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émanant des établissements d’enseignement et de
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“A ship in port is safe; but that is not what ships are built for. 
 Sail out to sea and do new things.”  

Grace Hopper 
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1 General Introduction 

I General introduction 
 

I.1  Dissolved organic matter in marine environments: origin and composition  
 

Marine organic matter is a dynamic continuum of particulate (POM) and 

dissolved organic pool (DOM) defined operationally through filtration. The organic 

matter that is retained on filters (pore size varying between 0.2 and 0.7 µm according to 

analysts) constitutes POM, whereas the fraction that can pass through the filters is 

considered referred to as DOM (Sharp 1973). POM  is composed of living (plankton) 

and dead (detritus) components (Nagata 2008). DOM comprises a continuum of small 

organic molecules going from low molecular weight (LMW, <1 kDa) such as amino 

acids and sugars to highly polymeric and colloidal particles of high molecular weight 

(HMW, >1 kDa). About 75% of the oceanic dissolved organic carbon (DOC) is 

composed of LMW molecules (Benner 2002).  

  DOM is the main form (90%) of organic matter in aquatic environments and 

plays an important role in global biogeochemical cycles. It is one of the largest reactive 

reservoirs of reduced carbon on Earth (685 Pg C), equivalent to the global atmospheric 

CO2 reservoir (780 Pg C) (Hedges 1992, Hansell et al. 2009). DOM in the water column 

provides substrate for aquatic food webs and its concentration and composition 

influence the chemical (e.g. availability of nutrients, metal speciation, pollutant toxicity) 

and physical characteristics (light and heat absorption) of aquatic environments 

(Stedmon et al. 2003, Aiken et al. 2011). DOM is also the primary substrate supporting 

bacterial growth and respiration through the microbial loop, which is responsible for 

much of the carbon and energy flow in aquatic systems. 

I.1.1. DOM sources and sinks: implications for bioreactivity 
 

The origins of DOM may determine its complexity and diverse chemical 

composition. However, despite its importance, the marine DOM reservoir remains a 

“black box” with less than 10% of known organic molecules identified chemically due 

to lack of suitable methods.   

  In the upper ocean, the main sources of DOM are autochthonous and are 

produced by all the trophic levels of the food web (Nagata 2008) (Fig I-1). Primary 
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production1 is the ultimate and most important source (Sharp 1973, Fogg 1983) but 

DOM can also be produced by cell lysis (both viral and bacterial), sloppy feeding by 

zooplankton, release by prokaryotes and solubilisation of detrital and sinking particles 

by bacterial and archeal ectohydrolases (Nagata et al. 2000, Jiao et al. 2010).    

 

Figure I-1: DOM production and removal processes in marine ecosystems. 
Solid arrows represent DOM production (red) and DOM consumption (blue). Dashed lines 

represent food web interactions. From Carlson and Hansell, 2014. 

Although river discharge of allochthonous DOM derived from terrestrial 

material is significant, it accounts only for 1% of global marine primary production  

(Hedges 1992). DOM from soils is released into rivers when there is soil leaching, 

which occurs generally during rainy and high discharge periods. Depending on the 

nature of soils, land use, type of watershed and the regime of the river (Meybeck and 

Helmer 1989), river DOM can represent about 0.25 Gt C per year (Cauwet 2002). 

Allochthonous DOM mainly comes from the organic matter from soils or terrestrial 

plant litter (Thurman 1985) and is thus of terrestrial origin. It is composed of humic 

                                                 
1 Primary Production is the production of organic carbon from dissolved inorganic carbon, principally 
through the process of photosynthesis. 
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matter, bringing lignin and cellulose that are considered as much more recalcitrant to 

degradation. In coastal areas, “atypical DOM” can also represent an important and 

rapidly mobilizable fraction. For example, under favourable conditions (high nutrient 

concentrations), jellyfish can develop quickly and form a bloom (Purcell 2012) that can 

either released DOM by excretion or during massive die-out events (Yamamoto et al. 

2008). In estuaries bordered by dense human populations and industrial development, 

pollution can also represents a source of DOM (Cauwet 2002).  

 Because of its diversity of origins, the bulk DOM pool exhibits a broad 

continuum of biological lability with turnover times going from minutes to millennia. 

Three major fractions of DOM have usually been distinguished in the literature based 

on their lifetime2 (or reactivity): some are remineralized rapidly by heterotrophic 

microbes and constitute the labile fraction of DOM (LDOM), others are less readily 

available (semi-labile DOM, SLDOM). However the main part has accumulated over 

time and comprises the intriguing refractory DOM pool (RDOM). Although this 

conceptual model has been useful for understanding DOC dynamics and assessing the 

contribution of this various fractions to biological and biogeochemical processes, its 

utilization has been limited by the absence of a suitable quantitative description of DOC 

composition (Carlson and Hansell 2014). In recent years, field campaigns coupled with 

measurements of bulk DOC and its characterization have greatly improved knowledge 

on the DOM pool. This has eventually led to the definition of two supplementary major 

fractions of DOM: semi-refractory (SRDOM) and ultra-refractory DOM (URDOM) 

(Hansell 2013). The adjective recalcitrant is employed to characterize DOM that 

accumulates and is resistant to removal, without specifying its reactivity and contains at 

least the four subfractions:  SLDOM, SRDOM, RDOM and URDOM (Hansell 2013). 

I.1.1.1  Labile DOM 
 

Only a small part of all DOM is labile, accounting for less than 1% of the bulk 

DOC pool (Fig I-2a). This pool has a rapid turnover rate (minutes to days) and is 

composed of compounds such as dissolved free neutral sugars (DFNS), dissolved free 

amino acids (DFAA) and labile proteins (Benner 2002). Those compounds are present 

at low concentrations (nanomolar to a few micromolar) in the open ocean, because of 
                                                 
2 DOM lifetime is defined as the time over which the concentration of the fraction decreases to 1/e of its 
initial value (Hansell 2013) 
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the tight coupling of their production and consumption rates (Carlson et al. 2002). Their 

global estimated inventory is 0.2 PgC (Hansell 2013) (Fig I-2b). The main sources of 

LDOM are phytoplankton excretion, viral lysis and grazing (Nagata 2008) and its global 

production rate is 15-25 PgC.year-1 in the photic zone (Hansell 2013). LDOC is of great 

biological interest because it provides support for the metabolic energy and nutrients 

demand of heterotrophic prokaryotes (Carlson and Ducklow 1996). It has been shown 

that the uptake of DFAA or of glucose alone can support a high fraction and sometimes 

up to 100% of the bacterial growth in coastal environments (Kirchman 2003). The rapid 

remineralization of LDOM by bacteria fuels most of the carbon, nutrients and energy 

fluxes, however most of the resulting inorganic constituents are retained within the 

upper ocean. Its contribution to the biological pump or carbon sequestration is therefore 

considered to be minor (Hansell 2013). 

I.1.1.2 Semi-labile (SLDOM) and semi-refractory DOM (SRDOM) 
 

DOM with intermediate turnover rates, greater than months but less than 

centuries (time scale of ocean mixing) was originally described as SLDOM. However a 

better spatial resolution of DOC and a greater estimation of removal rates has led to 

divide this pool in two distinct fractions: SLDOM and SRDOM (Hansell 2013, Carlson 

and Hansell 2014). The vertical gradient of the bulk DOM observed in thermally 

stratified environments is mostly composed of SLDOM with an inventory of 6 ± 2 PgC 

and an estimated production rate of 3.4 Pg C year-1 (Carlson et al. 2002, Hansell and 

Carlson 2013). Semi labile DOC accounts for a quarter to a half of the surface DOC 

pool (Carlson et al. 2002) (Fig I-2a). Its turnover rate ranges from months to years, 

because it resists rapid microbial degradation, allowing its accumulation in surface 

waters and its vertical and horizontal export from the region of formation (Hansell 

2013). The horizontal export of SLDOM via surface currents provides supplementary 

allochthonous carbon sources for heterotrophic bacteria (Torres-Valdés et al. 2009). The 

vertical export of SLDOM to depth via convective mixing or advection (Copin-

Montégut and Avril 1993) is estimated at ∼1.5 Pg C year−1, making it the most 

important DOM fraction contributing to carbon export (Hansell 2013). In some oceanic 

systems, this export can exceed export by sinking particles (Copin-Montégut and Avril 

1993). Due to its short life time, vertical SLDOC export is limited to the upper 

mesopelagic zone (100-500 m) where it provides support for microbial production 



 

 

5 General Introduction 

(Abell et al. 2000, Hansell and Carlson 2013). The resulting mineralized products can 

be returned to the air/sea interface within months to years (Hansell and Carlson 2001). 

The characterized fraction of SLDOM is mostly composed of HMW compounds which 

include carbohydrates originating from autotrophic and heterotrophic processes 

(Carlson et al. 2002). These compounds must be hydrolysed to monomers by 

extracellular enzymes before bacterial uptake. The uncoupling between HMW DOM 

production by phytoplankton and its heterotrophic consumption can lead to the transient 

accumulation of HMW SLDOC (Billen 1990). 

SRDOM has a turnover time of decades. Its accumulation in the upper ocean is 

observed in ocean regions that exhibit permanent pycnoclines3 (Fig I-2a, left). Its 

inventory reaches 14 ± 2 Pg C (Hansell 2013). Although SRDOM is a minor contributor 

in the biological pump, vertical export being ∼0.34 Pg C year−1, its contribution to 

carbon sequestration is important (Hansell 2013). The composition of SLDOM and 

SRDOM has not yet been elucidated.   

I.1.1.3  Refractory (RDOM) and ultra-refractory DOM (URDOM) pools 
 

The refractory pool is the main fraction of the bulk DOC (630 ± 32 Pg C year−1) and 

is essentially made up of diagenitically altered LMW compounds (Benner et al., 1992; 

Amon and Benner 1996) (Fig I-2). This finding can seem contradictory because 

bacterioplankton can only directly take LMW compounds. However, while some LMW 

compounds are highly available, their majority are resistant to microbial degradation 

according to the size reactivity continuum model, (Amon and Benner 1996, Sinsabaugh 

and Foreman 2003). Also the concentration of the individual molecules may be too low 

for its detection by microbial uptake systems (Kujawinski 2011a). Refractory DOC 

dominates the deep reservoir of DOC with an average age of 4000 to 6000 years, 

exceeding the time scale of thermohaline circulation (Benner 2002). Therefore, its 

distribution in oceanic basins is vertically homogeneous (Fig. I-2a).  

The existence of URDOC is imputed to polycyclic aromatic hydrocarbons, also known 

as thermogenic black carbon. It represents between 2% and 22% of bulk DOC (Dittmar 

                                                 
3 The pycnocline, situated between the mixed layer and the deep layer, is where water density increases 
rapidly with depth because of changes in temperature and/or salinity. (from Ocean Motion website: 
http://oceanmotion.org/) 
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and Paeng 2009). Black carbon is inert in time scales of ocean mixing and can reside in 

the DOC pool during 2500- 13900 years before sedimenting (Carlson and Hansell 

2014). The primary sources of black carbon are the burning of terrestrial forests and 

fossils fuels (Hansell 2013).  
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Figure I-2:  a) Vertical distribution of the different fractions of DOC in stratified oligotrophic 
waters (left) and in the southern Ross Sea (right) where pynocline is absent (figures adapted 

from Hansell, 2013). b) Characteristics of the major DOC fractions in the oceans (Adapted from 
Nagata, 2008 and Hansell, 2013). 
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I.2 Fate of DOM in coastal environments 
 

I.2.1 General aspects of coastal ecosystems 

The coastal ocean is a dynamic and shallow area where rivers, estuaries, ocean, 

land (e.g. tidal wetlands and continental shelf) and atmosphere usually interact. 

Although the coastal zone comprises less than 20% of the Earth’s surface, it contains 

40% of the human population and supplies 90% of the global fish catch (Crossland et al. 

2005).  

Estuaries are partially enclosed bodies of water, where river water (salinity is 0) and 

seawater (salinity equal or above 30) meet and mix. Estuaries act like a transition zone 

between oceans and continents and present strong gradients of biogeochemical 

parameters (Bauer et al. 2013). They may be defined according to their geological 

characteristics and also according to its stratification and its inner circulation of water. 

The data presented in this thesis covers a variety of estuarine and coastal systems 

including fjords, lagoons, river plumes and coastal upwelling systems. 

The river inputs to the coastal ocean associated with its high physical and biological 

activity makes these areas one of the most dynamic in terms of DOM (Cauwet 2002). 

Despite the high variability of the depth integrated primary production that can usually 

represent the main part of DOM production, DOC concentrations vary little throughout 

the global ocean compared to primary production levels, indicating that several removal 

processes are occurring.  

  

DOM can undergo a variety of physical-chemical processes in river plumes, 

estuaries and at the land-ocean interface that will determine the composition and the 

concentration of DOM reaching the ocean. Some of these processes are abiotic like 

aggregation and photodegradation. Other processes are biotic such as microbial 

degradation. Aggregation (including adsorption and flocculation) represents the 

transformation of dissolved compounds to particles and occurs in estuaries during the 

mixing of fresh and marine water, where rapid changes in salinity and pH occur 

(Søndergaard et al. 2003). Then the organic matter can be removed through 

sedimentation (sinking) or by filter feeding organisms  

Below we will comment specifically on biotic DOM processing factors.  
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I.2.2 Microbial degradation 

 Despite its refractory characteristics, a large fraction of terrestrially 

DOM carried by rivers is degraded after mixing with seawater and could in part be 

explained by the biochemical and compositional changes of DOM occurring in estuaries 

(Kerner et al. 2003) and the greater diversity of marine bacteria (Stepanauskas et al. 

1999). 

Marine ecosystems contain 1.2x1029 heterotrophic prokaryotes (Whitman et al. 1998) 

which constitutes more than 90% of the living biomass in the sea. A major metabolic 

strategy in the aerobic area is chemoheterotrophy, where heterotrophic prokaryotes are 

using OM as both source of carbon and electron donor. However not all the 

heterotrophic bacteria are chemioheterotrophs. Several groups of bacterioplankton can 

use sunlight as an alternative source of energy while consuming DOM; they are called 

photoheterotrophs (Béjà and Suzuki 2008). Heterotrophic bacteria and archaea are the 

main consumers of DOM and it has been shown that a large fraction of primary 

production becoming dissolved by various mechanisms in the food web was almost 

exclusively available to heterotrophic bacteria and archeae (Azam and Hodson 1977, 

Azam and Malfatti 2007). They rapidly consume fresh LDOM and facilitate its 

transformation into POM available for grazers and higher trophic levels (trophic link) 

(Pomeroy and Darwin 2007) or its remineralization into nutrients and carbon dioxide 

(respiratory sink) (Ducklow et al. 1986) within the microbial loop (Carlson et al. 2007) 

(Fig.I-3). 

 
Figure I-3: Microbial structure of a marine ecosystem.  

From Azam and Malfatti (2007). 
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As there are no direct measurements of the DOM flux, there are proxies to figure 

out which of the two fates of carbon (carbon respiration or biomass production) is most 

important, such as net bacterioplankton production (BP), respiration (BR) and growth 

efficiency (BGE).  

Bacterial carbon demand (BCD) is the total flux of carbon required to support bacterial 

growth and include BP and BR (BCD =BP + BR).  

BGE helps determining the efficiency by which bacteria convert DOC into new 

biomass. It can be estimated by calculating the part of the BCD that is used for bacterial 

production (Giorgio and Cole 1998). 

   𝐵𝐺𝐸 =
𝐵𝑃

𝐵𝑃 +𝐵𝑅
 

The BGE for natural microbial communities usually ranges from 15% in the open ocean 

to 35% in estuaries (Giorgio and Cole 1998). This means that most of the assimilated 

carbon is respired (60-99% according to Azam and Malfatti 2007) and released as CO2. 
It also implies that little carbon remains available as food and can pass on to higher 

trophic levels. Although the low growth efficiency estimates indicate that the microbial 

loop is mainly a sink of carbon, it is also a link by processing DOM or complex detritus, 

transferring to higher trophic levels otherwise unavailable material and energy 

(Kirchman 2012).  

I.2.2.1 Adaptative strategies of bacterioplankton for DOM utilization 
  

 In order to take better advantage of the huge diversity of organic compounds, 

heterotrophic marine bacteria have developed different behavioural and biochemical 

strategies to acquire organic matter (Azam and Malfatti 2007) (Fig.4). Marine bacteria 

inhabit a complex environment, far from being well-mixed and homogeneous, where 

the concentrations of essential compounds are generally low. Motility can allow bacteria 

to migrate to more suitable microhabitat in order to increase the uptake of inorganic and 

organic compounds (Grossart et al. 2001). Some motile bacteria may use chemotaxis4 to 

swim toward ephemeral sources rich in LDOC such as primary production, zooplankton 

excretion and cell lysate (Stocker et al. 2008). Although motility confers many 

advantages, only a variable fraction of bacteria are motile (5 to 70% depending on the 
                                                 
4 Chemotaxis is the sensing by bacteria of chemical gradients, and movement up or down a gradient 
towards or away from a chemical source (Azam and Malfatti 2007). 
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season and location (Mitchell and Kogure 2006)). This could be due to the fact that 

some bacteria are too small or not active enough to afford the energetic expense of 

motility (Kirchman 2012). Some bacteria have the ability to attach to particles and 

aggregates that constitute substrate-rich microhabitats where they can grow rapidly 

(Alldredge et al. 1986). The contribution of particle-attached bacteria is only <5% of 

total bacteria in pelagic oligotrophic ecosystems but can exceed 60% in eutrophic 

environments (Bell and Albright 1982, Garneau et al. 2009). 

 
I.2.2.2 DOM uptake 

 

 Bacteria can only acquire small compounds (<500 Da) through passive or active 

uptake membrane transport (Kirchman 2012) (Fig.4).  Organic compounds larger than 

500 Da can be highly bioavailable but must previously be transformed in order to be 

transported into the cell (Amon and Benner 1996). For this purpose bacteria produce 

cell-surface-bound hydrolytic enzymes (or ectoenzymes) to hydrolyse HMW 

compounds (Azam and Malfatti 2007) Specific enzymes are necessary for each 

polymer, their name being usually containing the polymer name: protease, glucosidase, 

lipase, phosphatase, chitinase. Nearly all the enzymes are cell-associated in order to 

avoid the diffusion of the hydrolysis products and avoid other bacteria to “cheat” by 

using those compounds or the enzymes produced (Kirchman 2012). Hydrolysis of 

HMW compounds and uptake of resulting LMW compounds are generally coupled 

processes.  

 

Figure I-4: Adaptative strategies of bacteria in the ocean. From Azam and Malfatti, 2007. 
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I.2.2.3 Microbial community structure and DOM utilization 

 

The identification of marine bacteria by traditional approaches consists in various 

biochemical tests such as Gram staining, degradation capacity for key compounds and 

enzymatic activity. However these techniques have been hindered by the fact that nearly 

all of those tests rely on phenotype and are observable for culturable microorganisms 

which only accounts for less than 1% of total microbial biodiversity.  

 The development of cultivation-independent approaches such as “next-

generation” sequencing has revealed an incredibly high taxonomic diversity of 

prokaryotes in the ocean even if there is significant uncertainty about how much of this 

diversity is functionally different (DeLong et al. 2006).  Those techniques are based on 

genes, used either for phylogenetic or functional microbial diversity studies. The most 

used gene for prokaryotes taxonomy and phylogeny is the 16S rRNA gene, which 

encodes for the 16S rRNA molecule, a component of the 30S small subunit of 

prokaryotic ribosomes. This gene is a good candidate because it is found in all bacteria 

and archeae and presents regions of different levels of variability, going from highly 

conserved to highly variable regions that allow distinguishing microbial groups at a 

high level of phylogenetic resolution. The classical definition of species is meaningless 

for prokaryotes because they do not reproduce sexually. Instead they acquire DNA 

fragments for recombination by different means, including horizontal gene transfer. 

Thus, many microbial ecologists avoid using the term “species”, preferring instead the 

terms ribotype, phylotype or operational taxonomic unit (OTU). Usually, in the 

literature they are used to describe microorganisms whose 16S rRNA genes are >97% 

similar. In this manuscript the term “OTU” will be used.  

 Of the 50-100 bacterial phyla known in nature, only a dozen are abundant in 

marine environments and are generally found worldwide (Fig. I-5).The Proteobacteria 

phylum is found everywhere , but different classes dominate freshwaters and the oceans. 

In freshwater, Betaproteobacteria are more abundant (Glöckner et al. 1999), followed 

by Gammaproteobacteria and Alphaproteobacteria whereas in marine waters 

Alphaproteobacteria are usually most abundant, especially the clade SAR11, that 

constitutes about 33 percent of euphotic zone communities and 25% of mesopelagic 

communities (Morris et al. 2002) and Gammaproteobacteria in second place. The 
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phylum Bacteroidetes is present in freshwaters and in the oceans, while Actinobacteria 

is mostly present in freshwaters (Newton et al. 2011) . 

  

Figure I-5: Schematic illustration of the phylogeny of the major Archaea and Bacteria clades, 
showing only the major marine groups. Groups with a single asterisk are mostly found in the 

mesopelagic and surface waters during polar winters (deep mixing), those with two asterisks are 
mostly in the photic zone, and those with a + are mostly coastal.  

From Fuhrman and Hagström 2008 

 

 Several studies have shown spatio-temporal variations of bacterial communities’ 

structure, showing the potential coupling between DOM quality/quantity and bacterial 

community structure. Copiotrophs are adapted to take advantage of rare, nutrient-rich 

conditions (Lauro et al. 2009). They possess motility and chemotaxis genes and a fast 

uptake kinetics that allow them to adapt rapidly to newly encountered DOM rich 

microhabitats (Stoecker, 2012). Their size makes them less competitive at low resources 

conditions. In contrast, oligotrophs such as Peligibacter ubique, member of the clade 

SAR11, are adapted to life in low nutrient conditions. Their minute size (about 0.4 µm 

diameter) allows them to maximize uptake of nutrients at low bulk concentrations 

generally found in the oceans (Lauro et al. 2009, Stocker 2012). They lack several many 

functional and regulatory genes such as mobility ones, which implies a poor metabolic 

plasticity and a incapacity for exploiting rich nutrient conditions.   

Several studies have reported different responses among major and rare 

bacterioplankton taxa following the addition of different quantity/quality of DOM 

(Landa et al. 2013, Dinasquet et al. 2013). Shifts in bacterial community composition 

are also often reported during phytoplanktonic blooms (Fandino et al. 2001, Pinhassi et 

al. 2004). Several studies have shown that opportunist copiotrophic bacteria such as 
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members of the family Alteromonodaceae, belonging to Gammaproteobacteria, that 

were rare in the ambient communities were emerging after different LDOC enrichment 

conditions, suggesting a capacity of copiotrophs for using heterogeneous DOM pools 

(Nelson and Wear 2014). There are several relationships between the quality of DOM 

and metabolic and composition changes in the literature but there is still a lack of 

understanding of why and in which conditions some specific compounds become 

available for uptake by specific bacteria.  

I.2.2.4 Factors limiting DOM uptake 
 

Some factors can limit DOM uptake. As we have seen, not all the compounds are 

available and can resist to bacterial degradation. The microbial community stucture and 

the environmental parameters such as temperature and nutrient limitation (Church 2008) 

can also limit this uptake. This phenomenon coupled with high grazer pressure has been 

proposed as “malfunctioning microbial loop” to explain and lead to the accumulation of 

DOC in surface water during productive seasons (Thingstad et al. 1997) 

 

I.2.2.5 Microbial carbon pump 
 

Heterotrophic prokaryotes are not only consumers of DOM, they can also produce 

DOM. A part of LDOM metabolized by heterotrophic prokaryotes is transformed to a 

recalcitrant form via the microbial carbon pump, contributing to carbon sequestration 

(Jiao et al. 2010). Unlike the biological carbon pump which relies on vertical transport 

of carbon from the euphotic zone to the deep sea, microbial carbon pump operates 

independently of depth, sequestering carbon in all the water column, including the 

euphotic zone (Jiao et al. 2010). Other pathways of the microbial carbon pump include 

the release of bacteria-derived DOM during cell death via lysis or egestion (Jiao and 

Zheng 2011). Bacterially derived DOC based on D-amino acids biomarkers has reports 

that about 25 % (165 Pg) of recalcitrant DOC is from bacterial origin (Benner and  

Herndl 2011). 
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Refractory organic carbon is a large and important component of the carbon cycle. 

A small change in this reservoir can have huge effects on levels of atmospheric carbon 

dioxide, with large implications for climate change. In this context it is important to 

understand the processes that lead to the preservation of this refractory carbon in the 

ocean and the ones that can enhance its biodegradation. In the frame of this thesis we 

have studied two processes: priming effect and UV radiation 

  

I.2.3 Priming effect 

 A conundrum in oceanography is that although the amount of DOC 

discharged by rivers can account for the renewal of DOC in global ocean (every 4000-

6000 years), riverine DOC accounts for only a small fraction of oceanic DOC (Fig. 5) 

(Bianchi 2011). There is two times more carbon delivered to inland waters (1.9 Pg C by 

year) than delivered to the ocean (0.9 PgC by year), suggesting that terrestrial DOC is 

less recalcitrant and more consumed that previously thought (Bianchi et al. 2013). 

