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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01254695


 
 

 

 

 

 

 

 

THÈSE 

Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES 

Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES 
(NENT) 

Arrêté ministériel : 7 août 2006 

 
 
 

Présentée par 

Luca Pirro 
 
 

Thèse dirigée par Sorin CRISTOLOVEANU et  
codirigée par Irina IONICA 

 
préparée au sein du Laboratoire IMEP-LAHC 
dans l'École Doctorale EEATS 

 
 
Caractérisation et modélisation 
électrique de substrats SOI 
avancés 

 
 

Thèse soutenue publiquement le 24 Novembre 2015, 
devant le jury composé de :  

Mme. Cristell MANEUX 
Professeur des Universités, Université de Bordeaux, Rapporteur 

M. Alexander ZASLAVSKY 
Professeur des Universités, Brown University, Rapporteur 

M. Jean-Pierre RASKIN 
Professeur des Universités, Université catholique de Louvain, Membre 

M. Frédéric ALLIBERT 
Docteur, Ingénieur R&D, SOITEC, Membre 

M. Gérard GHIBAUDO 
Directeur de Recherche au CNRS, IMEP-LAHC, Invité 

M. Sorin CRISTOLOVEANU 
Directeur de Recherche au CNRS, IMEP-LAHC, Directeur de thèse 

Mme. Irina IONICA 
Maître de Conférences, IMEP-LAHC, Co-encadrante de thèse 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 



  Acknoledgementes 

iii 

 

Acknowledgements 

I would like to thank all the members of the jury for the time spent to evaluate this work and attend my 

Ph.D defense. Their comments/remarks allowed me to further improve this manuscript and gave me 

interesting ideas for future research. Thank you, Prof. Cristell Maneux, Prof. Alexander Zaslavsky, Prof. 

Jean-Pierre Raskin and Dr. Frédéric Allibert. 

I would like to thank my supervisors, Prof. Sorin Cristoloveanu and Prof. Irina Ionica, for constant 

support and teaching. Thanks to them I have largely improved my professional knowledge. Moreover, I 

really appreciated the discussions and relations with them. 

I am also very grateful to Prof. Gérard Ghibaudo for constant support and help. Despite the fact I was 

not officially one of his Ph.D. students, he gave me several suggestions and these results were obtained also 

thanks to him. 

Particular acknowledges to Xavier Mescot and Martine Gri. Their help and support in the 

characterization laboratory were priceless. Without them this thesis would be of lesser quality. 

I would also like to thank all my colleagues at IMEP-LAHC (and not only). Special thanks to my 

office-mates in A-287. They helped me during these three years and they supported me during the difficult 

periods. Professional and personal discussions have been the key to this successful Ph.D. 

The SOI samples were provided by Soitec™. 

I would like to also thank Dr. Lukas Czornomaz, Dr. Vladimir Dijara and Dr. Jean Fomperyne from 

IBM for the collaboration with them in Ruschilikon (CH). In one month I learned a lot, and I had the chance 

to see a different working approach. It was very interesting for me. 

I would like to thank Dr. Julie Widiez, Mathilde Lemang and Sebastien Sollier from the CEA, for their 

collaboration on the characterization of III-V materials. 

There are a lot of other people who helped/supported me during this work (directly or indirectly). 

Even if their names are not present in this list, I really appreciated their help and working with them. To all 

of them I give my deepest and most grateful thanks. 

 

I was very lucky to meet and know all of you. Thanks! 

 

 

 



 

 

 

 

 

 

 

 

 

 



  Abstract/ Résumé 

v 

 

Abstract/Résumé 

Title: Electrical characterization and modeling of advanced SOI substrates 

Silicon-on-insulator (SOI) substrates represent the best solution to achieve high performance devices. 

Electrical characterization methods are required to monitor the material quality before full transistor 

fabrication. The classical configuration used for SOI measurements is the pseudo-MOSFET. In this thesis, 

we focused on the enrichment of techniques in Ψ-MOSFET for the characterization of bare SOI and III-V 

wafers. The experimental setup for static ID-VG was improved using a vacuum contact for the back gate, 

increasing the measurement stability. Furthermore, this contact proved to be critical for achieving correct 

capacitance values with split-CV and quasi-static techniques (QSCV). We addressed the possibility to extract 

Dit values from split-CV and we demonstrated by modeling that it is impossible in typical sized SOI samples 

because of the time constant associated to the channel formation. The limitation was solved performing 

QSCV measurements. Dit signature was experimentally evidenced and physically described. Several SOI 

structures (thick and ultra-thin silicon films and BOX) were characterized. In case of passivated samples, the 

QSCV is mostly sensitive to the silicon film-BOX interface. In non-passivated wafers, a large defect related 

peak appears at constant energy value, independently of the film thickness; it is associated to the native oxide 

present on the silicon surface. For low-frequency noise measurements, a physical model proved that the 

signal arises from localized regions surrounding the source and drain contacts. 

Keyword: Silicon-on-insulator (SOI), pseudo-MOSFET (Ψ-MOSFET), static ID-VG, split-CV, quasi-

static capacitance (QSCV), low-frequency noise (LFN), III-V materials. 

Titre: Caractérisation et modélisation électrique de substrats SOI avances 

Les substrats Silicium-sur-Isolant (SOI) représentent la meilleure solution pour obtenir des dispositifs 

microélectroniques ayant de hautes performances. Des méthodes de caractérisation électrique sont 

nécessaires pour contrôler la qualité SOI avant la réalisation complète de transistors. La configuration 

classique utilisée pour les mesures du SOI est le pseudo-MOFSET. Dans cette thèse, nous nous concentrons 

sur l’amélioration des techniques autour du Ψ-MOFSET, pour la caractérisation des plaques SOI et III-V. Le 

protocole expérimental de mesures statiques ID-VG a été amélioré par l’utilisation d’un contact par le vide en 

face arrière, permettant ainsi d’augmenter la stabilité des mesures. De plus, il a été prouvé que ce contact est 

essentiel pour obtenir des valeurs correctes de capacité avec les méthodes split-CV et quasi-statique. 

L’extraction des valeurs de Dit avec split-CV a été explorée, et un model physique nous a permis de 

démontrer que ceci n’est pas possible pour des échantillons SOI typiquement utilisés, à cause de la constante 

de temps reliée à la formation du canal. Cette limitation a été résolue un effectuant des mesures de capacité 

quasi-statique (QSCV). La signature des Dit a été mise en évidence expérimentalement et expliquée 

physiquement. Dans le cas d’échantillons passivés, les mesures QSCV sont plus sensibles à l’interface 

silicium-BOX. Pour les échantillons non passivés, un grand pic dû à des défauts d’interface apparait pour des 

valeurs d’énergie bien identifiées et correspondant aux défauts à l’interface film de silicium-oxyde natif. 

Nous présentons des mesures de bruit à basses fréquences, ainsi qu’un model physique démontrant que le 

signal émerge de régions localisées autour des contacts source et drain. 

 

Mots cles: Silicium-Sur-Isolant (SOI), pseudo-MOSFET (Ψ-MOSFET), statique ID-VG, split-CV, 

capacité quasi-statique (QSCV), bruit basse fréquence (LFN), semiconducteurs III-V. 
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Chapter I: 

General introduction 

Equation Section (Next) 

In this chapter, the recent trends in microelectronics will be presented. The interest on using silicon-

on-insulator (SOI) substrates will be pointed out. SOI fabrication process, typical properties, related defects 

and characterization methods are discussed. The general objectives of the thesis are detailed. 
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I.1 MOS transistors: state of art and trends 

The concept for a Field Effect Transistor (FET) was invented by Lilienfeld [1] in 1930. It did not 

immediately catch the attention of the research community and the idea was not applied until 1948, when the 

first device was fabricated at Bell Labs [2]. After the fabrication of the first integrated circuit (IC) in the 

1958 [3], the topic became hot and a lot of industrial companies and researches focused their attention on 

transistors. 

Nowadays, MOS transistors are the base of all the integrated circuits which constitute the electronic 

devices largely present in our life: computers, cars, phones, etc., leading to huge market place that changed 

our social behavior [4]. 

Metal-oxide-semiconductor field effect transistor 

The microelectronics world is based on simple devices that can operate together to compute complex 

functions. In general, these devices are classified according to their operation principle. We focus here on the 

metal-oxide-semiconductor field effect transistor (MOSFET), the primary device for circuits. 

Figure I-1a shows the structure. It is easier to analyze it along the vertical (x) and horizontal (y) axis 

separately [5]: 

o Along the x-axis we have a metal-oxide-semiconductor (MOS) structure. The semiconductor is 

typically nearly doped silicon (in the example, it is p-type, thus a n-MOSFET is obtained). On top of 

it, a silicon-dioxide layer is fabricated and serves as gate oxide. A conductive gate is placed on the top 

interface of the SiO2. The gate bias VG controls the electronic bands bending in the silicon, at the 

interface with the gate oxide. A conduction channel made of electrons is induced if VG > VT (threshold 

voltage). For low values of gate bias, no free carriers are present in the channel; 

o Along the y-axis two highly doped regions (source and drain) are made by implantation of the silicon 

next to the conduction channel. Considering the case of p-type silicon film, the source and drain 

contacts are n++ type. The source is grounded, while a bias is applied on the drain side (drain bias, VD). 

For VG << VT, no carrier flow is possible and the transistor is off. For gate bias values higher than the 

threshold voltage, a large current of electrons flows between source and drain contacts (drain current, 

ID), making the device “on”. 

Figure I-1b shows a schematic of drain current in logarithmic scale versus gate bias for standard n-

type transistor. The characteristic has a clear switch behavior. Three regions related to the state of the device 

can be identified: 

o Off-state: VG << VT and no current flow is possible. The current measured for VG = 0, labeled Ioff, 

governs the static power consumption. The off-state current has to be as small as possible to reduce 

power dissipation [5]; 

o On-state: for VG > VT the conduction channel is completely created. The measured drain current at 

given VG and VD is labeled Ion; 
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o Subthreshold region: the channel starts to be created, but it is not yet complete. The slope of the ID in 

logarithmic scale versus VG (identified as subthreshold swing, Ss = 1/slope) defines the speed at which 

the device can switch between on-state and off-state. High transistor performances are obtained for 

steep slope (fast on-off transition) [5]. 

 (a) (b) 
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Figure I-1: (a) Schematic view of n-type MOSFET [5]. (b) Example of drain current in logarithmic scale versus 

gate bias for n-MOSFET. 

One of the main advantages of MOSFET is the possibility to co-integrate p-type and n-type devices on the 

same substrate, thanks to the use of implanted wells (CMOS technology) (Figure I-2). This allows the 

fabrication of integrated logic circuits which are small and fast. 

Conduction

Channel

 

Figure I-2: Example of co-integration of p-type and n-type bulk MOSFET [6]. 

Microelectronics trends 

The transistor scaling down and performance improvements are the main topics of microelectronics 

industry and research. The mainstream is defined by the well-known “Moore’s law” [7]: every decade of 

technology evolution corresponds to an extra order of magnitude in transistor density (Figure I-3). In order to 

drive the microelectronics research & development, the International Technology Roadmap for 

Semiconductors (ITRS) presents the state-of-art and provides guidelines and targets for the following years. 

Today the fabricated transistors have 22-30 nm gate length. The last updated report of IRTS in 2014 predicts 

that the logic industry will have transistors with sub-10 nm gate length in 2017 (7 nm node) [8]. 



  Chapter I: General introduction 

5 

 

 

Figure I-3: Evolution of microprocessor transistors count (Moore’s law) [7]. 

However, physical limitations can compromise the device scaling down and limit the MOSFET 

performances: 

o The decrease of the gate oxide thickness leads to an exponentially increase of the leakage current 

through the oxide (gate current, IG) with consequent loss of transistor-like behavior [9]; 

o Decreasing the MOSFET dimensions, mobility degradation is due to limitations of fabrication process 

[10], [11]. The mobility degradation is smaller structures drastically limits the transistor speed; 

o In high quality Si-SiO2 interface, the subthreshold slope is not controlled by the transistor dimensions 

but is mainly a function of the temperature. Thus, at room temperature in the best case (SOI) it can be 

≈ 66 mV/dec [5]. To obtain faster on-off transitions, new device architecture are demanded; 

o Short-channel effects (SCE): around source and drain contacts, depletion regions are present [5]. 

When the device becomes smaller, the two depleted regions can overlap, leading to loss of 

electrostatic control of the gate bias. In order to fabricate faster and smaller transistors, new 

architectures are required such as multi-gate (MG) structures. 

Several solutions were proposed to overcome the problems, such as the replacement of polyscristalline Si 

used as gate with metal [12], the use of high-κ dielectric material instead of silicon-dioxide [13], the 

replacement of the silicon channel with new materials with high performances [14], [15], etc. Table I-1 

reports the challenge for near-term 2013-2020 according to ITRS predictions. 

 

 

 

 



Chapter I: General introduction 

6 

 

Near-Term 

2013-2020 

Summary of Issues 

Scaling Si CMOS  Scaling of fully depleted SOI and multi-gate (MG) structures 

 Implementation of gate-all-around (nanowire) structures 

 Controlling source/drain series resistance within tolerable limits 

 Further scaling of EOT with higher κ materials (κ > 30) 

 Threshold voltage tuning and control with metal gate and high-κ stack 

 Inducing adequate strain in advanced structures 

Implementation of 

high-mobility CMOS 

channel materials 

 Basic issues same as for Si devices listed above 

 High-κ gate dielectrics and interface state (Dit) control 

 CMOS (n- and p-channel) solution with monolithic material integration 

 Epitaxy of lattice-mismatched materials on Si substrate 

 Process complexity and compatibility with significant thermal budget 

limitations 

Table I-1: Near-term 2013-2020 challenges defined by ITRS 2013. Table adapted from the document [8]. 

The short-channel effects that strongly affect the performances of small devices can be limited by 

particular transistor architectures. Two main ways were explored: 

o STMicroelectronics®, Samsung® and GlobalFroundries® moved to MOSFET fabricated on silicon-

on-insulator (SOI technology) (Figure I-4a). Fully-depleted (FDSOI) transistors lead to several 

practical advantages like the reduction of short-channel effect [16], [17], the possibility to use multiple 

threshold voltage [18], [19] and the capability to achieve high performances (e.g., avoid mobility 

degradation) [20]–[22]. The transistor structure is still planar (i.e., the conduction channel is on a two-

dimensional planes, as in Figure I-1a); 

o Fin-shaped FET, called FinFET, is the architecture adopted by Intel®, Samsung®, TSMC and Global 

Foundries (Figure I-4b). In this case the gate surrounds 3 sides of the silicon film which acts as 

conduction channel (3D structure). This allows a better electrostatic control. However, the fabrication 

process is very different to the planar structure and huge economic effort was required to implement it. 

Note also that the FinFET fabrication is easier on SOI substrate [5]. The use of SOI improves the 

electrostatic isolation of the conduction channel and decreases the leakage current [6]. The feasibility 

and the interest of FinFET on SOI is documented in [23]–[27]. 

Hence, independently of the implemented MOSFET architecture (planar or 3D), it is clear that SOI 

substrates are superior for improving device performances. Thus, in this thesis we focus on SOI technology 

and, in the next sub-sections, after showing the schematic of SOI structure, a description of the main 

advantages and drawbacks arising from the use of SOI technology will be presented. 
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 (a) (b) 
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Buried

Oxide Active
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Figure I-4: (a) Example of p-type and n-type MOSFET co-integrated using silicon-on-oxide substrate [6]. (b) 

FinFET structure [28]. 

Silicon-on-insulator structure 

The SOI substrate is a multi-layer stack with a top silicon film, that acts as active layer for the devices, 

a buried oxide (BOX) used to isolate the active layer from the substrate and a low-doped p-type substrate 

used as mechanical support of the structure [6] (see Figure I-5). 

Silicon film

Substrate

Buried Oxide (BOX)

 

Figure I-5: Schematic of silicon-on-insulator (SOI) substrate. 

Advantages of SOI technology 

In MOSFET on bulk silicon (see Figure I-2) the conduction channel is confined close to the oxide 

interface. Most part of the thickness of the silicon substrate is not used but it is subject to parasitic effects 

such as current leakage, latch-up. Placing an oxide (called BOX or buried oxide) between the active layer 

and the substrate (see Figure I-4a), the conduction channel is isolated from the substrate, improving the 

transistor characteristics. This is the key point of SOI technology. Examples of benefits are: 

- Reduction of parasitic capacitances; for example capacitances between source/drain contacts and the 

substrate are drastically reduced thanks to the presence of the BOX. Hence, devices fabricated on SOI 

work at higher frequencies than bulk technology [6]; 

- Reduction of short-channel effects: the surfaces of the source and drain junctions are now defined by 

the silicon film thickness. Thus, the depletion regions are spatially limited by the presence of the 

buried oxide and consequently they are reduced compared to a MOSFET on bulk silicon. In case of 

FDSOI, the gate has a better electrostatic control on the channel [16], [17]; 
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- Improved device isolation: the buried oxide leads to better device isolation. Thus, phenomena like 

latch-up disappear leading to higher fabrication density [29]; 

- Improvement of subthreshold swing: in FDSOI devices, the depletion region is confined in the top 

silicon film leading to smaller associated capacitance. Hence, the slope of drain current in weak 

inversion is improved. Values close to the theoretical 66 mV/dec can be achieved at room temperature 

[30], [31]. This allows the use of smaller threshold voltage and operating voltage, thus reducing the 

power consumption [32], [33]; 

- Immunity against radiations: devices fabricated on SOI substrate are less affected by external 

radiations. Since the active layer (top silicon film of the SOI structure) is isolated from the bulk 

substrate by the buried oxide, the impact of transient effects or ionization phenomena are drastically 

attenuated [30]. 

Issues with SOI technology 

Despite the large numbers of advantages associated to SOI substrates, some drawbacks are still 

present: 

- SOI quality: device performance improvements are obtained only in case of high quality SOI 

substrates. Thus, the carrier mobility in the silicon film has to be high and the density of defects low at 

silicon film-BOX interface; 

- Production costs: SOI substrates are more expensive than bulk silicon. However, their use for mass 

production decreases the impact of the substrate price on the IC; 

- Interface coupling: in FDSOI device, two silicon-SiO2 interfaces are present: one between the 

conduction channel and gate oxide, and the second one between the Si layer and the buried oxide. In 

case of ultra-thin silicon films, electrical coupling can be present between the two interfaces. The 

models to describe the characteristics have to be adapted to the FDSOI case; 

- Floating-body effect: the holes present in the channel are confined by the buried oxide and cannot be 

evacuated, affecting the device performances. An example is the enhancing of leakage current [34]–

[36]; 

- Self-heating effects: the buried oxide has smaller thermal conductivity than bulk silicon material. Thus, 

for high current flow, the generated heat remains confined in the conduction channel decreasing the 

device performances. The problem is negligible for dynamic operation of the device [37]. 
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I.2 SOI substrates 

SOI fabrication 

The SOI technology started with Silicon-on-Sapphire wafers (SOS) [38]. SOS substrates improved the 

resistance of the integrated circuits against radiations. Consequently, this technology was very appealing for 

space and military applications. However, the high fabrication costs and insufficient crystal quality limited 

the market. 

A step forward was the fabrication of devices on implanted oxygen layer which formed an insulating 

film under the transistor [39]. This opened the way to new fabrication processes like Separation by 

Implantation of Oxygen (SIMOX) [40], Bond-and-Etch-Back SOI (BESOI) [41] and Epitaxial Layer 

Transfer Wafer (ELTRAN) [42]. However, the interface quality was not high enough to introduce the SOI 

substrates in large-scale market. 

The development of Smart-Cut™ process [43] completely changed the SOI production. Today, the use 

of this technology allows the highest quality of silicon-on-insulator substrate [44]. 

The main steps involved in the Smart-Cut™ fabrication process are (see Figure I-6): 

o Two silicon wafers are required: a ‘donor wafer’ labeled A and a ‘handle wafer’ B; 

o Thermal oxidation is performed on the wafer A, to growth SiO2, that will be the BOX of the final SOI 

substrate. The oxidation process allows a precise control of SiO2 quality and thickness; 

o Hydrogen implantation is performed through the fabricated oxide. This induces micro-cavities that 

define the future plan of fracture (dash line in Figure I-6 at step 3_oxidation); 

o The donor and handle wafers are cleaned. The surfaces are made hydrophilic; 

o The two wafers are put in contact and annealed, in order to increase the pressure of hydrogen 

molecules in the micro-cavities. This leads to H2 propagation which induces an horizontal fracture in 

the wafer A; 

o The two wafers are thus separated. The wafer B is now an SOI substrate suitable for device 

fabrication, while the wafer A can be reused for another SOI fabrication process. 

 

The Smart-Cut™ technology has several advantages which justify its industrial interest: 

- Low density of defects is present at the interface between the top silicon film and BOX; 

-  High quality silicon films are obtained; 

- Conventional implantation and annealing tools are used; 

- The top silicon film and BOX thickness can be easily adjusted to the wanted values. 
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Figure I-6: Schematic of Smart-Cut™ process for SOI fabrication [45]. 

SOI characterization 

SOI substrates are clearly an asset for high quality devices but they must be of high quality. The huge 

fabrication progress achieved thanks to Smart-Cut™ leads todays to excellent quality substrates. However, 

as expressed by ITRS report, further developments on the SOI characterization (and monitoring) are required 

for two reasons [8]: 

- Support the research and drive the next improvements on the fabrication processes; 

- Monitor the fabricated substrates and their quality during mass production. 

Structural characterization techniques for SOI substrates can be divided into two groups, according to 

their capability to investigate geometrical dimensions or defects of the material. The characterization of SOI 

substrates is more complex than standard bulk silicon. The presence of a supplementary oxide (the BOX) 

with an additional Si-SiO2 interface requires adapted characterization methods and new approaches when the 

standard techniques fail. 

Focusing on the geometrical dimensions, the key properties which require very accurate measurements 

are: 

- BOX and silicon film thickness: a small variation of their values drastically affects the electrical 

performances of the fabricated devices. Thus, they are monitored with variable-angle single-

wavelength reflectometry, single-wavelength ellipsometry and spectroscopic ellipsometry [30], [46]; 

- Wafer flatness is mandatory to make the SOI substrate compatible with all the tools required for 

MOSFET fabrication (especially for lithography steps). 
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Structural defects are also present in the SOI substrate and they can degrade the performance of the 

future transistors [33]. The most important are (see the schematic in Figure I-7): 

- Dislocations and stacking faults are found as in standard bulk silicon; 

- Surface roughness: it is a critical parameter because it can decrease the breakdown voltage on the 

fabricated device; 

- Voids can be present at the BOX interface especially due to dust. Today this type of defects is very 

rare; 

- “Pipes”: are conductive vias which can be present in the oxide or in the silicon film. They act as a 

parallel resistor, increase the off-current and reduce the device immunity against radiations; 

- Metal or alkaline ions contaminations: they can affect the fabrication process (metal contaminations) 

or the electrical properties of the structure (alkaline ions contaminations). They decrease the minority 

carrier lifetime and the mobility; 

- The level of residual oxygen or carbon in the silicon film: Ioff is increased and the breakdown voltage is 

decreased if these impurities are present; 

- Fixed charges in the BOX: they affect the transistor threshold voltage and the leakage current; 

- Interface traps density (Dit): these defects are due to the silicon-silicon dioxide interface and they can 

limit the electric properties of the transistor: poor subthreshold swing and low carrier mobility. 

All these defects have to be minimized in a high quality SOI substrate. This is possible only improving 

the fabrication processes and monitoring the SOI production. Some examples of characterization methods for 

structural aspects of SOI are: AFM (Atomic Force Microscope), TRXF (Total Reflection at X Fluorescence) 

and SIMS (Secondary Ion Mass Spectroscopy). 

Silicon film

Substrate

BOX

Surface 
Roughness

“Pipes”

Contaminations + Fixed 
charges

Interface traps 
(Dit)

 

Figure I-7: Example of defects on SOI structure. 
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Electrical characterization 

The SOI substrate serves to fabricate a MOSFET and if the SOI substrate is low quality, the final 

transistor will have poor performance. Thus, the key point is to evaluate the electrical impact of the listed 

defects. The best configuration to electrically characterize a bare SOI wafer without fabrication of the entire 

device is the pseudo-MOSFET [6]. 

I.3 Objectives and organization of the thesis 

The previous section clearly showed the necessity to electrically characterize the SOI substrates after 

their fabrication and before the transistor production. The pseudo-MOSFET (see Sec. II.2) is the solution 

used ever since 1992. Its capability to measure carrier mobility and interface traps density was proved using 

ID-VG curves [6]. However, the reduction of the top silicon film and BOX thicknesses complicates the 

characterization and new techniques are required [46]–[52]. 

The objective of this thesis is to enrich the characterization techniques suitable for bare SOI substrates 

in pseudo-MOSFET configuration, mostly focusing on the investigation of the quality of the interface 

between the top silicon film and the BOX: 

o Chapter II reviews the pseudo-MOSFET principle. The importance of measurement setup will be 

largely detailed. Some precautions on the setup will provide their benefits for stable and reproducible 

ID-VG analysis. The possibility to characterize new materials like InGaAs will be addressed. 

o In Chapter III, the split-CV technique will be revisited. The capability to measure the effective carrier 

mobility with split-CV was already proved [53], [54]. Some aspects concerning the die surface which 

contributes to the whole signal are here clarified. The possibility to extract the interface traps density 

will be discussed from experimental and modeling point of view. 

o Chapter IV presents the quasi-static capacitance measurements performed for the first time on bare 

SOI wafers to achieve interface characterization. After discussing the measurement setup, a physical 

model will be derived and validated in different configurations. A suitable procedure to compute 

interface traps density will be presented, tested and applied to characterize several SOI geometries, 

from thick to ultra-thin films and BOXs. 

o The low-frequency noise measurements performed in pseudo-MOSFET configuration will be 

addressed in Chapter V. This technique was expected to allow the characterization of interface traps 

density. Diab et al. [55] already applied it in pseudo-MOSFET configuration but the extracted values 

of traps were not realistic and required explanations. Thanks to modeling, we explain the previous 

results. The capability to extract Dit in Ψ-MOSFET is discussed through model and experiments. 

o Chapter VI summarizes our results and addresses perspectives for future work. 

 

 

 

 



 

 

Chapter II: 

Pseudo-MOSFET for SOI characterization 

Equation Section (Next) 

This chapter presents the characterization of bare SOI wafers performed using static drain current 

measurements in pseudo-MOSFET configuration. The principle of operation and measuring setup will be 

discussed. The impact of the quality of back contact and the role of the probes on the characteristics will be 

addressed. The characterization of III-V layers at different fabrication steps (from bulk material to fully 

fabricated device) is also shown. 
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II.1 The state-of-art in SOI electrical characterization 

Accurate electrical characterization techniques are required to monitor the SOI material quality before 

pursuing device fabrication process. High transistor performances can be expected only if the carrier 

mobility in the top silicon film is high and the density of defects at Si film-buried oxide interface is low. In 

this context, we review here the electrical methods for SOI. 

The simplest way to investigate the electrical properties of a material is the 4-probe resistivity 

measurement. In case of SOI, four needles are directly placed on the top surface of the Si film. A current I is 

imposed between the two external probes and the potential difference between the two inner probes is 

measured (ΔVdiff) (Figure II-1). Knowing the inter-probe distance (d), it is possible to directly compute the 

material resistivity [56]: 

 diffV
2 d F

I


       (II.1) 

where F is a correction factor taking into account the probe location with respect to the sample edges, the 

sample thickness and the probe diameter. Equation (II.1) is only valid if all the needles have the same inter-

probe distance d [56]. In case of large semiconductor samples, where the probes are placed far from the 

edges and in-line configuration is used (see Figure II-1), Eq. (II.1) can be re-written as a function of the sheet 

resistance RSH: 

 diff
Si Si SH

V
4.532 t t R

I


       (II.2) 

where tSi is the silicon film thickness. The carrier mobility can be determined if the doping level is known. 

However, with this configuration the interface traps density, that qualifies the quality of the BOX-film 

interface, cannot be measured. 

432



d d d

 

I I

1

In-line probe configuration

 

Figure II-1: 4-probes measurement on infinite layer. 4 in-line needles are used. 
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To overcome these limitations, a new method for SOI structure was proposed in 1992: the so-called 

pseudo-MOSFET (Ψ-MOSFET) (see Figure II-2a) [47], [57]. The silicon substrate is biased and used like a 

gate to create a conduction channel at the interface between the top Si and SiO2 layers. Two probes with 

controlled pressure are directly placed on the top silicon surface to access the channel; they act as source and 

drain contacts. The structure is an upside-down MOSFET. Thus, the same characterization techniques 

classically used for standard MOSFET can be adopted to measure carrier mobility and Dit in SOI substrate. 

There are two key issues with Ψ-MOSFET: 

1 The dimensions of the conduction channel are generally not well defined; 

2 The quality of the source and drain contacts and therefore the access resistance is dependent on the 

probe penetration into the silicon film. Thus, they are sensitive to the pressure applied on the probes. 

A variant of the standard Ψ-MOSFET technique was proposed in 1997: the HgFET [58]. In this case, 

Hg circular contacts in Corbino configuration were used instead of adjustable pressure probe (see Figure 

II-2b). The channel geometry (length, width) is now clearly identified. However, in order to obtain good 

ohmic contacts, the silicon surface has to be cleaned to remove any existing oxide, such as the native oxide 

on the top silicon film. Furthermore the characterization will be time dependent because the contacts quality 

evolves in time. 

Another possibility to characterize SOI substrates is to deposit metal contacts (source and drain) on the 

top of the silicon film (see Figure II-2c) [59], [60]. In this case the channel dimensions are also well defined. 

However, the configuration has several drawbacks: it requires fabrication steps, the contacts may not be 

ohmic, making the extraction procedure more complex. 

In order to avoid contact related issues or uncertain channel definition, Ionescu et al. [61] and Van 

Den Daele et al. [62] merged the standard pseudo-MOSFET configuration with the 4-probes technique. This 

made the configuration pressure independent, leading to the characterization of ultra-thin SOI structures [62]. 

However, the interface traps density could be determined only through simulations. 

Among all these variants, the standard pseudo-MOSFET with pressure probes remains the most 

suitable configuration for the characterization of bare SOI wafers, because it does not need fabrication steps 

for the contacts and it adapts easily to any type of measurement already existing in MOSFETs. We will see 

in the next sections and chapters how the use of optimized measurement setup and different techniques can 

lead to parameter extractions, suitable for SOI quality monitoring. 
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 (a) (b) (c) 

  

Drain
Drain

Source
   

Figure II-2: (a) SOI structure characterized using standard pseudo-MOSFET configuration [47]. (b) Top view of 

HgFET contacts [63]. SOI wafer with fabricated source and drain contacts [64]. 

II.2 Principle of Ψ-MOSFET and parameter extraction methods 

A detailed description of the Ψ-MOSFET and extraction methods for electrical parameters (μ, Dit) 

from ID-VG characteristics will be provided in this section. 

Sample preparation (between film and BOX via the sidewalls) 

The pseudo-MOSFET configuration with pressure probes does not need contact process. Nevertheless, 

in order to avoid parasitic leakage currents, the SOI wafer needs a lithography step followed by etching to 

create square silicon islands (mesas) separated by 2 mm oxide (Figure II-3a). L is the side size of a mesa. 

These mesas define the dies or the tested regions on the SOI. Most of the analyses were performed on 

structures with 25 mm2 effective area (i.e., the mask size was 5 mm x 5 mm). However, other areas are 

available: 4.4 mm2, 9.6 mm2, 16.8 mm2 and 65.6 mm2. Their use for some specific tests will be clearly 

indicated in the manuscript. 

Figure II-3b shows the vertical cross-section of a silicon island. The Si thickness will be labeled tSi. It 

is non-intentionally doped (NID) p-type: Na ≈ 5·1014 cm-3. Two kinds of samples with different top interface 

quality were available: 

o Passivated samples: the top silicon surface is covered with 4 nm dry silicon dioxide; 

o Non-passivated samples: native oxide is present on the top of the Si layer. 

The buried oxide will be labeled BOX and its thickness tOX. The substrate of the SOI structures is 

made of p-type NID silicon. 
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Figure II-3: (a) Top view of the SOI wafer after etching process. L x L isolated mesas separated by 2 mm distance 

were obtained. (b) Vertical cross-section of a SOI island. 

Operation principle 

The electrical characterization was achieved using probe stations. Ψ-MOSFET is commonly 

performed using the adjustable pressure probe station from Jandel®. Four in-line needles with 1 mm inter-

distance are present. The pressure (p) can be precisely controlled between 0 g and 100 g, for each probe. 

Since we have no direct information concerning the effective surface where p is applied, the word “pressure” 

may sound incorrect. However, note that it is just a reference to better adjust (and repeat) the probe 

penetration into the silicon film and no direct physical meaning is given to p magnitude. The probe radius 

typically used was 40 μm. The probe was made of WC. 

