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1- Introduction  
 

Avec Le développement du Web 2.0, les services de micro-blogging (comme 

Twitter et Sina Weibo) sont devenus les plateformes essentielles pour la 

diffusion d’information en ligne. Ces plateformes permettent les aux 

utilisateurs de suivre d’autres utilisateurs et recevoir les informations qu’ils 

diffusent. Ces informations sont envoyées sous forme de messages courts avec 

une longueur limitée, à 140 caractères par exemple pour Twitter ou Sina 

Weibo, qui sont appelés des « tweet ». Les personnes recevant des tweets 

peuvent les retransmettre, les retweeter à leur propre réseau de suiveurs. Ce 

processus de diffusion de l’information qui est bien différent de l’approche 

classique des médias en ligne ou hors ligne, a un impact important sur les 

habitudes de consommation de contenus des internautes. Ainsi, le mécanisme 

de retweet accélère la diffusion de l’information 

 

Le tremblement de terre dramatique de Mars 2011 illustre très bien ce 

phénomène d’accélération de la propagation d’information. Je présente dans 

la Figure 1, le volume de trafic sur Twitter dans l’heure suivant le tremblement 

de terre. Les lignes de couleurs sont les tweets publiés au Japon et les lignes  

 

Figure 1- Le trafic sur Twitter durant la première heure après le 

tremblement de terre de mars 2011  



blanches sont les réponses à ceux-ci. Juste dans la première heure du 

tremblement de terre, plus de 5000 tweets par minutes seront générés. 

 

L’observation des tendances des mots-clés ainsi que de la popularité des 

recherches sur les outils de recherche sur cette même période montre la 

montée brusque et rapide concomitante de mot clé « Japan Earthquake » dans 

ces deux systèmes de diffusion de l’information (voir Figure 2)  

 

Figure 2-Les tendances sur le mot clé « Japan Earthquake » durant le mois 

de mars 2011 dans Google et sur Twitter 

 

Ainsi, le suivi et l’analyse de la diffusion d’information sur les 

plateformes de microblogging est un outil essentiel dans l’extraction de 

l’opinion publique, pour les systèmes de recommandation et pour 

l’optimisation de la recherche d’information. Ceci est l’objectif principal de 

cette thèse. 

 

 

 



1.1-Principaux défis  

 

L’analyse de la diffusion d’information sur les médias sociaux consiste 

en trois étapes. Dans une première étape, il convient de récupérer un 

ensemble de données représentatif et sans biais de services de microblog. 

Dans une seconde phase, cet ensemble de données est utilisé par le chercheur 

dont les observations aboutissent au développement d’un modèle, 

éventuellement analytique de la diffusion d’information. Finalement ce modèle 

est utilisé afin de créer une application, ce qui finalement l’objectif ultime de 

l’analyse. 

 

Chacune des trois étapes citées plus haut sont la source de défis 

considérables que je décrirais dans la suite : 

 

1. L’échantillonnage des données et plus particulièrement des 

graphes est complexe. Les services de micro-blog attirent un 

nombre croissant d’utilisateur. En Février 2013 il y’avait plus de 

200 millions d’utilisateurs actifs sur Twitter et Sina Weibo a 

rapporté plis de 300 millions d’utilisateurs en Mai 2012. Traiter 

de tels volumes d’utilisateurs et le torrent continu d’information 

qu’ils diffusent est impossible pour le chercheur. De plus les 

sociétés gérant les services de micro-blog sont très rétives à l’idée 

de partager les données relatives à l’utilisation de leurs services. 

Ceci est dû à de nombreux facteurs. D’une part les micro-blogs 

contiennent un volume très important d’information à caractère 

personnel qui ne peuvent se retrouver dans la nature sans 

protection. D’autre part, le la diffusion d’information est dans le 

cœur de la principale source de revenus des services de micro-

blog, c’est à dire la publicité en ligne. Ainsi les informations de ces 

services sont des données sensibles au niveau de leurs activités 

économiques et il y’a un risque de compétition accru à partager 

ces données. En résumé même si le volume d’information était 

gérable et traitable, les considérations relatives au respect des 



informations privées ainsi que le caractère sensible au niveau 

économique des données d’utilisation des micro-blogs, nous 

obligent à toujours considérer que les données que nous avons ne 

sont qu’un échantillon de la globalité de l’activité du service de 

micro-blog et qu’ils convient donc d’y appliquer des précautions 

statistiques classiques comme la représentativité, le biais, etc. 

 

2. L’analyse et la modélisation du processus de propagation est 

aussi complexe. En effet la diffusion d’une information dépend de 

son sujet, de sa qualité, de la topologie des réseaux de diffusions, 

des caractéristiques sociales des utilisateurs. Certains de ces 

éléments sont difficile à intégrer au sein d’un modèle unique, 

consistant et cohérent. De plus l’étude mathématique de ces 

modèles peut être complexe et trouver des résultats analytiques 

qui puissent être utilisé pour dimensionner les réseaux sociaux 

ou interpréter les observations empiriques est un défi à lui seul. 

En effet afin de prendre en compte la complexité des interactions 

dans ces réseaux il convient de s’éloigner des hypothèses 

classiques d’indépendances et d’ajouter des corrélations ou des 

mécanismes ce qui rend les modèles beaucoup plus complexes.  

 

3. L’application et l’utilisation des résultats afin d’aboutir à des 

usages concrets est le dernier défi que nous avons à relever dans 

le cadre de cette thèse. En effet, il existe dans la littérature 

beaucoup de travaux mettant en évidence les interactions entre 

les réseaux sociaux et l’information, l’intérêt des internautes ou 

la popularité des contenus en ligne. Mais la transformation de 

cette relation en un application concrète peut être difficile compte 

tenu du volume d’information à traiter, des contraintes de temps 

réel (ou semi-réel). Ces relations apparaissent fréquemment 

comme des signaux faibles qu’il convient d’amplifier en combinant 

plusieurs sources d’informations ce qui requiert des 



méthodologies de fusion d’informations hétérogènes qui sont 

parfois difficile à manipuler.  

 

1.2- Contributions 

 

Cette thèse présente une analyse globale de la diffusion d’information 

dans les micro-blogs et plus généralement dans les réseaux sociaux. Elle tente 

de répondre à certains des trois défis présentés plus haut. Les contributions 

et innovations présentés dans cette thèse sont les suivantes : 

 

1)- Les deux approches les plus populaires d’échantillonnage de réseaux 

sociaux sont la marche aléatoire de Hasting Metropolis, Metropolis-Hastings 

Random Walk (MHRW), et l’échantillonnage sans biais de graphes dirigés, 

Unbiased Sampling in Directed Social Graph (USDSG). Quand ces deux 

approches sont appliquées aux réseaux sociaux et en particulier à ceux fondés 

sur les micro-blogs, ils génèrent un nombre considérable d’auto-

échantillonnage, i.e., de ré-échantillonnage de nœuds déjà choisi. Ceci réduit 

fortement l’efficacité de ces mécanismes et la qualité de l’échantillonnage. Afin 

de réduire ce problème j’ai développé un modèle de l’échantillonnage sur les 

graphes sous forme de chaîne de Markov et j’en ai déduit les conditions 

nécessaires et suffisantes garantissant un échantillonnage sans biais. Sur la 

base de ces conditions j’ai proposé un nouvel algorithme efficace et sans biais 

qui réduit la probabilité d’auto-échantillonnage des approches MHRW et 

USDSG en distribuant uniformément cette probabilité sur les probabilités de 

transition d’un nœud à l’autre tout en gardant la propriété sans-biais. Ce 

nouveau schéma d’échantillonnage est appelé échantillonnage sans biais avec 

nœuds factice, Unbiased Sampling with Dummy Edges (USDE). L’évaluation 

montre qu’alors que le degré moyen des nœuds échantillonné par MHRW et 

USDSG est 2 à 4 fois plus élevé que le graphe initial, USDE atteint un degré 

moyen très proche tout en évitant les répétitions dans l’échantillonnage. De 

plus le temps d’échantillonnage moyen par nœuds pour USDE est de la moitié 

de celui que nécessite MHRW ou USDSG. Ceci valide l’intérêt d’USDE pour 

l’échantillonnage sans biais des graphes de réseaux sociaux. 



 

2) la seconde contribution de cette thèse vise la modélisation de la diffusion 

d’information dans les réseaux de micro-blogs. Les principaux modèles utilisé 

dans littérature sont le modèle de cascades indépendantes (Independent 

Cascade Model) et le modèle de seuil linéaire (Linear Threshold Model). Ces 

deux modèles ne prennent pas en compte l‘évolution de l’intérêt d’un message 

diffusé sur le réseau social. Ils ne permettent donc pas d’obtenir une bonne 

prédiction de la portée de la diffusion des informations. J’ai développé un 

nouveau modèle fondé sur le modèle classique des arbres de Galton-Watson 

mais qui est modifié afin de prendre en compte l’éphéméralité des messages. 

Ainsi ce modèle prend en compte les trois propriétés importantes expliquant 

la diffusion de l’information dans les réseaux sociaux : l’intérêt intrinsèque de 

l’information et son éphéméralité, la topologie du réseau social et les 

propriétés de la source d’information et des retwetteurs. J’ai validé ce nouveau 

modèle sur des jeux de données issus de Sina Weibo et de Twitter. J’ai observé 

que ce nouveau modèle peut prédire de façon fiable dans plus de 82% des cas 

l’audience d’un message, le nombre de récepteurs qui ont reçu l’information, 

et dans 90% des cas le nombre maximum de retweet dans les arbres de 

diffusions issue des micro-blogs. De plus ce modèle permet d’extraire les 

facteurs endogènes et exogènes qui affectent la popularité des tweets.  

 

3) La troisième contribution de cette thèse pose la question de la relation entre 

la popularité d’un sujet sur les micro-blogs et sur le web. En effet alors que 

les micro-blogs agissent principalement comme des médias de communication 

permettant la diffusion à large échelle d’une information partielle et 

condensée, le web permet d’approfondir cette information, ce qui devrait se 

traduire dans le volume de recherche relatif à celle-ci. De nombreux travaux 

visent à utiliser pour diverses applications cette interaction entre ces deux 

composantes essentielles du cyberespace, eg, la prédiction de cours d’actions 

sur les marchés boursiers. Néanmoins peu d’études complètes ont été mené 

permettant d’évaluer cette interaction et ainsi la plupart des travaux publiés 

dans la littérature apparaissent comme anecdotiques et opportunistes. J’ai 

dans ma thèse effectué une étude approfondie de la corrélation entre la 



popularité des sujets dans les micro-blogs avec les recherches effectuées sur 

le Web. J’ai montré de façon empirique que les tendances dans les micro-blogs 

et sur le web partagent aussi bien au niveau temporel qu’au niveau spatial 

des caractéristiques temporelles. J’ai aussi montré que la croissance d’intérêt 

sur un sujet dans les micro-blogs peut précéder de quelques heures celle sur 

le web. Néanmoins la popularité d’un sujet sur les micro-blogs affiche un plus 

grand niveau de variabilité comparée au web. Ainsi des sujets peuvent 

émerger très rapidement sur les micro-blogs et perdre leur intérêt aussi 

rapidement, tandis que l’inertie dans le web est plus importante. Cette analyse 

ouvre la voie pour la quatrième contribution de cette thèse.  

 

4) Je développe finalement une application de l’analyse précédemment 

présenté, au marketing par le biais des outils de recherche, Search Engine 

Marketing (SEM). En particulier j’ai développé une analyse économique du 

marché d’intermédiaire en SEM. Ces intermédiaires répondent à la demande 

des clients qui souhaitent attirer des internautes sur leurs pages web et sont 

rémunérés pour ceci. A chaque fois qu’une recherche contenant un de ces 

mots-clés est demandé, le site de recherche met aux enchères les 

emplacements publicitaires aux différents acteurs ayant soumis une demande 

et choisi l’annonce publicitaire qui lui garantit le meilleur revenu. Le rôle de 

l’intermédiaire consiste donc à trouver pour son client un ensemble de mots-

clés à même de gagner suffisamment d’enchères tout en dépassant pas un 

budget donné. L’analyse économique montre l’importance pour le revenu de 

l’intermédiaire et pour le viabilité d’une campagne publicitaire du prix par clic 

moyen. L’intermédiaire doit donc trouver des mots-clés qui n’ont pas encore 

attiré l’attention des compétiteurs et dont le prix d’enchères n’est pas encore 

élevé, mais qui ont un potentiel important d’attirer l’attention et d’avoir un 

volume de recherche important. Le fait que la popularité sur les micro-blogs 

devance de quelques jours la croissance de l’intérêt sur les sites de recherche 

apporte une observation intéressante pour les SEMs. Le fait que des mots-clés 

peuvent être détectés sur les micro-blogs avant qu’ils ne deviennent détectable 

par le volume de recherche web, rend possible l’utilisation de ceux-ci comme 

candidats potentiels pour le SEM. Afin d’évaluer l’utilisation de ces mots-clés, 



j’ai développé une méthodologie de constitution et d’évaluation de portefeuilles 

de mots-clés pour le SEM. Cette méthodologie inspirée des techniques 

d’optimisation de portefeuilles d’actions boursières, formalise la balance entre 

profitabilité escomptée d’un portefeuille de mots-clés, et le risque de ne pas 

atteindre les objectifs de la campagne publicitaire ou d’avoir une perte au lieu 

d’un bénéfice réel. J’utilise cette méthodologie pour construire des 

portefeuilles augmentés avec des mots-clés issues de sujets populaires sur les 

micro-blogs et je compare la performance de ces portefeuilles avec celle des 

portefeuilles constitué grâce au techniques courantes. Les résultats montrent 

un bénéfice moyen quatre fois supérieurs à un même niveau de risque pour 

les portefeuilles augmentés que pour les portefeuilles classiques. Cette 

application, de la méthodologie de constitution de portefeuilles et d’évaluation 

de sa performance, montre aussi sa pertinence pour le SEM.  

 

  



2- Echantillonnage sans biais des réseaux sociaux  
 
2.1- Introduction 

La grande taille des réseaux sociaux rend fréquemment impossible une 

observation exhaustive de ceux-ci. L’alternative consiste à obtenir un 

échantillon représentatif du réseau. Cet échantillon doit être représentatif au 

sens que les paramètres statistiques du réseau initial (non échantillonné) 

doivent pouvoir être estimé correctement (sans biais) et avec une erreur 

relativement faible sur l’échantillon obtenu (consistance). L’échantillonnage 

des graphes suit généralement deux approches. Dans une première approche 

on vise l’échantillonnage de liens [77,75], i.e., les liens du graphe sont 

échantillonnés uniformément. La seconde approche vise l’échantillonnage de 

nœuds [32,91,101], i.e., des nœuds du graphe sont échantillonnés 

uniformément. Etant donné que les réseaux sociaux sont plus orientés vers 

les utilisateurs, je ne considère dans cette thèse que la seconde approche.  

  

La qualité d’un échantillon dépend in fine de l’application visée. Ainsi 

par exemple si le but principal est l’estimation des propriétés des nœuds du 

graphe comme la distribution de degré, il n’est pas nécessaire que le graphe 

échantillonné soit connexe [78,79], par contre si nous souhaitons étudier des 

propriétés relatives à la diffusion d’information dans un graphe la connexité 

du graphe échantillonné est primordiale [85,90]. Ainsi une partie importante 

de la littérature sur l’échantillonnage des graphes c’est concentré sur des 

méthodes permettant simultanément d’assurer un échantillonnage sans biais 

et d’obtenir un graphe échantillonné connexe.  

 

Une de ces méthodes les plus citées est la marche aléatoire de 

Métropolis-Hasting (MHRW) [32] et ces variantes [33,72,101]. Cette méthode 

a été initialement conçue pour le réseau social Facebook ou les nœuds se 

connectent plus fréquemment avec d’autres nœuds ayant un nombre similaire 

de voisins. L’intuition derrière la méthode MHRW est d’éviter de choisir des 

nœuds avec un degré très élevé en augmentant explicitement la probabilité de 

choisir un nœud de degré faible durant le processus d’échantillonnage. 



L’application de l’approche MHRW sur les micro-blogs, e.g., Twitter, fait 

apparaître deux limitations principales. Primo, les utilisateurs des micro-blogs 

tendent à suivre certains utilisateurs très populaires avec des degrés de 

connectivité qui sont plus ordre de grandeur plus grand [65,66]. Ainsi les 

nœuds populaires sont connectés à un grand nombre de nœuds de faibles 

degrés. Le mécanisme MHRW sera ainsi rapidement coincé pour de longue 

durée de temps dans des nœuds à faible degré et incapable de trouver de 

nouveaux nœuds. La seconde limitation est liée à la répétition de nœud de 

faible degré dans l’échantillonnage. Alors que ces nœuds ré-échantillonnés 

peuvent être réutilisés dans l’estimation des propriétés topologiques, un nœud 

échantillonné ne comptera qu’une fois dans le contexte de l’étude du 

comportement individuel d’utilisateurs, même si ce nœud a été choisi 

plusieurs fois. En supprimant les répétitions, l’estimation donnée par MHRW 

n’est plus sans biais [33,72,79].  

  

Les deux limitations précédentes sont la principale motivation de mes 

travaux sur l’échantillonnage sans biais des graphes. 

2.2- Modélisation de la marche aléatoire pour l’échantillonnage 

 

Je m’intéresse aux méthodes où l’échantillonnage commence en un point 

initial jouant le rôle de graine. A chaque étape de l’échantillonnage tous les 

voisins d’un nœud échantillonné sont des candidats potentiels pour l’étape 

suivante.  L’échantillonnage se poursuit en suivant un lien des liens suivant 

une règle prédéterminée et en arrivant au nouveau nœud qui peut être 

considéré comme candidat à l’échantillonnage. Un algorithme 

d’échantillonnage peut être considéré comme sans biais si la probabilité de 

visiter chacun des nœuds durant le processus est uniforme. De plus, il est 

souhaitable que le graphe échantillonné soit connecté.  

 La probabilité de choisir un nœud à l’étape T+1 sachant le nœud 

échantillonné à l’instant T ne dépend que de ce dernier nœud et non pas de la 

séquence des nœuds, ce qui signifie que le processus d’échantillonnage peut 

être représenté par une chaîne de Markov dont les états sont le nœuds choisis, 

et la probabilité de transition est la probabilité de passer à d’un nœud à 



 

 

Figure 3: Exemple de chaîne de Markov représentant  

le processus d’échantillonnage 

 

l’autre. Ainsi la probabilité de choisir un nœud est équivalent à la probabilité 

d’état de la chaîne de Markov. Quand la chaîne de Markov est stationnaire, la 

distribution empirique d’état converge asymptotiquement, quand T est 

suffisamment grand, vers une distribution limite stationnaire.  

 Le lemme suivant lie les propriétés du graphe et de la chaîne de Markov 

représentant l’échantillonnage. 

Lemme 1- Si le graphe échantillonné contient au moins un nœud avec un 

coefficient de clustering non nul et une matrice de transition telle 

que  �� �$,& > 0|�&,$ > 0 = 1, alors la chaîne de Markov est ergodique et 

irréductible.  

 Ce lemme permet de prouver le théorème suivant qui donne les 

conditions nécessaires et suffisantes pour qu’un échantillonnage sans biais 

soit possible. 

 

Théorème 1- Si le graphe échantillonné contient au moins un nœud avec un 

coefficient de clustering non nul et une matrice de transition telle 

que  �� �$,& > 0|�&,$ > 0 = 1, alors la condition nécessaire et suffisante pour avoir 

une méthode d’échantillonnage sans biais est la suivante : 

∀� ∈ �, �&,$

0

&12

= 1 

 

 L’existence de nœuds dissasortifs rend difficile la conception 

d’algorithme d’échantillonnage. Ces nœuds ont un degré important et sont 

encerclés de beaucoup de nœuds de degré faible. Dans ce contexte deux 



approches sont applicables afin de valider la condition d’absence de biais 

définie dans le théorème 1. Une première approche, qui est à la base de 

l’intuition de MHRW consiste à laisser l’échantillonneur dans les nœuds de 

faible de degré [32]. La seconde solution consiste à choisir un ensemble de 

nœuds qui ne sont pas des voisins des diassortatifs et de permettre à 

l’échantillonneur de sauter vers ces nœuds [79][78]. Cette approche aboutit à 

un graphe échantillonné contenant de nombreux composants non-connexes 

plutôt qu’un sous-graphe bien connecté.  

 

 L’algorithme de marche aléatoire de Metropolis-Hastings (MHRW) utilise 

une probabilité pour l’échantillonneur d’aller d’un nœud u à son voisin v qui 

est égale à : 

�3,4 =

min
1

�3
,
1

�4
,					if	�	is	a	neighbor	of	�

1 − �3,F
FG3

,							if	� = �

 

 Il est facilement vérifiable que pour chaque deux nœuds voisins u et v 

�3,4 = �4,3 = min
2

HI
,
2

HJ
>0. De plus on peut vérifier que ∀� ∈ �, �&,$

0
&12 =

	 �&,$
0
&12 = 1. Ce qui montre que les conditions du théorème 1 sont remplies et 

que MHRW fourni bien un échantillonnage sans biais. MHRW réussi un 

échantillonnage sans biais au prix du choix répété de nœuds à bas degré.  

 
Fig. 2- Probabilité d’auto-échantillonnage dans MHRW 

 

 



La probabilité d’aller d’un nœud i  à lui même, �$,$, est appelé probabilité 

d’auto-échantillonnage. Cette probabilité dans MHRW est élevée. 

  

Fig 3-Example illustrant l’ajout de liens fictis. 

 

2.2 Echantillonnage sans biais avec liens fictifs 

J’ai développé une nouvelle approche d’échantillonnage appelée USDE. Cette 

approche garde le caractère sans biais de MHRW tout en évitant l’auto-

échantillonnage. USDE atteint cet objectif en ajoutant des liens fictifs au 

graphe. Il est important de considérer que ces liens ne sont pas réellement 

ajoutés au graphe. Ils ne sont considérés que pour l’échantillonnage. 

  

 La figure 3 représente un exemple d’ajout de liens fictifs. Afin que la 

contrainte d’échantillonnage sans biais reste valable il convient de s’assurer 

que le graphe après l’ajout de liens fictifs valide encore les contraintes définies 

par le théorème 1. Ceci est atteint en redistribuant la probabilité d’auto-

échantillonnage d’un nœud sur les nœuds fictifs. Le seul problème est qu’on 

ne connaît pas a priori la probabilité d’auto-échantillonnage d’un nœud avant 

de l’avoir visité. USDE utilise plutôt que cette probabilité une estimation basse 

de celle ci calculée en utilisant seulement les informations des voisins. Cette 

borne basse est égale à : 

��$ =
1

�$
−
1

�4
,							where	�4 > �$

4	∈ M $ ∩0O

 

où S( i ) est l’ensemble des voisins et V ’ est l’ensemble des nœuds visités. 

 

 La performance d’un échantillonnage suivant USDE et celle de MHRW 

sont comparées sur 3 graphes aléatoires, doit l’un est un graphe de Barbell. 

  



 

Fig.4 Ratio du degré moyen obtenu sur le graphe échantillonné par différente 
méthodes d’échantillonnage 

 

(Gb). La figure 4 compare le degré moyen estimé sur les graphes 

échantillonnés par différentes méthodes en représentant le ratio entre le degré 

estimé sur graphe échantillonné et le degré moyen réel mesuré sur la totalité 

du graphe. L’estimation se fait de deux façons. Une première méthode utilise 

les répétitions d’un même nœud dans l’estimation (�Q(�)) et une seconde 

n’utilise pas les répétitions (�3(�)). On peut observer que pour MHRW la valeur 

�3 �  ne converge pas vers la vrai valeur mais que pour USDE cette 

convergence a bien lieu. De plus cette convergence est de 1.5 à 3 fois plus 

rapide pour USDE. 

 

 

Fig.6- Distribution Cumulative Complémentaire du nombre de suivant et de 

suivi estimé sur le graphe échantillonné 

  



3- Modélisation de la diffusion d’information 

dans les microblogs. 

 

1- Le modèle de cascade multiplicative pour les tweets 

Un utilisateur de micro-blog peut suivre un autre utilisateur, i.e., il recevra 

ainsi tous les tweets émis par cet utilisateur. Les mécanismes de microblog 

sont fondés sur le mécanisme de retweet, i.e., un utilisateur choisi de renvoyer 

à toutes les personnes le suivant un message qu’il a reçu. Ce mécanisme 

permet de diffuser l’information dans les microblogs. 

 

 Le processus de retweeting peut être décrit par une cascade 

multiplicative aléatoire. Formellement, un processus de cascade multiplicative 

X( . ) peut être décrit en chaque point k comme une multiplication de n  

variables aléatoires indépendantes et identiquement distribués �2, … ,�V, i.e., 

� � = �2×�Y×…×�V. Supposez que le nombre de nouveaux utilisateurs qui 

retweetent un message à l’étape i  est un coefficient �$ du nombre total de 

personnes qui ont retweeté le message jusqu’à l’étape (i-1). Ainsi le nombre 

total d’utilisateur qui retweetent un message est après n étapes, �V(�), est 

obtenu par : 

�V � = 1 + �2 × 1 + �Y ×…× 1 + �V  

Ce qui est une cascade multiplicative. Le coefficient �$ dépend de deux 

paramètres : la proportion de suivant qui vont retweeter le message à l’étape i 

et le degré sortant, i.e., le nombre de suivant, des personnes retweetant. 

 

 Similairement au théorème de limite centrale pour une somme de 

variable aléatoire, la distribution asymptotique d’une cascade multiplicative 

peut être obtenue et suit une distribution exponentielle étendue (Stretched 

Exponential) [30] : 

� � ≥ � = �
a

b
bc

d

 

où le paramètre c est lié au nombre de cascades, i.e., nombre de variables 

multipliés, m, par la relation suivante � = f

g
 et �h est un paramètre lié à l’échelle  



 

Fig. 7- Calibration d’un modèle exponentiel élargi 

 

du processus [56]. La distribution précédente a une forme qui ressemble 

fortement à une loi de puissance, et pour cette raison elle est fréquemment 

prise par erreur pour cette dernière. Mais il existe un moyen de détecter un 

loi exponentielle élargie. Soit i le rang d’une observation venant d’une 

distribution exponentielle élargie et �$ sa valeur. Si les données sont issues 

d’un distribution exponentielle élargie alors la relation suivante sera validée : 

�$
j = −(�h

j)log � + �2
j 

  

Ainsi, si des observations empiriques suivent la relation log-linéaire 

précédente ont peu raisonnablement considérer qu’elles sont issues d’une 

distribution exponentielle élargie. Je présente dans la Figure 7 la calibration 

du nombre de retweet observé empiriquement dans le réseau de microblogging 

Weibo Sina. La Figure atteste de la qualité de la calibration qui est évalué par 

le biais du �Y	=0.997. Seul les points initiaux de la courbe de suivent pas la 

distribution attendue. Ceci peut être expliqué par l’effet du roi [56], i.e., les 

personnes très populaires sont largement plus populaires qu’attendu. 

