélectionné pour ap-
prendre. Nous évaluons la régularité des réseaux en comp-
tant le nombre d’automorphismes, une technique que nous
avons introduite dans cette contribution.

Les résultats montrent qu’utiliser un encodage dévelop-
pemental améliore significativement les capacités d’appren-
tissage des réseaux de neurones plastiques évolués. Les ana-
lyses complémentaires révèlent que quel que soit l’encodage,
les réseaux les plus réguliers sont ceux qui ont les meilleurs
capacités d’apprentissage généralistes.

Évolution de la modularité

Contribution publiée dans : lune* J, Mouret* J-, Lip-
son H. (0) e evolutionary origins of modularity. Pro-
ceedings of the Royal Society : . 0 : 0.
http ://dx.doi.org/0.0/rspb.0. (* equal contri-
bution).

Une question centrale en biologie est comment les po-
pulations sont capables de s’adapter rapidement à des nou-
veaux environnements, une caractéristique appelée evolvabi-
lité (Pigliucci 00). Un contributeur majeur à l’évolvabilité
est le fait que beaucoup des entités biologiques sont modu-
laires, en particulier les processus biologiques qui peuvent
être modelés avec des réseaux (e.g., les réseaux métaboliques,
les réseaux régulateurs de gènes, les réseaux d’interaction
de protéines, les réseaux de neurones, etc.) (Mountcastle
 ; arroll 00 ; Guimera et Amaral 00 ; Alon
00 ; Wagner, Pavlicev et al. 00 ; Hintze et Adami
00 ; Pigliucci 00).

Les réseaux sont modulaires s’ils contiennent des groupes
de nœuds hautement connectés entre eux qui sont connec-
tés par uniquement quelques connections aux autres
groupes (Striedter 00 ; Lipson 00 ; Wagner, Pavlicev
et al. 00). Malgré son importance et des dizaines d’an-
nées de recherche, il n’y a pas de consensus sur pourquoi
la modularité a évolué dans la nature (Wagner, Mezey et
al. 00 ; Wagner, Pavlicev et al. 00 ; spinosa-Soto et
Wagner 00).

La modularité est probablement causée par plusieurs
forces qui agissent avec des forces différentes (Wagner,
Pavlicev et al. 00). L’hypothèse la plus classique est que
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la modularité émerge en réponse à des changements d’en-
vironnements fréquents (Kashtan et Alon 00 ; Kashtan,
Noor et al. 00) : Intuitivement, les systèmes modulaires
semblent plus adaptables, une leçon bien connue des ingé-
nieurs (Suh 0), car il est plus facile de « recabler » un
réseau modulaire qu’un réseau « emmêlé » (Kashtan et Alon
00 ; Kashtan, Noor et al. 00) ; ils devraient donc être
favorisés par l’évolution. ependant, cette évolvabilité ne
donne qu’un avantage sélectif à long terme, ce qui fait de
la sélection pour l’évolvabilité au mieux une pression indi-
recte (Wagner, Mezey et al. 00 ; Wagner, Pavlicev et al.
00). Il est, de plus, difficile à déterminer si les environ-
nements changent suffisamment rapidement et de manière
suffisamment modulaire pour que cette pression ait une in-
fluence importante. Une théorie voisine est que la modula-
rité évolue pour permettre de modifier des sous-composants
sans affecter les autres (spinosa-Soto et Wagner 00),
une capacité utile en environnements très variables. Il y a
d’autres hypothèses (voir Wagner, Pavlicev et al. 00), en
particulier que les duplications de gènes créent un biais vers
la modularité (Wagner, Pavlicev et al. 00).

ans cette contribution, nous étudions une hypothèse al-
ternative qui a été suggérée précédemment mais jamais tes-
tée : la modularité évolue non pas parce qu’elle améliorer
l’évovabilité, mais comme une conséquence de la sélection
pour réduire les coûts de connexion dans les réseaux (Ramón
y ajal  ; Striedter 00).

Nous avons utilisé des simulations basées sur de l’évo-
lution artificielle multi-objectif (eb 00). Le problème
principal consiste à faire évoluer la topologie d’un réseau re-
cevant des entrées sur une « rétine » de  pixels. e réseau
doit reconnaître des motifs sur la partie droite, d’autres mo-
tifs sur la partie gauche, et répondre « vrai » s’il reconnaît à
la fois un objet à gauche et à droite. Les expériences ont été
répliquées sur d’autres tâches impliquant des décisions boo-
léennes en fonction des entrées. La modularité est évaluée
avec la mesure de Newman (Newman 00) étenduee aux
réseaux orientés (Leicht et Newman 00).

Après  000 générations dans un environnement non
variable, les expériences où les réseaux sont sélectionnés à la
fois pour la performance sur la tâche et le coût de connexion
mènent à des réseaux significativement plus modulaires que
ceux où les réseaux ne sont sélectionnés que pour la perfor-
mance.

Les réseaux évolués avec une pression sur le coût des
connections sont aussi plus « evolvable » : lorsque l’on change
la tâche pour une tâche voisine, ils s’adaptent plus vite que
ceux évolués sans coût de connexion.

nfin, la minimisation du coût des connexion peut agir
en conjonction avec d’autres forces pour augmenter la mo-
dularité. Notamment, la modularité est encore plus haute
lorsque l’on combine la pression au coût des connexions avec
un environnement variant très souvent.

Nous avons continué d’étudier cette question en tes-
tant notre hypothèse avec un encodage génératif (Stanley,
’Ambrosio et al. 00). Les intérêts de la modularité sont
en effet décuplés lorsqu’elle est combinée avec la régularité,
c’est à dire quand les modules peuvent être dupliqués et réuti-
lisés. Nos résultats montrent qu’il est possible d’obtenir des
réseaux réguliers et modulaires quand on combine un enco-
dage génératif avec un coût de connexion.

nfin, nous avons testé l’influence d’une pression sélec-

tive sur le coût de connexion dans le cas de l’évolution ré-
seaux plastiques basés sur l’apprentissage hebbien neuro-
modulé (Soltoggio, ullinaria et al. 00). ans ce cas, on
observe que l’évolution tend à séparer le réseau en un mo-
dule d’apprentissage, gérant la récompense, et un module
capable d’apprendre la tâche.

Résistance aux dommages sans diagnostic

ontribution publiée dans :
• ully, A., lune, J., Tarapore, ., and Mouret, J.-.

(0). Robots that can adapt like Natural Animals. Na-
ture. (to appear).

• Koos, S. and ully, A. and Mouret, J.-. (0). Fast
Damage Recovery in Robotics with the T-Resilience Algo-
rithm. International Journal of Robotics Research. Vol.
 :. pp 00-

Lorsque que les robots quittent l’environnement contrôlé
des usines pour fonctionner en autonomie dans des envi-
ronnements plus complexes et plus naturels (ellingham
et Rajan 00 ; Yoerger 00 ; roadbent et al. 00),
ils doivent répondre au fait qu’ils vont très probablement
être endommagés (arlson et Murphy 00 ; Sanderson
00). ependant, alors que les animaux peuvent rapide-
ment s’adapter à de nombreuses blessures, les robots ac-
tuels ne peuvent pas « penser créativement » pour trouver
un comportement compensatoire lorsqu’ils sont endomma-
gés : ils sont limités par leur senseurs proprioceptifs, qui ne
peuvent diagnostiquer que les problèmes pour lesquels ils
ont été conçus, et doivent ensuite déterminer un nouveau
comportement en s’appuyant sur ce diagnostic, ce qui rend
tout erreur de diagnostic critique (arlson et Murphy 00 ;
Sanderson 00).

Nous avons proposé deux nouveaux algorithmes pour ré-
soudre ce problème. Tous deux reposent sur les mêmes
concepts : () l’apprentissage par essai-erreur (et donc les
algorithmes évolutionnistes) permet de trouver des compor-
tements compensatoires sans nécessiter de diagnostic ou de
plans prédéfinis, et () un simulateur du robot intact peut
être utilisé pour guider la recherche d’un comportement
compensatoire, même si le robot est endommagé. L’intui-
tion sous-jacente est que les comportements qui n’utilisent
pas les parties endommagées auront des résultats similaires
en simulation et en réalité. ans les deux cas, notre plate-
forme expérimentale principale est un robot hexapode cassé
de  manières différentes, en particulier des pattes cassées
et manquantes.

Notre premier algorithme, appelé T-Resilience, est basée
sur l’approche par transférabilité, que nous avons initiale-
ment introduite pour traverser le reality gap qui sépare les
résultats obtenus par évolution en simulation de ceux obte-
nus sur le robot. ette approche consiste à utiliser un algo-
rithme de regression (ici une Support Vector Machine, Smola
et Vapnik ) pour apprendre les limites de la simulation,
c’est à dire quand la simulation sera correcte et quand elle
sera incorrecte. Pour un contrôleur, plus la simulation est
proche de la réalité, plus le contrôleur est dit transférable.
oncrètement, le robot utilise un algorithme évolutionniste
multi-objectif (eb et al. 00) qui optimise deux critères :
la performance en simulation et la transférabilité estimée par
le SVM. Pour estimer la transférabilité, l’algorithme trans-
fère periodiquement un individu de la population et enre-
gistre les différences entre réalité et simulation.
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Nous avons testé cette méthode sur le robot hexapode
avec  dommages différents et sur le robot intact. ans tous
les cas, le robot a trouvé des comportements satisfaisant en
moins de  tests sur le robot et un total de 0 minutes
(en fonction de la puissance de calcul disponible, ce temps
peut être plus long). Nous avons comparé notre approche
à un algorithme de policy gradient (Kohl et Stone 00),
un algorithme de recherche locale stochastique (Hoos et
Stützle 00), et l’approche de ongard et al. 00. La T-
Resilience mène à des résultats significativement meilleurs
que ces approches dans toutes les comparaisons.

Le deuxième algorithme, appelé « intelligent trial and er-
ror », permet aux robots de s’adapter aux mêmes dommages
en moins de  minutes et une dizaine de tests.

Avant le déploiement, le robot exploite un nouvel al-
gorithme pour créer une carte des comportements perfor-
mants. Nous avons baptisé cet algorithme « MAP-lites ».
n pratique, le robot hexapode trouve 000 « bonnes » ma-
nières différentes de marcher et les organise sous la forme
d’une carte multi-dimensionnelle. ette carte représente les
intuitions du robot à propos de quels comportements il peut
utiliser et à quelle performance il peut s’attendre. L’algo-
rithme MAP-lites est dérivé d’idées que nous avons déve-
loppées lorsque nous étudions l’évolution de la modularité
et avions besoin de visualiser l’espace de recherche projeté
dans les dimensions coûts de connexion / modularité.

ette carte constitue un prior pour un algorithme d’op-
timisation bayesienne (introduction : rochu et al. 00 ;
orji et Itti 0 ; Mockus 0 ; application à la robotique :
Lizotte et al. 00 ; alandra et al. 0), un type d’algo-
rithme d’optimization « boite noire » qui modélise la fonc-
tion à optimiser avec un Gaussian process (processus gaus-
sien). Le robot commence donc avec un fonction de perfor-
mance correspondant à ce qu’il a obtenu en simulation, et ac-
corde à cette connaissance a priori une confiance faible. Pour
trouver un nouveau comportement, le robot sélectionne le
comportement le plus prometteur, puis met à jour le pro-
cessus gaussien pour refléter son estimation de performance
pour chaque comportement potentiel.

ans nos expériences, le robot trouve systématiquement
un bon comportement compensatoire en moins de 0 tests
et  minutes. Nous avons réalisé des expériences similaires
avec un bras robot plan à  degrés de liberté, que nous avons
endommagé de  façons différentes. Le but du robot est
d’atteindre un point dans le plan, typiquement pour y dépo-
ser un objet. Là encore, notre algorithme permet au robot
de s’adapter en quelques minutes.

Signature d’évolvabilité

Contributionpubliée dans :Tarapore, ., and J.-. Mouret.
Evolvability signatures of generative encodings : beyond stan-
dard performance benchmarks. Information Sciences (0).

Les deux algorithmes de la contribution précédente per-
mettent à des robots de trouver un nouveau comportement
en quelques tests. ependant, ils ont été – à dessein – testés
avec des contrôleurs très simples (des sinusoides) afin de per-
mettre à notre contribution de se concentrer sur l’algorithme
d’adaptation, et non sur la stratégie de contrôle. Il y a deux
problèmes avec ces contrôleurs : () ils sont en boucle ou-
verte, c’est à dire qu’ils ne peuvent pas s’adapter à des petits
changements d’environnement, et () ils contraignent forte-
ment la cinématique de la marche, ce qui peut empêcher de

bien compenser certains dommages.
Les deux algorithmes précédents peuvent fonctionner

avec n’importe quel type de contrôleur qui peut être évolué
avec un algorithme évolutionniste. Néanmoins, il y a beau-
coup de manières différentes d’implémenter des contrôleurs
de marche, et encore plus de manières de les faire évoluer
avec un algorithme évolutionniste. omment choisir l’ap-
proche la plus prometteuse 

Traditionnellement, les méthodes pour évoluer des
contrôleurs de robots sont évaluées uniquement par le score
de fitness obtenu. ependant, le score de fitness ne fournit
que des informations limitées sur la méthode. Par exemple,
il ne permet pas de prédire comment le système réagira si la
fonction de fitness change (e.g. suite à un dommage du ro-
bot), ou comment l’encodage explore l’espace de recherche,
indépendamment de la pression de sélection.

Pour mieux comparer les encodages de contrôleurs pour la
robotique évolutionniste, nous avons proposé une nouvelle
méthode, appelée « signatures d’évolvabilité », qui dessine la
distribution statistique de la diversité des comportements
et de la fitness après une étape de mutation. ette méthode
s’appuie sur la définition de l’évolvabilité qui inclut à la fois
la variabilité et la viabilité des comportements générés, c’est
à dire à quel point ils sont différents et à quel point ils restent
performants.

Nous avons testé la pertinence de notre concept en évo-
luant des contrôleurs pour la marche hexapode. Nous avons
utilisé  encodages différents : encodage direct de para-
mètres d’un entral Pattern Generator (PG, Ijspeert
00), encodage par PPN des paramètres d’un PG en
boucle ouverte, encodage par PPN (Stanley 00) des
paramètres d’un PG en boucle fermée, et le contrôleur
SUPG (Morse et al. 0), aussi basé sur des PPN. Nous
avons observé une relation prédictive entre la signature
d’évolvabilité de chaque encoding et le nombre de généra-
tions requis pour qu’un robot hexapode s’adapte à un dom-
mage. Notre étude révèle aussi que le contrôleur SUPG a la
signature d’évolvabilité la plus prometteuse car il est capable
de générer des comportements différents avec peu de perte
de fitness. ans nos expériences, cet encodage est aussi celui
qu permet de trouver le plus rapidement un nouveau com-
portement après la perte d’une patte.

Plus généralement, les signatures d’évolvabilité apportent
un complément aux mesures basées uniquement sur des
benchmarks en offrant une vision plus riche du comporte-
ment de chaque encodage. lles nous permettront d’affiner
notre choix du meilleur type de contrôleur/genotype pour
nos robots.

DISCUSSION

Bio-inspiration et outils communs

Nous avons commencé ce manuscrit avec une contribution
qui visait l’intelligence artificielle, mais nos expériences nous
ont montré à quel point nous étions loin de pouvoir utili-
ser l’évolution pour créer automatiquement des réseaux de
neurones capables d’apprendre. On peut légitimement se
demander si de telles méthodes pourront un jour créer des
réseaux de neurones capables d’approcher l’état de l’art en
apprentissage par renforcement (e.g., eep Q-Learning :
Mnih et al. 0).
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e manière inattendue, cette contribution ouvre peut-
être plus possibilité pour comprendre l’évolution des capa-
cités cognitive. n particulier, elle donne des outils pour
analyser les compromis entre la flexibilité, c’est-à-dire la ca-
pacité à apprendre dans beaucoup de situations, l’entraina-
bilité, c’est-à-dire la capacité à apprendre facilement et rapi-
dement, et la compacité, c’est-à-dire la tendance générale à
supprimer les connexions inutiles (lune* et al. 0).

Notre deuxième contribution, les origines évolutionnistes
de la modularité, visait explicitement la biologie. Néan-
moins, notre travail sur cette contribution nous a mené à
introduire notre algorithme de cartographie des élites, qui
est la pierre angulaire de notre troisième contribution, la ré-
sistance aux dommages, qui est explicitement dédiée à la
robotique.

ans l’approche traditionnelle de la robotique bio-
inspirée, une découverte est faite en biologie, un modèle
abstrait est implémenté sur un robot, et le robot est amélioré
grâce aux idées issues de la biologie (Pfeiffer 00 ; Meyer
et Guillot 00 ; Kovač 0). Par contraste, dans notre ap-
proche, la biologie évolutionniste et la robotique évolution-
niste s’attaquent à des questions différentes mais les outils
sont similaires. n d’autres termes, l ’inspiration n’est pas dans
le résultat, mais plutôt dans le chemin qui a mené au résultat.

ette inspiration est bi-directionnelle, puisque nous
avons à la fois utilisé des outils de la robotique évolutionniste
pour offrir un nouveau regard sur des questions de biologie,
et des outils utilisés en biologie évolutionniste pour contri-
buer à la robotique. ette convergence des outils est illustrée
par le fait que toutes les expériences de ce manuscrit utilisent
le même framework logiciel, sferesv2 (Mouret et oncieux
00).

De meilleurs outils pour de meilleures
fondations

Malgré ses racines en informatique, la robotique évolution-
niste est une science expérimentale. L’approche classique
pour savoir si une idée est plus prometteuse qu’une autre
est de lancer un ensemble d’expériences avec différentes ap-
proches, mesurer la meilleure fitness obtenue, et conclure.
ette méthodologie peut mener à des améliorations incré-
mentales quand le but est de résoudre le problème utilisé
dans le benchmark ou un problème très proche. ependant,
en robotique évolutionniste, les « benchmarks » sont en gé-
néral des étapes potentielles sur le chemin d’autres pro-
blèmes plus ambitieux. ans cette situation, simplement
analyser la meilleure fitness est de courte vue : pour la même
idée, il est très probable que la conclusion de la comparaison
change si l’expérimentateur utilise d’autres paramètres (sou-
vent nombreux) et d’autres tâches (Karafotias et al. 0).

n conséquence, il y a un besoin clair d’outils d’analyse en
robotique évolutionniste et, plus généralement, en « evolu-
tionary computation » ; c’est pourquoi une constante des tra-
vaux de ce manuscrit est de proposer de nouvelles manières
d’analyser et de visualiser les résultats obtenus en robotique
évolutionniste.
Mesurer la régularité dans les réseaux. ans notre première
contribution (évolution de réseaux de neurones plastiques),
nous avons introduit une nouvelle manière de mesurer la
régularité des réseaux. Notre approche est fondée sur des
résultats classiques de théorie des graphes, les automor-

phismes, et elle est rapide, notamment grâce aux biblio-
thèques existantes pour énumérer les automorphismes des
graphes (McKay  ; Junttila et Kaski 00 ; Katebi et al.
0). Notre approche est une des rares approches permet-
tant de mesurer la régularité d’un réseau. L’alternative clas-
sique est de compresser la matrice de connectivité (lune,
Stanley et al. 0), ce qui est infaisable exactement car
il faudrait pouvoir compresser tous les arrangements de
nœuds dans la matrice (en plus d’avoir un algorithme de
compression optimal).
Dessiner des réseaux de neurones. Pour mesurer la longueur
des connexions lorsque nous étudions les origines de la mo-
dularité, nous avons eu besoin de placer certains neurones
à des positions fixes et de placer les autres à la position
qui minimise la somme du coût des connexions. e pro-
blème peut être résolu exactement par programmation qua-
dratique (hklovskii 00). Incidemment, cette approche
permet de dessiner des réseaux de neurones feed-forward et
nous l’avons utilisée plusieurs fois dans ce manuscrit.
Visualiser les elites d’un espace de recherche. ien que les es-
paces de recherche et les paysages de fitness soient au
centre de beaucoup de discussion en optimisation et bio-
logie, on peut rarement les voir car ils sont générale-
ment de trop haute dimension. La littérature en statis-
tique offre de nombreuses options pour réduire la dimen-
sion d’un jeu de données et visualiser des données de haute
dimension (Andrews  ; Haykin  ; Tenenbaum et
al. 000 ; Kohonen 00). Néanmoins, ce sont des algo-
rithmes « passifs » qui commencent avec un jeu de données
et cherchent la meilleure représentation. Ils ne s’attaquent
pas au problème de générer ce jeu de données.

Par contraste, pour identifier les pics de fitness, nous de-
vons les chercher activement. Il n’est pas suffisant d’échan-
tillonner aléatoirement des millions de solutions puis de les
afficher, pour la même raison que l’échantillonnage aléatoire
est généralement un mauvais algorithme d’optimisation :
trouver par chance un pic de fitness est très improbable pour
n’importe quel espace de recherche un peu grand.

’est pourquoi l’algorithme MAP-lites, ini-
tialement développé pour visualiser la relation
coût/modularité/performance puis utilisé en robotique,
est un algorithme de recherche et non un algorithme
de réduction de dimension classique ; il pourrait être vu
comme un algorithme de réduction de dimension actif, une
catégorie d’algorithme qui reste encore à créér.
Signatures d’évolvabilité. es signatures, que nous avons déjà
décrites précédemment partagent plusieurs caractéristiques
avec les autres méthodes que nous avons proposées :

• comme MAP-lites, c’est un outil visuel qui dessine
des images en  dimensions ;

• comme MAP-lites et notre travail sur la diversité
comportementale (Mouret et oncieux 0a), il est
basé sur un concept de distance comportementale ;

• comme notre mesure de régularité, les signatures ré-
vèlent des caractéristiques intrinsèques des encodages
sans nécessiter de choisir si ces caractéristiques sont
bonnes ou mauvaises.

Construire des fondations solides

La robotique évolutionniste est un projet à long terme qui
nécessite des fondations solides pour pouvoir continuer à
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progresser. Au delà du manque d’outils d’analyse, la robo-
tique évolutionniste souffre d’un manque de connaissances
générales : après des dizaines d’années de recherche, peu de
faits sont établis.

Par essence, une expérience de robotique évolutionniste
met en jeu trois composants principaux : une tâche, un en-
codage, une pression de sélection, et un algorithme évolu-
tionniste. eaucoup d’articles testent plusieurs tâches, mais
seulement une poignée d’entre eux essaye de généraliser
dans les  autres dimensions.

ans notre travail sur la diversité comportemen-
tale (Mouret et oncieux 0a), nous avons testé  enco-
dages,  tâches, et  méthodes différentes pour appliquer
une pression de sélection pour la diversité. Grâce à cette ap-
proche, nous avons pu atteindre une conclusion assez géné-
rale : une pression de sélection qui encourage la diversité
comportementale a beaucoup plus d’impact sur le succès
d’une expérience que l’encodage, quel que soit la technique
utilisée pour encourager la diversité.

ans notre contribution sur la plasticité synaptique, nous
avons utilisé  encodages différents, ce qui nous a permis
de dresser des conclusions qui devraient être valable pour
n’importe quel encodage biaisé vers la régularité, y compris
ceux qui n’ont pas encore été conçus.

ans notre contribution a propos des signatures d’évolva-
bilité, nous avons étudié les encodages indépendamment de
l’algorithme évolutionniste et de la pression de sélection.

Globalement, ces contributions montrent qu’il est pos-
sible de poser des fondations à condition de développer de
nouveaux outils d’analyse et d’aller au delà d’articles qui
comparent uniquement la fitness obtenue par des systèmes
complets (encodage + pression de sélection + algorithme
évolutionniste + paramètres + tâche).

PROJET DE RECHERCHE

Pour les cinq prochaines années, je vais principalement me
concentrer sur les applications à la robotique et plus spécia-
lement sur la résistance aux dommages. Je vais continuer de
collaborer avec des biologistes, mais ce ne sera pas central
dans mon travail.

Vers des robots hautement résilients

Mon objectif principal est de poursuivre la voie ouverte par
l’approche « Intelligent Tirla and rror » pour proposer de
nouveaux algorithmes qui permettront à des robots auto-
nomes de découvrir de nouveaux comportements lorsqu’ils
sont endommagés ou lorsqu’ils sont face à une situation in-
attendue. Nous continuerons à nous appuyer sur un algo-
rithme évolutionniste type « MAP-lites » et sur des mé-
thodes de recherche comme l’optimisation bayesienne.

ans cinq ans, nous devrions être capables de mettre un
robot cassé dans une pièce normale (e.g. un appartement)
et il devra découvrir un nouveau moyen de poursuivre sa
tâche. Par exemple, un robot marcheur avec une patte cassée
aura à découvrir en toute autonomie comment marcher à
nouveau, pour toutes le directions, et en prenant en compte
les obstacles pendant son apprentissage.

Notre algorithme idéal aura les caractéristiques sui-
vantes :

Général : le même algorithme devrait être capable de fonc-
tionner avec des modifications mineures sur n’importe quel
robot et n’importe quelle tâche, en particulier pour les ro-
bots marcheurs, les manipulateurs mobiles, et les robots hu-
manoïdes.
Rapide : le processus ne devrait pas prendre plus de quelques
minutes, en particulier pour éviter d’endommager le robot
encore plus.
Créatif : le processus doit être aussi créatif que possible.
Multi-tâche : apprendre à faire une unique tâche est rare-
ment suffisant. Par exemple, apprendre à marcher dans une
unique direction est inutile.
Deployable : les robots n’effectuent pas leur mission dans des
pièces expérimentales vides ; ils doivent faire avec leur envi-
ronnement pendant qu’ils apprennent.
Multi-objectif : la plupart des robots doivent optimiser plu-
sieurs objectifs antagonistes, par exemple maximiser la vi-
tesse de déplacement et minimiser la consommation éner-
gétique.

Ce projet est financé pour 2015-2020 par la commission eu-
ropéenne (ERC ResiBots).

Les origines évolutionnistes de la
généralisation comportementale

Cette partie de mon projet sera réalisée en collaboration avec
Jean-Baptiste André (Institut des Sciences de l ’Evolution -
CNRS - Montpellier) et Nicolas Bredeche (ISIR, Université
Pierre and Marie Curie).

L’objectif de ce projet est de proposer un nouveau regard
sur les innovations évolutionnistes dans le cadre des inno-
vations comportementales en se concentrant sur le rôle de
la généralisation (Parter et al. 00 ; Watson et al. 0)
– la capacité pour les individus de se comporter de manière
adaptative dans des environnements qui n’ont jamais été ren-
contrés par leur espèce. Pour cela, nous nous appuierons sur
nos travaux sur la plasticité synaptique, pour l’apprentissage
en ligne basé sur des neurones, et sur l’optimisation baye-
sienne, pour l’apprentissage en ligne rapide. Nous combine-
rons ces techniques avec l’évolution guidée par l’environne-
ment (environment-drive evolution) car c’est un modèle inté-
ressant de l’évolution naturelle qui peut prendre en compte
l’environnement explicitement (redeche et al. 0).

Nous nous attaquerons à deux grands défis :
• proposer un modèle d’évolution environment-driven

qui prend en compte les capacités d’apprentissage ;
• tester les effets des facteurs environnementaux sur

l’émergence et la maintenance des capacités de géné-
ralisation et/ou d’apprentissage.

CONCLUSION

J’ai commencé ma thèse avec l’envie de rendre les robots
plus adaptatifs en s’inspirant de l’évolution, mais je me suis
finalement concentré l’amélioration des techniques d’évolu-
tion de réseaux de neurones (Mouret et oncieux 00 ;
Mouret et oncieux 00, 0a). L’essentiel du travail que
j’ai conduit depuis ma thèse est un retour à ma motivation
initiale : faire des robots capables de survivre dans un monde
dynamique et imprédictible.
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n effectuant des aller-retour entre des questions de bio-
logie évolutionniste et de robotique, nous avons maintenant
une meilleure idée de :

• comment faire évoluer des réseaux de neurones plas-
tiques avec capacités d’apprentissages en ligne généra-
listes⇒ en utilisant des encodages génératifs ;

• comment les réseaux biologiques peuvent-ils adapter
leur comportements en quelques générations ⇒ en
étant modulaires, grâce notamment à la pression de sé-
lection qui pousse à minimiser les coûts de connexion ;

• quels encodages pour les réseaux de neurones com-
binent créativité et viabilité des solutions⇒ grâce aux
signatures d’évolvabilité, nous pouvons conclure que
SUPG est le meilleur encodage de notre ensemble de
test pour notre tâche (la locomotion) ;

• comment exploiter l’évolution artificielle pour per-
mettre l’adaptation rapide, en ligne, et créative en ro-
botique⇒ en remplissant beaucoup de niches en simu-
lation avec un algorithme évolutionniste et cherchant

parmi celles-ci avec une optimisation bayesienne.
hacune de ces étapes nous rapproche de robots qui

peuvent réagir de manière créative et rapide à des situa-
tions inattendues. ans le futur, nous ferons de notre mieux
pour :

• aller le plus loin possible vers des expériences réalistes
⇒ mettre un robot endommagé dans un appartement,
attendre  minutes, et le robot devrait avoir découvert
un moyen de compenser le dommage ;

• faire que nos résultats soient aussi généraux que
possible ⇒ tester toutes nos idées sur plusieurs ro-
bots différents, et, si possible, pour différents enco-
dages/algorithmes/techniques ;

• continuer à s’intéresser à la fois à des questions théo-
riques en biologie évolutionniste et des questions ap-
pliquées en robotique ;

• continuer de développer de nouveaux outils d’analyses
qui vont au delà d’une simple mesure de performance.

x
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1Introduction & state-of-the-art

I all started with a simple idea: according to arwin,
evolution shaped all the species we know; as an itera-
tive process, it looks like an algorithm that could be

executed by a computer; therefore, why not using artifi-
cial evolution to design artificial animals, that is, robots
is simple idea inspired scientists since the fifties (Turing
0; Holland ) and gave birth in the nineties to the
field called “volutionary Robotics” (R) (liff et al. ;
Meyer, Husbands, et al. ; Nolfi and loreano 00;
ongard 0; oncieux, redeche, et al. 0).

Armed with the appropriate abstraction of natural evolu-
tion, evolutionary robotics should lead to robot-creating ma-
chines (or at least robot-generating algorithms) that would
equal the abilities of natural evolution to design complex
system. Having such techniques would be very useful for
robotics because designing robots, especially mobile robots,
is very difficult (Nolfi and loreano 00; ongard 0).
Actually, one can think that designing complex robots is
so difficult than humans could soon be unable to design
the next generation of machines. In this case, algorithms
will have to replace or at least assist humans in the design
process. or instance, walking robots is a open challenge
for “traditional robotics” (Raibert ; Kajita and spiau
00) but for which animals excel. volutionary algorithms
could design robot controllers that would be more efficient
than classic approaches, since a similar process led to amaz-
ingly high-performing animals. Artificial evolution could
even design the whole robot, that is, both its controller and
its body, so that its control strategy and its morphology
are tightly integrated (Pfeifer and ongard 00; Pfeifer,
Lungarella, et al. 00). Such a tight integration would
undoubtedly make the robot much more efficient than any
human-made design.

ut, one day of 00, a video of the ig og robot ap-
peared online (Raibert et al. 00) (ig. .). While evolu-
tionary robotics was asking big and fundamental questions
about evolution and embodiment, “mainstream” robotics
continued to progress. or many, the ig og robot is a
symbolic turning point because of its unprecedented, almost
life-like, walking performance in natural terrains, from
forest to rocks and icy roads. However, to evolutionary
robotics’ utter despair, the design of ig og did not in-
volve artificial evolution: this robot uses very reactive actu-
ation combined with finely tuned but classic control tech-
niques (Raibert ; Raibert et al. 00).

One could argue that if the company that designed the
ig og wanted to create a new robot, they would have to
start again from scratch and that this would cost them much
more money than if they had spent their time designing an
automatic design method. Maybe. ut engineered mod-
ules and technical knowledge are precisely designed to be
as transferable as possible. ousands of years of engineer-
ing led to many good practices to make reuse possible, if not
easy. In fact, oston ynamics, the company that designed
the ig og, just unveiled a smaller version of their robot
(Spot, a dog-sized robot), which is based on similar tech-
nology. One could also argue than their approach is only
good for quadruped robots, but they successfully demon-

Figure 1.1. LS3, the successor of Big Dog. (image (c) 2012, Tactical

Technology Office, Defense Advanced Research Projects Agency, U.S. De-

partment of Defense). The Big Dog did not need evolution or learning to

achieve impressive locomotion abilities. However, it might need evolution

and/or learning to copewith someunexpected situations, like, for instance,

a partially broken leg.

strated a biped robot (Atlas) inspired by their work on the
quadruped.

Overall, oston ynamics did not fully solve the prob-
lem of robotic locomotion (yet) and obviously did not
even tackle the question of general artificial intelligence.
Nonetheless, evolutionary robotics did not solve the lo-
comotion problem either, in spite of a continuous inter-
est since its beginnings (Lewis et al. ; Kodjabachian
and Meyer ; Ijspeert, Hallam, et al. ; lune,
eckmann, Ofria, et al. 00; Yosinski et al. 0), and
general artificial intelligence is still out of reach. At any rate,
given the state of the art in evolutionary robotics, there ap-
pears to be a long journey before reaching the level of ig
og for locomotion skills. e locomotion example there-
fore casts doubts on the initial motivation of evolutionary
robotics: is robotics really so difficult that automatic design
will be the only possible approach And, if not, what is left
for evolutionary robotics

ere is at least one challenge in robotics that is far
from being solved: online adaptation to truly unfore-
seen situations. espite over 0 years of research in
robotics, robots are still fragile systems that easily stop
functioning in difficult conditions. In currently deployed
systems, the approach to handle unexpected situations
is inherited from engineering of safety-critical systems
(e.g. nuclear plants or spaceships) (Koren and Krishna
00). In these contexts, reliability is typically achieved
thanks to expert systems (Koren and Krishna 00) or
machine learning algorithms (Polycarpou and Helmicki
) that diagnose the situation, coupled with prede-
fined contingency plans (Kluger and Lovell 00), planning
algorithms (Russell and Norvig 00), or learning algo-
rithms (ongard 0). Such diagnosis-based approaches
are brittle because they combine two sources of potential er-
rors: errors in the diagnosis, which critically depends on ex-
tensive sensing abilities, and the necessary limited number
of possible plans, which hardly cover all the possible situa-
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tions that a robot may encounter. Low-cost robots exacer-
bate these issues because they can be broken in many ways
(high-quality material is expensive), because they have low
sensing abilities (sensors are expensive and increase the over-
all complexity), and because they are typically targeted to-
wards non-controlled environments (e.g. houses, by oppo-
sition to factories, in which robots are protected from most
unexpected events).

At first, learning, and not evolution, appears to be the
intuitive solution to make robots that can discover novel be-
haviors in unforeseen situations. Animals certainly rely on
learning when their inherent robustness is not sufficient to
cope with the situation (Wolpert et al. 00), and not on
evolution, which cannot act during their lifetime. Nonethe-
less, evolutionary algorithms have important feature that
distinguishes it from most learning algorithms: it has the po-
tential of being much more creative. In other words, we here
see evolutionary algorithms as creative learning algorithms.

Learning algorithms have a long history that spans
over the whole history of computer science (Turing 0).
ey are traditionally divided into three categories (Haykin
): supervised learning, for which there is a database
of input/output examples, unsupervised learning (arlow
), for which there is only a database of inputs, and rein-
forcement learning (Sutton and arto ), for which the
agent receives rewards that depends on its behavior. Some
more recent ideas do not fit well this framework, like semi-
supervised learning (hapelle et al. 00), in which only a
subset of the examples are labeled, active learning (ohn et
al. ; aranes and Oudeyer 0), in which the robot
robot plays an active role in building its own database of ex-
periences, and intrinsically motivated learning (Oudeyer et
al. 00; aldassarre and Mirolli 0), in which the robot
is driven more by curiosity than by performance.

e adaptation to unforeseen situations is a typical rein-
forcement learning problem because most robots have a mis-
sion for which they need to maximize their performance.
Although reinforcement learning and evolutionary robotics
are inspired by different principles, they both tackle a simi-
lar challenge (Togelius et al. 00; Whiteson 0): agents
(e.g., robots) obtain rewards (resp. fitness values) while be-
having in their environment, and we want to find the policy
(resp. the behavior) that corresponds to the maximum re-
ward (resp. fitness). ontrary to temporal difference algo-
rithms (Sutton and arto ), but like direct policy search
algorithms (Kober and Peters 0), evolutionary robotics
only uses the global value of the policy and does not con-
struct value estimates for particular state-action pairs. is
holistic approach makes evolutionary robotics potentially
less powerful than classic reinforcement learning because
it discards all the information in the state transitions ob-
served during the “life” (the evaluation) of the individual.
However, this approach also allows evolutionary robotics to
cope better than reinforcement learning with partial observ-
ability and continuous domains like robot control, where
actions and states are often difficult to define.

More importantly, the main advantage of evolutionary
robotics over reinforcement learning is that it can evolve not
only the parameters of a policy but also its structure (Stanley
and Miikkulainen 00; Stanley and Miikkulainen 00;
Whiteson 0), hence avoiding the difficulty (and the bias)
of choosing a policy representation (e.g., dynamic move-
ment primitives (Schaal 00; Ijspeert 00)) or a discrete

state-action space (Sutton and arto )). is ability to
explore the structure of a policy is what makes evolution-
ary algorithms more creative than most other approaches:
in theory, an evolutionary algorithm could construct a con-
trol structure of unbounded complexity and be limited only
by the available computational power. Of course, this un-
bounded search space makes evolutionary algorithm slower
than more constrained learning algorithm. Natural evolu-
tion took billions of years and billions of billions of individ-
uals; we certainly cannot use the same amount of time to
allow a robot to learn!

iology almost mirrors the question of how to design
evolutionary algorithms that would make robots creative:
what makes natural evolution such a creative and efficient
“search algorithm” To realize the vision of evolutionary
robotics, scientists need to understand evolutionary biology
in enough detail to simulate it on a computer. ey need
a mechanistic understanding of evolution. However, after
0 years of research, evolution is still poorly understood.
Of course, we understand genetics better than ever (Roff
0; West-berhard 00), experiments with bacteria pro-
vides many insights into the working principle of evolu-
tion (arrick et al. 00), and fossil records are invalu-
able windows into ancient species (Morris ); but we
still do not fully understand what make species so evolv-
able (Kirschner and Gerhart ; arroll 00; Kirschner
and Gerhart 00; Pigliucci 00; Pavlicev and Wagner
0), that is, how they can quickly and creatively adapt
to new environments. A direct consequence is that ex-
periments with artificial evolution does not seem to have
the same evolution speed as natural evolution (Wagner and
Altenberg ; anzhaf et al. 00; Hu and anzhaf
00).

Hence, understanding evolvability is a major challenge of
biology that has a critical impact on evolutionary robotics.
It seems that development is a key to make mutations ef-
fect phenotypes in a way that is both exploratory and non-
lethal (West-berhard 00; anzhaf et al. 00; Kirschner
and Gerhart 00; Gerhart and Kirschner 00; Müller
00), but we do not know which parts of the developmen-
tal process need to be copied, which ones can be abstracted,
and which ones can be ignored. It also seems that modu-
larity and hierarchy are key drivers of evolvability because
these “good engineering principles” allow evolution to eas-
ily re-use functional modules in new contexts (Simon ;
Lipson 00). However, how modularity and hierarchy
themselves evolved is an open question (Wagner, Pavlicev,
et al. 00). In addition, a better understanding of selective
pressures is needed to replicate the wonders of natural evo-
lution in artificial systems. We still do not know how wings
appeared in birds (ial 00; yke et al. 0), but, more
importantly, the theory about what drives the evolution of
novel features is still in its infancy (Kirschner and Gerhart
00; Moczek 00). or all these classic but open ques-
tions, scientists need to separate concepts that need to be
included in artificial evolution from those that are unneces-
sarily adding complexity.

It is contended here that artificial evolution can con-
tribute to both robotics and evolutionary biology by pro-
viding novel algorithms to robotics and novel tools to bi-
ology. Adaptation is thus a multi-faceted question that we
explored from different points of view, a few times in com-
putational biology, and more often in artificial intelligence
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and robotics. is approach led us to two symmetrical ques-
tions:

• biology: “what makes natural organisms so evolvable?”
• robotics: “how to harness evolution to make robots more
adaptive?”