Manual probe stations with micromanipulators can be also used, but the pressure cannot be precisely 

controlled. 

In the following pages the principle to perform static drain current measurements (ID-VG and ID-VD) 

will be explained. The particular setups required for capacitance or low-frequency noise measurements will 

be detailed in the corresponding chapters. 

The SOI wafer is placed on a metallic chuck. Assuming that the top silicon film is grounded, the SOI 

substrate is polarized by VG applied through the chuck and it acts as a gate. 

For VG = 0 V, the electronic bands of the top silicon layer are already bent due to the different Fermi 

levels between the gate and the top Si film, to Dit and to fixed charges in the BOX. The flat band condition is 

achieved for VG = VFB (flat-band voltage). For VFB < VG < VT, the electronic bands bend down with respect to 

the flat band condition, depleting the p-type Si film. Beyond VT (threshold voltage), a conduction channel 

made of electrons is obtained (Figure II-4a). In case of VG < VFB, the conduction channel will be made of 

accumulated holes (electronic bands bent upwards) (Figure II-4b). 
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Figure II-4: SOI structure with positive (a) and negative (b) gate biases applied. Hole and electron channels are 

induced, respectively. 

To perform current measurements, one of the two adjustable pressure probes placed on the silicon 

surface will act as drain, while the second one will be grounded. For symmetry reasons, the two probes have 

the same pressure. p is a major parameter to achieve good characteristics: if it is too small, Schottky barriers 

are obtained. In case of too large pressures, the probes can reach the BOX, damaging it and making the die 

not suitable for any further analysis [65]. 

The drain current (ID) between the source and the drain contacts is obtained applying a bias  

(VD > 0 V). 

The first step is to verify if the contacts are Schottky or ohmic. In Figure II-5a, the drain current is 

measured as a function of VD in case of positive (VG - VT > 0 V, plain symbols) and negative (VG - VFB < 0 V, 

empty symbols) overdrive gate voltage. Linear ID-VD dependency is found in both cases confirming the 

presence of ohmic contacts for both electrons and holes. Most of the extraction techniques (such as ID-VG or 

low-frequency noise) require measurements in the linear region, where VD has no impact on the extracted 

parameters. However, to avoid parasitic effects due to too large electric field in the channel, we always used 

drain bias between 100 mV (low-frequency noise analysis) and 200 mV (static ID-VG) (see again Figure 

II-5a). 

For material parameter extractions, ID-VG measurements are required. Figure II-5b shows an example 

of ID measured as a function of gate bias (empty symbols). Since the source and drain are metallic (instead of 

highly doped regions as in MOSFET) electrons (for VG > 0) and holes (for VG < 0) can be collected. The 

analysis of both types of carriers is therefore possible. 

The transconductance (gm = dID /dVG) as function of gate bias (line) is also traced in Figure II-5b. The 

shape is similar to the one in MOSFETs. 
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Figure II-5: (a) ID versus VD performed on the same die in case of positive (plain symbols) and negative (empty 

symbols) overdrive bias. (b) Drain current (empty symbols) and transconductance (line) as a function of gate 

bias. The SOI structure had 88 nm top silicon film thickness and 145 nm BOX thickness and it was non-

passivated.  

Parameter extraction procedure 

In case of fabricated transistors with width W and length L, the drain current measured in linear regime 

is directly proportional to the applied VG and VD [5]: 

  D OX eff G T D

W
I C V V V

L
       (II.3) 

where COX indicates the gate oxide capacitance defined as εOX/tOX, with εOX the oxide permittivity. The 

effective mobility μeff takes into account the first order attenuation factor θ1 due to access resistance RSD 

impact [56]: 

 
 

0
eff

1 G T1 V V
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where μ0 is the low-field mobility. The transconductance gm is defined as: 
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  (II.5) 

To extract the low-field carrier mobility from ID-VG characteristics, erasing the effect of access 

resistance, the Y function method is largely used in MOSFET [66]. Using Eqs. (II.3) and (II.5), the Y 

function can be written as: 

  D
0 OX D G T

m

I W
Y C V V V

Lg
        (II.6) 
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The same equations are valid also in Ψ-MOSFET with two adjustments: 

- The W/L ratio is defined by the so called geometrical factor fG obtained by comparison of 4-probes and 

two needles configuration [47]: 

 
G

W
f 0.75

L
   (II.7) 

Recent works have shown that small die areas could lead to fG variation [67]–[69]. In this work, large 

dies with respect to the inter-probe distance were used to avoid geometrical factor incertitude [70]. 

They will be detailed in the next section. 

- In case of VG < 0 V, a hole channel is induced (Figure II-5). The same equations remain valid but VFB 

must replace VT; μ0 and μeff represent the hole mobility. 

 

Figure II-6a presents the Y function computed from the data in Figure II-5b. In strong inversion (or 

accumulation) regime, the Y function is linearly dependent with respect to VG (Eq. (II.6)).From the linear fit, 

the intercept with the x-axis yields VT or VFB, while the slope is directly proportional to the square root of the 

low-field mobility. 

As for MOSFET, the attenuation factor θ is defined as [66]: 
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 (II.8) 

θ should be constant in strong inversion (or accumulation) regime (see Figure II-6b) and the limit to high 

gate bias values leads to the calculation of the first-order attenuation factor θ1. This allows the computation 

of the access resistance [66]: 
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Figure II-6: (a) Y function versus gate bias (data from Figure II-5a). The slope of the linear fit allows μ0 

calculation, while the intercepts with the x-axis lead to VT and VFB, respectively. (b) θ as a function of VG; in 

strong inversion regime the constant value θ is θ1. 
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The slope of ID in logarithmic scale versus gate bias under threshold voltage (or VG > VFB for holes 

channel) leads to the subthreshold swing (Ss) which gives access to Dit (interface traps density) [5]: 

 Si it
s

OX

C q Dk T
S 2.3 1

q C

  
    

 
 (II.10) 

where the top silicon film capacitance is CSi = εSi/tSi. εSi is the silicon permittivity. Note that in SOI structures, 

two interfaces are present: one between the top silicon film and the BOX (called bottom interface) and a 

second one at the top surface of the silicon film (called top interface). Both of them can contribute to Dit via 

coupling effects. In case of thick tSi, the coupling is low and Dit is dominated by the contribution of the 

bottom interface. In ultra-thin silicon layers (< 20 nm) stronger coupling is present and Dit gives an effective 

value of the contribution of both interfaces. Some models [49], [71], based on the double gate approach [72], 

were proposed to separate the defects contribution coming from the top silicon film-BOX interface and the 

traps placed on the surface of the Si layer. 

Before applying these extraction procedures to evaluate material properties (μ0, VT, VFB, Dit, etc.), we 

must define the best measurement setup and experimental parameters. 
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Figure II-7: Drain current in semi-logarithmic scale versus gate bias. The slopes of the linear regions lead to the 

estimation of subthreshold swing for holes and electrons. Same data as in Figure II-5a. 
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II.3 Impact of measurement 

In this section we discuss the precautions on the measurement setup that may reduce parasitic effects. 

The importance of choosing good measurement times is presented in Sec. II.3.1. The role played by the back 

contact is addressed in Sec. II.3.2, while the impact of adjustable pressure probes on the characteristics is 

pointed out in Sec. II.3.3. Section II.3.4 shows the role of the quality of the top silicon film surface. 

II.3.1 Measurement time setup 

In order to avoid transient effects and reduce noise, some measurement parameters have to be 

optimized [33]: 

o Hold time: it is the time before starting the first measurement point and it must be long enough so that 

the structure is in equilibrium conditions at the beginning of the characterization. Used values range:  

1-100 s; 

o Delay time: it is the time between two consecutive measurement points and it must be long enough to 

avoid any transient effects due to out-of-equilibrium state. A too long delay time can stress the device. 

All our measurements were obtained using a delay time between 0.4 s and 2 s. 

o Integration time: the value obtained for each bias point is computed by integrating several 

measurements performed by the instrument at the same biasing condition. “Short” integration time 

means very short integration time range. The analysis is fast but usually the curves are noisy due to 

trapping/detrapping phenomena induced by surface defects. The use of “long” integration time reduces 

the noise on the characteristics becaue the structure is close to equilibrium condition; but the 

measurement is more time consuming. In this work, “medium” integration time was used for SOI 

structure with tSi = 88 nm, while “long” integration time was adopted in case of ultra-thin Si layers (tSi 

< 20 nm). 

II.3.2 Quality of back contact 

In Ψ-MOSFET configuration, VG is directly applied on the structure through the chuck. Hence, the 

quality of the “back contact” (contact between the back of the SOI substrate and the metallic chuck) may 

affect the obtained characteristics. This problem never arises in case of fully fabricated transistors, because 

metallic contacts are used. 

Two different cases will be investigated: 

o Air contact: the wafer is just placed on the metallic chuck. No particular precautions are used to 

improve the contact; 

o Vacuum contact: a vacuum system is used to “stick” the SOI to the metallic surface. This avoids any 

possible parasitic contributions due to poor contact. 
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Figure II-8a shows the drain current versus gate bias on SOI structure with 88 nm top silicon film 

thickness and 145 nm BOX thickness. The top surface was non-passivated. The characterization was 

performed with (empty symbols) and without (plain symbols) vacuum system. The results obtained on SOI 

structure with the same tOX but thinner silicon layer (12 nm) are presented in Figure II-8b. Variation of VT and 

Ss are obtained in both cases, and there are stronger for the thinner silicon film. Vacuum system will be 

always used to avoid parasitic effects. In the chapter of split-CV measurements we will show that the 

vacuum contact is even more critical. 
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Figure II-8: Measured drain current versus gate bias in 88 nm (a) and 12 nm (b) thick SOI film. The buried 

oxide was in both cases of 145 nm and the top surface non-passivated. Analysis performed without (plain 

symbols) and with (empty symbols) vacuum for the back contact. 

II.3.3 Role of the probes 

The probes have an important role on the obtained Ψ-MOSFET characteristics. It was proved that RSD 

is directly related to the probe pressure [65]. Furthermore, the probe position on the silicon surface can affect 

fG value [67], [68]. Several aspects will be addressed to clarify these effects and how they limit the 

extraction. 

Probe choice 

The Jandel® station has four in-line probes. In Ψ-MOSFET configuration only two probes are used, 

thus it is possible to choose among the four needles. We mainly considered the case with d = 1 mm. 

Figure II-9a shows the measured ID as a function of VG using different needles. Curves match for low 

VG but for very large gate bias some differences are present. In this region, RSD (which is probe related) 

becomes relevant, inducing ID variations. The corresponding Y functions are shown in Figure II-9b. The 

impact of access resistance is removed in this case (see Eq. (II.6)) and the curves superpose. Thus, the choice 

of the probe is not critical in case of ID-VG characterization analyzed using the Y function. 
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Figure II-9: Measured drain current (a) and Y function (b) versus gate bias on the same SOI structure as in 

Figure II-8a. Different combinations of probes were used for the analysis. The inter-probe distance was kept 

constant to 1 mm. 

Probes position 

Border effects influence the pseudo-MOSFET measurements because they can affect fG [67]–[69]. To 

verify if the use of vacuum system attenuates their impact, several characterizations were performed on the 

same die changing the position of the probes. The same needles with the same pressure were used. The 

obtained ID versus VG are shown Figure II-10a. The corresponding positions on the silicon surface are 

represented schematically in the inset. Very close to the edges, the current flow is affected by border effects 

decreasing the measured ID value [67]. The corresponding Y functions versus gate bias are shown in Figure 

II-10b and the computed low-field mobilities are reported in Table II-1. In case of VG > 0 V, the mobility 

measured close to the edges is underestimated. In the worst case, the impact is lower than 10 %. Even 

smaller impact is found in case of hole mobility. 

μ0 cannot change in an homogenous material according to the contacts position. The different values 

of μ0 are due to variation of the geometrical factor (lower than 10 %). In conclusion, placing the probes at the 

center of the structure, makes fG variation negligible. 
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Figure II-10: Drain current (a) and Y function (b) versus gate bias for different probe positions. The SOI 

structure had 88 nm thick top silicon film and 145 nm BOX. The top surface was non-passivated. The die size L 

was 8 mm. The inset in Figure II-10a presents the corresponding probe position on the silicon surface. 

 

Position 
μ0 electron 

(cm2/Vs) 

μ0 hole 

(cm2/Vs) 

Center 460 150 

Lateral 442 149 

Angle 431 143 

Arbitral 460 152 

Table II-1: Low-field mobility for electrons and holes computed from data in Figure II-10b for different needle 

positions. 

Probes pressure 

The impact of probes pressure was already studied in pseudo-MOSFET [65], [68], but without 

vacuum. Figure II-11 shows the measured ID (a) and Y function (b) as a function of VG for different p. The 

needles were placed on the top silicon film using the lowest pressure. Next, p was gradually increased step 

by step, without moving the probes. Larger pressure leads to stronger probe penetration into the silicon film 

[65]. The higher the pressure, the higher the measured drain current due to an improved contact (lower RSD). 

Y functions superpose and are stable as soon as the pressure is sufficient to have an acceptable contact (here 

p > 60 g).  



  Chapter II: Ψ-MOSFET configuration 

27 

 

 (a) (b) 

-20 -10 0 10 20
0

5

10

15

20

V
D
=200mV

 p=40g

 p=60g

 p=80g

 p=90g

D
ra

in
 C

u
rr

e
n

t 
(

A
)

Gate Bias (V)

p

        
-20 -10 0 10 20
0

5

10

15

20

Y
 f

u
n

c
ti

o
n

 (
m

A
/S

0
.5
)

Gate Bias (V)

 p=40g

 p=60g

 p=80g

 p=90g

 

Figure II-11: (a) ID versus gate bias in case of different probe pressure. The SOI structure had 88 nm top silicon 

film and 145 nm BOX. Non-passivated top surface was used and L = 5 mm. The corresponding Y function is 

computed in Figure II-11b. 

Mobility and RSD variation with p are reported in Table II-2, for electrons and holes. Note that pressure 

effect is much stronger in case of VG > 0 V (electrons) than for the holes, where only one point (p = 60 g) is 

slightly different from the other values. However, despite a pressure variation higher than ≈ 40 %, the 

mobility change is less than ≈ 10 %. Once the needles have sufficiently penetrated into the silicon film to 

contact the channel (p = 60 g in this case), p has only a low impact on μ0 thanks to the Y function method 

that removes RSD effects. 

 

Pressure (g) 
μ0 electron 

(cm2/Vs) 

RSD electron 

(kΩ) 

μ0 hole 

(cm2/Vs) 

RSD hole 

(kΩ) 

40 420 7.5 147 22 

60 449 5.1 128 11 

80 460 3.3 150 13 

90 461 2.6 153 12 

Table II-2: Low-field mobility of electrons and holes computed from Figure II-11b and corresponding RSD for 

different probe pressures. 

Pressure of the probe and vacuum contact 

In the previous section (Se. II.3.1) it was proved that the use of vacuum contact is mandatory in case 

of ultra-thin silicon film. Does the vacuum affect also the mobility-pressure trend? 

To answer the question, SOI structure with ultra-thin silicon film (12 nm) and thick BOX (145 nm) 

was characterized using different probe pressure. Table II-3 shows the extracted low-field electron mobility 

obtained from characteristics measured with and without vacuum back contact for different probe pressure. p 

variation of ≈ 40 % induces almost 20 % μ0 shift using vacuum back contact. In case of standard 

configuration, the variation is higher than 70 %, proving the importance of using the vacuum system, 

especially for ultra-thin films. 
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Pressure (g) 
μ0 (cm2/Vs) 

vacuum 

μ0 (cm2/Vs) 

no vacuum 

40 443 195 

50 462 309 

60 426 454 

70 509 713 

Table II-3: Measured low-field mobility for different p and VG > 0 V. Characterization performed on SOI wafer 

with 12 nm top silicon film and 145 nm BOX. The top surface was non-passivated. Comparison between 

measurements obtained with and without vacuum. 

Radius and probe material 

Our Jandel® station has tungsten carbide (WC) probes. Their radius is of 40 μm. To investigate the 

impact of the probe radius R0, we used a manual probe station. The needles were made of WC and they had 

R0 = 12 μm. The inter-probe distance was kept constant: d ≈ 1mm. 

Figure II-12 shows the measured drain current (a) and corresponding Y function (b) versus gate bias in 

case of Jandel® station (plain symbols) and manual probe station (empty symbols). The corresponding 

parameters extracted using Y function method are reported in Table II-4. The obtained electron and hole 

mobilities are lower in case of sharper tip, due to possible fG and RSD variation. Note that in manual probe 

station the probe pressure cannot be precisely adjusted. Agreement is found for threshold voltage, while a 

VFB shift is measured. Thus, the probe radius has a sizeable effect on the characteristics and the extracted 

physical parameters [33], [68]. 

Additionally, we show the results obtained using tips made of different material, osmium (Os) in this 

example. The probe radius was 12 μm. The corresponding measured current is shown in Figure II-12 

(continuous line) and the extracted values are reported in Table II-4. The highest access resistance was found 

in this case. For VG < 0 V, non-realistic low μ0 mobility is measured, probably due to a non-ohmic contact. A 

clear shift of VT and VFB is also present. Thus, the extracted parameters are influenced by the probe material 

work function. 

To perform wafer monitoring, it is important to use all the time tips with the same properties and 

adapted to the characterized material [73]. In this work, all the measurements performed on Si-SiO2 wafers 

were obtained using WC tips with R0 = 40 μm. 
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Figure II-12: Drain current (a) and Y function (b) versus gate bias on SOI structure with 88 nm top silicon film 

and 145 nm BOX. The top surface was non-passivated and L = 2 mm. Different tips were used: WC with  

R0 = 40 μm from Jandel® station (plain symbols), WC (empty symbols) and Os (line) tips with radius R0 = 12 μm 

from manual probe station. The inter-probe distance d was ≈ 1 mm. 

 

 

WC 

R0 = 40 μm 

Jandel® (p = 80 g) 

WC 

R0 = 12 μm 

Manual st. 

Os 

R0 = 12 μm 

Manual st. 

μ0 electron (cm2/Vs) 412 349 220 

VT (V) 3.9 3.9 4.5 

μ0 hole (cm2/Vs) 154 137 29 

VFB (V) -2.3 -2.9 -2.3 

θ1 electron (1/V) 0.018 0.033 0.054 

θ1 hole (1/V) 0.089 0.01 - 

Table II-4: Extracted parameters from Figure II-12b for different needle properties. 

Reproducibility of tests 

In pseudo-MOSFET configuration, the source and drain contacts are obtained using probes directly 

placed on top of the silicon surface. This can be a new source of variability added compared to standard 

transistors with fabricated metal contacts. In this section we investigated the reproducibility of material 

characterization (i.e., parameter extraction) obtained using the Y function method on static ID(VG) curves. We 

also defined the order of magnitude of error bars of calculated μ0 and VT. 

The fitting range of Y function can affect the obtained results: a maximum variation of ± 4.5 % is 

obtained for μ0 and ± 3 % for VT. 

Figure II-13 shows the extracted low-field mobility (plain symbols) and threshold voltage (empty 

symbols) for different dies present on the same SOI wafer. The maximum incertitude of μ0 is around ± 5 %. 

Lightly lower variation is found for VT (± 3 %). Thus, total error bars around 15 % represent a good 

estimation for the measurement technique. 
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Figure II-13: Extracted μ0 (plain symbols) and VT (empty symbols) from different dies present in the same SOI 

wafer with 88 nm thick Si film and 145 nm thick BOX. The top surface was non-passivated. 

II.3.4 Passivated top silicon film 

In the literature, one of the most frequent approaches to identify to which interface the characterization 

technique is sensitive, is the comparison between passivated and non-passivated SOI structures. 4 nm dry 

oxide grown on the top silicon film improves the corresponding interface quality. Thus, the Dit associated to 

this interface decreases. Figure II-14 shows an example of the measured ID versus VG for passivated (plain 

symbols) and non-passivated (empty symbols) wafers. The different density of defects induces remarkable 

shifts of VT, VFB and Ss. 

Note that the penetration through the top oxide is easier in case of non-passivated sample (native SiO2) 

than passivated one (thermal SiO2). Thus, different probe pressures have to be used to achieve similar access 

resistance. In this example, p = 80 g for non-passivated sample leads to RSD = 3.4 kΩ, while p = 100 g on the 

passivated yields RSD = 4.5 kΩ. 

-10 -5 0 5 10
10p

100p

1n

10n

100n

1µ

10µ

 Passivated

 Non-passivated

 

 

D
ra

in
 C

u
rr

e
n

t 
(A

)

Gate Bias (V)

V
D
=200mV

 

Figure II-14: Drain current as a function of gate bias for SOI structure with 88 nm top silicon film and  

145 nm BOX. The passivated structure (plain symbols) was measured using p = 100 g, while in non-passivated 

sample (empty symbols) the tip pressure was 80 g. 
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Furthermore, we analyzed by AFM the tip signature left on the silicon surface (see Figure II-15) in 

passivated (a) and non-passivated (b) samples. The same needle was used but with different pressures:  

p = 100 g for passivated and p = 80 g for non-passivated Si surface. The images were taken with the same 

scale (10 μm x 10 μm). The measured fingerprints show comparable dimensions (R0 ≈ 5-6 μm) which 

explains the analogous RSD values. In conclusion, to perform suitable data comparison it is important to 

measure the characteristics with similar access resistance. p is not directly related to physical quantities. 

With time, the probe station may become old and the tips can oxidize. However, adapting the probe 

pressure, it is possible to achieve low access resistance, thus robust material characterization. 

 (a)  50nm  (b)  50nm 

                       

Figure II-15: 10 μm x 10 μm AFM image for passivated (a) and non-passivated (b) SOI samples. The same tip 

was used with different pressure: 100 g in case of passivated and 80 g for the non-passivated one. 
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II.4 Extension of Ψ-MOSFET to new materials: III-V-on-insulator 

To pursue the transistor scaling down, the use of new materials instead of silicon channel is one of the 

mainstream topics [28], [74], [75]. Recent researches focus on the fabrication of In53%Ga47%As (Indium-

Gallium-Arsenide, labeled InGaAs) transistors thanks to their high electron mobility. InGaAs is a compound 

of elements of IIInd and Vth group, usually labeled as III-V. Different studies have proved the capability to 

fabricate III-V devices with good performances; high carrier mobility (2000-3000 cm2/Vs) and low 

subthreshold swing Ss (80-70 mV/dec) were measured [76]–[80]. However, more research is required to 

make the fabrication processes of high quality III-V layer compatible with the silicon technology. 

In this section, InGaAs layers will be characterized during the several fabrication steps: 

- Before film transfer on oxide in Sec. II.4.1 (using Van der Pauw and Hall effects);  

- After the transfer on oxide (III-V-OI) using Ψ-MOSFET-like configuration with pressure probes (Sec. 

II.4.2) and with deposited metal contacts (Sec. II.4.3); 

- Fully fabricated transistor (Sec. II.4.4). 

II.4.1 Material characterization before bonding 

In order to validate the quality of the fabricated III-V before any fabrication process, Hall effect 

measurements were performed on bulk material. The technique is described in Appendix I. The structure 

used is shown in Figure II-16a. The InGaAs layer thickness (tIII-V) was 160 nm and it was n-type. It was 

grown on InP substrate Fe p-doped. The dies had square shapes. Indium (In) droplets were used to contact 

the III-V layer. 

The impact of doping concentration (ND) on the carrier mobility was investigated. Note that ND always 

indicates the electrically active doping concentration (obtained using Hall effect technique, see Appendix I) 

and not the fabrication target doping. The measured μHall versus ND is shown Figure II-16b. As expected, 

lower ND leads to higher mobility. In the literature [81], thicker films were characterized after transfer on 

xide (μHall ≈ 8000 cm2/Vs for tIII-V ≈ 450 nm). We obtained prominsing mobility values also for thinner films 

(tIII-V = 160 nm); confirming the reasonable quality of the fabricated layer. 
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Figure II-16: (a) General shape of III-V layer on InP substrate before bonding. (b) Measured μHall versus doping 

concentration on 160 nm InGaAs with different doping concentrations. 

The impact of tIII-V was also investigated. Three samples of InGaAs were fabricated on InP substrate. 

The same doping target was implanted: 5·1017cm-3. As previously, the contacts were made of Indium 

droplets. The measured μHall (plain symbols) and doping concentration (empty symbols) are reported in 

Figure II-17 as a function of tIII-V. ND is also affected by the III-V thickness variation and further research is 

in progress to explain why the effective doping is smaller in thinner sample. 

The Hall mobility decreases with the III-V thickness, due to the stronger coupling between the bottom 

and top interface [82], [83]. A mobility higher than 3000 cm
2
/Vs is measured even in ultra-thin films. 
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Figure II-17: μHall (plain symbols) and doping concentration (empty symbols) as a function of tIII-V for InGaAs 

layer on InP.  
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II.4.2 Ψ-MOSFET with pressure probes on III-V-on-insulator (III-V-OI) 

In this section, III-V films were characterized after transfer on oxide (III-V-on-insulator). The III-V 

layer was non-intentionally doped (NID). 5 mm x 5 mm mesas were fabricated on all the wafers, as described 

in Figure II-3a. The measurements were performed using the adjustable pressure probe Jandel® station. 

In order to verify the capability to characterize InGaAs substrate using Ψ-MOSFET technique, Figure 

II-18a presents the drain current versus VD for different gate bias values. The structure had 10 nm top layer 

thickness and 110 nm SiO2 thickness. ID changes linearly with VD for low drain bias and then it saturates. VG 

variation induces a normal increase of the measured current. However, even if the curve shapes are similar to 

the ones obtained in MOSFET, ID is very low (≈ nA) (see Figure II-5a for example). On the same die, the 

drain current was measured as a function of VG for different VD (Figure II-18b). Despite the large magnitude 

of applied biases (VD and VG), the currents measured are still small, suggesting that the Ψ-MOSFET 

configuration might not be easily adapted to III-V layer. 
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Figure II-18: Measured drain current versus VD (a) and VG (b) for different gate and drain bias values, 

respectively. The structure had 10 nm III-V layer thickness and 110 nm SiO2 BOX thickness. 

A low ID magnitude may be due to high access resistance RSD. In Ψ-MOSFET, the increase of the 

probe pressure leads to better probe penetration into the silicon film, thus lower RSD (see Sec. II.3.3). Figure 

II-19a shows ID versus gate bias for different p. The SOI structure had 50 nm InGaAs thick film and 30 nm 

Al2O3 BOX. No clear trend is visible. 

The limitations may be due to a non-ohmic contact between films and probes. Thus, Figure II-19b 

presents ID(VD) curves obtained with Os needles of 12 μm radius. The same structure as in Figure II-18 was 

studied. Thanks to its work function, Osmium is expected to lead to better contacts with the III-V layer [73]. 

The drain current magnitude still remains very low, making the characterization of III-V in standard Ψ-

MOSFET configuration not possible with pressure probes. Consequently, III-V-OI substrates with metal 

contacts on top were fabricated and their characterization is shown in the next section. 
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Figure II-19: (a) Drain current versus gate bias for different probe pressure. Structure with 50 nm III-V layer 

thickness and 30 nm Al2O3 thickness. (b) ID versus VD for different VG values. Os tips were used on the same 

structure as in Figure II-18. 

II.4.3 Ψ-MOSFET with metal contacts on III-V-OI 

Impact of fabrication annealing temperature 

In this section, several III-V layers on oxide were characterized to find the best annealing temperature. 

To succeed on the analysis, one wafer was fabricated (Figure II-20a) and cut in several pieces before 

annealing. Each piece was annealed using different temperature (Tan): 500 ºC and 600 ºC. To overcome the 

limitations found on the characterization of III-V material using the standard Ψ-MOSFET configuration, 

metal contacts were deposited on the top of the InGaAs layer (alloy of Ti/Au). No particular passivation was 

performed on top of the III-V film. 

Figure II-20b presents the mask used for the lithography. μHall and the low-field mobility (μ0) were 

measured using the Hall effect and the Corbino configuration, respectively. In case of Corbino contacts the 

drain contact was placed at the center and the source on the circle surrounding the first contact (Figure 

II-20c). Applying a back gate bias, the conduction channel is created at the interface between the InGaAs and 

the BOX. Consequently, ID can be measured versus VG (same principle and extraction procedure as for 

standard Ψ-MOSFET). The Y function method was used to extract μ0. Using a Corbino structure, the 

geometrical factor is well defined by the radius of drain contact (R1) and the distance from the source contact 

to the center (R2) [56], [58], [60] (see Figure II-20c): 

 G
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2 2
f 9.06

500 mR
lnln

250 mR

   
  

   
   

  

 (II.11) 

In order to reduce parasitic leakage currents which can limit the characteristics, each structure was 

isolated by the others through mesa fabrication (lithography and etching of III-V film). 
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Figure II-20: (a) III-V substrate structure used in this section. Different annealing temperatures were performed 

on pieces of material coming from the same starting wafer. (b) Layout of the mask fabricated on the III-V layer. 

(c) Zoom of Corbino structure. 

Figure II-21 presents the measured resistivity (empty symbols) and doping concentration (plain 

symbols) as a function of Tan. After low annealing temperature (500 ºC), the III-V layer is very resistive, 

while for high Tan, ρ abruptly decreases. The doping concentration shows the corresponding trend. Since the 

samples come from the same wafer, with the same implanted dose, a higher annealing temperature simply 

activates more dopants. 
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Figure II-21: Measured ρ (empty symbols) and doping concentration (plain symbols) as a function of annealing 

temperature. Values with ≈ 15 % of incertitude. 

The corresponding Hall mobility (empty symbols) and μ0 (plain symbols) values as functions of 

annealing temperature are reported in Figure II-22. The low-field mobility was extracted using the Y 

function method performed on ID-VG characteristic. Unfortunately no working die was found applying VG on 

the wafer with Tan = 600 ºC. Thus, it was not possible to measure μ0. 

The Hall mobility was obtained without field effect and represents an average value in the film. On the 

other hand, μ0 is the electron mobility in the channel which is notoriously smaller than the volume mobility 

[6]. 
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μ0 and μHall are related by the Hall scattering factor [5], [6]: 

 Hall
H
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r





  (II.12) 

which depends on the carrier mean free time between collisions. In silicon samples, it is 1.18 when phonon 

scattering is present and rH = 1.93 for Coulomb scattering. 

In our case, the Hall scattering factor is non-realistic (> 100) due to the leakage current through the 

BOX. New samples are in preparation to duplicate the experimental results. 
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Figure II-22: μHall (empty symbols) and μ0 from Y function (plain symbols) measured as a function of annealing 

temperature. Measurements performed at ambient temperature. 

Mobility evolution with the measurement temperature 

In this section we investigated the carrier mobility variation with temperature T. The tested structure is 

shown in the inset of Figure II-23b. The wafer was annealed at 600 ºC and no passivation was performed in 

the III-V surface. Note that even if the tested structure is similar to the ones characterized in the previous 

section, the fabrication process was quite different. Thus, a direct comparison of the obtained values is not 

possible. 

μHall and the low-field mobility obtained at room temperature from three different dies are reported in 

Table II-5. Again, a strong difference between the two characterization techniques is found. In this case the 

calculated rH is between 2.7 and 3, which is still large but more reasonable. Since μ0 is mostly proportional to 

1/tIII-V, it is dominated by phonon scattering. 

Die 
Nd 

(cm-3) 

μHall 

(cm2/Vs) 

μ0 

(cm2/Vs ) 

A 6.4·1017 775 285 

B 6·1017 760 246 

C 6.1·1017 737 248 

Table II-5: Measured Nd, Hall and low-field mobility for three different dies on the same wafer. Structure 

schematic in the inset of Figure II-23b. Tan = 600 ºC. The measurements were performed at ambient temperature. 
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To perform the measurements at different temperature T, the contacts prepared for the Hall effects 

were used. The two needles (source and drain) were placed in two diagonal corners. Thus, ID flow was 

measured. Figure II-23a shows the results. Note that the thick BOX requires very large gate bias values to 

achieve full characterization. However, the range VG supported by the instrument is ± 10 V, thus the 

characteristics are not complete. 

The low-field mobility can be extracted using the Y function method on the measured ID-VG 

characteristics. The geometrical factor is derived comparing the resistivity measured with two probes placed 

in diagonal contacts and the Van der Pauw technique (Appendix I). Equation (II.2) can be rewritten in a 

general form as: 

 G

V
f

I


    (II.13) 

where fG is a general geometrical factor. The material resistivity is determined using Van der Pauw 

technique. Hence, applying a current between two diagonal probes and measuring the differential potential 

ΔV, Eq. (II.13) allows the calculation of fG. In this case we obtained: 

 Gf 0.26  (II.14) 

The mobility measured at 77 K (μ0_T=77K) are equal to 489 cm2/Vs, 753 cm2/Vs and 675 cm2/Vs for the 

die A, B and C, respectively. However, since the main interest is to investigate the mobility trend with 

temperature, the obtained μ0 were normalized with respect to μ0_T=77K. 