 

 

 

Figure I-6: Estimated inventories (in PgC), fluxes (in Pg C⋅y−1) and 14C ages associated with the 
global carbon cycle. From Bianchi, 2011 
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A process that has been hypothesized to stimulate the mineralization of 

refractory organic carbon is the priming effect (PE). PE refers to changes in microbial 

decomposition of recalcitrant organic matter upon the addition of labile organic matter 

(Bianchi 2011). This phenomenon, that has been repeatedly reported in soils, can be 

either positive (enhanced mineralization rate of recalcitrant organic matter) or negative. 

Although the mechanisms involved in PE are not well understood they may be driven 

by multiple factors such as microbial biomass and composition, chemical structure and 

availability of organic carbon and nutrient availability and stoichiometry (Fontaine and 

Barot 2005, Kuzyakov 2010, Guenet et al. 2010). 

 Guenet et al. (2010) formulated different hypotheses to explain the potential 

removal of recalcitrant marine DOM. The mechanisms include a) Co-metabolism 

where oxidation of recalcitrant organic matter is a consequence of enhanced microbial 

activity due to the presence of labile organic matter that supplies energy for the 

production of ectoenzymes that will degrade recalcitrant organic matter. b) Net 

mutualism between two microbial communities, which involves two distinct 

communities of heterotrophic microbes. After the addition of labile organic matter, the 

resulting by-products provide energy that activates the production of hydrolytic 

enzymes by a second community of microbes that will decompose recalcitrant organic 

matter. c) Alternate metabolisms of single community, where a single population is 

capable of producing enzymes for the degradation of recalcitrant organic matter thanks 

to the energy provide by the degradation of labile organic matter. 

Initially described in agricultural literature (Löhnis 1926) , PE has been well 

studied in terrestrial ecosystems and its importance in carbon soil cycling is currently 

recognized (Blagodatskaya and Kuzyakov 2008). PE has recently been highlighted as a 

potential important mechanism in aquatic environments and have received a newfound 

attention (Guenet, Neill, et al. 2010, Bianchi 2011). Those authors suggested the 

existence of “hotspots” and “hot moments” in aquatic ecosystems where PE could be 

significant due to the simultaneous presence of refractory and labile organic matter. 

Coastal areas, river plumes and upwelling systems could be potential hot spot site for 

PE. In those cases, recalcitrant organic matter (terrestrially derived organic matter) 

carried by river or coming from deepwater meets autochthonous labile organic matter 

(high primary production). 
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I.2.4 Photodegradation of DOM via UV radiation  

  Natural solar radiation, especially ultraviolet radiation (UV-B [280–315 nm], 

UV-A [315–400 nm]), has been found to induce chemical transformations of DOM with 

the production of a variety of photoproducts, including carbon dioxide, carbon 

monoxide, ammonium, phosphate, and numerous LMW organic compounds (Mopper 

and Kieber 2002). The light-absorbing fraction of DOM, chromophoric dissolved 

organic matter (CDOM), from both terrestrial and autochthonous origins, is the primary 

absorber of sunlight in aquatic ecosystems and plays an important role for most 

photochemically mediated processes in surface waters (Mopper and Kieber 2002). 

Although the photomineralization to inorganic carbon represents a loss of DOM 

potentially available to the microbial community, organic photoproducts can be re-used 

by bacteria. The photochemical transformations of DOM have contrasting effects on 

bacterial metabolism by modifying the bioavailability of DOM according to the origin 

and the initial chemical composition of DOM (Kieber 2000). Figure 7 shows the general 

trends of bacterial growth changes in response to DOM exposure to UV radiation in 

relation to DOC-specific absorbance (a proxy of humic substances) and chlorophyll a (a 

proxy of fresh DOM) (Bertilsson and Tranvik 2000). The observed effects of the 

phototransformations of DOM on bacterial growth suggest an increase of lability for 

initially refractory substances whereas phototransformations decrease the lability of 

freshly produced algal carbon. Bacterial growth and bacterial respiration are not 

necessary modified proportionally by the photochemical transformation of DOM 

inducing a shift in the bacterial growth efficiency (BGE) (see Abboudi et al. 2008).  

 

Figure I-7: Effects on bacterial growth of UV treatment of dissolved organic carbon (DOC). 
The relative UV enhancement of bacterial growth in 30 different lakes (abundance developing 
in irradiated water as a percentage of abundance in dark controls) in relation to DOC-specific 
absorbance (a) and chlorophyll a to DOC ratio of the initial water samples (b) (Tranvik and 

Bertilsson 2001). 

a b 
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Besides the metabolic changes induced by DOM phototransformations, different studies 

have reported that DOM phototransformations can induce a modification of the 

bacterial structure by selecting the most responsive species to the DOM photoproducts. 

Judd et al. (2007) firstly observed that sunlight-exposed DOM from lake and stream had 

a positive effect on BP and caused shifts in bacterial community composition (based on 

denaturating gradient gel electrophoresis of bacterial-specific 16S rDNA). Pérez and 

Sommaruga (2007) observed that photodegradation of DOM from different origins 

(lakes, algae, soil) influenced the activity and the composition of the bacterial 

communities (based on fluorescent in situ hybridization), with an increase in the relative 

contribution of Actinobacteria when DOM was pre-exposed to the solar radiation. 

Abboudi et al. (2008) shown that photochemical transformation of DOM from coastal 

lagoon and coastal water induced a shift in the bacterial community as revealed by DNA 

and RNA fingerprints. Piccini et al. (2009) observed a rapid modification of the 

bacterial community composition from a coastal lagoon in response to the 

photodegradation of CDOM in favour of Alpha andBetaetaproteobacteria. More 

recently, Paul et al. (2012) demonstrated that bacterial communities of non-irradiated 

and UV-irradiated OM from different origins were different and that UV selected for 

specific members of Alphaproteobacteria, Betaproteobacteria and Bacteriodetes. All 

these observations can be initiated by the selection of bacterial species more adapted to 

the use of phototransformed DOM and/or less sensitive to the short-lived reactive 

oxygen species generated during photochemical reaction (Glaeser et al. 2010). These 

different observations underline the importance to determine more precisely which 

bacterial species are stimulated or inhibited by the DOM photodegradation according to 

its origin. 
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I.3 Aims and scientific questions of the thesis 
 

The overall aim of the thesis was to study the effect of different labilities in the supply 

of organic matter can affect bacterial community structure and activity. For this purpose 

we performed different experimental studies with using microcosm approach articulated 

around the following questions: 

- Question 1: What are the effects of the addition of highly bioreactive DOM 

derived from jellyfish on bacterial activities and community structure 

during a disturbance caused by a jellyfish bloom? Is there a resilience of 

bacterial functions and diversity when all the LDOM derived from 

jellyfishes has been consumed? (Chapter II) 

This topic was assessed via the response of natural bacterial communities from a 

Mediterranean coastal lagoon to the addition of dissolved organic matter (DOM) from the 

jellyfish Aurelia aurita. 

 

- Question 2: What are the effects of the addition of single or combined DOM 

sources on bacterial diversity and activity? Is there any evidence of priming 

effect in marine environments? (Chapter III) 

This topic was assessed via experimental studies designed to explore the existence of 

the priming effect in contrasting coastal environments showing different types of 

freshwater inputs (river, amino acids solution or DOM derived from phytoplankton):  

 The input of terrestrially derived organic matter, rich in humic 

substances carried by the Rhone River in the Mediterranean Sea 

(France). 

 The input of DOM from lakes and glacier melting into the Baker river 

fjord complex in Chilean Patagonia. This input involves large volumes of 

oligotrophic waters and has therefore an effect on local stoichiometric 

conditions. 
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- Question 3: What are the bacterial responses in activity and community 

composition to photo-oxidation of dissolved organic matter with different 

initial bioreactivity? (Chapter IV) 

We studied the response of a Mediterranean bacterial community to the addition 

of DOM derived from a phytoplankton culture (LDOM) or the Rhone River 

(recalcitrant) exposed or not to solar radiation. 

The Mediterranean basin is characterized by relatively high solar radiation levels 

due to its weak cloud cover. Photo-oxidation of DOM can occur at the sea 

surface, especially in the river plume that may cover extended areas and are 

associated with high concentrations in riverine DOM and phytoplankton (Joux et 

al. 2009).  

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

 
 
 
 
 
 
 

CHAPTER II: 
 
 

Changes in bacterial community metabolism and 
composition during the degradation of dissolved 

organic matter from the jellyfish Aurelia aurita in a 
Mediterranean coastal lagoon 

 
 

 

 

 

 

  



 

   

24 Chapter II 

 

I Changes in bacterial community metabolism and composition during 
the degradation of dissolved organic matter from the jellyfish Aurelia 
aurita in a Mediterranean coastal lagoon 

 

The following article has been accepted by the Journal Environmental Sciences and 

Pollution Research (in press, DOI: 10.1007/s11356-014-3848-x). 
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Abstract 

 

Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been 

observed over the past several decades in many estuarine and coastal ecosystems. The 

effects of these blooms on marine ecosystem functioning, and particularly on the 

dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial 

community from a Mediterranean coastal lagoon to the addition of dissolved organic 

matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of 

dissolved organic carbon (DOC) by 1.4, was assessed during 22 days in microcosms (8 

liters). The high bioavailability of this material led to (i) a rapid mineralization of the 

DOC and dissolved organic nitrogen from the jellyfish and (ii) the accumulation of high 

concentrations of ammonium and orthophosphate in the water column. DOM from 

jellyfish greatly stimulated heterotrophic prokaryotic production and respiration rates 

during the two first days, then these activities showed a continuous decay until reaching 

those measured in the control microcosms (lagoon water only) at the end of the 

experiment. Bacterial growth efficiency remained below 20%, indicating that most of 

the DOM was respired and a minor part was channeled to biomass production. Changes 

in bacterial diversity were assessed by tag pyrosequencing of partial bacterial 16S rRNA 

genes, DNA fingerprints and a cultivation approach. While bacterial diversity in control 

microcosms showed little changes during the experiment, the addition of DOM from the 

jellyfish induced a rapid growth of Pseudoalteromonas and Vibrio species that were 

isolated. After 9 days the bacterial community was dominated by Bacteroidetes, which 

appeared more adapted to metabolize high-molecular-weight DOM. At the end of the 

experiment, the bacterial community shifted towards a higher proportion of 

Alphaproteobacteria. Resilience of the bacterial community after the addition of DOM 

from the jellyfish was higher for metabolic functions than diversity, suggesting that 

jellyfish blooms can induce durable changes in the bacterial community structure in 

coastal lagoons. 

Keywords: Aurelia aurita, jellyfish, organic matter, heterotrophic bacteria, 

biodegradation, bacterial growth efficiency, bacterial diversity. 
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1. Introduction  
 

Bacteria are key organisms in carbon cycling in aquatic ecosystems, acting as a sink 

(mineralization of dissolved organic carbon to CO2) or as a link (production of biomass 

that can be transferred through the microbial food web) (Cotner and Biddanda 2002). 

The quality and the quantity of organic matter greatly influence bacterial metabolism 

and community structure (Azam and Malfatti 2007). The major autochthonous source of 

organic matter in the marine ecosystem comes from the phytoplankton, and a substantial 

part (10 to 50%) of primary production is channeled through bacteria (Cole et al. 1988). 

A number of field and experimental studies have indicated that DOM released during 

phytoplanktonic blooms was associated to important changes in the microbial 

community diversity and metabolic properties (e.g. McCarren 2010; Sarmento and 

Gasol 2012). Besides phytoplankton, DOM can be provided by jellyfish (used here to 

refer to medusa of the phylum Cnidarian and to members of the phylum Ctenophora) 

that can attain enormous biomasses in marine waters when the conditions are favorable 

(e.g. high nutrient concentrations) (Pitt et al. 2009, Purcell 2012).  

The sudden appearance and disappearance of massive jellyfish blooms is one of the 

distinct features of this group (Condon et al. 2012). Top-down trophic control of 

jellyfish populations is low, and jellyfish have been suggested as being a trophic “dead 

end” (Arai 2005). Nonetheless, bacteria can recycle jellyfish biomass rapidly by 

different ways. Firstly, jellyfish release dissolved organic matter (DOM) by excretion 

and mucus production (Pitt et al. 2009). Secondly, during massive die-out events, 

jellyfish biomass sinks to the seafloor because dead animals have greater density than 

live animals (Yamamoto et al. 2008). The release rates of total organic carbon by dead 

jellyfish is significantly higher than that of living jellyfish (Pitt et al. 2009). Depending 

of the water depth, decomposition of dead jellyfish can occur in the water column or at 

the sediment surface. Rates of decomposition of both excretion and dead jellyfish 

biomass result in a large input of nutrients in the marine environment (Pitt et al. 2009; 

West et al. 2009; Tinta et al. 2010). Recent studies also reported a change in the 

bacterial structure in response to the use of organic matter from jellyfish for different 

coastal waters (Tinta et al. 2010; Condon et al. 2011; Tinta et al. 2012; Dinasquet et al. 

2013). 

Coastal lagoons are semi-enclosed systems occupying approximately 13% of the 

world's coastline with both marine and fluvial components (De Wit, 2011). The 
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Mediterranean coast is bordered by a series of coastal lagoons with varying sizes, and 

some of them are associated with important economic activities (fisheries, aquaculture, 

tourism, recreation activities) (De Wit, 2011). Jellyfish blooms have been reported in 

these coastal lagoons and in particular were attributed to the scyphomedusa Aurelia 

aurita (Lo and Chen 2008; Lo et al. 2008; Bonnet et al. 2013). A. aurita is widespread 

in coastal and shelf sea environments around the world, predominantly inhabiting 

highly eutrophic waters where maximum abundance can reach 300 individuals.m-3 (Lo 

and Chen 2008). Due to the shallow depth of coastal lagoons, dead jellyfish can 

accumulate rapidly down to the sediment leading to hypoxic and anoxic conditions in 

these environments (West et al. 2009).  

In the present study, we investigated the response of a Mediterranean coastal lagoon 

bacterial community to the addition of fresh jellyfish biomass (as DOM) of A. aurita 

using a microcosm approach. Our objective was to follow the changes in nutrients, 

bacterial activities and bacterial community structure during the total degradation of 

DOM from A. aurita in order to determine the resilience of the bacterial community 

exposed to the disturbance caused by a jellyfish bloom. For our purposes, we measured 

simultaneously bacterial production and respiration to determine the bacterial growth 

efficiency. We also combined the use of 454-tag pyrosequencing and DNA 

fingerprinting based on 16S rRNA genes and culture approach to characterize the 

bacterial diversity in response to the DOM addition from the jellyfish. To complete 

previous studies on this topic, we employed longer incubation period (22 days) with 

four sampling points allowing relevant analyses on the succession of taxa concurrent to 

the degradation of jellyfish DOM. Moreover, by using an incubation, long enough to 

reach the complete mineralization of DOC from the jellyfish, it was possible to 

determine and then compare the resilience of bacterial functions and diversity after 

jellyfish DOM addition.  

 
2. Material and methods 
 

Preparation of dissolved organic matter from A. aurita 

A. aurita jellyfish used in this study were produced in aquarium using Artemia salina 

nauplii as food (Lautan Production, Mèze, France). The jellyfish were less than 4 

months old with a diameter around 8 cm. Twelve organisms were crushed with a 

blender. The homogenate was prefiltered onto 10-µm mesh (Nytex) and then filtered 
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with a peristaltic pump onto 0.2-µm capsule filter (Polycap TC, Whatman) (previously 

rinsed with 10% HCl and washed thoroughly with Milli-Q water). The filtrate was 

recovered in a pre-combusted (450°C, 6 h) glassware bottle before being dispensed in 

the microcosms (see below). 

Preparation of the microcosms and sampling 

Water samples were collected in October 2010 from the shoreline of a Mediterranean 

coastal lagoon (Bages-Sigean, France, [42°36'21'' N, 2°53'49'' E]). The Bages-Sigean 

Lagoon covers 38 km2 with a mean depth of 1.3 m and a maximal depth of 3 m. The 

catchment area covers greater than 456 km2 and is drained by three rivers flowing into 

the lagoon. Water samples (salinity 33‰) were filtered sequentially by gravity onto 

250, 100, 50 and 25 µm mesh (Nytex) and then onto 1-µm filter capsule (Polycap TC, 

Whatman) to remove fine particles. Six 10-L polycarbonate carboys (Nalgene) were 

filled with 8-L of the filtrated lagoon water. Three carboys received the DOM from A. 

aurita (300 ml) and the three other were used as controls. All the carboys were 

incubated in the dark at in situ temperature (18°C) under magnetic agitation. The caps 

of the carboys were maintained open to avoid any oxygen limitation. The microcosms 

were sampled 30 min after DOM addition (T0) and over 22 days (T22). At the last 

sampling, more than 60% of the initial volume was present in the microcosms. 

Nutrients, dissolved organic carbon, nitrogen and phosphorus 

Samples (60 ml) for nitrate (NO3
-), nitrite (NO2

-) and phosphate (PO4
3-) were stored at -

20°C and analyzed within 1 month of collection by colorimetry using a nutrient 

autoanalyzer (SEAL Analytical AA3HR) (Aminot and Kérouel 2007). Samples (100 ml 

in duplicate) for ammonium (NH4
+) were analyzed immediately according to Holmes 

(1999) with a fluorometer (Jasco). Samples (20 ml in duplicate) for dissolved organic 

carbon (DOC) were filtered through two pre-combusted (450°C, 6 h) 25-mm GF/F 

filters; the filtrate was transferred into precombusted glass tubes, poisoned with 85% 

H3PO4 (final pH=2), closed with Teflon lined screw caps and stored in the dark at room 

temperature until analysis. DOC was analyzed using the high temperature catalytic 

oxidation (HTCO) technique (Cauwet 1994) using a Shimadzu TOC-V analyzer. Prior 

to analyses and between each set of samples, an international certified reference sample 

for DOC concentration was analyzed to check the calibration of the analyzer and its 

stability over time.  
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Samples for dissolved organic nitrogen (DON) and phosphorus (DOP) were filtered 

through 2 pre-combusted (450°C, 6 h) 25-mm GF/F filters (Whatman). Samples were 

collected directly in Teflon bottles and immediately frozen (-20°C) until analysis. DON 

and DOP were simultaneously determined by the wet oxidation procedure (Pujo-Pay 

and Raimbault 1994). DON (±0.1 µM) and DOP (±0.02 µM) concentrations were 

determined by sample oxidation (30 min, 120°C) corrected for NH4
+, NO3

-+NO2
- and 

PO4
3- concentrations, respectively. 

CDOM fluorescence 

The fluorescence properties of colored dissolved organic matter (CDOM) were 

determined on samples filtered through 2 pre-combusted (450°C, 6 h) 25-mm GF/F 

filters (Whatman). Fluorescence was measured on a Perkin Elmer LS55 

spectrofluorometer using a 1-cm quartz cuvette. Different excitation/emission couples 

were used to determine protein-like (275/340 nm) and humic-like (320/420 nm) 

compounds. Fluorescence intensity values were calibrated using the Raman scatter peak 

of Milli-Q water (Lawaetz and Stedmon 2009). 

Virus count 

Samples (2 ml) were fixed with 0.02 µm filtered formaldehyde (0.5% final 

concentration) and stored at -80°C after flash freezing in liquid nitrogen. Samples were 

filtered onto 0.02-μm filters (Anodisc, 25 mm diameter; Whatman) and virus-like 

particles (VLP) were stained on the filters using SYBR-Green I and enumerated under a 

Zeiss Axiophot microscope equipped for epifluorescence microscopy as previously 

described (Noble and Fuhrman 1998). At least 400 VLP were counted per filter in 

several randomly selected microscopic fields.  

Heterotrophic prokaryotes abundance, production and respiration 

Heterotrophic prokaryotic (including Bacteria and Archaea) abundance (HPA) was 

determined by flow cytometry. Duplicate 3 ml samples in cryovials were preserved with 

0.2 µm filtered formalin (2% final concentration). The samples were gently mixed and 

left in the dark at room temperature for 10 min before quick-freezing in liquid nitrogen 

and storing at -80°C. The samples were later thawed at room temperature, stained with 

SYBR Green I (final concentration 0.025% (v/v) of the commercial solution; Molecular 

Probes Inc., OR) for at least 15 min at 20°C in the dark and analyzed on a flow 

cytometer (FACScan, Becton Dickinson, San Jose, CA) equipped with a 488 nm, 15 
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mW argon laser. HP cells were detected on a plot of green fluorescence (515-545 nm) 

versus right angle light scatter (SSC), using the green fluorescence as threshold 

parameter. Fluorescent beads (1.0 µm; Polysciences Inc., Warrington, PA) were added 

to each sample analyzed to normalize SSC and green fluorescence. HP growth rate (µ, 

d-1) was calculated from the following equation µ = (Ln HPT2 - Ln HPT1) / (T2-T1). 

Generation time (g, h-1) was determined as g = (Ln (2) x 24) / µ. 

Heterotrophic prokaryotic production (HPP) was measured by 3H-thymidine 

incorporation applying the centrifugation method (Smith and Azam 1992). Samples (1 

ml in triplicate) were incubated in the dark at 18°C for 1 h with 20 nM [3H]-thymidine 

(specific activity 83.2 Ci mmole-1, Perkin Elmer) in 2 ml microtubes. Incorporations 

were terminated by the addition of trichloroacetic acid (TCA) to a final concentration of 

5%. One killed control was prepared for each assay by the addition of TCA 15 min 

before the addition of 3H-thymidine. Samples were stored for at least 1 h at 4°C and 

then centrifuged for 15 min at 12,000 g. The precipitate was rinsed twice with 5% TCA. 

The precipitates were resuspended in 1.0 ml of liquid scintillation cocktail (FilterCount, 

Perkin Elmer) and radioactivity determined by liquid scintillation counter (LS 5000CE 

Beckman). Thymidine incorporation rates were converted into carbon production using 

the conversion factors of 2.1018 cells produced by mole of thymidine incorporated and 

20 fg C by cell (Ducklow and Carlson 1992).  

Heterotrophic prokaryotic respiration (HPR) was measured at each time point using an 

oxygen microelectrode (Briand et al. 2004). The microprobes (Unisense, Denmark) are 

designed with an exterior guard cathode, which results in extremely low oxygen 

consumption by the electrodes (4.7–47 × 10−7 μmol O2 h−1). Probes have a response 

time shorter than 1 s and a precision of 0.05%. The HPR was measured over 4 h to 24 h 

in duplicate samples for each microcosm, placed in microchambers (2 ml) and 

immerged in a water bath with controlled temperature (18°C). A specific measurement 

of the dissolved O2 concentration was carried out with a minimum of 4 times during 

incubation in microchambers. HPR was deduced from the linear regression established 

on these points of measurement. HPR were expressed in mgC m-3 d-1 using a respiratory 

quotient of 1 (del Giorgio and Cole 1998). We assume here that most of the respiration 

measured came from heterotrophic prokaryotes because the water was filtered on 1-µm 

at the start of the experiment. However, we cannot exclude the growth of protozoa then 

after, leading to an overestimation of HPR. Bacterial growth efficiency (BGE, %) was 

calculated from the following equation BGE= HPP/(HPP+HPR).  
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Bacterial DNA extraction  

Samples (500 ml) at T0, T2, T9 and T22 were filtered onto a 0.2 μm Sterivex filter 

(Durapore, Millipore) and stored at -80°C. For analysis, 840 ml of alkaline lysis buffer 

(50 mM Tris hydrochloride pH 8.3, 40 mM EDTA and 0.75 M sucrose) was added in 

the Sterivex. Cell lysis was accomplished by an initial incubation for 45 min at 37°C 

after adding 50 ml of freshly prepared lysozyme solution (20 mg ml-1), and a second 

incubation at 55°C for 1 h after adding 100 ml of 10% sodium dodecyl sulfate and 10 

ml of proteinase K (20 mg ml-1). Six hundred ml of lysate was treated with 10 µl of a 

100 mg ml-1 RNase A solution (Qiagen) before DNA extraction with the All Prep 

DNA/RNA mini (Qiagen) according to the manufacturer’s instructions.  

Analysis of bacterial community structure by capillary electrophoresis SSCP-based 

single strand conformational polymorphism (CE-SSCP) analysis 

CE-SSCP fingerprinting was performed (i) to follow the changes in total bacterial 

community structure and (ii) to check the reproducibility between replicate microcosms. 

DNA was used as a template for PCR amplification of the variable V3 region of the 16S 

rDNA (Escherichia coli positions 329-533), as previously described (Ghiglione et al. 

2005). CE-SSCP was performed using the ABI 310 Genetic Analyzer (Applied 

Biosystems), equipped with a capillary tube (47 cm  50 mm) filled with a polymer 

mix composed of 5.6% GeneScan polymer (Applied Biosystems), 10% glycerol and 1 

buffer with EDTA (Applied Biosystems). The similarity of the CE-SSCP profiles was 

assessed using the software SAFUM (Zemb et al. 2007), which normalized the total 

area of the profiles and mobilities between different runs using an internal standard. 

