
Multi-Agent Context Management in Support of

Ambient Intelligence Applications

Alexandru Sorici

To cite this version:

Alexandru Sorici. Multi-Agent Context Management in Support of Ambient Intelligence Appli-
cations. Other [cs.OH]. Ecole Nationale Supérieure des Mines de Saint-Etienne, 2015. English.
<NNT : 2015EMSE0790>. <tel-01258912>

HAL Id: tel-01258912

https://tel.archives-ouvertes.fr/tel-01258912

Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01258912

NNT: 2015 EMSE 0790

THÈSE

présentée par

Alexandru SORICI

pour obtenir le grade de

Docteur de l’École Nationale Supérieure des Mines de Saint-Étienne

en cotutelle avec Université Politehnica de Bucarest

Spécialité : Informatique

UN INTERGICIEL DE GESTION DU CONTEXTE BASÉ MULTI-AGENT

POUR LES APPLICATIONS D'INTELLIGENCE AMBIANTE

soutenue à Bucarest, le 11 septembre 2015

Membres du jury

Président : Costin BADICA Professeur. Université Politehnica, Bucarest

Rapporteurs : Amal El-Fallah

SEGHROUCHNI

Michel OCCELLO

Professeur, Université Pierre et Marie Curie,

Paris

Professeur, Université Pierre Mendès-

France, Grenoble

Examinateur(s) : Stefan TRAUSAN-MATU Professeur, Université Politehnica, Bucarest

Directeur(s) de thèse : Adina Magda FLOREA

Olivier BOISSIER

Gauthier PICARD

Professeur, Université Politehnica, Bucarest

Professeur, École Nationale Supérieure des

Mines, Saint-Etienne

Maitre de conférence, Ecole Nationale

Supériere des Mines, Saint-Etienne

ABSI Nabil CR Génie industriel CMP

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BERGER DOUCE Sandrine PR2 Sciences de gestion FAYOL

BERNACHE-ASSOLLANT Didier PR0 Génie des Procédés CIS

BIGOT Jean Pierre MR(DR2) Génie des Procédés SPIN

BILAL Essaid DR Sciences de la Terre SPIN

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

BURLAT Patrick PR1 Génie Industriel FAYOL

COURNIL Michel PR0 Génie des Procédés DIR

DARRIEULAT Michel IGM Sciences et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DOLGUI Alexandre PR0 Génie Industriel FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FEILLET Dominique PR1 Génie Industriel CMP

FEVOTTE Gilles PR1 Génie des Procédés SPIN

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

LI Jean-Michel Microélectronique CMP

MALLIARAS Georges PR1 Microélectronique CMP

MAURINE Philippe CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MONTHEILLET Frank DR Sciences et génie des matériaux SMS

MOUTTE Jacques CR Génie des Procédés SPIN

NEUBERT Gilles FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche CMP

NORTIER Patrice PR1 SPIN

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PIJOLAT Michèle PR1 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy MR Génie des Procédés CIS

ROBISSON Bruno Ingénieur de recherche CMP

ROUSSY Agnès MA(MDC) Génie industriel CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

ROUX Christian PR Image Vision Signal CIS

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR1 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

BERGHEAU Jean-Michel PU Mécanique et Ingénierie ENISE

BERTRAND Philippe MCF Génie des procédés ENISE

DUBUJET Philippe PU Mécanique et Ingénierie ENISE

FEULVARCH Eric MCF Mécanique et Ingénierie ENISE

FORTUNIER Roland PR Sciences et Génie des matériaux ENISE

GUSSAROV Andrey Enseignant contractuel Génie des procédés ENISE

HAMDI Hédi MCF Mécanique et Ingénierie ENISE

LYONNET Patrick PU Mécanique et Ingénierie ENISE

RECH Joël PU Mécanique et Ingénierie ENISE

SMUROV Igor PU Mécanique et Ingénierie ENISE

TOSCANO Rosario PU Mécanique et Ingénierie ENISE

ZAHOUANI Hassan PU Mécanique et Ingénierie ENISE

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

ENISE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant

INFORMATIQUE O. Boissier, Professeur

IMAGE, VISION, SIGNAL JC. Pinoli, Professeur

GENIE INDUSTRIEL A. Dolgui, Professeur

MICROELECTRONIQUE S. Dauzere Peres, Professeur

M
is

e
à

jo
u

r
:

2
8

/1
0

/2
0

1
4

iii

FONDUL SOCIAL EUROPEAN
 Investeşte în oameni!

Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – 2013. Proiect POSDRU/159/1.5/S/134398
 Dezvoltarea resurselor umane din cercetarea doctorala si postdoctorala: motor al societatii bazata pe cunoastere -KNOWLEDGE

UNIVERSITATEA POLITEHNICA DIN BUCUREŞTI
Facultatea de Automatică i Calculatoareș

 Departamenul de Calculatoare

ECOLE NATIONALE SUPERIEURE DES MINES DE SAINT-ETIENNE
Ecole Doctorale ED-SIS de Saint-Etienne
Laboratoire Hubert Curien, Institut Henri Fayol, Mines Saint-Etienne

Nr. Decizie Senat 236 din 21/07/2015

TEZĂ DE DOCTORAT

Sistem de Gestiune a Contextului bazat pe Sisteme Multi-Agent

în Folosul Aplica iilor de Inteligen ă Ambientalăț ț

Multi-Agent Based Context Management Middleware

In Support of Ambient Intelligence Application

Autor: Ing. Alexandru SORICI

COMISIA DE DOCTORAT

Preşedinte Prof. dr. Theodor BORANGIU de la
Universitatea Politehnica

București

Conducător de doctorat-1 Prof. dr. Adina Magda FLOREA de la
Universitatea Politehnica

București

Conducător de doctorat-2 Prof. dr. Olivier BOSSIER de la
Ecole Naționale Superieure
des Mines de Saint-Etienne

Co-supervizor de doctorat As. Prof. dr. Gauthier PICARD de la
Ecole Naționale Superieure
des Mines de Saint-Etienne

Referent Prof. dr. Costin BĂDICĂ de la Universitatea din Craiova

Referent Prof. dr. Stefan TRĂUȘAN-MATU de la
Universitatea Politehnica

București

Referent
Prof. dr. Amal El-Fallah

SEGHROCHNI
de la

Universitatea Pierre et
Marie Curie (Paris VI)

Referent Prof. dr. Michel OCCELLO de la
Universitatea Pierre

Mendes-France (Grenoble2)

Bucureşti 2015

v

Acknowledgements

I would like to take the opportunity and use this page to thank the people who have helped
me get to this point in my life. I o�er sincere thanks to those who have supported, advised or
otherwise cared for me in any way, such that I may be able to present the work results that
stand before you today.

I would like to thank my PhD supervisors, Professor Adina Magda Florea, Professor Olivier
Boissier and Associate Professor Gauthier Picard. They have been instrumental in teaching me
about the daily life of an academic, by letting me learn from their wealth of expertise, keeping
me on the right track all the time, but also pushing me to explore my own interests and �nd
my own strengths as a researcher.
I speci�cally thank Professor Boissier and Associate Professor Picard for their constant and
insightful feedback, for teaching me to always keep the bigger research picture in mind and for
helping me to improve my skills in writing and structuring research articles.
I give particular thanks to Professor Florea for her constant support in both academic and ad-
ministrative concerns, for her trust in me as a researcher and as a person and for her willingness
to involve me in many projects which have helped me increase my knowledge in several research
and software engineering domains.

A big round of thanks goes to all my friends and colleagues who have helped and advised me
and with whom I have had the pleasure of collaborating throughout the years.
I o�er sincere gratitude to my friend Andrei Ciortea, who has been a long term collaborator,
advisor and partner in bouncing all sorts of ideas on numerous occasions and projects. The
level of leadership, dedication, perseverance and attention to detail of which he deemed himself
capable have inspired me to try and seek out these values myself to the best of my abilities.
Further thanks go to my friends Mihai Trascau and Tudor Berariu who have been my closest
collaborators in the AI-MAS Laboratory. I thank them particularly for taking the time to
debate the speci�cs of my work with me and for providing useful advice. I further thank them
for their willingness to engage in interesting discussions about both scienti�c and non-scienti�c
subjects which have helped me strengthen my existing beliefs, but also broaden my mind to
new ones.
I want to express thanks to Andrei Olaru, Valentin Lungu, Andrei Ismail and all the other
current and former members of the AI-MAS Laboratory with which I had the honour and
pleasure of working together during the past four years.
I wish to thank Reda Yaich, Amro Najjar, Bissan Audeh and Niloufare Sadr from the Hubert
Curien (former ISCOD) Laboratory in Saint-Etienne, who have helped me feel welcome in the
group, have aided me in improving my french speaking skills and who have o�ered me advice
and interesting discussions about subjects related to my work, as well as life in general.

Special thanks go to Cristian Stoica and the AQUASoft company who have provided �nan-
cial support during the �rst year of my thesis and who have introduced me to the world of
entrepreneurship.

Last, but not at all least, I o�er deep gratitude to my family, my parents and my brother, for
their support and their sincere belief that I can make them proud, even though I had and still
have moments of doubt in this regard. Their love and caring have been for me a constant source
of strength and inspiration.

From an administrative point of view, the work in this thesis has been funded by the Sectoral
Operational Programme Human Resources Development 2007-2013 of the Ministry of European
Funds through the Financial Agreement POSDRU/159/1.5/S/134398.

Abstract

The complexity and magnitude of Ambient Intelligence scenarios imply that attributes such
as modeling expressiveness, �exibility of representation and deployment, as well as ease of
con�guration and development become central features for context management systems.
However, existing works in the literature seem to explore these development-oriented attributes
at a low degree.

Our goal is to create a �exible and well con�gurable context management middleware, able to
respond to di�erent scenarios. To this end, our solution is built on the basis of principles and
techniques of the Semantic Web and Multi-Agent Systems.
We use the Semantic Web to provide a new context meta-model, allowing for an expressive and
extensible modeling of content, meta-properties (e.g. temporal validity, quality parameters)
and dependencies (e.g. integrity constraints).
In addition, we develop a middleware architecture that relies on Multi-Agent Systems and a
service component based design. Each agent of the system encapsulates a functional aspect of
the context of business processes (acquisition, coordination, distribution, use).
We introduce a new way to structure the deployment of agents depending on the multi-
dimensionality aspects of the application's context model. Furthermore, we develop declarative
policies governing the adaptation behavior of the agents managing the provisioning of context
information.

Simulations of an intelligent university scenario show that appropriate tooling built around our
middleware can provide signi�cant advantages in the engineering of context-aware applications.

vii

Contents

Abstract vii

Introduction 1
Motivation . 1
Objectives . 2
Thesis Structure . 2

1 Problem De�nition 5
1.1 What is Ambient Intelligence . 5

1.1.1 De�ning the Field . 5
1.1.2 Scenarios . 8

1.2 What is Context Management . 10
1.2.1 What is Context . 10
1.2.2 Challenges in Deploying Context-Aware Applications 11
1.2.3 Challenges in Controlling Context-Aware Applications 13
1.2.4 Challenges in Modeling Context Information 14

1.3 Reference Scenario . 14

2 A State of the Art in Context Modeling 17
2.1 Representing Context Information . 17

2.1.1 Context Representation Requirements . 18
2.1.2 Context Representation Methods . 19
2.1.3 Ontology-based Context Representation 22
2.1.4 Representation using Context Meta-Models 25
2.1.5 Context Representation Summary . 27

2.2 Reasoning about Context Information . 28
2.2.1 Reasoning Concerns . 29
2.2.2 Categories of Context Reasoning . 30
2.2.3 Ontology-based Reasoning . 31
2.2.4 Rule-based Reasoning . 32
2.2.5 Other Approaches . 34
2.2.6 Context Reasoning Summary . 35

2.3 Our Context Modeling Objectives . 36

3 Advances in Context Management Systems 38
3.1 Provisioning Context Information . 38

3.1.1 Operational Aspects . 39
3.1.2 Non-Functional Aspects . 41
3.1.3 Context Provisioning Architectures . 42
3.1.4 Context Provisioning Summary . 44

3.2 Deploying Context Management Solutions . 46
3.2.1 Deployment Concerns . 46

viii

CONTENTS ix

3.2.2 Deployment Approaches . 48
3.2.3 Deployment Summary . 50

3.3 Our Context Management Objectives . 51

4 Representing and Reasoning About Context 53
4.1 CONSERT Context Formal Model . 53

4.1.1 Representation Concepts . 53
4.1.2 Reasoning Formalism . 58
4.1.3 Context Dimensions and Context Domains 60

4.2 Ontology-based Meta-Model . 63
4.2.1 Content Representation . 64
4.2.2 Annotation Representation . 66
4.2.3 Constraint Representation . 68

4.3 Rule-based Context Inference . 70
4.3.1 Context Derivation Rules . 70
4.3.2 Context Consistency . 73

4.4 Reasoning Engine . 74
4.4.1 Architecture . 75
4.4.2 Execution Cycle . 76

4.5 Discussion . 78
4.5.1 Analysis of Modeling Contributions . 78
4.5.2 Analysis of Reasoning Contributions . 80

5 Adaptable Context Provisioning 82
5.1 Multi-Agent Based Architecture . 82

5.1.1 Rationale . 83
5.1.2 Context Provisioning Agents . 84
5.1.3 Context Provisioning Agent Environment 86

5.2 Context Provisioning Agent Policies . 86
5.2.1 Sensing Policies . 87
5.2.2 Coordination Policies . 88

5.3 Context Provisioning Policy Execution . 90
5.3.1 Gathering Provisioning Statistics . 91
5.3.2 Control Process . 91

5.4 Context Provisioning Interactions . 93
5.4.1 Provisioning Sensing Chain . 93
5.4.2 Provisioning Request Chain . 95

5.5 Discussion . 96

6 Flexible Deployment of Context Provisioning 99
6.1 Deployment: A Domain-Based View . 99

6.1.1 Using ContextDimensions and ContextDomains 100
6.1.2 Using ContextDomain Hierarchies . 102
6.1.3 CONSERT Middleware Deployment Schemes 102

6.2 Deployment Policies . 103
6.2.1 Platform Con�guration . 104
6.2.2 ContextDomain Con�gurations . 104
6.2.3 Agent Con�gurations . 106

6.3 Managing Deployment: the OrgMgr agent . 107
6.3.1 Launching Platform and CMUs . 107
6.3.2 OrgMgr Roles . 108
6.3.3 Initialization and Provisioning Agent Setup 109

6.4 Distributed Deployment Usage . 110
6.4.1 Domain Query Management . 110

CONTENTS x

6.4.2 Domain Query Complexity Analysis . 113
6.4.3 Domain Broadcast Management . 114
6.4.4 Context Prosuming Exempli�cation . 115
6.4.5 Mobility Management . 117

6.5 Discussion . 119

7 CONSERT Middleware Implementation 121
7.1 Context Representation Implementation . 121

7.1.1 Using Named Graphs as Identi�ers . 122
7.1.2 Rule Encoding using SPIN . 123
7.1.3 Provisioning Ontology . 125
7.1.4 Deployment Ontology . 128

7.2 CONSERT Engine Implementation . 129
7.2.1 Data Structures and Execution Cycle . 129
7.2.2 CONSERT Engine: A Software Service Component 131

7.3 Context Provisioning Implementation . 133
7.3.1 Provisioning Agent Implementation with JADE 133
7.3.2 Provisioning Agent Adaptor Services . 134
7.3.3 Context Provisioning Adaptation . 135

7.4 Context Provisioning Deployment Implementation 136
7.4.1 Deployment Speci�cation Files . 136
7.4.2 Runtime Deployment Management . 137

7.5 Discussion . 138

8 Practice and Experimentation 140
8.1 Evaluation Considerations . 140

8.1.1 Evaluation Objectives . 141
8.1.2 Scenario Implementation . 141
8.1.3 Scenario Simulation Framework . 142

8.2 Scenario Evaluation . 144
8.2.1 Context Modeling Evaluation . 145
8.2.2 Reasoning Evaluation . 147
8.2.3 Provisioning Control Evaluation . 152
8.2.4 Deployment Evaluation . 153

8.3 Performance Testing . 157
8.3.1 CONSERT Engine Test Setup . 157
8.3.2 CONSERT Engine Test Results . 158
8.3.3 Query Handling Test Setup . 162
8.3.4 Query Handling Test Results . 164

8.4 Discussion . 166
8.4.1 CONSERT Middleware Evaluation Analysis 166
8.4.2 Developing with the CONSERT Middleware 167

9 Conclusions 170
9.1 Contributions . 170

9.1.1 Building a Flexible Context Management Middleware 170
9.1.2 Contribution Summary List . 173

9.2 The Future of the CONSERT Middleware . 174
9.2.1 Improvements there for the taking . 174
9.2.2 Hidden Potentials . 176

List of Publications 179

Bibliography 180

List of Figures

1.1 Aspects of Context Management and their place within the Ambient Intelligence re-

search �eld. 12

2.1 Aspect-Scale-Context (ASC) Model [Strang et al., 2003]. 24
2.2 Overview of the Context Meta Model proposed by Fuchs et al.[Fuchs et al., 2005] 26
2.3 Analysis of trade-o� between expressiveness and usability requirements for ontology and

context meta-model representation approaches. Expressiveness is an attribute covering

model �exibility, dependency and ambiguity management. In the �gure, only generic

context ontologies are shown (domain-speci�c ones such as [Chen and Nugent, 2009]

maintain virtually the same characteristics as generic domain ones, with the exception

that they are less �exible). 28
2.4 (a) Counts of model types used in 109 of 114 reviewed context-aware applications. (b)

Counts for 50 recognition applications; classi�ers are used most often for applications

that do recognition [Lim and Dey, 2010]. 30

4.1 The de�ning concepts of our proposed context meta-model. 54
4.2 Components and their associations in the CONSERT ontology 64
4.3 CONSERT Ontology core vocabulary . 65
4.4 CONSERT ontology annotation vocabulary . 67
4.5 CONSERT ontology constraint vocabulary . 69
4.6 SPARQL expressions for existentially (left) and universally (right) constrained quan-

ti�cations . 71
4.7 The CONSERT Engine architecture and main activity cycle 75

5.1 CONSERT Middleware: multi-agent architecture and interactions 85
5.2 Provisioning interactions within the sensing chain. 94
5.3 Provisioning interactions within the request chain. 95

6.1 A domain-based view of the reference scenario extension discussed in this section. No-

tice how each CMU is assigned to a given ContextDomain and how its composition

varies according to the attributions assigned to the machine on which it runs, e.g.

usage of context (on mobile nodes) or management of context (domain management

computational nodes). Numbered circles show the temporal order in which CMU man-

agement and context production/consumption interactions take place in the scenario. . 100
6.2 An example of a decentralized deployment constituted as a ContextDomain hierarchy

of the spatial ContextDimension locatedIn(Person, UniversitySpace). 102
6.3 Sequence diagram for the domain-query routing interactions between CtxQueryHandler

and OrgMgr agents. 111

xi

LIST OF FIGURES xii

6.4 Two methods to implement context information relay using the CtxUser insertion and

broadcast capabilities. Left side shows mechanism using a single CMU and domain-

based range broadcast. Right side shows two CMUs linked by the application level and

pro�led insertion capability. Numbered circles shows temporal sequence of events and

actions. 116

7.1 Example contents of EntityStore and ContextAssertion Store and identi�er named
graphs. 123

7.2 Example of sensing policy speci�cations for presence and luminosity Context-
Assertion updates in CONSERT Provisioning Ontology form (Turtle syntax). . . 125

7.3 Example of coordination policy speci�cations in CONSERT Provisioning Ontol-
ogy form (Turtle syntax). 126

7.4 SPARQL expression of derivation cancellation rule template (left) and control rule

assignment (right) . 127
7.5 Example of platform con�guration from the deployment policy for the AmI-Lab

part of the reference scenario. 128
7.6 Example of ContextDomain con�guration from the deployment policy speci�ca-

tions for the AmI-Lab part of the reference scenario. 129
7.7 Example of CtxCoord and CtxSensor agent con�gurations from the deploy-

ment policy for the AmI-Lab part of the reference scenario. 130
7.8 The CONSERT Engine architecture and main activity cycle 130
7.9 CONSERT Middleware: multi-agent architecture and interactions 133
7.10 CONSERT Middleware Deployment Engineering 136
8.1 Global overview of the evaluation setup. iCasa Framework is used to simulate sensor

functionality and provide scenario scripting. Applications use the CONSERT Middle-

ware (speci�c CMUs) to respond to scenario events. 140

8.2 A snapshot of the iCasa Simulation GUI showing the modeling of the layout of physical

spatial structures in the reference scenario, as well as sensor placement within the

AmI-Lab. The AmI-Lab is divided further into individual room areas (i.e. desks). . . . 143
8.3 Excerpt from the scripting of the reference scenario events. 144
8.4 Excerpt of the context model for the AmI-Lab ContextDomain, created using the CON-

SERT Ontology. 145
8.5 Excerpt of the context model for Alice's bootstrap CMU, created using the CONSERT

Ontology. 145
8.6 Snippet showing how an instance of the AvailabilityStatusConstraint template

is attached to the hasAvailabilityStatus ContextAssertion (up) and how a custom

resolution service is setup to handle detected uniqueness constraint violations, as part

of the provisioning control policy (down). 146
8.7 Console Log of the pre-meeting episode simulation using the iCasa platform. 149
8.8 Console Log of the ad hoc discussion episode simulation using the iCasa platform. . . . 151
8.9 Sensing events and update messages graph. No provisioning control (left), with provi-

sioning control (right) . 153
8.10 CONSERT Engine update performance showing insertion delay (red) and insertion

processing (blue) times. No control rules (left), with provisioning control (right) 154
8.11 Runtime results for test run with 10 ContextAssertion classes of each arity type and

50 instances for each class. The validity duration of a ContextAssertion instance is set

at 1000 ms and the pushrate has a value of 20 instances generated per validity interval

(i.e., 20 events per second). 159
8.12 Same con�guration as for the test case presented in Figure 8.11, but with a pushrate

set at 60 instances generated per validity interval (i.e., 60 requests per second). 160
8.13 Example of CMU distribution on two physical machines such that each inter-CMU

communication occurs in between the machines. The sequence of query request tasks

is marked in green. 163

LIST OF FIGURES xiii

8.14 Request response times for the exact-domain queries carried out in the test. Labels on

the bars show the number of hops (i.e. CtxQueryHandler agents) traversed by the

query and its answer. 164
8.15 JADE Sni�er Agent snapshot of the sequence of agent interactions during the query

routing protocol for the Dom2_3_0 ContextDomain target. 165

List of Tables

1.1 Synthesis of main issues and focus points for the presented scenarios. 10

2.1 Analysis of support for modeling requirements for each representation method. Meaning

of notations: - means no support is given, ∼ means that no inherent support exists, but

it can be partly addressed through clever design, + means support is provided inherently. 21
2.2 Analysis of context reasoning methods. Meaning of notations: � means no support is

given, while the + signs represent the degree to which an approach can address the

speci�ed attribute (from week to strong support). 35

3.1 Overview of context provisioning for reviewed systems: - (not addressed/mentioned), DA

(direct sensor access), MA (middleware access), SA (context server access) 45
3.2 Overview of requirement addressing for reviewed systems: - (not addressed/mentioned), ∼

(adequate support), + (strong support) . 46
3.3 Requirements Analysis for Scenario Types: - (no obligation), (nice to have), + (must have) . 48

4.1 Overview of how context modeling requirements are addressed by the CONSERT
Meta-Model. 80

5.1 List of parameters available in a sensing policy. 87
5.2 List of general parameters available in a coordination policy. 88
5.3 List of assertion-speci�c parameters available in a coordination policy. 89
5.4 List of control rule output commands available for use in a coordination policy. 91
5.5 List of context usage statistics gathered by the CONSERT Engine at runtime. 92
5.6 Interaction table for CtxSensor shows conversation type, used Interaction Protocol

(IP), role in the conversation, interaction counterpart and trigger condition. 93
5.7 Interaction table for CtxCoord . 94
5.8 Interaction table for CtxQueryHandler . 95
5.9 Interaction table for CtxUser . 96

6.1 List of parameters available for CONSERT Middleware platform con�gurations. 104
6.2 List of parameters available for ContextDomain con�gurations. 105
6.3 Con�gurations for the AmI-Lab ContextDomain. 106
6.4 Con�gurations for the CS_Lecture ContextDomain. 106
6.5 List of parameters available for CONSERT Middleware CMU agent con�gurations. . . 107

7.1 List usage cases for named graphs in the CONSERT Middleware. 122

8.1 List of CMU bundles, the ContextDomain to which they are assigned and their purpose

within the simulation of the reference scenario. 155
8.2 Minimum, average and maximum values for the collected runtime parameters of the 20

events per second test run (in ms) . 158

xiv

LIST OF TABLES xv

8.3 Minimum, average and maximum values for the collected runtime parameters of the 60

events per second test run (in ms) . 160
8.4 Memory consumption and instance count for selected data structures during di�erent

test runs. Showing values for con�gurations with 30, 90 and 150 ContextAssertion class

types and 50 instances per class . 161
8.5 RDFS reasoning in�uence in AmI-Lab simulation test: min., avg. and max. values for

the collected runtime parameters (in ms) . 162

List of Listings

8.1 SPARQL query of the BusyLectureRule ContextDerivationRule template . . . 147
8.2 SPARQL query of the AdHocDiscussionRule ContextDerivationRule template149
8.3 Content of the domain-hierarchy-con�g.ttl �le for the simulation of the reference

scenario. 156

xvi

Introduction

Ambient Intelligence (AmI) is nowadays a well-known area of research, which has been made
a priority of ICT development at European and world-wide level ever since the report of the
ISTAG group in 2001 [Ducatel et al., 2001].
Since the initial vision, the AmI domain has matured enough to become the focus of industry-
level projects. Recent European directives (Horizon 2020 funding programme) therefore en-
courage new research that supports the trend towards technological innovation in Ambient
Intelligence.

Research into AmI is a full-stack e�ort (i.e. from network and sensing technologies to novel
human-computer interaction interfaces), but one of the foundational (enabling) activity domains
is the subject of context management. Context-awareness is a key element of an Ambient
Intelligence application and the research �eld concerns itself with the development of support
systems that enable an application to service the user with the right information, at the right
time and in the right way.

Context management itself requires the coverage of many research aspects, from knowledge
representation and reasoning issues to information management system speci�c concerns such
as appropriate system architectures for the multitude and diversity of producer and consumer
services that can be encountered in ubiquitous and pervasive applications.
This work focuses on the creation of a context management middleware solution presenting
strong features that alleviate context-aware application development e�ort, thereby coming in
direct support of the trend towards technological innovation in AmI.

The thesis is a joint-coordination (co-tutelle) e�ort between University Politehnica of Bucharest
and Ecole Nationale Supérieure des Mines of Saint-Etienne. It has been funded by the French
Foreign Ministry through the �Doctorat en co-tutelle� scholarship program and by the Sectoral
Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry
of European Funds through the Financial Agreement POSDRU/159/1.5/S/134398.

Motivation

Research into context-aware application development actually pre-dates the vision of Ambient
Intelligence (e.g. [Schilit et al., 1994]) and, since its introduction as a particular domain of
information systems, many advances into modeling and management of contextual information
have been put forth by the research community.
As noted in the above discussion, besides the existing academic interest, there is an observable
growth of industry engagement into the Ambient Intelligence application development scene.
The most notable examples of this trend are in activity areas such as home monitoring and
automation, smart city sensing and monitoring infrastructures or Internet-of-Things related
scenarios.

However, as we will explore in our review of the state-of-the-art, few of the context management

1

LIST OF LISTINGS 2

solutions proposed in the literature have been packaged in a form capable of addressing aspects
related to �exible and easy context-aware application development and deployment.
This is why in this work we choose to focus on an approach that aims to elaborate and improve
upon existing context modeling and management methods, while expressly maintaining an
overarching objective of providing novel mechanisms for �exible design and runtime system
con�guration and deployment. We thereby wish to obtain a context management middleware
solution that is able to address the development requirements for Ambient Intelligence scenarios
of various degrees of complexity and scale.

Objectives

The main research question which this thesis addresses is �What is a suitable design for
a Context Management Middleware o�ering strong �exibility and ease of usage

features in support of application development?�.
Flexibility refers to the ability of the middleware to accommodate large variability in the model-
ing of information, as well as to o�er support for changing the processing of context information
according to dynamic application usage needs.
Ease of usage on the other hand refers to the perceived facility with which an application de-
veloper can use / control the �exibility options o�ered by the middleware.
Consequently, the main objectives we de�ne to answer our research question are the following:

1. Development of a �exible meta-model for the uniform representation of context informa-
tion content, meta-properties and constraint dependencies.

2. Development of a reasoning component, which exploits the de�ned context meta-model
and uses semantic event processing principles to perform expressive context inference and
consistency maintenance operations.

3. Design and implementation of a Context Management Middleware architecture based on
Semantic Web and Multi-Agent Systems (MAS) principles, allowing for an adaptable
context processing cycle, �exibility of con�guration and deployment, as well as easier
application development.

The �elds of Semantic Web and Multi-Agent Systems are chosen as good engineering �ts for
the goal we are targeting. Technologies of the Semantic Web bring the advantages of strong
information representation and reasoning capabilities under uniform and standardized means.
On the other hand, as we will see in Chapter 5, it makes engineering sense to conceive the
architecture of a context management system in terms of the notion of agency. Using MAS
principles brings advantages over simple distributed service design, as will be pointed out in
Chapter 5 as well as in the perspectives for future work.

While exploring and commenting on related work, the set of concrete sub-tasks related to the
main goals described above will be presented to the reader.

Thesis Structure

This thesis begins with a state of the art part, where we present the research problem we are
targeting in more detail and where we identify the most relevant related works that try to
address it from modeling and architectural view points.
An analysis of shortcomings in related work leads to our own objectives and the means to
achieve them are presented in the chapters describing the contributions of the thesis.
Finally, since we focus on aspects related to application engineering, the implementation and
evaluation part of the thesis contains the chapters that detail the internals of our proposed

LIST OF LISTINGS 3

middleware, as well as a qualitative and quantitative analysis of its usage for the development
of a reference scenario.

The chapter-by-chapter based outline of this work is described in what follows.

In Chapter 1 we de�ne the research and engineering problem we are addressing in a clear
way. The exact positioning of the work within the domain of Ambient Intelligence research is
explained and the main challenges of managing context information are presented on hand of
selected application examples. The description of the scenario used as reference throughout the
rest of the thesis ends the chapter.

Chapter 2 marks the beginning of our state-of-the-art exploration. We examine work done in
�nding requirements and approaches for the most adequate means of representing and reasoning
about context information.
An analysis of the related work with respect to identi�ed requirements leads to the presentation
of our own objectives concerning context information modeling.

In Chapter 3 we complete the related work overview by analysing di�erent system architecture
proposals that enable context provisioning within an application. The main provisioning life-
cycle steps, as well as complementary functional and non-functional requirements are identi�ed
and the bene�ts and downsides of each proposed context management approach are discussed.
The analysis at the end of the chapter re�ects about issues of AmI scenario diversity and
positioning of reviewed context management systems with respect to the overarching goals de-
�ned for this thesis. From the ensuing discussion, our concrete objectives for the design and
implementation of our context management middleware are determined.

The analysis of state of the art performed in this �rst part of the thesis, reveals the important
requirements for context management and the challenges that are insu�ciently addressed in
related work (especially from an application engineering perspective). The contributions of the
thesis, presented in the chapters that follow, shows how we employ semantic web technologies
and MAS to explicitly tackle the issues unexplored in existing approaches.

Chapter 4 begins the presentation of the contributions of this thesis. We present a formalization
of the context meta-model constructs we envision and detail the implementation of the for-
mal representation and reasoning meta-model using semantic web technologies (ontology-based
modeling and SPARQL query based inferences). We conclude the chapter with a discussion
on how our contributions (e.g. predicates of arbitrary arity, modeling of meta-properties and
explicit dependencies, implicit temporal reasoning) provide a more suitable approach to context
modeling requirements than those existing in related work.

The architecture and functionality of the context management middleware (CMM) that we
propose are presented in Chapter 5. We argue for the use of a multi-agent based system design
and a declarative policy-driven mechanism for context management process control/adaptation.
We then detail how these principles are applied within the envisioned CMM. Finally, we analyze
how policy-driven agents and the context provisioning protocols they carry out address the
context management requirements described in Chapter 3.

In Chapter 6 we present the methods by which the deployment of our proposed CMM is tied
and structured in total correspondence with the context model of an application domain. We
describe the available deployment schemes, the policy-based con�guration options and the com-
plex context producer/consumer behavior that these options enable. The chapter concludes
with a discussion on how explicit, context model-related deployment structuring concepts that
we introduce (ContextDimension and ContextDomain) allow developers to more easily and dy-
namically switch between active and inactive context management units currently required by
their application.

Chapter 7 covers the implementation of our context management middleware. The semantic
web and multi-agent development frameworks used in the implementation are presented, their

LIST OF LISTINGS 4

choice and concrete usage in the middleware are explained. An aspect of great importance is
the focus on a service component based design of key CMM elements, with bene�ts in terms of
runtime life cycle management.

The evaluation of our CMM is detailed in Chapter 8. It is based on an implementation of the
reference scenario. The physical environment of the scenario is simulated, but the application
that uses it is developed over a real instance of the proposed context middleware. Qualitative
assessments of middleware functionality with respect to scenario requirements are discussed
and results to quantitative performance analyses are presented. Furthermore, an account of the
experience of using our CMM to develop the application from the reference scenario is given,
from which aspects of future improvements are collected.

The thesis concludes with a review of important contributions and a pertinent description of
short and long term directions for future work, in Chapter 9.

Chapter 1

Problem De�nition

Our objective in this chapter is to put the problem of context management into context. To
understand what the challenges for the main topic of this thesis are, one �rst has to understand
the broader research �eld of which it is part. Furthermore, it is important to look at the history
of this �eld and comprehend the direction to which it is moving and the current endeavours
and factors (both academic and industry-related) that in�uence its development.
Not least, examples are the best method to provide adequate insights into the issues and
complexity of any given subject matter. Consequently, we aim at presenting scenarios which
will put the problem of context management into perspective, providing show cases for all the
aspects that will be discussed throughout this thesis.

In Section 1.1 we provide an overview of the research �eld of Ambient Intelligence (AmI), the
overarching activity domain of which the problem of context management is part. We present
a de�nition of the �eld and introduce several well-known AmI scenarios, which are used later
on to illustrate the challenges of managing context information.
Section 1.2 goes into more details about particular aspects of context management which will be
addressed in the thesis. We explore challenges in deployment of context management solutions,
controlling/adapting the functionality of such systems and down to the necessity of having the
right information modeling capabilities.
Lastly, Section 1.3 introduces the scenario which will serve as a reference for explaining problem
positioning and exemplifying contributions brought all throughout this thesis.

1.1 What is Ambient Intelligence

Ambient Intelligence and its cognates (e.g. Pervasive Computing, Internet-of-Things) provide
the vision and the technological setting into which the issues of context management play out.
For this reason, it is important to understand the objectives of this research �eld, to investigate
its current trends and directions, as well as to examine the nature of scenarios that have been
thus far envisioned by the AmI research community.

1.1.1 De�ning the Field

The name Ambient Intelligence has been coined in 1998 by a group of people from Palo Alto
Ventures and Philips (Eli Zelkha, Brian Epstein and Simon Birrell) who were commissioned
by the Philips board of management to provide a series of internal presentations on scenarios
that would present the vision of a world in 2020 where user-friendly devices support ubiquitous

5

CHAPTER 1. PROBLEM DEFINITION 6

information, communication and entertainment.
In the over 15 years that have since then passed, Ambient Intelligence has received a lot of
backing from academic, governmental and private enterprise sources, making it a noteworthy
and active research �eld. At European level, for example, advice from the Information Society
and Technology Advisory Group (ISTAG) was used to include research into Ambient Intelligence
enabling technologies into the pillars of the FP61 and FP72 funding processes.

Characterization From a research perspective, the �eld of Ambient Intelligence has been
characterized in several ways. [Cook et al., 2009a] provide a summarization of various de�nitions
that have been given to the �eld of AmI in the literature. The authors then go on to extract
the following highlight features that are expected to be found in AmI technologies: sensitive,
responsive, adaptive, transparent, ubiquitous and intelligent.
The �rst three features (sensitive, responsive and adaptive) highlight the fact that context-
awareness is an integral and key part of AmI-related research. Ambient Intelligence is designed
to proactively support people in their daily lives. Therefore, getting a sense of the situation
of a user or a group of users and responding to it in a timely and adequate manner become
important objectives.
The features of transparency and ubiquitousness are aligned with the vision introduced by Mark
Weiser [Weiser, 1991], stating that

�The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it�.

Lastly, the feature of intelligence hints towards the fact that, besides incorporating aspects of
pervasive/ubiquitous computing, the proactiveness demanded from AmI applications requires
the usage of arti�cial intelligence techniques to address the speci�c needs of each user. There-
fore, it is nowadays common to see advances in �elds such as machine learning, agent-based
software engineering, computer vision or natural language processing being incorporated into
the development of AmI applications.

Subdomains The amount of support received by the Ambient Intelligence vision along the
years has led to it becoming a full-stack research and innovation domain. This means that AmI
spurred advances in technology areas ranging from sensors and wireless communication to new
means of human computer interaction. In what follows we intend to brie�y present the di�erent
sub-�elds of Ambient Intelligence with the purpose of showing the breadth of research e�orts
conducted in the past 15 years.
Hong et al. perform an ample review of the works related to context-aware system development
that were published in journals between the years 2000 and 2007. Their objective was to obtain
a classi�cation framework of the di�erent kinds of work into context-awareness and track the
evolution of the research focus (obtained from article review) across the given timespan [Hong
et al., 2009].

Their results suggest a partitioning of research into Ambient Intelligence in four categories:
network infrastructure, middleware layer, application and user interface layer. This categoriza-
tion is re�ected also in Figure 1.1, where we show the positioning of context management as a
subdomain of AmI.
Exploring the analysis from [Hong et al., 2009] we note the following:

- Network Infrastructure: includes research into sensing equipment, internet-based proto-
cols (e.g. design of the session initiation protocol - SIP, mobile IPv6), self con�guring
mobile ad hoc networks (MANET), hando� management mechanisms (e.g. for seamless
transfer of ongoing call or data sessions) or network requirements and implementation

1http://cordis.europa.eu/fp6/
2http://cordis.europa.eu/fp7/

CHAPTER 1. PROBLEM DEFINITION 7

(e.g. frameworks for integration of user services out to mobile devices and heterogeneous
network infrastructures)

- Middleware Layer: covers the research e�ort done in the attempt to regroup necessary and
frequently occurring AmI functionality aspects into frameworks readily usable by upper
application levels. Typically this involves functionality aspects such as communication,
service discovery or, as we show later, context management. Hong et al. identify several
subtypes of middleware development e�orts based on the predominantly used technology:
agent-based, re�ective, metadata based, tuple space based, adaptive and objective based,
OSGi1 based

- Application and Service Layer: includes the research done into de�ning and implementing
the actual envisioned AmI application scenarios and service functionality. Based on the
nature of scenarios and objectives, the authors of [Hong et al., 2009] further distinguish
a set of AmI application domains: smart environments (e.g. home, workspace, hospi-
tal, classroom), tourist applications, adaptive information and communication systems,
mobile commerce and smart web services.

- Human-Computer Interfaces: comprises the developments of new user interfaces (e.g. mo-
bile devices, gesture and voice based controls, elastic displays, intelligent lighting) and the
usability studies that attempt to evaluate the suitability and usefulness of these interfaces.
While the volume of research in this sub-�eld of AmI ranks behind the other three ones,
it is certainly the one that attracts attention the quickest, when new achievements are
presented.

This brief overview of research areas within the Ambient Intelligence �eld shows the extent
of the problem space. As noted in the list above, research into context management falls in
the category of middleware development. In Section 1.2 we will show that this sub-�eld itself
presents numerous challenges and corresponding research aspects.

Trends and Directions In previous paragraphs we have tried to de�ne the research sphere
of the Ambient Intelligence �eld. However, recent developments show that, as was the original
vision, the �eld is beginning to gain traction in the industry. Enterprises are starting to em-
brace scenarios and ideas from the AmI domain, most notably in activity areas such as home
monitoring and automation, smart city sensing and monitoring infrastructures. There is a
growing number of start-ups that are active in the mentioned areas (e.g. Ninja Sphere2, Nest3,
SmartThings4) and increasingly more cities are o�ering their support for installing prototype
smart environment infrastructures.
The possibilities for AmI application development increase even further given the emerging in-
dustry enterprises that o�er entire development platforms for creating application and business
logic in the Internet-of-Things (IoT) and Machine-to-Machine (M2M) domains (e.g. Xively5,
ThingWorx6). Such initiatives open up a trend that leads towards systems which promote
anonymous social experiences and focus on models of group activity rather than just individual
ones. It raises an AmI that is centered on enhancing human interaction apart from intelligently
supporting individual needs and preferences.
This trend that focuses on using the vision of Ambient Intelligence as a promoter of technolog-
ical innovation is even re�ected in the continuation of the European Commission's Framework
Programmes (FP). The �Horizon 2020� (or FP8) funding programme which encompasses the
2014 - 2020 time window focuses on innovation and faster delivery of solutions to end clients.

1http://www.osgi.org/
2http://ninjablocks.com/
3https://nest.com/
4http://www.smartthings.com/
5https://xively.com/
6http://www.thingworx.com/platform/#how-it-works

CHAPTER 1. PROBLEM DEFINITION 8

This is in contrast with the previous initiatives (FP6 and FP7) which still concentrated on
technological research.
The above observations have an obvious impact on the way in which developments of new tech-
nology in any of the AmI-related sub�elds (including context management) will take shape. As
we will see throughout this thesis, providing the means for easy development and deployment of
ambient intelligence applications becomes an important object of study, because it is directly
related to the speed with which the resulting research work can be picked up by the industry.

1.1.2 Scenarios

To see the extent of the Ambient Intelligence vision, in what follows we will comment on a
selection of scenarios from the literature. These descriptions are meant to give the reader a
sense of the breadth of some of the proposals in this research �eld but, more importantly,
they are intended as means to further identify an important list of challenges for the context
management side of things.

The Maria Scenario In a report dating back from 2001, the ISTAG advisory board devel-
oped a set of scenarios for the vision of Ambient Intelligence in 2010 [Ducatel et al., 2001]. One
of these is the �Maria� scenario.

Maria is a sales representative who is travelling to a foreign country to perform
a sales pitch. The scenario focuses on the extent of her mobility. It also presents the
seamless interaction between her smart watch (in today's terminology) which holds
information about digital identi�cation keys and Maria's personal preferences and
which allows Maria to interact with many di�erent services either from home or
from the new country she is visiting. For example, she is allowed to walk quickly
through customs because the visa for this trips was self-arranged and the ambient
intelligence infrastructure at the airport of the foreign country clears her on the �y.
A car has been already reserved for her at the exit of the airport. The car opens
automatically because it recognizes Maria by communicating with the smart watch
on her hand and verifying the stored digital keys. While she is driving, the car's on
board computer interacts with the smart watch again. Maria's daughter, who is at
home, has detected that her mother is in a place that supports direct voice contact
and she wants to talk to her mother. The request is dispatched to the smart watch
which forwards it to the on-board computer.
At the hotel, Maria's personal preferences are automatically detected by the AmI
service of the room in which she is staying, such that the room adjusts for Maria to
feel as home as possible.
When Maria gives the sales pitch the next morning, her smart watch automatically
gives the computer connected to the projector access to her slides, but only for the
duration of the actual presentation. When she starts her presentation, the smart
watch sets her availability status to busy and will hold o� all non-urgent calls to her
phone.

The most important aspects of this scenario regard the multitude of just-in-time, short-lived,
context-aware servicing that Maria's smart watch is able to perform. Important questions
regarding the architecture of the infrastructure supporting this services and the way in which
they can be automatically discovered by Maria's smart watch are raised. We will shine some
more light on these issues from a context management perspective in Section 1.2.2.

CHAPTER 1. PROBLEM DEFINITION 9

The Mobile University Scenario A scenario similar to the previous one is the �Mobile
University� proposal that was part of the Daidalos project1 [Aguiar et al., 2007]. In this case
though, the ambient intelligence services are restricted to usages and activities encountered in
a university environment.

The main vision of the scenario is that of helping students studying abroad to
have access to their personal set of services and to dynamically discover local ser-
vices and devices. Key functionality of the proposed scenarios involves things like
organizing the daily life at the university (e.g. friend contacts, appointments, reser-
vations, classes, projects), locating people and devices, moving sessions and content
between devices or working and playing while on and o� campus.
An example episode involves Dani who arrives at the university to join his friends
in a project group and work on an assignment. When he arrives at the desk where
his friends are present, the project group meeting is automatically marked as active
in his calendar. The project group decides to use local computers to work on the
assignment, so all information prepared in advance by Dani is transferred from his
mobile device to the local computer. During the work session, Dani is marked as
busy.
When the group decides to take a lunch break, the mobile terminals allow them to
search for an available table at the cafeteria and reserve it for the whole group.

As in the case of �Maria�, the �Mobile University� scenario relies on individual contextual
interactions with services and devices discovered on the �y, in di�erent environments of a
university (e.g. on the hallway, in an o�ce, in the cafeteria). While the scale of the mobility
aspects is less ample than that of the �Maria� scenario, it does raise many of the same context
management challenges.

Care for the Elderly In a change of perspective, the next scenario is proposed by Olaru
[Olaru, 2011] and is part of the Ambient Assisted Living2 vision. The scenario talks about the
personal care services o�ered to an individual senior person.

A senior person walks on the street towards her house. In the pocket she has
a mobile phone with an AmI software agent installed which communicates with a
multipurpose sensor that monitors vital signs. The person lives in a small basement
apartment. She climbs down the stairs, misses one of the last steps and falls. She
loses consciousness for a few moments. By means of the vital signs sensor, the AmI
agent determines that the situation is not life threatening and that no major injury
has occurred. There is no need for an ambulance, but care may still be needed, so
the personal medical assistant for the senior person should be called immediately.

As opposed to previous scenarios, in this case the contextual interactions of the considered
services (vital sign sensing and processing, contacting care facilitators) all have a single pur-
pose, that of assisting the elderly person. However, the main challenges come exactly from
the �intelligence� and decision making part of the scenario. Especially in the cases involving
sensors that are worn by an individual, uncertainty of the readings (due to false positives) or
incompleteness of the information (due to the elder forgetting to put on one of the vital sign
sensors or due to a sensor failure) have to be expected. This means that the AmI agent has to
act based on imperfect context information which becomes a reasoning challenge in itself.

Sensor Control in Body Area Networks The following analysis is not performed for a
particular scenario, but rather for the issues encountered in a category of scenarios that involve
utilization of sensors that are worn by the user, must rely only on battery supplied energy and

1http://www.ist-daidalos.org/
2http://www.aal-europe.eu/

CHAPTER 1. PROBLEM DEFINITION 10

which may be shared between multiple end applications. Example scenarios and experiments
that refer to such settings are reported in works such as [Riboni and Bettini, 2009; Kang et al.,
2008, 2010].
The main challenge in such environments is to enable multiple context-aware applications that
require continuous context monitoring to simultaneously run and share highly scarce and dy-
namic resources. Therefore, it becomes important to �nd means to search and select the most
appropriate sensors for a given task and to use context information usage patterns to control
when and which body worn sensors need to actually be active.

Scenario Focus Points

Maria Variety of context services, shifting context interest

Care for the Elderly Information uncertainty and incompleteness, reasoning capabilities

Mobile University Variety of context services, shifting context interest

Body Area Networks Dynamic scheduling of context services, task based sensor selection

Table 1.1: Synthesis of main issues and focus points for the presented scenarios.

What is clearly observable from the brief list of Ambient Intelligence scenarios presented above
is that the envisioned applications (and their contextual management requirements, implicitly)
cover very wide scale and complexity ranges. Furthermore, the focus point of an application is
also highly variable, as highlighted in Table 1.1.
From an application development point of view, this again shows the need to focus on the
�exibility (in terms of modeling and architectural design) of the technical solutions that enable
context-aware programming. In what follows, we introduce context management as a research
�eld and present the challenges of this domain which stem from the above mentioned scenarios
and which we will try to address in this thesis.

1.2 What is Context Management

As shown in the list of Ambient Intelligence subdomains, Context Management is an integral
and important objective of study, constituting a foundational layer for modern AmI application
development. In order to understand the issues regarding the management of information in
context-aware applications, we must �rst provide a de�nition of the term context. We will then
use the AmI scenarios presented earlier to give the reader a better sense of the problems faced
by solutions attempting to tackle the management of context information.

1.2.1 What is Context

The term context-aware computing actually predates the notion of Ambient Intelligence and
was �rst introduced for the area of computing and information systems by Shilit et al. in
1994 [Schilit et al., 1994]. Since then, a large number of de�nitions for the terms context and
context-awareness have been proposed in the literature.
Zimmermann et al. make the observation that most of the existing de�nitions of these terms can
be partitioned into de�nition by synonyms and de�nition by example. Works such as [Brown,
1995; Hull et al., 1997] equate the meaning of context to that of the application's environment
or the situation of the user.
Then again, other authors [Gross and Specht, 2001; Chen et al., 2003] use enumerations of
elements such as location, time, identity, temperature, noise or beliefs and intentions of a
human to de�ne the notion of context.

CHAPTER 1. PROBLEM DEFINITION 11

Attempting to address the limitations of early context de�nitions, Dey provided a more general
and comprehensive meaning of the notion, which has become the most widely accepted one
within the research community. The de�nition goes [Dey, 2001]:

Context is any information that can be used to characterise the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between the user and the application, including the user and the applications them-
selves.

As we will also see in an analysis in chapter 4, the notion of context provided by Dey includes
any kind of information that is relevant to the interaction between a user and an application,
as well as to the interaction in between applications or in between users themselves.

It is arguable that, while comprehensive, Dey's context de�nition tends to be overly general.
In the attempt to constrain the universality of the notion conveyed by Dey, Zimmermann
et al. [Zimmermann et al., 2007] propose a formalization of the elements describing context
information into �ve categories: individuality, activity, location, time and relations (cf. Section
4.1.3 for more details). The authors furthermore extend this general terms de�nition with an
operational side which characterizes the use of context and its dynamic behavior. Speci�cally,
based on review of work from the literature, [Zimmermann et al., 2007] determines that the
activity predominantly in�uences the relevancy of context elements in speci�c situations, while
the location and time elements mainly drive the creation of relations between entities (as a
consequence of shared context) and enable context information exchange among those entities.
This latter operational aspect of context is highly relevant from an application development
point of view because it raises the question of managing context information: how is a context
model created, how and when is contextual information acquired, processed or disseminated
only to the interested parties at the optimal time? What are the means for controlling the �ow
of context information based on the operational characteristics mentioned above?
A graphical representation of the context management breakdown and its placement as an
object of study within the Ambient Intelligence research �eld can be seen in Figure 1.1.

Network

Middleware

User Interface

Application
Smart Offices Smart Communication

Context-aware web services ...

Service discovery

Communication

Context

Management

Definition of Context (Dey, 2001)
Any information that can be used to

characterize the situation of entities (whether a

person, place or object) that are considered

relevant to the interaction between a user and

an application, including the user and the

application themselves.

Context Representation and Reasoning

Context Provisioning:

 acquisition, coordination,

 dissemination, usage

Context Management Solution Deployment

Context Management...

Figure 1.1: Aspects of Context Management and their place within the Ambient Intelligence research

�eld.

In essence, these represent the challenges posed to any information management system, but
applied to the particular characteristics of context information. We provide an introduction to
these issues in the subsections that follow.

1.2.2 Challenges in Deploying Context-Aware Applications

We propose to start our inquiry into the challenges of managing context information in a top-
down manner. Consequently, the �rst problem we identify is that of deploying a context-aware

CHAPTER 1. PROBLEM DEFINITION 12

application itself.
Deployment of a context management system refers to the process of con�guration, installation
and runtime administration of the system. In essence, it deals with the concrete means in which
the context management support infrastructure (both in terms of physical machines as well as
software services) is setup within an AmI application.

The biggest challenge in this regard comes from one of the desired characteristics of Ambient
Intelligence, namely ubiquitousness. The �Maria� and �Mobile University� scenarios (but more
notably the �Maria� one) make this issue very visible. In Maria's case, her smart watch is
expected to have contextual interactions with di�erent services (e.g. the customs o�ce at the
airport, the on-board car computer while driving to the hotel, the hotel room) on the �y and
for a short, non-repeating time interval (we can safely assume that Maria does not travel to the
foreign country every week). Several questions present themselves in this case:

- Is Maria's smart watch running a single AmI application that interacts with all these
services?

- If yes, how is the support for all the totally unrelated contextual interactions foreseen
(understand programmed in advance)? Is it realistic to expect this?

- If not, are the di�erent applications/services already present on Maria's smart watch
or are they deployed just-in-time?

- In accordance with Zimmermann et al.'s observation that activity determines the rel-
evancy of context elements, does the service managing Maria's contextual interactions
with the hotel room need to persist on her smart watch, after she checks out of the hotel?

- From a development point of view, is it easily expectable that the team implementing the
AmI infrastructure in the car or the hotel uses the same context information model and
communication standards as the developers of Maria's smart watch?

Considering the trends and directions discussion from Section 1.1.1, an adequate response to
these questions is required in order to identify the most suitable approach for deploying context-
aware applications.
Note furthermore that, in contrast to the �Maria� or �Mobile University� scenario, the �Care
for the Elderly� one has a much less stringent requirement for ubiquitousness and a less diverse
set of services. The main focus of the AmI application in the scenario of [Olaru, 2011] is the
well-being and care of a senior person and all context interactions revolve around this objective.
From the perspective of wanting to develop a context management system capable of addressing
as many AmI scenarios as possible, the concerns listed above suggest the need for a highly
�exible approach. As we will see in chapter 6, our solution to this issue is based on the idea
of con�guration and deployment �exibility. We propose a modular design based on control
units and their dynamic life cycle management as the key to answering the deployment speci�c
questions discussed here.

1.2.3 Challenges in Controlling Context-Aware Applications

Assuming that a context-aware application is deployed, the next challenge lies in determining
how to control its information provisioning process.
The notion of context provisioning is discussed in detail in Section 3.1, but essentially refers to
the entire set of mechanisms and interactions used by a context management system to let AmI
applications built on top of them access the desired and needed context information when and
how they require it.

The need for control and adaptation of this process is immediately observable from Zimmermann
et al.'s operational views on context. The attention and the focus on speci�c context information
varies as aspects of current activity, time or location change.

CHAPTER 1. PROBLEM DEFINITION 13

In our presented scenario list, this issue becomes apparent in the discussion on judicious usage of
body worn sensors, particularly because of the energy consumption constraints of such sensors.
In the �Care for the elderly� scenario, we notice that the AmI agent needs to have access to
the most complete and accurate information as possible in order to evaluate the nature of the
senior person's injury after her fall. Thus, in a critical situation all vital sign sensors should
be employed in assessing the condition. However, it might well be the case that during normal
and routine activities of the elder, a much smaller amount of sensors is required to track his
vitals, possibly at a lower update rate (since no real danger is anticipated).