The results are presented in Figure II-23b as a function of temperature in logarithmic scale for the 

three different dies. T decrease leads to higher mobility. In order to identify which scattering phenomena 

dominates the mobility variations, a linear fit was performed (dashed lines). The slope is between 1.54 dec 

and 1.64 dec. In case of phonon scattering, μ0 ∝ T -n, where n is between 1 and 2 [84]. These results confirm 

that in our case the measured mobility variation is due to phonon scattering. 
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II.4.4 Preliminary results of III-V transistors 

During COMPOSE3 project [85], preliminary transistors were fabricated on III-V-OI substrate by 

IBM. Figure II-24 presents an example of measured drain current (plain symbols) and transconductance 

(empty symbols) versus VG. The structure was a FinFET on SiO2, with L = 40 nm and  

W = 2 μm. The extracted parameters (μ0 = 34 cm2/Vs and Ss = 90 mV/dec) are not yet good enough from the 

industrial point of view to integrate the III-V in CMOS production. 
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Figure II-24: Drain current and gm measured versus gate bias obtained from FinFET on oxide. L = 40 nm and  

W = 2μm. The top oxide has ≈ 1.7 nm EOT while the back-oxide was 30 nm of Al2O3. 

One possibility given by the presence of a buried oxide is the capability to tune the conduction channel 

with the back gate (Vback). Figure II-25a shows the measured ID versus VG applying different Vback. 

Remarkable VT and Ss variations are found due to the strong coupling effect. 

Figure II-25b presents the obtained low-field mobility normalized with respect to μ0 for Vback = 0 V 

(μ0_at_0V = 33 cm2/Vs) versus back gate bias. Using Vback < 0 V, the conduction channel is more confined and 

closer to the interface with the top oxide. Thus, the carriers are more sensitive to the interface defects and the 

mobility is lowered. On the contrary, for Vback > 0 V the density of free carriers present in the channel is 

larger and the electron flow is more localized at the middle of the III-V layer, reducing the interface 

influence. This variation confirms that the poor device performances (low μ0 and poor SS) are due to high 

density of interface defects. 
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Figure II-25: (a) Measured drain current versus VG for different back-gate bias. The FinFET on oxide had  L = 

500 nm and W = 100 nm. (b) The corresponding low-field mobility normalized by μ0_at_0V as function of Vback. 
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II.5 Conclusions and perspectives 

This chapter was divided into two main parts: one addressing the standard pseudo-MOSFET 

characterization of silicon-on-insulator and the second one focused on III-V layers. 

The first part contains an exhaustive investigation of Ψ-MOSFET configuration and measurement 

setup. According to our setup, to achieve sound material characterization it is mandatory to use: 

- A proper measurement time setup, in order to avoid out-of-equilibrium state and reduce noise. It is 

dependent on the characterized SOI structure. Ultra-thin films necessitate longer measurement time 

than tSi = 88 nm. 

- A vacuum back contact, to reduce the presence of parasitic effects. Its use is necessary in case of ultra-

thin films. Thanks to this result, it maybe interesting to try new characterization techniques, such as 

chanrge pumping, and verify the effective impact of substrate capacitance, already investigated in 

characteristics obtained without using the vacuum system [49], [62]. 

- The correct probe configuration. The adjustable pressure probes have an important role on static ID-VG 

characterization. The pressure has to be large enough to achieve low access resistance. p can be 

different in case of passivated and non-passivated samples. Probe choice and position in the silicon 

film affect ID-VG characteristics but the use of Y function method attenuates RSD effects. 

 

III-V materials were also characterized during several fabrication steps: before and after bonding on 

oxide and fully fabricated transistors. The results show that the unprocessed III-V film quality is high  

(μHall > 3000 cm2/Vs), also in case of ultra-thin films. However, the fabrication steps (transfer on oxide and 

device fabrication) degrade the carrier mobility, probably due to the high density of defects present at the 

interfaces. 

 

 



 

 

 

 

 



 

 

Chapter III: 

Split-CV in Ψ-MOSFET 

Equation Section (Next) 

In the previous chapter, a detailed investigation of static characterization on SOI wafers has been 

performed. This chapter presents the split-CV capacitance technique. The impact of measurement setup will 

be addressed. Capacitance and conductance curves as a function of gate bias and angular frequency will be 

shown. A model based on physical equations will be examined to understand the experimental results and 

important questions concerning the possibility of Dit extraction will be answered. 
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III.1 Introduction 

Characterization methods based on static drain current measurements are powerful but they can have 

some limitations. For example, the extracted low-field mobility in very short MOSFETs is proportional to 

the gate length and the two parameters cannot be separately obtained without making hypothesis; this is 

inconvenient especially for advanced MOSFETs in which the effective electric length is not the design 

length [86]. Furthermore, static characterization does not allow direct measurement of effective carrier 

mobility (μeff). Split-CV configuration is largely used to overcome these problems. Originally, the 

configuration has been proposed by Koomen [87] to characterize interface trap density and substrate doping 

concentration in silicon MOSFET devices. Next, it has been applied for the study of carrier mobility by 

Sodini et al. [88]. Nowadays it is used for the investigation of the fabrication process impact on μeff [89]. The 

technique is based on two capacitance measurements (gate-to-channel CGC and gate-to-substrate CGS) plus 

the ID-VG characteristic. Each of the capacitance terms gives access to different parameters/information: 

effective carrier mobility and effective electric field (Eeff). 

III.1.1 Split-CV in MOSFET devices 

Gate-to-channel capacitance and effective carrier mobility 

For standard silicon n-type MOSFETs, the measurement setup for CGC capacitance is shown in Figure 

III-1a. The gate is connected to high potential while the source and the drain contacts are connected together 

to low potential. The substrate is grounded. Static bias (VG) is applied to the gate in order to create the 

conduction channel at silicon-oxide interface. The capacitance measurements require a small a.c. bias 

variation (δVG) of a frequency (f) added to VG. Figure III-1b shows typical low frequency CGC shape as a 

function of gate bias on a n-type transistor. Note that the definition of low or high frequency is mostly related 

to the properties of the device under test. For low values of gate bias, the obtained capacitance is negligible, 

since no free carriers are present in the conduction channel. Close to VT, the capacitance starts to increase 

until it saturates in the strong inversion regime. 
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Figure III-1: (a) Split-CV setup in case of gate-to-channel capacitance for MOSFET device. (b) Typical low 

frequency CGC shape versus gate bias in case of n-type transistor. COX added as eye-guide. 

The saturation value (CGC_max) corresponds to the device area (S = W·L) times the gate oxide 

capacitance (COX), which is inversely proportional to the oxide thickness (tOX) [56]: 

 OX
GC _ max OX

OX

C C S S
t


      (III.1) 

where εOX is the silicon dioxide permittivity. The integration of CGC leads to the calculation of the inversion 

charge density (Qi) present in the channel: 
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where Vgacc is the low limit of gate bias, usually taken in the accumulation regime (when CGC ≈ 0 F). 

Furthermore, a static ID-VG characterization on the same device allows calculating the effective carrier 

mobility: 
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  (III.3) 

This result emphasizes the main interests of split-CV technique: μeff extracted by direct measurement 

instead of the recalculated values typically obtained from Y function method. 

Besides the interests of this technique, two precautions need to be taken [90]: 

o Device surface: if the device is too small, the characterization instruments reach the resolution 

limits and they cannot measure the channel capacitance; 

o Eventual VT shift between capacitance and current measurements: this is a measurement 

artefact and it requires shift adjustment between C-V and I-V characteristics for μeff 

calculation. The subject is still under investigation in the micro-electronic community [90]. 
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Gate-to-substrate capacitance and effective electric field 

In order to measure the gate-to-substrate capacitance CGS, source and drain contacts have to be 

grounded, the substrate is connected to low potential and the gate to the high one (Figure III-2a). CGS 

contribution comes from the depletion charges (QDep). QDep is directly proportional to the doping 

concentration (Na) and the depletion width of the silicon film (xDep): 

 Dep a DepQ q N x     (III.4) 

CGS can be mathematically obtained by the derivative of the depletion charge with respect to the gate 

bias: 
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  (III.5) 

Figure III-2b shows the typical gate-to-substrate capacitance shape versus gate bias for n-type 

transistor (p-type substrate). Before flat-band voltage, the accumulation charges dominate and COX ·S is 

measured. No depletion region is present. For VG > VFB, no free charges are present in the channel and the 

xDep changes proportionally to VG until CGS becomes negligible at VT [5]. 
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Figure III-2: (a) Setup for gate-to-substrate capacitance measurement. (b) Typical CGS versus gate bias in case of 

n-type transistor [91]. 

Following the same approach as in Eq. (III.2), the integration of CGS leads to the depletion charge 

density magnitude: 
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where VFB is the flat-band voltage. 

Using the inversion charge Qi in Eq. (III.2) and the depletion charge in Eq. (III.6), it is possible to 

obtain the effective electric field Eeff [92]: 
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  (III.7) 

where η is the ideality factor. It is equal to 1/2 in case of electrons and to 1/3 in case of holes [93]. 



Chapter III: Split-CV in Ψ-MOSFET 

48 

 

III.1.2 Split-CV in pseudo-MOSFET configuration: state of the art 

 The capability to directly measure the effective carrier mobility in fully fabricated MOSFETs makes 

split-CV technique very interesting also to monitor the quality of bare SOI substrates. Nayak et al. [94] have 

presented characteristics obtained on high resistive wafers. Their use of metal contacts on the film inducing 

Schottky barriers makes the mobility extraction complicated. Diab et al. [53] and Fernandez et al. [54] have 

demonstrated that split-CV capacitance measurements can be performed using pseudo-MOSFET 

configuration. In this case, pressure probes lead to ohmic contacts between the conduction channel and the 

source and drain. Thus, the extraction of material properties becomes easier. 

The following sections will focus on split-CV characteristics performed with Ψ-MOSFET. A 

description of measurement setup is presented below. 

Measurement configuration 

Two types of probe stations already presented for static characterization measurements are used here: 

Jandel® station with pressure control probes and a classical probe station from Karlsuss® with manual 

probes, without pressure control. The SOI wafer is positioned on a metallic chuck that acts as a gate. One (or 

more) adjustable pressure probe is (are) placed on the top silicon film and connected to low potential (Figure 

III-3a). All the measurements have been performed using either the Agilent E4980A® or the Agilent 4284® 

LCR meter. The chosen equivalent electric circuit configuration is a capacitance (Cm_split) in parallel with a 

conductance (Gm_split). In this way it is possible to separate the dispersive effects of the resistance (1/Gm_split) 

from the capacitance characteristics [95], [96]. Figure III-3b shows the applied gate bias signal required to 

perform capacitance measurements. The LCR meter sets a static bias value to the device under test. An a.c. 

sinusoidal signal δVG which is frequency f dependent, is added to VG. For all the measurements we have 

chosen δVG = 26 mV. This value is close to thermal potential fluctuations (k·T/q) in case of ambient 

temperature. δVG induces charge variation in the conduction channel, which is detected by the LCR meter 

thanks to a Wheatstone bridge. In order to achieve correct characteristics, open and short circuit corrections 

must be performed before any measurement. This avoids effects due to parasitic capacitances of the cables 

and the probe station [95], [96]. 

After the presentation of the measurement setup, the next section shows capacitance characteristics as 

a function of gate bias obtained in pseudo-MOSFET configuration. 
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Figure III-3: (a) Measurement setup and equivalent electric circuit for split-CV capacitance in pseudo-MOSFET 

configuration. (b) Schematic of applied gate bias in split-CV as a function of time. 

Capacitance versus gate bias 

Figure III-4 shows the measured split-CV capacitance as a function of gate bias for different 

frequencies. For low VG magnitude, CGC is negligible before the conduction channel formation. Above VT (or 

VFB) free carriers are induced by VG and the capacitance sharply increases until it saturates. Note that in case 

of pseudo-MOSFET, the probes placed on the top silicon surface can bring both types of carriers: positive 

gate bias induces electrons in the conduction channel, while VG < 0 V leads to holes accumulated at the 

interface between the top silicon film and the buried oxide. The curves behavior is similar to MOSFET 

device characteristics [89], validating the technique for SOI wafers. 

In the next section, we will show how there results were used to directly access the effective mobility. 

 

Figure III-4: CGC as a function of gate voltage for different measurement frequencies. SOI structure with 88 nm 

top silicon film thickness and 145 nm BOX thickness. The die area was 24 mm
2
 [53]. 
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Effective mobility extraction 

Following the approach described in Sec. III.1.1, the effective carrier mobility can be computed using 

Eq. (III.3). In pseudo-MOSFET, W/L ratio is given by the geometrical factor fG (see Sec. II.2) [47], [67]. μeff 

values require also the calculation of inversion (or accumulation) charge density (Eq. (III.2)). Note that the 

measured maximum capacitance (CGC_mac ≈ 1.35 nF) obtained in Figure III-4 is much lower than the oxide 

capacitance (5.7 nF). Fernandez et al. [54] proposed to introduce a fitting parameter called effective surface 

(Seff) and defined as: 

 GC _ max

eff

OX

C
S

C
   (III.8) 

Seff replaces the actual sample surface S in the computation of Eq. (III.2). It is determined from the 

maximum capacitance value and BOX thickness. Figure III-5 shows the obtained effective mobility (empty 

symbols) versus gate bias for electrons (a) and holes (b). To validate the obtained values, µeff reconstructed 

from Y function method is also added in plain symbols [66]: 
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  (III.9) 

The curves perfectly overlap. The results show that effective carrier mobility can be measured using 

split-CV technique in pseudo-MOSFET configuration as for standard MOSFET devices. 

(a) (b) 

         

Figure III-5: Effective mobility as a function of gate bias obtained from Figure III-4 in case of electrons (a) and 

holes (b). The reconstructed values from Y function method (plain symbols) are also shown [53]. 

 

Besides the possibility of μeff extraction, two questions still remain open: 

o What is the physical meaning of the effective surface? 

o Is it possible to characterize the interface quality using the conductance term from split-CV 

measurements? 

The answers will be given in the following sections. We will start analyzing the reasons behind the use 

of Seff. 
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III.2 Effective surface and improved measurement setup 

The first characteristics obtained in pseudo-MOSFET configuration [53], [54] have shown that 

contrary to standard MOSFET devices, the measured maximum capacitance is much lower than the expected 

value COX ·S. However, the use of a fitting parameter (Seff) leads to correct effective mobility curves. In order 

to investigate the physics explanation behind this term, we study the impact of SOI die area, silicon film and 

BOX thicknesses. 

III.2.1 Dependency of Seff 

The effective surface was considered as issued from the area around the probes that “responds” during 

the split-CV measurements [54]. If this is the case, Seff should be somehow related to the geometry of the 

sample. 

Figure III-6a shows the measured capacitance as a function of gate bias at low frequency 20 Hz, on 

SOI structures with 88 nm thick silicon film and 145 nm thick BOX. Different die areas have been used 

(values added on the curves). The higher the die area, the higher the measured maximum capacitance 

(Cmax_air). The y-axis scale shows that the increasing of Cmax_air for larger surface is not linear. The effective 

surface values divided by the surface S corresponding to each curve are plotted as a function of die area in 

Figure III-6b. Using small size sample (i.e., 4 mm2), Seff /S is close to unity. Thus, the measured capacitance is 

close to the expected value. Increasing the die dimensions, the surface ratio Seff /S sharply decreases. This 

dependency is unexpected and difficult to explain. For standard MOSFET devices, the scaling of the 

maximum measured capacitance is directly proportional to the die area.  
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Figure III-6 (a) Measured capacitance versus gate bias for different die sizes at low frequency (f = 20 Hz). The 

corresponding Seff /S calculated using Eq. (III.8) as a function of die area is reported in Figure III-6b. The SOI 

structure had 88 nm top silicon film thickness and 145 nm BOX thickness. The top surface was non-passivated. 
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Table III-1 compares COX ·S and the measured maximum capacitance on SOI structure with different 

Si film and BOX thicknesses. The corresponding effective surface is also reported. In case of thick buried 

oxide, Seff is independent of the top silicon film thickness. In case of ultra-thin SOI structures, however, the 

effective surface becomes very small and related to the properties of the top silicon film. This relation is not 

obvious, because the measured maximum capacitance should be independent of the film thickness and only 

related to the BOX characteristics (i.e., area and thickness). 

In end, no clear scaling was observed leading to the idea that this effective surface is rather a 

measurement artefact (parasitic effects) than an actual meaningful parameter. In the next section we will 

present a better measurement setup that leads to proper characteristics with Seff /S = 1. 

 

Silicon film/BOX 

(nm/nm) 

COX·S 

(nF) 

Cmax_air  

(nF) 
Seff = Cmax_air /CBOX 

88/145 5.7 1.9 0.33 

12/145 5.7 1.9 0.33 

83/25 33.1 2.1 0.06 

12/25 33.1 2.6 0.08 

Table III-1: Calculated oxide capacitance (COX ·S) with Eq. (III.1) for different SOI structure with passivated top 

surface. The measured capacitance values are shown (Cmax_air). The corresponding Seff is calculated with Eq. 

(III.8) for each structure. 

III.2.2 Improved measurement setup 

In case of static characteristics (see Sec. II.3.2), the quality of the back contact between the wafer and 

the metallic chuck plays a minor role. On the contrary, for the split-CV measurements, the quality of this 

contact, so called “back contact”, plays a remarkable role. Figure III-7 shows the obtained capacitance (a) 

and conductance (b) versus gate bias from SOI structure with 88 nm top silicon film thickness and 145 nm 

BOX thickness. All measurements have been performed at f = 20 Hz, in order to avoid any impact due to 

frequency attenuation [97]. The characteristics have been recorded using either special precautions for the 

back contact (i.e., vacuum contact) or without any precaution (i.e., air contact). Note that all the results 

present in the literature [53], [54] have been obtained using air back contact. The expected maximum 

capacitance (dashed line in Figure III-7a) represents the BOX capacitance and it is calculated by Eq. (III.1). 

In case of vacuum back contact, the measured maximum capacitance (Cmax) is very close to oxide one. On 

the contrary, without using any particular precaution on the back contact quality, the measured maximum 

capacitance (Cmax_air) is much lower than COX ·S for both electrons and holes. The difference is due to 

parasitic effects that act as an added capacitance term placed in series with the BOX capacitance [98]. Their 

impact is not removed by the open and short circuit corrections because they appear only in presence of the 

sample. The threshold and flat-band voltages, which are related to the static bias, are the same for both 
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characteristics. This result was predictable since the quality of the back contact has no influence on the static 

ID-VG curves. 

For the conductance term (Figure III-7b), a perfect overlap is obtained before the channel formation. 

However, the measurements performed using vacuum back contact show two sharp peaks after VT and VFB, 

followed by rapid conductance decrease after channel creation. For air contact, the peaks are smaller and the 

conductance does not decrease as rapidly. For VG higher than VT or VFB, there should be no current flow 

through the structure (i.e., low Gm_split values). Thus, the characteristic obtained using vacuum back contact is 

closer to what is expected for standard MOSFET devices [56]. 

The next natural step is to check if the measured maximum capacitance using vacuum back contact 

scales with the real surface. 
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Figure III-7: Capacitance (a) and conductance (b) versus gate bias measured at low frequency (f = 20 Hz). Two 

different types of back contact have been used: vacuum back contact (plain symbols) and air back contact 

(empty symbols). The dashed line represents the BOX capacitance. SOI structure with 88 nm top silicon film 

thickness and 145 nm BOX thickness. The die had non-passivated top surface and 24 mm
2
 area. 
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Effective surface versus real surface 

Different die area samples were tested. Figure III-8 shows the results obtained using vacuum back 

contact. The SOI structure has 88 nm Si film and 145 nm BOX. All the characteristics present similar 

threshold and flat-band voltage. Cmax appears to be proportional to the oxide capacitance. 
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Figure III-8: Capacitance versus gate bias measured at low frequency (f = 20 Hz) using different die areas in case 

of vacuum back contact. The same SOI structures as in Figure III-6 have been used. 

To better evaluate the obtained results, Table III-2 compares the calculated COX ·S by Eq. (III.1) with 

Cmax and Cmax_air extracted from Figure III-8 and Figure III-6a, respectively. In case of vacuum contact, the 

measured maximum capacitance is given by the oxide capacitance. On the contrary, Cmax_air is always lower 

than the expected one. For larger die surfaces, the difference between the measured maximum capacitance 

using back air contact and COX becomes stronger. 

 

Die area 

(mm2) 

COX·S 

(nF) 

Cmax (nF) 

Vacuum contact 

Cmax_air (nF) 

Air contact 

4.4 1.1 1.3 0.9 

9.6 2.3 2.6 1.5 

17.8 4.2 4.4 1.7 

24 5.7 5.8 1.9 

65.6 15.6 16.1 2.2 

Table III-2: Calculated oxide capacitance (COX ·S) using Eq. (III.1) for different die areas, compared with the 

measured maximum electron capacitance obtained from Figure III-8 using vacuum (Cmax) and air back contact 

(Cmax_air) from Figure III-6a. 

Using air contact, the results for different SOI thicknesses were not clear. To pursue with the 

investigation, Table III-1 has been enriched with the maximum capacitance obtained with vacuum back 

contact on the same structures (see Table III-3). Cmax is always close to COX ·S, for all top-silicon film 

thicknesses and BOX thicknesses. 

In conclusion, the use of vacuum back contact allows the measurement of the capacitance associated 

to the whole die as for standard MOSFET devices. 
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The natural question becomes: does the quality of the back contact affect μeff extraction? 

 

Silicon film/BOX 

(nm/nm) 

COX·S 

(nF) 

Cmax_air (nF) 

Air contact 

Cmax (nF) 

Vacuum contact 

88/145 5.7 1.9 5.8 

12/145 5.7 1.9 5.8 

83/25 33.1 2.1 32.2 

12/25 33.1 2.6 32.9 

Table III-3: Table III-1 enriched with the corresponding maximum capacitance Cmax obtained performing the 

characteristics on the same structure using vacuum back contact. 

Effective mobility extraction 

Figure III-9 shows the effective mobility as a function of gate bias obtained from Figure III-7a in case 

of electrons (a) and holes (b). The values are computed from characteristics measured with (plain symbols) 

and without (empty symbols) using vacuum back contact. For comparison, effective carrier mobility 

reconstructed by Y function method (Eq. (III.9)) is also added (dashed lines). Remarkable agreement is 

found between the three curves for both types of carriers. Thus, even if the quality of the back contact could 

limit the measured maximum capacitance, using a fitting parameter, Seff, it is possible to extract realistic μeff 

values. 
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Figure III-9: Effective carrier mobility as a function of gate bias obtained from Figure III-7a in case of electrons 

(a) and holes (b) using vacuum (plain symbols) and air (empty symbols) back contact. Reconstructed value from 

Y function method (dashed line) using Eq. (III.9). 
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In conclusion, using split-CV technique for mobility investigation, the characteristic could be 

performed using air vacuum back contact, since Seff can lead to the correct μeff. On the contrary, if one needs 

to perform reliable capacitance monitoring or to investigate the conductance term contribution, the use of 

vacuum back contact is required. 

In the next sections, all the measurements performed in split-CV configuration have been obtained 

using vacuum back contact. This allowed tracing each time the capacitance (Cm_split) and conductance 

(Gm_split) curves normalized by the whole die area. 

III.2.3 Robustness of the technique (probe effects) 

In the case of static characterization, the control of the probe quality contact is the major parameter to 

achieve low access resistance and perform good characteristics suitable for parameter extractions (see Sec. 

II.3.3). The probes position is also critical for fG [67]. Are similar effects present also in case of split-CV 

technique? 

Probes pressure 

Figure III-10 shows Cm_split (a) and Gm_split (b) curves versus gate bias performed at low frequency 

using different probe pressures. The inset shows the corresponding drain current characteristics as a function 

of gate bias. Remarkable overlap between the curves was found for both capacitance and conductance terms. 

Using split-CV technique the adjustable pressure probes are connected to low potential and the contact 

quality with the Si film plays a minor role. Even if the access resistance is high (i.e., low probe pressure), the 

measured capacitance is the same as for low access resistance (high probe pressure). 
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Figure III-10: Measured Cm_split (a) and Gm_split (b) versus gate bias using split-CV technique at low frequency  

(20 Hz) on SOI wafer with 88 nm top silicon film thickness and 145 nm thick BOX. Non-passivated top surface. 

Measurements performed using different probe pressures. Inset of (a): corresponding drain current as a 

function of gate bias. 
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Capacitance characteristics are not limited by the probe pressure. The measured effective carrier 

mobility should also be pressure independent. Figure III-11 shows μeff as a function of VG in case of electrons 

(a) and holes (b) for different probe pressures. The reconstructed values from Y function method obtained at 

high pressure (80 g) were also added (dashed line). Using low probe pressures, μeff is underestimated. For 

high enough probe pressure, the measured effective carrier mobility overlaps with the reconstructed values 

from Y function method. The physical explanation is given by Eq. (III.3): μeff depends on capacitance 

measurements as well as on ID-VG characteristics. Even if the measured CGC is pressure independent, the 

drain current is still limited by the access resistance and consequently the obtained effective mobility is also 

pressure dependent. 
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Figure III-11: Effective carrier mobility versus gate bias in case of electrons (a) and holes (b). Characteristics 

obtained with different probe pressures. μeff reconstructed from Y function method (p = 80 g) is also shown 

(dashed line) for comparisons. 

Probe position 

In order to achieve the best measurement setup, the effect of probe position on the top silicon film has 

to be investigated. The measured capacitance (a) and conductance (b) curves as a function of VG for different 

probe positions are shown in Figure III-12. The corresponding drain current versus gate bias and the probe 

position on the silicon wafer are shown in the insets of Figure III-12a and Figure III-12b, respectively. 

Perfect overlap between the different characteristics was found for Cm_split and Gm_split. In case of split-CV, the 

probe placement on the die surface is not effecting the measurements. 

In conclusion, we have seen that the access resistance (i.e., probe pressure) and border effects (i.e., 

probe position) have smaller impact on capacitance measurements than on current characteristics. 
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Figure III-12: Measured capacitance (a) and conductance (b) in split-CV configuration for different probe 

positions on the silicon film (inset Figure III-12b). Same SOI structure as in Figure III-11. The corresponding 

drain current versus gate bias curves are also presented in the inset of Figure III-12a. 

Number of probes 

Finally, the role played by the number of probes (Nprobe) was also investigated. Split-CV technique 

allows the use of more than one needle placed on top silicon film and connected to the low potential of the 

LCR meter. It was shown that Seff is dependent on Nprobe [54]. 

Figure III-13a shows the measured capacitance versus gate bias using different numbers of probes. 

Perfect overlap between the several characteristics is found. Similar results are also obtained for the 

conductance terms (Figure III-13b). In conclusion, at low frequency, the oxide capacitance dominates the 

characteristics and effects due to the number of probes play a minor role. 
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Figure III-13: Measured Cm_split (a) and Gm_split (b) as a function of gate bias at low frequency (20 Hz). 

Characteristics performed using different number of probes placed on the top-silicon film. The SOI structure 

was the same as in Figure III-11. 

In these sections we have discussed about the experimental setup of split-CV and shown how it could 

affect the measurements. In the next section we will investigate the impact due to frequency effects and point 

out the possibility to characterize the interface quality. 
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III.3 Frequency effects 

Experimental evidences show clear frequency effects on the C-V characteristics (Figure III-14a). 

Increasing f, the measured maximum capacitance becomes smaller than COX. Figure III-14b presents the 

measured capacitance as a function of angular frequency (ω =2·π·f) in strong inversion regime for three 

different VG. Capacitance attenuation is found at high ω magnitude. Diab et al. [97] have proposed a physical 

model based on RC electric circuit to explain the Cm_split -VG curves in Ψ-MOSFET configuration. Even if it 

was initially developed only for C-V characteristics obtained with back air contact, we will discuss its 

validity also for measurements performed using vacuum back contact. It will be further enriched with the 

conductance term and the C-ω analysis will be performed. Its mathematical derivation will be also presented 

in the next section. 
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Figure III-14 (a) Cm_split versus gate bias for different frequency values. (b) Normalized capacitance as a function 

of angular frequency for different VG. Measurements performed on the same SOI structure with 88 nm top 

silicon film thickness and 145 nm BOX thickness. Non-passivated top surface.   

III.3.1 Model derivation 

The equivalent electric circuit of pseudo-MOSFET structure is shown in Figure III-15a. Note that no 

contribution due to interface trap density is taken into account. The oxide capacitance (COX) is in series with 

the inversion (or accumulation) channel capacitance (CInv). Knowing tOX and the whole die surface, COX can 

be calculated by Eq. (III.1). Furthermore, the inversion (or accumulation) charge density Qi [99] allows CInv 

calculation: 

 i
Inv

G

Q
C

V





  (III.10) 

Finally, the channel resistance RCH represents the path required by one carrier to go from one probe to 

any point in the conduction channel. It is proportional to the sheet resistance (RSH) and the number of probes 

placed on the top silicon surface Nprobe [97]: 



Chapter III: Split-CV in Ψ-MOSFET 

60 

 

 SH
CH

probe g probe g eff i

R 1
R

N f N f Q
 

   
  (III.11) 

Thus, the complete SOI equivalent impedance becomes: 
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  (III.12) 

where j is the complex unit. In case of air back contact, the model equations remain the same, except that Seff 

has to be used instead of S. 

The LCR meter analyzer measures the SOI structure through a parallel equivalent circuit  

Cm_split-Gm_split (Figure III-15b). The obtained impedance has to be the same as ZEQ. Thus, the imaginary and 

real terms of the equivalent admittance (1/ZEQ) allow writing Cm_split and Gm_split as a function of device 

parameters: 
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In order to validate the proposed model, experimental results will be systematically compared to 

calculated curves for different measurement configurations (see next section). 
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Figure III-15: (a) Equivalent electric circuit of SOI structure (ZEQ). (b) Equivalent electric circuit used by the 

LCR meter. 
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III.3.2 Model validation 

Equations (III.13) and (III.14) are dependent of gate bias as well as of angular frequency.  The 

complete validation of the physical model requires the comparison of measured and calculated characteristics 

as a function of VG (Sec. III.3.2.1) and of ω (Sec. III.3.2.2). Furthermore, the impact of Nprobe and of S will be 

addressed in Sec. III.3.2.3. The capability to characterize ultra-thin SOI structures will be shown in Sec. 

III.3.2.4. 

III.3.2.1 Cm_split and Gm_split versus gate bias 

Figure III-16 shows the measured (empty symbols) capacitance as a function of gate bias for different 

frequencies in case of holes (a) and electrons (b). The calculated curves by Eq. (III.13) were also added 

(dashed line). Measurements have been performed on non-passivated SOI wafer using two probes on the 

silicon surface. Good agreement was found between the measured curves and the calculated ones. Small 

differences are present for high frequency in case of holes, probably due to higher access resistance. Note 

that no fitting parameters were used. For low frequency (i.e., f = 20 Hz) the measured capacitance at high VG 

is dominated by the oxide capacitance, since CInv is much higher than COX. Increasing the measurement 

frequency, the carriers have less time to go from the probes to the channel, so the measured capacitance 

decreases. The same behavior is also obtained in case of standard MOSFET devices [5]. 
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Figure III-16: Measured (empty symbols) and calculated (dashed line, from Eq. (III.13)) capacitance versus gate 

bias in case of holes (a) and electrons (b) for different frequencies. Measurements performed using two probes on 

non-passivated SOI structure with 88 nm top silicon film thickness and 145 nm BOX thickness. 

Figure III-17 shows the corresponding conductance versus gate bias obtained from Figure III-16 at 

f = 20 Hz: measured (empty symbols) and calculated (dashed line) characteristics. The light difference in the 

peak height is due to possible VT mismatch between the computed RCH obtained from ID-VG analysis and 

split-CV measurements. Diab el al. [97] have shown how the RC model can explain only capacitance 

characteristics using air back contact and Seff. The use of vacuum back contact allows completing Cm_split and 

Gm_split modeling without using any fitting parameter. 
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In the next section, characteristics obtained as a function of ω will be addressed. 
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Figure III-17: Conductance versus gate bias corresponding to the capacitance measured (empty symbols) and 

calculated (dashed line) in Figure III-16 for f = 20 Hz. 

III.3.2.2 Cm_split and Gm_split versus angular frequency 

To further validate the frequency dependence, capacitance and conductance characteristics as function 

of ω for fixed VG were measured. Figure III-18 shows the results for holes (a) and electrons (b) using 

different gate bias. The same SOI structure of Figure III-16 was used. The measured capacitance (plain 

symbols) are in good agreement with the calculated ones (lines) from Eq. (III.13). In case of slow angular 

frequency, the channel has enough time to reach equilibrium state and the maximum capacitance is 

dominated by COX. Increasing ω, the free carries do not have enough time to follow the a.c. signal and the 

measured Cm_split decreases. This is typical RC filter behavior. Note that the capacitance attenuation is 

delayed in case of high VG magnitude, thanks to lower RCH in strong inversion regime. 
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Figure III-18: Hole (a) and electron (b) capacitance as a function of angular frequency for different gate bias. 