While the answers to the biology question could feed the
robotics one, we did not systematically establish a direct link
in our work because our contributions in biology were too
preliminary to make a difference in robotics. We obviously
hope to establish a stronger link in the future, although it
is not our main goal. Nonetheless, we re-used the tools de-
veloped for biology in our robotics experiments. In partic-
ular, the algorithm that we designed to picture the search
landscape when we were studying the origins of modular-
ity (chapter ) is the basis of our algorithm for damage re-
covery in robotics (chapter ). Reciprocally, the techniques
developed for evolutionary robotics and evolutionary intel-
ligence are useful to understand biology. or instance, our
models to study the evolution of modular networks (chap-
ter ) is based on multi-objective optimization (eb 00),
which comes from engineering, and takes inspiration from
the ongoing discussions in evolutionary robotics about selec-
tive pressures (Mouret 0b; Mouret and oncieux 0a;
oncieux and Mouret 0). is bi-directional technical
connection between our contributions is illustrated by the
fact that all the experiments reported in this manuscript rely
on the same software framework for evolutionary computa-
tion (Sferesv2, see Mouret and oncieux (00)).

Contributions (chapters):
– Evolving plastic neural networks
– Evolving modular neural networks
– Diagnosis-free adaptation to
damage
– Evolvability signatures

e following chapters are
condensed versions my main
articles to evolutionary adap-
tation in nature and robots.
us, the most of the text is
adapted from the original arti-
cles. Please see them (listed at
the beginning of each chapter)

for the full methods, technical details. ese chapters do
not constitute an exhaustive view of my work, but more
a snapshot of the advances of my research project since
the end of my Ph. In particular, I purposely did not in-
clude the work that is a direct continuation of my Ph
(mainly publications about behavioral diversity, in collab-
oration with my Ph advisor – S. oncieux).

e next chapter (chapter ) investigates how an evolu-
tionary algorithm could design large neural networks with
life-time learning abilities. It combines two concepts at the
same time, Hebbian learning and generative encodings for
neural networks, and it shows that they can benefit from
each other. is chapter contributes to the question of
how an algorithm could design an “artificial nervous sys-
tem” with online adaptation abilities, an artificial intelli-
gence question, and suggests discussions about the evolu-
tion of learning abilities in nature.

e third chapter investigates the evolutionary origins of
modularity, a central question to understand how species
adapt to new environments. We believe that a better under-
standing of the origins of modularity is likely to improve
the adaptive abilities of an artificial evolution system in dy-
namic scenarios. is chapter explores a new hypothesis to
explain the evolutionary origins of modularity in biological
networks, which is that modularity emerges because of the
ubiquitous selective pressure to minimize the cost of con-
nections.

e fourth chapter reports our experiments with evolu-
tion for on-line damage recovery with real robots. It in-
troduces an algorithm that leverages a novel evolutionary
algorithm (MAP-lites) and Gaussian processes to allow a
hexapod robot to recover from many damage conditions in
less than  minutes, that is, much faster than the state of
the art.

e fifth chapter is about the evolution of closed- and
open-loop neuro-controllers for hexapod locomotion, with
the underlying goal of using such controllers with the al-
gorithm of the previous chapter. We needed new tools to
compare different encodings and we decided to introduce
a novel method to compare them. As a consequence the
contribution of this chapter is twofold: an extensive bench-
mark of possible methods to evolve neuro-controllers for lo-
comotion, and a novel approach to compare the evolvability
provided by encodings.

e sixth chapter provides some additional discussions on
our methodology and our results.

e seventh chapter describes my research project for the
next years.

STATE-OF-THE-ART

ach chapter includes its own state-of-the-art. We here
briefly introduce the questions and techniques that are
shared by several chapters.

Nature-like evolvability in artiicial evolution

To make evolution possible, random mutations need to
be reasonably likely to produce viable (non-lethal) pheno-
typic variations (Kirschner and Gerhart ; Gerhart and
Kirschner 00). Viable variations are consistent with the
whole organism. or instance, a variation of beak size in
a finch requires consistent adaptation of both mandibles
(lower and upper), as well as an adaptation of the musco-
skeletal structure of the head (West-berhard 00). In
addition, viable variations do not break down the vital func-
tions of the organism: an adaptation of the beak should
not imply a change in the heart. Likewise, a mutation that
would add a leg to a robot would require a new control struc-
ture to make it move, but the same mutation should not
break the vision system. is kind of consistency and weak
linkage is impossible to achieve in a simple artificial evo-
lutionary system in which each gene is associated to a sin-
gle phenotypic trait (Wagner and Altenberg ; Hu and
anzhaf 00).

In biology, the development process that links genes
to phenotypes, called the genotype-phenotype map, is
thought to be largely responsible for organisms’ ability
to generate such viable variations (Wagner and Altenberg
; Kirschner and Gerhart 00; Gerhart and Kirschner
00; Müller 00). Inspired by the progress made
by the evo-devo community (Müller 00), many re-
searchers in R have focused on the genotype-phenotype
map for neural networks(e.g. SGO: Kodjabachian
and Meyer ; Modnet: oncieux and Meyer 00;
MNNAG: (Mouret and oncieux 00); HyperNAT:
Stanley and Miikkulainen 00; Stanley, ’Ambrosio, et
al. 00; Verbancsics and Stanley 0) or complete robots
(e.g. GRNs: ongard 00; ussat-lanc and Pollack
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Figure 1.2. Concept of the HyperNEAT encoding. Top: two examples

of patterns generated with a 2-dimensional CPPN (2 inputs, which corre-

spond to the x,y coordinate of each pixel, and 1 output, which corresponds

to the grey level of the pixel). Images from picbreeder (Secretan et al.

2008): http://www.picbreeder.org. Bottom: principle of HyperNEAT, which

evolves a CPPN that is queried to obtain both the connectivity (LEO) and

the weights (w) of a neural network.

0, L-systems (Hornby and Pollack 00), PPNs:
Auerbach and ongard 0; heney, lune, et al. 0).
ssentially, they propose genotype-phenotype maps that
aim to reproduce as many features as possible from the
natural genotype-phenotype map, and, in particular, con-
sistency, regularity (repetition, repetition with variation,
symmetry), modularity (functional, sparsely connected sub-
units), and hierarchy (Lipson 00).

HyperNAT (Stanley, ’Ambrosio, et al. 00; Gauci
and Stanley 00; lune, Stanley, et al. 0) is a partic-
ular encoding that we use several times in this manuscript
because it captures most of the previously mentioned prop-
erties while being abstract enough to be easy to implement.
It is broadly inspired by the chemical gradients in biological
cells (Stanley 00). To generate a network, HyperNAT
requires a geometric layout of nodes that are typically related
to the morphology of the robot¹. To know how a particular
neuron is connected to another one, HyperNAT uses the
coordinates of the source and target neuron to query a net-
work of functions called a ompositional Pattern Producing
Network (PPN) (Stanley 00).

e PPN is what is evolved by the evolutionary algo-
rithm and constitutes the genome of an individual, that is,
each individual has a different PPN. A typical PPN for
neural networks has  inputs (x,y coordinate for the target
and the source) and  outputs (the synaptic weight and a
Link-xpression Output (LO), which tells whether the
connection exists), although many other variants exist (in
more than  dimensions, without the LO, etc.). PPNs
are feed-forward networks that is very similar to a classic
neural networks, therefore they can be evolved with clas-
sic direct encodings used to evolve neural networks (Stanley

¹xtensions of HyperNAT exist to automatically discover the layout,
but we did not use them in our work (Risi and Stanley 0).

and Miikkulainen 00; Mouret and oncieux 0a). e
only difference between a PPN and a classic neural net-
work is that each node can have a different activation func-
tion, instead of the classic sigmoid used in neural networks.
Typical functions are Gaussian (symmetry), sigmoids (non-
linearity) and sine waves (repetition). y evolving the topol-
ogy and the parameters of the network (the weights, the bi-
ases,and the activation function), it is possible to express
many nature-like patterns (figure .). or instance, a
PPN for which f(x1, y1, x2, y2) = f(x2, y1, x1, y2) en-
codes a symmetry along the x axis. HyperNAT often out-
performs other encodings for problems that are highly regu-
lar (lune, Stanley, et al. 0) or for which there is a large
input space, like a camera or boardgames (’Ambrosio and
Stanley 00; Stanley, ’Ambrosio, et al. 00; Gauci and
Stanley 00; Gauci and Stanley 0).

Generative encodings like HyperNAT can generate
networks that can be modular, hierarchical and regular. In-
tuitively, these properties should improve evolvability and
should therefore be selected by the evolutionary process: if
the “tools” to create, repeat, organize, and combine mod-
ules are available to evolution, then evolution should ex-
ploit them because they are beneficial. However, evolvabil-
ity only matters in the long term, and evolution mostly se-
lects on the short term: long-term evolvability is a weak,
second-order selective pressure (Wagner, Pavlicev, et al.
00; Pigliucci 00; Woods et al. 0). As pointed out
by Pigliucci (00), “whether the evolution of evolvability is
the result of natural selection or the by-product of other evo-
lutionary mechanisms is very much up for discussion, and
has profound implications for our understanding of evolu-
tion in general.”

e ongoing discussions about the evolutionary origins
of modularity illustrate some of the direct and indirect evo-
lutionary mechanisms at play: the current leading hypothe-
ses suggest that modularity might evolve to specialize gene
activity (spinosa-Soto and Wagner 00), or, more di-
rectly, to adapt in rapidly varying environments (Kashtan
and Alon 00; lune, eckmann, McKinley, et al. 00).
In chapter , we explore the hypothesis that it evolved
as a by-product of the pressure to minimize connection
costs. ese questions about the importance of selective
pressures in understanding evolvability echo the recent re-
sults that suggest that classic objective-based fitness func-
tion may hinder evolvability: nature-like artificial evolvabil-
ity might require more open-ended approaches to evolution
than objective-based search (Lehman and Stanley 0).

Overall, despite efforts to integrate ideas about selective
pressures and genotype-phenotype maps to improve evolv-
ability, much work remains to be done on the way to under-
standing how the two interact (see chapter ) and how they
should be exploited in evolutionary robotics.

Combining evolution and life-time learning

e ability of animals to adapt during their lifetime may be
what most clearly separates them from current machines.
In evolutionary robotics, evolved robots with learning abil-
ities could be more able to cope with environmental and
morphological changes (e.g., a damage leg) than non-plastic
robots (Urzelai and loreano 00): evolution would deal
with the long-term changes, whereas learning would deal
with the short-term ones. In addition, many evolved robots
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rely on artificial neural networks, which have initially been
designed with learning in mind: there is a good fit between
evolving neural networks in R and evolving robots with
online learning abilities.

Most papers in this field used on various forms of
Hebbian learning (Abbott and Nelson 000; Urzelai and
loreano 00). In our work, we used on neuro-modulated
Hebbian plasticity because they allow the neural networks
to take into account a reward (Soltoggio, ullinaria, et al.
00; Soltoggio and Jones 00; Risi and Stanley 00).
is rule is a classic Hebbian rule which can be acti-
vated/deactivated by modulatory neurons, which are special
types of neurons. We therefore distinguish two types of neu-
rons: “modulatory neurons” and “standard neurons”. Inputs
of each neuron are divided into modulatory inputs Im and
standard Is inputs. e output ai of a neuron i is then de-
fined as follows:

ai = φ1

(

∑

j∈Is

wijaj + bi

)

(.)

where Is is the set of standard input neurons of neuron i,
ai its output, bi its bias, φ1(x) = 1

1+exp(−λx) a sigmoid
with its output in [0, 1], wij the synaptic weight between
neurons i and j. ach non-modulatory synaptic weight wij

is modified with regards to the sum of modulatory inputs
(mi, computed from the modulatory neurons in Im) and a
constant coefficient η (η = 0.04 in our experiments):

mi = φ2

(

∑

j∈Im

wijaj

)

(.)

∆wij = η ·mi · ai · aj (.)

wij(t+δt) =



















min(max(wij(t) + ∆wij , 0),Kmax)

if wij(t) ≥ 0

min(max(wij(t)−∆wij ,Kmin),Kε)

if wij(t) < 0

where φ2(x) =
2

1+exp(−λx) − 1 is a sigmoid with its output
in [−1, 1] (to allow positive and negative modifications of
synaptic weights), Kmax is the maximum value that a synap-
tic weight can take (in our experiments,Kmax = 30),Kmin

the minimum (in our experiments, Kmin = −30, and
Kε a small constant (in our experiments, Kε = −10−5).
When evolving plastic neural networks, a single mutation
can transform a modulatory neuron into a standard neuron,
and vice-versa.

espite its promises (Gruau and Whitley ; Nolfi
and loreano 00; Urzelai and loreano 00), mixing
evolution and online learning has proven difficult. irst,
many papers about learning in R address different chal-
lenges while using the same terminology (e.g., “learn-
ing”, “robustness,” and “generalization”), making it diffi-
cult to understand the literature. In particular, the dis-
tinction between “behavioral robustness” (the robot main-
tains the same qualitative behavior in spite of environmen-
tal/morphological changes; no explicit reward/punishment
system is involved) and “reward-based behavioral changes”
(the behavior of the robot depends on rewards, which are set
by the experimenters) is often unclear (Mouret and Tonelli
0). ere is also a critical difference between evolving a
neural network that can use rewards to switch between two

behaviors, on the one hand, and being able to learn a new be-
havior in a situation that was not used in the fitness function,
on the other hand. Surprisingly, only a handful of papers
evaluate the actual learning abilities of evolved neural net-
works in scenarios that were not tested in the fitness func-
tion (halmers 0; Tonelli and Mouret 0; Tonelli and
Mouret 0; oleman et al. 0).

Second, crafting a fitness function is especially challeng-
ing: to evaluate the fitness of robots that can learn, the ex-
perimenter needs to give them the time to learn and test
them in many different situations, but this kind of eval-
uation is prohibitively expensive (many scenarios, each of
them having to last for a long time), especially with physical
robots. In addition, evolving neural networks with learning
abilities appears to be a deceptive problem (Risi, Hughes,
et al. 00; Risi and Stanley 00) in which simple, non-
adaptive neural networks inititally outperforms networks
with learning abilities, since the latter are more complex to
discover and tune. Novelty search (Lehman and Stanley
0a) could help mitigating this issue (Risi and Stanley
00).

Overall, evolution and learning are two adaptive pro-
cesses that interact with each other; they form a complex
system that is hard to tame. e aldwin effect (Hinton
and Nowlan ; ennett 00) suggests that learning
might facilitate evolution by allowing organisms (or robots)
to pretest the efficiency of a behavior thanks to their learn-
ing abilities, which will create a selective pressure to make it
easier to discover the best behaviors, which in turn should
result in the inclusion of these behaviors in the genotype
(so that it is not required to discover the behavior again and
again). Hence the aldwin effect can smooth a search land-
scape and accelerate evolution (Hinton and Nowlan ).
Nonetheless, from a pure computational perspective, the
ideal balance between spending time on the fitness func-
tion, to give individuals the time to learn, and using more
generations, which gives evolution more time to find good
solutions, is hard to find. In many cases, it might be more
computationnaly efficient to use more generations than us-
ing learning to benefit from the aldwin effect. More gener-
ally, evolution and learning are two processes that optimizes
a similar quantity – the performance of the individual. In
nature, there is a clear difference in time scale (a lifetime
versus millions of years), therefore the two processes do not
really compete with each other. However, R experiments
last only a few days and often solve problems that could also
be solved by learning: given the time scale of current exper-
iments, learning and evolution might not be as complemen-
tary as in nature, and they might interact in a different way.

Resilience and adaptation in robotics

Fault tolerance and robustness. e most classic approaches
to fault tolerance are based on a diagnosis followed by the
activation of a contingency plan (rank 0; Visinsky et
al. ; Koren and Krishna 00). or instance, if a hexa-
pod robot detects that one of its legs is not reacting as ex-
pected, it can drop it and adapt the position of the other legs
accordingly (Jakimovski and Maehle 00; Mostafa et al.
00). onsiderable efforts have been put into automatic
diagnosis (rank 0; rank and Köppen-Seliger ;
lanke and Schröder 00) with techniques like fuzzy
logic (Isermann ), learning algorithms (Polycarpou
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and Helmicki ), or genetic algorithms (ongard et al.
00). Similar techniques have been used to find contin-
gency plans automatically (Polycarpou and Helmicki ;
ongard et al. 00). iagnosis-based methods undoubt-
edly proved their usefulness in space, aeronautics and nu-
merous complex systems, but they also lead to systems that
are expensive to operate and to design: () diagnosis re-
quires both advanced proprioceptive capabilities and reason-
ing systems, which increase the cost and the complexity of
the machine; () defining contingency plans increases the
time required to design and test a new machine, therefore
it also increases the cost. Importantly, these approaches re-
quire the identification of the faulty subsystems and a proce-
dure to bypass them, whereas both operations are difficult
for many kinds of faults. or example, many mechanical
failures (e.g. a broken leg) are difficult to diagnose because
there is no direct way to observe them (most robots are un-
able to “see” themselves and the image processing required
for such diagnosis is especially difficult).

Another classic approach to fault tolerance is to employ
robust controllers that can work in spite of damaged sensors
or hardware inefficiencies (e.g., Goldberg and hen 00;
accavale and Villani 00; Qu et al. 00; Lin and hen
00). Such controllers usually do not require diagnosing
the damage, but this advantage is tempered by the need to
integrate the reaction to all faults in a single controller. ey
may also encounter a situation for which they are not robust,
typically when their designers did not considered it before-
hand.
Learning in robotics iscovering a new behavior in an unex-
pected situation is a particular case of learning a new behav-
ior, a question that generates an abundant literature in ar-
tificial intelligence since its beginnings (Turing 0). We
are here interested in reinforcement learning algorithms be-
cause we consider scenarios in which evaluating the per-
formance of a behavior is possible but the optimal behav-
ior is unknown. However, classic reinforcement learn-
ing algorithms are primarily designed for discrete states
and discrete actions (Sutton and arto ; Kober and
Peters 0), whereas autonomous robots have to solve
many continuous problems, in particular for motor con-
trol. e prevalent alternative in robotics is to view rein-
forcement learning as an optimization of the parameters of
a policy (a controller) (Kober and Peters 0; Stulp and
Sigaud 0). is optimization problem can be tackled
with gradient-based methods (Kohl and Stone 00; Kober
and Peters 0), evolutionary algorithms (Mouret and
oncieux 0a; ongard 0; Koos, ully, et al. 0;
oncieux, redeche, et al. 0), or other optimization
methods like ayesian optimization (Lizotte et al. 00;
Mockus 0; alandra et al. 0).

Most policy-search methods (Kober and Peters 0) it-
eratively optimize locally around existing policies by com-
puting changes in the policy parameters that will increase
the expected reward. ey essentially differ in the way the
policy is updated, with techniques ranging from gradient
estimation with finite differences (Kohl and Stone 00) to
advanced methods such as the Powell method (Sproewitz et
al. 00). To make learning tractable, most of the success-
ful reinforcement learning experiments include prior knowl-
edge through demonstrations (Kober and Peters 0),
which removes the need for global optimization. ey

also employ effective, but often ad-hoc, representations
that minimize the number of policy parameters (Kober and
Peters 0).

Gradient-based policy search algorithms have been suc-
cessfully applied to many motor control scenarios, for in-
stance to teach a robot to play the ball-in-the-cup game
by exploiting human demonstrations and representing the
policy with dynamic motor primitives (Kober and Peters
0). ey have also been applied to locomotion tasks for
quadruped (tables . and .) (Kimura et al. 00; Kohl
and Stone 00) and biped robots (Tedrake et al. 00), but
they require numerous evaluations on the robot (often more
than 000 trials in a few hours, see table .).

volutionary algorithms have also been employed to
learn a policy (Grefenstette et al. ; Heidrich-Meisner
and Igel 00; Kober and Peters 0). ey are less prone
to local optima than most policy-search algorithms and they
can optimize structures (neural networks, fuzzy rules, pro-
grams, ...) (Mouret and oncieux 0a; ongard 0).
However, evolutionary algorithms are slower than policy
gradient methods: Learning experiments with evolutionary
algorithms are reported to require many hundreds of trials
on the robot and to last from two to tens of hours (tables
. and .).

To minimize learning time, many authors proposed to
learn or evolve using a physical simulator, then transfer the
learned behavior to the real robot. Unfortunately, it is now
widely documented that behaviors learned in simulation
very often do not work well on the physical robot (Jakobi
; Mouret and oncieux 0b; ongard 0; Koos,
Mouret, et al. 0). is issue is called the reality gap. Our
group recently introduced a new method, called the trans-
ferability approach (Mouret and oncieux 0b; Koos,
ully, et al. 0; Koos, Mouret, et al. 0) to cross
this gap. is method combines machine learning (a sup-
port vector machine), experiments with the physical robot,
and a multi-objective evolutionary algorithm to focus the
search on behaviors that are accurately simulated. It has
been successfully applied to quadruped locomotion (Mouret
and oncieux 0b; Koos, Mouret, et al. 0) (0 phys-
ical trials), hexapod locomotion ( physical trials) (Koos,
ully, et al. 0), T-maze navigation (Koos, Mouret,
et al. 0) (0 physical trials) and humanoid locomo-
tion (Oliveira et al. 0).

As a illustration, we surveyed the methods that have been
used for learning locomotion in legged robots (Table .).
or this simple task, learning times are between 0 minutes
and  hours. Orders of magnitude are similar for other
tasks. or instance, about 00 trials (episodes) are needed
to learn to put a ball in a cup when starting with demonstra-
tions (Kober and Peters 0).
Learning/evolving for damage recovery. Learning algorithms
have been used in a few studies dedicated to damage re-
covery, in particular on a snake-like robot with a dam-
aged body (Mahdavi and entley 00) (about 00 trials/0
hours) and on a quadrupedal robot that breaks one of its
leg (erenson et al. 00) (about 0 trials/ hours). A re-
cent experiment showed adaptation to damage in a modu-
lar robot in about  minutes, however the search space is
small (each parameter can take only two values, and there
are only  parameters in the experiments performed on the
real robots) (hristensen et al. 0).
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Table 1.1 How long many previous robot learning algorithms take to run. While comparisons between these algorithms are

difficult because they vary substantially in their objective, the size of the search space, and the robot they were tested on,

we nonetheless can see that learning times are rarely below 20 minutes, and often take hours.

approach/article starting behavior ⋆ learning time robot Os† param.‡ reward¶

Policy Gradient Methods
Kimura et al. 00 n/a 0 min. quadruped   internal
Kohl and Stone 00 walking  h quadruped   external
Tedrake et al. 00 standing 0 min. biped   internal
Geng et al. 00 n/a - min. bipedal   internal
hristensen et al. 0 n/a + min quadruped   external
volutionary Algorithm
hernova and Veloso 00 random  h quadruped   external
Hornby, Takamura, et al. 00 non-falling h quadruped   internal
arfoot et al. 00 random 0 h hexapod   external
Yosinski et al. 0 random  h quadruped   external
ongard et al. 001 random  h hexapod () 0 internal
Koos, ully, et al. 0 random 0 min. hexapod ()  internal
ayesian optimization
Lizotte et al. 00 center§ h quadruped   internal
alandra et al. 0 random  min. biped   external
Others
Weingarten et al. 00 2 walking >  h hexapod (Rhex)   external
Sproewitz et al. 00 3 random 0 min. quadruped   external
Hemker et al. 00 4 walking - h biped   external
arfoot et al. 00 5 random h hexapod   external
rden and Leblebicioğlu 00 6 standing -min. hexapod  n/a internal
⋆ehavior used to initialize the learning algorithm.
† Os: number of controlled degrees of freedom.
‡ param: number of learned control parameters.
§ center: center of the search space.
¶ reward: “internal” means that the reward used by the learning algorithm is/can be computed onboard by the robot; “external”
means that an external tracking system is used (e.g. camera or motion capture system).
1 e authors do not provide time information, reported values come from the implementation of Koos, ully, et al. (0).
2 Nelder-Mead descent. 3 Powell method. 4 A (esign and Analysis of omputer xperiments).
5 Multi-agent reinforcement learning. 6 ree-State generation with reinforcement learning.

All policy gradient and evolutionary algorithms spend
most of their running time in evaluating the quality of con-
trollers by testing them on the target robot. Since, contrary
to simulation, reality cannot be sped up, their running time
can only be improved by finding strategies to evaluate fewer
candidate solutions on the robot. In their “starfish robot”
project, ongard et al. (ongard et al. 00) mixed evo-
lutionary algorithms, simulation, and actions on the robot
to recover from physical damage. In their algorithm, the
robot chooses simple motor actions and measure their con-
sequences to update a simulator of the robot so that it re-
flects the damage. is updated simulator is then used to
find a new policy with an evolutionary algorithm. Our own
tests with ongard’s algorithm on a hexapod (Koos, ully,
et al. 0) revealed that () several hours are required to
find a good model (i.e. the right diagnosis) and () the al-
gorithm often fails to find the right model. In addition, in
the original ongard et al’s paper (ongard et al. 00), only
half of the experiments managed to find the right model.

CONCLUSION

is brief state-of-the-art reveals several open issues and
promising leads. or evolutionary biology and evolutionary
intelligence:

• modularity, hierarchy, and regularity are three impor-

tant keys to understand what makes natural organisms
so evolvable;

• the evolution of modularity, hierarchy, and regularity
are likely to involve both specific genotype-phenotype
maps and specific selective pressures;

• PPN-based genotype-phenotype maps are good can-
didates to model genotype-phenotype map in an ab-
stract way;

• online-learning in evolved neural network can rely on
neuro-modulated Hebbian plasticity.

or robotics and machine learning:
• the traditional approach for adapting to unforeseen sit-

uations is to first perform a diagnosis and, second, to
exploit it to select a new behavior;

• reinforcement learning algorithms can provide a short-
cut because they do not require a diagnosis to find a be-
havior that work in the new conditions; this is has the
potential to make this learning-based methods simpler
and more robust than traditional approaches;

• the prevalent method for reinforcement learning in
robotics is called direct policy search, which is close to
continuous optimization;

• current learning algorithms take + minutes even for
relatively small search spaces (e.g. - parameters, re-
quiring -0 minutes); algorithms without these lim-
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Table 1.2 How long many previous robot damage recovery algorithms take to run. While comparisons between these al-

gorithms are difficult because they vary substantially in their objective, the size of the search space, and the robot

they were tested on, we nonetheless can see that damage recovery times are rarely below 20minutes, and often take

hours.

approach/article starting behavior ⋆ learning time robot Os† param.‡ reward¶

Policy Gradient Methods
hristensen et al. 0 n/a + min quadruped   external
volutionary Algorithm
erenson et al. 00 random  h quadruped   external
Mahdavi and entley 00 random 0 h snake   external
ongard et al. 001 random  h hexapod () 0 internal
Koos, ully, et al. 0 random 0 min. hexapod ()  internal
ayesian optimization
Reinforcement learning
rden and Leblebicioğlu 00 2 standing -min. hexapod  n/a internal
⋆ehavior used to initialize the learning algorithm.
† Os: number of controlled degrees of freedom.
‡ param: number of learned control parameters.
¶ reward: “internal” means that the reward used by the learning algorithm is/can be computed onboard by the robot;
“external” means that an external tracking system is used (e.g. camera or motion capture system).
1 e original authors do not provide time information, reported values come from the implementation of Koos, ully,
et al. (0).
2 ree-State generation with reinforcement learning.

itations take several hours.
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2Evolving plastic neural networks

Scientific context. Evolution is a powerful adaptive process in nature, but behav-
ioral adaptation involves many other mechanisms and, in particular, lifetime learn-
ing. In term of adaptive abilities for artificial agents, it would be useful to combine
the slow paced, but highly exploratory, adaptation provided by evolutionwith the
faster, but more constrained, adaptation provided by lifetime learning.

These twoprocesses are inevitably interleavedbecause theyboth improve the abil-
ity of individuals to survive in their environment: many behavioral adaptations can
either be the result of lifetime learningor or the result of evolution. However, evolu-
tion and life-time learning aremostly studied independently, be it in biology (neu-
roscience vs evolutionary biology) or in artificial intelligence (machine learning vs
evolutionary optimization).

In this chapter, we tackle a question at the intersection of evolution and learning:
how can evolution lead to individuals that can learn in many different situations?
More precisely, how can evolved neural networks learn in situations for which they
have never been directly selected? Or, with amachine learning point of view: how
can evolution avoid the pitfalls of overfitting the learningmechanism so that it can
only work in a specific subset of situations?

One hypothesis is that general learning abilities evolve because there is an explicit
pressure to be capable of surviving in varying environments. Nevertheless, this
pressuremightnot fully explain theubiquity of general learningabilities in animals.
We here explore another hypothesis, which is that the developmental process of
neural networksmakes general learning abilities more likely than specific learning
abilities (i.e., abilities to learn only in situations that agents encounter during their
lifetime).

Using a simple operant conditioning task and a classic evolutionary algorithm, we
compare three ways to encode plastic neural networks: a direct encoding, a de-
velopmental encoding inspired by computational neuroscience models, and a de-
velopmental encoding inspired by morphogen gradients (similar to HyperNEAT).
Our results suggest that using a developmental encoding improves the learning
abilities of evolved plastic neural networks. Complementary experiments reveal
that this result is likely the consequence of the bias of developmental encodings
towards regular structures: (1) in our, experimental setup, encodings that tend to
produce more regular networks yield networks with better general learning abili-
ties; (2) whatever the encoding is, networks that are the more regular are statisti-
cally those that have the best learning abilities.

Human context. The main article (in PLoS One) is the principal contributions of
the PhDof Paul Tonelli, who I co-supervised (co-supervisionwith S. Doncieux - JBM:
75%, SD:25%). It is an extended version of a paper which won the “best paper
award” of the “Generative and Developmental Systems” track at the GECCO’2011
conference.

Main articles:
• Tonelli P., and Mouret, J.-B. (2013). On the
Relationships between Generative
Encodings, Regularity, and Learning
Abilities when Evolving Plastic Artificial
Neural Networks. PLoS ONE 8(11): e79138.
doi:10.1371/journal.pone.0079138

• Tonelli, P., and Mouret, J.-B. (2011) On the
Relationships between Synaptic Plasticity
and Generative Systems. Proceedings of
the 13th Annual Conference on Genetic
and Evolutionary Computation (GECCO).

Related articles:
• Ellefsen, K. O., Mouret, J.-B., and Clune, J.

(2015). Neural modularity helps organisms
evolve to learn new skills without forgetting
old skills. Plos Computational Biology.

• Mouret, J.-B. and Tonelli, P. (2014).
Artificial Evolution of Plastic Neural
Networks: a few Key Concepts. Growing
Adaptive Machines: combining
Development and Learning in Artificial
Neural Networks, Studies in
Computational Intelligence (Springer),
publisher. Vol 557 Pages 251-261.

Other contributors:
• Paul Tonelli (PhD student)

Author contributions (for themain article):
performed the experiments: PT; wrote the
code: PT and JBM; analyzed the results: JBM;
wrote the paper: JBM

I is commonly believed that the key for understand-
ing the evolution of large and organized neural net-
works is the developmental process that links genes

to nervous systems (Hornby and Pollack 00; Stanley
and Miikkulainen 00; Pfeifer and ongard 00; lune
and Lipson 0). e genotype of animals does not en-
code each synapse individually, it instead describes rules
of development that are executed multiple times to give
birth to networks with regular patterns of connection. In-
fluenced by this concept, many researchers proposed ar-
tificial developmental systems with diverse inspirations in-
cluding chemical gradients (Stanley, ’Ambrosio, et al.
00; lune and Lipson 0), gene regulatory net-

works (ongard 00; Mattiussi and loreano 00), cell
divisions (Gruau and Whitley ), computational neuro-
science models (Mouret, oncieux, and Girard 00) and
L-systems (Hornby and Pollack 00).

Nonetheless, most networks evolved so far with devel-
opmental systems cannot change during the “lifetime” of
the controlled agent, whereas animal nervous systems are
continuously changing to enable on-line behavioral adap-
tation and learning (Abbott and Nelson 000). e basis
of most of these changes seems to be provided by synaptic
plasticity, that is, by the ability of synapses to strengthen
or weaken over time (Hebb ; Abbott and Nelson
000). Several papers report experiments in which neu-
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Figure 2.1. Main hypothesis. Using developmental encodings should fa-

cilitate the evolution of plastic ANNs with high learning abilities.

ral networks with synaptic plasticity are evolved (Gruau
and Whitley ; Urzelai and loreano 00; Niv et al.
00; Soltoggio, ürr, et al. 00; loreano et al. 00;
Soltoggio, ullinaria, et al. 00; Soltoggio and Jones 00;
Risi, Hughes, et al. 00; Risi and Stanley 00). Yet,
only a handful of them use developmental systems (Gruau
and Whitley ; Soltoggio, ürr, et al. 00; Risi and
Stanley 00).

e present chapter shows that these two topics–
developmental systems and synaptic plasticity–are actually
deeply connected.

One of the main challenge when designing ANNs with
learning abilities is to make them capable of learning in a
large class of situations, that is, designing them so they can
adapt their behavior to maximize a reward signal (or min-
imize an error) in as many situations as possible. or in-
stance, it has been famously shown that single layer per-
ceptrons are only capable of learning linearly separable
patterns (Minsky and Papert ), whereas multi-layer
perceptrons can learn any non-linear function (provided
enough neurons are available) (ybenko ). Single-
layer perceptrons therefore possess lower learning abilities
than multi-layer perceptrons: their architecture critically
constrains what they can learn. When artificial evolution is
used to design a plastic ANN, the topology of the networks
is the result of the interactions between the fitness function,
the encoding and the associated variation operators. As a
consequence, the encoding and the fitness function have to
be carefully crafted so that plastic neural networks are able
to learn in as many situations as possible and, specifically,
in situations that are not explicitly tested in the fitness func-
tion.

e most classic approach is to design a fitness function
that tests each neural network in several test cases and re-
wards individuals that successfully adapt their behavior to
each of them. To ensure that networks possess general
learning abilities, it is then required to assess their abili-
ties to learn in a new set of test cases, that is, test cases
that have never been encountered by the evolutionary pro-

cess (halmers 0). e success of this “episodic fitness”
approach relies on the assumption that if enough test cases
are used, then it should become easier for the evolutionary
process to design a generic structure than a specialized one.

Unfortunately, even in simplistic and constrained toy
problems, the reported experiments show that many test
cases need to be included in the fitness function to ob-
tain general learning abilities¹ (e.g. 0 to 0 test cases
in (halmers 0)). or more complex problems, one can
expect an exponential growth in the number of required
test cases, because the number of possible test cases grows
exponentially with the number of inputs/outputs. is ap-
proach is, therefore, unlikely to scale-up to life-like neural-
networks.

is is where developmental systems have a role to play.
ese systems evolve short descriptions of large structures
by exploiting regularities observed in Nature, such as repe-
tition of useful sub-parts, symmetries, and symmetries with
variation (Hornby 00; Stanley, ’Ambrosio, et al. 00).
ey more easily describe regular structures than irregular
ones, because the former can be described by a few gen-
eral rules whereas the latter require describing either each
element, or a list of exceptions to general rules. As a con-
sequence, developmental systems bias the search space to-
wards regular structures (lune and Lipson 0). We here
propose that this bias towards regularity is critical to evolve plas-
tic neural networks that can learn in a large variety of situations.
Intuitively, this bias makes it more likely to obtain generic
networks that apply the same learning rules to whole sets
of inputs instead of networks that are finely-tuned to only
solve the test cases used in the fitness function. A direct con-
sequence is that using developmental systems to evolve plastic
neural networks should facilitate the evolution of plastic ANNs
with general learning abilities.

METHODS

is hypothesis is tested using a simulated “Skinner box”
(igure .), a classic experimental setup for operant condi-
tioning in which a caged animal must learn to associate stim-
uli (e.g. lights) to actions (e.g. pushing a lever). If the ani-
mal executes the correct action, it is rewarded (e.g. by some
food); if it chooses the wrong one, it is punished (e.g. by
an electric shock). ere is no delay in the reward, so there
is no credit assignement problem (Sutton and arto ).
We consider only one-to-one associations so that, for each
simple stimulus (each light), there is a different action to
perform. our stimuli and four actions are used; there are
therefore  possible sets of stimulus/action (44 = 256;
see Appendix S for the list of possible association sets). We
formalize the stimulus/action associations using the concept
of association sets:

Definition 1 (Association) An association is a pair (I,O) of
input/output that leads to the maximum positive reward. In our
system (n = 4: 4 inputs, 4 outputs), (1, B) is an association

¹It should be emphasized that many authors do not test whether the plas-
tic ANNs they evolve can learn in test cases that have not been encoun-
tered during the evolutionary process. or instance, (Soltoggio, ullinaria,
et al. 00; Risi, Hughes, et al. 00; Risi and Stanley 0) don’t as-
sess how evolved neural networks can cope with an unknown situation;
counter-examples are (Urzelai and loreano 00) and (halmers
0).
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Figure 2.2. A. Concept of the “Skinner box”. A caged animal must learn to associate stimuli (here lights) to actions (here pushing a lever). The exper-

imenter selects a stimulus/action association, presents it to the animal, record the action, and gives the reward to the animal. The experimenter then

chooses another association in the association set and starts the cycle again. The association set is learned once the animal associates the right action to

each stimulus. B. Formalization of the Skinner box as a task for an artificial neural network. Each stimulus is an input of the neural network. Positive

and negative rewards are two additional inputs. The output is selected according to a softmax function (Methods) and the result of the softmax is looped

back to the input layer.

that means that the agent must push theB lever when light 1 is
on.

Definition 2 (Association set) An association set A =
{

(I1,K1), · · · , (In,Kn)
} is a list of associations that covers

all the n possible inputs. For instance, the list of associations
{(1, B), (2, C), (3, D), (4, A)} is an association set in our sys-
tem (n = 4: 4 inputs, 4 outputs). Several inputs can be as-
sociated to the same output. For instance, the association set
{(1, A), (2, A), (3, A), (4, A)} is also valid in our system.

Definition 3 (Global training set) e global training set,
called G, is the the set of all the possible association sets of an
experimental setup. In our system, there are 4 possible outputs
and 4 possible inputs (n = 4), therefore the size of G is 256
(|G| = 44 = 256; the complete list of assotiation sets is avail-
able in Appendix S1). e ideal plastic network should be able
to learn every association sets ofG.

e fitness function (Methods) assesses the ability to
learn a subset of the global training set, called the evolu-
tionary training set:
Definition 4 (Evolutionary training set) e evolutionary
training set, called E, is the set of the association sets used in the
fitness function.

E is included in G; it does not change during an exper-
iment. epending of the experiment, the size of E varies
between 1 and 7. e elements of E have been chosen at
random.

e fitness function is normalized by the size of E, so
that it actually corresponds to the the number of success-
fully learned sets divided by |E|. After each evolution ex-
periment, we assess the ability of the network with the best
fitness score to learn every possible association set, that is,
we evaluate the fitness function on the global training set.
We call the success rate of this test the General Learning
Abilities score (GLA score). is score reflects how well net-
works that are selected for their capacity to learn a few as-
sociation sets are able to learn association sets that have not
been encountered during evolution.

e evolved ANNs (igure ., ) have one input for
each possible stimulus (i.e.,  stimuli inputs), one input for
positive rewards and one input for negative rewards. ey
have  outputs, each of them representing the probability of

choosing each action. e final action is selected thanks to
a “softmax” function that randomly selects an action accord-
ing to a distribution that gives a higher probability to actions
that corresponds to high output values distribution (Sutton
and arto ) (Methods). In effect, the neural network
can activate any combination of the four available outputs
and the softmax function makes sure that only one action is
chosen at a time (igure ., ). Only one light (input) is
activated at a time.