 

2- Modèle de Galton-Watson avec extinction 

Le modèle de cascade multiplicative permet de bien décrire le processus de 

retweet, mais il ne donne pas un modèle explicatif permettant d’intégrer des 

paramètres expliquant la diffusion. Dans la suite j’ai développé un modèle 

explicatif plus fin pour ce processus qui prend en compte la topologie du 



réseau de diffusion ainsi que les caractéristiques des contenus diffusés. Ce 

modèle s’inspire du modèle de branchement de Galton-Watson (GW) qui a été 

utilisé pour étudier l’évolution des noms de familles célèbres [76]. Le 

processus GW est un processus de branchement �V  où �V représente le 

nombre d’utilisateurs recevant un tweet particulier par un chemin de n hops 

de retweet. Le processus �V  évolue suivant la formyle de récurrence suivante. 

�h = 1, �Vm2 = �&

op

&12

 

où pour chaque génération n, �& est une séquence de variables aléatoires 

indépendantes et identiquement distribuées de distribution f ( k ), lié à la 

distribution du nombre de suivant d’une personne dans le réseaux de  

microblog. Dans ce cas nous avons : 

� � = 1 − � � H1h + �� � � Hth  

où � est la probabilité qu’un utilisateur recevant un tweet le retweet, et  � �  

est la distribution de degré de du réseau social du microblog, i.e., la 

distribution du nombre de suivant d’une personne dans le réseaux de  

microblog.  

 

 Néanmoins le processus de retweet a une différence principale avec celui 

de Galton-Watson. Alors que le processus GW peut être infini, le processus de 

retweet est fini, et l’intérêt de retweeter un message décroit avec le temps et la 

diffusion s’arrête. Il convient donc d’ajouter au modèle une probabilité 

d’extinction �	qui représente la probabilité que le processus GW se termine 

prématurément à la génération n. Ceci aboutit à la définition d’un processus 

de Galton-Watson avec extinction (Galton-Watson with Killing, GWK). 

  

 Un processus GWK peut être étudié par les méthodes classiques 

d’analyse des arbres de GW. En particulier la fonction génératrice de 

probabilité de �V peut être calculé récursivement  par la relation suivante : 

�Vm2 � = 	�V �(�) , où �(�) est la fonction génératrice de probabilité du 

nombre de suivant dans un réseau de diffusion. Quand une probabilité 

d’extinction est ajouté le la fonction génératrice devient : 



�x � = �y �

z

V12

�(1 − �)V 

Le nombre moyen de personne recevant le tweet (�) peut être estimé grâce à 

la relation suivante : 

� =
��

1 − � + ��
 

si �} = �� < 1, où � est la probabilité de retweet et � le nombre moyen de 

suivant des personnes ayant retweeté le message. Une analyse asymptotique 

de la queue de la distribution du nombre de personnes ayant reçu le message 

prédit que cette queue suivra une loi de puissance avec un exposant égal à : 

1 −
log 1 − �

log �
 

  

 

Figure 8- le nombre d’utilisateurs recevant un message par rapport au 

nombre d’utilisateurs prédit par un modèle de GW (à gauche) et un modèle 

GWK (à droite). 

 

Le modèle GWK peut être évalué. Je présente dans la Figure 8 le nombre 

d’utilisateurs recevant un message par rapport au nombre d’utilisateurs 

prédit par un modèle de GW (à gauche) et un modèle GWT (à droite). La figure 

montre bien l’impact du paramètre d’extinction sur la qualité de l’estimation.  

 

 



 

Fig. 9 Popularité d’un tweet en fonction de µ mesuré sur Twitter et sur 

Weibo  

 

Le modèle peut être utilisé pour prédire la popularité d’un tweet. Je 

présente dans la figure 9 la relation entre le paramètre µ et la popularité 

mesuré en terme de nombre de personnes recevant le message. La figure 

montre que tous les tweets populaire sont concentrés autour des valeurs de 

µ=1. Ce qui montre que les ingrédients d’une large diffusion d’un tweet se 

trouvent à la croisée d’une probabilité de retweet importante, i.e., d’un intérêt 

intrinsèque du tweet, et d’un bon réseau de diffusion avec des utilisateurs 

ayant un nombre moyen de suivant important mais pas trop grand (ce qui 

aboutirait à un µ largement supérieur à 1). 
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Abstract

Microblog service (such as Twitter and Sina Weibo) has become an important plat-
form for Internet content sharing, leading to a new way of online information difusion
which is diferent from the traditional Word-of-Mouth spreading. As the information
in Microblog is used widely in public opinion mining, viral marketing and political
campaigns, understanding mechanisms describing how information difuses over Mi-
croblogs, and explaining how some tweets become popular, are meaningful in order
to analyze the evolution of this new social medium in the future.

The analysis of the information difusion model in Microblog involves the data col-
lection from Microblog, the modeling on information spreading and the applications
of the model. At irst, it is hard for researchers to get and deal with the complete
dataset of Microblog, given the huge amount of data. Therefore, how to design an
eicient and unbiased sampling algorithm for Microblog is essential. Besides, the
retweeting process in Microblog is complicated which is relative to the ephemerality
of information quality, the topology of Microblog network and the features of pub-
lisher and retweeters (such as number of followers). As a result, the two traditional
models of information difusion, Independent Cascades model and Linear Threshold
model, can not describe the retweeting process in Microblog accurately. Given this
fact, the analysis and design of a new model to characterize the information difusion
in Microblog is necessary. Finally, the comprehensive description of the correlation
between the information difusion in Microblog and the searching trends of keywords
on search engines is lacked although some work has been found this relationship pre-
liminarily. The application prospect on web of the information difusion model is still
unclear.

This work makes a complete analysis of information difusion in Microblog from
these three aspects accordingly. To sum up, the contributions and innovations of the
work are as follows:

1)The two popular unbiased Online Social Network (OSN) sampling algorithms,
Metropolis-Hastings Random Walk (MHRW) and Unbiased Sampling method for
Directed Social Graph (USDSG), are likely to yield considerable self-sampling prob-

3



abilities when they are used in Microblog where the local disassortativity is obvious,
sufering from ineiciency and low quality of samples. To solve this problem, this work
models the process of OSN sampling as a Markov process and deduces the necessary
and suicient condition of unbiased sampling. Based on this unbiased condition, the
work proposes an efective and unbiased sampling algorithms, Unbiased Sampling
method with Dummy Edges (USDE), which reduces the self-sampling probabilities
of MHRW and USDSG by amortizing such probabilities to the moving probabilities
between diferent nodes uniformly while keeping the unbiased condition. The results
of experiments demonstrate that the average node degree of samples of MHRW and
USDSG is 2 - 4 times as high as the ground truth while USDE can provide the approx-
imation of ground truth when the sampling repetitions are removed. In the aspect
of sampling eiciency, the average sampling time per node in USDE is only a half of
the one in MHRW and USDSG.

2)This work targets at the shortages of Independent Cascades (IC) model and
Linear Threshold (LT) model in characterizing the retweeting process in Microblog
and introduces a Galton Watson with Killing (GWK) model which considers all the
three important factors including the ephemerality of information quality, the topol-
ogy of network and the features of publisher and retweeters accurately. The work
validates the applicability of GWK model over two datasets from Sina Weibo and
Twitter and the results show that GWK model can it 82% numbers of receivers of
information and 90% maximum numbers of hops in the real retweeting process. Be-
sides, the GWK model is useful for revealing the endogenous and exogenous factors
which afect the popularity of tweets.

3)The work makes a comprehensive analysis of the correlation between the pop-
ularity and trendiness of topics in Microblog and the search trends on search en-
gines. The results show that individual topics in Twitter and in the web share similar
trending patterns both from the temporal and the spatial aspects. Nevertheless, the
trendiness in Twitter can precede for a few hours and is highly unstable compared to
the one in web. These features indicate the likelihood that the topics in Microblog
can be used as superior adwords in Search Engine Marketing (SEM).

4)Motivated by the correlation between the popularity and trendiness of topics
in Microblog and the search trends on search engines, the work makes an economic
analysis of the market involving a third-party ad broker, which is a popular market in
current SEM, and inds that the adwords augmenting strategy with the trending and
popular topics in Twitter enables the broker to achieve, on average, four folds larger
return on investment than with a non-augmented strategy, while still maintaining the
same level of risk.

Thesis Supervisor: Kavé Salamatian, Mohamed-Ali Kaafar and Gaogang Xie
Title: Professor
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Chapter 1

Introduction

1.1 Motivation and Background

As the development of technologies on WEB 2.0, Microblog service (such as Twitter

and Sina Weibo) has been becoming a crucial platform for online information sharing.

In Microblog, users can follow any others and post their messages, called tweets,

the size of which is limited (to 140 characters in case of Sina Weibo and Twitter).

Followers in Microblog services can retweet some of the tweets received from their

followings and these retweets can be seen by their own followers. The features of

Microblog services lead to a new pattern of online information difusion which is quite

diferent with the traditional word-of-mouth spreading and have a great inluence on

the pattern of web access and Internet resources discovery.

At irst, the retweeting mechanism of Microblog accelerates the information prop-

agation recently. Figure 1-1 shows the relative traic in Twitter in one hour after the

“East Japan Earthquake” where the colorful lines represent the relative tweets pub-

lished from Japan and the white ones are the replies of these tweets[98]. In only one

hour, there are more than 5,000 relative tweets generated in Twitter every minutes.

Besides, the correlation between the trends of information difusion in Microblog

(which is the representative service for information sharing in WEB2.0) and search

engines (which is the traditional platform for information acquisition in WEB1.0)

becomes more and more signiicant. Figure 1-2 depicts the popularity trends of topic
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Figure 1-1: The relative traic in Twitter in one hour after “Japan Earthquake”[98]

“Japan Earthquake” in Google and in Twitter in March,2011 respectively[40][95]. It is

easy to ind that this topic in Twitter and in Google shares similar trending patterns

in the same period.

Figure 1-2: The trends of “Japan Earthquake” in Google and in Twitter in March,
2011[40][95]

These features make the analysis of information difusion in Microblog meaningful

in public opinion mining, online recommendation and the optimization of Search En-

gine Marketing (SEM), therefore, the study of information propagation in Microblog
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has been becoming the attractive ield among the OSN researches recently.

1.2 Research objectives

There are three steps to analyze the information difusion in Microblog. At irst,

researchers should collect a representative and unbiased dataset from the Microblog

services. And then, based on the collected dataset, the researchers observe the char-

acters of the information difusion in Microblog and ind an appropriate mathematical

model to describe the process of information spreading. Finally, to ind the appli-

cation of the information difusion model in the evolution of Internet is necessary.

However, there are lots of challenges in each of the three steps:

1)Sampling the data: Microblog services have become more and more large-scaled.

There are over 200 million active users in Twitter as of Feb. 2013 [107] and the

number of users in Sina Weibo, the largest Chinese Microblog service, has reached

300 million up to May. 2012 [86]. While using complete datasets provided by the

oicial companies results the best results, it is hard for researchers to get such datasets

as most companies are reluctant to share their data in order to protect users’ privacy.

Besides, it may require unreasonable time to calculate the results, given the huge

amount of data. Thus, an efective and accurate sampling method is necessary.

2)Analyzing and modeling: Unlike the traditional word-of-mouth pattern, the

information difusion in Microblog is a complicated process which is related to the

quality of topics, topology of network and the social features of users. However,

the pervious models of information difusion such as IC model and LT model can’t

describe this process exactly and a new appropriate model is essential for researches.

3)Applying the model: The social nature of the Web 2.0 leads to new patterns

of web access and Internet resources discovery. Although there are several studies

addressed the interaction between online social media and the popularity of online

digital content, the relationship that might exist between online information difusion

in Microblogs and web interest has been overlooked, i.e. how to apply the model of

online information difusion to the traditional web platform (specially, search engines)
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should be explored carefully.

1.3 Contributions

This work makes a comprehensive analysis of information difusion in Microblog from

these three aspects accordingly. To sum up, the contributions and innovations of the

work are as follows:

1)The two popular unbiased OSN sampling algorithms, MHRW and USDSG, are

likely to yield considerable self-sampling probabilities when they are used in Microblog

where the local disassortativity is obvious, sufering from ineiciency and low quality

of samples. To solve this problem, this work models the process of OSN sampling

as a Markov process and deduces the necessary and suicient condition of unbiased

sampling. Based on this unbiased condition, the work proposes an efective and

unbiased sampling algorithms USDE, which reduces the self-sampling probabilities

of MHRW and USDSG by amortizing such probabilities to the moving probabilities

between diferent nodes uniformly while keeping the unbiased condition. The results

of experiments demonstrate that the average node degree of samples generated by

MHRW and USDSG is 2 - 4 times as high as the ground truth while USDE can provide

the approximation of ground truth when the sampling repetitions are removed. In

the aspect of sampling eiciency, the average sampling time per node in USDE is only

a half of the one in MHRW and USDSG.

2)This work targets at the shortages of IC model and LT model in characterizing

the retweeting process in Microblog and introduces a GWK model which considers

all the three important factors including the ephemerality of information quality, the

topology of network and the features of publisher and retweeters accurately. The

work validates the applicability of GWK model over two datasets from Sina Weibo

and Twitter and the results show that GWK model can it 82% numbers of receivers

of information and 90% maximum numbers of hops in the real retweeting process.

Besides, the GWK model is useful for revealing the endogenous and exogenous factors

which afect the popularity of tweets.
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3)The work analyzes the correlation between the popularity and trendiness of

topics in Microblog and the search trends on search engines. The results show that

individual topics in Twitter and in the web share similar trending patterns both from

the temporal and the spatial aspects. Nevertheless, the trendiness in Twitter can

precede for a few hours and is highly unstable compared to the one in web. These

features indicate the likelihood that the topics in Microblog can be used as superior

adwords in Search Engine Marketing (SEM).

4)Motivated by the correlation between the popularity and trendiness of topics

in Microblog and the search trends on search engines, the work makes an economic

analysis of the market involving a third-party ad broker, which is a popular market in

current SEM, and inds that the adwords-augmented strategy with the trending and

popular topics in Twitter enables the broker to achieve, on average, four folds larger

return on investment than with a non-augmented strategy, while still maintaining the

same level of risk.

1.4 Structure

The structure of this paper is as follows: chapter 2 derives the suicient and neces-

sary condition of unbiased sampling and proposes an efective and unbiased sampling

method based on the unbiased condition to collect the Microblog dataset. Chapter 3

analyzes the features of information difusion in Microblog, and introduces a Galton-

Watson-based explicative model to describe the process of information spreading.

And then chapter 4 checks the correlation between the information difusion in Mi-

croblog and web interests, and based on the correlation discovered in chapter 4, the

potential of information in Microblog in optimization of SEM is explored. Finally,

the work is concluded in chapter 6.
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Chapter 2

Unbiased Sampling Analysis

2.1 Motivation

Social media systems have gained tremendous popularity in the past few years. For

example, Twitter, the world’s largest Microblog service, has around 200 million active

users by Feb. 2013 [107]. Sina Weibo, the largest Chinese Microblog website, has

more than 300 million registered users as of May. 2012 [86].

Users in social media systems are allowed to follow or subscribe to others. There-

fore, users in a system form a network, where vertices are users and edges represent

the following or subscription relationships. Given the importance of content sharing

and information difusion in social media systems [18][6][69][58], there have been great

interests in analyzing these networks. However, the huge size of such networks makes

it very hard to get a snapshot of the complete network and the alternative is to obtain

representative or “unbiased” samples.

Generally, there are two measures of “unbiased” for a sample. One emphasizes on

unbiased sampling on edges [79][77], i.e. individual edges are sampled with uniform

probability. Such samples could provide unbiased estimations of global characteris-

tics on edges (e.g. global clustering coeicient). The other one on the other hand

emphasizes on unbiased sampling on nodes [34][93][104], i.e. individual nodes can be

sampled with uniform probability. Since online social media systems are more user-

centric, this work considers the second measure, i.e. unbiased sampling on nodes.

23



A representative sample can be used either to estimate the topological charac-

teristics (e.g. node degree), or to provide unbiased and well-connected subgraphs

as a basis for the long-term information propagation and user behavior analysis, or

even both. Indeed, a real unbiased and well-connected subgraph is not necessary if

the focus is only on the estimation of topological characteristics [81][80]. However,

it is mandatory for the studies on long-term user behavior analysis (e.g. retweeting

tweets, commenting etc.) and information propagation models [87][92], as getting

an unbiased and well-connected graph is the irst step towards these goals. In ad-

dition, unbiased and well-connected subgraphs are also important for re-analysis or

re-validation in the future [35][74]. As such, the work studies sampling methods that

can provide unbiased and well-connected samples, e.g. Metropolis-Hastings Random

Walk (MHRW) [34] and its variations [35][104][74].

MHRW and its variations are tailored for online social networks (e.g. Facebook),

which are friendship-based networks (i.e. users are likely to connect with those having

similar number of friends). The intuition behind is to avoid sampling high-degree

nodes by explicitly increasing the probability of sampling low-degree nodes during

sampling process. They sufer from two limitations when applied in sampling online

social media (e.g. Twitter), which are content-driven networks (i.e. a user follows

another mainly because the other side provides content of his interests). First, the

content-driven nature of online social media leads to the fact that users tend to follow

power-users with degrees orders of magnitude larger [69][58]. As such, high-degree

nodes tend to be surrounded by plenty of low-degree nodes, and thus show local

disassortative mixing pattern. According to MHRW and its alternatives, sampling

crawlers will be trapped in the low-degree nodes for a long time and unable to ind

new nodes in such networks quickly. The second limitation is related to the high

sampling repetitions on low-degree nodes. While the repetitions could be counted

several times for topological characteristics estimations, in the context of individual

user behavior studies, a sampled node can only be counted once no matter how many

times it was sampled. It has been found in [81][35][74] that MHRW fails in providing

unbiased samples if repetitions are removed.
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The above facts motivate researchers to study unbiased sampling methods for

online social media. This work aims to provide good quality of samples (measured

by the ability to provide unbiased and well-connected subgraphs) with high sampling

eiciency (measured by the convergence of crawlers and the speed in discovering new

nodes and new user attributes). In detail, the work irst studies the suicient and

necessary condition for unbiased sampling of large-scale networks, and then analyzes

the limitations of MHRW. Besides, the work proposes a novel unbiased sampling

method and applies it to three synthetic networks and two real-life social media. To

sum up, this work makes the following contributions:

∙ The work models the process of random walk-based online sampling as a Markov

chain and concludes the suicient and necessary condition for unbiased sampling.

The condition could be used as a guideline for the design of various unbiased

sampling methods. The work further analyzes the performance issues of MHRW

when sampling online social media because of the high local disassortativity.

∙ The work proposes a novel unbiased sampling method, called Unbiased Sampling

method with Dummy Edges (USDE), for online social media. The method explic-

itly adds dummy edges between low-degree nodes that have high self-sampling

probabilities in MHRW. The dummy edges enable lexible moves of sampling

crawlers from low-degree nodes to unvisited ones while keeping the connectiv-

ity of samples. Therefore, the addition of dummy edges improves the sampling

performance compared with MHRW.

∙ The work conducts extensive sampling experiments in three synthetic networks

to evaluate the performance of USDE in terms of quality of samples and sam-

pling eiciency. The results show that USDE can provide more unbiased samples

than MHRW, and keep the connectivity of samples, outperforming the unbiased

sampling methods with random jumps proposed in [80][8]. In terms of sampling

eiciency, USDE reduces the average sampling times per node by 50% compared

with MHRW and is 1.5 times as eicient as MHRW in terms of discovering new

user attributes.
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∙ The work applies the proposed method to sample two popular social media sys-

tems: Twitter and Sina Weibo. The results further demonstrate that USDE per-

forms well from the perspectives of both quality of samples and sampling eiciency.

For example, with 1,000 sampling iterations in Twitter, the average sampling times

per node in USDE is only one third of that in MHRW. Besides, USDE could iden-

tify more than 200 geolocation categories with 1,000 iterations while this number

is only 50 for MHRW.

2.2 Related work

Breadth First Search (BFS) is one of the popular sampling methods that has been

used in [69][4][101][20] to collect datasets of online social networks. Random walk,

another kind of sampling methods, has also been widely used in sampling unbalanced

heterogeneous bipartite graphs[109], directed graphs [66][80], and recently in sampling

online social networks[54][52].

BFS and random walk are shown to be biased towards high-degree nodes and the

statistical properties obtained from these samples directly are inaccurate[61][9][112][55][65].

To address this problem, several sampling methods have been proposed to generate

unbiased samples. Stutznach et al.[93] used Metropolized Random Walk with Back-

tracking (MRWB) to select representative samples of Peer-to-Peer networks. Follow-

ing it, Gjoka et al.[34] proposed the Metropolis-Hastings Random Walk (MHRW) to

get unbiased samples of Facebook. Wang et al.[104] found that by taking the unidi-

rectional edges as bidirectional edges, MHRW is also suitable for sampling directed

graphs.

Recent studies [81][35][74][102] have pointed out that MHRW sufers from inei-

ciency in discovering new nodes and might not provide accurate topological charac-

teristics when the sampled nodes are considered uniquely (i.e. sampling repetitions

are removed). This weakness is especially signiicant in the networks where the local

disassortativity is obvious, which is a major characteristic of online social media.

Besides unbiased sampling from the perspective of nodes, Rasti et al.[77] and
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Ribeiro et al.[81] showed that the unbiased sampling on edges can estimate the global

characteristics on edges (e.g. global clustering coeicient) accurately. Ribeiro et al.

[79] introduced multidimensional random walks for the unbiased sampling on edges

of directed graphs.

Some other researches focus on the estimation of characteristics of the complete

network based on the samples obtained by the biased sampling methods such as BFS

and Random Walk. Kurant et al. [56] analyzed the principle of bias in BFS and

random walk-based sampling methods and proposed unbiased estimators to compute

the distribution of degree. Dasgupta et al. [30] studied the estimation of the average

node degree in social graphs based on random walk using Hoefding inequality and

Bernstein inequality. Ribeiro et al. [81] showed that the topological characteristics of

directed graphs can also be estimated from the samples obtained using random walk.

They proposed to use random jumps in random walk-based sampling to reduce the

estimation error for both undirected graphs [8] and directed graphs [80]. While esti-

mation of node degree is the most important aspect for researches only interested in

topological characteristics, for those interested in long-term user behavior and infor-

mation propagation analysis in social systems [87][92], unbiased and well-connected

subgraphs are mandatory as such subgraphs are the basis for further studies.

Another type of sampling method is Uniform Sample technique (UNI), which is

always used to obtain ground truth of node-related properties [45]. For example, if

the distribution of individual nodes’ identiiers (IDs) and the ID space are known in

advance, one can get a uniform sample of IDs and then obtain a uniform sample of

the network by accessing the degree or user attributes of each selected ID. UNI is

ineicient in online social media because the user ID space is always sparse [34] and

the samples obtained are weak-connected.
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2.3 On Random Walk-based Unbiased Sampling of

Online Social Media

The content-driven nature of online social media leads to a low level of reciprocity

[58]. For example, users might not follow their followers back in Twitter. These net-

works are therefore abstracted as directed graphs. From the perspective of sampling,

it has been shown that the random walk with “backward edge traversals” which al-

lows the crawler to consider the unidirectional edges as bidirectional ones in directed

graphs can achieve the similar performance to the one in the corresponding undirected

graphs [81][79][80][104]. This work uses the similar idea to study the sampling of on-

line social media. Taking Twitter as an example, the work treats the unidirectional

edges representing follower and following relationships as bidirectional ones. Then the

Twitter network is viewed as an undirected graph � = (�,�), where � is the set of

nodes representing users, � is the set of bidirectional edges. In this graph, the degree

of node �, ��, is the number of neighbors connected with � via either following-ship or

follower-ship.

A prominent feature of online social media is that in the abstracted graphs, nodes

with degree orders of magnitude large might be surrounded by plenty of low-degree

nodes, implying a high local disassortativity. This feature impairs the performance

of previously proposed sampling methods (e.g. MHRW) tailored for online social

networks (e.g. Facebook), where the local assortative mixing pattern is dominant.

This section irst introduces the quantitative measure of local mixing pattern and

then proceeds to the mathematical model of random walk-based sampling process

which could help researchers design unbiased sampling methods. Finally, the work

analyzes the performance problem of MHRW when the local disassortativity is high.

2.3.1 Background: Local Mixing Pattern

Mixing pattern, which can be classiied broadly as assortative or disassortative, is a

characteristic of network, referring to the extent for nodes to connect to other similar
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or diferent nodes. Though the speciic measure of similarity may vary, node degree

is often used. If nodes tend to be connected with other nodes with similar degrees,

assortative mixing pattern exists. Otherwise, there is a disassortative mixing pattern.

To capture the local tendency of connections for individual nodes, Piraveenan et

al. [75] deine the local assortativity metric. For a node of degree (� + 1), its local

assortativity coeicient � is deined as follows:

� =
�(� + 1)(�̄ − ��)

2��2
�

(2.1)

where �̄ is the average remaining degree of the node’s neighbors, � is the number of

links in the network, �� and �� are the mean and standard deviation of the remaining

degree distribution of the network respectively. A positive (resp. negative) coeicient

� indicates an efect of local assortativity (resp. disassortativity). When a high-

degree node � is surrounded by a large number of low-degree nodes, the value of

average remaining degree of the �’s neighbors, �̄, is likely to be less than the global

average of remaining degree distribution ��. In this case, � of the high-degree node �

is negative but with a large absolute value, showing a high local disassortativity.

The global assortativity coeicient for a graph � =
︀|� |

�=1 ��, where |� | is the num-

ber of nodes. As shown in [75], there might exist a large number of local disassortative

nodes in a network, regardless of whether the network is overall assortative (� > 0),

non-assortative (� = 0), or disassortative (� < 0).

2.3.2 Modeling the Random Walk-based Sampling Process

Here the work focuses on the random walk-based sampling methods, in which the

crawler starts from a seed node and follows the edges to move towards others with

predeined strategies. At each step, all neighbors of the current sampled node are

potential candidates of the next step. This process carries on iteratively until enough

nodes are sampled. The work aims at unbiased and well-connected samples in terms of

nodes, rather than edges. In other words, a sampling algorithm can be considered as

an unbiased one if the visiting probability of each node is uniform during the sampling
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process and the sampled subgraphs are well-connected, as opposed to plenty of small

connected components.

In random walk-based sampling methods, the probability that a node can be

sampled at the step � +1 only depends on the sampled node at step � but not on the

sampled nodes before � , which means the sampling is memorylessness. As such, the

sampling process can be modeled as a Markov chain by taking the sampled nodes as

states and the probability of moving from node � to � as the transition probability from

state � to �. The probability that a node can be sampled at the step � is equivalent

to the state distribution of the corresponding Markov chain at time � . If the Markov

chain is stationary, the probability distribution will be convergent to the stationary

distribution when � is large enough. Table 2.1 lists the mapping between the random

walk-based sampling process and Markov chain. During the sampling process on a

connected network, the crawler cannot stay at a node forever by re-sampling the same

node. That said, ��,� < 1, ∀� ∈ � .