Measurement performed with two probes placed on top silicon film. SOI with 88 nm thick top silicon film and 

145 nm thick BOX. The top surface was non-passivated. 
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The corresponding conductance terms of Figure III-18 are shown in Figure III-19 in case of holes (a) 

and electrons (b). The experimental results (plain symbols) are compared with the calculated values (lines) 

from Eq. (III.14). Also in this case, typical RC shape is obtained and the modeled characteristics are in good 

agreement with the measured ones. 

In the next section, the impact on the characteristics due to die area and number of probes will be 

addressed. 
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Figure III-19: Conductance over angular frequency versus ω associated to the capacitance in Figure III-18 for 

VG < 0 V (a) and VG > 0 V (b). 

III.3.2.3 Effects of die area and number of probes 

Equations (III.13) and (III.14) are clearly dependent on die area. Thanks to the use of vacuum back 

contact, it was already shown that the whole surface participates to capacitance measurements. Figure III-20 

shows the normalized Cm_split (a) and Gm_split/ω (b) as a function of angular frequency for different S at the 

same overdrive voltage (VG-VT). The calculated values (lines) are added for comparison. At low ω, the 

maximum surface capacitance is the same for all die areas, since it is dominated by COX. The smaller the die 

area, the higher the cut-off frequency, as predicted in Eqs. (III.13) and (III.14). The RC model is always 

capable to predict well the curves behavior. The differences in the Gm_split/ω curves, present in case of small 

die areas and large ω magnitude, are due to parasitic effects that are still under investigation. 
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Figure III-20: Cm_split (a) and Gm_split/ω (b) as a function of angular frequency for different die areas. Same SOI 

structure as in Figure III-18. 

Another important parameter to take into account during split-CV characteristics is the number of 

probes placed on the top silicon surface. Nprobe determines the channel resistance RCH magnitude (see Eq. 

(III.11)). Thus, Cm_split and Gm_split will change proportionally to the number of probes. All the results 

discussed above have been obtained using two probes. Figure III-21 shows the capacitance and Gm_spit/ω 

versus ω obtained using one probe on the top silicon film. Measurements (empty symbols) and modeled 

results (lines) are compared. Also in this case a remarkable agreement was found. Finally, we will discuss 

about the possibility to characterize ultra-thin SOI structures. 
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Figure III-21: Cm_split and Gm_split/ω curves versus angular frequency obtained with one probe on the top silicon 

film. Experimental results (empty symbols) and calculated curves (line) are shown. Same SOI structure as in 

Figure III-18. 
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III.3.2.4 Ultra-thin SOI structure 

In the previous sections it has been shown that the RC model gives a realistic representation of split-

CV characteristics, independently of the regime under analysis, the surface of the die and the number of 

probes used for the characterization. Here we want to extend split-CV technique to ultra-thin SOI structures. 

The results obtained for SOI wafer with 12 nm non-passivated top silicon film and 25 nm BOX are presented 

in Figure III-22. The measured (empty symbols) capacitance and Gm_split/ω terms are compared to the 

calculated ones (lines) in strong inversion (a) and accumulation (b) regime. Even if the silicon film is ultra-

thin and strong coupling between the top and bottom silicon interfaces is present, the model can well fit the 

experimental results without any Dit contribution. In the next section the possibility to characterize interface 

quality in split-CV will be addressed. 

(a) (b) 

10
3

10
4

10
5

0

500

1000

1500

  (rad/s)

 

 
C

m
_

s
p

li
t 
(

F
/m

2
)

0

250

500

750
 

Holes

 Measurement

 Model

        V
G
-V

FB
=-4.5V

G
m

_
s

p
lit /

 (
S
s

/ra
d
m

2)

    
10

3
10

4
10

5
0

500

1000

1500

 

 

 (rad/s)

 
C

m
_

s
p

li
t 
(

F
/m

2
)

0

250

500

750

 

Electrons

G
m

_
s

p
lit /

 (
S
s

/ra
d
m

2)

 Measurement

 Model

        V
G
-V

T
=3V

 

Figure III-22: Capacitance and conductance Gm_split/ω characteristics obtained versus angular frequency in 

accumulation (a) and strong inversion (b) regime on SOI structure with 12 nm top silicon film thickness and 

25 nm BOX thickness. Non-passivated SOI structure. The experimental results (empty symbols) are compared to 

the calculated curves using our RC model (lines). 

III.3.3 Dit signature 

In the literature the capacitance and the conductance measurements are largely used for Dit 

investigation [100]–[102]. The results obtained in the previous section show that a RC model without any 

interface traps contribution can reproduce the measured characteristics in strong inversion and accumulation 

regime. This suggests that the Dit are not “visible”. We performed split-CV measurements with different top 

surface (after HF treatment, with native and passivation oxide). The aim is to see whether the surface state 

affects the curves. 
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One possibility to induce a lot of dangling bonds on the top silicon surface is to perform HF treatment 

on the wafer [63]. The native oxide is etched and the surface becomes very reactive. Figure III-23 shows the 

capacitance versus gate bias measured before (line) and after (symbols) HF treatment. The SOI structure had 

88 nm thick non-passivated silicon film and 145 nm thick BOX. Clear peak appears on the curve obtained 

after the chemical procedure, probably due to the high density of dangling bonds induced on the surface. The 

VT and VFB variations are due to the variation of top charge density as already seen by Hovel [63]. After 

channel formation the characteristics perfectly overlap because the high density of free carriers masks any 

possible effects due to traps or dangling bonds. Thus, the best region to look for Dit signature is before 

channel formation. 
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Figure III-23: Capacitance as a function of gate bias measured at low frequency (20 Hz) before (continuous line) 

and after (symbols-line) HF treatment. Non-passivated SOI structure with 88 nm top silicon film thickness and 

145 nm BOX thickness. 

In order to verify that the capacitance peak is related to HF treatment, the wafer was characterized at 

different moments after the cleaning procedure. In ambient condition, the native oxide grows back 

decreasing the density of active bonds present on the Si surface. The capacitance terms as a function of gate 

bias are shown in Figure III-24a. The threshold voltage shifts towards the initial value (continuous line). The 

peak decreases sharply with time. Almost 16 hours after the treatment, effects due to dangling bonds have 

become very small. The behavior obtained more than one week after the chemical treatment is very similar 

to the one measured before the HF clean. 

The conductance term versus gate bias shown in Figure III-24b suggests the same remarks: VT shift, 

supplementary peak after HF treatment, recovery of the shape after one week. 

These experiments clearly demonstrate that split-CV capacitance measurements can detect information 

concerning surface quality. Consequently, including Dit effects in the RC model could be interesting for a 

future extraction procedure. 
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Figure III-24: Capacitance (a) and conductance (b) as a function of gate bias measured at low frequency (20 Hz) 

at different moments after HF treatment. The characteristic obtained before the chemical process is also shown 

(continuous line). Same structure as in Figure III-23. 

III.3.3.1 RC model including Dit contribution 

Schroder [56] proposed to introduce the Dit contribution in parallel to the inversion (or accumulation) 

capacitance (Figure III-25a). The traps are modeled by a capacitor (CDit_c) in series with a conductance 

(GDit_c) due to trap lossy process. In case of continuum level of interface traps, one gets [56]: 

 Dit _ c itC q D    (III.15) 
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  (III.16) 

where τDit is the trap effective lifetime [50]. The electrical equivalent circuit is typically rearranged in order 

to separate the capacitance and conductance contribution (Figure III-25b). 

 As done for the RC model derivation (Sec. III.3.1), the total equivalent impedance, including also Dit 

contribution, has to be the same as the measurement equivalent impedance (Figure III-25c). Thus, it is 

possible to rewrite Cm_split and Gm_split as: 
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  (III.18) 

In the next sections, the analysis of Cm_split-V (Sec. III.3.3.2) and Gm_split-ω (Sec. III.3.3.3) 

characteristics will be addressed looking for Dit signature. 
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Figure III-25: (a) Equivalent electric circuit for SOI structure where Dit contribution was added. (b) Rearranged 

equivalent circuit. (c) Parallel electric circuit used during the measurements with the LCR meter. 

III.3.3.2 C-V characteristics 

To investigate the possibility of Dit detection through C-V analysis, measurements performed on 

passivated and non-passivated samples are compared. It is well known that for passivated top surface the 

surface trap density is much lower than for non-passivated one [83]. Note that the two samples present 

similar top film-BOX interface quality. Figure III-26 shows the measured Cm_split (a) and Gm_split (b) as a 

function of gate bias in case of passivated (empty symbols) and non-passivated (plain symbols) SOI 

structure, obtained at low frequency (f = 20 Hz). Beside the typical shifts in VT and VFB [83], no Dit signature 

is detected, since the curves have the same behavior. 
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Figure III-26: Cm_split (a) and Gm_split (b) versus gate bias measured at low frequency (20 Hz). Comparison between 

passivated (empty symbols) and non-passivated (plain symbols) SOI structure with 88 nm top silicon film 

thickness and 145 nm BOX thickness. 
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Figure III-27 shows the calculated capacitance (a) and conductance (b) terms versus gate bias. The 

dashed line represents the curves obtained using the RC model without interface trap contribution calculated 

with Eq. (III.13) and Eq. (III.14). The continuous line shows the results including Dit = 1013cm-2eV-1 in the 

RC model (Eq. (III.17) and Eq. (III.18)). The overlap between the characteristics confirms that C-V analysis 

performed on standard SOI wafer in pseudo-MOSFET configuration cannot lead to Dit detection even if 

abnormally large traps density has been used. 

Another possibility to achieve Dit detection arises from frequency measurements. They will be 

discussed in the next section. 
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Figure III-27: Calculated capacitance (a) and conductance (b) versus gate bias with Dit = 10
13

cm
-2

eV
-1

 

(continuous line) and without (dashed line) Dit in case of low frequency (20 Hz). Same SOI structure as for the 

measurements. 

III.3.3.3 Frequency characteristics in depletion regime 

 It has been already pointed out that the most sensible regime for Dit detection is the depletion one 

[100]. In order to evidence the traps signature in the conductance term, the contribution of the channel 

resistance and the oxide capacitance are removed from the measured conductance. Reversing Eq. (III.18), Gp 

is expressed as a function of Cm_split and Gm_split: 
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  (III.19) 

Gp/ω characteristics versus ω have been obtained by standard Gm_split-ω measurement performed on 

non-passivated sample (Figure III-28). Since the low quality of top silicon interface with native oxide, strong 

impact due to Dit was expected. Before the channel formation, the signal is very small and after VFB the 

creation of accumulation channel covers any possibility of Dit detection. 
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Figure III-28 Gp/ω as a function of ω for different gate bias values on non-passivated SOI structure (same 

structure as Figure III-25a). 

Validation of experimental results comes from modelled curves. Figure III-29a shows the Gp/ω 

obtained without (plain symbols) and with (empty symbols) Dit contribution for different gate biases before 

and after channel formation. The SOI structure was the same as in Figure III-27. The die area was 25 mm2. 

The characteristics with and without Dit always overlap and no signature due to interface traps is present. The 

effect due to RCH is very strong and masks any possible signature of interface traps even for large density.  

In order to attempt to reveal the Dit influence, the size of the die needs to be reduced. According to 

Eqs. (III.17) and (III.18), the RC response of the SOI layer should then be attenuated. We simulated the same 

system as in Figure III-29a but with decreased die area by a factor of 1000 (0.025 mm
2
 instead of  

25 mm2). The full symbols in Figure III-29b represent the simulation obtained with Dit while the empty 

symbols are computed without interface trap density. We now note a pronounced influence of Dit for gate 

bias values around flat-band voltage (-3.5 V). In contrast, for gate bias exceeding the flat-band voltage, the 

effect of interface trap density disappears and the system response becomes again dominated by the RC 

model. In accumulation regime the curves calculated with and without Dit overlap.  

These simulations indicate that the Dit extraction, even for quite large traps density, is not possible in our 

relatively large SOI samples with 10-50 mm2 area. Detection of larger Dit magnitude is limited by oxide 

capacitance. 

The pseudo-MOSFET technique is used for in situ characterization and it should be able to evidence 

Dit signature of ≈ 1010-1011cm-2eV-1. In principle, this is possible using very small dies. Unfortunately, the 

pseudo-MOSFET characterization of small SOI samples with area in the order of 100 μm x 100 μm cannot be 

performed because the probe size is ≈ 40 μm. 
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Figure III-29 (a) Modeled Gm_split/ω versus ω for different VG around VFB without (empty symbols) and with 

(plain symbols) Dit contribution. The same SOI structure as in Figure III-27 was used. Die area of 25 mm
2
. (b) 

The same SOI structure as in Figure III-29a has been used with die area equal to 25·10
-3

 mm
2
. 

III.4 Conclusions and perspectives 

Diab et al. [53] and Fernandez et al. [54] have proposed for the first time the split-CV technique for 

the characterization of bare SOI wafers in pseudo-MOSFET configuration. Their work focused on the 

effective mobility extraction and thanks to a fitting parameter which was the effective surface (Seff), they 

have obtained realistic results. 

In this chapter, a further investigation of the measurement setup has been performed. The quality of 

the contact between the wafer and the metallic chuck plays a major role. In order to avoid parasitic 

capacitances, the use of vacuum contact is mandatory. In this way the active area is the whole die area and 

the extraction of effective mobility becomes straightforward. It has been also proved the secondary role 

played by the quality of probe contact. Pressure, position and number of probes on the top silicon film do not 

limit the characteristics. 

Moreover, Diab et al. [97] have also presented a RC model to describe the frequency effects on C-V 

characteristics. During our work, the model validity has been validated using vacuum back contact and for 

different measurements: Cm_split-VG, Gm_split-VG, Cm_split-ω and Gm_split/ω-ω. In all the cases, a remarkable 

agreement has been found. The model was also tested on ultra-thin SOI structures and it can also predict the 

impact of different number of probes or die area. 

The possibility to extract interface trap density has also been investigated. Dit contribution was 

included in the RC model. Experimental and simulation results showed that neither Cm_split-V nor Gm_split-ω 

characteristics can help to interface quality evaluation. The analysis has pointed out that the detection limit is 

due to high τRC magnitude. The use of smaller dies could make Dit extraction possible in split-CV 

configuration, but this is difficult to achieve in a practical case, due to the probe dimensions. 

There are two possible perspectives of this work: 
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Double Gm_split/ω peak 

The RC model predicts well the measured Gm_split/ω curves before and after the channel formation. 

Nevertheless, an interesting effect was obtained for higher gate bias (VG much higher than VT or much lower 

than VFB). Figure III-30 shows an example of the measured Cm_split (a) and Gm_split/ω (b) versus angular 

frequency on a SOI wafer with 88 nm top silicon film thickness and 145 nm BOX thickness for different gate 

bias after VT. In case of low VG, the capacitance and Gm_split/ω curves are similar to the model. Increasing the 

gate bias magnitude, a “shoulder” rises up in the measured characteristic. At the same time, Gm_split/ω peak 

decreases and for high VG (i.e., VG = 15 V) a second peak appears at higher angular frequency values. 

According to the RC model, after the channel formation the gate bias should only induce a peak shift towards 

higher angular frequency values, but not a height decrease. It is may be due to self-heating or substrate drop 

potential effects [103]. 

Overcome RC model limitations 

It has been shown that split-CV technique cannot address the study of interface quality in pseudo-

MOSFET configuration due to τRC limits. The theoretical possibility to overcome the problem suggested in 

Sec. III.3.3.3 was the use of smaller die area. This is not possible since physical probing limitations. Another 

possibility is the use much lower measurement frequency. The channel should be very close to equilibrium 

condition and τRC will not affect the characteristics anymore. The lowest measuring frequency in split-CV 

configuration is around 20 Hz and it is not enough. The quasi-static capacitance technique allows the 

capacitance measurement at equivalent frequency around 0.1 Hz or lower. A detailed discussion of this 

technique, its measurement setup and the possibility to extract interface trap density will be presented in the 

next chapter. 
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Figure III-30 Cm_split (a) and Gm_split/ω (b) versus angular frequency for different gate bias. The SOI structure had 

88 nm top silicon film thickness and 145 nm BOX thickness and non-passivated top surface. 

 

 

 



 

 

Chapter IV: 

Quasi-static capacitance in Ψ-MOSFET 

Equation Section (Next) 

In the previous chapter we have proved that Dit detection cannot be achieved using standard LCR 

meters (split-CV). Nevertheless, the investigation of capacitance measurements for interface quality still 

remains an interesting goal. A reduced frequency could turn the CV into a successful method: this is the 

quasi-static CV. 

In this chapter, small signal quasi-static technique will be applied to pseudo-MOSFET for the 

characterization of bare SOI wafers. After the optimization of the measurement setup, a physical model will 

be presented to describe the characteristics. A procedure to extrapolate the interface trap density, based on 

experimental results is discussed. Several types of wafers (geometry, passivation) will be characterized and 

the nature of the obtained Dit will be evidenced. 
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IV.1 Introduction: quasi-static CV in MOS structures 

In MOS capacitors the detection of deep traps is difficult to achieve. Standard C-V analysis performed 

using LCR meter is limited by frequency effects [104]. Small signal quasi-static capacitance (QSCV) 

technique may overcome the problem [98], [105]–[107]. 

The measurement setup requires connecting the device substrate to low potential. The gate contact is 

linked to the high potential and it is polarized by static bias (VG). A small linear a.c. ramp signal (ΔVramp_ac) is 

added to VG [104]. ΔVramp_ac induces charge variations in the conduction channel; ΔI is measured and leads to 

capacitance values [108]. This configuration allows performing characteristics at slow equivalent frequency f 

(i.e., few mHz). To perform correct analysis, it is important to verify that leakage currents are negligible 

through the oxide of the device under test. 

Typical examples of low frequency (Clf) and high frequency (Chf) capacitance traced as a function of 

gate bias are reported in Figure IV-1a [56]. The interface traps induce a shift between the two curves 

between accumulation and inversion regimes. The difference between the two capacitance terms (fast and 

slow) leads to Dit estimation (high-low frequency method). This procedure is largely used for the 

characterization of interface traps density in case of standard MOS capacitors [56], [100]. 

QSCV also allows computing the surface potential, thus the corresponding Dit energy in the silicon 

band gap. Performing the measurement at slow frequency (CLF_MOS), the device is close to equilibrium 

condition and the whole channel response is obtained. Dividing CLF_MOS by COX and integrating the results 

over VG, one obtains [98], [106], [107]: 
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  (IV.1)  

where Ψb is the bulk potential deduced from the doping concentration. Note that Eq. (IV.1) is not valid in 

case of gross non-homogeneities present at silicon interface [106]. 

Figure IV-1b shows the traps distribution as a function of energy measured on MOS in case of (111) 

(A) and (100) (B) silicon crystal orientation [56]. Conductance method (squares) and QSCV technique 

(circles) were used. Obviously, the quasi-static measurement gives access to deep traps, close to the mid-gap, 

while the conductance technique is more sensitive to the edge of the band gap. 

Besides its attractive features, the QSCV has also some drawbacks: 

o It is only sensitive to charged defects [98]; 

o The characteristic may be affected by potential fluctuations due to detrapping effects that lead to 

instability on the measurements [56]; 

o It is not adapted for Dit located at the edges of the band gap [56]. 

QSCV in Ψ-MOSFET may become very interesting if it can lead to similar results concerning the 

interface quality of bare SOI wafers. 
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Figure IV-1: High and low frequency capacitance measurements performed on MOS capacitor. Dit extracted as a 

function of energy in a MOS capacitor in case of (111) (A) and (100) (B) p-Si. Conductance (square symbols) and 

quasi-static (circle symbols) techniques were used [56]. 

IV.2 Quasi-static capacitance in pseudo-MOSFET 

The previous chapter demonstrated that the conductance method is not suitable in Ψ-MOSFET 

configuration but also suggested that Dit characterization on bare SOI wafers could be achieved by low 

frequency measurements (corresponding to QSCV). In Sec. IV.2.1 we will show the setup of QSCV in Ψ-

MOSFET. Sec. IV.2.2 compares measurements performed using quasi-static technique and LCR meter on 

the same SOI sample. 

IV.2.1 Basics of QSCV for Ψ-MOSFET 

The samples are probed by Jandel® station. The SOI wafer is placed on a metallic chuck. The 

substrate is connected to the high potential acting as a gate (similar to LRC meter setup). The low potential is 

applied on the top silicon film through one (or more) probe (Figure IV-2a). Small signal quasi-static 

measurements are performed using the Agilent B1500A® [107]. 

A particular polarization is required to perform the analysis (see Figure IV-2b). Static gate bias VG is 

applied to the metallic chuck and the vertical current (I) between the high and the low potential is measured. 

A small linear a.c. ramp bias is added to VG and a new I is measured at half ramp period. Integrating the 

current-time evolution leads to the charge and then to the capacitance value for a given VG. 

Two important parameters define the a.c. signal: the bias amplitude ΔVramp_ac and the time period over 

which it is applied (tm). Thus, the a.c. scan speed is estimated by: 
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For simplicity reasons we have chosen to keep ΔVramp_ac = 50 mV for all the characteristics. Hence, 

different vramp_ac are obtained using different tm. Therefore, slow a.c. scan speed is given by long time ramp tm 

and it is equivalent to slow measurement frequency (f = 1/tm). The static polarization (VG step and delay 

time) is kept constant when changing vramp_ac on the same SOI structure. 

QSCV configuration requires neither open nor short circuit corrections. The characterization is 

performed by current measurements and at very slow f. Thus, parasitic capacitances play a minor role, unlike 

the case of LCR meter [108]. Effects due to possible leakage terms are reduced thanks to the comparison of 

the measured current before and after applying vramp_ac [108]. 
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Figure IV-2: (a) Measurement setup of QSCV technique for bare SOI wafers in pseudo-MOSFET configuration. 

(b) Schematic of the gate bias required to achieve QSCV capacitance measurements. 

Preliminary results of quasi-static characterization performed in pseudo-MOSFET configuration are 

reported in Figure IV-3. The capacitance (Cm_QST) is obtained as a function of VG using slow (plain symbols) 

and fast (empty symbols) a.c. scan. In strong inversion or accumulation regimes both measured 

characteristics reach the COX value. Around VG ≈ 0 V, two “shoulders” rise up for slow f. These signatures 

may lead to the investigation of traps present at the interfaces of the top silicon film. 
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Figure IV-3: Measured QSCT capacitance Cm_QST as a function of gate bias measured in case of slow (10 mV/s) 

(plain symbols) and fast (1 V/s) (empty symbols) vramp_ac. SOI structure with 88 nm top silicon film thickness, 145 

nm BOX thickness, and passivated top surface. 
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IV.2.2 Comparison with LCR meter measurements 

Both split-CV and QSCV techniques lead to capacitance measurements. Thus, one expects that, even 

if the bias schemes are different (i.e., sinusoidal a.c. bias for LCR meter and linear a.c. ramp polarization for 

QSCV technique), similar characteristics should be obtained when using comparable frequencies. Figure 

IV-4 shows the measured capacitance versus gate bias in split-CV (plain symbols) and quasi-static (empty 

symbols) technique on the same die. Split-CV characterization has been performed using the slowest 

frequency available on the LCR meter (f = 20 Hz). The equivalent ramp speed can be roughly estimated 

considering the signal amplitude (δVG) of the LCR meter and the period over which it is applied (1/f): 

 
3

ramp _ ac Gv f V 20 26 10 0.5V s        (IV.3) 

This corresponds to a fast a.c. scan performed in QSCV (empty symbols). For the quasi-static experiment, 

vramp_ac = 1 V/s was used. The two curves behave similarly. For high gate bias, the oxide capacitance 

dominates in both cases. Furthermore, before channel formation, no traps signature is evidenced. Small 

variations of threshold and flat-band voltages are found, probably due to the different setups. In general, 

however, QSCV characteristics performed using fast a.c. scan lead to similar LCR meter curve. This 

continuity between quasi-static CV and split-CV technique allows us to use most of the modeling results 

discussed in the previous chapter. 

Dit signature is expected only in absence of the channel (see Figure IV-3). Thus, in the following 

sections we will focus on the region where the conduction channel is only partially or not yet created. 
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Figure IV-4: Measured capacitance versus gate bias obtained using LCR meter (plain symbols) and quasi-static 

technique (empty symbols) on passivated SOI structure with 88 nm thick Si film and 145 nm thick BOX using 

similar vramp_ac: 0.5 V/s and 1 V/s, respectively. 
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IV.3 Impact of measurement parameters 

Before proceeding to any modeling and Dit extraction, we need to find the appropriate QSCV 

experimental setup. Quality of the back contact and probe role will be discussed in Sec. IV.3.1 and Sec. 

IV.3.2, respectively. Afterwards, the importance of scan direction will be clarified (Sec. IV.3.3). 

IV.3.1 Impact of back contact quality 

The quality of the back contact was critical in split-CV to avoid parasitic capacitances which were 

reducing Cmax values [70]. Is this the case here for quasi-static CV? 

Figure IV-5a shows the measured capacitance using fast a.c. scan speed (1 V/s) without (empty 

symbols) and with (plain symbols) vacuum. A parasitic capacitance appears in absence of vacuum. Thus, the 

obtained maximum value is much lower than COX. On the contrary, when the vacuum was used on the back 

contact, Cm_QST after channel formation is very close to the expected COX value. Furthermore, VT differs, 

much more than in case of measurements performed using LCR meter. 

Figure IV-5b shows QSCV characteristics in case of slow a.c. ramp speed (vramp_ac = 10 mV/s). Curve 

overlap is obtained. vramp_ac is very slow and the parasitic terms do not affect the results. This conclusion 

further validates the hypothesis that the use of vacuum system becomes mandatory only in case of rapid time 

dependent signals. In case of static polarization or for very slow VG variation close to equilibrium, the 

parasitic effects become negligible. Similar results have also been demonstrated for standard MOS capacitors 

[98]; note that the vacuum contact was related to the silicon substrate and not to the gate. 

Even if the curves measured using slow a.c. scan speed are almost independent of the back contact 

quality, all the characteristics of this chapter were performed using the vacuum system. This increases 

reproducibility and erases any doubt on possible parasitic capacitance effects. 
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Figure IV-5: Cm_QST as a function of VG in QSCV configuration. Characteristics obtained with (plain symbols) 

and without (empty symbols) using the vacuum system. Analysis performed using two different a.c. ramp speeds: 

vramp_ac = 1 V/s (a) and vramp_ac = 10 mV/s (b). SOI structure with 88 nm thick Si film and 145 nm thick BOX. The 

top silicon film was passivated. 
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IV.3.2 Impact of the probes 

While performing static characteristics in pseudo-MOSFET configuration, the quality of the probe 

contact is a major parameter to achieve low access resistance and reliable parameter extraction (Sec. II.3.3). 

In case of split-CV measurements, however, RSD had only a minor impact on the obtained characteristics 

(Sec. III.2.3). It is mandatory to verify the importance of RSD during QSCV characterization. 

Pressure effects 

Figure IV-6 shows the Cm_QST versus VG in case of different probe pressures. Superposition is obtained, 

showing that, as for the split-CV, in quasi-static configuration the probe pressure plays a minor role [70]. 

The “shoulders” representing the Dit are therefore pressure independent. This indicates that Dit extracted in 

QSCV are not due to only defects induced by probe penetration. Furthermore, good QSCV characteristics 

can be obtained without particular precautions on the pressure value. Consequently, even very low pressures 

lead to accurate capacitance curves which is not the case for ID-VG. This fact makes the QSCV more adapted 

for ultra-thin films than the current measurements. Results on the ultra-thin films and BOX will be discussed 

in Sec. IV.8. 
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Figure IV-6: QSCV capacitance versus gate bias for different probe pressures. The SOI structure had 88 nm top 

silicon film thickness and 145 nm BOX thickness. Passivated top surface. 

Different probe quality and number 

Figure IV-7a shows the measured QSCV capacitance versus gate bias obtained using two different 

needles on the silicon surface with the same pressure: probe A (plain symbols) and probe B (empty 

symbols). The curves superposition confirms that the obtained “shoulders” are independent of the top 

contact quality.  

The number of probes placed on the top silicon film changed the frequency response of the SOI 

structure in split-CV. The higher the measurement frequency, the stronger the impact on the characteristics 

(Sec. III.3). On the contrary, in quasi-static configuration, f is sufficiently low and no frequency attenuation 

is expected. This is confirmed by the measurements in Figure IV-7b performed using one and three probes 

on the Si film. 
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Figure IV-7: (a) Measured QSCV capacitance as a function of gate bias using slow vramp_ac. Two different probes 

from the same station were used: A (plain symbols) and B (empty symbols). (b) Measured QSCV capacitance as 

a function of gate bias using one (plain symbols) and three (empty symbols) probes placed on the top silicon film. 

Characterization performed on the same SOI structure as in Figure IV-6. 

IV.3.3 Impact of scan direction 

In standard MOS capacitor the scan direction is a major parameter for interface characterization [109]. 

Starting the measurement from accumulation or strong inversion regime leads to different information [105]. 

When performing the sweep from accumulation regime, the device may enter the out-of-equilibrium deep 

depletion regime instead of the inversion regime. Alternatively, a scan started from strong inversion regime 

makes Dit investigation more fruitful, since more defects will be charged. 

Figure IV-8a shows the measured capacitance as a function of gate bias using slow a.c. scan speed in 

Ψ-MOSFET configuration. The analysis of SOI structure with 88 nm thick Si film and 145 nm thick BOX 

has been started respectively from accumulation (empty symbols) and from strong inversion (plain symbols) 

regime. After channel formation, the two characteristics overlap at COX. Between VFB and VT the curve 

measured from positive VG shows larger instability than for the curve started from accumulation regime. The 

effects are amplified in case of thin top silicon film (Figure IV-8b for SOI structure with 12 nm Si thickness, 

145 nm BOX thickness and non-passivated surface). The characteristic started from strong inversion regime 

(empty symbols) shows two “shoulders” when the conduction channel is not yet created. On the contrary, the 

measurement performed from negative gate bias (plain symbols) presents no Dit signature. Before threshold 

voltage, the curve started from VG < 0 V becomes very noisy, probably because of the lack of carriers [5]. 

The potential is pinned above VT and just after it the capacitance jumps directly to COX. This explains the 

presence of capacitance values higher than COX which are not physical [110]. Clear hysteresis is also found 

between the two characteristics probably due to the effects of surface defects or mobile charge [6], [111]. 

In conclusion, measurements started from strong inversion regime represent the more favorable 

condition to evidence Dit signature. All the characteristics shown in this chapter were obtained starting from 

strong inversion regime (VG > 0 V). 
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Figure IV-8: Measured QSCV capacitance versus VG with two different sweep directions: starting from 

accumulation (plain symbols) and from strong inversion (empty symbols) regime. Two samples were tested: one 

with 88 nm top silicon film thickness (a) and another with tSi = 12 nm (b). In both cases the buried oxide was 145 

nm thick. 

IV.4 Dit model 

Before pursuing with Dit extraction, a physical model is required to describe the phenomenon giving 

rise to the capacitance “shoulders” (Sec. IV.4.1). The model will represent the base to achieve correct 

parameters extraction. It is validated by comparisons between experimental and calculated results (Sec. 

IV.4.2). For simplicity reasons, all the analyses in this section were performed on SOI structure with 88 nm 

thick top silicon film and 145 nm thick BOX. The top surface was passivated. 

IV.4.1 Model derivation 

 The derivation will be divided in three sections. Initially the equations will be presented for a single 

energy level of interface traps. The model will then be extended to the continuum-like energy distribution of 

defects and finally the frequency effects will be included. 

The experimental quasi-static capacitance will be labeled as Cm_QST and the computed one as CQST. 

Single energy level of interface traps 

The measured peaks obtained before channel formation can be modeled deriving the whole CQST 

expression. The total density of charges induced by the gate bias (Qch) is distributed between the free charges 

present in the channel Qi and the charges trapped in the defects (Qitrap) [100]: 

 
ch i itrapQ Q Q    (IV.4) 

For a single traps energy level, the filled charges at the interface are given by: 

 
itrap itrap _s it _s TQ Q q D f      (IV.5) 
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where fT is the probability that the traps are charged. Dit_s is the density of defects for a single energy level 

expressed in cm-2 and associated to a precise value of surface potential (ΨS), thus to VG. 

The derivation of the total charge with respect to the gate bias leads to the QSCV capacitance for a 

single energy level of Dit (CQST_s): 

 itrap _ sch i
QST _ s

G G G

QQ Q
C

V V V

 
  
  

  (IV.6) 

Charge calculations are usually performed as a function of ΨS. Hence, it is possible to re-write Eq. (IV.6) as: 

 itrap _ sS Si
QST _ s

S G S G

QQ
C

V V

 
   
   

  (IV.7) 

To make the derivation easier to follow, the two terms will be discussed separately and the final capacitance 

will be shown at the end. 