Taking again the perspective of support for easy application development discussed in Sec-
tion 1.1.1, the question becomes centered on the concrete means by which context provisioning
adaptation and control is included in the application. Is the control logic embedded within the
functionality of context management solution or can the application layer on top in�uence/-
modify it in any way? In the latter case, is the application layer required to assume full control
of the adaptation decisions or does it act by altering the value of some modi�able parameters
that govern the adaptation logic?
Furthermore, if parameters exist that in�uence the actions of di�erent provisioning subsystems
(e.g. acquisition, coordination, dissemination of information) what is an adequate design for
the architecture of a context management system where these subsystems can be controlled
both independently and in connection to one another?
Our proposed solution for these issues is discussed at length in Chapter 5.

1.2.4 Challenges in Modeling Context Information

If we can consider deployment and provisioning control of a context management system as
established, a �nal question we can ask is related to the form of information provided to the
end AmI application, as well as to the type of reasoning that the context management system
can apply to the information it handles on behalf of the application. Collectively, these aspects
are referred to as a model for context information.

The challenges for this concern can be best observed in the �Care for the elderly� scenario. As
we already mentioned when discussing the story, the AmI agent works in conditions subject
to uncertainty and incompleteness, given that the agent must expect the sensors worn by the
elder to be inaccurate or faulty. Furthermore, sensor inaccuracy might even lead to detection
of contradictory/ambiguous situations.
The question then becomes whether the chosen information representation formalism can ad-
equately support the context management system in dealing with such issues. Can the repre-
sentation capture the value of con�dence in sensed information? Can it represent the fact that
one context element constrains or depends on the value of another?
Additionally, returning again to aspects of application development, the issue of modeling �exi-
bility arises. In the case of the �Care for the elderly� scenario is the AmI agent forced to retrieve
only key-value like information from each vital sign sensor or does the underlying context man-
agement system allow a richer representation where the model designer is, for example, able to
aggregate several inter-dependent context elements (e.g. x,y,z acceleration on an accelerometer,
heart rate and blood pressure from a heart monitor) into a single statement?
Furthermore, from the perspective of reasoning about the collected context information (e.g.
to infer the degree of the injury of the senior person after her fall) what is the most suitable
formalism for performing inference which combines adequate deductive capability with ease of
development and understandability of the deduction process (i.e. be able to explain why a given
result was derived)? Can the particular reasoning method also perform time-related operations
(e.g. determine for how long the blood pressure of the senior was below a given threshold)?

In Chapter 2 we explore this set of desirable context modeling characteristics in further detail
and then analyze the multitude of di�erent approaches that have been proposed for the problem

CHAPTER 1. PROBLEM DEFINITION 14

of context modeling. Given the results of that analysis and our explained goal of ease of
development, we present our own proposal for modeling context information based on principles
of �exibility and expressiveness in Chapter 4.

1.3 Reference Scenario

In previous sections we de�ned the general �eld of Ambient Intelligence and its Context Man-
agement subdomain, which is the topic of this thesis. We then provided an overview of the
challenges that context management systems are and will be expected to handle.
To put these things into a clearer perspective and be able to exemplify the conceptual solutions
we will bring to each challenge throughout this work, in the following we introduce a simple,
yet complete, scenario that showcases all the issues discussed above. Subsequent chapters of
this thesis will use it as a reference.
The scenario falls into a category that is well known in the AmI literature, namely the interac-
tions of students and professors within the premises of a smart university campus.

Alice is a student of Computer Science (CS) at University Politehnica of Bucharest.
It is currently 11:50 and Alice is attending a lecture in the Ambient Intelligence Lab-
oratory (AmI Lab) of the CS Building.

The AmI laboratory is a smart multi-functional room of the university in which
di�erent activities can take place. It is used by both faculty members and students
as a lecture room, research facility and meeting room. The laboratory is equipped
with sensors for detection of various environmental and user related information.
Temperature and luminosity sensors collect data which is used by air conditioning
and slide projector units throughout the day. Each desk in the room has sensors
that can detect presence of bluetooth enabled devices, noise level readings and body
postures (via Kinect cameras) of users in their vicinity.
However, to save energy and bandwidth the updates of these sensors are tightly
controlled by a management server which knows when and how to use the data
coming from each sensor type. Policies set up by the faculty administration as well
as the dynamic usage of context information determine allow the server to manage
both sensors and its internal reasoning processes.

Students and faculty sta� have installed a context-aware application on their
smartphones to help them on the university premises. The application contains both
personalized modules (i.e. preferences and deductions that are speci�c to each user),
as well as modules that allow it to interact with all the individual smart environments
(e.g. the CS Building hallway, the AmI laboratory, di�erent o�ces, the university
outdoor campus).

Alice's lecture �nishes early, but she remains in the AmI laboratory since she
wants to meet with two friends, Bob and Cecile, to talk about their Ambient Intel-
ligence project. Normally, the smart application on Alice's phone knows that she is
attending a lecture from 10:00 to 12:00 and is therefore busy. In this case all in-
coming and non-urgent calls will be directed to voice mail. However, the application
interacts with the AmI-Lab management server and determines that Alice is alone
in the room, meaning that the lecture situation is no longer valid, even though it is
before 12:00 o'clock.
Bob calls Alice to �nd out where to meet and the application accepts the call since
it deemed Alice as not being busy. While Alice waits for her friends to arrive, the
only sensors which are maintained active by the AmI-Lab server are the presence
sensors and the temperature sensors since it is mid May and there is a person in
the room (therefore, custom AC settings may be required).

CHAPTER 1. PROBLEM DEFINITION 15

When Bob and Cecile arrive, the three friends sit down at a desk and begin talk-
ing about their project. Their applications detect that there are more than two people
at the same desk, such that a collective activity might be in place. The smartphones
subscribe to the AmI-Lab server to �nd out if their users are in an ad hoc discussion.
The server contains rules that help derive the type of activity in the smart room. One
such rule detects ad-hoc discussions and mentions that when the noise level near a
desk is higher than 60 dB and two or more people are perceived as sitting near the
same desk for over two minutes, then that corner of the room is hosting an ad-hoc
discussion. However, the sensors required for detecting this situation (microphones
and Kinect cameras which can detect the posture of a person) are not active. The
system therefore actively searches for providers of the mentioned context informa-
tion, indicating it requires updates every 20 seconds.
Alice, Bob and Cecile keep talking and the application on their smartphones is soon
informed they are in an ad-hoc discussion, so they are deemed as busy. Alice's ap-
plication is con�gured to share this information at room level so that friends of hers
in the CS building may access it. During the discussion, Bob uses the projector to
show some slides. The projector unit subscribes for information on luminosity levels
in the room, so the AmI-Lab server enables the updates from light sensors. When
Bob closes the projector, the AmI-Lab management policies tell it that if no request
for luminosity information arrive for more than 1 minute, light level updates can be
deactivated.

Meanwhile, Dan, who is a friend of Alice's and a PhD student at the university
is working in the EF301 o�ce. He knows that Alice is in the building and wants
to be noti�ed when she is free so he can call her to meet for lunch. However, he
does not know where Alice is exactly. He therefore uses his application to place a
subscription for Alice's availability status at CS Building level. The query will thus
get routed to all rooms within the building.

When the meeting stops, Alice, Bob and Cecile leave the AmI-Lab and move into
the hallway. After 5 minutes, a closing policy of the AmI-Lab server is triggered,
stating that if no query for the type of hosted activity is received for this amount
of time, the sensors providing information required to infer this situation can stop
sending their data. Meanwhile, Alice's smartphone application infers that her user
is no longer in a meeting and therefore not busy. Dan is thus noti�ed that Alice is
free and he calls her to see if they can meet for lunch.

The presented scenario highlights many of the challenges discussed previously.
In terms of deployment, the scenario features a distributed deployment, with management mod-
ules installed in the smart environments of the university and mobile client modules installed
on user smartphones. Furthermore, the smartphone application is required to interact with
multiple modules, either in sequence or at the same time (e.g. when solving the contradictory
information of Alice being free or busy while waiting for her friends).
The scenario shows requirements for adaptation and control of context provisioning, since the
sensors updates and inferences carried out in the Ambient Intelligence Laboratory are directly
dependent on how those pieces of context information are used.
Lastly, from a representation and reasoning point of view, the scenario requires some complex
modeling capabilities of the situations in the AmI-Lab. Temporal validity reasoning and aggre-
gation of information is required to detect the ad hoc discussion situation. Furthermore, the
ability to solve contradictory situations (such as inferring that a user is busy and free at the
same time, as in the case of Alice) is demanded.
As we discussed in Section 1.1.1, on top of these functionality requirements, we add the overarch-
ing goal of developing solutions to these requirements that o�er extensive support for �exibility

CHAPTER 1. PROBLEM DEFINITION 16

of modeling, easy development and �exible deployment. These non-functional requirements have
the express purpose of alleviating the time and e�ort spent developing context-aware applica-
tions.

Chapter 2

A State of the Art in Context

Modeling

Now that we have seen the multiple dimensions of research objectives existing within the �eld
of context management, in this chapter we begin the examination of work related to our own
that has addressed all or parts of the previously de�ned objectives.

While de�ning our research problem, we provided a top-down incursion into the di�erent chal-
lenges with which a context management system is faced. This served the purpose of showing
the depth of the context management problem and that there exists a certain inclusion rela-
tion (from an architectural point of view) between its aspects (system deployment, information
provisioning, representation and reasoning). We will approach the presentation of the state
of the art and contribution chapters in the opposite direction, from foundational aspects to
engineering related ones, allowing the reader to gain a gradually broader picture of the subject
matter.

In this �rst state of the art chapter we explore the aspect of context modeling, speci�cally the
di�erent means to represent and reason about context information. At the end of each section
we provide a summary presenting the section's main take-away points and the issues that we
consider remain insu�ciently addressed.
Section 2.1 looks at commonly desired attributes of context representation and at how di�erent
representation methods are able to address such requirements. During our analysis, we place
greater accent on ontology-based approaches which have seen the greatest uptake in recent
years.
In Section 2.2 we examine methods to perform reasoning about context information. We look
at the di�erent aspects of reasoning (e.g. making deductions, maintaining consistency, ensuring
integrity constraints) and how existing work approaches them.
Finally, Section 2.3 presents the detailed objectives of our own approach with respect to context
modeling, in light of issues that are insu�ciently addressed in the reviewed state-of-the-art, but
are required by the reference scenario given in Section 1.3.

2.1 Representing Context Information

We start the review on context information representation by listing general consensus attributes
which should ideally characterize a representation method. We then provide an overview of
various context modeling e�orts that have been proposed throughout the literature. Further
on, we look more closely at work that relied on two types of approaches that prove to be more

17

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 18

expressive: ontology-based representation and meta-model oriented approaches. A summary
presenting the main take-away points concludes the section.

2.1.1 Context Representation Requirements

It is clear from the example scenarios presented in the introduction, that the complexity for
context-aware applications stands at a high level. Moreover, the industry uptake of development
of Ambient Intelligence and Pervasive Computing applications, which is expected in the current
decade, means that the di�erent layers of engineering (e.g. sensor communication protocols,
networking, context management, user interfacing) of such applications must be supported by
their proper development tools. This is an important requirement, as it facilitates the design
and ensures the maintainability and evolvability of the application.
Context Management itself is a complex engineering layer for Ambient Intelligence applications
and within it special attention is given to methods for representing context information as the
foundation on which further processing depends. In the attempt to prepare for an as large as
possible list of possible uses of context information, the ambient intelligence community has
put an emphasis on well-designed context models and has established a set of requirements
which characterize the ideal context representation method [Bettini et al., 2010; Bolchini et al.,
2007a]. We present this list of attributes in what follows.

A �rst concern is model �exibility, which refers to the ability of a representation model to
be suitable to di�erent contexts. That is, this attribute relates to model generality: is it more
suited to speci�c application domains or is it general purpose? Is it possible to capture any and
all kind of context information and if so, how easy is it. This requirement is commonly set for
data modeling in the information system domain [Hirschheim et al., 1995], because it means
that the model o�ers the users the ability to reach consensus regarding conceptual schemas that
capture the sense of the domain of discourse and how these schemas may be adapted further
down the life time of the application.

Heterogeneity examines how easy a context model can deal with a large variety of context
information sources that di�er in their update rate (e.g. a video camera stream versus a
temperature sensor that only sends updates when the value changes) and their semantic level
(e.g. GPS raw coordinates versus a logical localization on a street). Information can be static
(e.g. taken from a database), sensed, or provided by the user. The interpretation of such data
is usually application speci�c. Does the chosen representation allow a di�erentiation of further
processing based on such criteria? This attribute relates more to the operational mechanisms
(e.g. reasoning, provisioning) that are built around the context model and is a key issue in AmI
and smart environment applications where heterogeneity of the sensing apparatus is inherent
[Augusto et al., 2010].

Context relationship and dependency speci�cation refers to the ability of a represen-
tation method to support explicit de�nition of di�erent semantic relations between context
information instances. This includes, for example, the ability to specify information integrity
constraints (e.g. value restrictions, uniqueness conditions) or the ability to express implications
from one context property to an other (e.g. the a change in network bandwidth may a�ect the
remaining battery power of a device). This requirement is again commonly found in the in-
formation systems literature, whether focused on databases and entity-relation models [Brodie,
1984] or knowledge bases and description logic based models [Calvanese et al., 1998].

Timeliness (dealing with context history): context-aware applications may need to have
access to past states (for mining and statistical purposes) and future states (prognosis). How-
ever, in cases with high sensor update rates it may be impractical to store every value. This
attribute thus relates to the ability of the representation method to support aggregation or
summarization mechanisms. It is furthermore of importance to many applications that involve

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 19

temporal reasoning or the training of statistical models for activity recognition [Cook et al.,
2009b].

Management of imperfect/ambiguous or incomplete information: The dynamic and
heterogeneous nature of context information can lead to variations in the quality of context
information (e.g. due to inherent sensor inaccuracies). Accumulated errors or malfunctions can
also lead to incorrect or incomplete statements (e.g. a presence sensor that fails to detect a
person may cause to report an empty room). The context representation method must there-
fore take such problems into account and provide adequate support for reasoning procedures
(e.g. constraint checking, information fusion) that can mitigate the issue. As with heterogene-
ity of context sources, ambiguity of information is an inherent setting of ambient intelligence
applications [Schmidt, 2006] and one that has yet to �nd standard means of management.

Reasoning support relates to how amenable the representation method is to application of
various reasoning approaches that can ensure context consistency and derive further higher-level
information from more basic one (e.g. deduce current activity of a user combining data from
presence, audio and posture detection sensors). It complements the dependency speci�cation
attribute in the sense that modeling semantic relations (e.g. the type of activity in a room
depends on the number of people in a room) of context information can be exploited to infer
new knowledge [Bikakis and Patkos, 2008].

Usability of modeling formalism measures how easy it is for designers of context-aware
applications to translate real world concepts into the constructs of the chosen context repre-
sentation method. Furthermore, it analyses how easy it is for the application-level to use and
manipulate the represented context information at runtime. While there exist several views
as to how usability should be measured [Bevan, 2009], in this case we refer to de�nitions of
usability in terms of the mental e�ort and attitude of the context model designer, as well as the
product-oriented view of model ergonomics (i.e. how does it facilitate context-aware application
development).

2.1.2 Context Representation Methods

Within the past 15 years, the research community on context management has made use of
several methods for information representation. We want to perform an overview of these
approaches, explaining their speci�cs, giving example of some systems that use them and, most
importantly, analyse how they fare against the modeling requirements introduced previously.
As a result of this analysis, we motivate why in following sections we place additional focus
on two modeling techniques that are most promising: ontology-based modeling and context
meta-model approaches.

The simplest context representation technique among the reviewed ones is key-value model-
ing. Context information is modeled as key-value pairs either in a textual or in a binary
format. Models de�ned in this way are easy to build and manage, provided the number of keys
(attributes) is small. The resulting models, however, end up being strongly coupled with the
particular application that uses them, thus showing low �exibility. Furthermore, since no actual
structure or semantics is explicitly de�ned, requirements such as dependency or imperfection
management, timeliness or reasoning support cannot be addressed by the model and have to be
added by the application level in an alternative way. Still, context management solutions which
rely on event processing and operator composition to drive their context processing mechanism
employ such representations. SOLAR [Chen et al., 2008] for example, uses a key-value context
model in its solution for an infrastructure for context-aware applications, showcasing its usage
in a smart meeting application.

Markup Scheme Models are based on using markup languages (especially XML) to represent
context information. Common to all such modeling approaches is a structure consisting of

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 20

markup tags with attributes and content. Markup based modeling is more structured than the
simple key-value based approach, as the used markup language is usually accompanied by a
schema. This allows for certain kinds of validation, such as type and range checks for numeric
values, and leads to better context retrieval capabilities. However, more complex types of rela-
tions (dependencies, constraints) are hard to model, as reported by early works [Indulska et al.,
2003], and the representation does not readily o�er support for reasoning. This lack of explicit
semantics means that markup based context models become closely tied to the application,
making sharing of context information di�cult. The approach is mainly used to build pro�les
of either user or device preferences and con�gurations in works such as [Buchholz et al., 2004;
Indulska et al., 2003] which extended the Composite Capability/Preference Pro�les (CC/PP)1

vocabulary proposed by the W3C. ContextML [Knappmeyer et al., 2010] was used in a similar
manner to represent context information within the C-CAST project2, which sought to provide
context-aware multicasting of content and services to mobile device consumers.
While a purely markup-based context representation fails to provide adequate support for in-
formation consistency checking and higher-order inference, due to its lack of semantics, it can
actually be used successfully as a means to transfer or temporarily store context informa-
tion. XCML [Robinson et al., 2007] is an XML-based serialization of context information
constructed using CML [Henricksen et al., 2005b], while RDF3 is the default approach for se-
rializing ontology-based context models. Both ontology-based representation and CML will be
discussed in more detail in Sections 2.1.3 and 2.1.4 respectively.

Graphical Models use techniques such as UML4 or ORM5 to model context information. An
important advance over markup based models is the ability to explicitly indicate relationships
that hold between context elements. The actual underlying representation of a graphical context
model can vary and techniques such as SQL and noSQL databases, XML or even graph-based
storage can be used as concrete implementations.
Olaru et al. introduce a graph-based representation format for both context information itself,
as well as for the situation patterns that need to be recognized [Olaru et al., 2011]. The
modeling resembles concept maps, in that the edges of the graph are predicates and nodes have
semantic labels attached to them. An interesting feature is the ability of the proposed reasoning
algorithm to perform a partial matching of a situation pattern to the existing knowledge graph
and identify the missing information. However, the model cannot currently handle aspects of
timeliness or reasoning over uncertain situations (quality of information cannot be captured).
Henricksen et al. propose an extension of ORM called CML (Context Modeling Language) to
model context information and use an SQL database as a support [Henricksen et al., 2005b].
Such an approach holds bene�ts in terms of providing validation (integrity and constraint
checks are possible) and timeliness. Databases also allow for e�cient storage and retrieval of
information.
Graphical models in general provide strong support for usability (e.g. tools allowing a visual
representation of all relationships facilitate development). However, the lack of model semantics
means that reasoning and generalization support are limited. Furthermore, depending on the
chosen concrete representation technology, alterations of an initial context model may be harder
to address.

Object-Oriented Models use concepts from the �eld of Object-Oriented Programming (OOP) for
context modeling. Notions such as class inheritance and object composition are used to model
context information and its relationships. Being as close to programming languages as possible,
object-oriented context models are easy to use for application developers and promote code
reusability. However, the lack of an explicit schema or semantics of the model makes it very
tied to a speci�c application and hinders �exibility. Furthermore, means for model validation

1http://www.w3.org/TR/CCPP-struct-vocab/
2http://cordis.europa.eu/project/rcn/85341_en.html
3http://www.w3.org/RDF/
4http://www.uml.org/
5http://www.orm.net/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 21

(consistency and constraint checking) or timeliness and reasoning support have to be added in
a customized manner, as they are not inherently supported by the model. Still, such context
representation approaches have been well used within context management solutions that target
more speci�c domains, such as context-awareness on a device level (e.g. COSMOS [Conan et al.,
2007]) or centralized control of a smart house environment (e.g. COPAL [Sehic and Dustdar,
2010]). These works de�ne domain speci�c languages (DSL) to more easily specify a context
model schema which then creates the corresponding context model objects at runtime.

Logic-Based Models use the constructs of various logical frameworks to model context informa-
tion in terms of predicates, expressions and terms. One important advantage is the ability to
de�ne inference rules exploiting the reasoning capabilities of the chosen logical framework to
ensure context consistency and integrity, and to provide higher-level context deduction capabili-
ties. Bikakis and Antoniou [Bikakis and Antoniou, 2010], for example, extend the Multi-Context
System formalism [Giunchiglia and Sera�ni, 1994] with non-monotonic logic features (defeasible
local rules, defeasible mapping rules) and a preference ordering mechanism in order to handle
unknown, uncertain and con�icting context information. The authors showcase the approach
in scenarios such as an ambient intelligence home care system or an application for context-
awareness in a smart classroom [Bikakis et al., 2011]. One of the few downsides of logic-based
models is that terms in usual logic formalisms lack an explicit semantics, making the resulting
models tightly coupled to a speci�c application and thus less reusable. Nonetheless, as we
discuss in Section 2.2, rule-based reasoning grounded in a logical formalism either drives or
accompanies the inference mechanisms of various context management systems.

Ontology-Based Models use the expressive power of description logics to represent context infor-
mation. Recent review works [Baldauf et al., 2007; Bettini et al., 2010; Perera et al., 2014a] show
that ontologies have become the preferred choice of modeling in the context-aware computing
community. There are two main reasons for this choice: the inherent expressiveness and the
large number of standards-based tools and technologies of the semantic web community which
provide good support for development, reasoning and query of ontology-based context models.
In terms of expressiveness, ontologies rely on description logics to de�ne an explicit semantics
of context elements, de�ne relations and restrictions between them and o�er extensive support
for consistency checks. Apart from these bene�ts, ontologies allow context-aware application
developers to perform a clear separation of concerns between domain knowledge de�nition and
its runtime usage, by creating explicit and reusable models of context information.

Key-Value Markup Scheme Graphical Object Oriented Logic-based Ontology-based

Model
Flexibility

∼ ∼ + ∼ + +

Heterogeneity ∼ ∼ ∼ ∼ ∼ ∼

Dependencies - - + - + +

Timeliness ∼ ∼ ∼ ∼ ∼ ∼

Imperfect
Information

- - ∼ - ∼ ∼

Reasoning
Support

- - - - + +

Usability of
Formalism

∼ ∼ ∼ + + +

Table 2.1: Analysis of support for modeling requirements for each representation method. Meaning of

notations: - means no support is given, ∼ means that no inherent support exists, but it can be partly

addressed through clever design, + means support is provided inherently.

In Table 2.1 we provide an overview of the degree to which the discussed representation meth-

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 22

ods address the modeling requirements listed in the previous section. The evaluation is based
on the analysis performed in this section. We distinguish between three levels of gradation: no
support (-), support that can be added on an application-speci�c basis (∼) and support that is
o�ered inherently by the given modeling formalism (+). For instance, real reasoning support is
only available in the representation methods relying on a form of logic (e.g. defeasible logic or
description logic in case of ontologies). On the other hand, timestamps are not inherently cap-
tured by any representation method, but the timeliness property can be ensured if, for example,
the application models every situation as a generic event for which a timestamp attribute can
be attached.
From the contents of our table it becomes clear that logic and ontology-based representation
means satisfy most of the requirements. For this reason, in the next section we will focus
more closely on works from the literature which have used ontologies as their support for con-
text representation. However, as we see from Table 2.1, ontology modeling alone turns out to
be insu�cient to address requirements such as timeliness and imperfect/ambiguous informa-
tion management. Section 2.1.4 explores works that have taken the more general approach of
constructing context meta-models to face these challenges.

2.1.3 Ontology-based Context Representation

Expressive power as well as development and optimized reasoning tool support are key mo-
tivation elements for the use of ontologies as the preferred context modeling method in the
ambient intelligence community. However, concrete ontology proposals from the literature vary
signi�cantly when it comes to the actual context representation concepts and relations that
are captured by the approaches. This is mainly a consequence of the degree of genericity and
extensibility given to the ontology vocabulary. While some works focus on more speci�c AmI
domains such as modeling Activities of Daily Living (ADL) in smart home scenarios [Chen and
Nugent, 2009; Riboni and Bettini, 2011], others try to build ontologies that would cover as many
context domains as possible, from information about devices and hardware platforms [Preuve-
neers et al., 2004], to user pro�les, general location and activity data [Gu et al., 2004; Chen
et al., 2005].

General Context Ontologies

We start our review of ontology-based context modeling with CONON [Gu et al., 2004] (CON-
text ONtology) which de�nes a vocabulary for indoor environments. The core (upper) ontology
contains 14 classes that model di�erent kinds of ContextEntities. These include person, lo-
cation, activity and computational entities such as a device, network or service. This upper
ontology is meant to be extended with an application speci�c vocabulary, as in the case of
smart home scenario used in [Gu et al., 2004]. The authors also introduce specially constructed
OWL properties to convey additional information about captured context information. The
owl:classifiedAs property performs a classi�cation of context based on its acquisition
method (sensed, de�ned, aggregated or deduced), while the rdfs:dependsOn property in-
dicates that a property of a ContextEntity depends on another one. CONON also de�nes a
vocabulary to express quality constraints, which the authors claim can be attached to proper-
ties of ContextEntities. However, the work in [Gu et al., 2004] and subsequent follow-ups fail
to explain how quality constraints as well as the owl:classifiedAs and rdfs:dependsOn
properties are created and leveraged at runtime.

One of the most well known and reused context ontologies is the Standard Ontology for Ubiqui-
tous and Pervasive Applications (SOUPA) [Chen et al., 2005]. It achieves great genericity and
reusability by creating its core vocabulary in a modular way, based on upper-level consensus

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 23

ontologies that cover aspects including person (FOAF1), time (OWL-Time2), space (spatial
ontologies in OpenCyc3) or even security and privacy policies (REI policy ontology4). Over-
all, SOUPA provides a broader core vocabulary for context modeling than CONON and has
been extended with elements speci�c to smart meeting applications (covering device properties,
schedule and meeting de�nitions, etc) [Chen et al., 2004a]. In the smart meeting scenario, one
of the most interesting uses of SOUPA is the de�nition and enforcing of context access poli-
cies using an OWL reasoner. However, in contrast to CONON, SOUPA does not provide any
constructs that can characterize the quality of perceived context information or provide further
classi�cation criteria (e.g. type of acquisition).

Strang et al.[Strang et al., 2003] provide an even more general approach than the ones previously
presented with their proposed Context Ontology Language (CoOL). The main purpose of CoOL,
according to [Strang et al., 2003], is to enable context-awareness and contextual interoperability
during service discovery and execution in a distributed architecture.
As opposed to the previous works, CoOL is based on an abstract meta-model called ASC
(Aspect Scale Model). It is named after its core concepts of aspect and scale and context
information. An aspect is a dimension of the situations space (e.g. spatial, activity-related,
quality-related) that describes a piece of context information. The authors de�ne a scale as an
unordered set of objects de�ning the range of valid context information. An aspect can have
one or more scales that give its value (e.g. a spatial distance aspect may have a �MeterScale�
and a �KilometerScale�). The de�nition of a piece of context information then becomes: a
characterization of an entity relevant for a speci�c task in its relevant aspects (along the de�ned
scales).

Figure 2.1: Aspect-Scale-Context (ASC) Model [Strang et al., 2003].

Figure 2.1 shows an overview of the ASC model and the relevant auxiliary properties (e.g. qual-
ity information or intra- and inter-operations) that can augment runtime processing capabilities.
Interestingly, the authors argue that the concepts of CoOL can be used as a transfer model to
convert the knowledge expressed in other context models. As an example, they show how a
context model expressed using CML (which we discuss in the next section) can be mapped to
CoOL using the ASC constructs.

Domain-Centric Context Ontologies

Though restricted to speci�c domains in their scenario examples, previously discussed ontologies
have tried to create generic vocabularies for context-aware applications. More recent works have
focused on providing more detailed modeling of speci�c ambient intelligence domains such as
human activity recognition and Ambient Assisted Living (AAL).

In [Chen and Nugent, 2009], Chen and Nugent focus on providing an extensive vocabulary for
Activities of Daily Living (ADL) describing a human activity in terms of it location, actors,

1http://www.foaf-project.org/
2http://www.w3.org/TR/owl-time/
3http://www.cyc.com/opencyc
4http://rei.umbc.edu/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 24

required resources, e�ects, goals and more. The authors also propose a reasoning algorithm,
based on equivalence and subsumption computations of description logics, to determine the
current activity based of a person. The inputs to the algorithm are domain knowledge that
describes various activities in terms of the proposed ontology as well as sensory information that
noti�es about usage of every-day objects. The reasoning algorithm can work in an incremental
fashion, where with every step an increasingly precise realization of the activity of the person
can be built.
The authors note however, that they leave all modeling and reasoning related to temporal and
meta-properties (e.g. quality of information) to future work.

Riboni and Bettini [Riboni and Bettini, 2011] examine the bene�ts of using the OWL 2 ontology
language to build a vocabulary for human activity recognition. The authors analyze the way
in which newer constructs available in OWL 2 (e.g. quali�ed cardinality restrictions, property
composition) help cover modeling e�orts which had previously used a combination of OWL
1 and predicate logic, thereby reducing hybrid reasoning mechanisms to a single well-de�ned
one. The work illustrates this by presenting an OWL 2 based model of ADLs for a smart home
and smart workspace scenario. Still, the authors observe that their model cannot currently
support the de�nition of context information quality metrics or easy handling of con�icting and
incomplete information, while the tree model property condition [Grosof et al., 2003] of OWL 2
limits the expressiveness of the language.

All of the works presented so far have put the entities of an application domain at the center
of their model and tried to provide vocabularies that would cover as many context domain
dimensions as possible. Only some of them ([Strang et al., 2003], [Gu et al., 2004]) o�er support
to characterize meta-properties of context information (e.g., quality information), However, they
do not detail how these annotations are further used during runtime processing.

2.1.4 Representation using Context Meta-Models

As explained at the end of Section 2.1.2, there exist approaches that go further in terms of
provided expressiveness than ontology-based modeling. They focus on creating meta-models
which are speci�cally designed for handling the challenges posed by e�ective context modeling.
In contrast to the above mentioned approaches, these context meta-models usually try to provide
a �rst-class construct for the events and situations that need to be observed. This translates
into a focus on the predicates of the context model, the ones that describe the relations that
exist between entities of an application domain. Such models can than apply any number
of additional annotations (e.g., quality of information) so as to characterize entire context
statements, rather than just entities.
In general, modeling support of these approaches is further increased by distinguishing between
a base component (a meta-model realization), that provides a vocabulary for working with the
di�erent model elements and their properties, and an upper-component that when extended
captures the di�erent domain dimensions of a particular application �eld.

mySAM [Bucur et al., 2006] introduces an ontology model able to de�ne arbitrary context
predicates. The principal model element is the ContextAttribute which is a general construct
that can express arbitrary statements of a context domain. The ContextAttribute has properties
stating its arity, the list of entities over which it applies and the value(s) it returns. For example,
a ContextAttribute such as �DevicesAvailableInRoom� applies to entities of type room and
returns a list of devices found therein. The model distinguishes between a context ontology and
a domain ontology. The domain ontology is used to de�ne the actual concepts that pertain to
an application domain. The context ontology contains all the ContextAttributes that apply over
the domain concepts. The approach is �exible in terms of its domain modeling expressiveness
but the work does not attempt to model quality (meta-properties) of the ContextAttributes, nor
does it specify how reasoning is performed with the given constructs.

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 25

Fuchs et al. [Fuchs et al., 2005] propose a Context Meta Model capturing semantics of entities,
properties and quality classes that characterize the properties. The model overview is shown
in Figure 2.2. Similar to ASC presented earlier [Strang et al., 2003], the meta model de�nes

Figure 2.2: Overview of the Context Meta Model proposed by Fuchs et al.[Fuchs et al., 2005]

DataStructure classes and transformation rules that can convert from one DataStructure to
another. Predicate dependencies and derivation rules are also speci�ed in order to perform
inferencing. We note also that the OWL-DL instantiation that the authors give to their Context
Meta Model deals only with binary predicates and uses rules de�ned in SWRL1 to accomplish
derivation of higher level context information.

The work in [Fuchs et al., 2005] is similar to another proposal, which has been mentioned before
and is of particular interest, the Context Modeling Language (CML[Henricksen et al., 2005b]).
CML builds upon the Object-Role Model (ORM) conceptual language for data modeling used in
the Relational Database domain and extends it with constructs speci�c to the area of context
representation. The basic representational unit in CML is the fact, a relationship holding
between one or more entities, categorized into static, sensed, pro�led or derived depending
on the acquisition type. It allows expression of uniqueness constraints and fact dependencies
as well as annotation of facts with quality indicators. CML also introduces a form of �rst-
order predicate logic used to derive higher-level information (called situations). The model
has been used in demo applications involving context-aware communication [Henricksen and
Henricksen, 2006] (i.e. selection of the communication channel based on user preferences and
current availability status) and adaptation of media streaming to a mobile user according to
current context [Henricksen et al., 2005a]. Though the modeling constructs of CML cover many
of the requirements outlined in Section 2.1.1, one disadvantage of the approach is its concrete
implementation based on Relational Database schemas, thereby missing out on the important
aspect of an explicit semantic dimension for facts, entities and situations of a given application
domain.

2.1.5 Context Representation Summary

We have seen that the task of e�ective modeling of context information poses numerous chal-
lenges. We argue that in order to meet the requirements listed in Section 2.1.1 a context
modeling approach has to consider three important aspects:

(i) represent context content using an expressive method with an explicit semantics

1http://www.w3.org/Submission/SWRL/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 26

(ii) de�ning context annotations (meta-properties) which can capture timestamps, quality
information and properties that can further categorize context statements (e.g. their
acquisition type)

(iii) provide a means to express context dependency relations (e.g. consistency, constraint
integrity)

The �rst condition relates to ful�lment of requirements such as �exibility, heterogeneity and
(re)usability of a context model. The explicit semantics allows for increased �exibility through
the separation of concerns between knowledge engineering and application usage, while expres-
sive modeling capabilities (e.g. n-ary predicates in CML) improve usability of an approach.
The ability to express context annotations addresses concerns such as timeliness and ambi-
guity/imperfect information management. Timestamps and temporal validity meta-data o�er
support for time-related queries and reasoning, while quality of context (QoC) metrics improve
the ability to handle ambiguous or uncertain data.
Lastly, the third condition is meant to address the need to maintain consistent and constraint
free context knowledge bases, in face of very frequent and possibly erroneous updates of sensed
or derived information. Moreover, explicit dependencies can help improve the capabilities as-
sociated with reasoning engines that leverage the context model at runtime.

Examining the works we have reviewed previously, we note that some of the issues listed above
remain insu�ciently addressed. The majority of approaches mentioned in Section 2.1.2, other
than ontologies and context meta-models, su�er from a lack of su�cient expressiveness and
support for more complex reasoning, which stems from the fact that they lack an explicit
semantics of their model constructs and cannot readily capture information dependencies or
constraints (e.g. as is the case for key-value, object-oriented or markup-scheme based models).
While this may be su�cient with regard to certain application domains (e.g. low-level device
resource monitorization, smart homes), our objective is to create an approach that is usable in
a wider set of scenarios.
We therefore chose to focus more closely on ontology-based context modeling and context meta-
modeling. However, as we observed in Section 2.1.3, presented works have several shortcomings
and a trade-o� between expressiveness and usability exists, as shown in Figure 2.3.

E
x
p
re

s
s
iv

e
n
e
s
s

Ease of Use

CoOL

CML

Fuchs et al.

SOUPA

CONON

Figure 2.3: Analysis of trade-o� between expressiveness and usability requirements for ontology and

context meta-model representation approaches. Expressiveness is an attribute covering model �exibility,

dependency and ambiguity management. In the �gure, only generic context ontologies are shown

(domain-speci�c ones such as [Chen and Nugent, 2009] maintain virtually the same characteristics as

generic domain ones, with the exception that they are less �exible).

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 27

SOUPA cannot capture context quality information and other meta-properties, while CONON
o�ers an annotation vocabulary but fails to explain the way it is used. CoOL is more expressive
than the previous approaches but does not consider integrity constraints and the ASC constructs
on which it is based seem to be unwieldy in terms of usability. The domain-centric ontologies
on the other hand ([Chen and Nugent, 2009],[Riboni and Bettini, 2011]) can only be used for
applications from the domain for which they are meant.
Amongst the context meta-model approaches, CML and the solution of Fuchs et al.[Fuchs
et al., 2005] seem to provide strong modeling capabilities. However, CML loses in usability and
reasoning support by adopting a relational database support for concrete model implementation.
Fuchs et al. make use of a semantic realization (via OWL-DL classes and properties) of their
meta-model, but unlike CML, they can only address binary predicates and the chosen inference
method relies on SWRL rules which limits their expressiveness. Additionally, though both works
provide support for modeling context annotations, neither of them speci�es how the values of
such meta-properties are combined during inference rules that derive higher level information
from existing context statements.
These and other considerations motivate objectives and design choices (explained in Section
2.3) of our own context representation method.

2.2 Reasoning about Context Information

Context information acquired from sensors and devices or directly provided by users can often
be of low-level character (e.g. battery level, received signal strength of an RFID, noise level in
the room, calendar information). This data can furthermore have a high change rate and be si-
multaneously provided by several di�erent entities with varying degrees of resolution, accuracy
or con�dence.
However, context-aware systems are interested in making decisions based on higher-level fea-
tures (e.g. user presence, existence of a meeting, user availability status) that are more closely
tied to the actual application logic. Furthermore, decision making must be performed on hand
of unambiguous and highly accurate information. For this reason, all proposals for context
management in the literature provision their systems with a means for reasoning about ac-
quired context information. The objective of reasoning approaches is to ensure information
consistency and to provide the ability to derive higher-level meaning out of raw data.
In this section, we �rstly look at the typical aspects and factors that concern reasoning about
context information and present a brief overview of the di�erent kinds of inference approaches
that have been proposed in the literature. We then explore more closely two of the methods
that �nd most support amongst recent research e�orts, ontology-based reasoning and rule-
based reasoning. Lastly, we give examples of other possible means to accomplish this task
before summarizing our discussion.

2.2.1 Reasoning Concerns

In the discussion about methods to represent context information we explained that aspects
such as heterogeneity of sources, ambiguity/uncertainty management and dependency relations
play a very important role in context modeling, since they are inherent to AmI applications.
We argued that an e�ective representation method must provide constructs that o�er adequate
assistance to reasoning mechanisms charged with addressing these challenges.
It follows from the above characteristics that the reasoning layer in a context management
solution has to perform two main tasks:

(i) ensure consistency of the knowledge base.

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 28

(ii) �lter, aggregate or otherwise manipulate raw (primary) context information so as to derive
higher-level knowledge based on known data dependencies and correlations.

Before delving into describing means for performing reasoning, let us �rst consider some of the
factors that can make context information inconsistent [Henricksen and Indulska, 2004b] and
the way in which they can be handled.

A �rst factor for uncertainty of acquired context can be the inherent accuracy limitations of
the sensing hardware. For example, the certainty with which an RFID base station detects the
presence of an RFID badge depends on the capabilities of the base station and the distance
of the badge from the base station. Similarly, a Kinect1 camera assigns a degree of con�dence
to the coordinates (relative to its view angle) for the joints of a person's �skeleton� detected
based on its depth sensor. Thus, a representation method which provides QoC annotations
such as accuracy, certainty or resolution can help the reasoning layer to overcome this type of
uncertainty.

Information ambiguity can also appear when several sensors or inference rules provide informa-
tion content that is contradictory on a semantic level. For example, consider a smart laboratory
where there are several bluetooth beacons2, one for each desk of the room, which are used to
infer the location of a person. It may happen that, given the movement of the person in the
laboratory, two or more beacons will assert having detected the user's smartphone (though
with varying certainty). In this case, it is necessary to enforce context integrity constraints
specifying that a person cannot be located in two places at the same time. The actual resolu-
tion of constraint violations in the example given previously can again be based on certainty
annotations.

Imperfect or contradictory information can also be caused by sensors that stop sending updates
or by data that becomes stale (i.e. its validity expires). In the bluetooth-based person location
example given above, the inference mechanism that derives that a person is located near a
certain desk must operate only with the freshest data from each beacon, to avoid reasoning over
past locations. Therefore, context statement meta-properties such as timestamps and validity
information are required in order to ensure valid and uptodate inferences. In dealing with
timestamps, the context management system must also ensure that all sensors and reasoners
use the same mechanism of time calculation. This issue can become complex in distributed
settings, where context information can be produced in one location and consumed in an other.

Lastly, inconsistency of a knowledge base can be a consequence of context data that breaks
the semantics of the underlying model (e.g. due to erroneous derivations or human errors).
For example, in a smart meeting context, an application which erroneously asserts that the
current activity in the room is both a board meeting as well as a brainstorming session will
render the knowledge base inconsistent, given that the two semantic classes of board meeting
and brainstorming session are disjoint. Such errors can generally be detected using consistency
check reasoning algorithms, such as those of ontology based models, where the description logics
based context model allows for this kind of inference. Resolution of a detected inconsistency in
such cases is generally a harder task and is in many cases strongly application dependent.

2.2.2 Categories of Context Reasoning

There is a large number of di�erent decision models that have been used in the context reason-
ing literature. However, it is noteworthy that no decision model in itself is speci�c to context
management. It is rather the case that context management solutions have adapted general
reasoning techniques for the purpose of inference. Broadly viewed, these reasoning models can

1http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one
2http://estimote.com/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 29

be classi�ed into the following categories: machine learning methods (supervised and unsu-
pervised), rule-based models (including complex event processing [Buchmann and Koldehofe,
2009]), ontology-based reasoning and probabilistic methods (e.g. Naive Bayes, Hidden Markov
Models).

Machine Learning (ML) and probabilistic reasoning approaches are often used in tasks such
as activity recognition tasks, indoor localization, low-level device operation management (e.g.
routing in sensor networks based on expected network congestion). The reasoning happens
usually very close to the sensing layer, that is, via making direct use of raw context data
from which su�cient features can be extracted to train the ML models. The advantage of
such approaches is that in many situations they can achieve a high degree of accuracy in their
recognition. This, however, comes at the price of needing great amounts of data to train the
recognition/classi�cation models to an adequate level, which if often a challenging endeavour
and also renders the resulting models strongly application dependent.

Ontology and rule-based systems, on the other hand, operate on a higher semantic level in
reasoning tasks such as event processing, preference-based adaptation / personalization or high-
level activity recognition (e.g. activity of a group of persons instead of just the individual). The
advantage of such reasoning approaches relies on their explicit use of semantics which allows
for existing domain knowledge to be easily introduced. However, situations with high dynamics
and uncertainty of sensed context can pose di�culties.

It is worth noting, however, that many works in the literature employ a combination of the
above described methods when performing reasoning. As we discuss in the sections that fol-
low, ontology-based context models often use rule-based derivations to augment their inference
capabilities. An ontology for domain knowledge modeling can be combined with probabilistic
reasoning at a lower sensing level to increase the accuracy of single-person activity recognition
applications such as in [Riboni and Bettini, 2009]. Furthermore, works exist that use various
forms of probabilistic logic (e.g. Dempster-Shafer evidence theory [Yager et al., 1994]) to per-
form reasoning about uncertain context information, especially in the sensor fusion domain.
[Dargie, 2007] provides a good overview of such approaches.

Figure 2.4: (a) Counts of model types used in 109 of 114 reviewed context-aware applications. (b)

Counts for 50 recognition applications; classi�ers are used most often for applications that do recognition

[Lim and Dey, 2010].

Lim and Dey analyze the chosen reasoning method in over 100 ambient intelligence and perva-
sive computing applications [Lim and Dey, 2010]. The results they report are summarized in
Figure 2.4.
It follows from these results that rule-based reasoning approaches (which include event process-
ing) are used in the majority of systems because of their advantage of being simple to de�ne
and to extend, as well as using less resource (in terms of storage or processing power).

In the introduction to this thesis, we mentioned that one of the objectives of our work is to
alleviate the development e�ort for engineering a context-aware application. As noted in Section

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 30

2.1.5, we believe that the support for explicit semantics in both representation and reasoning
is a key issue in this regard. Consequently, in what follows we consider taking a closer look at
knowledge oriented reasoning approaches, investigating the key features and downsides.

2.2.3 Ontology-based Reasoning

Ontologies are modeling formalisms by which an explicit speci�cation of a shared conceptual-
ization [Studer et al., 1998] can be achieved. Nowadays, the de facto language used to create
ontologies is OWL-DL [Horrocks et al., 2003], or some of its variations, as it is becoming a
standard choice in various application domains and it is supported by a number of reasoning
services (e.g. Pellet1, Racer2, Fact++3).
By means of OWL-DL, ontologies can model a particular context domain in terms of classes,
individuals, relations between individuals (object properties) and characteristics of individuals
(datatype properties). Furthermore, more complex descriptions of concepts and properties can
be built by using operators provided by the language to combine (e.g. union, intersection
operators) or further characterize elementary descriptions (e.g. via property role restrictions,
subclass or subproperty relations).

Ontology knowledge bases have two components, a TBox and an ABox. The TBox contains
all the terminology in the form of elementary and complex concept descriptions that the ap-
plication domain de�nes. The ABox includes all assertions about individuals that represent
instances of the concepts de�ned in the TBox.
With respect to reasoning, the key operation that ontology reasoners perform is that of sub-
sumption determination, i.e. checking if one concept is more general than an other. Based on
this, ontology reasoning with respect to context information makes use of the following inference
procedures:

(i) TBox classi�cation: compute a complete concept hierarchy based on the existing concept
descriptions and de�ned subsumption relations

(ii) ABox realization: determine all the concepts instantiated by a given individual

(iii) Knowledge base consistency : check whether there is a contradiction with respect to the
chain of concept de�nitions and their instantiation by individuals

Subsumption determination is very useful in context models where the hierarchy of concepts is
very deep. Take the following simple example of relation types between people.

ex:Alice rel:isCloseFriendOf ex:Mary.

rel:isCloseFriendOf rdfs:subPropertyOf rel:knows.

In this case, the ABox realization inference will determine also that ex:Alice rel:knows ex:Mary .

Several works use ontology reasoning with the purpose of ensuring consistency of the knowledge
base under its semantic restrictions. In [Chen et al., 2004a] this is used in the context of smart
meetings, while in [Gu et al., 2005a] it is used in smart home scenarios (e.g. home energy
saving or happy dining room services). Additionally, Chen et al.[Chen et al., 2004a] use ABox
realization and instance check queries to enforce context access control policies de�ned using
the SOUPA[Chen et al., 2004b] ontology.
Then again, other works use ontological inferences as the primary method to derive new context
information. Turhan et al. [Turhan et al., 2006] use OWL-DL reasoning to implement the logic
of a context-aware door lock within a smart home.
In the COSAR [Riboni and Bettini, 2009] application, ontology-based reasoning (speci�cally

1http://clarkparsia.com/pellet/
2http://franz.com/agraph/racer/
3https://code.google.com/p/factplusplus/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 31

TBox classi�cation and ABox consistency) is used to provide domain knowledge referring to
what type of human activity (e.g. brushing teeth, hiking up, jogging) can be performed in what
kind of environment (e.g. rest room, woods, urban area).
Chen and Nugent use an iterative reasoning process [Chen and Nugent, 2009] involving sub-
sumption and ABox instance realization checks to infer the current activity of a person in a
smart home (e.g. MakeDrink, DoHousework). The algorithm uses the ontology for describing
ADLs mentioned in Section 2.1.3 to de�ne detailed characteristics of each activity type. Sensors
that detect presence in a given room and usage of a given household device or object (e.g. cups,
milk carton) provide the instantiations (individuals) of the ontology concepts. An interesting
feature of the proposed activity recognition algorithm is that the subsumption relation (e.g. the
subclass relation between MakeDrink, MakeHotDrink and MakeTea) can be used to provide in-
creasingly accurate descriptions of the performed activity. In case of incomplete information,
such as when the sensor for temperature on a cup is broken and the system cannot determine
if it is hot or cold, the reasoning procedure can still infer the fact that a person is making a
drink, based on the description of the activity and the sensors that are still active.
Riboni and Bettini [Riboni and Bettini, 2011] perform an extensive analysis of OWL 2 DL1

modeling and reasoning capabilities in context-aware applications for activity recognition in
smart homes and o�ces. The main point of their analysis is the measure of increase in mod-
eling and reasoning capabilities given by language constructs that were introduced in OWL 2
(e.g. quali�ed cardinality restrictions, property composition). They put this in contrast with
the way in which the same information content would be modeled as a combination of OWL
1 axioms and FOL (�rst-order logic) predicates. For instance, they give the example of the
following rule for inferring co-location of two individuals.

Actor(?x) ∧Actor(?y) ∧ SymbolicSpace(?z) ∧ located(?x, ?z)∧
located(?y, ?z)→ collocated_with(?x, ?y).

The authors then show how this rule can be expressed using a single OWL 2 axiom:

located ◦ hosts
·
v collocatedWith

where the property hosts is the inverse of propery located.
Interestingly, the work in [Riboni and Bettini, 2011] goes on to present issues regarding the
coexistence of open-world assumption (OWA) of OWL and the closes-world assumption (CWA)
of rule-based reasoning, which can lead to inconsistent reasoning outcomes. The authors argue
in favor of using a single formalism (i.e. just ontology-based inferences), but point out that
because of limitations of the OWL reasoning model (e.g. the tree model property [Grosof et al.,
2003]) certain expressions, which are easily captured by a rule system, cannot be modeled
as ontology axioms. Additionally, while the OWA can handle inferences under incomplete
information, reasoning with uncertainty and imperfection can much harder be addressed using
ontology modeling alone.

In summary, ontology-based reasoning is well suited to enforce knowledge base consistency given
the explicit semantics of a context model, as well as to perform inference based on explicit do-
main knowledge. These features are important in the attempt to build a context management
system that promotes easy of development and usage. However, limitations of expressiveness
and reasoning under uncertainty/imperfection must be overcome by a complementary mecha-
nism.

2.2.4 Rule-based Reasoning

We mentioned in Section 2.2.2 that rule-based reasoning is the most popular approach in re-
cently developed context management systems. The ability to easily encode domain knowledge

1http://www.w3.org/TR/owl2-overview/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 32

into a rule form is the main reason for this choice. Additionally, rule-based systems can more
easily exploit modeling constructs that capture Quality of Context aspects (e.g. accuracy, res-
olution, freshness) in case the underlying context representation method supports them.
Rule-based reasoning approaches di�er according to the formalism they use when performing
inferences.

Logic-Based Approaches

The majority of works use a logical framework to support the construction and execution of their
rules. The Context Broker Architecture (CoBrA [Chen et al., 2004a]) and the Service-Oriented
Context-Aware Middleware (SOCAM [Gu et al., 2005a]), which have already been introduced,
complement ontology-based reasoning with user supplied rules utilizing First-Order Predicate
Logic (FOPL) in a forward-chaining deduction cycle (e.g. CoBrA uses the JESS1 production
rule system).

Toninelli et al. [Toninelli et al., 2006] develop an access control policy model that exploits
context-awareness for the speci�cation and evaluation of the de�ned policies. Context-awareness
in their approach is implemented by a combination of ontology modeling and FOPL to overcome
limitations of pure ontology reasoning.

The authors of SAGE [Broda et al., 2009] propose a system using both forward chaining de-
ductive reasoning and abductive reasoning. They use it to create an agent-based environment
monitoring and control system. In particular, SAGE uses forward chaining to interpret direct
sensor data (e.g. deduce movement speed from two di�erent collocated motion detection sen-
sors). On the other hand, abductive reasoning (on hand of the DARE system [Ma et al., 2008])
is utilized to generate possible explanations of events (e.g. movement is detected because a
person is on their way to the elevator of a building).

Bikakis and Antoniou [Bikakis and Antoniou, 2010] place more focus on reasoning with uncer-
tainty and turn to the support of defeasible inferences. In the proposed system they extend
the Multi-Context Systems paradigm[Giunchiglia and Sera�ni, 1994] with non-monotonic logic
features (defeasible local rules, defeasible mapping rules) and a preference ordering mechanism
in order to handle unknown, uncertain and con�icting context information. Furthermore, they
provide a distributed query evaluation protocol that implements an argumentation framework
capturing the semantics of the proposed reasoning approach.

Operator Composition Approaches

In the discussion about rule-based reasoning we also include the works that take an approach
based on the composition of di�erent types of processing units (operators). These operators
can perform various tasks such as aggregation, summarization or �ltering (which involves if/else
like statements and are therefore similar to applying simple rules).

SOLAR [Chen et al., 2008] proposes a reasoning mechanism based on reusable, distributed
operators that use the �lter and pipe paradigm to form DAG-like �ows of context information
processing. The authors claim the genericity and extensibility of operators (i.e. they are
implemented by developers), but the ones used in experimentation provide simple match and
�lter functions.

COPAL [Sehic and Dustdar, 2010] is a context-aware middleware solution intended for smart
home applications. In a manner similar to SOLAR, it de�nes 5 types of processing pat-
terns inspired by work in complex event processing [Luckham, 2008] and event processing
networks [Sharon and Etzion, 2008]. Processing units in COPAL can use �lter, abstraction

1http://www.jessrules.com/jess/index.shtml

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 33

(e.g. summarization, aggregation), di�erentiation, enrichment (add additional information to
incoming events, e.g. timestamp, quality metrics) and peeling (drop context attributes which
are no longer required in subsequent processing �ows).

Semantic Web Based Approaches

Some more recent reasoning approaches try to make use of semantic web technologies to achieve
a combination of both forward-chaining deduction systems and event processing capabilities.

Meditskos [Meditskos et al., 2013] propose an ontology for modeling complex activities. Though
restricted to the domain of activity de�nition, the authors utilize SPARQL 1 through its CON-
STRUCT queries as a rule language that helps reason about composition of simpler activities
into more complex ones. The inherent expressiveness of the SPARQL query syntax is the main
advantage of this approach, while an additional bene�t is its reliance on a standard of the
semantic web community, receiving substantial engineering support.

Further works (e.g. EP-SPARQL [Anicic et al., 2011]) considered enhancing the SPARQL stan-
dard with the ability to perform temporal reasoning tasks commonly found in event-processing
systems. Others [Teymourian et al., 2012] made it an integral part of semantic event-driven sys-
tems, which combine static background knowledge modeled using ontologies with the complex
dynamics of event processing systems.

A possible advantage of implementing rule systems using approaches like the ones above is that
of uniformity. The SPARQL language was built to allow complex query expressions over RDF
knowledge bases. Ontology based context representation, on the other hand, can also be easily
stored in RDF syntax, such that no further information representation format has to occur in
order to use external rule engines (e.g. JESS), thereby eliminating an engineering overhead.

2.2.5 Other Approaches

In Section 2.2.2 we listed four broad categories for context reasoning approaches and in the pre-
vious two Sections we analyzed the ones that make use of explicit domain knowledge to drive
inferences (which are our focus). For the sake of completeness, we provide a brief overview of
reasoning algorithms belonging to the remaining two categories (machine learning and proba-
bilistic methods).