SAFUM renders a profile of fluorescence intensity as a function of retention time per 

sample, thus taking into account the presence and intensity of each individual signal. 

Ordination of Bray-Curtis similarities among normalized sample profiles was calculated 

using PRIMER 5 software (PRIMER-E, Ltd., UK). 

Analysis of bacterial diversity and community structure by pyrosequencing 

Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was performed using 

the universal bacterial primers guidelines targeting the V1 to V3 hypervariable regions 

of the bacterial 16S rRNA gene: 27Fmod (5′-AGRGTTTGATCMTGGCTCAG-3′) and 

519r (5′-GWATTACCGCGGCKGCTG-3) as described previously (Dowd and al. 
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2008). Initial generation of the sequencing library was accomplished by a one-step PCR 

with a total of 30 cycles using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, 

CA) and amplicons originating and extending from the 27Fmod primer. Tag-encoded 

FLX amplicon pyrosequencing analyses were completed using the Roche 454 FLX 

instrument with Titanium reagents, and procedures were performed at MR DNA 

(Shallowater, TX, USA) following manufacturer’s guidelines.  

Sequences were processed and analyzed using the Mothur software version 1.33 

(Schloss et al. 2009) with default settings excluding sequences <200bp. Sequences were 

denoised using the Mothur implementation of PyroNoise and SeqNoise. Chimeras were 

removed using Chimera Slayer (Haas et al. 2011). The resulting clean sequences were 

clustered using operational taxonomic units (OTUs) at a 97% sequence identity level 

using the UCLUST algorithm (Edgar 2010) and a representative sequence from each 

OTU was classified using the Ribosomal Database Project (RDP) classifier (Wang et al. 

2007) using the SILVA training set. Taxonomic identification of the sequence reads 

(tags) followed the approach by Sogin et al. (2006) and Huse et al. (2010). All samples 

were clustered into operational taxonomic unit (OTU) at a distance of 0.03 (Ghiglione 

and Murray 2012). All OTU and diversity analyses were performed on the randomly re-

sampled datasets using Mothur. 

Culturable bacterial counts, isolation and 16S rRNA gene sequencing 

Culturable heterotrophic aerobic marine bacteria were enumerated during the 

experiment at T0, T2, T9 and T22 by plating 100 µl of diluted (in sterile seawater) or 

undiluted samples on marine agar 2216 (MA, Difco, Detroit, Mich.). Cycloheximide 

(100 mg/L) was added to the media to inhibit fungal growth. All culture were incubated 

at 25°C in the dark during two weeks before counting the colony forming units (CFU). 

The identification of the most representative culturable strains was performed for one of 

the replicate for each condition after two days of incubation. The colonies were 

categorized using morphologic characteristics. All the different morphotypes (colony 

morphology) were picked for two successive sub-culturing steps on MA to ensure 

purification. One colony of each isolate was then grown in marine broth media (MB, 

Difco, Detroit, Mich.) during 48h at 25°C under agitation (100 rpm). Each culture was 

cryopreserved in 5% dimethylsulfoxide or 35% glycerol at -80°C. For genomic DNA 

extraction, 2 ml of each liquid culture were spun down (10,000 x g, 3 min). DNA 

extraction, PCR and sequencing were done as previously described (Fagervold et al. 
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2013). Partial 16S rRNA gene sequences were trimmed manually, double checked and 

dereplicated using the package Staden-GAP4 (Staden et al. 2003). For bacterial strain 

identification, each FASTA file was uploaded in Ez Taxon-e (Kim et al. 2012) and 

compared with the cultured bacterial strain database using BLAST (Basic Local 

Alignment Search Tool). Sequences were deposited in Genbank (NCBI) under the 

following numbers: MOLA851-858 and MOLA865-880 from enriched microcosms and 

MOLA859-864 and MOLA881-887 from control microcosms. 

Statistical analyses 

Statistical analysis of the effects of treatment on chemical and biological parameters 

was performed using a one-way analysis of variance (ANOVA) and post-hoc Tukey 

tests with repeated measures (i.e. microcosms) and assuming homoscedasticity and 

normality of the data. Statistical significance was set at p = 0.05 and analysis was 

computed using XLSTAT 2014.2 software (Addinsoft). 

Bacterial community structures, either as number and area of the peaks in the CE-SSCP 

profiles or presence and abundance of OTU in the pyrosequencing data, were compared 

using ordination of Bray–Curtis similarities and used to build dendrograms by the 

unweighted-pair group method with arithmetic averages (UPGMA). A similarity profile 

test (SIMPROF, PRIMER 6) was performed on a null hypothesis that a specific sub-

cluster can be recreated by permuting the entry species and samples. The significant 

branch (SIMPROF, p <0.05) was used as a prerequisite for defining bacterial clusters.  

The extent of the correlation of bacterial diversity analyzed by pyrosequencing for both 

conditions with the chemical parameters and the viral abundance was assessed by 

canonical correspondence analysis (CCA). CCA was performed with MVSP v3.12d 

software (Kovach Computing Service, Anglesey Wales). Relative abundances of OTUs 

were transformed with arcsin (0.5) to normalize the distribution of the data as suggested 

by Legendre and Legendre (1998). 
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3. Results 
 

Degradation kinetics of jellyfish dissolved organic matter 

The water in the control microcosms (i.e. lagoon water without any addition) was 

characterized by a high concentration of dissolved organic carbon (DOC, 573 µM), 

nitrogen (DON, 50 µM) and phosphorus (DOP, 0.7 µM), underlying the eutrophic status 

of this ecosystem (Fig. 1a,b,c). Addition of dissolved organic matter (DOM) from A. 

aurita provided 252 µM DOC, 85 µM DON and 3 µM DOP, increasing significantly 

(ANOVA, p<0.05) their initial concentrations by 1.4, 2.5 and 5.8 times, respectively, 

compared to the control microcosms. The C:N ratio of the DOM was significantly 

(ANOVA, p<0.05) lower in the enriched microcosms (6:1) compared to the control 

microcosms (12:1) due to the high protein content of the jellyfish.  

The DOC from the jellyfish was consumed at a high rate during the first four days of 

incubation (57 µM d-1) and then at a lower rate (5.6 µM d-1) (Fig. 1a). In contrast, the 

DOC in the control microcosms was consumed at a constant and low rate (4 µM d-1) 

during the entire incubation. At the end of experiment, the same concentration of DOC 

(500 µM) was noted in the control and the enriched microcosms (ANOVA, p>0.05). 

The DON and the DOP concentrations were measured less frequently in the 

microcosms (Fig. 1b,c). The DON concentration decreased by 67 µM during the nine 

first days and then remained almost constant in the enriched microcosms. In contrast the 

DOP concentration increased during the first two days and then decreased during the 

rest of the incubation. For both DON and DOP, we did not observe significant changes 

in the control microcosms (ANOVA, p>0.05). At the end of the experiment, 86% of the 

jellyfish-derived DON and 57% of the jellyfish-derived DOP were degraded. The C:N 

ratio of the DOM in the control was close to the enriched microcosms by the end of the 

experiment (10:1 and 9:1, respectively). 

The initial concentrations of NO3+NO2 (5.5 µM), NH4 (6 µM) and PO4 (0.5 µM) in the 

control microcosms were low and remained stable during the experiment time (Fig. 

1d,e,f). The addition of jellyfish biomass led to an enrichment factor by 1.7, 1.0, and 11 

for NO3+NO2, NH4 and PO4, respectively. NO3+NO2 concentrations remained stable in 

enriched microcosms, with the exception of an increase (+ 4 µM) at the end of the 

experiment (Fig. 1d). This increase was only due to changes in NO2 concentration (data 

not shown). We observed a continuous increase of NH4 up to 100 µM at T9, followed 

by a plateau (Fig. 1e). PO4 concentrations (Fig. 1f) evolved in an opposite way to the 
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DOP concentrations in the enriched microcosms: after a decrease during the first two 

days, the concentration increased during the rest of the incubation mainly between the 

days 2 and 9.  

 
 

Fig. 1. Dissolved organic carbon (DOC, a), dissolved organic nitrogen (DON, b), dissolved 
organic phosphorus (DOP, c), nitrates plus nitrites (NO3+NO2, d), ammonium (NH4, e) and 
phosphate (PO4, f) concentrations during the incubations. Each point represents three replicates 
(mean ± standard deviation). The initial enrichment factor (EF) between enriched and control 
microcosms is indicated for each parameter. 

 

Protein-like and humic-like components of DOM were characterized by their 

fluorescence properties (Fig. 2). Protein-like components measured in the control 

microcosms remained constant during the experiment (Fig. 2a). In contrast, the protein-

like components in the enriched microcosms showed a rapid decrease during the first 

nine days until reaching the value measured in the control microcosms at the end of the 

experiment. The concentration of humic-like components (Fig. 2b) was identical in both 

conditions, remaining almost constant during the experiment. However, we noticed a 

slight but significantly (ANOVA, p<0.05) higher concentration of humic-like 

components in enriched conditions compared to the controls after 15 and 22 days. 
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Fig. 2. CDOM fluorescence of protein-like (a) and humic-like substances (b) concentrations 
during the incubations (ru= Raman Units). Each point represents three replicates (mean ± 

standard deviation). 

Effect of jellyfish DOM addition on viral abundance, bacterial abundance and 

metabolism 

Virus abundance remained almost constant during the entire period of the experiment in 

both controls and enriched microcosms (Fig. S1). A small but significant difference was 

observed between the two conditions at T2 and T4, with higher virus abundance in 

microcosms enriched with DOM from A. aurita (ANOVA, p<0.05). 

During the three first days, we measured a rapid bacterial growth without lag time after 

the DOM addition from A. aurita (Fig. 3a). The bacterial growth rates calculated on the 

basis of bacterial abundance between T0 and T3 were 1.44 d-1 and 0.48 d-1 in the 

enriched and the control conditions, respectively. A sharp decrease in bacterial 

abundance occurred at T4 in the enriched microcosms, leading to a value identical to the 

control condition. Then, the bacterial abundance remained almost constant for the rest 

of the experiment.  

A rapid increase in bacterial production (BP) and bacterial respiration (BR) was also 

observed in the enriched condition during the first days (Fig. 3b,c). After 3 days, both 

activities slowly decreased at a constant and similar rate during the rest of the 

experiment. After 22 days, the BP and BR were not significantly different between the 

control and the enriched microcosms (ANOVA, p>0.05). 

Bacterial growth efficiency (BGE) calculated on the basis of bacterial production and 

respiration was quite low at the start of the experiment (<1%) (Fig. 3d). During the first 
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9 days, the BGE increased up to 17% in the microcosms enriched with DOM from A. 

aurita. The BGE measured in the control microcosms remained lower than the enriched 

microcosms until day 15, when both conditions presented the same mean value (13%). 

 

Fig. 3. Bacterial abundance (a), production (b), respiration (c) and growth efficiency (d) during 
the incubations. Each point represents three replicates (mean ± standard deviation). 

Changes in culturable heterotrophic bacteria counts and diversity   

At the start of the experiment, culturable bacteria represented only a small part of the 

total bacteria (0.25%) (Fig. 4). After two days of incubation, culturable bacteria 

accounted for 65% of total bacteria in enriched microcosms, compared to 3% in the 

control microcosms. The bacterial growth rate calculated on the basis of culturable 

bacteria counts during this period was 4.8 d-1 in the enriched condition compared to 

1.92 d-1 in the controls. After 9 days, there was a significant difference in the culturable 

bacteria fraction between the two conditions (2% and 12%, for control and enriched 

microcosms, respectively) (ANOVA, p<0.05). At the end of the experiment, the 
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culturable bacteria fraction accounted for the same percentage (~10%) in both control 

and enriched microcosms. 

Most of the culturable strains isolated after 2 days from an enriched microcosm, 

belonged to the Pseudoalteromonas and Vibrio genera (class of Gammaproteobacteria) 

(Table 1). After 22 days, a clear shift in culturable diversity was observed in this 

microcosm, with the dominance of Flavobacteriaceae (phylum of Bacteroidetes) and 

Rhodobacteraceae (class of Alphaproteobacteria). Even if the number of bacterial 

strains isolated from the control microcosm was less important than for enriched 

microcosm (6 versus 18), the diversity seemed to be more stable during the experiment 

with a majority of Rhodobacteraceae. 

 

 

 

Fig. 4. Percentages of Colony Forming Units (CFU) to total direct counts (flow cytometry) 
during the incubations. Each point represents three replicates (mean ± standard deviation). 

 

 

 

 



 

 

39 Impact of DOM from the jellyfish A.aurita on bacterial metabolism and composition 

 

 

Changes in bacterial community structure induced by Aurelia-derived DOM  

 A similarity dendrogram based on CE-SSCP data showed a clear separation of the 

bacterial community diversity into four distinct clusters (Fig. 5a). With the exception of 

the microcosm C2 which presented outliers at T0 and T2, cluster I included the 

community profiles from control and enriched microcosms at T0, and cluster II grouped 

together the control microcosms at T2, T9 and T22. The later time points for the 

enriched microcosm clustered apart from the two clusters into two subclusters 

comprised of time point T2 (III) and T9, T22 respectively (IV). The bacterial 

community structure observed in the control microcosms remained closer to the initial 

bacterial structure than to the enriched microcosms. With the exception of microcosm 

C2, the replicate microcosms grouped together for a specific condition and time, 

indicating that the diversity changes observed between conditions or over the time are 

robust. 

To analyze in more detail the composition of the bacterial community, pyrosequencing 

was performed on one replicate microcosm for each condition at different sampling 

times (Fig. 5a in bold). A total of 76,027 partial 16S rRNA gene sequences remained 

after quality controls, yielding on average 9,503 reads per sample (5,080 - 11,600). The 

number of sequences was normalized to 5,080 per sample (i.e., the lowest number of 

sequences obtained for a sample). The total of unique OTUs was 2,800 in the whole 

dataset (at 97% similarity). The rarefaction curves for all samples did not reach a 

plateau (Fig. S1). Hence, our sequencing effort did not cover completely the bacterial 

diversity. However, the shape of the rarefaction curves was similar for all samples 

allowing the comparison of these samples. The taxonomic richness based on the Chao1 

index was slightly lower in the enriched microcosm at T0 and T2 compared to the 

control microcosm, and higher at T9 and T22 (Table 2). The diversity based on the 

inverse Simpson index (1/ λ) ranged from 3.6 to 35.2. The diversity was higher in the 

enriched condition at T0 compared to the control condition then lower at T2 and T9, 

and similar at T22. Both conditions showed a transient decrease in diversity at T9 

(Table 2). 

A dendrogram based on Bray-Curtis similarities using the total number of OTUs was 

similar to that observed with the DNA fingerprint approach (Fig. 5b). The samples at 
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T0 (with or without the addition of DOM from A. aurita) grouped more closely with the 

samples from the control microcosms at T2, T9 and T22. No significant difference 

(SIMPROF test, p >0.05) was observed between the samples in the control microcosms 

at T0 and T9. In contrast, a rapid shift in diversity was observed in the enriched 

microcosm at T2 (85% dissimilarity). After T9, the diversity tended to stabilize in this 

microcosm and no significant difference was observed in the bacterial structure at T22 

(SIMPROF test, p >0.05).  

 

 
Fig. 5. Dendrograms of similarity based on (a) DNA CE-SSCP fingerprints and (b) OTUs table 
from the 16S rDNA 454-tag sequences for control microcosms (C1, C2, C3) and enriched 
microcosms with DOM from A. aurita (A1, A2, A3) after 0, 2, 9 and 22 days of incubation (T0, 
T2, T9, T22). Clustering is on the basis of a distance matrix computed using the Bray–Curtis 
index of similarity. The dendrogram was inferred with the unweighted pair-group average 
algorithm (UPGMA). a: The clusters were numbered from I to IV. Samples selected for 454 
pyrosequencing are indicated in bold. b: Red branches do not differ significantly (SIMPROF 
test, p >0.05). 
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The community composition at the phylum level and proteobacterial subclasses varied 

between treatments and with time (Fig. 6). The changes in abundances described below 

refer to relative abundances of the sequences and do not refer to absolute abundances of 

the different bacterial groups. At T0, the enriched microcosm was characterized by a 

higher proportion of Actinobacteria (49% versus 19% in the control microcosm) and by 

a lower proportion of Alphaproteobacteria (16% versus 49% in the control microcosm). 

The control microcosm showed continuous changes over the experiment. At the end of 

the experiment, Alphaproteobacteria remained the most abundant taxon (67%), whereas 

the Actinobacteria and Bacteroidetes tended to decrease (1.4% and 12%, respectively). 

Gammaproteobacteria showed a transient increase at T9 (24%) to reach the initial 

percentage at the end of the experiment (8%). The bacterial community in the enriched 

microcosm was characterized by a high proportion of Gammaproteobacteria (65%) at 

T2, followed by a dominance of Bacteroidetes (77%) at T9. Finally, at T22, the 

Bacteroidetes decreased (46%) in favor of Alphaproteobacteria (36%) and 

Plantomycetes (5%). 
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Fig. 6. Cumulative bar charts comparing the main relative phyla and Proteobacteria class 
abundances for control microcosms (A) and microcosms with DOM from A. aurita (B). 
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Figure 7 shows the taxonomy information for the most abundant OTUs (i.e., present at 

a percentage higher than 1% in a specific sample). These 71 OTUs represented only 

2.5% of the total number of OTUs, however their cumulative abundances represented 

between 52% and 88% of all the OTUs present in a specific sample. The majority of the 

Alphaproteobacteria sequences in the control microcosm were assigned to SAR11 

throughout the experiment. Actinobacteria present in both the control and the enriched 

microcosms at T0 belonged to Microbacteriaceae. The bloom of Gammaproteobacteria 

at T2 was affiliated to Pseudoalteromonas and Vibrio species, and the Bacteroidetes at 

T9 were mainly composed of Flavobacteriaceae. At the end of the experiment, the 

Alphaproteobacteria were dominated by Roseobacter clade bacteria (RCB) in the 

enriched microcosms. 
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Fig. 7. Heatmap displaying the relative abundances of specific OTUs across the samples. Only 
OTUs with a contribution higher than 1% in the sample were used. Multiple OTUs with the 
same taxonomic assignment were numbered sequentially. The contribution of these OTUs to the 
total OTUs present in each sample is indicated at the bottom. 
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In order to determine what factors were potentially controlling bacterial community 

composition, we applied a canonical correspondence analysis (CCA) to the data for both 

conditions (Fig. 8) using the distribution of the dominant OTUs (relative abundance 

>1%) determined by pyrosequencing. The variance explained by the two first axes 

represented almost 50 %  (26.6% and 21.9% for axis 1 and 2, respectively). The first 

group comprising all the samples from the control condition and the sample at T0 from 

the enriched condition was related to none of chemical parameters or viral abundance. 

The sample at T2 from the enriched condition was isolated from the other clusters and 

dominated by the OTUs 0008 and 0014 (Pseudoalteromonas) and by the OTUs 0017 

and 0027 (Vibrio). This group was positively structured by DOM and CDOM protein-

like components. The third group including the samples at T9 and T22 from the 

enriched condition was dominated by the OTUs 0002, 0011 and 0021 belonging to the 

Flavobacteriaceae family and OTU0010 belonging to the Roseobacter genus. This 

cluster was positively related to inorganic nutrients, CDOM humic-like components and 

viral abundance. 

 

 
Fig. 8. Canonical correspondence analysis (CCA) of bacterial community structure (OTUs 
presented on Fig. 7) and chemical factors and viral abundance. The percent of explained 
variation is shown in brackets. The inflation factors for the analysis are given in Table S1.  
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4. Discussion 
 

Processing of organic matter from the jellyfish and consequences for the system 

If we estimate an average wet weight of 13 g per jellyfish (Lo and Chen, 2008) and 

apply the relationship between the wet weight and the organic carbon content 

determined by Schneider (1988) for A. aurita, the enrichment in DOM corresponded to 

the addition of the total biomass from one jellyfish in 11 L (i.e., 91 individuals m-3). 

This value can be considered as high but not unrealistic (Lo and Chen 2008). After 22 

days of incubation, the same DOC concentration was observed in the enriched and 

control microcosms suggesting that the bacterial community has degraded the entire 

DOC from A. aurita. This result highlights the high bioavailability of the DOM from A. 

aurita jellyfish as already reported by Tinta et al. (2012) and Purcell (2012). The excess 

of organic and inorganic nitrogen and phosphorus in the enriched microcosms at the end 

of the experiment suggests that the decrease of bacterial activities were mainly due to 

limitation by bioavailable carbon. In these conditions, the excess of DON and DOP after 

degradation of jellyfish DOM can persist in the system until a new pulse of labile 

organic carbon. The release of nutrients during the decomposition of organic matter 

from the jellyfish observed in this study and others (e.g., West et al. 2009; Tinta et al. 

2010; 2012) might stimulate primary production. However, high concentrations of 

ammonium, associated to unionized ammonia (NH3), can be also inhibitory or toxic for 

some phytoplankton, amphipods, crustacean and fish species (Ferreti and Calesso 2011; 

Collos and Harrison 2012). 

The fact that only 14% DOC was degraded over 22 days in the control microcosm 

indicates that the bulk of DOC in coastal lagoons is refractory. The priming effect is a 

process well demonstrated in the case of soils that enhances the microbial 

decomposition of preexisting refractory organic matter upon addition of labile organic 

matter (Kuzyakov et al. 2000). During the decline of the bloom, jellyfish biomass can 

constitute a large reservoir of labile organic matter at the disposal of bacteria that can 

enhance the priming effect. Nevertheless, there was no evidence that DOM from the 

jellyfish helped for biodegradation of refractory DOM from the coastal lagoon (i.e., the 

final DOC and humic-like components concentrations in the enriched treatment were 

similar and higher, respectively, compared to the control treatment), suggesting that the 

priming effect did not occur under these experimental conditions. Recent studies on the 

priming effect in aquatic ecosystems gave contrasting results underlying the need for 
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further studies on this process (Fonte et al. 2013; Bengtsson et al. 2014; Guenet et al. 

2014). 

In our study, DOM from A. aurita increased the BGE relative to the control condition 

after 4 days of incubation. In contrast, Condon et al. (2011) observed that the rapid 

increase of bacterial metabolism in response to the addition of DOM released by a 

jellyfish was accompanied by a significant decline of BGE by 10% to 15% compared to 

the control treatment. Dinasquet et al. (2013) observed a similar BGE (30-40%) for 

bacterial communities exposed or not to DOM from the ctenophore Mnemiopsis leidyi. 

These contrasting observations may result from differences in experimental setup and 

bacterial communities’ composition in these studies. Even if the BGE was stimulated 

with the presence of DOM from Aurelia in our study, its value remained relatively low 

(<20%) indicating that organic carbon was mainly shunted toward bacterial respiration 

rather than creation of new biomass. According to Condon et al. (2011), the low value 

of BGE induced by labile DOM from jellyfish could be explained by a inadequate 

organic C:N and C:P stoichiometry resulting in nongrowth energy dissipation (i.e., 

overflow metabolism). It must be underlined that for all these studies, the true value of 

the BGE remains questionable due to uncertainties in the different conversion factors 

used for its calculation, including the conversion factor for converting 3H-thymidine 

uptake into bacterial carbon production (Kirschner et al. 2004) and the respiratory 

quotient that may change with substrate quality (Berggren et al. 2012). Proteins which 

were identified as the major constituent of jellyfish are characterized by a RQ of 0.8. By 

lowering the value of RQ for jellyfish condition to 0.8, BGE was increased by 21% in 

average (range: 19.5%-24.4%). However, this modification did not change the general 

shape of the curve and the comparison with the control condition (data not shown). 

Moreover, the calculation of BGE is complicated because HPP and HPR were measured 

at different time scales: while the time of incubation of HPP was short (i.e., 1h), HPR 

required sometimes 24h of incubation. According to del Giorgio et al. (2011), this 

methodological aspect in activities measurements can introduce a bias for the BGE 

determination. 
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Dynamics of bacterial community structure during the degradation of DOM from A. 

aurita 

Interpretation of diversity changes during incubation in microcosms is always 

questionable due to a potential bottle effect (Massana et al. 2001). The bottle effect may 

have occurred in our experiment, as observed by the changes in the culturable bacteria 

fraction in the control microcosms (0.2% at T0 and 10% at T22). However, diversity as 

measured by pyrosequencing and DNA fingerprinting indicated that the bacterial 

community structure in the control microcosms did not change as drastically as in the 

enriched microcosms. In addition, HPP and HPR did not show significant changes over 

time (ANOVA test, p>0.05) in the control incubation. Both observations suggest that 

even if bottle effect cannot be ruled out, consequences on diversity and functions were 

minor compared to the changes caused by the increase of DOM. The differences in the 

bacterial community structure at T0 revealed by pyrosequencing between the control 

and enriched microcosms may be explained by the introduction of bacteria in the 

microcosms with the DOM from Aurelia, even if the DOM was previously filtered on 

0.2 µm. The high percentage of Actinobacteria found in these microcosms might be 

facilitated by the very small size of these bacteria allowing them to escape the filtration 

(Ghai et al., 2013).  