In standard MOS capacitor, Qi is proportional to exp(β·ΨS), where β = q/(k·T) [5]. Thus, the first term 

present in Eq. (IV.7) becomes: 

 S Si
i

S G G

Q
Q

V V

 
   

  
  (IV.8) 

The derivative of the trapped charges with respect to the surface potential leads to the capacitance associated 

to a single energy level of Dit: 

 itrap _ s

it _ s

S

Q
C





  (IV.9) 

In order to complete the derivation of CQST_s, the expression of the surface potential with respect to the 

gate bias is required. VG is distributed between ΨS, the flat-band voltage and the potential drop due to the 

inversion charges and Qitrap_s [5]. ΨS is written as: 

 
i itrap _ s

S G FB

OX

Q Q
V V
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      (IV.10) 

Deriving Eq. (IV.10) with respect to VG one obtains: 

 
itrap _ s itrap _ sS S Si i

G OX G OX G OX S G OX S G

Q QQ Q1 1 1 1
1 1
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  (IV.11) 

Using Eqs. (IV.8) and (IV.9), the derivative of the surface potential with respect to the gate bias becomes: 

 S OX

G OX i it _ s

C

V C Q C




  
  (IV.12) 

Thus, the total channel capacitance with a single energy level of interface traps is (Eq. (IV.6)): 

 
 OX i it _ s
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  (IV.13) 



Chapter IV: QSCV in Ψ-MOSFET 

84 

 

QSCV technique is only sensitive to the charged defects, so the filling probability needs to be included 

in Cit_s. The probability that electrons (or holes) are trapped by Dit can be derived using Shockley-Read-Hall 

approach [112], [113]. It is usually expressed as a function of the electron density present in the channel (nS), 

which is proportional to exp(β·ΨS), as Qi. Hence, it is possible to perform the derivation using the inversion 

(or accumulation) charge density instead of nS. In case of small signal variation, the probability fT that the 

traps are charged is given by the balance between the free charges present in the conduction channel filling 

the traps Qi·(1-fT) and the filled defects discharging towards the channel Qitrap_s·fT [114]: 

 T
i T itrap _ s T

f
Q (1 f ) Q f

t q q

  
      


  (IV.14) 

where ϑ is given by the product between the traps cross section σT and the frequency fs at which the electrons 

oscillate between the conduction channel and the traps [112]: 

 T sf    (IV.15) 

In case of steady-state condition (δfT/δt = 0), fT becomes: 

 i
T

i itrap _ s

Q
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  (IV.16) 

Thus, the capacitance associated to a single energy level of traps is: 
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  (IV.17) 

In the next section, the model will be extended to the continuum-like energy distribution of traps in the 

silicon band gap case. 

Continuum-like energy distribution of Dit 

In case of a single energy level of interface traps, the defects are located only at one precise value of 

gate bias (i.e., surface potential). As shown also from the QSCV preliminary results (Figure IV-1b and 

Figure IV-3), Dit energy is more homogenously distributed in the silicon band gap instead of a peak at a 

certain value [100]. In order to emulate this effect from the mathematical point of view, a sum of several Cit_s 

in the silicon band gap will lead to the continuum-like Dit capacitance [115]. This corresponds to an integral 

in the silicon band gap. Since we control the Fermi level in the silicon film with VG (back gate bias), the 

integral is performed as a function of bias between VFB and a certain value smaller than VT: 
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    (IV.18) 

Since we are considering a continuum-like energy distribution of traps, Dit is expressed in cm-2eV-1. Cit_c is 

the defects capacitance term which replaces Cit_s in Eq. (IV.13). Thus, the quasi-static channel capacitance 

(CQST_c) is as a function of COX, β·Qi and Cit_c: 
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  (IV.19) 
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Figure IV-9 shows the simulated QSCV capacitance versus VG in three different configurations: 

without any defect contribution (continuous line), with a single energy level (dashed line) and a continuum-

like energy distribution (point-dashed line) of interface traps density. The used Dit magnitude was 1011cm-2 in 

Eq. (IV.13) and 1011cm-2eV -1 for Eq. (IV.19). As for the experimental results, the calculated curves 

superpose after channel formation. In case of single energy level of defects, a sharp peak is obtained in 

absence of conduction channel. For this calculation, the defects were placed at VG = 0 V. Using a continuum-

like energy distribution of interface traps density (point-dash line), a “plateau”, similar to the experimental 

results (see Figure IV-3), is obtained. Even if the traps magnitude was similar for the single energy level and 

the continuum-like energy case, the height of the “plateau” is much lower than the sharp peak. The same 

trends were also obtained for standard MOS capacitors [100]. 

To complete the derivation, frequency effects have to be also included in CQST. 
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Figure IV-9: Simulated CQST versus gate bias without (continuum line) and with interface traps contribution. A 

single energy level (Dit_s = 10
11

cm
-2

, dashed line) and continuum-like (Dit_c = 10
11

cm
-2

eV
 -1

, point-dash line) traps 

energy distribution were used. SOI with 88 nm thick top silicon film and 145 nm thick BOX. 

Frequency effects 

In time, the defects can be filled by free carriers present in the conduction channel or they can 

discharge. Thus, it is important to include the traps time constant τDit in the capacitance term. For a given 

value of surface potential, τDit is related to the density of filled Dit (nit) and the density of free charges present 

in the channel (nS) [116]. As for a MOS capacitor, τDit can be written as [100], [117]: 

 Dit

T th S T th it

1

v n v n
 

      
  (IV.20) 

where vth is the thermal velocity. The carrier cross section σT was kept the same for filling and discharging 

processes. Note that before channel formation nS = ni and it is much lower than nit. Thus, all the free carriers 

are trapped by the defects. 



Chapter IV: QSCV in Ψ-MOSFET 

86 

 

The capacitance contribution due to interface traps containing the defects time constant contribution becomes 

[56], [118]: 

 it _ c

it _ c _ 2 2

Dit

C
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  (IV.21) 

In order to include the filling/discharging traps effects, Eq. (IV.21) must be used in the computation of CQST: 
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 (IV.22) 

Extension to split-CV 

In the split-CV chapter, it was demonstrated that the free carriers need time to go from the probes to a 

certain point of the channel (τRC) (Sec. III.3.1). Thus, one needs to include also τRC effects in order to have a 

full capacitance expression: 
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  (IV.23) 

As explained in the split-CV chapter, only traps with τDit > τRC can be detected. Note that in quasi-

static configuration, even the characteristics measured with “fast” a.c. ramp speed are actually equivalent to 

“slow” analysis performed using LCR meter, where τRC had no impact. Consequently, in QSCV, thanks to its 

slow equivalent frequency, τRC can be safely neglected and Eq. (IV.22) will be sufficient for modeling the 

measured capacitance. 

This model will be validated in the next section. 
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IV.4.2 Model validation 

In this section, the derived equations will be constantly compared to experimental results in order to 

confirm the robustness of our model. Note that the aim of this part is not to perfectly fit the curves, but to 

verify the trends. Frequency effects and characteristics performed at different temperatures will be 

investigated. Equation (IV.22) is used to compute the total capacitance. Qi is calculated using Lambert 

equation [99]. COX is obtained from experimental capacitance measured in strong inversion (or accumulation) 

regime. Dit was equal to 1011 cm-2eV-1, which is a typical order of magnitude for these types of samples [49], 

[62], [83]. 

Frequency effects 

As discussed in the introduction, fast a.c. ramp scan (vramp_ac = 1 V/s) hides the traps contribution 

while vramp_ac = 10 mV/s reveals them. Figure IV-10a shows Cm_QST versus gate bias obtained using different 

vramp_ac. Again, the use of slower a.c. ramp speed enhances the Dit signature. Figure IV-10b presents the 

calculated CQST_c_τ capacitance using Eq. (IV.22) for different frequencies. Very similar trends to the 

experimental results are obtained, validating the evolution with f (or a.c. ramp scan). 
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Figure IV-10: Measured (a) and calculated (b) quasi-static capacitance versus gate bias for varius a.c. ramp 

speed and frequency, respectively. The passivated SOI structure had tSi = 88 nm and 145 nm BOX. The arrows in 

Figure IV-10a represents the gate bias values chosen to compute the quasi-static capacitance as a function of a.c. 

ramp time tm (labeled Cm_QST_Vg). 
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At constant VG, the filling (or discharging) Dit kinetics should have an exponential dependency as a 

function of a.c. ramp time tm [117], [119]: 

 
m

Dit

t

m _ QST _ Vg m _ QST _ satC C 1 e


 
   

 
  (IV.24) 

where Cm_QST_sat is the quasi-static saturation capacitance, when the whole density of traps responds to the 

applied signal. In order to verify if this relation is also valid in our case, we extracted the measured Cm_QST for 

some fixed VG (-0.5 V, -0.3 V, -0.1 V, 0.2 V and 0.4 V) from Figure IV-10a (vertical arrows). Cm_QST_Vg 

identifies the capacitance values obtained at constant gate bias and they are traced as a function of the a.c. 

ramp time tm (symbols in Figure IV-11a). tm is computed dividing the bias amplitude ΔVramp_ac = 50 mV by 

the a.c. ramp speed (see Figure IV-2b). The exponential fit (dashed line) well matches with the experimental 

data. Note that for high magnitude of gate bias the characteristics saturate and Cm_QST_Vg becomes equal to 

Cm_QST_sat. On the contrary, for VG = -0.1 V and 0.2 V the experimental curve is not yet complete. In this 

region not all Dit are charged. Thus, partially traps detection is obtained. The time scaling is in the order of 

seconds, which are typical values for deep traps time constants [109], [119], [120]. 

Figure IV-11b shows the measured τDit (plain symbols) obtained from the fitting performed in Figure 

IV-11a as a function of gate bias. The carriers time constants computed using Eq. (IV.20) are also presented 

(dashed line). These values were calculated using vth = 107 cm/s and σT = 10-21 cm-2, which are typical orders 

of magnitude for deep traps [119]. The two characteristics have similar behavior. For large VG magnitude, τDit 

sharply decreases. In this region, the traps respond fast. Between VT and VFB, τDit increases implying that deep 

traps are hard to detect. In case of experimental results (plain symbols) the curve saturates at VG ≈ 0 V. The 

lowest a.c. measurement ramp is 3 mV/s. Hence, traps with time constant larger than 16 s  

(50/3 = 16 s) cannot be detected. Contrary, the computed τDit (dashed line) increases to very large values that 

cannot be measured. 

 In conclusion, however, general agreement was found between experimental and calculated results. 

In the next section, we discuss the temperature dependency. 
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Figure IV-11: (a) Cm_QST_Vg versus tm for different gate bias: VG = -0.5 V, -0.3 V, -0.1 V, 0.2 V and 0.4 V. 

Experimental data (symbols) from Figure IV-10a and exponential fit (dashed lines). (b) Corresponding traps 

time constants obtained from the exponential fit performed in Figure IV-11a (symbols) versus gate bias. 

Calculated values using Eq. (IV.20) are also reported (dashed line).  

Temperature dependency 

In order to further validate the physical model, quasi-static measurements were performed at low 

temperature (T). Figure IV-12 shows the measured capacitance at T = 90 K versus gate bias for different a.c. 

ramp speed. At high VG the characteristics overlap and the obtained capacitance is always close to COX. The 

use of different a.c. scan rate has a much lower impact than at room temperature (compare Figure IV-12a 

and Figure IV-10a). At T = 90 K no clear signature due to interface traps is visible.  
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Figure IV-12: Measured quasi-static capacitance versus gate bias at T = 90 K for different a.c. ramp speed. The 

passivated SOI structure had 88 nm thick Si film and 145 nm thick BOX. 
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Figure IV-13a clarifies the mechanism: Cm_QST was measured versus VG using the same  

vramp_ac = 10 mV/s and different temperatures. Typical VT shift as a function of T is observed [84]. The 

signature due to interface traps is stronger in case of higher temperatures. 

In our model the temperature effects are present in the following terms: 

o β(T) = q/k·T; 

o Qi(T): the inversion charge density Qi in Eq. (IV.22) is calculated using Lambert equation [99], which 

contains β(T) and VT(T). The variation of threshold voltage with respect to the temperature is 

determined by β(T) and the intrinsic carrier concentration ni(T) [5], [84]: 

 
GE3

2 k T/q

i C V

T
n (T) N N exp

300



  
    

 
  (IV.25) 

where NC and NV are the effective state density at T = 300 K in conduction and valence band, 

respectively. 

o The traps cross sections σT (T) present in τDit (see Eq. (IV.20)) is assumed constant, since the minimum 

temperature used is still too high for ionization effects to occur [5]. 

 

In order to check if the derived model can explain the temperature dependency, Figure IV-13b shows 

CQST_c_τ versus gate bias in case of different temperatures. Equation (IV.22) was used, where the T effects 

were included in β and ni, thus on Qi. Comparing Figure IV-13b with the experimental results (Figure 

IV-13a), similar trends are obtained: VT and the traps response vary with T. 

In the next section, the proposed model will act as base to perform suitable Dit extraction. 
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Figure IV-13: (a) Cm_QST obtained on the same wafer as in Figure IV-12 as function of VG. Measurements 

performed using slow vramp_ac (10 mV/s) and different temperatures. (b) Computed CQST_c_τ versus gate bias for 

different temperatures. 
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IV.5 Dit extraction procedure 

After the validation of our model for the quasi-static capacitance, here we propose a procedure to Dit 

extraction. Limitations and possible improvements will be also pointed out. 

Physical approach 

In the previous sections it was proved that the measured quasi-static capacitance behavior is well 

predicted by Eq. (IV.22) where the defects capacitance contribution was calculated using Eq. (IV.18). In a 

practical case the traps are continuously distributed in energy in the silicon band gap and the associated 

capacitance can be written as [56]: 

 it _ QST itC q D    (IV.26) 

We use Cit_QST instead of Cit_c in Eq. (IV.22). Equation (IV.22), even though complete from the modeling 

point of view, is quite complicated to directly use for traps extraction. Two reasonable assumptions can 

simplify it: 

o β·Qi is neglected in Eq. (IV.22). This is acceptable because Dit extraction is performed before channel 

formation, when the density of free carriers in the channel is negligible. 

o τDit is neglected. The assumption implies that the traps extracted have a time constant much lower than 

the a.c. ramp time tm. 

 

Consequently, Eq. (IV.22) is rewritten in a simpler way: 

 
OX it _ QST

QST _ c _ QST _ c m _ QST

OX it _ QST

C C
C C C

C C



  


  (IV.27) 

Performing one QSCV measurement on SOI structure, the maximum measured capacitance in strong 

inversion (or accumulation) regime yields COX. Using Eq. (IV.27) it is possible to compute Cit_QST before 

channel formation, thus to extract Dit. 

Robustness of the extraction procedure 

Figure IV-14a shows the Dit profile as a function of VG obtained using our approach (plain symbols) 

and the high-low frequency method (empty symbols) [56], [118] in which no assumption concerning β·Qi is 

performed. The data presented in Figure IV-3 was used. Two measured capacitance curves are required for 

the high-low f technique: one at high frequency where the traps do not have time to respond (e.g., 1 V/s), and 

a second one at a much lower a.c. scan speed (e.g., 10 mV/s). Remarkable agreement is found between the 

two extraction procedures. This result confirms the validity of our approach, which is preferable to the 

standard high-low frequency because it only requires one QSCV characteristic. 



Chapter IV: QSCV in Ψ-MOSFET 

92 

 

Figure IV-14b shows the extracted interface trap density obtained from Figure IV-10a (plain symbols) 

for vramp_ac = 5 mV/s as a function of gate bias. Slow ramp speed was used to reduce attenuation effects due 

to frequency impact. U-shape defects distribution is found (similar to Figure IV-1b). A valley appears around 

0 V because the corresponding traps are too slow to be completely detected (τDit too long). 

In order to confirm the assumption of negligible β·Qi term, the dashed line in Figure IV-14b shows the 

equivalent free carrier density expressed in cm-2eV -1. β·Qi/q was calculated using Lambert equation [99]. Its 

contribution becomes relevant only close to VFB and VT, where the extraction procedure may overestimate 

Dit. However, these results confirm the possibility to neglect β·Qi contribution during Dit extraction. 
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Figure IV-14: (a) Extracted traps profile as a function of gate bias using our procedure (plain symbols) and the 

high-low frequency method (empty symbols). Data from Figure IV-3. (b) Dit versus VG extracted from slow  

(vramp_ac = 5 mV/s) QSCV measurement discussed in Figure IV-10a using our approach (Eq. (IV.27)) (plain 

symbols). The dashed line represents the density of free charges induced by VG expressed in cm
-2

eV
 -1

. 

Frequency effects on extracted Dit (exponential fit procedure) 

In order to analyze the impact of the neglecting τDit, Figure IV-15a shows the interface trap density as 

a function of VG for different vramp_ac. The characteristics from Figure IV-10a were used. For a given value of 

VG, curve superposition is obtained below a certain frequency at which all the defects respond. Hence, τDit 

effect is really negligible. This condition is fulfilled for high gate bias magnitude. On the contrary, far from 

VT and VFB (e.g., VG ≈ 0 V), the traps are more difficult to detect because their associated τDit are too large to 

be neglected. 

One possibility to overcome the underestimation of slow traps magnitude arises from the exponential 

fit discussed in Figure IV-11a, where the capacitance measured at constant gate bias values Cm_QST_Vg where 

exponentially fitted as a function of a.c. ramp time tm. 5-steps procedure is required: 

- Perform quasi-static measurements with different vramp_ac (see inset in Figure IV-15a); 

- Extract the capacitance values at fixed gate bias (arrows in the inset in Figure IV-15a); 

- Trace the measured capacitance at constant VG (Cm_QST_Vg) as a function of tm (inset in Figure IV-15b); 

- Exponentially fit the results (Eq. (IV.24)) as a function of tm (dashed line in the inset in Figure 

IV-15b); 
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- Use Cm_QST_sat, which is frequency independent, instead of Cm_QST in Eq. (IV.27) to compute Dit values. 

Figure IV-15b shows the obtained interface trap density versus VG in case of slow a.c. measurement 

ramp speed (empty symbols) and Dit computed using Cm_QST_sat (plain symbols) from Figure IV-11a. Note 

that the curves overlap far from VG = 0 V. A light difference is present close to 0 V, when the measurement 

vramp_ac was not slow enough to avoid τDit effects, leading to Dit underestimation. 

In summary, for rapid Dit characterization, one measurement performed using slow a.c. ramp speed is 

sufficient for the detection of traps far from the mid-gap (empty symbols in Figure IV-15b). To better detect 

the whole defect distribution, including also very deep traps, an exponential fit based on different vramp_ac 

characteristics is necessary (plain symbols in Figure IV-15b, 5-steps procedure). This procedure can be 

limited by noise. Furthermore, it can only predict traps that contribute, at least partially, during the scan. In 

the next sections of this chapter, the Dit extrapolated using this exponential fit will be labeled “projected Dit”. 
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Figure IV-15: (a) Dit extracted from Figure IV-10a as a function of VG for different vramp_ac. (b) Dit profile 

computed from slow a.c. ramp speed (3.3 mV/s) (empty symbols) versus gate bias. The plain symbols represent 

the traps profile obtained using the 5-steps procedure (Figure IV-11a). Figure IV-10a and Figure IV-10b are 

shown as insets in Figure IV-15a and Figure IV-15b, respectively, to clarify the computation of projected Dit. 
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IV.6 Characterization of non-passivated samples 

The previous section focused on the characterization of passivated samples with 4 nm dry oxide on the 

top silicon layer. To further investigate the technique capabilities, it is important to characterize non-

passivated SOI wafers (different top interface quality with respect to the passivated ones). This will allow 

evaluating the sensitivity of QSCV and understanding to which interface the technique is more sensitive 

(BOX-top silicon film or top silicon film-native oxide). 

Figure IV-16 shows several Cm_QST(VG) curves measured on non-passivated SOI structure with 88 nm 

thick silicon film and 145 nm thick BOX using the same vramp_ac. Each characteristic was started from 

different positive gate bias values. Changing the starting point obviously affects the peak present at VG < 0 V. 

Which of these measurements should be used for Dit extraction? 

A procedure is needed to obtain stable curves that could permit a reliable material investigation. The 

physical origin behind this phenomenon needs to be understood. 
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Figure IV-16 Cm_QST as a function of VG for slow a.c. scan speed. The characteristics were started from different 

positive gate bias values. The SOI structure had 88 nm top silicon film thickness and 145 nm BOX thickness. The 

top surface was non-passivated. Cpeak identifies the measured capacitance peak obtained before channel 

formation. 
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IV.6.1 Traps charging procedure 

Thick silicon film 

Figure IV-16 shows that the starting point mostly affects Cpeak while the right part of the characteristic 

slightly shifts. In this section we will focus our attention on this measured peak labeled Cpeak. 

The dependency with the initial gate bias let us think that a possible stress during the characterization 

induces new defects in the oxide. To deeper investigate this phenomenon, a standard stress procedure was 

performed and the capacitance versus time evolution was monitored as in MOSFETs [121], [122]. The 

investigated sample had 88 nm thick silicon film and 145 nm thick BOX. One probe was placed on the 

silicon surface and connected to ground. VG stress (labeled “charging bias” VG_charge) was applied to the SOI 

substrate for a certain time (“charging time” ts), and afterwards a QSCV measurement using slow a.c. scan 

speed was immediately performed. 

Figure IV-17 shows the results for passivated (a) and non-passivated (b) top surface. VG_charge had no 

impact on the characteristics of passivated samples showing that no new defects were created. In case of 

non-passivated top surface, however, the longer the applied charging bias, the higher the Cpeak. ts around  

3000-4000 s leads to the peak height saturation. 

The procedure is obviously not affecting the film-BOX interface since the passivated samples show no 

variations. It is only active for the non-passivated surfaces. However, it is still not clear, if new defects are 

generated or only charged. 
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Figure IV-17: Cm_QST versus gate bias for slow a.c. scan speed. VG_charge = 10 V was applied for different ts on SOI 

structure with 88 nm top silicon film thickness and 145 nm BOX thickness. Passivated (a) and non-passivated (b) 

top surface. 
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One possibility to verify if the procedure is degrading the oxide (stress) or not (charging), consists of 

the characterization of the sample before and after applying the charging bias (Figure IV-18). The SOI 

structure has been initially characterized using vramp_ac = 10 mV/s (line). Then, VG_charge = 10 V was set for 

3000 s and the quasi-static capacitance was measured again (plain symbols). Cpeak increases, while around 

VFB and VT the curves superpose. A stress procedure generates new charges in the oxide which should result 

in a clear shift of VT and VFB [123]. Our result suggests the presence of charging effects rather than 

permanent damage (stress). 

Additionally, a third measurement was performed on the same structure 6 hours after the end of the 

second measurement (empty symbols). The characteristic superposes with the initial one. This confirms that 

the procedure does not induce new defects but only charges the already present Dit. Supported by the results 

of Figure IV-17, it is reasonable to assume that the defects filled during the procedure are located on top of 

the silicon surface (confirmed also in Sec. IV.8). 
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Figure IV-18: Cm_QST as a function of gate bias before (line) and after (plain symbols) applying VG_charge = 10 V for 

3000 s. The characterization performed 6 hours after the end of the second measurement is shown (empty 

symbols). The SOI structure had 88 nm thick Si film, 145 nm thick BOX and non-passivated top surface. 

If the applied charging bias only fills defects that are already present on the SOI wafer, the measured 

capacitance should be independent of the applied voltage. On the contrary, if VG_charge is inducing new traps, 

the use of larger values should lead to stronger Cpeak. 

Three different VG_charge were applied for different ts on a non-passivated SOI structure: 10 V, 20 V, and  

30 V. A quasi-static capacitance measurement was performed after each bias condition. Cpeak and the 

corresponding bias position (VG_peak) were identified for each characteristic. Figure IV-19a shows the 

obtained peak magnitude and Figure IV-19b the corresponding VG_preak versus ts. The initial points are not the 

same, because after changing VG_charge magnitude, the SOI structure did not have enough time to completely 

recover its initial state. For long ts, however, the three curves overlap regardless of the applied voltage. This 

is a supplementary confirmation of traps charging effects and not actual damage procedure. 
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Figure IV-19: Measured Cpeak (a) and corresponding bias value VG_peak (b) as a function of ts on the same SOI 

structure as in Figure IV-17b. Three different charging biases VG_charge were applied for different ts: 10 V, 20 V 

and 30 V. 

Ultra-thin silicon film 

In order to test the validity of the charging procedure on ultra-thin films, SOI structure with 12 nm top 

silicon film thickness, 145 nm BOX thickness and non-passivated surface was investigated. Figure IV-20 

shows the measured quasi-static capacitance using slow a.c. scan speed for different ts. The charging bias 

was 10 V. In case of VG > 0 V, the risen “shoulder” is almost constant. On the contrary, Cpeak increases 

proportionally to the charging time, as for thick silicon film. 
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Figure IV-20: Cm_QST versus gate bias for different ts and VG_charge = 10 V. The SOI structure had 12 nm thick Si 

film and 145 nm thick BOX. Non-passivated top surface. 
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Similar analysis as for thick SOI structure was performed in case of ultra-thin Si layer. Different 

charging biases were consecutively applied on the same die for different ts: 5 V, 10 V and 15 V. Cm_QST was 

measured and Cpeak and VG_peak were identified for each characteristic. Figure IV-21a shows the obtained peak 

magnitude as a function of ts. A larger charging bias induces higher peak. In case of VG_charge = 15 V, the 

measured value saturates at COX (238 μF/m2). Figure IV-21b presents VG_peak as a function of ts. The bias 

value associated to Cpeak saturates for VG_charge = 5 V and 10 V but no clear overlap is obtained. On the 

contrary, the characteristic measured after 15 V charging bias constantly increases. This is typical for stress 

procedure during which new defects are created [111]. 

In conclusion, in case of ultra-thin film, separating the charging and defects generation effects is 

challenging. However, this is not a limitation for traps investigation because in case of tSi = 12 nm the 

coupling with the conduction channel is stronger. Thus, the defects become more accessible even without 

charging them (see Sec. IV.8). 
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Figure IV-21: Cpeak (a) and VG_peak (b) as a function of ts. Three different charging biases were applied: 5 V, 10 V 

and 15 V. Same SOI structure as in Figure IV-20. 
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IV.6.2 Example of Dit extraction for non-passivated samples 

The interface traps profile for non-passivated samples can be extracted following the procedure 

proposed in Sec. IV.5. However, it is important to evaluate the effects of the charging bias on the obtained 

Dit. 

Figure IV-22 shows the measured Cm_QST as a function of gate bias before (a) and after (b) filling the 

traps on non-passivated SOI structure. The capacitances were measured using different vramp_ac. The use of 

lower a.c. scan speed reveals more defects, as for passivated samples (see Figure IV-10a). After the charging 

procedure (VG_charge = 10 V for 3000 s) the impact of vramp_ac is smaller for VG < 0 V, as shown in Figure 

IV-22b. 

In the next two sections the traps profile will be extracted in both configurations: before and after 

charging the defects. The exponential fit procedure describe in Sec. IV.5 will be used to extrapolate the Dit 

profile (projected Dit) and compute the corresponding τDit. 
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Figure IV-22: Cm_QST versus gate bias before (a) and after (b) charging procedure obtained using different 

vramp_ac. Non-passivated SOI structure with 88 nm thick silicon film and 145 nm thick BOX. 

Dit profile extracted before charging the defects 

Figure IV-23a shows the measured capacitance at constant gate bias Cm_QST_Vg as a function of a.c. 

ramp time tm in case of positive VG. The data discussed in Figure IV-22a are used (no charging procedure 

was performed). An exponential trend is found for large gate bias. For VG = 1 V and VG= 1.5 V no 

exponential fit is possible. The defects are too slow to be detected. Figure IV-23b presents the extracted Dit 

as a function of VG. The traps profile obtained from vramp_ac = 3 mV/s (square empty symbols) is compared 

with the projected defects density (plain stars) calculated from Figure IV-23a. General agreement is present 

between the two curves. For VG around 0.5 V – 1 V no Dit can be extrapolated. Furthermore, τDit is traced as a 

function of gate bias (empty circles in Figure IV-23b). The general trend is similar to the one measured in 

case of passivated sample (see Figure IV-11b) but the failure of the fit leaves the analysis incomplete around 

0.5 V – 1 V. 
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Figure IV-23: (a) Cm_QST_Vg versus tm for different VG obtained from Figure IV-22a in case of positive gate bias. 

(b) Dit profile extracted from slow a.c. ramp speed (empty square symbols) versus gate bias. The exponential fit 

performed in Figure IV-23a (see Eq. (IV.24)) leads to the calculation of projected Dit profile independent from 

the used a.c. scan detection (plain star symbols) (see Sec. IV.5) and the corresponding τDit (empty circles 

symbols). 

Dit obtained after charging the defects 

Figure IV-24a presents the obtained Dit profile versus VG computed on measured QSCV characteristics 

(vramp_ac = 3 mV/s) after charging procedure (empty symbols). The defects profile obtained before filling the 

traps are also reported for comparison (plain symbols). The curves overlap. No clear effects due to filled 

traps is evidenced. 

Figure IV-24b shows the projected Dit versus VG obtained from characteristics measured before (plain 

symbols) and after (empty symbols) charging the traps. The extraction was performed using the exponential 

fit discussed in Sec. IV.5. The defects profile obtained after applying VG_charge = 10 V for 3000 s is larger than 

the one computed before filling the defects. The charging procedure made accessible slow traps which could 

not be predicted before. 

The analysis is supported by the computed τDit versus gate bias (inset in Figure IV-24a). After filling 

the traps, τDit decrease and the analysis can be performed on all the VG range (no exponential fit failure). The 

charging procedure makes Dit prediction easier. 
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Figure IV-24: Dit profile versus gate bias obtained after charging procedure (empty symbols) with  

vramp_ac = 3 mV/s (a) and projected Dit (b) from Figure IV-22b using the exponential fit (Eq. (IV.24)) explained in 

Sec. IV.5. The corresponding characteristics computed before charging the defects are added (plain symbols). 

The same data as in Figure IV-23b were used. The associated τDit versus gate bias is reported in the inset in 

Figure IV-24a before (plain symbols) and after (empty symbols) having applied 10 V for 3000 s. 

Comparison of Dit extracted from passivated and non-passivated samples 

The charging procedure gives us useful information about the characterization setup required for non-

passivated samples. The next natural step is the comparison of the obtained traps profile in case of different 

interface qualities. Figure IV-25 presents the extracted Dit versus gate bias for passivated (empty symbols) 

and non-passivated (plain symbols) SOI structures. Measurements were performed using vramp_ac = 3 mV/s 

and no charging procedure was applied. Despite the large difference in traps density, a detailed comparison 

is not possible because the different interface quality induces VT and VFB shifts. For comparative analysis, the 

characteristics must be traced versus surface potential (or energy). This aspect will be investigated in the next 

section. 
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Figure IV-25: Extracted Dit versus gate bias in case of passivated (empty symbols) and non-passivated (plain 

symbols) silicon layer. The SOI structure had 88 nm top silicon film and 145 nm BOX. QSCV measurements 

performed using vramp_ac = 3 mV/s and without charging procedure. 
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IV.7 Surface potential computation 

MOS-like surface potential computation and its limitation for Ψ-MOSFET 

Equation (IV.1) is used for ΨS calculation in case of standard MOS capacitor [124]–[126]. Thus, it 

should be also suitable for the pseudo-MOSFET configuration. Three steps are required to determine the 

surface potential: 

1 Perform one capacitance measurement Cm_QST at slow a.c. ramp speed; 

2 Calculate δΨS /δVG term: 

 m _ QSTS

G OX

C
1

V C


 


 (IV.28) 

3 Integrate δΨS /δVG between VFB and VG, where VG < VT. 

Figure IV-26a shows 1-Cm_QST/COX (step 2) measured in case of different vramp_ac. The curves have a 

general bell-shape. The presence of a second peak rising up in some characteristics (see for example  

vramp_ac = 3 mV/s and 10 mV/s) evidences the presence of deep traps that are not completely detected. 

Integrating 1-Cm_QST /COX (step 3, Eq. (IV.1)), the surface potential as a function of VG can be 

computed (Figure IV-26b). ΨS for silicon should be around 1.1 V [5]. The values obtained from experimental 

results are higher than expected. In case of fast a.c. ramp speed the situation becomes even worse. 
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Figure IV-26: (a) 1-Cm_QST/COX versus gate bias obtained for different a.c. ramp speed (step 2). (b) The 

corresponding surface potential computed using Eq. (IV.1) is traced as function of VG. wδΨ and hδΨ identify the 

peak width and height, respectively. 