Plasticity is implemented in the neural networks us-
ing neuro-modulated Hebbian plasticity (Abbott and Nelson
000; loreano et al. 00; Soltoggio, ullinaria, et al.
00; Risi, Hughes, et al. 00) (Methods). In this model,
neurons are of two kinds, “standard” and “modulatory”; the
strength of connection between each pair of neurons is mod-
ified using a classic Hebbian rule that is activated only if the
sum of inputs from modulatory neurons is above an evolved
threshold.

or each association of E, the fitness function first
presents the stimuli to the neural network for a few time-
steps (Methods). Once the final output is computed by the
softmax, it is copied to the input layer (feedback inputs).
e reward input (positive or negative) is set at the same
time. Such feedback loops are often present in computa-
tional models of cortex-basal ganglia-thalamus-cortex loops
for action selection (Houk et al. ; rank and laus
00; Girard et al. 00) and are implicit in actor-critic
models of reinforcement learning (Sutton and arto ).
e neural network is then simulated for a few more time-
steps (Methods). It is expected that the evolutionary pro-
cess will connect one or several modulatory neurons to the
reward input and that the ANNs will exploit the copied out-
puts to strengthen/weaken the connections that correspond
to the action that has actually been performed. Nonetheless,
it must be emphasized that weight changes can occur at any
time, including during the first step of the evaluation of the
ANN. Only the topology and the synaptic weights of the
ANNs, which are designed by evolution, determine when
and how synaptic weights change.

e ANNs that solve this task may seem trivial at first
sight. However, the evolutionary process needs to add at
least one modulatory neuron (inputs cannot be modulatory
in our system) and we never found any solution with less
than two hidden neurons (one of them being modulatory).
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Figure 2.3. A. Principle of the map-based, developmental encoding. The neural network is encoded as a labeled graph (left), which is developped

to a graph of maps according to the labels (right). (Methods). B. Principle of the HNN encoding (minimal HyperNEAT). Neurons are placed in a 3D

substrate (top). To know whether two neurons are connected and the synaptic weight of each connection, a Compositional Pattern Producing Network

(CPPN) is queried using the 3D coordinates of the two neurons (Methods). This CPPN is evolved using a direct encoding. To know the parameters of each

node (neuron type and threshold value), a second CPPN is queried with the 3D coordinates of the neuron (Methods).

ssentially, the challenge raised by this task is to discover
learning rules that allow the ANN to exploit a reward to
strengthen and weaken the right connections. Typical solu-
tions require three main “discoveries”: () identifying and
correctly connecting the reward inputs, () gating the re-
ward with the softmax choice to modify only the connec-
tions corresponding to the chosen action, and () applying
the resulting reinforcement to a link between the inputs and
the output.

e topology and the parameters of evolved ANNs are
encoded with three encodings (loreano et al. 00), with
three different levels of expected regularity (igure .).
e first encoding, called the map-based encoding (Mouret,
oncieux, and Girard 00) (Methods), is inspired by com-
putational neuroscience models in which ANNs are de-
scribed as graph of single neurons and neural maps (spatially-
organized identical neurons) that are connected with a few
possible connection schemes (usually only one-to-one and
one-to-all) (Gurney et al. 00; Rougier and Vitay 00;
Girard et al. 00). is encoding produces very regular
neural networks because it has to treat each neuron in a
map in the exact same way as the other neurons of the same
map. e second encoding is a simplified version Hyper-
NAT (Stanley, ’Ambrosio, et al. 00), called HNN, for
Hyper Neural Network (Methods). HyperNAT-like en-
codings are developmental encodings in which morphogen
gradients are described as feed-forward networks of mathe-
matical functions that operate in a artesian space. is in-
direct approach allows them to encode large networks with
Nature-like connection patterns (symmetry, symmetry with
variations, repetition, etc.). e last encoding is a classic di-
rect encoding in which evolution directly acts on the struc-
ture and the parameters of the ANN (Methods). is en-
coding has no bias to produce regular networks.

To understand the relationship between encodings, reg-
ularity and learning abilities, we have to assess the regular-
ity of evolved ANNs. According to Lipson (Lipson 00),
regularity is the compressibility of the description of the
structure. Regrettably, this value is not computable (Li
and Vitányi 00) and, to our knowledge, there exists
no well-recognized approximation for weighted, directed
graphs. e few algorithms designed to compress the graph
structure are greedy approximations that only work well for

sparse, undirected labeled graphs (Peshkin 00; Hayashida
and Akutsu 00). We follow another method to estimate
the regularity of networks: counting the number of symme-
try axes (Mowshowitz a,b; Zenil et al. 0). A graph
has an axis of symmetry when two groups of nodes can be
swapped without modifying the graph, that is, when there
is a repetitive, structural pattern. More axes of symmetry
means a better compression because the two groups need
to be described only once (Mowshowitz a,b; Zenil et
al. 0). In graph theory, this kind of symmetry is called
an automorphism and fast algorithms exist to count them
(McKay ; Junttila and Kaski 00; Katebi et al. 0)
(Methods). igure . reports the number of automor-
phisms of a few example networks.

Networks are evolved using the classic multi-objective
evolutionary algorithm NSGA-II (eb 00; eb et
al. 00). Two objectives are optimized: the fitness
of networks (Methods) and a behavioral novelty objec-
tive (Soltoggio and Jones 00; Risi, Hughes, et al.
00; Lehman and Stanley 0a; Mouret 0b; Mouret
and oncieux 0b), to mitigate premature convergence
(Methods). ese two objectives are optimized during a
maximum of 000 generations of 00 individuals. xper-
iment are stopped as soon as the best individual of the pop-
ulation reaches a perfect fitness value on the evolutionary
training set. At the end of each experiment, the novelty ob-
jective is discarded and we consider that the best individual
is the one with the best fitness value.

We perform 7 series of independent experiments by vary-
ing the size of the evolutionary learning set from 1 to 7
(i.e., |E = 1, · · · , 7|). or each series, the three inves-
tigated encodings are tested (direct encoding, map-based
encoding and HNN encoding). ach experiment is repli-
cated 30 times to obtain statistics. We therefore launch
a total of 3 × 7 × 30 = 630 experiments, each one last-
ing between 1 and 8 hours on our computers (Intel Xeon
0.GHz) depending on the time required to con-
verge and the size of the evolutionary training set. ecause
of this large computational time, we were not able to extend
our experiments to harder problems, for instance with more
inputs/outputs.
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Figure 2.4. Examples of networks and corresponding number of automorphisms. (Colors are only here to help seing the symmetry axes, they

have no particular meaning). A. A random network typically has 1 automorphism (itself ). B. The central pattern generator of the lamprey (Ijspeert,

Crespi, et al. 2007) has 4 automorphisms (2 × 2) because it has two axial symmetries: top-down and left-right. The structure of the graph implies

that the vertex orderings {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6}, {6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7} and

{12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} all lead to the same connectivity matrix. C. This network has 6 automorphisms (3!) because modules marked

1, 2 and 3 can be swapped without changing the connectivity of the network. D. This fully connected network with uniform synaptic weights has 120
automorphisms (5!) because each of its nodes can be swapped with any other node. E. This multi-layer perceptron with uniform synaptic weights has

241920 automorphisms(7!× 4!× 2!) because each node of each layer can be swapped with any other node of the same layer.

RESULTS

or each encoding, we compute the GLA score of networks
with a perfect fitness on the evolutionary training set and we
plot it as a function of the size of the evolutionary training
set.

e results show a clear difference in the GLA scores ob-
tained with each encoding (igure ., A). With a direct
encoding, the GLA score grows linearly with the size of the
evolutionary training set, which is consistent with previous
results (halmers 0), and the GLA scores obtained with
small values of |E| are statistically different from those ob-
tained with larger values (e.g.,  versus : p = 4× 10−4; 
versus , p = 2 × 10−3,  versus , p = 2 × 10−3; unless
otherwise specified, the statistical test in this chapter is the
Mann-Whitney U-test). With the direct encoding, using
a fitness that tests at least  associations sets (|E| > 5) is
required to obtain networks with a GLA-score similar to
the one reached with the map-based encoding with only 
association tests (p = 0.8). e HNN encoding appears
as a trade-off between the direct encoding and the map-
based encoding: for each value of |E|, the GLA score ob-
tained with HNN is consistently higher than the one ob-
tained with the direct encoding, yet it is lower than the one
reached with the map-based encoding (for ,  or  associ-
ation sets, HNN versus direct encoding, p < 0.03; for , ,
 or  association sets, HNN versus map-based encoding,
p < 6× 10−3)².

As expected, each encoding leads to different levels of reg-
ularity, and increasing the number of association sets used in
the fitness function increases the regularity of evolved neural
networks (igure ., ). All the networks evolved with the
map-based encoding are regular: they all have at least one
symmetry axis. e HNN encoding also leads to many net-
works with at least one symmetry axis (from 0% to 00%),
whereas the direct encoding leads to substantially fewer reg-
ular networks (from 0% to 0%, depending on |E|). ese
numbers vary with the size of E. With the HNN encoding,
three association sets are needed to obtain 00% of regular
networks; with the direct encoding, the number of regular

²With  association sets and the HNN encoding, there are not enough
networks with a perfect fitness score to perform a statistical analysis.
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Figure 2.5. Relationship between encodings, general learning abili-
ties and the size of the evolutionary training set (|E|). A. Generative

encodings yield plastic ANNs with better general learning abilities than

those evolved with a direct encoding. Morever, increasing the size of E

increases the general learning abilities. Each box extends from the lower

to upper quartile values of the data, with a symbol at themedian. Whiskers

extend to the most extreme data point within 1.5 × IQR, where IQR is

the interquartile range. Flier points (outliers) are those past the end of the

whiskers. X-values are shifted for the map-based encoding and the direct

encoding in order to make the figure readable. B. Generative encodings

yieldmore regular networks than adirect encoding, and increasing the size

ofE increases the regularity of evolved networks.

networks grows from 0%, when one association set is used
during evolution (|E| = 1), to 0-0% when more than 
association sets are used (|E| > 5).

To further understand this result, we plot the network
with the best learning abilities for each encoding and each
size of the evolutionary learning set (figure .). We observe
the same overall link between learning abilities and regular-
ity as on figure ., but some networks have good learning
abilities with only a few automorphisms, like the network
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Figure 2.6. Relationship between regularity and general learning abilities. Data are from the same experiments as Figure 2.5. The “minimum

number of automorphims” means that if, for example, a network has 4 automorphisms, it is included in columns 1,2,3 and 4. X-values are shifted for the

map-based encoding and the direct encoding in order to make the figure readable. A. The more automorphisms a network has, the more likely it is to

have good general learning abilities (GLA score). Each box extends from the lower to upper quartile values of the data, with a symbol at the median.

Whiskers extend to the most extreme data point within 1.5× IQR, where IQR is the interquartile range. Flier points (outliers) are those past the end

of the whiskers. B. 7% of networks evolved with a direct encoding have more than 3 autormorphisms. 72% of those evolved with HNN have more

than 3 automorphisms. 86% of networks evolved with the map-based encoding have more than 200 autmorphisms; 100% of them have at least 10

automorphisms.

evolved with a direct encoding and  association sets (GLA
score of 0.99, 2 automorphisms). is result is possible be-
cause nothing encourages a directly encoded network to du-
plicate the same sub-structure several times: it may be some-
times easier to either re-invent  times the same function
but with slight changes, or to design an integrated solution
that relies on only one complex structure. is particular
network seems to use a centralized structure with only one
modulatory neuron that modulates all the plastic connec-
tions of the network. onversely, some regular networks
have a low GLA score, such as the network evolved with
HNN and one association set (GLA score of 0.70, 24 au-
tomorphisms). ere is no paradox in this result: the reg-
ularities can be at the wrong place to lead to high-learning
abilities.

Whatever the encoding and the size of E are, networks
with the best learning abilities are those that are the most
regular (igure ., A; this figure use the same data as ig-
ure .). Hence, among networks evolved with the direct
encoding, those that have at least  automorphisms (one
axis of symmetry) have a better GLA score than those that
have no automorphism (p = 6 × 10−3). ose with more
than  automorphisms also have statistically better learning
abilities than those with two automorphisms (p = 0.05)
and than those without any symmetry axis (p = 5× 10−4).
e same tendency is present with the HNN encoding:
networks with at least two automorphisms (i.e., networks
with at least one symmetry axis) have a higher GLA score
than those that have no symmetry axis (one automorphism,
p = 0.04); networks with more than 17 automorphisms
have a higher GLA score than those with at least two auto-
morphisms (p = 2× 10−3).

With the HNN encoding, 41% of networks have exactly

24 automorphisms but only 23% of them have  or more
automorphisms (igure ., , blue line). With the map-
based encoding, a drop from 100% to 87% occurs at the
same number of automorphisms (igure ., , grey line).
A network with 24 automorphisms is a network in which a
sub-network is repeated 4 times (24 = 4!, Methods). is
number is particular in our experiments because both HNN
and the map-based encoding group neurons by 4, therefore
the number of automorphisms is expected to be a multiple
of 24: a different number means that at least one neuron
of a group has a connectivity pattern that is different from
the rest of the group. With HNN, this kind irregularity
is possible but unlikely. With the map-based encoding, it
is not possible, that is why all map-based networks have a
number of automorphisms exactly equals to a multiple of 24
(for instance, on figure ., all map-based networks have 24
or 576 = 24× 24 automorphisms).

DISCUSSION

e experiments reported in this chapter add weight to
the hypothesis that using a developmental encoding im-
proves the learning abilities of evolved plastic neural net-
works. omplementary experiments reveal that this result
is the consequence of the bias of developmental encodings
towards regular structures (lune and Lipson 0): () en-
codings that tend to produce more regular networks yielded
networks with better general learning abilities; () in our ex-
perimental setup, whatever the encoding is, networks that
are the more regular are statistically those that have the best
learning abilities. is second point implies that an indi-
rect encoding that is not biased towards regular network
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Figure 2.7. Networkwith the best learning abilities, for each encoding and each size of the evolutionary learning set. Each network is the best (in

term of learning abilities) of the30 independent runs. Inhibitory connections are represented as green line and excitatory ones as red lines. Thewidth of

the lines is proportional to the corresponding synaptic weight (formodulated connections, the line width is determined after one of the learning phases,
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“#automorphisms” means “number of automorphisms” (Methods). Nodes that are not connected (directly or indirectly) to at least one input and one

output are not drawn.

should not lead to ANNs with high learning abilities; it
also implies that a direct encoding combined with a helper
objective that encourages regularity should lead to ANNs
with good learning abilities (see (Mouret and oncieux
0b) and (lune* et al. 0) for examples of helper ob-
jectives with a direct encoding). Nonetheless, our experi-
ments show that current generative encodings and neuro-
modulated Hebbian plasticity make a promising combina-
tion to evolve large, plastic neural networks. uture work
in this direction should investigate whether this combina-
tion holds its promises in other tasks such as learning in a

maze (Soltoggio, ullinaria, et al. 00; Risi, Hughes, et
al. 00) or visual processing (Stanley, ’Ambrosio, et al.
00).

According to our results, neural networks evolved with
an encoding biased towards regularity could be more flex-
ible than those evolved with an unbiased encoding: they
are better at learning association sets that have never been
encountered during their evolution. To achieve this flexibil-
ity, they have to possess connections that were not directly
selected during evolution. In other words, their flexibility
stems from “spandrels” (Gould and Lewontin ): they
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are the byproducts of the bias that make evolution more
likely to duplicate a sub-structure than to design a special-
ized circuit.

ese results are in opposition to the general tendency of
neural networks to minimize connection costs (hklovskii
et al. 00; herniak et al. 00; hen et al. 00; lune*
et al. 0) because they show that flexible behaviors require
maintaining many “useless” connections. ey indicate that
a selective pressure for flexibility is likely to favor develop-
mental procedures that would result in connections that do
not procure any short-term advantage. In a constant envi-
ronment, these connections should disappear; but in a con-
stantly changing environment – which puts more pressure
on flexibility –, these connections appear critical. is view
is consistent with the theory of “variability selection”, which
posits that flexibility is one of the primary selective pressure
that shaped the brains of hominids (Potts ; Richerson
et al. 00).

e conflict between flexibility and connection costs also
echoes the debate about the modularity/non-modularity
of the mammalian brain (Grossberg 000; ullmore and
Sporns 00; Meunier et al. 00), since the minimization
of connection costs has been linked with the evolution of
modularity (Striedter 00; lune* et al. 0). Our re-
sults thus suggest that the parts of the brain that heavily rely
on synaptic plasticity to achieve flexible behaviors should be
less modular than simpler, less plastic parts. To test this
proposition, it is possible to launch computational experi-
ments in which plastic neural networks are evolved with a
selective pressure to minimize connection costs and differ-
ent flexibility requirements.

Pushed to the extreme, the results of our experiments sug-
gest that the best flexibility would be achieved with fully
connected networks, since this would be the best possi-
ble regularity. In real brains, such a connectivity would
be challenging for pure physical reasons (raitenberg 00;
hklovskii et al. 00): if each neuron of a mouse was con-
nected to each other, its brain (about 0 millions neurons)
would at least occupy 0 cubic meters (raitenberg 00)
(about the cranial volume of an Orangutan). Artificial
brains do not have such limitations and can be designed as
fully connected (Hopfield ), but most neural networks
used in machine learning are made of layers of neurons,
with each layer fully connected to the next one (ybenko
; Haykin ). Layers are a very specific structure
that prevents some flexibility (non-Markovian tasks cannot
be learned), but they make learning easier, because feed-
forward networks have no intrinsic dynamics (contrary to
recurrent neural networks). ese networks are still very
regular and flexible. In image processing, convolutional
neural networks are classic feed-forward neural networks
in which many, well-chosen connections are removed and
many synaptic weights are constrained to be equal (Leun
et al. ). ese networks are much easier to train than
classic layered neural networks, but they cannot learn when
the input data do not look like images.

ese examples highlight a potential trade-off between
flexibility and trainability, or, put differently, between learn-
ing abilities and learning efficiency: in many situations, it
seems beneficial to trade some flexibility to make the system
easier to train³. Our experiments considered a simple situa-

³lexibility must sometimes be avoided because any change in the be-

tion in which trainability was not a major concern because
the input/output patterns are simple and low-dimensional.
In more challenging tasks, the evolutionary process would
probably have to find the best trade-off between trainabil-
ity and flexibility, and therefore between regularity and spe-
cialization. Nonetheless, although convolutional networks
are less regular than multi-layer perceptrons, they are still
very regular and could be generated with a generative en-
coding. Generative encodings that aim at intermediate reg-
ularity might thus be one of the key to explore this trainabil-
ity/flexibility trade-off.

Overall, the present paper shows that evolution, develop-
ment and synaptic plasticity are three interleaved processes
that are hard to study separately. While an extensive under-
standing of their interactions is probably out of reach with
the current state of knowledge, studies that combine sim-
ple models of each of these processes shed light on how one
of them – here development – can simplify another – here
learning. Such studies appear helpful for both building a
global vision of the evolution of intelligent lifeforms as well
as harnessing evolution to create intelligent agents.

DETAILED METHODS

ull methods are available in the article in appendix: Tonelli
P, Mouret J- (0). On the Relationships between Gen-
erative Encodings, Regularity, and Learning Abilities when
Evolving Plastic Artificial Neural Networks. PLoS ON
(): e. doi:0./journal.pone.00

havior might kill the animal or break the robot. is situation would
correspond to a very easy learning, because current values are deemed
as perfect, and a very low flexibility.
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3Evolving modular networks

Scientific context. Natural evolutionmakes it possible for species to adapt to new
environments in a fewgenerations; wewould like to reproduce these abilities in ar-
tificial evolutionary systems to endow robots (and other agents) with similar adap-
tive abilities. To do so, we first need to understand what make natural organisms
so evolvable, which is a central question in evolutionary biology.

A key driver of evolvability (among others) is the widespreadmodularity of biolog-
ical networks–their organization as functional, sparsely connected subunits. In-
tuitively, modular systems seem more adaptable, because it is easier to rewire a
modular networkwith functional subunits than an entangled,monolithic network.
Modularity is also a stepping stone to scale systems to many components: to re-
use, combine, and duplicate modules, one need to have modules first.

There is no consensus regardingwhymodularity itself evolved in nature, and there-
fore no consensus about how to generatemodular networks by artificial evolution.
We here adopted a computational biology point of view and proposed a new hy-
pothesis to explain the evolution of modular networks. While most hypotheses
assume indirect selection for evolvability, wedemonstrated that the ubiquitous, di-
rect selection pressure to reduce the cost of connections between network nodes
can cause the emergence of modular networks.

In a follow-up study, we combined these findings with a developmental encod-
ing (HyperNEAT) to evolve neural networks that are bothmodular and regular. We
also explored how a connection cost influences the evolution of plastic neural net-
works.

Human context. Jeff Clune and I met for the second time at the GECCO’2010 con-
ference, in Portland. At this time, we both had unsuccessfully tried to reproduce
previous techniques for evolving modular neural networks. Surprised by our re-
sults, we subsequently agreed to start a collaboration (by e-mail) to clarify this is-
sue together.

After many failed experiments, we converged on the idea to test a new, simpler
hypothesis to explain the evolutionary origins of modularity: modularity might
have emerged in nature as a byproduct of the pressure to minimize connection
cost. Jeff Clunewas at this timeworkingwith Hod Lipson at Cornell University, and
they invited me to write a paper on this topic during a 1-month stay at Cornell.

A year later, Jeff Clune started his own lab at the university of Wyoming and he su-
pervised two follow-ups of this work (one about using a developmental encoding
and one about synaptic plasticity). He invited me to participate in these studies,
which are quickly summarized in this chapter.

Main articles:
• Clune* J, Mouret* J-B, Lipson H. (2013)
The evolutionary origins of modularity.
Proceedings of the Royal Society: B. 280:
20122863.
http://dx.doi.org/10.1098/rspb.2012.2863
(* equal contribution).

• Huizinga, J. and Mouret, J.-B. and Clune, J.
(2014). Evolving Neural Networks That Are
BothModular and Regular: HyperNeat Plus
the Connection Cost Technique.
Proceedings of GECCO. Pages 1-8.

• Ellefsen, K. O., Mouret, J.-B., Clune C.
(2015). Neural modularity helps organisms
evolve to learn new skills without forgetting
old skills. Plos Computational Biology.

Related articles:
• Mouret, J.-B. and Doncieux, S. (2009).
Evolvingmodular neural-networks through
exaptation. IEEE Congress on Evolutionary
Computation, 2009 (CEC 2009). Pages
1570–1577.

• Mouret, J.-B. and Doncieux, S. (2008).
MENNAG: amodular, regular and
hierarchical encoding for neural-networks
based on attribute grammars.
Evolutionary Intelligence. Vol 1 No 3
Pages 187–207.

Other contributors:
• Jeff Clune, University of Wyoming

(Assistant Prof.)
• Joost Huizinga, University of Wyoming

(PhD student)
• Kai Olav Ellefsen, Norvewian Institute of

Science and Technology (PhD student)
• Hod Lipson, Cornell University (Associate

Prof.)

Author contributions: For themain study:
performed the experiments: JBM; wrote the
code: JBM; wrote the paper: JBM, JC, and HL;
analyzed the results: JBM, JC, and HL. For the
follow-up studies: performed the experiments:
KOE and JH; wrote the code: JBM, KOE, and JH;
analyzed the results: KOE, JH, JC, and JBM;
wrote the papers: KOE, JH, JC, and JBM.

A long-standing, open question in biology is how pop-
ulations are capable of rapidly adapting to novel
environments, a trait called evolvability (Pigliucci

00). A major contributor to evolvability is the fact
that many biological entities are modular, especially the
many biological processes and structures that can be mod-
eled as networks, such as metabolic pathways, gene regula-
tion, protein interactions, and animal brains (Mountcastle
; arroll 00; Guimera and Amaral 00; Alon 00;

Wagner, Pavlicev, et al. 00; Hintze and Adami 00;
Pigliucci 00). Networks are modular if they contain
highly connected clusters of nodes that are sparsely con-
nected to nodes in other clusters (Striedter 00; Lipson
00; Wagner, Pavlicev, et al. 00). espite its impor-
tance and decades of research, there is no agreement on why
modularity evolves (Wagner, Mezey, et al. 00; Wagner,
Pavlicev, et al. 00; spinosa-Soto and Wagner 00).
Intuitively, modular systems seem more adaptable, a les-
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Figure 3.1. Main hypothesis. Evolving networks with selection for performance alone produces non-modular networks that are slow to adapt to

new environments. Adding a selective pressure to minimize connection costs leads to the evolution of modular networks that quickly adapt to new

environments.

son well-known to human engineers (Suh 0), because
it is easier to rewire a modular network with functional sub-
units than an entangled, monolithic network (Kashtan and
Alon 00; Kashtan, Noor, et al. 00). However, because
this evolvability only provides a selective advantage over the
long-term, such selection is at best indirect and may not be
strong enough to explain the level of modularity in the nat-
ural world (Wagner, Mezey, et al. 00; Wagner, Pavlicev,
et al. 00).

Modularity is likely caused by multiple forces acting to
various degrees in different contexts (Wagner, Pavlicev, et
al. 00), and a comprehensive understanding of the evo-
lutionary origins of modularity involves identifying those
multiple forces and their relative contributions. e lead-
ing hypothesis is that modularity mainly emerges due to
rapidly changing environments that have common subprob-
lems, but different overall problems (Kashtan and Alon
00; Kashtan, Noor, et al. 00). omputational simu-
lations demonstrate that in such environments (called mod-
ularly varying goals: MVG), networks evolve both modu-
larity and evolvability (Kashtan and Alon 00; Kashtan,
Noor, et al. 00). In contrast, evolution in unchanging en-
vironments produces non-modular networks that are slower
to adapt to new environments (Kashtan and Alon 00;
Kashtan, Noor, et al. 00). ollow-up studies support the
modularity-generating force of MVG in nature: the modu-
larity of bacterial metabolic networks is correlated with the
frequency with which their environments change (Parter
et al. 00). It is unknown how much natural modularity
MVG can explain, however, because it unclear how many
biological environments change modularly, and whether
they change at a high enough frequency for this force to
play a significant role (spinosa-Soto and Wagner 00).
A related theory that also assumes a constantly changing
environment and selection for evolvability is that modular-
ity arises to enable modifying one subcomponent without
affecting others (spinosa-Soto and Wagner 00). ere
are other plausible hypotheses (reviewed in Wagner 00),
including that variation mechanisms, such as gene duplica-
tion, create a bias towards the generation of modular struc-
tures (Wagner, Pavlicev, et al. 00) and that modularity
evolves due to selection to make phenotypes robust to envi-
ronmental perturbations (Wagner, Mezey, et al. 00).

We investigate an alternate hypothesis that has been sug-
gested, but heretofore untested, which is that modularity
evolves not because it conveys evolvability, but as a byprod-
uct from selection to reduce connection costs in a net-
work (ig. .). Such costs include manufacturing con-

nections, maintaining them, the energy to transmit along
them, and signal delays, all of which increase as a function
of connection length and number (herniak et al. 00;
Striedter 00; Ahn et al. 00; hen et al. 00). e
concept of connection costs is straightforward in networks
with physical connections (e.g. neural networks), but costs
and physical limits on the number of possible connections
may also tend to limit interactions in other types of net-
works like genetic and metabolic pathways. or example,
adding more connections in a signaling pathway might de-
lay the time that it takes to output a critical response; adding
regulation of a gene via more transcription factors may be
difficult or impossible after a certain number of proximal
NA binding sites are occupied, and increases the time
and material required for genome replication and regulation;
and adding more protein-protein interactions to a system
may become increasingly difficult as more of the remain-
ing surface area is taken up by other binding interactions.
uture work is needed to investigate these and other hy-
potheses regarding costs in cellular networks. e strongest
evidence that biological networks face direct selection to
minimize connection costs comes from the vascular sys-
tem (Laarbera 0) and from nervous systems, including
the brain, where multiple studies suggest that the summed
length of the wiring diagram has been minimized, either by
reducing long connections or by optimizing the placement
of neurons (hklovskii et al. 00; Laughlin and Sejnowski
00; herniak et al. 00; Striedter 00; Ahn et al. 00;
hen et al. 00; Raj and hen 0). ounding (Ramón
y ajal ) and modern (Striedter 00) neuroscientists
have hypothesized that direct selection to minimize connec-
tion costs may, as a side-effect, cause modularity. is hy-
pothesis has never been tested in the context of evolutionary
biology. e most related study was on non-evolving, sim-
ulated neural networks with a specific within-life learning
algorithm that produced more modularity when minimiz-
ing connection length in addition to performance (Jacobs
and Jordan ), although the generality of the result was
questioned when it was not replicated with other learning
algorithms (ullinaria 00). Without during-life learn-
ing algorithms, carefully-constructed MVG environments,
or mutation operators strongly biased toward creating mod-
ules, attempts to evolve modularity in neural networks have
failed (i erdinando et al. 00; Wagner, Mezey, et al.
00; lune, eckmann, McKinley, et al. 00).

Given the impracticality of observing modularity evolve
in biological systems, we follow most research on the subject
by conducting experiments in computational systems with
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evolutionary dynamics (Kashtan and Alon 00; Wagner,
Pavlicev, et al. 00; spinosa-Soto and Wagner 00).
Specifically, we use a well-studied system from the MVG
investigations (Kashtan and Alon 00; Kashtan, Noor, et
al. 00; lune, eckmann, McKinley, et al. 00): evolv-
ing networks to solve pattern-recognition tasks and oolean
logic tasks (Methods). ese networks have inputs that
sense the environment and produce outputs (e.g. activat-
ing genes, muscle commands, etc.), which determine per-
formance on environmental problems. We compare a treat-
ment where the fitness of networks is based on performance
alone (PA) to one based on two objectives: maximizing
performance and minimizing connection costs (P&). A
multi-objective evolutionary algorithm is used (eb 00)
with one (PA) or two (P&) objectives: To reflect that
selection is stronger on network performance than connec-
tion costs, the P& cost objective affects selection prob-
abilistically only % of the time, although the results are
robust to substantial changes to this value (Methods). Two
example connection cost functions are investigated. e
default one is the summed squared length of all connec-
tions, assuming nodes are optimally located to minimize
this sum (Methods), as has been found for animal nervous
systems (herniak et al. 00; hklovskii 00; hen et al.
00; Pérez-scudero and Polavieja 00). A second mea-
sure of costs as solely the number of connections yields qual-
itatively similar results to the default cost function, and may
better represent biological networks without connections of
different lengths. More fit networks tend to have more off-
spring (copies that are randomly mutated), and the cycle
repeats for a preset number of generations (ig. ., Meth-
ods). Such computational evolving systems have substan-
tially improved our understanding of natural evolutionary
dynamics (Lenski, Ofria, ollier, et al. ; Lenski, Ofria,
Pennock, et al. 00; Kashtan and Alon 00; Kashtan,
Noor, et al. 00; Wagner, Pavlicev, et al. 00; spinosa-
Soto and Wagner 00).

e main experimental problem involves a network that
receives stimuli from eight inputs (Kashtan and Alon 00).
It can be thought of as an eight-pixel retina receiving visual
stimuli, although other analogies are valid (Methods), such
as a genetic regulatory network exposed to environmental
stimuli. Patterns shown on the retina’s left and right halves
may each contain an ‘object’, meaning a pattern of inter-
est (ig. .a). Networks evolve to answer whether an ob-
ject is present on both the left and right sides of the retina
(the L-AN-R environment) or whether an object is dis-
played on either side (the L-OR-R environment). Which
patterns count as an object on the left and right halves are
slightly different (ig. a). ach network iteratively sees
all possible  input patterns and answers true (≥ 0 ) or
false (< 0). Its performance is the percentage of correct
answers, which depends on which neurons are connected,
how strongly, and whether those connections are inhibitory
or excitatory (Methods). Networks are randomly generated
to start each experiment. eir connections stochastically
mutate during replication (Methods). Network modular-
ity is evaluated with an efficient approximation (Newman
00; Leicht and Newman 00) of the widely used modu-
larity metric Q, which first optimally divides networks into
modules then measures the difference between the number
of edges within each module and the number expected for
random networks with the same number of edges (Newman

00; Leicht and Newman 00).

MAIN RESULTS

After 000 generations in an unchanging environment
(L-AN-R), treatments selected to maximize performance
and minimize connection costs (P&) produce signifi-
cantly more modular networks than treatments maximiz-
ing performance alone (PA) (ig. .d, Q = 0.42, 95%
confidence interval [0.25, 0.45] vs. Q = 0.18[0.16, 0.19],
p = 8 × 10−09 using Matlab’s Mann-Whitney-Wilcoxon
rank sum test, which is the default statistical test unless oth-
erwise specified). To test whether evolved networks exhibit
functional modularity corresponding to the left-right decom-
position of the task we divide networks into two modules
by selecting the division that maximizes Q and color nodes
in each partition differently. Left-right decomposition is
visually apparent in most P& trials and absent in PA tri-
als (ig. .e,f ). unctional modularity can be quantified
by identifying whether left and right inputs are in different
partitions, which occurrs in % of P& trials and never
with PA (isher’s exact test, p = 4 × 10−11). Pairs of per-
fect sub-solution neurons–whose outputs perfectly answer
the left and right subproblems–occur in % of P& tri-
als and 0% of PA trials (isher’s exact test, p = 3 × 10−6,
Supplementary ig. .).

espite the additional constraint, P& networks
are significantly higher-performing than PA net-
works (ig. .c, Supplementary ig. .). e
median-performing P& network performs perfectly
(1.0[1.0, 1.0]), but the median PA network does not
(0.98[0.97, 0.98] , p = 2 × 10−05). P& performance
may be higher because its networks have fewer nodes
and connections (Supplementary ig. .b,c), meaning
fewer parameters to optimize. Modular structures are
also easier to adapt since mutational effects are smaller,
being confined to subcomponents (Lipson 00). While
it is thought that optimal, non-modular solutions usually
outperform optimal, modular designs, such ‘modularity
overhead’ only exists when comparing optimal designs, and
is not at odds with the finding that adaptation can be faster
and ultimately more successful with a bias towards modular
solutions (Lipson 00).

To better understand why the presence of a connection
cost increases performance and modularity, we searched
for the highest-performing networks at all possible com-
binations of modularity and cost (Methods). or high-
performing networks, there is an inverse correlation be-
tween cost and modularity, such that the lowest-cost net-
works are highly modular (ig. .). Many runs in the
P& treatment evolved networks in this region whereas
the PA treatments never did. ere are also many non-
modular, high-cost networks that are high-performing,
helping to explain why modularity does not evolve due
to performance alone (ig. .). omparing PA vs.
P& populations across generations reveals that a con-
nection cost pushes populations out of high-cost, low-
modularity areas of the search space into low-cost, modular
areas (ig. .g,h). Without the pressure to leave high-cost,
low-modularity regions, many PA networks remain in areas
that ultimately do not contain the highest-performing solu-
tions (ig. ., pink squares in the bottom right), further ex-
plaining why P& treatments have higher performance.
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Figure 3.2. The addition of connection costs leads to higher-performing, functionally modular networks. (A) Networks evolve to recognize pat-

terns (objects) in an eight-pixel retina. The problem is modularly decomposable because whether an object exists on the left and right sides can be

separately determined before combining that information to answer whether objects exist on both sides (denoted by the AND logic function). (B) Net-

works from an example trial becomemoremodular across evolutionary time (see SI for video)with a pressure tominimize connection costs in addition to

performance (P&CC). (C)Medianperformance (±95%bootstrappedconfidence intervals) pergenerationof thehighest-performingnetworkof each trial,

which is perfect only whenminimizing connection costs in addition to performance. (D)Network modularity, which is significantly higher in P&CC trials

than when selecting for performance alone (PA). (E) The 12 highest-performing PA networks, each from a separate trial. (F) The 12 highest-performing

P&CC networks, which are functionally modular in that they have separate modules for the left and right subproblems. Nodes are colored according

to membership in separate partitions when making the most modular split of the network (see text). The final networks of all 50 trials are visualized in

Supplementary Fig. C.1. G, H. Cost and modularity of PA and P&CC populations across generations, pooled from all 50 trials. A connection cost pushes

populations out of high-cost, low-modularity regions towards low-cost, modular regions. Fig. 3.3 shows the fitness potential of each map area.

We also found evidence of an inverse correlation between
the total cost of a network and modularity in randomly
generated networks, irrespective of performance, support-
ing the intuition that low cost networks are more likely to
be modular (Supplementary ig. .).

P& networks are also more evolvable than PA net-
works. We ran additional trials until 50 P& and 50
PA trials each had a perfectly performing network (Meth-
ods) and transferred these networks into the L-OR-R en-
vironment, which has the same subproblems in a differ-
ent combination (Supplementary ig. .). e presence

(P&) or absence (PA) of a connection cost remained
after the environmental change. We performed 0 repli-
cate experiments for each transferred network. We also
repeated the experiment, except first evolving in L-OR-
R and then transferring to L-AN-R. In both experi-
ments, P& networks exhibit greater evolvability than
PA by requiring fewer generations to adapt to the new en-
vironment (ig. .a, L-AN-R→L-OR-R: 3.0[2.0, 5.0]
vs. 65[62, 69], p = 3 × 10−78; L-OR-R→L-AN-R:
12.0[7.0, 21.0] vs. 222.5[175.0, 290.0], p = 9 × 10−120).
Modular networks thus evolve because their sparse connec-
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Figure 3.3. Thehighest-performingnetworks found for each combina-
tion of modularity and cost for the retina problem. Colors indicate the

highest-performing network found at that point in the modularity vs. cost

space, with yellow representing perfect performance. This map has been

generated using the MOLE algorithm (Methods). The best-performing

network at the end of each of the 50 PA and P&CC runs are overlaid on

the map. Networks with perfect performance exist throughout the space,

which helps explain why modularity does not evolve when there is selec-

tion based on performance alone. Below a cost threshold of around 125

there is an inverse correlation between cost and modularity for perfectly

performing networks. The lowest cost networks–those with the shortest

summed lengths–that are high-performing are modular.

tivity has lower connection costs, but such modularity also
aids performance and evolvability because the problem is
modular.

Minimizing connection costs can work in conjunction
with other forces to increase modularity. Modularity lev-
els are higher when combining P& with MVG environ-
ments (ig. .b: solid vs. dotted green line, p = 3×10−5).
Overall, P& (with or without MVG) yields similar lev-
els of modularity as MVG at its strongest, and significantly
more when rates of environmental change are too slow for
the MVG effect to be strong (ig. .: green lines vs. blue
solid line).

P& modularity is also higher than PA even on prob-
lems that are non-modular (ig. .a, p = 5.4×10−18). As
to be expected, such modularity is lower than on modular
problems (p = 0.0011, modular retina vs. non-modular
retina). is non-modular problem involves answering
whether any four pixels were on (black), which is non-
modular because it requires information from all retina in-
puts. As mentioned previously, performance and modular-
ity are also significantly higher with an alternate connection
cost function based on the number of connections (P&-
N) instead of the length of connections (ig. .). We
also verified that modularity and performance are not higher
simply because a second objective is used (ig. .). We
further tested whether modularity arises even when the in-
puts for different modules are not geometrically separated,
which is relevant when cost is a function of connection
length: ven in experiments with randomized input coordi-
nates (Methods), a connection cost significantly increased
performance (1.0[0.98, 1.0], p = 0.0012) and modularity
(Q = 0.35[0.34, 0.38], p = 1× 10−9).

All the results presented so far are qualitatively sim-
ilar in a different model system: evolving networks to

A

B

Figure3.4. Evolvingwith connection costsproducesnetworks that are
more evolvable. (A) P&CC networks adapt faster to new environments

than PA networks. Organisms were first evolved in one environment (e.g.

L-AND-R) until they reached perfect performance and then transferred to

a second environment (e.g. L-OR-R). Thick lines are medians, boxes extend

from25th to75th data percentiles, thin linesmark1.5×IQR (interquar-

tile range), and plus signs represent outliers. Supplementary Fig. C.6 is a

zoomed-out version showing all of the data. (B) P&CC networks in an un-

changing environment (dottedgreen line) have similar levels ofmodularity

to the highest levels produced by MVG (solid blue line). Combining MVG

with P&CC results in even higher modularity levels (solid green line), show-

ing that the forces combined are stronger than either alone.

solve oolean logic tasks. We tested two fully separable
problems: one with five “exclusive or” (XOR) logic mod-
ules (ig. .b), and another with hierarchically nested
XOR problems (ig. .c). P& created separate mod-
ules for the decomposed problems in nearly every trial,
whereas PA almost never did (igs. S., S.). P&
performance was also significantly higher (ig. .b,c), and
there was an inverse correlation between cost and mod-
ularity (igs. S.0). After reading a preprint of this
manuscript, a different research group replicated the main
result in a different domain: they found that a connection
cost causes modularity to evolve when optimizing computer
chip architectures (hung et al. 0). onfirming the gen-
erality of the finding that connection costs improve adapta-
tion rates and that high-performing, low-cost networks are
modular is an interesting area for future research.

COMBINATION WITH A DEVELOPMENTAL
ENCODING

While modular organization is a key to understand evolv-
ability, its benefits are improved when modules can be re-
used several times in the same organism, that is, when mod-
ularity is combined with regularity (Lipson 00). In this
case, modularity does not only facilitates re-wiring, it also
improves the ability of an evolutionary system to re-use
the module for a different purpose (exaptation) (Gould and
Vrba ) and to scale up to more complex designs (Lipson
00).