Within the machine learning category there are two distinct types of approaches.
Supervised machine learning models use algorithms such as Decision Trees [Quinlan, 1986], Arti-
�cial Neural Networks (ANN [Yegnanarayana, 2009]) or Support Vector Machines (SVM [Hearst
et al., 1998]). They have been overwhelmingly used in activity recognition applications in do-
mains such as smart homes, ambient assisted living or body sensor networks. In such applica-
tions a high volume of raw context data is required to train the respective models. The trained
model is then used at runtime to perform prediction or classi�cation of sensory information
into higher-level situations. Example works where these reasoning methods have been used in a
context-awareness setting can be found in [Huang et al., 2008; Korel et al., 2010; Doukas et al.,
2007; Brdiczka et al., 2009].
Unsupervised machine learning models refer to algorithms which do not / cannot bene�t from a
training phase and must �nd hidden patterns within unlabelled data. These algorithms employ
what are called clustering techniques such as k-Nearest Neighbours (kNN [Zahid et al., 2001]),
k-means [Kanungo et al., 2002] or self-organizing maps (SOM [Kohonen, 2001]). Clustering has
been used in building indoor-location systems [Youssef et al., 2003], while in [Van Laerhoven,
2001] SOMs are used to perform online (real time) classi�cation of accelerometer sensor data

1http://www.w3.org/TR/rdf-sparql-query/

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 34

into simple activities such as sitting, standing, walking, running and bicycling. Korel and Koo
[Korel et al., 2010] provide a survey of unsupervised learning methods for body sensor network
applications.

The probabilistic reasoning algorithms make decisions based on probabilities assigned to facts
and events of the application domain. They are often used to perform sensor fusion (combination
of data from di�erent sources, with varying degree of certainty) or classi�cation of occurring
events. Various methods which are commonly used in statistical processing can be employed
for context reasoning related tasks.
Naive Bayes is a probabilistic classi�er that applies Bayes' theorem to model the probability of
the output of a system given the inputs. It has been used, for instance, to recognize physical
or domestic activities [Chang et al., 2007; Tapia et al., 2004].
Hidden Markov Models (HMM [Rabiner, 1989]) are Bayesian classi�ers modeling the probability
of a sequence of hidden states given the observed events that depend directly on the current
state. Naturally, this characteristics renders them useful in various activity recognition tasks
such as for physical [Chang et al., 2007] or domestic [Van Kasteren et al., 2008; Brdiczka et al.,
2009] ones.
Lastly, the Dempster-Shafer [Yager et al., 1994] theory of evidence can be seen as a method
of probabilistic logic, allowing to compute degrees of belief in a rule-based combination of
observed sensor evidence. As a consequence, it is commonly used in sensor data fusion for
activity recognition. The works in [Peizhi and Jian, 2008; Zhang et al., 2009; Lyu et al., 2010]
provide examples of systems and context-aware applications that use this method.

2.2.6 Context Reasoning Summary

We saw that reasoning over context information is a challenging task which focuses around two
main aspects: keeping a consistent knowledge base and higher-level derivations under conditions
of uncertainty and imperfection.

Machine Learning Ontology-Based Logic-Based Probabilistic
Logic Operators Semantic Web Statistical Prob. Logic

Reasoning
Expressiveness

+ +++ +++ + ++ + ++

Accuracy +++ + ++ ++ ++ +++ ++

Development
Ease

+ +++ ++ +++ ++ + ++

Resource
Consumption

+++ +++ ++ + ++ +++ ++

Comprehensibility + +++ +++ ++ +++ + ++

Extensibility � +++ +++ +++ +++ � ++

Table 2.2: Analysis of context reasoning methods. Meaning of notations: � means no support is given,

while the + signs represent the degree to which an approach can address the speci�ed attribute (from

week to strong support).

Table 2.2 shows an overview analysis of the discussed reasoning methods and the way they cater
to a selection of approach characteristics. These attributes were distilled based on the discussion
of pros and cons for each reasoning mechanism performed by [Perera et al., 2014a]. By reasoning
expressiveness we refer to the ability of the reasoning approach to capture and use semantic
dependencies that exist between one or more pieces of context information, as well as the
complexity of inference expressions. The attribute accuracy refers to the quality of the inference
result in the face of unknown, ambiguous or unforeseen information. Ease of development

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 35

denotes the support for engineering and deploying systems that use the given reasoning method.
Resource consumption refers to a cumulative characterization of the design-time (e.g. data
needed for training a machine learning model), runtime storage and runtime processing (i.e.
CPU) e�ort required to successfully use the given approach. By comprehensibility we mean the
degree of naturalness and transparency of both internal reasoning (i.e. how close are the internal
mechanics of the reasoning method to the domain on which inference must be carried out), as
well as �nal output (e.g. a numeric versus a semantic result). Finally, extensibility refers to the
ability of the reasoning method to support easy design-time or runtime modi�cations (addition
of new input conditions, internal operations, changing the output type, etc) of the respective
reasoning model.

Given the analysis in Table 2.2 we observe that, though ML and probabilistic methods can
achieve high accuracy in face of uncertain sensor information, gathering the amount of required
training is a big challenge and the constructed recognition models are often strongly application
dependent. The fact that no semantics is attached to them means that it is di�cult to easily
include existing domain knowledge in the reasoning process.
This lies in contrast with one of our goals, namely the construction of a context management
middleware supporting openness and ease of context-aware application development.

We therefore decided to focus on higher-level reasoning approaches such as ontology and rule-
based reasoning. However, Section 2.2.3 showed us that ontology-based inferences alone are
currently insu�cient to o�er required expressiveness or the ability to reason about uncertainty.
This is why many context management solutions which use an ontology to represent context
information usually employ additional rule-based inference mechanisms.

From the works in Section 2.2.4 we note that operator composition based approaches are easy
to engineer and deploy, but lack the ability to aggregate and reason about complex situation
de�nitions or to enforce information consistency (e.g. integrity constraints). In contrast, the
various logic-based approaches can cope well with expressive derivations of higher-level knowl-
edge and ensure context knowledge base consistency. If based on underlying representations
that support expression of meta-properties and quality of context metrics, logic-based rules can
also perform temporal reasoning and inferences under uncertainty. However, not many works
presented in Section 2.2.4 have this capability. Furthermore, those that do are not speci�c
about how annotations of the derived context statement are obtained during inference from
those of the premises.

Semantic web approaches which use SPARQL as a rule language have the advantage of ex-
pressiveness (e.g. SPARQL has the ability to express conditions over aggregate expressions)
and uniformity if used together with an ontology based representation. Nonetheless, the works
reviewed in Section 2.2.4 lack means to model relations that exist between context information
and can therefore not detect consistency and constraint violations on a semantic level.

2.3 Our Context Modeling Objectives

The task of modeling context information faces several challenges in order to obtain an e�ec-
tive context management system. On hand of examples from related work we have seen that
the research community has de�ned and focused on addressing several requirements for both
context representation and context reasoning. Based on our discussions in this chapter and the
summarizing of our analysis in Tables 2.1 and 2.2, we explained the shortcomings and trade-o�s
of existing context representation and reasoning approaches.
Furthermore, adding our own general objectives expressed in the introduction, we advocate for
the de�nition of a context modeling approach catering for needs such as openness, �exibility
of design, ease of development and ease of usage. We consider these aspects to be of great
importance in the attempt to move context-aware application programming from the research

CHAPTER 2. A STATE OF THE ART IN CONTEXT MODELING 36

to the industry domain.
In what follows, we lay out a set of objectives which are meant to de�ne guidelines for the way
in which we attempt to mitigate the discussed downsides and trade-o�s. The resulting context
modeling approach we are proposing will be detailed in Chapter 4.

1. Create a context meta-model providing uniform representation support for the main con-
text modeling concerns: content, annotation, dependencies. A meta-model satis�es our
requirements for �exible design and model expressiveness. However, to address concerns
of reasoning support and usability of the modeling formalism, we set further objectives
which also focus on uniformity and extensibility of the approach.

2. Use semantic web technologies to implement the proposed context meta-model. We opt
for an ontology-based de�nition of all context modeling elements and the use of semantic
web techniques such as SPARQL to express both higher-level context derivation rules
as well as context integrity constraints. The choice of using semantic web standards
throughout the entire context modeling approach leads to uniformity of development
e�ort for context-aware application designers.

3. Use of semantic-web based reasoning methods increases our reasoning expressiveness,
comprehensibility and extensibility (cf. Table 2.2). However, to increase the accuracy of
the reasoning approach in face of ambiguity, we strive to provide an extensible, but also
structured, approach for the de�nition of context annotations. That is, o�er the �exibility
of de�ning di�erent types of annotations, but also the ability to specify annotation-speci�c
operators with a well-de�ned usage semantics, which govern the way in which annotations
are combined during inferences.

4. Propose a reasoning mechanism that relies on ontology reasoning to ensure knowledge-
base consistency and SPARQL-encoded rules to derive higher level context information
in an expressive manner.
This means that we focus on a combination of ontology and rule-based reasoning in the
attempt to address ease of development and intelligibility of the reasoning approach.

5. De�ne a reasoning cycle which includes automatic computation of temporal continuity
of events, leading to semantically distinguishable situations. This facilitates more com-
plex situation de�nitions such as those based on temporal validity reasoning while also
attempting to reduce storage resource consumption (e.g. just update the validity of an
existing event, instead of storing a new one with the same content).

6. Address the problem of knowledge base consistency by building a reasoning engine able
to detect context integrity constraint violations expressed using SPARQL queries as ex-
plained previously. Additionally, create the support for customizable constraint resolution
services.

This chapter has covered a review of state-of-the-art approaches in context modeling and dis-
cussed the requirements that have been determined by existing work to be of great importance.
The above listed objectives are meant to provide solid options for addressing all the mentioned
context modeling needs.
In the next chapter we continue our state of the art review by expanding our viewpoint to the
system architectures that are built around a given context model.

Chapter 3

Advances in Context Management

Systems

Previously we have explored state-of-the-art approaches to representation and reasoning over
context information. This subject lies at the heart of a context management solution. However,
as we have explained in the chapter discussing our problem statement, e�ective and e�cient
programming of a context-aware application requires the existence of an extensive architecture
that helps create the so called context provisioning process, that is, the set of tasks involved in
acquiring, modeling/reasoning and disseminating context information within the application.
Furthermore, this process has to be accompanied by a set of auxiliary operations such as mobility
management, access control or preference management. All the while, the context management
systems that provide these facilities must strive to ensure non-functional characteristics such
as scalability, ease of con�guration and usage or fault tolerance.

Consequently, this chapter continues the presentation of the state-of-the-art by looking at the
architectures of context management solutions and the capabilities they provide.
In Section 3.1 we begin by detailing the operational aspects involved in the context provisioning
process and then continue to discuss about non-functional concerns and their in�uence over
these operations. We then provide an overview of di�erent provisioning architectures, detailing
the functionality of their architectural units and analyzing them with respect to the aspects
introduced previously.
Section 3.2 widens our analysis framework by looking at how context management solutions
are typically deployed in a context-aware application. We discuss deployment concerns, a
categorization of application scenarios that impacts deployment requirements and the design
time and run time options that di�erent context management systems provide with regard to
the deployment of their context provisioning units.
Finally, Section 3.3 presents the detailed objectives of our own approach to building a context
management middleware solution, in light of issues that are insu�ciently addressed in the
reviewed state-of-the-art and those that are important with respect to our own goals stated in
the introduction.

3.1 Provisioning Context Information

Context provisioning refers to the entire set of mechanisms and interactions used by a con-
text management system to let applications built on top of them access their desired context
information when and how they need it. Several main steps can be distinguished within the
provisioning process as well as a set of transverse functionalities which accompany and augment

37

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 38

the processing capabilities. Throughout the provisioning process context management systems
try to address a set of non-functional requirements which have been deemed important and
necessary by the context-aware application development community.
We start this section by presenting the aspects of context provisioning before presenting various
proposals for context provisioning architectures and the way they include the context modeling
approaches explored in the previous chapter.

3.1.1 Operational Aspects

Several existing survey works [Baldauf et al., 2007; Perera et al., 2014a] propose describing
context management architectures in terms of: A) the operational cycle and B) transverse
functionality blocks. These are listed below.

A) Context Management Life Cycle

The Context Management Life Cycle refers to the set of steps (operations) taken by a context
management system to deliver (provision) information from the producer of context to the
entities (context-aware services or end applications) that consume it.

Context Acquisition is the �rst stage in the provisioning process and refers to the collection
of information from sensors using di�erent sensor access and interaction methods. The task
of acquiring context information can be characterized along several dimensions [Perera et al.,
2014a].
First, we can distinguish between di�erent types of sensors. Physical sensors are hardware
devices and represent the most common sensor type. They usually provide low-level context
data (e.g. temperature, light-level, noise level) about an environment which they are set to
monitor. Virtual sensors retrieve data from many sources and publish it as sensor data (e.g.
calendar entries, twitter feeds, facebook status). This type of sensors do not have a physical
presence and are most commonly accessed through web services. Logical sensors (or software
sensors) provide higher-level sensory information by combining data from physical devices or
virtual sensors. Examples of logical sensing would be an indoor location system which can
provide semantic positioning (i.e. the name of the room, street or city) instead of geographic
coordinates, or a weather service that predicts tomorrow's forecast based on current and his-
torical temperature, pressure and wind speed data. Logical sensors are usually also accessed as
web services.
We can then observe di�erent technical means to communicate with a given type of sensor.
Direct sensor access implies communication with the sensor hardware via related APIs. This
requires the installation of software drivers and libraries and works in cases where the sensors
are found on the same physical machine as the application that retrieves their data. Acquisi-
tion through a middleware infrastructure is a method where the sensor information is retrieved
through an intermediary layer that has the objective of hiding low-level sensing details (e.g.
hardware communication). This technique allows easier extensibility since sensing logic is sep-
arated from client retrieval logic. Acquisition based on a Context Server is an approach where
access to sensed data is performed through a specialized component which permits existence
of multiple concurrent clients. The server handles all communication with sensors and can
even perform more complex aggregation operations. Systems that use this kind of client-server
access to context information must then consider aspects such as appropriate communication
protocols, network performance, quality of context parameters, etc.
Lastly, we can consider the responsibility of performing the acquisition. In pull mode, the
software component responsible for acquisition has to issue an explicit request to the sensing
hardware to acquire data. In push mode, the physical or virtual sensor pushes information

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 39

to the component responsible with acquisition. In this case, it becomes important to have a
method to control what kind of data to push and under what conditions (frequency of updates
or updates sent only when changes from a previous value occur).

Context Modeling refers to the subjects discussed in the previous chapter, giving a repre-
sentation to acquired context information and using means to ensure consistency and derivation
of higher-level context.
In this layer, we will also include the operations which are typically referred to as pre-processing
steps, that is methods to transform coarse-grained raw data into more useful information. Ex-
amples could include averaging of temperature readings from sensors spread throughout a room
or transformation of signal strength measurements from several indoor location beacons into
the values of a coordinate system relative to a speci�c room.
Furthermore, since the Context Modeling step lies at the heart of the provisioning process, it
is closely linked to the operations that implement provisioning coordination. This means that
it is at this level that the context management system, or the application using it, can make
decisions about: what type of information to receive and distribute, which sensors should be
active in order to reduce network tra�c, what reasoning operations should be active or how
they should be scheduled.

Context Dissemination is the provisioning operational block which provides methods to
deliver context to the consumers. From the consumer point of view, two options are commonly
used to access context information. Queries are direct and one-time requests for which the
context management system has to provide an answer. Subscriptions are the other option,
which allows consumers to express a longer-lasting interest in speci�c information, whereby
they receive answers either periodically or when the event they are subscribing for is actually
observed (i.e. the conditions of the consumer query are satis�ed).
However, from the management system point of view, the tasks related to dissemination may
involve more complex issues depending on the chosen system architecture. Thus, for example,
in systems using a P2P or hierarchical distribution architecture, a query or subscription may
have to be routed to the appropriate management node. Complex query federation mechanisms
must exist internally when the application level is aware of the distributed management archi-
tecture and can express queries which require the collection of context information from several
distribution units. Furthermore, in case of a consumer overload, the dissemination layer can
bene�t from methods that perform query prioritization or that can change the communication
protocol in use to lower network tra�c (a feature useful especially in vehicular and mobile
ad-hoc network domains).

B) Transverse Context Management Functionality

Apart from the operational life cycle, a number of complementary blocks are usually included
within the functionality requirements of a context management solution.

Context Producer Discovery refers to the ability of the context management system to
detect new sensing resources that are dynamically coming online as well as to know when sensors
become o�ine (either by choice or by failure). One method to achieve this feature is by means
of creating an explicit yellow pages registration service (e.g. as in [Román et al., 2002]), which
is known a-priori by new producers who can publish their capabilities in the lookup directory.
Other mechanisms (e.g. [Gu et al., 2003]) involve employing protocols and frameworks usually
used in software service discovery (e.g. jSLP1, UPnP2).

1http://jslp.sourceforge.net/
2http://www.upnp.org/

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 40

Mobility Management seeks to provide support for frequent sensor and user registration
and disconnection and o�er handover capabilities for users or sensors on the move. This feature
is important in order to ensure an optimal and continuous context consumer experience. Usually
this support is enabled via the existence of a well de�ned proxy mechanism (such as the one
used in SOLAR [Chen et al., 2008]) as well as by employing bu�ering and caching features for
existing queries and subscriptions either on the management or the consumer client side.

Provisioning Adaptation/Control refers to the ability to perform structural (e.g. load
balancing) or functional (e.g. activate/deactivate a reasoning component, change dissemination
protocol) changes at runtime. This feature involves the oversight of the entire provisioning life
cycle and requires the existence of a mechanism by which current and intended usage of context
information can be monitored. Furthermore, such changes can be triggered based on quality
of context (QoC) conditions (e.g. information freshness, accuracy) imposed by the context
consumer. These requirements directly in�uence the sensors and reasoning algorithms that
must be active, the rate at which sensors have to provide updates, etc. This is a challenging
task which has received some attention (e.g. [Corradi et al., 2010; Juszczyk et al., 2009]) but
which still requires exploring, especially from an ease of development point of view.

Whilst o�ering the functionality of the above listed blocks, a context management system should
ideally exhibit the set of properties detailed in what follows.

3.1.2 Non-Functional Aspects

Henricksen et al. [Henricksen et al., 2005a] list a set of requirements for context management
middleware solutions that enable context-aware application development. We do note however
that these properties are meant for systems that strive to provide a general and more holistic
approach to context management. Solutions that focus only on particular dimensions of context
information (e.g. spatial awareness, device hardware monitorization) will naturally not exhibit
the same management needs. The list of requirements is presented below.

Support for heterogeneity expresses the need to support interoperability of producers and
consumers with di�erent capabilities and di�erent requirements (e.g. from resource-poor sen-
sors to high-performance servers), as well as to try and expose standard interfaces exploitable
through several application programming languages.

Support for mobility refers to the mobility management and context resource discovery
functionality blocks that were detailed in the previous section.

Scalability speci�es the ability of the context management architecture to support high vol-
umes of produced information and incoming queries. This feature translates into engineering
concerns that target both how the system can be deployed over multiple administrative do-
mains, as well as how the internal reasoning and communication protocols are built to perform
adequately in scenarios with high load.

Support for privacy and security establishes the need to allow for both system and user
de�ned control settings that regulate the access to speci�c context information. Moreover, these
settings themselves may be allowed to vary according to the current situation.

Traceability and Control expresses the requirement of being able to maintain transparency
of the context management process. This means that the system should provide a re�ection or
monitorization mechanism by which it can maintain a history of produced context information
and how/why it was acquired/derived. Furthermore, the decision making process and the
information �ow generating interactions should be controllable/con�gurable by the application
level.

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 41

Fault tolerance and robustness refers to the requirement of maintaining adequate function-
ality in face of failures and disconnections of sensors or other components.

Ease of deployment/con�guration states the need to alleviate application design and de-
ployment e�ort by providing mechanisms and tools that allow developers to more easily (e.g.
through a declarative approach) con�gure a context management system to meet user and
environmental requirements.

As we have mentioned previously, these requirements normally apply to general context man-
agement solutions. However, Bolchini et al. [Bolchini et al., 2007a], being interested in the data
tailoring problem [Bolchini et al., 2007b] (i.e. how to create the relevant data views depending
on current context), argue that there is currently no �silver bullet� context management system
suitable for all application scenarios. They put forth an analysis framework that distinguishes
between �ve usages of context information as a matter of: channel-device-presentation, location
and environment, user activity, agreement and sharing (among groups of peers) and selecting
relevant data, functionalities and services.
From their analysis of existing context management systems it results that they believe that
existing systems are either specialized for a certain category from the ones above, or are too
general in their approach to be e�ective in several categories.
Nonetheless, we believe that setting out to build a more holistic context management middle-
ware is bene�cial as it can positively impact more application developers. Still, Bolchini et al.
bring arguments that constitute additional support for one of our own main objectives: ease
the development e�ort of context-aware applications through �exibility in con�guration and
deployment.
Indeed, we argue that in order for a general context management solution to be applicable to
as many application scenarios as possible it has to be built in a modular way and give the
developer the ability to customize the functionality and deployment of system components so
as to be e�ective for the problem at hand.

In the following section, we begin our analysis of several of the existing context management
systems, inspecting the way in which they implement the context provisioning process and how
they address the accompanying functionality blocks. In Section 3.2 we further examine the
various deployment and con�guration options o�ered by these systems. To motivate the design
choices taken for our own architectural approach, we will provide our own application scenario
analysis framework, starting from that of Bolchini et al., to explain the need for �exibility in
deployment options.

3.1.3 Context Provisioning Architectures

We start out by specifying the class of context management systems for which we will perform
the analysis. Speci�cally, Bellavista et al. [Bellavista and Corradi, 2012] perform a review in
which they analyze context management solutions from the point of view of their approach in
context data distribution. For the dissemination layer they distinguish systems based on the
considered type of network communication support. Thus, systems which use �ooding or gossip-
based communication protocols (e.g. in vehicular or mobile ad-hoc networks - VANETs and
MANETs) are distinct from ones that bene�t from an existing and stable network infrastructure
(e.g. wireless or ethernet).
In this analysis we focus only on the latter type of approaches, because they address a larger
number of possible applications and because our own approach assumes the existence of a stable
communication network in which interactions can take place. We present the systems in an
increasing order of the scale of scenarios they target and the architecture they use.

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 42

Centralized Approaches

COSMOS [Conan et al., 2007] targets managing the context of applications running on a single
user device, such as tourist computer-based guides with contextual navigation or multi-player
gaming applications that provide contextual annotations. The system collects device data
(e.g. battery, processor, memory, open �les) using the SAJE framework [Courtrai et al., 2003],
thereby having a middleware-based access to context information. It represents the information
using the object oriented paradigm and its most interesting contribution is the component-based
development it o�ers. The solution employs an architecture description language (ADL) to spec-
ify di�erent aggregation patterns for its context processing components, promoting reusability
and sharing of components. Given the targeted applications, COSMOS does not address as-
pects of mobility, context discovery or access policies. Its greatest attribute comes from the
ease of deployment and con�guration being o�ered to engineers.

COPAL [Sehic and Dustdar, 2010] is a context management middleware (CMM) solution for
smart home environments and its design principles are similar to those of COSMOS. The
solution proposes device wrappers that expose data as web services to the COPAL processing
units (middleware access). Data is represented as attribute-value pairs and aggregated using
units that operate according to the complex event processing paradigm1. Consumers use the
EPL (Event Processing Language) to access required information. The strong suit of COPAL
lies again in its support for con�guration and deployment, as the middleware proposes its own
DSL (Domain Speci�c Language) to describe the functionality of processing units, queries as
well as the deployment of a COPAL instance.

CoBrA [Chen et al., 2004a] is a context management middleware intended for use in scenarios
like smart meetings and smart spaces in general. Acquisition and dissemination occur through
use of web service interfaces, while representation and reasoning are a strong suit. CoBrA
uses the SOUPA ontology [Chen et al., 2005] to model context information and a combined
ontology and rule-based reasoning mechanism to support consistency and higher-level derivation
of context. Another interesting feature is the ability o�ered to consumers to express context
access policies using a subset of the SOUPA ontology.

SOCAM [Gu et al., 2005a] is a system that resembles CoBrA in terms of modeling and rea-
soning support. However, it o�ers much better assistance for sensor discovery by creating
a distributed service location service [Gu et al., 2005b]. This service can also help SOCAM
context interpreters to advertise their presence to context-aware consumers.

The CARE Middleware [Bettini et al., 2007] is intended to support adaptation of continuous
services, such as those that perform media streaming, navigation support or publish/subscribe
based services (e.g. a location based tourist application). Rather than general context manage-
ment, CARE is focused on performing an aggregation and merging of pro�les (set of context
parameters and preference policy rules) coming from the users and operators of a particular
continuous service. The merged pro�les are then fed back to the service provider application,
such that it may take a context-aware decision about how to adapt its servicing given the
aggregated and con�ict-free multi-consumer requirements.

While the above systems support the existence of several producers and consumers of context
information, so far they perform reasoning and management in a single centralized component
of their architecture. In what follows, we widen our view to approaches supporting multiple
context administration domains, via a federated or decentralized context management archi-
tecture.

1http://esper.codehaus.org

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 43

Decentralized Approaches

The ACAI [Khedr and Karmouch, 2005] system proposes an agent-based context-aware infras-
tructure. The individual agents map to the di�erent services that the system provides (e.g.
system administration, entity coordination, reasoning, knowledge base access). Context infor-
mation is maintained on a per entity basis in units called capsules (i.e. per user or consumer
application) instead of globally. Ontology and rule-based reasoning ensure consistency of con-
text information and derivation of higher level context within a capsule, while a collaboration
protocol between the entity coordinator agent and the system administration agent ensure inter-
capsule consistency. ACAI allows a spatial federation of context administration domains and
uses a custom wrapper over the SIP1 protocol to provide discovery of remote ACAI nodes and
support intra- and inter-domain mobility of consumers.

SOLAR [Chen et al., 2008] de�nes a pervasive computing infrastructure built around a P2P
network of processing nodes called Planets. Its strength lies in the extensive number of ser-
vices provided by Planets (e.g. resource discovery, fault-tolerance, mobility management) as
well as in its focus on reusable, distributed operators that use the �lter and pipe paradigm to
form DAG-like processing �ows. Solar also provides con�guration options for internal commu-
nication services that underpin its functionality, as well as XML-based de�nitions of operator
compositions. Applications can also specify policies that control operator functionality (e.g. to
prevent request bu�er over�ows) in order to adapt context data distribution.

CoCA [Ejigu et al., 2008] is a CMM solution used in a smart university campus scenario, at-
tempting to support professors and students with their everyday work, like managing scheduled
and spontaneously occurring meetings. CoCA uses a hybrid representation and reasoning mech-
anism. It uses a DBMS to handle e�cient storing and querying of context data and ontology
tools to reason over context knowledge (semantics of data). Queries to the system can then
be submitted using the SPARQL query language. CoCA uses Collaboration Managers to form
peer-to-peer networks, albeit with the purpose of o�oading heavy computations from resource
constrained devices (PDAs, smartphones) to more capable ones that are in the same peer group.
The strongest feature, however, is that of runtime adaptability to required context information.
CoCA uses a heuristic mechanism to engage the semantic reasoner only with those pieces of
context that are relevant (from the whole domain), given the identity, location or activity of a
user, leading to improved scalability and e�ciency.

A di�erent and larger scale scenario is considered in [Perera et al., 2012]. The work addresses
the idea of managing context for the IoT related vision of sensing-as-a-service, like for instance
in an application of monitoring the health of agricultural crops in all of Australia. CA4IOT is
intended to solve the problem of �nding and selecting the most appropriate (based on quality
criteria) internet connected sensors to answer a user speci�ed query. The solution does not
pretend to o�er a complete context management middleware functionality but o�ers a cloud-
based architecture model that shows how CA4IOT might be used in existing middleware to
handle such large scale context management scenarios. Its most important features are that of
a scalable design and runtime adaptability with regard to user speci�ed quality of sensing data
demands.

3.1.4 Context Provisioning Summary

The presented systems each tackle scenarios of di�erent complexity and focus on speci�c features
to address these scenarios. As expected, all systems provide a corresponding method for the
context management operational life cycle. However, depending on the targeted applications,
not all systems insist on the transverse functionality blocks or try to address the non-functional
requirements set we introduced in Section 3.1.2.

1http://www.voip-info.org/wiki/view/SIP

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 44

COPAL COSMOS CA4IOT CoBrA SOLAR ACAI CoCA

Context
Acquisition

(DA) Device
Wrappers

(MA) SAJE
Framework

(SA) GSN
Wrappers

(SA) Web Ser-
vice

(DA) Proxy in
Planet

(MA) Context
Provider
Agents

(MA) Capture
Tool
Interface

Context
Distribution

EPL lang. - Publish/
Subscribe

Query
Web Service

INS/Twine

Context-
Sensitive
Comm. Proto-
col

Query
SPARQL

Context Model-
ing/Reasoning

Attr.-Val+
CEP

OO+
Composition
Patterns

Ontology
Data Fusion
Operator

Ontology +
Rule Based

Attr-Val.+
Operator Com-
position

Ontology +
Rule Based

Ontology +
Rule Based

Context
Consistency

- - -
Ontology
Reasoning

-

Ontology Rea-
soning +
Entity coordi-
nation

Ontology Rea-
soning

Mobility Mgmt. - - - -

P2P Proxy
Mechanism
+ INS/Twine
Discovery
Mechanism

Modi�ed SIP
protocol

Collaboration
Mgr. +
JXTA P2P
framework

Resource
Discovery

- -
Semantic Dis-
coverer Layer

- INS/Twine
Context
Provider
Agents

-

Middleware
Adaptability

- - - -
Bu�ering Poli-
cies +
P2P overlay

CLA
negotiation

P2P overlay +
Heuristic Rea-
soner Usage

Table 3.1: Overview of context provisioning for reviewed systems: - (not addressed/mentioned), DA (direct

sensor access), MA (middleware access), SA (context server access)

Table 3.1 shows a summary view of the way in which most of the works discussed previously
approach the context provisioning tasks. What is immediately noticeable corresponds to the
observation made at the end of Section 3.1.2: systems that are focused on speci�c, small or
large scale scenarios (e.g. COSMOS, COPAL, CA4IOT) address only the provisioning concerns
relevant for that scenario. On the other hand, systems that attempt a more general approach
(SOLAR, ACAI, CoCA) end up building infrastructures that are too rigid to be applied to
multiple application scenarios. Indeed, regarding adaptability, SOLAR allows applications to
specify policies that control operator functionality, but the system focuses mostly on providing
proper routing of context requests directly to the best provider, thus neglecting representation
expressiveness and aggregation of context events into more complex situations such as the ad-
hoc meeting example in our reference scenario.
ACAI has the bene�t of agent-based negotiations and wrappers over the SIP protocol to ensure
context provisioning control, but the work o�ers no con�guration support and, as in the case of
SOLAR, is very rigid in its infrastructure-focused deployment, being unsuitable for application
scenarios that are lighter-weight or that require a di�erent kind of context administration
partitioning besides a spatial one.
CoCA uses heuristic methods to ensure loading of only relevant context data into an ontology-
based reasoner. However, the heuristics cannot be controlled and the middleware o�ers no
mean to adapt information �ow.

The analysis made above is re�ected also in Table 3.2 which provides an overview of how the
reviewed works address the non-functional context management requirements. Thus, the main
shortcomings of the above approaches is either their specialization for certain application types,
either their lack of modularization and support for con�guration and �exible deployment. We
discuss these issues in more detail in the sections that follow.
In summary, it is important to note that while the subject of context provisioning has been
addressed in many ways and with various auxiliary support, the engineering-related problems
of ease of development and �exibility of deployment remain insu�ciently explored.

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 45

COPAL COSMOS CA4IOT CoBrA SOLAR ACAI CoCA

Heterogeneity ∼ � + + ∼ + +

Mobility Support � � � � + + ∼

Scalability � � + � + ∼ ∼
History +
Traceability

� � � ∼ � � +

Fault tolerance � � ∼ � + � ∼

Privacy + Security � � � + � � �

Easy Deployment/
Con�guration

+ + + � ∼ � �

Table 3.2: Overview of requirement addressing for reviewed systems: - (not addressed/mentioned), ∼ (ade-

quate support), + (strong support)

3.2 Deploying Context Management Solutions

In the previous section we discussed the basic context provisioning process and explored the
means by which several works from the context management literature compose this process.
We continue broadening our view of the context management problem by now considering the
way in which the architectural units that compose the context provisioning life cycle of a context
management system can be deployed within an application space (i.e. available hardware and
software infrastructure). As we will see throughout the section, these aspects are closely related
to the perceived level of support given to context-aware application engineers.
We start by listing the concerns we investigate in relation to context management system
deployment. Next, we look at how these issues are addressed in the works we have reviewed
previously. We then summarize our �ndings, analyzing the strong suits and shortcomings of
inspected solutions, which motivate our own objectives.

3.2.1 Deployment Concerns

Each context management system enables context provisioning by de�ning a number of func-
tionality modules and the interactions between them. The issue of context deployment relates
to how the application designer or the runtime application itself can con�gure these modules
and indicate how they are to be assigned to physical machines (nodes) that constitute the
application space. Consequently, deployment concerns come into focus at two development
moments, resulting in design-time and run-time related issues.

The �rst design-time issue regards the deployment architecture itself, meaning how the con-
text provisioning modules envisioned by a context management system are distributed among
di�erent computing nodes and how the communication between them is implemented. We can
distinguish between centralized, decentralized and peer-to-peer (P2P) architectures.
Within the centralized architectures we can di�erentiate between systems where all the provi-
sioning modules are on the same machine (e.g. sensor wrappers, modeling/reasoning engine,
query handlers) and those where context management (e.g. reasoning, access control) is im-
plemented on a central machine, while the sensors and consumers may run on other machines,
connecting to the management node via pre-speci�ed communication protocols and service in-
terfaces.
Among decentralized architectures we can again identify systems that provide a federation of
context management nodes (i.e. a �at connectivity network) and systems that adopt a hierar-
chical approach, building tree or graph like connections between management or query nodes
which can be exploited for information routing.
We categorize P2P systems apart from the decentralized ones because in addition to providing

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 46

a distribution of context provisioning elements, they usually also exploit known peer-to-peer
mechanisms to distribute the context model. This allows such architectures to provide better
scalability and faster information retrieval times at the expense of losing locality of context
(i.e. events are no longer kept or used only in the spatio-temporal domain where they were
produced).

A second deployment issue concerns both design-time and run-time moments. To support
development of applications, context management systems must o�er con�guration options that
specify where and how di�erent context provisioning modules are deployed. Furthermore, the
application should have runtime control over the life cycle of deployed modules (e.g. what sensor
wrappers or reasoning mechanisms are active, whether adaptation mechanisms are running).
As we will see in our analysis in Section 3.2.2, it is this aspect that is missing the most in related
work in the literature.

To see why a modular design and deployment �exibility are important, let us consider a catego-
rization of application scenarios based on the intended use of context information, as well as on
the extent and �locality� of context producer, manager and consumer nodes. The categorization
starts from Bolchini et al.'s [Bolchini et al., 2007a] analysis and enables us to see that di�erent
scenarios exhibit di�erent context provisioning requirements, such that design-time con�gura-
tion and runtime control of deployed modules become a necessity for systems attempting a
holistic approach to context management. In what follows we introduce the considered scenario
categories.

T1. Context Management for Devices of Personal Use This scenario groups together
applications that monitor the context of usage of a personal computing device (smartphone,
tablet, laptop) in terms of available resources (memory, CPU, WiFi connection, etc), open
�les, currently running processes and others. Applications like context-aware tourist tablets,
or context-aware multi-player games on a laptop handled by COSMOS represent examples.
Concerns such as scalability and mobility are not an issue in this case. However, ease of
deployment and con�guration is an important feature, since in such scenarios the application is
usually interested in low-level context information and as such, facilitation of engineering the
system and reusable design are required.

T2. Context Management for Personal Activities This category is closely related to the
previous one. It deals with applications that gather the context data given by things like body-
worn sensors, wearable electronics or sensors attached to a personal vehicle (e.g. bike, car).
The purpose of these applications is to monitor the collected data and derive a personal health
status or the current activity and mood of a user (e.g. COSAR [Riboni and Bettini, 2009]).
Like in the previous scenario type, there is only one consumer of this information (the user),
the application runs on the same physical device (e.g. smartphone) that does the collection
and the type of sensors are likely to be known in advance, such that the earlier analysis applies
here too.

T3. Spatial Domain Speci�c Context Management This third scenario type sees a
change in scale, since the context data is no longer describing just a single user and, likewise,
there may be more than one consumers of this information. The category includes the ap-
plications that showcase systems such as COPAL, CoBrA or CoCA. Depending on the size
of the spatial domain, mobility support for decentralized architectures may be required. The
kinds of situations that need detection in this type of scenarios are more complex, such that
an emphasis on context reasoning and consistency is placed. Furthermore, the variability and
number of sensor may be increased, such that aspects of context discovery and openness become
important.

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 47

T4. Context Management in Large Scale Monitorization This scenario type includes
applications from the smart city domain, with a speci�c focus on system-centred context man-
agement (monitorization of an environment is not used to determine the context of a user
entity). An example is the crop health monitorization application presented in [Perera et al.,
2012]. Variety and number of sensors is high, leading to required emphasis on expressive context
modeling and reasoning. Given the large physical distribution of sensors, context discovery also
plays an important role. However, there are usually fewer mobile context producers and con-
sumers to account for, such that mobility and structural adaptability are not strictly necessary.
Since the purpose is that of monitorization, the support for traceability and history of context
information, as well as fault tolerance, are valued.

T5. Context Management for Wide Mobility The last scenario category addresses the
applications that include context management for entities (users or devices) that have a large
degree of mobility. It includes the user-centric applications from the smart city domain, like
the one oriented towards intelligent tourism presented in [Da Rocha and Endler, 2012]. The
large physical scale of this type of scenarios means the analysis carried out earlier above is
valid here too. In addition, however, support for mobility management, context discovery or
access policies become highly valued, because of the multi-producer, multi-consumer nature of
the applications.

T1 T2 T3 T4 T5

Heterogeneity - ∼ + + ∼

Mobility Support - - + ∼ +

Scalability - - ∼ + +

History +
Traceability

∼ + ∼ + ∼

Fault tolerance - - ∼ + +

Privacy + Security ∼ ∼ + + +

Easy Deployment/
Con�guration

+ + + + +

Table 3.3: Requirements Analysis for Scenario Types: - (no obligation), (nice to have), + (must have)

Table 3.3 summarizes the above discussion by showing the typical non-functional requirements
for each type of scenario. We constructed the table based on our own perception as well as
based on a reverse engineering process which considered the manifested characteristics of the
reviewed systems that were showcased using scenarios from a given category.
The table makes intuitive sense, but the most important idea worth noting from it is the
one we have been emphasizing earlier: addressing scenarios of various scales requires modular
architecture design and �exible deployment support.

3.2.2 Deployment Approaches

Following our scenario analysis framework, we review the con�guration and deployment options
o�ered by works introduced in Section 3.1 in the increasing order of scenario scale.

COSMOS [Conan et al., 2007] targets context management for applications running on a single
user device, thereby overseeing only local production and consumption of context information.
The strong suit of COSMOS is the support for declaratively specifying the computation pat-
terns of its processing units (called context nodes). Using the FRACTAL [Bruneton et al., 2006]

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 48

architecture description language and related tools, a developer can specify di�erent context
node combination or sharing patterns inspired from object-oriented software design patterns
(e.g. composite, factory method, singleton). The code for most context node components spec-
i�ed by a developer can thus be automatically generated, which eases application development.

COPAL [Sehic and Dustdar, 2010] has a similar component-based design philosophy. COPAL
is targeted for use in smart home applications and, consequently, allows for actual sensing and
consumption to occur on di�erent machines (e.g. temperature sensors and user smartphones).
However, all middleware components (e.g. device wrappers, context processors, context query
listeners) are found on a single machine, leading to a centralized deployment. Nonetheless, as
in the case of COSMOS, the most important feature of COPAL is support for con�guration.
COPAL de�nes its own domain speci�c language (DSL) to declaratively indicate all context
management concerns: de�ne types of context information, specify processor type, input and
output, de�ne queries and listeners for query answers. Speci�cations written by a developer
using the COPAL-DSL are automatically deployed as an OSGi1 bundle. The use of this service-
component software engineering framework adds clear bene�ts from the ease of development
point of view.

CoBrA [Chen et al., 2004a] is a typical exponent of a centralized solution for the management of
context information in a single smart space environment. The context knowledge base, context
reasoning engine and context acquisition modules of the broker architecture are all deployed on
the same node. Interaction with both sensor and consumer layers occurs through SOAP2-based
web service interfaces. Thus, deployment of CoBrA within an application occurs as a service
provider for context information. However, no con�guration means or development tools are
detailed by the authors, such that practical use of the broker service becomes strongly tied to
the application development cycle.

Previous works featured a centralized deployment. The following ones provide support for
applications that need to access context information in a decentralized, federated or full peer-
to-peer fashion.

As mentioned previously, the ACAI [Khedr and Karmouch, 2005] system targets the creation of
a context management support infrastructure for spontaneous (i.e. on demand, ad-hoc usage)
application, device and service interactions. ACAI supports a view of spatial federation of
context administration domains wherein applications can, for instance, distinguish between a
home site (e.g. the domain where the pro�le information of a user is always stored), a current
site (e.g. context coming from the devices and services in the current user location) and a
remote site (e.g. context coming from services located in a remote location but which involve
the current user, such as a remote video conference). Each context domain is administrated by
a Context Management Agent (CMA) and CMAs help di�erent agents from within a domain
perform inter-domain context provider lookups and communication via a modi�ed version of
the SIP protocol.
However, the authors of [Khedr and Karmouch, 2005] fail to mention any support for the
con�guration of domain deployments. Thus applications that want to use the ACAI context
management infrastructure must �rstly be compatible with the envisioned spatial administrative
domain distribution and secondly must perform their integration with the system at coding level,
which slows down development.

The Feel@Home project [Guo and Zhang, 2010], which was not discussed in Section 3.1.3,
provides a similar approach to ACAI. It o�ers a context management infrastructure based on the
same administrative domain idea, proposing the existence of a home, o�ce and outdoor (mobile)
domain. Like in ACAI, the Domain Context Managers (DCM) keep context information about
entities (e.g. users, devices). Queries addressed to entities from remote domains are mediated

1http://www.osgi.org/
2http://www.w3.org/TR/soap/

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 49

by the Global Administration Server (GAS) which provides a heuristic entity lookup method to
�nd the DCM with which the sought for entity is currently registered and which can respond to
the requested context query. As in the case of ACAI, applications are not meant to con�gure or
in�uence a Feel@Home deployment and must be compatible with the administration domain-
based division of context management it proposes.

SOLAR [Chen et al., 2008] is also focused on providing a pervasive computing infrastructure,
but attempts to do so in a pure P2P fashion. SOLAR builds a peer-to-peer network of context
management service nodes called Planets. The system uses the INS/Twine [Balazinska et al.,
2002] resource discovery framework to register both context providers as well as client queries.
Using a de�ned naming scheme, the framework manages how information about which producer
can provide which type of context data is distributed among the Planets. Operators that use
the �lter and pipe paradigm to form DAG-like processing �ows can also be distributed among
the Planets. Unlike the previous two systems, SOLAR o�ers deployment support by providing
con�guration options for internal communication services that underpin the functionality of a
Planet, as well as XML-based de�nitions of operator compositions.

CA4IOT [Perera et al., 2012] is targeted at large scale context monitorization in Internet-
of-Things (IoT) applications and the system relies on a cloud-based deployment. While the
architecture modules performing context reasoning and dissemination cannot be in�uenced,
CA4IOT provides extensive con�guration support for sensor discovery and communication using
sensor device de�nition (SDD) �les. Furthermore, each type of user request, requiring the use
of maybe thousands of sensors, receives its own context and semantic discoverer (CSD), a
component that is customly generated at runtime to satisfy the speci�c user requirement. The
main responsibility of a CSD is to collect sensor data, by communicating with the appropriate
sensor wrappers generated based on the SDDs and bundling their response together to satisfy
the user query.

The last system we explore di�ers from the ones analyzed above, in that it is not explicitly
conceived as a context management system. Rather, the tAtAmI platform [Olaru et al., 2013] is
a development framework for multi-agent systems as a general middleware for AmI applications.
However, the platform proposes an interesting hierarchical mechanism for deploying agents
whose execution cycle and interactions depend on the context of the user and the application.
In [Olaru, 2011], the author explains that the topology of the system should be induced by
context, i.e. apart from the physical distribution over a machine network, the hierarchy of
agent relations is established depending on whether two agents share context. The author
uses a categorization of context information (e.g. spatial, computational, activity, social) to
specify the possible relations (e.g. is-in, executes-on, part-of) that de�ne the neighbourhood
relationship of agents.
Inspired by the work in [Olaru, 2011], in Section 4.1.3 and throughout Chapter 6 we will
show how the introduction of explicit, model related concepts for the structuring of context
management unit deployment provides assistance in terms of dynamically using the needed
context processing functionality.

3.2.3 Deployment Summary

Deployment options directly in�uence application development support in terms of type and
scale of achievable scenarios. As mentioned, our scenario requirements analysis from Section
3.2.1 was based on an inductive process which used the features available in context manage-
ment systems used for a speci�c application to determine the necessary characteristics for that
application type. Table 3.3 showed that di�erent requirements arise as the scale and intended
usage of application context change.
Given that one of our main goals is to build a context management middleware able to sup-
port development of multiple application scenarios, the above issue translates into a problem

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 50

of con�guration assistance and �exible context provisioning module deployment.

In decentralized and distributed architectures, some of the important problems relate to how
context provisioning units are connected (in which ways can information �ow) and how is
addition/activation of context provisioning units controlled. Yet, as our literature review from
Section 3.2.2 shows, only centralized approaches like COSMOS or COPAL o�er the ability to
declaratively specify such con�gurations. Little support for this is o�ered in works adopting
decentralized architectures, even though that is the case where the need is greater.

Furthermore, another aspect that can be observed in the presented works is that they lack
a means to tie the distribution of their provisioning units to the context model used by the
applications running on top of them. Indeed, approaches like ACAI or Feel@Home propose
constructing context management domains based on an abstract de�nition of administration
units (e.g. home, o�ce domains), mostly guided by a spatial distinction. This means that
application developers can not tailor the usage of various context provisioning units based on
other context information dimensions such as activity or organizational relations.

These shortcomings in�uenced the objectives that were set for our own proposal of a context
management middleware architecture, which are presented in the following section.

3.3 Our Context Management Objectives

Throughout this chapter we have discussed the meaning of context provisioning, the opera-
tional and non-functional challenges this process poses, as well as the di�erent approaches to
deploying a context management system, given the architectural choice.
We have also seen that the main shortcomings discussed in the sections on both context provi-
sioning and deployment summed up to insu�cient means for alleviating application development
(e.g. binding deployment to context model, declarative con�guration support for provisioning
support and provisioning adaptation).
Thus, given these issues and our own goals, we lay out the following set of objectives as guide-
lines for the context management middleware we are proposing:

1. Propose a middleware architecture based on the agenti�cation of context provisioning
units (sensing, coordination, dissemination, usage). Use of design principles and tools
from the multi-agent system domain allow for a better encapsulation and the potential
for increased autonomy of individual provisioning units. This addresses the problem of
modularization of context provisioning concerns.

2. Provide a declarative means for speci�cation of application-level control over the context
provisioning process. This amounts to creation of policies that govern the behavior of the
agent-based provisioning units, leading to a reduced development e�ort.

3. Using the agent-based architecture and a component-oriented software model, provide
two deployment schemes: a centralized one and a decentralized one supporting a tree-like
hierarchical relation structure. This addresses usability of the middleware for multiple
scenario types.

4. Provide a con�guration vocabulary declaring the desired structure of context provisioning
deployment. The aim is to feature additional development support, since all provisioning
and deployment related issues can be declaratively speci�ed by a programmer.

5. De�ne concepts that use the dimensionality of a context model (i.e. the types of modeled
context information) to induce the structure of context provisioning units. The idea
is to provide a means to create context domains starting from the domain of discourse
considered by the application and to then create a mapping between a context domain and

CHAPTER 3. ADVANCES IN CONTEXT MANAGEMENT SYSTEMS 51

the set of context provisioning units that are required to service the context management
needs of that domain.

6. Exploit a component-based software engineering method to create support for runtime
management of context provisioning unit life cycles. This again targets the idea of �exibil-
ity in deployment and provisioning by adding an additional mechanism for the application
level to control these aspects during execution.

The above listed objectives are meant to provide adequate support for addressing all the context
management needs mentioned in this chapter.
Having �nished our overview of related works from the literature and the lessons we can learn
from these solutions, with the next chapter we begin a new part of this thesis. In it, we will
again take views of increasing wideness that go through the concepts underpinning our context
modeling and system architecture approaches.

Chapter 4

Representing and Reasoning About

Context

We begin the incursion into our contributions with the foundational aspect of context modeling.
This chapter presents our approach to representing and reasoning about context information.
In Section 4.1 we formalize the model in terms of representation concepts, reasoning methods
related elements. They will enable us to provide a design structure for a context-aware appli-
cation.
Section 4.2 presents the implementation of our model using an ontology-based vocabulary.
In Section 4.3 we outline our context inference approach as a combination of ontology and rule-
based reasoning to ensure consistency of information and derivation of higher-level knowledge.
The architecture and execution cycle of the reasoning engine that leverages our representation
and reasoning methods is covered in Section 4.4.
We conclude this chapter with a summary in which the modeling contributions are analyzed
with respect to the requirements introduced in Sections 2.1.1 and 2.2.1, as well as with regard
to our own general objectives stated in the introduction.

4.1 CONSERT Context Formal Model

In chapter 2 we argued that context meta-models were the most �exible approach with respect
to the ability to address all the necessary context modeling requirements (cf. Section 2.1.1).
We therefore choose to follow a similar path and improve upon existing approaches by focusing
on uniformity and extensibility of our context meta-model.
In this section we formalize the CONSERT (an abbreviation from CONtext asSERTion) meta-
model, by de�ning all model concepts and how they are used in the rule-based reasoning ap-
proach we propose. Along the way, we exemplify the introduced notions on hand of the reference
scenario given in Section 1.3.

4.1.1 Representation Concepts

The CONSERT meta-model comprises di�erent elements that are related to each other as shown
in Figure 4.1. Before giving a formal de�nition as well as properties of each element, let us give
a global overview of this model.

52

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 53

Figure 4.1: The de�ning concepts of our proposed context meta-model.

Overview

A ContextAssertion represents the basic construct used to describe the situation of entities
(e.g. a �person�, a �place�, an �object�) �which are considered relevant for the interaction between
a user and an application� (in the sense of Dey's de�nition of context [Dey, 2001]). Each as-
sertion involves one or more ContextEntities. Consider this example from our reference scenario.

Example 4.1.1. The two ContextEntities: Person(alice) (i.e., Alice is a person) and Lab-
oratoryRoom(ami_lab) (i.e., ami_lab is a laboratory) may be related together through a
ContextAssertion describing the situation of being located in some university room by the
following expression: locatedAt(alice, ami_lab).

ContextAssertion and a ContextEntity may be further characterized by ContextAnnotation and
EntityDescription respectively.

A ContextAnnotation is a meta-property of a ContextAssertion and relates to information such
as the source (author of the statement), the timestamp of its generation, the validity of the
statement (time intervals for which the assertion is considered to be true) or the certainty with
which the assertion is a�rmed. Our model does not impose a limit on the type of possible
ContextAnnotations. Other more complex properties can be imagined such as ownership (one
or more entities which �hold control� of an assertion), access control (who is allowed to query
or access the value of the assertion) or others.

An EntityDescription represents static information (i.e. does not vary with time) that provides
additional characterization of a ContextEntity (e.g. spatial inclusion and distance relations,
temporal relations, descriptive properties). It therefore holds between a ContextEntity and a
literal value.

Example 4.1.2. Consider as before modeling the location of a user as locatedAt(alice,
ami_lab). We further know that includedIn(ami_lab, cs_building) and hasCoordinates(cs_-
building, geoCoordinates), where Person(alice), SpatialStructure(ami_lab, cs_-
building) are ContextEntities and geoCoordinates is a literal. The statement locatedAt
represents a ContextAssertion, having dynamic value changes for each individual person, whereas
includedIn and hasCoordinates are modeled as EntityDescriptions since they only pro-
vide additional static descriptions of a SpatialStructure instance.

Notations and De�nitions

In order to properly introduce the model formalization we consider the following notations.
First, we call E the set of all ContextEntities that are considered within a model instance. We
then de�ne V as an in�nite set of variables, disjoint from E, and L as a set of literals, disjoint
from E ∪ V . Further, to introduce the values for ContextAnnotations we give the following
de�nitions for Annotation Domains.

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 54

De�nition 4.1.3 (Annotation Domain). An annotation domain d is an idempotent, commu-
tative semi-ring 〈Ad,⊕,⊗,⊥,>〉 such that:

• Ad is a set (of annotation values);

• ⊕ is idempotent, commutative, associative;

• ⊗ is commutative and associative;

• ⊥ ⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;

• ⊗ is distributive over ⊕, i.e., λ1 ⊗ (λ2 ⊕ λ3 = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3).

This de�nition of a ContextAnnotation domain Ad is inspired from work on annotated RDF
[Zimmermann et al., 2012]. As we have mentioned in Section 2.2.6, one of the shortcomings of
existing rule-based context reasoning approaches is that they do not provide a clear mechanism
for obtaining annotations of a derived context statement from a combination of the annotations
of the rule premises. Our choice for the above given form relies on the ability to obtain this
structured way of combining ContextAssertions during rule based inferencing by making use of
the ⊕ and ⊗ operators.

In what follows, we brie�y present the form of the annotation domains we chose for the common
settings (timestamp, time validity, certainty) which we discussed earlier in this section (partly
adopted from [Zimmermann et al., 2012]):

Annotation Value set Algebraic form
timestamp set of time points

∪ {−∞,+∞}
〈Atimestamp,max,min,−∞,+∞〉

validity set of sets of pairwise
disjoint time intervals

〈Avalidity,∪,∩, ∅, [−∞,+∞]〉

certainty [0, 1] 〈Acertainty,max,min, 0, 1〉

In the current version, the source annotation is kept simple (a URI identifying a service or
actor that produces a ContextAssertion instance, or one that performs a derivation using our
reasoning engine) and not modeled as a structured annotation (⊕ and ⊗ are not de�ned). In
section 4.2.2 we show it to be a subclass of a BasicAnnotation.
The other provided annotation domain de�nitions have an intuitive interpretation of their
respective ⊕ and ⊗ operators.

The timestamp domain considers time points as its vocabulary. The additional −∞ and +∞
are used to complete the formal de�nition of the timestamp vocabulary. Based on the natural
ordering of timestamps, max and min play the roles of ⊕ and ⊗.

The temporal validity domain vocabulary consists of consecutive disjoint time intervals, where
each end of an interval is a time point or −∞ or +∞. As noted in the examples, the roles of
⊕ and ⊗ are played by ∪ and ∩ respectively.

Lastly, our de�nition for the certainty annotation domain uses decimal values from the interval
[0, 1] as vocabulary for expressing certainty values. Using the natural order of real numbers, we
can use max and min as the ⊕ and ⊗ operators. Note however that this choice is not unique,
as another option for ⊗ could be the multiplication operator × for real numbers.