The pyrosequencing and the DNA fingerprint data demonstrate the rapid and profound 

effect of DOM addition from Aurelia on the bacterial diversity changes that persisted 

until the end of the experiment. Our results confirm the major role played by 

Gammaproteobacteria during the first steps of DOM degradation from jellyfish as 

observed in other studies (Condon et al. 2011, Tinta et al. 2012, Dinasquet et al. 2013). 

Surprisingly, the Pseudoalteromonas and Vibrio species blooming in the enriched 

microcosms in the first days were not found in the ~5,000 sequences identified for each 

sample at the start of the experiment, suggesting that they belong to the rare biosphere 

(i.e., less than 0.1%) (Pedrós-Alió 2012). If we hypothesize that these species represent 

less than 0.02% (1 sequence on 5,000) of the 2.106 bacteria/ml present at the start of the 

experiment, the theoretical bacterial growth rate for these bacteria during the three first 

days would be 4.32 d-1 (generation time = 3.8 h) to reach the concentration of 9.107 

bacteria/ml measured in the enriched microcosms after 3 days. This bacterial growth 

rate is not unrealistic and is comparable to the value calculated on the basis of the 

culturable count. Tinta et al. (2012) also observed that culturable bacteria isolated 
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during the degradation of organic matter coming from different jellyfish in Adriatic Sea 

belonged to Gammaproteobacteria with a dominance of strains affiliated to 

Vibrionaceae and Pseudoalteromonadaceae. Vibrio and Pseudoalteromonas species 

can rapidly outcompete other bacterial species in a context of high concentration of 

organic matter due to greater metabolic versatility and the presence of multiple copies 

of rRNA genes (Williams et al. 2011). Changes in bacterial composition may not result 

only from competition for organic matter, but also from sensitivity of bacterial species 

for antagonistic compounds. For instance, Titelman et al. (2006) reported that extracts 

from the scyphomedusa Periphylla periphylla can inhibit some bacterial species, 

including Actinobacteria. An antimicrobial peptide, aurelin, exhibiting activity against 

Gram-positive and Gram-negative bacteria has been also isolated from A. aurita 

(Ovchinnikova et al. 2006). Overall, the diversity index as revealed by pyrosequencing 

(Table 2) remained unchanged in enriched microcosms at T2. In contrast, Tinta et al. 

(2012) observed a reduction in the diversity of the bacterial community during the 

biodegradation of A. aurita. This difference could be explained by the lower number of 

16S rRNA clone library sequences analysed in the study of Tinta el al. (2012). 

Different reasons can be evoked to explain the sudden decrease in bacterial 

concentration in the enriched microcosms between T3 and T4 (94% less bacteria in one 

day). Viral infection can induce rapid changes in bacterial abundance in aquatic 

environments (Berdjeb et al. 2011). However, lytic infection is associated with the 

release of viruses in the environment. We did not observe significant changes in viral 

abundance during this period, suggesting that viruses were certainly not the main factor 

to explain the loss of bacteria observed. Protozoan grazing can be also a cause of 

bacterial abundance regulation. Most of the heterotrophic nanoflagellates (HNFs) were 

excluded at the start of the experiment by filtering the water on 1 µm but we cannot 

exclude the possibility that some smaller HNFs passed through the filter and then 

proliferated during the experiment. Unfortunately, we did not measure HNF abundance 

in our experiment to confirm this hypothesis. Even if the role of HNFs cannot be 

excluded, the bacterial loss rate measured during this period (3.4 106 bacteria/ml.h) 

seems particularly high (i.e., two orders of magnitude higher than grazing rates values 

reported in the sea [Jürgens and Massana 2008]); thus grazing by HNF was certainly not 

the only explanation for the decreasing of bacterial cell numbers. An additional and not 

exclusive hypothesis, concerns the autolysis of bacteria after cessation of growth. 
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After the use of the most bioavailable DOM by Gammaproteobacteria, the bacterial 

community shifted towards a dominance of Bacteroidetes at T9. These bacteria are 

specialized in degrading polymeric organic matter compounds, including proteins 

(Fernández-Gómez et al. 2012). Interestingly, high proportion of Bacteroidetes have 

been reported in a Norwegian fjord where persistent high jellyfish biomass is observed 

(Riemann et al. 2006) and in association with the ctenophore Mnemiopsis leidy (water, 

tissue and gut) (Dinasquet et al. 2012). In our experiment, structural components of 

bacterial cells including membranes and peptidoglycan were certainly released in the 

microcosms during the bacterial decay of Gammaproteobacteria whatever the reason 

(protozoan grazing, viral infection or autolysis) (Nagata et al. 2003). Bacteroidetes have 

the capacities to recycle efficiently this material (Pinhassi et al. 1999; Cottrell and 

Kirchman 2000). Finally, we cannot exclude also the possibility that Bacteroidetes were 

favoured due to a negative selection by bacterivorous protists or viruses (Berdjeb et al. 

2011). At the end of the experiment, there was an emergence of Planctomycetes (5% at 

T22). In aerobic environments, members of Planctomycetes, including the genera 

Planctomyces and Rhodopirellula identified in our study, have been reported to degrade 

complex organic matter into simpler compounds (Pizzetti et al. 2011). 

Resilience of bacterial communities 

Massive jellyfish blooms can be considered as a disturbance for the aquatic ecosystem. 

Stability is the general capacity of a community to return to equilibrium after 

perturbation, and includes components of resistance, recovery and resilience (Pimm 

1984). Resistance is a community’s ability to remain unchanged when challenged with 

disturbance. Recovery is a community’s ability to return to its pre- disturbance 

composition or function, and resilience is the rate at which this return occurs (Shade et 

al. 2011). These different ecological concepts can be applied for a bacterial community 

exposed suddenly to the organic matter from jellyfish. Our results and others (Condon 

et al. 2011; Tinta et al. 2012; Dinasquet et al. 2013) showed that the resistance of 

bacteria is low, with rapid changes occurring in functions and structure when organic 

matter from a jellyfish is added (exudate or dead biomass). The determination of the 

recovery and the resilience needs experimental approaches sufficiently long to analyze 

these concepts. Most of the different studies previously performed on jellyfish 

biodegradation have used short-term incubations (<9 days) and ended before the 

complete degradation of organic carbon (dissolved or particulate) from the jellyfish 
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(e.g., Condon et al. 2011; Tinta et al. 2012). In our study, it was possible to follow the 

complete degradation of DOC during the 22 days of incubation. Over this incubation we 

observed the recovery of the bacterial activities (production, respiration) but not for the 

bacterial structure (as measured by the Bray-Curtis distance), suggesting that resilience 

was higher for functions than for diversity. Consequently, jellyfish blooms can induce 

durable changes in chemistry (release of NH4, DON and DOP) but also in the bacterial 

community structure of coastal lagoons. Future investigations on jellyfish blooms might 

be conducted in larger experimental systems (i.e., mesocosms) to measure at longer 

time scale these effects on different trophic levels by including both pelagic and benthic 

systems. This more realistic approach will also permit to explore the role of particle-

attached bacteria in the jellyfish degradation which was not considered in this study. 
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Supplementary information 
 

Table S1. Inflation factor of CCA analysis. A value close to 1 indicates no redundancy with 
other variables. mc: multicolinearity between variables. 

 

 

 

 

 

Fig. S1. Virus concentration during the incubations. Each point represents 3 replicates 

(mean ± standard deviation). 
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Fig. S2. Rarefaction curves of observed operational taxonomic units (OTU) based on 

16S rRNA sequences retrieved from the different samples. 
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III Experimental studies of priming effect in coastal environments 
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Abstract 
 

Heterotrophic bacterial communities in marine environment are exposed to a 

heterogeneous mixture of dissolved organic compounds with different bioavailability 

that may control both their activities and their composition. For instance, coastal 

environment is a mixing area where recalcitrant allochthonous organic matter from river 

can encounter labile organic matter from phytoplanktonic bloom. In this study, we 

incubated a coastal marine bacterial community during 42 days with two sources of 

dissolved organic matter (DOM): a mixture of amino acids (labile DOM) and a natural 

riverine DOM (semi labile and refractory DOM). DOM sources were added alone and 

in combination. Amino acids were actively degraded over 6 days whereas riverine 

DOM, alone or in combination with amino acids, showed only partial degradation 

during the incubation (~35%). Addition of amino acids alone or in combination with 

riverine DOM led to a similar stimulation of bacterial production (BP) and bacterial 

respiration (BR) compared to the controls conditions, whereas addition of riverine 

DOM alone did not modify bacterial community activities (BCA) compared to the 

controls. In contrast, bacterial community composition (BCC) analyzed by 16S rRNA 

gene pyrosequencing revealed a clear dissimilarity (40%) after 6 days between the 

controls and the conditions with the riverine DOM alone or in combination with amino 

acids but not with the addition of amino acids alone. Pyrosequencing data analysis 

showed that riverine DOM favored some OTUs (e.g., OM43 belonging to 

Methylophilaceae) to the detriment of others (e.g., SAR11 belonging to 

Alphaproteobacteria). Our results show that changes in BCA and BCC can be driven by 

different types of DOM and thus not necessarily coupled. Moreover, the combination of 

recalcitrant DOM with labile DOM did not change the microbial decomposition of semi 

labile and recalcitrant riverine DOM (nor the BCA) suggesting that priming effect did 

not occur under these experimental conditions.  

 

Keywords: dissolved organic matter, biodegradation, heterotrophic bacteria, coastal 

waters, bacterial community composition, priming effect. 
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1. Introduction 
 

Marine dissolved organic matter (DOM) is the largest reservoir of reduced carbon in the 

oceans with 662 Gt C (1 Gt = 1x1015 g) (Hansell et al. 2009) equivalent to the carbon as 

atmospheric CO2 or the terrestrial biota (Druffel et al. 1992, Hedges et al. 1997). 

Primary production at the surface of the oceans contributes to ~48.5 Gt C (Field et al. 

1998). This fresh organic matter is rapidly cycled through the food web in the upper 

ocean and up to 50% of the primary production is recycled by heterotrophic bacteria 

(Cole et al. 1988). On the other hand, freshwater inputs to the oceans contribute to the 

load of 0.25-0.36 Gt of DOC per year (Meybeck 1993, Aitkenhead and McDowell 

2000). DOC concentrations have increased in freshwaters in the past decades in 

response to a combination of declining acid deposition and rising temperatures with 

possible impacts on coastal marine ecosystems (Evans et al. 2005). Riverine organic 

matter is a complex and heterogeneous mix of compounds with diverse origin 

(terrestrial and aquatic), chemical properties and reactivity. Much of the organic matter 

discharged by larger rivers appears to be soil-derived, highly degraded, nitrogen-poor 

compounds (Hedges and Benner 1997) and characterized by a high concentration of 

humic substances, comprising 50-80% of total DOM in freshwater (Aiken et al. 1985). 

The fate of riverine organic matter in the ocean is still unclear (Hedges and Benner 

1997). Based on biodegradation experiments riverine DOM appears as low bioreactive 

material (Søndergaard and Middelboe, 1995). In contrast, field studies showed that 

contribution of riverine organic matter to global burial flux seems to be low (i.e. 50% of 

riverine organic matter introduced to the ocean must be completely remineralized) 

(Hedges and Benner 1997). These contrasting results can be explained by strong 

seasonal and regional differences in biodegradability of riverine DOM, photo-

degradation processes and flocculation with increased salinity (Hedges and Benner 

1997).  

Due to inorganic nutrients loading by rivers, coastal zones are productive areas (Cloern 

et al. 2014) accounting for 10% of global oceanic primary production (Smith and 

Hollibaugh 1993). For instance, one of the most productive areas of the Mediterranean 

Sea is the Gulf of Lion, which is influenced by large inputs from the Rhône River. On 

an annual basis, ~50% of the primary production in the Gulf of Lion can be attributed to 

continental nutrient inputs (Durrieu de Madron et al. 2011). The fluvial loading of total 
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organic carbon (TOC) into the Mediterranean Sea comprises 0.08–0.3% of the standing 

stock of TOC in the whole Mediterranean basin, which is much higher than the average 

reported for the World Ocean (Smith and Hollibaugh 1993), and highlights the main 

role played by the rivers in the Mediterranean carbon cycle (Sempéré et al. 2000). The 

river plume has been hypothesized to be a favorable location for priming effect because 

riverine recalcitrant organic matter can encounter labile organic matter released during a 

phytoplanktonic bloom (Bianchi 2011). The priming effect is a process where addition 

of labile organic matter modifies (generally increases) the microbial degradation of 

refractory DOM. Priming effect has been repeatedly reported in soils (Blagodatskaya 

and Kuzyakov 2008) but also more recently reported for aquatic ecosystems (Guenet et 

al. 2010). The mechanisms involved in priming effect are not well understood but may 

be driven by multiple factors such as chemical structure and availability of organic 

carbon, nutrient availability, stoichiometry and microbial composition (Fontaine and 

Barot 2005, Kuzyakov 2010, Guenet et al. 2010). If confirmed in marine environments, 

priming effect could contribute to explaining the “missing” terrestrial DOC in the 

oceans (Bianchi 2011). 

In this study we explored the response of a coastal marine bacterial community to the 

addition of two sources of dissolved organic matter (DOM): a mixture of free amino 

acids (labile DOM) and a natural riverine DOM (semi labile and refractory DOM). 

Using a microcosm approach, DOM sources were added alone and in combination. A 

treatment without DOM addition served as a control of the experiment. Changes in 

bacterial community activities (BCA, by measuring bacterial production and 

respiration) and bacterial community composition (BCC, by measuring the diversity of 

16S ribosomal RNA genes by pyrosequencing) were measured together with the 

degradation of DOM during 42 days. We examined the coupling between changes in 

BCA and BCC for the different DOM additions and we tested the hypothesis of priming 

effect when DOM sources were combined. 
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2. Material and methods 

Preparation of the amino acids solution and dissolved organic matter from the Rhone 

River 

Rhône River water was collected at the Observatory station of the Rhône river in Arles 

(SORA) observatory station which is located near the Compagnie Nationale du Rhône 

(CNR; http://www.cnr.tm.fr/fr/) gauging station using automatic samplers installed at 

the station (Panagiotopoulos et al. 2012). Samples (~ 40-50 L) were collected on 2nd 

May 2013 in 10-20 L Nalgene carboys which were previously cleaned with detergent 

and 2% of HCl for one week. The sampling date corresponded to a high flood event in 

the Rhone River (4,150 m3 s-1). Water was centrifuged at the station, transferred to the 

lab, and further filtered through 5 µm filters (similar molecular sieves used for 

phytoplankton filtering). River samples were let to stand for 7-10 days at ambient 

temperature to remove labile organic matter and filtered again on 0.2 µm using a 

peristaltic pump on a Polycap filter, which was previously cleaned with copious 

amounts of Milli-Q water. The collected dissolved phase was then frozen and freeze-

dried. For this experiment, approximately 19.2 L of Rhône water were lyophilized 

resulting in a powder with a mass of 4.42 g. The organic carbon content (OC %) was 

about 1.68% with a C/N ratio of 3.14. At the beginning of the experiment, 996 mg of 

the lyophilized dissolved organic matter (DOM) was re-dissolved in 1050 mL of Milli-

Q water acidified with concentrated HCl solution. The resuspended DOM was then 

distributed in different microcosms (see below). 

A solution of twenty-one L-amino acids (Sigma, 09416-1EA) was prepared in Milli-Q 

water (see list of amino acids in Table S1). Each amino acid was added using the same 

molar concentration. 

Experimental setup 

Surface water sample was collected in July 2013 from a coastal station in the NW 

Mediterranean Sea (SOLA station, in the Bay of Banyuls-sur-Mer, France, [42°29′N, 

3°08′E]. Sample was filtered by gravity on 25-µm mesh (Nytex) to remove large 

zooplankton and phytoplankton although low phytoplankton biomass have been 

reported during this period in this area (i.e., < 0.6 µg Chl a /L; Abboudi et al. 2008, 

Bertoni et al. 2011). Twelve pre-combusted (450°C, 6 h) 4L Erlenmeyer flasks were 

filled with filtrated seawater and supplied with a single or combined DOM sources. 

Three microcosms received 150-mL of the above-mentioned resuspended DOM 
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originated from Rhone River, corresponding to the addition of 15 µmol L-1 dissolved 

organic carbon (DOC). Three microcosms were inoculated with 100 µL of the amino 

acids solution, corresponding to the addition of 9 µmol L-1  DOC. Three microcosms 

received the combined addition of DOM originated from Rhône River and the amino 

acids solution. The last three microcosms received any addition (control microcosms). 

To avoid any limitation by nitrogen or phosphorus, NH4 and PO4 were added to all the 

microcosms at 16 µmol L-1 and 1 µmol L-1 final concentrations, respectively. The 

microcosms were closed with a cellulose stopper which permitted passive aeration and 

incubated in the dark at 18°C under magnetic agitation. The microcosms were 

periodically sampled over 42 days.  

Chemical analysis 

Samples (20 mL in duplicate) for nitrate (NO3
-), nitrite (NO2

-) and phosphate (PO4
3-) 

were stored at -20°C and analyzed within 1 month of collection by colorimetry using a 

nutrient autoanalyzer (SEAL Analytical AA3HR) (Aminot and Kérouel 2007). Samples 

(40 mL in duplicate) for ammonium (NH4
+) were analyzed immediately according to 

the Holmes (1999) with a fluorometer (Jasco). Samples (16 ml) for DOC were filtered 

through 2 pre-combusted (450°C, 6 h) 25-mm GF/F filters, transferred into pre-

combusted glass tubes, poisoned with 85% H3PO4 (final pH=2), closed with Teflon 

lined screw caps and were stored in the dark at room temperature until analysis. DOC 

was analyzed using the high temperature catalytic oxidation (HTCO) technique (Cauwet 

1994) using a Shimadzu TOC-V analyzer. Before starting analyses and between sets of 

samples, an international certified reference sample for DOC concentration (available 

for the international community) was analyzed to check the calibration of the analyzer 

and its stability over time.  

Samples for dissolved organic nitrogen (DON) and phosphorus (DOP) were filtered 

through 2 pre-combusted 25-mm GF/F filters (Whatman). Samples were collected 

directly in Teflon bottles and immediately frozen (-20°C) and stored for later analyses. 

DON and DOP were simultaneously determined by the wet oxidation procedure (Pujo-

Pay et al. 1997). DON (±0.1 µM) and DOP (±0.02 µmol L-1) concentrations, were 

determined by sample oxidation (30 min, 120°C) corrected for NH4
+, NO3

-+NO2
- and 

PO4
3- concentrations, respectively. 
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Excitation-emission matrices 

Samples for DOM fluorescence were filtered through 2 pre-combusted 25-mm GF/F 

filters (Whatman) in 100 mL combusted glass bottles and stored at -20°C until analysis. 

Excitation-emission matrices (EEM) were obtained using a Perkin Elmer LS55 

luminescence spectrometer equipped with a xenon discharge lamp equivalent to 20 kW 

for an 8-µseg 0 duration. A red sensitive R928 photodiode multiplier worked as a 

reference detector. The running instructions for the machine were set as follows: scan 

speed at 250 nm min-1, slit widths for the excitation and emission wavelengths at 10 nm. 

Measurements were performed at a constant room temperature of 20ºC in a 1 cm quartz 

fluorescence cell. The Ex/Em wavelengths used for single measurements were those 

established by (Coble 1996), thus: Ex/Em 280 nm/350 nm (peak-T) as indicator of 

protein-like substances, Ex/Em 320 nm/410 nm (peak-M) as indicator of marine humic-

like substances, Ex/Em 340 nm/440 nm (peak-C) as an indicator of terrestrial humic-

like substances and Ex/Em 250 nm/435 nm (peak-A) as an indicator of a group of 

humic substances with different origins. 

Bacterial abundance and activities  

Hereafter, the term ba cteria will be used for heterotrophic prokaryotes (including 

Bacteria and Archaea). Bacterial abundance was determined by flow cytometry. 

Samples (3 mL) in cryovials were preserved with 0.2-µm-filtered formalin (2% final 

concentration). The samples were gently mixed and left in the dark at room temperature 

for 10 min before quick-freezing in liquid nitrogen and storage at -80°C. The samples 

were later thawed at room temperature, stained with SYBR Green I (final concentration 

0.025% (v/v) of the commercial solution; Molecular Probes Inc., OR) for at least 15 min 

at 20°C in the dark and analysed on a flow cytometer (FACScan, Becton Dickinson, 

San Jose, CA) equipped with a 488 nm, 15 mW argon laser. Bacteria were detected on a 

plot of green fluorescence (515-545 nm) versus right angle light scatter (SSC), using the 

green fluorescence as threshold parameter. Fluorescent beads (1.0 µm; Polysciences 

Inc., Warrington, PA) were added to each sample as standards.  

Bacterial production (BP) was measured by 3H-thymidine incorporation applying the 

centrifugation method (Smith and Azam 1992). Samples (1 mL in triplicate) were 

incubated in the dark at 18°C for 1 h with 20 nmol L-1 [3H]-thymidine (specific activity 

83.2 Ci mmole-1, Perkin Elmer) in 2-mL microtubes. Incorporations were terminated by 

the addition of trichloroacetic acid (TCA) to a final concentration of 5%. One killed 
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control was prepared for each assay by the addition of TCA, 15 min before the addition 

of 3H-thymidine. Samples were stored for at least 1 h at 4°C and then centrifuged for 15 

min at 12,000 g. The precipitate was rinsed twice with 5% TCA. The precipitates were 

resuspended in 1.0 mL of liquid scintillation cocktail (FilterCount, Perkin Elmer) and 

radioactivity determined by liquid scintillation counter (LS 5000CE Beckman). 

Thymidine incorporation rates were converted into carbon production using the 

conversion factors of 2.108 cells produced by mole of thymidine incorporated and 20 fg 

C by cell (Ducklow and Carlson 1992).  

Bacterial respiration (BR) was measured at each time point using an oxygen 

microelectrode (Briand et al. 2004). The microprobes (Unisense, Denmark) are 

designed with an exterior guard cathode, which results in extremely low oxygen 

consumption by the electrodes (4.7–47 × 10−7 μmol O2 h−1). Probes have a response 

time shorter than 1 s and a precision of 0.05%. Bacterial respiration was measured over 

4 h to 24 h in duplicate samples for each microcosm, placed in microchambers (2 mL) 

and immerged in a water bath with controlled temperature (18°C). A specific 

measurement of the dissolved O2 concentration was carried out a minimum of 4 times 

during incubation in microchambers. Bacterial respiration was deduced from the linear 

regression established on these points of measurement. BR were expressed in mgC m-3 

d-1 using a respiratory quotient of 1 (del Giorgio and Cole 1998). We assume here that 

most of the respiration measured came from bacteria because the water was filtered on 

1-µm at the start of the experiment. However, we cannot exclude the growth of protozoa 

then after, leading to an overestimation of BR. Bacterial growth efficiency (BGE, %) 

was calculated from the following equation BGE= BP/ (BP+BR).  

Bacterial diversity by pyrosequencing  

Samples (500 mL) were filtered sequentially onto 3 µm and 0.22 µm pore size 

polycarbonate filters (Nuclepore). The first filtration was used to eliminate eukaryotes 

from the sample. The 0.22 µm filters were stored at -20°C. For analysis, frozen filters 

were cut with sterilized scissors into small strips and vortexed briefly in 840 mL of 

alkaline lysis buffer (50 mmol L-1 Tris hydrochloride pH 8.3, 40 mmol L-1 EDTA and 

0.75 mol L-1 sucrose). Cell lysis was accomplished by an initial incubation for 45 min at 

37°C after adding 50 mL of freshly prepared lysozyme solution (20 mg mL-1), and a 

second incubation at 55°C for 1 h after adding 100 mL of 10% sodium dodecyl sulfate 

and 10 mL of proteinase K (20 mg mL-1).  
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Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was performed using 

the universal bacterial primers guidelines targeting the V1 to V3 hypervariable regions 

of the bacterial 16S rRNA gene: 27Fmod (5′-AGRGTTTGATCMTGGCTCAG-3′) and 

519r (5′-GWATTACCGCGGCKGCTG-3) as described previously (Dowd and al. 

2008). Initial generation of the sequencing library was accomplished by a one-step PCR 

with a total of 30 cycles using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, 

CA) and amplicons originating and extending from the 27Fmod primer for bacterial 

diversity. Tag-encoded FLX amplicon pyrosequencing analyses were completed using 

the Roche 454 FLX instrument with Titanium reagents, and procedures were performed 

at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) following manufacturer’s 

guidelines.  