As described in the previous sections, the evolution of
modularity can at least be partially explained by the selective
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Figure 3.5. Results from tests with different environmental problems. (A) Even on a non-modular problem, modularity is higher with P&CC, though

it is lower than for modular problems. (B, C) P&CC performs better, is more modular, and has better functional decomposition than PA when evolving

networks to solve five separate XOR functions and hierarchically nested XOR functions. The examples are the final, highest-performing networks per

treatment. Supplementary Figs. C.2, C.3, and C.4 show networks from all trials. Three and four asterisks indicate p values less than 0.001 and 0.0001,

respectively, and ns indicates no significant difference.

pressures that give rise to modular networks, may this pres-
sure be the need to minimize connection cost (our hypoth-
esis), to rapidly adapt to changing environments (Kashtan
and Alon 00), or to facilitate specialization in gene ac-
tivity (spinosa-Soto and Wagner 00). Repeating a
structure, however, is not possible without a genotype-
phenotype map in which the same genes can be re-used sev-
eral time.

In evolutionary computation, such a genotype-
phenotype map are commonly called a generative encodings
(also called indirect or developmental encodings, see section
) (Stanley and Miikkulainen 00; lune, Stanley, et al.
0). ey are often inspired by natural developmental
systems, such as gene regulatory networks, cell division, or
chemical gradients, making them more biologically plau-
sible than direct encodings (Wagner and Altenberg ;
Müller 00; Stanley 00). In these generative encodings,
compact genomes describe large phenotypes via the reuse
of genomic information, giving rise to regular structures.
In fact, if we consider the genotype as a compression of the
phenotype, large phenotypes encoded by small genotypes
are regular by definition.

In this work, we employ the HyperNAT (sec-
tion ) (Stanley, ’Ambrosio, et al. 00) encoding,
which encodes neural networks with a generative encod-
ing called ompositional Pattern Producing Networks
(PPNs) (Stanley 00). PPNs produce spatial patterns
that exhibit regularity with variation. ese spatial pat-
terns define the connectivity across the geometric layout of
nodes, enabling HyperNAT to produce networks that ex-
hibit structural regularity (lune, Stanley, et al. 0). We
compare three encodings: () a direct encoding, () Hyper-
NAT with a Gaussian seed, which is a variant of Hyper-
NAT that improves the modularity of neural networks by
starting the search with networks that are likely to mostly
have local connections (Verbancsics and Stanley 0), and
() HyperNAT with a connection cost, computed exactly
as in the previous section.

In the three treatment, we added an objective of be-
havioral diversity (Mouret and oncieux 0a; oncieux
and Mouret 0) wich replaces the speciation mecha-
nism present in the original NAT/HyperNAT imple-
mentation. ncouraging behavioral diversity in this suc-
cessfully prevents premature convergence in many experi-
ments (Mouret and oncieux 0a) and is easier to set up
than the speciation used in NAT. Technically, behavioral
diversity of an individual is calculated by storing the output
for every possible input in a binary vector (< 0 is false, > 0
is true) and then taking the average Hamming distance to
the binary vector of all other individuals in the population.

We have tested all treatments on three modular and reg-
ular problems from the previously described experiments:
the Retina Problem, the -XOR problem, and the Hierar-
chical XOR problem. We here focus on the retina problem
but results are qualitatively similar with the other problems.

Results

In the retina experiment, the performance of HyperNAT-
T is significantly higher at nearly every generation than
both HyperNAT and HyperNAT-GS (ig. .A); even
after the medians of all treatments have reached perfect per-
formance, lower-performing runs in the HyperNAT and
HyperNAT-GS treatments make those treatments per-
form significantly worse than HyperNAT-T. In terms
of modularity, the level for HyperNAT hardly changes
over time, while the modularity of HyperNAT-T pro-
gressively in- creases; the difference becomes significant
after 000 generations (ig. .). e modularity of
HyperNAT-GS, on the other hand, spikes during the first
few generations, but then it decreases over time to a sig-
nificantly lower level than HyperNAT-T (ig. .).
is behavior is evidence for our hypothesis that the Gaus-
sian seed may not be an effective way to promote modularity
in cases where there is no immediate fitness benefit.

To examine functional modularity we look at the best
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Figure 3.6. Combining the minimization of connection costs with HyperNEAT (a developmental encoding) (A-B). HyperNEAT with connection

Cost (HyperNEAT-CCT) significantly outperforms and has higher modularity than both HyperNEAT and HyperNEAT-GS (HyperNEAT with Gaussian seed).

(C)HyperNEAT-CCT networks are visually more modular, exhibit left-right modularity more often, and solve significantly more sub-problems
than HyperNEAT or HyperNEAT-GS networks.

networks produced after 0000 generations. When con-
sidering the number of sub-problems solved, HyperNAT-
T networks solve an average of 0. (out of ) sub-
problems, which is significantly (p  0.0) higher than
HyperNAT networks, which solve an average of 0.
sub-problems. e differences in modularity are also visu-
ally apparent (ig. .). e networks of HyperNAT-
T look more modular, demonstrate left-right modu-
larity more often, and have more nodes that solve sub-
problems than the Hyper- NAT and HyperNAT-GS
networks.

omparing HyperNAT-T with a direct encoding
(P& in the previous section, except that P& here
uses a behavioral diversity objective), the direct encoding is
significantly higher performing in early generations and sig-
nificantly more modular throughout evolution. e indirect
encoding of HyperNAT seems to struggle more with the
irregularities of this problem and is not as good at pruning
connections. at is expected, since removing connections
in the direct encoding is easy compared to doing so in Hy-
perNAT (lune, Stanley, et al. 0), which has to adapt
the patterns produced by the LO node such that it cuts off
the redundant parts while keeping the rest of the network
intact.

A main advantage of HyperNAT is its ability to pro-
duce regular patterns (Stanley, ’Ambrosio, et al. 00;
lune, Stanley, et al. 0). ompression tests (using gzip
to compress the weight matrix, see (lune, Stanley, et al.
0)) reveal that HyperNAT-T networks are signifi-
cantly more regular than the direct encoding (P&): the
direct encoding with T becomes % smaller upon com-
pression, but HyperNAT-T compresses further down
by %, making it significantly more compressible (p 
0.0000). We did not count the number of automorphisms
(as we did it in the previous chapter) because the two stud-
ies we mostly performed concurrently, but this alternative
method to evaluate regularity would have been relevant here.
e regularity of HyperNAT-T is also visually appar-
ent (ig. .). In many of its networks, the left side is
mirrored on the right side, even though the signs of the con-
nections are sometimes switched. Other networks feature

alternating or mirrored patterns in the biases or connections.
While HyperNAT-T networks also exhibit some clear
variations in each of its patterns, on balance they are much
more regular than the irectncoding-T networks (ig.
.b), which do not show any discernible patterns.

Overall, this follow-up study shows that the connection
cost technique can be used in combination with a generative
encoding. However, the developmental encoding did not
significantly increase the modularity nor the performance
in the tasks we tested. e differences are likely to be more
visible in tasks with more inputs/outputs in which direct
encodings are usually easily outperformed by developmen-
tal encodings (Stanley, ’Ambrosio, et al. 00; Gauci and
Stanley 00; lune, Stanley, et al. 0).

COMBINATION WITH NEUROMODULATED
HEBBIAN LEARNING

In a parallel study, we investigated whether a connection
cost could lead to improvements in the learning abilities
of evolved plastic neural networks (see chapter ). Modu-
larity intuitively should improve learning by having a rein-
forcement learning module separate from sensory process-
ing modules, allowing learning to happen only in response
to a positive or negative reward. In addition, in a scenario
in which the agent has to learn several tasks during its life-
time, modularity could also reduce learning interference be-
tween tasks by separating functionality into physically dis-
tinct modules in which learning can be selectively turned on
or off.

We tested these ideas in an abstract world in which an
organism performs a daily routine of trying to eat nutri-
tious food while avoiding eating poisonous food. very day
the organism observes every food item one time: half of
the food items are nutritious and half are poisonous. To
achieve maximum fitness, the individual needs to eat all
the nutritious items and avoid eating the poisonous ones.
After a number of days, the season changes abruptly from
a summer season to a winter season. In the new season,
there is a new set of food sources, half of them nutritious
and half poisonous, and the organism has to learn which is
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Figure 3.7. Modularity, connection cost, and plastic neural networks. (A) The environment for one individual’s lifetime. A lifetime lasts 3 years. Each

year has 2 seasons: winter and summer. Each season consists of 5 days. In each day, each individual sees all food items available in that season (only

two are shown) in a random order. (B) To ensure that agents learn associations within their lifetimes instead of genetically hardcoding associations,

whether each food item is nutritious or poisonous is randomized each generation. There are four food items per season (two are depicted). (C-D). The
addition of a cost for network connections, which is present only in the P&CC treatment, significantly increases performance (C) and modularity (D). For
each treatment, themedian from 100 independent evolution experiments is shown +/- 95% bootstrapped confidence intervals of themedian. Asterisks

below each plot indicate statistically significant differences at p < 0.01 according to the Mann-Whitney U test. (E) PA networks are visually non-modular

whereas P&CC networks (F) tend to create a separate module for learning (orange neurons). Dark blue nodes are inputs that encode which type of food

has been encountered. Light blue nodes indicate internal, non-modulatory neurons. Dark orange nodes are reward or punishment inputs that indicate

if a nutritious or poisonous item has been eaten. Light orange neurons are neuromodulatory neurons that regulate learning. P&CC networks tend

to separate the reward/punishment inputs and neuromodulatory neurons into a separate module that applies learning to downstream neurons that

determine which actions to take. For each treatment, the highest-performing network from each of the nine highest-performing evolution experiments

are shown. In each panel, the left number reports performance and the right number reports modularity.

which. After this winter season, the environment changes
back to the summer season and the food items and their
nutritious/poisonous statuses are the same as in the previ-
ous summer. Globally, this environment rewards organisms
that can learn quickly and avoid forgetting between seasons.

Like in chapter , we used neuro-modulated Hebbian
plasticity. To mitigate premature convergence, we also used
a behavioral diversity objective, like in the previous section.

Results

e addition of a cost for connections (the P& treat-
ment) leads to a rapid, sustained, and statistically significant
fitness advantage versus not having a connection cost (the
PA treatment) (ig .A). In addition, P& networks

learn associations faster in their first summer and winter,
and maintain higher performance over multiple years (pairs
of seasons). As expected, the presence of a connection cost
also significantly increases network modularity (ig. .).
Networks evolved in the P& treatment tend to create
a separate reinforcement learning module that contains the
reward and punishment inputs and most or all neuromodu-
latory neurons (ig. . -).

To quantify whether learning is separated into its own
module, we tested the frequency with which the reinforce-
ment inputs (reward/punishment signals) were placed into
a different module from the remaining food-item inputs.
is measure reveals that P& networks have a separate
module for learning in % of evolutionary trials, whereas
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only % of the PA trials do, which is a significant dif-
ference (p = 2.71 × 10−−7). Analyses also reveal that
the networks from both treatments that have a separate
module for learning perform significantly better than net-
works without this decomposition (median performance
of modular networks in 80 randomly generated environ-
ments: 0.87[95%CI : 0.83, 0.88] vs. non-modular net-
works: 0.80[0.71, 0.84], p = 0.02). ven though only %
of the P& networks are deemed modular in this partic-
ular way, the remaining P& networks are still signifi-
cantly more modular on average than PA networks (median
Q scores are 0.25[0.23, 0.28] and 0.2[0.19, 0.22]respectively,
p = 4.37× 10−6).

CONCLUSION

e reported experiments support the hypothesis that se-
lection to reduce connection costs causes modularity, even
in unchanging environments. e results also open new
areas of research into identifying connection costs in net-
works without physical connections (e.g. genetic regulatory
networks) and investigating whether pressures to minimize
connection costs may explain modularity in human-created
networks (e.g. communication and social networks).

It is tempting to consider any component of modularity
that arises due to minimizing connection costs as a “span-
drel”, in that it emerges as a byproduct of selection for an-
other trait (Gould and Lewontin ; Solé and Valverde

00). However, because the resultant modularity pro-
duces evolvability, minimizing connection costs may serve
as a bootstrapping process that creates initial modularity
that can then be further elevated by selection for evolvabil-
ity. Such hypotheses for how modularity initially arises are
needed, because selection for evolvability cannot act until
enough modularity exists to increase the speed of adapta-
tion (Wagner, Pavlicev, et al. 00).

DETAILED METHODS

Supplementary figures are available in appendix .
e main methods are described in: lune* J, Mouret*

J-, Lipson H. (0) e evolutionary origins of modular-
ity.Proceedings of the Royal Society: . 0: 0.
http://dx.doi.org/0.0/rspb.0. (* equal contri-
bution).

Additional methods are described in
• Huizinga, J. and Mouret, J.-. and lune, J. (0).
Evolving Neural Networks at Are Both Modular and
Regular: HyperNeat Plus the Connection Cost Technique.
Proceedings of GO. Pages -0.

• llefsen, K. O., Mouret, J.-., lune . (0). Neu-
ral modularity helps organisms evolve to learn new skills
without forgetting old skills. Plos omputational iol-
ogy.
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4Diagnosis-free adaptation to damage

Scientific context. As robots leave the controlled environments of factories to
autonomously function in more complex, natural environments (Bellingham and
Rajan 2007; Yoerger 2008; Broadbent et al. 2009), they will have to respond to
the inevitable fact that they will become damaged (Carlson and Murphy 2005;
Sanderson 2010). However, while animals can quickly adapt to a wide variety of
injuries, current robots cannot “think outside the box” to find a compensatory be-
havior when damaged: they are limited to their pre-specified self-sensing abilities,
can diagnose only anticipated failure modes (Blanke and Schröder 2006), and re-
quire a pre-programmed contingency plan for every type of potential damage, an
impracticality for complex robots (Carlson and Murphy 2005; Sanderson 2010).

We proposed two novel algorithms to address these issues. Both of them rely
on the same concepts: (1) trial-and-error learning and evolutionary algorithms
can find compensatory behaviorswithout requiring self-diagnosis or pre-specified
contingency plans, and (2) a simulator of the intact robot can be used to guide the
search for a compensatory behavior even if the physical robot is damaged. The
underlying intuition is that behaviors that do not use the damaged part will per-
form similarly in simulation and in reality. In both cases, we mainly evaluate our
algorithmwith a 6-legged robot injured in five different ways, including damaged,
broken, and missing legs.

Our first algorithm, called T-resilience, is based on the transferability ap-
proach (Koos, Mouret, et al. 2013), whose original purpose was to cross the real-
ity gap that separates performance of controllers evolved in simulation with their
performance on a real robot. In this algorithm, the robot runs an evolutionary algo-
rithm online and periodically transfers a few individuals to learn a predictor of the
transferability. Adaptation times are between 20 minutes and 1 hour, depending
on the available computational power.

The second algorithm, called “intelligent trial and error”, allows robots to adapt to
damage in less than two minutes. Before deployment, the robot exploits a novel
algorithm to create a detailedmapof the space of high-performingbehaviors: This
map represents the robot’s intuitions about what behaviors it can perform and
their value. The algorithm used to create the map is a follow-up of the MOLE al-
gorithm that we designed to study the evolution of modularity in networks. If the
robot is damaged, it uses the intuitions provided by the map to guide a trial-and-
error learning algorithm based on Bayesian optimization. Thanks to our approach,
the robot rapidly discovers a compensatory behavior that works in spite of the
damage. Experiments reveal successful adaptations for our hexapod robot and
for a robotic arm with joints broken in 14 different ways.

Since “intelligent trial and error” clearly outperforms the “t-resilience”, this chapter
is mainly focused on “intelligent trial and error”.

Human context. The first algorithm (T-Resilience) was designedwith Sylvain Koos
(post-doc/ATER) as a follow-up of his PhD on the transferability approach. I was
the main supervisor of Sylvain Koos during this post-doc and the co-supervisor of
his PhD (Stéphane Doncieux: 50%, JBM: 50%). Antoine Cully worked on the ex-
periments with Sylvain Koos during his master thesis. Antoine Cully subsequently
started a PhD, that I co-supervise (Stéphane Doncieux: 10%, JBM: 90%). The sec-
ond algorithm (Intelligent trial and error) is one of the main contributions of An-
toine’s Cully PhD. As the Intelligent Trial and Error relies on MAP-Elites, an algo-
rithm that I co-authored with Jeff Clune while working on the evolutionary origins
of modularity, Jeff Clune agreed to help us write the paper, discuss new experi-
ments, and improve our analyses. Danesh Tarapore (post-doc, whom I supervised)
joined the team later to help us finish the experiments and the paper.

Main articles:
• Cully, A., Clune, J., Tarapore, D., and

Mouret, J.-B. (2015). Robots that can adapt
like Natural Animals. Nature. (to appear).

• Koos, S. and Cully, A. and Mouret, J.-B.
(2013). Fast Damage Recovery in Robotics
with the T-Resilience Algorithm.
International Journal of Robotics
Research. Vol. 32:14. pp 1700-1723

Related articles:
• Cully, A. and Mouret, J.-B. (2015). Evolving

a behavioral repertoire for a walking
robot. Evolutionary Computation. Pages
to appear.

Other contributors:
• Antoine Cully, Pierre and Marie Curie

University (PhD student)
• Danesh Tarapore, Pierre and Marie Curie

University (Post-doc)
• Sylvain Koos, Pierre and Marie Curie

University (Post-doc)
• Jeff Clune, University of Wyoming

(Assistant Prof.)
Author contributions:

• for the paper in Nature: A.C. and J.-B.M.
designed the study. A.C. and D.T.
performed the experiments. A.C., J.-B.M.,
D.T. and J.C. analyzed the results and
wrote the paper.

• for the paper in IJRR: S.K. and J.-B.M.
designed the study. A.C. and S.K.
performed the experiments. S.K., A.C.,
and J.-B.M. analyzed the results and wrote
the paper.
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R have transformed the economics of many
industries, most notably manufacturing (Siciliano
and Khatib 00), and have the power to de-

liver tremendous benefits to society, such as in search
and rescue (Murphy 00), disaster response (Nagatani
et al. 0), health care (roadbent et al. 00), and
transportation (run et al. 00). ey are also invalu-
able tools for scientific exploration, whether of distant
planets (ellingham and Rajan 00; Sanderson 00) or
deep oceans (Yoerger 00). A major obstacle to their
widespread adoption in more complex environments out-
side of factories is their fragility (arlson and Murphy 00;
Sanderson 00): Robots presently pale in comparison to
natural animals in their ability to invent compensatory be-
haviors after an injury (ig. .A).

urrent damage recovery in robots typically involves two
phases: self-diagnosis, and then selecting or planning the
best contingency plan (enton et al. 00; Verma et al. 00;
ongard et al. 00; Kluger and Lovell 00). Such self-
diagnosing robots are expensive, because self-monitoring
sensors are expensive, and are difficult to design, because
robot engineers cannot foresee every possible situation: this
approach often fails either because the diagnosis is incor-
rect (enton et al. 00; ongard et al. 00) or because an
appropriate contingency plan is not provided (Kluger and
Lovell 00).

Injured animals respond differently: they learn by trial
and error how to compensate for damage (e.g. learning
which limp minimizes pain) (Jarvis et al. 0; uchs et
al. 0). Similarly, trial-and-error learning algorithms
could allow robots to creatively discover compensatory be-
haviors without being limited to their designers’ assump-
tions about how damage may occur and how to compen-
sate for each damage type. However, state-of-the-art learn-
ing algorithms are impractical because of the “curse of di-
mensionality” (Kober and Peters 0): the fastest algo-
rithms constrain the search to a few behaviors (e.g. tun-
ing only  parameters, requiring -0 minutes) or require
human demonstrations (Kober and Peters 0). Algo-
rithms without these limitations take several hours (Kober
and Peters 0). amage recovery would be much more
practical and effective if robots adapted as creatively and
quickly as animals (e.g. in minutes) and without expensive
self-diagnosing sensors.

A FIRST APPROACH: T-RESILIENCE

When evolving controllers for robots, volutionary Algo-
rithms (As) are reported to require many hundreds of
trials on the robot and to last from two to tens of hours
(e.g. (Hornby, Takamura, et al. 00; Yosinski et al. 0)).
ese As spend most of their running time in evaluating
the quality of controllers by testing them on the target robot.
Since, contrary to simulation, reality cannot be sped up,
their running time can only be improved by finding strate-
gies to evaluate fewer candidate solutions on the robot.

y first learning learning a self-model for the robot,
then evolving a controller with this simulation, ongard
et al. (ongard et al. 00) designed an algorithm for re-
silience that makes an important step in this direction. Nev-
ertheless, this algorithm has a few important shortcomings.
irst, actions and models are undirected: the algorithm can

“waste” a lot of time to improve parts of the self-model that
are irrelevant for the task. Second, it is computationally ex-
pensive because it includes a full learning algorithm (the sec-
ond stage, in simulation) and an expensive process to select
each action that is tested on the robot. ird, there is often
a “reality gap” between a behavior learned in simulation and
the same behavior on the target robot (Jakobi et al. ),
but nothing is included in ongard’s algorithm to prevent
such gap to happen: the controller learned in the simula-
tion stage may not work well on the real robot, even if the
self-model is accurate.

Our algorithm is inspired by the “transferability ap-
proach” (Koos, Mouret, et al. 0), which we originally
developed to cross the “reality gap” that separates behav-
iors optimized in simulation to those observed on the target
robot (Jakobi et al. ). e main proposition of this ap-
proach is to make the optimization algorithm aware of the
limits of the simulation. To this end, a few controllers are
transferred during the optimization and a regression algo-
rithm (here a SVM) is used to approximate the function that
maps behaviors in simulation to the difference of perfor-
mance between simulation and reality. To use this approxi-
mated transferability function, the single-objective optimiza-
tion problem is transformed into a multi-objective optimiza-
tion in which both performance in simulation and trans-
ferability are maximized. is optimization is performed
with a a multi-objective evolutionary algorithm (NSGA-
II, (eb et al. 00)).

e same concepts can be applied to design a fast adaptation
algorithm for resilient robotics, leading to a new algorithm that
we called “T-Resilience” (for Transferability-based resilience).
If a damaged robot embeds a simulation of itself, then be-
haviors that rely on damaged parts will not be transferable:
they will perform very differently in the self-model and in
reality. uring the adaptation process, the robot will thus
create an approximated transferability function that classi-
fies behaviors as “working as expected” and “not working
as expected”. Hence the robot will possess an “intuition”
of the damage but it will not explicitly represent or iden-
tify them. y optimizing both the transferability and the
performance, the algorithm will look for the most efficient
behaviors among those that only use the reliable parts of the
robots. e robot will thus be able to sustain a functioning
behavior when damage occurs by learning to avoid behav-
iors that it is unable to achieve in the real world.

Experiments

We evaluate the T-Resilience algorithm on an -Os
hexapod robot that needs to adapt to motor failures and
broken legs (figure .); we compare it to stochastic local
search (Hoos and Stützle 00), policy gradient (Kohl and
Stone 00) and ongard’s algorithm (ongard et al. 00).
e algorithms are implemented in the Sferesv2 frame-
work (Mouret and oncieux 00). e behavior on the
real robot is assessed on-board thanks to a RG- sensor
coupled with a state-of-the-art SLAM algorithm (ndres
et al. 0). or each experiment, a population of 00 con-
trollers is optimized for 000 generations. very 0 gener-
ations, a controller is randomly selected in the population
and transferred on the robot.

Using only  tests on the robot and an overall running
time of less than one hour on a recent laptop, T-Resilience
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Figure 4.1. With learning and evolutionary algorithms, robots, like animals, can quickly adapt to recover from damage. (A) Most animals can

find a compensatory behavior after an injury. Without relying on predefined compensatory behaviors, they learn how to avoid behaviors that are painful

or no longer effective. (B) An undamaged, hexapod robot. (C) One type of damage the hexapod may have to cope with (broken leg). (D) After damage

occurs, in this case making the robot unable to walk straight, damage recovery begins. The robot tests different types of behaviors and has to find a

compensatory behaviors with only a few dozen tests.

Figure4.2. (A) Thehexapod robot is not damaged. (B) The leftmiddle leg is

no longer powered. (C) The terminal part of the front right leg is shortened

by half.

consistently leads to substantially better results than the
other approaches (figure .).

A FASTER APPROACH: INTELLIGENT
TRIAL AND ERROR

T-Resilience is significantly faster than other algorithms be-
cause it leverages a dynamic simulator and does not attempt
to diagnose the damage. However, evolution happens on-
line: the algorithm requires a lot of computational power
and, to obtain fast adaptation times, we had to limit the
fine-tuning of solutions as well as the exploration of novel
behaviors. As this section will show it, this issue can be ad-
dressed by decoupling the exploration in simulation from
the tests conducted on the physical robot.

More precisely, we show that faster and better adapta-
tion can be achieved by guiding an intelligent trial-and-
error learning algorithm with an automatically generated,
pre-computed, behavior-performance map that predicts the
performance of thousands of different behaviors. e key
insight is that, whereas current learning algorithms either
start with no knowledge of the search space (Kober and

Peters 0) or with minimal knowledge from a few hu-
man demonstrations (Argall et al. 00; Kober and Peters
0), animals better understand the space of possible be-
haviors and their value from previous experience (elen
), enabling injured animals to intelligently select tests
that validate or invalidate whole families of promising com-
pensatory behaviors.

We have robots store knowledge from previous experi-
ence in the form of a map of the behavior-performance
space. Guided by this map, a damaged robot tries different
types of behaviors that are predicted to perform well and,
as tests are conducted, updates its estimates of the perfor-
mance of those types of behaviors. e process ends when
the robot predicts that the most effective behavior has al-
ready been discovered. e result is a robot that quickly
discovers a way to compensate for damage (e.g. ig. .)
without a detailed mechanistic understanding of its cause,
as occurs with animals. We call this approach “Intelligent
Trial and rror” (ig. .).

e behavior-performance map is created with a novel
algorithm and a simulation of the robot, which either can
be a standard physics simulator or can be automatically dis-
covered (ongard et al. 00). e robot’s designers only
have to describe the dimensions of the space of possible
behaviors and a performance measure. or instance, walk-
ing gaits could be described by how much each leg is in-
volved in a gait (a behavioral measure) and speed (a perfor-
mance measure). or grasping, performance could be the
amount of surface contact, and it has been demonstrated
that 0% of effective poses for the -degree-of-freedom
human hand can be captured by a -dimensional behavioral
space (Santello ). To fill in the behavior-performance
map, an optimization algorithm simultaneously searches for
a high-performing solution at each point in the behavioral
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Figure 4.3. Performances (distance covered in 3 seconds) obtained in case

B (top) and C (bottom). On each box, the central mark is the median, the

edges of the box are the 25th percentile and the 75th percentile. The

whiskers extend to the most extreme data point which is no more than

1.5 times the length of the box away from the box. Each algorithm has

been run 5 times and distances are measured using the external motion

capture system. Except for the T-Resilience, the performance of the con-

trollers found after about 25 transfers (tests) and after about 20 minutes

(time) are depicted (all T-Resilience experiments last about 20 minutes

and use 25 transfers). The horizontal lines denote the performances of the

reference gait, according to the CODAmotion capture system (dashed line)

and according to the SLAM algorithm (solid line).

space (ig. .A, and Supplementary ig. .). is step
requires simulating millions of behaviors, but needs to be
performed only once per robot design before deployment
(Methods).

A low confidence is assigned to the predicted perfor-
mance of behaviors stored in this behavior-performance
map because they have not been tried in reality (ig. .
and Supplementary ig. .). uring the robot’s mission,
if it senses a performance drop, it selects the most promis-
ing behavior from the behavior-performance map, tests it,
and measures its performance. e robot subsequently up-
dates its prediction for that behavior and nearby behav-
iors, assigns high confidence to these predictions (ig. .
and Supplementary ig. .), and continues the selec-
tion/test/update process until it finds a satisfactory compen-
satory behavior (ig. . and Supplementary ig. .).

All of these ideas are technically captured via a Gaussian
process model (Rasmussen and Williams 00), which ap-
proximates the performance function with already acquired
data, and a ayesian optimization procedure (orji and Itti
0; Mockus 0), which exploits this model to search
for the maximum of the performance function (Methods).
e robot selects which behaviors to test by maximizing an
information acquisition function that balances exploration
(selecting points whose performance is uncertain) and ex-
ploitation (selecting points whose performance is expected

to be high) (Methods). e selected behavior is tested on
the physical robot and the actual performance is recorded.
e algorithm updates the expected performance of the
tested behavior and lowers the uncertainty about it. ese
updates are propagated to neighboring solutions in the be-
havioral space by updating the Gaussian process (Meth-
ods). ese updated performance and confidence distri-
butions affect which behavior is tested next. is select-
test-update loop repeats until the robot finds a behavior
whose measured performance is greater than 0% of the
best performance predicted for any behavior in the behavior-
performance map (Methods).

We first test our algorithm on a hexapod robot that needs
to walk as fast as possible (ig. ., ). e robot has 
motors, an onboard computer, and a depth camera that al-
lows the robot to estimate its walking speed (Supplemen-
tary Methods). e gait is parametrized by  real-valued
parameters that describe the amplitude of oscillation, phase
shift, and duty cycle for each joint (Supplementary Meth-
ods). e behavior space is -dimensional, where each di-
mension is the proportion of time the ith leg spends in con-
tact with the ground (i.e. the duty factor) (Siciliano and
Khatib 00) (Supplementary Methods).

e created behavior-performance map contains approx-
imately ,000 different gaits (Supplementary Video S
shows examples). We tested our robot in six different con-
ditions: undamaged (ig. .A:), four different struc-
tural failures (ig. .A:-), and a temporary leg repair
(ig. .A:). We compare the walking speed of resul-
tant gaits with a widely-used, classic, hand-designed tripod
gait (Siciliano and Khatib 00) (Supplementary Methods).
or each of the  damage conditions, we ran our adaptation
step  times for each of  independently generated behavior-
performance maps (with the default “duty factor” behavioral
description), leading to 6×5×8 = 240 experiments in total.
We also ran our adaptation step  times on  independently
generated behavior-performance maps defined by an alter-
nate behavioral description (“body orientation”, see Supple-
mentary Methods) on two damage conditions (ig. .-
), leading to 2× 5× 8 = 80 additional experiments.

When the robot is undamaged (ig. .A:), our ap-
proach yields dynamic gaits that are 30% faster than the
classic reference gait (ig. ., median 0. m/s, 5th and
95th percentiles [0.; 0.] vs. 0.m/s), suggesting that
Intelligent Trial and rror is a good search algorithm for
automatically producing successful robot behaviors, putting
aside damage recovery. In all the damage scenarios, the ref-
erence gait is no longer effective (~0.0 m/s for the four
damage conditions, ig. .:-). After Intelligent
Trial and rror, the compensatory gaits achieve a reason-
ably fast speed (> 0.15m/s) and are between 3 and 7 times
more efficient than the reference gait for that damage con-
dition (in m/s, : 0. [0.; 0.] vs. 0.0; : 0.
[0.; 0.] vs. 0.0; : 0. [0.; 0.] vs. 0.0; :
0. [0.; 0.] vs. 0.0; : 0. [0.; 0.] vs 0.).

ese experiments demonstrate that Intelligent Trial and
rror allows the robot to both initially learn fast gaits and
to reliably recover after physical damage. Additional exper-
iments reveal that these capabilities are substantially faster
than state-of-the-art algorithms (Supplementary ig. .),
and that Intelligent Trial and rror can help with another
major challenge in robotics: adapting to new environments
(Supplementary ig. .). On the undamaged or repaired
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Figure 4.4. (A & B). Creating the behavior-performance map: A user reduces a high-dimensional search space to a low-dimensional behavior space

by defining dimensions alongwhich behaviors vary. In simulation, the high-dimensional space is then automatically searched to find a high-performing

behavior at each point in the low-dimensional behavior space, creating a “behavior-performance” map of the performance potential of each location in

the low-dimensional space. In our hexapod robot experiments, the behavior space is six-dimensional: the portion of time that each leg is in contact with

the ground. The confidence regarding the accuracy of the predicted performance for each behavior in the behavior-performance map is initially low

because no tests on the physical robot have been conducted. (C & D) Adaptation Step: After damage, the robot selects a promising behavior, tests it,

updates the predicted performance of that behavior in the behavior-performancemap, and sets a high confidence on this performance prediction. The

predicted performances of nearby behaviors–and confidence in those predictions–are likely to be similar to the tested behavior and are thus updated

accordingly. This select/test/update loop is repeated until a tested behavior on the physical robot performs better than 90% of the best predicted

performance in the behavior-performance map, a value that can decrease with each test (Supplementary Fig. D.1). The algorithm that selects which

behavior to test next balances between choosing the behavior with the highest predicted performance and behaviors that are different from those

tested so far. Overall, the Intelligent Trial and Error approach presented here rapidly locates which types of behaviors are least affected by the damage

to find an effective, compensatory behavior.

robot (ig. .: ), Intelligent Trial and rror learns a
walking gait in less than 0 seconds (ig. ., undam-
aged:  [; ] seconds,  [; ] physical trials, repaired:
 [; ] seconds, . [; 0] trials). or the four dam-
age scenarios, the robot adapts in approximately one minute
( [; ] seconds,  [; ] trials). Our results are qual-
itatively unchanged when using different behavioral char-
acterizations, including randomly choosing  descriptors
among  possibilities (ig. .- and Supplementary ig.
.). Additional experiments show that reducing the high-
dimensional parameter space to a low-dimensional behavior
space via the behavior-performance map is the key compo-
nent for intelligent trial and error: standard ayesian opti-
mization in the original parameter space does not find work-
ing controllers (Supplementary ig. .).

We investigated how the behavior-performance map is
updated when the robot loses a leg (ig. .A:). Initially
the map predicts large areas of high performance. uring
adaptation, these areas disappear because the behaviors do
not work well on the damaged robot. Intelligent Trial and
rror quickly identifies one of the few, remaining, high-
performance behaviors (ig. . and Supplementary ig.
. and .).

e same damage recovery approach can be applied to
any robot, such as a robotic arm. We tested  differ-
ent damage conditions with a planar, -joint robotic arm
(ig. .- and Supplementary ig. .). e behavior-
performance map’s behavioral dimensions are the x, y po-
sition of the end-effector and the performance measure

is minimizing the variance of the  specified motor an-
gles (Supplementary Methods). uring adaptation, perfor-
mance is measured as distance to the target. Like with the
hexapod robot, our approach discovers a compensatory be-
havior in less than  minutes, usually in less than 0 seconds,
and with fewer than 0 trials (ig. . and Supplementary
ig. .).

While natural animals do not use the specific algorithm
we present, there are parallels between Intelligent Trial and
rror and animal learning. Like animals, our robot does
not have a predefined strategy for how to cope with every
possible damage condition: in the face of a new injury, it ex-
ploits its intuitions about how its body works to experiment
with different behaviors to find what works best. Also like
animals (enson-Amram and Holekamp 0), Intelligent
Trial and rror allows the quick identification of working
behaviors with a few, diverse tests instead of trying behav-
iors at random or trying small modifications to the best be-
havior found so far. Additionally, the ayesian optimiza-
tion procedure followed by our robot appears similar to the
technique employed by humans when they optimize an un-
known function (orji and Itti 0), and there is strong
evidence that animal brains learn probability distributions,
combine them with prior knowledge, and act as ayesian
optimizers (Körding and Wolpert 00; Pouget et al. 0).

An additional parallel is that Intelligent Trial and rror
primes the robot for creativity during a motionless period,
after which the generated ideas are tested. is process is
reminiscent of the finding that some animals start the day
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Figure 4.5. (A) Conditions tested on the physical hexapod robot. C1: The undamaged robot. C2: One leg is shortened by half. C3: One leg is

unpowered. C4: One leg ismissing. C5: Two legs aremissing. C6: A temporary, makeshift repair to the tip of one leg. (B) Performance after adaptation.
Box plots represent Intelligent Trial and Error. The centralmark is themedian, the edges of the box are the 25th and 75th percentiles, thewhiskers extend

to the most extreme data points not considered outliers, and outliers are plotted individually. Yellow stars represent the performance of the handmade

reference tripod gait (Supplementary Methods). Conditions C1-C6 are tested 5 times each for 8 independently created behavior-performance maps

with the “duty factor” behavior description (i.e. 40 experiments per damage condition, Supplementary Methods). Damage conditions C1 and C3 are

also tested 5 times each for 8 independently created behavior-performance maps with the “body orientation” behavior description (Supplementary

Methods). (C) Time and number of trials required to adapt. Box plots represent Intelligent Trial and Error. (D) Robotic arm experiment. The 8-joint,

planar robot has to drop a ball into a bin. (E) Example conditions tested on the physical robotic arm. C1: One joint is stuck at 45 degrees. C2: One

joint has a permanent 45-degree offset. C3: One broken and one offset joint. A total of 14 conditions were tested (Supplementary Fig. D.7). (F) Time
and number of trials required to reachwithin 5 cm of the bin center. Each condition is tested with 15 independently created behavior-performance

maps.

with new ideas that they may quickly disregard after ex-
perimenting with them (erégnaucourt et al. 00), and
more generally, that sleep improves creativity on cognitive
tasks (Wagner, Gais, et al. 00). A final parallel is that
the simulator and Gaussian process components of Intel-
ligent Trial and rror are two forms of predictive models,
which are known to exist in animals (ongard et al. 00;
Ito 00). All told, we have shown that combining pieces
of nature’s algorithm, even if differently assembled, moves
robots more towards animals by endowing them with the
ability to rapidly adapt to unforeseen circumstances.

MAIN METHODS (Intelligent Trial
and Error)

Notations

• c: Parameters of a controller (vector)
• x: A location in a discrete behavioral space (i.e. a type

of behavior) (vector)
• χ: A location in a discrete behavioral space that has

been tested on the physical robot (vector)
• P : ehavior-performance map (stores performance)

(associative table)
• C: ehavior-performance map (stores controllers) (as-

sociative table)
• P(x): Max performance yet encountered at x (scalar)
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Figure 4.6. An example behavior-performance map. This map stores high-performing behaviors at each point in a six-dimensional behavior space.

Each dimension is the portion of time that each leg is in contact with the ground. The behavioral space is discretized at five values for each dimension

(0; 0.25; 0.5; 0.75; 1). Each colored pixel represents the highest-performing behavior discovered during map creation at that point in the behavior space.

The matrices visualize the six-dimensional behavioral space in two dimensions according to the legend in the top-left. The behavior-performance map

is created with a simulated robot (bottom left) in the Open Dynamics Engine physics simulator (http://www.ode.org). The left matrix is a pre-adaptation

map produced by the map creation algorithm. During adaptation, the map is updated as tests are conducted (in this case, in the damage condition

where the robot is missing one leg: Fig. 4.5A:C4). The right matrix shows the state of the map after a compensatory behavior is discovered. The arrows

andwhite circles represent the order in which behaviors were tested on the physical robot. The red circle is the final, discovered, compensatory behavior.

Amongst other areas, high-performing behaviors can be found for the damaged robot in the first two columns of the third dimension. These columns

represent behaviors that least use the central-left leg, which is the leg that is missing.

• C(x): ontroller currently stored in x (vector)
• χ1:t: All previously tested behavioral descriptors at

time t (vector of vectors)
• P1:t: Performance in reality of all the candidate solu-

tions tested on the robot up to time t (vector)
• P(χ1:t): Performance in the behavior-performance

map for all the candidate solutions tested on the robot
up to time t (vector)

• f(): Performance function (unknown by the algo-
rithm) (function)

• σ2
noise: Observation noise (a user-specified parameter)

(scalar)
• k(x, x): Kernel function (see section “kernel function”)

(function)
• K: Kernel matrix (matrix)
• k: Kernel vector [k(x, χ1), k(x, χ2), ..., k(x, χt)] (vec-

tor)
• µt(x): Predicted performance for x (i.e. the mean of

the Gaussian process) (function)
• σ2

t (x): Standard deviation for x in the Gaussian pro-
cess (function)

Intelligent Trial and Error algorithm

e Intelligent Trial and rror Algorithm consists of two
major steps (Supplementary ig. .): the behavior-
performance map creation step and the adaptation step
(while here we focus on damage recovery, Intelligent Trial
and rror can search for any type of required adapta-
tion, such as learning an initial gait for an undamaged
robot, adapting to new environments, etc.). e behavior-
performance map creation step is accomplished via a new al-
gorithm introduced in this paper called multi-dimensional
archive of phenotypic elites (MAP-lites), which is ex-
plained in the next section. e adaptation step is accom-
plished via a second new algorithm introduced in this paper
called the map-based ayesian optimization algorithm (M-

OA), which is explained in the “Adaptation Step” section
below.