As mentioned previously, the purpose of this algebraic form for annotation domains is to be able
to de�ne an usage semantics for the combination of ContextAnnotation values during inference.
Following the observation in [Zimmermann et al., 2012], we use ⊕ to combine annotation infor-
mation for the same ContextAssertion instance, whereas⊗models the conjunction of annotation
statements from ContextAssertions of di�erent types. To exemplify, consider the following sim-

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 55

ple demonstration from the domain of temporal validity:

Example 4.1.4. Let f : {[12:00, 12:05]} and f : {[12:03, 12:08]} be two instances of the same
ContextAssertion with di�erent temporal validity.
We infer f : {[12:00, 12:05] ∪ [12:03, 12:08]} = f : {[12:00, 12:08]}, where ∪ plays the role of ⊕.

On the other hand, when dealing with a conjunction of statements with di�erent type, a similar
example to the previous one gives:

Example 4.1.5. Let f1 : {[12:00, 12:05]} and f2 : {[12:03, 12:08]} be two di�erent Context-
Assertions.
We can infer f1 ∧ f2 : {[12:00, 12:05] ∩ [12:03, 12:08]} = f1 ∧ f2 : {[12:03, 12:05]}, where in this
case ∩ plays the role of ⊗.

While the above de�nition and examples give us the semantics and operational properties of a
ContextAnnotation domain, in a concrete implementation, the values of a ContextAnnotation
domain will be based either on existing (e.g. RDF datatypes) or customly created datatypes
(more on this in Section 4.2.2). For this reason, we introduce below the de�nition of concrete
ContextAnnotation domain.

De�nition 4.1.6 (Concrete annotation domain). A concrete annotation domain is a pair
〈d1, d2〉 such that d1 is a datatype and d2 is an annotation domain, and the value space of d1
is equal to the set of annotation values of d2.

Formalization

With the previously explained de�nitions and notations we are now ready to provide the for-
malization for all the concepts introduced in the model overview. We start with the de�nition
of a ContextEntity, which is based on the one of Dey [Dey, 2001], and with that of a Context-
Annotation.

De�nition 4.1.7 (ContextEntity). A ContextEntity is any physical, virtual or conceptual ele-
ment that is considered relevant to the interaction between a user and an application, including
the user and the application themselves.

De�nition 4.1.8 (ContextAnnotation). A ContextAnnotation is a pair 〈lf , cad〉, where lf and
cad are abbreviations for lexical form and concrete annotation domain. We denote by A the
set of all annotations.

As discussed in the model overview, ContextEntities play roles in a ContextAssertion and
can be characterized by EntityDescriptions. These properties can be seen as predicates de�ning
relations between entities. We note with P the set of all predicates, disjoint from E, V , L and
A, and characterize each predicate p ∈ P by its arity ar(p) ∈ N. Following this, the de�nitions
of EntityDescription and ContextAssertion are given below.

De�nition 4.1.9 (EntityDescription). An EntityDescription is a formula of the form D(x, y)
where D ∈ P is a binary predicate, x ∈ E ∪ V and y ∈ E ∪ V ∪ L.

De�nition 4.1.10 (ContextAssertion). A ContextAssertion is a formula of the form p(x1, . . . , xn) :
{λ1, . . . , λm} where n,m ∈ N, p ∈ P with az(p) = n, xi ∈ E ∪ V ∪ L for [1, n] and λj ∈ A ∪ V
for j ∈ [1,m]. We denote by F the set of all context assertions.

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 56

Finally, to help us explain the reasoning formalism in the next section, we introduce the following
functions:

entities : F → 2E∪V ∪L

p(x1, . . . , xn) : {λ1, . . . , λm} 7→ {x1, . . . , xn}

annotations : F → 2A∪V

p(x1, . . . , xn) : {λ1, . . . , λm} 7→ {λ1, . . . , λm}

The function entities retrieves the set of all ContextEntity or Literal instances that play a role
in a given ContextAssertion p. The annotations functions works similarly and gets the set of
ContextAnnotation instances that characterize the ContextAssertion p.

4.1.2 Reasoning Formalism

In Section 2.2.2 we explained that rule-based reasoning approaches are most widely used given
their advantage of being simple to de�ne and to extend. Since this aligns also with our objective
of alleviating application development e�ort, we choose to employ a similar reasoning method.
In what follows we present the formal model for a rule-based inference approach which uses the
representation concepts de�ned previously to create expressive conditioning over both content
and meta-properties of context information.

The CONSERT model uses ContextDerivationRules as a deduction method that expresses con-
ditions over EntityDescriptions, ContextAssertions and ContextAnnotations in order to obtain
higher-level ContextAssertions. Each ContextDerivationRule is made up of a head (the de-
duced ContextAssertion) and a body which contains the condition statements required for the
rule head to be deduced.
The head of a derivation rule ρ is a ContextAssertion P (x1, . . . , xk) : {λ1, . . . , λl} where
xi ∈ E ∪ V ∪ L and λj ∈ A ∪ V . Notice that entities(P) and annotations(P) can include
variables which will be bound during the reasoning process.
The body consists of so called ConditionExpressions (detailed later in this section) and con-
strained forms of universal and existential quanti�cation.
We next introduce three auxiliary functions that help us to better present the formal de�ni-
tion of a ContextDerivationRule ρ. Let R be the set of ContextDerivationRules. The function
head : R → F retrieves the head of a rule, i.e. the ContextAssertion that is inferred. Similarly,
the function body : R → 2F retrieves the set of all ContextAssertions contained in the body of
a ContextDerivationRule. Lastly, the function constraint : R → F gets the ContextAssertion
that provides the expression for the constrained universal or existential quanti�cation.

With these notations, the de�nition of a ContextDerivationRule is the following.

De�nition 4.1.11 (Context Derivation Rule).

ρ : P (x1, x2, . . . , xk) : {λ1λ2, . . . , λl} ← body where body may be:

ConditionExpr

or ∃y1, . . . yr • Pc(z1, . . . , zm) : {λ1, . . . λp} • ConditionExpr (EQC)

or ∀y1, . . . yr • Pc(z1, . . . , zm) : {λ1, . . . λp} • ConditionExpr (UQC)

where yi ∈ V , Yρ = {y1, . . . yr} ⊆ entities(constraint(ρ)) ∪ annotations(constraint(ρ)) and
entities(head(ρ)) ∩ entities(constraint(ρ)) 6= ∅.

In the above rule, EQC (resp. UQC) refers to a constrained existential (resp. universal)
quanti�cation. The constraint comes from the fact that the quanti�cation does not refer to
all possible variable values, but only to those which make the constraining ContextAssertion
Pc true. That is, at runtime, only those values for yi are selected for which instances of Pc

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 57

(instantiated with those values) can be found in the knowledge base of the system running the
rule. From this it follows that:

- In the existential case, at least one value assignment for each yi has to also observe the
conditions set in ConditionExpr.

- In the universal case, all possible value assignments have to do so.

Additionally, Yρ and all the variables that appear in the rule head (entities(head(ρ)), annotations(head(ρ)))
must also appear in ConditionExpr, which we discuss next.

De�nition 4.1.12 (ConditionExpr). A ConditionExpression contains a domain expression
(DomExpr) and an annotation expression (AnnExpr) as follows:

ConditionExpr ::=DomExpr ∧ AnnExpr
DomExpr ::=ComExpr |DomExpr ∧ ComExpr
ComExpr ::=SimExpr |AggExpr
SimExpr ::=AssertExpr | ¬AssertExpr |DescExpr| ¬DescExpr |TermExpr
AggExpr ::=aggregate(FuncExpr, F ilterExpr,ResExpr)

FilterExpr ::=SimExpr |FilterExpr ∧ SimExpr
AssertExpr ::=P (x1, . . . , xn) : {λ1, . . . , λm}, xi ∈ E ∪ V ∪ L, λj ∈ Adj ∪ V
DescExpr ::=D(x, y), x ∈ E ∪ V, y ∈ E ∪ L ∪ V

De�nition 4.1.13 (DomExpr). A DomExpr is a conjunction of positive or negated Context-
Assertions (AssertExpr) and EntityDescriptions (DescExpr), term expressions (TermExpr)
and aggregations (AggExpr).

De�nition 4.1.14 (TermExpr). Term expressions contain terms t ∈ E ∪L∪V ∪A which are
entities, literals, variables or annotations. Terms can be related by boolean comparators (>, <,
>, 6, =, 6=), logical connectors (∧, ∨, ¬) and system or user-de�ned functions func(t1, . . . , tn).
Functions in term expressions act as predicates which return a truth value when all their
arguments are bound. If the arguments contain free variables, the function call binds them to
values that make the function true.

De�nition 4.1.15 (AggExpr). An aggregation expression contains three subexpressions:
FuncExpr, FilterExpr and ResExpr. The FuncExpr is a list of one or more aggregation func-
tions that take a single variable as their argument [aggFunc1(z1), . . . , aggFunck(zk)]. We em-
ploy the typical aggregation functions: aggFunc ∈ {count, sum, avg, min, max}. FilterExpr
is the expression used to condition the values of the variables zi over which we perform the ag-
gregation. It takes the form of a conjunction of SimExpr. Therefore, all variables zi must occur
in ContextAssertions, EntityDescriptions or ContextAnnotations contained in FilterExpr. Fi-
nally, ResExpr is a list of variables [aggRes1, . . . , aggResk] which will store the result of the k
aggFunci(zi) functions.

De�nition 4.1.16 (AnnExpr). An annotation expression is a conjunction of functions of the
form fj(λj1, . . . , λjq) where each function fj binds a free variable λ

head
j ∈ annotations(head(ρ))

(the annotations of the ContextAssertion in the rule head). All λjk and λheadj belong to the
same annotation domain Adj and we additionally know that λjk belongs to the annotations of
some ContextAssertion in ConditionExpr. The functions fj are user-de�ned and can either
directly bind λheadj to a value from the annotation domain Adj , or they can determine their
output by computations using the ⊕ and ⊗ operators speci�c to annotation domain Adj .

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 58

These de�nitions conclude the formalization of the reasoning approach. To get a better sense of
the presented concepts, let us illustrate them along an example of a ContextDerivationRule used
in the reference scenario to derive the occurrence of an ad hoc discussion in the AmI Laboratory.

Example 4.1.17.1

hostsAdhocMeeting(RL):{λsrc, λt, λvalid, λacc}:2

isA(K, camera) ∧ isA(Mic, microphone) ∧3

deviceLocatedAt(K, RL) ∧ deviceLocatedAt(Mic, RL) ∧4

makeInterval(now()-5,now(),λinterv) ∧5

6

aggregate([count(S),avg(λaccS)],7

sensesSkelInPos(K,S,sit):{λvalidS , λaccS}8

∧includes(λvalidS , λinterv),[Ct,avgAccS]9

) ∧10

Ct>3 ∧ λavgAccS >0.75 ∧11

12

hasNoiseLevel(Mic, NL):{λvalidMic, λaccMic} ∧13

includes(λvalidMic, λinterv) ∧ NL>60 ∧ λaccN > 0.75 ∧14

15

assignAcc(λacc, λAvgAccS ⊗ λaccN) ∧16

assignSrc(λsrc, currentAgent) ∧17

assignTimestamp(λt, now()) ∧18

assignValid(λvalid, {[now()-5, now()]})19

In the above example, lines 3 - 14 constitute instances of DomExpr, while lines 16 - 19 are
instances of AnnExpr.
Among the DomExpr instances, one can observe examples of both EntityDescriptions (lines 3
and 4), as well as ContextAssertions (line 13). Furthermore, one can notice di�erent types of
TermExpr, including boolean comparisons (line 11) and function calls which can both de�ne
values for new variables (e.g. in line 5) or return a truth value for a computed evaluation (e.g.
line 14).
Lastly, there is also an example of an AggExpr (lines 7 through 10), which is used to compute
the number of skeletons which are detected as being in the sit posture, as well as to get an
estimate of the average accuracy of the detection.

With regard to the annotation expressions (AnnExpr), the reader can observe both types
of possibilities discussed in De�nition 4.1.16. Line 16 contains an instance of an annotation
assignment that makes use of the corresponding ⊗ operator to compute the resulting value (in
our case the resulting annotation based on the certainty degree for observing sitting postures
and the given noise level).
Lines 17 - 19, on the other hand, show examples of the ability to directly set the value of the
ContextAnnotations for the derived ContextAssertion instance.

Remember from the objectives outlined in Section 2.3 that we mentioned the intention to use
techniques of the semantic web to implement our rule-based reasoning approach, on account of
achieving uniformity and expressiveness. In Section 4.3 we show how the form of ContextDeriva-
tionRules de�ned here can be implemented using the SPARQL1 query language.

4.1.3 Context Dimensions and Context Domains

Before going over to detail the implementation of the CONSERT context meta-model using
semantic web technologies we want to introduce two additional concepts which will be later used

1http://www.w3.org/TR/rdf-sparql-query/

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 59

in Chapter 6 to obtain the di�erent deployment schemes of our proposed context management
middleware.
Speci�cally, we want to introduce concepts that can help a developer design his/her context-
aware application by exploiting the natural dimensionality of the context model that he de�nes,
thus addressing one of the shortcomings of related work discussed in Section 3.2.3. To do this,
we take inspiration from the work of Zimmermann et al. [Zimmermann et al., 2007], who in the
attempt to provide an operation-oriented view of context modeling, present a categorization of
context information. Starting from Dey's view, that context de�nes situations of an entity [Dey,
2001], they consider the following �ve categories:

• Individuality (I) - describe an entity itself

- Natural Entities

- Human Entities

- Arti�cial Entities (e.g. sensors and the information they sense)

• Space (S)

• Time (T)

• Activity (A) - what tasks an entity might be involved in

• Relations (R) - any kind of relation that can be established between two entities

- Functional Relations

- Compositional Relations

- Social Relations

As given in [Dey, 2001], context is �Any information that can be used to characterize the
situation of entities (i.e. a person, a place or an object) that are considered relevant to the
interaction between a user and an application, including the user and the application
themselves�.
Notice that in Dey's de�nition we have bolded the words �user� and �application� as being the
most representative entities of the context model of an application. Indeed, from the above
de�nition we may consider that context-aware applications are either:

• user-centric: the majority of context statements describe and analyze the situations of
one or more physical or logical users (e.g. an agent, an organization)

• application-centric: the majority of context statements describe situations of the in-
ternal runtime environment (i.e. application-level introspection) of an application

This means that either user-related entities (e.g. user, groups, organizations) or application-
related entities (e.g. device, platform, service) will be the ones that ultimately relate all context
information.

Having considered all the above and using the modeling concepts de�ned in the previous sec-
tions, let us now provide a simple formalization of the notion of a context model C of a particular
application. This formalization will then allow us to express how a context model can exhibit
a logical partitioning into usage domains.
For a particular application, let us consider CE as the set of all ContextEntities, ED as the set
of all EntityDescriptions and CA as the set of all ContextAssertions de�ned by a developer for
use in that speci�c application. Furthermore, let us denote by U and App the sets of Context-
Entities included in CE which are respectively user and application-related.

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 60

We may now express the context model C of an application as the following set-theoretic union:

C = U ∪App ∪
⋃

cat∈{I,S,T,A,R}

(CEcat ∪ CAcat ∪ EDcat)

CE = U ∪App ∪ CEI ∪ CES ∪ CET ∪ CEA ∪ CER

In the above, the indexes I, S, T,A and R correspond to the �ve context categories described
previously (individuality, space, time, activity and relations).

With the idea of context categories we are now ready to de�ne the concepts that establish
the mentioned logical structuring of context model provisioning: ContextDimension and Con-
textDomain.

De�nition 4.1.18 (ContextDimension). A ContextDimension is a ContextAssertion P be-
longing to the category cat that de�nes the dimension: P ∈ CAcat where cat ∈ {I, S, T,A,R}.
Properties of P :

- arity(P) = 2

- P of the form: P (Esubj , Eobj), or otherwise entities(P) = Esubj ∪ Eobj , where Esubj ∈
U ∪App is the subject entity and Eobj ∈ CEcat is the object entity with values belonging
to the category de�ning the dimension (cat).

In general, in context-aware applications the ContextAssertion that plays the role of a Con-
textDimension can be understood as a privileged direction (e.g. spatial location, user activity,
organizational relation) along which the application will structure its context provisioning pro-
cess. The subject part of a ContextDimension is a ContextEntity which can generally be
regarded as a consumer of context information (e.g. a human user). The object parts, on the
other hand, are instances of ContextEntities which de�ne values along the ContextDimension,
representing what we call ContextDomains, which we introduce next.

De�nition 4.1.19 (ContextDomain). A ContextDomain establishes a logical partition of the
global application context model, along the chosen ContextDimension. The values of a Con-
textDomain come from those of the ContextEntity that plays the object role in a ContextDi-
mension. A formal way to de�ne this partitioning is based on the following.
Let

∗7→ be a function from F → 2F with the following de�nition:

a ∈ F , a ∗7→ {b|b ∈ F , entities(a) ∩ entities(b) 6= ∅}

Let Pdim(Esubj , Eobj) be the ContextAssertion that gives the ContextDimension. Let cat be the
context category from which the ContextDimension was chosen and dimval the current value
of Eobj , dimval ∈ CEcat (the object value of the ContextAssertion has a �xed value). Then

the ContextDomain CD is de�ned as the closure under
∗7→ of {Pdim(Esubj , dimval)}.

Example 4.1.20. Let us turn to our reference scenario to give some examples that clarify the
above de�ned notions. Alice, who is sitting in the AmI laboratory is currently attending the
CS lecture. Her smartphone is consuming context information regarding the current room, as
well as her current activity. The context-aware application on her smartphone receives updates
about context in the AmI-Lab (e.g. her logical position in the room: in the presenter area, near
a desk) from the context management system installed in the lab, while the activity-related
information is obtained from a server of the CS building of the university. Furthermore, Alice
is only engaged with the context data mentioned above, when she is in the AmI laboratory, or
when she attends the CS lecture respectively. Likewise, her friends Bob and Cecille are only
subscribed to noti�cations to ad-hoc meetings for the duration of their discussion in the AmI
laboratory.

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 61

Thus, we can see that Alice currently has two distinct usages of context information: one from
an ami-lab ContextDomain and one from a cs_lecture ContextDomain. ami-lab is a
value of the UniversitySpace ContextEntity (∈ CES) and cs_lecture is a value of the
TeachingActivity ContextEntity (∈ CEA).
These entities play the object role in a spatial (locatedAt(Person, UniversitySpace))
and an activity-based ContextDimension (engagedIn(Person, TeachingActivity)), such
that the above two ContextDomains are de�ned along these dimensions. Within the applica-
tion context model, Alice herself is an instance of the Person ContextEntity (∈ U) playing
the subject role in these ContextDimensions. The domains make use of subsets of the global
context model and have speci�c management needs.
The latter part regarding management of context information within a ContextDomain is es-
sential, because it allows an application to consider custom context provisioning (e.g. ensur-
ing consistency, controlling acquisition, inference and dissemination) for each ContextDomain,
thereby substantially increasing design and runtime �exibility. We will discuss these issues in
more detail in chapter 5.

One last thing to note regards the organization of ContextDomains. Left only with the pre-
viously given de�nitions, the default result is that of a �at network of domains. However,
our formal meta-model can be exploited further to allow the possibility for ContextDomain
hierarchies. This follows from the capability of ContextDomain types (i.e. the type of the
ContextEntities that play the object role in the ContextDimension de�ning the domain) to be
characterized by inclusion-like EntityDescription relations. Formally we de�ne this as follows:

De�nition 4.1.21 (Context Domain Hierarchy). A ContextDimension chosen from a context
category cat is said to be hierarchical if the ContextAssertion P (Esubj , Eobj), with Eobj ∈ CEcat
is such that there exists an EntityDescription D ∈ EDcat with the property that D de�nes an
inclusion relation between the instances of Eobj .

To clarify this again with examples from our reference scenario, consider the locatedAt(Person,
UniversitySpace) ContextDimension and the includedIn(UniversitySpace,
UniversitySpace) EntityDescription. Both ami-lab and cs_building are instances
of the UniversitySpace ContextEntity and it further holds that includedIn(ami-lab,
cs_building). Thus we obtain a domain hierarchy based on a spatial dimension.
As we will further see in Chapter 6, ContextDomain hierarchies are an additional means for ap-
plication structuring, help in establishing routing protocols and allow an application to perform
remote provisioning of context information in a manner that maintains locality (i.e. dissemi-
nation and consumption of context occurs in accordance to the logical partition that produced
it).

4.2 Ontology-based Meta-Model

Having introduced the formalization of the proposed CONSERT context meta-model we now
continue by presenting the CONSERT Ontology, which gives an ontological form to all the key
context model elements introduced in the previous sections. As we will see later one, the choice
of implementing our formal model using an ontology brings bene�ts in terms of expressiveness
(e.g. the ability to de�ne subclass relations between ContextEntities or subproperty relations
between ContextAssertions) as well as reasoning (e.g. consistency check inferences for static
knowledge - ContextEntities and EntityDescriptions).
Furthermore, besides providing an implementation for the constructs of the CONSERT meta-
model, the proposed ontology vocabulary introduces properties that o�er auxiliary information.
They concern aspects such as information acquisition method or functions to validate temporal

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 62

continuity of a situation. These properties in�uence the runtime reasoning and provisioning
control behavior.

The vocabulary of the CONSERT Ontology is divided in three modules, which are depicted
in Figure 4.2. The core module contains the vocabulary which allows expressing the con-

Figure 4.2: Components and their associations in the CONSERT ontology

tent of context statements (i.e. ContextEntities, EntityDescriptions and ContextAssertions).
The annotation module de�nes the di�erent types of ContextAnnotations which characterize
a ContextAssertion. Lastly, the constraint module represents our solution to the challenge of
modeling context integrity. In particular, it provides the vocabulary that is used to express the
rules that detect integrity, uniqueness or value constraint violations.

Figure 4.2 also highlights the fact that the CONSERT Ontology de�nes a context meta-model.
To build the context model of an application our meta-model must be extended by an upper-
ontology that lies on top. This can either be done from scratch or, as we show in Figure
4.2, by coupling an existing context modeling ontology (such as SOUPA [Chen et al., 2004b])
and building on top of that. In this way, existing classes (which become ContextEntities) and
properties (which become binary ContextAssertions) can be reused when building the desired
domain ontology.
In what follows we present each CONSERT Ontology module in more detail.

4.2.1 Content Representation

Figure 4.3 shows a class-like diagram representation of the CONSERT core vocabulary1. The
ontology de�nes the generic class ContextEntity that becomes the new root for all classes of a
domain ontology.

EntityDescriptions and binary ContextAssertions of a context model can be readily de�ned in
the CONSERT ontology by means of two OWL object properties (entityRelationAssertion, entity-
RelationDescription) and two datatype properties (entityDataAssertion, entityDataDescription).
These properties help to �classify� the object and datatype properties as either a Context-
Assertion with arity n = 2 (subproperties of entityRelationAssertion and entityDataAssertion) or
EntityDescription (subproperties of entityRelationDescription and entityDataAssertion).

To express ContextAssertions with arities n = 1 or n > 3 we introduce two new classes within
the CONSERT ontology: UnaryContextAssertion (n = 1) and NaryContextAssertion (n > 3). For
both these cases we use a mechanism which is similar to rei�cation of RDF statements2. In the
CONSERT ontology we de�ne the assertionRole property relating an instance of a UnaryCon-
textAssertion or NaryContextAssertion to a ContextEntity or Literal which plays a role in the
assertion.

1http://purl.org/net/consert-core-ont
2 http://www.w3.org/TR/rdf-schema/#ch_rei�cationvocab

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 63

Figure 4.3: CONSERT Ontology core vocabulary

Example 4.2.1 (UnaryContextAssertion example). For the unary case, a ContextAssertion
like inAdHocDiscussion(alice) entails the creation of the inAdHocDiscussion subclass of UnaryCon-
textAssertion and the assertion of the statements (in Turtle syntax):

{
[] a :inAdHocDiscussion;

:assertionRole :alice.
}

where [] represents a blank node.

Example 4.2.2 (NaryContextAssertion example). Taking a possible example from the ref-
erence scenario, in order to express a ContextAssertion like sensesSkeletonInPosition(camera,
skeleton, sitting) (e.g. as a Kinect camera based posture sensor would do in the AmI-Lab),
where KinectCamera(camera) and PostureSkeleton(skeleton) are ContextEntities and sitting is
an instance from an enumeration (e.g. {sitting, standing}), we �rst create the sensesSkeletonIn-
Position subclass of NaryContextAssertion together with subproperties of assertionRole specifying
its roles (cameraRole, skeletonRole, postureRole). The ContextAssertion in our example would
be then expressed as the following group of statements:

{
[] a :sensesSkeletonInPosition;

:cameraRole :camera;
:skeletonRole :skeleton;
:postureRole :sitting.

}

In order to express information about the method of acquisition of a ContextAssertion instance,
we take inspiration from work in [Henricksen, 2003].
In the binary case, we extend entityRelationAssertion and entityDataAssertion into properties

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 64

that specify whether an assertion has been acquired from physical or virtual sensors (sensed),
directly speci�ed by the system or the user (pro�led) or deduced by an inference (derived), as
can be seen in Figure 4.3. This classi�cation will be later exploited at runtime, in�uencing the
processing of each ContextAssertion based on the acquisition type (more details in chapters 5
and 7).
For instances of UnaryContextAssertion and NaryContextAssertion, the CONSERT ontology de-
�nes the assertionType property (whose range is an owl:unionOf class called ContextAssertion-
Type) which states if they are sensed, pro�led or derived.

4.2.2 Annotation Representation

We move forward to detailing the concrete means of representing ContextAnnotations with a
focus on the de�nitions for the annotation domains discussed throughout the chapter (source,
timestamp, time validity and certainty). These are the ones most commonly used in the lit-
erature. They allow inspection of the temporal relationships between detected situations and
support inference and query time decision making, by identifying the origin of the information
and its quality metrics. Figure 4.4 presents the annotation vocabulary1 of the CONSERT On-

Figure 4.4: CONSERT ontology annotation vocabulary

tology. The classes are de�ned with extensibility in mind, such that context model designers
may have the ability to append new ContextAnnotation de�nitions according to their need.
Two distinct types of annotations are considered: BasicAnnotation and StructuredAnnotation.

BasicAnnotation is the class meant to describe ContextAnnotations which do not have (or
need) a structured manipulation during inference. In Section 4.1.1 we mentioned that the source
annotation is an example of a BasicAnnotation (as can be seen also in Figure 4.4).
The hasUnstructuredValue functional property provides the actual value of a BasicAnnotation.
The context model designer is required to specify the corresponding ontology class representing
the range of this property for each de�ned subclass of BasicAnnotation. Further, a custom
implementation must be provided for the annotation expression function (cf. De�nition 4.1.16)

1http://purl.org/net/consert-annotation-ont

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 65

that is used to specify the value of this type of annotation for a ContextAssertion derived during
inference.

StructuredAnnotation is the class describing ContextAnnotations for which a speci�c infer-
ence usage semantics is de�ned (i.e. a concrete form of the ⊕ and ⊗ operators introduced in
De�nition 4.1.3). Its direct subclasses (called base structured annotation classes) represent a
given annotation domain (cf. De�nition 4.1.8).
Derivatives of a base annotation class (e.g. DatetimeTimestamp, NumericValueCertainty, Tem-
poralIntervalValditiy describe means of concretely expressing the value set of an annotation
domain. For example, the default value set for the timestamp annotation domain is made up of
xsd:dateTimeStamp instances. It may be however that for a particular application scenario the
timestamps are much more suitably modeled as simple integer values, providing just relative
order of events instead of an explicit time measurement. In this case, an application designer
could extend the TimestampAnnotation base annotation class with one called IntegerTimestamp.
This new class would de�ne a restriction over the hasStructuredValue property, stating that all
its values must be integers.

A ContextAssertion URI is bound to a ContextAnnotation of a particular domain by means
of the corresponding subproperty of hasAnnotation (e.g. hasValidity for the validity domain,
hasCertainty for the assertion certainty domain).
The hasStructuredValue property gives the actual value of a StructuredAnnotation instance.
Each derivative of a base annotation class comprises in its de�nition an OWL allValuesFrom re-
striction which states the corresponding (standard or customly de�ned) rdfs:Datatype instances
(e.g. xsd:datetime, ctx:intervalListType) that denote the value set of the given annotation do-
main. The restriction de�nition can be used at runtime to ensure that all the ContextAnnotation
instances of a newly inserted ContextAssertion provide a correct value.

Next, we introduce the rdfs:Datatype instance corresponding to each of the discussed annotation
domains (i.e. the concrete annotation domains according to De�nition 4.1.6). The value for the
source basic annotation consists in a URI (rdfs:Literal of type xsd:anyURI) identifying authors
of ContextAssertions (services, actors). For the timestamp annotation domain, the vocabulary
Atimestamp consists of the set of date timestamp strings. The default CONSERT ontology
speci�cation de�nes xsd:dateTimeStamp as the datatype for timestamp literals.
In the case of the time validity annotation domain, an element of the vocabulary Avalidity
is a set of pairwise disjoint time intervals. Though not shown in the annotation vocabulary
�gure, the CONSERT representation and reasoning engine de�nes a custom rdfs:Datatype called
intervalListType which becomes the default for literals expressing values of the validity domain.
Lastly, for the accuracy annotation domain the vocabulary consists of decimal values in the
interval [0, 1]. They are expressed using the xsd:decimal datatype.

One last noteworthy aspect is that StructuredAnnotation subclasses provide values for three
important properties: hasJoinOp, hasMeetOp and hasContinuityFunction. The ranges of these
properties are instances of functions. The value of the �rst two properties represents the imple-
mentation of the ⊕ and ⊗ operators respectively, for the given StructuredAnnotation subclass.
The value of the hasContinuityFunction property is used during one of the steps performed by
the CONSERT Engine when inserting a new ContextAssertion instance. It is further detailed
in Section 4.4.2. The concrete implementation of ⊕ and ⊗ operators will be more closely ex-
plained in Section 7.1.2.

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 66

4.2.3 Constraint Representation

The modeling uniformity we try to achieve with the CONSERT Ontology extends to the way in
which context integrity, more speci�cally the violations thereof, are expressed. The CONSERT
Ontology de�nes a module that contains explicit vocabulary used to describe the nature of
a context constraint violation. The means by which the violation is detected are detailed in
Section 4.3.2. Figure 4.5 shows the vocabulary1 used to de�ne constraints. The UniquenessCon-

Figure 4.5: CONSERT ontology constraint vocabulary

straintTemplate, ValueConstraintTemplate and IntegrityConstraintTemplate (and corresponding
constraint violation classes) are the ones that realize the concept of context information con-
straints in the CONSERT ontology. The hasSource property is used on ContextConstraintViola-
tion instances to refer to the ConstraintTemplate instance that triggered the con�ict signalization.
The con�icting ContextAssertions (one in the case of value constraints and two for uniqueness
and integrity constraints) are given by the value of the hasCon�ictingAssertion property. The
range of this property is an instance of the Con�ictingAssertion class. Instances of this class have
two properties. hasAssertionType speci�es the ontology resource denoting the ContextAssertion
on which the constraint is placed. hasAssertionInstance indicates identi�er (the URI of the
named graph that wraps its contents) of the con�icting ContextAssertion instance. The di�er-
ence between uniqueness and integrity constraints is that the former are always speci�ed for
ContextAssertions of the same type (i.e. same value for the hasAssertionType property), while
the latter capture unsatis�ed dependencies between instances of two di�erent ContextAssertion
types. For value constraint violations, the CONSERT ontology also de�nes the possibility to
express the annotation or assertion value that triggered the violation.
In Section 4.3.2 we detail how we attach constraints to a ContextAssertion class by using the
introduced vocabulary.

4.3 Rule-based Context Inference

We have seen previously how the CONSERT Ontology is de�ned from the proposed meta-model,
achieving uniformity and expressiveness of representation. We now focus on showing how we
continue to use semantic web technologies to exploit the CONSERT Ontology with regard to
reasoning over context information.
In Section 2.2.1 we mentioned that two main concerns must be regarded: maintaining consis-
tency of the knowledge base and inference of higher-level knowledge based on existing primary

1http://purl.org/net/consert-constraint-ont

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 67

information. Consequently, in what follows we present how the formal model of the infer-
ence rules described in Section 4.1.2 is implemented using SPARQL, as well as how this infer-
ence mechanism is complemented by ontology-based reasoning for both higher-level knowledge
derivation and consistency maintenance.

4.3.1 Context Derivation Rules

The �rst concern we treat is the derivation of new knowledge from existing information, be
it static (i.e. descriptive information), sensed or directly provided by a user or service (i.e.
pro�led). We establish two processes that are at work in this case: one for the dynamically
changing one (i.e. sensed or pro�led) and one for inferences on the static part of the knowledge
base (i.e. EntityDescriptions).

Dynamic Inference

For this type of deduction we consider a rule-based inference approach. This is because the
expected frequency of changes in sensed or pro�led information can lead to ontology-based rea-
soning processes (e.g. realization) becoming computationally expensive.
Remember from Section 4.1.2 that a ContextDerivationRule ρ is composed of a head and a body
section and that the head of the rule is in fact an instance of the newly derived ContextAssertion
type: Phead(x1, . . . , xk) : {λ1, . . . , λl}, PinF . To create the inference rule we use the SPARQL
CONSTRUCT1 query in which the CONSTRUCT clause implements the head of the rule (i.e.
they build the instance of the derived ContextAssertion) and the WHERE clause implements
the body of the rule (i.e. the ConditionExpr).
The statements in the CONSTRUCT clause perform an instantiation of a ContextAssertion by
using the corresponding vocabulary statements of the CONSERT Ontology. The statements
will usually refer to both content (e.g. an NaryContextAssertion with statements for the sub-
properties of assertionRole de�ning the ContextEntities that play a role in the assertion) as
well as annotations of the ContextAssertion instance, using the vocabulary introduced in the
ContextAnnotation module of the CONSERT Ontology. The statements in the CONSTRUCT
clause can also use variables that are bound in the WHERE clause. The exact mechanism by
which a new ContextAssertion is constructed at runtime as part of a DerivationRule execution
is out of the scope of this chapter (since it is an implementation detail), but will be discussed
at more length in Section 7.1.

In what follows, we want to focus on explaining how the di�erent formal expressions introduced
in Section 4.1.2, which compose the body of a DerivationRule can be mapped to SPARQL
syntax.

We begin with the elements composing a ConditionExpr as presented in De�nition 4.1.12.

• AssertionExpr: a ContextAssertion and its ContextAnnotation instances are expressed
using RDF statements wrapped in named graphs as will be further explained in Section
7.1.1. These form SPARQL basic graph patterns (BGP).

• AggExpr: are expressed using SPARQL aggregates1

• TermExpr: EntityDescriptions are expressed as RDF triples that reside within the enti-
tyStore named graph as will be detailed in Section 7.1. Boolean operations, logical con-
nectives and functions on terms are implemented using the equivalent SPARQL syntax
and are contained within SPARQL FILTER expressions.

1http://www.w3.org/TR/rdf-sparql-query/#construct
1http://www.w3.org/TR/sparql11-query/#aggregates

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 68

• AnnExpr: the annotation assignment functions are user-de�ned. They are implemented
based on custom code that runs during query evaluation in the software engine that we
detail Sections 4.4 and 7.2. The value they compute is bound to the corresponding λj
variable in the rule head (annotations(head(ρ))) using a SPARQL BIND statement.

Next, let us consider the existentially and universally constrained quanti�cations. For the exis-
tential case support is already provided in SPARQL by the EXISTS �lter expression (see Figure
4.6). For the universal case the intuition behind the SPARQL query shown in Figure 4.6 is
the following: consider a substitution σ = {y1/t1, . . . , yr/tr} which binds each variable yi ∈ Yρ
to a ContextEntity or literal. Let us then denote by ΣFc↓Yρ and ΣDerivExpr↓Yρ the sets of all
substitutions σ binding variables in Yρ for which the constraining assertion Fc and the asser-
tions in ConditionExpr are true respectively. The interpretation of the universal constrained
quanti�cation rule then implies that ΣFc↓Yρ ⊆ ΣDerivExpr↓Yρ ⇔ ΣFc↓Yρ r ΣDerivExpr↓Yρ = ∅.
The SPARQL MINUS2 �lter expression used in Figure 4.6 provides this exact semantics.

CREATE GRAPH <gURI>;
INSERT{

GRAPH <gURI> {new assertion}
GRAPH <newAssertionStore> {annotations}

}
WHERE {
{ constraining assertion } .
FILTER (
EXISTS { ConditionExpr }
)
}

CREATE GRAPH <gURI>;
INSERT{ assertion and its annotations }
WHERE {
{ SELECT (COUNT(*) AS ?count)

WHERE {
{constraining assertion}
MINUS
{ConditionExpr}
}

} . FILTER (?count = 0)
}

Figure 4.6: SPARQL expressions for existentially (left) and universally (right) constrained quanti�ca-

tions

In Section 8.2.1 we provide an exempli�cation of SPARQL-encoded ContextDerivationRules as
part of the modeling and experimentation on hand of the reference scenario.

Static Inference

We mentioned that static context information is modeled as declarations of ContextEntity
instances and EntityDescriptions in the CONSERT meta-model. While entities and their
descriptions are not inferred using the previously presented rule approach, it is nonetheless
useful to have the ability to reason over ContextEntity (following rdfs:subClassOf relations)
or EntityDescription hierarchies (following rdfs:subPropertyOf relations), as well as Context-
Entities whose de�nition is simply given as OWL class construction axioms involving several
EntityDescriptions and ContextAssertions. For this, an ontology-based reasoning mechanism
is used.

In Sections 4.4.2 and 7.2 we talk about the implementation and execution cycle of our proposed
reasoning engine. There we show that new ContextEntity declarations and insertions of Entity-
Descriptions result in statements that are stored and processed in a speci�c way. Every time
an update containing references to such elements of static context information is perceived,
the inserted information is subjected to RDFS entailment1. In this way it is possible to infer
information that exploits subclass and subproperty relations. Let us consider our scenario and
a modeling of information such as the following:

2http://www.w3.org/TR/sparql11-query/#neg-minus
1http://www.w3.org/TR/rdf11-mt/#rdfs-entailment

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 69

ex : ami− lab rdf : type ex : LaboratoryRoom .
ex : alice ex : friendOf ex : cecille .

ex : LaboratoryRoom rdfs : subClassOf ex : UniversitySpace .
ex : friendOf rdfs : subPropertyOf ex : acquaintanceOf .

where ex : LaboratoryRoom and ex : UniversitySpace are examples of ContextEntity types
and ex : friendOf and ex : acquaintanceOf are EntityDescriptions. By RDFS entailment, the
following additional information would be derived:

ex : ami− lab rdf : type ex : UniversitySpace .
ex : alice ex : acquiantanceOf ex : cecille .

This constitutes a substantial bene�t from a reasoning perspective because in this way the body
of ContextDerivationRules can contain conditions not explicitly asserted (but derived through
entailments such as the one above) in the knowledge base.

However, the above type of inferences only exploits the subclass and subproperty relations of
static context information. We mentioned that another reasoning use case may be the one
in which ContextEntities are de�ned using OWL axioms. For instance, consider the following
example of de�ning the concept of a busy person entity:

BusyPerson ≡ Person u ∃hasTimedActivity

where Person and BusyPerson are ContextEntity types and hasTimedActivity is a pro�led
ContextAssertion. Considering our scenario, an instance of hasTimedActivity could be derived
upon the insertion of information such as:

ex : alice ex : hasTeachingActivity ex : cs_lecture .
ex : hasTeachingActivity rdfs : subPropertyOf hasTimedActivity .

In this example, �rst the information that ex : Alice ex : hasTimedActivity ex : CS_Lecture
would be inferred based on the previously explained RDFS entailment. Then, another ontology-
speci�c reasoning procedure, the ABox realization mentioned in Section 2.2.3, would have to
be employed to infer the information that ex : Alice rdf : type ex : BusyPerson (i.e. Alice is
a busy person).
However, as we have pointed out in the beginning of this discussion, applying ontology reasoning
such as ABox realization in relation to information that changes more frequently (such as the
sensed or pro�led ContextAssertions) soon proves to be computationally di�cult, especially
under high update rate and a large knowledge base. For this reason, in Section 5.2.2 where
we talk about options for coordinating the provisioning of context information (which includes
control over how inferences are executed by our reasoning engine), we point out a mechanism by
which ontology-based reasoning procedures such as the one described above can be scheduled
based on the type of ContextAssertions they involve.

4.3.2 Context Consistency

The second aspect of reasoning about context information relates to maintenance of its consis-
tency. As in the previous case of knowledge derivation, two reasoning approaches can be used
with respect to this goal.
For dynamic context information (i.e. sensed, pro�led or derived ContextAssertions) the de-
pendencies between assertion instances resolve to the de�nition of integrity constraint detection
rules using the constraint module of the CONSERT Ontology. For static ContextEntities (de-
�ned either as simple OWL classes or using OWL axioms) and EntityDescriptions consistency
amounts to ensuring that instances of entities and descriptions do not break the semantics
associated to the OWL class and property de�nitions which are used to implement them.

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 70

To start with the consistency of static information, a simple source of inconsistency can come,
for example, from asserting that a entity instance represents two disjoint ContextEntity types at
the same time. Continuing the example introduced just earlier (the BusyPerson ContextEntity
de�nition), consider the following additional modeling:

ex : alice rdf : type ex : FreePerson

ex : FreePerson owl : disjointWith ex : BusyPerson

The above declares that the ContextEntity types FreePerson and BusyPerson are disjoint
and that, initially, Alice is free. If now at runtime, the conditions for deriving that Alice is a
busy person become true and the assertion that Alice is also an instance of a FreePerson
ContextEntity is not removed, then the knowledge base would become inconsistent.
To detect such cases, remember from Section 2.2.3 that ontology-based reasoning o�ers a proce-
dure to determine if the ABox (i.e. the set of instances in a knowledge base) are consistent with
respect to the de�ned semantics of the TBox (i.e. the ContextEntity and EntityDescription
modeling using OWL classes, properties and axioms).
As in the previous case for higher-level knowledge derivation, running such an ontology-based
inference procedure every time a ContextAssertion update occurs (which, as in the presented
example, could bring about the assertion of a new ContexEntities that are de�ned using ax-
iomatic expressions) is computationally intensive. As explained previously, in Section 5.2.2 we
present the means by which a context-aware application can control when such ontology-based
consistency veri�cations of the static knowledge base must take place.

By contrast, the integrity constraints that are de�ned for dynamically updated ContextAssertions
can and must be executed on each insertion. Value and Uniqueness constraints are de�ned for
a type of ContextAssertion. Further, general integrity constraints are typically de�ned between
two interdependent ContextAssertion types. Consequently, when executing a constraint de-
tection rule the reasoning will be performed only over the concerned assertion instances, as
opposed to the entire knowledge base, as would be the case for the ontology-based consistency
check algorithms. This is why the rule-based constraint detection mechanism employed for
dynamic context information is performed upon every update of a ContextAssertion type for
which such constraints are de�ned. Section 4.4.2 presents details of how these veri�cation �t
in the general execution cycle of our proposed reasoning engine.
To implement constraint detection rules, whilst having the same goals of uniformity and expres-
siveness in mind, we opt again to use SPARQL CONSTRUCT queries to declare the triggering
conditions and produce the resulting violation notices. Let us examine the case of de�ning an
Uniqueness Constraint Violation.

Example 4.3.1 (locatedAt uniqueness constraint).

CONSTRUCT {
_:b0 a ctx:UniquenessConstraintViolation .
_:b0 ctx:onContextAssertion person:locatedAt .
_:b0 ctx:hasConflictingAssertion ?g1 .
_:b0 ctx:hasConflictingAssertion ?g2 .

}
WHERE {

GRAPH ?g1 {
?this person:locatedAt ?Loc1 .

} .
GRAPH ?g2 {

?this person:locatedAt ?Loc2 .
} .
GRAPH <http://pervasive.semanticweb.org/ont/2004/06/person/locatedAtStore> {

?g1 ctx:hasValidity ?valAnn1 . ?valAnn1 ctx:hasValue ?validity1 .
?g1 ctx:hasCertainty ?certAnn1 . ?certAnn1 ctx:hasValue ?cert1 .
?g2 ctx:hasValidity ?valAnn2 . ?valAnn2 ctx:hasValue ?validity2 .
?g2 ctx:hasCertainty ?certAnn2 . ?certAnn2 ctx:hasValue ?cert2 .

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 71

} .
FILTER (

NOT EXISTS {?Loc1 (spc:spatiallySubsumedBy)+ ?Loc2 .} &&
(?Loc1 != ?Loc2) && (?cert1 >= 0.75) && (?cert2 >= 0.75) &&
cfn:validityIntervalsOverlap(?validity1, ?validity2)).

}

It expresses the fact that a person cannot be deemed as �nding herself in two places at the
same time (overlapping validity intervals) with high certainty in both a�rmations. While cer-
tain details about the form of the above query will be discussed more closely in Section 7.1,
where we talk about the implementation of the CONSERT Middleware, we draw the attention
to how the constraint violation de�nition vocabulary discussed in Section 4.2.3 helps us capture
all the required information about the contradicting ContextAssertion instances. Notice how
in the CONSTRUCT clause of the query, the type of ContextAssertion for which the constraint
is de�ned (person:locatedAt) as well as the two instances (marked by the ?g1 and ?g2
variables) that lie in con�ict are represented.
Furthermore, notice that one advantage of using SPARQL as a constraint de�nition language
is that it allows us to compose expressive constraint statements. In this example, not only
can we condition the triggering of a violation based on values of the annotations of a Context-
Assertion, but the domain knowledge check includes a call to a SPARQL 1.1 Property Path
(spc:spatiallySubsumedBy+) which states that physical spaces that lie in a spatial subsumption
relation are excluded from the set of con�icting ones (e.g. if a user is in a laboratory, it is ok to
have another ContextAssertion that says the user is also in the university building containing
the laboratory).
In Section 7.1.2 we discuss how a context integrity constraint query such as the one above is
serialized and attached to the corresponding ContextAssertion de�nition in a context model.

4.4 Reasoning Engine

To complete the overview of our contributions to the context representation and reasoning is-
sue, let us introduce hear the architecture and execution cycle of the CONSERT Engine, the
component of the CONSERT Middleware in charge of handling context updates, higher-level
inferences, constraint and consistency checks, as well as query answering. While the implemen-
tation of the engine and the services it provides within the context provisioning process will be
discussed in later chapters (7 and 5, respectively), in this section we wish to explore how the
life cycle of the CONSERT engine accommodates all the representation and reasoning aspects
described previously. We �rst present the engine architecture (without entering into imple-
mentation details) and then discuss the execution cycle which exploits all the representation
capabilities o�ered by the CONSERT Ontology to obtain semantically distinguishable context
situations (as de�ned in the objectives in Section 2.3).

4.4.1 Architecture

Figure 4.7 presents an architectural overview of the CONSERT engine. Its most important
building blocks and internal data structures can be observed on the right side of the �gure, while
on the top of the �gure we can observe a set of 4 external services which in�uence the execution
cycle discussed in the next section. The engine de�nes three indexes (ContextAssertionIndex,
ContextAnnotationIndex, ContextConstraintIndex) which create an internal representation of the
context model built using the ontology modules described in Section 4.2. The indexes create
wrappers over the modeled constructs, facilitating access to required information at runtime
(e.g. annotation statements for instances of a given ContextAssertion type, records of the
hasJoinOp, hasMeetOp and hasContinuityFunction properties for each ContextAnnotation type,

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 72

Figure 4.7: The CONSERT Engine architecture and main activity cycle

as described in Section 4.2.2).
The Derivation Rule Dictionary provides a mapping from every ContextAssertion to the list of
DerivationRules in the body of which it appears. This dictionary is used during inference checks
to determine if the update request for a given ContextAssertion can trigger the execution of a
deduction process. Further aspects regarding the semantic web concepts and frameworks (e.g.
Named Graphs, Jena TDB) that help to concretely store and work with a context model built
using the CONSERT Ontology are detailed in chapter 7.

The CONSERT Engine works with additional application-speci�c services and in Figure 4.7 we
observe a list of four such services depicted above the CONSERT engine container delimiter.
The engine interacts with the Constraint Violation Resolution Service when an integrity con-
straint violation is detected during a ContextAssertion update. The service is supplied by
the application developer and it e�ectively implements a policy for deciding which of the two
con�icting assertion instances must be kept. The statements generated using the constraint vo-
cabulary of the CONSERT ontology described in Section 4.2.3 provide the service with all the
information required to retrieve both the content and the annotations of con�icting Context-
Assertion instances, so as to make an informed decision. The CONSERT engine supplies two
default implementations of the service which may be used to discriminate based on the times-
tamp (PreferNewest) or certainty(PreferAccurate) annotations.
The Inference Priority Computation Service is used by the DerivationRule scheduler of the
CONSERT Engine when new inference requests get enqueued. The engine provides a default
�rst-come �rst-served implementation of this service, but application developers may provide
their own, which can assign, for example, a priority for each type of DerivationRule. The pri-
ority value can be based on the inference usage and success statistics collected periodically by
the CONSERT Engine. Details of how and what statistics are collected are further provided in
Section 5.3.1.

The ContextAssertion Insertion Noti�er is a service noti�ed by the CONSERT Engine whenever
a ContextAssertion update is successfully stored in the knowledge base. In chapter 5 we talk
about the functionality of our context provisioning units that are part of the proposed CON-

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 73

SERT Middleware. There we explain how the provisioning unit responsible for dissemination
uses this InsertionNoti�er service to handle context subscription requests.

Finally, the CONSERT Engine Tasking Service is the means by which the coordinating context
provisioning unit of the our proposed middleware (discussed further in Section 5.1.2) can control
the di�erent aspects of the CONSERT engine runtime execution. The service allows the exter-
nal management unit to (i) request that a DerivationRule be enabled or disabled, (ii) trigger an
ontology reasoning process or (iii) clear the in-memory storage of ContextAssertion instances
that exceed a certain time-to-live threshold. As we can see, these options (especially the �rst two
ones) address aspects that were hinted towards in previous sections (cf. Sections 4.3.1, 4.3.2).
Options (i) and (ii) regulate the inference capabilities of the CONSERT Engine. In particular,
the Derivation Rule enable/disable switch controls the dynamic event processing side of the
inference process. The ontology reasoning trigger, on the other hand, is targeted towards infer-
ence over the static background knowledge consisting of ContextEntity and EntityDescription
de�nitions. Remember from previous observations that performing an ontology reasoning e�ort
whenever ContextAssertions that in�uence ContextEntities or EntityDescriptions are updated
incurs a signi�cant overhead. Therefore, the CONSERT Engine Tasking Service externalizes
the logic of requesting ontological reasoning to the broader context provisioning functionality
of which it is part. As we will see more closely in Section 5.2, policies can be de�ned to specify
the timing for periodic invocations of the ontology reasoning process, so that the period is
correlated with the perceived update frequency of each type of ContextAssertion.
Option (iii) (in-memory storage clearing) is a way to free up memory from the statements of
ContextAssertions which have outlived their possible usage during runtime inference process-
ing. Through the same policy mechanism mentioned above, an application can set a time-to-live
threshold for each ContextAssertion type and request that assertion instances with a timestamp
annotation that is older than the speci�ed threshold be moved from memory to a persistent
storage for possible o�ine processing.

4.4.2 Execution Cycle

The CONSERT engine is initialized based on a set of OWL �les that de�ne the context model
using the CONSERT Ontology. To make things easier for a developer, he or she can specify a
�le that de�nes application speci�c concepts based on each module of the CONSERT Ontology
(i.e. core, annotation, constraint). The engine uses the �les to build the auxiliary data struc-
tures discussed above. Once they are initialized the engine can start operating.
We begin our execution cycle description by considering the arrival of a ContextAssertion in-
sertion/update request, as shown in Figure 4.7. As mentioned several times during this section,
the speci�c contents of the update request are an implementation detail which we discuss more
thoroughly in Section 7.1. The update request is put into the waiting queue of the insertion
handling thread pool. Once it is picked up, the handler thread proceeds to Step 2 of the
execution process and performs a sequence of three veri�cations:

Step 2a) The �rst one is called the continuity check, where the system checks if the content of the
new ContextAssertion matches any of the already existing ones. If a content-based match
is found, the check proceeds by looking at each StructuredAnnotations attached to the two
continuity-merge candidate assertions. As hinted towards in earlier sections, the proce-
dure accesses the ContextAnnotationIndex to retrieve the value of hasContinuityFunction
property for the given StructuredAnnotation. The continuity function examines if the two
ContextAssertion instances can be merged from the viewpoint of the annotation. For
example, in the case of the certainty annotation, only assertions for which their certainty
annotations are close to one another (e.g. within 0.1) may be allowed to merge. That is,
a situation described by a ContextAssertion with a high certainty value is di�erent from
one where the same situation is asserted with a much smaller degree of con�dence.
If after checking every continuity function, the two ContextAssertion instances are allowed

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 74

to merge, the engine will access the corresponding ⊕ operator of each StructuredAnnota-
tion to update the annotation values of the existing ContextAssertion (an action which
represents a use case of combining annotation information for statements that have the
same content, as explained in Section 4.1.1). The values for the BasicAnnotations are
simply taken from the newly inserted ContextAssertion and attached to the resulting
merger.

Step 2b) The class of the ContextAssertion to be inserted is checked against the ConstraintIndex to
determine if it has any attached integrity, uniqueness or value constraints. If found, the
associated SPARQL queries are used to execute the constraint detection. While assertions
violating value constraints are simply rejected, for any uniqueness or integrity violations,
the Constraint Violation Resolution Service is accessed as explained earlier above.

Step 2c) (not depicted in �gure) If both continuity and constraint veri�cations are successful, the
engine checks to see if the ContextAssertion type for which an update is being made is
de�ned in the context model as a subclass (in case of UnaryContextAssertion and NaryCon-
textAssertion) or as a sub-property (in case of a binary ContextAssertion) of a parent
ContextAssertion. In the a�rmative case, the engine takes the necessary steps to create
an instance of the parent assertion using the same ContextEntity instances that play a
role in the updated ContextAssertion instances. The exact steps depend again on the
implementation-centric aspect of how ContextAssertion of each arity-type are stored in-
ternally in the CONSERT Engine and are thus left for further examination in Section 7.2.
After creating the parent assertion content, the ContextAnnotations of the updated as-
sertion are copied over to the parent instance. This inheritance procedure di�ers from the
RDFS entailment applied in case of static knowledge, precisely because the instantiation
of a parent assertion depends on its arity and also has to preserve existing annotations, a
process which is speci�c to our context meta-model, rather than RDFS inferencing.

Step 2d) The �nal check is made against the Derivation Rule Dictionary which the system uses to
determine if the class of the updated ContextAssertion appears in any Context Derivation
Rules. On success, the insertion handler thread will enqueue an inference request triggered
by the current ContextAssertion.

After all veri�cations are completed, Step 3a of the execution cycle stores the validated update
in the runtime knowledge base, while Step 3b sends a noti�cation to the ContextAssertion
Insertion Noti�er such that it may inform any registered listeners.
When an inference request is received, the corresponding handler threads start a processing
sequence in which it executes three actions as follows:

Step 4a) The handler thread uses the Derivation Rule Dictionary to retrieve the list of all rules in
which the ContextAssertion in the inference request plays a role.

Step 4b) For each DerivationRule in turn it executes the associated SPARQL CONSTRUCT query. If
the rule could be successfully applied the thread proceeds to the last step in the inference
process.