Sequences were processed and analyzed using the Mothur software version 1.33 

(Schloss et al. 2009) with default settings excluding sequences <200bp. Sequences were 

denoised using PyroNoise and chimeras were removed using Chimera Slayer (Haas et 

al. 2011). The resulting clean sequences were clustered into operational taxonomic units 

(OTUs) at a 97% sequence identity level using the UCLUST algorithm (Edgar 2010) 

and a representative sequence from each OTU was classified using the Ribosomal 

Database Project (RDP) classifier (Wang et al. 2007) using the SILVA training set. 

Taxonomic identification of the sequence reads (tags) followed the approach by Sogin 

et al. (2006) and Huse et al. (2010). All samples were clustered into OTUs at a distance 

of 0.03 (Ghiglione and Murray 2012). All OTUs and subsequent richness and diversity 

analyses were performed on the randomly re-sampled datasets (5080 sequences by 

sample) using Mothur.  

 

Statistical analyses 

Statistical analysis of treatment effects on chemical and biological parameters were 

performed using a one-way analysis of variance (ANOVA) and post-hoc Tukey tests 

with repeated measures (i.e. microcosms). Statistical analyses were performed using 

XLSTAT 2014.2 software (Addinsoft) and employed an alpha level to 0.05. 

Bacterial community structures were compared using ordination of Bray–Curtis 

similarities and used to build dendrograms by the unweighted-pair group method with 

arithmetic averages (UPGMA). A similarity profile test (SIMPROF, PRIMER 6) was 

performed on a null hypothesis that a specific sub-cluster can be recreated by permuting 
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the entry species and samples. The significant branch (SIMPROF, p <0.05) was used as 

a prerequisite for defining bacterial clusters. Similarity percentage analysis (SIMPER, 

Clarke and Gorley 2006) was performed to identify which individual OTUs contributed 

most to the dissimilarity between grouped samples over-time. 

 

3. Results 

Changes in chemical parameters  

The initial concentration of DOC in the control microcosms was 64.8 ± 5.5 µM (C 

treatment) (Fig. 1a). Microcosms were supplied with different sources of DOM, 

providing respectively 9.5 ± 3.0 µM DOC in the microcosms enriched in amino acids (L 

treatment), 15.5 ± 4 µM DOC in those enriched with riverine DOM (R treatment) and 

26.7 ± 7 µM DOC in the microcosms that have received the combination of both amino 

acids and riverine DOM (LR treatment). After 6 days, DOC concentrations in L, R and 

LR condition showed a significant decrease by 15.6 µM, 5.5 µM and 15.2 µM, 

respectively, whereas DOC remained constant in the controls. During the second period 

(T6 to T42 days), R treatment is the unique condition where a significant DOC 

degradation is observed (-7.4 µM).  

Addition of amino acids and riverine DOM led to a enrichment of DON in L and R 

conditions by 1.4 µM and 5.3 µM, respectively, compared to the C condition where 

DON was undetectable (Fig. 1b). Logically, LR condition showed a slightly higher 

DON concentration (6.3 µM) compared to the L and R conditions. After 6 days, an 

important increase of DON concentration was observed in all conditions, with similar 

concentrations between C and L treatments (17 µM) and between R and LR conditions 

(24 µM). After 42 days, the DON concentrations measured in the different treatments 

were closed to those measured at the start of the experiment. 

The DOP concentrations measured in the different replicates of each treatment were 

much more variable than for DOC and DON due to low concentrations (Fig. 1c). We 

did not observe any significant difference between the treatments over the experiment, 

with the exception of a higher concentration of DOP in L treatment after 6 days 

compared to the other treatments. 
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Figure 1. Changes in dissolved organic carbon (DOC, a), nitrogen (DON, b) and phosphorus 
(DOP, c) concentrations. Mean values ± SD of biological replicates are shown for each time 
point. C: control, L: addition of amino acids, R: addition of riverine DOM, L+R: addition of 
amino acids and riverine DOM. 
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The addition of riverine DOM led to an important increase in NO3- (10 µM) in 

treatments R and LR, whereas NO3- concentration was undetectable in conditions C 

and L (Fig. 2a). NO3- concentration remained high in conditions R and LR during all 

the experiment and a small increase was detectable in conditions C and L (3 µM) at the 

end of the experiment. NO2- remained undetectable at T0 and T6 for all conditions, 

before reaching a high and similar concentration by the end of the experiment in all 

conditions (17 µM) (Fig. 2b). The high concentration of NH4+ measured at T0 for all 

conditions (i.e., 23 µM) came from the enrichment performed (16 µM) and the natural 

concentration present in the coastal water (7 µM) (Fig. 2c). NH4+ was actively 

consumed at the same rate in all conditions and reached 5 µM at T6, and less than 0.1 

µM at T42. The concentration of PO4 was similar for all conditions at T0 (1.3 µM) and 

this was mainly due to the enrichment (i.e., 1 µM) (Fig. 2d). PO4 concentrations 

decreased slightly in all conditions by the end of experiment with the exception of LR.  

 

Figure 2. Changes in nitrates (a), nitrites (b), ammonium (c) and phosphates (d) during the 
incubation experiment. Mean values ± SD of biological replicates are shown for each time 
point. See Fig. 1 legend for the abbreviations C, L, R, LR. 
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CDOM was appreciated by its optical properties of absorbance and fluorescence. The 

addition of riverine DOM led to increasing of absorbance at 350 nm in treatments R and 

LR (0.69-0.74 m-1) compared to the treatments C and L (0.29-0.38 m-1) (data not 

shown). The higher concentration of CDOM in treatments R and LR was always 

observable at T42. Excitations-emission matrices were used to identify major 

fluorophore groups (Fig. S1). The addition of riverine DOM increased the humic peaks 

A, C and M by a factor 4 to 5 compared to the control and L treatments (Fig. 3 a,b,c). 

The fluorescence intensities of humic peaks remained almost constant during the 

experiment underlying the refractory property of these compounds. The addition of 

amino acids (L treatment) and riverine DOM (R treatment) contributed to increase the T 

peak by a factor 3.4 and 1.7, respectively, compared to the C treatment (Fig. 3d). After 6 

days, the T peak decreased in L and LR treatments to reach respectively the values 

measured in the control and the R treatments. No additional changes were observed 

after 42 days. 

 

Figure 3. Changes in normalized fluorescence peaks A (UVC humic-like), C (UVA humic-
like), M (UVA marine humic-like) and T (protein-like) during the incubation experiment. Mean 
values ± SD of biological replicates are shown for each time point. See Fig. 1 legend for the 
abbreviations C, L, R, LR. 
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Changes in bacterial abundance and metabolism 

Bacterial abundance (BA) increased during the first three days in all treatments by a 

factor 1.7 (Fig. 4). At T2, bacterial abundance was slightly but significantly higher in L 

and LR treatments compared to the control and R treatments (ANOVA, p<0.05). BA 

decreased sharply in all treatments between T3 and T6 and was following by an increase 

at T9 in the microcosms enriched in amino acids. Then, it remained almost constant 

until the end of experiment and no significant differences were observed between 

treatments (ANOVA, p>0.05). 

 

Figure 4. Changes in bacterial abundance during the incubation. Mean values ± SD of 
biological replicates are shown for each time point. See Fig. 1 legend for the abbreviations C, L, 
R, LR. 

Discrete measurements of bacterial production (BP) and bacterial respiration (BR) were 

used to calculate the integrated values of both activities on two periods: 0-6 days (5 

measurements) and 6-42 days (6 measurements) (Fig. 5a,b). During the first period, 

integrated BP and BR were similar between C and R treatments (ANOVA, p>0.05). In 

contrast, we measured similar and significantly higher integrated BP and BP in L and 

LR conditions (ANOVA, p<0.05). For those treatments, the values increased by a factor 

1.5 to 1.7 compared to the values measured in the control treatment. During the second 

period, no significant differences were measured between the treatments for both 



 

   

74 Chapter III 

integrated BP and BR (ANOVA, p>0.05). The mean BGE was also calculated for the 

two periods considered (Fig. 5c). The values did not differ between treatments for both 

periods. The values ranged from 14.7% to 19.2% for the first period and from 9.2% to 

14.9% for the second period. When the different treatments were combined, the mean 

BGE values measured during the first period appeared significantly higher than those 

measured during the second period. 

 

 

Figure 5. Changes in bacterial integrated production (a), integrated respiration (b) and bacterial 
growth efficiency (c) during two periods of the experiment. Mean values ± SD of biological 
replicates are shown for each time point. See Fig. 1 legend for the abbreviations C, L, R, LR. 
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Changes in bacterial diversity 

Bacterial diversity was analyzed in duplicate microcosms for each treatment after 6 days 

of incubation (T6) and at the end of the experiment (T42). After trimming and quality 

check a total of 17,3163 partial 16S rRNA gene sequences were obtained, with an 

average of 10,822 (5,774-15,418) sequences per sample. The sequences were clustered 

into a total of 2,105 OTUs at >97% similarity (singletons included) and normalized to 

the number of sequences from the sample with the fewest sequences (i.e., 5,774). 

Hierarchical clustering, based on Bray-Curtis similarities revealed a pattern in which 

bacterial communities were driven first by the sampling time (T0, clusters I and II) and 

then according to the treatments (subclusters Ia, Ib, IIa, IIb) (Fig. 6). Cluster I grouped 

the samples at T6. Within this cluster, treatments C and L (Ia) were clearly separated 

from treatments R and LR (Ib) (40% dissimilarity). A small but significantly difference 

was observed between the treatments R and LR (25% dissimilarity, p<0.05, SIMPROF), 

while treatments C and L were not significantly different (p>0.05, SIMPROF). After 42 

days of incubation (cluster II), treatments L, R and LR grouped together and were 

dissimilar at 60% compared to the controls (p<0.05, SIMPROF). 

 

Figure 6. Unweighted pair group method with arithmetic mean (UPGMA) clustering analysis 
based on Bray-Curtis similarity of 16S rDNA tags. SIMPROF test has been applied to 
branching structure: red lines indicate red branches in which re-arrangement do not differ 
significantly (p >0.05). See Fig. 1 legend for the abbreviations C, L, R, LR. 
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The taxonomic richness estimated by the Chao1 index was high at the beginning of the 

experiment (389), decreased for all conditions at T6 (range: 257-336) and then 

increased at the end of the incubation (range: 341-367) (Table 1). At T6, the richness 

was significantly higher in the treatment LR compared to the other ones (p<0.05). At 

T42, the different treatments did not show any significant differences in richness 

(p>0.05). The diversity, based on the inverse Simpson index, that includes both richness 

and evenness, decreased between T0 and T6 for all treatments. At T6, L treatment 

showed a lower diversity compared to the control, while R and LR treatments showed a 

higher diversity. At T42, no differences in diversity were observed between the 

treatments.  

 

Tab. 1 Richness and diversity indices of bacterial communities calculated on randomly picked 
OTUs normalized to 5774 sequences. Standards deviation between the replicates are shown in 
parentheses. 

 

The bacterial community composition was further investigated by comparing the 

relative abundance of the major phyla and proteobacterial subclasses (Fig. 7). At T0 the 

bacterial community was dominated by Alphaproteobacteria (51%) belonging to the 

clade SAR11, Gammaproteobacteria (29%) and Bacteroidetes (14%). As indicated by 

the clustering of samples (Fig. 6), the major differences observed at T6 were found 

between grouped C and L treatments and grouped R and LR treatments. For the latter 

group, there were more Betaproteobacteria (30%) and less Alphaproteobacteria (35%) 

than in the control and the L treatments (15% and 52%, respectively). At T42 the main 

differences were observed between the enriched microcosms and the control 

microcosms. A high proportion of Actinobacteria (28%) was detected in the control 
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microcosms while this phyla only accounted for less than 2% of total sequences in the 

enriched microcosms. Conversely, there was higher Betaproteobacteria in the enriched 

microcosms (L, R, LR) (30%) compared to the control (10%). We also observed a 

substantially higher proportion of Alphaproteobacteria in the enriched microcosms 

(31%) compared to the control (21%). 

 

 

 

Figure 7. Relative abundance of major bacteria phyla and proteobacteria subclasses expressed 
as the percentage of total sequences obtained in the sample. The results shown are the average 
of the duplicate samples for each treatment and sampling time. See Fig. 1 legend for the 
abbreviations C, L, R, LR. 

To explore the response of the bacterial community to the different treatments at T6, we 

first represented the 720 OTUs at the 3% dissimilarity identified at this sampling time 

on a Venn diagram (Fig. S3). The four treatments, including the control, shared 12.9% 

of these OTUs. Only 1.9% was shared by the three treatments with a DOM enrichment 

(i.e. L, R and LR). When the treatments were compared two-by-two, the treatments C 

and L shared the lowest number of OTUs (16.9%) while the treatments R and LR 

shared the highest number of OTUs (23.0%). Then, we investigated the OTUs that 

responded to the different sources of DOM addition and contributed most to the 

dissimilarities between two different treatments, using the similarity percentage analysis 

(SIMPER). The 24 OTUs explaining more of 50% of dissimilarity between treatments 

and their taxonomic affiliation are represented in the Table 2. The dissimilarity induced 
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by the addition of amino acids was low when C and L treatments and R and LR 

treatments were compared (24.7% and 22.1%, respectively). We also noticed that 

dissimilarity in these cases was distributed in many OTUs, each of them contributed to a 

low percentage in the total dissimilarity. On the contrary, the addition of riverine DOM 

induced a higher percentage of dissimilarity between two conditions from 38.2% to 

43.8%. The changes in bacterial structure induced by the riverine DOM were explained 

mainly by two OTUs. The OTU SAR11 was less abundant in the treatments with 

riverine DOM (R=22.3%, LR =21.0%) compared to the treatments without addition 

(C=37.7%, L=43.7%). On the contrary, OTU OM43 belonging to Methylophilaceae, 

was more abundant after riverine DOM addition (R=30.1% , LR =31.2%) than without 

(C=13.7%, L=16.0%).  
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Tab. 2 SIMPER analysis showing the contribution and taxonomic affiliation of OTUs explaining 50% of the dissimilarity between treatment.  The average abundance of 

OTUs is expressed as the percentage of total sequences obtained for each treatment. The percentages of dissimilarity between two conditions are indicated at the bottom of the 

table. 
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4.Discussion  

 

The aim of this study was to assess the effects of different qualities of DOM in single or 

combined additions on bacterial community activities (BCA) and bacterial community 

composition (BCC). The second objective was to explore the possibility of priming 

effect on the degradation of riverine DOM in presence of easily bioavailable (i.e., free 

amino acids). Riverine DOM was added after aging to ensure that all labile DOM was 

consumed. Riverine DOM was also lyophilized to avoid any changes in salinity in 

microcosms that would be responsible of modifications in bacterial community 

activities (BCA) and/or bacterial community composition (BCC) (Sjöstedt et al. 2012). 

A recent study showed that lyophilization had small effects on DOM composition as 

determined by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-

MS) but these modifications had no effects on the BCA nor the BCC during the 

biodegradation compared to the addition of concentrated riverine DOM by tangential-

flow ultrafiltration (Herleman et al. 2014).  

No evidence of priming effect 

After 42 days of incubation, a substantial part of the riverine DOC was degraded in 

treatment R (19% of the initial value) but no degradation was observable after 6 days 

underlying the semi-labile character of this DOM. In contrast, free amino acids were 

assimilated rapidly during the first 6 days confirming the labile character of these 

molecules. The combination of both DOM sources did not induce higher degradation 

rates of DOC, DON and DOP suggesting that priming effect did not occur in our 

experiment. Analysis of CDOM fluorescence did not revealed any degradation of humic 

substances from the riverine DOM in R and LR treatments, suggesting that these 

molecules are not degradable at the time scale of this experiment even with the presence 

of readily biodegradable DOM.  

Different hypothesis can be proposed to explain the absence of priming effect in our 

study:  

(1) We performed our experiments with the additions of PO4 and NH4 in order to avoid 

any limitation by nitrogen or phosphorus. The concentrations of phosphorus remained 

in excess during the experiment whereas ammonium was completely used (Fig. 2). 

However, the net release of DON at T6 and NO3 and NO2 at T42 suggests that nitrogen 
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was not limiting in the different treatments. For soil microbiologists, the stimulation of 

DOM degradation by the simple addition of inorganic nutrients (especially mineral N) 

is considered as a priming effect (Kuzyakov et al. 2000). Limitation by inorganic 

nutrients has been demonstrated in many marine environments (e.g., Pinhassi et al. 

2006, Ortega-Retuerta et al. 2012, Sebastián and Gasol 2013). In this study, we 

restricted the priming effect to the observation of a stimulation in DOM degradation 

after the addition of labile DOM aside from N and P limitations. However, by supplying 

bacteria with inorganic N and P nutrients, the PE can be reduced. Indeed, when 

available forms of inorganic nutrients are limited, bacteria can invest in the production 

of extracellular enzymes to break down more refractory DOM and liberate N and P 

(“nutrient mining”) (Kuzyalov et al. 2010). 

 (2) The single addition of labile DOM at the beginning of the experiment could be 

insufficient to trigger the PE. According to the DOC concentrations (Fig. 1) and the 

fluorescence properties of DOM (T peak, Fig. 3), free amino acids were completely 

consumed during the first 6 days. In coastal environment, labile DOM is delivered all 

along the phytoplankton bloom and can favor the adaptation of bacteria for degrading 

recalcitrant riverine DOM by fueling continuous energy. Priming effect has been 

previously observed after a single addition of labile DOM (e.g., glucose) in microcosms 

containing freshwater and soils (Guenet et al. 2014). However, in this case the 

concentration of labile DOM added was several magnitudes higher than concentrations 

observed in aquatic ecosystems.  

(3) The addition of labile DOM as dissolved free amino acids (direct substrates) could 

be inadequate to trigger the PE. By adding bioavailable organic substrates requiring 

extracellular enzymes for degradation (e.g., proteins or polysaccharides), the 

simultaneous degradation of riverine DOM degradation would be facilitated. However, 

this hypothesis has not been confirmed in a recent study where proteinous organic 

matter from jellyfish did not favor the degradation of recalcitrant DOM from a coastal 

lagoon during 22 days (Blanchet et al. 2014). 

(4) The presence of residual semi labile riverine DOM in our experiment could have 

interfered with the PE process by delaying the attack of more refractory riverine DOM, 

therefore making inefficient the addition of labile DOM. However, Koch et al. (2014) 

observed that addition of glucose (~170 µM C) in 2 years aged seawater did not 

promote the degradation of background DOC. 
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(5) The use of elemental composition of DOM (i.e., DOC, DON, DOP) and CDOM 

fluorescence proxies could be not sufficiently sensitive to demonstrate the occurrence of 

priming effect. These bulk parameters are exposed to both degradation and production 

processes. Different studies have demonstrated that bacteria can produce refractory 

DOM (Jiao et al. 2010) and fluorescent CDOM (Romera-Castillo et al. 2011). This re-

working of DOM complicates the observation of priming effect (Bengtsson et al. 2014). 
13C or 15N labeled organic molecules have been frequently used for priming effect 

studies in soils and aquatic to follow more precisely the degradation of recalcitrant or 

labile material (Bengtsson et al. 2014, Guenet et al. 2014). This approach offers a high 

sensitivity for tracking the degradation of specific substrates but requires the use of 

model molecules that do not reflect the complexity of natural DOM. 

Bacterial community activities and composition are driven by different DOM qualities  

Changes in microbial metabolic functions driven by changes in community composition 

related to nutrient availability have been reported in several occasions in aquatic 

ecosystems (Cottrel and Kirchman 2000). We reported here an unusual response of the 

bacterial community with a decoupling between the changes observed in BCA and 

BCC. Whereas addition of labile DOM resulted in changes in BCA but not in BCC, the 

addition of riverine DOM resulted in changes in BCC but not in BCA. The combination 

of both DOM resulted in changes in BCA identical to those observed with the labile 

DOM and in BCC identical to those observed with the riverine DOM. 

The stimulation of BCA by amino acids was transient underlying the high lability of 

such molecules. Surprisingly, the bacterial growth efficiency (BGE) remained similar 

between the different conditions tested when higher BGE was expected after addition of 

labile DOM (del Giorgio and Cole, 1998). The lowering of BGE in all treatments in the 

second period of the experiment can be explained by the decrease of the DOM 

bioavailability along the experiment. In contrast to our results, Farjalla et al. (2009) 

observed that bacterial production and respiration were higher in the mixture of fresh 

and accumulated organic matter than expected by the measurements made in single 

substrates cultures. However, the BGE measured in the mixture was not higher in most 

of the cases than the value measured with the single addition of fresh DOM. This 

suggests that when the PE occurs, the additional DOM processed by bacteria is used as 

efficiently as labile DOM. 
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One important point of our experimental design is the addition of DOM on an undiluted 

natural bacterial community. Most of the biodegradation experiments are based on 

regrowth experiments were bacterial assemblage is diluted (e.g., 1:10) in 0.2-µm-

filtered natural water. Generally, the dilution of the bacterial community induces a rapid 

bacterial growth during the first days of incubation and can affect the BCC (Fuchs et al. 

2000). A dominance of Gammaproteobacteria is rapidly observed under these 

conditions due to their high growth rate their ability to exploit DOM when available 

(Fuchs et al. 2000, Sjöstedt et al. 2012, Herleman et al. 2014). Inversely, in our study 

the relative proportion of Gammaproteobacteria tended to decrease during the 

experiment in the controls and none OTUs overwhelmed the others (Fig. 7). By 

maintaining the natural concentrations of bacteria and grazers at the start of the 

experiment, we certainly limited the art factual overgrowth of some opportunistic 

OTUs.  

Surprisingly, BCC was modified by addition of riverine DOM but not by amino acids. 

One consequence of the addition of riverine DOM is the lowering the abundance of 

SAR11 OTUs at T6 (21% in R and LR vs 38% in the control, Table 2). SAR11 is an 

important clade of bacteria that dominates bacterioplankton surface community (Morris 

et al. 2002). 

The second major effect is the increase in the abundance of OM43 OTUs. OM43 is a 

clade of ß-proteobacteria that is commonly found in productive coastal ocean 

ecosystems and freshwater environments (Rappé et al. 2000). The OM43 clade is 

related to Type I methylotrophs of the family Methylophilaceae (Lidstrom, 2001). They 

are aerobic, obligate methylotrophs that cannot oxidize methane, but can use C1 

compounds (methanol, methylamine, formate) as their source of carbon and energy 

(Anthony 1982, Giovanonni et al. 2008, Sowell et al. 2011). The abundance of OM43 

clade is usually low in marine environment, rarely exceeding 2% of cells (Morris et al. 

2006, Sowell et al. 2011). In this study we measured up to 30% OTUs belonging to 

OM43 in the treatments R and LR at T6 when they represented only 13% in the other 

treatments. The bloom of OM43 when riverine DOM was added can be explained by 

high concentrations of C1 compounds naturally present in the Rhone River or produced 

during the storage of the water sample before the lyophilization step (see Material and 

methods). 
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5. Conclusion 

  

We observed in this study that there is no necessary a relationship between BCC and 

BCA changes after the addition of DOM. BCA was influenced by the addition of labile 

DOM (amino acids solution) while BCC was driven by the addition of recalcitrant 

DOM (riverine DOM). We did not observe a change of degradation of the riverine 

DOM upon addition of labile DOM, suggesting that priming effect did not occur in our 

experiments.  More studies that quantitatively assess PE using stable isotope-based 

methods and use different type of DOM are needed to uncover its potential presence in 

aquatic ecosystems.  
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Figure S1. Examples of excitation-Emission spectra for two samples:  T0 (a), T40days (b). The 

A, C, M and T show locations of the respective fluorescence peaks according to Coble, 1986. 

 

 

 

Fig. S2. Rarefaction curves of observed operational taxonomic units (OTU) based on 16S rRNA 

sequences retrieved from the different samples.  
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Figure S3. Venn diagram representing the shared and unique OTUs (97%) for each treatment 

after 6 days of incubation.  

 

 

 

 

 

 

 

 

 

 

 

  



 

   

92 Chapter III 



 

 

93 Experimental studies of priming  effect in coastal environments 

III-2 Effect of marine organic matter lability on marine microbial diversity in a 
Patagonian Fjord 

 

Marine Blanchet1,2, Fabien Joux1,2, Silvio Pantoja3,4, Giovanni Daneri4,5,6, Camila 
Fernandez1,2,3,4,6 
1Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d’Océanographie 
Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France 
2CNRS, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire 
Océanologique, F-66650 Banyuls/mer, France 
3Departamento de Oceanografía, Universidad de Concepción, 4070386 Concepción, 
Chile 
4Centro de Investigación Oceanográfica en el Pacífico Sur-Oriental (COPAS Sur-
Austral), Universidad de Concepción, 4070386Concepción, Chile 
5Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile 
6Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de 
Concepción, 4070386Concepción, Chile 

 

Abstract 

A 50d experiment was setup in a Patagonian fjord (Tortel región, Chilean Patagonia) 

during late summer 2013. Marine samples were amended with phytoplankton-derived 

DOM, river-DOM or a combination of both. Concentrations of DOC decreased around 

20% during the experiment, particularly during the first 25 days in single-amendment 

and control treatments but stayed almost unchanged in the combined DOM amendment 

treatment. Nevertheless, significant differences were detected in microbial community 

structure independently of the DOM source. Overall we did not observe evidence of 

positive priming effect in this study area. However, DOC data suggest a possible 

negative priming effect for the combined DOM source.  