To identify the sources of this problem, we have numerically calculated the expected surface potential 

including a continuum distribution of Dit. Differential equations solver FlexPDE® was used. The structure is 

shown in Figure IV-27a. The defects were added at the interface between the top silicon film and the BOX. 

Poisson equation leads to the computation of the potential distribution over the whole structure. Thus, the 

variation of the surface potential with respect to the gate bias can be determined (δΨS /δVG). 
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Figure IV-27b shows the calculated δΨS /δVG as a function of VG for different Dit density. Higher 

defect concentrations lead to smaller and wider peak (wδΨ increases while hδΨ decreases). 

Comparing calculated and experimental results, two problems rise up: 

- In case of experimental results (see Figure IV-26a), slower a.c. ramp leads to smaller hδΨ but the 

measured wδΨ is almost constant; 

- Including in the simulations wδΨ measured from experimental results (es. from Figure IV-26a), the 

obtained peak height is much smaller than the measured hδΨ. 

These problems may explain why ΨS calculated using Eq. (IV.1) is overestimated. One of the main 

assumptions of Eq. (IV.1) is that the semiconductor is at equilibrium condition and all the charges (i.e., free 

carriers and defects) respond during the measurements. This is obviously not the case in all the experimental 

vramp_ac. 
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Figure IV-27: (a) Mesh of the vertical SOI structure used in FlexPDE®. (b) Computed δΨS /δVG versus gate bias 

in case of different Dit placed at the interface between the top silicon film and the BOX. 

Computation of surface potential 

Since it is not possible to obtain ΨS directly from experimental results, a mix between measurements 

and calculation was proposed to overcome the limitations. It is based on the following steps: 

1 QSCV measurement is performed using the slowest vramp_ac (3 mV/s in our case). Figure IV-28a shows 

Cm_QST versus gate bias (empty symbols) for the same measured structure as in Figure IV-26a. From 

this curve we calculated (1-Cm_QST /COX) (see Figure IV-26a). 

2 Next, wδΨ is required and we need a reproducible procedure to measure it. This is possible computing 

the derivative of 1-Cm_QST /COX with respect to the gate bias. The distance between the maximum and 

the minimum values leads to unambiguous wδΨ (see wδΨ obtained in Figure IV-28a). 

3 For given top silicon film and BOX thicknesses, the width of δΨS /δVG is calculated using FlexPDE® 

in case of different Dit magnitude. Figure IV-28b shows an example of wδΨ versus traps density for 

SOI with 88 nm top silicon film thickness and 145 nm BOX thickness (symbols). The trend is clearly 

linear and a good fit is given by: 
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      (IV.29) 

The intercept with y-axis (0.6 V in this case) is determined by the curve width obtained without any 

traps contribution. 

4 Using Eq. (IV.29) and wδΨ obtained from step 2, an equivalent Dit magnitude is then calculated: 

 
it _ eq 12

w 0.6
D

4.15 10









  (IV.30) 

This procedure supposes that all the traps have the same magnitude, they are continuously distributed 

in energy in the silicon band gap and they respond to the QSCV signal. 

5 Performing one simulation with FlexPDE® where Dit_eq from step 4 is placed at the BOX-top silicon 

film interface, the surface potential is finally obtained. 
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Figure IV-28: (a) Measured Cm_QST and corresponding derivative of 1-Cm_QST /COX with respect to the gate bias 

traced as a function of VG. The associated 1-Cm_QST/COX as a function of VG is shown in Figure IV-26a. The inter-

pads distance yields wδΨ. (b) wδΨ (symbols) and corresponding fit (line) versus Dit computed using FlexPDE® for 

the same SOI structure as in Figure IV-28a. 

Figure IV-29 shows ΨS versus gate bias computed from Eq. (IV.1) (plain symbols) and using our 

procedure (line). The data in Figure IV-28a was used. More realistic potential values are obtained with the 

proposed approach. ΨS saturates for large VG (strong inversion and accumulation regime), while it is directly 

proportional to the gate bias in the linear region. 

Note that the surface potential is directly proportional to the traps energy level in the silicon band gap 

(E). The 0 of the energy will be placed at the maximum of the valence band (EV). Hence, the energy in eV 

can replace VG, thus ΨS, on the Dit profile curves. 

In the next sections, all the surface potential values, thus the energy E-EV, were computed using this 

procedure. This approach will give the defects location in the silicon band gap. The extracted Dit magnitude 

is not affected by ΨS and E-EV calculation. Only an error in their effective energy level could eventually 

result from ΨS miscalculation. 
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Figure IV-29: ΨS versus gate bias computed from experimental results in Figure IV-28a using Eq. (IV.1) (empty 

symbols) and using our procedure (line). 

IV.8 Comparison of Dit profiles for different samples 

In this last part of the chapter, we focus on the characterization of SOI structures with different 

interface qualities and geometries. In order to perform suitable comparisons, all the extractions were 

performed using vramp_ac = 3 mV/s. No charging procedure is necessary at such low a.c. ramp speed and 

tested ultra-thin tSi. ΨS was calculated using our approach (mix of experimental and calculated results) and 

the Dit profile will be traced versus energy. 

Thick BOX 

Figure IV-30 shows the extracted Dit versus energy in case of 88 nm (empty symbols) and 12 nm 

(plain symbols) thick silicon film. The samples have 145 nm BOX thickness. Passivated (a) and non-

passivated (b) SOI were tested. To simplify the comparison, the same data are replotted in Figure IV-30c and 

Figure IV-30d for the same SOI film thickness but with different top surface quality. 

Dit for passivated samples (Figure IV-30a) present the typical U-shape behavior [125]. The two traps 

magnitudes are similar despite the variation of tSi thickness, underlining that the technique is actually mostly 

sensitive to the silicon film-BOX interface. However, the detection is not complete, since some deep defects 

cannot be measured (valleys in the curves of Figure IV-30a) 

Higher density of traps was measured for the non-passivated samples (Figure IV-30b). In the lower 

part of the band gap the measured Dit shows a peak absent in case of passivated surface. This peak is sharper 

for ultra-thin silicon film (empty symbols in Figure IV-30b), probably due to the stronger coupling between 

the top surface and the conduction channel. The shape is in agreement with Pb centers studied in the literature 

for oxidized silicon with too low annealing temperature (see Figure IV-31a). Also in that case very large Dit 

magnitude (> 1012cm-2eV -1) was measured [125], [127]. Furthermore, the energy position of the obtained 

peaks suggests the presence of acceptor-type defects (+/0) [31]. 
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Figure IV-30: Dit computed versus E-EV in case of 88 nm (empty symbols) and 12 nm (plain symbols) top silicon 

film thickness. The BOX thickness was 145 nm. Passivated (a) and non-passivated (b) top surface, (c) thick Si 

film and (d) thin silicon layer. 

Comparing the Dit density obtained around mid-gap in Figure IV-30c and Figure IV-30d  

(E-EV ≈ 0.6V), it seems that the non-passivated surface has lower defects density than the passivated one (es. 

dashed line in Figure IV-30c). To investigate the reason behind this measurement artefact, Figure IV-31b 

shows the calculated interface time constants versus energy in case of passivated (empty symbols) and non-

passivated (plain symbols) SOI structure (tSi = 88 nm). The non-passivated curves have much higher τDit. 

Thus, the traps are more difficult to detect. As a result, almost full Dit response is obtained on passivated 

wafers while it is only partial in case of non-passivated ones, explaining the defects underestimation. 
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Figure IV-31 (a) Example of Dit behavior due to Pb centers obtained on MOS capacitor using QSCV as function 

of energy, which is referred to the intrinsic level Ei [124]. (b) τDit versus E-EV for passivated (empty symbols) and 

non-passivated (plain symbols) SOI structure. Extraction performed in the data discussed in Figure IV-30c. 

UTBB structure 

QSCV technique does not require high probe pressure to achieve good characterization (Sec. IV.3.2). 

This makes the procedure suitable for the characterization of UTBB structures. 

Figure IV-32 shows the extracted Dit level versus energy in case of passivated (empty symbols) and 

non-passivated (plain symbols) silicon surface. SOI structures with 25 nm thick BOX were used. The top 

silicon film had (100) (a) and (110) (b) crystal orientation and 12 nm thickness. 

The passivated wafers (empty symbols) show again the U-shaped behavior. A valley before mid-gap is 

obtained, resulting from the difficulty to characterize slow defects located in this region. 

The wafers with non-passivated top surface (plain symbols), for both crystal orientations, evidence Pb 

center peaks in the lower part of the energy band associated to poor top SiO2 quality (native oxide). 
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Figure IV-32: Dit versus E-EV in case of passivated (empty symbols) and non-passivated (plain symbols) top 

silicon surface. The top silicon film had (100) (a) and (110) (b) crystal orientation and it was 12 nm thick. 25 nm 

BOX. 
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Impact of BOX thickness 

We compare wafers fabricated at the same period and with similar processes but different BOX 

thickness. Figure IV-33 shows the results for non-passivated (a) and passivated (b) top silicon film. The 

structures had the same tSi = 12 nm. The BOX was 145 nm (empty symbols) and 25 nm (plain symbols) 

thick. 

Agreement on traps distribution is found in case of non-passivated samples. A large peak at similar 

energies appears. For passivated top silicon layer, the measured Dit distributions superpose. This infers that 

the decreasing of the BOX thickness has hardly affected the density of deep traps located at the interface 

between the buried oxide and the top silicon film interface. 
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Figure IV-33: Dit extracted versus energy for non-passivated (a) and passivated (b) SOI surface. The structures 

had 12 nm top silicon film. The buried oxide was 25 nm (plain symbols) and 145 nm (empty symbols) thick. 
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IV.9 Conclusions and perspectives 

In this chapter, quasi-static capacitance measurements were performed for the first time in pseudo-

MOSFET configuration. 

We showed that the QSCV measurements are like an “extension” of the LCR meter (split-CV) case to 

lower frequencies (even though the measurement principles are not the same). The back side contact of  

Ψ-MOSFET is very important for fast a.c. ramp speeds, similar to the split-CV. The probes effect, however, 

is not very strong implying that the access resistance is only a minor parameter. Consequently, QSCV on 

ultra-thin silicon films using very low probe pressure is feasible while the same pressure for ID-VG does not 

give appropriate results because too large access resistance. 

A physical model capable to explain the measured characteristics, including frequency and 

temperature effects, was proposed and validated. 

One limitation of QSCV technique is that it can only detect traps that are already filled or that can be 

charged during the scan. If the defects are at too deep energy levels in the silicon band gap and if the 

measurement is not slow enough, some defects cannot be detected. To overcome the problem, however, it is 

possible to fill the traps before the detection (charging procedure). 

A Dit extraction procedure was proposed. The comparison between different SOI structures and 

interface properties evidenced that in passivated samples we characterize mostly the top silicon film-BOX 

interface. We proved that for non-passivated surface, larger densities of defects are measured. A sharp Dit 

peak associated to Pb center was evidenced. In all the studied cases, Dit profile was mostly independent of tSi 

and tOX. 

 

QSCV stands as a promising technique for the monitoring of interface quality performed with  

Ψ-MOSFET. Future developments could be: 

o The effective mobility can be also calculated using quasi-static analysis. The measurement of 

inversion (or accumulation) charge density can be computed with the same approach presented in the 

split-CV chapter (Sec. III.1.2). The obtained effective mobility will coincide with the one measured 

using LCR meter. Thus, performing one QSCV characteristic, interface traps density can be studied. 

Measuring also the drain current on the same device will lead to μeff. 

o The role of substrate capacitance has to be investigated and in case of strong impact on the 

characteristics, it must be taken into account in the equivalent electric circuit. 

o Improvement of ΨS extraction, if possible only based on experiments. 

o Further investigation of UTBB structures and the impact of charging procedure in case of non-

passivated top silicon film. 

o Application to new materials as III-V. In case of QSCV the quality of the top contact is much less 

relevant than for current measurements. Thus, QSCV could become a suitable technique to investigate 

the interface quality, even for alternative film materials that are normally difficult to contact. 
 



 

 

 

 

 

 

 

 



 

 

Chapter V: 

Low-frequency noise in Ψ-MOSFET 

Equation Section (Next) 

In this thesis several methods for electrical characterization of interface traps have been discussed. 

Their capability to access Dit and their limits have been constantly pointed out. Another technique used in 

microelectronics to investigate interface quality is the low-frequency noise (LFN). It has already been 

applied to Ψ-MOSFET configuration but the Dit values extracted were too high to be realistic. In this 

chapter, after a fast review of LFN theory, the impact of experimental conditions will be evaluated. A 

physical model will be derived and it will be used to explain the measured trends. The limitations of LFN in 

Ψ-MOSFET configuration will be pointed out and some possibilities for improvement will be presented. 
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V.1 Introduction to low-frequency noise 

The subthreshold swing is a powerful technique for the characterization of interface traps density [6]. 

However, the decreasing of the top silicon film thickness tSi and the subsequent increase of the associated 

capacitance may mask the defects signature, making interface quality monitoring problematic. Furthermore, 

the defects that respond during static characterization are identified as fast traps (Dit) while slow traps (Nt) 

are partially (or not) detected. Low-Frequency Noise (LFN) offers the opportunity to overcome these 

limitations and to pursue defects characterization even in case of ultra-thin silicon film. 

The word “noise” is largely used in microelectronics and it can be associated to different domains. 

Generally, it indicates random fluctuations of a physical characteristic around its average value during time. 

Noise is usually something to avoid because it affects the experimental results, and it is also difficult to 

control. A good example is the “background” noise. Considering an integrated circuit, one area can distort 

the output signal of another one because of coupling effects. This modifies the signal integrity and limits the 

circuit performances [128], [129]. 

Looking at one single resistor under constant polarization, the current (or voltage) magnitude is not 

really constant but fluctuates around an average value. Figure V-1 shows an example of the current (I) 

measured as a function of time. I should be equal to 1μA but in reality it oscillates. This is due to the 

presence of noise sources. To overcome the problem, conventional tools like amperemeter, LCR meter or 

Source Measurement Unit (SMU) give averages of the measured quantities (see Integration time in Sec. 

II.2). Consequently, the fluctuations are masked and stable results are obtained. 

However, the investigation of noise sources could enrich the knowledge about the transistor quality. 

Signal fluctuations can be classified into two families according to their origin: they can be due to “external” 

factors, thus not related to the device properties, or due to “internal” characteristics of the structure. External 

sources of noise cannot bring any fruitful information concerning the device quality; they just limit the 

analysis. Noise due to internal factors can also limit ID-VG or quasi-static capacitance techniques, but in case 

of low-frequency noise measurements, they can be used to extrapolate information concerning the interfaces 

quality [130]. 

LFN has been widely applied for the characterization of FD-SOI transistors [131]–[133]. It was also 

used to characterize high resistive SOI wafers with evaporated metal contacts [64], [134]. However, the 

presence of Schottky barriers made the extraction long and complicated. Diab et al. performed first LFN 

characterization on SOI substrates using pseudo-MOSFET but the obtained Dit were not coherent with the 

expected quality of the fabrication process (> 1013cm-2eV -1 instead of < 1012cm-2eV -1) [55]. 

After a review of the basic theory of low-frequency noise (Sec. V.1.1 and Sec. V.1.2), we will focus 

on the pseudo-MOSFET configuration (Sec. V.1.3). In Sec. V.2 results obtained using different experimental 

conditions will be presented. A physical model supported by numerical calculations will be discussed in Sec. 

V.3 and compared with the measured trends (Sec. V.4). In conclusion, Sec. V.5 addresses the impact of 

defects induced by the probe penetration in the silicon film. 



Chapter V: LFN in Ψ-MOSFET 

114 

 

 

Figure V-1: Example of noise fluctuations in a resistor under constant current flow I [135]. 

V.1.1 Noise parameters: the Power Spectral Density of a signal 

As shown in Figure V-1, the current through one resistor is not constant but it fluctuates in time. 

Independently of the source, I can be modeled as the sum of a median value I0 and the contribution due to 

fluctuations (δI) [136]: 

 
0I(t) I I(t)     (V.1) 

Equation (V.1) is expressed in the time domain and two main limitations arise from experimental point of 

view: 

o Low δI amplitudes are difficult to detect; 

o The investigation of any possible periodicity is problematic, especially in case of different 

phenomena that interact at the same time. 

The best way to overcome these issues is to perform a Fast Fourier Transform (FFT) and work in the 

frequency domain [137]. A sum of different harmonics with adapted frequencies and amplitudes can 

recompose any signal expressed in the time domain (Figure V-2).  

 

Figure V-2: Representation in the time domain of a signal modeled by several harmonics in the frequency 

domain [138]. 
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In case of LFN characterization, the Power Spectral Density (PSD) of a signal becomes the main 

parameter. It quantifies the dissipated power on a 1Ω resistive load integrated in time and its unit is 

W/Hz. For any function R(t) expressed in the time domain, its PSD is computed suing the Fourier 

transform: 

 2 j f tS(f ) R(t) e dt



   



    (V.2) 

For LFN analysis on MOSFETs, the PSD is measured either for current or voltage characteristics. Thus, S(f) 

can be associated to the current oscillations (SId) or to the voltage ones (SVd). The units are A2/Hz and V2/Hz, 

respectively. In a practical case, the SId is computed using the Fast-Fourier Transform (FFT) of the measured 

signal. 

The noise is a statistical phenomenon and in order to perform suitable transformation from time to 

frequency domain, it is required to measure many samples of the signal. Thus, LFN measurements are 

longer than the static ones. 

Next section shows a brief overview of the main internal sources of noise detected in MOS 

transistors. 

V.1.2 LFN in MOSFETs 

The “internal” noise sources in a MOSFET can be classified in two main families: 

o White noise: it is a fundamental noise intrinsic to semiconductor materials and it is frequency 

independent. Thermal and shot noise are part of this group. 

o Excess noise: it is frequency dependent and it is mostly visible at low frequency. The main 

contributions arise from generation-recombination (G-R) and 1/f (flicker) noise. 

Thermal noise 

Thermal noise is due to random and uncorrelated thermal fluctuations in the material. Consequently, 

the power spectrum is frequency independent for any applied voltage or current [139]. Hence, it is classified 

as white noise. Note that in all the conductive materials, even in absence of applied bias or current, the room 

temperature induces electron oscillations which lead to continuous current fluctuations. Consequently, every 

resistor generates thermal noise. The associated current power spectrum is: 

 
Id

4 k T
S

R

 
   (V.3) 

where R is the resistance value. 
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Shot noise 

The shot noise is due to non-uniformity of the current flow through a junction. The electrons cross 

it independently and at random times [140]. The carrier flow leads to broadband white noise. Its power 

spectrum is proportional to I: 

 
IdS 2 q I     (V.4) 

Generation-recombination (G-R) noise 

 Generation-recombination (G-R) noise is due to random fluctuations induced by: 

o A pair of free electron and hole which recombines (or is generated); 

o Trapping of electrons by empty defects; 

o Trapping of holes by discharging traps filled with electrons. 

The PSD associated to the G-R noise due to carrier number (N) fluctuations induced by their 

interaction with traps (empty and filled) is [141]: 
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  (V.5) 

where ΔN is the average fluctuation of carrier number and τDit is the traps time constant. The corresponding 

current power spectrum as a function of frequency (f) is shown in Figure V-3a. “Lorentzian” behavior versus 

f is found [142]. For low frequency values, SId exhibits a plateau, while after a corner frequency fc, the 

characteristic decreases proportional to 1/f 2. 

The study of the defects time constant (τDit) leads to fruitful information concerning the traps spatial 

location and energy distribution. τDit is independent of the gate bias in case of uniform defects distribution in 

the device channel [143]. In contrast, when VG induces a variation of traps time constant, with maximum 

around VT, the associated Dit are located at interface of silicon film-oxide or in a thin depletion layer [137]. 

When all the traps have the same time constant, the spectrum generated in the time domain is known 

as Random Telegraph Signal (RTS). Long and tedious RTS measurements lead to the investigation of 

capture and emission time constants and traps location [144]. However, the random telegraph signal 

analysis can only be performed in very small area devices with few individual traps [145]. 

In case of standard MOSFET a more homogeneous traps distribution is present at oxide interface. 

Each group of traps with the same τDit shows RT-signal in the time domain (Lorentzian spectrum in the 

frequency domain). Thus, the whole current spectrum will be given by the sum of several Lorentzian 

characteristics resulting in 1/f behavior in the frequency domain (Figure V-3b). 
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Figure V-3: (a) General trend of SId versus frequency in case of generation-recombination noise (Lorentzian-like 

behavior from Eq. (V.5)). (b) SId as a function of f where different Lorentzian characteristics were added 

together leading to flicker noise [135]. 

1/f (flicker) noise 

The flicker noise (1/f ) arises from the sum of different “Lorentzian” spectra. It is assumed that the 

defects are located at the oxide interface or very close to it (3 nm maximum distance inside the oxide) [146]. 

In a general case, the power spectral density has 1/f γ dependency. Uniform traps distribution leads to γ = 1. 

In case of non-uniform Nt (γ ≠ 1), γ is larger than 1 when the traps density is increasing deeper into the oxide, 

otherwise γ < 1 [147]. 

Even if no universal explanation exists today, it is commonly accepted that flicker noise in MOSFET 

originates from conductivity σ variation (δσ) [148]. δσ can be due to carrier number fluctuations (model 

proposed by McWhorter [149]) or mobility fluctuations (Hooge’s approach [150]). Both sources of noise are 

present in standard transistors, but a dominant one can usually be identified [148]. 

Mobility fluctuation (HMF) model 

Hooge proposed that the conductance fluctuations are only due to the variation of the carrier mobility 

[141] induced by phonon scattering [151]. Hence, the current power spectrum is given by: 
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  (V.6) 

where αH is the Hooge parameter dependent to the crystal quality, S is the die surface and Qi is the inversion 

charge density. 



Chapter V: LFN in Ψ-MOSFET 

118 

 

Carrier number fluctuations (CFN) model 

McWhorter proposed that the conductance fluctuations are due to the variation of the mobile charge 

density induced by trapping or detrapping phenomena taking place in a MOSFET [149]. A change of fixed 

defects produces flat-band voltage (δVFB) oscillations [148], which are detected on the current measurement. 

The current power spectrum is: 

 2

Id m VfbS g S   (V.7) 

where SVfb is the power spectrum associated to flat-band voltage oscillations. SVfb is defined in the 

McWhorter’s model as [152]: 
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  (V.8) 

λ is the tunneling attenuation length calculated using Wentzel-Kramers-Brillouin (WKB) theory [25]. Its 

value is usually ≈ 1 Å. Nt is the density of slow traps per unit volume (cm-3eV-1). 

Carrier number with correlated mobility fluctuations (CNF+CMF) model 

The two models describe δσ using two different physical phenomena. However, recent studies [148], 

[153] have proved that a correlation exists between the two approaches. 

Assuming that trapping or detrapping phenomena are the dominant sources of noise, a change of flat-

band voltage impacts the electric field in the channel, thus the carrier mobility. A universal expression of SId 

can take into account both effects: the fluctuations of carrier concentration (McWhorter’s model) and the 

associated impact on the mobility term (αsc·μeff·COX) [148]: 

 

2

2 D
Id m Vfb sc eff OX

m

I
S g S 1 C

g

 
        

 
  (V.9) 

where αsc is the Coulomb scattering coefficient [154]. The sign ± identifies the defects type: “+” in case of 

donor-like traps and “–” in case of acceptor-like Nt. Defining ΩC = αsc·μeff ·COX and the gate bias power 

spectrum as SVg = SId /gm
2, Eq. (V.9) can be written as [155]: 
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  (V.10) 

The mobility contribution becomes important only in strong inversion (or accumulation) regime, while 

in the subthreshold region its impact is negligible (SVg ≈ SVfb). 
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V.1.3 State of art of LFN in pseudo-MOSFET 

Kushner et al. [64], [134] have analyzed the LFN generated in high resistive SOI substrates using 

ground-signal-ground and circular contacts. The characterization succeeded but the Schottky barriers make 

the extraction procedure complicate and tedious to apply. Diab et al. [55] have performed LFN in pseudo-

MOSFET configuration. Figure V-4a shows the measured SId versus f for different VG. Clear 1/f trend was 

obtained, proving that flicker noise can be detected also in SOI substrates using adjustable probe pressure 

contacts. Figure V-4b shows the SId/ID
2 versus drain current. A plateau is present for low ID ( in weak 

inversion regime) followed by 1/ID decrease for higher drain current. This behavior is specific to the CNF 

model. 

The extracted Dit values were surprisingly large (i.e., ≈ 2·1013cm-2eV-1 instead of a maximum of  

≈ 1012cm-2eV-1 in case of non-passivated samples). Additionally, the SId signal was higher for passivated than 

for non-passivated SOI. No clear explanation for these results was provided. 

Was there an issue of the experimental setup? Do we only need to correctly adapt the models for the 

Ψ-MOSFET configuration in other to obtain reasonable Dit values? 

The aim of our work on LFN characterization was to find the answers to these questions. We 

approched the topics with both experiments and modeling. 

 (a) (b) 

     

Figure V-4: (a) SId versus frequency for different gate bias values. (b) SId /ID
2
 versus drain current for different 

probe pressure. The same SOI structure with 88 nm thick silicon film and 145 nm thick BOX was used in both 

cases. The top surface was non-passivated [55]. 
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V.2 LFN characterization in Ψ-MOSFET 

To understand if the obtained large density of interface traps was due to measurement setup issues, in 

this section we focus on experiments using different configurations. After presenting the setup (Sec. V.2.1), 

we will discuss the reproducibility (Sec. V.2.2) and the role of the pressure needles (Sec. V.2.3). Finally, in 

Sec. V.2.4 the impact of inter-probe distance and die area variations will be addressed. 

V.2.1 Measurement setup 

Low-frequency noise measurements were performed using adjustable probe pressure Jandel® station. 

In order to reduce as much as possible the external noise, the probing tool was placed inside an isolated box, 

built for this type of analysis. The SOI wafer was contacted using similar configuration as for ID-VG 

measurements (see Sec. II.2). The source was grounded while VD was applied using a Programmable Biasing 

Amplifier (PBA) and a low-noise amplifier [156]. All the results presented in this section were obtained 

using VD = 100 mV. The PBA was remotely controlled by a PC and simultaneous measurements of the d.c. 

drain current ID and the a.c. term δI over a large frequency range (1 Hz to 500 kHz) were performed. The 

software automatically computes the FFT and releases the SId(f) term [156]. 

Programmable bias amplifier characterizes the Device Under Test (DUT) as a resistor where a 

constant current is applied (Figure V-5). In case of high resistive materials, to minimizes the impact of the 

experimental tools on the DUT, the best configuration to measure the noise is at constant current I [136]. 

To apply the gate bias, the PBA has a second source but it is limited at ± 5 V. Diab et al. [55] have 

overcome the problem using a battery in series with the PBA. This setup is not so accurate. To improve it, a 

Keithley 236® bias source was preferred to control VG. We have chosen this instrument because the voltage 

can be swept between -100 V to 100 V with 100 μV step and it generates low noise. In this way, higher VG 

resolution is obtained albeit the measurement setup becomes more complex and time consuming. The 

programmable biasing amplifier has to work in parallel with the Keithley 236® and manual (VG) sweep is 

required. Figure V-5 summarized our setup. 

PC
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Figure V-5: Measurement setup for LFN in SOI structure. The source is grounded. The drain bias VD was 

applied using the PBA and low-noise amplifier while VG was controlled by Keithley 236® bias source. 



    Chapter V: LFN in Ψ-MOSFET 

121 

 

Figure V-6a shows the measured power spectrum versus f in case of constant drain current  

(ID = 107 nA) (line) and at ID = 0 A (dashed line). SId at zero current represents the system noise. 1/f behavior 

is added as eye-guide. The obtained spectrum is clearly dominated by flicker noise. For low frequency 

values, SId obtained using ID > 0 is much higher than SId at ID = 0. Thus, the LFN signal induced by 

trapping/detrapping effects can be unambiguously identified. Increasing f, the two curves merge so the 

flicker noise cannot be isolated. As for standard MOSFET, it is not possible to perform the extraction in the 

high frequency range [135]. 

The steps necessary to compute SId /ID
2 and determine the interface traps density are: 

o Perform several SId versus f measurements using different ID values. In case of Ψ-MOSFET 

configuration, the drain current was swept by changing the applied VG (VD was kept at 100 mV); 

o Chose an extraction frequency fext, the same for all the characteristics; SId at fext are collected for 

different ID; 

o SId /ID
2 is then calculated and traced versus ID. 

In order to reduce the impact of system noise, SId (ID = 0 A) was subtracted from SId (ID > 0 A) before any 

further data treatment. 

To pursue defects extraction, it is required to relate the LFN and the static characterization. Dividing 

both terms of Eq. (V.7) by ID
2, the equation becomes: 

 
2

Id m
Vfb2 2

D D

S g
S

I I
    (V.11) 

Equation (V.11) clearly shows that SId /ID
2 is proportional to two terms: (gm /ID)2 and SVfb. The static 

characteristic (gm /ID)2 is dominated by the subthreshold slope, therefore, it is sensitive to fast traps called Dit 

in this chapter. On the contrary, the flat voltage power spectrum (SVfb) is directly proportional to Nt (deep 

traps in Eq. (V.8)). Thus, on the SId /ID
2 curve, both contributions of fast and slow traps are present. In order 

to separate them, (gm /ID)2 is evaluated from static measurements. After performing noise measurements, SVfb 

is computed from the ratio (SId /ID
2)/(gm /ID)2. Consequently, it only contains Nt term as shown in Eq. (V.8) 

[156]. 

To perform correct interface quality extraction, SVfb thus Nt, has to be independent of the extraction 

frequency fext. Figure V-6b shows SId /ID
2·fext versus drain current for different fext. In case of low current 

values, small differences are visible between the curves. On the contrary, remarkable overlap is obtained for 

large ID. We conclude that the extraction frequency does not limit the analysis. 

For comparing the obtained results with what is present in the literature, all the extracted 

characteristics were performed using fext = 10 Hz. 
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Figure V-6: (a) Measured SId versus f in case of constant drain current (line) and ID = 0 V (dashed line). 1/f is also 

added as eye-guide. (b) SId /ID
2
·fext versus ID for different extraction frequencies. The SOI structure had 88 nm 

silicon film thickness and 145 nm BOX thickness. The top surface was non-passivated and positive gate bias was 

applied. 

An example of defects extraction procedure is shown in Figure V-7a. SId /ID
2 is traced as a function of 

drain current obtained from the data in Figure V-6b. The characteristic reconstructed from static drain 

current multiplied by SVfb is also added (empty symbols). Good overlap is achieved for SVfb ≈ 2.5·10-9 V2/Hz. 

Equation (V.8) leads to Nt calculation. All the terms are known, except for the surface, S. In case of 

pseudo-MOSFET, the surface which contributes to the current is apparently given by the inter-probe distance 

d and the geometrical factor fG = W/L [55]: 

 
2 2

G

W
S W L L f d

L
        (V.12) 

Thus, one gets Nt = 1.3·1022cm-3eV-1. This value is clearly too large and not realistic but it is comparable to 

what was previously found [55]. 

For large gate bias values, (gm /ID)2 differs from SId /ID
2. This is due to mobility variations. To perform 

a better extraction, Figure V-7b shows SVfb calculated using Eq. (V.11) versus drain current (plain symbols). 

The flat-band voltage power spectrum is almost constant for low values of drain current and decreases when 

ID increases, confirming the presence of mobility variation effects. A better representation is obtained 

computing the flat voltage power spectrum using Eq. (V.9) (empty symbols). A good fit was found in case of 

αSC = 5·104 Vs/C and acceptor-like defects [148]. Using CNF+CMF model, SVfb has a constant value on a 

larger ID interval. The sharp increase obtained for high ID is due to the impact of access resistance (see the 

plain symbols in Figure V-7a) [157]. 

This extraction procedure will be used in the next sections because it allows to separate fast and slow 

traps contributions, taking into account also the mobility fluctuations. 



    Chapter V: LFN in Ψ-MOSFET 

123 

 

 (a) (b) 

10
-9

10
-8

10
-7

10
-6

10
-10

10
-9

10
-8

10
-7

 

S
Id
/I

D

2
 (

1
/H

z
)

I
D
 (A)

 From PBA f
ext

=10Hz

                     with S
Vfb

=2.5 10
-9
V

2
/Hz

2

2

m

Vfb

D

g
S

I
 .

    

10
-8

10
-7

10
-6

10
-10

10
-9

10
-8

10
-7

 

 

S
V

fb
 (

V
2
/H

z
)

I
D
 (A)

 CNF model (S
Vg

=S
Vfb

)

 CNF+ CMF model with 
SC

=510
4
Vs/C

 

Figure V-7: SId /ID
2
 versus drain current obtained from Figure V-6 (plain symbols). The characteristic computed 

from static ID-VG and multiplied by SVfb was added (empty symbols). Good overlap is found using  

SVfb = 2.5·10
-9 

V
 2

/Hz. The inter-probe distance was d = 1 mm. (b) SVfb was calculated as a function of ID using Eq. 