Table 2.1: Mapping sampling process to Markov chain

Notation
Deinition in

sampling process
Deinition in
Markov chain

� set of sampled nodes state set

��,�
moving probability of the crawler
from node � to node � directly

transition probability from
state � to state � directly

�
(�)
�,�

moving probability of the crawler
from node � to node � through � steps

transition probability from
state � to state � through � states

��
probability that node �

can be sampled
stationary distribution of state �

��
self-sampling probability of node �

i.e. ��,�

transition probability from
state � to � directly i.e. ��,�

It is noteworthy that the use of Markov chain modeling is only for proving the

equivalence condition of unbiased sampling. The following Lemma can be proved for

the Markov chain that models the sampling process on a graph having at least one

node with non-zero clustering coeicient, where the clustering coeicient for a node

is the ratio of the number of links that exist between its one-hop neighbors to the

maximum number of links that could exist.

Lemma 1. If the network for sampling contains at least one node with non-zero
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clustering coeicient and �{��,� > 0|��,� > 0} = 1, then the corresponding Markov

chain is ergodic and irreducible.

Figure 2-1: An example of Markov chain abstracted from sampling process

Proof. Supposing node � has a non-zero clustering coeicient as shown in Fig. 2-

1, then, � can get back to itself by 2 transitions (through � or �) or 3 transitions

(through � and �), i.e. both �
(2)
�,� and �

(3)
�,� are positive.

It is available to show that the node � can reach any state by exact |� | − 1

transitions as follows, where |� | is the number of states. Clearly, � can reach any state

through |� | − 3 transitions at most, i.e. � can reach any state through |� | − 3− 2�

or |� | − 3− 2�− 1 transitions, where � is a non-negative integer. Let ℎ�,� denote the

least number of transitions from � to �. If ℎ�,� = |� |−3−2�, � can arrive at � through

|� |−1 transitions by adding �+1 loops of �→ �→ �, while if ℎ�,� = |� |−3−2�−1,

� can arrive at � through |� | − 1 transitions by adding � loops of � → � → � and 1

loop of �→ �→ � → �.

Following this, it is easy to get that there is a positive integer � = 2(|� |−1) such

that for each state in this Markov chain, it can reach any state by exact � transitions

(using � as transfer point). That said, there exists � ≥ 1 such that for any two states

�, �, �
(�)
�,� > 0. This is the necessary and suicient condition for a inite Markov chain

to be ergodic and irreducible [73] .

Based on the Lemma 1, the following necessary and suicient condition for unbi-

ased sampling based on random walk can be derived.

Theorem 1. If the network for sampling has at least one node with non-zero clus-

tering coeicient and �{��,� > 0|��,� > 0} = 1, then the necessary and suicient

condition of being an unbiased sampling method is: ∀� ∈ �,
︀|� |

�=1 ��,� = 1.
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Proof. Let’s irst prove the necessity. Supposing there is a stationary Markov chain,

of which the State Transition Probabilities Matrix is as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1,1 �1,2 �1,3 . . .

�2,1 �2,2 �2,3 . . .

�3,1 �3,2 �3,3 . . .

. . . . . . . . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.2)

Then the stationary distribution {��} satisies:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�1,1�1 + �2,1�2 + �3,1�3 + · · · = �1

�1,2�1 + �2,2�2 + �3,2�3 + · · · = �2

�1,3�1 + �2,3�2 + �3,3�3 + · · · = �3

. . .

�1 + �2 + �3 + · · · = 1

(2.3)

In the context of sampling process, �� represents the probability that a node � is

visited during the sampling process. When �� = �� =
1
|� |

, for ∀�, � ∈ � , the sampling

algorithm is unbiased based on nodes. Thus, Eq. 2.4 can be got.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�1,1 + �2,1 + �3,1 + · · · = 1

�1,2 + �2,2 + �3,2 + · · · = 1

�1,3 + �2,3 + �3,3 + · · · = 1

. . .

�1 = �2 = �3 = · · · =
1
|� |

(2.4)

which completes the proof of necessity.

Let’s then move to the proof of suiciency. That is, if for ∀� ∈ � ,
︀|� |

�=1 ��,� = 1

is known, the work tries to deduce the sampling algorithm is unbiased. As stated in

Lemma 1, the Markov chain abstracted from the sampling process on the graph is

ergodic and irreducible. This implies that the Markov process is stationary and the

stationary distribution is the unique solution for Eq. 2.3 [73]. A solution for the State

Transition Probabilities equations Eq. 2.3 is: �� =
1
|� |

, for ∀� ∈ � . This is in fact
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also the unique solution. Under such a solution, the obtained samples are unbiased

on node. This completes the proof of suiciency.

The work summarizes from Theorem 1 two critical conditions for unbiased random

walk-based sampling of networks having at least one node with non-zero clustering

coeicient (which is a major feature of online social graphs):

(1) The moving probabilities between two nodes � and � should satisfy: if ��,� > 0,

then ��,� > 0;

(2) ∀� ∈ �,
︀|� |

�=1 ��,� = 1.

The exist of local disassortative nodes makes the design of an unbiased sampling

method challenging. A high local disassortativity (i.e. � is negative with large abso-

lute value) implies that a high-degree node � is surrounded by lots of low-degree nodes.

The random crawler therefore arrives at �’s low-degree neighbor � from � with a low

probability, i.e. ��,� is low. In this context, two kinds of method could be adopted to

meet the second unbiased condition on node �. One is to randomly choose a set of

nodes which are not neighbors of � and allow the sampling crawler to jump from �

to these nodes with certain probabilities [81][80]. However, such random jumps could

lead to many small connected components sampled, instead of well-connected sub-

graphs. The other solution is to let the crawler stay on � rather than move to other

nodes with certain probability once the crawler visits a low-degree node �, which is

the intuition of MHRW [34].

2.3.3 Limitations of MHRW

Metropolis-Hastings Random Walk(MHRW) is proposed in [34] to obtain unbiased

and well-connected samples of online social networks (like Facebook). The probability

of moving from a node � to its neighbor � for the sampling crawler is computed as

follows:
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��,� =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

���( 1
�v
, 1
�u
) if � is a neighbor of �

1−
︀

� ̸=� ��,� if � = �

0 otherwise

(2.5)

It is easy to ind that for any two adjacent nodes � and �, ��,� = ��,� =

���( 1
�v
, 1
�u
) > 0. Besides, ∀� ∈ �,

︀|� |
�=1 ��,� =

︀|� |
�=1 ��,� = 1. Following Theorem

1, MHRW can be concluded as an unbiased sampling method.

MHRW achieves unbiased sampling at the cost of repetitively crawling low-degree

nodes from themselves. The work denotes the moving probability of the sampling

crawler from a node � to itself (i.e. ��,� in Eq. 2.5) as self-sampling probability.

The self-sampling is likely to happen on low-degree nodes that are connected with

high-degree ones, leading to local disassortativity.

Figure 2-2: High self-sampling probability in MHRW

Fig. 2-2 illustrates the high self-sampling probability problem in MHRW. Node

degrees are shown on the nodes and the transition probabilities are labeled on the

edges. The work also depicts the self-sampling probabilities in MHRW beside the

nodes. The local disassortativity for the central node is -0.2919, which shows a high

local disassortativity compared with other nodes (0.0818 on the six 3-degree nodes

and 0 on the two 1-degree nodes). In Fig. 2-2, the self-sampling probabilities of node

� and � are as high as 0.875. Once the sampling crawler arrives at one of these two

nodes, it will take a long time to sample the node itself repeatedly.

MHRW provides an unbiased estimation of topological properties of the network
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(e.g. distribution of node degree, clustering coeicient) by taking a node sampled by

� times as � separated nodes with the same properties, i.e. the average node degree

is estimated as follows:

��(�) =

︀

�∈� ′ ����

︀

�∈� ′ ��

(2.6)

where � ′ is the set of unique sampled nodes, �� is the degree of � ∈ � ′ and �� is

the sampling times of � during the sampling process. As shown in [34], after several

thousands iterations in Facebook, the estimated average node degree is close to the

ground truth. However, sometimes researchers are interested in the sampled subgraph

where the repetitions should be removed, e.g. to use the sampled subgraphs as the

basis for analysis on individual user behavior. In these cases, a sampled node is only

counted once independent of the times that it is sampled. Then, the average unique

node degree of sampled subgraph is as follows:

��(�) =

︀

�∈� ′ ��

|� ′|
(2.7)

where � ′ is the set of unique sampled nodes and |� ′| is the number of unique sampled

nodes.

In online social networks like Facebook, users are likely to connect to those with

similar proiles (e.g. classmates). In this case, the self-sampling probabilities of

individual nodes might be low and the diference between ��(�) and ��(�) is small.

However, in online social media, there are plenty of local disassortative nodes of

which neighbors have high self-sampling probabilities, leading to a much higher ��(�)

compared with ��(�). A high self-sampling times per node also impairs the sampling

eiciency of discovering new type of attributes. The results in the evaluation sections

(Section 2.5 and 2.6) conirm these observations.
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2.4 Unbiased Sampling with Dummy Edges

This section presents a novel unbiased sampling method, called USDE. The basic

idea is to keep the connectivity and unbias nature of samples obtained by MHRW

while avoid the excessive self-sampling probability. To this end, USDE adds dummy

edges between low-degree nodes and amortizes self-sampling probabilities of individ-

ual nodes to moving probabilities on the dummy edges. It is worth noting that dummy

edges are used only during sampling process to help the sampling crawler move to

another node and they are not involved in the sampled subgraphs. In what follows,

the paper irst details the concept of dummy edge and describes the computation of

moving probabilities in USDE, and then analyzes the sampling eiciency of USDE.

2.4.1 Dummy edges

Figure 2-3: An equivalent case of two non-adjacent nodes with non-zero self-sampling
probability

A simple example is shown in Fig. 2-3 to illustrate the usage of dummy edges.

Node � and � are two non-adjacent nodes in a graph. Supposing in an unbiased

assignment of moving probabilities (e.g. MHRW), the self-sampling probabilities of �

and � are �� = 0.4 and �� = 0.6. USDE can add a bidirectional dummy edge between

� and � and set ��,� = ��,� = 0.4, at the same time update �� = 0 and �� = 0.2. The

self-sampling probabilities of � and � are reduced, while USDE still keeps the moving

probabilities satisfying the unbiased conditions obtained in Section 2.3.

Analogously, USDE can add multiple dummy edges from one node. Supposing

the crawler is currently on the node �, the candidate nodes for building dummy edges

from � are the previously visited nodes’ neighbors that have not been visited yet

and have non-zero self-sampling probabilities. In this way, USDE avoids jumping to
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Figure 2-4: Illustrating example of adding dummy edges on multiple nodes

random nodes as in [81][80] which might result in many connected components in

samples. USDE allows the crawler to obtain the ID and degree information of the

�’s neighbors when visiting a node �. This one-hop look-ahead operation is practical

in social media through standard API calls. Besides, USDE stores the dummy edges

information during sampling process. For a dummy edge between � and �, USDE

stores a tuple (�, �,���,�), where ���,� is the moving probability of the dummy edge.

This provides the crawler with the knowledge of dummy edges for individual unvisited

nodes. Supposing the node ID is a digital number not exceeding 32 bits (as in Sina

Weibo), each tuple requires 12 bytes storage space. As the designers of USDE always

set an upper bound on a node’s dummy edges in practice (e.g. 100 in this work),

sampling as many as 10,000 iterations requires using only 12 Mbytes space at most.

Fig. 2-4 shows an example where USDE adds multiple dummy edges between

nodes. The sampling crawler is at node � with 0.4 self-sampling probability. Two

nodes �1 and �2 have not been visited yet and their self-sampling probabilities are

��1 = ��2 = 0.8. If USDE adds two dummy edges {�, �1} and {�, �2} and assigns

the moving probabilities on the two edges as ��,�1 = ��1,� = 0.2, ��,�2 = ��2,� = 0.2,

then ��, ��1 , ��2 are reduced to 0, 0.6 and 0.6 respectively. As �1 and �2 have not

been visited yet, moving the crawler to these nodes would improve the eiciency of

identifying new nodes and new user attributes.

Indeed before visiting a node, the knowledge of its exact self-sampling probability

is not available. USDE thus proposes to estimate the lower bound of the self-sampling

probabilities for neighbors of visited nodes using only the neighbors’ degree informa-

tion, which will be detailed in the next subsection.
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2.4.2 Moving Probability in USDE

Since USDE focuses on reducing the self-sampling probabilities of individual nodes

in MHRW, USDE adopts the moving probability from a node � to its neighbor � in

MHRW. That said, ��,� and ��,� are computed as ���( 1
�v
, 1
�i
), where �� and �� are

degrees of � and �, respectively. Supposing there is a dummy edge between node �

and node �, the paper denotes the moving probability from � to � as ���,� and sets

���,� = ���,�.

Let �(�) denote the set of nodes which have dummy edges with �, �(�) denote the

set of neighbors of �. The moving probability for the sampling crawler from node � to

node � in USDE is computed as follows:

��,� =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

���( 1
�v
, 1
�i
) if � ∈ �(�)

���,�, if � ∈ �(�)

1−
︁

�∈�(�)

��,� −
︁

�∈�(�)

��,� if � = �

0 otherwise

(2.8)

If ���,� = 0, ∀� ∈ �(�), then USDE is identical to MHRW. It can be found

from the Eq. 2.8 that ��,� = ��,�. Thus, if ��,� > 0, then ��,� > 0. Besides, ∀� ∈

�,
︀|� |

�=1 ��,� =
︀|� |

�=1 ��,� = 1, where |� | is the number of nodes in the graph for

sampling. According to Theorem 1, USDE could obtain unbiased samples.

The paper then describes the selection of nodes to build dummy edges and the

computation of moving probabilities on dummy edges. The nodes � to which USDE

could build dummy edges from the currently visited node are the previously visited

nodes’ neighbors that should have a non-zero self-sampling probability and have not

been visited by the sampling crawler. However, inding such nodes is challenging

because the crawler could not get the exact moving probability from � to its neighbors

as it has not been visited yet. In this context, USDE proposes to estimate the lower

bound of �’s self-sampling probability during sampling process.

It can be found from Eq. 2.8 that if there is a neighbor � for node � with degree

�� > ��, then the self-sampling probability without dummy edges of � is at least
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( 1
�i
− 1

�u
). Using this observation, the lower bound of self-sampling probability without

dummy edges of an unvisited node �, ���, can be derived as follows:

��� =
︀

�∈{�(�)∩� ′}(
1
�i
− 1

�v
) where �� > �� (2.9)

where �(�) is the neighbor set of � and � ′ is the set of nodes that have been visited.

Fig. 2-5 illustrates how the lower bounds are estimated during the sampling

process. The node degrees are marked on the nodes and the node IDs are labeled

beside the nodes. Let’s assume that for all nodes, �� = 0 before step � . At step

� , the crawler visits node �. Node � and node � are neighbors of � and �� < ��,

�� < ��. Hence, it can be estimated that ��� = 1
�j
− 1

�w
= 1

20
− 1

50
= 0.03 and

��� = 1
�m
− 1

�w
= 1

10
− 1

50
= 0.08 at step � . At the next step � + 1, the crawler

visits �. USDE updates the estimation of ��� because � is also a neighbor of � and

�� < ��. The �� value of � is updated as ��� = 0.03 + 1
20
− 1

30
= 0.0467. Note that

USDE cannot estimate ��� at � + 1 as �� > ��.

Figure 2-5: �� estimations during the process of USDE

With the estimated lower-bounds of self-sampling probabilities for unvisited neigh-

bors of the sampled nodes, USDE now can assign the moving probability to individual

dummy edges. During the process of sampling, USDE uses a queue � to record the

node ID and the estimated lower-bound of self-sampling probability ��� for each

unvisited node � with ��� > 0, i.e. a tuple (�, ���) for a node �. When a node

� is visited for the irst time, USDE can obtain its current self-sampling probability

with 1 −
︀

�∈�(�) ��,� −
︀

�∈�(�) ��,� according to Eq. 2.8. �(�) is empty in the case
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that � has never been selected for building dummy edges before. If such a proba-

bility is larger than a threshold � , USDE pops a tuple (�, ���) from � and add a

new dummy edge between nodes � and �. The moving probability is computed as

���,� = ���,� = ���(���, 1−
︀

�∈�(�) ��,�−
︀

�∈�(�) ��,�). Then, USDE updates ���

with ��
′

� = ��� −���,�. If the updated ��
′

� > 0, USDE pushes the updated tuple

(�, ��
′

�) back to �. Such an estimation method for the lower-bound of self-sampling

probability ensures that the sampled subgraphs are well-connected because all the

nodes recorded in � are neighbors of sampled ones.

The moving probability ���,� (���,�) on the dummy edge between � and � might

be high if both ��� and the self-sampling probability without dummy edges on �

are high. In this case, the sampling crawler would wander between nodes � and �

for a long time, which prevents the crawler from inding new nodes. To solve this

problem, rather than pop only 1 tuple, USDE pops � (� > 1) tuples (�1, ���1),

(�2, ���2),(�3, ���3) · · · (��, ���γ ) from � at one time, and � dummy edges are

added {�,��} (� = 1, 2 · · · �). The moving probability on dummy edge {�, ��} is then

computed as ���,�j = ���j ,� = ���(���j ,
1−

︀
x∈S(i) �i,x−

︀
y∈U(i) �i,y

�
). Then ���j is

updated accordingly and the tuples with non-zero �� are pushed back to �. The

addition of dummy edges stops when the self-sampling probability on � is reduced to

0 or dummy edges to all the � nodes are added.

The queue � applies FIFO (First In, First Out), which makes the unused nodes

likely to be popped. It avoids adding too many dummy edges on a single node.

Moreover, the �� of a node will become smaller as more dummy edges are built to

it. With FIFO, the stored nodes with fewer dummy edges and higher �� are more

likely to be popped, which makes sure that self-sampling probability can be reduced

as much as possible. The queue � is initialized in the irst � iterations of sampling.

During this time period, dummy edges are not added but the values of �� of the

visited nodes’ neighbors are estimated and pushed into �.
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2.4.3 Implementation of USDE

The pseudo code of USDE for online social media is listed as follows, where � (the

number of iterations for the queue initialization), � (the threshold on self-sampling

probability) and � (the number of records popped from � at a time) are three design

parameters. The list � stores the sampled nodes uniquely.

In the algorithm, USDE is the main procedure, EstimateLP is the procedure for

estimation of the lower bound of self-sampling probability, and UpdateProbability is

the procedure for the update of self-sampling probability after adding dummy edges.

Each node � is associated with a hash table �� to store the information of dummy

edges of which it is an end point. In detail, a tuple (�,���,�) is stored in �� for the

dummy edge {�, �}. It is also worth noting that once node � is visited by the sampling

crawler, it should not be used as a candidate for building dummy edges from others,

simply because its self-sampling probability has been reduced as much as possible.

That said, (�,���) should be removed from � when � is visited (see line 7 ∼ 8 in the

procedure USDE).

UpdateProbability(�,�,�)

1 � ← 0

2 while � < � and �� > 0

3 do pop (�, ���) from �

4 ��,� = ��,� ← ���(���,
�v

�
)

5 if ��, �� don’t exist

6 then �� ← ∅, �� ← ∅

7 push(�, ��,�) into ��, push (�, ��,�) into ��

8 �� ← �� − ��,�, ��� ← ��� − ��,�

9 if ��� > 0

10 then push (�,���) into �

11 � ← � + 1
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EstimateLP(�,�,�,�)

1 if �� > �� and � /∈ � and � ∈ �

2 then update ��� ← ��� + ( 1
�i
− 1

�v
) in �

3 if �� > �� and � /∈ � and � /∈ �

4 then ��� ←
1
�i
− 1

�v
, push (�,���) into �

USDE(�,� ,�)

1 �← ∅, �← ∅, ���������← 1, � ← inital node

2 while stopping criterion has not been met

3 do if � /∈ �

4 then push � in �

5 if �� doesn’t exist

6 then �� ← ∅

7 if (�, ���) ∈ �

8 then pop (�, ���) from �

9 �� ← 1

10 for each neighbor � of �

11 do ��,� = ��,� ← ���( 1
�i
, 1
�v
)

12 �� ← �� − ��,�

13 EstimateLP(�, �, �,�)

14 for each tuple (�, ��,�) ∈ ��

15 do �� ← �� − ��,�

16 if ��������� > � and �� > �

17 then UpdateProbability(�,�, �)

18 Select a node � according to the probability distribution {��,�}

19 � ← �

20 ���������← ���������+ 1

USDE leverages multiple random-walk based crawlers that run in parallel for

eicient sampling. At the beginning, a set of initial nodes (called seeds) are uniformly

selected from the network at random. Each seed initializes a crawler following the
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above sampling algorithm. Crawlers share the common queue � of candidates of end

points for dummy edges (the queue � is associated with a mutex lock). In this way,

each crawler is able to access the candidate end points for dummy edges generated by

other crawlers, enabling the building of dummy edges between two nodes in diferent

communities of the network. Finally, nodes that are visited by crawlers, along with the

edges between them, are exported to form the inal sampled subgraph. The dummy

edges however are not included in the inal result. As shown in the evaluation (Section

2.5 and Section 2.6), using multiple crawlers generates unbiased and well-connected

samples.

A practical concern is how the initial seeds can be chosen uniformly at random in

an eicient way. In online social medias, users are often numerically identiied and user

proiles can be accessed using the IDs. A lot of online social medias (like Twitter,

Sina Weibo) have dense ID space. User IDs thus can be uniformly generated at

random and be used as initial seeds. However, some social medias, like Google Plus,

do use sparse ID space. Fortunately, popular social medias always provide public

proile directories that can be used for random seeds selection. For example, Google

maintains a sitemap ile that contains a link to every Google Plus proile public1;

Twitter2 and Facebook3 also provide public user proile directories. The initial seeds

can be uniformly chosen from the users listed in the proile directories at random as

in [24]. Using either randomly generated IDs or public proile directory is able to pick

initial seeds eiciently, as not more than 100 seeds are required in this work.

2.4.4 Analysis of Sampling Eiciency of USDE

The work analyzes the sampling eiciency of USDE from two perspectives: the speed

in discovering new nodes during the sampling process and the convergence of crawlers.

This analysis shows that the addition of dummy edges in USDE can reduce the

sampling times per node and improve the convergence by increasing the “conductance”

1http://www.gstatic.com/s2/sitemaps/proiles-sitemap.xml
2https://twitter.com/i/directory/proiles
3http://www.facebook.com/directory
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of the sampled network, compared with MHRW.

Sampling times per node

Given the sampling iterations, the speed in discovering new nodes is inversely propor-

tional to the sampling times per node. Assuming the crawler starts from a node �, the

average sampling times on node � within � steps are
︀�

�=1 �
(�)
�,� . The �-step transition

probability �
(�)
�,� includes two parts: the probability of the crawler staying at � for �

iterations continuously and the sum of probabilities that the crawler staying at � for

(�−�− 2) iterations continuously and then making a (� + 2)-step loop through a

pair of attached edges of �, where 0 ≤ � ≤ (� − 2). Therefore, �
(�)
�,� can be derived

as follows:

�
(�)
�,� = � �

�,� +
�−2︁

�=0

� �−2−�
�,�

︁

∀�,�∈�

��,���,��
(�)
�,� (2.10)

where ��,� is the self-sampling probability of �. It is worth noting that only the

adjacent nodes of � can be considered in Eq. 2.10 because for any nonadjacent node

�, ��,� = ��,� = 0. It is hard to get the exact value of �
(�)
�,� because given�, �

(�)
�,� varies

for diferent node pairs (�, �). However, as stated in Section 2.3, the sampling process

is stationary and ∀�, �, �� = �� =
1
|� |

. That said, when �
(�)
�,� reaches the stable state,

its value is equal to �� (i.e. 1
|� |

) for ∀�, � ∈ � . To ease analysis, this paper assumes

∀�, � ∈ �, �
(�)
�,� is in the stationary state and thus is close to 1

|� |
. Then Eq. 2.10 can

be written as:

�
(�)
�,� = � �

�,� +
�−2︁

�=0

� �−2−�
�,�

︁

∀�,�∈�(�)

��,���,�
1

|� |

= � �
�,� +

�−2︁

�=0

� �−2−�
�,�

1

|� |

︁

∀�∈�(�)

��,�

︁

∀�∈�(�)

��,�

= � �
�,� +

�−2︁

�=0

� �−2−�
�,�

1

|� |
(1− ��,�)

2

= � �
�,� +

(1− ��,�)(1− � �−1
�,� )

|� |

(2.11)
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With the dummy edges on node � in USDE, the self-sampling probability of � is

reduced from ��,� to �̂�,�. The �-step moving probability of � in USDE thus can be

obtained as follows:

�̂
(�)
�,� = �̂ �

�,� +
�−2︁

�=0

�̂ �−2−�
�,�

︁

∀�,�∈�(�)

��,���,��
(�)
�,�

+
�−2︁

�=0

�̂ �−2−�
�,�

︁

∀ℎ,�∈�(�)

�ℎ,���,��
(�)
ℎ,�

+ 2
�−2︁

�=0

�̂ �−2−�
�,�

︁

∀�∈�(�),∀�∈�(�)

��,���,��
(�)
�,�

= �̂ �
�,� +

�−2︁

�=0

�̂ �−2−�
�,�

1

|� |
(1− �̂�,�)

2

= �̂ �
�,� +

(1− �̂�,�)(1− �̂ �−1
�,� )

|� |

(2.12)

where �(�) is the neighbor set of � (excluding the dummy edges) and �(�) is the

end-point set of �’s dummy edges.

Now
︀�

�=1 �
(�)
�,� and

︀�
�=1 �̂

(�)
�,� for a inite � can be compared. According to Eq.

2.11 and Eq. 2.12,
︀�

�=1 �
(�)
�,� can be rewritten as

�i,i(1−�T
i,i)

1−�i,i
+
︀

�

(1−�i,i)(1−�T−1
i,i )

|� |
. In

large-scale social media networks, |� | is a large number (e.g. in Twitter, |� | is over 200

million). That said,
�i,i(1−�T

i,i)

1−�i,i
is likely to be dominant in

︀�
�=1 �

(�)
�,� if � is inite and

��,� is not low. For example, supposing ��,� = 0.2 and |� | = 1, 000, 000,
�i,i(1−�T

i,i)

1−�i,i
=

0.251 while
︀

�

(1−�i,i)(1−�T−1
i,i )

|� |
= 0.008 even for � = 10, 000. Indeed,

�i,i(1−�T
i,i)

1−�i,i
is

a monotone increasing function over ��,�. In other words, a reduced self-sampling

probability leads to reduced average sampling times on nodes. As adding dummy

edges can eiciently reduce the self-sampling probabilities on individual nodes, it is

easy to conclude that USDE can improve the speed in discovering new nodes.

Convergence of USDE

In graph theory, the “conductance” of a graph �(�,�) measures how "well-knit"

the graph is and it controls how fast a random walk-based crawler on � converges
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to a uniform distribution of sampling probabilities[14]. This work thus studies the

convergence of USDE from the perspective of conductance of sampled graphs. The

conductance of a set � in graph � is deined as follows[50]:

�(�) =
� (�)

�(�)(1− �(�))
(2.13)

where � (�) is called as the ergodic low from � and deined as � (�) =
︀

�∈�

︀

� /∈� ����,�.