Behavior-performance map creation (via the
MAP-Elites algorithm)

e behavior-performance map is created by a new al-
gorithm we introduce in this paper called the multi-
dimensional archive of phenotypic elites (MAP-lites) al-
gorithm. MAP-lites searches for the highest-performing
solution for each point in a user-defined space: the user
chooses the dimensions of the space that they are interested
in seeing variation in. or example, when designing robots,
the user may be interested in seeing the highest-performing
solution at each point in a two-dimensional space where one
axis is the weight of the robot and the other axis is the height
of the robot. Alternatively, a user may wish to see weight
vs. cost, or see solutions throughout a  space of weight
vs. cost vs. height. Any dimension that can vary could
be chosen by the user. ere is no limit on the number of
dimensions that can be chosen, although it becomes compu-
tationally more expensive to fill the behavior-performance
map and store it as the number of dimensions increases. It
also becomes more difficult to visualize the results. We refer
to this user-defined space as the “behavior space”, because
usually the dimensions of variation measure behavioral char-
acteristics. Note that the behavioral space can refer to other
aspects of the solution (as in this example, where the dimen-
sions of variation are physical properties of a robot such as
its height and weight).

If the behavior descriptors and the parameters of the
controller are the same (i.e. if there is only one possi-
ble solution/genome/parameter set/policy/description for
each location in the behavioral space), then creating the
behavior-performance map is straightforward: one simply
needs to simulate the solution at each location in the be-
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procedure I T  A
efore the mission:

 - ( MAP- )
while In mission do

if Significant performance fall then
A S ( M-OA )

procedure MAP- A
(P ← ∅, C ← ∅) ▷ Creation of an empty behavior-performance map (empty N-dimensional grid).
for iter = 1→ I do ▷ Repeat during I iterations (here we choose I = 40 million iterations).

if iter < 400 then
c′ ← random_controller() ▷ e first 400 controllers are generated randomly.

else ▷ e next controllers are generated using the map.
c← random_selection(C) ▷ Randomly select a controller c in the map.
c′ ← random_variation(c) ▷ Create a randomly modified copy of c.

x′ ←behavioral_descriptor(simu(c′)) ▷ Simulate the controller and record its behavioral descriptor.
p′ ←performance(simu(c′)) ▷ Record its performance.
if P(x′) = ∅ or P(x′) < p′ then ▷ If the cell is empty or if p′ is better than the current stored performance.
P(x′)← p′ ▷ Store the performance of c′ in the behavior-performance map according

▷ to its behavioral descriptor x′.
C(x′)← c′ ▷ Associate the controller with its behavioral descriptor:

return behavior-performance map (P and C)
procedure M-OA (M -   O  A )
∀x ∈ map: ▷ Initialisation:

P (f(x)|x) = N (µ0(x), σ2
0(x)) ▷ Definition of the Gaussian Process.

where
µ0(x) = P(x) ▷ Initialize the mean prior from the map.
σ2
0(x) = k(x, x) + σ2

noise ▷ Initialize the variance prior (in the common case, k(x, x) = 1)
while max(P1:t) < αmax(µt(x)) do ▷ Iteration loop.

χt+1 ← arg maxx(µt(x) + κσt(x)) ▷ Select next test (argmax of acquisition function).
Pt+1 ← performance(physical_robot(C(χt+1))). ▷ Evaluation of xt+1 on the physical robot.
P (f(x)|P1:t+1, x) = N (µt+1(x), σ2

t+1(x)) ▷ Update the Gaussian Process.
where
µt+1(x) = P(x) + k⊺K−1(P1:t+1 − P(χ1:t+1)) ▷ Update the mean.
σ2
t+1(x) = k(x, x) + σ2

noise − k⊺K−1k ▷ Update the variance.

K =









k(χ1, χ1) · · · k(χ1, χt+1)
... . . . ...

k(χt+1, χ1) · · · k(χt+1, χt+1)









+ σ2
noiseI ▷ Compute the observations’ correlation matrix.

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt+1)
]

▷ Compute the x vs. observation correlation vector.

Figure 4.7. Pseudo-code for the Intelligent Trial and Error Algorithm, the MAP-Elites algorithm, and the Map-based Bayesian Optimization Algorithm

(M-BOA). Notations are described in the methods section.

havior space and record the performance. However, if it is
not known a priori how to produce a controller/parameter
set/description that will end up in a specific location in the
behavior space (i.e. if the parameter space is of higher di-
mension than the behavioral space: e.g., in our example, if
there are many different robot designs of a specific weight,
height, and cost, or if it is unknown how to make a de-
scription that will produce a robot with a specific weight,
height, and cost), then MAP-lites is beneficial. It will ef-
ficiently search for the highest-performing solution at each
point of the low-dimensional behavioral space. It is more ef-
ficient than a random sampling of the search space because
high-performing solutions are often similar in many ways,
such that randomly altering a high-performing solution of
one type can produce a high-performing solution of a dif-
ferent type (see Supplementary ig. . and Supplemen-
tary xperiment S). or this reason, searching for high-

performing solutions of all types simultaneously is much
quicker than separately searching for each type. or exam-
ple, to generate a lightweight, high-performing robot de-
sign, it tends to be more effective and efficient to modify an
existing design of a light robot rather than randomly gen-
erate new designs from scratch or launch a separate search
process for each new type of design.

MAP-lites begins by generating a set of random can-
didate solutions. It then evaluates the performance of each
solution and records where that solution is located in the
behavior space (e.g. if the dimensions of the behavior space
are the height and weight, it records the height and weight
of each robot in addition to its performance). or each so-
lution, if its performance is better than the current solution
at that location in the behavior-performance map, then it is
added to the behavior-performance map, replacing the so-
lution in that location. In other words, it is only kept if it
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is the best of that type of solution, where “type” is defined
as a location in the behavior space. ere is thus only one
solution kept at each location in the behavior space (keep-
ing more could be beneficial, but for computational reasons
we only keep one). If no solution is present in the behavior-
performance map at that location, then the newly generated
candidate solution is added at that location.

Once this initialization step is finished, Map-lites
enters a loop that is similar to stochastic, population-
based, optimization algorithms, such as evolutionary algo-
rithms (iben and Smith 00): the solutions that are in
the behavior-performance map form a population that is
improved by random variation and selection. In each gen-
eration, the algorithm picks a solution at random via a uni-
form distribution, meaning that each solution has an equal
chance of being chosen. A copy of the selected solution is
then randomly mutated to change it in some way, its per-
formance is evaluated, its location in the behavioral space
is determined, and it is kept if it outperforms the current
occupant at that point in the behavior space (note that mu-
tated solutions may end up in different behavior space lo-
cations than their “parents”). is process is repeated un-
til a stopping criterion is met (e.g. after a fixed amount
of time has expired). In our experiments, we stopped each
MAP-lites run after 0 million iterations. ecause MAP-
lites is a stochastic search process, each resultant behavior-
performance map can be different, both in terms of the
number of locations in the behavioral space for which a can-
didate is found, and in terms of the performance of the can-
didate in each location.

e pseudo-code of the algorithm is available in igure
..

Adaptation step (via M-BOA: the map-based
Bayesian optimization algorithm)

e adaptation step is accomplished via a ayesian opti-
mization algorithm seeded with a behavior-performance
map. We call this approach a map-based ayesian optimiza-
tion algorithm, or M-OA.

ayesian optimization is a model-based, black-box opti-
mization algorithm that is tailored for very expensive objec-
tive functions (a.k.a. cost functions) (Lizotte et al. 00;
Griffiths et al. 00; rochu et al. 00; Snoek et al. 0;
orji and Itti 0; Mockus 0). As a black-box opti-
mization algorithm, ayesian optimization searches for the
maximum of an unknown objective function from which
samples can be obtained (e.g., by measuring the perfor-
mance of a robot). Like all model-based optimization algo-
rithms (e.g. surrogate-based algorithms (ooker et al. ;
orrester and Keane 00; Jin 0), kriging (Simpson et
al. ), or A (Sacks et al. ; Jones et al. )),
ayesian optimization creates a model of the objective func-
tion with a regression method, uses this model to select the
next point to acquire, then updates the model, etc. It is
called Bayesian because, in its general formulation (Mockus
0), this algorithm chooses the next point by computing
a posterior distribution of the objective function using the
likelihood of the data already acquired and a prior on the
type of function.

Here we use Gaussian process regression to find a
model (Rasmussen and Williams 00), which is a com-
mon choice for ayesian optimization (Lizotte et al. 00;

Griffiths et al. 00; rochu et al. 00; alandra et al.
0). Gaussian processes are particularly interesting for re-
gression because they not only model the cost function, but
also the uncertainty associated with each prediction. or a
cost function f , usually unknown, a Gaussian process de-
fines the probability distribution of the possible values f(x)
for each point x. ese probability distributions are Gaus-
sian, and are therefore defined by a mean (µ) and a standard
deviation (σ). However, µ and σ can be different for each x;
we therefore define a probability distribution over functions:

P (f(x)|x) = N (µ(x), σ2(x)) (.)
where N denotes the standard normal distribution.

To estimate µ(x) and σ(x), we need to fit the Gaus-
sian process to the data. To do so, we assume that
each observation f(χ) is a sample from a normal distri-
bution. If we have a data set made of several obser-
vations, that is, f(χ1), f(χ2), ..., f(χt), then the vector
[f(χ1), f(χ2), ..., f(χt)] is a sample from a multivariate
normal distribution, which is defined by a mean vector and
a covariance matrix. A Gaussian process is therefore a gen-
eralization of a n-variate normal distribution, where n is the
number of observations. e covariance matrix is what re-
lates one observation to another: two observations that cor-
respond to nearby values of χ1 and χ2 are likely to be corre-
lated (this is a prior assumption based on the fact that func-
tions tend to be smooth, and is injected into the algorithm
via a prior on the likelihood of functions), two observations
that correspond to distant values of χ1 and χ2 should not
influence each other (i.e. their distributions are not corre-
lated). Put differently, the covariance matrix represents that
distant samples are almost uncorrelated and nearby samples
are strongly correlated. is covariance matrix is defined via
a kernel function, called k(χ1, χ2), which is usually based on
the uclidean distance between χ1 and χ2 (see the “kernel
function” sub-section below).

Given a set of observations P1:t = f(χ1:t) and a sam-
pling noise σ2

noise(which is a user-specified parameter), the
Gaussian process is computed as follows (Rasmussen and
Williams 00; rochu et al. 00):

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :

µt(x) = k⊺K−1P1:t

σ2
t (x) = k(x, x) + σ2

noise − k⊺K−1k

K =









k(χ1, χ1) · · · k(χ1, χt)
... . . . ...

k(χt, χ1) · · · k(χt, χt)









+ σ2
noiseI

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]

(.)
Our implementation of ayesian optimization uses this

Gaussian process model to search for the maximum of the
objective function f(x), f(x) being unknown. It selects the
next χ to test by selecting the maximum of the acquisition
function, which balances exploration – improving the model
in the less explored parts of the search space – and exploita-
tion – favoring parts that the models predicts as promising.
Here, we use the “Upper onfidence ound” acquisition
function (see the “information acquisition function” section

HDR JB Mouret | 35 / 105 Chapter 4. Diagnosis-free adaptation to damage



below). Once the observation is made, the algorithm up-
dates the Gaussian process to take the new data into account.
In classic ayesian optimization, the Gaussian process is ini-
tialized with a constant mean because it is assumed that all
the points of the search space are equally likely to be good.
e model is then progressively refined after each observa-
tion.

e key concept of the map-based ayesian optimization
algorithm (M-OA) is to use the output of MAP-lites as
a prior for the ayesian optimization algorithm: thanks to
the simulations, we expect some behaviors to perform better
than others on the robot. To incorporate this idea into the
ayesian optimization, M-OA models the difference be-
tween the prediction of the behavior-performance map and
the actual performance on the real robot, instead of directly
modeling the objective function. is idea is incorporated
into the Gaussian process by modifying the update equation
for the mean function (µt(x), equation .):

µt(x) = P(x) + k⊺K−1(P1:t − P(χ1:t)) (.)

where P(x) is the performance of x according to the sim-
ulation and P(χ1:t) is the performance of all the previous
observations, also according to the simulation. Replacing
P1:t (eq. .) by P1:t − P(χ1:t) (eq. .) means that the
Gaussian process models the difference between the actual
performance P1:t and the performance from the behavior-
performance map P(χ1:t). e term P(x) is the predic-
tion of the behavior-performance map. M-OA therefore
starts with the prediction from the behavior-performance
map and corrects it with the Gaussian process.

e pseudo-code of the algorithm is available in igure
..
Kernel function e kernel function is the covariance func-
tion of the Gaussian process. It defines the influence of a
controller’s performance (on the physical robot) on the per-
formance and confidence estimations of not-yet-tested con-
trollers in the behavior-performance map that are nearby in
behavior space to the tested controller (Supplementary ig.
.A).

e Squared xponential covariance function and the
Matérn kernel are the most common kernels for Gaussian
processes (Rasmussen and Williams 00; rochu et al.
00; Snoek et al. 0). oth kernels are variants of the
“bell curve”. Here we chose the Matérn kernel because it is
more general (it includes the Squared xponential function
as a special case) and because it allows us to control not only
the distance at which effects become nearly zero (as a func-
tion of parameter ρ, Supplementary ig. .A), but also
the rate at which distance effects decrease (as a function of
parameter ν).

e Matérn kernel function is computed as fol-

lows (Matérn et al. 0; Stein ) (with ν = 5/2):

k(x1, x2) =
(

1 +
√
5d(x1,x2)

ρ
+ 5d(x1,x2)2

3ρ2

)

exp
(

−
√
5d(x1,x2)

ρ

)

where d(x1, x2) is the uclidean distance in behavior space.
(.)

ecause the model update step directly depends on ρ, it
is one of the most critical parameters of the Intelligent Trial
and rror Algorithm. We selected its value after extensive
experiments in simulation (Supplementary ig. . and
Supplementary Method).
Information acquisition function e information acquisition
function selects the next solution that will be evaluated on
the physical robot. e selection is made by finding the so-
lution that maximizes the acquisition function. is step is
another optimization problem, but does not require testing
the controller in simulation or reality. In general, for this
optimization problem we can derive the exact equation and
find a solution with gradient-based optimization (iacco
and Mcormick 0). or the specific behavior space
in the example problem in this paper, though, the dis-
cretized search space of the behavior-performance map is
small enough that we can exhaustively compute the acqui-
sition value of each solution of the behavior-performance
map and then choose the maximum value.

Several different acquisition functions exist, such as the
probability of improvement, the expected improvement, or
the Upper onfidence ound (U) (rochu et al. 00;
alandra et al. 0). We chose U because it provided
the best results in several previous studies (rochu et al.
00; alandra et al. 0). e equation for U is:

xt+1 = arg max
x

(µt(x) + κσt(x)) (.)

where κ is a user-defined parameter that tunes the tradeoff
between exploration and exploitation.

e acquisition function handles the exploita-
tion/exploration trade-off of the adaptation (M-OA)
step. In the U function (q. .), the emphasis on
exploitation vs. exploration is explicit and easy to adjust.
e U function can be seen as the maximum value
(argmax) across all solutions of the weighted sum of the
expected performance (mean of the Gaussian, µt(x)) and
of the uncertainty (standard deviation of the Gaussian,
σt(x)) of each solution. is sum is weighted by the κ

factor. With a low κ, the algorithm will choose solutions
that are expected to be high-performing. onversely, with
a high κ, the algorithm will focus its search on unexplored
areas of the search space that may have high-performing
solutions. e κ factor enables fine adjustments to the ex-
ploitation/exploration trade-off of the M-OA algorithm
(the adaptation step). We describe how we chose the κ

value in supplementary methods.
Supplementary Figures are available in appendix D. Supple-

mentary methods are available in the published paper.
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5Evolvability signatures

Scientific context. The two algorithms introduced in the previous chapter allow
walking robots to recover from damages with a few trials. However, they were
purposely testedwith simplistic walking controllers (sinewaves) so that our contri-
bution can be focused on the adaptation algorithm, and not the control strategy.
There are two issues with these controllers: (1) they are open-loop, meaning that
they cannot deal with small variations in the environment, and (2) they constrain
the gaits to sine-like gaits, meaning that some damagesmay not be perfectly com-
pensated if theoptimal behavior requiresmore complex trajectories. The twoalgo-
rithms can be used with any kind of controllers, and therefore any controller that
can be evolved with evolutionary algorithms can replace the sine-wave walking
controllers. Nevertheless, there are many ways to implement walking controllers,
and evenmore ways to evolve themwith evolutionary algorithms. How to choose
the most promising approach?

Traditionally, methods to evolve robot controllers are assessed solely by the fitness
score they can reach for a specific task (e.g. the maximum walking speed). How-
ever, the fitness score provides only limited insights into the encoding, in particu-
lar because it is also linked to the evolutionary algorithm that has been used. For
instance, some encodings (and parameters) might bias the search towards explo-
ration and others might be more conservative. Different evolutionary algorithms
are likely to require different characteristics from the encoding.

To compare encodings in a more independent way, we introduce the concept of
“evolvability signatures”, which picture the statistical distribution of behavior di-
versity and fitness after mutations. We tested the relevance of this concept by
evolving controllers for hexapod robot locomotion using five different genotype-
to-phenotype mappings (direct encoding, generative encoding of open-loop and
closed-loop central pattern generators, generative encoding of neural networks,
and single-unit pattern generators (SUPG)). We observed a predictive relationship
between the evolvability signature of each encoding and the number of genera-
tions required by hexapods to adapt from incurred damages. Our study also re-
veals that, across the five investigated encodings, the SUPG scheme achieved the
best evolvability signature, andwas always foremost in recovering an effective gait
following robot damages. Overall, our evolvability signatures neatly complement
existing task-performancebenchmarks, andpave theway for stronger foundations
for research in evolutionary computation.

Human context. This chapter is one of the main contribution Danesh Tarapore’s
1-year post-doc, which I supervised. The work was performed concurrently to the
work described in the previous chapter, which explains why the result of this chap-
ter are not yet integrated with those of the previous one.
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I most evolutionary computation studies, fitness com-
parison is the main instrument used to compare dif-
ferent evolutionary systems and assess their progress.

Such a benchmark-based comparative approach has led to
incremental improvements in the robot’s performance in
specific tasks (e.g., for multilegged robot locomotion, the
inclusion of evolved gaits on the commercial release of
Sony’s AIO (Hornby, Takamura, et al. 00; Valsalam
and Miikkulainen 00), and the progressive improvements
in walking speed of the Quadraot (Yosinski et al. 0;
Lee et al. 0)), and is sufficient if excelling at the given
function is the ultimate goal for the robot.

Nonetheless, if the evaluated task is treated as a tool to
compare different evolutionary systems, and as a stepping
stone to harder problems, then a mere comparison of perfor-

mance does not suffice: such a methodology of comparison
only provides a very limited amount of information about
the behavior of the system. In particular, it does not pro-
vide any insights on, (i) how efficiently does the evolution-
ary process explore the search space (e.g., can it also lead
to solutions for other similar tasks, or is it biased to the
type of solutions useful only for a very specific task), and
(ii) what capabilities are provided to the evolved population
to respond to novel situations (e.g., an unexpected breakage
of the multilegged robot’s limbs, or changes to its weight
distribution). urthermore, while adaptive evolutionary sys-
tems utilize a variety of population-diversity maintenance
methods to operate with dynamic fitness (Jin and ranke
00), they are mostly concerned with numerical optimiza-
tion problems (e.g., (Morrison and e Jong )), and
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constrained to fitness-based indices to evaluate available ap-
proaches (Weicker 00). In summary, there is a need for
additional metrics when comparing evolutionary systems,
especially if one is interested in the adaptive abilities pro-
vided by evolution.

In benchmark-based comparative approaches, the fitness
value in an evolutionary system is often used as a proxy
for the evolvability provided by the system (Gruau ;
Komosiński and Rotaru-Varga 00; Hornby, Lipson, et al.
00; lune, eckmann, Ofria, et al. 00) — the capac-
ity of the evolved population to rapidly adapt to novel en-
vironments (Hu and anzhaf 00). Unfortunately, such
a fitness-based proxy provides little information on the po-
tential of the evolutionary system to generate novel pheno-
types, and consequently rapidly adapt to new, untested en-
vironments. To counter the limitations of the fitness mea-
sure, we introduce a new evolvability metric that features
both the quality and quantity of phenotypic variation fol-
lowing genetic change. With this new metric, we can vi-
sualize evolvability in the behavior-diversity/performance
space and predict the performance of the population in pre-
viously untested environments. Such predictive insights on
the adaptive characteristics of evolved individuals is particu-
larly important, since it is difficult if not impossible to con-
sider and evaluate apriori every possible scenario the robot
may encounter during its operation.

We employ our new approach to “signaturize” evolvabil-
ity to compare many different encodings of controllers ex-
tracted from the literature. Numerous encodings have been
proposed in , taking inspiration from natural develop-
mental processes, in particular, to evolve control systems for
robots (e.g., (Lewis et al. ; Gruau ; Kodjabachian
and Meyer ; lune, eckmann, Ofria, et al. 00;
heney, Macurdy, et al. 0; Lee et al. 0; Morse
et al. 0)). Given the multitude of available encodings, it
is crucial to compare them and understand their differences,
so that the  community can focus on the most promising
ones. In the selection of encodings investigated in our study,
both direct and generative schemes are considered. irect
encodings encompass a one-to-one mapping between genes
and phenotypic traits, and are the simplest form of encod-
ing thus serving as a reference for comparison (e.g., (Koos,
ully, et al. 0)). We also evaluate the more complex
generative encodings characterized by a one-to-many map-
ping between genes and phenotypic traits (Stanley and
Miikkulainen 00; Stanley 00). ese state of the art
encodings are expected to exploit geometric information of
the robot morphology to generate regular and modular phe-
notypic patterns (e.g., (Stanley, ’Ambrosio, et al. 00;
lune, Stanley, et al. 0; Morse et al. 0)).

Overall, we investigate five encodings for the classical
 problem of legged robot locomotion (Lewis et al. ;
Gruau ; Hornby, Takamura, et al. 00; ongard et
al. 00; lune, eckmann, Ofria, et al. 00; lune,
Ofria, et al. 00; lune, Stanley, et al. 0; Yosinski
et al. 0; Koos, ully, et al. 0; Lee et al. 0):
() open-loop central pattern generator (PG) evolved
with a direct encoding, () open-loop PG based on non-
linear oscillators (respi et al. 0), evolved with a om-
positional Pattern Generator (PPN) (Stanley 00), ()
closed-loop PG evolved with a PPN, () artificial neu-
ral network (ANN) evolved with PPN, inspired by Hyper-
NAT (Stanley, ’Ambrosio, et al. 00; lune, Stanley,

et al. 0), and () the recently introduced single-unit pat-
tern generator (SUPG) (Morse et al. 0).

or all these encodings, the questions are the same: are
these encodings facilitating evolvability, and are the en-
coded individuals capable of adapting rapidly to novel sit-
uations urthermore, does the inclusion of a sensory feed-
back mechanism improve the evolvability provided, and the
adaptive capabilities of the individual To both answer
these questions and evaluate the relevance of our measure
of evolvability, our experiments are divided into two phases:
first, we compare the evolvability signature obtained with
each encoding, and consequently predict their adaptability
to novel scenarios, then we evaluate the accuracy of our pre-
dictions by analyzing the ability of each encoding to effec-
tively deal with the new scenarios (here, when some of the
robot’s legs are damaged).

MEASURING EVOLVABILITY

Background

e process of evolution in natural systems comes from the
cooperation of, (i) exploratory genotypic variation, (ii) the
corresponding phenotypic variation, and (iii) selection op-
erators that preserves the improvements in heritable pheno-
typic traits over previous generations. e crucial coordina-
tion between these three forces yields the evolvability of an
evolutionary system (Alberch ; Hu and anzhaf 00;
Pavlicev and Wagner 0).

e first formal definition of evolvability stems from
research in computer science. In experiments with opti-
mization algorithms using genetic programming, Lee Al-
tenberg defined evolvability as “the ability of a population
to produce variants fitter than any yet existing” (Altenberg
). In natural evolutionary systems, Kirschner and Ger-
hart (Kirschner and Gerhart ) describe evolvability,
also called evolutionary adaptability, as “the capacity to
generate heritable, selectable phenotypic variation”. Mar-
row (Marrow et al. ) considers evolvability as a char-
acteristic relevant to both artificial and natural evolution-
ary systems, and viewed as the capability of a population
to evolve. In a summary of results from both evolution-
ary biology and evolutionary computer science, Wagner and
Altenberg (Wagner and Altenberg ) view evolvability
as “the ability of random variations to sometimes produce
improvements”. ese incremental improvements are criti-
cally dependent on the Genotype-to-Phenotype encoding.
Mappings facilitating evolvability, confer on the individual
a robustness to lethal mutations, and exhibit a modular ar-
chitecture wherein genes preferably only affect traits with
the same function (Pavlicev and Wagner 0).

Although the concept of evolvability is still very much un-
der discussion, for our study we adopt the definition pertain-
ing to adaptability, and the generation of major phenotypic
breakthroughs (Pigliucci 00; lune* et al. 0): Evolv-
ability is the capability of a population to rapidly adapt to novel
and challenging environments.

e measurement of evolvability conferred by an encod-
ing is a complex and difficult problem. Phenotypic fitness
or task performance is a directly observable measure, and
a criteria for selection. However, the potential to generate
a better fitness, evolvability, is a less tangible type of ob-
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servable and is more difficult to measure (Hu and anzhaf
00). While a formal method to quantify evolvability has
not yet been agreed upon in the literature, some empirical
methods have been proposed notwithstanding.

In Gerhart and Kirschner’s theory of facilitated varia-
tion (Gerhart and Kirschner 00), which unifies most ear-
lier findings of cellular and developmental processes with
characteristics of evolvability, the capacity of an individual
to evolve is considered to have two functional components:
(i) to curtail the proportion of lethal mutations; and (ii) to
decrease the number of mutations necessary to evolve di-
verse or novel phenotypes. Nonetheless, most studies mea-
suring evolvability focus mainly on one only of these two
aspects. Most comparisons estimate evolvability solely as
the proportion of mutations that are beneficial to an individ-
ual (e.g., (Hornby and Pollack 00; Hornby, Lipson, et al.
00; Reisinger and Miikkulainen 00; lune, eckmann,
Ofria, et al. 00; lune, Stanley, et al. 0)), and irre-
spective of the phenotypic novelty of the resultant offspring.
y contrast, (Reisinger, Stanley, et al. 00; Lehman and
Stanley 0c, 0) quantify evolvability on the basis of
the phenotypic diversity resulting from genetic change, usu-
ally without considering the quality of the change. How-
ever, both factors are essential to quantify evolvability, to
discount for, (i) mutations that generate very diverse pheno-
types, but prove lethal to the organism, and (ii) mutations
resulting in small increments in performance that improve
on a trait, but may not be able to generate novel pheno-
types. erefore, for our comparison between encodings,
evolvability is visualized by characterizing both the nature
of the genetic mutation, and the quantity of generated phe-
notypic variation.

Evolvability signatures

In this chapter, the evolvability provided by the direct and
generative encodings is characterized by computing the ef-
fect of genetic mutations on, (i) the viability of the mutated
individual, and (ii) the diversity of phenotypes generated.
e two resultant effects are treated separately instead of
being combined into a single quantitative measure of evolv-
ability, to consider the trade-offs between them in their in-
dividual influence on evolvability (eb 00).

Feature 1:Deleteriousness ofmutations.e first feature
in our signature of evolvability is computed as the propor-
tion decrease in the fitness of a mutated individual.

or an individual i and the mutant i′, we have,

f1 =
F ′
i − Fi

Fi

(.)

where Fi and F ′
i , are the fitness values before and after the

application of a random genetic mutation, respectively.
e feature f1 reflects the behavior quality following ben-

eficial (f1 > 0), neutral (f1 ≈ 0), and deleterious (f1 < 0)
genetic change. Additionally, mutations that prove lethal
are associated with f1 values less than−1, reflecting a 100%
or larger decrease in individual fitness.

Feature 2: Diversity of behaviors. ollowing the theory
of facilitated variation (Gerhart and Kirschner 00), the
second feature in our signature of evolvability evaluates
the diversity of phenotypes than can be reached from a
given individual. e phenotype can here be understood
in two ways: in an evolutionary biology perspective, the

phenotype can describe both morphological traits and be-
haviors (Arnold ; awkins ), whereas in a evolu-
tionary robotics perspective, only morphological traits are
considered to be parts of the phenotype (e.g., the param-
eters and the topology of an evolved networks form the
phenotype) (Stanley and Miikkulainen 00). e dis-
tinction between phenotype and behaviors avoids poten-
tial confusions when working on developmental encodings
(genotype-phenotype maps), which focus on morphologi-
cal traits, or when working on selective pressures, which
often focus more on the behavior than on the representa-
tion (oncieux and Mouret 0).

In the present chapter, we focus on the diversity of be-
haviors, as done in evolutionary biology, because it best
distinguishes promising individuals from the poor perform-
ers when evolving robot controllers (Lehman and Stanley
0a; Mouret and oncieux 0a). or instance, all the
neural-networks that are not connected to the robot’s ac-
tuators lead to the same stopped-robot behavior, whereas
the morphological traits (synaptic parameters and topology
of the neural-network) can be widely different. A second
advantage of looking at behaviors instead of morphological
traits is that the behavior representation can be independent
of the implementation of the controller, thus allowing us
to compare the evolvability of very different controllers like
PGs, neural networks, and SUPG controllers.

Measuring behavioral differences recently received a lot
of attention in evolutionary robotics because several exper-
iments showed that explicitly encouraging the diversity of
evolved behaviors helps to mitigate the issue of premature
convergence (Mouret 0b; Mouret and oncieux 0a;
oncieux and Mouret 0; oncieux and Mouret 0).
It is also the main driving force in the Novelty Search algo-
rithm, which leads to high-performing individuals in decep-
tive domains by only searching for novel behaviors and dis-
regarding task-fitness values (Lehman and Stanley 0a).
ollowing this interest in measuring behavioral differences,
many behavioral diversity metrics have been proposed, rang-
ing from task-specific metrics (e.g., difference between end
points of a robot’s trajectory), to more task-agnostic mea-
sures (e.g., differences in the robot sensory-motor flow),
and various information theoretic measures (detailed re-
view in (oncieux and Mouret 0) and in (Mouret and
oncieux 0a)).

Among the investigated measures, the mutual informa-
tion diversity metric provides a general approach to com-
pute a non-linear, non-monotonic relationship between be-
haviors, that is applicable to numerical and symbolic behav-
ioral representations, both in the continuous and discrete
domains (over and omas ; Kraskov et al. 00).
or our signature of evolvability, we compute the behavioral
diversity as the normalized mutual information between be-
haviors of an individual, before and after its genome is mu-
tated. Such a diversity

Assuming that the behavior of an individual i can be
represented as a discrete vector Bi (details in (Mouret and
oncieux 0a)), for the behaviors Bi and B′

i, of individ-
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ual i and mutant i′, we have:

H(Bi) = −
∑

bi∈Bi

p(bi) log p(bi) (.a)

H(Bi, B
′
i) = −

∑

bi∈Bi

∑

b′
i
∈B′

i

p(bi, b
′
i) log p(bi, b′i) (.b)

f2 = 1−
H(Bi) +H(B′

i)−H(Bi, B
′
i)

max(H(Bi), H(B′
i)

(.c)

where H(Bi) is the entropy of the behavior Bi comprising
the individual states bi with probability p(bi), H(Bi, B

′
i) is

the joint entropy between behaviors Bi and B′
i with joint

probability density function p(bi, b
′
i), and f2 denotes the

inverse of the normalized mutual information between the
two behaviors.

e entropy and joint entropy are computed by first ap-
proximating p(bi) and p(bi, b

′
i), by counting the number of

instances of each behavior state. Systematic errors in the
probability estimates, consequent to the limited number of
available data samples, is compensated for by adding a cor-
rective termE to the computed entropy: E = (Si − 1) /2T
(where T is the size of the temporal window over which
the entropy is computed, and Si is the number of states for
which p(bi) ̸= 0), and E = (Si + Si′ − Si,i′ − 1) /2T to
the joint entropy (where Si, Si′ , Si,i′ , and T have an analo-
gous meaning to the previous case) (Roulston ). Inte-
grating the corrective term to the equations for entropy and
joint entropy, we have:

H(Bi) = −
∑

bi∈Bi

p(bi) log p(bi) + Si − 1

2T
(.a)

H(Bi, B
′
i) = −

∑

bi∈Bi

∑

b′
i
∈B′

i

p(bi, b
′
i) log p(bi, b′i) +

Si + Si′ − Si,i′ − 1

2T

(.b)

stimates of the corrected entropy (eq. .a) and joint
entropy (eq. .b) are then used to update the mutual infor-
mation distance between behaviors. e resulting feature
f2 represents the quantity of behavioral variation following
genetic change, and is indicative of the ability of the evolu-
tionary system to produce novel behaviors.

METHODS

Hexapod robot locomotion problem

e evolution of locomotion gaits for multilegged robots
is a classical problem in evolutionary robotics, addressed
in many studies utilizing both direct and generative encod-
ings, on bipedal (e.g., (Liu and Iba 00)), quadrupedal
(e.g., (Hornby, Takamura, et al. 00; Téllez et al.
00; Valsalam and Miikkulainen 00; lune, Stanley,
et al. 0; Risi and Stanley 0)), and hexapedal
robots (e.g., (Zykov et al. 00; arfoot et al. 00;
Valsalam and Miikkulainen 00)) – employed here for the
comparison of different encodings. In most existing studies
on evolved locomotion gaits, the performance of an indi-
vidual is analyzed solely by its walking speed and the re-
quired number of generations of evolution. e rate of
evolution and evolved performance has also been linked
to evolvability provided by the encoding scheme, wherein

controllers achieving a higher task fitness and requiring
fewer generations to evolve are considered more evolv-
able (e.g., see (Gruau ; Komosiński and Rotaru-Varga
00; Hornby, Lipson, et al. 00; lune, eckmann,
Ofria, et al. 00)). While these approaches provide in-
teresting insights on the performance of the Genotype-to-
Phenotype mapping, they largely ignore its capabilities to
generate viable phenotypic variations (diverse gaits in case
of legged robots). However, the diversity of evolved walk-
ing gaits is important for the legged robot to recover rapidly
from faults such as, the loss of one or more limbs, or motor
malfunctions (Koos, ully, et al. 0), and for the robot to
adapt to previously unencountered environmental changes.
urthermore, an efficient recovery is particular relevant for
hexapedal legged robots, wherein the probability of com-
ponent failure is high, consequent to the large number of
moving parts.
Gait representation. e behavioral diversity in our signa-
ture of evolvability corresponds to the inter-gait diversity
in the hexapod robot locomotion problem. or this diver-
sity, a hexapod gait is represented using a gait diagram ([
)p. ]Siciliano00, comprising a binary matrix C of leg-
surface contacts:

Ctl =

{

1 if leg i makes surface contact at time-step t,
0 otherwise.

where t ∈ {0 . . . T}, the gait is evaluated for T time-steps,
and the hexapod legs l ∈ {0 . . . 5}.

e hexapod gait for an individual i is represented by bi-
nary vector Bi, comprising the contacts in C concatenated
in row-major order, Bi = [C00, C10 . . . CT5]. iversity be-
tween two gaits is measured as the normalized mutual infor-
mation between the corresponding gait vectors (eq. .c).

Encoding schemes analyzed

Generative encodings for evolving our hexapod locomotion
controllers are based on PPNs (Stanley 00). e PPN
abstracts the processes of embryonic development by deter-
mining the attributes of phenotypic components as a func-
tion of their geometric location in the individual, instead
of simulating complex inter-cellular interactions and chem-
ical morphogen gradients to determine component loca-
tion (arroll 00). In nature, cells differentiate themselves
into different lineages, influenced by their immediate envi-
ronment (the epigenetic landscape, (Goldberg, Allis, et al.
00)). Analogously, the PPN genome outputs the fate
of an organismal component as a function of its geometric
coordinates in the individual.

e PPN genome is represented as a directed graph,
comprising a set of Sine, Gaussian, Sigmoid, and Linear type
of nodes, connected by weighted links. e node type in-
dicates the activation function applied to the sum of its
weighted inputs, to compute the node output. Selected acti-
vation functions can succinctly encode a wide variety of phe-
notypic patterns, such as symmetry (e.g., a Gaussian func-
tion) and repetition (e.g., a Sine function), that evolution
can exploit. Mutations to the PPN genome can change
the connection weights and node type, and add or remove
nodes from the graph. onsequently, the topology of the
PPN is unconstrained, open-ended, and can represent any
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(a). Hexapod robot (b). Kinematic scheme

Figure 5.1. (a) Snapshot of an 18-DOF simulated hexapod robot walking on a horizontal surface, with contacts simulated. (b) Kinematic scheme of

the robot, with cylinders representing actuated pivot joints. The three servos on each leg, s1 , s2 and s3 , are labeled in increasing order of distance to

robot torso. In order to maintain the last subsegment of each leg vertical (for enhanced stability), the control signal for the third servo (s3) is always in

antiphase to that of the second servo (s2). Consequently, the robot is reduced to a 12 DOF system, despite being actuated by 18motors
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Figure 5.2. Encoding CPGswith CPPNs. The intrinsic amplitudeAi of each

oscillator is encoded by the CPPN as a function of its position in the sub-

strate. Phase biases φi,j of inter-oscillator couplings are determined by

querying the CPPN with the coordinates of every pair of adjacent source

(xi, yi) and target (xj , yj) oscillators. For every pair of adjacent oscilla-

tors, the query is made only once asφi,j = −φj,i .

possible relationship between the input coordinates of the
phenotypic component and its output attributes (see details
in (Stanley 00)).

In this chapter, the PPN genotype is mapped to four
very different phenotypes to control hexapod locomotion,
open-loop PGs (entral Pattern Generators), closed-
loop PGs, ANNs (minimal HyperNAT), and SUPGs.
e SUPG is a new type of macro-neuron introduced
by Morse et al. (Morse et al. 0) to genetically encode
spatio-temporal oscillatory patterns.
Open-loop Central Pattern Generator (CPG). e open-loop
generatively encoded PG system is comprised of 12
coupled amplitude-controlled phase oscillators (Ijspeert,
respi, et al. 00), governing the actuation of the 12 ser-
vos (s1 and s2, on each of 6 robot legs). ach oscillator is
modeled by a set of ordinary differential equations such that
the output of the oscillator γi exhibits a limit cycle behavior,
producing a stable periodic output.