(V.11) (plain symbols) and Eq. (V.9) (empty symbols), respectively. The data presented in Figure V-7a was used. 

V.2.2 Reproducibility issues 

As in case of capacitance measurements (see Sec. III.2.2) the quality of the back contact may limit the 

characterization and consequently the extracted interface traps density. Is this happening for LFN? 

Figure V-8 shows SId /ID
2 versus drain current with (dashed line) and without (line) using the vacuum 

system on the metallic chuck in case of positive (a) and negative (b) VG. The corresponding (gm /ID)2 as a 

function of ID are presented in the insets. Even if SId /ID
2 characteristics are lightly different, it is possible to 

conclude that the quality of the back contact cannot be the main reason behind the large Dit values obtained 

previously. VG is only used to polarize the substrate, while δI is generated by the current flow between source 

and drain contacts. However, the use of vacuum system increases the reproducibility, thus it will always be 

applied to the metallic chuck. 

Additionally, the dashed-dot line in Figure V-8 represents the measured SId /ID
2 obtained using 

different probes on the same SOI die. Even if the shape is similar, more than one order of magnitude 

difference is found in the plateau height, which implies a factor of 10 of difference in the extracted Nt (since 

the corresponding (gm /ID)2 superpose as shown in the inset). Thus, the probe choice seems to have a 

tremendous impact for LFN analysis, unlike in the other characterization techniques. 

For negative gate bias, the behavior of SId /ID
2 does not follow the static (gm /ID)2 trend (inset in Figure 

V-8b) which makes the data inappropriate for any extraction. Hence, in the following sections we only focus 

on positive gate bias. 
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Figure V-8: SId /ID
2
 versus drain current in case of electrons (a) and holes (b). The characteristics obtained 

without (line) and with (dashed line) the vacuum system are compared. Measurements performed using different 

needles of the same Jandel® station are also shown (dash-dot line). SOI structure with non-passivated 88 nm top 

silicon film thickness and 145 nm BOX thickness. The corresponding measured (gm /ID)
2
 versus drain current are 

shown in the insets. 

The probes affect the obtained SId /ID
2. Is the reproducibility between measurements responsible? The 

negative answer is documented in Figure V-9. Three different dies on the same SOI structure were tested. 

The curves clearly overlap. Even if the probe quality affects the characteristics (see Figure V-8), the use of 

the same needles ensures good reproducibility of measurements. Thus, in the following sections all the 

comparisons will involve only curves obtained with same probes. 

The needles contact looks critical, so the natural next step requiring investigation is the impact of the 

pressure applied on the tips. 
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Figure V-9: SId /ID
2
 versus ID obtained from different dies coming from the same wafer. Same SOI as in Figure 

V-8. 
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V.2.3 Probe pressure impact 

The increase of the pressure applied on the probes is known to change the access resistance for ID-VG 

measurements (Sec. II.3.3). At the same time the craters generated by the probes are larger [65]. Could this 

be related to the obtained Nt magnitude? To investigate this aspect, pressure impact was studied on both 

passivated and non-passivated SOI. 

Figure V-10a shows the measured SId /ID
2 versus drain current in case of electrons for non-passivated 

surface. Different probe pressures were tested. The SOI structure had 88 nm top silicon film thickness and 

145 nm BOX thickness. To isolate only the pressure impact, the probes were placed on the silicon surface 

and the pressure was increased step by step, without moving them. The characteristics are almost pressure 

independent, after p = 50 g. 

The same analysis was performed on a passivated sample (Figure V-10b). The pressure values are 

different because in case of passivated top silicon film the 4 nm dry oxide requires higher p for good ohmic 

contact. Stronger pressure dependency is obtained in this case. The higher the pressure, the lower the 

measured SId /ID
2 plateau. Note also that for 100 g the curve does not show the typical CNF behavior 

anymore. 
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Figure V-10: SId /ID
2
 versus drain current for positive gate bias. Characteristics obtained using different probe 

pressures. The SOI structure had 88 nm thick silicon film and 145 nm thick BOX. Non-passivated (a) and 

passivated (b) top silicon surfaces were used. 

In order to isolate the Nt contribution from the fast traps, SVfb was calculated using Eq. (V.9) in case of 

non-passivated and passivated top silicon surface (Figure V-11). The data presented in Figure V-10a and 

Figure V-10b were used. SVfb obtained in case of non-passivated surface is almost independent of ID and p, 

making it suitable for Nt extraction. On the contrary, for the passivated samples, the flat-band voltage power 

spectrum is not constant and strongly dependent to p. 
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Figure V-11: SVfb versus drain current computed using Eq. (V.9). The analysis was performed in case of non-

passivated (a) and passivated (b) top silicon film. Data from Figure V-10. 

Before concluding this part, we compare the characteristics obtained on passivated and on non-

passivated samples. One of the open questions in [55] concerned the higher measured SId versus f in case of 

high quality passivated substrate than for non-passivated one (inset Figure V-12a). Since the probe pressure 

was proved to have a crucial impact on LFN measurements, the comparison between passivated and non-

passivated samples needs precautions. Two configurations are possible: 

o Same access resistance. Higher pressure is needed in case of passivated samples which may induce 

large density of defects in the silicon film; 

o Same probe pressure, which should lead to similar defects concentration induced by the probe in the 

silicon surface but different RSD. 

Figure V-12a shows the measured SId /ID
2 versus drain current in case of non-passivated (plain 

symbols) and passivated (empty symbols) SOI wafers. The characteristic on non-passivated sample was 

performed using the optimum pressure (p = 80 g). In case of passivated surface, the measurements were 

obtained using similar probe pressure (p = 75 g, circle symbols) and comparable access resistance  

(p = 100 g, triangle symbols). For large ID, the current power spectrum obtained for passivated samples is 

larger than for non-passivated one. Note that SId /ID
2 term contains both Dit and Nt contributions. Figure 

V-12b shows the corresponding SVfb. The conclusion is not clear. However, comparing the curves with 

similar pressure, the large difference obtained in the SId spectrum between passivated and non-passivated 

samples is reduced, especially for large ID. Two conclusions arise from here: 

o The defects related to the probe pressure play an important role; 

o Passivated surface seems more complicated to analyze, so we focus on the non-passivated wafers for 

the next sections. 
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Figure V-12: (a) SId /ID
2
 versus drain current in case of non-passivated (plain symbols) and passivated (empty 

symbols) SOI structure. The data discussed in Figure V-10 were used. (b) The corresponding SVfb extracted using 

Eq. (V.9) are shown. Inset: Measured SId versus f in case of passivated and non-passivated samples [55]. 

V.2.4 Impact of inter-probe distance and die area 

In case of Ψ-MOSFET configuration, the surface S is not well defined. The LFN needs S for Nt 

extraction: SVfb is proportional to 1/S (Eq. (V.8)). In this context, experimental effects of the inter-probe 

distance or the whole die area should be visible. 

Figure V-13a compares SId /ID
2 versus drain current obtained for different inter-probe distance: 1 mm,  

2 mm and 3 mm. To perform these characteristics we were forced to use different needles, because it is not 

possible to change the probe position in the Jandel® station. The curves present similar behavior and the 

plateau position is in the same interval. Only for large drain current values significant variations are present, 

probably due to different access resistance impact [158]. The corresponding SVfb as a function of drain 

current is shown in Figure V-13b. Light SVfb variation is found. 

Table V-1 shows the SVfb values obtained at constant ID (dashed circle in Figure V-13b) and the 

calculated S using Eq. (V.12): S =fG·d 2. The flat-band voltage power spectrum variation is very small with 

respect to the real surface variation. Consequently, the inter-probe distance plays a secondary role on LFN 

characteristics. 
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Figure V-13: (a) Measured SId /ID
2
 versus drain current in case of different inter-probe distance. The tests were 

performed on the same SOI wafer with 88 nm top silicon film thickness and 145 nm BOX thickness. The 

corresponding SVfb versus drain current is shown in Figure V-13b. 

d (mm) S (mm2) SVfb (V
 2/Hz) 

1 0.75 5·10-9 

2 3 2.7·10-9 

3 6.75 6·10-9 

Table V-1: SVfb obtained from Figure V-13b for ID ≈ 250 nA (dashed region). Computed surface using S = fG·d
 2
. 

Figure V-14 compares SId /ID
2 (a) and corresponding SVfb (b) versus drain current measured using 

different die areas. Despite a significant variation of real die surfaces, the obtained SVfb values are close. Only 

very large die (8 x 8 mm2), where parasitic factors limit the analysis, has a lower noise. 

No clear explanation or trends emerged from the experimental parameters. However, the conclusion is 

that S is clearly not well defined for the case of Ψ-MOSFET. Modeling is necessary to understand the 

physical phenomena and identify the surface representative for the noise measurements. 
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Figure V-14: SId /ID
2
 (a) and corresponding SVfb (b) as function of drain current in different die areas. The same 

SOI structure as in Figure V-13 was used. 
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V.3 LFN in inhomogeneous material 

Trefan et al. [136] have derived the LFN generated in a resistor under constant bias using the power 

density. The equations will be adapted to the case of constant current flow and the δI source will be 

associated to the variation of the carrier density (CFN model) (Sec. V.3.1). In Sec. V.3.2, the LF-noise will 

be computed using a differential equation solver (FlexPDE®) to explain the experimental trends discussed in 

Sec. V.2. 

V.3.1 Physical model 

Considering a resistor with a constant current I applied, the dissipated power P is proportional to I and 

the bias V measured across the resistor: 

 P I V    (V.13) 

Consequently, P is proportional to the material conductivity σ and the electric field ξ: 

 
2P I V d



        (V.14) 

where Ω is the resistor volume. 

Using Tellegen theorem [159], it is possible to show that in a network where constant current I is 

applied, the current fluctuations δI are due to the sum of conductivity oscillations δσ: 

 21
I d

V


      (V.15) 

Thus, the associated current power spectrum becomes: 

 2 2 4
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1
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         (V.16) 

The Ohm law relates the conductance G with V and I: I = V·G. Using Eq. (V.13), G can be expressed 

as a function of power density: 
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       (V.17) 

Hence, I 2 becomes: 
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Merging Eq. (V.16) and Eq. (V.18), it is possible to write SId /ID
2 expression: 
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  (V.19) 

To complete the derivation, it is required to include also the conductivity fluctuations. 𝛿𝜎2̅̅ ̅̅ ̅ associated 

to carrier number variation (CNF model) is [135]: 
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where SVfb_area is the normalized flat-band voltage spectrum density: SVfb_area = SVfb/S. The effective volume 

(Ωeff) in Eq. (V.19) represents the region where the noise is concentrated: 
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 (V.21) 

In case of SOI substrates characterized in pseudo-MOSFET configuration, the inversion (or accumulation) 

channel induced by VG is very close to the silicon film-BOX interface. Thus, Ωeff can be replaced by the 

effective surface term (Seff_LFN): 
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  (V.22) 

where S is the whole die area. Seff_LFN will be equal to S only for uniform current density [136], which is not 

the case of pseudo-MOSFET. Using Eq. (V.20) and Eq. (V.22), SId /ID
2 becomes: 
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  (V.23) 

In the next section the distribution of the surface potential ΨS on the silicon film will be obtained 

numerically by solving the drift-diffusion equation in the top silicon film and Eq. (V.23) will be used to 

compute the LFN generated in the Si layer. 
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V.3.2 Computation of LF-noise 

Configuration of the differential equation solver (FlexPDE®) 

In order to compute the low-frequency noise obtained in case of bare SOI wafers, a differential 

equation solver (FlexPDE®) was used. A 2-dimensional plane structure emulates the top silicon surface of 

the die (Figure V-15). Source and drain are included as a perfect metal contacts with given radius (R0) and 

placed at defined distance (d). 
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Figure V-15: Mesh of the computed structure with source and drain contacts. R0 = 200 μm and die surface equal 

to 2 mm x 2 mm. The inter-probe distance is 1 mm. 3000 nodes were used for meshing. 

Lambert equation is used to calculate the charge density induced by VG at the interface between the 

buried oxide and the top silicon film [99]. Consequently, ΨS on the whole surface of the Si layer is obtained 

numerically solving the Laplace equation: 

  Sdiv grad( ) 0       (V.24) 

The electric field is directly computed from ΨS: 

  Sgrad     (V.25) 

Equation (V.17) leads to the silicon film conductance and consequently to the drain current between the two 

contacts. Furthermore, Eq. (V.23) allows the LF-noise calculation. 

Table V-2 summarizes the main input parameters used in FlexPDE®, knowing that: 

o The chosen magnitudes (tOX, tSi, μ …) are close to the realistic values measured in pseudo-MOSFET 

configuration; 

o The interface trap contributions are included using two different terms: Dit (fast traps) in the current 

computation and Nt (slow traps) which is present only in the LFN term (Eq. (V.23)); 

o The computation part will focus on SOI structure with 88 nm top silicon film thickness and 145 nm 

BOX thickness. The LFN signal is calculated for VG > 0 V, as in the experiments. 
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Parameters  Value / Range 

BOX thickness tOX 145 nm 

Top silicon film thickness tSi 88 nm 

Low-field carrier mobility μ0 450 cm
2
/Vs 

Interface trap density (fast traps) Dit 1010-1012cm-2eV-1 

Deep traps used for LFN computation Nt 1018-1020cm-3eV-1 

Traps added in a localized region for LFN calculation Nt_added 1018-1022cm-3 eV-1 

Tunneling attenuation length λ 1 Å 

Die length, square samples (L = W) L 1 mm – 10 cm 

Probe radius R0 1-200 μm 

Radius added to R0 to generate a corona region ΔR0 1-200 μm 

Inter-probe distance d 1-3 mm 

Drain bias VD 100 mV 

Table V-2: Summary of input parameters required for FlexPDE® computation. 

Preliminary results 

Preliminary simulation results are shown in Figure V-16a. SId /ID
2 is computed as a function of drain 

current for different Nt values. Note that Dit term was kept constant. The three curves have the same shape 

but higher Nt induces higher SId /ID
2 plateau level. This is in agreement with Eq.(V.23). Keeping constant Dit, 

the change of Nt induces only a SVfb variation, thus a SId /ID
2 vertical shift. 

Figure V-16b presents the computed SId /ID
2 versus ID using different probe radius R0: 1 μm, 5 μm and 

10 μm. For low ID, more than one decade difference is found between the characteristics. Comparing Figure 

V-16a and Figure V-16b, it is obvious that R0 induces SId /ID
2 plateau shift comparable to Nt effects. 
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Figure V-16: Computed SId /ID
2
 versus drain current for different Nt (a) and R0 (b) values. 
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Figure V-17a shows the AFM image of tip crater on non-passivated silicon surface. The vertical cross 

section taken at the line in Figure V-17a is presented in Figure V-17b. The probes leave a trace on the silicon 

surface with radius ≈ 5-6 μm. In reality, however, the effective contact dimensions should probably take into 

account the irregular tip penetration depth (Figure V-17b). This is more complicated to evaluate. For 

simplicity reasons, we assume R0 to be given by the crater radius on the surface, and we will perform the 

main comparisons with the experimental trends using R0 = 5 μm. 

 (a) (b) 
 50.3nm 

               

H
e

ig
h

t

Horizontal distance  

Figure V-17: (a) AFM image of tip crater on non-passivated SOI surface. The corresponding vertical cross 

section taken at half of the crater (line in Figure V-17a) is shown in Figure V-17b. Note the irregular probe 

penetration in the silicon surface. 

Impact of interface quality 

It is known from the literature [83] that passivated and non-passivated top silicon surface have 

different density of defects placed at the interfaces. Thus, not only Nt will change, but also the fast traps Dit, 

which determine the subthreshold swing. 

Figure V-18a shows the computed SId /ID
2 versus ID for different Nt and Dit. In this case, the fast and 

slow traps are directly related by Dit = λ·Nt. The lowest plateau is achieved for Nt = 1018cm-3eV-1. The 

increase of the defects density (Nt = 1019cm-3eV-1) leads to higher plateau position. Nt = 1020cm-3 eV-1 

represents the largest amount of defects, hence we would expect the highest SVfb magnitude. This is not the 

case because the Dit variation also induces a shift of the current PSD. Figure V-18b shows the corresponding  

(gm /ID)2 versus drain current for the same structure. The larger the Dit value, the lower the plateau position. 

As a result, the SVfb increase proportional to Nt is masked on the SId /ID
2 characteristics by Dit effects, 

confirming the importance to analyze the SVfb spectrum instead of SId /ID
2. 
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Figure V-18: (a) Computed SId /ID
2
 versus ID for different Nt values. The calculations were performed using  

Dit = λ·Nt. The corresponding (gm /ID)
2
 as a function of drain current is shown in Figure V-18b. In this case the 

characteristics represent only the static contribution, thus Nt has no impact. 

Impact of inter-probe distance and die area 

The experimental results presented in Figure V-13 and Figure V-14 showed only small variations of 

the measured SId /ID
2 with the inter-probe distance d and die surface. Figure V-19 presents the computed SId 

/ID
2 versus ID in case of different inter-probe distances (a) and die surfaces (b). A slight decrease of plateau 

height is observed for higher d. In case of experimental results (Figure V-13), reproducibility problems due 

to the use of different needles may have masked the trend. 

Furthermore, the variation of the die surface has almost no effect on the characteristics (Figure 

V-19b). Both parameters, d and S, play a secondary role in LF-noise of Ψ-MOSFET, as confirmed by 

simulations and experiments. 
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Figure V-19: Computed SId /ID
2
 versus drain current in case of different inter-probe distance (a) and die area (b). 
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V.4 Effective surface in LF-noise 

The experimental and computed results clearly show that the geometry (inter-probe distance or die 

area) is not relevant for LFN. Where is the noise really coming from in this case? 

We investigate the region where most of LF-noise is generated (effective surface, Seff_LFN) in Sec. 

V.4.1 and quantified it in Sec. V.4.2. 

V.4.1 Why an effective surface? 

Figure V-20 shows the whole die area (dashed line) computed as a function of L (die length of square 

die). Seff_LNF is calculated with Eq. (V.22) and added to the graph (line). A huge difference between S and the 

effective surface is found. Figure V-20 proves that the LNF signal measured in the silicon film is generated 

in a reduced region which is much smaller than S (2 to 3 orders in magnitude difference). This explains why 

the inter-probe distance and especially the die surface variation have almost no impact on the obtained 

characteristics. 
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Figure V-20: Calculated whole die area (dashed line) and Seff_LNF (line) versus die length. 

The detailed explanation is given in Figure V-21a, where the distribution of the current power density 

(σ·ξ 2) on the silicon surface is shown. In order to enhance the effects, small sample surface (2 mm x 2 mm) 

and large probe radii (R0 = 200 μm) were used. Most of the LFN signal arises from the regions around the 

two contacts where the power current density is localized. Consequently, for LFN in Ψ-MOSFET, only a 

small percentage of the silicon surface delivers most of the SId /ID
2 signal. Figure V-21b presents the current 

density (σ·ξ) distribution for the same sample. Contrary to the LFN distribution, σ·ξ is much more 

homogenous over the whole die area, confirming that ID-VG characterization is less sensitive to the region 

around the contacts. 
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Figure V-21: Power current density (a) and current density (b) computed on the same die. The sample surface 

was 2 mm x 2 mm and R0 = 200 μm. The unnatural behavior at the edges of the structure is due to border effects 

coming from meshing. 

V.4.2 Quantification of effective surface 

In order to quantify the surface which dominates the noise (SId /ID
2), we compared the total LFN with 

the signal obtained from two reduced regions. The structure used is represented in Figure V-22a. Two corona 

surfaces with ΔR0 thickness were added around the source and drain contacts. The corresponding “reduced 

noise” SId /ID
2
_red is calculated dividing the LFN obtained only from these regions by the whole drain current 

ID. Figure V-22b shows SId /ID
2

_red divided by SId /ID
2 versus ΔR0. In case of R0 = 5 μm, more than 80 % of the 

whole signal is concentrated in less than 10 μm distance from the contact edges. This result underlines that 

the LFN noise is localized around the source and drain; the use of sharp probes enhances the effect. 

Moreover, the “reduced noise” for fixed radius is exponentially dependent on the thickness of the 

corona structure ΔR0: 
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Figure V-22: (a) Mesh for the computation of LFN with contact radius R0. A second region with radius R0 + ΔR0 

is added around the source and drain to measure the localized LFN (SId /ID
2
_red). (b) Relative (SId /ID

2
_red)/(SId /ID

2
) 

versus ΔR0 for different contact radius. 

Using Eq. (V.22) it is possible to compute Seff_LFN as a function of ξ on the Si film for different R0. 

Seff_LFN versus R0 is shown in Figure V-23 for four different die surfaces: 2 mm x 2 mm, 4 mm x 4mm,  

8 mm x 8 mm and 16 mm x 16 mm. In case of very small die area (2 mm x 2 mm), border effects limit the 

analysis. 

The effective surface is directly proportional to R0 in case of sharp probes (region A). Thus, a small 

variation of the probe radius will strongly affect the obtained LFN signal (i.e., variation of tip crater). This 

explains the important SId /ID
2 shift obtained using different probes (see Figure V-8). The use of large 

contacts leads to constant Seff_LFN magnitude (region B) independent of R0. Thus, SVfb extraction will be less 

related to the probe diameter and therefore relevant for substrate characterization. After a preliminary 

calibration to determine the effective surface, continuous monitoring could be performed on samples using 

always the same probes. 

One of the main conclusions of this section is that the obtained LF-noise arises from localized regions 

around the source and drain contacts and the effective area Seff_LFN is much smaller than S. This explains why 

the Nt calculated using S (Eq. (V.12)) had such unrealistic, overestimated values. 
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Figure V-23: Seff_LFN versus R0 for different die areas. 
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V.5 Probe penetration effects 

After proving that the LFN mostly arises from small regions localized around the probe contacts 

(Seff_LFN), some questions still remain: 

o Is the noise related to defects generated by probe penetration in the Si film? 

o Is the LFN in pseudo-MOSFET configuration sensitive to the sample quality? 

Experimental results in Sec. V.5.1 and calculations with FlexPDE® (Sec. V.5.2) will try to answer 

these questions. 

V.5.1 Experimental evidences 

HF treatment 

We still need to understand if the measured signal is related to the interface defects or not. Seff_LFN 

proved that for sharp probes, as in our case, the signal arises from small regions around the source and drain 

contacts. Quantifying the effective surface is quite complicated for small R0. From the practical point of view 

it was possible to imagine an experiment in which everything related to the probe contacts is fixed while the 

samples have a variation of the interface quality. 

This is achieved by the use of a sample after HF treatment. The native oxide of non-passivated wafer 

plunged in HF solution (diluated at 5 %) is etched of. The native oxide grows back within hours until the 

surface will become stable again. Thus, the top interface traps density changes during the re-oxidation [63]. 

LF-noise was performed on this sample at different moments after etching. The probes were initially 

placed on the surface of the die and not moved during the tests. This allows assuming that the contacts and 

thus the effective surface are the same for all the measurements. 

Figure V-24a shows the evolution in time ID(VG) curves. The corresponding VT, subthreshold swing 

and Dit (extracted from ID-VG) are reported in Table V-3. Clear variations of both quantities are detected. 

Immediately after the treatment many free carriers and dangling bonds are present on the top silicon surface 

[63], inducing strong VT lowering and poor subthreshold slope. The regrowth of the native oxide gradually 

attenuated these effects: a VT shift is measured, accompanied by subthreshold swing improvement. LFN 

characterization was performed in parallel and SId /ID
2 versus drain current curves are shown in Figure V-24b. 

A general overlap between the curves is observed. Contrary to static characterization, no appreciable 

variation of the curves in time is found. LFN is clearly “blind” to this evolution of the top surface. 
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Figure V-24: (a) Drain current versus gate bias performed at different moments after HF treatment. The 

corresponding SId /ID
2
 as a function of ID are shown in Figure V-24b. Non-passivated SOI structure with 88 nm 

thick top silicon film and 145 nm thick BOX. 

Time after end 

of HF process 
VT (V) Ss (V/dec) Dit (cm-2eV -1) 

~30min 1.5 1.5 4.4·1012 

~2.5h 2 1.4 4·1012 

~4h 2.1 1.2 3.6·1012 

~8h 2.3 1.1 3.4·1012 

~10h 2.4 1.1 3.3·1012 

~23h 2.5 1.0 3.1·1012 

Table V-3: VT and subthreshold swing extracted from Figure V-24a. The corresponding Dit values are obtained 

using Eq. (II.10), as for MOSFET. 

To complete the analysis, Figure V-25 shows the computed SVfb versus drain current immediately after 

the HF treatment (fully symbols) and when the top surface started to stabilize after 23 hours (empty 

symbols). The differences at low ID magnitude are due to the effects of traps only present in the static 

characteristic and not on the SId /ID
2 spectrum (Dit and not Nt, see the differences in Figure V-24a and the 

overlap in Figure V-24b). For higher drain current values, the two curves show similar SVfb values. Thus, the 

HF treatment does not affect Nt but only the fast traps (Dit), as evidenced in Table V-3. 
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Figure V-25: SVfb computed form Figure V-24 versus drain current immediately after the HF treatment (plain 

symbols) and after surface stabilization (empty symbols). 

Charging procedure 

Since the re-oxidation was not visible by LFN, a possibility to modify the quantity of slow traps 

present on SOI wafer could be the charging procedure discussed in case of QST measurements (see Sec. 

IV.6). 

Figure V-26a presents the drain current versus VG before (plain symbols) applying VG of 10 V for  

3000 s. The characterization was repeated after the end of the procedure (empty symbols). The filled traps 

induce a VT shift of about 0.4 V. Furthermore, the subthreshold swing remains almost constant: 0.61 V/dec 

before charging and 0.613 V/dec after it. The corresponding detected noise signal versus ID is shown in 

Figure V-26b. Before charging (plain symbols), the SId /ID
2 plateau is lightly higher than after it (empty 

symbols).  
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Figure V-26: Drain current as a function of gate bias (a) and SId /ID
2
 versus ID before (plain symbols) and after 

(empty symbols) charging procedure. Characteristics performed without moving the probes. The same SOI 

structure as in Figure V-24 was used. 
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To remove any possible impact due to Dit (fast traps), Figure V-27 shows the corresponding SVfb 

computed as function of drain current. The flat-band voltage power spectrum is higher before charging 

procedure (plain symbols) than after it (empty symbols). One expects an increase of the Nt density after 

charging, while a light decrease is obtained. One possibility to explain the phenomenon is that the charged 

defects are “masked” during the analysis. They require long time to release the captured electrons, thus they 

will not respond to the applied input, if they are still filled … or, again, the LFN is actually not sensitive to 

what is happening in the sample. 

These two tests (HF clean and charging procedure) show that even if the impact of effective surface 

was experimentally stabilized, the signature due to interface quality is too small to be convincing. The 

parameter which seems to mostly impact the experiments is explained in the next section. 
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Figure V-27: Computed SVfb versus drain current before (plain symbols) and after (empty symbols) charging 

procedure. The data shown in Figure V-26 was used. 

V.5.2 Computation of induced defects by probe penetration 

A possible explanation of the measured trends is given by the study of the defects induced by probe 

penetration in the silicon film. In order to investigate this phenomenon, we used the same structure presented 

in Figure V-22a. Localized defects (Nt_added) were added only in the corona regions between R0 and ΔR0, to 

mimic the supplementary defects generated by needle penetration inside the film. The whole LF-noise signal 

(SId /ID
2
_tot) will be the sum of the noise term arising from the silicon film (SId /ID

2) and the contribution of the 

defects due to the probe penetration: SId /ID
2

_red. Figure V-28a shows the computed SId /ID
2

_tot as a function of 

drain current for different Nt_added magnitudes. Dit = 1012cm-2eV-1 and Nt = 1020cm-3eV-1 were used. The 

contact radius was 5 μm, while ΔR0 = 500 nm. It is noted that an increased density of defects induced by 

probes leads to higher LFN plateau. This means that the interface trap density extracted from the plateau 

value is not representative of the actual density of traps in the SOI material (here Dit = 1012 cm-2eV-1). For 

example, Nt is oversestimated by 173 % for Nt_added = 1021 cm-2eV-1. 

Figure V-28b presents the total noise power spectral density SId /ID
2 and its componets versus Nt_added. 

The continuous horizontal line shows the genuine LFN spectrum without tip induced defects (Nt_added = 0) in 

case of Nt = 1019cm-3eV-1 and Nt = 1020cm-3, respectively. SId /ID
2
_red term increases linearly with the density 
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of added defects (dashed line). The total signal SId /ID
2

_tot (dotted line) cumulats the two sources of noise. 

Dit = λ·Nt was used in both cases. For small density of probes induced defects, SId /ID
2
_tot is dominated only by 

the noise arising from the silicon film. Large Nt_added magnitude, however, completely masks the contribution 

of the native interface traps of the sample (SId /ID
2
_tot ≈ SId /ID

2
_red). 

Considering Nt = 1020cm-3eV-1, SId /ID
2
_red dominates the whole LFN signal for higher Nt_added than for 

low density of traps present on the SOI structure (Nt = 1019cm-3eV-1). Thus, in higher quality passivated 

substrates, the LFN is probably more probe damage related than for the non-passivated ones (low quality of 

top silicon interface). 

 (a) (b) 

10
-9

10
-8

10
-7

10
-9

10
-8

10
-7

N
t_added

N
t
=10

20
cm

-3
eV

-1

 

 

S
Id
/I

D

2

_
to

t 
(1

/H
z
)

I
D
 (A)

 No added defects

 N
t_added

=10
20

cm
-3
eV

-1

 N
t_added

=10
21

cm
-3
eV

-1

L=5mm              R
0
=5m

R
0
=500nm

D
it
=10

12
cm

-2
eV

-1

    

10
18

10
19

10
20

10
21

10
22

10
-10

10
-9

10
-8

10
-7

10
-6

 N
t
=10

19
cm

-3
eV

-1
  N

t
=10

20
cm

-3
eV

-1

    S
Id
/I

D

2
 without defects

    S
Id
/I

D

2

_red

 and    S
Id
/I

D

2

_tot
=S

Id
/I

D

2
+S

Id
/I

D

2

_red

N
t
=10

20
cm

-3
eV

-1

 

 

S
Id
/I

D

2
 (

1
/H

z
)

N
t_added

 (cm
-3
)

                 R
0
=5m

L=5mm    R
0
=500nm

N
t
=10

19
cm

-3
eV

-1

 

Figure V-28: (a) The total SId/ID
2
_tot versus ID obtained from the Si film when different induced defects densities 

Nt_added were added around R0. (b) SId /ID
2
 is traced as function of Nt_added in two different configurations:  

Nt = 10
19

cm
-3

eV
-1

 (black line) and Nt = 10
20

cm
-3

eV
-1

 (red line). The noise power spectrum only due to Nt_added term 

is also shown (dashed line). SId /ID
2
_tot is computed versus Nt_added for both Nt cases (red dotted line):  

SId /ID
2

_tot = SId /ID
2
 + SId /ID

2
_red. 

As shown in Sec. V.4.2, higher R0 radius might stabilize Seff_LFN. It is also known from the literature 

that larger tips induce a smaller amount of defects on the SOI structure [62].To further evaluate this solution, 

Figure V-29 presents relative contribution (SId /ID
2
_red)/(SId /ID

2
_tot) and (SId /ID

2)/(SId /ID
2
_tot) versus contact 

radius for two different probe induced defects density: Nt_added = 1020cm-3eV-1 (continuous line) and  

Nt_added = 1021cm-3eV-1 (dashed line). The impact of the generated defects is very strong but it exponentially 

decreases as a function of needle radius. In case of Nt_added = 1020cm-3eV-1 (line), using very large contacts 

(i.e., R0 ≈ 100 μm - 200 μm) the contribution due to induced defects is almost negligible ((SId /ID
2

_red)/(SId 

/ID
2

_tot) term tends to 0). Unfortunately, high Nt_added (dashed line) still dominates the whole LF-noise signal 

also in case of large R0, making the interface quality characterization not possible. 
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Figure V-29: (SId /ID
2

_red)/(SId /ID
2
_tot) and (SId /ID

2
)/(SId /ID

2
_tot) versus R0 for Nt_added = 10

20
cm

-3
eV

-1
 (line) and  

Nt_added = 10
21

cm
-3

eV
-1

 (dashed line). 

V.6 Conclusions and perspectives 

In this chapter, a detailed investigation of low-frequency noise in pseudo-MOSFET was performed. 

The aim was to explain the abnormally large Dit values previously extracted by LFN in Ψ-MOSFET. 

We discussed about the improvements due to the use of vacuum system and we demonstrated that the 

geometry of the sample has little importance, while the probes have a high impact on the experiments. 

A physical model was proposed to explain the LFN in a material in case of inhomogeneous current 

flow. Simulations were performed and good agreement between experimental and computed trends was 

found. It was proved that the noise signal arises from small surface localized around the contacts and this is 

why it is mostly independent of the whole die area or inter-probe distance.  