 

 

 

 

 

 



 

   

94 Chapter III 

1. Introduction  
 

The origin and composition of DOM in marine environments can have significant 

effects on its resulting biodegradation products (Obernosterer et al., 1999). As DOM 

composition affects its lability more than DOM size does, cycling of organic 

compounds in the ocean can be strongly related to ambient stoichiometric conditions 

(e.g. limitation) (Pete et al., 2010). Although high molecular weight DOM can be 

rapidly recycled in deep waters, the bulk of DOM is thought to be composed of a 

mixture of DOM with different labilities that nonetheless cycles very slowly (Amon and 

Benner, 1994). 

Among the possible sources of marine DOM, phytoplankton is the most conspicuous, 

and among phytoplankton, diatom-derived DOM can constitute a significant fraction as 

they are the main contributors to global marine primary production. Riverine DOM on 

the other hand, represents an important source of DOC (0.25 x 1015 g C y-1) and 

nutrients for marine waters, although it is often characterized as refractory for microbial 

degradation. Some of the most important factors influencing the quality of riverine 

DOM are land use and algal content compared to vascular plant debris. This can vary 

from 50% of algal production in the Mississippi river to very low rates in the Amazon 

River (Bianchi, 2011).   

A long lasting conundrum of modern biogeochemistry is the 2 fold dichotomy between 

the input of terrestrial POC and the actual buried POC in marine sediments (Hedges and 

Keil, 1995). In terrestrial ecosystem, experiments have examined the addition of labile 

compounds to soils and the resulting release of carbon and nitrogen. This “priming 

effect” (Bingemann et al., 1953; Kuzyakov et al., 2000) has been studied in terrestrial 

ecosystems for more than 50 years. Priming can be “real” (whereby soil OM is 

decomposed) or “apparent” whereby there are changes in microbial biomass turnover 

but no effects on SOC decomposition.  

However, aquatic studies have seldom assessed this issue (Bianchi, 2011). As there is 

increasing interest in unveiling the effect of DOM composition on microbial cycling 

and community structure, the concept of priming effect has been transposed to marine 

environments from terrestrial studies. A rare example of priming in marine sediments 

showed that addition of algal organic carbon OC induced levels of background 
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remineralization by as much as 31% (Turnewitsch et al., 2007; van Nugteren and al., 

2009). Nevertheless, water column priming studies are scarce and only a few data sets 

have been generated in marine sediment.  

Coastal and fjord systems are strongly influenced by riverine inputs of organic matter, 

whether it is of particulate (POM) or dissolved (DOM) origin. Chilean Patagonia is one 

of the main global reserves of freshwater and also one of the most extended fjord areas 

in the world. Freshwater inputs in this region are mainly governed by rivers such as 

Baker and Pascua, rainfall and glaciers (which can have significant influence on local 

oceanographic conditions (Pickard, 1971)). Chilean fjords generally show estuarine 

circulation and oxic conditions, in contrast with other fjord systems in the northern 

hemisphere (Pantoja et al., 2011). Freshwater inputs lead to brackish conditions that can 

oscillate between 1 and 15m in the water column and extend for more than 100 km 

(Calvete and Sobarzo, 2011). In spite of this massive influence, the effect of riverine 

waters on local oceanography and biogeochemical cycles is still poorly understood. On 

the other hand, external sources of carbon (and therefore of DOM) can explain the local 

uncoupling observed in winter between primary production and community respiration 

in Reloncavi channel. Moreover, prokaryotes seem to consume most of 

photosynthetically produced organic matter in this system in spite of small 

phytoplankters dominance reflected in minimal sedimentation rates. Seasonality in 

productivity cycles is also important in Chilean Patagonia, as the timing of 

phytoplankton blooms are controlled by wind patterns and light induced stratification 

(Montero et al., 2011).  

In an attempt to link analytical chemistry, molecular microbiology and bioassays, this 

study aims to contribute to filling the gaps in our knowledge of OM cycling in aquatic 

systems by testing the priming hypothesis in the Chilean Patagonian fjord system. We 

explored the effect of dissolved organic matter on microbial diversity the point of view 

of its lability. We examined the impact of refractory and labile DOM on community 

structure under laboratory conditions and tested the occurrence of priming effect in a 

region highly influenced by river inputs.  
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2. Materials and Methods 

Study area  

Experiments were performed as part of the COPAS SurAustral observation program 

(www.copassuraustral.cl) in March 2013. The study area is the Tortel region in Chilean 

central Patagonia (47.5°S; 74°W; Fig. 1). The study area is influenced by intense fresh 

water input, particularly from the Baker River which has the higher record of water 

volume in Chile (1,133 m s-1) (Pantoja et al., 2011). As most of the Patagonian rivers, 

the Baker River has its sources in the oriental slope of the Andes Mountain and is fed by 

a variety of lakes and ice fields. The Baker River follows the east side of the Northern 

Patagonia Ice Field, and empties into the Baker Channel (closest village Caleta Tortel, 

Fig. 1). The river forms a delta that divides into two major arms, only one of which can 

be navigated. The delta effectively filters freshwater and sediment from the continent 

before it reaches the salty water in the Baker Channel. Even though, its high water input 

influences the marine ecosystems within the fjord with an important source of 

allochthonous (terrestrial) and freshwater organic matter in the first meters of the water 

column. 

 

Fig. 1 Study area in central Patagonia. Station 1 close to the river mouth was used as refractory 
DOM amendment. Station 3 of marine characteristics was sampled for microbial natural 
communities.  

 

http://www.copassuraustral.cl/
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Experimental setup  

The experiment was designed to assess the effect of DOM addition on the utilization of 

DOC and the structure of bacterioplankton community. For doing so, we used river-

DOM and DOM exudates of diatom-cultures as amendment for marine fjord water 

obtained in the study area. Water was retrieved from marine layers (50 L; 100 m depth) 

at station 3 located in the Martinez Channel, between the Baker river mouth and the 

Pacific Ocean (Fig. 1). At each station, a CTD cast was performed and nutrient 

concentrations were determined. After sampling, water for the microcosm experiment 

was transported at in situ temperature to laboratory facilities at the Center for 

Patagonian Research (CIEP) in Coyhaique where the incubation experiments were 

setup. Incubations lasted 50 days in dark, in situ temperature conditions.  

The obtained marine water was filtered by gravity on 25-µm mesh (Nytex). A twelve 

microcosms system was then set up using 5L polycarbonate carboys. Each carboy was 

filled with 4-L of the filtrated sea water and amended with a single or combined DOM 

source as follows (Table 1): Three microcosms received 800 mL of the above-

mentioned DOM originated from the River (“R”). Three microcosms were inoculated 

with DOM coming from the phytoplanktonic culture (“L”), corresponding to the 

addition of 10 µmol L-1 DOC. Three microcosms received the combined addition of 

DOM originated from River and the phytoplanktonic culture (“LR”). Control treatments 

were set with marine water of st 3 with no addition of DOM (“C”).   

The labile DOM amendment was obtained from Skeletonema pseudocostatum cultures 

available at Universidad de Concepcion. Cells were grown in Wayne medium and 

collected at stationary phase. A 2L volume of culture (7.2 x105 cell mL-1) was sonicated 

in subfractions and then filtered through 0.2 µm in order to recover phytoplankton 

DOM and exudates.  An aliquot of resulting DOM was added to two treatments at a 

final concentration of 10 µmol C L-1 (“L” receiving only phytoplankton DOM and “LR” 

receiving a mixture of river and phytoplankton DOM). This amendment of 

phytoplankton-derived DOM was performed twice during the experiment, at T0 and 

after 25 days of incubation. 

The refractory DOM amendment was obtained from a freshwater sample (10 L) 

collected at station 1 (7 m depth), in the estuarine area of Martinez channel, at the Baker 

river mouth (Fig. 1). The sample was filtered through a 0.2-µm using filter capsules 
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(Polycap TC, Whatman). The resulting filtrate was recovered as DOM in a pre-

combusted glass bottle (450°C, 6 h).  An aliquot of resulting DOM was added to two 

treatments at a final concentration of 10 µmol L-1 (“R” receiving only river DOM and 

“LR” receiving a mixture of river and phytoplankton DOM). Incubations lasted 50 days 

in dark conditions, with weekly subsamplings. . 

Table 1. Summary of incubation conditions per treatment during DOM degradation 

experiments. River addition of DOM is reported as %dilution in the sample. 

Phytoplankton DOM addition is reported as DOC concentration amendment.  

 

 

Analytical procedures  

Samples for nutrient determination were filtered through 0.7 µm filters (GF/F) and 

stored frozen in duplicate (-20°C) until laboratory analysis. Concentrations of dissolved 

NO2
-, NO3

-, and PO4
3- were determined using standard colorimetric techniques 

(Grasshoff, 1983). The precision of NO3
- and NO2

-, in terms of coefficient variation, 

was better than ±10% and ± 3%, respectively. Samples for DOC determination were 

filtered through precombusted 0.7 µm filters (GF/F) and fixed with concentrated H3PO4 

25% to pH 2. DOC was analyzed using the high temperature catalytic oxidation 

(HTCO) technique using a Shimadzu TOC-V analyzer (Cauwet, 1994). Samples for 

bacterial abundance determination were fixed with glutaraldehyde (1% final 

concentration) and stored frozen (-20°C). Bacteria were counted by flow cytometry 

after Sybr Green-I staining. High Nucleic Acid (HNA) and low Nucleic Acid (LNA) 

bacteria were discriminated according to their green fluorescence and counted 

separately. The discrimination between HNA and LNA cells has been attributed to 
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different phylogenetic compositions or used as a proxy for active and non-active 

components of the bacterial community (Gasol et al., 1999).  

Bacterial community composition 

Samples (500 ml) were filtered sequentially onto 3-µm and 0.22-µm pore size 

polycarbonate filters (Nuclepore) and stored at -20°C. For analysis, frozen filters were 

cut with sterilized scissors into small strips and vortexed briefly in 840 mL of alkaline 

lysis buffer (50 mM Tris hydrochloride pH 8.3, 40 mM EDTA and 0.75 M sucrose). 

Cell lysis was accomplished by an initial incubation for 45 min at 37°C after adding 50 

mL of freshly prepared lysosyme solution (20 mg ml-1), and a second incubation at 

55°C for 1 h after adding 100 mL of 10% sodium dodecyl sulfate and 10 mL of 

proteinase K (20 mg ml-1).  

The 16S rRNA gene V1-V3 variable region PCR primers 27Fmod (5′-

AGRGTTTGATCMTGGCTCAG-3′) and 16S-4(5′-GCGGCTGCTGGCACG-3′) with 

barcode on the forward primer were used in a 30 cycle PCR (5 cycle used on PCR 

products) using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the 

following conditions: 94°C for 3 min, followed by 28 cycles of 94°C for 30 seconds, 

53°C for 40 seconds and 72°C for 1 min, after which a final elongation step at 72°C for 

5 min was performed. After amplification, PCR products are checked in 2% agarose gel 

to determine the success of amplification and the relative intensity of bands. Multiple 

samples are pooled together (e.g., 100 samples) in equal proportions based on their 

molecular weight and DNA concentrations. Pooled samples are purified using calibrated 

Ampure XP beads. Then the pooled and purified PCR product is used to prepare DNA 

library by following Illumina TruSeq DNA library preparation protocol. Sequencing 

was performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq 

following the manufacturer’s guidelines. 

Sequences were joined and processed and using the Mothur software version 1.33, 

February 2014 (Schloss et al., 2009) and according to the MiSeq standard operating 

procedure with default settings excluding sequences <150bp. Chimeras were removed 

using Chimera Slayer (Haas et al., 2011). The resulting clean sequences were clustered 

into operational taxonomic units (OTUs) at a 97% sequence identity level using the 

UCLUST algorithm (Edgar, 2010) and a representative sequence from each OTU was 

classified using the Ribosomal Database Project (RDP) classifier (Wang et al., 2007) 

http://www.mrdnalab.com/
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using the SILVA training set. Taxonomic identification of the sequence reads (tags) 

followed the approach by (Sogin et al., 2006) and (Huse et al., 2010). All samples were 

randomly resampled to the same size (11,665 sequences per sample) and was performed 

on operational taxonomic unit (OTU) files clustered at a distance of 0.03 (Ghiglione and 

Murray, 2012). 

All OTU and subsequent richness and diversity analyses were performed on the 

randomly re-sampled datasets using Mothur. Bacterial community structures were 

compared using ordination of Bray–Curtis similarities and used to build dendrograms 

by the unweighted-pair group method with arithmetic averages (UPGMA). A similarity 

profile test (SIMPROF, PRIMER 6) was performed on a null hypothesis that a specific 

sub-cluster can be recreated by permuting the entry species and samples. The significant 

branch (SIMPROF, p <0.05) was used as a prerequisite for defining bacterial clusters. 

Similarity percentage analysis (SIMPER, (Clarke and Gorley, 2006)) was performed to 

identify which individual OTUs contributed most to the dissimilarity between grouped 

samples over-time. 

 

3. Results 

Biogeochemical parameters 

Initial oceanographic conditions at st 1 and 3 are reported in Table 2. Station 1 was 

representative of freshwater conditions with a low salinity value compared to marine 

waters. Temperature at 7 m depth was close to 9°C. Nutrient concentrations showed 

NO3 + NO2 values of 4.8 µmol L-1. Station 3 on the other hand was representative of 

marine waters with higher salinity at 100 m depth (37.8). Temperature at that depth was 

8.3°C. Nutrients were consistent in this layer, with NO2+NO3 concentrations close to 21 

µmol L-1 and high NH4 concentrations (0.48 µmol L-1). DON was also high with values 

close to 11 µmol L-1.  
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Table 2. Oceanographic and biogeochemical parameters at 7 m depth of st 3 (natural 

communities receiving DOM amendments) and st 1 (river discharge samples used as DOM 

amendment).   

 

 

Microcosm incubations showed significant variability in terms of DOC concentrations 

(Fig. 2). After amendment (T0), concentrations of DOC were higher in the 

phytoplankton amended treatment compared to control conditions (86.5 µmol L-1 vs 

76.5 µmol L-1). However, low DOC levels in river water led to T0 concentrations below 

in the river amended treatments that were below control conditions (64.1 µmol L-1). 

Because of the mixture of labile and refractory DOM, LR treatment also showed lower 

DOC values than control conditions. These lower values were maintained during the 

first 15 days of incubation. Meanwhile, treatment L showed a variation of 10 to 20% 

compared to control conditions (Fig. 2b). Oligotrophic conditions in treatment LR were 

maintained and represented a deficit of almost 30% of DOC compared to control 

conditions at T15 (Fig. 2b). After 25 days of incubation, DOC concentrations in the 

control and R treatments were low but showed only 10% of difference (52.7 and 48 

µmol L-1 respectively). Treatments L and LR on the other hand showed similar values 

(64.8 and 64.2 µmol L-1, respectively) which were due to a mid-incubation addition of 

phytoplankton DOM (see methods). Values of DOC at T50 were still influenced by the 
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addition of phytoplankton DOM to the L and LR treatments. While DOC concentrations 

remained constant in the control and R treatments compared to T25 (51.8 and 43.9 µmol 

L-1 respectively at T50), addition of Phytoplankton-DOM to L and RL resulted in higher 

concentrations compared to T25 (79.2 and 81.8 µmol L-1). Overall, changes in DOC 

concentrations were stronger at T25 compared to T50.  

 

 

Fig. 2 Changes in dissolved organic carbon A) DOC concentrations and B) % of variability 
compared to control conditions. Values are reported as mean ± SD of biological replicates  (n=3 
for DOC at T25 and T50). 
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DON concentrations were generally lower in control and river treatments compared to 

phytoplankton amended conditions (Fig. 3). Values in the control treatment increased 

between T25 and T50 reaching 21.5 µmol L-1. This was also the case for treatments L 

and LR, which reached 28 and 24 µmol L-1, respectively at T50 although this increase is 

probably due to phytoplankton DOM addition after T25. The lowest DON values were 

observed in treatment R, with a final concentration of 12 µmol L-1 at T50.  

 

Fig. 3 Changes in concentrations of dissolved organic nitrogen (DON) during the experiment. 
Mean ± SD of biological replicates (n=3 for DOC at T25 and T50, n=2 for DON). 

 

A general decreasing trend was observed in the carbon to nitrogen (C:N) ratio in organic 

matter (Table 3). Values decreased from 7 to 1.64 between T0 and T50 in the control 

treatment and from 10.7 to 5.7 in the R treatment. The LR treatment showed a 

decreasing trend going from 5.8 values at T0 to 1.8 at T50. However, no significant 

evolution was observed in the L treatment.  
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Table 3. Evolution of the average C:N ratio calculated from dissolved organic carbon and 

nitrogen for each treatment during the incubation 

 

Microbial abundance and diversity 

Bacterial abundance (Fig. 4) decreased in all treatments during the incubation, reaching 

the lowest levels in treatment R at T25 (~ 2x105 cell ml-1). Although the control 

treatment had higher concentrations at T0, values were almost identical in all treatments 

at T25 (oscillating between 2 and 4 x105 cell mL-1). An increase was observed between 

T25 and T50 to roughly half of the initial abundance values (Fig. 4a). In general, the 

proportion of HNA bacteria was higher than LNA in all samples.  This suggests that the 

variability we observed came mostly from the fraction of bacterioplankton that 

contained viable active cells.   

 

Fig. 4 Bacterial abundance and average cellular characteristics during the experiment. Values 
are reported as total bacterial and abundance of high nucleic acid containing (HNA) and low 
nucleic acid containing (LNA) abundances. Error bars represent the SD for 3 replicates. 
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In order to analyze possible changes in bacterial community composition, we performed 

Illumina Mi Seq on duplicates for each condition at different sampling times (T0, T25 

and T50). After trimming and quality control, we obtained 928,042 partial 16S rRNA 

gene sequences, with an average of 51,557 (15,716-75,208) reads per sample. The 

sequences clustered into a total of 6,643 OTUs at >97% similarity (singletons included) 

and normalized to the number of sequences from the sample with the lowest number of 

sequences (15,716). 

The rarefaction curves did not reach a plateau for all samples (Fig. S1), which suggest 

that our sequencing effort did not cover the entire bacterial diversity. The Chao1 index 

(Table 4), which estimates taxonomic richness, show lower values in the river DOM-

influenced microcosms (L and LR). However the inverse Simpson index estimated at 

T25 shows higher diversity estimates in treatments containing river DOM compared to 

labile DOM (e.g. LR). Interestingly, T50 shows lower richness and diversity values in R 

and LR treatments compared to L and the control. 

 

Table 4. Microbial richness and diversity estimates. The calculations were based on randomly 

picked OTUs normalized to 11,665 sequences. 

 

A hierarchical clustering based on Bray-Curtis similarities for T25 and T50 (Fig. 5 a 

and b) showed a strong influence of the addition of DOM on bacterial community 

structure. The addition of labile and refractory DOM (LR treatment) resulted in changes 

significantly different from community modification observed with the addition of a 

single DOM source regardless of its lability (Fig. 5a). The supplementary DOM 

amendment (phytoplankton exudates after T25) to L and LR treatments did not result in 
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a net impact on bacterial community structure (p>0.05, SIMPROF) and did not show 

significant differences compared to R and control treatments. 

 

 

 

Fig. 5 Unweighted-pair group method with arithmetic mean (UPGMA) dendrogram based on 
Bray–Curtis similarity of DNA 16S Illumina tags at the beginning of the experiment and after 
25 days (a) and 50 days (b)  of incubation. Red branches do not differ significantly (SIMPROF 
test p >0.05). 
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The composition of the bacterial community was further investigated by comparing the 

relative abundance of the main phyla and proteobacterial subclasses (Fig. 6). As seen in 

Figures 5, all treatments showed consistent differences compared to the initial natural 

communities. At the beginning of the experiment (T0) the bacterial community was 

dominated by Gammaproteobacteria (74%), followed by Alphaproteobacteria (10.8%) 

and Betaproteobacteria (5.1%). At T25, the control treatment showed a 30% decrease 

of Gammaproteobacteria while Alphaproteobacteria and Bacteroidetes increased their 

abundances to 30 and 13%, respectively. This trend was maintained at T50. The L 

treatment showed higher abundances of Alphaproteobacteria (up to 48% at T50) 

followed by Actinobacteria (up to 21% at T50) compared to the control. The R 

treatment showed a low contribution from Gammaproteobacteria (14%) compared to 

the control but showed homogeneous abundances of the main groups identified at T25 

and T50 (Gamma, Betaproteobacteria and Bacteroidetes). The combined LR treatment 

showed a closer distribution of the major phyla and proteobacterial subclasses compared 

to the control that R and L. At the end of the experiment, bacterial community structure 

at LR was closer to R than L. Within Alphaproteobacteria, the evolution of groups at 

T25 showed a large contribution of SAR11 and Rhodobacterales in all treatments. At 

T50, we observed more Alphaproteobacteria in treatment L while abundances of 

Rhizobiales and Sphingomonadales were higher in R and LR. Concerning 

Gammaproteobacteria, the abundance of Enterobacteriales and Pseudomonadales was 

higher in treatment L compared to R and control for T25 and T50. Overall, less 

Bacteroidetes were observed in all phytoplankton DOM enriched microcosms.   
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Fig. 6 Relative abundance of major bacteria phyla and Proteobacteria subclasses expressed as 
the percentage of total sequences obtained in the sample. 

 

As changes induced by the single or combined addition of DOM were different over 

time, we investigated the OTUs that responded to the different sources of DOM 

addition and therefore had a higher contribution to dissimilarities between the different 

treatments. We used the similarity percentage analysis (SIMPER), which allows 

identifying the OTUs explaining more than 50% of dissimilarity between treatments 

(Table S2).  

At T25, the dissimilarity between the control and the enriched microcosms was 

enhanced when the two sources of DOM were added in combination (68% 

dissimilarity), confirming the pattern observed in Figure 5. Overall, the differences 

observed were explained by the contribution of OTUs belonging to the subclass 
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Gammaproteobacteria; which had more OTUs in the LR treatment (combined addition) 

compared to the controls and single DOM treatments. Interestingly, the same two OTUs 

belonging to the family Microbacteriaceae explained most of the dissimilarity between 

the treatments L and R and the control but were not observed in the LR treatments. 

At T50 the dissimilarity observed between the L treatment and the control was lower 

(67%) than between the control and R and LR treatments (80% dissimilarity). The 

dissimilarity between the treatments was in part due to the contribution of OTUs 

belonging to the subclass Gammaproteobacteria. In the R and LR treatments, the genus 

Pseudomonas contributed the most to the dissimilarity with the control. Here again, the 

same two OTUs belonging to the family Microbacteriaceae, observed at T25 explained 

most of the dissimilarity between the treatments L and R and the control but were 

absent in the LR treatment. This suggests that those two OTUs were stimulated by the 

addition of single DOM source during all the experiment.   

4. Discussion  

Methodological considerations 

During our experiment, a significant fraction of DOC was consumed during the first 25 

days of incubation. This led to a supplementary amendment of phytoplankton DOM in 

treatments L and LR after the T25 subsampling (equivalent to 10 µmol C L-1). 

However, the evolution of DOC concentrations after this amendment was not 

significant and concentrations stayed constant until the end of the experiment.  

Bacterial abundances also decreased between T0 and T25 but stayed constant between 

T25 and T50. However, diversity measurements showed little repeatability at T50 

between treatments, with distinct groups dominating and significant temporal evolution. 

Caution is therefore required while interpreting results from T50, which might be 

influenced by the extent of the incubation period. We therefore only presented diversity 

dendrograms for T25 and compared them to control and initial conditions. 

Although we are confident that our results represent in situ responses to realistic DOM 

additions, we have to acknowledge the difficulty of characterizing DOM lability in 

natural environments as our limited analytical capacity prevents us from fully assessing 

it in this study. Moreover, DOC concentrations for the combined LR treatment were 

relatively constant during the entire experiment. Based on this, we assume that the 

second DOM addition to L and LR treatments did not represent a significant 
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perturbation to the experiment. We also note that treatments R and LR were exposed to 

lower DOC and nutrient concentrations compared to control and L treatments because 

they received river DOM coming from the Baker River. Nutrient concentrations and 

C:N ratios show that the amendment of Baker river DOM led to oligotrophic conditions 

in terms of DOC at the beginning of the experiment for LR and R.  

The organic C:N ratio values obtained during our experiments also suggest significant 

differences between treatments receiving single and combined DOM sources (Table 3). 

While control and R treatments showed a significant decrease in C:N between T0 and 

T50 (7.01.2 to 3.12.0 and 8.3 4.2 to 4.41.9, respectively), treatments L and LR 

showed a much lower C:N value at T0 (4.42.4 and 51.6, respectively), which 

remained almost unchanged over time (3.81.9 and 5.85.9, respectively at T50). 