� (�) denotes the fraction of steps of a very long random walk which move from �

to its complement. The denominator denotes the fraction of steps of a very long se-

quence of independent samples from � which move from � to its complement, where

�(�) =
︀

�∈� ��. The conductance of the whole graph is the minimum conductance

over all nonempty proper subsets of � .

A small conductance always indicates that the network consists of several com-

munities which have few links to others, rather than a whole connected graph. In

this context, USDE with a single random walk crawler may prevent the crawler in

one community from discovering other communities as the dummy edges are always

added in the community of the starting node.

Figure 2-6: USDE with multiple crawlers in a barbell graph

However, similar to MHRW, USDE is also a MCMC technology where multiple

running crawlers are necessary. At the beginning, a set of initial nodes are uniformly

selected from the network at random, each of which corresponds to a random walk

crawler. All crawlers share the common queue � of candidates of end points for

dummy edges4. Following this way, crawlers in one community can have access to

4The queue � is associated with a mutex lock.

46



the candidates of end points for dummy edges in other communities, which enables

the building of dummy edges between two nodes in diferent communities, as shown

in Fig. 2-6. Although in the multiple version, one crawler may be afected by the

extra dummy edges of the other crawlers, all additions of dummy edges follow the

principle that the values of diagonal entries of transition matrix are assigned to the

ones in the same columns and the same rows as much as possible while keeping the

sum of values in each row and each column are 1. Therefore, the additions of dummy

edges concurrently do not break the unbiased sampling conditions derived in Section

2.3 for each crawler and the inal samples are still unbiased.

As depicted in Section 2.4.2, USDE remains the moving probability of MHRW

from one node to its neighbors following the real relationships and the stationary

distribution �̂� = �̂� = 1
|� |

, ∀�, � ∈ � which is also same as the one in MHRW. This

paper uses �(�) to be the minimum conductance of � in MHRW and � (�) to be

the ergodic low from the community �, besides, �(�) is deined to be the set of

dummy edges between nodes � ∈ � and nodes � /∈ � added by USDE. Then the new

conductance of � in USDE �̂(�) is as follows:

�̂(�) =
�̂ (�)

�̂(�)(1− �̂(�))

=
� (�) +

︀

�∈�

︀

(�,�)∈�(�) �̂���,�

�(�)(1− �(�))

= �(�) +

︀

�∈�

︀

(�,�)∈�(�) ����,�

�(�)(1− �(�))

(2.14)

Obviously, �̂(�) can be larger than �(�) once �(�) is nonempty. In other words,

if there are dummy edges added by USDE between � and its complement, it can

increase the “conductance” of the graph and therefore improve the convergence of

sampling compared with MHRW.

The condition for �(�) being non-empty is that some crawlers start from � and

some from the complement of �. Suppose the proportion of nodes in � is ��. Given

that the initial seeds are randomly selected, the probability of �(�) is non-empty is

��(�) = 1 − ��� − (1 − ��)
�, where � is the number of crawlers running in parallel.
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Figure 2-7: Average normalized node degree sampled by USDE and MHRW

Therefore, ��(�) is very high with a limited number of crawlers. For instance, if

�� = 5%, ��(�) is as high as 87% with only � = 40 crawlers (similar to MHRW in

[35]).

2.5 Evaluation on Synthetic Networks

This section evaluates the performance of USDE on three synthetic networks, each

with 20,000 nodes. Two of the three networks are generated using the Exploration

without replacement algorithm [55] with a mean degree around 30: one with Gaus-

sian distribution as input (referred as ��) and the other with power-law distribution,

which is close to the degree distribution of real-life online social media [58], as the

input (referred as ��). These two networks are used to measure the efect of local

diassortativity. The third one is a barbell graph (referred as ��), of which two com-

munities with 10,000 nodes are generated with the Gaussian degree distribution and

with mean degrees as 20 and 40 respectively. The work then randomly chooses from

each community a node and links them with a single edge. This graph is used to

measure how the conductance of graph controls the convergence rate of sampling.

This work analyzes the local disassortativity for the irst two graphs and inds that

�� shows a more signiicant local disassortativity than �� as expected (as depicted

in Fig. 2-8).

Besides the node degree, the work also associates nodes with user attributes. In

particular, an integer � ∈ [1, 200] is assigned to each node with diferent probability

distributions (Gaussian and power-law) as the values for user attribute, which are
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Figure 2-8: The average local assortativity vs. degree in synthetic networks with
diferent degree distributions

denoted as �-attribute and � -attribute respectively. The work runs sampling experi-

ments with 10 crawlers simultaneously on each of the three graphs. Each experiment

starts with a set of randomly chosen seeds. The default design parameters of USDE

are set as: � = 100; � = 0.00001; � = 100.

The work evaluates the performance from two perspectives: the quality of samples

and the sampling eiciency. The quality of samples is measured by the closeness of

sampled node degrees and user attributes to the values in ground truth, as well as the

connectivity of the sampled subgraphs. The sampling eiciency on the other hand is

measured by the convergence rate of crawlers on node degree, the average sampling

times per node and the speed in identifying new user attributes.

2.5.1 Quality of samples

Fig. 2-7 plots the mean value of ��(�) (Eq. 2.6, average node degree with repetitions)

and mean value of ��(�) (Eq. 2.7, average node degree without repetitions) of the 10

crawlers normalized by the ground truth of average node degree. Three observations

are notable. First, both USDE and MHRW provide stable results after 300 iterations.

Second, MHRW converges to a higher ��(�) than the ground truth, although ��(�)

is close to the ground truth. On the other hand, both ��(�) and ��(�) of USDE

converge to the ground truth. Specially, ��(�) of USDE approaches to the ground

truth quickly after 100 iterations when the addition of dummy edges begins (� = 100).

Finally, the tendency of local disassortative mixing pattern has a great impact on
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��(�) of MHRW, while it has limited impact on that of USDE. For example, the

��(�) of MHRW is 1.05 times as high as ground truth in �� while 3 times in ��.
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Figure 2-9: The K-L divergence between distribution of sampled user attributes and
the ground truth on ��

The paper next examines the unbias of user attributes by computing the Kullback-

Leibler (K-L) divergence between the distribution of sampled user attributes � and

the distribution of ground truth �. The K-L divergence between discrete probability

distributions � and � is computed as follows [53]:

���(� ||�) =
︁

�

��(
� (�)

�(�)
)� (�) (2.15)

���(� ||�) can be 0 if and only if � = � almost everywhere and the more signiicant

the diference between � and � is, the larger ���(� ||�) becomes.

Fig. 2-9 shows the K-L divergence between the distribution of sampled user at-

tributes by the two algorithms and the ground truth on ��. It can be observed that

the distribution of user attributes sampled by USDE is closer to the distribution of

ground truth than that sampled by MHRW. In fact, the more biased the distribution

of user attributes is, the more notable the advantage of USDE is. For example, for

�-attribute, the K-L divergence of USDE is 0.004 less than that of MHRW in ��

after 10,000 iterations, while the diference grows to 0.07 for � -attribute. A detailed

analysis reveals that MHRW misses the attributes which account for less than 0.1%
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in ground truth while USDE indeed captures most of them.
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Figure 2-10: Number of connected components in samples generated by MHRW,
USDE and RWuR on ��

The work then measures the connectivity of samples by counting the number of

connected components in samples based on the edges of complete networks, an impor-

tant metric for the studies of user interactions and information propagation [87][92].

Besides MHRW, the work also compares USDE with RWuR on undirected graphs [8],

which introduces the operation of random jumps in random walk to amend the bias.

In RWuR, the crawler jumps to a randomly selected node from the current node �

with the probability �
�i+�

, where � is the jumping weight and is set as 10 here (similar

to [8]). Fig. 2-10 shows the number of connected components in samples generated

by 10 crawlers of MHRW, USDE and RWuR on ��. All the 10 crawlers of these three

algorithms are not overlapped at the beginning of sampling process. The connectiv-

ity of samples of MHRW and USDE increases with the growth of iterations, while

the one of RWuR decreases quickly. For example, with 5,000 iterations, USDE and

MHRW generate only 3 connected components, while RWuR generates 200 connected

components due to the random jumps. The results demonstrate that USDE can keep

the connectivity of samples as in MHRW.

2.5.2 Sampling Eiciency

The work irst measures the time required to obtain stable and accurate results for

a crawler on the barbell network ��. Fig.2-11 depicts the sampling convergence of
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Figure 2-11: Convergence of MHRW and USDE on ��

MHRW and USDE. It is notable that USDE has a better convergence than MHRW

on such a network as analyzed in Section 2.4.4. For example, the sampled average

degrees of all 10 crawlers in USDE are only 10% deviating from the ground truth

after 600 iterations. In contract, all crawlers of MHRW cannot escape from the start-

ing communities even after 2,000 iterations. Notably, all crawlers in USDE become

convergent after 100 iterations when the addition of dummy edges starts.

The work then evaluates the average sampling times per node during the sampling

process on �� and �� in Fig. 2-12. It can be observed that sampling crawlers in

MHRW revisit nodes for more times in the network where local disassortative mixing

pattern is more notable. Within 1,000 iterations, the average sampling times per

node of MHRW is 2.7 in ��, greatly larger than that in ��, 1.6. On the other hand,

the average sampling times per node of USDE is much smaller than that of MHRW

in any network. For example, the average sampling times per node of USDE is only

1.3 in �� within 1,000 iterations. In particular, the diference of the average sampling

times between the two methods becomes more signiicant after the addition of dummy

edges in USDE starts (after 100 iterations).

The work inally examines the speed in identifying new attributes in Fig. 2-

13, where the performance of UNI is used as baseline. USDE has a much closer

performance to UNI than MHRW, indicating higher eiciency. For example, in Fig. 2-
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Figure 2-12: Average sampling times per node on �� and ��
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Figure 2-13: Eiciency of identifying new attributes on ��

13(a), while about 90 categories have been discovered by USDE within 1,000 sampling

iterations, MHRW has discovered only 60 categories within the same period, implying

USDE is 1.5 times as eicient as MHRW. The efect of user attribute distribution on

the eiciency in identifying new attributes is also observed. It requires more sampling

iterations to discover the same amount of categories for � -attribute than �-attribute

because the more “slight” attributes (which account for small proportions), the harder

crawlers discover them.
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2.6 Sampling Twitter and Sina Weibo

This section applies USDE to sample Twitter (the world’s largest Microblog service)

and Sina Weibo (a Chinese alternative of Twitter) in order to investigate the per-

formance of USDE in the real world. Here the quality of samples and the sampling

eiciency are also focused on as in Section 2.5.

2.6.1 Experiment Setup

In Twitter and Sina Weibo, the relationship between users might be non-reciprocal.

USDE leverages the idea of “backward edge traversals” [104][81][80] to sample these

two directed networks, where unidirectional edges are treated as bidirectional ones. In

other words, the work considers for each node all its in-edges (follower relationships)

and out-edges (following relationships) as undirected ones.

Given the huge size, one cannot get the real distributions of node degrees and user

attributes of the whole Twitter or Sine Weibo networks. Fortunately, users in both

Twitter and Sina Weibo are numerically identiied by unique IDs. Thus, user IDs

is generated uniformly at random and these IDs are used as input to query Twitter

and Sina Weibo APIs. This procedure is indeed a UNI sampling method and could

provide the ground truth. Both Twitter and Sina Weibo provide according APIs

for third parties to collect the neighbors’ information of a user given that user’s ID:

Twitter’s API returns at most 200 neighbors’ information for each call, while Sina

Weibo’s API returns at most 100 neighbors’ information. The work runs the sampling

methods using 10 crawlers simultaneously with diferent initial seeds and the average

values of the 10 crawlers are reported.

Fig. 2-14 irst plots the CCDF (Complimentary Cumulative Distribution Func-

tion) of the users’ followers and followings in Twitter and Sina Weibo obtained by the

above UNI sampling method. Neither Twitter nor Sina Weibo has a strict power-law

distribution, which is in accordance with the reports in [4][58][69]. It can be also found

that although the two curves for followers are similar, the distribution for followings

in Twitter has a longer tail than the one in Sina Weibo, meaning that compared with
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Figure 2-14: Distribution for followers and followings in Twitter and Sina Weibo

Sina Weibo, there are more users with large number of followings in Twitter. The

reason for this diference is that the current upper limit on the number of followings

per user in Sina Weibo is 2,000, which was also the upper limit in Twitter before 2009

but is removed now[58]. Besides, more than 90% of users in Twitter and Sina Weibo

have fewer than 200 followers and followings, implying that for majority of nodes, the

API can be called only once on each visit during the sampling process of USDE.
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Figure 2-15: The average �(� + 1)(�̄ − ��) vs. degree in two social media and one
online social network

Although the exact local assortativity coeicient � cannot be calculated directly

(Eq. 2.1) for each node in Twitter and Sina Weibo because of the lack of information

on the total number of edges in the whole network, �(� + 1)(�̄− ��) in Eq.2.1 can be
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indeed estimated with the help of dataset obtained by the above UNI sampling, where

�� can be approximated with the average remaining degree of sampled nodes in UNI

dataset. Fig. 2-15 shows the average values of �(� +1)(�̄−��) against degrees in the

abstracted undirected networks of Twitter and Sina Weibo. As expected, the local

disassortativity is obvious on the nodes with high degree. To illustrate the diference

between the online social media and the online social networks, the such values against

degrees in Renren network (the largest Chinese online social network) are also ploted

based on the dataset provided by [102]. It is expected that the Renren network shows

a local assortative mixing pattern regardless of degrees, which is distinct from Twitter

and Sina Weibo.

2.6.2 Quality of samples

The work irst examines how the sampled average numbers of followers and followings

are close to the ground truth in Fig. 2-16. Again, the work compares USDE with

MHRW and focus on the values normalized by the ground truth. Large variations of

��(�) (Eq. 2.6) and ��(�) (Eq. 2.7) are observed at the initial sampling iterations due

to the random choice of seed nodes for the 10 runs. The normalized ��(�) gradually

converges to 1 after taking several hundreds of iterations. Nevertheless, while the

normalized ��(�) in USDE in both social media converges close to 1, ��(�) for the

number of followers (and for the number of followings) in MHRW is about four times

(and two times) as high as the ground truth obtained by UNI.

Fig. 2-17 shows the CCDF for followers in Twitter and Sina Weibo obtained by

MHRW, USDE and UNI with 2,000 iterations where the sampled users are counted

uniquely. It can be observed that USDE generates a closer distribution to UNI than

MHRW. For example, in the sampled subgraph of Twitter using USDE, there are 93%

users having less than 200 followers, which is close to the corresponding proportion

of ground truth 95%. However, the result in MHRW shows only 80% users with less

than 200 followers.

The work then compares the two sampling methods from the perspective of accu-

racy in sampling user attribute. To this end, the work focuses on the user location
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Figure 2-16: Average normalized number of followers and followings

information. In both Twitter and Sina Weibo, every user has a location proile at the

level of city, which is suitable to be used as the standard to measure the performance

of USDE and MHRW on user attributes.

Fig. 2-18 makes a comparison between the proportions of locations obtained by

two sampling methods in Sina Weibo with 2,000 iterations. The work selects ive

provinces (aggregated above city-level) to show the diference. It can be observed

a limited diference for popular locations (e.g. Shanghai, Fujian). However, MHRW

misses the locations accounting for small proportions such as Chongqing and Ningxia,

which are indeed captured by USDE.
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Figure 2-17: Distribution of sample number of followers
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Figure 2-18: The proportions of locations sampled by MHRW, USDE and UNI in
Sina Weibo

2.6.3 Sampling Eiciency

To evaluate the sampling eiciency of USDE, the work irst examines the average

sampling times per node in Fig. 2-19. For both Twitter and Sina Weibo, the average

sampling times per node of USDE are close to 2. In contrast, MHRW has a much

higher number of sampling times per node, which is 6-8 and 8-10 for Twitter and Sina

Weibo respectively.

Fig. 2-20 then investigates the eiciency in identifying new locations of MHRW

and USDE. USDE can consistently identify more new locations than MHRW. For

example, USDE identiied more than 200 cities in Twitter within 1,200 iterations,
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Figure 2-19: Average sampling times per node
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Figure 2-20: Eiciency of identifying location information

while MHRW only identiied about 50 cities. The diference between the two curves

in Twitter is more signiicant than that in Sina Weibo, possibly due to the categories

of attributes in Twitter (world-wide) are more various than the ones in Sina Weibo

(country-wide).

2.7 Summary

This chapter studies the unbiased sampling of online social media, which exhibit local

disassortative mixing pattern. The work models the random walk-based sampling as

59



a Markov chain to deduce the general conditions for unbiased sampling, and then

proposes a sampling method, called USDE. It introduces dummy edges between nodes

with high self-sampling probabilities to allow crawlers to lexibility move between

low-degree nodes, while keeping the connectivity of samples. The work has detailed

the way of building dummy edges and the computation of moving probabilities, and

theoretically analyzed the eiciency of USDE. The performance evaluation results in

both synthetic networks and two real-life social media have demonstrated that USDE

outperforms previously proposed sampling methods in both the quality of samples

and sampling eiciency.
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Chapter 3

Information Difusion in Microblog

3.1 Motivation

Microblog services, such as Twitter and Sina Weibo, have greatly changed the way of

information dissemination. The speed and convenience of Microblogs make them com-

petitive services with classical media. With the increase of importance of Microblog

as a social medium for information sharing, understanding mechanisms describing

how information difuses over Microblogs, and explaining how some tweets become

popular, are meaningful for public opinion mining and information recommendation

on Internet currently.

This chapter makes an analysis of tweet’s popularity at irst. The work invests

cascade efect[20] of information propagation in Microblog services where it is assumed

that information difusion proceeds in an eventually random number of successive

stages. The aim of this work is to validate the usage of such a cascade efect for

describing information difusion in Microblog services. The analysis unveils that the

distribution of tweets’ popularity follows the stretched exponential (SE) distribution,

instead of the expected power-law distribution, and the parameters of SE distribution

can be used to estimated crucial properties of cascade. Moreover, the number of

retweets decreases exponentially with the growth of retweeting hop giving preliminary

evidence for a simple multiplicative model.

Based on the analysis of cascade efect, Galton-Watson process is introduced to
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describe the retweeting process in Microblogs. Galton-Watson process is a traditional

multiplicative model which can characterize the cascade efect in the information

difusion in Microblogs well. However, the retweeting probabilities of the tweets

always decrease along with the growth of number of hops, leading to the quick stop

of retweeting process, while the Galton-Watson process is likely to continue ininitely.

To consider the timeliness of the retweeting process in Microblogs, the Galton-Watson

with Killing (GWK) process, which is a variant of Galton-Watson process, is proposed

in the analysis of information propagation in Microblogs. The work collects the

Microblog data from Twitter and Sina Weibo in 2011, and evaluates the performance

of the GWK model based on these two datasets. The results of experiments show

that GWK model can it 82% of number of receivers of tweets and 90% of maximum

number of hops in the real retweeting process accurately. Besides, the work uses two

applications to show that the parameters of GWK model are useful to reveal the

endogenous and exogenous factors which afect the popularity of tweets.

3.2 The Multiplicative Cascade Model for Tweet Pop-

ularity

A Microblog user might follow another user, i.e, he will receive all messages (called

tweets) sent by the followed person. Followers might retweet some of the messages

they receive to their own followers. The distance between retweeters and the tweet’s

publisher is called hops. The retweeting mechanism enables users to spread informa-

tion to users that could not normally access it. Through retweeting hot messages can

be received by tens of thousands of users. The work measures popularity of a tweet

by the number of people that have retweeted it.

The retweeting pattern in Microblogs can be described as a random multiplicative

cascade process. Formally, a random multiplicative cascade process �(.) can be

described at each point � as a multiplication of � random variables �1, · · · ,��, i.e.,

�(�) = �1×�2× · · · ×��. To relate this model to the propagation of information,
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the work deines that the �-th stage begins at the time for generation of the irst

retweet at hop � and ends until the irst retweet at hop � + 1 appears, that is, the

number of cascade stages is equivalent to the maximum retweeting hop. The number

of new users that will retweet a tweet at �-th (1 < � ≤ �) stage is a coeicient �� of

the overall number of users that have retweeted the tweet up to the (�− 1)-th stage.

Then the overall number of users retweet a particular tweet � after � stages, denoted

as ��(�), is given by ��(�) = (1 + �1)(1 + �2) · · · (1 + ��), where the expansion

coeicient �� is in fact related to two main factors: the proportion of followers that

will retweet at �-th stage, and the out-degree (i.e. the number of followers) of the

retweeters.

Similarly to central limit theorem that applies to sum of random variables, an

asymptotic limit theorem for multiplicative processes where all multiplied random

variables are i.i.d [32] can be derived. Such processes converge to a stretched expo-

nential (SE) distribution deined as Eq. 3.1:

� (� ≥ �) = �
−( x

x0
)c

(3.1)

where the stretched factor is related to the number of multiplied random variables

�, i.e. the number of cascade stages, through a simple relation � = 1
�
, and �0 is a

constant parameter that is related to ranking scale. Because of its particular shape

a stretched exponential distribution can be easily mistaken with a power law one

[59]. However, processes following a stretched exponential distribution will have a

particular rank ordering statistic that will be diferent from the one of a power law.

Let � be the rank of an observation from a stretched exponentially distributed process

and �� its observed value. It can be shown theoretically that Eq. 3.2 is valid:

��� = −� log �+ � (3.2)

where � = ��
0 and � = ��1, meaning that the modiied ranking diagram, showing ��� ,

the observed values with exponent � vs. the log of its rank, follows in a straight line

with slope � = ��
0. This analysis suggests that if an empirical distribution follows a
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Figure 3-1: Stretched exponential dis-
trution Fitting

Figure 3-2: Distribution of average
retweet number in each hop

stretched exponential it can be meaningful to search for a multiplicative cascade that

could explain the emergence of this global distribution. In order to check this, the

work its SE models to the observed tweet popularity rank-ordering distribution using

the matlab toolbox provided by authors of [28]. Fig. 3-1 shows the popularity distri-

bution for all collected tweets in both log-log scale and log-�� scale. The parameters

of the SE model along with the �2 statistic of the itting are marked in the igure. The

igure shows that the SE model its the distribution very well, except the irst several

points that are due to the “King efect” [59] (this resulting from the fact that popular

topics reduce the attractiveness of other topic because of their high popularity). The

work also its SE for diferent days and lists in Table 3.1 the obtained parameters

showing the relative consistency of the � parameter in close dates.

In particular the SE model predicts that one can expect a number of maximum

retweeting hop (a number of cascade stage) around � = 1
�
. Table 3.1 also shows

the number of maximum retweeting hop ℎ� derived using SE model: ℎ� =
1
�
and the

empirically observed value over the dataset ℎ�. As can be observed these values are

very close. These results give more rational for a multiplicative cascade model of

tweet popularity.

To model the multiplicative cascade, the work analyzes how the number of retweets

relates to the number of retweeting hops from the tweet generator. For this purpose,
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Table 3.1: Parameters of diferent days of tweets
Time c a �2 ℎ� ℎ�

06/12/10 0.38 8.617 0.9980 2.63 2.69
07/12/10 0.36 6.523 0.9987 2.78 2.73
08/12/10 0.37 7.979 0.9987 2.70 2.72

the data is stratiied into 11 states according to the popularity of the tweets inside it,

i.e. for 1 ≤ � ≤ 10. The �-th state contains the tweets with retweet numbers between

500� to 500(� + 1) and the last set contains all remaining tweets. Fig. 3-2 shows in

a semi-log scale the evolution of the average number of retweets as a function of its

hop distance from tweet source. Interestingly all curves seems to be almost parallel

and to be inely itted to a straight lines. This indicates that the average retweet

number decreases exponentially with the hop distance. This is compatible with a

cascade model with a constant value of �{��} = �̂ for all stages. Interestingly these

igures mean that the tweet’s popularity mainly depends on the retweet number at

the irst hop (or the two irst hops), i.e., the number of followers of the originator

that forward the tweet. These observations of cascade efect provide the reasonable

evidences of using GWK model to characterize information difusion in Microblogs in

the following section.

3.3 A New Model of Information Difusion in Mi-

croblogs

Analysis of online network topologies and information spreading patterns has laid

foundation for explicative models of information difusion. This section builds an

explicative model that takes the network topology of actual information difusion and

characteristics of contents into consideration and describes the process of difusion

comprehensively. This work takes an analogy between the family name evolution and

difusion by retweeting where a family name is carried on only by male descents with

ofspring and information in Microblogs spreads only by those who choose to retweet

it. The Galton-Watson process is a branching stochastic process that has been used
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for the evolution and extinction of family names, therefore the Galton-Watson (GW)

process is employed to the modeling of information difusion in Microblog services.

However, since information difusion stops rather quickly online because the novelty

of online news wears out with time, while family names die out much slowly, the

work includes a killing process in the GW model to take into account such peculiar

feature of the online information difusion. The work collects data from Sina Weibo

and Twitter in order to use them in the analysis and evaluation of this Galton-Watson

with Killing (GWK) model. The results of experiments demonstrate that the GWK

model can describe the pattern of information difusion in Microblogs very well and

can be eiciently used to generate synthetic loads of Microblog online information

while still guaranteeing the statistical characteristics in terms of tweets popularity.

What’s more, the GWK model and its parameters reveal the key features of popular

tweets.

3.3.1 Related Work

Here prior work is reviewed on the online social networks and social media; online

information difusion and its analytical models. Most previous work to model in-

formation difusion have considered Independent Information Cascades and Linear

Threshold models as building blocks and estimated the properties of the obtained

cascades. Diferent from all the previous work, the Galton-Watson model with Killing

process introduced in this work, takes both the topology of Microblog social graph

and the intrinsic interest of the message into consideration and therefore can describe

the online information difusion more comprehensively and in an accurate way. This

is supported by the validation and comparison between empirical tweets distribu-

tions and the synthetic model-based information patterns. Specially, as opposed to

previous work, in addition to modeling the difusion and popularity of online infor-

mation, this work also presents an asymptotic analysis of the proposed process, which

in turn allows the researchers to not only validate the model to it the actual tweets

propagation, but also to use it for tweet load synthesis.
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Online social networks and social media

From citation networks to call graphs and group dynamics in newsgroups, human dy-

namics in a great many forms of interaction has long been studied. The following two

have analyzed the topological characteristics of online social networks and online so-

cial media which are of particular relevance to this work. Mislove et al. analyzed four

popular online social networks including Flickr, Livejournal, Orkut, and Youtube and

found some basic features about OSNs such as a small world phenomenon and high

clustering coeicients [69]. Kwak et al. reported on news-media-like characteristics

of Twitter [58].

Online information difusion

These online social services ofer a massively amount of data on human interaction

and have spurred research on information sharing. Generally speaking, there are two

directions for the online information difusion researches, characteristics descriptions

and analytical models.