Step 4c) The thread takes the statements constructed by the inference query and transforms
them into SPARQL UPDATE statements similar to the format used when inserting a new
ContextAssertion. The newly inferred ContextAssertion is thus enqueued in the insertion
waiting queue, which completes the deduction functionality cycle.

The execution cycle detailed above represents the typical processing sequence for a sensed
ContextAssertion, that is, one updated frequently by a sensor source. As explained in Section
4.2.1, the CONSERT Ontology supports modeling constructs that can inform of a design-time
expected or runtime observed type of acquisition for ContextAssertion instances. This modeling
feature has of course an in�uence on the above presented processing steps.
Since the derived (i.e. inferred) ContextAssertions are created largely based on aggregation

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 75

of multiple sensed assertions, their update dynamics closely depends on that of the sensed
ContextAssertions and, therefore, the CONSERT Engine applies the same processing steps (as
mentioned as well in Step 4c).
A pro�led ContextAssertion however is one which is not sensed periodically, but rather explic-
itly given by a user or service whenever a relevant change needs to be transmitted. Therefore,
the source user or service already take care of the step of determining semantically distinguish-
able situations such that Step 2a (situation continuity check) can be omitted.
Lastly, a similar line of reasoning applies for static information updates (i.e. ContextEntities
or EntityDescriptions). Furthermore, as explained in Section 4.3, both consistency and deriva-
tion of static knowledge follows is based on ontology reasoning procedures, rather than the
rule based approach that is part of the typical execution cycle, such that the constraint and
inference steps (2b and 2d) do not apply. We mentioned when we talked about the CONSERT
Engine Tasking Service that the ontology reasoning procedures are controlled by the context
provisioning coordination unit which manages a CONSERT Engine instance in our proposed
middleware.

The design speci�cations listed above present the sequence of steps that the CONSERT Engine
undertakes while handling updates of ContextAssertions that it may receive from external ap-
plications or sensing services. These steps help to build and maintain the contextual situation
knowledge about current states and activities in the environment that other services can then
exploit through querying. What is important to notice is that the steps are built around the idea
of making use of all the supporting bene�ts introduced by the CONSERT ontology discussed in
the previous section: from using the structured operators of ContextAnnotations in the conti-
nuity check, to applying Context Constraints and collecting the possible constraint violation ac-
cording to the properties of the ConstraintViolation class de�ned in the CONSERT ontology and
down to using SPARQL-encoded ContextDerivationRules that infer derived ContextAssertions.

4.5 Discussion

In this chapter we described our approach with respect to representation and reasoning about
context information. We have opted to develop a context meta-model which he have pre-
sented formally and implemented using semantic web technologies. The choice of creating a
meta-model and its ontology-based implementation are motivated by the requirements for ex-
pressiveness and uniformity. These same objectives justify our approach to consistency mainte-
nance and knowledge inference based on a SPARQL-encoded rule-based reasoning mechanism.
In what follows, we perform an analysis of the proposed contributions by seeing how they ad-
dress the representation and reasoning requirements outlined in Sections 2.1.1 and 2.2.1 and
seeing how they compare against some of the reviewed state of the art work.

4.5.1 Analysis of Modeling Contributions

Let us begin by considering the support for context modeling. We �rst provide a complete
description for each mentioned requirement and then present a summary table for a concise
overview.

CONSERT addresses model �exibility by proposing a meta-model approach to context mod-
eling. That is, the proposed constructs do not model a application domain in itself, but rather
provide representation concepts on top of which several domains can be built. However, the
fact that we use an ontology-based implementation allows our meta-model to be easily con-
nected to existing general-domain ontology-based models such as SOUPA [Chen et al., 2004b]
or CONON [Gu et al., 2004], which can become upper ontologies (as shown in Figure 4.2).

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 76

One of the �exibility advantages of our approach is the ability to de�ne arbitrary arity Context-
Assertions as well as to specify inheritance relations between ContextAssertions (given our
ontology based implementation). This represents an improvement upon both CML [Henricksen
et al., 2005b] and the work of [Fuchs et al., 2005] which can only account for one of these two
aspects.
It might be argued that arbitrary arity modeling is not of the utmost signi�cant importance
since in the majority of cases it can be replaced by a semantically equivalent set of binary state-
ments. For instance, our example of the sensesSkeletonInPosition ContextAssertion can
be expressed by the combination of two binary assertions such as sensesSkeleton(Camera,
Skeleton) and hasPosture(Skeleton, Posture). However, the relevance of the abil-
ity to capture n-ary ContextAssertion becomes apparent when we consider the annotations or
constraints for instances of such assertion types. Indeed, with such an ability the context model
designer can express the fact that meta-properties such as temporal validity or certainty apply
to the the whole n-ary statement and not its individual role statements. In our above example,
a model designer would have to duplicate such annotations or constraint de�nitions for each
individual binary ContextAssertion, when in fact semantically they characterize the group of
statements (i.e. the sensesSkeletonInPosition ContextAssertion).

Our modeling approach accounts for heterogeneity of the context information sources by
considering properties (e.g. the subproperties of entityRelationAssertion for binary assertions
or the assertionType property for UnaryContextAssertion and NaryContextAssertion) that allow a
developer to state the design-time expected or runtime observed acquisition type of a Context-
Assertion instance. As shown in the previous section, these acquisition types in�uence the
processing steps undergone by the corresponding assertion instance. Furthermore, as we will
explore in chapter 5, the update rates of various sensors can be controlled via provisioning
policies and will re�ect in the timestamp and temporal validity annotations of those Context-
Assertion instances.

Context relationship and dependency speci�cation is enabled in the CONSERT meta-
model by means of ContextDerivationRules and Context Constraints. The �rst one speci�es
dependencies that result in the inference of new knowledge (derived ContextAssertions) from ex-
isting information, while the other one speci�es value, uniqueness or general integrity constraints
that keep the knowledge base consistent. In addition, the ontology-based implementation of
the meta-model allows us to exploit ontology-speci�c constructs and reasoning procedures ap-
plicable for static context information, as explained in Section 4.3.

Timeliness and management of imperfect/ambiguous information are both handled
based on the ability to capture the relevant ContextAnnotations and to access their value during
inference. Currently, the proposed model does not explicitly deal with incomplete knowledge,
as was the case for instance in Chen and Nugent's [Chen and Nugent, 2009] usage of OWL to
model and reason about activities of daily living. This is because, as opposed to OWL reasoners
which adopt an open world assumption, our rule-based approach uses a closed world assumption
which only deals with explicitly stated ContextAssertions. The problem is partially handled for
static context information and could be further mitigated by considering other future reasoning
procedures (e.g. abductive inference) for the CONSERT Engine besides deductive inference.
On the other hand, our support for handling of uncertain/ambiguous information is more
elaborate then that of other semantics-based works reviewed in Sections 2.1 and 2.2. Not only
do we o�er means to represent and reason about annotations such as certainty and temporal
validity (which are useful when dealing with uncertain information), but by de�ning a speci�c
structure and inference usage semantics for this type of ContextAnnotations we can make sure
they are properly propagated to the derived ContextAssertions.

Table 4.1 summarizes our previous discussion. As concluding remarks for our modeling con-
tributions we wish to point out that the resulting meta-model also ful�ls our objectives for
uniformity and expressiveness. Uniformity is achieved by the fact that many relevant aspects

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 77

Flexibility Heterogeneity Dependencies Timeliness Ambiguity

CONSERT
Meta-Model +
Arbitrary arity

Modeling
acquisition type

ContextDerivation
Rules + ContextCon-
straints

ContextAnnotations
Structured
ContextAnnotations

Table 4.1: Overview of how context modeling requirements are addressed by the CONSERT
Meta-Model.

of a context model (e.g. content of information, meta-properties, integrity dependencies) are
captured using the same ontology-based vocabulary. Furthermore, uniformity of reasoning is
ensured because SPARQL-based rules are used to perform knowledge derivation and constraint
detection. The expressiveness of the approach results from the available modeling constructs
and the use of ontologies to ensure support for concept hierarchies and easy coupling with ex-
isting context domain representation approaches.
While the resulting CONSERT Meta-Model might be more complex and verbose than other
similar approaches studied in Chapter 2, from an engineering and development perspective the
overhead is acceptable compared to the above outlined bene�ts. Furthermore, model verbosity
can be easily overcome by supplying the designer with adequate modeling tools, which, given
our ontology based implementation, should be a straightforward aspect of future work.

4.5.2 Analysis of Reasoning Contributions

In Section 2.2.1 we explained that reasoning about context information targets the aspects of
knowledge derivation and consistency maintenance. The CONSERT Meta-Model accounts for
both concerns as explained in Section 4.3. In the following we want nonetheless to analyze the
aspects that distinguish the CONSERT Engine execution cycle from other reasoning approaches.

The �rst aspect we mention regards the continuity check. Thanks to timestamp and temporal
validity ContextAnnotations the CONSERT Engine performs an automatic computation of the
temporal continuity of context events. This leads to what we call semantically distinguishable
situations, i.e. situations which are well de�ned both from a temporal point of view (i.e. start
and �nish moment) as well as from their characterizing meta-properties (e.g. certainty). It is in
this continuity check that the hasContinuityFunction property of a structured ContextAnnotation
becomes relevant, since it allows to establish which updates of a ContextAssertion types can be
considered a continuation of a previously inserted event from the point of view of its annotation
information.
The di�erence with other reasoning engines in the reviewed literature is that the mechanism for
computing such temporal situation continuity is implicit rather than requested on demand. Our
argument in favour of this choice is the idea that current AmI applications require recognition of
situations with increasingly complicated detection conditions, which often involve reasoning over
time. Therefore, having the ability to inspect the temporal validity of each currently detected
contextual situation during inference is an obvious bene�t. Furthermore, this mechanism is
useful with respect to the quality of context dissemination. Besides being readily able to answer
to queries that explicitly state the validity period for which they want to retrieve context
information, a query-handling context provisioning unit using the CONSERT Engine can ensure
that its answers (which may take time to be routed back to the original requester) are not based
on information which becomes stale by the time they reach the requester.

The above mentioned continuity check also has implications with respect to acquisition of
context information. Thus, temporal validity annotations and the CONSERT Engine Tasking
Service, which allows the application level to perform a removal of ContextAssertion instances
having surpassed their time to live, eliminate the need for a non-monotonic reasoning approach
(i.e. perform explicit assertion and retraction of statements according to their truth value).
The end of the validity of a situation is marked by the corresponding ContextAnnotation and

CHAPTER 4. REPRESENTING AND REASONING ABOUT CONTEXT 78

the ContextDerivationRules run by the CONSERT Engine can readily exploit this information
when performing inference.

Our consistency handling mechanism also di�ers from other solutions because it uses a com-
bination of ontology and rule-based mechanisms. The context integrity constraint approach
de�ned for dynamically updated ContextAssertions is furthermore functionally equivalent to
the defeasible logic reasoning approach proposed by Bikakis et al. [Bikakis and Antoniou, 2010]
to deal with ambiguous information, having the added bene�t that constraint detection rules
can express conditions over both assertion content and annotations.
As explained, ontology reasoning is performed in a controlled manner (con�guration of which
is further discussed in Section 5.2.2). Furthermore, we show in Section 7.1 that the speci�c
implementation of the storage of ContextAssertion and ContextAnnotation information within
the CONSERT Engine can lead to a more e�cient way to perform ontology-based realization
and knowledge base consistency inference procedures, by loading only necessary subsets of the
runtime knowledge base into the reasoner.

Chapter 5

Adaptable Context Provisioning

Once an approach for representing, storing and reasoning about context information is estab-
lished, the next step in designing a context management middleware (CMM) involves deter-
mining how to create a context provisioning process around the chosen modeling and inference
methods. In chapter 3 we have seen that one of our main objectives, given the shortcomings of
the reviewed related work, is to propose a CMM architecture where the components (units) that
are responsible for di�erent steps of the provisioning process can be individually and �exibly
deployed on di�erent machines, started or stopped according to the application needs. Fur-
thermore, we mentioned that we want to set out and empower the application developer with
the ability to con�gure the functionality of each provisioning unit and specify when and how
they should react and adapt the provisioning process depending on the perceived usage of the
managed context information.

In this chapter we describe the multi-agent architecture of our CMM and present the policy-
based con�guration/control means used to adapt the provisioning process managed by the
agents. In Section 5.1 we start by explaining why multi-agent technologies are a perfect �t for
our intended middleware design. We then continue detailing this design by introducing the dif-
ferent agent types that make up our context provisioning units and presenting the environment
in which they execute.
Section 5.2 presents the agent functionality in more detail. We introduce the notion of context
provisioning policies and detail the type of speci�cation they contain regarding control and
adaptation of the context provisioning process.
In Section 5.3 we then present how the agents integrate the policy speci�cations in their behav-
ior in order to control context provisioning.
The interaction protocols taking place between the agents given their provisioning responsibil-
ities and assigned policies are presented in Section 5.4.
The chapter concludes with Section 5.5, where we discuss how the context management require-
ments mentioned in Sections 3.1.1 and 3.1.2 are addressed.

5.1 Multi-Agent Based Architecture

One of the de�ning characteristics of the CONSERT Middleware is its architectural design that
is based on techniques and tools from the Multi-Agent System (MAS) domain. The choice
for this approach is motivated by the potential to achieve �exible management of middleware
deployment and functionality. We provide a rationale for the use of MAS techniques and then
introduce the agents and their environment.

79

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 80

5.1.1 Rationale

Multi-Agent Systems are a �eld of research with a contribution activity that spans a time
line of more than 25 years and domain space comprising research areas such as distributed
communication, control and communication, planning, constraint satisfaction, game theory,
argumentation and more. However, on top of these research directions particular paradigms
of development were born, namely agent-oriented programming (AOP) [Shoham, 1993] and
multi-agent oriented programming (MAOP) [Bordini et al., 2005]. These paradigms argue for
using the notion of agency and everything related to it (e.g. environment programming, or-
ganizational programming) as an application design methodology. Multi-agent systems and
technologies are supported by a vigorous research community, but it may be argued whether
MAOP has had the same impact on software application development as other technologies
which had started from academia (e.g. semantic web, machine learning, big data). However,
the MAS research community is starting to put increasingly strong emphasis on the practicality
of developed frameworks and tools and a recent survey [Müller and Fischer, 2014] has found
that MAS technologies have been successfully deployed in a signi�cant number of applications
coming from niche markets. Though currently not as much in the spotlight as other software
engineering domains, multi-agent systems are highly useful in speci�c sectors.
It is our opinion that context management middleware development is one of these sectors,
especially since topics such as �exible control, distributed deployment or coordination are all
relevant within a context management system and were intensely studied in the MAS litera-
ture. In what follows we provide a short overview of the notion of agency and then present
further arguments why the agent-based design method is suitable for de�ning our middleware
architecture.

The term agent has a broad sense and there is currently no real commonly agreed upon de�ni-
tion of the notion within the agent and multi-agent research community. However, by examining
the literature, two clear usages of the term (expressed based on attributed requirements) can
be identi�ed: the weak notion of agency and the strong notion of agency [Wooldridge and Jen-
nings, 1995].
The weak notion of agency denotes a software-based computer system with the following prop-
erties [Wooldridge and Jennings, 1995]:

• Autonomy: agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state.

• Social ability: agents interact with other agents (and possibly humans) via some kind of
agent communication language.

• Reactivity: agents perceive their environment and respond in a timely fashion to changes
occurring therein.

• Pro-activeness: in addition to acting in response to their environment, agents are able to
exhibit goal-directed behaviour by taking the initiative.

Wooldridge and Jennings [Wooldridge and Jennings, 1995] remark that the stronger notion of
agency is most notably used by researchers coming from the �eld of Arti�cial Intelligence and
is characterized by additional properties (with regard to the ones above) that conceptualise the
notion using concepts that generally apply to humans. Thus, an agent could be characterized
as:

• Displaying and functioning based onmentalistic states: belief, desire, intention, obligation
(the BDI agency model) [Shoham, 1993].

• Further extending the BDI model with an emotional component [Bates et al., 1994; Pereira
et al., 2008].

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 81

• Showing intelligence by having the ability to learn about the environment in which they
are placed, as well as about the behavior of other agents in the environment [Alonso et al.,
2001]. The purpose of the learning processes is the adaptation to the conditions of the
environment and better achievement of goals entrusted to them.

As explained previously, our intended use of multi-agent systems is as an elegant and well-�tted
engineering solution for the design and development of a context management middleware archi-
tecture. Considering the main context provisioning operational blocks and transverse function-
ality identi�ed in Section 3.1.1, we adopt the weak notion of agency in terms of describing the
behavior of our agents. Furthermore, given that the analysis made by [Müller and Fischer, 2014]
shows that mature agent-based applications are built using existing agent development frame-
works, we dwell on this insight and choose to use a well known agent development framework
to help with the engineering of the behavior and communication of our context management
agents (more details on this in Section 7.3).
These design choices bring the following bene�ts to our approach:

• Encapsulation of each aspect of the context provisioning life cycle (sensing, coordination,
dissemination, usage). This re�ects not only in decision making, but also in interaction
planning, error handling, adaptation management. In short, it opens up the possibility
for achieving autonomy of each provisioning step (this would be an instrumental step in
the vision of Sensing-as-a-Service [Perera et al., 2014b] oriented applications).

• Easily create interaction protocols by using existing agent communication language stan-
dards (e.g. FIPA ACL1) and communication infrastructure support (e.g. those o�ered
by the JADE 2 framework). The advantage of these standards is that they contain a
communication intention semantics and encapsulate both success and failure interaction
sequences, such that both successful invocation and error handling are uniformly treated
and do not amount to a set of ad-hoc callback procedures which need to be correlated in
a custom way by the application developer. This represents a noticeable facilitation in
the development of our context management middleware.

• Each provisioning step can be described in terms of behaviors which the corresponding
provisioning agents use to either react to received messages (a ContextAssertion update,
a query, a request to modify the sensing update rate), or to actively pursue maintenance
goals expressed by the context-aware application developer as policies that govern the
functionality of the context provisioning process (refer to Section 5.2). Therefore, we see
that the reactivity and pro-activity attributes of an agent �t well with the requirements
of �exible context provisioning.

Given the above arguments, the next section introduces the multi-agent based architecture that
operates the context provisioning process in the CONSERT Middleware.

5.1.2 Context Provisioning Agents

The CONSERT Middleware de�nes a set of �ve agent types. Each agent is responsible for a
part of the context provisioning process, as we explore in what follows, and their combined
functionality constitutes what we call a CONSERT Management Unit (CMU). In chapter 6 we
will see that the agent composition of a CMU can di�er according to the provisioning aspect
required to be enacted on a physical machine. That is, not all agents have to be present on every
deployment, but rather the CONSERTMiddleware o�ers the �exibility of selecting which agents
need to run on which machine (e.g. a dedicated sensing machine, a management/coordination
machine, a consumption/client machine). Furthermore, for a given application, multiple CMUs
can be deployed and organized in di�erent ways for managing and provisioning context to the

1http://www.�pa.org/repository/aclspecs.html
2jade.tilab.com

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 82

applications.
However, in this section we wish to introduce the main functionality of CMM agents and
the environment in which they operate within a Context Management Unit. The �exible
con�guration and deployment of one or more CMUs within an application is the subject of the
next chapter.

3rd Party Sensor Middleware

Application

Client Adaptor

send query send sensed/pro led

updates

organize

commands

queries

Context-Aware Application

Application

Control Adaptor

manages

CONSERT Agent Management Logicimplements implements

issue queries/

subscriptions

send pro led updates

control pro led

updates

adjust context

provisioning

implements

OrgMgr

CtxCoord

CtxSensor

commands / translates from

ContextAssertion

Adaptors

CONSERT Engine
- Store Context Information

- Check Continuity

- Check Constraint Integrity

- Perform Ontology Reasoning

- Perform Derivation Rule

Reasoning

- Compute Context Usage

Statistics

CtxUser

CtxQuery

Handler

Context

Domain

Ontology

extends

loads

CORE

CONSTRAINT

ANNOTATION

CONSERT

Meta-Model

Ontology

JV
M

O
S

G
i
F
r
a
m

e
w

o
r
k

A
p

a
c
h

e
 J

e
n

a
+

S
P

IN
JA

D
E
 F

ra
m

e
w

o
rk

Figure 5.1: CONSERT Middleware: multi-agent architecture and interactions

Figure 5.1 shows an overview of the typical setup of a CMU. It presents the CMM agents and the
main provisioning interactions that take place between them, as well as the service component
based environment in which they operate (more details on the component-based implementation
in Section 7.3). The services in the environment help the agents perform reasoning tasks, extract
data from third-party sensor middleware and respond to application demands.

The CONSERTMiddleware de�nes the following agent types: CtxCoord, CtxQueryHandler,
CtxSensor, CtxUser and OrgMgr. We review their main functionality in what follows.

CtxSensor agent : is responsible for managing interactions with sensors and with the
CtxCoord agent of its own CMU to handle provisioning commands (e.g. start/stop sending
updates, change update rate - cf. Section 5.2.2 for more details). Communication with physical
sensors is achieved by using Context Assertion Adaptors from the environment.

CtxCoord agent : is in charge of the coordination of the main life cycle of a CMU. It creates
and manages a CONSERT Engine instance (described in the previous chapter) to control con-
text derivation and consistency. As we explore more in Section 5.2.2, the CtxCoord establishes
what context information needs to be acquired/derived and how/when to do so. He can further
more interface with the application level to receive instructions on how to set/alter parameters
that control the CMU provisioning life cycle.

CtxQueryHandler agent : is in charge of the dissemination of context information. The
CtxQueryHandler maintains access to the instance of the CONSERT Engine managed by
the CtxCoord deployed in the same CMU. By default, it uses this local knowledge base to
answer to queries. In case of more complex settings however, involving multiple agents, it can

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 83

participate in a federation protocol which involves interacting with CtxQueryHandler agents
deployed in other CMUs (in case of a decentralized deployment detailed in the next chapter).

CtxUser agent : is in charge of interfacing with the application and acting as a prosumer
(i.e. producer and consumer - see more in Section 6.4.4) of context information. It receives
instructions from the applications regarding what context information to receive/send and how
to do so.

OrgMgr agent : is responsible for controlling the deployment of a CMU and of the entire
middleware in cooperation with other OrgMgr agents. That is, this agent launches and controls
the state of CMM agents (started / stopped / uninstalled) within the CMU it manages, but can
also hold the overview of other deployed CMUs in case of a decentralized deployment scheme
(as discussed in chapter 6). It furthermore acts as a yellow pages agent for the agents in its
CMU and is in charge of managing mobility aspects. Given that the purpose of the OrgMgr
agent is to manage the deployment and lifecycle of a CMU, the details of its functionality will
be discussed in Section 6.3 of the chapter on middleware deployment. Having brie�y introduced
the agent types and their responsibilities, let us now provide an overview of the environment
in which they execute.

5.1.3 Context Provisioning Agent Environment

The environment of a CMU is constituted as a set of services that enable the agents within
the CMU to communicate with sensing and application levels, as well as to perform actions
for storing and reasoning about the context information they manage. The concrete means
in which the agents acquire or expose the services in their environment is an implementation
speci�c aspect and will be detailed in Section 7.3. In what follows, we present what these
services are and how the CMM agents interact with them.

CONSERT Engine. The CONSERT Engine is the service component of the agent envi-
ronment that handles storage, inference and consistency of the context information managed
by the agents of a CMU. This means that reasoning about context happens within the agent
environment. However, as visible in Figure 5.1, it is the CtxCoord agent that creates and
commands an engine instance, controlling its functionality. Remember from Section 4.4.1, that
the CONSERT Engine exposed several interfaces that allowed an external management system
to a�ect its workings. The CtxCoord agent uses the CONSERT Engine Tasking Service to
control enabled DerivationRules, trigger ontology reasoning and manage the lifetime of stored
ContextAssertion instances.
At the same time, the CtxQueryHandler uses the query interface and ContextAssertion In-
sertion Noti�er of the CONSERT Engine to execute received queries and check for answers to
subscriptions every time a ContextAssertion referenced by those subscriptions is updated.

ContextAssertion Adaptors. These services are implemented by the application developer
and provide an interface with the given sensor infrastructure that is part of the application.
The adaptor allows the CtxSensor to translate retrieved sensor data into the corresponding
ContextAssertion, EntityDescription and ContextAnnotation statements of the application con-
text model created using the CONSERT Ontology. In a CMU, one such adaptor is created for
each type of ContextAssertion that the CtxSensor agents within the CMU have to manage.

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 84

Application Client/Control Adaptors. Whereas the ContextAssertion Adaptors
pre-exist in the agent environment, the Application Client and Application Control
adaptors are exposed by the CtxUser and CtxCoord agents respectively. The client adaptor
presents the service interface which allows the application to instruct the CtxUser on launching
queries and subscriptions, as well as sending pro�led ContextAssertions (i.e. act as a sensor)
or static EntityDescriptions.
The Application Control Adaptor, on the other hand, allows the application level to
set/modify some of the parameters that control the context provisioning (more on this in Section
5.2.2). For example, the application can use the service to instruct the CtxCoord agent to set
the current resolution service for a given ContextAssertion integrity constraint.

5.2 Context Provisioning Agent Policies

Having introduced the agent types and their environment, we now want to more closely present
the agent provisioning functionality. In our state of the art overview of context management
systems we mentioned that an important complementary aspect is that of adaptation/control
of the context provisioning process (cf. Section 3.1.1). Furthermore, in Section 3.3 we explained
that in order to address the non-functional requirement of ease of con�guration and develop-
ment, we wish to focus on a declarative means for specifying what, when and how should be
changed in the context provisioning process enacted by CONSERT Middleware agents. Con-
sequently, our approach to context provisioning management is based on policies that guide
the behavior of the CMU agents. This choice relies on our belief that declarative policy-based
control speci�cations provide the best balance between application engineering �exibility and
development e�ort.

Because the notion of a policy has di�erent meanings in di�erent research domains, we start o�
by providing our de�nition of this concept.

De�nition 5.2.1 (Context Provisioning Policy). A Context Provisioning Policy is a collection
of parameters that control aspects of context provisioning and rules that set conditions for
setting/modifying the value of these parameters.

In the CONSERT Middleware, the parameters that are part of a provisioning policy govern
both the �ow of context information within a CMU and the type of inferences carried out by
the CONSERT Engine. That is, they a�ect both interactions between CMM agents as well as
the functionality of the agent environment. Designers can specify what and how information
is transmitted and how inference and query handling are prioritized depending on current
provisioning requirements (e.g. number of subscriptions, frequency of queries). In this section
we will present the type and role of existing provisioning parameters and rules on a conceptual
level. Two aspects of the context provisioning process, sensing and coordination are currently
impacted by context provisioning policies. The speci�cs of each one are described next.

5.2.1 Sensing Policies

Sensing policies contain parameters that control how updates of sensed information are to be
forwarded. Within such a policy, for each type of ContextAssertion, the paremeters listed in
Table 5.1 can be speci�ed.

The update mode speci�es the nature of the forwarding mechanism. In a time-based mode up-
dates of the particular ContextAssertion are send at speci�ed time intervals. In a change-based
mode, on the other hand, updates are sent only upon change from a previous instance. The
detection of a change is dictated by the speci�c ContextAssertion Adaptor and is based
on the values of both content and annotations of a ContextAssertion. For time-based modes,

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 85

Parameter Values Role

update mode time-based, change-based Specify condition for making a new update.

update rate number in seconds Specify the refresh rate for time-based updates.

Table 5.1: List of parameters available in a sensing policy.

the update rate (in seconds) can also be expressed.
It is worthy to note that these parameters govern the way in which updates for a given
CtxSensor are sent to the corresponding CtxCoord agent. Notice that with respect to
agent communication this is a controlled push update scheme. The communication between
the CtxSensor agent and the physical sensor from which he extracts the ContextAssertion in-
formation can vary (i.e. push, pull mode, �xed update rate) depending on the capabilities of the
speci�c sensor. It is here that the Context Assertion Adaptor plays an important part,
namely to accustom the �xed communication means between CtxSensor and physical sensor,
to the dynamic provisioning requirements set by the sensing policies and possible commands
received from the CtxCoord.

Below is a small pseudo-con�guration excerpt that sets the update mode and rate for the
presence and luminosity related ContextAssertions from the AmI-Lab ad hoc discussion part
of our reference scenario (details in Section 8.2.3).

Presence
update mode := time-based
update rate := 5 s

Luminosity
update mode := change-based
update rate := 0 s

This con�guration tells the CtxSensor agents which are in charge of managing the updates for
the above mentioned ContextAssertions that presence updates (i.e. detections of the bluetooth
address of smartphones in the laboratory) are to be sent every 5 seconds. On the other hand,
updates for luminosity must only be sent when the value of the ContextAssertion instance
changes from the previous one.

5.2.2 Coordination Policies

Sensing policies specify the desired default context update modes. Provisioning coordination
policies de�ne settings (via control parameters) and specify actions (via control rules) that
address such dynamics. They are de�ned in a �le which is read by the CtxCoord agent
upon initialization. In what follows, we give some perspective over the provisioning control
parameters and provisioning control rules from a conceptual point of view.

Control parameters govern relevant settings of the context provisioning process. They af-
fect both context information transmission and inference processes. As we can see in Tables
5.2 and 5.3, control parameters can be divided into two categories: general parameters and
assertion-speci�c parameters. The former provide a default (general) setting, while the latter
can override the general setting with a value speci�c to a ContextAssertion type. In terms
of transmission, control parameters specify which ContextAssertions currently need to be en-
abled and how long a particular instance of a ContextAssertion must be kept in the CONSERT
Engine working memory (its TTL). For these parameters there is both a general as well as a
ContextAssertion-speci�c value.
With respect to inference, the assertion enabling parameter con�gures also the currently active

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 86

Parameter Values Role

default assertion en-
abling

true/false
Specify if assertion updates are enabled by de-
fault.

default ont. reasoning
interval

number in seconds
Default time span between calls to ontology rea-
soner.

default TTL number in seconds
Default time to live for any ContextAssertion in
the runtime storage

default integrity con-
straint resolution

String in enumeration
Identi�er of the service handling integrity con-
straint resolutions

default uniqueness con-
straint resolution

String in enumeration
Identi�er of the service handling uniqueness con-
straint resolutions

default run window number in seconds
Length of time window over which context usage
statistics are computed

inference scheduling ser-
vice

String in enumeration
Identi�er of service providing priority scheduling
for ContextDerivationRules

Table 5.2: List of general parameters available in a coordination policy.

ContextDerivationRules by specifying enabled derived ContextAssertions. The type of infer-
ence scheduling service (e.g. �rst-come �rst-served, priority based) is a parameter which has
only a general value and controls the order in which enqueued ContextDerivationRules are to
be executed.
With regard to constraint checking, remember from Section 4.4.1 that the CONSERT Engine
can work with an external service which is called upon detection of an integrity constraint. These
services are part of the agent environment of the given CMU and the default and assertion-
speci�c constraint resolution parameters specify the identi�ers of these services. Using the
Application Control Adaptor, the application can change the desired resolution service
by changing the initial identi�er value of the corresponding control parameter.
Lastly, remember that in Section 4.3.1 we talked about how inference in the CONSERT Engine
has both a dynamic (ContextDerivationRules) and a static (ontology reasoning for Context-
Entities and EntityDescriptions) component. More speci�cally, we mentioned that there can
be context models which de�ne ContextEntities using OWL class construction axioms that
involve EntityDescriptions and ContextAssertions. We hinted then, that in order to perform
the required instance realization ontology reasoning procedure, we would have to invoke the
ontology reasoner on every ContextAssertion update, which could become costly depending
on the assertion update rate. In order to provide control over the invocations of the ontology
reasoner, the ont reasoning interval parameter speci�es a general time span between successive
calls to the reasoner. However, this parameter can be customized for each ContextAssertion
type, in which case a further optimization will be performed, namely the ontology reasoner will
be loaded only with the ContextEntity instances for which their class axiom de�nition references
the given ContextAssertion type, thereby reducing the size of the ABox. In Section 7.1.1 we
will explain how our storage of ContextEntities and ContextAssertions enabled us to achieve
this more easily.

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 87

Parameter Values Role

speci�c assertion en-
abling

true/false
Specify if updates are enabled for the speci�ed
ContextAssertion.

speci�c ont. reasoning
interval

number in seconds
Time span between calls to ontology reasoner for
speci�ed ContextAssertion.

speci�c TTL number in seconds
Time to live for speci�c ContextAssertions in the
runtime storage

speci�c integrity con-
straint resolution

String in enumeration
Service handling integrity constraint resolutions
for speci�c ContextAssertion

speci�c uniqueness con-
straint resolution

String in enumeration
Service handling uniqueness constraint resolutions
for speci�c ContextAssertion

speci�c observation win-
dow

number in seconds
Length of time window over which context us-
age statistics are computed for speci�c Context-
Assertion

Table 5.3: List of assertion-speci�c parameters available in a coordination policy.

To exemplify a setup of these parameters, we again refer to the AmI-Lab part of our scenario
and provide the following pseudo-con�guration excerpt.

General parameter values
default assertion enabling := false
default ont reasoning interval := 10 s
default observation window := 20 s
default TTL := 100 s
default uniqueness constraint resolution := PreferNewest
default integrity constraint resolution := PreferAccurate

Assertion-speci�c parameter values
assertion enabling := device presence ContextAssertion : true
assertion enabling := person location ContextAssertion : true

The example shows us that updates for ContextAssertions are not enabled by default, except
for device presence. The person location ContextAssertion is actually of a derived acquisition
type. The true value for the speci�c assertion enabling parameter means that all the Con-
textDerivationRules that infer values of this ContextAssertion will be enabled. In dealing with
uniqueness constraints, the service preferring the newer ContextAssertion instance is used by
default. For general integrity constraints, we prefer the most accurate one (i.e. discrimination
based on the certainty annotation).
Apart from transmission and inference, the observation_window parameter con�gures the
length of the time window over which statistics of context information and inference usage
are computed by the CONSERT Engine. This parameter can again have both general and
ContextAssertion-speci�c con�gurations. In our scenario we only speci�ed a default value for
the parameter. The statistics gathered by the CONSERT Engine (presented in Section 5.3.1)
together with snapshots of its current knowledge base constitute the triggering conditions of
the provisioning control rules, which we discuss next.

Control rules are the concrete means to specify adaptation actions of the context provision-
ing process. Some of these actions can change the value of control parameters introduced earlier
(e.g. assertion enabling, inference scheduling service), while others will have as consequence
the alteration of sensing policy parameters discussed in the previous section (i.e. changes to the
update mode or update rate for speci�c ContextAssertions). Parameters which can currently

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 88

not be a�ected by means of control rule output (e.g. type of constraint resolution service for
violations triggered by a given ContextAssertion type) can still be altered at runtime by the
application level by means of a more direct mechanism, namely the Application Control
Adaptor (cf. Figure 5.1).
The currently available rule outcomes in the CONSERT Middleware are listed in Table 5.4.

Rule Type E�ect

StartAssertionCommand assertion speci�c
Enable updates for the speci�ed Context-
Assertion.

StartRuleCommand assertion speci�c
Enable all ContextDerivationRules which derive
the speci�ed ContextAssertion.

StopAssertionCommand assertion speci�c
Disable updates for the speci�ed Context-
Assertion.

StopRuleCommand assertion speci�c
Disable all ContextDerivationRules which derive
the speci�ed ContextAssertion.

UpdateModeCommand assertion speci�c
Alter the update mode or rate for the speci�ed
sensed ContextAssertion

InferenceScheduling
Command

general
Set the active ContextDerivationRule scheduling
service

Table 5.4: List of control rule output commands available for use in a coordination policy.

We mentioned in the previous chapter that the ContextDerivationRules used to infer new
ContextAssertion instances are implemented as SPARQL CONSTRUCT queries. To maintain
uniformity of the approach, we use the same principle to give shape to provisioning control rules.
Details about the implementation and examples based on the reference scenario are provided
in Section 7.1.3.

5.3 Context Provisioning Policy Execution

In this section we move to the operational aspect of context provisioning adaptation. We
have seen previously that policies help set up the initial provisioning settings (sensing and
coordination parameters) and supply the rules that specify when and how to change them.
We wish to investigate now how the provisioning adaptation processes are put into motion. We
start �rst by discussing what kind of context usage statistics the CONSERT Engine is capable of
providing during its runtime. Afterwards, we show how provisioning control rules are executed
and how their results are further used by the CtxCoord agent.

5.3.1 Gathering Provisioning Statistics

The triggering conditions of a provisioning control rule are expressed based on a snapshot of the
CONSERT Engine knowledge base (i.e. the information set currently relevant for the context
provisioning process managed by the CMU agents used in an application) and a set of statistics
regarding CONSERT Engine functionality aspects.
To see the use of these context usage statistics, consider the episodes from the reference scenario
where Bob turns o� the projector during the ad-hoc discussion in the AmI-Lab. After �ve
minutes, updates for luminosity are disabled since they are deemed to be no longer required.
Similarly, when all people have left the room, all sensors except the presence detection ones can

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 89

stop sending updates. At the CONSERT Engine level, detection of this non-usage situations
can be translated into an inspection of the time interval since last there was any query for the
ContextAssertions relevant to these situations.
The CONSERT Engine collects the set of statistics shown in Table 5.5.

Statistic Value E�ect

nr. queries integer number
Number of queries received for speci�ed Context-
Assertion during last OBSERVATION_WIN-
DOW time interval.

nr. successful queries integer number

Number of successfully answered queries for spec-
i�ed ContextAssertion during last OBSERVA-
TION_WINDOW time interval.

nr. subscriptions integer number
Number of existing subscriptions for speci�ed
ContextAssertion.

time since last query number in ms
Elapsed time since last query received for speci�ed
ContextAssertion.

nr. derivations integer number

Number of ContextDerivationRule inferring the
speci�ed ContextAssertion executed during last
OBSERVATION_WINDOW time interval.

nr. successful deriva-
tions

integer number

Number of successful inferences of the speci�ed
derived ContextAssertion performed during last
OBSERVATION_WINDOW time interval.

is derived assertion true/false
ContextAssertion instance for which statistic is
computed is obtained through derivation.

is enabled assertion true/false
ContextAssertion instance for which statistic is
computed is being currently active/inactive.

Table 5.5: List of context usage statistics gathered by the CONSERT Engine at runtime.

Notice that in almost all of the statistics depicted above the computation of their value occurs
over the time interval speci�ed by the observation_window, introduced in the previous section.
The CtxCoord agent uses the CONSERT Engine command service (cf. Section 4.4.1) to
collect such statistics every observation_window time spans. For this it uses the general value
of the this parameter. However, the actual values of the statistics returned by the call to
the CONSERT Engine service are computed based on ContextAssertion-speci�c values of the
observation_window parameter, if they exist. As was the case of the control parameters and
rules, the vocabulary used to express the context usage statistics is implemented using the same
ontology, and its form will be discussed in Section 7.1.3.

5.3.2 Control Process

The execution of context provisioning control rules is carried out by the CtxCoord agent.
Upon initialization, the agent will read all provisioning control parameters and create an index
of all provisioning control rules.

CONSERT Engine setup The CtxCoord con�gures the functionality of the CONSERT
Engine using the parameters relating to default enabled ContextDerivationRules and speci�ed
identi�ers for constraint resolution and inference scheduling services. It also sets the values
of the general and ContextAssertion-speci�c observation_window parameters which the CON-
SERT Engine will use to compute the context usage statistics.

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 90

Executing Provisioning Control Rules The CtxCoord agent itself uses the value of the
general observation_window to schedule the execution of the control rules it has indexed. Now,
an important aspect to note is that control rules may have contradictory outcomes (e.g. one
rule implies enabling a derivation rule while another one disables it). To help developers keep
a consistent result, the control rules can be partitioned into ordered execution groups. For
example, rules that specify deactivations of ContextAssertions can be grouped in an execution
group which will be run before the group containing the rules that mandate activations. It is
up to the designer to ensure that the rules within a group do not themselves have contradictory
outcomes.
The rules are then executed in the order de�ned by the sequence of execution groups. How-
ever, the rules from later execution groups override contradictory results from rules in earlier
groups. This consistency ensuring mechanism is a form of preference-based execution, where
the preference of one rule over the other is explicitly given by its execution order.

Using Control Rules Outcomes After running the rules, the actions of the CtxCoord
agent depend on the type of their output. For commands such as StartAssertionCommand,
StopAssertionCommand or UpdateModeCommand the CtxCoord determines all CtxSen-
sors that provide the ContextAssertion concerned by those rule outputs and sends them a
TaskingCommand (cf. Section 5.4.1) request wrapping over the content of the control rule
output. The CtxSensor agents receive the command and conform to its request. In this way,
the CtxCoord agent e�ectively coordinates the provisioning behavior of the sensing agents.
On the other hand, if the control rule output imply changes in inference handling, the CtxCoord
uses the CONSERT Engine command interface to perform the required adaptation. In case of
StartDerivation Command or StopDerivationCommand the agent determines all Con-
textDerivationRules which can infer the ContextAssertion speci�ed by these rule outputs and
marks them as active. In case of an InferenceSchedulingCommand, the agent simply
informs the CONSERT Engine of the new inference scheduling service identi�er.

An additional aspect that in�uences the context provisioning process in terms of enabled/dis-
abled ContextAssertion and ContextDerivationRules is represented by the activation requests
coming from the CtxQueryHandler agent (cf. Section 5.4.2). Thus, in a typical application
implemented using the CONSERT Middleware, context information update activations will be
controlled in their majority by CtxQueryHandler requests which correspond to a query or
subscription from a CtxUser agent. On the other hand, deactivations of updates will be per-
formed based on developer speci�ed conditions that form the body of a StopAssertion or
StopDerivation context provisioning control rule.

5.4 Context Provisioning Interactions

In previous sections we presented the agent responsibilities and the means by which their context
provisioning adaptation behavior is speci�ed and executed. We now focus on the interactions
that take place between the agents, given their responsibilities and the policies they manage.
Essentially, the messages exchanged between them are the means by which both the �ow of
context information and the control / adaptation of this �ow are ensured.

The context provisioning process is composed of two main interaction chains. The sensing

chain concerns the updates that CtxSensor agents send to the CtxCoord of a CMU. The re-
quest chain regards queries and subscriptions that CtxUsersmake to the CtxQueryHandler
of a CMU. These two chains connect with each other through the working of the CONSERT
Engine and will be detailed in the following subsections.

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 91

5.4.1 Provisioning Sensing Chain

The sensing chain comprises the communication protocol between the CtxSensor and CtxCoord
agents. The principal messages exchanged between these agents are reported in Tables 5.6 and
5.7, where we detail the objective of the interaction, the type of protocol used (according to
FIPA standards1) the role played in the protocol (initiator or receiver) as well as the condition
that triggers the interaction. The interactions within the protocol can also be followed in their
sequence in Figure 5.2.

Interaction IP Role With When

Register Agent FIPA Request Init. assigned OrgMgr Announce sensing service to assigned OrgMgr

Find Coordinator FIPA Request Init. assigned OrgMgr Intend to connect to a CtxCoord

Publish Assertions FIPA Propose Init. CtxCoord Intend to send info. to CtxCoord

Assertion Update FIPA Inform Init. CtxCoord New sensory observation

Tasking Command FIPA Request Recv. CtxCoord CtxCoord alters update method/rate

Table 5.6: Interaction table for CtxSensor shows conversation type, used Interaction Protocol (IP),

role in the conversation, interaction counterpart and trigger condition.

Figure 5.2: Provisioning interactions within the sensing chain.

After registering with the CtxCoord, a CtxSensor agent will look for a sensing policy that
speci�es the default (initial) indications for how to provide updates for the sensed Context-
Assertions of which it is in charge. Thus we can see that the initial sensing behavior of a
CtxSensor agent is governed by the sensing policy that it manages.
The sensor agent then starts a FIPA Propose protocol to publish its ContextAssertion update
capabilities (as con�gured by the policies) to the CtxCoord. The CtxCoord acknowledges the
publishing and returns the subset of ContextAssertions for which the sensor agent currently
has to send updates. As explained in Section 5.2.2, the CtxCoord inspects the default and
assertion-speci�c assertion enabled control parameters from its provisioning coordination pol-

1http://www.�pa.org/repository/ips.php3

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 92

icy, which tell it which ContextAssertion updates are declared by the application developer as
being enabled by default.

To take a short example and see how this is useful, consider the case of the AmI Laboratory
in our reference scenario. While Alice sits alone waiting for her colleagues to appear such that
they may have their discussion, it is clear that she cannot be in an ad-hoc discussion by her
self. Therefore, the sensors that provide information about noise level or body posture near
each desk need not actively send updates. Thus, when the respective CtxSensor agent would
�rst come online and publish their sensing capability, the CtxCoord managing the AmI-Lab
smart room would instruct them to wait for its request to start sending updates. On the other
hand, a basic condition for attempting to see if there is an ad-hoc meeting going on in the
laboratory is the fact that there must be at least two people present in the room. Therefore,
presence sensors must be active at all time and so the coordination policy guiding the behavior
of the CtxCoord agent will specify that updates for person location related ContextAssertions
are enabled by default.

Interaction IP Role With When

Register Agent FIPA Request Init. assigned OrgMgr Announce coordination service to assigned
OrgMgr

Register Query Handler FIPA Request Recv. CtxQueryHandler CtxQueryHandler announces its services.

Publish Assertions FIPA Propose Recv. CtxSensor, CtxUser CtxSensor / CtxUser announce capabilities

Assertion Update FIPA Inform Recv. CtxSensor, CtxUser Context information update available

Activate Assertion FIPA Request Recv. CtxQueryHandler Query made for inactive ContextAssertion

Tasking Command FIPA Request Init. CtxSensor, CtxUser Activate/Stop/Alter context updates

Table 5.7: Interaction table for CtxCoord

For the ContextAssertions which are marked as active, the CtxSensor sends updates using
FIPA Inform messages, at the rate initially speci�ed by its sensing policy. However, as seen
in the brief example above, the provisioning requirements related to the ContextAssertions
update capabilities of a CtxSensor may change during runtime. When Bob and Cecille enter
the laboratory and sit down at the desk with Alice for their discussion, the conditions for the
possibility of an ad-hoc meeting are met. Therefore, at some point (see details of the request
chain in the next subsection) the CtxCoord will request that CtxSensor agents managing
the noise level and body posture ContextAssertions enable the updates for these assertions.
Moreover, we explained that every observation_window period, the CtxCoord monitors the
usage (e.g. how many queries were received for a given ContextAssertion during the speci�ed
time window) of the context information that he manages. The agent can then run provisioning
control rules declared in its assigned coordination policy. Thus, when Bob and Cecille leave the
laboratory, rules whose output is a StopAssertionCommand targeting noise level and body
posture ContextAssertions will be triggered (since no more subscriptions for ad hoc meeting
will exist).
The CtxCoord agent uses the Tasking Commands that result from the execution of the
control rules to instructs the corresponding CtxSensor agents to stop sending updates for the
targeted ContextAssertions. At the same time it will disable the ContextDerivationRule which
infers the existence of the ad hoc meeting ContextAssertion.

5.4.2 Provisioning Request Chain

Within the request chain, a CtxUser that registered with a CtxQueryHandler can ask for
information via FIPA Query or FIPA Subscribe protocols. There are two types of queries that
a CtxUser can make: local and domain-based (cf. also Table 5.8). Here we will discuss about
the �rst option, whereas the second one will be further explored in the next chapter in Section
6.4.1, since it involves the mechanisms related to the deployment and communication between

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 93

distributed CMUs. The typical sequence of interactions within the request chain protocol is
shown in Figure 5.3 and the individual agent messages are summarized in Tables 5.8 and 5.9.

Interaction IP Role With When

Register Agent FIPA Request Init. assigned OrgMgr Announce query service to assigned OrgMgr

Find Coordinator FIPA Request Init. assigned OrgMgr Intend to connect to a CtxCoord

Register Query Handler FIPA Request Init. CtxCoord CtxQueryHandler connects to CtxCoord.

Register Query User FIPA Request Recv. CtxUser /
CtxQueryHandler

CtxUser / CtxQueryHandler register as con-
text consumers

Local Query FIPA Query, Subscribe Recv. CtxUser CtxUser makes a local query

Domain-based Query FIPA Query, Subscribe Recv. CtxUser /
CtxQueryHandler

CtxUser or CtxQueryHandler make a domain-
based query

Get Query Base FIPA Query, Subscribe Init. OrgMgr Determine routing path(s) for a domain-based
query

Activate Assertion FIPA Request Init. CtxCoord Queried ContextAssertion not active

Table 5.8: Interaction table for CtxQueryHandler

Figure 5.3: Provisioning interactions within the request chain.

In the case of the local query, the CtxQueryHandler will only attempt to provide answers
using the knowledge base (i.e. the CONSERT Engine instance) it is currently connected to.
However, remember from the short example in the previous section that a ContextAssertion
can be inactive (i.e. there will be no instances of it in the runtime knowledge base of the
CONSERT Engine). The CtxQueryHandler �rst analyzes the received request to see which
type of ContextAssertions are referenced within. If all requested ContextAssertion types are
active, the agent will immediately proceed with handling (i.e. posing the query or registering
the subscription) the demand. Yet, if there exist ContextAssertions which are not enabled, the
query/subscription protocol continues with the CtxQueryHandler notifying the CtxCoord
of an activation need (Activate Assertion interaction in Table 5.8).

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 94

The coordinator handles the activation request based on the acquisition type of the Context-
Assertion requested to be activated. It distinguishes between the sensed ContextAssertions
(i.e. those updated by a CtxSensor agent) and the derived ones (i.e. those which are the
output of a ContextDerivationRule). In the case of a sensed ContextAssertion the coordinator
determines which CtxSensors can provide it and uses a TaskingCommand to tell them to start
sending updates. In case of derived context, it uses the CONSERT Engine command interface
to enable the corresponding ContextDerivationRules. Only when the CtxQueryHandler has
the con�rmation of ContextAssertion enabling will it pose the query to the CONSERT Engine.

Interaction IP Role With When

Register Agent FIPA Request Init. assigned OrgMgr Announce user service to assigned OrgMgr

Find Coordinator FIPA Request Init. assigned OrgMgr Intend to connect to a CtxCoord

Find Query Handler FIPA Request Init. assigned OrgMgr Intend to connect to a CtxQueryHandler

Find Context Domain FIPA Request Init. assigned OrgMgr Application wishes to know current ContextDomain

Register Query User FIPA Request Init. CtxQueryHandler CtxUser registers as context consumer

Publish Assertion FIPA Propose Init. CtxCoord CtxUser registers as producer

Static Context Update FIPA Request Init. CtxCoord EntityDescription update available

Pro�led Context Update FIPA Request Init. CtxCoord Pro�led ContextAssertion update available

Make Query FIPA Query,
Subs.

Init. CtxQueryHandler Initiate local / domain-based query / subscription

Table 5.9: Interaction table for CtxUser

This latter interaction protocol is an example of the coordination interactions that can modify
the provisioning process within a CMU, as explainedat the end of Section 5.3.

One last set of provisioning interactions take place directly between a CtxUser and a CtxCoord.
It is the case where the CtxUser agent acts also as a producer of context information, thus turn-
ing it into a context prosumer (i.e. producer and consumer). Since the updates coming from an
CtxUser are the consequence of an explicit application action (via the Application Client
Adaptor), rather than being acquired periodically from an environment, the information sent
by the agent is either static context (i.e. EntityDescriptions) or pro�led ContextAssertions.

An example taken again from our reference scenario is the case where the application on Alice's
smartphone infers that she is in a ad hoc discussion and therefore determines that she is busy.
The application then instructs the CtxUser agent to assert her pro�led availability status to
the CtxCoord of the AmI-Lab, such that queries for this type of information can be answered.
An example of static information which can be asserted by a CtxUser is the fact that Alice
is the owner of the smartphone with a given bluetooth MAC address. This information can
be then used to derive the location of Alice within the laboratory (e.g. at which desk she is
currently sitting). In Section 6.4.4 of the chapter on CMU deployment con�gurations we will
again see that the CtxUser has several options when acting as a producer (i.e. local updates
and domain-based updates).

5.5 Discussion

In this chapter we described our approach with respect to the architecture of context provi-
sioning within the CONSERT Middleware. If in the previous chapter we talked about our
contributions regarding context representation and reasoning based on the CONSERT Engine,
we have now shown how those contributions are included within the larger scope of a set of
context provisioning units that help bring about the provisioning of context information.
Speci�cally, we have seen that our architecture is based on design principles from the multi-agent
system domain. Our context provisioning units are agents which encapsulate each functionality
of the main context management life cycle as described �rst in Section 3.1.1. We have seen

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 95

that these agents are grouped into what constitute Context Management Units (CMUs), the
�exible composition and deployment of which we mentioned we will describe in detail in chap-
ter 6. Furthermore, we propose both Context Provisioning Policies and Context Provisioning
Interaction Protocols that govern the communication and functionality of provisioning agents
in a CMU. These capabilities increase application-development support by moving context pro-
visioning adaptation concerns away from the application and towards the middleware level.
In what follows, let us make an analysis of how we address the operational and non-functional
requirements of context management outlined in the state of the art chapter on context man-
agement solutions in Sections 3.1.1 and 3.1.2. The aspects for which we do not provide an
analysis in this chapter will be detailed in the summary of the next chapter where we talk
about the deployment options of the CONSERT Middleware.

Context Management Life Cycle

Context Acquisition is performed via the functionality of the CtxSensor and CtxCoord
agents. A CtxSensor accesses physical or virtual sensors using Context Assertion Adaptors,
thereby performing a middleware-based access. However, from the context-aware application
point of view, access to context information is performed in a context-server based approach,
since the application will use the CtxUser agent to query or subscribe for context that is stored
in a CONSERT Engine knowledge based and managed by the CtxCoord agent. Therefore, the
application level need not manage direct communication with several context providers.
Further, the CtxSensor actively push the data to the coordinator agent, but the parameters
(update mode and update rate) of this process can be both initially speci�ed and later adapted
by the CtxCoord. Meanwhile, the communication with physical or virtual sensors can occur
in both push and pull mode and is accommodated by the developer given implementation of
the Context Assertion Adaptors.

Context Modeling and Provisioning Coordination is handled by the CtxCoord agent, which
creates and manages the CONSERT Engine and coordinates the provisioning process based
on control parameters and control rules operating on context usage statistics computed by the
CONSERT Engine.

Context Dissemination is handled by the CtxQueryHandler agent which supports answer-
ing to both direct queries as well as long-lasting subscriptions. In this chapter we explored
only one request option available to applications, namely local queries (i.e. those where the
CtxQueryHandler only answers based on the contents of the knowledge base of the CON-
SERT Engine instance situated in the same CMU as itself). In the next chapter however, we
explore additional and more complex query and subscription options which involve awareness
of the distribution of several CMUs.
One other important point to note is that the CtxUser agent is able to express queries that
exploit the full representation expressiveness of the CONSERT Ontology. As we will explain
also in the implementation chapter, the application can formulate queries or subscriptions in
SPARQL form and it can set conditions spanning both the desired content of ContextAssertions
as well as their ContextAnnotations. In this way, the application can ensure that it receives
context information of acceptable quality of context (e.g. certainty, adequate temporal validity).