In this first generative encoding scheme evaluated, a
PPN encodes the intrinsic amplitudes Ai and the inter-
oscillator phase biases ϕi,j of the 12 oscillators of the
PG (ig. .a). e oscillators are placed in a 2- arte-
sian grid termed the substrate, so that each oscillator has
a distinct (x, y) coordinate, and so as to reflect the hexa-

pod robot morphology (ig. .b). e intrinsic amplitude
of each oscillator i is obtained by inputting to the PPN
the coordinates (xi, yi), and setting the inputs (xj , yj) to
0. Amplitudes output are scaled to the allowable angular
range of the corresponding motors. In the PG, adjacent
oscillators are coupled together (see ig. .b). e phase
bias for every pair of adjacent oscillators i and j is obtained
by querying the PPN with inputs (xi, yi) and (xj , yj),
and scaling the output to range [0, 2π]. urthermore, the
following two constraints are introduced: (i) couplings are
bilaterally symmetrical, i.e., ϕi,j = −ϕj,i. erefore, for
every pair of adjacent oscillators, the phase bias is queried
only once; (ii) phase biases ϕ2,1, ϕ2,3, ϕ7,4, ϕ9,6, ϕ10,11 and
ϕ12,11 are not queried, but computed such that the sum of
phase biases in every closed loop of the PG is a multiple
of 2π (oscillators numbered in ig. .b). erefore, the
total number of PG parameters generatively encoded by
the PPN is 23 (12 intrinsic amplitude and 11 phase bias
parameters).
Closed-loop Central Pattern Generator (CPG). e second gen-
erative encoding scheme evaluated is an extension of the
open-loop scheme. While the generatively encoded PG
parameters and the PPN encoding remains the same as
in the open-loop model (ig. .), the modification intro-
duced is a sensory feedback mechanism that modulates the
oscillations produced by the PG. In this closed-loop en-
coding scheme, feedback signals from the touch sensors at-
tached to each of the six legs of the hexapod trigger a phase-
resetting mechanism (Aoi and Tsuchiya 00), that adapts
the oscillation period depending on the gait and the terrain.
or the phase-resetting mechanism, two extreme positions
of the horizontal orientation of the robot leg are introduced
with respect to the robot trunk, (i) the anterior extreme posi-
tion (AP), where the swing phase transitions to the stance
phase, and (ii) the posterior extreme position (PP), where
the stance phase transitions to the swing phase.
ArtificialNeuralNetwork (ANN). e third generative encoding
scheme evaluated is a simplified version of HyperNAT
indirect encoding¹ In previous work, the PPN has been
used successfully to evolve modular and regular patterns in
the connection space of the ANN, resulting in symmet-

¹e PPN is evolved with a simple multiobjective evolutionary algo-
rithm, instead of the NAT method (details in (Tonelli and Mouret
0)).
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Figure 5.3. Encoding ANNs with CPPNs (inspired by (Clune, Stanley, et al. 2011; Yosinski et al. 2011; Lee et al. 2013)). Inter-neuron connection weights

are encoded as function of the position of source and target neurons of each neural connection. The CPPN outputs the weights of input-hidden and

hidden-output neuron connections, for each source (xi, yi) and target (xj , yj) neuron in proximal layers. The ANN is input the requested angles of

the previous time-step for the first two servos (s1 and s2) on each leg, and a sine and cosine wave. The output neurons specify the new joint angles for

the current time-step.

ric and coordinated gaits for both simulated and physical
quadruped robots (Stanley, ’Ambrosio, et al. 00; lune,
Stanley, et al. 0; Yosinski et al. 0; Lee et al. 0).
e results encourage us to include the HyperNAT encod-
ing in our comparative study.

e PPNs encode the weights of a fixed topology,
single-layer feedforward ANN, featuring 2- artesian
grids of inputs, hidden and output neurons (ig. .). Neu-
rons of the ANN are positioned in the substrate, in accor-
dance with the hexapod robot morphology. Using the en-
coding, the PPN is iteratively queried the positions of all
source (x1, y1) and target (x2, y2) neurons in proximal lay-
ers, along with a constant bias, and it outputs the corre-
sponding weights of the input-hidden and hidden-output
neuron connections.

e ANN receives as input the previously requested an-
gles (actual angles unknown) for each of the 12 pivot joints
of the hexapod robot (s1 and s2, for 6 legs). In addition,
sine and cosine waves of frequency 1 Hz are also input to
the ANN, to facilitate periodic oscillations at the output
neurons. e output from the ANN at each time-step are
12 numbers (one for each of s1 and s2, on each of 6 legs)
in interval [−1, 1], that are scaled to the allowable angular
range of the corresponding motors, and indicate the next
position of each motor.
SUPGs oscillators In the fourth generative encoding scheme
evaluated, the PPN encodes the attributes of a SUPG.
e SUPG is a macro-neuron (ig. .) that upon being
triggered, produces a single cycle of a PPN encoded ac-
tivation pattern. onsequently, the repeated triggering
of the SUPG results in temporal oscillations. In previ-
ous work, the SUPG outperformed HyperNAT encod-
ings in evolving locomotion gaits for a simulated quadruped
robot (Morse et al. 0). e resultant SUPG gaits ap-
peared faster and steadier in extended evaluations, encourag-
ing us to study the encoding both in terms of performance,
and the evolvability provided.

In this encoding, the PPN is input the position (x, y) of
the SUPG in the substrate, and the elapsed time (in interval
[0, 1]) since the SUPG was last triggered (ig. .a). ur-
ing the period of the SUPG, its internal, individual timer

ramps upwards with each simulation time-step, from an ini-
tial value of 0 to a maximum value of 1 (ig. .b). ere-
fore, the resultant activation pattern output by the SUPG
is a function of both, its position in the substrate, and the
time since the last cycle was initiated. Applying the SUPGs
for hexapod locomotion, the substrate comprises 12 SUPGs
positioned to reflect the robot morphology (ig. .c). e
outputs of the SUPGs at each time-step specify the desired
angles for the first and second servos (s1 and s2), on each
leg of the robot.

In an individual SUPG, the period of the internal timer
can be restarted, following the occurrence of an external trig-
ger event. onsequently, the SUPG cycle does not need to
match the length of an optimal step. Rather, the oscillation
period can be adjusted depending on the gait and the ter-
rain, by restarting the SUPG whenever its associated foot
touches the ground. erefore, the two SUPGs on each
leg of our hexapod robot are triggered by the corresponding
foot touching the ground, producing a closed-loop control.

At the start of the simulation, all six legs of the robot
are touching the ground, resulting in all the SUPGs being
triggered simultaneously. To avoid the resulting hopping
gaits, the first trigger to each SUPG is delayed by an offset.
e offset output of the PPN is determined for the s1
SUPG on each leg by supplying its coordinates as input,
and setting the time input to 0. e same offset value is
also applied to the s2 SUPG on the leg, allowing both the
oscillators on each leg to start simultaneously.
Direct encoding Locomotion controllers evolved with direct
encoding are designed to be simple, wherein the actuation
along each O of the robot is governed by the periodic
signal of an open-loop amplitude controlled phase oscilla-
tor. With this encoding, hexapod leg actuation is governed
by the differential equation model. ere are 12 evolved pa-
rameters for the intrinsic amplitudes of oscillators, govern-
ing the actuation of the two servos s1 and s2, on each of six
legs of the hexapod. In addition, 11 inter-oscillator phase
bias parameters are also evolved (see ig. . for details on
constraints on phase biases). onsequently, a directly en-
coded controller for the hexapod robot is fully represented
by 23 parameters.
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(a) The SUPG output is a function of its coordinates (x, y) in the substrate,

and the elapsed time since last trigger (output of Timer). The time of first

trigger is determined by an offset. (b) Once triggered, the SUPG timer
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Positions of the 12 SUPGs in the substrate, outputting the desired angles

for the first two servos (s1 and s2), on each leg of the hexapod.

 

EXPERIMENTS

We conducted 8, 000 generations of artificial selection in
populations consisting of 100 individuals. Our aim was to
evolve controllers for the hexapod robot to walk forward,
evaluated for a period of 5 s (334 time-steps). e Non-
dominated sorting genetic algorithm II (eb et al. 00)
was used to simultaneously optimize the following three ob-
jectives:

Maximize











−Fi

−|Θi|
1
N

∑j=N

j=0 D(Bi, Bj)

(.)

where for individual i in the population, Fi is the fitness
computed as the distance between the final position of i and
a goal located 25 m directly in front of the robot’s initial
position, Θi denotes the angle of the robot’s trajectory with
respect to the normal forward walking direction, D(Bi, Bj)
is the hamming distance between the binary gait vectors of
individual i and j, and N is the size of the population.

In eq. ., the first and second objectives reward individu-
als to walk forward large distances towards a goal, unattain-
able by the robot within the experiment evaluation time.
e third objective is introduced to facilitate the exploration
of diverse solutions and avoid premature convergence to sub-
optimal solutions at local minima (Mouret and oncieux
0a).

Artificial selection was conducted in 20 independent
replicates, for the Direct encoding, and the four genera-
tive encodings, (i) CPG (open-loop controller), (ii) CPG-
f/b (closed-loop controller), (iii) ANN (minimal Hyper-
NAT), and (iv) SUPG². Performance and evolvability
analysis are reported for the best individual of each repli-
cate, selected to have the highest fitness in the population,
and with an angle of trajectory in the range of ±1◦ (simu-

²A single evolution replicate required about 24h of computational time
on a -cores Intel Xeon 0 at 2.27 Ghz.

lation source code can be downloaded from http://pages.isir.
upmc.fr/evorob_db.)

Performance

In all five encodings, the performance of the best indi-
viduals rapidly increased with a quasi-stable equilibrium
being reached with less than 5, 000 generations of selec-
tion (ig. .a). Additionally, individuals with evolved
PGs (irect, PG and PG-f/b) converged more rapidly
as compared to those encoded with the ANN and SUPG
schemes (ig. S, generations 0 to 8, 000). After 8, 000 gen-
erations, the performance in forward displacement of the
irect, PG, PG-f/b, ANN and SUPG encodings was
1.92 ± 0.19, 1.79 ± 0.08, 1.68 ± 0.13, 2.93 ± 1.60 and
2.78 ± 1.43 m, respectively (Median±IQR, see ig. .b).
e ANN and SUPG schemes achieved the highest perfor-
mance values across all five encodings (Mann-Whitney test,
d.f. = 38, all p < 0.001), but with no significant difference
in performance between them. urthermore, amongst the
irect, PG, and PG-f/b encodings, no significant im-
provement in performance was detected with a generative
encoding, or with the inclusion of a feedback mechanism
(Mann-Whitney test, d.f. = 38).

Importantly, intrinsic inter-encoding differences existed
in the frequencies of oscillation governing leg actuation.
e frequency of the PG oscillations was prefixed at 1 Hz,
irrespective of the sensory feedback provided, and the di-
rect or generative nature of the encoding. y contrast, the
individuals evolved with ANN and SUPG schemes were
capable of expressing higher frequency oscillations (2.44±
1.95 Hz for ANN, and 3.81±0.73 Hz for SUPG), and the
frequency of the gait may itself be under selection. Conse-
quently, an assessment of the encodings solely on the basis of the
performance is biased, and other measures are needed to compare
encodings.

Evolvability analysis

e evolvability provided by the encoding schemes is ana-
lyzed by mutating the best individual of each replicate at
generation 8, 000, and reporting the following: (i) e pro-
portion decrease in performance consequent to the muta-
tion (eq. .); and (ii) e gait diversity, computed as the
mutual information between gait vectors of the original and
mutated individual (eq. .c). e individual is mutated at
a predetermined mutation rate as used during selection, in
1, 000 separate and independent instances. inally, a kernel
density estimation (Scott 00) is used to visualize the re-
sultant landscape of 20, 000 data points (1, 000 mutations
× 20 replicates), pooled together from all replicates.⁴

istinct evolvability signatures were exhibited by the i-
rect, PG, PG-f/b, ANN, and SUPG encoding schemes,
after 8, 000 generations of selection (see ig. .). In evolv-
ability analysis with a direct encoding, a conservative explo-
ration of the phenotype, limited to solutions close to the

³On each box, the mid-line marks the median, and the box extends from
the lower to upper quartile below and above the median. Whisker
outside the box generally indicate the maximum and minimum values,
except in case of outliers, which are shown as crosses. Outliers are data
points outside of 1.5 times the interquartile range from the border of
the box.

⁴ivariate density estimation, with Gaussian type kernels over a grid of
100× 100 equidistant points.
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Figure 5.5. Performance in forward displacement for the Direct, CPG, CPG-f/b, ANN and SUPG encoding schemes: (a) Median performance for 8, 000
generations of selection; and (b) Performance of encodings at generation 8, 000.³
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Figure 5.6. Evolvability signatures for different encodings: Gait diversity and the proportion decrease in performance, following 20, 000 independent

mutations of the best individuals, for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding schemes after 8, 000 generations of selection, pooled from all

20 replicates. In good evolvability signatures, mutations are located in the upper-right corner of the signature space, indicating high gait diversity, and

a robustness to deleterious and lethal mutations.

unmutated individuals was found (11.9% and 0.33, median
decrement in performance and gait diversity, respectively).
A generative encoding of the PG model had only a minor
effect on the evolvability provided (performance decrement
of 12.7% and gait diversity of 0.36). e inclusion of a feed-
back mechanism in the generatively encoded PG model
resulted in more diverse gaits (0.74), but with not much
change in the performance loss (16.6%) following muta-
tions. y contrast, the generative encoded ANN and SUPG
schemes were much more aggressive in the exploration of
the phenotypic landscape, with the gait diversity of mutated
individuals at 0.95 for ANN, and 0.99 for the SUPG encod-
ings. However, differences existed in the severity of nega-
tive effects of mutations amongst the two encoding schemes.
e ANN encoded individuals were sensitive to the effects
of deleterious mutations, resulting in a 78.9% drop in perfor-
mance. In comparison, individuals evolved with the SUPG
encoding were much more resilient to the negative effects
of mutations, with a smaller decrement of 43.1% in perfor-
mance following mutation.

e evolvability provided by the encodings is further an-
alyzed by computing the number of mutations in the evolv-
ability signature (ig. .), that are both non-lethal and re-
sult in diverse locomotion gaits. Mutations are classified as
lethal if they result in performance decrement in excess of
100% (f1 < −1, see eq. .), corresponding to the failure
of any forward movement by the robot. Similarly, a muta-
tion is considered to generate a diverse gait, if the inter-gait
diversity exceeds 0.5 (f2 > 0.5, see eq. .c).

e proportion of viable and diverse-gait generating mu-
tations was affected by the encoding scheme (see ig. .,
Kruskal-Wallis test: p < 0.001). Across the five encodings,
the SUPG scheme was most efficient at generating such mu-
tations (Mann-Whitney test, d.f. = 38, all p < 0.001).
oth the ANN and the PG-f/b encodings led to an in-
termediate number of viable and diversity generating muta-
tions (ANN significantly higher than PG-f/b, and both
different from all other encodings, all p < 0.001). e low-
est mutation count was achieved by the irect and PG en-
coding schemes (not significantly different from each other
p = 0.03, but different from the three other encodings, all
three p < 0.001). us, across the five encoding schemes,
the SUPG approach provided the highest evolvability, with
the capability to explore very different but viable gaits. Ad-
ditionally, with a more strict definition of viable mutants
resulting in no more than 50% drop in performance, the
SUPG still achieved the highest beneficial mutation count
(all p < 0.001), with no difference between the other four
encodings (see ig. S).

Evolvability under varying mutation intensities

In this section, we study the sensitivity our signature of the
evolvability provided by the irect, PG, PG-f/b, ANN
and SUPG encodings with respect to the parameters of the
variation operator used to generate mutants. e main ques-
tions are, if and how differences in the mutation operator af-
fect our conceived signature of evolvability We ran a series
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Figure 5.7. Proportion of viable mutants with gait diversity in excess of 0.5, from 1, 000 independent mutations of the best individuals at generation

8, 000 in each of20 replicates, for the Direct, CPG, CPG-f/b, ANN and SUPG encoding schemes. These beneficial mutations are counted from the shaded

region of each encoding’s evolvability signature.

of experiments to access evolvability, with genetic mutants
generated at different intensities. Mutations were consid-
ered at the standard mutation rate and mutation step-size
as used during selection (medium intensity), and at a four-
fold decrease (low intensity) and a four-fold increase (high
intensity) of the standard mutation operator parameters of
both rate and step-size.

In order to analyze the effect of the variation operator
on our signature of evolvability, in ig. . we outline the
perimeter of the evolvability signatures generated from low,
medium and high intensity mutations (see ig. S for in-
terior of signature). In all five encodings, the distribution
of mutants shift towards more diverse gaits and is accom-
panied by larger loss in performance, following increments
in the mutation intensity. A 16 fold increment in the mu-
tation rate and step-size (low to high mutation intensity)
resulted in a 0.94, 0.96 and 0.98 difference in mutant gait
diversity for the irect, PG and PG-f/b encodings re-
spectively (see ig. Sa, b and c). y contrast, the ANN
and SUPG schemes achieved highly diverse gaits at the low-
est mutation intensity (0.94 for ANN and 0.99 for SUPG),
and an increment from low to high mutation intensity only
resulted in a 6.0% for ANN, and 0.4% for SUPG further
increase in the mutated gaits diversity (ig. Sd and e). e
increment from low to high mutation intensity also resulted
in a drop in mutant performance of 63.7%, 90.5%, 93.5%,
98.6% and 54.9%, for the irect, PG, PG-f/b, ANN,
and SUPG encodings respectively (ig. Sf-j). In summary,
the SUPG encoding facilitates the exploration of diverse
gaits even when mutants are generated at a low mutation in-
tensity. urthermore, across all five encodings, the SUPG
scheme provides the most resilience against the deleterious
nature of high intensity mutations.

Damage recovery

e significance of our evolvability signatures of the irect,
PG, PG-f/b, ANN and SUPG encodings was investi-
gated by analyzing the adaptation of the evolved robot’s gait,
following the removal of one or more of its legs. We expect
that for the encodings registering a better evolvability signa-
ture, the corresponding evolved individuals would require

fewer generations to recover an effective walking gait.
In these experiments, the new (damage recovery) popu-

lations were comprised of 100 mutated individuals of the
best individual of each replicate at generation 8, 000 of se-
lection. In separate preliminary experiments, the use of the
entire population at generation 8, 000 (instead of the best
individuals) did not change our results of the adaptability
provided by different encodings. Individuals in the damage
recovery population were mutated at the standard mutation
rate and step size used during selection. A further 10, 000
generations of artificial selection was conducted on the pop-
ulations of amputee hexapods for each of the following three
damage scenarios: (i) an asymmetrical damage, following
the removal of one leg of the robot (leg 1, ig. .a); (ii) a
symmetrical damage occurs, wherein the two middle legs on
either side of the robot are removed (legs 1 and 4, ig. .b);
and (iii) a highly asymmetrical damage occurs consequent to
the removal of the middle leg on one side and the rear leg on
the opposing side of the hexapod (legs 1 and 3, ig. .c).
e number of generations required to regain an effective
gait and the proportion of the original performance (undam-
aged robot’s performance at generation 8, 000) recovered for
each of the three damage scenarios is analyzed.

In the 10, 000 generations of selection, all the five encod-
ings were capable of recovering a majority of their original
performance in forward displacement, irrespective of the
damage to the hexapod robot (see ig. S). After 10, 000
generations post robot damage, the irect, PG, PG-
f/b, ANN and SUPG schemes all recovered the highest
proportion of their original performance in the first dam-
age scenario (0.89 ± 0.07, Median±IQR across all encod-
ings), followed by an intermediate recovery in the second
(0.78± 0.07), and third (0.72± 0.05) scenarios (ig. .0a,
b and c). Across all five encodings, the SUPG was most
efficient in recovering its original performance in the first
(1.02± 0.14) and second (0.99± 0.23) scenarios (for both,
all p < 0.001), while in both scenarios no significant dif-
ference in recovery was registered between the remaining
four encodings (ig. .0a and b). In the third scenario
which was the hardest, the SUPG again achieved the high-
est performance recovery (0.88 ± 0.3), although it was no
longer significantly different between encodings (ig. .0c,
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(a). Scenario : Removal of right-
middle leg.

(b). Scenario : Removal of right-
middle and left-middle legs.

(c). Scenario : Removal of right-
middle and left-rear legs.

Figure 5.9. The three damage scenarios imposed on the hexapod robot

(undamaged robot in Fig. 5.1).

Kruskal-Wallis test: d.f. = 4, p = 0.018).
In order to analyze the time required by damaged

hexapods to recover an effective gait, in ig. . we
have plotted the number of generations required to re-
store 85% of the original performance in forward displace-
ment. Across the three robot-damage scenarios, amputee

hexapods in the first scenario achieved the highest recov-
ery rate (13± 3.25 of 20 replicates restored performance in
10, 000 generations, across all encodings), followed by an
intermediate recovery rates in the second (4 ± 7.75 repli-
cates), and third scenarios (1± 8.25 replicates). In the first
two scenarios, the SUPG encoded individuals recovered at
least an order of magnitude faster (373 and 957 generations
in scenarios 1 and 2, respectively) than individuals with the
irect, PG, PG-f/b and ANN encodings (see ig. .a
and b, all p < 0.001). In both scenarios, no significant dif-
ference in recovery was registered between these four encod-
ing schemes. e SUPG encoded amputee hexapods also
exhibited the fastest recovery in scenario 3 (8466.5 genera-
tions), although it was no longer significantly different from
ANN encoded hexapods (see ig. .c, p = 0.49). ur-
thermore, in this scenario, all three PG based encodings
(irect, PG, and PG-f/b) performed poorly, with only
one replicate making the 85% mark in the 10, 000 gener-
ations of selection. In summary, across all five encoding
schemes, the SUPG encoded individuals had the fastest re-
covery, despite being in increasingly difficult robot-damage
scenarios wherein most of the individuals encoded by the
other encodings failed to recover an effective walking gait.

CONCLUSION & DISCUSSION

Our results revealed a direct relationship between the esti-
mated evolvability provided by the encodings, and the capa-
bility of the evolved individuals to adapt to severe changes
in morphology, simulated by the amputation of one or more
of the hexapod legs. Amongst the five encodings evaluated,
the SUPGs (Morse et al. 0) had the best evolvability sig-
nature, and their encoded individuals were also foremost to
recover following sustained damages. In both the easy and
the intermediate robot-damage scenarios (scenarios  and
), the SUPG encoded individuals were capable of recover-
ing 85% of their performance on the undamaged robot in all
but two replicates, and did so more than an order of mag-
nitude faster than the other four encodings. urthermore,
even in the most difficult robot-damage scenario (scenario
), the SUPG scheme achieved the fastest recovery in the
majority of the evaluated replicates.

e ANN encoding scheme (minimal HyperNAT) was
capable of producing highly diverse hexapod gaits, follow-
ing genetic mutations. e high behavioral diversity gen-
erated is consistent with the earlier use of this encoding to
evolve gaits for the Quadraot robot (lune, eckmann,
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(a). Scenario : Removal of right-middle leg.
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(b). Scenario : Removal of right-middle and
left-middle legs.

Direct CPG CPG−f/b ANN SUPG
0

0.2

0.4

0.6

0.8

1

Encodings

P
ro

po
rt

io
n 

pe
rf

or
m

an
ce

 r
ec

ov
er

ed

(c). Scenario : Removal of right-middle and
left-rear legs.

Figure 5.10. Proportion of the original performance in forward displacement restored 10, 000 generations after the three damage scenarios, across 20
replicates, for the Direct, CPG, CPG-f/b, ANN and SUPG encoding schemes.
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(a). Scenario : Removal of right-middle leg.
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(b). Scenario : Removal of right-middle and
left-middle legs.
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(c). Scenario : Removal of right-middle and
left-rear legs.

Figure 5.11. The number of generations of selection required to restore 85% of the original performance of the undamaged hexapod in forward

displacement across 20 replicates, for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding schemes. In replicates unable to attain the 85% mark, the

recovery time was set to the upper limit of 10, 000 generations.

Ofria, et al. 00; lune, Stanley, et al. 0). However, in
our ANN implementation, most of genetic mutations pro-
ducing diverse gaits were highly deleterious, and resulted in
little forward hexapod movement. onsequently, an esti-
mate of evolvability solely on the basis of the generated be-
havioral diversity (Reisinger, Stanley, et al. 00; Lehman
and Stanley 0c, 0) is not reliable, and both the qual-
ity (individual viability) and quantity of phenotypic varia-
tion consequent to genetic change is required to character-
ize evolvability. urthermore, the poor evolvability signa-
ture for the ANN encoding scheme is reflected in its poor
recovery from sustained robot damages.

In studies on evolution of multilegged robot locomo-
tion, the generative encodings exploit the symmetry of
the robot morphology to generate regular and coordinated
gait patterns that often outperform gaits evolved with di-
rect encodings (e.g., (lune, Stanley, et al. 0)). Gen-
erative encodings also facilitate scalability, wherein evolu-
tion in the low-dimensional genetic search space is capa-
ble of evolving complex phenotypes comprising of many
more dimensions (Stanley and Miikkulainen 00). How-
ever, no difference in performance was registered between
the directly and generatively encoded PGs for our hexa-
pod locomotion problem, perhaps consequent to the already
low-dimensional search space for the directly encoded lo-
comotion controllers. or example, our directly encoded
PGs for hexapod locomotion comprise 23 amplitude and
phase bias parameters, in contrast to the 800 Fixed-Topology
NEAT (T-NAT) encoded neural weight parameters
for quadruped locomotion controllers (lune, eckmann,

Ofria, et al. 00). us, the potential benefits of pheno-
typic scalability in utilizing generative encoding schemes are
reduced in our study.

or our signature of evolvability, we mutated the individ-
uals with a predetermined mutation rate, tuned to allow a
speedy convergence of the evolved solutions. is is a crit-
ical consideration as variations to the mutation rate can af-
fect the viability and gait diversity of generated mutants. A
comparison of the evolvability provided by encodings at low
and high mutation intensities suggests that with an increase
in mutation rate, the peak of the distribution of mutants
shifts towards more diverse gaits with a larger decrease in
task performance. However, the overall shape of the dis-
tribution, highlighting desirable regions of the evolvability
landscape, remained the same for all five encodings. Impor-
tantly, across the five encodings, the SUPG scheme contin-
ued to provide the highest resilience to deleterious genetic
change, despite a 16 fold increase in mutation intensity.

e high evolvability and rapid recovery provided by the
SUPGs may be consequent to the closed-loop control in-
grained in the encoding scheme. Such a feedback mecha-
nism provides an adaptive period of the SUPG oscillations,
that can be adjusted to the new step size of a gait more
appropriate for a four or five legged robot, after the hexa-
pod has suffered damages. Alternatively, the better perfor-
mance of SUPGs may be consequent to the open-ended
encoding of control signals by these oscillators. In contrast
to the simple sinusoidal waves of the PG-based schemes
wherein only the signal amplitude and phase difference is
encoded, no constrains are imposed on the PPNs encod-
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ing the SUPG output signals. e resulting unconstrained
encoding may help for example in adjusting the duty ra-
tio for each oscillator to match the new swing and stance
phase durations of the remaining undamaged hexapod legs.
urthermore, since the inclusion of feedback in the PG
encoding (PG-f/b) registered no improvement in task-
performance, evolvability or damage recovery, a combina-
tion of the SUPG closed-loop system and the open-ended
encoding of its oscillatory signal may be responsible for its
high performance and adaptive capabilities.

In our evolvability signatures, the phenotypic variation
from genetic change was associated with the mutual infor-
mation between hexapod gaits. e diversity may also be
computed for the gaits of bipedal and quadrupedal type of
robots. Similarly, behavioral diversity may be computed
for other benchmark problems such as, the final position
of a robot in a maze navigation task (Lehman and Stanley
0c; Mouret and oncieux 0a), the final positions of
balls in an arena for the robot ball-collecting task (oncieux
and Mouret 00, 00), and a vector of board piece moves
in game playing tasks (Reisinger and Miikkulainen 00;
Gauci and Stanley 00). onsequently, our approach to

estimate evolvability is easily applicable to a wide range of
tasks, commonly used in evolutionary computation experi-
ments.

e systematic building and organizing of knowledge, a
requirement in any scientific discipline, can not be achieved
without a wide assortment of quantifiable measures to com-
pare and contrast concepts, hypotheses, testable explana-
tions and predictions. In the field of evolutionary compu-
tation, task-performance has been prominently and often
solely used as such a quantifiable measure to form links be-
tween the different available evolutionary systems. How-
ever, the evaluated fitness by its very nature, is limited to
the specific problem for which the individual solutions are
tested. y contrast, an estimate of evolvability facilitated
by an evolutionary process, may be applicable to a much
broader scope of scenarios, allowing the formation of a more
generic relationship between existing evolutionary system
implementations. An evolvability-based approach of com-
parison between evolutionary processes may help to extrap-
olate to unevaluated problem regions in-between existing
evaluations, and consequently better lend itself to building a
strong theoretical foundation for future research in the field.
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6Discussion

Bio-inspiration and common tools

We started this manuscript with a contribution about bio-
inspired on-line learning (chapter ) because we want our
evolved robots to be able to adapt their behavior online. or
instance, online learning is often cited as a way to cross
the reality gap when evolving robot controllers (Urzelai and
loreano 00), and it is a classic justification of evolution-
ary robotics: building adaptive robots is hard, but evolution
could design the “adaptive part” for us. anks to our exper-
iments, we understood how one of the current main topic
of the evolutionary robotics community, namely generative
and developmental systems, could open the door for evolved
neural networks with good learning abilities. However, by
performing these experiments, we realized how far we are
from having evolved robots with advanced learning abilities.
In our experiments, we only had  discrete inputs/outputs,
no issues with non-linear classification (each lever was asso-
ciated with a single stimulus), and no distal reward problem.
ven in this simplistic setup, we needed days of computa-
tion on our -core cluster.

Robots have to solve a much more complicated challenge
when they have to learn online. ey usually have more
input/outputs, although this issue could be mitigated by
the use of a generative encoding. More importantly, they
need to solve the distal reward problem with their own,
evolved, learning system, whereas understanding how a
neuron-based, asynchronous network can learn by reinforce-
ment is still an open problem in neurosciences (Soltoggio
and Steil 0; Soltoggio 0). While it is definitely pos-
sible to evolve neuro-controllers with basic learning abilities,
one can doubt this approach will be able to rival the results
obtained with reinforcement learning methods like eep-
Q-Learning¹ (Mnih et al. 0).

Unexpectedly, our experiments about synaptic plasticity
may open more research avenues to understand the evolu-
tion of cognitive abilities than in artificial intelligence. In
particular, our results highlight the complex trade-offs be-
tween flexibility, that is, the ability to learn in many differ-
ent situations, trainability, that is the ability to easily learn
in some situations, and cost efficiency, that is the tendency
to remove connections that bring no short-term advantage.
ach part of the brain is likely to be on a different position
on this -dimensional Pareto front. Similarly, each species
is likely to have evolved toward a different trade-off, depend-
ing on its niche. uture work should explore these trade-offs
and might shed new light on the origins of the structure of
nervous systems.

Our second contribution is about evolving modular neu-
ral network. We explicitly targeted it to evolutionary biol-
ogy, that is why we used a task that had been previously used
to study the evolutionary origins of modularity (Kashtan
and Alon 00; Kashtan, Noor, et al. 00) instead of evolv-

¹Some results have been published about using neuro-evolution (Hyper-
NAT, in particular) to automatically find players for the the Atari
00 games (Hausknecht et al. 0), that is, in the same domain as
the demonstrations of the eep Q-Learning algorithm. Nonetheless,
these neuro-evolution experiments did not produce neural networks
that can learn online. Instead, they evolved a network for each game.

ing modular controllers for robots.
Nonetheless, this chapter is the main stepping stone to

what may be my most important contribution to robotics
and artificial intelligence so far. Advances in robotics are
sometimes not where we expect them to be! When studying
the evolutionary origins of modularity, we wanted to show
the fitness landscape projected in a connection cost versus
modularity space (figure .). y visualizing this landscape,
we can develop intuitions about where the “optimum” of
the landscape is and how the the population moves. To
solve this problem, we designed a first algorithm, called
MOL (Mouret and lune 0), which takes some in-
spiration form “divergent” search algorithms like novelty
search (Lehman and Stanley 0a; Mouret 0b; ully
and Mouret 0), and share some similarities with algo-
rithms in developmental robotics (aranes and Oudeyer
0). We later extended it and simplified it, which led
us to the MAP-lites algorithm (see chapter ). In effect,
this algorithm allows the generation of thousands (,000
in our locomotion experiments in chapter ) of good ways
to achieve a task and their organization in a consistent way.

is algorithm is the basis of the “Intelligent Trial and r-
ror” algorithm (chapter ), which has many practical impli-
cations for robotics. As a result, a tool developed to analyze
our results for evolutionary biology enabled us to introduce
an efficient method for diagnostic-free damage recovery in
robotics.

In the traditional approach to bio-inspired robotics, a dis-
covery is made in biology, an abstract model is implemented
on a robot, and the robot is improved by the ideas brought
by biology (Pfeiffer 00; Meyer and Guillot 00; Kovač
0). y contrast, in our approach, evolutionary biology
and evolutionary robotics tackle different questions but the
tools are similar. In other words, the inspiration is not in the
results obtained in biology, but more in the journey to get them.

is inspiration is bi-directional, as we used many of
the tools and intuitions that we developed in evolution-
ary robotics to contribute to more biologically-oriented
questions. In particular, our contribution about modu-
larity (chapter ) uses multi-objective evolutionary algo-
rithms, which were developed by engineers and not biol-
ogists (eb 00) and which have been extensively used
in our previous work (oncieux and Mouret 0). Most
of our experiments also use behavioral diversity (Mouret
and oncieux 00, 0a) and novelty-based multi-
objectivization (Mouret 0b) to avoid issues with prema-
ture convergence.Overall, this methodological convergence
between computational evolutionary biology and evolution-
ary robotics is illustrated by the fact that we use the same
software framework (Mouret and oncieux 00) for all
the experiments, both for biology, artificial intelligence, and
robotics.

igure . links our contributions and the main concepts
developed in this manuscript. It can be observed that all the
concepts are at least present in two contributions, and that
many of them are used both in biology-oriented contribu-
tions and engineering-oriented contributions:

• all our contributions rely on multi-objective evolution-
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Figure 6.1. Questions, contributions, and concepts of this manuscript. All the main concepts are shared by at least two contributions, and many of

them by 3 or 4 out of 4 contributions. Many concepts are shared by a contribution oriented towards biology and another contribution oriented towards

robotics.

ary algorithms, in particular to tune the selective pres-
sure (oncieux and Mouret 0).

• all our contributions deal with the adaptation to new
conditions, sometimes with online learning (chapter
), sometimes with evolution (chapters  and ), and
sometimes with machine learning (chapter );

• all our contributions use behavioral diversity to miti-
gate premature convergence (in some of them, it is only
activated in a subset of the experiments);

•  out of  contributions rely on neuro-evolution (chap-
ters ,  and );

•  out of  contributions deal with generative encodings
for neuro-evolution (chapters , , and );

•  out of  contributions deal with synaptic plasticity
for online learning (chapters  and );

•  out of  contributions explicitly deal with evolvability
as the ability of species to adapt to novel conditions in
a few generations² (chapters  and );

•  out of  contributions use the idea that we can map
the elites of a search space to explore it and to visualize
it (chapters  and );

•  out of  contributions deal with damage recovery in
robotics (chapters  and ).

Better tools for better foundations

In spite of their computational roots, evolutionary computa-
tion and evolutionary robotics are experimental fields. e
most classic approach to know whether a particular new idea

²According to some definitions, everything that makes evolution faster
is a major contributor to evolvability. We here use a stricter definition
that focus on the adaptation abilities.

is good is to launch a set of experiments with different ap-
proaches, measure the best fitness achieved and conclude
that one approach is better than the others (see (oncieux,
redeche, et al. 0) for a discussion on this topic). Most
of the recent papers replicate each experiments many times
and use statistical tests to check that the difference be-
tween each approach is actually significant. is approach
is very similar to the one used in experimental fields like
medecine (land 000), biology (Sokal and Rohlf ),
and psychology (dwards 0).

is methodology can lead to incremental improvements
when the goal of the study is actually to solve the prob-
lem at hand. In evolutionary robotics, the “benchmarks”
are most often potential stepping stones for more ambi-
tious problems. or instance, nobody cares about increas-
ing the number of balls that a robot can collect (Mouret
and oncieux 0a), but this is a simple example of a se-
quential task that might require minimal cognitive abilities.
In such cases, simply analyzing the fitness values might be
short-sighted because the experiments involve complex pro-
cesses with many different parameters and many different
ideas: for the same ideas, it is very likely that the outcome
of the comparison would change if the experimenter would
use different parameters and different experimental bench-
mark problems (Karafotias et al. 0).

As a consequence, there is a clear need for more diverse
analysis tools in evolutionary computation. When design-
ing encodings for neural networks, for example, we do not
need to only know whether this encoding is “competitive”
for some benchmark problem(s). We also need to character-
ize the networks that are the most likely, that is the biases,
and how diverse are the networks that can be expressed. Are
the networks modular hierarchical sparse small-world
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Figure 6.2. Illustration of some of the analysis tools that we introduced recently in thismanuscript. A. Counting the number of automorphisms to

measure the regularity of a network. B. Using MAP-Elites to picture a search landscape (here modularity versus hierarchy). C. Evolvability signatures of

encodings for neural networks.

regular e value returned by this kind of indicators is not
bad or good, like for the fitness values, it is only a charac-
terization. or instance, having no bias might appear to be
good, because all the networks would be equally possible,
but it could also appear to be bad, because some networks
are likely to be more interesting than others, and some bi-
ases can make the search much faster. Since we do not know
the right amount of bias for each potential feature of a neu-
ral network, the only thing we can do now is to characterize
it. Similarly, in biology it is important to understand why
some components of a treatment are critical, and not only
to know it.

is is why we spent a large amount of time during the
last years to develop new analysis tools: to make the field go
far, we need to understand what we do and how we do it.
Measuring regularity in networks Most of our work involves
evolving networks, most often neural networks. e analy-
sis of networks has drawn a considerable attention in biol-
ogy to understand gene regulatory networks, protein net-
works, and neural networks (Guimera and Amaral 00;
Alon 00; Karlebach and Shamir 00; ullmore and
Sporns 00), among other biological networks. Ana-
lyzing networks is also a central question in social sci-
ences (Scott 0) and computer networks (Albert et al.
). As a result, there is now a set of widely ac-
cepted measures for modularity (Newman 00; Leicht
and Newman 00; ortunato 00), hierarchy (Mones et
al. 0), and for “small-worldness” (ullmore and Sporns
00). ese measure complement classic network char-

acterizations like clustering coefficient, network diameter,
and shortests paths (ullmore and Sporns 00).

Nonetheless, quantifying regularity is still an open ques-
tion. Studies in evolutionary computation often used
the compression ratio of the connectivity matrix (lune,
Stanley, et al. 0; Huizinga et al. 0), but this would in
theory require to compute the compression for all the pos-
sible arrangements of nodes, whereas there are n! arrange-
ments, n being the number of nodes. In addition, a connec-
tivity matrix is only a possible representation of a graph: it
is not necessarily the easiest to compress. Other studies in
evolutionary computation used measure that are specific to
the genotype-phenotype map (Hornby 00). e concept
of network motifs is close (Milo et al. 00), but current al-
gorithms are designed to quantify small topological patterns
(a few nodes) and cannot capture more general patterns like
the duplication of a large sub-network. ere exist a few
algorithms to directly compress graph structures, but they
are greedy approximations (Peshkin 00; Hayashida and
Akutsu 00). A last source of inspiration is the literature
on graph complexity (onchev and uck 00) and graph
entropy (ehmer and Mowshowitz 0), but we did not
have the opportunity to evaluate these methods yet.

Our solution to quantify the regularity is conceptually
simple, easy to implement, and fast to evaluate (see chapter
). We started with compression-based measures but we
wanted to evaluate the compression ratio for all the possi-
ble arrangements. y experimenting with the enumeration
of the arrangements, we observed that the number of possi-
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ble arrangements depends on the regularity of the network.
or instance, we noticed that if a sub-network is duplicated,
then two arrangements are equivalent. An interesting way
to quantify the regularity is therefore to count the number
of equivalent arrangements. According to this concept, a
fully connected network with uniform synaptic weights is
perfectly regular, and a fully random network is perfectly
irregular.

In graph theory, these equivalent arrangements are called
“automorphisms”, a concept which captures the idea of axes
of symmetry in a graph: if two nodes can be swapped with-
out changing the graph, then there is an axis of symmetry.
More axes of symmetry means a better compression ratio be-
cause two symmetrical groups of nodes need to be described
only once (Mowshowitz a,b; Zenil et al. 0). While
finding the autormorphisms of a graph is NP-hard, algo-
rithms to count them are fast in practice and implementa-
tions are available (McKay ; Junttila and Kaski 00;
Katebi et al. 0). igure .A reports the number of au-
tomorphisms of a few example networks.

Overall, counting automorphisms is a useful addition
to our network toolbox³ which allows us to characterize
evolved networks with fast⁴ and general algorithms.
Drawing neural networks In chapter , we used Newman’s
modularity score to measure the modularity of our net-
works (Leicht and Newman 00). We also needed to to
measure the connection cost, that is, to sum the length of
the connections. We chose to fix the positions of the in-
puts and the outputs so that it reflects the inherent geome-
try of the inputs (e.g. the shape of a retina, or the morphol-
ogy of an animal), but how can we place the hidden nodes
Nervous systems minimizes the connection cost (herniak
et al. 00; hklovskii 00; Ahn et al. 00; Wen and
hklovskii 00; Raj and hen 0), therefore it makes
sense to place them in the position that minimizes the
connection cost. is problem can be solved exactly by
quadratic programming (hklovskii 00)

Incidentally, solving this problem also allows us to visual-
ize neural networks in a novel way. ere exists many plot-
ting packages for graph and networks, the most prominent
one being GraphViz (llson et al. 00). Most of them use
a relaxation algorithms and “virtual springs” that connect
nodes (ruchterman and Reingold ). ey usually do
not work well with constraints and do not allow to fix the
coordinates of some nodes. Nonetheless, the algorithm that
we used to position the hidden neurons can also be used to
draw networks so that the nodes are placed to minimize the
total connection cost. A few networks are drawn with this
algorithm on figure . (see also all the networks in chap-
ter ). is drawing algorithm is included in our network
toolbox and we are likely to continue to rely on it for future
work.
Visualizing a search space Understanding the relationships
between phenotypic characteristics and fitness is central
to evolutionary biology and the design of new evolu-
tionary algorithms. Whether in computational mod-
els of evolution (Wright ; Kauffman ; Lenski,
Ofria, Pennock, et al. 00) or in evolutionary algo-

³see https://github.com/jbmouret/network_toolbox
⁴Having fast analysis algorithms is important because we typically want

to plot a value for each generation and for a whole population: we need
to compute each measure many times.

rithms (Mitchell et al. ), the common approach is to
perform selection based on fitness and study the phenotypes
that evolve. Unfortunately, computational evolution tends
to be highly convergent, meaning there is little diversity in
the population and thus little variation along key pheno-
typic dimensions. Such a lack of diversity prevents an under-
standing of how fitness would change along those dimen-
sions ‘had evolution searched there’. e problem is com-
pounded by the fact that fitness landscapes often have many
local optima that populations get stuck on, which makes it
difficult to know if there are higher fitness peaks in other ar-
eas of the fitness landscape that evolution failed to discover.
oth biologists and engineers often spend a lot of time ask-
ing that very question, and would benefit from tools that
help them answer it.