Cha et al. provided an in-depth study of YouTube, including an analysis of pop-

ularity evolution [19]. Guo et al. analyzed the popularity of various user-generated

contents (UGC) and found that the observed rank-ordered popularity distribution is

not power-law as expected but is a stretched exponential distribution [44]. Lee et

al. used a Cox proportional hazard regression model to predict the popularity of

online contents [60]. Zaman et al. gave a probabilistic collaborative iltering model

for predicting the popularity of information in Twitter and found that the most im-

portant features for information propagation in Twitter are the identity of the source

of tweet and retweeter [83]. Lerman and Gosh conducted an empirical description of

news spread process on Digg and Twitter [63]. Ye et al. showed how breaking news

spread through Twitter and provided metrics for social inluence of users [113].Goetz et

al. used "zero-crossing" approach to research the temporal dynamics of the blogo-

sphere [37]. Gomez-Rodriguez et al. developed an eicient approximation algorithm

to infer the information difusion network [38]. Work listed above can be construed
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as of descriptive nature and do not answer causality of the phenomena.

Other work focused on building analytical models of popularity and difusion.

Two models are widely used for online information difusion researches, Independent

Cascades(IC) and Linear Threshold (LT) models. Kempe et al. introduced in [51]

the LT model to ind the inluential users and maximize the information spread on

online social networks. Galuba et al. analyzed the difusion of URLs in Twitter and

proposed to use the LT model to predict which users will propagate which URLs [108].

Yang et al. developed in [110] a Linear Inluence Model (LIM) based on LT models

which can predict interactions between nodes in the information dissemination pro-

cess without requiring the knowledge of the social network graph. On the other hand,

IC models were irstly used to analyze the information spread on blogosphere [64][22].

And epidemic model, which is a variation of an IC model was also proposed to make

the microscopic characterization of information difusion process [2][43]. Cha et al.

introduced the cascade model into the research of information dissemination on online

social network such as Flickr [20][21]. Myers et al. improved the traditional cascade

model in which information can reach a node not only via the links of the social net-

work but also through the inluence of external sources [72]. Guille et al. developed

a concrete model which relies on the IC model and is based on machine learning

techniques to predict the temporal dynamics of difusion in social networks [15]. Sim-

ilarly, [84] proposed a K-tree based model, established to correct for missing data in

information cascades, which makes such a model suitable for all types of cascades.

3.3.2 Dataset Description

This section gives a brief overview of Sina Weibo and Twitter datasets including the

collection methodology and their basic properties.

Sina Weibo and Twitter

Twitter is a well-known Microblog service, where a user can unidirectionally follow

other users and subscribe to their tweets. Sina Weibo is a Chinese Microblog service
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with Twitter-like unidirectional follow relationships. Followers on both services can

retweet some of the messages they receive from their followings and these retweets

are seen by their own followers. The distance between a retweeter and the tweet’s

original publisher is measured in ℎ��� where the publisher is considered at the 0th

hop. Retweeting is an easy and popular mechanism to share a tweet with followers.

Sina Weibo makes public two statistics per tweet: the number of retweets and

the number of comments for the tweet, both of which represent the popularity of

the tweet. However, Twitter does not ofer comments to a tweet and thus only the

number of retweets is used in this work. In latter sections, the popularity of a tweet

is measured by the number of retweets.

Data collection methodology

The study needs the complete set of retweets per tweet. Both Twitter and Sina Weibo

provide a search API, to which users input a tweet’s identiication number (ID) and

are returned all retweets of the tweet where the retweeting pathes from the original

publisher to retweeters are provided in detail. While for Sina Weibo this API is used,

the work uses the methodology from Kwak et al. [57] in Twitter to collect followers,

followings, tweets, and retweets of all Korean Twitter users. This Korean Twitter

dataset is referred to as �����.

There are over 100 million users in Sina Weibo as of January 2011, of which size is

too big to manage without Sina Weibo company’s cooperation. Instead the work uses

the unbiased sampling method USDE which is introduced in Chapter 2 to reduce the

size of the dataset for this work. With this uniform sampling method an unbiased

sample of 500, 000 users is obtained inally.

For each user crawled, the work collects all his tweets which have retweets and

are published from Aug. 1st, 2011 to Dec. 1st, 2011. For each tweet sampled, all its

retweets are also collected. This user unbiased dataset from Sina Weibo is referred

as �����.

69



Table 3.2: Sina and Twitter dataset summary
Dataset Time Tweets forwarded Retweets Users
����� 8 ∼ 12/2011 261,833 1,996,170 500,000
����� 8/2011 1,133,568 3,316,609 4,332,445

Figure 3-3: CCDF of the number of
followers
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Figure 3-4: Maximum retweet hops
distribution in two datasets

Data description

Table 3.2 summarizes the datasets ����� and ����� characteristics.

Fig. 3-3 plots the CCDF (Complimentary Cumulative Distribution Function) of

the users’ followers from ����� and �����. Neither has a simple power-law distribution.

Today’s online social networking services often have hundreds of millions of users and

are used not only for personal communication but in numerous types of communica-

tion, including political campaigns and advertisements. The degree distributions from

Cyworld, Twitter, and Orkut have been reported to deviate from a strict power-law

distribution [4][58][69].

For each original tweet (message) � , the corresponding retweeting tree � (�) is

built as follows. When node � publishes the original tweet � , � is considered as the

root of � (�) and all of �’s followers which received the tweet are the children nodes

of � in � (�). For all children nodes, if node � retweets the tweet � from his parent,

then � generates children nodes composed of all his followers, otherwise node � is

considered as a leaf node.
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Fig. 3-4 plots the distribution of the maximum retweeting hops in the two datasets,

����� and �����. This distribution shows the depth of the difusion and will be used

in the forthcoming as a validation metric.

3.3.3 A Galton-Watson Model

The Galton-Watson model has been used with success to model the evolution of

family names [78]. The information difusion process via retweeting online bears

a striking similarity to the family name evolution. Family names are transferred

patrilineally, while information spreads only by those who retweet. Family generations

are analogous to retweeting hops, which indicates the distance between the source of

the original tweet and the particular retweet.

One important factor in the above model is the decision to retweet or not. Such

a decision depends mainly on the content of the tweet. In family dynamics, it would

correspond to fertility. On the other hand, the distribution of number of followers (or

descendants) is a topological property of the Microblog social graph (or the family

tree). Thus this work takes two important aspects of information difusion in the

retweeting process: the intrinsic interest of the tweet message and the topology of the

social graph.

The following will formalize the model at irst. A GW is a branching stochastic

process {��}, where �� represents the number of users in the Microblog service that

receive a particular tweet through a path of � retweeting hops. The process {��} is

then evolving according to the recurrence formula: �0 = 1 and��+1 =
︀�n

�=1 ��, where

for each generation �, �� is a sequence of Independent and Identically Distributed

(IID) discrete random variables following a distribution �(�) representing the number

of ofspring of a node. For the purpose of the tweet propagation modeling, there is:

�(�) = (1− �)✶{�=0} + ��(�)✶{�>0} (3.3)

where � is the probability that a user receiving a tweet message can retweet it, and

�(�) is the degree distribution of the Microblog social graph, i.e. the distribution of
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number of followers for the Microblog.

It is however important to notice that this tweets propagation modeling and the

original GW family name process may difer from the process termination’s perspec-

tive. Typically, a tweet has a shorter lifetime than a family name (in terms of hops)

and will inevitably die faster, i.e. no more retweeting activity is observed. While

a genealogical tree, depending on the distribution of the number of male ofspring

is more likely to last longer. This can be explained by the fact that online content

might be more prone to a platitude efect due to lack of content novelty. In order to

account for this peculiar property, this work models an extinction process that will

govern the original GW trees.

Analytic approach

First, the GW trees without considering the extinction process is described. The

mean evolution of a GW tree can be easily analyzed through the Wald equality that

gives ❊ {��+1} = �❊ {��}, where � = ❊ {�} is the mean number of ofspring of

members, i.e. the mean number of people receiving a micromessage retweeted from

one user directly in one retweeting process. In other terms, there is:

❊ {��+1} = �� (3.4)

where � ≥ 0.

Using the previous assumptions expressed in Eq. 3.3, � can be rewritten as � = ��

where � is the probability of retweeting a message and � is the mean number of

followers of Microblog users that have a least one followers, resulting inally in:

❊ {��+1} = (��)� (3.5)

where � ≥ 0.

It should be noticed that for the retweeting process, �1 doesn’t meet Eq. 3.5.

When the information source publishes a tweet, all followers of the publisher can

receive the message at the irst hop which means �1 is equal to � but not to ��. In
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this case, Eq. 3.5 should be amended as follows to describe the retweeting process:

❊ {��+1} = �(��)�−1 = (�)�−1(�)� (3.6)

where � > 0 and �0 = 1.

Eq. 3.6 has the interesting property of separating two efects on the information

spreading in Microblog services: the intrinsic interest of the message represented by

� and the properties of the social graph represented by �. The mean total number of

users receiving a tweet can be derived as �̄ =
︀∞

�=1 �� and the mean total number

of retweets is derived as �̄ =
︀∞

�=1 ���.

A more reined analysis of the evolution of GW trees can be done through the

Probability Generating Function (PGF) that is deined for a discrete random variable

� with pdf �(�) as:

�(�) = ❊
︀

��
︀

=
∞︁

�=0

�(�)�� (3.7)

The work deines ��(�) = ❊
︀

���
︀

as the PGF of ��. In the context of the GW

tree it is easy to prove that ��+1(�) = ��(�(�)). Deriving the precise value of the

PGF in general is hard and closed form for it is available in a very limited number

of cases. However the PGF relationship is useful for deriving asymptotic properties

of the GW process. It is easy to see that ��(0) = �(0), which is the probability that

the �th generation is the last generation and that �′
�(1) = ❊ {��}, which is the mean

number of users receiving the message at �th generation.

There are two cases of interest here. First case is subcritical and happens when,

�� < 1, and the second case is supercritical when �� > 1. One important parameter is

the probability of extinction, i.e. the probability that�� = 0 for a �. This probability

can be derived as the smallest positive solution � of the equation � = �(�), where

�(�) is the PGF of the number of ofspring of a node. The work then derives the

parameters for the subcritical and supercritical cases that are observed in practice.

A)Subcritical case (� < 1): when � = �′(1) < 1, it can be proved that � = 1 is

the smallest positive solution. This means that the difusion tree will surely die. The
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number of generations (�) of a subcritical GW difusion tree can also be bounded as

[100]:

⎧

⎪

⎨

⎪

⎩

log �
| log �|

︁

1− log log �−| log �|
log �

︁

︀

1− 1
�

︀

≤ ❊ {�}

❊ {�} ≤ log �
| log �|

+ 2−�
1−�

(3.8)

The mean total number of users receiving a tweet (�) and the mean total number

of retweets (� ) are derived as :

�̄ =
1

1− ��
, �̄ =

��

1− ��
(3.9)

B)Supercritical case (� > 1): When� = �′(1) > 1, there is � < 1 and the tree will

continue to grow with a probability 1−�. More precisely, the asymptotic behavior can

be observed, when � → ∞, and in this supercritical case �� converges either to ∞

with a probability 1− � or to 0 with a probability �. In other words, when � > 1, one

can consider that asymptotically the process will die with probability � at each stage,

or express diferently which means that Prob {�� > 0} = 1−� for � suiciently large.

In the supercritical case, the number of generations can be potentially ininite and

results in an ininite number of members of the GW tree. However, in the assumption

that the tree will be extinct at some point, the expected numbers of members can be

derived as:

�̄ =
1

1− �′(�)
, �̄ =

�

1− �′(�)
(3.10)

where � is the PGF of �� as deined above.

Killing process

So far, one can already derive from the GW process the probability of extinction and

the mean number of generations for a tweet spreading. However as it will be observed

in the next section on the empirical data , the dynamic of GW process might capture

an overestimated model for the propagation of tweets. In essence, it can be observed

that in real life the hop depth of the propagation trees and the mean number of users

receiving a tweet are lower than what are predicted by the GW process. As discussed
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previously, this diference might be explained intuitively by the diference in nature

between the genealogy of ofspring which is modeled by the GW process and the

actual information spreading that might be inluenced by the content novelty.

Therefore to introduce a killing probability �, which represents the probability

that the GW process is killed prematurely at the �th generation, is necessary, resulting

in a Galton-Watson process with Killing (GWK). The probability that the process is

killed after � generations becomes �(1− �)�−1.

One might at the irst glance think that a GWK process with retweeting prob-

ability � is equivalent to a classical GW process with retweeting probability �� =

(1 − �)�. However, this is not the case because when killing happens in the GWK

process, in the last hop where all nodes are stopped together, one cannot assume any-

more that nodes have ofsprings independently from each others, which is a diferent

assumption compared with the classical GW model. Nonetheless, the GW process

with retweeting probability �� can be considered as a lower bound of the GWK pro-

cess, with �, the probability of having ofspring at any hop (except the last one) in

the GW process, being strictly lower than the corresponding probability in the GWK

process. For this reason, one can then expect the number of receivers in a GW process

with a retweeting probability �� and �� = ��� to be a strict lower bound of the

number of receivers in a GWK process.

In general, in a GWK process, a GW tree falls in one of three situations: either

it is inished because of natural extinction of the GW process, or it is killed because

of the killing process or it can also grow ininitely. If � < 1 then the probability

of the third situation happening is 0. This typically means that the probability of

generating a inite GW tree is larger for the GWK process than for GW. However, a

major issue is that one can’t disambiguate the reasons why a tree would stop growing

because of a natural extinction or a killing process. The next section will show that

this might create problems during the estimation of the killing probability �.
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Asymptotic analysis of the GWK process

As described earlier, the PGF of �� in a GW process is obtained recursively from

the PGF of the number of ofspring �(�) through ��+1(�) = ��(�(�)). When a killing

probability is added to the GW process the PGF of the overall number of members

of the GW tree is given by :

��(�) =
∞︁

�=1

��(�)�(1− �)�−1 (3.11)

and it veriies the following equation ��(�) = ��(�) + (1 − �)��(�(�)). The mean

number of members of the GW tree, or equivalently the mean number of users re-

ceiving a tweet, can be derived as :

�̄ = �′
�(1) =

∞︁

�=1

�′
�(1)�(1− �)�−1 (3.12)

where �′
�(1) = �� for GW process. Therefore this relation for a GW process with a

killing probability � can be got as follows:

�̄ =

⎧

⎪

⎨

⎪

⎩

��
1−�+��

, when �� < 1

∞ when �� ≥ 1

(3.13)

In [78] it is showed that if the ofspring distribution has inite mean � = �′(1), the

dominant tail will be � (� = �) ≈ �(�)�−1−� where

� =
log(1− �)−1

log �
(3.14)

This result means that one can expect the distribution of the number of users receiving

a tweet to have a power law behavior with an exponent 1 + �.
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3.3.4 Validation

This section will validate the usage of GW and GWK model for describing informa-

tion difusion over Microblogs. The work irst describes how to estimate the model

parameters and thereafter shows that the GWK can be applied to the retweeting

trees.

Parameter estimation

The model described in the previous sections depends on three main parameters:��

the retweeting probability of the tweet �, � the mean number of followers of Microblog

users that have at least one followers, and �, the probability that a tweet difusion

tree is killed at each hop. The work irst needs to propose way of extracting these

parameters over a dataset. Out of these three parameters the irst one has to be

derived for each tweet and the last two have to be derived over the whole dataset and

can be considered as properties of the Microblog site. A major issue that the work

has to deal with is relative to the ambiguity of the cause of death of a difusion tree. A

difusion tree can be inished because of natural extinction caused by the GW process

or of being killed by the killing process. As � is relative to the GW process and � to

the killing process, being able to separate these two efects is very important.

A)Inference of �: For the forthcoming analysis it is necessary to obtain the dis-

tribution of the number of followers and to derive from it the mean and its PGF.

As explained earlier, the initial user unbiased Sina Weibo dataset contains 500,000

Microblog users. As the number of followers of a user is the open and available in-

formation, deriving the follower statistics is straightforward. It is observed on this

dataset a mean of 93.4 followers, and a very large deviation equal to 4520.2, showing

the very large variability of the number of followers in the dataset. Twitter dataset has

a mean of 103.92 followers, and a deviation equal to 1436.8. The resulting distribution

is used as �(�) in Eq. 3.3.

B)Estimation of ��: The second important parameter to estimate is the retweeting

probability ��. However this value should be estimated when the difusion tree is not
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Figure 3-5: � itting with distribution of maximum retweeting hop number of �����

in the "killed" state. To ensure this, �� in the retweeting tree of � is estimated as

the proportion of users that retweeted the message among all users who received the

message excluding these in the last difusion hop.

C)Estimation of �: The last parameter to infer is �, the probability of killing a

tweet at each hop. Therefore it is necessary to ensure that a tweet is not naturally

extinct , before using it for estimating �. In order to achieve this, for each difusion

tree the probability that the tree is naturally extinct at the last hop is calculated.

If one assumes that a tweet � has a tree with � receiving users in its last hop, and

that the retweeting probability of this tweet is ��, then the probability of extinction

is given by ��(�) = (1− ��)
� . The work derives for all tweets this value and decides

to put aside all tweets that have a probability of extinction larger than 5%, or in

other terms, the work focuses on all tweets which the probability of being killed at

the last hop is larger than 95%, resulting in 37,866 tweets. Thereafter the value � is

derived by itting the formula �(1−�)� to the distribution of maximum retweeting hop

number � measured over these tweets. Fig. 3-5 shows the it over the distribution of

maximum hop number of �����. It can be observed that the distribution of generation

number follows the expected exponential decrease. The work estimates � = 0.49 for

Sina Weibo and � = 0.53 for Twitter.
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Table 3.3: Galton-Watson parameters in Microblog
Dataset � � %(�� < 1)
����� 93.4 0.49 54.2%
����� 103.92 0.53 77.5%

GW model validation

As explained in Section 3.3.3, there is a fundamental diference among the two cases:

� < 1 and � > 1. The GWK process parameters calibrated over ����� and �����

are shown in Table 3.3. Here one can estimate for each tree a �� using the following

estimator that is known to be the maximum likelihood estimator of �:

�̂ =

︀�
�=2 ��

︀�−1
�=1 ��

, (3.15)

where � is the maximum hop length of the retweeting tree. Note that the number of

ofspring for �0(i.e. �1) is not considered in numerator, because as stated in Section

3.3.3, Eq. 3.5 is not suitable for �1.

Table 3.3 also gives the proportion of tweets in � < 1 case for each dataset. The

work has irst to assess if the killing process is needed or not. For this purpose the

work can do two tests: irst to check if the number of observed hops is compatible

with the formula given in Eq. 3.8, and to check if the mean number of receiving

nodes is compatible with Eqs. 3.9 and 3.10. The irst method is only applicable to

subcritical tweets and the second method is applicable to all tweets. Using the lower

bound in Eq. 3.8, it can be observed that 89% of tweets have a maximum retweeting

hop number less than the lower bound given for the GW model. Moreover, Fig. 3-6

shows the number of receivers as predicted by the Galton-Watson model and what is

observed. It can be observed that for 83% of tweets, the observed receivers number

is less than the value predicted by the Galton-Watson model (below the line � = �

line). Indeed, one can expect that tweets which are naturally extinct will have a

mean receivers number following the GW equations. However it can be observed that

there is considerable proportion of tweets that have a number of receivers much less

than the mean predicted by the GW model. The two above results validate that it

79



Figure 3-6: Comparison of number of
receivers in a tweet tree as predicted
by the GW model with what observed.

Figure 3-7: Comparison of number of
receivers in a tweet tree as predicted
by the modiied Galton Watson model
with what observed.

is necessary to add a killing process that will account for the reduction of number of

receivers and the smaller hop lengths.

Section 3.3.3 explained that the number of receivers in a GWK process can be

lower bounded by the number of receivers in a modiied GW process with retweeting

probability �� . Fig. 3-7 shows the comparison of the number of receivers predicted

over the modiied GW process with what is observed. The igure conirms that the

modiied GW process acts as a strict lower bound to the GWK process. However as

expected this bound is not very tight.

The above analysis validates the relevance of the GWK process for analyzing the

propagation in Microblog systems. In the following the work presents two possible

applications demonstrating the usefulness of the GWK model.

3.3.5 Applications

This section presents two applications of the GWK model. The irst application shows

the use of the proposed GWK model in synthetic workload generation with similar

statistical properties to empirical Microblogs load, validating that the proposed model

is constructive. This opens way to implement Microblog traic simulators that can

be used to stress Microblog systems. The second application is relative to highly
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popular tweets. The GWK model and its parameters provide ine grain features that

will be shown to be highly relevant to understanding the popularity of tweets.

Tweet load synthesis

The GWK model provides a way of generating tweet propagation trees by simulating

the GWK model with parameters derived over an empirical dataset. The simulation

can be easily implemented as it simply consists of beginning from one seed user and

generating the irst generation by choosing a number of receivers following the distri-

bution �(�) deined in Eq. 3.3. Recursively, each user of a new generation chooses

its receivers number following the same distribution. At the end of each generation

one checks with probability � if the generation should be killed. The parameter �,

and the distribution �(�) are obtained following the above described methods. The

parameter �� is chosen randomly from an empirical distribution obtained over the

corresponding dataset. This can be implemented in a small program that generates

trees similar to the ones generated by Microblogs. Fig. 3-8 shows the Complementary

Cumulative Distribution Function (CCDF) of receivers number in the trees generated

following the GWK model and compares it with the empirical CCDF obtained over

the dataset �����. As can be seen there is a very good it between the two distributions

both in the head and the tail. Fig. 3-9 also shows the distributions of the maximum

retweeting hop number both in the tree synthesized by the GWK model and what

observed empirically over the dataset �����. Here the it is also striking.

The above analysis shows that the GWK can be used to synthesize retweeting

trees that have realistic macroscopic distribution. This validates the use of the GWK

model for Microblog workload simulation.

Popular tweets characteristics

The asymptotic analysis of the GWK shows the importance of the � = log(1−�)−1

log �
in

predicting the tail behavior of popularity, measured by the number of retweets, and

the audience, measured by number of receivers. This feature is interesting as it mixes

in a single equation all the parameters of the GWK and weights the impact of each
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Figure 3-8: Comparison of the CCDF
of receivers in trees generated by the
GWK model and the empirical CCDF
over �����

Figure 3-9: Comparison of distribu-
tion of maximum retweeting hops in
trees generated by the GWK model
and the empirical distribution of max-
imum retweeting hops in �����

of these parameters. It is therefore interesting to look at the value of this feature for

overall tweets. However a more precise look shows that as � is a parameter of the

global Microblog and is constant for all tweets, so that � is directly related to � = ��.

Previous works [89] showed that there are two paths for a tweet to become popular:

a path that is endogeneous and involves having retweeters that have a large number

of followers so that the tweet attains a large audience, and an exogeneous path that

explains the popularity by the intrinsic interest of the message. Each one of these

paths can be represented in � = �� where � accounts for number of followers and

� accounts for the intrinsic interest of the tweet, meaning that � mixes these two

aspects. The theorical analysis shows a clear distinction of the asymptotic behaviors

between � > 1, where the tree is expected to become ininite in absence of killing,

and the case � < 1 where the tree will surely extinct even without killing. It will be

interesting to check if tweet audience and popularity, measured in term of number of

receivers and number of retweets, are related to the value of �.

Figs 3-10 and 3-11 plot the relation between the estimated � using Eq.3.15 for

each retweeting tree and the popularity evaluated as the number of retweets. While

one would expect that large � leads to large popularity, this is deinitely not the case.
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Figure 3-10: Popularity against esti-
mated � in �����

Figure 3-11: Popularity against esti-
mated � in �����

Table 3.4 contains the characteristics of highly popular tweets. As can be seen all

highly popular tweets in the two datasets are sharply concentrated around a value

of � = 1. In fact it can be observed that what leads to a large difusion and a large

popularity is rather a balance between followers number and retweeting probability

that results in � being close to one. This is conirmed by looking at the CCDF of the

estimated speciic �� for each retweeting tree instead of the global constant � which

is shown in Fig. 3-12. Here �� is got from �� =
�i

�i
where the 0�ℎ hop and 1�� hop are

not considered as Section 3.3.3 stated. As can be seen in ����� the popular tweets

generally exhibit � values that are generally larger than those observed over the whole

dataset, but still these tweets have not very large �. The situation is slightly diferent

in ����� where all popular tweets have smaller �’s than other tweets. Nonetheless,

either for Sina Weibo or Twitter dataset, popular tweets never happen for small �’s.

The above observations give an interesting characterization of highly popular

tweets. These tweets have a � relatively large (larger than 50 for Twitter and larger

than 200 in Sina Weibo) and accordingly small retweeting probability (to end up with

a � close to 1). In particular no popular tweets resulting from several hops of small

neighborhood difusion has been observed, ruling out social rumors type of propaga-

tion. It is also observed that few popular tweets have a large value of � excluding the

followers of publisher. This last observation is in accordance with [18].
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Table 3.4: Characterization of highly popular tweets
Dataset Popularity range Popularity% Mean of � Median of � 1-percentile 99-percentile Tweet%
����� All popularity 100% 3.691 1.247 1.000253 28.5956 99%
����� popularity > 100 0.182% 1.053 1.002 1.000011 1.271943 51.13%
����� popularity > 1000 0.002% 1.003 1.000 1.000006 1.028369 17.83%
����� All popularity 100% 3.596 1.000 0.984 34.1492 99%
����� popularity > 100 3.06% 1.394 0.8583 0.7676 1.0262 66.8%
����� popularity > 2000 0.09% 0.904 0.9376 0.8237 1.002 1.5%
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Figure 3-12: CCDFs of � estimated from popular and all tweets

3.4 Summary

This work has analyzed information spreading patterns in Microblogs and built a

novel model for the information spreading. The model is based on the analogy with

the Galton-Watson branching processes that describe the evolution of family names.

The work has reined the model with the killing process and validated the applicability

over two datasets from Sina Weibo and Twitter. Besides, the work has presented two

applications of the GWK model, namely, Microblog workload generation and popular

tweet characterization, showing that the GWK model is useful not only for describing

the information difusion but also for providing the insights into popular tweets.

This work is leading researchers to the following new directions. The GWK model

incorporates time as a discrete generational index, and does not account for the

temporal dynamics of tweet difusion. A continuous time model that captures the

temporal dynamics should be considered in the future. In GWK model the values

of the mean number of followers, �, the retweeting probability, �, and the killing
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probability, � are used, but the factors behind them have not been addressed. The

user’s social capital in the network as well as the history of retweets are likely to be

correlated to the parameters of GWK model. In addition one particular observation

of interest is that highly popular tweets all have a � value close to 1. The study of

compounding factors is left for future work.
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Chapter 4

Correlation Analysis between

Microblog Trends and Web Interests

4.1 Motivation

The social nature of the Web 2.0 age leads to new patterns of web access and In-

ternet resources discovery. Several studies addressed the interaction between online

social media and the popularity of online digital content [31][106][27]. However, the

relationship that might exist between online information difusion in Microblogs and

web interest has been overlooked.