Transverse Context Management Functionality

In this chapter we discuss the aspect of Provisioning Adaptation/Control, while the other two
mentioned concerns (Context Producer Discovery and Mobility Management) are analyzed at
the end of the next chapter. Our provisioning adaptation addresses functional changes of the
behavior of context provisioning agents (i.e. CtxSensor and CtxCoord) and the CONSERT
Engine. It is based on the existence of sensing and coordination policies which guide the

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 96

behavior of these agents. One strong suit of our approach, which will become more apparent
in the implementation chapter, is the fact that these policies are expressed declaratively as
opposed to being directly coded within the agent execution cycle. This makes their initial
speci�cation, change or extension much easier, which eases the development e�ort.
Currently, the adaptation capabilities o�ered by the CONSERT Middleware lie in terms of
active/inactive ContextAssertion updates and ContextDerivationRule executions, as well as
the custom scheduling of derivations. However, this already has strong implications on the
number of performed sensing events and messages exchanged over a network as we will show in
more detail in the evaluations of Section 8.2.3.
Further, we note that currently control parameters and rules can a�ect provisioning adaptation
at the resolution of ContextAssertion types. For instance, the output of a StartAssertion
Command stipulates that all CtxSensor agents currently connected to the CtxCoord running
the rule and which are able to provide the speci�ed ContextAssertion will be requested to
start providing updates for that assertion, regardless of the potential quality of those updates.
Therefore, an immediate aspect of future work is the idea to augment the expressiveness of
our provisioning policy vocabulary with the ability to express conditions and actions a�ecting
individual context providers (CtxSensors) and CtxDerivationRules. The conditions for
adaptation will be able to take into account quality of context related aspects (as can be already
observed in works such as [Khedr and Karmouch, 2004; Corradi et al., 2010]). What's more, our
agent-based architecture can be further exploited to allow the sensing and provisioning policies
to set application-speci�c operation goals for each context provisioning agent. Remember that
one of the agent attributes described in Section 5.1.1 refers to pro-activeness and goal oriented
behavior. Thus, for instance, in an application where energy consumption of sensing equipment
is of great importance, CtxSensor agents may have a goal to keep power spending within
certain limits, which therefore impacts their supported update modes and rates. This, in turn,
will impact their response to TaskingCommands issued by the CtxCoord which target, for
example, an increase of update rate (i.e. they may refuse to comply because of the imposed
energy savings requirements). This refusal can again impact the decisions of the CtxCoord
which may elect to activate the updates for the same ContextAssertion type from a CtxSensor
agent that is less constrained.
All these interactions can be collectively designated as establishing a Context Level Agreement
(the context management equivalent of reaching a service-level agreement in service based
application development), an idea which has been approached in related work [Khedr and
Karmouch, 2004] and which constitutes an objective for future work in our case.

Non-Functional Aspects

Lastly, we revisit some of the non-functional requirements commonly set for context manage-
ment system operation. We address the concern of heterogeneity of context producers by means
of the ContextAssertionAdaptors which provide actual communication with physical sen-
sors and translate sensed context into the constructs of the CONSERT Ontology which further
ensures access of a uniform representation of acquired context information to all CtxUser
agents.
Though we do currently do not o�er support for traceability and control as de�ned in Sec-
tion 3.1.2, we have an advantage over related work, given the monitorization of context usage
carried out by the CONSERT Engine (which amounts to a re�ection upon its own functional-
ity). The mechanism can be augmented to provide explanations for activation/deactivation of
ContextAssertions and ContextDerivationRules. Furthermore, given our rule-based inference
implementation, mechanisms such as those in [Lim and Dey, 2010] can be used to provide in-
telligibility of the derived context information.
In this chapter we addressed ease of con�guration from the point of view of establishing declar-
ative policies that guide the adaptation of the context provisioning process within a CMU.
Further aspects related to con�guration of the deployment of the CONSERT Middleware will

CHAPTER 5. ADAPTABLE CONTEXT PROVISIONING 97

be analyzed in chapter 6. These bene�ts will also become more obvious as we uncover the
details of their implementation in chapter 7 and as we report on our experience of developing
the evaluation simulation in chapter 8.
Aspects of scalability and robustness will be again discussed in the chapters on the deployment
and implementation of the CONSERT Middleware, whereas privacy and security currently
remain as issues for future work.

Chapter 6

Flexible Deployment of Context

Provisioning

In the previous chapter we have seen that multi-agent oriented software engineering is a suitable
paradigm for implementing the set of context provisioning related functionalities expected from
a context management middleware solution. We saw that context provisioning agents act as
units that encapsulate individual provisioning steps (e.g. acquisition, coordination, dissemina-
tion). We explained equally how the usual interactions between these agents can be guided and
in�uenced by the development of context provisioning policies.

In this chapter we take another step towards our complete perspective over the context man-
agement problem by looking at the issue of deployment of context provisioning agents and, by
extension, the deployment of an entire CONSERT Middleware instance. As in the previous
chapter, we focus on showing that the CONSERT Middleware provides extensive development
support by allowing for a declarative design-time agent deployment con�guration and a run-
time management of the deployed agents. We introduce con�guration options that allow a
developer to organize the implementation of a context-aware application according to logical
partitioning of the context model into di�erent usage domains, which relies on the notions of
ContextDimension and ContextDomain introduced in Section 4.1.3.

Speci�cally, in Section 6.1 we describe our context domain-based view of provisioning agent de-
ployment and show how it is organized in terms of the composition of a Context Management
Unit (CMU - cf. Section 5.1.2) and the allocation of CMUs to the management of context from
a domain.
In Section 6.2, we then inspect the con�guration vocabulary used to specify middleware de-
ployment and explain how the con�gurations are enforced at runtime.
Afterwards, in Section 6.4, we discuss the additional provisioning interactions that stem from
the existence of a set of distributed context domains within the application space, before con-
cluding the chapter with its summary and analysis in Section 6.5.

6.1 Deployment: A Domain-Based View

In many ambient intelligence applications there is a certain multidimensionality of the context
model which re�ects into when and how di�erent context information is used by an application.
To see what we mean by the above more clearly, consider an extension of our reference scenario,
which we introduced in [Sorici et al., 2015]. In that instance we record the events of Alice who

98

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING 99

wants to attend the CS Lecture in the AmI laboratory, happening prior to her arrival at the
university.

Alice is in a tram on her way to class, which starts in 5 minutes. However, the smart application
on her smartphone is informed that the tram is 7 minutes out from its next stop. The application
knows to factor in an additional 3 minutes needed for Alice to walk from the tram stop to
the university and therefore computes that she will be 5 minutes late to class. Since Alice is
enrolled in the CS Lecture, the application will automatically send a noti�cation of being late
to the service managing teaching activities at the university. The CS professor is automatically
subscribed to such noti�cations and decides to wait 5 minutes to begin the class, since he wants
all students to be present for the current lecture.

Considering this extension and the interactions that follow afterwards we can take note of im-
portant features of context-aware application that impact the way context provisioning should
be handled. As we can see from the application managing Alice's own schedule and her uni-
versity related activities, the context information used by the application may be partitioned
and structured along several logical domains such as places (the tram, the AmI lab.), activities
(CS lecture, ad-hoc meeting) or organization (being enrolled as a student at the university).
The scenario stresses also the need for �exible context provisioning deployment mechanisms.
The domains do not all have to be provisioned at the same time (e.g. ad-hoc meeting in AmI
lab, subscribing for updates from the tram only while in it), though provisioning needs may
sometimes overlap (e.g. estimated arrival information from the tram, delay noti�cations sent
by Alice to the lecture management service). Furthermore, these context usage sessions can
be dependent (e.g. tram information in�uences course start time) or independent of one an-
other (e.g. tram information and AmI lab meeting). Lastly, we observe that context reasoning
needs to take place according to varying degrees of complexity (e.g. simple delay calculation in
the tram vs. ad-hoc meeting detection in the AmI lab) and be performed both on �xed (e.g.
the AmI lab context management service) as well as mobile computation nodes (e.g. Alice's
smartphone).

The issues presented above motivate the discussion we hold in this section. In order to help a
prospective developer structure his context-aware application according to the di�erent context
usage interaction sequences arising from the context model, we show how the agents composing
a CMU are assigned to the provisioning of a speci�c ContextDomain formed along a preferred
dimension of the context model.
Furthermore, we show that when the ContextDomains formed from a context model expose
natural inclusion-like properties, this fact can be exploited to allow the developer to build
domain hierarchies which impact the way in which inter-domain context provisioning can be
performed.

6.1.1 Using ContextDimensions and ContextDomains

In Section 4.1.3 we introduced the formal notions of ContextDimension and ContextDomain and
showed how they were extracted from the domain of discourse of the application context model.
Speci�cally, we explained that a ContextDimension can be understood as a privileged direction
(e.g. spatial location, user activity, organizational relation) along which the application will
structure its context provisioning process. Further on, a ContextDomain establishes a logical
partition of the global application context model along the chosen ContextDimension.

Identifying Context Dimensions In Figure 6.1 we show a domain based view of the ref-
erence scenario extension introduced earlier. Notice how we identify three distinct ContextDi-
mensions which correspond to distinguished contextual interactions: locatedIn(Person,
PublicTransport), engagedIn(Person, CourseActivity) and locatedIn(Person,
UniversitySpace). Observe how these belong to two distinct context categories (i.e. spatial

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING100

Figure 6.1: A domain-based view of the reference scenario extension discussed in this section. Notice

how each CMU is assigned to a given ContextDomain and how its composition varies according to

the attributions assigned to the machine on which it runs, e.g. usage of context (on mobile nodes)

or management of context (domain management computational nodes). Numbered circles show the

temporal order in which CMU management and context production/consumption interactions take

place in the scenario.

and activity related) and how they correspond to the binary relation form explained in Section
4.1.3, having a subject that is a user-related ContextEntity and an object entity belonging to
the spatial (PublicTransport and UniversitySpace) and activity (CourseActivity)
ContextEntity .

Identifying Context Domains The distinguishable context related interactions can be fur-
ther re�ned based on the speci�c ContextDomains formed along these dimensions. Thus, in-
formation about tram 101's speed and its estimated arrival time to the next stop is managed
within the Tram101 ContextDomain and consumed by Alice's smartphone only throughout
the duration of her stay on board the tram. Information speci�c to the CS_Lecture course
activity is exchanged with the lecture management service of the university and will be used,
for instance, during the time period in which the user (i.e. Alice) has marked the CS lecture
as active in the calendar. Lastly, the ad-hoc meeting related context interactions take place in
the AmI-Lab ContextDomain, but only outside the normal course activity hours.

Relation between Context Domains and CMUs It is important to note that all through-
out the above described situations, from Alice's perspective, it is the same application on her
smartphone that handles all these contextual interactions. It is in this regard that support
for structuring context-aware application development becomes important. Remember that in

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING101

the previous chapter we mentioned that a certain set of context provisioning agents forms a
Context Management Unit (CMU). We also explained then, that the agent-based composition
of that CMU depends on the usage of context information for which it is intended. In Figure
6.1 we can observe that several CMUs are allotted to the same ContextDomain (e.g. we have a
AmI-Lab management CMU running on a server in the laboratory and a consumption (usage)
CMU on Alice's smartphone), but have di�erent compositions. On the AmI-Lab management
machine, the CMU comprises the CtxCoord and CtxQueryHandler agents, a CONSERT
Engine instance (created and managed by the CtxCoord) and the two CtxSensor agents re-
sponsible for detecting noise level and body posture speci�c ContextAssertions. Note that the
latter two agents could have been themselves placed in a dedicated sensing machine, while still
being assigned as a CMU used for provisioning of the same AmI-Lab ContextDomain. On the
other hand, the CMU speci�c for the AmI-Lab ContextDomain running on Alice's smartphone
consists only of a CtxUser instance, since her smartphone application is a consumer (i.e. user)
of context information.

Considering the above example, we can now specify several deployment principals of the CON-
SERT Middleware:

(i) instantiation of the CONSERT Middleware in a context-aware application is thought in
terms of ContextDimensions and ContextDomains arising from the application context
model.

(ii) there is a one-to-one mapping between a CMU and the ContextDomain which it must
service

(iii) the agent composition of the CMU running on a given computational node (e.g. server,
laptop, smartphone) depends on the intended aspects of context provisioning (e.g. pro-
ducer/acquisition, coordination, consumption/usage or combination thereof) that are set
to run on that node

6.1.2 Using ContextDomain Hierarchies

We mentioned previously that context usage of an application can be structured along multiple
ContextDimensions. The resulting ContextDomains can however be structured in two ways,
depending on the relations that exist between them in the application context model.

A �at ContextDomain structure corresponds to a set of di�erent values of the object Context-
Entity, between which no other relation exists in the application context model. An example
of this are the AmI-Lab and room EF301 ContextDomains in our original reference scenario.

A ContextDomain hierarchy is a structuring of the ContextDomains of a ContextDimension
based on the order induced by an inclusion-like EntityDescription characterizing the object
ContextEntities of that dimension (cf. De�nition 4.1.21 of Section 4.1.3).
Figure 6.2 shows an example of a hierarchical ContextDomain setup. We again consider a
straightforward extension of our reference scenario to explain the above introduced ideas.
In Figure 6.1 from the previous subsection we considered UniversitySpace as being a
ContextEntity from which the values for the locatedIn(Person, UniversitySpace)
ContextDimension (such as AmI-Lab) arise. Consider now the following subtypes of the
UniversitySpace ContextEntity : FacultyBuilding, LaboratoryRoom and RoomSection
(not shown in the �gure). Instances of these entity types can be related with one another via
the includedIn EntityDescription: Therefore, in the setup presented in Figure 6.2 we have

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING102

Figure 6.2: An example of a decentralized deployment constituted as a ContextDomain hierarchy of

the spatial ContextDimension locatedIn(Person, UniversitySpace).

the following:

includedIn(Desk_Alice, Ami_Lab)

includedIn(Ami_Lab, CS_Building)

includedIn(Desk_Dan, Img_Lab)

includedIn(Img_Lab, EE_Building)

Notice that the setup does not constitute a single tree-based hierarchy, but rather a forest, with
the CS_Building and EE_Building domains lying on the same level (having a knows relation
drawn between the OrgMgr agents managing the respective associated CMUs - more details in
Section 6.3). However, each top-level ContextDomain is the root of a hierarchy based on the
includedIn EntityDescription. In Section 6.4 we will show that the ability to consider such
a hierarchical structure of application context management deployment can have substantial
bene�ts in terms of context dissemination. The domain-based partitioning of context usage
helps manage the issue of locality, that is, context information that is produced in a logical
location should be consumed by application clients near that location. On the other hand, an
application aware of the existence of several ContextDomains and the potential hierarchy they
form can exploit query mechanisms which involve limited range request broadcasts (e.g. ask
for information on Alice's availability status on every domain of type LaboratoryRoom).

6.1.3 CONSERT Middleware Deployment Schemes

In Section 3.3 we explained that one of the objectives of the implementation of our middleware
is to provide it with the required �exibility such that it may be used for multiple scenario

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING103

scales and types. The deployment principles listed previously allow us to de�ne two envisioned
deployment schemes: centralized and decentralized.

A centralized scheme represents a setup where the application considers a single (default)
ContextDomain and a single CMU that provides the context provisioning. The physical or
virtual sensors (i.e. context producers) are managed by CtxSensors from this CMU and the
application (i.e. context consumer) interacts with the CtxUser agent of the management unit.
Such a scheme could be used in applications that target context-aware services running on a
single device (e.g. smart document management as in [Pietschmann et al., 2008], computer-
based guides with contextual navigation as in [Conan et al., 2007]) or even all-in-one smart
home platforms as in [Sehic and Dustdar, 2010].

A decentralized deployment setup is con�gured in terms of one or more ContextDimensions
and the ContextDomains they may form. The ContextDomains can be structured either in
�at or a hierarchical layout, depending on the relations considered in the application context
model.
Such a style targets applications of a larger scale, with distributed context models and multiple
CMUs (organizable into hierarchies, if required) that comprise both �xed and mobile nodes.
Sensors are managed by the CtxSensor agents of a single CMU (to preserve locality of sensed
information), but consumers of this information can come from multiple CMUs (i.e. queries
and subscriptions can be sent in between CMUs). Examples of this would range from the one
in the scenario we presented to smart city applications [Da Rocha and Endler, 2012].

Having introduced the concepts and schemes that characterize deployment possibilities within
the CONSERT Middleware, in what follows we present how this information is packaged as
policies that specify CMU agent con�gurations and assignment of CMUs to ContextDomains.

6.2 Deployment Policies

As was the case in chapter 5, in order to support ease of application development, the CONSERT
Middleware provides a vocabulary for declarative speci�cation of deployment policies. These
policies represent a collection of parameters which address various deployment settings such as
platform setup, agent setup, CMU composition or context domain model.

As mentioned earlier, the deployment of the CONSERT Middleware is the process that binds
together all aspects presented in previous chapters: modeling and reasoning about context infor-
mation using the CONSERT Engine, creating and managing an adaptable context provisioning
process. Deployment policies therefore specify the settings under which one or more instances
of the agents and the service components in their environment have to execute.

In this section we will go over sets of parameters which concern the following aspects:

- Platform Con�guration: setting up the runtime platform on which the agents of one or
more CMUs run

- ContextDomain Con�guration: specifying the deployment scheme for a ContextDomain
and the context model for that particular domain.

- Agent Con�guration: specifying the agent composition of a CMU and de�ning all CMU
agent provisioning con�gurations (e.g. identi�er of adaptor service implementations, as-
signment of provisioning policies)

We present here the intended purpose of each parameter and o�er pseudo-con�gurations as
examples, while in Section 7.4 of the middleware implementation chapter we will show how the
e�ect of this parameters is handled at runtime.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING104

6.2.1 Platform Con�guration

The platform speci�cation provides technical information for setting up a container for the
physical machine that will host the agents running within the CMUs. For instance, in the
reference scenario extension detailed in the beginning of this chapter, the application on Alice's
smartphone is engaged with multiple ContextDomains (e.g. the tram, the AmI-Lab) at the same
time. Therefore, as show in Figure 6.1, multiple CMUs must run on the same computational
node (her smartphone) to help the application interact with these domains.

Parameter Values Role

platform name string
Unique container identi�er used to create
application-wide unique agent names.

container host string
String specifying the hostname part of the con-
tainer URI

container port integer number
Integer specifying the port part of the container
URI

MTP host string
Hostname for the URI of the messaging server
that allows inter-container communication.

MTP port integer number
Port number for the URI of the messaging server
that allows inter-container communication.

Table 6.1: List of parameters available for CONSERT Middleware platform con�gurations.

Table 6.1 lists the parameters used to con�gure a CONSERT Middleware platform on a compu-
tational node. As we will see in Section 7.4.1 there is a single instance of these parameters for
each physical machine on which one or more CMUs must be deployed. The developer con�gures
a unique name for the runtime container in which CMU agents will run. As we will see in the
agent-speci�c parameters below, CMU agents are given a container relative name. Therefore,
the container name is used to establish an application-wide addressing means for each agent in
a decentralized deployment. Further parameters refer to addressing con�gurations (hostname
and port number) of the container itself and an HTTP-based communication service it exposes
and will be further detailed in Section 7.4 of the chapter on CONSERT Middleware implemen-
tation.
Below we show a small pseudo-con�guration excerpt that sets the platform con�gurations for
the simulation of the AmI-Lab management server from our reference scenario (details in Section
8.2.4).

platformName := AmI-Lab
containerHost := localhost
containerPort := 1099

mtpHost := localhost
mtpPort := 7778

Since it is a con�guration for a simulation, the container and message transport service host-
names are set to localhost, while the port numbers are typical for the agent development frame-
work used in the CONSERT Middleware (i.e. JADE).

6.2.2 ContextDomain Con�gurations

The ContextDomain con�gurations specify the details that characterize a domain and are listed
in Table 6.2.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING105

Parameter Values Role

domain identi�er string
Identi�es a ContextDomain from an application
perspective.

deployment type enumeration
Specify deployment scheme (centralized, decen-
tralized) of which the ContextDomain is part.

domain dimension URI string (Optional) URI of the ContextDimension from
which the domain arises.

domain range entity URI string
(Optional) URI of the ContextEntity type playing
the object role in the ContextDimension.

domain range value URI string
(Optional) URI of the ContextEntity instance
playing the object role in the ContextDimension,
i.e. the domain value.

domain hierarchy prop-
erty

URI string
(Optional) URI of the EntityDescription used to
create the domain hierarchy.

domain hierarchy docu-
ment

URI string
(Optional) URI of RDF document listing the Con-
textDomains that make up the hierarchy along a
ContextDimension.

context model core / an-
notation / constraint /
functions / rules docu-
ment

URI string
URI of the RDF documents that contain the using
the CONSERT Ontology based de�nition of the
context model for this ContextDomain.

Table 6.2: List of parameters available for ContextDomain con�gurations.

A �rst thing that needs to be speci�ed is an identi�er for the ContextDomain. Note that,
in theory, the domain can be uniquely identi�ed within an application by the combination of
ContextDimension and ContextDomain URIs that stem from the application context model.
However, in more simple deployment scenarios (e.g. a centralized one on a single device), a de-
veloper can often require a single default domain. De�ning the dimension and domain explicitly
can become unnecessary in such cases. Therefore, to support identi�cation from an implemen-
tation point of view, the designer can use the domain identi�er parameter. Together with the
agent local name and type (i.e. CtxCoord, CtxQueryHandler, CtxSensor, CtxUser), this
parameter helps create the domain-relative agent name.
The deployment type parameter identi�es the scheme of which the ContextDomain in question
is part. It further serves to determine the actions taken by the OrgMgr agent, as we will see in
Section 6.3.
As mentioned above, the URIs (as modeled using the CONSERT Ontology) that identify the
ContextDimension and ContextDomain are marked as optional since they are not always neces-
sary in a centralized deployment (e.g. consider the case of Alice's personal calendar management
on her smartphone, decoupled from the interactions presented in the reference scenario exten-
sion at the beginning of this chapter).
When explicit ContextDimension and ContextDomain speci�cations are present and where
ContextDomains can be constituted into a hierarchy along the given dimension, the relevant
parameters (domain hierarchy property and domain hierarchy document) will give the means to
identify the context model EntityDescription that allows for the construction of the hierarchy
and the document that maintains the overview of this result.
The last set of parameters identify the URIs of the �les that compose the application con-
text model subset that is speci�c to the given ContextDomain (or the default one in case of
a simple centralized deployment). To help model development, a designer can use di�erent
�les to specify the required ContextAssertions (core �le), the possible ContextAnnotations and

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING106

ContextConstraints (annotation and constraint �les), the custom built functions that operate
on the assertions and annotations (functions �le) and the set of ContextDerivationRules which
must be executed in the CONSERT Engine instance active within the ContextDomain (rules
�le).

To exemplify the discussed parameters, we list some pseudo-con�guration from the reference
scenario that shows the con�gurations of the AmI-Lab and CS_Lecture domains.

domainIdentifier := AmI-Lab-Smart-Classroom
deploymentType := decentralized

domainDimension := locatedIn(Person, UniversitySpace)
domainRangeEntity := LaboratoryRoom
domainRangeValue := AmI-Lab

domainHierarchyProperty := includedIn(UniversitySpace, UniversitySpace)
contextModelCore := http://pervasive.semanticweb.org/ont/2014/07/amilab/core

contextModelRules := http://pervasive.semanticweb.org/ont/2014/07/amilab/rules

Table 6.3: Con�gurations for the AmI-Lab ContextDomain.

domainIdentifier := CS_Lecture-Activity
deploymentType := centralized

domainDimension := engagedIn(Person, CourseActivity)
domainRangeEntity := CourseActivity
domainRangeValue := CS_Lecture
contextModelCore := http://pervasive.semanticweb.org/ont/2014/07/courseactivity/core

Table 6.4: Con�gurations for the CS_Lecture ContextDomain.

Notice that in the case of the CS_Lecture, the deployment type is set as centralized. In ef-
fect, the management of all course activity related context is performed on a dedicated server
from the university, constituting a centralized deployment. However, even in this scheme, a
ContextDomain (which is not part of a hierarchy though) can be speci�ed for each type of
lecture.

6.2.3 Agent Con�gurations

Once the con�guration for the platform and ContextDomain are set, the developer is tasked
with specifying what the context provisioning functionality assigned to each ContextDomain is.
This is indicated in terms of the agent composition of the CMU allotted to that domain.

The above listed parameters con�gure the functionality of an agent. That is, for each instance
of a middleware agent type that must be part of a CMU, these parameters have to be particu-
larized. The name parameter helps identify the agent at CMU level and together with the rest
of the identi�ers discussed previously, the full and unique name of the agent is constructed.
In Section 6.1.1 we explained that certain CMUs, suchs as the AmI-Lab context usage CMU
on Alice's smartphone, can run on dedicated machines. In that case, the agents on those com-
putational nodes must know how to connect to their corresponding partners, depending on the
interaction chain of which they are part (CtxCoord for the sensing chain, CtxQueryHandler
for the request chain). This is done by specifying the address of the OrgMgr agent managing
that speci�c CMU through the assigned OrgMgr address parameter.
The parent and known OrgMgr address con�gurations are speci�c to OrgMgr agents and de-
termine the connections that need to be maintained by these agents in a given decentralized
deployment. Examples of these relations can be observed in Figure 6.2 and the way in which
they are created and exploited will be discussed further in Sections 6.3 and 6.4.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING107

Parameter Values Role

agent name string The agent name local to its CMU.

assigned OrgMgr address structured data
Agent name and container con�gurations that
make up the address of the assigned OrgMgr.

parent OrgMgr address structured data
Address information for the parent of an OrgMgr
agent in a domain hierarchy.

known OrgMgr address structured data
Address information for other manager agents
that an OrgMgr agent knows about.

coordination policy doc-
ument

URI string
URI of RDF document containing provisioning
control parameters and rules as detailed in Sec-
tion 5.2.2.

sensing policy document integer number
URI of RDF document containing provisioning
sensing parameters as detailed in Section 5.2.1.

Table 6.5: List of parameters available for CONSERT Middleware CMU agent con�gurations.

Lastly, as detailed in chapter 5, the CONSERT Middleware agents guide their context provi-
sioning behavior according to declarative policies. The URIs for the documents containing the
speci�c sensing or coordination provisioning parameters and rules are given using the sensing
and coordination policy document parameters.

Continuing the pseudo-con�gurations from the extended reference scenario, we present example
agent con�guration in what follows, which show part of the composition of the CMU assigned
to the management of the AmI-Lab ContextDomain on the server running in that laboratory.

CtxCoord
agent name := CtxCoord_AmI-Lab

assigned OrgMgr := AmI-Lab OrgMgr address
coordination policy := AmI-Lab coordination policy file

CtxSensor
agent name := CtxSensor_NoiseLevel

assigned OrgMgr := AmI-Lab OrgMgr address

sensing policy :=
hasNoiseLevel ContextAssertion sensing
policy �le

6.3 Managing Deployment: the OrgMgr agent

In the previous section we detailed the means by which the deployment setup of the CON-
SERT Middleware can be declaratively speci�ed. We continue now with explaining how this
speci�cations are managed at runtime. As mentioned in Section 5.1.2 where we introduced
the agents that compose the functionality of the CONSERT Middleware, the OrgMgr agent
provides the link between the application level and the CMU it is assigned to manage in terms
of con�guration and life cycle management of the provisioning agents that compose the CMU.
In this section we present aspects of the OrgMgr agent functionality and sequences of steps
that lead from the deployment speci�cation to deployment runtime.

6.3.1 Launching Platform and CMUs

We explained earlier that a CMU lies in a one-to-one relation with a ContextDomain. When the
application-level decides that interaction with a given ContextDomain is needed, it can request
the launch of the CMU responsible for that domain. If this is the �rst CMU to be launched

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING108

on the platform, the con�gurations of the latter are inspected and the required container is
deployed (further technical aspects are discussed in Section 7.4.2). The agents of the CMU are
then created on this container.
Then, the OrgMgr is the �rst agent to be instantiated in the CMU and, as detailed in the chapter
on context provisioning, it maintains the overview of ContextDimension and ContextDomain
structure given to the context-aware application of which it is part. It gains this overview using
the context domain structure and model con�gurations contained in the deployment policy (cf.
Section 6.2.2).
From the agent con�guration part of the deployment policy, the OrgMgr agent will read its
own con�guration. These settings and the value of the deployment type parameter contained
in the ContextDomain con�guration determine a speci�c role that the OrgMgr agent will play
within the application. The speci�cs of each role are presented next.

6.3.2 OrgMgr Roles

In previous sections we discussed about the fact that the CONSERT Middleware allows for
di�erent deployment schemes (centralized and decentralized) and that more than one CMU
can be assigned to the same ContextDomain depending on the dedicated provisioning aspect
enacted by the agents in that CMU (context acquisition, coordination or usage). Depending on
the CMU it has to manage and the ContextDomain to which it is assigned, an OrgMgr agent
can play the following set of roles: root, node, central or mobile. These roles dictate a set of
speci�c interactions that the OrgMgr will need to handle.

Root OrgMgr . When marked as root the OrgMgr supervises a CMU that manages and
coordinates the provisioning of context within a ContextDomain. If the domains belonging to
a ContextDimension do not form a hierarchy, than all OrgMgr agents supervising the CMUs
deployed to provide coordination of those ContextDomains play a root role (e.g. refer to the
case of the CS_Lecture and Tram domains in Figure 6.1).

Node OrgMgr If the ContextDomains can form a hierarchy, then OrgMgr agents overseeing
CMUs for mid-level domain context coordination play a node role. This is the case for the
OrgMgr agent from the AmI-Lab ContextDomain. As we explain further down, the role of the
OrgMgr also a�ects the interactions between this type of agents.

Central OrgMgr A central role is assigned to an OrgMgr in a centralized deployment scheme,
as is the case of the Tram, CS_Lecture or AmI-Lab CMUs running on Alice's smartphone.
As explained previously, these CMUs are only launched when the context interactions they
imply (i.e. consumption of production of context information from/for the ContextDomains
to which they are assigned). Therefore, the role of the central OrgMgr that starts the corre-
sponding CtxUser agents is just that of managing the life-cycle of these agents as dictated by
application needs.

Mobile OrgMgr A mobile role is assigned to an OrgMgr that supervises the CMU agents
running on a mobile computing node which is subject to ContextDomain changes. In our
example in Figure 6.1 this is the case for the Bootstrap CMU deployed on Alice's smartphone.
The purpose of the OrgMgr in this CMU is to be informed by other node or root OrgMgr agents
(e.g. the one from the tram or the one in the AmI-Lab) of the fact that the mobile device on
which it runs has entered/left the given ContextDomains. The CONSERT Middleware supports

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING109

two mechanisms by which domain detection can be performed and they will be discussed in
Section 6.4.

We mentioned earlier that the role of an OrgMgr determines speci�c interactions that take
place either during the initialization phase of these agents or later during runtime. The former
interactions refer to the connections that are established between OrgMgr agents and are dis-
cussed shortly hereafter. The runtime interactions of the OrgMgr agents refer to the support
they o�er to context provisioning agents (notably CtxQueryHandler and CtxCoord agents)
with the routing of inter-domain requests which have been brie�y mentioned in chapter 5. The
speci�c request types and routing protocols are discussed in Section 6.4.

6.3.3 Initialization and Provisioning Agent Setup

After reading its own deployment speci�cations and determining its role, the OrgMgr agent
performs two sets of initialization interactions. In the �rst one it will connect to other OrgMgr
agents in case of a decentralized deployment scheme. The other set refers to creation and launch
of the provisioning agents which are con�gured in the deployment policy for the CMU managed
by the OrgMgr.

OrgMgr Connection Interactions

The connections that need to be maintained between OrgMgr agents follow from the parent
and knows parameters discussed in Section 6.2.3. Essentially, a root OrgMgr will connect to
all other root OrgMgr agents de�ned for ContextDomains of the same ContextDimension (i.e.
create a fully-connected network). Node OrgMgrs are aware they are part of a hierarchical
ContextDomain deployment and will thus connect to a parent and possibly register several
child OrgMgr agents. A central OrgMgr knows it is employed only for use on the local device,
while in the mobile case the agent realizes that its �parent� will be determined dynamically at
runtime.
For a decentralized deployment (i.e. having root and/or node OrgMgrs), in the messages ex-
changed within the registration request made by a child OrgMgr to its parent, both child and
parent OrgMgr agents exchange the con�gured addresses of the CtxCoord and CtxQueryHandler
agents that they manage in their respective CMUs. As we will see in Section 6.4, this informa-
tion will help execute the routing algorithms for domain-based queries and broadcasts.

Provisioning Agent Initialization Interactions

After the OrgMgr initialization phase is over, the manager agent reads the provisioning agent
con�gurations speci�ed in the deployment policy corresponding to the CMU it supervises and
creates them.
Remember from Section 5.4 that the communication between the provisioning agents is de-
termined by their membership in a given interaction chain (sensing or request). The OrgMgr
therefore starts the agents in a speci�ed order to ensure that each agent can �nd its required
conversation partner.
The OrgMgr �rst starts the CtxCoord, if coordination is required for the CMU in the charge
of the manager agent (i.e. if the intended context provisioning aspects of the current CMU
include that of coordination).
After initializing the coordinator agent, the OrgMgr starts the CtxQueryHandler. The co-
ordinator and query handler agents will usually be deployed on the same physical machine.
These �rst two agents constitute the provisioning coordination and control units. The remain-
ing agents will each connect to one or both of these two agents to create the two mentioned
interaction chains.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING110

The OrgMgr next starts the CtxSensor agent(s) de�ned in his CMU and afterwards it in-
stantiates the CtxUser agent, which the application uses to interact with the CONSERT
Middleware.

In the case of a central OrgMgr, after all provisioning agents have been created and started,
some additional interactions may take place. We mentioned that the composition of CMUs is
�exible. For example, in the reference scenario, it may be the case that the CtxSensor agents
that manage the noise level and posture detection sensors in the AmI-Lab are all deployed on a
dedicated physical machine. Their initialization will be managed by an central OrgMgr agent
local to the CMU of that machine.
Besides the central OrgMgr that creates them, these CtxSensor agents need a way to access
the OrgMgr agents of the �xed coordination CMUs for their corresponding ContextDomain,
in order to determine the interaction partners (CtxCoord or CtxQueryHandler) which are
part of the desired interaction chain. In the reference scenario extension shown in Figure 6.1 we
see that this is the case for the CtxUser agents from the Tram, CS_Lecture and AmI-Lab
ContextDomains on Alice's smartphone.
Therefore, in order for the CtxSensors or CtxUsers to connect to the corresponding re-
mote CtxCoords or CtxQueryHandlers, the former agents will register with the OrgMgr
managing the remote CMU in order to obtain the addresses of their respective interaction coun-
terparts. The way they know how to register with this OrgMgr is via the assigned OrgMgr
parameter de�ned in Section 6.2.3 (cf. also Table 6.5).

This completes the CMU deployment procedure. In the next section we discuss how the di�er-
ent deployment schemes augment the capabilities of the context provisioning agents contained
within a CMU.

6.4 Distributed Deployment Usage

Previously we have mentioned that the decentralized deployment scheme augments the context
provisioning capabilities of an application that uses the CONSERT Middleware. Speci�cally,
in chapter 5 we detailed the context provisioning messages exchanged as part of the interaction
chains of a CMU and, by extension, a ContextDomain. However, in the lists of agent interactions
described in Sections 5.4.1 and 5.4.2 it could be already noted that certain messages targeted
inter-domain information exchanges.
Speci�cally, in this section we discuss three types of interactions that happen between agents
deployed as part of di�erent ContextDomains. We �rst talk about management domain-queries
which bring increased dissemination capabilities. We then present the management of domain-
broadcasts which complement the functionality of CtxUser agents with the ability of making
broadcasts of context information along the domains of a given ContextDimension, in case of
a ContextDomain hierarchy. Finally, we discuss aspects related to mobility management and
how noti�cations about accessible ContextDomains is handled.

6.4.1 Domain Query Management

In our reference scenario we encounter a domain-query under the form of the request that Dan
sends from his o�ce in the EF301 room to inquire about Alice's availability status. We consider
two types of domain queries.

An exact domain query or subscription speci�es the exact ContextDomain from which an
answer needs to be retrieved.
In the example of our reference scenario, if Dan knows the exact location of Alice he can use
his application to issue a query for Alice's availability status directly to the CMU running on
the management server in the AmI-Lab.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING111

A domain range query or subscription is applicable given the existence of a ContextDomain
hierarchy and speci�ed an upper and a lower ContextDomain type limit from which answers to
the query can be retrieved.
To continue the above example, if Dan does not know the exact position of Alice, but is certain
that she must be somewhere in the building, he can issue a query for which he does not specify a
ContextDomain value, but rather two ContextDomain entity type limits. Dan can, for instance,
query the CMUs for all FacultyBuilding and LaboratoryRoom domain types (i.e. get
answers regardless if Alice is in a room or on some hall of the building). In this case the upper
limit is represented by the FacultyBuilding ContextEntity type and the lower one by the
LaboratoryRoom ContextEntity type. However, the two limits can often coincide (e.g. Dan
only wants to retrieve answers from laboratory rooms).

Consequently, we see that the CONSERT Middleware o�ers a �exible distributed query mech-
anism, with either direct match requirements or semantics-based range limitations. In what
follows we describe the messages exchanged as part of the query routing mechanisms that
implements the two request options.

Domain Query Protocol

A domain query is initiated by a CtxUser agent and sent to the CtxQueryHandler with
which it is registered. If the CtxQueryHandler determines the CMU he belongs to does not
manage the targeted ContextDomain of the query, it will start the routing protocol, collabo-
rating with the OrgMgr agent. For both types of domain queries the protocol works the same,
but the analysis done by the OrgMgr di�ers.

Figure 6.3: Sequence diagram for the domain-query routing interactions between CtxQueryHandler

and OrgMgr agents.

The protocol is depicted in the sequence diagram from Figure 6.3 and works as follows:

- The CtxQueryHandler asks the OrgMgr of his CMU to provide a list of addresses for
the CtxQuery Handler agent(s) to which he must forward the query (i.e. either from
parent or child CMUs).

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING112

- The OrgMgr, knowing from which ContextDomain the query came and using the domain
hierarchy document as well as his parent, child or known root manager connections, de-
termines the list of CtxQueryHandler agents to which the query must be forwarded
(Domain Query Forwarder Selection).

- If the query must not be forwarded anywhere (e.g. for a range query received from a
parent domain where the child domains are out of range), then the list will be empty. If
the list is not empty, the CtxQueryHandler will forward the query (i.e. as act a place
holder CtxUser) to the agent addresses contained in the list. The answers to the query
will thus take the exact reverse route back to the CtxUser that issued the request.

Domain Query Forwarder Selection

In what follows we detail the pseudo-code for the decision methods the OrgMgr applies to
determine the list of forwarder CtxQueryHandler agents.

Algorithm 1 Resolve Query Forwarder Base - Exact Domain

1: procedure resolve-exact-base(queryMsg, domain)
2: forward_list← []
3: if domainHierarchyExists() then
4: if my_role == NodeMgr then
5: forward_list.append(inspectHierarchy(queryMsg, domain))
6: else[my role is RootMgr]
7: forward_list.append(inspectHierarchy(queryMsg, domain))
8: if forward_list == ∅∧queryMsg.sender /∈ known_root_queryhandlers then
9: forward_list.append(known_root_queryhandlers)

10: else[we are a Root OrgMgr with no hierarchy]
11: if query_msg.sender /∈ known_root_queryhandlers then
12: forward_list.append(known_root_queryhandlers)

return forward_list

13: procedure inspectHierarchy(queryMsg, domain)
14: list← []
15: if subsumes(my_domain, domain) then
16: for all org_mgr ∈ child_org_mgrs do
17: if subsumes(org_mgr, domain) then
18: list.append(org_mgr.query_handler)
19: break
20: else
21: if subsumed(my_domain, domain) ∨my_type == NodeMgr then
22: list.append(parent_mgr.query_handler)

return list

Algorithm 1 presents the decision logic for an exact domain query. The procedure basically
checks to see if there is any domain hierarchy model and if so, tries to determine if the searched
domain is within the current hierarchy (i.e. anywhere in the tree up to the current root CMU).
If either there is no domain hierarchy, or the domain is not in the current hierarchy (i.e. it is
in the subtree of another root CMU) than the root OrgMgr will forward it to all other known
peers, only if it did not already receive it from such a peer (this is to avoid redundant messages).

Algorithm 2 shows the decision logic of the OrgMgr in case of a domain range query.
Lines 4 and 5 check if the current domain (i.e. that of the OrgMgrmaking the decision) matches
the type limits set by the query. If they do, the CtxQueryHandler of the local CMU is also
included in the list. In this case, the local CtxQueryHandler will detect that its address is

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING113

Algorithm 2 Resolve Query Forwarder Base - Domain Range

1: procedure resolve-range-base(queryMsg, upperLimitType, lowerLimitType)
2: forward_list← []
3: if domainHierarchyExists() then
4: if withinLimit(my_domain.type, upperLimitType, lowerLimitType) then
5: forward_list.append(my_query_handler)

6: if my_role == NodeMgr then
7: forward_list.append(parent_mgr.query_handler)
8: else[my type is RootMgr]
9: if queryMsg.sender /∈ known_root_queryhandlers then
10: forward_list.append(known_root_queryhandlers)

11: for all mgr ∈ child_org_mgrs do
12: if withinLimit(mgr.domain.type, upperLimitType, lowerLimitType) then
13: forward_list.append(mgr.query_handler)

14: else[we are a Root OrgMgr with no hierarchy]
15: if query_msg.sender /∈ known_root_queryhandlers then
16: forward_list.append(known_root_queryhandlers)

return forward_list

also in the forwarder list and register the query locally.
Lines 6 through 10 ensure that all requests are forwarded higher up in the hierarchy and in
between root managers such that they may reach the domain limits in all subtrees of root
domains.
Lines 11 through 13 make sure that queries are forwarded back down the hierarchy, but no
further than the lower ContextEntity type limit set by the initiator.

In the next section we perform a theoretical analysis of the complexity of the routing scheme
and the expected number of exchanged messages, given some characteristics of the decentralized
deployment setup.

6.4.2 Domain Query Complexity Analysis

We now perform an analysis of the complexity of the routing decision and the number of
expected number of messages exchanged as part of the routing process.

In the case of exact domain queries, the main complexity degree comes from the inspectHier-
archy() function which has to check whether the requested target ContextDomain lies in the
current tree hierarchy or not. Since the OrgMgr agents holds a domain hierarchy document
describing the existing ContextDomains and their inclusion relations, the function actually
performs just two operations to determine whether the requested domain is in on the current
hierarchy branch. The requested domain is either subsumed or it subsumes the current domain.
Checking whether a node lies on a tree branch is an O(h) operation, where h is the height of
the tree. In this case h equals the number of di�erent ContextDomain types de�ned for the
current ContextDimension. In the example given at the beginning of this report h would equal
3 (RoomSection, LaboratoryRoom and FacultyBuilding).
If the requested domain is not on the current branch, the inspectHierarchy() function of Algo-
rithm 1 will just forward it to the CtxQueryHandler of the parent CMU (see line 21).

In the case of the domain range queries the main complexity is given by the type limit range
checks. Given that the OrgMgr agents have the domain hierarchy document and that this time
they have to check for ContextDomain types instead of values, the worst case complexity is of
the order of O(dt), where dt is the number of ContextDomain types.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING114

Considering now the messages exchanged between CtxQueryHandler and OrgMgr agents
during a routing process, their expected number varies again depending on the type of domain
based query. To determine a quantitative worst case value, we introduce the following assump-
tions and notations.
Let h be the maximum height of a ContextDomain tree hierarchy and r be the number of root
ContextDomains. Further, let β be the maximum branching factor of the tree hierarchy.
To compute the number of exchanged messages for both request types we have to consider two
terms: the messages exchanged in each CMU (i.e. between CtxQueryHandler and OrgMgr)
and the ones exchanged in between CMUs (i.e. forwarding between CtxQueryHandlers).

In case of the exact domain request this amounts to:

2(h− 1) + 2r + 2(h− 1)︸ ︷︷ ︸+ 2(h− 1) + r − 1︸ ︷︷ ︸ = 6h+ 3r − 7

In the �rst term, we count the total number of nodes involved in the routing process. Since
we compute for the worst case scenario (e.g. two ContextDomains lying at opposite domain
hierarchy branches), there will h − 1 nodes going "up" to the root, h − 1 going back "down"
in the other branch, plus the r root nodes which constitute a fully connected network. We
multiply the obtained number by two to account for the request - reply messaging between the
CtxQueryHandler and OrgMgr.
The second term counts the messages exchanged between CtxQueryHandler agents and,
based on a similar logic, adds the edges going "up" on branch, and "down" the other, plus the
r − 1 messages between the fully connected root nodes.

For the domain range queries we apply a similar computation which takes the following form:

2S + (S − 1) + rest,where

S = r × (

hlower_lim∑
i=1

βi) + r = r × (β
βlower_lim − 1

β − 1
+ 1)

In the above formula rest represents the messages that are caused by routing in the case where
the original request start "below" the lower type limit of the query (i.e. from a ContextDomain
lower in the hierarchy).
The formula basically shows that we are dealing with a bounded broadcast of messages, since all
the nodes and edges of the ContextDomain tree hierarchies above the lower limit are involved
in the routing.

The above analysis presented the maximum number of messages exchanged in the routing
of queries. As mentioned earlier, the answers to these queries are returned on the routes
created during the �nd phase. Therefore, in the case of exact domain queries, this will incur
an additional 2(h− 1) + 1 messages sent between CtxQueryHandler agents.
For the domain range query type, the number of answer messages depends on how many nodes
from within the type limits set by the query can actually send a reply (i.e. the query matches
information stored in the CONSERT Engine of their CMUs). In the worst case, the return
path will resemble that of the exact domain query type.

6.4.3 Domain Broadcast Management

In the previous section we talked about exact-domain and domain-range query capabilities
which complete the information retrieval functionality of the CtxUser agent.We now focus on
the augmentation of the producer capabilities of such agents given the same ContextDomain-
based structure awareness. Speci�cally, in Section 5.4.2, we mentioned that the CtxUser agent
can provide static EntityDescription information or pro�led ContextAssertions on instruction
from its Client Application Adaptor service.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING115

As was the initial case for the request chain, the insertion of EntityDescriptions or pro�led
ContextAssertions is by default limited to the current CMU (or more precisely, to the CtxCoord
agent whose address was obtained from the assigned OrgMgr agent).

A domain range broadcast is applicable in case of a decentralized deployment where a Con-
textDomain hierarchy exists. As in the query case, it speci�es upper and lower ContextDomain
type limits between which context information given by the CtxUser can be forwarded.

However, the spread of information does not occur in the same way as for a query request.
Given the ContextDomain type from which the broadcast starts, the information will be recur-
sively forwarded to all child ContextDomains which respect the lower type limit. Instead, the
forwarding to ContextDomains higher up in the hierarchy strictly follows the parent relation
and stops either when it reaches either the upper type limit, or a root ContextDomain.
This decision attempts to maintain the locality principle, which, in our terms, translates to the
fact that a piece of context information should only be directly accessible in those ContextDo-
mains which have an explicit relation with one another (parent or child, recursively). Access to
such information from other ContextDomains can be done via the domain-based query mecha-
nisms described in the previous section.
To clarify this with an example, if Alice wishes to make her availability status known at faculty
building level (whilst being in the ad-hoc meeting in the AmI laboratory) she will request a
broadcast of this context with an upper type limit of FacultyBuilding and a lower type
limit of LaboratoryRoom. Thus, her busy or free status will be sent to the CtxCoord agent
running in the CMUs responsible for the coordination of context provisioning in the AmI-Lab
and CS_Building ContextDomains. However, it is forwarded neither to the EF301 o�ce
room, nor does it cross the known root relationship (as shown in Figure 6.2) to be sent to the
EE_Building.

Algorithm 3 shows the decision logic for determining the forwarding list, once a domain range
broadcast request is received. Notice that instead of the CtxQueryHandler, the CtxCoord
agent is involved in the broadcast routing and it is charged with asking its assigned OrgMgr to
determine the list of CtxCoord agents to which the request must be sent further.

Algorithm 3 Resolve Broadcast Forwarder Base - Domain Range

1: procedure resolve-range-base(broadcastMsg, upperLimitType, lowerLimitType)
2: forward_list← []
3: if hierarchyModelExists() then
4: if my_type == NodeMgr then
5: if broadcastMsg.sender 6= parent_mgr.coordinator then
6: if parent_mgr.domain.type 6 upperLimitType then
7: forward_list.append(parent_mgr)

8: if broadcastMsg.sender == parent_mgr.coordinator ‖ my_coordinator then
9: for all org_mgr ∈ child_org_mgrs do
10: if org_mgr.domain.typ > lowerLimitType then
11: forward_list.append(org_mgr.coordinator)

return forward_list

Notice that no forwarding takes place unless the OrgMgr is aware of the existence of a hierarchy
model (line 3 in the algorithm). Node OrgMgr will forward the request to their parent only if
they did not receive it from them and if the broadcast upper limit permits it (lines 4 - 7). Lines
8 - 11 handle the other case, where the request is forwarded to child domains only if it did not
come from a child CtxCoord and the broadcast lower limit permits it.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING116

6.4.4 Context Prosuming Exempli�cation

The term prosumer was �rst coined by To�er [To�er et al., 1981] and used in an economic
context to mean that the role of producers and consumers would begin to blur and merge. In
the context of our work, we appropriate this attribute to the CtxUser agent which can act
both as a consumer (i.e. member of the request interaction chain) as well as a producer of
context information (i.e. member of the sensing interaction chain).

We have seen previously how extended query and broadcast abilities stem from a ContextDo-
main-based structuring of an application. We now want to discuss how the application-level
can combine these behaviors across CtxUser agents from multiple CMUs and how this allows
this type of agents to potentially act as a relay of context information.

To draw attention to aspects mentioned above, let us take a closer look at some of Alice's
interactions while being engaged in the ad-hoc meeting taking place in the AmI laboratory.
On the one hand, Alice's smartphone application is subscribed to the AmI-Lab management
server for detecting the number of people at Alice's current RoomSection-level (i.e. which
desk) location. If there are more than two people, the application subscribes for possible ad-hoc
meeting noti�cations. If the AmI-Lab management server informs Alice's smartphone that she
is in such a meeting, the application running on her mobile device knows to deduce that she is
busy. The application agrees furthermore to disseminate this availability status at the level of
the entire laboratory room.
At the level of structuring these interactions according to the provisioning connections and
CMU deployment options discussed in this chapter and the previous one, there are two options,
which are show in Figure 6.4 and are analyzed next.
We start by referring to a previous �gure (Figure 6.1), where we explained that the role of the
bootstrap CMU is to detect when Alice's smartphone application context falls within the inci-
dence of a certain ContextDomain. The application-level is noti�ed of when a ContextDomain
becomes accessible or not. It can therefore decide to launch a CMU assigned for contextual
interactions within this ContextDomain. While talking about the OrgMgr agent functionality
we also mentioned that mobile OrgMgrs (which is the case of the OrgMgr of the bootstrap
CMU) can notify the application level of the remote OrgMgr agent which needs to be assigned
to the CMU agents that will be deployed to interact with the ContextDomain which has just
been accessed.

This is the setting where the events and actions depicted in Figure 6.4 start. We consider that
Alice and her colleagues are about to start their ad-hoc meeting. The OrgMgr in the bootstrap
CMU has detected that Alice is in the AmI laboratory and has informed the application level
of this fact and has provided the address of the node OrgMgr agent running in the CMU on the
AmI-Lab management server. This latter agent becomes the assigned OrgMgr (shown as a blue
arrow in Figure 6.4) for the provisioning agents in the CMU deployed on Alice's smartphone
to interact with the AmI-Lab ContextDomain (shown as AmI-Lab Domain CMU in the lower
part of the �gure).
What we show in Figure 6.4 is that there are two means by which the application can interact
with the AmI-Lab ContextDomain. It presents the di�erent types of interplay that can take
place between the application level and the CONSERT Middleware CMUs that are meant to
facilitate context management within the application.
In the approach shown on the left side of the �gure we see the case where the application decides
to deploy a single CMU that will manage both context information coming from the AmI-Lab
ContextDomain as well as information that is particular to Alice's own rules of specifying
her availability status. In this setup, the CtxUser agent in the CMU will act as a direct
relay of context from one CMU to the other. We notice that the CtxUser agent can only
communicate with the local CtxCoord and CtxQueryHandler agents. These latter agents,
however, have received the address of the remote node OrgMgr running in the CMU of the
AmI-Lab management server. In this way they can participate in the routing of a domain-

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING117

Figure 6.4: Two methods to implement context information relay using the CtxUser insertion and

broadcast capabilities. Left side shows mechanism using a single CMU and domain-based range broad-

cast. Right side shows two CMUs linked by the application level and pro�led insertion capability.

Numbered circles shows temporal sequence of events and actions.

based query or broadcast as shown in the previous sections. The approach exploits precisely
these options since the application instructs the CtxUser through the Client Application
Adaptor to perform the following actions:

- an exact domain subscription for the number of people at the same location as Alice (step
1A)

- noti�cations of being in an ad-hoc meeting at that location (step 2A)

- make a local pro�led insertion of the positive noti�cations of detected ad-hoc meeting
situations (step 2C)

- make a local subscription for the availability status (step 3A)

- broadcast the availability status with an upper limit of the type LaboratoryRoom,
meaning that it will stop at the AmI-Lab ContextDomain (step 3B)

Analyzing this approach we can note that it is suitable when the availability status (busy/free)
is only relevant whilst Alice is in the AmI-Lab (since the CMU deployed on her smartphone
that is assigned to this ContextDomain is only active during this time).

If the availability status is actually part of contextual information that is particular to Alice's
everyday activities, then the approach shown on the right side of Figure 6.4 can be used. In
this case the CMU deployed to interact with the AmI-Lab ContextDomain is decoupled from
the CMU that was already deployed on Alice's smartphone and which is meant to handle her
personal context, which includes the conditions she sets for being busy. This is the case show-

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING118

ing how the application-level can combine and relay context data from/between CMUs that
run on the same device, but each handling di�erent context information aspects. In the ap-
proach, the CtxUser running in the AmI-Lab Domain CMU communicates exclusively with
the CtxQueryHandler and CtxCoord agents from the CMU running on the AmI-Lab man-
agement server. Its role is limited to subscribing for the number of people and ad-hoc meeting
context information (steps 1 and 2A) and sending the pro�led ContextAssertion informing of
Alice's status which she wants to make available at AmI-Lab ContextDomain level.
The received query answers become available to the application level via the Client Application
Adaptor used by the CtxUser agent in the AmI-Lab Domain CMU. The same adaptor type,
employed by the CtxUser agent in the Alice Personal Domain CMU, is used to instruct
the corresponding user agent to insert these query answers in the local CONSERT Engine by
sending them as pro�led ContextAssertions to the CtxCoord agent from the CMU. In this
way, the application-level has performed a relay of context information between two di�erent
CMUs and the ContextDerivationRules running in the local CONSERT Engine instance can
derive Alice's availability status based on this additional input. The assertion of the resulting
busy status at AmI-Lab ContextDomain level (steps 3A - 3E) occurs in a similar manner, but
in a reversed sense.

The example shown above illustrates two aspects. On the one hand it exempli�es the prosumer
behavior of the CtxUser agent. Furthermore, it shows one of the key elements of the CONSERT
Middleware, namely �exible deployment options. We noticed that the same context provisioning
functionality can be engineered in several ways depending on the speci�c application design
requirements which constitutes an important advantage.