Although unexpected, this opens an interesting line of discussion and the possibility of 

observing a negative priming effect in marine environments. 

DOM degradation and its effect on microbial diversity in Patagonian fjords 

In this study we explored the effect of DOM (as assessed by its quality and origin) on 

bacterial diversity and DOM degradation. We also designed our experiments to test the 

priming effect hypothesis in a Patagonian Fjord with high levels of primary production. 

Carbon fixation in the study area was high at the time of sampling, reaching over 18 g C 

m-2 d-1 of primary production rates integrated over the first 20 m depth (Daneri G., 

unpublished data). The stoichiometric conditions of the sampled water parcel at station 

3 revealed a slight limitation by phosphorous (N:P ratio 19.3  10.5 µmol L-1) while 

chlorophyll concentrations in surface waters were high, reaching 6.7 mg Chla m-3 

(Daneri G., unpublished data). 

However, we did not obtain conclusive results on the occurrence of priming effect in 

this fjord system. Although DOC concentrations decreased in all treatments, changes 

observed with riverine DOM addition or phytoplankton addition were not significantly 

different from variations in control conditions (24 µmol L-1 variation in C compared to 

22 and 16 in L and R, respectively).  

Our observations have implications for the ongoing debate on DOM refractability. 

Indeed, it seems that the quality of DOM is not linked to size fraction but to its origin. It 

has been shown that efficient release of DON by small size phytoplankton can be 
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rapidly used by bacteria compared to large size phytoplankton DON (Hasegawa et al., 

2000). In freshwater environments, increasing DOM concentration effectively translate 

into faster degradation rates. Moreover, DOP is more efficiently processed than DON 

and DOC. However, the main activity corresponds to the bioavailable fraction of DOM 

(Lonborg et al., 2009). More importantly, the common assumption of river DOC being 

recalcitrant to degradation has been recently challenged by studies showing high 

bacterial consumption of river DOC or significant lability in high latitude rivers 

(Guillemete and del Giorgio, 2011). Our results seem to agree with such observations, 

although we cannot exclude the occurrence of a negative priming effect at treatments 

receiving a combined DOM amendment. Indeed, DOC concentrations did not show 

significant variability in the LR treatment during the entire incubation time while single 

DOM amendment resulted in decreasing DOC concentrations over time in L and R, at 

least until T25.  

Significant responses were also observed in community structure as a function of the 

origin and availability of DOM added to each microcosms. Interestingly, combined 

DOM sources resulted in severe modifications of microbial community dynamics as 

well as DOC fluxes compared to single-DOM amendments. As a result, treatments with 

single or combined DOM amendment showed significantly different community 

structures as seen in Figures 5 and 6.  

We believe that this features can be due to the response of heterotrophic bacteria to 

phytoplankton DOM, which is well documented and shows increasing bacterial 

production, DOM cycling and cell abundances as a function of phytoplankton DOM 

availability {Obernosterer, 2011 ; Obernosterer, 2008 }. As DOM in marine and 

freshwater environments is a complex mixture of POC and DOC, it implies the use of 

transporter genes and specific enzymatic metabolisms. Studies focusing on DOC 

transporting proteins (i.e., mRNAs) have shown that carboxylic acids, polyamines, and 

lipids are key substrates in the biologically active pool of coastal DOC. Many bacteria 

have genes for DOC components commonly found in DOC such as amino acids, 

whereas other bacteria (e.g., Roseobacter, SAR11, Flavobacteriales, and γ-

Proteobacteria clades) have genes used for specific components of DOC. Moreover, the 

role of Archaea and Bacteria in possible priming effects has been seldom studied and 

was not addressed during our study. However it is an issue that will need to be 

addressed in the future as Crenarchaeota have been shown to be less active in 
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assimilating amino acids and glucose, yet twice as active as bacteria in assimilating 

protein and diatom exudates (Kirchman et al., 2007).  

The priming effect of leached DOC stimulating stable DOC consumption was not 

observed in this study. Overall, priming effect in aquatic ecosystems is currently 

restrained to freshwater systems and/or the use of extremely labile substrate such as 

glucose at somewhat unrealistic concentrations (Hotchkiss et al., 2014). Its occurrence 

in marine environment is not conclusive, as it is the role of stoichiometric conditions n 

modulating its occurrence.  

5. Conclusions and perspectives 

During our experiments, changes in DOM composition translated in significant 

modifications in bacterioplankton community structure. We hypothesize that 

specialization within the bacterioplankton community for specific DOM compounds 

occurs at small time frames and influences carbon turnover for the resident bacterial 

taxa. Also, community dynamics of bacterioplankton can be directly influenced by 

phytoplankton composition (as well as the presence or absence of key grazing groups 

(Ratti et al., 2013) which ultimately determine their capacity for degrading DOM 

compounds. In the case of combined river and phytoplankton DOM, it translated in 

DOC preservation and probably a negative priming effect, which has seldom been 

observed in marine environments.  
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Fig. S1 Rarefaction curves of observed operational taxonomic units (OTUs) based on 16S 

rRNA sequences retrieved from the different samples  
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IV Effect of photodegradation of contrasted dissolved organic matter 
sources on bacterial community activity and diversity 

 

This chapter is composed of a draft presenting preliminary results. 
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1. Introduction  
 

Natural solar radiation, especially ultraviolet radiation (UV-B [280–315 nm], UV-A 

[315–400 nm]), has been found to induce chemical transformations of DOM with the 

production of a variety of photoproducts, including carbon dioxide, carbon monoxide, 

ammonium, phosphate, and numerous LMW organic compounds (Mopper and Kieber 

2002). The light-absorbing fraction of DOM, chromophoric dissolved organic matter 

(CDOM), from both terrestrial and autochthonous origins, is the primary absorber of 

sunlight in aquatic ecosystems and plays an important role for most photochemically 

mediated processes in surface waters (Mopper and Kieber 2002). Although the 

photomineralization to inorganic carbon represents a loss of DOM potentially available 

to the microbial community, organic photoproducts can be re-used by bacteria. The 

photochemical transformations of DOM have contrasting effects on bacterial 

metabolism by modifying the bioavailability of DOM according to the origin and the 

initial chemical composition of DOM (Kieber, 2000). The observed effects of the 

phototransformations of DOM on bacterial growth suggest an increase of lability for 

initially refractory substances whereas phototransformations decrease the lability of 

freshly produced algal carbon (Bertilsson and Tranvik 2000). Bacterial growth and 

bacterial respiration are not necessary modified proportionally by the photochemical 

transformation of DOM inducing a shift in the bacterial growth efficiency (BGE) (see 

Abboudi et al. 2008).  

Besides the metabolic changes induced by DOM phototransformations, different studies 

have reported that DOM phototransformations can induce a modification of the 

bacterial structure by selecting the most responsive species to the DOM photoproducts. 

Judd et al. (2007) firstly observed that sunlight-exposed DOM from lake and stream had 

a positive effect on BP and caused shifts in bacterial community composition (based on 

denaturating gradient gel electrophoresis of bacterial-specific 16S rDNA). Pérez and 

Sommaruga (2007) observed that photodegradation of DOM from different origins 

(lakes, algae, soil) influenced the activity and the composition of the bacterial 

communities (based on fluorescent in situ hybridization), with an increase in the relative 

contribution of Actinobacteria when DOM was pre-exposed to the solar radiation. 

Abboudi et al. (2008) shown that photochemical transformation of DOM from coastal 

lagoon and coastal water induced a shift in the bacterial community as revealed by DNA 

and RNA fingerprints. Piccini et al. (2009) observed a rapid modification of the 
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bacterial community composition from a coastal lagoon in response to the 

photodegradation of CDOM in favour of Alpha and Betaproteobacteria. More recently, 

Paul et al. (2012) demonstrated that bacterial communities of non-irradiated and UV-

irradiated OM from different origins were different and that UV selected for specific 

members of Alphaproteobacteria, Betaproteobacteria and Bacteriodetes. All these 

observations can be initiated by the selection of bacterial species more adapted to the 

use of phototransformed DOM and/or less sensitive to the short-lived reactive oxygen 

species generated during photochemical reaction (Glaeser et al. 2010). These different 

observations underline the importance to determine more precisely which bacterial 

species are stimulated or inhibited by the DOM photodegradation according to its 

origin. 

The objective of this study was to assess the responses of a bacterial community from 

coastal waters to photo-oxidation of DOM with different initial bioreactivity. Changes 

in bacterial abundance, production and diversity were measured in microcosms after the 

addition of DOM previously irradiated or not. We used for the first time in such studies 

the pyrosequencing to explore the changes in microbial diversity. 

2. Materials and Methods 
 

Preparation and irradiation of DOM 

Two different DOM sources were used in two independent experiments.  

Rhône river water (10L) was collected on 5th June 2012 at the Observatory station of the 

Rhône river in Arles (SORA) observatory station which is located near the Compagnie 

Nationale du Rhône (CNR; http://www.cnr.tm.fr/fr/) gauging station using automatic 

samplers installed at the station. The flow rate was 2,190 m3.s-1. River samples were 

filtered through 1.0 µm pore size filter capsule to remove large particles and then 

through 0.2-μm pore-size filter capsule (Polycap TC, Whatman) previously rinsed with 

10% HCl and washed with Milli-Q water. Filtered samples were then distributed into 

two quartz bottles of 4L. All glassware was precombusted (450°C, 6 h) before use. One 

bottle was kept to the dark and the other was exposed to simulated sunlight (see below). 

The algal extract was obtained from a monoculture of Chaetoceros sp. grown in f/2 

medium until the stationary phase. The culture was then sonicated in subfractions and 

then filtered sequentially through 1-µm filter capsule and 0.2-µm and capsule filter 
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(Polycap TC Whatman) previously rinsed with 10% HCl and washed with Milli-Q 

water, in order to recover phytoplankton DOM and exudates.  Filtered samples were 

then distributed into two quartz bottles of 4L previously precombusted (450°C, 6 h). 

One bottle was maintained in the dark and the other was exposed to simulated sunlight 

(see below). 

Samples were exposed during 24 h under a solar simulator Suntest CPS+ (Atlas, 

GmbH) equipped with a 1-kW xenon lamp, giving an optical output irradiance of 328 

W m-2 PAR, 43 W m-2 UV-A and 2.05 W m-2 UV-B as measured with a UV/visible 

spectroradiometer RAMSES (Trios, Germany). Exposure for 24 h at this solar simulator 

intensity corresponds to a natural dose measured during two days in summer at the sea 

surface in the northwestern Mediterranean region (Abboudi et al. 2008). During 

irradiation, the quartz tubes were maintained at 15°C by submersion in a water bath 

connected to a cryothermostat. Before and after sunlight exposure, subsamples were 

collected for DOC and CDOM.  

Biodegradation experiment 

Surface water samples were collected in June 2012 (Rhone experiment) and in July 

2012 (Chaetoceros experiment) from a coastal station in the NW Mediterranean Sea 

(SOLA station, Bay of Banyuls-sur-mer, France [42°29’N, 3°08’E]. Samples were 

filtered by gravity on 25-µm mesh (Nytex) to remove large zooplankton and 

phytoplankton. For each experiment, nine precombusted (450°C, 6 h) glass flasks were 

filled with filtrated seawater and amended with DOM from irradiated or dark 

treatments. For the Rhone experiment, three microcosms received 800-mL (20% final 

volume) of irradiated DOM coming from the Rhone (UV treatments) and three 

microcosms were amended with 800-mL of Rhone DOM maintained in the dark (Dark 

treatments) corresponding in both cases to the addition of 21 µmol.L-1 DOC. The last 

three microcosms received 800-mL Milli-Q water (control treatments). 

For the Chaetoceros experiment, three microcosms received 140-mL (3.5% final 

volume) of irradiated Chaetoceros DOM and three others with 140-mL of dark DOM 

treatment, corresponding to the addition of 20 µmol.L-1 DOC. The last three 

microcosms did not receive any addition (control microcosms). 

All the microcosms were closed with a cellulose stopper to allow passive aeration and 

incubated in the dark at 18°C, under magnetic agitation during 6 to 7 days.  
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Analytical procedures  

Samples for DOC were filtered through 2 precombusted (450°C, 6 h) 25-mm GF/F 

filters, transferred into precombusted glass tubes, poisoned with 85% H3PO4 (final 

pH=2), closed with Teflon lined screw caps and were stored in the dark at room 

temperature until analysis. DOC was analyzed using the high temperature catalytic 

oxidation (HTCO) technique (Cauwet 1994) using a Shimadzu TOC-V analyzer.  

The absorbance and fluorescence properties of CDOM were determined on samples 

filtered through 2 precombusted (450°C, 6 h) 25-mm GF/F filters (Whatman). DOM 

spectra absorption was determined with a Hitachi U-310 spectrophotometer using a 10-

cm cuvette. Absorbance was measured against Milli-Q water as blank. Absorption 

coefficients a λ (m-1) were calculated as a λ=2.303 D/L where D is the absorbance at the 

λ wavelength and L is the path length of the absorbance cell in meter.  

Fluorescence was assessed on a Perkin Elmer LS55 spectrofluometer using a 1-cm 

quartz cuvette. Two different excitation/emission couples were used to characterize 

protein-like (275/340 nm) and humic-like (320/420 nm) compounds. Fluorescence 

intensity was calibrated using the Raman scatter peak of Milli-Q water (Lawaetz and 

Stedmon 2009). 

Bacterial abundance was determined by flow cytometry. Samples (3 mL) were 

preserved with 0.2-µm-filtered formalin (2% final concentration) and stored at -80°C. 

The samples were stained with SYBR Green I (final concentration 0.025% (v/v) of the 

commercial solution; Molecular Probes Inc., OR) for at least 15 min at 20°C in the dark 

and analysed on a flow cytometer (FACScan, Becton Dickinson, San Jose, CA). 

Bacterial production (BP) was measured by 3H-thymidine incorporation applying the 

centrifugation method (Smith and Azam 1992). Samples (1 mL in triplicate) were 

incubated in the dark at 18°C for 1 h with 20 nmol L-1 [3H]-thymidine (specific activity 

83.2 Ci mmole-1, Perkin Elmer).  

 

Bacterial community composition 

Samples (500 mL) were filtered sequentially onto 3 µm and 0.22 µm pore size 

polycarbonate filters (Nuclepore). The 0.22 µm filters were stored at -20°C until 

analysis. For analysis, frozen filters were cut with sterilized scissors into small strips 

and vortexed briefly in 840 mL of alkaline lysis buffer (50 mmol L-1 Tris hydrochloride 

pH 8.3, 40 mmol L-1 EDTA and 0.75 mol L-1 sucrose). Cell lysis was accomplished by 
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an initial incubation for 45 min at 37°C after adding 50 mL of freshly prepared 

lysozyme solution (20 mg mL-1), and a second incubation at 55°C for 1 h after adding 

100 mL of 10% sodium dodecyl sulfate and 10 mL of proteinase K (20 mg mL-1).  

Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) was performed using 

the universal bacterial primers guidelines targeting the V1 to V3 hypervariable regions 

of the bacterial 16S rRNA gene: 27Fmod (5′-AGRGTTTGATCMTGGCTCAG-3′) and 

519r (5′-GWATTACCGCGGCKGCTG-3) as described previously (Dowd et al. 2008). 

Initial generation of the sequencing library was accomplished by a one-step PCR with a 

total of 30 cycles using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) 

and amplicons originating and extending from the 27Fmod primer for bacterial 

diversity. Tag-encoded FLX amplicon pyrosequencing analyses were completed using 

the Roche 454 FLX instrument with Titanium reagents, and procedures were performed 

at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) following manufacturer’s 

guidelines.  

Sequences were processed and analyzed using the Mothur software version 1.33 

following the 454 standard operation procedure (Schloss et al. 2009) with default 

settings. Sequences were denoised using PyroNoise and chimeras were removed using 

Chimera Slayer (Haas et al. 2011). The resulting clean sequences were clustered into 

operational taxonomic units (OTUs) at a 97% sequence identity level using the 

UCLUST algorithm (Edgar 2010) and a representative sequence from each OTU was 

classified using the Ribosomal Database Project (RDP) classifier (Wang et al. 2007) 

using the SILVA training set. Taxonomic identification of the sequence reads (tags) 

followed the approach by Sogin et al. (2006) and Huse et al. (2010) All samples were 

clustered into OTUs at a distance of 0.03 (Ghiglione and Murray 2012). All OTUs and 

subsequent richness and diversity analyses were performed on the randomly re-sampled 

datasets (2,462 sequences by sample for the Rhone experiment and 1,206 for the 

Chaetoceros experiment) using Mothur.  

 

3. Results and discussion 
 

Photochemical transformations of DOM 

Two different types of DOM were exposed under a solar simulator: a riverine DOM 

coming from the Rhone river and a phytoplankton-derived DOM coming from a 
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monoculture of Chaetoceros sp. The initial DOC concentrations were 137 µmol.L-1 for 

the riverine DOM and 800 µmol.L-1 for the phytoplankton-derived DOM. During the 

exposition under the solar simulator we observed a decrease in DOC concentration of   

the phytoplankton-derived DOM of 16% while there was no changes for the riverine 

DOM. This photomineralization showed than ther phytoplankton-derived DOM is more 

photolabile than the riverine DOM (data not shown).  

The absorption spectra of riverine DOM (Fig. 1a) and phytoplanktonic DOM (Fig. 1b) 

showed the presence of dissolved organic compounds absorbing in UV-B (280-315 nm) 

and to a lesser extent in UV-A (315-400 nm). Protein-like and humic-like components 

of DOM were characterized by their fluorescence properties (Fig. 1c, d). The value of 

protein-like components measured at the initial time was more important for the 

phytoplankton derived DOM (0.55 ru) (Fig. 1d) than for the riverine DOM (0.05 ru) 

(Fig. 1b). On the contrary, there were more humic-like compounds in the riverine DOM 

(0.25 ru) than in the phytoplankton DOM (0.18 ru), underlying their different 

composition and bioavailability properties. After 24 h of irradiation, a photobleaching 

occurred in both types of DOM as shown by the decrease in absorption coefficients 

(especially in UV-B) and fluorescence, while there was no significant effect after dark 

treatment (Fig. 1). Irradiation induced a loss of 50% and 71% in absorbance at 350 nm 

for riverine DOM and phytoplankton-derived DOM, respectively. Concerning the 

fluorescent CDOM, the observed decrease was more important for the phytoplankton 

DOM (62% for the CDOM Fluo-Humic like and 88% for the CDOM Fluo-Protein like) 

than for the riverine DOM (29% and 40%, respectively) showing than fluorescent 

CDOM from the phytoplankton DOM was more photolabile than the riverine DOM. 
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Fig. 1 Changes in absorption (a, c) and fluorescence properties (b, d) of riverine DOM (a, b) and 
phytoplankton-derived DOM (c, d) before (T0) and after irradiation (T24 UV) or dark treatment (T24 
dark) (ru=Raman units). Each value represents the mean of three replicates (± standard deviation). 

 

Changes in DOC concentrations during the biodegradations 

The initial concentration of DOC in the control microcosms was 76 ± 2.5 µmol.L-1 for 

the Rhone experiment (Control treatment) (Fig. 2a) and 79.9 ± 0.8 µmol.L-1 for the 

Chaetoceros experiment (Fig. 2b). Microcosms were supplied with different sources of 

DOM, previously irradiated or not, providing almost the same amount of DOC in all the 

enriched microcosms (i.e., 22.2 ± 1.3 µmol.L-1 for the riverine DOM experiment and 24 

± 2.2 µmol.L-1 for the phytoplankton-derived DOM experiment). During the incubation 

there were higher degradation of DOC in the microcosms enriched with DOM (11 

µmol.L-1 and 24 µmol.L-1 for the Rhône and the Chaetoceros experiments, respectively) 

compared to the controls (8 µmol.L-1 and 6.4 µmol.L-1, respectively). However, the 

rates of DOC degradation was the same in the UV and Dark treatments for both 
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experiments. These results show the higher bioavailability property of the 

phytoplankton-derived DOM compared to the riverine DOM. 

 

 

Fig. 2 Dissolved organic carbon (DOC) concentrations during the biodegradation for the experiments 
with the riverine DOM (a) and the phytoplankton-derived DOM (b). Each value represents the mean of 
three replicates (± standard deviation). 

 

Changes in bacterial abundance and metabolism during the biodegradations 

The addition of riverine DOM and phytoplankton-derived DOM led to the stimulation 

of bacterial growth and production during the first days of the experiments compared to 

the controls without DOM addition (Fig. 3). The addition of riverine DOM enhanced 

the bacterial abundance (Fig. 3a) and production (Fig. 3b) by a factor 2 and 3.6, 

respectively during the two first days, without significant changes between the two light 

treatments. After 2 days, a sharp decrease in bacterial abundance was observed in the 

microcosms enriched with riverine DOM, leading to the same value measured in the 

control microcosms at T3. The bacterial production decreased more slowly than 

bacterial abundance in microcosms enriched with DOM, but at the end of the 

experiment the same bacterial production was measured in all the treatments.  

The addition of phytoplankton-derived DOM led also to an increase in bacterial 

abundance and bacterial production compared to the controls after 2 days (Fig. 3c,d). 

However in this case, a significant difference was observed between the two light 

treatments with a lower bacterial abundance for the irradiated DOM compared to the 
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DOM maintained in the dark at T1, T2 and T3. The differences observed between the 

two light treatments indicate a lowering of DOM bioavailability after irradiation that 

can be due to cross-linking, humification and polymerization reactions of labile 

molecules during light exposure (Thomas and Lara 1995, Mopper and Kieber 2002). 

After 2 days, there was a decrease in bacterial abundance and production in microcosms 

enriched with DOM until reaching the values of control microcosms at the end of the 

experiment. 

 

Fig. 3 Changes in bacterial abundance (a,c) and production (b,d) during the biodegradation of the 
riverine DOM (a,b) and the phytoplankton-derived DOM (c,d). Each value represents the mean of three 
replicates (± standard deviation). 

 

Changes in bacterial diversity during the biodegradations 

Bacterial diversity was analyzed in duplicate microcosms except for the initial point in 

the Chaetoceros experiment. Samples were taken at the beginning of the experiment 

and after 3 days for the Chaetoceros experiment and 7 days for the Rhone experiment. 

After trimming and quality control, a total of 83,924 partial 16S rRNA sequences with 

an average of 7,836 sequences per sample (2,462-16,100) were obtained for the Rhone 

experiment and 11,473 sequences with an average of 7,801 (1,206-17,589) per sample 

for the Chaetoceros experiment. The sequences were the clustered into OTUs at >97% 
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similarity and normalized to the respective sample with the fewest sequences (i.e 2,462 

for the Rhone experiment and 1,206 for the Chaetoceros experiment). 

Hierarchical clustering based on Bray-Curtis similarities revealed a pattern in which 

bacterial communities were driven by the DOM enrichment (Fig. 4). In the Rhone 

experiment there was no significant differences between the two light treatments 

(SIMPROF, p>0.05) (Fig. 4a). After 7 days of incubation, UV and Dark treatments 

were clustering together and were dissimilar at 50% to the controls. In the Chaetoceros 

experiment, after 3 days of incubation the controls were clustering with T0 and 

presented high dissimilarity with the treatments (75%) (Fig. 4b). There was a 

significant difference between the two light treatment, showing that the 

photodegradation of phytoplankton-derived DOM had an impact on bacterial 

community structure. 

 

Fig. 4  Dendrograms of similarity based on OTUs table from the 16S rDNA 454-tag sequences 
for control microcosms (C1, C2) and enriched microcosms with (a) DOM from the Rhone river 
and with (b) DOM from Chaetoceros culture previously photodegraded (UV) or not (Dark) after 
0, 3 and 7 days (T0,T3,T7). Clustering is on the basis of a distance matrix computed using the 
Bray–Curtis index of similarity. The dendrogram was inferred with the unweighted pair-group 
average algorithm (UPGMA). Red branches do not differ significantly (SIMPROF test, p 
>0.05). C: control, Dark: microcosms enriched in DOM not photodegraded, UV: micrococosms 
enriched in DOM previously irradiated. 
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The bacterial community composition was investigated by comparing the relative 

abundance of the major phyla and proteobacteria subclasses (Fig. 5). The addition of 

riverine DOM had an impact on bacteria community composition, there was less 

Gammaproteobacteria (19% in the enriched microcosms vs 42% in the controls) and 

more Alphaproteobacteria (52% and 60% for the dark and UV treatment respectively vs 

42% for the controls).  

The addition of phytoplankton-derived DOM had an effect on bacterial community 

composition dependently on the light treatment. There was more Alphaproteobacteria 

(48%) and less Gammaproteobacteria (26%) in the light treatment than in the dark 

treatment (30% and 40%, respectively). Even if no significant in the case of the Rhone 

experiment, it is worth noting than in both cases there was more Alphaproteobacteria in 

the UV treatment, and more particularly members of the genus Roseobacter. Other 

studies have also shown via DNA fingerprint methods that Alphaproteobacteria were 

favoured in presence of photodegraded OM (Piccini et al. 2009, Paul et al. 2012). Those 

groups of bacteria could be less sensitive to the reactive species of oxygen generated 

during the photodegradation or more adapted to use photo-oxidized DOM (Glaeser et al. 