While the popularity of contents relects the long term importance of some content

from the Internet users’ perspective, trends and in particular positive trends express

arising and short-term interests. This work studies the notion of trendiness in the

Microblog environment, as one instantiation of online social networks, and in the

web context. In the following, the two environments are referred as Spheres. The

work focuses on highly positive trends and their corresponding trending topics which

attract relatively higher interests within a short period of time.

While there is no absolute metric that captures the interests within the web

spheres, this work deines web interest as the extent to which web resources (i.e.

webpages) are being used or searched in the Internet. Speciically, the work measures

interests in the web sphere as the relative number of users who search for a particular
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web content using a set of keywords through search engines (e.g. Google). In addi-

tion, web interest is also measured by the audience of webpages relying on statistics

provided by Alexa[5]. Similarly, the work uses established information theory metrics

to extract topics of interest and measure trends in the Microblog sphere based on a

dataset of tweets collected from Twitter. Furthermore, the work uses oicial trend

statistics from Twitter[99].

This work provides the following contributions: First, by considering a dataset

of tweets extracted from Twitter and statistics extracted from Google Trends, the

work examines the temporal evolution of trendiness in Twitter and their interrelation

with web trends. The work measures the likelihood that a Twitter trending topic is

also a web trending topic (as illustrated by Google searches), and characterizes the

temporal ofset between trendiness in both spheres.

The work inds evidences that trending topics are similar within the two spheres.

The results of experiments suggest that trendiness seems to be in most cases orig-

inating from the Microblog sphere, with more than 65% of the topics trending in

Microblog irst. On the other hand, the work also observes that more than 60% of

the trending Twitter topics are likely to be also trending in the web and more than

72% of the web trending topics have been (or will be) also trending in the Twitter

sphere. A notable diference is that trendiness in Twitter is highly unstable, with

almost all Twitter trending topics exhibiting a very low rank stability, as opposed to

a high stability observed from the web sphere.

Besides, the analysis is extended to a spatial measurement of trendiness by ob-

serving trending topics across ive diferent countries. The work inds both in Twitter

and in web, the majority of trending topics appear at not more than 2 countries at the

same time (95.6% in Twitter and 65.0% in web) and for a topic, the trending regions

in the two spheres are similar, which advocates for a regional feature of trends.

Finally, the work shows theses observations can be used for a "smart" predictive

choice of ad keywords in Search Engine Marketing (SEM).
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4.2 Related Work

This section irst reviews prior work related to the study of the interaction between

information spreading on online social media and content popularity.

Some studies focused on the temporal analysis, i.e. the co-occurrence in close time

interval of popularity growth and the difusion of information on online social media.

Sadikov et al. in [31] extracted from online blogs and comments, a comprehensive

set of movies features that are thereafter used to predict the corresponding movies

sales. Authors in [106] studied the correlation between the popularity of videos on

a User Generated Content website (e.g. YouTube or YouKu) and the spread of the

video urls by tweets. In [47], Teevan et al. compared “simultaneous” search queries

over Microblogs platforms and on search engines and observed that Twitter searches

are mainly used to follow up an event while web searches are mainly intended to learn

about a topic [47].

Other studies targeted the spatial dimension, i.e. the relationship between the

location where a message is published and the scope of its difusion. Brodersen et al.

found that social sharing generally widens the geographic reach of a video content.

However, when a video cannot generate a social impulse to broaden its paths of

discovery, it frequently gets caught in a conined geographic region [16]. Scellato et

al. described how geographic information extracted from social cascades on online

social networks can be exploited to improve caching of multimedia iles in Content

Delivery Networks [85].

As opposed to previous work, this study provides the irst comparative analysis

of the rise of interests in the Internet through the comparison of topic trends in

Microblogs and on search engines from temporal and spatial perspectives.

4.3 Methodology and Dataset Description

This section irst describes the methodology used to infer the trending topics from

tweets in Twitter as well as in Google and Alexa, two popular sites that provide trends
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in the web sphere. It also introduces the metrics used to measure the trendiness of

topics. Finally the datasets used for the analysis is detailed.

4.3.1 Identifying Trends

Trends describe the popularity dynamics of topics over a short time period, where a

topic � consists of a word or a sentence mentioned in tweets or queried using search

engines. While a single-word topic might be easy to obtain from tweets or queries,

multi-words topics should be learnt using some natural language processing methods,

e.g. LDA.

Trending index volume

User interests in both Microblog and web spheres have temporal dynamics. That is

to say, the volume of mentions or searches for a particular topic naturally varies over

time. The work deines the trending index volume ��(�) for a topic � at a given time

� as the volume of the topic normalized by the maximum volume observed during

an observation period of time and then scales the trending index volume to [0, 100],

which is similar to the oicial deinition provided by Google[40]. Over a given period

�, all trending index volumes ��(�) where � ∈ � compose the trends of topic � during

that period, � (�), i.e. � (�) = {��(�), � ∈ �}. The work further uses � �(�) and � � (�)

to represent the trends of topic � in Google and in Twitter respectively.

Extracting the trending index in Twitter is a challenging task, as it is necessary to

extract the global trending topics over a particular period of time. Although Twitter

ofers an oicial trending service, the trends are determined by an “algorithm tailored

for the user based on who [you] follow and [your] location. This algorithm identiies

topics that are immediately popular, rather than topics that have been popular for

a while or on a daily basis, to help [you] discover the hottest emerging topics of

discussion in Twitter that matter most to [you]” [97]. In other words, Twitter oicial

trending topics are personalized to user accounts. The work therefore adopts an

alternative approach to extract global Twitter trends.
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A topic consists of a single word or multiple words. For a single-word topic that

includes only one word �, the work measures the trending index as the word frequency

based on the content of tweets. The work bins all tweets into subsets �� with a ixed

time interval (daily and hourly in this study) and then extracts, for each subset ��,

the set of words ��, and computes the word frequency ���(�) for each word � ∈ ��.

Note that stop words (e.g. “a”, “after”, “that”, etc.) which naturally appear with

higher frequencies should be ignored in the calculation(readers could refer to [41] for

a complete list of the stop words). A word is counted once per tweet even if it is

repeated in the tweet. Since the number of tweets in each subset might vary greatly,

the word frequency ���(�) is normalized by the number of tweets in each subset,

resulting in a relative topic frequency ���(�) = ��i(�)
|�i|

, where |��| is the number

of tweets in subset ��. Finally, the work scales all ���(�) in [0, 100]. The Twitter

trending index volume for single-word topic � at time � in a period � can then be

written as: ��(�) =
��i(�)

���j∈R({��j(�)})
* 100.

To obtain multi-words topics in Twitter, Latent Dirichlet Allocation (LDA) is used

[12]. LDA is a generative model that extracts statistical properties of text documents

in a discrete dataset and models each document as a mixture of various latent topics.

A topic created by LDA is always nameless and represents a cluster of words that

tend to co-occur with a high probability within the topic. LDA learns the statistical

relations among words and documents and then estimates the probability that a given

document is related to a given topic. The total number of topics is denoted by �, a

parameter of the LDA model. Supposing there are � documents in the copus and

each document � includes �� words, the topic distribution �� for each document � is

described to follow a Dirichlet distribution �(�⃗), where �⃗ is a parameter vector of

the Dirichlet prior with a size of �. In addition, the word distribution �� for a topic

� also follows a Dirichlet distribution �(�⃗), where �⃗ is another parameter vector of

the Dirichlet prior. Given the parameters �⃗ and �⃗ , the generative process for each

document by LDA contains the following three steps:

1. Choose the topic distribution for a document �� from�(�⃗), where � ∈ {1, . . . ,�};

91



2. Choose the word distribution for a topic �� from �(�⃗), where � ∈ {1, . . . , �};

3. For each of word position � in document �, where � ∈ {1, . . . , ��} and � ∈

{1, . . . ,�}:

a) Choose a topic ��,� fromℳ(��) whereℳ(��) is a categorical random variable

with parameter ��.

b) Choose a word ��,� from ℳ(��i,j) where ℳ(��i,j) is a categorical random

variable with parameter ��i,j .

Following the above process, the total probability of the model is:

� (�⃗ , �⃗, �⃗, �⃗|�⃗, �⃗) =
�︁

�=1

� (��|�⃗)
�︁

�=1

� (��|�⃗)

�︁

�=1

� (��,�|��)� (��,�|��i,t)

(4.1)

where �⃗ is the set of words in all documents, �⃗ is the set of topics in all documents,

�⃗ is the distribution vector with size � of which the item �� represents the topic

distribution in document �, and �⃗ is the distribution vector with size � of which

the item �� represents the word distribution in topic �, � represents total number

of words in all documents, that is, � =
︀�

�=1 ��. The observable variable is �⃗

while �⃗, �⃗, �⃗ and �⃗ are latent variables. Note that Eq. 4.1 describes a parametric

empirical Bayes model and one can derive various distributions (e.g. the associated

word probabilities in a topic, the probability that a document belongs to a topic) using

Bayesian inference. Gibbs sampling is widely-used to recover the posterior marginal

distribution of �⃗.

In the context of this work, all tweets are binned into subsets �� with a ixed

time interval (hourly or daily). In the training process, each tweet is considered as

a document and each subset �� as a corpus of documents. For each corpus, LDA

is used with 2,000 iterations of Gibbs sampling to extract 50 topics (i.e. � = 50),

each of which includes 20 relative words. For each training process over ��, LDA

model provides a probability vector for each tweet, the elements of which indicate
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the correlation between the tweet and the extracted topics. Based on this probability

vector, a tweet can be considered to be related to the topic of which the corresponding

probability is the highest in the vector, resulting in the relative topic frequency ���(�)

(i.e. the proportion of tweets related to � in ��). Then, the Twitter trending index

volume ��(�) for a multi-words topic � at time � can be calculated by scaling ���(�)

within [0, 100].

The trending index volumes for topics in Google is much easier to be obtained,

as Google Trends provides the normalized search volume for both single-word and

multi-words topics. These statistics can be used for the computation of the trending

index volumes in Google directly.

However, it is hard to get the exact search volumes of topics from Alexa. The

work alternatively estimates the trendiness of topics in Alexa approximately with the

assistance of topic rank information: the trend of topic � is considered in binary, that

is, if topic � appears in the top trending list of Alexa at time �, then the trending

index volume of � at � is 100, otherwise, it is 0. Clearly, a sharp rise can happen on

Alexa at time � if � is in the top trending list at time � but not at time (�− 1).

Positive and negative trends

A topic � experiences a positive (resp. negative) trend at time � if its trending in-

dex value ��(�) is larger (resp. smaller) than ��−1(�). The corresponding increasing

(resp. decreasing) trending index volume � +
� (�) (resp. � −

� (�)) is ��(�)−��−1(�) (resp.

��−1(�) − ��(�)). For a topic �, the work deines highly positive trend as a positive

trend that has an increasing trending index volume larger than a threshold � at the

time of observation. The time of observation � is called highly positive time (day or

hour) of the topic.

In this study, � is set to be the 50�ℎ percentile, 75�ℎ percentile and 90�ℎ percentile

of all positive trending index volumes in � (�).
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Trending topics

Trending topics are topics of which trending index volumes increase in a relatively

higher proportion compared to others. In other words, a trending topic can be either

a word, an expression (a set of concatenated words) or a tweet of which the immediate

popularity is rapidly increasing, compared to other popular topics. The emergence

of trending topics is either endogenously driven by a users interests, or motivated by

an exogenous event that prompts people’s attention.

In detail, the work identiies a trending topic at time � as follows:

1. The work derives a discrete-time vector of trending index volumes for each topic

�, from which all positive trends are extracted.

2. For each positive trend (of all topics), the work measures the corresponding

increasing trending index � +
� and then calculates the average value of all in-

creasing trending index volumes at time �, �̄ +
� .

3. If at a particular time �, a positive trend of topic � is observed, � +
� (�) ≥ �̄ +

� ,

then the topic � is deemed trending at time �. Time � is called trending time

(day or hour) of the topic �.

Again, it is noteworthy that the notion of “trending” is diferent from “popular”.

The latter is highly dependent on the number of times the topic is mentioned, e.g.

the number of relative tweets in Twitter or search volume in Google, across a rather

long period of time, while trendiness focuses on the speed of increase in mentioning

a topic within a short period of time. A topic that has been popular for a while is

most likely to be not trending anymore, as the number of tweets mentioning this topic

would become steady even though still high.

4.3.2 Datasets

For the purpose of this study, Twitter’s tweets are used to extract the trends of topics

in Microblog. The work also relies on the “oicial” trending topics as shown by the
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Twitter for geographical pattern analysis. Google Trends and the Alexa services are

also used to obtain trends of the web sphere.

Twitter Tweets

The work uses a set of tweets � from [111] comprising 132,210,436 tweets published

by 7,404,248 users over the period from August 1st, 2009 to August 31st, 2009. Two

time granularities are considered: a daily topic analysis which matches the Google

Trends service [40] time granularity, and a topic extraction on an hourly basis which

matches the Alexa trends analysis. As in [116], the work observes that the frequency

of the top 5% popular words account for more than 95% of words count in the overall

daily and hourly subsets of tweets � .

The work extracts daily (resp. hourly) single-word topics using simple term fre-

quency statistics to extract the most relevant (top 5%) words on a daily (resp. hourly)

basis. To extract multi-words topics, the LDA generative model is used as described

above to classify them into diferent topics. In total, the daily set of topics, denoted

as ��
� is composed of 76,760 single-word topics and 267 multi-words topics, while the

hourly set of topics ��
ℎ is composed of 56,774 single-word topics and 372 multi-words

topics.

Oicial Twitter trending topics

The original tweets collected do not provide enough geographic information. In order

to analyze the geographic patterns of Twitter trending topics, the work further collects

for the period spanning from September 1st to October 31st, 2012, and every ive

minutes, the top 10 trending topics suggested by Twitter for the following countries:

U.S, U.K, Canada, France and Australia, which are abbreviated to ��, ��, ��,

�� and �� later. Finally, 6,858 unique trending Twitter topics are found, which

compose a topic set �.
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Google Trends

For the purpose of temporal analysis, this work collects the Google Trends statistics

of the topics extracted from Twitter. Though Google Trends, a dataset, referred as

�, can be got which includes scaled and normalized daily Google search volumes for

each topic � ∈ ��
� from August 1st to August 31st, 2009, leading to the dataset ��

� .

In addition, in order to have a comparison study of geographical patterns in Twitter

and Google Search, the dataset � also includes the lists of top 10 countries where the

topic � ∈ � is the most frequently searched topic according to Google Trends from

September 1st to October 31st, 2012, leading to the dataset ��.

Alexa rank lists

Although Google Trends provides the trending topics in Google [40], it is not suitable

for the web trending topics collection mainly for two reasons. First, Google Trends

service only ofers the top 10 trending topics per day which are far from enough

to compose a complete trending topics set. Second, Google Trends provides the

daily trending topics of speciic countries but not the global ones. Fortunately, some

informative websites such as Alexa provide the information about global trending

topics in the web with a ine granularity. Speciically, Alexa keeps track of the top

20 global trending topics (search keywords) in the web for any hour since July 26th,

2009. This provides an efective way to estimate the hourly trendiness of topics in

the web sphere. The work collects the hourly top topic lists of Alexa during August

1st to August 31st, 2009. Totally, there are 898 unique trending topics, composing

the web topic set ��
ℎ . This dataset includes information about the topics’ ranks in

each hour as well.

Table 4.1 summarizes the datasets used later.

4.4 Temporal analysis

This section investigates how the trending topics in Microblog sphere behave in the

web at irst. Later, it proceeds to analyze the reverse interrelation by studying the
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Table 4.1: The summary of datasets
Dataset Description
� Dataset collected from Twitter
� Dataset collected from Google
� Dataset collected from Alexa
��

� Twitter topics set extracted from � with daily granularity
��

ℎ Twitter topics set extracted from � with hourly granularity

��
� Google topics set extracted from � with daily granularity

��
ℎ Alexa trending topics set extracted from � with hourly granularity

� Dataset including the oicial Twitter trending topics of 5 diferent countries
�� Dataset including the oicial Twitter trending topics of 5 diferent countries
�� Dataset including the oicial Google trending country lists of topics in ��

Alexa dataset compared to the collected Twitter dataset to examine how the trends

of trending topics in the web look like in Twitter.

In summary, it is found that trending topics are similar within the two worlds

where at least 70% of the Twitter trending topics are likely to be also trending in the

web and 72% of the web trending topics have been (or will be) also trending in the

Twitter world. The results also suggest that although the trendiness in Twitter seems

to be synchronous with the one in Google on daily granularity basis, most of the

trends of these topics are actually driven by Twitter population in advance, and then

spread in the web on a iner granularity (such as on an hourly basis). The notable

observed diference is that trendiness in Twitter is highly unstable. It is found that

almost all Twitter trending topics exhibit a very low rank stability, which is opposed

to the high stability observed for the web trending topics.

4.4.1 How do Twitter topics behave in the web?

As the topics extracted from tweets are used to collect their trends in Google, the

work can have an analysis on how accurately topics’ trends in Twitter can approximate

their trends in Google.
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Figure 4-1: Kullback-Leibler Divergence between Twitter trends and Google trends

Trends Similarity in Twitter and Google

The work examines the similarity between trends in Twitter and Google usingKullback-

Leibler divergence (also called relative entropy), which is a measure of the diference

between two probabilities � and � [53]. The deinition of K-L divergence is shown

as Eq. 2.15. The smaller the K-L divergence is, the closer the two distributions are.

In this context, � and � are related to the Twitter trends and Google trends of topic

�, respectively. �(�) (resp. � (�)) is the ratio of trending index volume of � at time �

in Twitter (resp. Google) to the total trending index volume of � observed in Twitter

(resp. Google).

For each topic that has trends in both Twitter and Google, the work computes the

K-L divergence of the topic trends in two spheres. It also computes the K-L divergence

of trends for randomly selected topic pairs from two spheres. This random selection is

used as null hypothesis. Fig. 4-1 shows the cumulative distribution function (CDF) of

K-L divergences. A notable diference between the two K-L divergence distributions

for both single-word topics and multi-words topics can be observed. For example,

more than 60% of topic pairs have a K-L divergence less than 1 for the same single-

word topics, while this percentage is only 43% for random selection.
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Figure 4-2: Distribution of number of trending days for trends in Twitter and in
Google

Trending time analysis

The work then examines trending days for each topic (including single-word topics and

multi-words topics) � ∈ ��
� . The number of trending days is deined as the number

of days the topics have been tagged as trending (either in Twitter or in Google). Fig.

4-2 shows the distributions of the number of trending days for single-word topics and

multi-words topics in Twitter and Google. About 10% of single-word/multi-words

topics in Twitter have not been trending (i.e. with 0 trending days). This is to be

expected because the work only considers Twitter topics that represent a daily set

of the most relevant and popular words used in tweets. It can be also observed that

about 20% of topics (either single-word or multi-words topics) in Google have not

been trending. Recalling that the work uses Twitter topics to crawl Google Trends

service, this observation indicates that 20% of these Twitter topics have never been

trending in Google.

Interestingly, compared with Google, topics in Twitter have a shorter trending

time. For example, about 20% of the single-word topics are trending in Twitter for

more than 3 days, while this proportion is 40% in Google and 20% of topics are even

trending in Google for more than 6 days. This observation suggests that trendiness

of topics in Twitter is much more volatile than in Google.
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Highly positive trends analysis

The work then examines for the topics � ∈ ��
� , the number of highly positive trends

they experience. Recalling that a highly positive trend is a positive trend with the

increasing trending index volume larger than a threshold � at a particular time, this

typically captures a timely and particularly high interest in a speciic topic. Here �

is varied with 3 typical values: the 50�ℎ percentile, 75�ℎ percentile and 90�ℎ percentile

of positive trending index volumes.
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Figure 4-3: Distribution of number of highly positive trends for trends in Twitter and
in Google

Fig. 4-3 plots the distributions of the number of highly positive trends for topics

in Twitter and Google. Depending on the value of �, the proportion of Twitter

topics that do not exhibit any highly positive trend varies between 10% and 50% for

single-word topics and between 10% and 70% for multi-words topics. Google shows

a slightly larger number of highly positive trends than Twitter. For example, there

are 30% of the single-word topics and 20% multi-words topics hitting more than 2

highly positive trends in Google with � = 75%, while this percentage in Twitter is

about 20% for single-word topics and 10% for multi-words topics. The observation

indicates that trending topics have a more stable impact in Google compared with in

Twitter.

The work further compares the trending days and highly positive days in Twitter
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Table 4.2: Comparison of trendiness likelihood in Twitter and in Google for all ex-
tracted topics.

Metric similarity
Trending 65.51%

Highly positive trends
�:50% 69.58%
�: 75% 51.88%
�: 90% 33.90%

and Google by checking that whether a similarity exists between them in Table 4.2,

where the likelihood is computed as the probability that if a topic which is trend-

ing(resp. has highly positive trends) in Twitter is also trending(resp. has highly

positive trends) in Google based on the crawled dataset.

The likelihood that a Twitter trending topic is also trending in Google is 65%,

and the likelihood for a Twitter topic that exhibits a highly positive trend with

�=50% in Twitter to be similarly showing a highly positive trend in Google is 70%.

However, when picking a Twitter topic that has experienced a very highly positive

trend (�=90%), there is only 30% of chances for that topic to experience the same

highly positive trend in Google. While this lower number potentially stems from the

high-selection of such topics in Twitter, it also suggests that Twitter trendiness is

potentially more sensitive than Google. Given the diferent nature of usages of the

two services, this is a reasonable explanation as Twitter users would potentially be

more reactive to other users interests and topics.

Time ofset analysis

The above results call for a deeper investigation of the time efect so that one can

understand whether observed trends in one sphere can ind their genesis in the other

one. For this, the work introduces the time ofset to represent the diference between

the trending times (resp. highly positive times) in Twitter and in Google for trending

topics (resp. topics with highly positive trends). In this study, the time ofset based

on a speciic feature of trends (trending or highly positive trends) between the spheres

� and� is deined as, the diference between the irst day when this feature is observed

in sphere � and the irst day it is observed in sphere �. A positive value indicates
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Figure 4-5: Time ofset on the highly
positive days between Twitter and
Google of single-word topics

that the feature happens irst in � and otherwise, it happens irst in �.

Fig. 4-4 and 4-5 depict the time ofsets based on trending days and highly positive

days between Twitter and Google for single-word topics respectively. It is clearly

observed that most of time ofsets assemble around 0 where the proportion of time

ofsets in [-1,1] interval is much larger than other intervals. In particular, more than

half of the time ofsets on trending days (resp. highly positive days) between Twitter

and Google are in [-1,1] interval, indicating that at most a one-day interval separates

the trends in these two spheres. There results show that the trendiness in Twitter is

likely to be synchronous with the one in Google on daily granularity.

4.4.2 How do Web topics behave in Twitter?

The work now looks at topics extracted from the web sphere, and analyzes their

trendiness features in the microblog environment. As mentioned earlier in Section

4.3.2, the Google Trends service unfortunately does not provide enough information

on the trending topics in web. As an alternative, the work uses a set of topics

extracted from Alexa ranked lists, ��
ℎ . This composes the set of trending web topics.

This section focuses on the variation of the “trendiness rank” of topics both in Alexa

(��
ℎ ) and in Twitter (��

ℎ ). The analysis in this section can be also based on a iner
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granularity, i.e. hourly as opposed to daily.

Trends Similarity in Alexa and Twitter

Similar to the the analysis of Twitter topics in web, the work also calculates the K-L

divergences between Alexa trends and Twitter trends at irst. Recall that in Section

3.3.2, it is deined that if topic � is in the top trending list of Alexa at time �, then

the trending index volume at � is 100; otherwise, it is 0.

As depicted in Fig. 4-6, if the topic pairs in Alexa and Twitter are randomly

selected, the K-L divergences between the two trends are distinctly larger than the

ones of same topics, which means the Twitter trends can also be related to the cor-

responding web trends.

Trending time analysis

Fig. 4-7 shows the trending times (on hourly granularity) of 898 topics � ∈ ��
ℎ in

Alexa and in Twitter respectively, where the trending hours of a topic � in Alexa are

considered as the hours when � appears in the top trending list and the trending hours

in Twitter are estimated using the method described in Section 3.3.2. Two notable

observations can be got. First, only 28% of Alexa topics have not been trending in
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Twitter, which is another evidence that trending topics are similar within the two

worlds. Second, topics are likely to be trending for a longer time in Alexa than in

Twitter. For example, 16% of topics trending in Twitter for more than 10 hours while

the corresponding number in Alexa is about 30%. This observation further conirms

the volatility of trendiness in Twitter again.

Time ofset analysis
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Figure 4-8: Time ofset on the trending hours between Alexa and in Twitter

The time ofsets (in hour) based on trending times of the same topics between

Alexa and Twitter are depicted in Fig. 4-8, where the positive value indicates that

the trending feature happens irst in Twitter and otherwise, it happens irst in Alexa.

Opposed to the results in Fig. 4-4, the distribution of time ofsets in Fig. 4-8 is

skewed towards the positive part, e.g. there are more than 65% time ofsets are larger

than 0 in Fig. 4-8. It can be concluded that although the trendiness in Twitter seems

to be synchronous with the one in Google on daily granularity, most of trends of these

topics are actually driven by Twitter population in advance, and then spread in web

on a iner granularity(such as hourly granularity). This result is also in accordance

with the reports in [49].
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Rank stability analysis

The work further measures the rank stability coeicient [62] of trends in Twitter and

Alexa in order to examine the volatility of trendiness within the two worlds. Given

a time frame �, the rank stability coeicient for the top � trending topics in the

��ℎ(� > 1) bin is deined as:

��(�) =
|��(�) ∩ ��(�− 1)|

�
(4.2)

where ��(�) is the set of top � trending topics during the ��ℎ time frame. The rank

stability coeicient has values within [0, 1], where 1 indicates no change and 0 means

that all the topics in the list have changed.
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Figure 4-9: Rank stability between Alexa top 20 trending topics and Twitter top 20
trending topics(hourly)

Fig. 4-9 depicts the CDF of the rank stability coeicient of the top 20 (i.e.

� = 20) trending topics based on the topics extracted from Alexa (i.e. ��
ℎ ) and the

topics extracted from Twitter (i.e. ��
ℎ ) on hourly granularity during the period of

August 2009. A notable diference of rank stability coeicient in Twitter and Alexa

can be observed. In particular, while there is a limited number of cases in Twitter

experiencing a stability coeicients more than 0.5, as many as 90% of the cases in

Alexa are more than 0.5. About half of the cases in Twitter have a 0 coeicient,

indicating that all the trending topics have changed within one hour. The observations
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show the “ephemeral” trendiness in Twitter and much more stable web interests.

4.5 Spatial analysis

The interaction of information spreading in microblogs and web interests is not only

relected in time but also in the spatial dimension. It has been observed in [15] [96]

that both the topic’s “original” location and the location of the receivers strongly afect

the difusion patterns of the information. This section analyzes the spatial/geographical

dimension of the interaction between microblog trends and web interests.

In summary, it is found that the large majority of trending topics appear concur-

rently in not more than 2 countries in both Twitter and Google, which is a strong

evidence of the existence of locality of interest in the trendiness of microblogs and

web. Besides, it can be also observed that more than 60% of the locality of interest

of individual topics exhibit similar patterns in Twitter and in Google.