While search spaces and fitness landscapes are at the
center of many discussions in evolutionary computation
and evolutionary biology, we are very rarely able to see
them because they are often too high-dimensional. e
computer science literature offers plenty of options for di-
mension reduction and visualization of high-dimensional
data (Andrews ; Haykin ; Tenenbaum et al. 000;
Kohonen 00). Nonetheless, they are “passive” algorithm
that start from a data-set and search for the best low-
dimensional representation. ey do not tackle the issue
of generating this data set.

y contrast, to identify the fitness peaks, we must actively
search for them. It is not enough to sample millions of so-
lutions and plot them, for the same reason as random sam-
pling is often not a good optimization algorithm: finding
by chance a fitness peak is very unlikely for any large search
space (in most cases, the probability of finding the best pos-
sible fitness will decrease exponentially when the number of
dimensions of the search space increases).

is is why the MAP-lites algorithm (chapters  and )
is a search algorithm and not a classic dimension reduction
algorithm: it aims at avoiding to evaluate many irrelevant
points by focusing on the most promising ones. It could be
seen as a active dimension reduction algorithm. Our exper-
iments show that with an equivalent budget of evaluations,
our algorithm finds much better solutions and covers the
search space much better than random sampling (see ig.
.).
Evolvability signatures volvability signatures are another
tool that we recently introduced; please see chapter . for
a exhaustive description. volvability signatures have sev-
eral features that make them close to the other tools that
we already described in this section:

• like MAP-lites, it is visual tool that draws -
dimensional pictures;

• like MAP-lites and our previous work on behavioral
diversity (Mouret and oncieux 0a), it is based on
behavioral distances between individuals;

• like our regularity measure, it reveals some intrinsic bi-
ases of encodings without needing to decide whether
these biases are good or bad.

Acquiring general knowledge

volutionary robotics is a long-term project that needs
strong foundations to continue its progress. esides the lack
of analysis tools, evolutionary robotics suffers from a lack of
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general knowledge: after dozen of years of research, the field
does not know many facts. In a recent review (oncieux,
redeche, et al. 0), we tentatively attempted to list “what
we know in evolutionary robotics”. Here is what we found:

. neural networks offer a good controller paradigm;
. complexification is good;
. performance-oriented fitness can be misleading;
. selective pressure is at least as important as the encod-

ing;
. targeting real robots is challenging.
Many of these items could be summarized as “it is more

complicated that it seems”. or instance, contrary to a com-
mon intuition, performance-based fitness functions might
not be the best way to search for a high-performing solution;
and, contrary to the hopes of the community, targeting real
robots is harder than it seems. e other items reflect more
a consensus in the community than real knowledge (e.g.,
items  and ).

One of the main reason why we know so little is that most
of the published papers are proofs-of-concepts that propose
a potentially interesting idea and showcase it in a custom-
made experiment. Such papers are interesting to identify
the promising ideas and foster discussions, but they do not
bring much more knowledge than “it is possible to do X
with Y”. Most of these papers compare the results obtained
with the proposed idea with those obtained with compara-
ble ideas from the state-of-the-art. is is obviously good
and helpful show the potential of the idea. Nevertheless,
as we argued before, when the task “Y” is only a stepping
stone for more ambitious challenges, concluding than one
approach is better than another one on a single task is only
a clue that the first approach might be more promising on
the long term.

An intuitive step to improve the generality of results is
to test each idea on several tasks. or instance, in our work
about the evolution of modularity (chapter ), we used four
different tasks with different features. Similarly, in our
work about damage recovery (chapter ), we used two dif-
ferent robots (a walking hexapod and planar arm) and many
different damage conditions ( for the hexapod,  for the
arm).

A less intuitive and less common approach is to general-
ize across the other directions of an evolutionary robotics
experiments. In essence, any evolutionary robotics experi-
ments involves  main components:

. a task and;
. an encoding;
. a selective pressure (typically, a fitness function and/or

some objectives);
. an evolutionary algorithm.

Many articles test several tasks, but only a handful of them
attempt to generalize across the encodings, the selective
pressures, and the evolutionary algorithms.

In our work about behavioral diversity (Mouret and
oncieux 0a), we tested  encodings (a direct encoding
for neural networks and an lman network whose parame-
ters are evolved),  tasks, and  different methods to apply a
selective pressure for diversity. anks to this approach, we
were able to reach a general conclusion: a selective pressure
that encourage behavioral diversity has much more impact
on the success of an evolutionary robotics experiment than
the encoding, regardless of the technique employed to en-
courage diversity.

In our contribution about synaptic plasticity (chapter ),
we used  different encoding, which allowed us to draw con-
clusions that aim at being valuable for all the generative en-
codings or, more precisely, for all the encodings that have a
bias towards regularity. is approach highlights that it is
possible to acquire knowledge that goes beyond “technique
A works better than technique ”. In effect, we expect our
conclusions to be useful for any encoding, including those
that have not been invented yet.

In these experiments, measuring the regularity with a
technique that was independent of the encoding was key to
reach a general conclusion. is illustrates that having tools
to measure properties of the process or the solutions is criti-
cal to disconnect the knowledge from the specific technique
used to obtain the aforementioned properties.

In our contribution about evolvability signatures (chap-
ter ), we studied encodings independently of the evolu-
tionary algorithm. An interesting consequence is that dif-
ferent evolutionary algorithms and parameters might work
best with different evolvability signatures. or instance, for
damage recovery with NSGA-II, we successfully conjec-
tured that the SUPG encoding would perform very well be-
cause a single mutation generates high-performing but very
diverse behaviors. However, our preliminary experiments
with SUPG and MAP-lites suggest that SUPGs generate
too much diversity for MAP-lites and we obtained better
maps with a simple direct encoding. e exact combination
of encoding/algorithm/task is therefore an open question,
but these experiments show that it is important to study
each of them independently.

Overall, these contributions show that is is possible
to reach general conclusions provided that we develop
more analysis tools and make the effort of going be-
yond benchmark-based papers that compare setups as
a whole (encodings+selective pressure+evolutionary algo-
rithm+parameters+task).
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7Research project

For the next five years, I will mainly focus on applications
to robotics and more precisely on using evolution-inspired algo-
rithms for damage recovery. I will continue to collaborate with
biologists to contribute to evolutionary biology, although it will
not be central in my work.

TOWARDS HIGHLY-RESILIENT
ROBOTS

My main objective for the next five years is to build on
the success of our “Intelligent Trial and rror” algorithm
(chapter ) to propose novel algorithms that will allow au-
tonomous robots to discover new behaviors when they are
damaged or, more generally, when they face an unforeseen
situation. We will continue to rely on a “divergent” evo-
lutionary algorithm for exploration (MAP-lites, like in
chapter , Novelty search (Lehman and Stanley 0a),
or future variants and improvements) combined with a
model-based optimization algorithm for online search (like
ayesian Optimization).

In five years, we should be able to put a broken robot in a
normal room (e.g. an appartment) and it will autonomously
discover a way to continue its task. or instance, a walking
robot with a broken leg will have to discover in full auton-
omy how to walk again, for every direction, and while taking
into account the obstacles.

Our ideal algorithm will have the following features:
General: the same algorithm should be able to work with
minor modifications on any robot and any task, including
walking robots, mobile manipulators, and humanoid-like
robots.
Fast: the process should not take more than a few minutes,
in particular to avoid damaging further the robot.
Creative: the process has to be as creative as possible so that
the robot can find innovative behaviors when needed.
Multi-task: learning to do a simple task is often not enough.
or instance, learning to walk in a single direction is useless;
the robot needs to learn to walk in every direction.
Deployable: robots do not do their mission in an empty ex-
perimental rooms; they have to deal with their environment
while they learn (e.g. learn to walk while avoiding obsta-
cles).
Multi-objective: most robots have to optimize simultane-
ously several conflicting objectives, for instance maximiz-
ing the walking speed and minimizing the energy consump-
tion. Since an infinity of trade-offs are Pareto-optimal, the
learning algorithm has to find the Pareto front of the search
space.

is project is funded for 2015-2020 by the European Com-
mission (ERC ResiBots).

Challenge 1: generality

Objective: Test and refine our algorithms until the same al-
gorithm can work on very different platforms and tasks.

Experimental setups. To ensure the generality of our results,
we will perform each experiment with three different setups
(figure .). e various setups will allow us to evaluate how
our methods scales up and ensure that they are not tied to a
particular type of robot or task. One of the main technical
challenges of this project is to implement our algorithms on
these three very different robots and tasks, with different
constraints.

• Wheeled robot + arm ( degrees of freedom). Main
task: a mobile robot with a robotic arm has to grasp
balls and put them in a basket on top of the robot.
is task corresponds to a vacuum cleaning robot (e.g. a
Roomba) that needs to clear the objects from the room be-
fore vacuum cleaning. Grasping will be made easy by us-
ing the “jamming gripper” (by mpire Robotics). on-
troller: dynamic motion primitives (Kober and Peters
0); damage conditions: block a motor of the arm,
break one gear of a motor (i.e., make the degree of
uncontrolled); reward: number of balls in the basket,
measured by the robot (weight of the balls).

• Wheel-legged hybrid robot (0 degrees of freedom).
Main task: locomotion in every direction; ontroller:
non-linear oscillators (Ijspeert, respi, et al. 00);
damage conditions: remove one leg, remove two legs,
disconnect a motor, make one leg shorter, make one
leg longer; reward: walking speed, measured onboard
with a RG visual odometry algorithm; is high-
mobility robot is the kind of robot used for search and rescue
missions.

• rawling iub (up to  degrees of freedom). Main
task: crawling in every direction; ontroller: Non-
linear oscillators (egallier et al. 00); damage condi-
tions: loosen several cables, block one motor, discon-
nect one of the control board; reward: external (mea-
sured with a motion capture system). e iCub robot
will allow us to demonstrate that our approach scales to ad-
vanced robots like humanoids.

Challenge 2: fast but creative

Objective: onstrain the search as less as possible while
keeping the algorithm fast.
Background and angle of attack. We will explore two ideas:
() using MAP-lites with neural networks, to relax the
constraints on the structure of the controllers, and () allow
the “Intelligent Trial and rror Algorithm” to search outside
of the map.

As an evolutionary algorithm, MAP-lites can evolve
neural networks in the exact same way as vector of parame-
ters. We can therefore rely on evolvability signatures (chap-
ter ) to choose the best encoding for each task. Using
evolved neural-networks will also be an interesting way to
discover closed-loop controllers, instead of the naive open-
loop based controllers that we used in our experiments with
“Intelligent Trial and rror”.

We did some preliminary tests with locomotion con-
trollers and MAP-lites. Our results targeted for classic
evolutionary algorithms suggested that the SUPG encod-
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Figure 7.1. Overview of the main experimental setups. In each setup, we will test several different damage conditions (removing a leg, loosening a

cable, blocking a degree of freedom, etc.) A. Room clearing/ball collecting experiment, with a wheeled robot, a robotic arm, and a “jamming gripper”.

B. Locomotion experiment, with a wheel-legged hexapod robot, designed in our group (Jehanno et al. n.d.). C. Locomotion experiments, with the iCub

robot.

ing (Morse et al. 0) is the most promising encoding
for hexapod locomotion (chapter ). However, filling the
map with SUP-G controllers was harder than expected: it
seems that the evolvability provided by SUPG is good to
evolve with a dynamic fitness (e.g. when there is a dam-
age, see chapter ), but not good to fill a map with MAP-
lites. e evolvability signatures reveals that SUPG gener-
ates controllers that are diverse and high-performing, which
helps it to find controllers if a damage occurs. However,
this makes it “jump” all over the map, which is not good
for MAP-lites because this algorithms relies on the as-
sumption that good solutions will generate good solutions
in the close neighborhood. is preliminary experiment re-
veals a strength of the analysis based on evolvability signa-
tures: they allow us to analyze an encoding without having
to know what is good and what is bad. In the future, we
will continue these experiments to be able to search a map
of very diverse controllers.

An important weakness of the “Intelligent Trial and r-
ror” is that the post-damage behavior has to be present in
the map. While this situation is not very likely when the
map is large, it is still possible and might prevent the al-
gorithm to find a solution for some unforeseen situations.
Nonetheless, the main concept of “Intelligent Trial and r-
ror” is to guide an online search algorithm (here ayesian
optimization) with priors that come from the simulation of
the undamaged robot. is concept can be instantiated dif-
ferently than with a search in the map generated by MAP-
lites.

We know that pure random sampling in a high-
dimensional space will not be able to find any performance
peak, let alone several ones, therefore we need some algo-
rithm that search for these peaks. A simple idea is to put the
solutions found by MAP-lites back to the original search
space, then to interpolate between them with some regres-
sion method. is would allow to know the performance
peaks in the original search space. However, this technique
will allow the algorithm to know the peaks, but not the val-
leys, which are almost as important as the peaks for the on-
line search algorithm. We could take into account all the
solutions that have been tested by MAP-lites during the
search, but, in our experiments, we usually evaluate 0 mil-
lions candidate solutions. No regression method is likely to
perform well with 0 millions samples. As a consequence,
the algorithm that we will have to design will need to se-
lect the points that best represent the landscape in the high-
dimensional space.

A difficult, open question is how to combine these two
ideas for the best creativity – using neural networks and
move the search back in the original search space because
any naive combination would require to be able to “inter-
polate” between neural networks with different structures,
which is hard (if not impossible). omparing these two
ideas will at least give us some insight about where the cre-
ativity is needed: in the controller’s structure or in the pa-
rameter space

Challenge 3: multi-task

Objective: xtend the Intelligent Trial and rror algorithm
(chapter ) so that several variants of the task can be learned
in a single learning session; for instance: learning to walk in
every direction.
Background and angle of attack. Almost all published algo-
rithms to learn motor patterns are devised to learn a single
motor pattern, for instance walking forward with a legged
robot. is problem is much simpler than the general prob-
lem of low-level controller learning: learning a general con-
troller that can accept commands issued by a higher-level sys-
tem (e.g. a planning algorithm). is problem is typically
addressed by testing controllers (or parametrized policies)
with several different inputs and averaging the rewards for
all the tested scenarios (e.g. (Kodjabachian and Meyer ;
Mouret, oncieux, and Meyer 00)). or instance, we
used an evolutionary algorithm to design a neural network
that pilots a simulated flapping robot; we tested the abil-
ity of the neural network to drive the robot to  different
targets and the reward function was essentially the sum of
the distances to the targets (Mouret, oncieux, and Meyer
00). Unfortunately, this approach is very costly. irst, it
tests each candidate solution in each scenario, thus increas-
ing the learning time by at least an order of magnitude. Sec-
ond, learning a general controller is much more challenging
than learning a simple, open-loop specialized one.

We will here investigate an alternative approach that is to
learn a repertoire of simple controllers instead of a single, gen-
eral controller. is method avoids the challenge of learn-
ing a complex controller; however, it typically involves as
many learning processes as there are behaviors in the reper-
toire. When learning a gait controller, this means running
the learning evolutionary algorithm for each possible target
point, hence slowing down learning by a factor equal to the
number of targets. In recent work (ully and Mouret 0;
ully and Mouret 0), we proposed an algorithm, based
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on “Novelty search with local competition” (Lehman and
Stanley 0b), that generates a repertoire of controllers in
a single run of an evolutionary algorithm. We validated it
on a hexapod walking task that have a controller for every
direction (00 controllers). R-volution is, however, an
evolutionary algorithm and it is not designed to work with
ayesian optimization. In addition, it has not been tested
with a damaged robot.

Our goal is to extend our “Intelligent Trial and rror” al-
gorithm so that learning several tasks at once an be quickly
achieved. Our main insight is to take advantage of the failed
attempts for the task that actually perform a potentially use-
ful variant of the task. or instance, when a robot learn to
walk forward, many policies make it turn. Instead of dis-
carding these turning gaits, we will keep and improve them
so that the robot knows a repertoire of policies.

is kind of multi-task learning is conceptually close
to concepts in transfer learning (Taylor and Stone 00;
oncieux 0), since it corresponds to transferring the
knowledge acquired to learn one task (e.g. going forward)
to make it easier to learn another one (e.g. turning). Multi-
task learning also shares some similarities with intrinsically
motivated learning and questions in developmental robotics
because multi-task learning can be seen as the discovery
of the capabilities of a body (aranes and Oudeyer 0;
enureau and Oudeyer 0; Moulin-rier and Oudeyer
0). We will compare our ideas to these algorithms and
possibly take inspiration from them.

Challenge 4: deployability

Objective emonstrate that robots can recover from dam-
age in full-autonomy, without starting each trials in the
same position.
Background and angle of attack. e current learning exper-
iments in robotics are mostly episodic (Kober and Peters
0): the robot tries a policy, computes the reward using
the final state, is reset to its initial state, and starts evalu-
ating the next policies by starting in the exact same initial
position. is is, for instance, the case of the experiments in
which a robot learns to play tennis table (Kober and Peters
0), and in most of the experiments that involve learning
walking gaits (Kohl and Stone 00; Hornby, Takamura, et
al. 00; Lizotte et al. 00; Koos, ully, et al. 0).

Ideally, we would like robots to learn in a non-episodic,
on-policy way, that is the task of the robot never ends and
rewards collected during the task are distributed to each
atomic action that led to the reward. However, this kind of
non-episodic learning is difficult to achieve with direct pol-
icy search algorithm, especially in continuous search spaces.

We will here implement an intermediate between
episodic learning and non-episodic learning: semi-episodic
learning. e policy will still evaluated by episode, but the
best variant will be selected. or instance, in a walking task,
the robot could possess a repertoire of variants of the walk-
ing gait, each variant going to a different direction. When
the robot faces an obstacle, it should select the variant that
it expects to make it avoid the obstacle. e main challenge
here is to extend ayesian optimization to not only predict
performance, but also the modifications of the state of the
robot, like the final direction of the robot. or example, if
the legged robot expected to turn left but actually turned

right, it needs to update the model to account for both the
unexpected performance and the unexpected direction.

Semi-episodic learning will extend the results of multi-
task learning. It will be an important key for the final
demonstration of this project: fully autonomous damage re-
covery, without any intervention by the experimenters.

Challenge 5: multi-objective search

Objective xtend the “Intelligent Trial and rror” algo-
rithm to search for the set of Pareto-optimal solutions in-
stead of the highest-performing solution.
Background. Robots often have to optimize several conflict-
ing objectives. Typical examples are energy expenditure ver-
sus walking speed for a walking robot, and accuracy versus
speed for a manipulator. In many cases, the robot (or the
robot’s designer) does not have a precise idea of the ideal
trade-off, therefore the time spent to optimize a particular
combination of objective is easily wasted. In some cases, the
ideal trade-off might depend on the context. or instance, a
walking robot might want to trade energy for walking speed
if it senses a danger.

Multi-objective optimization is classically formalized in
term of Pareto dominance: a candidate solution x1 domi-
nates a candidate solution x2 if and only if it is not worse
for all the objectives and better for at least one objective;
but if x1 is better than x2 for some objectives and worse
than for others, x1 does not dominate x2 and x2 does not
dominate x1; in this case, x1 and x2 are equally good trade-
offs. e goal of multi-objective optimization is to find the
Pareto front, that is, the non-dominated part of the search
space. volutionary algorithms have proven to be especially
well suited for multi-objectivization (eb 00; oello et
al. 00) and we used them for most of our work (Mouret
0b; Mouret and oncieux 0a; lune* et al. 0;
Koos, ully, et al. 0; Koos, Mouret, et al. 0; Tonelli
and Mouret 0). Nonetheless, as with all evolutionary
algorithms, multi-objective evolutionary algorithms need
many evaluations before converging to an accurate estimate
of the Pareto front.

Multi-objective reinforcement learning is a more recent
question but it is starting to attract interest (Vamplew
et al. 0). Only a handful articles investigated some
multi-objective reinforcement learning with real robots
in mind (Tesch et al. 0; Ahmadzadeh et al. 0;
R. Ariizumi et al. 0). e main challenge is that learn-
ing with a robot is already difficult because it requires many
trials, but finding a Pareto is likely to require even more tri-
als.

We will take inspiration from our “Intelligent Trial
and rror” algorithm to explore as much as possible in
simulation. To do so, we will need to design a multi-
objective variant of MAP-lites. We will then combine
it with multi-objective ayesian optimization (Tesch et al.
0, 0) or surrogate-based evolutionary algorithms like
ParGO (Knowles 00). We will focus our attention on
hypervolume-based methods that are made possible by re-
cent theoretical advances (ouckuyt et al. 0; Hupkens
et al. 0).

HDR JB Mouret | 57 / 105 Chapter 7. Research project



THE EVOLUTIONARY ORIGINS OF
BEHAVIORAL GENERALIZATION

is part of my project will be carried out in collaboration
with Jean-Baptiste André (Institut des Sciences de l ’Evolution -
CNRS - Montpellier) and Nicolas Bredeche (ISIR, Université
Pierre and Marie Curie).

Understanding adaptive breakthrough (or innovation) is
one of the main question of evolutionary biology (Kirschner
and Gerhart 00). e objective of this project is to shed
new light on evolutionary innovation in the case of behavioral
innovations, by focusing on the role of generalization (Parter
et al. 00; Watson et al. 0) – the ability for individu-
als of a given species to behave in an adaptive fashion in
an environment that has never been met before by their
species. To do so, we will leverage our work on synaptic
plasticity, which was about the origins of general learning
abilities, on ayesian optimization (chapter  and ) be-
cause it is an efficient approach for online learning, and we
will combine them with environment-driven artificial evo-
lution (redeche et al. 0), because it is an interesting
model of natural evolution that can explicitly take the envi-
ronment into account.

Most adaptive functions in living species require the co-
ordinated action of several traits. Hence, the adaptive mod-
ification of a function generally implies the correlated modi-
fications of several traits together, which is unlikely to occur
under the effect of independent random mutations. As a re-
sult, the origin of evolutionary novelties is still a challenge to
understand (Wagner and Altenberg ; Pigliucci 00).
e occurrence of functional novelties is greatly facilitated,
however, if the modification of one trait can be accompa-
nied automatically with a correlated modification of other
traits, keeping the ensemble functional. or instance, the
size of the visual cortex must always remain perfectly fine-
tuned to the size of the retina. Hence, innovations in the
visual system require a parallel modification of both sides.
is is facilitated, however, because the visual cortex devel-
ops under the control of the retina itself, such that it be-
comes automatically larger in response to mutations affect-
ing the retina (West-berhard 00).

Applying this principle in the case of behavior, innova-
tions are facilitated in one aspect of behavior if other aspects of
behavior respond in a novel adaptive manner in the face of the
first modification. In other words, this implies that cognitive
mechanisms generalize, i.e. that they still work in a relevant
manner in novel situations, beyond the situations for which
they have been selected by natural selection in the past. In
this project, we aim to show that generalization is a key con-
cept in biological evolution, and that it plays a key role to
understand the origin of complex, intelligent, behaviors.

e evolutionary role of generalization is related to the
notion of exaptation in biological evolution (Gould and
Vrba ): When a given cognitive mechanism is gener-
alizable, it can be built by natural selection to do one thing,
and eventually perform another. e difference with exap-
tation is twofold, however. irst, the concept of generaliza-
tion helps make sense in a principled manner of the cases
in which exaptation occurs, rather than relying on “just-so”
stories (Watson et al. 0). Second, whereas in exaptation
a system changes function, from function A to function ,
in generalization a system can be used in many new func-

Figure 7.2. illustration of the conceptual difference between exaptation

(recycling of functional modules) and generalization.

tions, beyond what it has initially been made for (ig. .).
Hence, generalization can systemically boost behavioral in-
novations.

e evolutionary role of generalization is also related to
the concept of robustness (Wagner 00, 0). In the
evolution of physical traits (as opposed to behavioral traits),
evolutionary innovations are considered to be primarily fa-
cilitated by the ability of the other parts of the organism
to maintain their homeostasis in the face of random mu-
tations, so-called robustness (Wagner 00). e case of
behavioral traits is different because their function is not to
remain constant but to respond to the variability of the en-
vironment. Hence, whereas physical innovations are facil-
itated by robustness, behavioral innovations are facilitated
by generalization.

We will focus on two main challenges which are stepping
stones to the overall objective of understanding the evolu-
tionary origins of generalization in cognitive systems:

• proposing a situated and individual-based model of
evolution that can take learning abilities into account;

• testing the effect of environmental factors on the emer-
gence and maintenance of generalization.

Challenge 1: an individual-based model that
combines evolution and learning

Learning is an important cognitive mechanism to enable
generalization, but studying the combination of learning
and evolution is challenging because they both are complex
processes that are not fully understood and therefore not eas-
ily abstracted. An additional challenge is the computational
time because the experimenter needs to give the time for the
agents to learn (their simulated life has to be long enough).
Testing the survival of each individual is therefore likely to
require a lot of time-steps in a simulation. Last, we want to
study the influence of the environment (its complexity, its
variability, etc.) on learning abilities; therefore, we need to
incorporate the environment in an appropriate way.

Our starting point will be the mA algo-
rithm (redeche et al. 0), in which a population
of robots can move, exchange genomes, and “die”. is
evolutionary algorithm is an interesting model because
() robots are situated in an explicit environment that
we can modify (contrary to more abstract models, like
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those used by Hinton and Nowlan (Hinton and Nowlan
)), and () it does not need an explicit fitness (the
best genomes are those that are the most often transmitted,
may that be because they allow a better survival or more
opportunities to mate), which makes it closer to biological
evolution. In combination with mA, we will consider
two kinds of learning mechanisms, neural networks with
neuro-modularity plasticity, and ayesian optimization.

Synaptic plasticity (chapters  and ) can be easily com-
bined with evolved neural networks and is rooted in neu-
rosciences (Abbott and Nelson 000; Trappenberg 00).
A strength of this approach is that evolution can evolve the
learning system. However, this is also a weakness because it
makes the evolutionary challenge more complex, and there-
fore experiments might need too much time to be done in
practice. More importantly, we did not take into account
the distal reward problem in our experiments (Soltoggio and
Steil 0), whereas robots that wander in an environment
and collect reward, like in mA, will likely need to solve
it.

An alternative is to use ayesian optimization (chapter
), because this algorithm is one of the fastest learning algo-
rithm for robotics (Lizotte et al. 00; alandra et al. 0),
and because it explains well, though at an abstract level, how
humans optimize (orji and Itti 0). Nevertheless, the
best way to combine ayesian optimization for online learn-
ing and evolution is not obvious. Ideally, we would like that
evolution gives “instincts” to ayesian optimization. is
idea matches well the concept of priors, which is similar to
what we did in our “Intelligent Trial and rror” algorithm:
evolution could give prior knowledge in the form a good
estimation of the reward associated with each set of param-
eters of the controllers. Nonetheless, this idea assumes that
there is a reward system, whereas the mA algorithm
does not include any explicit fitness or objective. A second
idea would therefore to let evolution design the reward sys-

tem, which would constitute the “instincts” (e.g. instinc-
tively, sugar is good). To allow us to select the amount of
learning, we will allow learning to act on a subset of the
possible parameters of controllers.

Challenge 2: when and why does
generalization evolve?

It is well documented that generalization mechanisms like
learning can have complex interactions with the evolution-
ary process (Hinton and Nowlan ; ennett 00;
West-berhard 00; Kirschner and Gerhart 00). Our
main challenge is to understand, thanks to the model
sketched in the previous section, how natural selection, act-
ing by definition in the short term, can favor cognitive
mechanisms that happen to have the long term advantage
of generalization (Johnston ). It should be emphasized
that generalization can occur without learning, for instance
some neural structure might solve a problem in the general
case whereas another one only solve it in a few particular
cases. As a consequence, learning will only be an option for
evolution and we will be attentive to study if other kinds of
generalization occur in our experiments.

e intuitive hypotheses is that generalization is encour-
aged when the environment is very dynamic, but other hy-
potheses can be investigated. or example, we can expect
than generalization is favored when the environment is too
complex with regard to the information that can be stored in
the genome (Godfrey-Smith 00): if the environment is
too complex, it becomes hopeless to encode in the genome
the best behavior for each situation. Another hypothesis
is that generalization is required when a neuronal structure
cannot be fully specified in the genome because of its size;
in this case, the agents will likely need general learning abil-
ities (see chapter ).
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8Conclusion

I started my Ph with the desire to make robots more
adaptive by taking inspiration from evolution. At the
end of my Ph (ecember 00), we reached a point

at which we were able to evolve neuro-controllers for simple
tasks in a reliable way thanks to the optimization of behav-
ioral diversity (Mouret and oncieux 00; Mouret 0a;
Mouret and oncieux 0a). Since then, our results have
been replicated and extended by many teams (Schrum and
Miikkulainen 00; oncieux and Mouret 0; Gomes
and hristensen 0; Lehman, Stanley, and Miikkulainen
0; Li, Storie, et al. 0). We subsequently introduced
an approach to make this technique applicable to real robots,
that is, to cross the reality gap (Koos, Mouret, et al. 0;
Mouret, Koos, et al. 0).

Nonetheless, our techniques were focused on automati-
cally designing controllers for robots. ey did not directly
make robots more capable of online adaptation: somehow,
we drifted.

Most of the work that we conducted after my Ph is
a return to this initial motivation: making robots capable
of surviving in a dynamic and unpredictable world. Going
back and forth between evolutionary biology and robotics,
we now have a better idea of:

• how to evolve plastic neural networks with online gen-
eral learning abilities⇒ by using generative encoding;

• how can biological networks adapt their behavior to
new evolutionary challenges in a few generations ⇒
by being modular, thanks to the selective pressure to

minimize the cost of connections;
• what encodings for neural networks combines creativ-

ity and viability (minimal loss of fitness)⇒ thanks to
the analysis of the evolvability signatures, we can con-
clude that SUPG is the best encoding of our set of en-
codings and our task (locomotion);

• how to harness evolutionary algorithms for fast, cre-
ative, and on-line damage recovery in robotics ⇒ by
filling many niches in simulation with an evolutionary
algorithm, and searching among them with ayesian
optimization.

ach of this small steps makes us closer to having robots
that can creatively react to unforeseen situations. In the fu-
ture, we will do our best to:

• move as far as possible towards realistic setups⇒ put
a damaged robot in a standard apartment, wait for 
minutes, and the robot should have discovered a way
to compensate for the damage;

• make our results are as general as possible ⇒ test ev-
erything on several different robots, and if possible
for different encodings/algorithms/techniques to draw
the most general conclusions that we can;

• continue to investigate both theoretical questions in
evolutionary biology and applied questions in robotics;

• continue to develop new analysis tools that go beyond
classic performance-based benchmarks.
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ing Transferable ontrollers”. In: Proceedings of the th
annual in proceedings on Genetic and evolutionary compu-
tation (GO). 00, pp. –
— Best student paper, IEEE CEC 2009: ( accepted papers)
J.-. Mouret and S. oncieux. “volving modular neural-
networks through exaptation”. In: I ongress on vo-
lutionary omputation ().

Selected software

See: http://github.com/jbmouret/

— Sferesv2 ramework for multi-objective evolutionary
computation and neuro-evolution. Template-based ++0,
optimized for multi-core architectures. Used in more than
0 scientific papers, from our group and a few others in the
world.
— Limbo ramework for multi-objective ayesian optimiza-
tion. Template-based ++, optimized for multi-core ar-
chitectures

Selected invited talks

— (international workshop) 0/0: Nature-inspired tech-
niques for robotics (satellite workshop of Parallel Problem
Solving from Nature, PPSN), Ljubljana, Slovenia – Dam-
age recovery is a reality gap problem
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— (general public conference, about 0 attendees) 0/0:
“orum des Sciences ognitives”fp, Paris, rance – Robots
résilients
— (keynote, about 00 attendees) /0, ntrepreneurs’
organization, Mumbai (India) – Why is autonomous robotics
different from industrial robotics? (ntrepreneurs’ organi-
zation is one of the largest organization of entrepreneurs
worldwide)
— (mini-conference, about 0 attendees) 0/0 “og-
nition, Adaptation et complexité: des êtres vivants aux
robots”, Sorbonne, Paris, rance – Les origines évolution-
nistes de la modularité
– (seminar, about 0 attendees) 0/0, covo depart-
ment, UPM, Paris, rance – Les origines évolutionnistes de
la modularité
– (seminar, about 0 attendees) 0/0, IR department,
ollège de rance, Paris, rance – e evolutionary origins
of modularity

Funding & grants

— Resibots (ERC Starting Grant) [0-00]
• Role: Principal Investigator (porteur)
• . M e (uropean Research ouncil)

— Creadapt (ANR “young researcher”) [jan. 0 – dec.
0] ANR--JS0-000

• Role: Principal Investigator (porteur)
•  k e (Agence Nationale pour la Recherche)
• e readapt project is centered on evolution for adap-

tation, both in biology and robotics. It includes the
development of new algorithms and their implementa-
tion on a new wheel-leg hybrid robot.

• http://www.creadapt.net

— EvoNeuro (ANR DEFI) [dec. 00 – jul. 0] ANR-0-
MR-00-0/0

• Role: member of the ISIR team (co-PI)
• Partners: ISIR (UPM), Neurobiologie des Processus

Adaptatifs (UPM)
• ,0 k e ( k e for ISIR)
• e voNeuro project aims at cross-fertilizing evolu-

tionary robotics, neuro-evolution, and computational
neurosciences.

• http://pages.isir.upmc.fr/EvoNeuro/

— PhD scholarship [sep. 00 – sept. 00] Awarded by
the rench Ministry of research

Supervision

In the references, names of the students/post-docs/engineer
whom I directly supervised are underlined.

Post-doctoral students

— nov. 2013–feb.2015: Danesh Tarapore – volvability and
creative adaptation.

• unding: ANR (Agence Nationale pour la Recherche)
• Supervision rate: 00%
• Main publications:

– (journal paper) Tarapore, . and Mouret, J.-.
(0). Evolvability signatures of generative en-
codings: beyond standard performance benchmarks.
Information Sciences. To appear.

– (accepted, journal paper) ully, A., lune, J. and
. Tarapore, and Mouret, J.-. (0). Robots
that can adapt like natural animals. Nature. To
appear.

– (selective conf.) Tarapore, . and Mouret, J.-.
(0). Comparing the evolvability of generative
encoding schemes. Artificial Life : Proceedings
of the ourteenth International onference on
the Synthesis and Simulation of Living Systems,
MIT Press, publisher. Pages -.

— sep. 2011–sep. 2012 (post-doc / ATER): Sylvain Koos – Ap-
plying the transferability approach to damage recovery.

• unding: UPM (ATR)
• Supervision rate: 00%
• Main publications:

– (journal paper) Koos, S., ully, A. and Mouret,
J.-. (0). Fast Damage Recovery in Robotics
with the T-Resilience Algorithm. International
Journal of Robotics Research. Vol  No 
Pages 00-.

PhD students

— 2012-...: Antoine Cully – reative adaptation for damage
recovery

• o-advisor: S. oncieux ( JM: 0%, S: 0%)
• unding: UPM/GA scholarship (IT)
• efense planned in September 0
• Main publications:

– (accepted, journal paper) ully, A., lune, J. and
. Tarapore, and Mouret, J.-. (0). Robots
that can adapt like natural animals. Nature. To
appear.

– (journal paper) ully, A. and Mouret, J.-.
(0). Evolving a Behavioral Repertoire for a
Walking Robot. To appear in volutionary om-
putation.

– (selective conf.) Jehanno, J.-M., ully, A.,
Grand, . and Mouret, J.-. (0). Design of a
Wheel-Legged Hexapod Robot for Creative Adapta-
tion. Proceedings of LAWAR. Pages -.

– (journal paper) Koos, S., ully, A. and Mouret,
J.-. (0). Fast Damage Recovery in Robotics
with the T-Resilience Algorithm. International
Journal of Robotics Research. Vol  No 
Pages 00-.

– (selective conf.) ully, A. and Mouret, J.-
. (0). Behavioral Repertoire Learning in
Robotics. Proc. of Genetic and volution-
ary omputation onference (GO). Pages
-.

— 2008–2012: Paul Tonelli – On the relationships be-
tween generative encodings and synaptic plasticity in neuro-
evolution (Relations entre plasticité synaptique et régularité des
codages en neuro-évolution)

• o-advisor: S. oncieux ( JM: %, S: %)
• unding: scholarship from the Monaco principality
• Ph defended on the th of June (0):
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– Nicolas redeche (Univ. Paris-Sud, LRI), re-
viewer

– Yves uthen (Univ. UT apitole, IRIT), re-
viewer

– Hélène Paugam-Moisy (Univ. Lyon , LIRIS),
examiner

– Olivier Sigaud (UPM, ISIR), examiner
– Stéphane oncieux (UMP, ISIR), supervisor
– Jean-aptiste Mouret (UPM, ISIR), co-

supervisor
• Main publications:

– (journal paper) Tonelli, P. and Mouret, J.-.
(0). On the Relationships between Genera-
tive Encodings, Regularity, and Learning Abilities
when Evolving Plastic Artificial Neural Networks.
PLoS One. Vol  No  Pages e.

– (selective conf.) Tonelli, P. and Mouret, J.-.
(0). On the Relationships between Synaptic
Plasticity and Generative Systems. Proceedings
of the th Annual onference on Genetic and
volutionary omputation. Pages –.
(Best paper of the Generative and Developmen-
tal Systems (GDS) track).

– (selective conf.) Tonelli, P. and Mouret, J.-.
(0). Using a Map-Based Encoding to Evolve
Plastic Neural Networks. Proceedings of I
Symposium Series on omputational Intelli-
gence. Pages -.

– (selective conf.) Tonelli, P. and Mouret, J.-. and
oncieux, S. (00). Influence of Promoter Length
on Network Convergence in GRN-based Evolution-
ary Algorithms. Proceedings of e 0th u-
ropean onference on Artificial Life, Springer,
publisher. Pages 0-0.

— 2008–2011: Sylvain Koos – e transferability: a general
approach to cross the reality gap, to generalize in machine
learning, and to behavior adaptation in robotics (L’approche
par transférabilité : une réponse aux problèmes de passage à la
réalité, de généralisation et d’adaptation).

• o-advisor: S. oncieux ( JM: 0%, S: 0%)
• funding: rench ministry of research scholarship

(IT)
• Ph defended on the 0th of November, 0:

– Pierre-Yves Oudeyer (INRIA ordeaux Sud-
Ouest), reviewer

– Marc Schoenauer, (INRIA Saclay Ile-de-
rance), reviewer

– Josh ongard (University of Vermont, USA), ex-
aminer

– Raja hatila (UPM, ISIR), examiner
– Stéphane oncieux (UPM, ISIR), supervisor
– Jean-aptiste Mouret (UPM, ISIR), co-

supervisor
• Main publications:

– (journal paper) Koos, S., ully, A. and Mouret,
J.-. (0). Fast Damage Recovery in Robotics
with the T-Resilience Algorithm. International
Journal of Robotics Research. Vol  No  Pages
00-.

– (journal paper) Koos, S., Mouret, J.-. and on-
cieux, S. (0). e Transferability Approach:
Crossing the Reality Gap in Evolutionary Robotics.

I Transactions on volutionary omputa-
tion. Vol  No  Pages  - .

– (selective conf.) Koos, S. and Mouret, J-.
(0). Online Discovery of Locomotion Modes
for Wheel-Legged Hybrid Robots: a Transferability-
based Approach. Proceedings of LAWAR,
World Scientific Publishing o., publisher.
Pages 0-.

– (selective conf.) Pinville, T. and Koos, S.,
Mouret, J-. and oncieux, S. (0). How to
Promote Generalisation in Evolutionary Robotics:
the ProGAb Approach. GO’: Proceed-
ings of the th annual conference on Genetic
and evolutionary computation AM, publisher.
Pages –.