6.4.5 Mobility Management

In Figure 6.1 we explained that the role of the bootstrap CMU on Alice's smartphone, man-
aged by a mobile OrgMgr, is to detect when di�erent ContextDomains become accessible/i-
naccessible. While the CONSERT Middleware does not currently o�er a standard and readily
exploitable method to perform discovery of mobile nodes and mobility management, the ap-
plication level has two main possibilities to achieve this. Detection of ContextDomain changes
(entering or leaving a domain) can be done in an active or passive way, from the perspective
of the mobile node.
In an active mode, the CMU deployed to handle ContextDomain detection has to actively
search for the information that tells it when in enters or leaves a ContextDomain.
In the passive mode, it is actually the root or node OrgMgr of the CMUs deployed on
the machines that handle coordination of a ContextDomain (e.g. tram management service,
AmI-Lab management server). In what follows we brie�y discuss each possible approach.

Passive Mode In the passive mode, a mobile OrgMgr acts as a receiver of noti�cations for
entering/leaving ContextDomains. The node or root OrgMgrs that manage the CMUs handling
the coordination of a given ContextDomain perform a monitorization of the ContextAssertions
which signal that a mobile node has access to their managed ContextDomain.
Facilitation for observing the ContextDimension instances which imply an entering of a Con-
textDomain exists in the CONSERT Middleware under the form of ContextDomainEntered
and ContextDomainLeft rules. These are special forms of ContextDerivationRules which out-
put information about the detected ContextDimension instance and, most importantly, the
ContextEntity instance playing the subject role in the dimension.
To see an example of the passive mode in action, we refer again to Figure 6.1. In that case, both
the tram and the AmI-Lab OrgMgr agents inform the bootstrap OrgMgr of entering/leaving
the corresponding ContextDomain. To see how this could be achieved, we �rst remind that the
ContextDimension from which domains arise comprises a subject and an object part.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING119

To identify who/what has entered a ContextDomain, a node or root OrgMgr has to monitor
the insertions of those ContextAssertions which actually represent ContextDimension instances.
For example, for the AmI-Lab ContextDomain the node OrgMgr has to monitor instances such
as locatedIn(Alice, AmI-Lab), whereby Alice is the subject ContextEntity of type Per-
son. After observing such an instance, the OrgMgr should be able to extract a pro�le linked to
the subject ContextEntity (i.e. Alice in our example) to retrieve the addressing information of
the mobile OrgMgr agent in the bootstrap CMU running on Alice's smartphone. As explained,
there is currently no standardized support for how this information becomes accessible within
an application, so it can be assumed that the pro�le information is given and updated via the
mechanism falling outside the working of the CONSERT Middleware.
To continue the example, consider that location sensors within the laboratory use bluetooth
MAC addresses to detect the existence of a smartphone device in their vicinity. If the pro�le in-
formation discussed above contains data specifying that Alice is the owner of a smartphone with
a given bluetooth MAC address, than a designer can write a ContextDomainEntered rule which
deduces the ContextDimension instance corresponding to Alice being in the AmI-Lab. The Con-
textDomainLeft rule could then, for instance, say that if the validity of locatedIn(Alice,
AmI-Lab) ContextDimension instance has expired a given amount of time ago (i.e. there were
no updates for the speci�ed time interval), then it can be considered that Alice no longer has
access to the AmI-Lab ContextDomain.
Both ContextDomainEntered and ContextDomainLeft rules are registered automatically by the
CtxCoord agent from the given ContextDomain coordination CMU and run in the CONSERT
Engine. Likewise, the OrgMgr subscribes automatically for the speci�c output of these special
rules.

Active Mode In the active mode, a mobile OrgMgr is in charge of managing a CMU ded-
icated to determining the set of ContextDomains to which the mobile machine on which the
CMU runs currently has access. The typical bootstrap CMU will contain a CtxSensor in-
stance, whose role it is to detect ContextDomain announcements.
The active mode currently has a similar facilitation as the passive one and involves again
application-speci�c engineering. For instance, consider the case where the AmI laboratory has
its own wi� network on which the management service running on top of the AmI-Lab do-
main management CMU can constantly broadcast the ContextDimension and ContextDomain
information, as well as the address of the corresponding node OrgMgr. The CtxSensor in
the bootstrap CMU would be con�gured to work with a Context Assertion Adaptor
that would allow them to receive these broadcasts. The bootstrap CMU would also include
a CtxCoord agent instance which would run ContextDomainEntered and ContextDomainLeft
that, like in the previous case, would output information about the detected dimension and do-
main (or lack of updates thereof, for the domain left case). The application designer would in
this case instruct CtxUser on the bootstrap CMU to subscribe for the noti�cation of the out-
put of these special rules. In this way, the application-level would be noti�ed (via the Client
Application Adaptor interface) of di�erent ContextDomain changes and, as shown in Fig-
ure 6.1, it can launch the appropriate CMUs that would handle contextual interaction with the
newly detected ContextDomain.

6.5 Discussion

In this chapter we have completed the conceptual overview of the CONSERT Middleware ar-
chitecture and functionality which started with the presentation of the context representation
and reasoning method (Chapter 4), continued with the aspects of the provisioning process and
its adaptation (Chapter 5) and ended with the explanation of context provisioning deployment
options and mechanisms.

CHAPTER 6. FLEXIBLE DEPLOYMENT OF CONTEXT PROVISIONING120

Speci�cally, in this chapter we have seen how the concepts of ContextDimension and ContextDo-
main, which arise from the multi-dimensional aspect of the application context model itself,
are exploited to provide the logical deployment structure of context provisioning units (i.e. the
agents of a Context Management Unit). We have analyzed how this structure elements allow us
to consider two deployment schemes: centralized and decentralized. In the decentralized case
the possibility exists to create a hierarchy of ContextDomains which, in turn, has bene�ts in
terms of extended context query and broadcast mechanisms.
We then further addressed the issue of supporting design and engineering of this deployment
�exibility via a declarative con�guration approach, which is able to de�ne computational plat-
form, ContextDomain and agent-level speci�cations. We showed how a deployment con�gura-
tion allows the application developer to specify the agent composition of a CMU and, therefore,
assign it to handle one or more aspects of the main context provisioning life cycle (acquisi-
tion, coordination, dissemination) of a ContextDomain. We then explained how the life cycle
of a CMU is controlled by the OrgMgr agent, which oversees all deployment-related aspects
(including providing help with inter-domain routing and mobility management). As we will
explore in the next chapter related to CONSERT Middleware implementation, support for the
latter CMU life cycle aspects is further enhanced by the software component based design of
our system.

At the end of the previous chapter we had begun an overview of how our CMM addresses sev-
eral of the context management operational requirements introduced in Section 3.1.1. In what
follows we comment on further aspects.
From the point of view of the main life cycle operations (acquisition, coordination and dissem-
ination) we see an augmented functionality in the production and dissemination capabilities of
the middleware. Speci�cally, the decentralized deployment scheme based on distributed Con-
textDomains allows for a domain-based query and broadcast functionality. This functionality
has the added bene�t of being able to impose dissemination limits based on ContextDomain
types, that is, it is tied to the semantics of the application context model, not just to predeter-
mined physical network con�guration.
Context Producer Discovery and Mobility Management are not yet addressed completely. In
future work we aim to de�ne standard mechanisms of performing these aspects within the
CONSERT Middleware. However, as explained in Section 6.4.5, partial support for these issues
already exists in our CMM. Speci�cally, the ContextDomainEntered and ContextDomainLeft
rules and the functionality of both root/node as well as mobile OrgMgr agents ensure facilita-
tion of the application-level engineering of dynamic discovery and change of ContextDomains.
Non-functional aspects such as scalability and robustness are addressed by the �exible deploy-
ment options of our middleware. The ContextDomain-based context model partitioning and
CMU-based context provisioning implementation allow our CMM to be employed in scenarios
ranging from single device context management to smart campus applications such as in our ref-
erence scenario. The fact that CMUs that handle provisioning of the same ContextDomain can
be physically deployed on di�erent dedicated computing nodes further increases the foundation
for scalability. Since these aspects also often depend on the implementation characteristics of a
system, we will revisit them in chapter 7 where we discuss how the chosen agent development
framework provides support scalability and robustness related issues.
Lastly, an important contribution is the facilitation of application development via ease of
con�guration. As in the case of context provisioning sensing and coordination policies, all rel-
evant aspects of context provisioning deployment can be declaratively speci�ed, which reduces
implementation e�ort and constitutes one of the goals of our approach.

Chapter 7

CONSERT Middleware

Implementation

The previous three chapters have presented the conceptual modeling and architectural elements
that underpin our de�nition and design of the CONSERT context management middleware.
This chapter is dedicated to exploring the software development practices, tools and frameworks
which help implement it. We present our approach for each of the aspects discussed in previous
chapters (modeling/reasoning, provisioning, deployment), explaining the motivation and details
of our implementation choices in each case.

In Section 7.1 we begin our presentation by discussing aspects of context representation. We
show the concrete way in which instances of an application context model built with the CON-
SERT Ontology are stored and accessed at runtime, as well as how ContextDerivationRules are
encoded and included in a context model. We also talk about how the vocabularies for the pro-
visioning and deployment policies introduced in Chapters 5 and 6 respectively are implemented
as ontologies.
Section 7.2 explores the implementation of the CONSERT Engine, speci�cally its execution
cycle and its implementation as a software service component.
In Section 7.3 we talk about the chosen implementation framework for the context provisioning
agents, as well as the means by which these agents �nd and use the di�erent adaptor services
which are present in their environment and are required for their functionality. We then dis-
cuss implementation-speci�c details concerning the provisioning adaptation functionality of the
CMM agents.
Finally, we present the method for packaging all context provisioning deployment con�gura-
tions and the means by which they are handled at runtime in Section 7.4, before concluding
the chapter with a discussion in Section 7.5.

7.1 Context Representation Implementation

Here we begin our overview of how the context modeling structures introduced in Chapter 4
are implemented. Speci�cally, we talk about the runtime storage speci�cs of ContextAssertions
and EntityDescriptions, how ContextAnnotations are �attached� to their corresponding Context-
Assertion instance, as well as how ContextDerivationRules and ContextConstraints are encoded
and bound to the CONSERT Ontology based de�nition of the ContextAssertion type which
they derive and constrain respectively.
Furthermore, we introduce the two ontologies which capture the parameter vocabulary for con-
text provisioning and deployment policies. In this way, a uniform modeling and implementation

121

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 122

approach is maintained across all aspects of the CMM.

7.1.1 Using Named Graphs as Identi�ers

In Section 4.2 we explained that the CONSERT context meta-model takes the form of an
ontology capturing context content, annotation and constraint information. We now explain
how instances of the context modeling elements are stored and related to each other.

RDF Named Graphs [Carroll et al., 2005] lie at the heart of our approach. These allow a set
of RDF statements (subject - predicate - object triples), called a graph, to be grouped and
associated with a URI (i.e. the graph name). In this way, a logical partitioning of an RDF
dataset can be achieved. Furthermore, the URI which acts as an identi�er of the named graph
can be itself used in other RDF statements as their subject or object part.
Since instances of context information expressed using the CONSERT Ontology are in fact
RDF statements, named graphs can be used to our advantage. They essentially facilitate the
identi�cation of individual ContextAssertion instances and thus allow the statements repre-
senting ContextAnnotations of those assertions to be assigned to their corresponding instance.
Speci�cally, each individual RDF statement (n = 2) or set of statements (n = 1, n > 3 - cf.
Examples 4.2.1 and 4.2.2) expressing a ContextAssertion is wrapped within its own graph and
has the name of the graph as an identi�er. The ContextAnnotations are then expressed as RDF
statements which have the named graph URI as their subject.

We mentioned that named graphs act as logical separators of RDF datasets. Besides the use in
ContextAssertion instance identi�cation, as explained above, the CONSERT Middleware uses
the named graph approach to establish separate runtime storage partitions for:

- static information: ContextEntity de�nitions and EntityDescriptions

- annotation information: all ContextAnnotations for the instances of a given Context-
Assertion type are stored in the same named graph

Table 7.1 summarizes the form and use of named graphs for the structuring of context infor-
mation in CONSERT.

Modeling Element Named Graph URI form Role

ContextEntity
EntityDescription

http://purl.org/net/consert/entityStore
The named graph where all instances of
ContextEntities, ContextEntity de�nition ax-
ioms and EntityDescriptions are kept.

ContextAssertion URI of ContextAssertion + UUID seed
The named graph wrapping a Context-
Assertion instance and acting as its identi�er.

ContextAnnotation URI of ContextAssertion + Store
The named graph where annotations of all in-
stances of a ContextAssertion type are kept.

Table 7.1: List usage cases for named graphs in the CONSERT Middleware.

The table shows that static context information is kept in the entity store, which is assigned a
speci�c named graph URI. Individual ContextAssertion instances are stored in a graph whose
URI is obtained by adding the textual form of a generated UUID1 to the URI denoting the
ContextAssertion type.
Lastly, for each ContextAssertion type we create a special storage partition, called the Context-
Assertion Store. The graph for this partition obtains its name by taking the ContextAssertion

1http://en.wikipedia.org/wiki/Universally_unique_identi�er

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 123

URI, replacing all '#' occurrences with '/' and appending the word Store at the end. The ob-
tained named graph contains all the annotations for the instances of the given ContextAssertion
type.

Let us take an example from our reference scenario to illustrate all the above.

GRAPH <ex:hostsAdHocDiscussion-UUID> {
_:0 rdf:type ex:hostsAdHocDiscussion.
_:0 core:assertionRole ex:AmI-Lab.

}

(a) A named graph identifying an instance of
the hostsAdHocDiscussion UnaryContextAssertion

GRAPH <ex:hostsAdHocDiscussionStore> {
ex:hostsAdHocDiscussion-UUID core:assertionType
ctx:Sensed.

ex:hostsAdHocDiscussion-UUID ann:hasTimestamp
ex:tsAnn.

ex:tsAnn ann:hasValue
"2015-04-06T12:00:05Z"ˆˆxsd:datetime

. . .
}

(b) The �store� named graph of the hostsAdHocDis-
cussion ContextAssertion holding annotations

GRAPH <http://purl.org/net/consert/entityStore> {
ex:AmI-Lab rdf:type ex:LaboratoryRoom.
}

(c) The EntityStore holding information about the
AmI-Lab ContextEntity

Figure 7.1: Example contents of EntityStore and ContextAssertion Store and identi�er named
graphs.

Figure 7.1 shows examples of each of the previously mentioned use cases for named graphs on
hand of an instance of the hostsAdHocDiscussion UnaryContextAssertion taken from the
AmI-Lab part of our reference scenario. Sub�gure a) shows how the statements that make
up an instance of the hostsAdHocDiscussion are stored in their own named graph whose URI
consists of the assertion URI (ex:hostsAdHocDiscussion) to which an UUID is appended (shown
in the �gure just as UUID in order to obtain compact formatting of the picture). Sub�gure
b) shows the corresponding ContextAssertion Store, where annotation information about the
assertion instance in sub�gure a) is maintained. Lastly, the EntityStore shown in sub�gure c)
contains the de�nition of the AmI-Lab as an instance of a LaboratoryRoom ContextEntity.

As we explore in Section 7.2.1, these storage options are used at runtime by the CONSERT
Engine to perform its insertion, inference and query execution cycles.

7.1.2 Rule Encoding using SPIN

In Section 4.3 we showed how context derivation and consistency maintenance are achieved
by ContextDerivationRules and ContextConstraint expressions modeled as SPARQL CON-
STRUCT queries. We now look at how these queries are serialized and assigned to the corre-
sponding ContextAssertion types such that the CONSERT Engine can create its auxiliary data
structures as discussed in Section 4.4.1.
Rule and constraint query encoding is made using the SPARQL Inferencing Notation (SPIN)
[Knublauch et al., 2011] proposal. SPIN currently has the status of a W3C Member Submission,
but it has become the de facto industry standard to represent SPARQL rules and constraints
on Semantic Web models1. Apart from providing an RDF serialization of SPARQL queries,
SPIN o�ers a vocabulary that enables de�nition of inference and constraint rule templates and
�attaching� instances of such templates to elements (classes, properties) in an ontology model.

1http://spinrdf.org/

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 124

The CONSERT Ontology de�nes base templates for both derivation and constraint check-
ing. These templates are subclasses of the spin:ConstructTemplates class. In the case of
DerivationRules the base template for any rules shaped as SPARQL CONSTRUCT queries
is called DerivationRuleBase. The SPIN speci�cation allows for the de�nition of pa-
rameters of a template which may be used at runtime. The CONSERT Middleware uses
two default arguments for the DerivationRuleBase: the contextAssertionType and
contextAssertionUUID parameters. Both of these arguments identify the ContextAssertion
instance which has triggered the execution of the current DerivationRule. They specify the
type (URI of the ContextAssertion as given in the application context model built using the
CONSERT Ontology) and the identi�er URI (as explained in Section 7.1.1) of the triggering
assertion. The values of these arguments are supplied at runtime by the CONSERT Engine
who is executing the rule.
For ContextConstraints the base template is called ContextConstraintTemplates and it
de�nes three subclasses, corresponding to the three types of constraints considered in the CON-
SERT Ontology: value (ValueConstraint Templates), uniqueness (UniquenessConstraint
Templates) or general integrity (IntegrityConstraint Templates). The same two pa-
rameters (called triggerAssertionType and triggerAssertionUUID in this case) are
de�ned by default for a ContextConstraintTemplates class.

Once created, a SPIN encoded DerivationRule or ContextConstraint needs to be included in the
application context model and �assigned� to the ContextAssertion type it derives or constrains
respectively. In this way the CONSERT Engine can build its auxiliary data structures which
help it know which ContextAssertions are the object of a derivation or a constraint check. The
CONSERT Ontology de�nes two OWL properties for this purpose.
The spin:deriveassertion is a sub-property of spin:rule and serves to bind an in-
stance of a template extending the DerivationRuleBase to the ContextAssertion type it
derives.

ex:AdHocDiscussionRule rdfs:subClassOf rules:DerivationRuleBase .
_:adhocrule rdf:type ex:AdHocDiscussionRule .
ex:hostsAdHocDiscussion spin:deriveassertion _:adhocrule .

The lines above continue the previous examples and show how an instance of the AdHocDiscussion
Rule subclass of the DerivationRuleBase is attached to the hostsAdHocDiscussion
ContextAssertion. In this case, our template instance is identi�ed by an anonymous RDF node
(_:adhocrule) since it does not need to be referenced anywhere else, other than in this as-
signment.
In the constraint case, the spin:contextconstraint property is used to bind an instance
of a constraint template to the ContextAssertion type it constrains. In our reference scenario,
a uniqueness constraint is de�ned on Alice's availability status, specifying that she cannot be
free and busy at the same time. Thus, similar to the above example we have the following
constraint assignment statements:

ex:AvailabilityConstraint rdfs:subClassOf constr:UniquenessConstraintTemplates .
_:statusconstr rdf:type ex:AvailabilityConstraint .
ex:hasAvailabilityStatus spin:contextconstraint _:statusconstr .

Statements such as the ones above are included together with the rest of statements that give
shape to the context model of an application. In Section 7.2 we will see that in order to help
developers separate the concerns of content, annotation, constraint and rule modeling, the set
of RDF statements corresponding to each aspect can be included in their own �le.

To complete the overview of representation-related implementation aspects, in the following two
subsections we present the ontology-based realization of the vocabulary used in the development
of provisioning and deployment policies.

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 125

7.1.3 Provisioning Ontology

In Section 5.2 we presented the structure of context provisioning policies made up of parameters
and rules that control sensing and coordination behavior of the corresponding CONSERT Mid-
dleware agents. Here we explain how the concepts introduced in that chapter are implemented
as the CONSERT Provisioning Ontology1.

The choice for implementing the vocabulary as an ontology is based on the idea of uniformity
of implementation. This means that the same CONSERT Middleware internal logic that reads
and uses an application context model built using the CONSERT Ontology can do so as part
of the initialization phase of the CONSERT Middleware agents.

Policy Parameter De�nition

The ontology de�nes OWL classes for the concept of a policy instance itself, i.e. SensingPolicy
for sensing and ControlPolicy for coordination. Further OWL classes de�ne concepts such
as provisioning control rule output commands (e.g. StartAssertionCommand, StartRule
Command, UpdateModeCommand) or place-holders for ContextAssertion-speci�c provisioning
control parameters (e.g. AssertionSpecificEnableSpec, AssertionSpecificConstraint
ResolutionType).
The actual parameters are implemented as OWL object properties which bind an instance of
the SensingPolicy or ControlPolicy classes to the corresponding parameter value. To
showcase the above, we revisit the examples given in Section 5.2 and present them in their
corresponding ontology form.

:presenceSensingPolicy
a sensorconf:SensingPolicy ;
coordconf:forContextAssertion ex:sensesBluetoothAddress ;
sensorconf:hasUpdateMode coordconf:time-based ;
sensorconf:hasUpdateRate 2 .

:luminositySensingPolicy
a sensorconf:SensingPolicy ;
coordconf:forContextAssertion ex:sensesLuminosity ;
sensorconf:hasUpdateMode coordconf:change-based ;
sensorconf:hasUpdateRate 0 .

Figure 7.2: Example of sensing policy speci�cations for presence and luminosity Context-
Assertion updates in CONSERT Provisioning Ontology form (Turtle syntax).

Figure 7.2 shows the initial sensing update mode con�guration for the presence and luminosity
ContextAssertions that were given as an example from our reference scenario in Section 5.2.1.
Notice speci�cally the use of an OWL property called forContextAssertion. This property
enables specifying ContextAssertion-speci�c parameters, such as is the case for the parameters
of a sensing policy.

Figure 7.3 revisits the example on coordination policy control parameter speci�cations given
initially in conceptual form in Section 5.2.2.

We see how ProvisionPolicy_AmILab is de�ned as an instance of a ControlPolicy
and how the control parameters are assigned as properties of this instance. In the case of
ContextAssertion-speci�c parameters (e.g. enabling updates for device presence via bluetooth
sensing, enabling derivation for person location based on device presence) an instance of an
AssertionSpecificEnableSpec class is created which has as OWL properties the type of

1http://purl.org/net/consert-provisioning-ont/control, http://purl.org/net/consert-provisioning-ont/sensing

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 126

:ProvisionPolicy_AmILab
a coordconf:ControlPolicy ;
coordconf:enablesAssertionByDefault false ;
coordconf:hasDefaultOntReasoningInterval 10 ;
coordconf:hasDefaultRunWindow 20 ;
coordconf:hasDefaultTTLSpec 100 ;
coordconf:hasDefaultUniquenessConstraintResolution coordconf:PreferNewest ;
coordconf:hasDefaultIntegrityConstraintResolution coordconf:PreferAccurate ;

coordconf:hasSpecificAssertionEnabling [
a coordconf:AssertionSpecificEnableSpec ;
coordconf:forContextAssertion amilab:sensesBluetoothAddress ;
coordconf:hasParameterValue true

]
coordconf:hasSpecificAssertionEnabling [

a coordconf:AssertionSpecificEnableSpec ;
coordconf:forContextAssertion person:locatedIn ;
coordconf:hasParameterValue true

] .

Figure 7.3: Example of coordination policy speci�cations in CONSERT Provisioning Ontology
form (Turtle syntax).

ContextAssertion for which it applies (forContextAssertion) and the value of the param-
eter (hasParameterValue).

Policy Control Rule De�nition

When we talked about provisioning control rules in Section 5.2.2 we explained that they as well
are structured as SPARQL CONSTRUCT queries and we detailed the type of outcomes these
rules can have. We now observe that the rule outcomes correspond to OWL classes from the
CONSERT Provisioning Ontology such as StartAssertionCommand, StopDerivationCommand,
etc.
As was the case for DerivationRules and ContextConstraints, the SPARQL expression of a provi-
sioning control rule is encoded using the SPIN speci�cation and is part of a CommandRuleTemplate
de�ned by the CONSERT Provisioning Ontology. The ontology also contains a set of prede-
�ned subclasses of the CommandRuleTemplate which deal with commonly expected cases of
provisioning adaptation/control. For example, there is a template which prescribes stopping
the updates of a given ContextAssertion, if no queries and subscriptions (as collected from
the CONSERT Engine statistics) for this assertion type have been received since a given time
threshold (which is a parameter of the template). Another one prescribes the activation of
ContextAssertion updates for a given assertion type if the current time is between a given in-
terval (speci�ed as parameter of the template). Naturally, in an application, the developer is
able to create his own control rule templates besides the default ones.

Furthermore, just as in the cases for derivation rules and constraints, dedicated the CONSERT
Provisioning Ontology de�nes a dedicated OWL property (hasCommandRule) which is used
to �attach� a CommandRuleTemplate (or subclass thereof) instance to a provisioning coordi-
nation policy de�nition.
Remember also from Section 5.3.2 that provisioning control rules can be partitioned into ordered
execution groups. At implementation level, the groups are created by de�ning sub-properties of
hasCommandRule. The control rule instances (i.e. instances of a CommandRuleTemplate
or its subclasses) that belong to a group are assigned to the provisioning coordination policy
de�nition using the sub-property of hasCommandRule which determines that group. We re-
fer the reader to Section 7.3.3 for more details on how ordering and execution of the rules is
performed.

In Figure 7.4 we provide an example of the CommandRuleTemplate subclass mentioned above

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 127

(canceling updates if no query for given time threshold) and how an instance of this template is
assigned to the coordination policy de�nition. In this case we are viewing a template instance
for canceling updates for luminosity information, if no projector has made queries for this
ContextAssertion in more than 20 seconds.

CONSTRUCT {
_:b0 a :StopAssertionCommand.
_:b0 :forContextAssertion ?assertion.

}
WHERE {

?stat a :AssertionSpecificStatistic.
?stat :forContextAssertion ?assertion.
?stat :isDerivedAssertion true.
?stat :nrSubscriptions 0.
?stat :timeSinceLastQuery ?time.
FILTER (?time > ?elapsedThreshold).

}

coord:ControlPolicy
coord:hasStopAssertionCommand [
a :QueryAbsenceAssertionCancellation;
arg:contextAssertion ami:sensesLuminosity;
arg:elapsedTimeThreshold 20;

];

Figure 7.4: SPARQL expression of derivation cancellation rule template (left) and control rule assign-

ment (right)

In the WHERE clause of the CONSTRUCT query we can see some of the parameters collected
as statistics by the CONSERT Engine (cf. Section 5.3.1 for details). The statistics parameters
are also de�ned in the CONSERT Provisioning Ontology under the form of OWL properties.
We refer again to Section 7.3.3 for explanations of their runtime retrieval. The CONSTRUCT
clause of the query creates an instance of the StopAssertionCommand. The variables which
start with a '?' (assertion and elapsedThreshold) are the parameters of the control rule tem-
plate. They obtain their value when doing the template instance assignment, as shown on the
right side of the �gure.
For the control rule assignment part (right side of the �gure) notice the hasStopAssertionCommand
property which is used to attach the template instance to the ControlPolicy class. This
property is a sub-property of hasCommandRule and it creates the execution group of all
ContextAssertions which need to be stopped at the time of running the control rules. In Sec-
tion 8.2.3 of the evaluation chapter we will show that for our AmI-Lab provisioning control as
part of reference scenario we consider two execution groups: ContextAssertions and Deriva-
tionRules which need to be enabled and those that need to be disabled.

Provisioning Policy Veri�cation

Some last noteworthy details about the implementation of context provisioning policies using an
ontology de�nition are the aspects related to correctness veri�cation and providing of defaults
for a policy speci�cation. The SPIN proposal, mentioned in the previous section, provides its
own templates for inferring default values of an OWL property (spl:InferDefaultValue)
and ensuring that a given amount of instances of a given property are present in an RDF
document (spl:ObjectCountPropertyConstraint).
These elements can be exploited to perform a structural veri�cation of a provisioning policy �le.
For example, an de�nition of a an AssertionSpecific Command instance is constrained
to have a single value for the forContextAssertion OWL property. Similarly, for the
ControlPolicy class, a set of defaults are de�ned for each of the general provisioning control
parameters. For example, the default strategies for general integrity and uniqueness constraint
resolution are always set to prefer newest, while all ContextAssertion updates are enabled by
default.
These veri�cation options ensure a stable functionality for all provisioning processes that depend
on valid and complete contents of a context provisioning policy.

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 128

7.1.4 Deployment Ontology

In order to continue the uniformity of the development process for the CONSERT Middleware
and the applications based on it, the vocabulary for deployment policy parameters too has been
modeled as the CONSERT Deployment Ontology1.
In Section 6.2 we explained that deployment speci�cations are related to three con�guration
aspects: the platform on which one or more CMUs run, the ContextDomain speci�cations and
the con�guration of the provisioning agents of a CMU. The CONSERT Deployment Ontology
follows this partitioning and de�nes OWL classes for each such deployment aspect. We dis-
tinguish a PlatformSpec, an ApplicationSpec (for ContextDomain con�gurations) and
several subclasses of the AgentSpec class corresponding to individual con�gurations for each
CMM agent type (e.g. OrgMgrSpec, CtxCoordSpec).
The deployment policy parameters discussed throughout Section 6.2 are then implemented as
OWL object or datatype properties of the instances of con�guration classes such as the above.
Additional OWL classes are de�ned by the CONSERT Deployment Ontology for parameters
which are of a more complex nature. For example, an AgentContainer class acts as a place
holder for all the coordinates related to the platform container speci�cation. It will there-
fore have properties such as containerHost, containerPort and platformName which
correspond to a part of the conceptual parameter de�nitions given in Section 6.2.1.

The full set of classes and properties can be explored by accessing the URL given as a footnote
of this page. As was the case in the previous section, we will revisit some of the deployment
con�guration examples discussed in Chapter 6 and present them now in their corresponding
ontology form (in Turtle syntax2).

:AmILabPlatformSpec
a orgconf:PlatformSpec ;
orgconf:hasAgentContainer :Container_AmILab .

:Container_AmILab
a orgconf:AgentContainer ;
orgconf:containerHost "localhost"^^xsd:string ;
orgconf:containerPort 1099 ;
orgconf:hasMTPHost "localhost"^^xsd:string ;
orgconf:hasMTPPort 7778 ;
orgconf:platformName "EF210"^^xsd:string .

Figure 7.5: Example of platform con�guration from the deployment policy for the AmI-Lab
part of the reference scenario.

Figure 7.5 shows the con�guration de�nition for the platform on which the coordination CMU of
the AmI-Lab management server runs. Notice the use of the AgentContainer class discusses
earlier as a holder of the parameters concerning the platform speci�cation.

In Figure 7.6 we show the de�nition of the AmI-Lab ContextDomain speci�cations. The
appDeploymentType speci�es the type of application deployment on the AmI-Lab man-
agement server, namely a decentralized one with a domain hierarchy con�guration, since the
AmI-Lab is part of the CS Building. The AmILab_Domain instance of the ContextDomain
class exposes properties which de�ne the characteristics of the domain. For example, the Con-
textDimension is that of person localization, the object ContextEntity of this dimension is
of type LaboratoryRoom and the domain hierarchy property is the one related to spatial
subsumption (inclusion). The hasDomainHierarchyDocument is a property specifying the
RDF document path where the overview of the ContextDomain hierarchy is maintained. We
will discuss its contents and its use by the OrgMgr agent in Section 7.4.1.
As mentioned brie�y in Section 7.1.2, a developer can partition the de�nition of context model

1http://purl.org/net/consert-deployment-ont
2http://www.w3.org/TeamSubmission/turtle/

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 129

:AmILabAppSpec
a orgconf:ApplicationSpec ;
orgconf:appDeploymentType orgconf:DecentralizedHierarchical ;
orgconf:appIdentificationName "AmI-Lab-Smart-Classroom"^^xsd:string ;
orgconf:hasContextDomain :AmILab_Domain .

:AmILab_Domain
a orgconf:ContextDomain ;
orgconf:hasDomainDimension person:locatedIn ;
orgconf:hasDomainRangeEntity amilab:LaboratoryRoom ;
orgconf:hasDomainRangeValue amilab:AmI-Lab
orgconf:hasDomainHierarchyProperty space:spatiallySubsumedBy ;
orgconf:hasDomainHierarchyDocument

[a orgconf:ContentDocument ;
orgconf:documentPath "etc/cmm/domain-hierarchy-config.ttl"^^xsd:string

] ;
orgconf:hasContextModel :AmILab_ContextModel .

:AmILab_ContextModel
a orgconf:ContextModelDefinition ;
orgconf:hasModelCoreDocument [

a orgconf:ContentDocument ;
orgconf:documentURI "http://purl.org/net/amilab/core"^^xsd:anyURI

] ;
orgconf:hasModelRulesDocument [

a orgconf:ContentDocument ;
orgconf:documentURI "http://purl.org/net/amilab/rules"^^xsd:anyURI

] .

Figure 7.6: Example of ContextDomain con�guration from the deployment policy speci�cations
for the AmI-Lab part of the reference scenario.

pertaining to a ContextDomain into several modules. In our example, we see this option under
the form of core and rule documents whose contents compose the context model belonging to
the AmI-Lab ContextDomain and managed by the agents of the CMU running on the AmI-Lab
management server.

Lastly, Figure 7.7 shows an example of de�ning the agent speci�cation for the CtxCoord
and CtxSensor agents running in the CMU on the AmI-Lab management server. Notice
speci�cally the use of the hasControlPolicy and hasSensingPolicy properties. These
indicate paths to RDF documents which contain statements regarding sensing and coordination
policy speci�cations as explained in Section 7.1.3. We will talk more about the inclusion of
provisioning and deployment policy contents in di�erent con�guration �les in Section 7.4.1.

7.2 CONSERT Engine Implementation

As explained in Chapter 4, the CONSERT Engine (cf. Figure 7.8) is the middleware component
that leverages a context model created using the CONSERT Ontology. In Section 4.4 we
discussed the conceptual architecture and execution cycle of the CONSERT Engine. In what
follows, we explore the frameworks and design speci�cations which let us obtain the functionality
of the engine.

7.2.1 Data Structures and Execution Cycle

The purpose of the CONSERT Engine is to provide storage, inference and consistency and
query answering capabilities for the context information that it handles. The implementation

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 130

:CtxCoord_AmILab
a orgconf:CtxCoordSpec ;
orgconf:hasAgentAddress :CtxCoord_AmILab_Address ;
orgconf:hasControlPolicy [

a orgconf:AgentPolicy ;
orgconf:hasPolicyDocument [
a orgconf:ContentDocument ;
orgconf:documentPath "etc/cmm/coordconfig.ttl"^^xsd:string

]
] .

:CtxSensor_AmILab_NoiseLevel
a orgconf:CtxSensorSpec ;
orgconf:hasAgentAddress :CtxSensor_AmILab_Address ;
orgconf:hasSensingPolicy [

a orgconf:CtxSensorPolicy ;
orgconf:forContextAssertion amilab:hasNoiseLevel ;
orgconf:hasPolicyDocument [

a orgconf:ContentDocument ;
orgconf:documentPath "etc/cmm/sensorconfig.ttl"^^xsd:string

]
] .

Figure 7.7: Example of CtxCoord and CtxSensor agent con�gurations from the deployment
policy for the AmI-Lab part of the reference scenario.

of these capabilities relies heavily on two semantic web frameworks: the Apache Jena Frame-
work1 and the SPIN API2. In the following, we present how these frameworks are used in the
implementation of the data structures and facilitation of the execution cycle of the CONSERT
Engine.

Data Structures

The context knowledge base (called ContextStore in our middleware) is based on Apache Jena's
TDB quadstore engine3. The ContextStore holds the ContextAssertions and their accompany-
ing ContextAnnotations, as well as the ContextEntity and EntityDescription instances under
the named graph form presented in Section 7.1.1. One advantage of TDB is that it o�ers an
in-memory store variant with support for transactions, a feature we currently use to keep con-
sistent views of the existing context information when handling the update, inference and query
requests.
Using the features of Jena API and SPIN API the four auxiliary indexes (ContextAssertionIndex,
ContextAnnotationIndex, ContextConstraintIndex and DerivationRuleDictionary) which facilitate
the CONSERT Engine runtime functionality are created. As explained more in the next section,
the engine's initial con�guration contains the list of modules (i.e. RDF �les) which compose the
speci�cation of the context model that needs to be handled by the CONSERT Engine instance.
Thus, the creation of the ContextAssertionIndex entails loading the core part of the model (the
one de�ning the ContextAssertions, ContextEntities and EntityDescriptions). The set of possi-
ble annotations for the ContextAssertions in the model is contained in the annotation module.
Similarly, constraints and derivation rules are loaded from their respective module �les.

Execution Cycle

The execution cycle of the CONSERT Engine starts with a ContextAssertion, ContextEntity or
EntityDescription create/update event. The actual update or create request is implemented as

1https://jena.apache.org/
2http://topbraid.org/spin/api/
3https://jena.apache.org/documentation/tdb/index.html

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 131

Figure 7.8: The CONSERT Engine architecture and main activity cycle

a SPARQL UPDATE query. In accordance with the named graph structure outlined in Section
7.1.1, the contents of the query are as follows:

(i) a CREATE GRAPH request with a unique URI naming the graph that will wrap the new
assertion and act as its identi�er. The unique URI is obtained by appending the out-
put of a UUID (universally unique identi�er) generator to the ontology resource URI
corresponding to the ContextAssertion instance class.

(ii) (optional) a SPARQL INSERT/DELETE request that adds/removes ContextEntity or Entity-
Description instance into the named graph corresponding to the EntityStore of the context
knowledge base.

(iii) a SPARQL INSERT request to put the necessary RDF statements composing the Context-
Assertion instance in the newly created named graph.

(iv) a SPARQL INSERT requests putting ContextAnnotations in the named graph correspond-
ing to ContextAssertion Store of the newly inserted assertion type. The graph URI created
at step (i) serves as the subject of the RDF triples expressing the annotations (cf. Figure
7.1).

The CONSERT engine has three separate thread pools together with corresponding task queues:
one for handling ContextAssertion update requests, one for processing inferences and one for
answering queries. The ContextAssertion insertion request which starts the execution cycle
is placed in the update reuqest queue. From there it is picked up by the insertion thread
which begins the series of checks described in Section 4.4.2. However, before starting the
veri�cations, the thread enters a TDB transaction. The transaction behavior is similar to that
of relational database management systems and has the purpose of keeping a consistent view
of the ContextStore in face of concurrent read/write access to it by the three thread pools
mentioned above. If any of the veri�cation steps (continuity check, constrain check, inheritance
check or inference check) from the insertion procedure return an error, the current transaction
is rolled-back, such that the CONSERT Engine continues working as though the update never
happened. Upon successful completion of the veri�cations the transaction is committed and

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 132

thus the ContextAssertion update becomes visible to the other thread pools (inference, query).
An insertion thread will always start a write transaction (since it will modify the ContextStore
in the end), while the inference and query ones will enter read transactions since they only
access the context knowledge base in order to perform their execution steps.

7.2.2 CONSERT Engine: A Software Service Component

In Section 5.1.3 we mentioned that the CONSERT Engine (along with other adaptors) acts as
a software service that makes up part of the context provisioning agent execution environment.
The CONSERT Engine is indeed implemented as a software service component based on the
OSGi service speci�cation1. The engine code is wrapped in what is called a bundle, a Java
Archive (JAR) �le with special properties included in its MANIFEST speci�cation. The ad-
vantage is that the CONSERT Engine can thus be used as an independent service component,
usable even outside the usual CMU agent environment of which it is part within the CONSERT
Middleware.

Since it is implemented as a service component, the CONSERT Engine exposes a set of inter-
faces (in the software development sense) which allow any application (including our context
provisioning agents) to interact with it.
The CONSERT Engine exposes the following four interfaces: InsertionHandler, QueryHandler,
CommandHandler, StatsHandler. The InsertionHandler interface sets the implementation-
level interaction possibilities regarding insertion of static context information (ContextEntities
and EntityDescriptions) and sensed or pro�led ContextAssertions. Within the CONSERT Mid-
dleware it is used by the CtxCoord agent who controls the updates to the ContextStore.
The QueryHandler interface is used by the CtxQueryHandler agent and allows making ask
(i.e. retrieve just a true/false answer) or select queries against the ContextStore. To handle
subscriptions, the interface also allows registration of ContextAssertion update listeners which
are noti�ed by the ContextAssertion Insertion Noti�er service mentioned in Section 4.4.1. In
this way, the CtxQueryHandler agent can attempt the query associated with the subscription
request every time a ContextAssertion referenced by the subscription is updated.
The CommandHandler interface is the one used by the CtxCoord agent to perform con-
text provisioning adaptation/control actions. It allows setting the initial provisioning control
parameters regarding the CONSERT Engine functionality (e.g. default enabled ContextDeriva-
tionRules, current Inference Priority Computation service name, current observation_window
length). Furthermore, it allows sending control commands such as running an ontology rea-
soning session for the static contents of the EntityStore, or performing clean-up of the context
knowledge base from ContextAssertions who have surpassed their time-to-live (TTL). Addi-
tionally, the CtxCoord can also use this interface to set/inspect information about currently
enabled ContextAssertion updates and ContextDerivationRules as well as getting snapshots of
the current ContextStore (i.e. entering a read transaction over the context knowledge base)
to use during provisioning control rule execution.
Lastly, the StatsHandler interface is used by both CtxQueryHandler and CtxCoord
agents to set, respectively retrieve, the statistics of runtime context information usage dis-
cussed in Section 5.3.1. Together with the snapshot of the ContextStore mentioned above, they
constitute the set of possible trigger conditions for the body of a context provisioning control
rule.

Apart from the exposed interfaces, the CONSERT Engine interacts with the Inference Priority
Computation Service and the Constraint Violation Resolution Service. These services are pro-
vided by the developer and augment the functionality of the engine.
One of the advantages of implementing services respecting the OSGi speci�cation is that run-
ning over OSGi-compatible platforms (e.g. Apache Felix1) allows for a complete control of the

1http://www.osgi.org/Technology/WhatIsOSGi
1http://felix.apache.org/

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 133

service lifecycle (i.e. install, start, stop, uninstall). Furthermore, within such a platform, mech-
anisms exist by which services can be tracked, even providing �lters for observing only services
with certain descriptive properties. The provisioning coordination policies and, therefore, the
CONSERT Engine depend on these tracking and �ltering mechanisms to obtain access to the
speci�ed inference priority computation or constraint resolution services.
Remember from Section 5.2.2 that the value of inference scheduling service or various con-
straint resolution service control parameters was given as an identi�er (i.e. a string value).
These identi�ers are in fact properties which are attached to the OSGi-based description of the
emphInference Priority Computation Service and the Constraint Violation Resolution Service
instances by the application developer. The CONSERT Engine (as an OSGi-based service it-
self) can then use them to track and bind to the speci�c service implementation, as instructed
by the CtxCoord agent through the CommandHandler interface. Even more, if the applica-
tion level decides to upgrade the implementation of a currently used inference scheduling or
constraint resolution service, the CONSERT Engine will automatically rebind with the new
version of the services.

Lastly, use of the same service description and �ltering mechanisms can be applied to the
CONSERT Engine itself. As we observed in examples from Chapter 6, one physical machine
(e.g. Alice's smartphone) may be host to a platform containing several CMUs, each requiring
the use of a CONSERT Engine instance. To distinguish between the di�erent service instances,
the engine itself has a OSGi-description by which the agents from the CMU to which the engine
belongs can identify it. In Section 6.2.2 we mentioned that the domain identi�er parameter of
the ContextDomain speci�cation of a deployment policy is used for this exact purpose from the
application perspective.

7.3 Context Provisioning Implementation

Having described the implementation of the CONSERT Middleware functionality elements
which handle representation and reasoning aspects, we now present the implementation of
the context provisioning units: the CMM agents. We discuss both the framework chosen to
implement the agents as well as the speci�cs of their execution environment (the di�erent agent
adaptors). The overview of the provisioning architecture can be reviewed in Figure 7.9.

3rd Party Sensor Middleware

Application

Client Adaptor

send query send sensed/pro led

updates

organize

commands

queries

Context-Aware Application

Application

Control Adaptor

manages

CONSERT Agent Management Logicimplements implements

issue queries/

subscriptions

send pro led updates

control pro led

updates

adjust context

provisioning

implements

OrgMgr

CtxCoord

CtxSensor

commands / translates from

ContextAssertion

Adaptors

CONSERT Engine
- Store Context Information

- Check Continuity

- Check Constraint Integrity

- Perform Ontology Reasoning

- Perform Derivation Rule

Reasoning

- Compute Context Usage

Statistics

CtxUser

CtxQuery

Handler

Context

Domain

Ontology

extends

loads

CORE

CONSTRAINT

ANNOTATION

CONSERT

Meta-Model

Ontology

JV
M

O
S

G
i
F
r
a
m

e
w

o
r
k

A
p

a
c
h

e
 J

e
n

a
+

S
P

IN
JA

D
E
 F

ra
m

e
w

o
rk

Figure 7.9: CONSERT Middleware: multi-agent architecture and interactions

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 134

7.3.1 Provisioning Agent Implementation with JADE

We have chosen JADE1 as the agent development framework for the multi-agent based architec-
ture of our CMM. JADE is a platform with a fairly long history over the course of which many
improvements and add-ons have been brought to the framework. While other agent program-
ming frameworks exist (e.g. JaCaMo2, 2APL3, GOAL4 or CLAIM [El Fallah Seghrouchni and
Suna, 2005]), they are either very high-level, BDI (belief, desire, intention) oriented languages
(e.g. JaCaMo, 2APL, GOAL) or more simple reactive-based ones (CLAIM). Additionally, these
referenced agent programming languages adopt a declarative programming style.

However, we have chosen JADE as our agent development language because of modeling and
deployment factors which make it very suitable to the needs of our CMM agents.
To begin with, JADE's behaviour-based conceptualization of agent functionality overlaps well
with the provisioning responsibility (e.g. sensing, coordination, dissemination, usage) centric
model we made for each agent type of the proposed middleware.
Furthermore, from a deployment point of view, JADE has the advantage of already o�ering
distribution (containers) and communication mechanisms (message transfer protocols - MTPs)
as well as organizational utilities (which often lack in other of the referenced agent programming
languages).

In the following, we provide an overview of how the JADE framework features discussed above
enable the implementation of the CONSERT CMM agent-based provisioning architecture.
We start with the development of the agents themselves. While we do not perform an exhaustive
mapping of each internal operation or interactions of an agent to the corresponding JADE
Behavior class, we present the general guidelines used for agent implementation:

- use appropriate subclasses of the AchieveREInitiator or AchieveREReceiver Be-
haviours for each interaction from the FIPA-Request like family (e.g. FIPA-request,
FIPA-query) as well as subclasses of the ProposeInitiator/Responder and Subscription-
Initiator/Responder for interactions such as: publishing of ContextAssertion update ca-
pabilities (by CtxSensors), registration of agents with one another (e.g. a CtxSensor
with a CtxCoord or a CtxUser with a CtxQueryHandler), or subscription requests
(from CtxUser agents).

- construct subclasses of the FSMBehaviour for more involved protocol interaction which
are not covered by FIPA standards (e.g. the sequence of interactions following a query/-
subscription request of a CtxUser for ContextAssertions for which the updates or Deriva-
tionRules that provide them are not active - cf. Section 5.4.2 for more details).

- construct subclasses of SimpleBehaviour or OneShotBehaviour to handle noti�ca-
tions from the services present in the agent environment (e.g. a CtxSensor handles a
new ContextAssertion update produced by a ContextAssertion Adaptor)

- use combinations of CyclicBehaviour and SequentialBehaviour to implement
the non-interactional tasks within the responsibilities table of each agent (e.g. execution
of the provisioning control rules by a CtxCoord agent at intervals con�gured by the
observation_window provisioning control parameter).

Further, looking at provided deployment support, we see that the platform con�guration param-
eters described in Section 6.2.1 (e.g. container host, mtpHost, mtpPort, platform name)
apply speci�cally to the usual con�guration requirements of a JADE Main Container.
Additionally, every OrgMgr agent is a subclass of the DF (Directory Facilitator) agent which

1http://jade.tilab.com/
2jacamo.sourceforge.net/
3http://apapl.sourceforge.net/
4http://ii.tudelft.nl/trac/goal

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 135

resides within the Main Container of a JADE instance. Thus, as mentioned in the agent re-
sponsibility descriptions in Section 5.1.2, the OrgMgr can function as a yellow pages service for
the agents in its CMU (e.g. a CtxSensor agent will ask it about the CtxCoord agent address
to which it must connect).
Lastly, a JADE platform instance launched within the CONSERT Middleware is con�gured to
use an auxiliary JadeOSGIBridgeService that allows the agents to connect to their service based
environment. As we explore in the next subsection, the adaptors used by the CMM agents are
as well implemented following the OSGi service speci�cation.

7.3.2 Provisioning Agent Adaptor Services

In Section 5.1.3 we explained that the agent environment of a CMU is constituted as a set of
services that enable the agents within the CMU to communicate with sensing and application
levels, as well as to perform actions for storing and reasoning about the context information
they manage. Referring back to Figure 5.1, the reader can observe that these services are
implemented based upon OSGi speci�cations.

In the previous subsection we have already seen how the CONSERT Engine itself is developed
as such a service component. Apart from it, we mentioned that CtxSensor agents employ
ContextAssertion Adaptors as interfaces towards the sensing infrastructure from which
they must collect the information about the ContextAssertion of which they are in charge.
We explained previously that these adaptors are implemented by the application developer
and an initial issue for a CtxSensor agent is knowing which ContextAssertion Adaptor
implementation corresponds to which ContextAssertion acquisition functionality. The solution
is based on the OSGi-speci�c service tracking and �ltering mechanisms described earlier in the
case of the CONSERT Engine. Each ContextAssertion Adaptor is given a service description
comprising the domain identi�er parameter and the URI of the CONSERT Ontology based
resource representing the ContextAssertion handled by the adaptor. Upon initialization, the
CtxSensor agent will use the JadeOSGiBridgeService to access the tracking mechanisms that
allow it to bind to the required adaptors.

The CONSERT Engine is created by the CtxCoord agent upon its initialization phase, whilst
the ContextAssertion Adaptors pre-exist in the agent environment and are searched for
by the CtxSensor agents. However, in Section 5.1.3 we mentioned that the CtxCoord and
CtxUser agents expose services themselves in the environment, by which the application-
level is able to directly interact with these agents (i.e. the ApplicationUser Adaptor and
ApplicationControl Adaptor). In this case, the CtxCoord and CtxUser agents use
the JadeOSGiBridgeService to expose themselves as the implementation of their correspond-
ing adaptors. The description of the adaptor services again includes the value of the domain
identi�er parameter which acts to identify a CMU managing provisioning aspects of a Con-
textDomain from the application perspective.
Thus, the concrete way by which a context-aware application interacts with the context man-
agement functionality o�ered by the CONSERT Middleware is by tracking and binding to the
ApplicationUser and ApplicationControl service adaptors.

7.3.3 Context Provisioning Adaptation

Previously we introduced the CONSERT Provisioning Ontology as the means for de�ning the
vocabulary for provisioning control parameters and control rules. In this section we want to ex-
tend that discussion by explaining the implementation of the runtime execution of provisioning
control actions by the CtxCoord agent.

We showed in Section 7.1.3 that the provisioning coordination policy is an RDF document

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 136

containing speci�cations in ontology form. Upon initialization, the CtxCoord agent reads this
RDF document, retrieves the speci�ed control parameters and creates an index of the control
rules. As mentioned in Section 5.2.2, some of the provisioning control parameters concern the
updates coming from CtxSensor agents (which ContextAssertions are enabled, what is their
desired update mode). The rest of the parameters target the functionality of the CONSERT
Engine. Therefore, in order to set these parameters, the CtxCoord agent will access the
CommandHandler interface of the CONSERT Engine.
When creating the provisioning control rule index, the CtxCoord will also establish their
partitioning into ordered execution groups. We mentioned in Section 7.1.3 that an instance
of subclasses of a CommandRuleTemplate are attached to the ControlPolicy OWL class
in the coordination policy RDF model using sub-properties of the hasCommandRule OWL
property. All control rule instances attached using the same hasCommandRule sub-property
form an execution group.
To establish the order of the execution groups, we rely on a facility of the SPIN speci�cation
which de�nes an OWL property called spin:nextRuleProperty. All (or some) of the sub-
properties of hasCommandRule can be related to one another via this property. The order of
the execution groups is then found by performing a topological sort of the graph formed by the
sub-properties and their next rule relations.

After setup, the coordinator agent starts a cyclic behavior which runs once every observation_-
window time periods. Within this behavior the following actions are performed. The CtxCoord
agent uses the StatsHandler and CommandHandler interfaces of the CONSERT Engine to
retrieve the context usage statistics and the current snapshot of the ContextStore. It then
combines the two into a single RDF dataset which will be used as knowledge base by the
SPARQL CONSTRUCT queries of the provisioning control rules.
The agent then inspects the control rule index and retrieves the set of execution groups, in order.
The CtxCoord then starts executing the rules within the current execution group and stores
their outcome in a bu�er. Every time the outcome of a control rule from a later execution group,
overrides the prescription of a rule from a previous group, the previous outcome is replaced by
the new one in the bu�er. After executing all groups, the resulting control rule prescriptions
from the bu�er will thus constitute a consistent set of provisioning adaptation instructions.
The last step consists in applying these instructions either by means of TaskingCommands
addressed to CtxSensor agents, either by using the CommandHandler interface to amend the
value of provisioning control parameters speci�c to the CONSERT Engine (cf. Section 5.3.2).

7.4 Context Provisioning Deployment Implementation

The last implementation aspect we discuss is related to deployment functionality. Speci�cally,
we detail the packaging of con�guration information regarding the di�erent platform, Con-
textDomain and CMU agent speci�cations which have been detailed in Sections 6.2 and 7.1.4.
Furthermore, we explain the mechanism by which the application-level uses the CONSERT
Middleware to control the lifecycle of deployed CMUs.

7.4.1 Deployment Speci�cation Files

Throughout this chapter we have seen that both information describing the context model of an
application, as well as the contents of provisioning and deployment policies are speci�ed using
ontologies and thus take the form of RDF datasets. In the following we want to explain how
the CONSERT Middleware partitions and packages these RDF models into speci�c �les which
have a clear purpose and thus alleviate the e�ort concerning middleware deployment.

We start by presenting the �le setup for the contents of the deployment policies themselves,

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 137

which the reader can observe in Figure 7.10. One can observe the existence of two �les:

Figure 7.10: CONSERT Middleware Deployment Engineering

platform-config.ttl and agent-config.ttl. The �rst one contains all speci�ca-
tions (in ontology form) regarding the con�guration of the platform (i.e. JADE Container)
on which one or more CMUs will run on the given physical machine. The second one con-
tains the ContextDomain con�gurations and agent speci�cations of a given CMU. That is, the
agent-config.ttl �le keeps the information related to the agent composition of the CMU,
which links directly to the desired set of context provisioning aspects (e.g. acquisition, coor-
dination, dissemination, usage) that the CMU needs to manage. Furthermore, it holds the
speci�cations of the ContextDomain to which the con�gured CMU is assigned.
The names of these �les are pre-de�ned in the CONSERT Middleware, such that the CMU
agents that will inspect them will always know how to �nd the required con�guration informa-
tion.