4.5.1 Locality of interest

The work introduces the concept of locality of interest to characterize the geographic

characteristics of trending topics. Five countries are chosen, ��, ��, ��, �� and

�� , to study whether or not a topic � is trending in a speciic location. The fewer

number of diferent regions a topic is trending in, the more signiicant the locality

of interest will be. In order to analyze the locality of interest, the work uses the

trending topics provided by Twitter itself from September 1st, 2012 to October 31st,

2012 (dataset �) in these 5 countries, and considers statistics provided by Google

Trends for the same topics within the same period.

Fig. 4-10 shows the trending topics overlap in the 5 diferent countries both in

Twitter and Google. It can be observed that the Twitter’s trending topics have a

more notable geographical concentration efect compared to Google. About 80% of

Twitter trending topics appear in only one country while this proportion in Google is

only 47.5%. In both Twitter and Google, the majority of topics get trending in not

more than 2 countries (95.6% in Twitter and 65.0% in Google). This indicates clearly
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that trendiness both in Twitter and in Google are geography-dependent.

4.5.2 Similarity of locality of interest

After conirming the existence of locality of interest in Twitter and Google, the work

further checks the similarity of the two spheres in terms of such locality. To this end,

the work uses the notion of interest vector. The interest vector of topic � is composed

of 5 elements in order, ���(�), ���(�), ���(�), ���(�) and ���(�), each of which is

binary and 1 represents the topic � is trending in this country and otherwise the value

is 0.

Google Trends provides the top 10 trending countries for each topic, so one can

use the appearance in the top list to deine the interest vector of Google. That said,

��(�) in Google is 1 if � is in the Google top country list of �; otherwise, it is 0. As to

Twitter, the work focuses on whether a topic is in the top trending topic list for each

country. ��(�) in Twitter is 1 if � is in the Twitter top trending topic list of country

�; otherwise, it is 0.

For each topic � ∈ �, there are two interest vectors:
−→
� �(�) for Google and

−→
� � (�)

for Twitter. The work computes the Jaccard similarity index of these two vectors

for each topic to measure the similarity of Google and Twitter in terms of locality
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of interest. The Jaccard index is a statistic used for comparing the similarity and

diversity of binary vectors. For two binary vectors �⃗ and �⃗, the Jaccard coeicient

�(�⃗, �⃗) is deined as:

�(�⃗, �⃗) =
�⃗ · �⃗

|�⃗|2 + |�⃗|2 − �⃗ · �⃗
(4.3)

where �⃗ · �⃗ =
︀

� ���� =
︀

�(�� ∧ ��) and |�⃗|
2 =

︀

� �
2
� =

︀

� ��. For any pair of

vectors �⃗ and �⃗, 0 ≤ �(�⃗, �⃗) ≤ 1. The closer this coeicient is to 1, the more similar

the two vectors are. Fig. 4-11 presents the Jaccard similarity coeicient for individual

topics. It can be observed that more than 60.5% of the topics exhibit a similarity

value larger than 0.60(i.e. at least 4 elements are the same between the two vectors),

which suggests that locality of interest of individual topics exhibit similar pattern in

Twitter and Google. In other words, trending topics have similar geographic trends

in both Twitter and Google.

4.6 Application

The work has found that individual topics in the Twitter sphere and the web sphere

share similar trending patterns from both temporal and spacial aspects. Neverthe-

less, the trendiness in Twitter can be leading for a few hours and is highly unstable

compared to the web. The observations suggest the possibility of inferring trending

topics from Twitter for the web sphere, which are traditionally provided by search

portals like Google.

In fact, the estimation of trends of queries on search engines (such as Google, Bing

etc.) is a crucial task in Search Engine Marketing(SEM) analysis. In a typical SEM

scenario, advertisers publish their advertisements with the assistant of search engines.

In the creation of their advertisements, advertisers choose a keyword or a sequence

of keywords (i.e. topics in the context of this paper) relevant to their business, called

“ad keywords”, which will trigger the display of their advertisements in the returned

search page of these ad keywords. As such, discovering the ad keywords searched
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frequently in search engine at a time (i.e. trending topics in web) is meaningful to

capture high impressions and clicks of online advertisements [48][26][94]. This section

shows that trending topics in Twitter could be used to discover superior Google ad

keywords.

To this end, the work irst samples for every ive minutes the top 10 trending topics

of Twitter in US during two periods: from October 26th to November 2nd 2013 and

from February 2nd to February 8th 2014. This results in a trending topic dataset �

consisting of 1,175 unique trending topics. The work also crawls Twitter to get the

tweets from US during the same time periods of � using Twitter’s streaming API.

This results in 105,946 tweets randomly sampled by the Twitter API. Based on these

tweets, the work randomly chooses 1,000 words and considers them as a non-trending

topics dataset � . These non-trending topics are considered as a reference for this

comparison scenario.

For these 2,175 topics obtained from Twitter, the Google AdWords is queried,

which provides a “Keyword Planner” tool for helping users evaluate their ad keywords.

The input of the tool is the chosen keyword and the output is the estimation of the

number of impressions and clicks brought by this keyword based on the previous

week statistics [39]. By querying this tool, the work obtains the number of daily

impressions and the number of daily clicks of each topic in US for the 10 following

days after the topic is sampled from Twitter.

Fig. 4-12 shows the CCDF of the average estimated number of impressions and

clicks returned by “Keyword Planner” for trending topics and non-trending topics in

Twitter during the considered 10 days. A signiicant gap is observed between the

distribution functions in terms of both impressions and clicks. A high volume of

impressions/clicks for the trending topics can be investigated. For example, 2% of

the trending topics have more than 200,000 estimated impressions while none of the

non-trending topics can reach this volume. The results conirm that the trendiness in

Twitter can be used to infer ad keywords with high impressions and clicks in SEM.

Notably, although “Keyword Planner” provides, based on previous week statistics,

oicial estimates for impressions and clicks in Google AdWords platform, obtaining
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Figure 4-12: The distribution of average estimated number of impressions/clicks in
Google AdWords for trending and non-trending topics in Twitter during the 10 days

an up-to-date information about these values is challenging for advertisers simply

because of the one week blackout period of “Keyword Planner”. However, with the

monitoring of Twitter, the results show here that advertisers can igure out the current

market “status” of Google AdWords on a ine granularity (hours) basis.

4.7 Summary

This work has compared the trending topics in Twitter and web (i.e. Google and

Alexa) by considering both the temporal and spacial perspectives, and found that the

trending topics in Twitter and search in web tend to follow similar temporal patterns

and the trendiness in Twitter can precede by a few hours. However, trendiness is

highly unstable in Twitter where top trending lists change more frequently. Besides,

there is a geographical concentration efect of interest in both spheres. The trending

“localities” are similar in the two spheres as well. Finally, the work shows theses

observations can be used for a “smart” predictive choice of ad keywords in SEM.
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Chapter 5

The Potential of Twitter in

optimization of SEM

5.1 Motivation

Amongst the diverse forms of online marketing and advertising channels (e.g. email,

mobile advertising), Search Engine Marketing (SEM), where ads are shown along with

results of keyword queries, has been the fastest growing channel in the past decade.

With up to $19.51 billions, SEM revenues accounted for more than 53% of the total

2012 Internet advertising revenue in North America [46].

In a typical SEM scenario, advertisers are allowed to publish their advertisements

(ads in short) with the assistance of search engines in pages returned after search

queries. The classic business interaction between advertisers and search engines in-

volves the advertisers paying the search engines when their ads are being shown

(Cost-per-Impression payment) or being clicked (Cost-per-Click payment). Search

engines implement an online auction for deciding which ads to display in individual

returned pages. Advertisers on the other hand bid on sets of keyword relevant to their

business, called “ad keywords” or shortly as “adwords”, which will trigger the display

of their ads in the returned search page for these adwords. Each advertiser maintains

an account with a portfolio of adwords, along with a maximum bid value for each

adword and an overall daily budget. Typically, the auction implemented by search
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engines uses a variant of the Generalized Second Price (GSP) auction mechanism

that takes into account the advertisers’ constraints, i.e. the maximum bid and over-

all daily budget, along with a Quality Score capturing the relevance of the advertised

content to the search query [3]. Note that as advertisers might have diferent daily

budget constraints, the number of times ads displayed per day can be diferent.

Generally search engines provide to advertisers convenient platforms to manage

their ads (such as Google AdWords, Bing Ads etc.). However, maintaining a prof-

itable portfolio might still prove challenging for many advertisers, mainly due to lack

of time, resources or expertise on ad markets. In this context, “third-party” partners,

either advertising agencies (e.g. SuperMedia, Web.com), yellow page publishers or

freelance consultants, play an important role of intermediaries between advertisers

and search engine platforms. The interactions between third-party partners and ad-

vertisers create a secondary market in SEM (as opposed to the primary market where

advertisers directly interact with search engines), where third-parties sell the services

of optimizing the advertisers campaigns while advertisers act as service buyers. In

the following third-party operators are referred to as “brokers" and advertisers as

“customers”.

This work presents an economic model of the third-party market in SEM. Based

on Google AdWords, a widely-used platform relying on the Cost-per-Click (CPC)

payment mechanism, the work irst analyzes the economic relations in the secondary

Google AdWords market where customers and brokers negotiate their service costs.

The analysis shows that in order to optimize his proit while still being able to achieve

the customer’s demand, a third-party broker should minimize the weighted average

CPC of the adwords portfolio.

Speciically, the work develops an optimization framework inspired from the clas-

sical Markowitz portfolio management which integrates the customer’s demand con-

straint, and enables the broker to manage the tradeof between Return On Investment

(ROI) and the risk of his adwords portfolio through a single risk aversion parameter.

This framework serves as a powerful tool for the broker as it illustrates well the ei-

cient frontier: a curve which gives the optimal Return Over Investment (ROI) for a
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given level of risk. The latter is useful for comparing diferent portfolio construction

strategies and to make decision.

An intuitive strategy to maximize the return on investment is to select a (set of)

adwords that have low CPC and high potential click numbers. In other words, the

major challenge for a broker is then to build and manage such adwords portfolio.

In Chapter 4, it has been found that the correlation between Microblog trends and

web interests can be used for a “smart” predictive choice of ad keywords in SEM,

therefore, the work in this chapter considers Twitter as a possible source of “valuable”

adwords. It postulates that by referring to popular and trending topics in Twitter, a

broker can foresee a set of adwords that are likely to attract high click numbers, while

being not yet detected by other contestants (third-parties and advertisers) and have

therefore low CPC. Indeed using adwords extracted from Microblogs is not excluding

adwords coming from traditional marketing method, e.g., handpicking adwords by

human marketing experience.

In particular, the work veriies that trending and popular topics extracted from

Twitter are plausible good candidates to feed the broker’s optimal adwords portfolio.

More importantly, the work evaluates the application of the optimization framework

and shows that a broker could achieve a signiicant ROI improvement (×4) over a

classical portfolio management, while maintaining the same level of risk.

5.2 Related Work

This section reviews prior work related to SEM optimization and the interaction

between Internet activities and inancial markets.

SEM Analysis: Several works have targeted advertisers and emphasized key-

word optimizations. [48] described the problem of inding relevant adwords. A model

for the conversion rate of individual adwords and addressing adwords sparseness was

developed in [82]. The authors in [26] proposed an adword suggestion method ex-

ploiting semantic knowledge.[33] studied the relationship between adword character-

istics, position of the advertisement and the search engine’s ranking decision. A
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multiword adword recommendation system was developed in [94] and [103] revealed

that speciic text patterns can lead to high CTR in SEM. Other works have ana-

lyzed the user behavior in SEM and proposed mechanisms to maximize the revenue

[68][36][11][25][105]. However, most of these target the constitution of the portfo-

lio and no one analyzes the performance of the obtained portfolio and the way to

optimize portfolio with Twitter, as this work does.

Financial market analysis in Internet sphere: The study on stock market

in [76] found that the high Google search volumes of these terms are always followed

by downtrends of DJIA. [29] further analyzed the biases that may afect the backtest

of a trading strategy built in [76]. Similar with [76], [71] presented evidences in line

with the intriguing suggestion that data on changes in how often inancially related

Wikipedia pages were viewed may have contained early signs of stock market moves.

Besides from the traditional Internet searching or visiting pattern, some studies

have predicted the inancial market from the perspective of online social networks.

[115] found that emotional tweet percentage is negatively correlated with Dow Jones,

NASDAQ and S&P 500. The analysis in [13] indicated that the accuracy of DJIA

predictions can be signiicantly improved by the inclusion of speciic public mood

dimensions in Twitter but not others. [90] found the sentiment of tweets to be asso-

ciated with abnormal stock returns and message volume to predict next-day trading

volume.[17] conirmed that trending topics ofer a comparable visibility to the afore-

mentioned traditional advertisement.

5.3 Analysis of Google AdWords secondary market

This section analyzes the Google AdWords secondary market and uses a simple “Con-

stant Elasticity Demand” based model to capture the broker’s proit.

5.3.1 Broker’s Proit Analysis

In the context of Google AdWords secondary market, the valuable product that a

broker provides to his customers consists of the adwords management and the opti-
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mization service. In practice, the customer who wishes to maximize the impact of his

advertisement campaign, entrusts a third-party broker to build an adwords portfolio.

In return he pays the broker a service fee. The broker interacts directly with Google

AdWords by choosing relevant adwords, setting the maximum bids while consider-

ing the overall budget, and pays the costs of displayed ads to Google. The broker’s

proit is simply the diference between the service fee paid by the customers and the

advertising costs paid to Google.

Diferent advertisers might have diferent aims for their advertisement campaigns,

e.g. reaching a given audience in terms of click number, or achieving a given number

of conversions, i.e., clicks that result in other activities like buying the product or

signing a petition, etc. The broker has therefore to align his proitability objective

with the precise needs of his customer.

Typically, two types of contract between the advertiser and the broker are possi-

ble: (1) the advertiser has a target objective �(�) for his ad � (a given click number or

conversion number) at a time horizon � and the broker proposes an overall budget;

(2) the advertiser has an overall budget for his campaign and the broker commits

on the target objective �(�) for this budget at time horizon � . Regardless of the

contract type, the eiciency of a third-party broker inally boils down to minimizing

the cost paid to Google. However, Google Adwords uses a pay per click model, i.e.,

the cost paid to Google AdWords depends on the Cost Per Click (CPC), which is de-

termined through the online auction mechanisms and the click number. A reasonable

fee strategy for a broker consists then of setting his service fee as function of the click

number brought by the customer’s ad, i.e. the broker sets a Price Per Click or Price

Per Conversion (PPC) � (�) for the ad � of his customer. The overall budget can be

easily translated to PPC by dividing it to the target objective �(�). Notably, any

conversion resulting from a SEM campaign is necessarily bound to a click. That said,

one can translate the Price Per Conversion to a Price Per Click by accounting for an

average conversion coeicient representing the likelihood that a click results into a

conversion, i.e., regardless of the type of contract with the customer and the goal of

the customer, the analysis of proitability of the broker entails deriving a PPC � (�)
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for each click on the customer’s ad. As the cost paid to Google is measured in terms

of click, for the ease of notation it can be assumed that the target objective �(�) is

deined in term of clicks.

The work will therefore assume that the contract between the broker and the

customer is set on a Price Per Click (PPC)-basis. The work will also consider that

the customer’s constraint (demand) in the contract is the number of clicks needed to

achieve the objective in terms of clicks or conversions.

In order to satisfy the contract, the broker builds a portfolio of adwords, denoted

�(�) for the ad �. This section considers that the adwords portfolio �(�) is a priori

given and then details the portfolio construction process in Section 5.5. If, for each

adword � ∈ �(�) the ����(�) at time �, as deined by Google AdWords, and a PPC

contracted with the advertiser � (�), are given, then the proit of the broker up to

time � from ad � can be expressed as the diference between his revenue and costs:

��(�) =
︁

�∈�(�)

︁

� (�,�)≤�

(� (�)− ���� (�,�)(�)) (5.1)

where � (�, �) is the set of time instants when the adword � was searched, the ad �

was shown and a click was applied to the ad. While it is intuitive to consider that

the high click number tends to result in a high CPC, Yuan etc. [114] have found

that the bidding of advertisers is always unresponsive to the change of click number,

meaning a stable CPC over time. This has also been conirmed by the analysis over

the Twitter dataset in Section 5.5.

In this context, ��(�, �) =
︀

✶� (�,�)≤� is used to represent the number of clicks on

ad � resulting from adword � searches up to time � and ��(�) =
︀

�∈�(�) ��(�, �) to

be the total number of clicks on ad � up to time �. With these notations, one can

simplify the expression of the broker’s proit as:

��(�) =
︁

�∈�(�)

��(�, �)
︁

� (�)− ����(�)
︁

(5.2)

where ����(�) is the average CPC of adword � up to time �. At time horizon � the
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broker will satisfy his contract if the committed demand in the contract is reached

and his proit will become:

�� (�) =
︁

�∈�(�)

�� (�, �)
︁

� (�)− ���� (�)
︁

(5.3)

or equivalently

�� (�) = �(�)
︁

� (�)− ���� (�)
︁

(5.4)

where ���� (�) =
︀

i∈K(a)(�� (�,�)���� (�))
︀

i∈K(a) �� (�,�)
is the weighted average CPC and the double

bar notation indicates that the average is calculated both over time and over the

adwords portfolio �(�). The Return On Investment (ROI) is therefore calculated as:

�(�) =

︁

� (�)− ���� (�)
︁

���� (�)
(5.5)

As stated earlier, the above deinitions are also applicable for the demands in terms

of conversions by accounting for an average conversion coeicient on the customer’s

click constraint �(�).

5.3.2 The Quality Score

An important element of the broker’s proit analysis is the Quality Score, which

measures the relevance of the ad content to the search query. The search engine tries

to choose the ad that will provide it with the best total estimated revenue. However

in order to produce a revenue, an ad has to be clicked by the user searching for the

adwords, i.e., the ad and the searched keywords should be relevant to each other. In

order to evaluate the relevance between the keyword and the proposed ad, Google

deines a "Quality Score" (QS) ranging from 1 to 10 for each pair (adword, ad) that

is used in auctions. During the online auction, Google weights the ��� bidden by

the advertisers by the QS, and decides therefore the auction winner and the rank of

the ad display by combining the ��� and the QS [42].
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The algorithm of Google to evaluate the QS is proprietary but it is known that

Google uses the past history of clicks happening on a given ad [42]. The latter is a

function of both the relevance of the ad content to the adword, and the quality of

the ad landing page, i.e. the page which a user visits after clicking the ad. This

means that the broker can reduce his costs by using adwords portfolio with high QS

for his ad. Although the above equations don’t have a direct term for the QS, it is

considered in Section 5.6 through its impact on the average ��� and on the click

number as a better QS leads to lower ��� and more frequent showing of the ad.

5.3.3 Demand modeling

Intuitively, a higher PPC indicates a higher revenue of the broker. However, the price

has an immediate impact on the customer’s demand. This relationship is generally

characterized by a price/demand curve. This work uses a simple customer elasticity

model, the Constant Elasticity Demand (CED) model, to describe such relationship.

This model assumes that the elasticity of the demand � = ��(�)/�(�)
�� (�)/� (�)

is constant,

meaning that a relative increase (resp. decrease) in the price results in a proportional

decrease (resp. increase) in the demand with a constant �. The CED model is widely

used for describing the user utility on Internet [70]. In particular, it is appropriate

for scenarios where the product demands are separable, i.e., changes in demand or

price for one product have no efect on others. These assumptions are valid for the

Google AdWords secondary market where the demand �(�) only depends on the

overall budget and the PPC � (�) on � but not on other ads.

In the CED model, the relationship between the customer’s demand �(�) for ad

� and the PPC � (�) are described by the following equation:

�(�) =

︂

�(�)

� (�)

︂�

(5.6)

where �(�) > 0 is a valuation coeicient for �. The parameter � ≥ 1 is called price

sensitivity and indicates the price elasticity of demand, i.e. � = ��(�)/�(�)
�� (�)/� (�)

= −� .

The unitary elastic case � = 1 happens when the advertiser’s budget is constant,
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i.e., � (�)�(�) = �(�) = ���. However, to make the model more realistic, the work

should encompass the case where the customer sets an upper limit for the price �max

and a minimum number of expected clicks or conversions �min. The customer may

decide to choose a diferent broker if the negotiated price is higher than �max or if the

broker cannot satisfy at least �min objective of his ad. This suggests that a truncated

CED model might be a better candidate to describe the customer’s demand.

Adding the CED model into Eq. 5.4, the broker’s proit becomes:

�� (�) =

︂

�(�)

� (�)

︂�
︁

� (�)− ���� (�)
︁

(5.7)

where 0 < � (�) ≤ ����. The proit-maximizing price � ⋆(�) for ad � can be obtained

by solving
��� (a)

�� (�)
= 0 and considering the maximum price constraint. It can be

expressed as:

� ⋆(�) = min

︂

�

�− 1
���� (�), �max

︂

(5.8)

Replacing � ⋆(�) in the CED model, one can derive the customer’s demand needed

to achieve the maximal proit as:

�⋆(�) = max

︃︃

(�− 1)�(�)

����� (�)

︃�

, �min

︃

(5.9)

This demand results in a maximum ROI:

�⋆(�) = min{
1

�− 1
,

�max

���� (�)
− 1} (5.10)

5.3.4 The rationale for adwords portfolio

The above analysis shows that when the broker has an a priori knowledge of the

number of clicks, the conversion rate and the average CPC at a time horizon � for

each adword � in the ad � (i.e. the weighted average CPC of � at � ���� (�)), the

broker can easily optimize his proit by setting the selling PPC slightly higher with a

coeicient �
�−1

than the weighted average CPC.
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However in practice, the Google AdWords market is very dynamic. The instanta-

neous value of CPC for an adword, the number of clicks and the conversion rate vary

at the whim of auctions and search engine users’ willingness (or interest) to click on

the displayed ads. One approach is then to cover for the risk of variation of all these

parameters by considering aggregation of adwords in a portfolio in place of using a

single adword.

5.4 Dynamics of adwords Portfolio

The instantaneous value of the CPC for an adword, the number of clicks and the

conversion rate are stochastic processes which vary with time, meaning that ROI

should be considered as a random variable with mean E{�(�)} and variance �2(�(�)).

For an ad � attached with a portfolio of adwords �(�), the average and variance of

ROI can be derived as:

⎧

⎪

⎨

⎪

⎩

E{�(�)} =
︀

�∈�(�) ���(�)

�2
︁

�(�)
︁

=
︀

�,�∈�(�) ����� (�(�)) � (�(�)) �(�, �)

(5.11)

where �� = �� (�,�)
�(�)

is the weight of adword � in the portfolio, i.e., the proportion

of clicks or conversions resulting from the adword � ∈ �(�) among all clicks or

conversions leading to the ad � satisfying the demand, �(�) is the ROI of adword

� and �(�, �) is the correlation coeicient between the ROI of � and �.

Again, the overarching objective of a broker is to maximize his ROI by satisfying

the customer’s demand �(�) on an ad �, while minimizing the stochastic risk result-

ing from market luctuations. In such a context, the risk for the broker is that the

inal ���� (�) becomes larger than � (�) resulting in loss. In order to protect the

broker from such a risk, the work will adopt an approach inspired from the Markowitz

formulation of portfolio optimization in inancial market [67]. The Markowitz portfo-

lio optimization deines the proportion of capital that an investor should dedicate to

diferent assets with diferent ROI and risks, in order to maximize his proit given a
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level of risk aversion. In the approach of this work, the stochastic risk of the broker

is captured by �2
︁

�(�)
︁

and his aversion to risk is characterized by a value � > 0

named risk aversion coeicient. The larger � is, the more risk the broker is ready to

take in order to increase his ���. In this case, the stochastic version of the broker

optimization problem can be written as:

min
w∈∆

︁

�2
︁

�(�)
︁

− �E{�(�)}
︁

(5.12)

where w = (��), � ∈ �(�) is the vector of weights and ∆ is the simplex surface

{w ∈ [0, 1]|�(�)||
︀

�∈�(�) �� = 1}.

The major diference between the classical Markowitz formulation and the formu-

lation used in this work comes from the constraint to achieve the customer demand

�(�) rather than only trying to maximize the portfolio ROI as in classical Markowitz.

In other terms, the Markovitz formulation with demand constraint case is used here.

Moreover, in classical Markowitz formulation the share of the capital assigned to each

asset �� is a deterministic value that is set at the time of the constitution of the port-

folio, while in the formulation here the �� is a random variable depending on the

willingness of search engine users to engage with the ad, and on the relevance of the

ad content to the adword �. This means that over a ixed time horizon, the value of

�� may be smaller or larger than the optimal value. This diference becomes more

important when the customer’s demand is described through a conversion number,

because this adds one more element of randomness: the decision of the viewer to

convert a click into a concrete action like buying the product.

The metrics randomness can be dealt with in three ways. The irst approach

consists of relaxing the time horizon, i.e., the value �� can be considered as deter-

ministic and the adword � is kept using till it attains the target share ��. The second

approach takes some cautions with the oicial click number estimates provided by

Google AdWords, e.g., limits the value of �� to a percentage 0 < � ≤ 1 of the click

number estimated during the optimization, i.e., �� <
��g

t0
(�,�)

�(�)
where ��

�0(�, �) is the

click number estimate given by Google AdWords at the time of decision �0. This
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adds a new constraint to the optimization problem deined in Eq. 5.12. However,

this approach is only applicable when the customer’s demand is expressed in terms

of audience size (clicks). Such an estimate is not available for the conversion demand

at the beginning of an ad campaign as the conversion rate of this ad is unknown.

The third approach that is also applicable when the target demand is a conversion

number, is a dynamic version of the second approach, where the weight �� for each

adaptation period (e.g. each day) is limited by the number of clicks or conversion

rate observed so far in the previous observation periods. The conversion rate can

be observed in real time through a script in checkout page that accounts for each

inalized transaction resulting in an adword click. It is noteworthy that the weights

are unlimited during the irst period where previous observations are missing and this

entails a re-optimization process at the beginning of each period.

A useful concept of portfolio management is “eicient portfolio”. A portfolio is

called “eicient” if it has the best possible expected ROI for its level of risk, �2
︁

�(�)
︁

.

The eicient portfolio is illustrated through the risk/ROI plane, a frontier separating

achievable risk/ROI tradeofs (on the right of the curve) from the unachievable one

(on the left of the curve), as shown in Fig. 5-1. The points on the eicient frontier

can be calculated by solving the optimization in Eq. 5.12 for diferent values of risk

aversion � and plotting the resulting optimal ROI and risk. In the Modern Portfolio

Theory, this eicient frontier is always used as a metric to compare diferent portfolio

constitution approaches. A top-left oriented frontier means that higher ROI with

lower risk is achievable. This frontier is utilized later for evaluation.

5.5 Building the Portfolio

So far, the work presented the theoretical foundations for optimizing an adwords

portfolio by a third-party broker, where the portfolio is assumed to be a priori given.