– (selective conf.) Koos, S., Mouret, J.-. and
oncieux, S. (00). Crossing the Reality Gap
in Evolutionary Robotics by Promoting Transfer-
able Controllers. GO’0: Proceedings of
the th annual conference on Genetic and evo-
lutionary computation AM, publisher. Pages
–. Nominated for best paper in the
R/Alife track.

– (selective conf.) Koos, S., Mouret, J.-. and
oncieux, S. (00). Automatic system identifica-
tion based on coevolution of models and tests. I
ongress on volutionary omputation, 00
( 00). Pages 0–.

Research engineers

— 2013-2014 (senior engineer): J.-M. Jehanno – Mechani-
cal design of a wheel-legged hybrid robot; funding: ANR
(Agence Nationale pour la Recherche)

Master students

— 2014 (3months,M1) Luigi Tedesco (NSTA) - Learning
with ayesian optimization
— 2014 (3 months, M1) rédéric Lauron (Polytech’Paris-
UPM) – Robotic finch (A design)
— 2014 (3 months, M1) Walid Abderrahmani
(Polytech’Paris-UPM) – Robotic finch (software)
— 2013 (3 months, M1) Mathieu Nassar (Polytech’Paris-
UPM) – Repertoire learning
— 2012 (6 months, M2) Antoine ully (Polytech’Paris-
UPM), now Ph student in our group – damage
recovery with a hexapod robot

Professional activities

Organization of international conferences

— GECCO’2015 (about 00 participants) o-chair of the
“Generative and evelopmental Systems” track (with Se-
bastian Risi, IT University of openhagen, K) – track
chairs are responsible of the review process (handling re-
views and taking the acceptance decisions).
— CLAWAR’2011 (about 0 participants) e th In-
ternational onference on limbing and Walking Robots
and the Support Technologies for Mobile Machines, Paris,
rance (local co-organizer)
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— SAB’2010 (about 0 participants) e th conference
on Simulation of Adaptive ehavior: rom animals to ani-
mats, Paris, rance (local co-organizer)

Organization of international workshops

— At ALIFE/ECAL (0: ast Lansing, MI, USA, 0:
Taormina, Italy, 0: New York, USA; 0: York,
UK) Evolution in physical systems (about 0 participants, co-
organizers: J. Rieffel, N. redeche, . Haasdijk)
— At CNS 2012 (Atlanta, USA) Modern evolutionary algo-
rithms in computational neuroscience: tools to parametrize, ex-
plore model properties and design model structures (about 0
participants, co-organizers: . Girard, S. oncieux, .
Sheynikhovich)
— At GECCO 2012 (Philadelphia, USA) Evolutionary Devel-
opmental Robotics: EvoDevoRobo (about 0 participants, co-
organizers: S. oncieux, Y. Jin)
— At IROS 2009 (Saint-Louis, USA) Exploring New Hori-
zons in Evolutionary Design of Robots (about 0 participants,
co-organizers: S. oncieux, N. redeche, proceedings pub-
lished as a Springer book)

Tutorials

— ALIFE’2014, ECAL2015&GECCO2015 [ hours] volution-
ary Robotics (with S. oncieux and N. redeche)
— ALIFE’2014 [ hours] reating publication-quality figures
with Python and Matplotlib (https://github.com/jbmouret/
matplotlib_for_papers)

Program committee member

GECCO (about 500 participants, acceptance rate: about 35%)
and ALIFE (about 500 participants, acceptance for oral presen-
tations: about 25%) are the twomain conferences about artificial
evolution.
— Genetic and Evolutionary Computation Confer-
ence (GO, since 00)
— European Conference on Artificial Life (ECAL) (since 0)
— Artificial Life (ALIFE) (since 0)
— Simulation of Adaptive Behavior (SAB) (since 00)
— European Conference on the Applications of Evolutionary
Computation (vo*, since 0)

— International conference onArtificial Evolution (A, 00,
00)
— International Workshop on Evolutionary and Reinforce-
ment Learning for Autonomous Robot Systems (RLARS,
since 0)
— International Conference on Climbing and Walking
Robots and the Support Technologies for Mobile Ma-
chines (LAWAR, 0)

Reviewer

— IEEE Transactions on Evolutionary Computation (top jour-
nal in evolutionary computation)
— Evolutionary Computation (nd top journal in evolution-
ary computation)
— Artificial Life (top journal in artificial life)
— PLoS One (one of the top multi-disciplinary journals)
— IEEETransactionsonRobotics (st/nd journal in robotics)
— Proceedings of theRoyal Society B . (one of the top biology
journals)
— Soft Computing
— Review editor in Frontiers in AI and Robotics (evolutionary
robotics section).

PhD committees

— 2015 abien enureau (supervised by P.-Y. Oudeyer),
ordeaux University. Self-Exploration of Sensorimotor Spaces
in Robots. Role: external examiner.
— 2014 Adam avies (supervised by Richard Watson), Uni-
versity of Southampton. On the interaction of function, con-
straint and complexity in evolutionary systems. Role: external
examiner and reviewer.

Teaching activities

— 2008-... ull load of teaching (+ hours/year) for mas-
ter student in robotics (Polytech’Paris-UPM); about 0%
of classic classes and 0% of hands-on classes; topics:

• artificial intelligence for robotics
• object oriented programming
• ++ language
• Unix system programming
• supervision of student projects
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BPublication list
All my publications can be downloaded on:
http://pages.isir.upmc.fr/~mouret/website/publications.xhtml
Google scholar page: http://scholar.google.fr/citations?user=
lp8V_UYAAAAJ&hl=en&oi=ao

Peer-reviewed journals

A. Cully, J. Clune, D. Tarapore, J.-B. Mouret (2015). “Robots that can
adapt like natural animals”. In: Nature, pp. 1–4.

A. Cully, J.-B. Mouret (2015). “Evolving a Behavioral Repertoire for a
Walking Robot”. In: Evolutionary Computation Journal 1, pp. 1–33.

S. Doncieux, N. Bredeche, J.-B. Mouret, A. E. Eiben (2015). “Evolution-
ary robotics: what, why, and where to”. In: Frontiers in Robotics and
AI 2. DOI: 10.3389/frobt.2015.00004.

K. O. Ellefsen, J.-B. Mouret, J. Clune (2015). “NeuralModularity Helps
Organisms Evolve to Learn New Skils without Forgetting Old Skills”.
In: PLoS Computational Biology 1.4, e1004128.

R. Reuillon, C. Schmitt, R. De Aldama, J.-B. Mouret (2015). “A New
Method to Evaluate Simulation Models: The Calibration Profile (CP)
Algorithm”. In: Journal of Artificial Societies and Social Simulation
18.1, p. 12.

D. Tarapore, J.-B. Mouret (2015). “Evolvability signatures of genera-
tive encodings: beyond standard performance benchmarks”. In: In-
formation Sciences, pp. 1–20.

S. Doncieux, J.-B. Mouret (2014). “Beyond black-box optimization: a
reviewof selectivepressures for evolutionary robotics”. In: Evolution-
ary Intelligence 7.2, pp. 71–93. DOI: 10.1007/s12065-014-0110-x.

J. Clune*, J.-B. Mouret, H. Lipson (2013). “The evolutionary origins
of modularity”. In: Proceedings of the Royal Society B 280 (J. Clune
and J.-B.Mouret contributed equally to thiswork), p. 20122863. DOI:
10.1098/rspb.2012.2863.

S. Koos, A. Cully, J.-B. Mouret (2013). “Fast Damage Recovery in
Robotics with the T-Resilience Algorithm”. In: International Jour-
nal of Robotics Research 32.14, pp. 1700–1723. DOI: 10 . 1177 /
0278364913499192.

S. Koos, J.-B. Mouret, S. Doncieux (Feb. 2013). “The Transferability
Approach: Crossing the Reality Gap in Evolutionary Robotics”. In:
IEEE Transactions on Evolutionary Computation 17.1, pp. 122–145.
DOI: 10.1109/TEVC.2012.2185849.

P. Tonelli, J.-B. Mouret (Nov. 2013). “On the Relationships between
Generative Encodings, Regularity, and Learning Abilities when
Evolving Plastic Artificial Neural Networks”. In: PLoS One 8.11,
e79138. DOI: 10.1371/journal.pone.0079138.

J.-B. Mouret, S. Doncieux (2012). “Encouraging Behavioral Diversity
in Evolutionary Robotics: an Empirical Study”. In: Evolutionary Com-
putation 20.1, pp. 91–133.

— (2008b). “MENNAG: a modular, regular and hierarchical encod-
ing for neural-networks based on attribute grammars”. In: Evolution-
ary Intelligence 1.3, pp. 187–207.

E. de Margerie, J.-B. Mouret, S. Doncieux, J.-A. Meyer (2007). “Artifi-
cial evolution of themorphology and kinematics in a flapping-wing
mini UAV”. In: Bioinspir. Biomim. 2, pp. 65–82.

T. Geraud, J.-B. Mouret (Jan. 2004). “Fast road network extraction
in satellite images using mathematical morphology and Markov
random fields”. In: EURASIP Journal of Applied Signal Processing,
pp. 2503–2514.

Edited books

S. Doncieux, N. Bredeche, J.-B. Mouret (2011). New Horizons in Evo-
lutionary Robotics: Extended Contributions from the 2009 EvoDeRob
Workshop. Ed. by S. Doncieux, N. Bredeche, and J.-B. Mouret.
Vol. 341. Studies in Computational Intelligence. Springer.

S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, J.-B. Mouret
(2010). From Animals to Animats 11. Vol. 6226. LNAI. Springer.

Peer-reviewed international conferences

J. Huizinga, J.-B. Mouret, J. Clune (2014). “Evolving Neural Networks
ThatAreBothModular andRegular: HyperNeatPlus theConnection
Cost Technique”. In: Proceedings of GECCO, pp. 1–8.

J.-M. Jehanno, A. Cully, C. Grand, J.-B. Mouret (2014). “Design of a
Wheel-LeggedHexapod Robot for Creative Adaptation”. In: Proceed-
ings of CLAWAR, pp. 267–276.

D. Tarapore, J.-B. Mouret (2014). “Comparing the evolvability of gen-
erative encoding schemes”. In: Artificial Life 14: Proceedings of the
Fourteenth International Conference on the Synthesis and Simulation
of Living Systems. MIT Press, pp. 55–62. DOI: http://dx.doi.org/10.
7551/978-0-262-32621-6-ch011.

A. Cully, J.-B. Mouret (2013). “Behavioral Repertoire Learning in
Robotics”. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 175–182.

S. Doncieux, J. Mouret (2013). “Behavioral Diversity with Multiple
Behavioral Distances”. In: Proc. of IEEE Congress on Evolutionary Com-
putation, 2013 (CEC 2013), pp. 1–8.

J.-B. Mouret, J. Clune (2012). “An Algorithm to Create Phenotype-
Fitness Maps”. In: Proceedings of the Thirteenth International Con-
ference on the Simulation and Synthesis of Living Systems (ALIFE 13),
593–594 (extended abstract).

S. Koos, J.-B. Mouret (2011). “Online Discovery of Locomotion
Modes for Wheel-Legged Hybrid Robots: a Transferability-based
Approach”. In: Proceedings of CLAWAR. World Scientific Publishing
Co., pp. 70–77.

T. Pinville, S. Koos, J.-B. Mouret, S.Doncieux (2011). “HowtoPromote
Generalisation in Evolutionary Robotics: the ProGAb Approach”. In:
GECCO’11: Proceedings of the 13th annual conference on Genetic and
evolutionary computation ACM, publisher, pp. 259–266.

A. Terekhov, J.-B. Mouret, C. Grand (2011). “Stochastic optimization
of a chain sliding mode controller for the mobile robot maneuver-
ing”. In: Proceedings of IEEE / IROS Int. Conf. on Robots and Intelligents
Systems, pp. 4360–4365.

P. Tonelli, J.-B. Mouret (2011a). “On the Relationships between
Synaptic Plasticity and Generative Systems”. In: Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation.
(Best paper of the Generative and Developmental Systems
(GDS) track), pp. 1531–1538. DOI: http : / /doi .acm.org/10 .1145/
2001576.2001782.

HDR JB Mouret | 77 / 105 Appendix B. Publication list

http://pages.isir.upmc.fr/~mouret/website/publications.xhtml
http://scholar.google.fr/citations?user=lp8V_UYAAAAJ&hl=en&oi=ao
http://scholar.google.fr/citations?user=lp8V_UYAAAAJ&hl=en&oi=ao
http://dx.doi.org/10.3389/frobt.2015.00004
http://dx.doi.org/10.1007/s12065-014-0110-x
http://dx.doi.org/10.1098/rspb.2012.2863
http://dx.doi.org/10.1177/0278364913499192
http://dx.doi.org/10.1177/0278364913499192
http://dx.doi.org/10.1109/TEVC.2012.2185849
http://dx.doi.org/10.1371/journal.pone.0079138
http://dx.doi.org/http://dx.doi.org/10.7551/978-0-262-32621-6-ch011
http://dx.doi.org/http://dx.doi.org/10.7551/978-0-262-32621-6-ch011
http://dx.doi.org/http://doi.acm.org/10.1145/2001576.2001782
http://dx.doi.org/http://doi.acm.org/10.1145/2001576.2001782


P. Tonelli, J.-B. Mouret (2011b). “Using a Map-Based Encoding to
Evolve Plastic Neural Networks”. In: Proceedings of IEEE Symposium
Series on Computational Intelligence, pp. 9–16. DOI: 10 .1109/EAIS .
2011.5945909.

S. Doncieux, J.-B. Mouret (2010). “Behavioral diversity measures for
Evolutionary Robotics”. In: WCCI 2010 IEEE World Congress on Com-
putational Intelligence, Congress on Evolutionary Computation (CEC),
pp. 1303–1310.

S. Koos, J.-B. Mouret, S. Doncieux (2010). “Crossing the Reality Gap
in Evolutionary Robotics by Promoting Transferable Controllers”. In:
GECCO’10: Proceedings of the 12th annual conference on Genetic and
evolutionary computation ACM, publisher, pp. 119–126.

J.-B. Mouret, S. Doncieux (2010). “SFERESv2: Evolvin’ in the Multi-
Core World”. In: WCCI 2010 IEEE World Congress on Computational
Intelligence, Congress on Evolutionary Computation (CEC), pp. 4079–
4086.

J.-B. Mouret, S. Doncieux, B. Girard (2010). “Importing the Compu-
tational Neuroscience Toolbox into Neuro-Evolution—Application
to Basal Ganglia”. In: GECCO’10: Proceedings of the 12th annual con-
ference on Genetic and evolutionary computation ACM, publisher,
pp. 587–594.

A. Terekhov, J.-B. Mouret, C. Grand (2010a). “Stochastic multi-
objective optimization for aggressive maneuver trajectory plan-
ning on loose surface”. In: Proceedings of IFAC: the 7th Symposiumon
Intelligent Autonomous Vehicles, pp. 1–6.

A. Terekhov, J.-B. Mouret, C. Grand (2010b). “Stochastic optimiza-
tion of a neural network-based controller for aggressivemaneuvers
on loose surfaces”. In: Proceedings of IEEE / IROS Int. Conf. on Robots
and Intelligents Systems, pp. 4782–4787.

S. Doncieux, J.-B. Mouret (2009). “Single Step Evolution of Robot
Controllers for Sequential Tasks”. In: GECCO’09: Proceedings of the
11th annual conference on Genetic and evolutionary computation.
(abstract and poster). ACM, pp. 1771–1772.

S. Doncieux, J.-B. Mouret, N. Bredeche (Oct. 2009). “Exploring New
Horizons in Evolutionary Design of Robots”. In: ”Exploring New Hori-
zons in Evolutionary Design of Robots” IROS Workshop. Saint Louis,
USA, pp. 5–12.

S. Koos, J.-B. Mouret, S. Doncieux (2009). “Automatic system identi-
fication based on coevolution ofmodels and tests”. In: IEEECongress
on Evolutionary Computation, 2009 (CEC 2009), pp. 560–567.

J.-B. Mouret, S. Doncieux (2009a). “Evolving modular neural-
networks through exaptation”. In: IEEE Congress on Evolutionary
Computation, 2009 (CEC 2009). (Best student paper award),
pp. 1570–1577.

— (2009b). “Overcoming the bootstrap problem in evolutionary
robotics using behavioral diversity”. In: IEEE Congress on Evolution-
ary Computation, 2009 (CEC 2009), pp. 1161–1168.

— (2009c). “Using Behavioral Exploration Objectives to Solve De-
ceptive Problems in Neuro-evolution”. In: GECCO’09: Proceedings of
the11thannual conferenceonGenetic andevolutionary computation.
ACM, pp. 627–634.

P. Tonelli, J.-B. Mouret, S. Doncieux (2009). “Influence of Promoter
Length on Network Convergence in GRN-based Evolutionary Algo-
rithms”. In: Proceedings of The 10th European Conference on Artificial
Life. Springer, pp. 302–309.

C. Grand, P. Martinelli, J.-B. Mouret, S. Doncieux (June 2008).
“Flapping-Wing Mechanism for a bird-Sized UAVS: Design, Mod-

eling and Control”. In: Proceedings of ARK’08 : the 11th Int. Sympo-
sium on ADVANCES IN ROBOT KINEMATICS. Ed. by J. Lenarcic and P.
Wenger. France: Springer, pp. 127–136.

J.-B. Mouret, S. Doncieux (2008a). “Incremental Evolution of Ani-
mats’ Behaviors as aMulti-objectiveOptimization”. In: FromAnimals
to Animats 10. Vol. 5040. Springer, pp. 210–219.

J.-B. Mouret, S. Doncieux, J.-A.Meyer (2006). “Incremental Evolution
of Target-Following Neuro-controllers for Flapping-Wing Animats”.
In: FromAnimals toAnimats: Proceedings of the 9th International Con-
ference on the Simulation of Adaptive Behavior (SAB). Ed. by S. Nolfi,
G. Baldassare, R. Calabretta, J. Hallamand, D. Marocco, J.-A. Meyer,
O. Miglino, and D. Parisi. Rome, Italy, pp. 606–618.
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Figure C.1. Network visualizations and data from the main experiment. The highest-performing network at the end of each trial is visualized here,

sorted first by fitness and second by modularity. For each network the performance (left-justified) and modularity score Q (right-justified) are shown.

An “L” or “R” indicates that the network has a single neuron that perfectly solves the left or the right subproblem, respectively. (A) Networks from the

treatment where the only selection pressure is on the performance of the network. (B) Networks from the treatment where there are two selection

pressures: one to maximize performance and one to minimize connection costs.
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Figure C.2. Network visualizations and data for the experiment with five decomposable XOR Boolean logic functions. The highest-performing

network at the end of each trial, sorted by fitness then modularity, and its performance (left-justified) and modularity scoreQ (right-justified). (A) The
environmental challenge in this experiment. (B and C) Networks from the PA and P&CC treatments, respectively.
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Figure C.3. Network visualizations and data for the experiment with decomposable, hierarchically nested XOR Boolean logic functions. The

highest-performingnetwork at the endof each trial is visualizedhere, sorted first by fitness and secondbymodularity. For eachnetwork theperformance

(left-justified) and modularity scoreQ (right-justified) are shown. (A) A depiction of the environmental challenge in this experiment. (B) Networks from

the treatment where the only selection pressure is on the performance of the network. (C) Networks from the treatment where there are two selection

pressures: one to maximize performance and one to minimize connection costs.
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Figure C.4. Network visualizations anddata from the experimentwith a non-modular problem. (A)A non-modular version of the retina problem is

createdwhennetworks have to answerwhether any four pixels are on, which is non-modular because it involves information fromanywhere in the retina.

(B, C) The highest-performing network at the end of each trial is visualized here, sorted first by fitness and second by modularity. For each network the

performance (left-justified) andmodularity scoreQ (right-justified) are shown. (B) shows networks from the treatmentwhere the only selection pressure

is on the performance of the network. (C) shows networks from the treatment where there are two selection pressures: one to maximize performance

and one to minimize connection costs.
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Figure C.5. Modularity and performance results are robust to variation in the strength of selection to minimize connection costs. (A) Median

performance per generation of the highest-performing network, which is improved by adding a selection pressure to minimize connection costs. The

value of p indicates the strength of the pressure (Methods), ranging from 0% (no pressure) through 10% (low pressure) to 100% (high pressure–equal to

that for the main performance objective). (B) Performance of the highest-performing networks after 25000 generations for different values of p. The

differences between PA (p = 0%) and P&CC (p > 0%) are highly significant (four asterisks indicate a p-value< 0.0001). (C) Median modularity per

generation of the highest-performing network of each trial for different values of p. (D) Modularity of the highest-performing networks after 25000

generations, which is significantly higher when there is a selection pressure to reduce connection costs (i.e. when p > 0%). (E)A changing environment.

Thex-axis represents the number of generations between a switch from the L-AND-R environment to the L-OR-R environment or vice-versa. This figure is

the same as Fig. 3.4 from themain text, but shows results from additional values ofp. The results for P&CC (p >0) are consistent across different values of

p provided that the strength of selection on network connection costs is not equal to that of network performance (i.e. for all p < 100%). The p = 100%

line is anomalous because in that case cost is as important as performance, leading to mostly low-performing networks with pathological topologies:

this effect is strongest when the environment changes quickly because such changes frequently eliminate the fitness benefits of high performance.
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Figure C.6. Environmental changes between twomodular problemswith shared subproblems. (A) In the first evolutionary phase, networks evolve

to answer whether a left and right object are present (the L-AND-R environment). The problem can be modularly decomposed, since the presence of

left and right objects can first be separately detected before answering the larger question of whether they are both present. A left object is considered

present if one of the eight left object patterns (shown in Fig. 3.2 in the main text) is exposed to the left side of the retina, and vice-versa for right objects.

Networks that could perfectly solve the L-AND-R problem after 5000 generations are then transferred to an environment in which the challenge is to

determine if a left or right object is present (the L-OR-R environment), which is a different overall problem that shares the subproblems of identifying left

and right objects. Evolution continues until networks can perfectly solve the L-OR-R problem or until 5000 generations elapse. (B) The same experiment

is repeated, but first evolving in the L-OR-R environment and then transferring to the L-AND-R environment. (C) A fully zoomed-out plot of Fig. 3.4 from

the main text. Trials last 5000 generations or until a network exhibits perfect performance in the new environment. For each treatment, for each of 50

networks that perform perfectly in the first environment, we conduct 50 trials in the second environment, meaning that each column in this figure (and

Fig. 3.4 from the main text) represents 50×50 = 2500 data points.
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Figure C.7. (A) Repeating the main experiment wherein selection is based on performance and connection costs (P&CC), but with connection costs

solely measured as the number of connections (P&CC-NC), produces networks that look qualitatively similar to those produced with the default P&CC

cost function (compare the networks visualized here to those in Fig. SC.1). The modularity and performance scores are also qualitatively similar and not

significantly different (modularityQ = 0.36[0.22, 0.4] vs. default cost functionQ = 0.42[0.25, 0.45], p = 0.15; performance= 1.0[0.99, 1.0]
vs. default cost function performance of 1.0[1.0, 1.0], p = 1.0). Like the default cost function, the alternative cost function produced significantly

moremodularity (p = 1× 10−8) and higher performance (p = 1× 10−5) than PA. Also qualitatively similar between these cost functions is the per-

cent of runs that have the inputs related to the left and right subproblems in separate modules after splitting the network once to maximize modularity

(alternate: 52%, default: 56%, Fisher’s exact test: p = 0.84). One minor qualitative difference is the percent of runs that have two neurons that each

perfectly solve the left and right subproblems, respectively (alternate: 10%, default: 39%, Fisher’s exact test: p = 8 × 10−9). (B) Randomizing the

geometric location of input coordinates (P&CC-RL) eliminates the left-right geometric decomposition of the L-AND-R retina problem, yet such randomiza-

tion does not change the result that a connection cost causes significantly higher performance andmodularity. (C)Displayed are final, evolved P&CC-RL

networks, which are shown bothwith randomized input coordinates (left) andwith the left and right inputs in order to visualize problemdecomposition

(right). Despite the randomization of the input locations, many of the evolvedmodules still functionally decompose the left and right subproblems. Four

asterisks indicate a value of p < 0.0001 and ns indicates no significant difference.
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Figure C.8. Networks evolved with a connection cost have lower costs (shorter lengths), fewer nodes, and fewer connections. (A) The summed

length of all connections is smaller for networks evolved in the P&CC regime than in the PA regime. The P&CC networks also have fewer nodes (B) and
connections (C). Three asterisks indicate a value of p < 0.001 and four indicate a value of p < 0.0001.
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Figure C.9. Biasing the mutation rate towards having more remove-connection mutations than add-connection mutations does not decrease
the number of connections, increase themodularity, or increase the performance of PA treatments. Setting the remove-connectionmutation rate

to be up to an order of magnitude higher than the add-connectionmutation rate did not qualitatively change the results. The PA treatment with default

values of 0.2 for the remove-connection and add-connectionmutation rates did not have statistically different levels of modularity or performance from

PA treatments with the same remove-connection mutation rate of 0.2, but a lower add-connection mutation rate of 0.15, 0.10, or 0.02 (p > 0.05). The
P&CC treatment had significantly fewer connections and nodes, and significantly higher performance and modularity scores, than every PA treatment,

irrespective its mutation rate bias. Two, three, and four asterisks indicate p < 0.01, 0.001, and 0.0001, respectively.
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A - Multiple, Separable Problems B - Hierarchical, Separable Problems

Figure C.10. The highest-performing networks found for each combination of modularity and length for (A) the problem with five separable
XOR functions and (B) the hierarchical XOR problem. To understand the performance potential of networks with different combinations of modular-

ity levels and summed connection lengths we invented the Multi-Objective Landscape Exploration (MOLE) algorithm, which is described in Methods.

Colors indicate the highest-performing network found at that point in themodularity vs. cost space, with yellow representing perfect performance. The

best-performing network at the end of each of the 50 PA and P&CC runs are overlaid on the map. Networks with perfect performance exist throughout

the space, which helps explain why modularity does not evolve when there is selection based on performance alone. There is also an inverse cor-

relation between length and modularity for high-performing networks: The lowest cost networks–those with the shortest summed lengths–that are

high-performing are modular.
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Figure C.11. Overview of the model. (A) The multi-objective evolutionary algorithm (NSGA-II). Starting with a population ofN randomly generated

individuals, an offspring population ofN new individuals is generated using the best individuals of the current population. The union of the offspring

and the current population is then ranked according to the stochastic Pareto dominance (explained inMethods, here representedby having organisms in

different ranks connected by lines labeledL1 ,L2 , etc.) and the bestN individuals form the next generation. (B) An example networkmodel. Networks

can model many different biological processes, such as genetic regulatory networks, neural networks, metabolic networks, and protein interaction

networks. Information enters the network when it is sensed as an input pattern. Nodes, which represent components of the network (e.g. neurons

or genes), respond to such information and can activate or inhibit other components of the network to varying degrees. The strength of interactions

between two nodes is represented by the weight of the connection between them, which is a scalar value, and whether the interaction is excitatory or

inhibitory depends on whether the weight is positive or negative. In this figure all non-zero weights are represented by an arrow. The signal entering

each node is passed through a transfer function to determine the output for that node. That output then travels through each of the node’s outgoing

connections and, after being scaled by the weight of that outgoing connection, serves as a component of the incoming signal for the node at the end of

that connection. Eventually an output pattern is produced, which for a neural network could be muscle commands or for a genetic regulatory network

could be proteins. (C) The transfer function for each node. The sumof the incoming signal (x) for a node ismultiplied by 20 before being passed through

the transfer function tanh(x). Multiplying by 20 makes the transition steep and similar to a step function. The tanh(x) function ensures that the

output is in the range [−1, 1].
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Figure C.12. Randomly generated networks reveal an inverse correlation between modularity and cost, irrespective of network performance.
For each of the numbers in the range [0,100] we generated 4000 networks with that many connections by randomly adding an allowable connection

according to the topology of the retina problem (Methods: Network Model Details). The modularity and cost of those networks are plotted here after

being smoothedwith Gaussian kernel density estimation and normalized per cost value (the plot looks qualitatively similar if the number of connections,

instead of cost, is plotted on the x-axis). This plot reveals a default increase in modularity as network connection cost is lowered prior to the application

of selection for performance. It thus suggests that selection for low-cost networks will tend to produce more modular networks unless selection for

performance overrides this default tendency. This result helps explain why networkmodularity increased in the presence of a connection cost even on a

non-modular problem (Figure 3.5a). Themodularity produced by randomly generating networks thus provides a baseline level of modularity for a given

network connection cost that selection for performance further affects. Interestingly, on themodularly decomposable retina problem, the evolved levels

of modularity (circles) were higher than the average of randomly-generated networks with the same respective costs, and on the non-modular retina

problem, the evolved modularity levels (squares) were slightly lower than observed in randomly generated networks with the same respective costs.

The circles and squares show the median modularity and cost values for the four treatments. It is important to remember that additional pressures can

produce modularity values that differ from those produced by randomly generated networks. The MOLE algorithm that generated Fig. 3.3, for example,

explicitly searches for networks throughout the range of cost and modularity values and found many networks with combinations of these values that

are rarely or never produced via random network generation.
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Figure C.13. Extending the PA treatment to 850,000 generations does not eliminate the significant difference in modularity or performance
compared to the P&CC treatment at 25,000 generations. To see whether the PA treatment would catch up in modularity or performance over a

longer evolutionary period, we extended 10 runs of the PA treatment to 850,000 generations, which is 34 times the number of generations in the original

experiment. The additional evolutionary time did not significantly improve performance (p = 0.29) or eliminate the statistical difference in performance

between PA and P&CC (p = 0.04 using Matlab’s Mann-Whitney-Wilcoxon one-tailed rank sum test; median P&CC performance at 25,000 generations =

1.0 [1.0, 1.0]; median PA performance at 850,000 generations was 0.98 [0.96, 1.0]; brackets indicate +/- 95% bootstrapped confidence intervals of the

median, calculated by resampling the data 5,000 times). PAmodularity also did not increase with the additional generations (p = 0.79), and the levels of

modularity in PA runs at 850,000 generations remained far below those of PA (p = 0.0022; P&CC modularity at 25,000 generations= 0.42[0.25, 0.45];
PA modularity at 850,000 generations= 0.15[0.13, 0.22]). One asterisk indicates a p-value< 0.05 and three indicates a p-value< 0.001).
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FigureD.1. Anoverview of the Intelligent Trial and Error Algorithm. (A) Behavior-performancemap creation. After being initialized with random

controllers, the behavioral map (A2), which stores the highest-performing controller found so far of each behavior type, is improved by repeating the

process depicted in (A1) until newly generated controllers are rarely good enough to be added to the map (here, after 20 million evaluations). This step,

which occurs in simulation, is computationally expensive, but only needs to be performed once per robot (or robot design) prior to deployment. In

our experiments, creating one map involved 20 million iterations of (A1), which lasted roughly two weeks on one multi-core computer (Supplementary

Methods, section “Running time”). (B) Adaptation. (B1) Each behavior from the behavior-performance map has an expected performance based on

its performance in simulation (dark green line) and an estimate of uncertainty regarding this predicted performance (light green band). The actual

performance on the now-damaged robot (black dashed line) is unknown to the algorithm. A behavior is selected to try on the damaged robot. This

selection is made by balancing exploitation—trying behaviors expected to perform well—and exploration—trying behaviors whose performance is

uncertain (Methods, section “acquisition function”). Because all points initially have equal, maximal uncertainty, the first point chosen is that with the

highest expected performance. Once this behavior is tested on the physical robot (B4), the performance predicted for that behavior is set to its actual

performance, the uncertainty regarding that prediction is lowered, and the predictions for, and uncertainties about, nearby controllers are also updated

(according to a Gaussian process model, see Methods, section “kernel function”), the results of which can be seen in (B2). The process is then repeated

until performance on the damaged robot is 90% or greater of the maximum expected performance for any behavior (B3). This performance threshold

(orange dashed line) lowers as the maximum expected performance (the highest point on the dark green line) is lowered, which occurs when physical

tests on the robot underperform expectations, as occurred in (B2).
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Figure D.2. The contribution of each subcomponent of the Intelligent Trial and Error Algorithm. (A) Adaptation progress versus the number
of robot trials. The walking speed achieved with Intelligent Trial and Error and several “knockout” variants that are missing one of the algorithm’s key

components. Some variants (4 and 5) correspond to state-of-the-art learning algorithms (policy gradient: Kohl et al. 2004; Bayesian optimization: Lizotte

et al. 2007, Tesch et al., 2011, Calandra et al. 2014,). The bold lines represent the medians and the colored areas extend to the 25th and 75th percentiles.

(B, C) Adaptation performance after 17 and 150 trials. Shown is the the speed of the compensatory behavior discovered by each algorithm after 17

and 150 evaluations on the robot, respectively. For all panels, data are pooled across six damage conditions (the removal of each of the 6 legs in turn).

See Supplementary Experiment S2 for methods and analysis.
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Figure D.3. The Intelligent Trial and Error Algorithm is robust to environmental changes. Each plot shows both the performance and required

adaptation time for Intelligent Trial and Error when the robot must adapt to walk on terrains of different slopes. (A) Adaptation performance on an
undamaged robot. On all slope angles, with very few physical trials, the Intelligent Trial and Error Algorithm (pink shaded region) finds fast gaits that

outperform the reference gait (black dotted line). (B) Adaptation performance on a damaged robot. The robot is damaged by having each of the six

legs removed in six different damage scenarios. Data are pooled from all six of these damage conditions. Themedian compensatory behavior found via

Intelligent Trial and Error outperforms the median reference controller on all slope angles. The middle, black lines represent medians, while the colored

areas extend to the 25th and 75th percentiles. In (A), the black dashed line is the performance of a classic tripod gait for reference. In (B), the reference

gait is tried in all six damage conditions and its median (black line) and 25th and 75th percentiles (black colored area) are shown. See Supplementary

Experiment S3 for methods and analysis.
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FigureD.4. The Intelligent Trial andErrorAlgorithm is largely robust to alternate choicesofbehaviordescriptors. (A, B) The speedof the compen-

satory behavior discovered by Intelligent Trial and Error for various choices of behavior descriptors. Performance is plotted after 17 and 150 evaluations

in panels A and B, respectively. Experiments were performed on a simulated, damaged hexapod. The damaged robot has each of its six legs removed in

six different damage scenarios. Data are pooled across all six damage conditions. As described in Supplementary Experiment S5, the evaluated behavior

descriptors characterize the following: (i) Time each leg is in contact with the ground (Duty factor); (ii) Orientation of the robot frame (Orientation);
(iii) Instantaneous velocity of the robot (Displacement); (iv) Energy expended by the robot in walking (Energy (Total), Energy (Relative)); (v) Deviation

from a straight line (Deviation); (vi) Ground reaction force on each leg (GRF (Total), GRF (Relative)); (vii) The angle of each leg when it touches the

ground (Lower-leg angle (Pitch), Lower-leg angle (Roll), Lower-leg angle (Yaw)); and (viii) A random selection without replacement from subcompo-

nents of all the available behavior descriptors (i-vii) (Random). For the hand-designed reference gait (yellow) and the compensatory gaits found by the

default duty factor behavior descriptor (green), the bold lines represent the medians and the colored areas extend to the 25th and 75th percentiles of

the data. For the other treatments, including the duty factor treatment, black circles represent the median, the colored area extends to the 25th and

75th percentiles of the data, and the colored circles are outliers. See Supplementary Experiment S5 for methods and analysis.
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Figure D.5. How the behavior performance map is explored to discover a compensatory behavior (normalized each iteration to highlight
the range of remaining performance predictions). Colors represent the performance prediction for each point in the map relative to the highest

performing prediction in the map at that step of the process. A black circle indicates the next behavior to be tested on the physical robot. A red circle

indicates the behavior thatwas just tested (note that the performance predictions surrounding it have changed versus the previous panel). Arrows reveal

the order that points have been explored. The red circle in the last map is the final, selected, compensatory behavior. In this scenario, the robot loses leg

number 3. The six dimensional space is visualized according to the inset legend.
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Figure D.6. How the behavior performance map is explored to discover a compensatory behavior (non-normalized to highlight that perfor-
mance predictions decrease as it is discovered that predictions from the simulated, undamaged robot do notworkwell on the damaged robot).
Colors represent the performance prediction for each point in the map relative to the highest performing prediction in the first map. A black circle indi-

cates the next behavior to be tested on the physical robot. A red circle indicates the behavior that was just tested (note that the performance predictions

surrounding it have changed versus the previous panel). Arrows reveal the order that points have been explored. The red circle in the last map in the se-

quence is the final, selected, compensatory behavior. In this scenario, the robot loses leg number 3. The six dimensional space is visualized according to

the inset legend. The data visualized in this figure are identical to those in the previous figure: the difference is simply whether the data are renormalized

for each new map in the sequence.
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Figure D.7. Intelligent Trial and Error works on a completely different type of robot: supplementary data from the robotic arm experiment.
(A) The robotic arm experimental setup. (B) Tested damage conditions. (C) Example of behavior performancemaps (colormaps) and behaviors
(overlaidarmconfigurations)obtainedwithMAP-Elites. Left: A typical behavior-performancemapproducedbyMAP-Eliteswith 5 examplebehaviors,

where a behavior is described by the angle of each of the 8 joints. The color of each point is a function of its performance, which is defined as having low

variance in the joint angles (i.e. a zigzag arm is lower performing than a straighter arm that reaches the samepoint). Right: Neighboringpoints in themap

tend to have similar behaviors, thanks to the performance function, which would penalize more jagged ways of reaching those points. That neighbors

have similar behaviors justifies updating predictions about the performance of nearby behaviors after a testing a single behavior on the real (damaged)

robot. (D) Performance vs. trial number for Intelligent Trial and Error and traditional Bayesian optimization. The experiment was conducted on

the physical robot, with 15 independent replications for each of the 14 damage conditions. Performance is pooled from all of these 14 × 15 = 210
experiments. (E) Success for each damage condition. Shown is the success rate for the 15 replications for each damage condition, defined as the

percentage of replicates in which the robot reaches within 5 cm of the bin center. (F) Trials required to adapt. Shown is the number of iterations

required to reachwithin 5 cm of the basket center. (G) Accuracy after 30 physical trials. Performance after 30 physical trials for each damage condition

(with the stopping criterion disabled). See Supplementary Experiment S1 for methods and analysis.
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Figure D.8. The effect of changing the algorithm’s parameters. (A) The shape of the Matérn kernel function for different values of the ρ pa-
rameter. (B) Performance and required adaptation time obtained for different values of ρ. For each ρ value, the R-BOA algorithm was executed

in simulation with 8 independently generated behavior-performance maps and for 6 different damage conditions (each case where one leg is missing).

(C) The number of controllers in the map affected by a new observation according to different values of the ρ parameter. (D) The precision
of the odometry value. The distances traveled by the physical robot, as measured manually (“real performance”) is compared to the measurements

automatically provided by the simultaneous location and mapping (SLAM) algorithm(“measured performance”). The dashed black line indicates the

hypothetical case where SLAM measurements are error-free and thus are the same as manual measurements. In (B), (C) and (D), the middle, black lines

represent medians and the borders of the shaded areas show the 25th and 75th percentiles. The dotted lines are the minimum and maximum values.

The gray bars show the ρ value chosen for the hexapod experiments in the main text. See Supplementary Methods for additional details and analysis.
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Figure D.9. ComparingMAP-Elites and random sampling for generating behavior-performancemaps. (A) The number of points in themap for
which a behavior is discovered. (B) Themean performance of the behaviors in themap. (C) Themaximumperformance of the behaviors in the
map. For all these figures, the middle lines represent medians over 8 independently generated maps and the shaded regions extend to the 25th and

75th percentiles, even for (A) and (B), where the variance of the distribution is so small that it is difficult to see. See Supplementary Experiment S4 for

methods and analysis.
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Here is a selection of five papers that represent the work presented in this HR. As the scientific content of this HR
is based on these papers, they share most of the text and figures.
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⇒ chapter .

• impact: PLoS One is of the main multi-disciplinary journals (impact factor 0: .0); this paper extends a
conference paper that won a best paper award at GO 0.
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rance).

Koos, S., Cully, A. andMouret, J.-B. (2013). Fast Damage Recovery in Robotics with the T-Resilience Algorithm. Interna-
tional Journal of Robotics Research. Vol 32 No 14 Pages 1700-1723.
⇒ chapter .

• impact: IJRR is the top journal in robotics (impact factor: .). is work has been covered by several news outlets
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