Obviously, this small surface is mostly determined by the probe. The needle radius R0 plays a major 

role for LF-noise characterization. Furthermore, the impact of defects induced by probe penetration was 

studied. It was extensively discussed that using standard Jandel® station with needle radius of 40 μm, the 

obtained SId signal is almost independent of the quality of the SOI wafer; the defects induced by the probes 

dominate the whole detected noise, making the LFN characterization not suitable for interface monitoring. 

Using particular precautions it could be possible to increase the sensitivity of noise analysis to the SOI 

interfaces. Two possible approaches can be envisaged: 

o The use of larger probe sizes (R0 ≈ 150 μm- 200 μm) makes Seff_LFN almost constant and the noise 

signal will be less localized around the contacts. Furthermore, the needles will less penetrate into the 

silicon film. This should induce less defects [62] and the signal due to Nt might be revealed. 

o Perform low-frequency noise in 4-probe configuration. This technique should decrease the impact of 

contacts and make visible the contribution due to the interface defects. 

o The LFN technique may be used to characterize the contact between the probe and the silicon film 

leading to a better knowledge of defects induced by tips penetration. 
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VI.1 Conclusions 

The pseudo-MOSFET is a powerful measurement method for the characterization of bare SOI wafers 

[47]. Several studies pointed out the capability to extract carrier mobility, oxide defects and interface quality 

using static ID-VG analysis [48], [49], [62], [160]. However, this measurement shows limits for the material 

characterization [33], [68], especially for advanced SOI substrates with ultra-thin silicon film. Consequently, 

new techniques were developed. For example, low-frequency noise measurements were performed in Ψ-

MOSFET by Diab et al. [55], but the obtained values of interface state density were not convincing. The 

effective carrier mobility was successfully extracted using split-CV technique [53], [54]. Nevertheless, the 

method needed a fitting parameter named effective surface, that was not clearly explained. Furthermore, 

capacitance measurements were not extended for Dit extraction. 

In this thesis, we addressed same of these opened topics and we enriched the characterization methods 

of bare SOI substrates. Starting from the well-known static ID-VG analysis, three other techniques were 

discussed, from both experimental and modeling point of view: split-CV, quasi-static capacitance and low-

frequency noise. The main results can be summarized by 3 topics: improved measurement setup, effective 

surface and Dit extraction. 

Improved measurement setup 

We proved that a good measurement setup increases the robustness of the characterization technique, 

leading to more stable analysis. Note that in Ψ-MOSFET, the critical setups are not the same for all the 

measurement techniques. 

In case of capacitance analysis (split-CV and quasi-static CV), the quality of the back contact between 

the substrate and the metallic chuck is the major parameter. The use of vacuum system leads to stable 

characteristics and avoids parasitic capacitance contributions. The adjustable pressure probes play only a 

minor role. Hence, the possibility to characterize also ultra-thin silicon films and BOX using capacitance 

analysis makes the technique very promising for the quality monitoring of bare SOI wafers. 

The opposite situation was found for the techniques based on drain current measurements (static ID-VG 

and LFN): here the probes have a dominant role on the experimental characteristics. The use of vacuum for 

the back contact, even if not critical, is highly recommended in order to attenuate the effect of parasitic 

terms. The vacuum becomes mandatory in case of ultra-thin SOI structures. 

Additionally, in case of low-frequency noise the probes have a supplementary role because they 

induce defects in the silicon film increasing the measured Dit. Reproducible analysis requires systematic 

precautions. 

The Ψ-MOSFET setup was also used for III-V layers where we found that the probe material is 

critical. 



Chapter VI: General conclusions and perspectives 

148 

 

Effective surface 

One of the main problems of the standard pseudo-MOSFET configuration is that the conduction 

channel is not well defined, as for fabricated transistor. The actual geometry responsible for a measured 

signal (drain current, LFN, capacitance) was investigated and we proved that the effective areas were not the 

same from one technique to another. 

Thanks to the use of improved setup and to modeling studies, we demonstrated that in capacitance 

measurements the whole die area responds during the characterization. This means that border effects are not 

present. 

As for ID-VG measurements, the current density is more localized and the width over length ratio of Ψ-

MOSFET is classically defined by fG [47]. Note that placing the source and drain probes too close to the edge 

of the device, the electrical field distribution on the silicon surface is limited by the die borders and fG is 

modified. To obtain correct mobility values, the probes must be placed in the middle of the tested die. 

For LFN, we proved that the signal mostly arises from small regions surrounding the probes, and this 

effect is enhanced for sharp tips (as the ones we were using). In order to perform suitable Dit extraction, the 

effective surface must be computed using the physical model discussed in Sec. V.4.2. 

Dit extraction 

Static ID-VG characterization leads to interface traps evaluation. However, its capability is more 

limited as the thickness of the silicon film decreases. For this reason we investigated other techniques for Dit 

characterization. 

Unfortunately, we proved that the LFN signal is mostly affected by the defects induced by the probes 

and almost independent of the material quality. Larger probes could allow overcoming this issue. 

Furthermore, even if capacitance measurements performed using LCR meter lead to correct effective 

mobility values, information concerning the quality of the interfaces is masked by the RC time constant of 

the channel (τRC). τRC is associated to the time needed for the carriers to go from the probes to any point in the 

conduction channel. The minimum measurement frequency (f = 20 Hz) was not slow enough to avoid τRC 

effects because of large die areas (S ≈ 4-60 mm2). Consequently, neither capacitance-voltage nor conductance 

technique could reveal Dit signature. 

The problem was solved using quasi-static capacitance measurements, which we introduced for the 

first time in the Ψ-MOSFET configuration. Performing very slow analysis, the signature of deep traps was 

detected. A physical model was derived and validated for different measuring frequencies and temperatures. 

A simple extraction procedure was proposed. Its validity, limitations and extensions were addressed from a 

practical point of view. Several SOI geometries and surface qualities were tested. In samples with passivated 

top surface, the obtained Dit profiles overlapped, independently of the top silicon film and BOX thicknesses, 

proving that the measurements mainly reflect the quality of film-BOX interface. In non-passivated samples, 

larger density of defects was measured. Dit peaks at precise energy values were found for non-passivated top 

surface. 
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VI.2 Perspectives 

In this thesis, we answered some critical questions concerning the split-CV or LFN technique, we 

introduced the QSCV technique in Ψ-MOSFET and we characterized a variety of SOI films and also III-V 

layers. However, some aspects need further investigation: 

- The setup improvements (quality of back contact) open the way for other new techniques in Ψ-

MOSFET configuration, such as charge pumping or the analysis of transitory phenomena. 

- The impact of substrate capacitane has to be investigated for measurements performed using vacuum 

contact. This term can play a role for static ID-VG analsysis and capacitance measurements. 

- Other passivated samples can be tested using QSCV technique in order to investigate the impact of the 

crystal orientation and better separate the contributions due to the several interfaces. 

- The Dit profile measured using QSCV in non-passivated samples requires deeper investigation, 

especially for UTBB structures (tests of charging procedure for samples with tOX = 25 nm). 

- The use of 4-probes configuration or larger needles could make the LFN technique suitable also in Ψ-

MOSFET configuration. 

- The low-frequency nosie can be a fruitful technique for the characterization of the contact between the 

pressure probes and the silicon film. For sharp tips, the signal is mostly determined by defects induced 

by probe penetration. Thus, its analysis may enrich the knoldge about source and drain contacts. 

- The III-V materials clearly represent a possible future for microelectronics. The material 

characterization is challenging. The standard ID-VG in Ψ-MOSFET configuration did not work, 

probably because of contact problems. However, the low dependency on the probe penetration makes 

QSCV a promising technique for Dit extraction in III-V layers. 

 

… but I leave all these topics to the next generation of students. 
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Appendix IEquation Chapter (Next) Section 1 

During this thesis, the Hall mobility (μHall), the material resistivity (ρ) and the active doping 

concentration (ND or Na) were measured on a “home-made station”, totally dedicated to these experiments 

[6]. The setup is made of a probe station that can be placed inside a magnetic coil. All the tools required for 

the characterization (amperometers, voltemeters, etc.) are controlled by computer. The whole experiment 

consists of three consecutive steps: 

1 Contact tests: these tests are required to verify if the contacts between the metallic probes and the 

material are ohmic. If this is not the case, all the other measurements are useless. A current is applied 

between two contacts and the corresponding voltage is measured. Linear I-V dependency must be 

obtained to pursue the characterization; 

2 The Van Der Pauw measurement is performed to obtain the material resistivity ρ; 

3 Hall effect measurement leads to the Hall mobility μHall. The active doping concentration is computed 

at the end of the characterization, using μHall and ρ. 

The next two sections describe the working principle of Van Der Pauw and Hall effect measurements. 

Van Der Pauw experiments 

In order to perform Van Der Pauw measurements, the sample is placed on a metallic chuck and four 

manual probes (labeled 1, 2, 3 and 4) are used to contact it. Figure AI-1 shows an example. To succeed the 

characterization, the tested material must have an uniform thickness. 

The measurement is performed setting the current between two adjacent probes (for example between 

probes 1 and 2) and measuring the potential drop between the two others (V34) (see Figure AI-1a). The 

corresponding resistance can be computed as: 

 34
12,34

12

V
R

I
  (AI.1) 

In order to average the obtained resistance value and to reduce effects due to a not perfectly symmetric 

sample geometry, other measurements are performed shifting the contacts by a quarter turn (see Figure AI-

1b). R23,41 is obtained. The material resistivity is computed as a function of the film thickness (tSi): 

 
 

12,34 23,41Si
conf

R Rt
f

ln 2 2


      (AI.2) 

where fconf  is a configuration coefficient given by [6]: 

 
12,34 23,41

conf 12,34 23,41 conf

R R 1ln(2) ln(2)
2 exp cosh 1

f R R 1 f

  
           

  (AI.3) 

In case of perfectly symmetrical samples (R12,34 = R23,41), fconf = 1. To increase the accuracy of the analysis, 

the procedure is repeated injecting the currents I34 and I41 and measuring the corresponding voltages V12 and 

V23. The final resistivity value results from averaging all the obtained ρ. 
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Figure AI-1: Schematic of Van Der Pauw measurement. The current I12 (a) and I23 (b) are injected and the 

voltage V34 and V41 are measured, respectively. 

Hall effect measurement 

For the Hall effect measurements, the same sample used during Van Der Pauw characterization is 

gently moved into the center of a magnetic gap. 0.5 T are applied perpendicular to the die surface (+B). The 

field direction can also be reversed (-B) (see Figure AI-2). The current is set between two diagonal probes 

and the potential drop is measured between the two other needles. 

In a practical case the current is applied between the probes 1 and 3 (I13 if the current is inject in 1 

while I31 if it is reversed) while the tips 2 and 4 are used to measure the potential (V24). Four different voltage 

values can be obtained changing current and magnetic field direction: V24(I13,+B) where the current is 

injected in 1 and the applied magnetic field is +B; V24(I31,+B) where the current is reversed (I31 instead of I13) 

and the magnetic field direction is kept constant; V24(I13,-B) and V24(I31,-B) where the same characterizations 

are repeated using I13 and I31 but he magnetic field applied is reversed (-B). Hence, the corresponding Hall 

voltage is: 

 24 13 24 31 24 31 24 13
H,24

V (I , B) V (I , B) V (I , B) V (I , B)
V

4

      
   (AI.4) 

Knowing the current direction, the sign of VH,24 allows to determine the doping type of the material. The Hall 

voltage VH,24 and Hall current IH (average between I31 and I13) lead to the calculation of the Hall coefficient 

[6]: 

 H,24 Si

H,24

H

V t
R

I B


 


  (AI.5) 
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To improve the measurement accuracy, the procedure is repeated injecting the current between 2 and 4 

contacts (I24 and I42) and measuring V31. The average of all the obtained results leads to Hall coefficient RH. 

RH and the material resistivity ρ (obtained from Van Der Pauw technique) allow the calculation of the Hall 

mobility [6]: 

 
H

Hall

R
 


  (AI.6) 

In conclusion, the doping concentration is computed by: 

 
D,a

Hall

1
N

q


 
  (AI.7) 
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Figure AI-2: Schematic of direct (+B) and reversed (-B) magnetic field applied on the same structure as in Figure 

AI-1. 
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Table of Acronyms 

Acronym Nomination 

a.c. Alternative signal 

AFM Atomic Force Microscope 

Al Aluminum 

As Arsenic 

Au Gold 

BOX Buried oxide 

CMOS Complementary MOS technology 

CNF Carrier number fluctuation (model) 

CMF Carrier mobility fluctuation (model) 

d.c. Constant bias term 

div Divergence 

DUT Device under test 

FDSOI Fully depleted SOI transistor 

FET Field Effect Transistor 

FFT Fast Fourier Transform 

Ga Gallium 

Ge Germanium 

grad Gradient 

HgFET Mercury contacts FET 

HF Hydrofluoric acid 

In Indium 

HMF Hooge mobility fluctuation (model) 

InGaAs In53%Ga47%As, Indium-Gallium-Arsenide alloy 

LFN Low-frequency noise 

MOS Metal-oxide-semiconductor 

MOSFET Metal-oxide-semiconductor field effect transistor 

NBTI Negative bias temperature instability 

Ni Nickel 

NID Non-intentionally doped 

Os Osmium 

PBA Programmable Biasing Amplifier 

PDSOI Partially depleted SOI transistor 

PSD Power spectral density 
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Acronym Nomination 

QSCV Quasi-static capacitance measurements 

RC Resistance – capacitance (model) 

RTS Random telegraph signal 

Si Silicon 

SiO2 Silicon-dioxide 

SOI Silicon-on-insulator 

Ti Titanium 

UTBB Ultra-thin body and buried oxide 

WC Tungsten carbide alloy 

III-V Label for In53%Ga47%As layer 

III-V-OI III-V film on insulator 

Ψ-MOSFET Pseudo-MOSFET 
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Table of Constants 

Symbol Value / Unit (in SI) Description 

k 1.38 × 10-23 m2 kg s-2 K-1 Boltzmann constant 

j - Complex unit 

q 1.6·10-19 C Unit charge 

vth 107 cm/s Thermal velocity 

ε0 8.85·10-12F/m2 Vacuum permittivity 

εOX 3.9·ε0 F/m2 SiO2 permittivity 

εSi 11.8·ε0 F/m2 Silicon permittivity 
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Table of Symbols 

Symbol Unit (in SI) Description 

B   

B T Applied magnetic field 

C   

COX F/m2 Oxide capacitance 

CSi F/m2 Silicon film capacitance 

CInv F/m2 Inversion channel capacitance 

CGC F Gate-to-channel capacitance 

CGC_max F Maximum measured CGC 

CGS F Gate-to-substrate capacitance 

Cm_split F/m2 Measured parallel capacitance for split-CV measurements 

Cmax F Measured maximum capacitance in case of Ψ-MOSFET configuration 

Cmax_air F 
Measured maximum capacitance in case of Ψ-MOSFET configuration with 

air back contact 

CDit_c F/m2 
Capacitance due to Dit in split-CV configuration for continuous energy traps 

distribution 

Cp F/m2 Parallel capacitance between CInv and CDit in case of split-CV technique 

CLF_MOS F/m2 
Low frequency capacitance measured in MOS structure with QSCV 

technique 

Cm_QST F/m2 Measured QSCV capacitance 

CQST F/m2 General expression for QSCV calculated capacitance 

CQST_s F/m2 Total quasi-static capacitance for single energy level of interface traps 

Cit_s F/m2 
Interface traps capacitance in case of single energy level of defects 

distribution (QSCV technique) 

Cit_c F/m2 
Interface traps capacitance in case of continuum energy distribution of 

defects (QSCV technique) 

CQST_c F/m2 
Total quasi-static capacitance for continuum-like energy distribution of 

interface traps 

Cit_c_τ F/m2 
Interface traps capacitance for continuum-like energy distribution of defects 

taking into account frequency effects 

CQST_c_τ F/m2 
Total QSCV for continuum-like energy distribution of interface trap density 

including frequency effects 

CQST_LCR F/m2 
Complete expression of capacitance term measured in pseudo-MOSFET 

configuration taking into account traps time constant and τRC 
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Symbol Unit (in SI) Description 

Cm_QST_Vg F/m2 Measured quasi-static capacitance at constant VG 

Cm_QST_sat F/m2 Saturation QSCV capacitance obtained by exponential fit of Cm_QST_Vg 

Cit_QST F/m2 Capacitance of Dit obtained from experimental results 

Cpeak F/m2 
Peak of measured capacitance value obtained during charging procedure in 

case of non-passivated surface 

D   

Dit cm-2eV-1 Interface trap density 

Dit_s cm-2 Density of traps for a single energy level of defects 

Dit_eq cm-2eV-1 Equivalent interface traps density computed using FlexPDE® 

E   

E eV Energy 

Eeff V/cm Effective electric field 

EG eV Band gap 

EV eV Maximum energy value of valence band in case of silicon film 

F   

F - 
Correction factor in 4-probe measurements for non-infinite layer 

dimensions 

f Hz Frequency  

fG 0.75 Geometrical factor in pseudo-MOSFET configuration 

fs Hz 
Frequency at which carriers oscillate between the conduction channel and 

the traps 

fT - Probability that the interface traps are filled 

fc Hz Corner frequency in case of Lorentzian spectrum 

fext Hz Extraction frequency in case of LFN analysis 

fconf - Configuration coefficient for Van Der Pauw measurements 

G   

Gm_split S/m2 Measured parallel conductance in case of split-CV measurements 

Gp S/m2 
Parallel conductance in case of split-CV measurements including also Dit 

contribution 

GDit_c S/m2 Conductance due to lossy processes of Dit in split-CV technique 

G S Conductance 

gm S Transconductace; gm = dID / dVG 

H   

hδΨ - Height of 1-Cm_QST /COX curve versus VG 

I   
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Symbol Unit (in SI) Description 

ID A Drain current 

I0 A Constant current value time independent 

δI A Current oscillations 

Ioff A Off current in case of transistor characteristic 

Ion A On current in case of transistor characteristic 

IH A Hall current 

L   

L m Die size 

N   

ND cm-3 Doping concentration in case of n-type material 

Na cm-3 Doping concentration in case of p-type material 

Nprobe - Number of probes 

ΔN - Average fluctuation of carrier number 

Nt cm-3eV-1 Density of traps per unit volume 

Nt_added cm-3eV-1 Density of traps added in localized regions 

NC cm-3 Effective density of states in the conduction band 

NV cm-3 Effective density of states in the valence band 

nit cm-3 Density of filled traps 

nS cm-3 Electron density at surface 

ni cm-3 Intrinsic carrier concentration 

P   

P W Power 

p g Probe pressure for Jandel® station 

Q   

Qi C/m2 Inversion charge density 

Qacc C/m2 Accumulation charge density 

QDep C/m2 Depletion charge density 

Qch C/m2 Total density of charge induce by gate bias 

Qitrap C/m2 Trapped charges by defects in case of continuum energy traps distribution 

Qitrap_s C/m2 
Trapped charges by defects in case of single energy level of traps 

distribution 

R   

RSD Ω Access resistance 

RCH Ω Channel resistance 

RSH Ω/square Sheet resistance 



Table of Symbols 

160 

 

Symbol Unit (in SI) Description 

R0 m Probe radius 

ΔR0 m Added radius to R0 

RH m3/Ω Hall coefficient 

rH - Hall scattering factor 

S   

S m2 Die area: S = W·L 

Seff - Effective surface for capacitance measurements 

SId A2/Hz Drain current power spectral density 

SVd V2/Hz Voltage power spectral density 

SVfb V2/Hz Flat-band voltage power spectral density 

SVfb_area V2/(Hz·m2) Flat-band voltage power spectral density per unit area 

SVg V2/Hz Power spectral density associated to the gate bias (input-inferred noise) 

Seff_LFN m2 Effective surface of LFN technique 

SId /ID
2
_red 1/Hz Reduced SId /ID

2 obtained in smaller regions surrounding the probe contacts 

SId /ID
2
_tot 1/Hz Whole current spectrum given by SId /ID

2+ SId /ID
2
_red 

Ss V/dec Subthreshold swing 

T   

T K Temperature 

Tan ºC Annealing temperature 

tOX m Oxide thickness 

tm s Measurement time period of QSCV small signal ramp (a.c. ramp time) 

t s Time 

tSi m Silicon film thickness 

ts s Charging time 

tIII-V m III-V film thickness 

V   

VD V Drain bias 

VG V Gate bias 

δVG V Small gate bias variation 

Vgacc V Lower limit of integral to compute μeff, in accumulation region 

VG_peak V Gate bias associated to Cpeak_h 

VG_charge V VG applied for a certain time tS (charging bias) 

ΔVramp_ac V Small signal ramp added to VG to perform QSCV measurements 

Vback V Back gate bias in case of transistors 

VFB V Flat-band voltage 
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Symbol Unit (in SI) Description 

δVFB V Small flat-band voltage variation 

VT V Threshold voltage 

ΔVdiff V Differential potential measured between two probes 

VH V Hall voltage 

vramp_ac V a.c. scan speed in case of QSCV measurements 

W   

wδΨ - Width of δΨS /δVG curve versus VG 

Y   

Y (V/A)0.5 Y function 

X   

xdep m Depletion region 

Z   

ZEQ Ω Equivalent impedance 
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Name Unit (in SI) Description 

Greek Symbols 

αH - Hoogle parameter 

αsc Vs/C Coulomb scattering coefficient 

β eV-1 β = q/(k·T) 

γ - Slope of 1/f (SId(f) characteristic) 

η F/cm2 Ideality factor constant; 1/2 for electron, 1/3 for holes  

ϑ m-2s-1 Constant given by: σT·fs 

θ1 1/V First order mobility attenuation factor 

λ m 
Tunneling attenuation length calculated using Wentzel-Kramers-Brillouin 

(WKB) 

μ0 cm2/Vs Low-field carrier mobility 

μeff cm2/Vs Effective carrier mobility 

μ0_T=77K cm2/Vs Low-field mobility measured at T = 77 K 

μ0_at_0V cm2/Vs Low-field mobility measured with Vback = 0 V 

ξ V/cm Electric field 

ρ Ω·m Material resistivity 

σT m-2 Carrier cross section 

σ S/m Conductivity 

δσ S/m Conductivity fluctuations 

σDit m-2 Traps cross section 

τDit s Trap effective life time 

τRC s RC time constant 

ΨS V Surface potential 

Ψb V Bulk potential deduced from the doping concentration 

ΩC V Term for low-frequency noise analysis defined as: αsc·μeff·COX_cm 

Ω m3 Die volume 

Ωeff m3 Effective Volume 

ω rad/s Angular frequency 
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Caractérisation et modélisation électrique 

de substrats SOI avancés 

(Résumé en français) 

Les substrats Silicium-sur-Isolant (SOI) représentent la meilleure solution pour réaliser des dispositifs 

microélectroniques performants [1], [2]. La caractérisation électrique pour contrôler la qualité des substrats-

sur-isolant (SOI) avant la fabrication complète des transistors est une étape indispensable [3]. La 

configuration classique utilisée pour les mesures du SOI est le pseudo-MOFSET (Ψ-MOSFET) [4]–[6]. Dans 

cette thèse, nous nous concentrons sur l'amélioration des techniques Ψ-MOFSET, pour la caractérisation des 

plaques SOI. Cette thèse est composée de 6 chapitres, incluant introduction et conclusions générales. Les 

principaux résultats concernant la caractérisation statique I-V, split-CV, CV en quasi-statique ou encore bruit 

basse fréquence sont décrits dans des chapitres dédiés. 

- Chapitre II : ce chapitre décrit les améliorations apportées à la configuration de mesure pseudo-

MOSFET utilisée pour la caractérisation statique de substrats SOI. L’impact de la configuration et des 

paramètres de mesure, et la possibilité de caractériser des nouveaux matériaux sont discutés. La Fig. 1a 

représente le courant de drain ID mesuré en fonction de la tension de grille VG en configuration Ψ-MOSFET 

(schéma de la configuration de mesure en insertion). Pour VG > 0, le canal de conduction est formé par des 

électrons, alors que pour VG < 0, il est constitué de trous. Les caractéristiques ont été évaluées sans et avec 

l’utilisation du vide, l'utilisation du vide visant spécifiquement à l'amélioration  du contact entre le SOI et le 

porte-échantillon métallique (chuck) [7]. Une variation de la tension de seuil VT est observée pour les 

différents types de contact face arrière. Pour des structures ultra-minces, l’utilisation du vide s'est avérée 

obligatoire, car il permet d’augmenter la stabilité des mesures. 

Des nouveaux matériaux comme le InGaAs ont également été caractérisés en configuration Ψ-

MOSFET et avec des mesures d’effet Hall. La Fig. 1b représente un exemple du courant de drain mesuré sur 

des échantillons III-V avec 25 nm d’InGaAs et 30 nm d’oxyde (Al2O3). Les mesures ont été réalisées avec 

différentes tensions de drain VD. La résistance d’accès au canal étant très grande dans cette configuration, 

elle limite l’extraction des paramètres comme la mobilité des porteurs, μ. Pour ces raisons, nous nous 

sommes focalisés sur des substrats III-V avec des contacts métalliques déposés. Des valeurs de mobilité très 

prometteuses ont été obtenues, même pour des films ultra-minces (μ ≈ 750 cm2/Vs pour tIII-V = 20 nm). 
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Fig. 1 : (a) Courant de drain ID en fonction de la tension de grille VG mesuré en configuration Ψ-MOSFET sur 

SOI sans (symboles pleins) et avec (symboles vides) l’utilisation du vide pour le contact arrière. L’insertion 

montre la configuration de mesure pseudo-MOSFET. (b) Caractéristiques ID(VG) mesurées sur des échantillons 

III-V sur isolant, pour différentes valeurs de tension de drain VD. 

 

- Chapitre III : ce chapitre présente la technique de mesure split-CV, adaptée pour le pseudo-

MOSFET. Nous discutons les possibilités d’amélioration du setup de mesure et d’extraire la densité d’états 

d’interface Dit en utilisant la mesure de conductance en fonction de la fréquence. Le contact avec le vide en 

face arrière est ici en particulier essentiel pour obtenir des valeurs correctes de capacité maximale (égale à la 

capacité de l’oxyde enterré) avec le split-CV. La Fig. 2a montre la capacité en fonction de VG, mesurée sans 

(symboles vides) et avec (symboles pleins) l’utilisation du vide. Sans vide, des capacités parasites limitent la 

valeur maximale mesurée, alors qu’avec vide, la capacité maximale mesurée est très proche sa valeur 

théorique (traie en pointillé). En conséquence, l’extraction de la mobilité effective des porteurs devient plus 

simple et les paramètres d'ajustement comme la surface effective ne sont plus nécessaire [8], [9]. La dernière 

partie de cette étude concerne l’évaluation de la qualité des interfaces (Dit) en utilisant la méthode de 

conductance en fonction de la fréquence. Nos mesures ne montrent pas les pics typiques associés aux Dit 

[10]. Pour mieux en comprendre la raison physique, nous avons effectué des simulations numériques. La Fig. 

2b montre la conductance (Gm) divisée par la pulsation (ω), calculée en fonction de ω. Les symboles pleins 

sont obtenus pour une structure SOI avec Dit, alors que les symboles vides sont associés aux simulations sans 

Dit. Après la création du canal de conduction (symboles rouges), les deux courbes se superposent. Dans ce 

régime, la mesure n’est pas sensible aux défauts d’interface, comme dans les transistors à effet de champ 

[11]. Pour VG ≈ VFB (tension de bandes-plates), les deux courbes se superposent également (symboles noires). 
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Nous avons montré qu’en configuration Ψ-MOSFET, la surface des échantillons utilisés est trop grande 

(≈mm2) et elle masque la détection des défauts d’interface [12]. Donc, la méthode de conductance ne peut 

pas être utilisée pour évaluer la qualité des interfaces pour les structures SOI typiquement utilisées pour le 

pseudo-MOSFET. Cette limitation sur la détection des Dit peut être dépassée en effectuant des mesures de 

capacité en quasi-statique (QSCV) [10]. 
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Fig. 2 : (a) Capacité mesurée avec (symboles pleins) et sans (symboles vides) l’utilisation du vide entre la 

structure SOI et le chuck métallique. Le traie en pointillés représente la valeur théorique de capacité. (b) Gm/ω 

versus ω calculée en régime d’accumulation (symboles rouges) et pour VG = VFB (symboles noires). 

 

- Chapitre IV : nous montrons la technique QSCV utilisée pour la première fois en configuration 

pseudo-MOSFET. Une procédure d’extraction de Dit est validée et utilisée pour caractériser les substrats 

SOI. Comme pour le split-CV, une pointe est posée sur la surface du silicium et reliée à la masse et le chuck 

métallique est polarisé. Contrairement au split-CV, la mesure de capacité est réalisée avec une rampe 

rajoutée sur la tension de grille VG. La Fig. 3a montre la capacité quasi-statique mesurée en fonction de de 

VG. La courbe tracée avec symboles vides a été obtenue avec une rampe rapide et elle est semblable aux 

mesures obtenues en basse fréquence en split-CV (symboles pleins dans la Fig. 3a). Une mesure à faible 

vitesse de balayage a été aussi réalisée sur les mêmes échantillons (symboles pleins). On peut noter la 

présence de deux ‘épaules’ qui apparaissent autour de VG = 0 V, de toute vraisemblance dues aux défauts 

d’interface. Après validation de la configuration de mesure [13], un modèle physique basé sur la présence 

des Dit a été proposé pour expliquer les courbes expérimentales. Grâce à ces résultats, nous avons proposé 

une méthode d’extraction de Dit à partir des caractéristiques mesurées. La Fig. 3b représente des Dit en 
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fonction de l’énergie dans le gap du silicium. Les mesures ont été réalisées sur des couches de passivation de 

SOI (4 nm de SiO2 obtenus par oxydation thermique sur la surface du film de silicium, pour améliorer la 

qualité de la interface supérieure [14]). Deux différentes épaisseurs d’oxyde enterré ont été utilisées : 25 nm 

(symboles pleins) et 145 nm (symboles vides). La superposition des deux courbes confirme que la variation 

de l’épaisseur de l’oxyde enterré a un faible impact sur la densité des défauts lents présents dans les 

structures SOI. Pour les échantillons non passivés, un grand pic dû à des défauts d’interface apparait pour des 

valeurs d’énergie bien identifiées et correspondant aux défauts à l’interface film de silicium-oxyde natif [15], 

[16]. 
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Fig. 3 : (a) Capacité quasi-statique mesurée en fonction de la tension de grille VG avec vitesse de balayage rapide 

(symboles vides) et lente (symboles pleins). (b) Dit en fonction de l’énergie dans de échantillons passivés avec une 

épaisseur de BOX de 25 nm (symboles pleins) et 145 nm (symboles vides). 

 

- Chapitre V : nous présentons dans ce chapitre, les mesures de bruit à basse fréquence (LFN) en 

configuration Ψ-MOFET. Le bruit a été déjà utilisé pour caractériser les interfaces des substrats SOI, mais 

les valeurs de Dit obtenues ont été très grandes et pas représentatives de la qualité du matériau [17]. Pour 

comprendre l'origine physique de ces résultats, nous avons validé la configuration de mesure et la procédure 

d’extraction. La Fig. 4a représente le spectre de la densité de courant de drain (SId) sur ID
2 multiplié pour la 

fréquence d’extraction (fext) en fonction de ID. Différentes valeurs de fext ont été utilisées pour vérifier la 

présence de 1/f trend. Les courbes superposées impliquent la présence du ‘flicker noise 1/f’ [18]. Pour 

extraire la densité des pièges à l’interface Dit nous avons développé un model physique permettant 

d’expliquer le signal obtenu. Il a été validé pour différentes surfaces et distances entre les pointes. Grâces à 

ce modèle, nous avons démontré que le bruit à basse fréquence est principalement généré par une petite 
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surface de silicium autour des contacts. La Fig. 4b représente la distribution de la densité de puissance de 

courant sur la surface de silicium ; elle est clairement très localisée proche des pointes. Pour cette raison, 

nous avons introduit un paramètre (Seff) qui quantifie la surface effective de silicium dominant le bruit. Grâce 

à Seff, des valeurs plus raisonnables des Dit ont été extraites. De plus, grâces à des simulations et mesures, 

nous avons prouvé que le bruit à basse fréquence est limité par les défauts induits pendant la pénétration des 

pointes dans la surface de silicium. En conclusion, l’extraction des Dit n’est pas possible en utilisant la 

configuration standard de mesure, car la signature obtenue est dominée par les défauts introduits par las 

pointes. Pour améliorer l’analyse, des pointes plus larges et/ou la configuration de mesure 4-pointes pourrait 

être utilisés. 
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Fig. 4 : SId/ID
2
·fext en fonction du courant de drain ID pour différentes fréquences. (b) Distribution de la densité de 

puissance de courant sur le film de silicium. 
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