However, building an adwords portfolio in practice is far from being trivial because of

the dynamics of adwords market. This section irst proves an overview of possible ways

to constitute a portfolio and then proposes one approach to augment portfolios with
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Figure 5-1: An illustration of eicient frontier

additional adwords. Unless stated otherwise, the customer’s demand is considered to

be expressed in terms of number of clicks.

Google provides a “Keyword Planner” tool for helping users choose and match

adwords [39] to their ad campaigns. Through this interface users can select and test

several combinations of adwords portfolio. Using “Keyword Planner”, the aim of the

broker would be to uncover the adwords with low CPC and high potential of clicks

or conversions. However, such adwords are likely to attract competition quickly and

their CPC are likely to increase fast in the future. Generally, two approaches might

be considered in this context. The irst approach consists of searching for “long-tail”

queries, i.e., infrequent queries that are likely to draw targeted visitors on ads, e.g.

the bulk of Amazon’s revenues comes from a long tail of items but not from a few

block-buster items [7]. Several business sites are targeting such keywords in search

engines recently [88][10]. The second approach consists of exploring the adwords

space for promising topics which have not yet attracted the interest of competitors

(third-party brokers and advertisers), but have already generated a surge in search

traic and as such are likely to be eicient from a user interest perspective. This aims

not at replacing the irst approach but rather at augmenting it.

The work considers the second approach as one possible strategy to build and

augment the adwords portfolio. Previous researches have revealed how stock market

changes can be predicted based on observations of Twitter trends [115][13][90][17].

Therefore this work considers topics originating in Twitter as potential candidate
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adwords for an eicient portfolio. In the following, the work describes this method

to extract popular and trending topics from Twitter to feed the adwords portfolio

construction and analyzes the Google AdWords properties of these extracted topics.

5.5.1 Twitter Data Collection

Twitter Dataset

Any word or sequence of words mentioned in tweets can be considered as a potential

topic, �. The popularity of a topic � can be deined as the number of tweets mentioning

it. Topics mentioned relatively more frequently over a time period are called popular

topics. Trending topics on the other hand are deined by Twitter as topics with a

popularity that is increasing relatively faster than other topics [107]. Trending topics

emerge either endogenously, driven by evolution of users interests, or exogenously,

i.e. caused by external events that prompt people’s attention. A “non popular” topic

might be “trending” when its popularity increase rate is large. Moreover a topic

remaining popular for a long time is not likely to stay “trending”, as the number of

tweets mentioning this topic stabilizes. In order to study the relation between Google

AdWords properties and Twitter popularity, the topics extracted from Twitter are

stratiied into three classes: trending, popular and normal (i.e. random).

Trending topics: The work extracted the topics provided publicly by Twitter

as trending over the period spanning from October 26th to November 1st 2013 and

from February 2nd to February 8th 2014. Speciically, every ive minutes during

the crawling period, the work collected the top 10 trending topics in US suggested

by Twitter. It is noteworthy that a topic can be trending for more than one day.

In such case, the work only considered the trending topics which had never been

trending before the sampling day. Finally, this resulted into 1,175 unique trending

topics that composed the trending topics dataset � . The reason why the two time

periods are used is to catch the trending topics related to candy(e.g. “Halloween”)

and sports(e.g.“super bowl” and “world series”) respectively, which will be used for
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analysis and evaluation later.

Popular topics: Popular topics were more challenging to extract as one had to

crawl and sample original tweets. The work used the Twitter streaming API to crawl

a set of tweets over the same periods as above. This resulted into 105,946 tweets

randomly sampled by Twitter API. Then all sampled tweets were binned into subsets

with daily granularity and for each subset, the set of words �� was extracted in order

to compute the word frequency in this daily subset for each word � ∈ ��. Note

that stop words (e.g. “a”, “after”, “that”, etc.) which naturally appeared with higher

frequencies were ignored and a word was counted only once per tweet even if it was

repeated in the tweet. The hashtags consisting of more than three words were also

iltered out as they were too long to make adwords. After the data preprocessing, the

work chose the top-200 most frequent words for each daily subset, leading to 2,800

popular topics out of 35,705 topics extracted over the two weeks. Again, the work

also removed the duplicate topics and only considered the topics which had never

been categorized as popular before the sampling day. This resulted into 1,214 unique

popular topics and constituted the dataset � . Although only 3.4% of potential words

(topics) were chosen, these represented more than 30% of the total popularity (in

terms of volume of tweets mentioning them) over all extracted words.

Normal topics: From the same set of sanitized tweets crawled for popular topics,

the work also randomly chose 1,000 other words and considered them as the normal

(random) topics dataset � . This set will be used as a comparison with the two others.

Google AdWords Extraction

The work used the “Keyword Planner” tool of Google AdWords to collect, for all

3,389 topics in the three Twitter datasets, the daily CPC and number of daily clicks

estimates for the 10 days following the irst day each topic was considered as trend-

ing/popular or randomly sampled from Twitter.

As reported in [76], the metrics provided by Google slightly change over time due

to Google’s extraction procedure. To take this into account, the work sampled for

each day 8 time points (once every three hours) and then used the average value over
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these samples as a single daily metric for each adword. All CPC values are in US

dollars. As the display of an ad in pages returned by the search engine depends on

the results of an auction run for each displayed page which is relevant to the max

CPC bid set by the broker, the larger this value the more likely to win the auction.

In order to reduce the randomness and uncertainty related to the auction, the work

set daily budget and max CPC bid to the maximum values allowed by Google so that

the estimates returned by Google were the estimated maximum CPC which could

win all auctions, as well as the estimated maximum click number. This means that

the ROI obtained are lower bounds, i.e., the broker can hope to achieve higher ROI

than what is reported in this paper.

The words with at least one non-zero CPC value in the 10 days account for 50%

of the topics in the normal topics dataset, for 68% in the popular topics dataset and

for 63% of the trending topics. Equivalently, 50% of normal topics (resp. 32% of

popular topics and 37% of trending topics) have never been used as adwords. These

null-value words are not considered in this study since they are inactive in Google

AdWords and as such it is unable to evaluate the process of using them.

5.5.2 Analysis of the Twitter topics

Table 5.1 shows the relevant statistics derived for topics that have at least a non-zero

CPC in the 10 days of Google AdWords monitoring, i.e., topics that are active in

Google AdWords.

The statistics show that the daily average CPC and the corresponding variance

of the CPC are very stable across the three datasets. A non parametric Kolmogorov-

Smirnov distribution test used could not reject the hypothesis that the three datasets

come from the same distribution (using a 5% signiicance level). However both the

distributions of average CPC and variance of CPC are highly skewed as the medians

are far from the averages. The unbalance is mainly due to the tail, that is, some very

large values pull the mean away from the median.

The daily number of clicks shows diferent distribution statistics across the three

datasets. Clearly the estimate of daily number of clicks for popular topics is larger
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Table 5.1: Google AdWords properties of topics in the three Twitter datasets
Dataset Average Variance Median 1-prct 5-prct 95-prct 99-prct

���(�) 3.52 22.71 2.15 0.001 0.02 11.88 24.63

���(� ) 3.54 19.47 2.30 0.004 0.05 10.82 20.59

���(� ) 3.42 19.40 2.23 0.004 0.08 12.93 25.42
�2(���(�)) 1.56 4.07 0.86 0.004 0.02 7.58 16.26
�2(���(� )) 1.73 7.96 0.80 0.008 0.04 7.32 14.95
�2(���(� )) 1.86 8.95 0.87 0.008 0.08 6.33 9.97

������(�) 329.7 7.8×105 35.9 0.01 0.10 1866 5166

������(� ) 928.9 1.5×107 51.3 0.03 0.25 4490 18332

������(� ) 476.0 3.5×106 34.49 0.06 0.26 1934 7841
�2(������(�)) 109.0 4.8×104 23.3 0.03 0.0.17 554 1285
�2(������(� )) 224.5 6.4×105 25.1 0.07 0.29 904 4390
�2(������(� )) 162.1 3.2×105 20.91 0.07 0.31 547 3445

than the other two. Interestingly, the comparison of normal and trending topics

shows that while the medians are the same, the average estimate of the number of

clicks of trending topics is signiicantly larger than the normal ones, indicating that

there are more topics in the tail of trending topics with very large number of clicks.

This observation combined with the fact that there is no signiicant diference in the

CPC value amongst the three strata is very promising. In fact, this suggests that

with similar CPC values (prices), the broker can expect a larger average number of

clicks for popular and trending topics. According to the analysis in Section 5.3, the

���� (�) controls the ROI of ad �, therefore a higher number of clicks for an adword

with a stable CPC means a lower ���� (�) for the broker and a higher proit.

Lastly it can be observed that the variance of click number estimates shows a

signiicant diference between the normal stratum and the other datasets. The vari-

ability in terms of click numbers for popular and trending topics is higher than normal

topics. In order to evaluate whether this should be interpreted as a higher risk or

a higher opportunity for popular and trending topics, the work also analyzes the

estimate of clicks increase. Speciically, for each adword, the work its the 10 daily

click estimate values into a linear regression function and extracts the growth rate of

the estimate click number as the slope of the itted function. Table 5.2 provides the

relevant statistics which show that the higher variability is in fact an opportunity,

as the number of clicks for popular and trending topics is growing faster than the
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Table 5.2: Clicks growth for the three datasets
Dataset Average Median 95-prct

Growth rate in � 5.14 1.19 64.74
Growth rate in � 10.04 1.16 182.45
Growth rate in � 11.37 1.29 252.42

normal topics. It is noteworthy that the medians for normal and popular topics are

very close and again the tails of popular and trending topics are the key diference.

In summary, the analysis of the three datasets over Twitter shows that while there

is not a signiicant diference in the CPC of adwords originating from Twitter topics,

there is a major beneit in terms of number of clicks to add these adwords in the

portfolio.

5.5.3 Portfolio constitution methodology

The great potential of the popular and trending topics from Twitter in improving

the ads clicks motivates the following portfolio constitution methodology. In detail,

a broker follows two steps to build an eicient portfolio. At irst, he generates an ini-

tial reference portfolio using either adwords suggested by Google (e.g. via “Keyword

Planner”), or any of the numerous methods developed in the past couple of years for

adwords portfolio selections [48][26][94], or even random adwords portfolio selections.

In the second step, the broker looks at trending and popular topics coming from Twit-

ter and augments his reference portfolio with relevant trending and popular topics.

In other words, the work is aiming not at replacing the existing methods, but rather

at augmenting them with topics from Twitter. It is noteworthy that the objective in

this work is not to evaluate the initial reference portfolio selection itself but rather

to show a portfolio augmentation technique and to suggest the interest of adding

adwords coming from Twitter popular and trending topics. As such the work does

not compare nor describe these advanced methods of adwords selection but rather

simply use Google AdWords suggestions and random adwords portfolio selection.

The methodology is best explained by two case studies: an online candy seller

ad and a sports apparatus e-shop ad, both of which are assumed to contact a broker
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to start up Google AdWords campaigns. The work uses the “Keyword Planner” of

Google for initial reference portfolio selection as in addition to price estimation of

adwords, the “Keyword Planner” can also provide a set of suggested adwords for a

speciic product. The work makes use of these two functions of “Keyword Planner”

to ind relevant adwords for ads and build an initial reference portfolio. The fact

that the initial reference portfolio is derived using “Keyword Planner” ensures that

adwords in the reference portfolio have estimates (coming from Keyword Planner)

for the average daily CPC, the variance of the CPC and the click numbers. Using

these values, the broker irst checks the range of click numbers for which the reference

portfolio is feasible, i.e., the set of click number which he can commit to satisfy his

customer’s demand. He thereafter derives the maximum average CPC with minimum

risk ���+(�). This latter value is obtained by deriving the optimum portfolio with

risk aversion � = 0. ���+(�) is then used to set the price � (�).

For each of these two scenarios it is assumed that the irst day in the dataset

is the decision day for the broker, and the broker generates an initial portfolio of

adwords at the decision day. This initial portfolio is used for two purposes: to set

the price � (�) negotiated with the customer by broker and to be a reference portfolio

compared with other strategies. Thereafter, the broker looks at trending and popular

topics and chooses some of them to augment his portfolio.

Specially, to build the initial reference portfolio, the broker irst queries “Key-

word Planner” to get the top-5 suggested adwords. This portfolio contains “candy”,

“online”, “chocolate”, “bar”, “shop” for the candy ad and “sport”, “ball”, “football”,

“baseball”, “ride” for the sport ad. The work augments such reference portfolio with 5

relevant topics extracted from the trending and popular topics in the Twitter dataset,

i.e., “halloween”, “halloween images”, “halloween quotes”, “happy halloween”, “trick or

treat” for candy ad and “nba”, “clippers”, “real madrid”, “world series” and “super

bowl” for the sport ad. The portfolio constitutions of the two ads are shown in Table

5.3. As the data gatherings happened in November and February, the trending topics

mentioning “Halloween” for the candy ad and mentioning “world series” and “super

bowl” for the sports ad can be got.
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Table 5.3: Adwords used in the two speciic scenarios
Candy seller Sports apparatus e-shop

Google Twitter Google Twitter
candy halloween sports nba
online halloween images ball clipper

chocolate halloween quotes football real madrid
bar happy halloween baseball world series
shop trick or treat ride super bowl

The work evaluates the reference versus augmented portfolios for the above two

scenarios in Section 5.6. Naturally, two particular scenarios are not enough to validate

the approach. The work thus also utilizes the random adwords selections as the initial

reference portfolio constitution method, a technique frequently used in stock market

studies. Again, it is noteworthy that the adwords augmentation using popular and

trending topics in Twitter is independent of the initial portfolio constitution methods.

5.6 Applications and evaluation

This section evaluates the adwords portfolio constitution method using the optimiza-

tion model described in Section 5.4. The aim is to evaluate whether the portfolio

management methodology developed is able to achieve high ROI with low risk.

5.6.1 Evaluation methodology

First, the challenges faced to make a meaningful evaluation of this research is pre-

sented. Two broker companies (Adobe, 4-traders) are contracted and these were not

willing to provide details about their methodologies of selecting adwords as obviously

these were trade secret. However, none of these contacts was aware of the analytic

portfolio management technique like the one proposed in this paper. In this context,

the work has no baseline method used in practice to compare with. It therefore re-

sorts to simulating the application of the portfolio to the Google AdWords market by

assuming that the estimates provided by Google AdWords for click number and CPC

are reliable, i.e. the work will assume that during the days after the decision time
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�0 the number of views and the CPC for each adword will be as returned by Google

AdWords and the evaluation of a portfolio will be derived using these data.

A critical aspect of this evaluation is the reliability on statistics estimated (pro-

vided) by Google. As the researchers are not acting directly on the Google AdWords

market there is no way of verifying Google’s data reliability. However, as described

earlier the work takes a conservative approach by setting the daily budget and max

CPC bids to the maximum values allowed by Google in order to obtain higher bounds

on CPC and click numbers. This ensures that the ROI derived in this paper represents

a lower bound. Moreover, as the customer’s clicks demand is likely to be less than the

overall capacity of clicks, the broker can stop bidding on an adword when he reaches

the adword-clicks objectives determined by the portfolio management optimization.

As explained in Section 5.3, the inal CPC depends on the Quality Score (QS)

that is variable (and unknown for the broker at the beginning of a campaign). This

implies that “uncommon” adwords which potentially are of low relevance to the ad in

consideration, might be of low CPC value. Such value in turn is expected to change

in time. The broker has then to re-optimize the portfolio periodically to account for

changes that are induced by QS variations.

In order to account for QS variations of trending and popular topics that are likely

to be less relevant to the ad at the beginning of the campaign (time �0) than the

adwords suggested by Google, the work takes a conservative approach which assumes

that the number of achievable clicks on trending and popular topics is no more than

half the value reported by Google AdWords. This is equivalent to setting � = 0.5 in

the click number constraints deined in Section 5.4. This assumption ensures that the

obtained ROIs are likely to be lower than the actual values that would be observed

in practice. Moreover, as the work is not operating as a real broker with actual ads,

conversion can not be observed. As such the work cannot evaluate the case where the

customer’s demand is expressed in terms of conversion numbers, and the following

evaluation exclusively considers the customer’s demand expressed in terms of click

number.

In these experiments, each ad at most has 10 adwords (as suggested by Google
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[1]), i.e. |�(�)| ≤ 10 and the customer demand curve is compatible with a CED

model where � = 2.5. The PPC charged to the customer can be derived from Eq.

5.8 as � (�) = 1.67���+(�) to ensure maximal proit for broker.

In order to deine and set a practical scenario the work will assume that the

demand of the customer for his campaign is 500 clicks per day (this number of clicks

per day is in accordance with values reported in [91]). In the forthcoming the work

will apply the portfolio management approach developed in Section 5.4 to derive the

eicient frontiers for the reference portfolio along with the augmented portfolio. The

portfolio compositions of the two portfolios for a risk of 1 are derived and compared.

The performances of the augmented portfolio are also calculated and compared with

the reference portfolio. The work will also derive the eicient regions and the ROI

respectively with and without the click number constraint, i.e., without guarantee to

attain the target clicks number resulting in the classical Markowitz portfolio case, for

each portfolio (reference and augmented).

5.6.2 Portfolio performance analysis

The work applies the above methodology to the two toy examples (Candy and Sport

apparatus stores) and also to the random initial portfolios.

Two ad cases studies

This section irst derives � (�) price for Candy ad (resp. Sports ad). The reference

portfolio achieving the 500 clicks per day demand with the lowest risk (derived as

Section 5.6.1) attains ���+(�) = 3.70 USD per click for Candy ad (resp. 4.12 USD

per click for Sports ad). This results in a selling price of � (�) = 6.18 USD per click

for Candy ad (resp. 6.88 USD for Sports ad).

Fig. 5-2 shows four eicient frontier curves for the two speciic scenarios respec-

tively, depicting the largest expected ROI for a given level of risk. The region of

achievable (ROI, risks) pairs for which there exists a portfolio that can achieve this

ROI with the given risk, is the set of points on the right and below the eicient
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Figure 5-2: The eicient frontier of the two speciic scenarios

frontier curve.

As expected the click number constraint reduces the achievable region area. For

instance, in Candy scenario, the ROI of portfolio using Google AdWords with click

number constraint can only reach 3.92 with a risk of 2.42, while the largest ROI of

the portfolio using Google AdWords without click number constraints is 5.03 with

a risk of 3.93. The constrained Google AdWords portfolio of Sports apparatus ad

spans a very small range of ROI as the largest ROI is 1.49 with a risk of 0.28. This

can be explained by the additional restrictions the click number constraint brings to

the optimization model as there are only lesser number of adwords that can provide

enough clicks to achieve the necessary demand.

Nonetheless the trending and popular topics largely extend the reachable region

by augmenting the portfolio with adwords that seem to be more likely to meet the

click number constraint. For example, in the Candy ad, to achieve the same ROI of

3.92, the augmented portfolio experiences a risk of only 0.34 while this risk of using

Google AdWords is as high as 2.42. The augmented portfolio can even achieve a ROI

as large as 5.95 but with an associated risk of 8.20.

Fig. 5-3 further shows the keywords composition of the optimal portfolios for

diferent values of risk aversion � where the risk level is equal to 1. For lower values

of �, the portfolio contains a larger share of adwords suggested by Google to beneit
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Figure 5-3: The portfolio composition of the two speciic scenarios

from the average risk reduction efect of portfolios. With larger values of �, the

portfolio evolves towards a larger share of trending and popular topics (referring to

Table 5.3).

The observations of the resulting portfolios from Fig. 5-3 also show that despite

the possibility of utilizing the 10 adwords in the augmented portfolio, all eicient

portfolios just use 3 or 4 adwords. For example, it can be found that for a large range

of risk aversion only 3 adwords (“real madrid”, “clippers” and “world series”) remain

active in the “Sports apparatus” scenario. This shows that the higher performance

of the augmented portfolio is not only due to the mechanical efect of the adword

augmentation, but rather to the quality of the additional adwords.

Note that in practice it is necessary to account for the efect of the quality score,

QS (or eventually the conversions number) by re-estimating the average and the

variance of CPC and click number on a daily basis. There is then a need to “update”

the parameters of the optimization model. It is found that the optimization process

for a small portfolio (e.g. the two examined scenarios in this section) is executed in

less than 2 seconds, so the time cost is not a major issue.

134



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Excepted ROI

C
D

F

 

 

Trending and popular augmented
Normal augmented
Reference

Figure 5-4: CDF of �(�), �(�) and

�(�)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Augmented ROI/Reference ROI

C
D

F

 

 

Trending and popular augmented
Normal augmented

Figure 5-5: CDF of �(�)

�(�)
and �(�)

�(�)

Random Portfolios analysis

Next the work generalizes the evaluation to random initial portfolio selection, a tech-

nique frequently used in stock market studies. Although in practice portfolios are not

built randomly, a random portfolio can be considered to represent a particular case

of portfolio built by the conscious action of a broker. To build the random portfolios,

the work irst builds a reference portfolio containing 5 adwords chosen randomly from

all topics collected in the three Twitter datasets. In order to ensure that this portfolio

is feasible (i.e. it can satisfy the customer’s constraint), the work checks if the sum

of the number of clicks in the portfolio can eventually reach the target demand per

day. If the random portfolio is not feasible, the work adds one other randomly chosen

adword till the resulting portfolio becomes feasible. This results in the “reference

portfolio” called portfolio �. Next, two “augmented portfolios” are built. The irst

augmented portfolio � is generated by adding randomly chosen adwords coming from

trending and popular topics to the reference portfolio, while the second augmented

portfolio � is generated by adding to the reference portfolio adwords coming only

from the normal topics. The work limits the size of the augmented portfolio to 10

adwords that is the portfolio size suggested by Google [1].

The two augmented portfolios are used in order to compare the addition of trend-
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ing and popular topics to the addition of the only normal topics with the same number

of keywords in each portfolio. For each one of these three portfolios, the work derives

the maximal ROI for a risk of 1 and compares the resulting ROIs. In order to de-

crease the impact of the randomness in the adwords choice, the work has generated

independently 100 times the random reference portfolios along with the two attached

augmented ones. The statistics over the 100 runs are analyzed inally.

Fig. 5-4 shows three cumulative distributions: the CDF of the �(�), �(�) and

�(�) obtained on each class of portfolio. It can be observed that the two augmented

CDFs are clearly on the right side of the reference one, showing that augmenting the

portfolio by both ways can improve the ROI. However, this curve does not tell which

one of these augmentation ways is more proitable.
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In order to determine which augmentation is more proitable, the work calculates

the ratios of the ROI achieved by the two augmenting strategies to the ROI of the

reference portfolio for a risk of 1. Fig. 5-5 shows the CDF of the two ratios �(�)

�(�)

and �(�)

�(�)
respectively. It can be observed that both augmenting methods achieve

ratios that are always larger than 1, conirming that augmenting the portfolio always

increases the achievable ROI. Moreover, the CDF curve for �(�)

�(�)
is on the right side

of the CDF of �(�)

�(�)
, meaning that the �(�) is consistently larger than the �(�). In

particular, the average of �(�)

�(�)
= 5.20, �(�)

�(�)
= 3.27 and �(�)

�(�)
= 1.55. Fig. 5-6 depicts
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the CDF of �(�)

�(�)
, which shows that in 28% of the cases the � portfolio achieves a

better ROI while in the remaining 72% of the cases the portfolio � (augmented with

popular and trending Twitter topics) has a better ROI.

5.7 Summary

Through an economic analysis of the third-party market, this study has developed a

portfolio management framework that controls the tradeof between the Return On

Investment and the risk resulting from uncertainty on current CPC and achievable

click number in a search engine marketing context. The work has studied the beneits

of an eicient portfolio management, and in particular of the Eicient Frontier for

comparing diferent portfolios. It has also proposed to use trending and popular topics

extracted from Twitter to augment the adwords portfolios. The evaluation shows that

the adwords augmentation is likely to improve the ROI on average by up to 4.2 times

compared to a reference portfolio with the same level of risk.

This work opens ways for further researches investigating rational management of

adwords portfolio. Even though this work considers the model’s application from a

broker’s perspective, the results obtained here are also relevant for an advertiser acting

himself as the broker for his own ads. Some limitations can be addressed as part of the

future work. First, it is necessary to improve the evaluation experimental design by

cooperating with a real broker. Second, inding relevant adwords amongst thousands

of trending and popular topics may prove challenging. One possible approach consists

of using ontologies that can characterize the semantic proximity of keywords. Such

ontologies can be built through human expertise or automatically using Wikipedia

[23]. This will facilitate the search for relevant trending and popular topics.

137



138



Chapter 6

Conclusion

This thesis makes an elaborate analysis of information difusion in Microblogs. It

irstly proposes an efective and unbiased sampling method which provides a basic

and representative dataset for analysis and with the unbiased dataset, a Galton-

Watson with Killing model is used to describe the information difusion in Microblog.

And then, the relationship between the information difusion in Microblog and web

interests is checked systematically which provides the reliable evidences that individ-

ual topics in Twitter and in the web share similar trending patterns both from the

temporal and the spatial aspects while the trendiness in Twitter can precede for a

few hours and is highly unstable compared to the one in web. Based on these ob-

servations, an economic analysis of the market involving a third-party ad broker is

introduced and the potential of trending and popular topics coming from Twitter as

adwords is discussed. The experiments show that the adwords augmenting strategy

with the trending and popular topics in Twitter enables the broker to achieve, on

average, four folds larger return on investment than with a non-augmented strategy,

while still maintaining the same level of risk.

There are also some improvements needed in this work. At irst, the GWK incor-

porates time as a discrete generational index, and does not account for the temporal

dynamics of tweet difusion. For this reason, a continuous time model that captures

the temporal dynamics should be considered where the Markov birth-and-death pro-

cess is a suitable candidate. Besides, in the work of adwords analysis the relevance
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of Twitter inspired adwords for a given ad is not considered. Finding relevant ad-

words amongst thousands of trending and popular topics may prove very challenging

and the practicability of the adwords augmenting strategy with Twitter trending and

popular topics should be considered in the future.
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∙ Dong Wang, Mohamed-Ali Kaafar, Kavé Salamatian, and Gaogang Xie. Adwords

Management for Third-parties in SEM: an Optimisation Model and the Potential

of Twitter.(Accepted by INFOCOM 2016).

∙ Dong Wang, Zhenyu Li, and Gaogang Xie. Unbiased Sampling of Online Social

Media with Local Disassortativity. (Submitted to IEEE Transactions on Knowl-

edge and Data Engineering).

∙ Dong Wang and Gaogang Xie. Learning Trendiness from Twitter to Web: a

Comparative Analysis of Microblog and Web Trending Topics. High Technology

Letters transaction, 2016.

∙ Dong Wang, Hosung Park, Gaogang Xie, Sue Moon, Mohamed-Ali Kaafar, and

Kavé Salamatian. A Genealogy of Information Spreading on Microblogs: a Galton-

Watson-based Explicative Model. IEEE International Conference on Computer

Communications (INFOCOM), 2013.

∙ Dong Wang, Mohamed-Ali Kaafar, Kavé Salamatian, and Gaogang Xie.What’s
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ics.The 1st international conference on Internet Science, 2013.
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