2010). 

 



 

 

131 Chapter IV 

 

Fig 5: Relative abundance of main bacteria phyla and proteobacteria subclasses expressed as the 
percentage of total sequences obtained for each light treatment in the Rhone experiment (a) and 
the Chaetoceros experiment (b).  
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V General discussion and conclusion 

 
V-1 General considerations on the experimental approaches and techniques 

used in my PhD 
 

The overall aim of my thesis was to study how various dissolved organic matter 

(DOM) sources, presenting different bioreactivity characteristics could affect marine 

bacterial communities in their activity (BCA) and composition (BCC). A more specific 

issue of my thesis was to study processes that could enhance the degradation of 

terrestrial recalcitrant DOM such as priming effect and photooxidation (Chapters III and 

IV). These processes are difficult to observe in situ and experimental studies seem more 

adapted to address this question. They require relatively long incubation in order to 

detect significant rates of recalcitrant DOM degradation (week to months for SLDOM) 

(Moran et al. 2000, Herlemann et al. 2014). Moreover, in Chapter II we employed long 

incubation periods in order to reach the complete mineralization of DOC from the 

jellyfish A. aurita and determining the resilience of BCA and BCC after a jellyfish 

bloom. Thus, we carried out several experiments using a batch mode that allows easier 

replicability compared to a mesocosm approach. Microcosms are closed systems with 

no outputs except for gases. The systems used in our experiments were not completely 

closed to allow oxygenation but avoid contamination. Experiments were performed 

under controlled temperature conditions (corresponding to the in situ temperatures) and 

in darkness to avoid the growth of phytoplankton that could bring a supplementary 

source of DOM. Experiments were performed in relatively small volumes (4L in 

Chapters III and IV and 8 L in Chapter II). The medium was not renewed and there is 

consequently a consumption of the nutrients and formation of by-products, which stay 

in the microcosms and can affect BCA and BCC. One of the limits of this approach is 

the “bottle effect”. Generally the bottle effect leads to the increase of bacteria belonging 

to the subclass Gammaproteobacteria even in the unamended conditions (Herlemann et 

al. 2014, Pedler et al. 2014). In our experiments, we inoculated DOM to water 

containing undiluted natural microbial community to avoid dramatic changes in bacteria 

community composition during incubations. The control of bacteria by protozoa and 

virus was maintained in our experiment and can interfere with the response of the 

bacterial community to the DOM addition. 
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We characterized our sources of DOM in the different experiments by their 

concentrations in dissolved organic compounds (DOC, DON, and DOP) and in some 

cases we used their optical properties (CDOM) as a proxy of DOM quality. We are 

aware that those techniques limit our understanding on which fraction of DOM was 

consumed during our experiments. 

V-2 Is there an impact of addition of labile organic matter on the degradation 
of recalcitrant organic matter in aquatic environments? 

 

In terrestrial ecosystems, several studies have shown that the input of labile 

organic matter may enhance or slow down the degradation of recalcitrant soil organic 

matter, causing a positive or negative priming effect (PE), respectively (Kuzyakov 

2002, Guenet et al. 2010). Recently PE has been hypothesised to occur in aquatic 

ecosystems, where it could explain the mystery of the missing terrestrial DOC in the 

ocean. Recent observations in the deep Pacific Ocean have suggested a relatively rapid 

removal of RDOC in the ocean interior and PE was proposed as one of the potential 

phenomena involved (Hansell and Carlson 2013). 

Initially, we studied the impact of an atypical labile DOM source input caused 

by a jellyfish bloom on the degradation of recalcitrant compounds presented in a coastal 

lagoon (Chapter II). Afterwards, in order to uncover the potential occurrence of PE in 

coastal environments under the influence of river discharge (defined as a “hotspot” for 

PE by Bianchi (2011)), we performed two experiments (Chapter III a and b) using 

contrasted riverine DOM as recalcitrant sources. In neither of the above mentioned 

experiments we did detect a positive PE when bioavailable DOM was mixed with 

recalcitrant DOM. Indeed, the combination of DOM did not help the degradation of 

recalcitrant DOM (Mediterranean experiment, Chapter II and III a) or inversely lowered 

the degradation of recalcitrant DOM (i.e. negative PE, fjord experiment, Chapter III b) .  

Over the last few years, several studies have also investigated the potential of PE 

in various aquatic ecosystems. The results and experimental conditions are listed in 

Table V-1. Considering all the results presented in this table, it appears that PE can be 

driven by several factors such as the amount of LDOM and the quality and availability 

of DOM. There is not a straightforward link between the amount of LDOM addition 

and the intensity of PE observed. PE intensity does not increase proportionally with 

increasing LDOM additions (Guenet et al. 2010, Paterson and Sim 2013). In the 



 

 

139 General Discussion and Conclusion 

Mediterranean and fjord experiments we added relatively low LDOM concentrations 

(about 10 µmol C L-1, representing 10% of all the DOC measured at the initial time in 

the microcosms enriched with combined DOM sources) in comparison to the LDOM 

amendments reported in the literature (e.g. few mg.L-1 and up to 120 mg.L-1 of glucose 

in the experiment of Guenet et al. (2014)). Moreover, Attermeyer et al. (2014) observed 

than DOC consumption was not related to the frequency of DOC pulse (phytoplankton 

DOM) during the incubation. Besides the amount, the quality of organic substances 

and their availability to heterotrophic prokaryotes affect the decomposition of DOM 

pools. Complex organic substrates showed stronger PE than direct energy substrates 

such as glucose (Fontaine et al. 2003). Those substrates stimulate the production of 

exoenzymes for their degradation that could be also used to degrade RDOM. In our 

experiments, we used different types of LDOM, such as free amino acids (Chapter III a) 

which were consumed during the first days of the experiment as well as more complex 

substrates such as phytoplankton DOM (Chapter III b) and jellyfish DOM (Chapter II), 

which require the action of exoenzymes. The phytoplankton-derived DOM was not 

efficiently consumed in our experiment, showing that it was more recalcitrant than 

initially thought. In a recent study, Koch et al. (2014) have shown, using a long-term 

laboratory experiments that after 2 years, only 20% of the algal exudate was consumed 

while glucose was quickly degraded. 

Generally, the detection of PE in aquatic studies was, at least partly, driven by 

nutrient addition. Guenet et al. (2014) observed a higher PE in the eutrophic systems 

(high nutrient load) compared to the oligo-mesotrophic systems, and other studies have 

shown that bacterial respiration was enhanced when nutrients and LDOM were added in 

combination (Carlson et al. 2002, Farjalla et al. 2009). Those results are contrasting 

with the results obtained in terrestrial studies where PE occur primarily under nutrient 

limiting conditions (Fontaine et al. 2004, Guenet et al. 2010). It could be explained by 

the high heterogeneity of soils limiting nutrient mobility and presenting microniches 

where carbon and nutrients are quite different (Nunan et al. 2003, Lehmann et al. 2008, 

Guenet et al. 2014). When nutrients are added, microorganisms will preferentially use 

those labile forms and not invest in energetically costly “mining” of the recalcitrant soil 

OM and thereby liberate nutrients stored in this OM (Craine et al. 2007). Generally, 

aquatic and terrestrial OM vary in terms of C:N:P ratios. Soil OM has typically a C:N 

ratio <20 making it a potentially good source of N while recalcitrant aquatic OM pools 

http://link.springer.com/article/10.1007/s10750-013-1635-1/fulltext.html#CR44
http://link.springer.com/article/10.1007/s10750-013-1635-1/fulltext.html#CR36
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tend to be richer in C, limiting N mining as a potential mechanism involved in aquatic 

PE (Grimm 2003; Bengtsson et al. 2014).  

Considering all the experiments and observations done up to now, it appears that there 

is a potential for PE in marine environments but it seems premature for the moment to 

draw a conclusion about its occurrence and its relative importance in aquatic carbon 

budgets. The addition of LDOM such as glucose at high concentrations that do not 

reflect natural conditions may compromise the applicability of previous results.  

It seems necessary to conduct more extensive studies to better understand coastal 

DOM processing. Interesting study sites to detect this phenomenon are the hotspots and 

hot moments defined by Bianchi (2011) where recalcitrant and labile DOM pools meet 

and mix, such as river plumes and upwelling area. Moreover, it appears crucial to use 

labelled substrates and measure DOC consumption by stable-isotope method data to see 

which fraction is consumed upon labile addition. 
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Table V-1: Synthesis of results on changes in RDOC consumption or respiration after addition of LDOM in various aquatic systems. BCC: bacterial 

community composition; PE: priming effect. *: Nutrients added at the start of the biodegradation assays 

Ecosystem Exp 
approach 

Incubation 
time 

RDOM origin LDOM Nutrients
* 

BCC 
analysis 

PE Reference 

Arthrobacter strain 
(isolated from a 
shallow lake) 
 

Fermenter 10 days fulvic acids benzoate No No Yes, co 
metabolism 

de Haan, 1977 

Microbial lacustrine 
community  
(mesotrophic lake) 
 

Microcosm 8-12 h monosubstituted phenols amino acids No No Yes Shimp and 
Pfaender 1985) 

Marine microbial 
community 
(oligotrophic Sargasso 
Sea) 
 

Microcosm 1-2 months refractory compounds 
from the sea 

glucose Yes Yes  PE suggested Carlson et al. 
2002) 

Microbial community 
from a coastal lagoon 
 

Microcosm 5 days  humic substances from 
the lagoon 

aquatic 
macrophyte 
leachate 

Yes No Yes Farjalla et al. 
2009) 

Headwater stream 
microbial community 
 

Microcosm 42 days leaf litter diatoms Yes No Yes Danger et al., 
2013 

Lacustrine microbial 
communities (oligo-
meso and autrophic 
lakes) 
 

Mesocosm 5 weeks refractory compounds 
from lakes 

glucose/acetat
e/cellobiose 

Yes No No Catalan et al., 
2013 

Microbial community 
from a lagoon 
 

Microcosm 5 days  humic substances 
(extracted from 
groundwater upwelling) 

algal extract Yes Yes  Yes Fonte et al., 2013 
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Ecosystem 

 
Exp 
approach 

 
Incubation 
time 

 
 
RDOM 

 
 
LDOM 

 
 

Nutrients 

 
 

BCC 
analysis 

 
 

PE 

 
 
Reference 

Litter-associated 
bacteria (freshwater 
marsh) 
 

Mesocosm 35 days plant litter periphytic 
algal  
exudates 

No No Yes Kuehn, 2013 

Lacustrine microbial 
community (eutrophic 
lake) 

Microcosm 12 days 13C leaf leachate phytoplankton 
DOM and 
exsudates 

Yes Yes  Yes Attermeyer et al. 
2014) 

 
Hyporheic microbial 
community  (biofilm) 
 

 
Microcosm 

 
21 days 

 

13C willow DOM 
 
glucose/algal  
extract 

 
Yes 

 
No 

 
No 

 
Bengtsson et al. 
2014) 

Lacustrine microbial 
community 
 

Microcosm 40 days Soil organic matter 13C glucose Yes No Yes Guenet et al. 
2014) 

Marine microbial 
community (Antarctic) 
 

Microcosm 734 days refractory compounds 
generated by MCP 

13C glucose Yes No No Koch et al. 2014) 

Microbial community 
from a coastal lagoon 
 

Microcosm 22 days refractory compounds 
from the lagoon 

jellyfish DOM No Yes  No This study 
(Chapter II) 

Marine microbial 
community 
(Mediterranean Sea) 
 

Microcosm 42 days riverine DOM amino acids 
solution 

Yes Yes  No This study 
(Chapter IIIa) 

Microbial community 
from a fjord (Chile) 

Microcosm 50 days riverine DOM phytoplankton 
DOM and 
exudates 

No Yes  No This study 
(Chapter IIIb) 
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V- 3 What are the effects of single or combined DOM sources addition on the 
dynamic of the bacterial community composition? 

 

Marine organic DOM is a complex mixture of organic compounds from different 

sources, presenting different chemical composition and reactivity. The role of these 

compounds in supporting bacterial growth or in influencing microbial community 

structure has traditionally been assessed in aquatic literature primarily in microcosms 

experiments by adding model compounds (i.e. glucose, free amino acids) (Pinhassi et al. 

1999, Cottrell and Kirchman 2000, Carlson et al. 2002) or natural DOM (Kirchman et 

al. 2004, Judd et al. 2007).  

In the frame of this thesis, we performed different single or combined additions 

of various natural DOM photooxidized or not, presenting different bioavailability 

characteristics (i.e riverine DOM, phytoplankton-derived DOM) or model of substrate 

(free amino acids). We assessed the impact of these different additions on BCC using 

next generation sequencing techniques: 454 pyrosequencing (Chapters II, III a and IV) 

or MiSeq Illumina (Chapter IIIb). The response of the main bacterial phyla and 

Proteobacteria sub-classes are presented in the Figure V-1. In all cases, we observed 

modifications in BCC compared to the initial community even in the unamended 

microcosms but the effects were more profound in the case of single or combined 

additions. Overall, we observed at a low phylogenetic resolution level, than the bacteria 

presented in the initial community and responding to the different treatments were 

belonging to few phyla and especially to the phyla Bacteroidetes and Proteobacteria 

(Alpha and Gammaproteobacteria mostly). However, the relative abundances of the 

different clades were different depending on the ecosystem and the origin of DOM. In 

the PE experiments, we observed a diminution in the relative abundance of 

Alphaproteobacteria after the addition of riverine DOM but not after the addition of 

amino acids (Mediterranean Sea experiment) or phytoplankton- derived DOM (fjord 

experiment). This diminution was mostly imputed to the clade SAR11 while 

Rhodobacterales order was less affected. Similarly, we identified less bacteria 

belonging to the clade SAR11 after the addition of DOM coming from the diatom 

Chaetoceros or from the jellyfish Aurelia aurita. In the literature, SAR11 has been 

extensively studied due to its important abundance in marine ecosystems (Vergin et al. 

2013). It has been shown that Alphaproteobacteria are important competitors for amino 

acids in the oceans (Cottrell and Kirchman 2000) and that the SAR11 clade dominates 
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amino acid uptake in the upper ocean, especially at low concentration (Alonso-Sáez & 

Gasol 2007, Kujawinski 2011b). Bacteria belonging to the clade SAR11 are classic non 

motile oligotrophs with a minute size and streamlined genome that make them most 

successful in open ocean where nutrients are present at low concentrations (Giovannoni 

et al. 2005, Stocker 2012). On the contrary the members of the Rhodobacterales order 

and more precisely the Roseobacter clade are moderate copiotrophs and have a large 

genome with metabolic flexibility, which allow them to exploit a wide variety of 

compounds under a range of environmental conditions (Moran et al. 2007, Newton et al. 

2010, Seymour 2014). This could explain why the relative abundance of members of 

Rhodobacterales order was less affected after the addition of riverine DOM.  

In the jellyfish and Chaetoceros experiments we observed an important increase 

in the relative abundance of Gammaproteobacteria during the first days of incubation, 

mainly explained by the increase of the Alteromonadales and Vibrionales orders. It has 

been shown that bacteria belonging to these orders are opportunistic. They have the 

ability of surviving at low abundance levels in low nutrient area and blooming when 

favourable rich conditions occur (Yooseph et al. 2010, Nelson & Wear 2014b)). Those 

bacteria have been suggested to be important player in the cycling of LDOM (Nelson & 

Wear 2014b) and could be a reason why we only observed them at a high relative 

abundance at the beginning of the incubation when LDOM is available.   

The majority of marine studies in the literature focused on the influence of DOM 

quality and quantity on BCA and BCC used a single DOM source and did not take 

account the potential interactive effects between compounds coming from different 

sources. To our knowledge, only two studies have assessed the impact of mixed sources 

of DOM on BCC in aquatic ecosystems via fingerprint methods, without identifying 

specific bacterial groups (Fonte et al. 2013, Attermeyer et al. 2014) .  

The addition of combined DOM sources of different origin in the Mediterranean and 

fjord experiments had contrasted effects but had in both cases a greater impact on BCC 

than single source amendments. In the Rhone-Mediterranean Sea experiment (Chapter 

II a), the bacterial diversity and richness, appreciated by the Inverse Simpson and 

Shannon indices respectively, were higher when the DOM sources were added in 

combination. This suggests that a greater diversity of compounds due to a combined 

addition sustain a higher bacterial diversity. The response of BCC was mainly driven by 

the addition of recalcitrant compounds (Rhone River) resulting in an increase in 
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Flavobacteria and bacteria belonging to OM43 (Methylophilales, Betaproteobacteria) 

and a decrease in SAR11 relative abundance. Inversely, addition of LDOM (amino 

acids) led to an increase in Vibrio bacteria (Gammaproteobacteria) that was not 

observed in the microcosm amended in DOM coming from the river. In the case of the 

fjord experiment, we observed than the OTUs responding to the combined amendment 

were different of the OTUs responding to a single DOM addition. This result, associated 

with the fact than DOC was not consumed, suggest that there was chemical interactions 

between the two sources of DOM, leading to a less bioavailability and efficient use of 

DOC by bacteria. 
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 Figure V-2. Major Phyla, Proteobacteria subclasses and specific orders observed in the different studies realized in the thesis. The circle size corresponds to 
the relative average abundance observed. The different sources of DOM added are indicated in italic. C: control, L:  labile DOM, R: recalcitrant DOM, LR:L+R combination, 
Dk: dark treatment, UV: light treatment. The sampling days are indicated for each experiment.
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I.3 V-4 Directions for future research 
 

There are numerous examples of correlation between DOM quality and quantity and 

changes in microbial metabolism and structure in the literature. However we still lack of 

understanding why and in which conditions some compounds become available to bacteria 

uptake. Although there was progress over the last decennia to better define the different DOM 

pools (see part I.1.1), the vast majority of the oceanic DOM pool remains chemically 

uncharacterized and constitute a barrier to improve our understanding of how heterotrophic 

prokaryotes contribute to biogeochemical cycles. This lack of knowledge is an obstacle to better 

understand the type of compounds fuelling bacterial metabolism.  

The introduction of Fourier transform ion cyclotron resonance mass spectrometry 

(FTICR-MS) and more recently Orbitrap mass spectrometers is changing our ability to 

characterize DOM at a molecular level (Koch et al. 2005, Zubarev and Makarov 2013). When 

those techniques are coupled with electrospray ionization they provide the necessary resolution 

to identify chemical formulas of thousands of DOM compounds (between 200 and 2000 Da) in 

a single sample. FTICR-MS can constitute a powerful tool for future research to identify what 

kind of molecules are photo oxidized by UV radiation or consumed by bacteria. For example 

Stubbins et al (2010) irradiated water sample from the Congo River during 57 days and 

performed FTICR-MS before and after irradiation. The fingerprints DOM patterns obtained 

(Fig V-3) has revealed three fractions based on photo-reactivity: the photo-resistant, photo-

labile and photo-produced fractions. This study has shown the preferential removal of common 

tracers of terrestrial DOM such as lignin and a shift in the molecular signature of riverine DOM 

toward a marine DOM signature. This result reveals the difficulty of tracking terrestrial DOM in 

the ocean. 
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Fig V-3: (a) van Krevelen diagram (blue, red and black data indicate molecular 

formulae unique to initial Congo water, photo-bleached and those common to both, 

respectively). Areas assigned as carboxylic-rich alicyclic molecules (CRAM), lignin, tannin, 

lipid, and protein are delineated. (b) Venn diagram of initial and photobleached Congo River 

water. Area of overlap in black indicates the photo-resistant molecular formulae present in both 

samples. The blue area indicates photo-labile formulae unique to the initial sample and the red 

area indicates photoproducts unique to the irradiated sample. Modified from Stubbins et al. 

(2010) 

Several experiments about priming effect has revealed the interest to use stable-

isotope techniques. Some technique such as microautoradiography coupled with 

fluorescent in situ hybridization, secondary-ion mass spectrometry and stable isotope 

probing allow to track the bacteria which could incorporate labelled substrates and 

represent promising approaches to better understand DOM-bacteria interactions. Stable 

isotope probing coupled with 16S rDNA allows to track the incorporation of labelled 
13C or 15N model compounds or more complex substrates (i.e algal extract). Integrate 

studies that include DOM characterization such as FTICR-MS with microbial diversity 

assessment such as stable isotope probing could favorize our understanding of DOM-

prokaryotes interactions and represent a promisingline of research (Kujawinski 2011, 

Carlson and Hansell 2015). Another way to address the prokaryotes-DOM interactions 

is to explore the DOM molecules that prokaryotes are equipped to use or uptake.  This 

can be examined using 1) metagenomics tools to get an overview of the metabolic 

potential by identifiting specific genes or 2) metatranscriptomics and metaproteomics to 

determine which genes are expressed (Kujawinski 2011). 
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Résumé  
En milieu marin, les communautés bactériennes hétérotrophes sont exposées à un 

mélange hétérogène de composés organiques dissous présentant différents degrés de labilité, qui 

peuvent contrôler à la fois leurs activités et leur composition. Dans le cadre de cette thèse, nous 

avons étudié la réponse de communautés bactériennes présentes dans des environnements 

côtiers contrastés à l’ajout simple ou combiné de différentes sources naturelles de matière 

organique dissoute (MOD), préalablement photo oxydée ou non et présentant différentes bio 

réactivités.  

Dans un premier temps, nous avons étudié l’impact d’ajout de MOD labile provenant de 

méduses sur l’activité et la diversité bactériennes d’une communauté d’une lagune côtière 

méditerranéenne. Nous avons observé que la résilience des communautés bactériennes suite à 

cet ajout était plus importante pour les fonctions métaboliques que pour la diversité. Ceci 

suggère que les efflorescences de méduses peuvent entrainer des changements durables de la 

structure des communautés bactériennes en environnement côtier.  

Dans un deuxième temps, nous nous sommes intéressés à la possibilité d’un priming 

effect (accélération de la dégradation bactérienne de la MOD réfractaire en présence de MOD 

labile) en milieu côtier. Des expériences d’ajout simple ou combiné de MOD labile et 

récalcitrante ont été réalisées sur des communautés bactériennes de Mer Méditerranée et d’un 

fjord de Patagonie chilienne. Dans les deux cas, nous avons observé des changements plus 

importants de la composition communautaire bactérienne suite à un ajout combiné. Cependant, 

nous n’avons pas observé une plus forte consommation de MOD récalcitrante suite à l’ajout de 

composés labiles, ce qui suggère que le priming effect n’a pas eu lieu au cours de nos 

expériences. 

Enfin, nous avons étudié l’impact de la photodégradation de différentes sources de 

MOD (i.e. MOD récalcitrante de rivière, MOD labile provenant de phytoplancton) sur l’activité 

et la diversité de communautés bactériennes côtières. Nous avons observé que la 

photodégradation de la MOD issue d’une culture de phytoplancton entrainait à la fois une 

croissance bactérienne plus faible et une modification de la diversité bactérienne en faveur des 

Alphaprotéobactéries. 

Mots clé : matière organique dissoute, environnements côtiers, priming effect, photooxydation 

matière organique, bactéries hétérotophes, biodégradation, diversité bactérienne, 

pyroséquençage 
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Abstract 

Heterotrophic bacterial communities in marine environment are exposed to a 

heterogeneous mixture of dissolved organic compounds with different bioavailability that may 

control both their activities and their composition. In the frame of this thesis, we studied the 

response of different coastal bacterial communities to the single or combined addition of various 

natural dissolved organic matter (DOM) photo-oxidized or not, presenting different 

bioavailability characteristics.  

Firstly, we studied the effects of the addition of highly bioreactive DOM derived from 

jellyfish on bacterial activities and community structure in a Mediterranean coastal lagoon. We 

observed that resilience of the bacterial community after the addition of DOM from the jellyfish 

was higher for metabolic functions than diversity, suggesting that jellyfish blooms can induce 

durable changes in the bacterial community structure in coastal lagoons.  

Secondly, we investigated the occurrence of priming effect (increase in microbial 

degradation of refractory DOM upon the addition of labile DOM) on coastal marine 

environments. Experiments with single or combined additions of recalcitrant and labile DOM 

sources were performed with a Mediterranean and a Patagonian fjord bacterial communities. In 

both cases we observed a greater effect of combined addition on bacterial community 

composition. However we did not observe an increase in recalcitrant DOM degradation of 

recalcitrant DOM following the addition of labile compounds, suggesting that priming effect did 

not occur during our experiments. 

Finally, we studied the impact of contrasted DOM (i.e. recalcitrant riverine DOM, labile 

phytoplankton-derived DOM) photodegradation on coastal bacterial communities activity and 

composition. We observed that photodegradation of phytoplankton-derived DOM led to a lower 

bacterial growth and changes in bacterial community diversity, in favour of 

Alphaproteobacteria.  

Key words:  dissolved organic matter, coastal environments, priming effect organic matter 

photooxydation, heterotrophic bacteria, biodegradation, bacterial diversity, pyrosequencing 

 

 

 