A noteworthy observation is that these �les are themselves packaged into OSGi Bundles. Thus,
we gradually come to the conclusion that the software-level deployment of a CONSERT Mid-
dleware based application is equivalent to setting up an OSGi-compatible runtime (e.g. Apache
Felix) and loading the required bundles into this platform.
The platform-config.ttl �le is packaged into a bundle of its own, called the cmm-instance
-default bundle. Though not depicted as such in Figure 7.10 (for purpose of clarity) this bun-
dle can actually also contain (but is not required to) an instance of the agent-config.ttl
�le, thereby making it the bundle holding the con�guration information for a default CMU,
deployed every time a CMM platform is launched on a physical machine. An example of this is
Alice's bootstrap CMU in the extended reference scenario from Section 6.1.1 (cf. Figure 6.1).
Then, for each CMU that will need to be deployed at some point in the application's lifetime,
a bundle containing the corresponding agent-config.ttl �le is created. Such bundles
maintain three important properties in their header section: the domain identi�er value, the
ContextDimension URI and the Domain Range Value URI. These values provide the coordi-
nates which uniquely identify the ContextDomain to which the CMU is assigned. Furthermore,
as we will explore in the next subsection, these values allow tracking of the di�erent CMU
con�guration bundles that are included to run on a given CMM platform.
Apart from the agent-config.ttl �le, the CMU bundle may contain other con�gura-
tion �les, depending on the composition of the CMU. As one could observe in the exam-
ples on the ontology form of deployment policy con�gurations from Section 7.1.4, the in-
dication of sensing or coordination policy speci�cations, as well as context model make up
are given as paths or URIs linking to RDF documents (e.g. etc/cmm/coordconfig.ttl,
etc/cmm/coordconfig.ttl, http://purl.org/net/amilab/core). For �le links that
are given in URI form, a special �le called the domain-ontology-policy.rdf �le contains
Apache Jena speci�c content which link the base URI of an ontology �le (e.g. http://purl.org

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 138

/net/amilab/core) to a concrete RDF �le (e.g. etc/model/amilab-core.rdf).
These �les, together with the corresponding directory structure are included within a CMU
bundle. The advantage is that each bundle provides its own class loader, such that the agents
composing a CMU will only see the con�guration �les included in that CMU, thereby avoiding
any naming confusion.

In the subsection that follows, we detail the mechanism by which the lifecycle of the con�gura-
tion �le packaging shown here is maintained at runtime.

7.4.2 Runtime Deployment Management

The packaging of all CMU con�guration information into bundles helps us achieve the de-
ployment �exibility objectives mentioned in Section 3.3. OSGI-based mechanisms explained
previously allow us to create functionality that keeps track of all available/potential CMUs as
well as their deployment state.
In the CONSERT Middleware, this happens via the CMMPlatformService (cf. Figure 7.10).
As mentioned earlier, application development using our CMM resolves to loading the required
bundles in an OSGi-based framework. The implementation (the code) of the CMM agents is
itself packaged as a bundle, which will therefore be always present in a deployment on a given
physical machine (e.g. PC, smartphone).
The CMMPlatformService is contained within this agent code bundle and will start auto-
matically when the bundle is loaded in the given context-aware application. Its �rst task is to
locate the bundle containing the platform-config.ttl �le so as to create the CONSERT
Middleware platform for that particular machine, following the con�gurations in the �le.
After creating the platform, the service will open a tracker that searches for all bundles that
contain a CMU con�guration. An index is created which identi�es each bundle by the three
header properties mentioned in the previous subsection (domain identi�er, ContextDimension
URI, Domain Range Value URI).
The CMMPlatformService then provides an interface by which the application level can con-
trol the state of a CMU. CMUs can be installed (i.e. the CMU agents are created), started (i.e.
the CMU agents start their execution cycle), stopped (i.e. CMU agents stop their execution
cycle) or uninstalled (CMU is destroyed and resources are freed).
Furthermore, for mobile computational nodes, remember that in Section 6.4.5 we presented two
possible approaches for management of their mobility on hand of the current facilitation given
by our CMM. Both approaches involved in the end the sending of noti�cations for entering
and leaving a ContextDomain. These noti�cations contain the information required to iden-
tify a ContextDomain. This information corresponds exactly to the header properties of the
CMU bundle which would be required on the given physical machine to execute the intended
provisioning aspect (e.g. sensing, usage) within that ContextDomain. Thus, the noti�cations
are forwarded to the application-level which can use the CMMPlatformService to launch,
(re)start, stop or destroy the required CMU, as explained above.

Once the application has requested the installation of a CMU, the CMMPlatformService
identi�es the necessary bundle holding its con�guration, creates the OrgMgr agent responsible
for that CMU and informs it of the means of accessing the con�guration �les within the bundle.
From here on, the control is transferred to the OrgMgr agent which performs the initialization
steps detailed in Section 6.3.3, thus deploying the CMU. As additional explanation, we mention
the fact that upon creation of each agent whose speci�cation lies in the agent-config.ttl
�le, the OrgMgr will supply the newly created agent with the reference to the bundle containing
the CMU con�guration �les. Thus, for example, the CtxCoord or CtxSensor agents will be
able to access the required coordination and sensing policy speci�cation respectively.
All other CMU lifecycle operations (start, stop, uninstall) are all performed having the OrgMgr
as a facilitator of the operation. After an uninstall request, the OrgMgr itself is destroyed.

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 139

From the above the reader can observe that the CONSERT Middleware does not only allow ex-
pressing the deployment and provisioning con�guration in a declarative way, but it furthermore
provides application developers with the ability to control it at runtime, thereby increasing the
�exibility of our approach. We discuss this and other software development related advantages
in the next and �nal section of this chapter.

7.5 Discussion

In this chapter we have reported on the frameworks and software design choices which help us
implement the functionality of the CONSERT Middleware as it was presented in Chapters 4, 5
and 6.
The di�erent modules of the CONSERT ontology (core, annotation, constraint), as well as the
ontologies that implement the provisioning and deployment speci�cation vocabularies are freely
available for use and can be accessed at the links provided in the footnotes from Sections 4.2.1,
4.2.2, 4.2.3, 7.1.3 and 7.1.4 respectively.
The code of the CONSERT Middleware itself comes packaged into four OSGi bundles (JAR
archives). The jena-bundle.jar bundle plays an auxiliary role as a wrapper over the JENA
and SPIN APIs that makes them accessible in OSGi-based frameworks.
The consert-model.jar bundle contains the packages that enable manipulation of context
model constructs (e.g. ContextAssertion, ContextAnnotation, ContextConstraintViolation) at
application runtime. The component-based implementation of the CONSERT Engine is con-
tained in the consert-engine.jar bundle, while the consert-middleware bundle in-
cludes the implementation of the multi-agent based provisioning logic and deployment speci�c
APIs.
Since development and documentation of the CONSERT Middleware are still at an early stage,
the speci�ed bundles and more detailed descriptions of their utilization within an application
are currently available only upon request.

Apart from implementing the functionality we explained that an important goal set out for this
thesis was the idea of alleviation and uniformization of context-aware application development
e�ort based on our CMM. In this section we want to perform an analysis of this support for
engineering context-aware applications o�ered by the CONSERT Middleware. In doing so we
will look at how we address some of to relevant attributes of software development.

Component-Based Design One of the strong feature of CONSERT Middleware is that it
promotes a component-based design, both internally and at application level. Internally, both
CONSERT Engine and context management agents are software units that encapsulate control-
�ow, providing a clearly de�ned context provisioning process. However, relevant aspects of this
process (e.g. context model, sensing update modes, coordination policies) are entirely speci�-
able by the application. In this sense, CONSERT promotes reuse by design, as the agents
and CONSERT Engine can be reused within many context-aware applications with di�erent
context management needs.
A CONSERT Middleware instance provides however key variation-points by means of ser-
vice implementations (most notably at reasoning level) that allow an application to adapt
and extend the context management process. Speci�cally, the application can implement cus-
tom constraint resolution and inference scheduling services and con�gure their usage in the
CONSERT Engine either through the ApplicationControlAdaptor or through declara-
tive con�gurations which we discuss next.

Con�guration-Based Development CONSERT de�nes con�guration options for almost
all context management aspects it supports. It uses semantic web technology to create vocab-

CHAPTER 7. CONSERT MIDDLEWARE IMPLEMENTATION 140

ulary for policies that determine the deployment of context management units and control
of the context provisioning process within a deployed context management group (sensing and
coordination policies). Parameters controlling update modes, enabled inference rules, current
inference scheduling services etc., are con�gurable at initialization and changeable at runtime
by the application layer, leading to a very customizable context management process. As we
will see in the evaluation chapter, our experience in developing the AmI-Lab simulation of the
reference scenario shows that declarative con�guration options signi�cantly lower programming
e�ort. For example, each CMU in the simulation (AmI-Lab management, Alice and Dan's
smartphones, etc) requires the de�nition of a single agent-con�g.ttl �le to specify both required
agent types, connectivity information and context model elements. The ontology-based vo-
cabulary means that these �les can be edited using readily available semantic web IDEs (e.g.
Protege, TopBraid) alleviating development e�ort even further.

Flexible Provisioning A last strong feature we want to point out is the availability of clear
application structuring elements (ContextDimensions and ContextDomains) which depend on
the application context model itself. The fact that a CMU lies in a 1-to-1 mapping with a Con-
textDomain and that its con�guration is packaged as an OSGi bundle means that its lifecycle
can be directly tied to dynamic use of the context information within that ContextDomain.
This mapping promotes separation of concerns and makes the CMU a unit of control en-
capsulation. This can furthermore be exploited as an extensibility mechanism for context
management. It means that an application can de�ne several CMU con�gurations that man-
age, provide or consume information from the same ContextDomain. Each con�guration will
however specify di�erent provisioning instructions for the agents of the CMU using declarative
policies and custom services as explained in the previous two paragraphs. The application can
then use the CMU lifecycle management support to dynamically choose among de�ned CMUs
that perform the same management but in di�erent ways. For example, to reduce energy con-
sumption when events are less dynamic in the AmI-Lab, a managing CMU that con�gures
CtxSensors with lower update times and a CtxCoord with less complex inference rules can
be dynamically swapped instead of a more demanding con�guration.

Chapter 8

Practice and Experimentation

The previous chapter gave an overview of the implementation of the architecture and function-
ality of the CONSERT context management middleware.
As seen throughout the chapters of this thesis, we have used the scenario introduced in Sec-
tion 1.3 as a reference for all the given explanations and examples. The evaluation of the
concrete CONSERT middleware implementation is based on this same scenario and in the fol-
lowing we report on the obtained results and the experience of programming and working with
the CONSERT Middleware (as relevant indications of its support for context-aware application
engineering).

In Section 8.1 we describe the evaluation process that we have conducted. We discuss the
conception of the application handling the simulation of the reference scenario and what the
objective is for the tests that measure various performance aspects of the CONSERT Middle-
ware.
Section 8.2 then elaborates on how our CMM is used to model and provision the context infor-
mation required by the reference scenario.
Setup, execution and analysis of the tests measuring the performance of the CONSERT Mid-
dleware is done in Section 8.3.
The chapter concludes with a discussion on overall evaluation results and the experience of
developing with the CONSERT Middleware in Section 8.4.

8.1 Evaluation Considerations

The purpose of our evaluation is to show that the CONSERTMiddleware can be successfully and
e�ectively used to develop and control the context management aspects of an AmI application.
We therefore follow two types of analysis: a qualitative one and a quantitative one.
In order to perform them, we have set up the evaluation system shown from a global perspective
in Figure 8.1. We will refer to di�erent aspects of this setup throughout this chapter.

In what follows we �rst detail the individual objectives of each analysis. Then we reiterate
through our reference scenario and present the functionality of the application that implements
it with the purpose of performing our desired evaluation. Lastly, we present the framework
which allows us to simulate the sensing environment related events of the described scenario.

141

CHAPTER 8. PRACTICE AND EXPERIMENTATION 142

Figure 8.1: Global overview of the evaluation setup. iCasa Framework is used to simulate sensor

functionality and provide scenario scripting. Applications use the CONSERT Middleware (speci�c

CMUs) to respond to scenario events.

8.1.1 Evaluation Objectives

Qualitative Analysis From this point of view we are interested in seeing that the con-
tributions introduced in Chapters 4, 5 and 6 o�er the necessary support and advantage for
development of context-aware applications.
With regard to modeling, we examine how the CONSERT Ontology provides suitable �exibility
for representing context within the reference scenario. We look, for example, at how the ability
to de�ne and resolve constraint dependencies of context information is of a particular advan-
tage in this case. From a reasoning perspective, we wish to observe the correct behavior of
ContextDerivationRules, as well as the overall ease or di�culty of writing the rules themselves.
With respect to context provisioning, we analyze how the provided parametrization and con-
trol of the provisioning process create an advantage for the application developer in terms of
computational resource usage.
Finally, from the point of view of middleware deployment we investigate how implementation
of the application handling the reference scenario is facilitated by the proposed structuring and
con�guration options o�ered by the CONSERT Middleware.

Quantitative Analysis Given our focus on application engineering aspects that were laid
out as objectives of this thesis, we want to make sure that the proposed implementation de-
scribed in Chapter 7 o�ers an adequate computing performance.
In our evaluation we focuse on two performance aspects: the processing throughput of the
CONSERT Engine and the query answering and routing functionality of the CMU agents
(CtxQueryHandlers and OrgMgrs more particularly).
The CONSERT Engine performance analysis relates to the behavior of the engine under dif-
ferent loads of sensor updates and inference requests and will be discussed in detail in Section
8.3.2.
A theoretical overview of domain-based query routing functionality (in terms of exchanged mes-
sages and complexity analysis) has already been given in Section 6.4.2. In the performance tests
detailed in Section 8.3.4 we simply attempt to put this analysis into numbers and examine the

CHAPTER 8. PRACTICE AND EXPERIMENTATION 143

di�erent query response latencies, given di�erent CMU deployment con�gurations and query
targets.
In essence, the purpose of these types of test is to establish an initial benchmark of the perfor-
mance capabilities of the CONSERT Middleware, against which all improvements proposed in
future work will be measured.

8.1.2 Scenario Implementation

In order to perform the qualitative tests described earlier in a proper manner, we have split the
reference scenario into two interaction episodes. We implement corresponding application code
(as shown in the global view from Figure 8.1) for each distinct episode.

The �rst episode concerns the events happening while Alice is waiting for her friends to come join
her in the AmI laboratory after having attended her CS Lecture. As mentioned in the scenario
description, the lecture �nishes early, so the smart application on Alice's smartphone has to
determine that she is in fact no longer busy and can receive the call of her friend Bob, who wants
to ask her where she is. As we will see in Section 8.2, we model this as a uniqueness constraint
set on Alice's availability status which can be broken given the contradictory information of
her personal schedule and the presence information within the AmI Laboratory.
Thus, this episode tests two important functionality aspects of the CONSERT Middleware.
The �rst one is related to the ability of performing a more involved context prosuming activity,
as was outlined in the exempli�cation from Section 6.4.4. This is required since, in order to
trigger and resolve the availability status constraint, Alice's smartphone CMU needs to locally
process information obtained from the CMU running on the AmI-Lab management server. The
other important functionality aspect is that of the constraint management itself. The episode
allows us to investigate if the constraint is correctly and timely recognized and solved in order
to determine that Alice is in fact free while she is waiting for her friends, even though her
personal calendar says otherwise.

The second episode regards the events happening during and after the ad hoc discussion in the
AmI-Lab. In this case, we are interested in seeing that the context derivation capabilities of the
CONSERT Engine are able to infer the ad hoc situation. On the other hand, the CONSERT
Engine instances on the user smartphones, using the behavior of CtxUser agents in their CMU,
have to determine that their users are busy (being in an ad hoc meeting). This status has to
be broadcasted again at laboratory level, for the duration of their stay in the room.
In this way, the domain-based query functionality can also be tested, since the scenario speci�es
that Dan (who is in room EF301) sends out a query for Alice's availability status in order to �nd
out if she can come join him for lunch. Thus the aspects of correct and timely domain-based
routing are also qualitatively evaluated in this scenario episode.

8.1.3 Scenario Simulation Framework

A �rst thing to note is that the simulation only refers to the sensing environment (cf. Figure
8.1). That is, the physical spatial layout of the CS Building and the laboratory rooms within
it, the placement of the sensors within the rooms and their sensing activity, as well as the
overall scripting of the scenario events as they were described previously is performed using
a simulation framework. The actual processing of context information is performed using live
instances of CMUs developed using the CONSERT Middleware, such that its qualitative usage
can be directly evaluated.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 144

Simulation Framework To simulate the scenario environment and the actions of persons
within this environment we use a simulation framework called iCasa1. ICasa is an execution
platform on top of OSGi for digital home applications. It has been developed in the context of
the Medical project by the ADELE Research Group and the Orange Labs. The very purpose of
iCasa is to provide developers of pervasive applications with a simulated environment enabling
complete control of the environment and time.
Given the CONSERT Middleware implementation details outlined in Chapter 7, the fact that
iCasa is developed on top of OSGi makes it a suitable candidate for easy integration with our
CMM. The scenario scripting features are another reason for choosing this framework.

Environment Layout The framework o�ers a browser-based GUI to de�ne the layout of
the simulated environment. In particular, our reference scenario includes three main spatial
structures: there is the CS Building which includes the AmI Laboratory (where most of the
scenario events take place) and the EF301 o�ce from which Dan sends the queries for Alice's
availability status.
Figure 8.2 shows a snapshot of the simulation GUI where the layout of the environment and
the sensor placement is visible2. Notice that the AmI Laboratory has been further divided into
individual room sections which correspond to areas where, for example, people in an ad hoc
meeting can be recognized as sitting at the same desk.
Within each individual area of the AmI-Lab there is an instance of a presence sensor which
works by detecting the bluetooth MAC address of user smartphones. The desks near the
laboratory "windows" (PresenterArea, Section1_Right � Section3_Right) are equipped with
luminosity sensors. The four corners of the room hold temperature sensors. Apart from this,
all laboratory desks are equipped with an instance of microphone and body posture detection
sensors (i.e. Kinect cameras). In total, this makes for a number of 29 simulated sensor instances.
The iCasa platform already provides implementations for the functionality of luminosity and

1http://adeleresearchgroup.github.io/iCasa/
2Sensor con�guration is speci�ed automatically in the scenario script, causing the unordered visual lineup

noticeable in the �gure

Figure 8.2: A snapshot of the iCasa Simulation GUI showing the modeling of the layout of physical

spatial structures in the reference scenario, as well as sensor placement within the AmI-Lab. The

AmI-Lab is divided further into individual room areas (i.e. desks).

CHAPTER 8. PRACTICE AND EXPERIMENTATION 145

temperature sensors. However, the functionality of the presence, microphone (noise level) and
body posture sensors needed to be customly implemented.

Scenario Scripting As mentioned, another useful facility of the iCasa framework is the abil-
ity to script the events taking place in the scenario. iCasa de�nes by default a set of commands
that o�er the ability to create spatial areas, devices and users, move users and devices around,
as well as setting the value of di�erent environment variables (e.g. temperature, light level,
noise level) which the sensors use to provide their readings. Furthermore, the framework allows
easy development of custom commands, which in our case were used to perform initializations
(e.g. set up a CONSERT Middleware platform instance, start the relevant CMUs) and mea-
surement collection (for performance analysis). Figure 8.3 shows sample excerpts from the
XML-based script language used to specify the scenario events. Commands such as delay,
move-person-zone or add-zone-variable are provided by default by the iCasa frame-
work. On the other hand commands such as start-amilab or start-user are custom
implementations that serve our scenario explicitly.
A script such as the one in Figure 8.3 is de�ned for each of the two interaction episodes men-
tioned in Section 8.1.2.

1 <!-- ======== Person Section ======== -->
2 <create-person id="Alice" type="Woman" />
3 <create-person id="Bob" type="Man" />
4

5 <!-- ======== Init CMM Platform Section ======== -->
6 <start-cmm-platform />
7 <delay value="5" unit="s" />
8

9 <!-- ======== Init CMUs Section ======== -->
10 <start-amilab />
11 <delay value="5" unit="s" />
12

13 <start-alice-personal />
14 <delay value="5" unit="s" />
15

16 <!-- ======== Play Scenario Section ======== -->
17 <start-user userName="Alice" />
18 <move-person-zone personId="Alice" zoneId="EF210_Section1_Right" />
19 <move-person-zone personId="Bob" zoneId="EF210_Section1_Right" />
20

21 <modify-zone-variable zoneId="EF210_Section1_Right" variable="
NoiseLevel" value="75" />

22 <add-zone-variable zoneId="EF210_Section1_Right" variable="skel-
position-Alice" />

23 <modify-zone-variable zoneId="EF210_Section1_Right" variable="skel-
position-Alice" value="SkeletonSitting" />

24 ...

Figure 8.3: Excerpt from the scripting of the reference scenario events.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 146

8.2 Scenario Evaluation

In the following we describe the details of the two qualitative analysis episodes mentioned in
the previous section. We evaluate the way in which the di�erent context modeling, reasoning,
provisioning and deployment contributions introduced throughout this work help address the
context management requirements of the reference scenario.

8.2.1 Context Modeling Evaluation

We start with showing how the context information from reference scenario is modeled using
the CONSERT Ontology. Our analysis re�ects the episode-based partitioning of the scenario
and will present extracts of the modeling relevant for the pre-meeting episode (corresponding
to the context model used in the bootstrap CMU on Alice's smartphone) and the ad hoc
meeting episode (the context model used in the AmI-Lab ContextDomain on the management
server running the corresponding coordination CMU). Our goal is to inspect the suitability and
expressiveness advantages of the CONSERT Ontology for the purpose of modeling the reference
scenario simulation.

AmI-Lab Context Model We begin with the ad hoc meeting episode and the context model
for the AmI-Lab ContextDomain, of which an excerpt can be observed in Figure 8.4.

Figure 8.4: Excerpt of the context model for the AmI-Lab ContextDomain, created using the CON-

SERT Ontology.

The �gure shows an example for each of the modeling constructs available in the core module
of the CONSERT Ontology. The hasProfiledLocation binary ContextAssertion captures
the positioning of �xed devices in the scenario (e.g. microphones, Kinect cameras, bluetooth
detectors). Since these positions are known in advance, this represents a case for a pro�led

CHAPTER 8. PRACTICE AND EXPERIMENTATION 147

ContextAssertion inserted at simulation initialization.
The example chosen for the EntityDescription construct (includedIn) is in fact the property
that generates the ContextDomain hierarchy for this simulation (see also Sections 6.1.2 and
8.2.4).
On important thing to note is the modeling of the information that a person is sitting or stand-
ing as a NaryContextAssertion (sensesSkeletonInPos). The existence of this modeling
capability brings several advantages. For one, the information about skeletons detected by the
Kinect camera sensors is used for the sole purpose of determining their posture, as a condition
for detecting ad hoc meetings. Therefore, the fact that the information about skeleton detection
and skeleton position can be compacted into a single statement helps obtain a more focused
model design.
Furthermore, in Section 8.2.2 we examine the ContextDerivationRule which infers the existence
of an ad hoc discussion in a room section (desk) of the AmI laboratory. One can observe there
that the detection is conditioned on the precision of the posture detection. This shows another
advantage of having arbitrary arity ContextAssertions, namely the fact that such statements
of arbitrary length can be characterized by required ContextAnnotations (in our case, validity
and certainty are highly relevant; see Figure 8.2).
Though not shown in the diagram from Figure 8.4, for each sensed ContextAssertion instance
(e.g. instances of hasNoiseLevel or sensesLuminosity) the simulation generates values
of the common ContextAnnotations discussed in Section 4.2.2.

Alice Personal Context Model In the case of the pre-meeting episode, the relevant mod-
eling concerns the information that leads the simulated application on Alice's smartphone to
deduce her availability status. The noteworthy extract of the context model is shown in Fig-
ure 8.5.

Figure 8.5: Excerpt of the context model for Alice's bootstrap CMU, created using the CONSERT

Ontology.

Notice that in this case the locatedIn and hasPersonCount ContextAssertions are modeled
as having a pro�led acquisition type (as opposed, for example, to locatedIn being a derived
assertion within the AmI-Lab context model). This stems from the fact that the instances of
these ContextAssertions are obtained based on responses to subscriptions sent by a CtxUser
from Alice's smartphone to the CtxQueryHandler agent running in the AmI-Lab management

CHAPTER 8. PRACTICE AND EXPERIMENTATION 148

server (more details in Section 8.2.4).

The �gures above show that the CONSERT Ontology is �exible enough to focus in on all the
content representation elements required by the reference scenario simulation.
In the pre-meeting episode, however, we also encounter the case of contradictory information
(actual availability of Alice while she is waiting for her friends to arrive) that needs to be sorted
out. Speci�cally, the application running on Alice's smartphone needs to detect that she is
actually free to receive a call from Bob (since the lecture �nished earlier), even though her
calendar shows that the CS Lecture is normally still ongoing.
To handle this problem, we model the contradiction as a context uniqueness constraint on the
hasAvailabilityStatus ContextAssertion stating that a person cannot be deemed free
and busy at the same time.
Figure 8.6 shows how in the context model for Alice's personal context management an in-
stance of the AvailabilityStatusConstraint context constraint template is attached
to the hasAvailabilityStatus ContextAssertion such as to detect uniqueness violations.
Further, remember from Section 5.2.2 that one type of provisioning control parameters was the
one concerning speci�cations resolution services for ContextAssertion-speci�c constraints. In
this case we create the ResolveAvailabilityConflict resolution service (discussed more
in Section 8.2.2) and specify that this service is used to resolve uniqueness constraints for the
hasAvailabilityStatus ContextAssertion (lower part of Figure 8.6).

sim:hasAvailabilityStatus
spin:contextconstraint [

rdf:type :AvailabilityStatusConstraint ;
arg:anchorResource person:Person

] .
:AvailabilityStatusConstraint

rdf:type constraint:ContextConstraintTemplate ;
rdfs:subClassOf constraint:UniquenessConstraintTemplates .

:ProvisionPolicy_AlicePersonal
coordconf:hasSpecificUniquenessConstraintResolution [
rdf:type coordconf:AssertionSpecificConstraintResolutionType ;
coordconf:forContextAssertion sim:hasAvailabilityStatus ;
coordconf:hasParameterValue :ResolveAvailabilityConflict;
] ;

Figure 8.6: Snippet showing how an instance of the AvailabilityStatusConstraint template

is attached to the hasAvailabilityStatus ContextAssertion (up) and how a custom resolution

service is setup to handle detected uniqueness constraint violations, as part of the provisioning control

policy (down).

This example is again a validation of the ability of the CONSERT meta-model to capture
context information dependencies using and ensure �exible resolution capabilities for detected
context information inconsistencies. This distinguishes the CONSERT meta-model from most
of the approaches reviewed in Chapter 2. The context meta-model based systems presented in
Section 2.1.4 are capable of expressing the content and annotation properties showcased in the
reference scenario (e.g. [Strang et al., 2003], [Fuchs et al., 2005]). However, only few of them
(e.g. CML [Henricksen et al., 2005b]) are able to represent information dependencies, while still
not providing methods to resolve detected con�icts.
The reviewed work that comes closest to our constraint handling functionality is [Bikakis and
Antoniou, 2010], which proposes using defeasible logic rules to drive context reasoning. However,
the work fails to consider context meta-properties such as timestamps or quality-of-context
related information.

In the next Section we continue the exploration of the expressiveness and information depen-

CHAPTER 8. PRACTICE AND EXPERIMENTATION 149

dency modeling capabilities of the CONSERT meta-model by looking at reasoning performed
during both scenario episodes.

8.2.2 Reasoning Evaluation

The need for reasoning by running ContextDerivationRules exists in both interaction episodes
that form the reference scenario. Both before and during the ad hoc discussion phase, Deriva-
tionRules are required in order to establish the location of people in the AmI laboratory based
on the presence of their smartphones (which have a bluetooth MAC address as shown in the
previous section). Furthermore, in the pre-meeting episode DerivationRules running on Alice's
own smartphone are used to infer her availability status. During the discussion phase, an ad-
ditional rule is used to derive the actual fact that an ad hoc discussion is taking place in the
AmI laboratory (more precisely, at the desk where the three friends are sitting).
In what follows, we explore the SPARQL form of two rules (one from the pre-meeting episode
and the one deriving the ad hoc meeting situation) and observe their expected e�ect in console
outputs from the simulation logs.

Pre-Meeting Episode

Before the meeting starts, Alice is waiting for her friends to arrive in the AmI laboratory. On
her smartphone, the CONSERT Engine instance from her bootstrap CMU (confer Figure 6.1)
there are two ContextDerivationRules that infer her current availability status. A �rst rule
derives the fact that she is busy based on her calendar which speci�es that she is engaged in
a TeachingActivity from 10:00 to 12:00. On the other hand, since the class has �nished
early, a second DerivationRule triggers based on information obtained from the CMU of the
AmI-Lab management server (count of people in the same room as Alice) and deduces that
Alice is free since she is alone in the AmI laboratory.

1 CONSTRUCT {
2 ...
3 ?person smartclassroom:hasAvailabilityStatus smartclassroom:Busy .
4 _:b1 a contextannotation:DatetimeTimestamp .
5 _:b1 contextannotation:hasStructuredValue ?time .
6 _:b2 a contextannotation:TemporalValidity .
7 _:b2 contextannotation:hasStructuredValue ?validity .
8 _:b3 a contextannotation:NumericValueCertainty .
9 _:b3 contextannotation:hasStructuredValue ?certainty .
10 _:b4 a contextannotation:SourceAnnotation .
11 _:b4 contextannotation:hasUnstructuredValue ?src .
12 }
13 WHERE {
14 GRAPH ?personEngagedIn {
15 ?person smartclassroom:engagedIn ?activity .
16 } .
17 GRAPH ?personLoc {
18 ?person person:locatedIn ?RL .
19 } .
20 GRAPH <http://pervasive.semanticweb.org/ont/2004/06/person/locatedInStore> {
21 ?personLoc contextannotation:hasCertainty ?certAnnPersonLoc .
22 ?certAnnPersonLoc contextannotation:hasStructuredValue ?certaintyPersonLoc .
23 } .
24 GRAPH <http://pervasive.semanticweb.org/ont/2014/05/consert/entityStore> {
25 ?activity smartclassroom:takesPlaceIn ?RL .
26 ?activity tme:from ?start .
27 ?activity tme:to ?end .
28 ?start tme:at ?startTime .
29 ?end tme:at ?endTime .
30 } .

CHAPTER 8. PRACTICE AND EXPERIMENTATION 150

31 BIND (functions:now() AS ?now) .
32 BIND (functions:datetimeDelay(?now, -2) AS ?earlier) .
33 FILTER (((?certaintyPersonLoc >= 0.8) && (?now > ?startTime)) && (?now < ?endTime

)) .
34 BIND (?certaintyPersonLoc AS ?certainty) .
35 BIND (?now AS ?time) .
36 BIND (functions:makeValidityInterval(?startTime, ?endTime) AS ?validity) .
37 BIND (functions:getCurrentAgent() AS ?src) .
38 }

Listing 8.1: SPARQL query of the BusyLectureRule ContextDerivationRule template

The SPARQL query of the BusyLectureRule template is shown in Listing 8.1. In the
CONSTRUCT clause (not shown entirely - marked with ... - to reduce space) one can observe
the assertion of the statement that the given person is busy. Underneath the ContextAssertion
statement, all the derived annotations related to the statement are asserted. In the WHERE
clause, the named graph based identi�cation of ContextAssertion and ContextAnnotation in-
stances explained in Section 7.1.1 can be observed. In this case, the rule examines the location
of a person (Alice) and her personal activity calendar (smartclassroom:engagedIn) to
determine if the person is currently located in the place that hosts the activity in which she is
engaged. The details of the activity are modeled as EntityDescriptions, as shown also in the
modeling from Section 8.2.1. This rule �res at the beginning of the simulation. However, soon
after, the UserAloneRule ContextDerivationRule will be triggered by the fact that within
the room where the lecture is supposed to take place, there is currently only one person (Alice).
The CONSTRUCT clause of this rule will create statements similar to the ones from Figure 8.1,
except that Alice's availability is set to free.

Figure 8.7: Console Log of the pre-meeting episode simulation using the iCasa platform.

As explained in Section 8.2.1, in the context model for Alice's personal information (from
the bootstrap CMU on her smartphone) contains a uniqueness constraint speci�ed for the
hasAvailabilityStatus ContextAssertion. The two DerivationRules above infer instances
of ContextAssertions that trigger the detection of this constraint. This is observable in the
console log of the scenario simulation, show in Figure 8.7. Notice the line starting with
[CheckConstraintHook] which shows the detection of a constraint violation for our men-
tioned ContextAssertion.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 151

As explained in Sections 4.4.1 and 7.2.2, the CONSERT Engine is able to interact with custom
constraint resolution services, which are implemented by the developer and assigned to handle
detected constraints for a speci�c ContextAssertion using the provisioning coordination policy
(cf. Section 5.2.2).
In this case, the service resolving the availability contradiction works by explicitly verifying if
the recent (i.e. inserted less than 2 seconds ago) hasPersonCount ContextAssertion does
indeed specify just the presence of a single person in the same physical location as that where
the TeachingActivity instance of the engagedIn ContextAssertion takes place.
In the console output from Figure 8.7 one can observe the informative line starting with
[ResolveAvailabilityConflict] which says that indeed, at the moment of evaluation
of the resolution service, there really is only one person in the AmI laboratory (Alice). The
constraint resolution service then decides which of the two contradicting ContextAssertion in-
stances to keep as valid in the ContextStore. In this case, the console log shows that it is the
one specifying that Alice is free.
Consequently, in the log output we can see that when a call to Alice's smartphone is simulated,
the answer received (lines beginning with [AvailabilityInfoNotifier]) is that Alice is
indeed free, even though it is before 12:00 PM.

Ad Hoc Meeting Episode

In the ad hoc meeting episode, the main reasoning task (apart from localization of users at the
same desk) is that of deriving the ad hoc meeting itself.

1 CONSTRUCT {
2 ...
3 _:n1 a smartclassroom:HostsAdHocDiscussion .
4 _:n1 core:assertionRole ?RL .
5
6 _:n2 a annotation:DatetimeTimestamp .
7 _:n2 annotation:hasStructuredValue ?t .
8 _:n3 a annotation:TemporalValidity .
9 _:n3 annotation:hasStructuredValue ?valid .
10 _:n4 a annotation:NumericValueCertainty .
11 _:n4 annotation:hasStructuredValue ?acc .
12 _:n5 a annotation:SourceAnnotation .
13 _:n5 annotation:hasUnstructuredValue ?src .
14 }
15 WHERE {
16 {
17 SELECT ?RL ((COUNT(DISTINCT ?S)) AS ?Ct) ((AVG(?accS)) AS ?AvgAccS)
18 WHERE {
19 GRAPH ?profiledLoc {
20 ?K device:hasProfiledLocation ?RL .
21 } .
22 GRAPH ?gCamera {
23 _:0 a smartclassroom:sensesSkeletonInPosition .
24 _:0 smartclassroom:hasCameraRole ?K .
25 _:0 smartclassroom:hasSkeletonRole ?S .
26 _:0 smartclassroom:hasSkelPositionRole smartclassroom:SkeletonSitting

.
27 } .
28 GRAPH <http://pervasive.semanticweb.org/ont/2014/07/smartclassroom/core/

sensesSkeletonInPositionStore> {
29 ?gCamera annotation:hasValidity ?valAnn .
30 ?valAnn annotation:hasStructuredValue ?validS .
31 ?gCamera annotation:hasCertainty ?certAnn .
32 ?certAnn annotation:hasStructuredValue ?accS .
33 } .
34 BIND (functions:now() AS ?now) .
35 BIND (functions:datetimeDelay(?now, -2) AS ?close) .

CHAPTER 8. PRACTICE AND EXPERIMENTATION 152

36 BIND (functions:datetimeDelay(?now, -20) AS ?earlier) .
37 BIND (functions:makeValidityInterval(?earlier, ?close) AS ?interv) .
38 FILTER functions:validityIntervalsInclude(?validS, ?interv) .
39 }
40 GROUP BY ?RL
41 } .
42 GRAPH ?profiledLoc {
43 ?Mic device:hasProfiledLocation ?RL .
44 } .
45 GRAPH ?gNoise {
46 ?Mic smartclassroom:hasNoiseLevel ?lvl .
47 } .
48 GRAPH <http://pervasive.semanticweb.org/ont/2014/07/smartclassroom/core/

hasNoiseLevelStore> {
49 ?gNoise annotation:hasCertainty ?certAnnMic .
50 ?certAnnMic annotation:hasStructuredValue ?accMic .
51 ?gNoise annotation:hasValidity ?validAnnMic .
52 ?validAnnMic annotation:hasStructuredValue ?validMic .
53 } .
54 BIND (functions:now() AS ?now) .
55 BIND (functions:datetimeDelay(?now, -2) AS ?close) .
56 BIND (functions:datetimeDelay(?now, -20) AS ?earlier) .
57 BIND (functions:makeValidityInterval(?earlier, ?close) AS ?interv) .
58 FILTER ((((?gNoise = ?contextAssertionUUID) || (?gCamera = ?contextAssertionUUID)

) && (((?Ct >= 2) && (?AvgAccS >= 0.75)) && (?lvl >= 60))) && functions:
validityIntervalsInclude(?validMic, ?interv)) .

59 BIND (functions:certaintyMeetOp(?AvgAccS, ?accMic) AS ?acc) .
60 BIND (functions:getCurrentAgent() AS ?src) .
61 BIND (functions:now() AS ?t) .
62 BIND (functions:makeValidityInterval(functions:datetimeDelay(?t, -20), ?t) AS ?

valid) .
63 }

Listing 8.2: SPARQL query of the AdHocDiscussionRule ContextDerivationRule template

The SPARQL query that infers that a given RoomSection (i.e. one of the desks from the
AmI laboratory) hosts an ad hoc discussion is shown in Listing 8.2. In this case, notice that
the inferred ContextAssertion is an instance of a UnaryContextAssertion, as explained in Sec-
tion 8.2.1. In this case, its RDF representation requires two statements, one de�ning the
assertion instance and one specifying the ContextEntity that plays a role in the assertion (using
the assertionRole property).
In the WHERE clause of the query we can also see an example of the expressiveness advantage of
SPARQL as a rule language, namely the use of aggregation expressions (e.g. count of observed
body posture skeletons per room section) to specify the conditions for accurately detecting body
postures.
The BIND statements at the end of the WHERE clause give the values of ContextAnnotations
for the derived ContextAssertion instance. As speci�ed in Section 4.3.1, they represent the
concrete implementation of the annotation assignment functions from the formal CONSERT
meta-model.

In Figure 8.8 one can see a part of the console log from simulation of the ad hoc discussion
episode. Notice how after Bob and Cecille move to the desk code named EF210_Section1_-
Right, Alice's smartphone submits a subscription (using the CtxUser agent from the CMU for
the AmI-Lab ContextDomain) for detecting if she is in ad hoc meetings. This happens because
her application speci�es that as soon as more than two people are detected near the same desk,
this can be an indication that they are part of a collective activity (in this case the ad hoc
discussion).
A few lines further down in the console output, one can observe that the ad hoc discussion
has been detected. Using a prosuming behavior like the one explained in Section 6.4.4, the
information about being located at a desk that hosts an ad hoc discussion is forwarded to the
CONSERT Engine of the bootstrap CMU on Alice's mobile device. The BusyMeetingRule

CHAPTER 8. PRACTICE AND EXPERIMENTATION 153

Figure 8.8: Console Log of the ad hoc discussion episode simulation using the iCasa platform.

DerivationRule will then again infer that Alice is busy, as can be seen in the console output
showing the response to Dan's query for the availability status of Alice.
Dan continues receiving the busy status until the meeting is over (seen in the log when Bob
and Cecille are leaving). In that case, the ad hoc meeting is no longer derived, such that Alice
is deemed to be free.

From the textual representation in Figures 8.1 and 8.2, one can observe that rule logic is eas-
ily understandable. Furthermore, an advantage over existing rule-based reasoning approaches
studied in Section 2.2.4 comes from using SPARQL and relates to the ability of expressing
conditions over aggregation expressions such as in lines 16 - 41 from Figure 8.2.
Nonetheless, one can observe that the current form of accessing annotations of a Context-
Assertion instance within a rule leads to a very verbose representation, an issue that we attempt
to mitigate in future work.

8.2.3 Provisioning Control Evaluation

In the description of the reference scenario (more particularly for the ad hoc meeting episode) we
showed that the various sensors (temperature, luminosity, noise level, body posture) are engaged
(i.e. their updates are enabled or disabled) based on the dynamic usage of the associated
context information (e.g. using the projector, subscribing for ad hoc discussion which requires
the enabling of the DerivationRule, which requires enabling of the noise level and body posture
sensor updates).
In Sections 5.2 and 5.3 we explained how dynamic context usage is addressed by the context
provisioning policies which guide the behavior of the CMU agents (especially CtxSensor and
CtxCoord). In order to observe the e�ect of using such policies we devised two experiments
based on the ad hoc meeting episode from the reference scenario.

Provisioning policy setup Remember from Sections 6.2.3 and 7.4.1 that the sensing and
coordination provisioning policies are indicated to the CMU agents as �les within the bundle
that con�gures the CMU deployment.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 154

Two con�gurations are used to evaluate the impact of using context provisioning policies. The
�rst policy enables all ContextAssertion updates by default, without using ContextAssertion
monitorization. The second one uses provisioning control parameters to enable only presence
sensing and location derivation by default. All other context information updates are activated
and deactivated on demand. Noti�cations from the CtxQueryHandler control update ac-
tivation, while four provisioning control rules from the policy set the conditions for disabling
speci�c updates and derivations (cf. Section 7.1.3 for one such example).

Provisioning policy in�uence Figure 8.9 shows the in�uence of provisioning policies on
sensing behavior and update messages. In the simulation, the sensing policy con�gures updates
every 2 seconds. As expected, the case where all sensor updates are enabled by default (left
hand graph) shows an almost constant sensing activity (2563 sensor readings and 1168 message
updates during the 3 minute simulation). The right hand graph (corresponding to adaptive

Figure 8.9: Sensing events and update messages graph. No provisioning control (left), with provision-

ing control (right)

provisioning) shows a dynamic evolution of the sensing behavior. At �rst, only presence sensors
are active. When Bob and Cecille join the AmI laboratory, temperature sensors become active
(interval 1 on chart). Further, when Bob turns on the projector, updates for luminosity are
enabled (interval 1 on chart). When all 3 persons are at a desk talking, they subscribe for
possible activity noti�cations and the noise level and body posture sensors needed for ad hoc
meeting detections become active (interval 2). When the meeting is over, the provisioning con-
trol rules ensure that unnecessary sensing activity be ceased (interval 3), leaving only presence
sensing enabled. Overall, this reduces the sensing activity for the same simulation by 30%. In
a real environment, this could have signi�cant bene�ts in terms of network load and power
consumption.

Figure 8.10 shows measurements of CONSERT Engine insertion delay (time until processing
starts) and processing duration for ContextAssertion updates. Charts similar to this one relat-
ing to CONSERT Engine performance will be discussed in more detail in Section 8.3.2.
While the average delay and processing times for the two simulation con�gurations are very
similar, on the right hand graph we observe slightly higher insertion processing times (blue)
and a greater density of insertion delay points (red) that are higher than the average. This
is a consequence of having an additional periodic context knowledge base transaction for the
evaluation of provisioning control rules (cf. Section 7.3.3). However, these results stem from
the particular setup of our simulation (relatively reduced load and information diversity) and
a technical limitation of the current implementation which relies on making transaction snap-
shots of the ContextStore when executing insertions, inferences or provisioning control rules.
Furthermore, if the dynamic between active and non-active update and derivation periods is

CHAPTER 8. PRACTICE AND EXPERIMENTATION 155

Figure 8.10: CONSERT Engine update performance showing insertion delay (red) and insertion pro-

cessing (blue) times. No control rules (left), with provisioning control (right)

greater than the number of control rules, we expect that insertion delay and processing times
will actually improve. We discuss this and other potential improvements in Section 8.4.

As mentioned in Section 3.1.3, from the reviewed provisioning architectures that rely on �xed
communication infrastructures only COPAL [Sehic and Dustdar, 2010] and SOLAR [Chen et al.,
2008] provide support for declarative speci�cation of the provisioning functionality. The CON-
SERT Middleware distinguishes itself from these works by some of its characteristic parameters
that in�uence the provisioning process, such as assigning constraint resolution services or de�n-
ing time periods for ontology-based reasoning.

8.2.4 Deployment Evaluation

In the qualitative analysis of middleware deployment engineering we relate to the aspects dis-
cussed throughout chapter 6. First, we present the setup of the CONSERT Middleware in the
simulation of the reference scenario in terms of the CMUs that need to be con�gured for all the
actors that participate in the simulation. We then look at how the CMU setup is exploited in
terms of prosuming behavior and domain-based query management.

Middleware Setup In terms of deployment con�guration speci�cation, we have already seen
the setup for the CMU of the AmI-Lab management server, which has been exempli�ed through-
out Section 7.1.4. Similarly structured con�gurations were developed for the other CMUs that
were required as part of the applications driving the simulation of the two reference scenario
episodes (cf. Figure 8.1 for the list of applications and the CMUs they require).
Speaking in terms of the CMU con�guration bundles described in Section 7.4, Table 8.1 shows
a list of the CMU con�guration bundles that were deployed in the simulation.
As mentioned in the chapter on middleware implementation, there is a need for a bundle hav-
ing a speci�c bundle name header (cmm-default-instance) to specify the con�guration of the
CONSERT Middleware platform on which all the other CMUs from the simulation run.
Further, notice that for each ContextDomain a management (i.e. coordination) CMU is cre-
ated to run on the simulated server managing the given domain (e.g. AmI-Lab, EF301, CS_-
Building). Apart from the necessary ContextDomain speci�cations, the agent-config.ttl
�les for these CMUs con�gure the deployment of a CtxCoord and CtxQueryHandler agent.
The CMU for the AmI-Lab management server additionally con�gures the set of CtxSensor
agents responsible for collecting the sensed temperature, luminosity, noise level and body pos-
ture data.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 156

Client (i.e. usage) CMUs assigned to the same ContextDomains as the management ones are
con�gured on the simulated smartphones of each person involved in the scenario episodes. These
CMUs con�gure the deployment of a CtxUser agent whose assignedOrgMgr property points
to the OrgMgr agent of the corresponding management server CMU.
Lastly, one can notice the bootstrap CMU con�gured in a centralized deployment scheme to
manage Alice's personal context speci�cations (e.g. the DerivationRules determining her avail-
ability status, the service resolving the availability uniqueness constraint). The CMU con�gures
an instance of the CtxCoord, CtxQueryHandler and CtxUser agents.

Prosuming Behavior In both episodes of the simulation scenario the CtxUser agents run-
ning on Alice's smartphone (the one from the bootstrap CMU and the one from the AmI-Lab
client CMU) are required to perform both query and pro�led insertion tasks (i.e. prosuming
behavior).

In the pre-meeting episode, Alice's simulated smartphone application uses the CtxUser from
the AmI-Lab client CMU (through the ApplicationClientAdaptor service) to query for
Alice's location and determine the number of people located in the same room as her. When
receiving answers to this queries, the application uses the CtxUser of the bootstrap CMU
to insert the answers as pro�led ContextAssertion instances inside the ContextStore of the

CMU ContextDomain Purpose

cmm-instance-default �
Bundle containing CONSERT Middleware plat-
form speci�cation for the simulation test bed.

AmI-Lab server AmI-Lab
Con�guration bundle for CMU of AmI-Lab man-
agement server.

EF301 server EF301
Con�guration bundle for CMU of EF301 o�ce
management server.

CS Building server CS_Building
Con�guration bundle for CMU of CS Building
management server.

Alice Bootstrap �
Con�guration bundle for CMU of Alice's personal
context management application.

Alice AmI-Lab client AmI-Lab
Con�guration bundle for CMU of AmI-Lab con-
text usage on Alice's smartphone.

Alice CS Bulding client CS_Building
Con�guration bundle for CMU of CS_Building
context usage on Alice's smartphone.

Bob AmI-Lab client AmI-Lab
Con�guration bundle for CMU of AmI-Lab con-
text usage on Bob's smartphone.

Cecille AmI-Lab client AmI-Lab
Con�guration bundle for CMU of AmI-Lab con-
text usage on Cecille's smartphone.

Dan EF301 client EF301
Con�guration bundle for CMU of EF301 context
usage on Dan's smartphone.

AirConditioning AmI-
Lab client

AmI-Lab
Con�guration bundle for CMU of AmI-Lab con-
text usage by the air conditioning unit.

Projector AmI-Lab
client

AmI-Lab
Con�guration bundle for CMU of AmI-Lab con-
text usage by the projector unit.

Table 8.1: List of CMU bundles, the ContextDomain to which they are assigned and their purpose

within the simulation of the reference scenario.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 157

CONSERT Engine running in the bootstrap CMU. The working of this sequence of actions is
con�rmed by the constraint detection and resolution messages that appear in the console log
from Figure 8.7, since the triggering of the DerivationRules that violate the availability status
uniqueness constraint is predicated on obtaining Alice's location information and the number
of people in the laboratory.

In the ad hoc meeting episode, the CtxUser from the AmI-Lab client turns to a provider of
context information himself. First, the AmI-Lab client CtxUser is used to subscribe for noti�-
cations of ad hoc meetings hosted in room sections from the AmI-Lab. The obtained information
is relayed via the bootstrap CMU CtxUser to Alice's personal CtxCoord and inserted in the
local CONSERT Engine instance. The BusyMeetingRule triggers and determines that Alice
is busy as a consequence of being in an ad hoc discussion. This time, the application uses the
bootstrap CMU to subscribe for such noti�cations (of being free or busy) and then uses the
CtxUser of the AmI-Lab client CMU to send a pro�led ContextAssertion towards the AmI-
Lab management server CMU such that her status may become visible to queries coming from
Dan. The e�ective working of these actions is con�rmed by the messages from the simulation
log in Figure 8.8 which show that Dan receives an answer to his domain-based queries for Alice's
availability status.

The descriptions given above are a good example of the way in which a context-aware application
is supposed to exploit the CONSERT Middleware from a context usage point of view. The
deployment speci�cations of our CMM allow an application designer to perform a domain-
based context model partitioning and use a CMU as a unit of control encapsulation for the
context interactions speci�c to a ContextDomain.
However, it is still a matter of application logic to decide how context captured as part of one
ContextDomain can be reused within another. Therefore, the control of the prosuming behavior
of CtxUser agents from various CMUs deployed on the same physical machine is maintained
by the context-aware application designer.

Domain-Based Query Management The domain-based query functionality is encountered
in the ad hoc meeting episode when Dan, who is in the EF301 o�ce, uses the CtxUser from
his EF301 client CMU to make a domain-range query for Alice's availability status. Since
he does not know Alice's current location, he opts to send a domain-range query having the
SchoolBuilding and LaboratoryRoom ContextDomain types as its upper and lower limits
respectively. In Listing 8.3 one can observe the content of the domain-hierarchy-config.ttl
�le which speci�es the ContextDomain hierarchy overview (cf. Figure 7.6) required by the
OrgMgr agents from the CS_Building, AmI-Lab and EF301 management server CMUs to
perform the distributed query routing according to the algorithms described in Section 6.4.1.

1 ...
2
3 sim:CS_Building
4 rdf:type sim:SchoolBuilding ;
5 rdfs:label "CS_Building"^^xsd:string ;
6 .
7 sim:AmI-Lab
8 rdf:type sim:LaboratoryRoom ;
9 space:includedIn sim:CS_Building ;
10 rdfs:label "EF210"^^xsd:string ;
11 .
12 sim:EF301
13 rdf:type sim:OfficeRoom ;
14 space:includedIn sim:CS_Building ;
15 rdfs:label "EF301"^^xsd:string ;
16 .

CHAPTER 8. PRACTICE AND EXPERIMENTATION 158

Listing 8.3: Content of the domain-hierarchy-con�g.ttl �le for the simulation of the reference
scenario.

As mentioned in the chapter on middleware deployment, the domain hierarchy overview �le
speci�es an RDF model that indicates the ContextDomain instances and their type de�nitions
(e.g. sim:CS_Building rdf:type sim:SchoolBuilding), as well as the "inclusion" relation that
exists between the ContextDomains using the EntityDescription constituing the domain hier-
archy property (e.g. sim:AmI-Lab space:includedIn sim:CS_Building).
The successful execution of the domain-based query routing protocol can again be observed
based on the simulation log from Figure 8.8 which shows that Dan retrieves answers about
Alice's availability status. Furthermore, notice that the log shows Dan receiving answers to his
query both during the time in which Alice is in the AmI-Lab, as well as after she moves to the
CS_Building hallway to head to the cafeteria. In the second case, Alice uses the CtxUser
agent from her CS_Building client CMU to send a pro�led ContextAssertion update specify-
ing that she is free. This information is stored in the CONSERT Engine running in the CMU
of the CS_Building management server. This way, when Alice moves to the hallway, Dan's
domain-range query actually obtains answers from the CtxQueryHandler agent running in
the CMU of CS_Building management server.

Most of the works reviewed in Chapter 3 have the ability to address the context management
needs highlighted by the reference scenario. However, the distinguishing feature of the CON-
SERT Middleware, lacking in all of the reviewed works, is the explicit and context model related
method to structure deployment of context provisioning units within an application. The pro-
posed deployment conceptualization (in terms of ContextDimensions and ContextDomains)
adds an explicit technical mean for developers to manage the life cycle of context provisioning
units according to the anticipated usage of context information within the application.

8.3 Performance Testing

Apart from the qualitative assessments presented previously, we performed two types of quan-
titative evaluations. The �rst test evaluates the performance of the CONSERT Engine as a
context information processing component. The second experiment looks at the distributed
query routing capabilities of the context provisioning agents.

8.3.1 CONSERT Engine Test Setup

In performing the test, our interest is to verify that the proposed representation and reasoning
engine can be successfully employed as part of a real-time context provisioning mechanism. In
other words, we want to perform a load test on our proposed system.
We start by writing a simple scenario generating program that is able to create de�nitions of
ContextEntities, ContextAssertions and ContextDerivationRules. The automated generation is
controlled by the following parameters:

• number of ContextEntity classes and number of instances of each class

• total number of ContextAssertion classes of each arity (unary, binary or n-ary)

• number of derived ContextAssertion classes out of the total number of class types per-
taining to each arity

• number of instances that would be generated during the test run for each type of Context-
Assertion

CHAPTER 8. PRACTICE AND EXPERIMENTATION 159

The automatically generated context model is then used by a test script to generate a sequence
of ContextAssertion update requests. The parameters which control the runtime dynamics
are: the temporal validity duration of a ContextAssertion instance (in ms) and the instance
pushrate (number of ContextAssertion instances generated per validity interval) for each arity
class. The context model generation parameters in�uence the size and variety of the simulated
domain, and they were used to study the memory footprint of the system, speci�cally in order
to determine if an increasing number of named graphs (as would be expected by a larger num-
ber of ContextAssertion classes and instances) poses a concern. The parameters controlling the
test script in�uence the responsiveness of the system and we wanted to determine under what
kind of load it would still be able to perform at a level acceptable for real-time usage (e.g. a
short enough time span passes from the moment a ContextAssertion that triggers an inference
is created to the point where the inferred assertion becomes visible).
Note that for this automated test, we focused on checking the performance of the event pro-
cessing capabilities of the CONSERT engine and did not trigger any ontology reasoning in
between ContextAssertion updates. We discuss the in�uence that even simple RDFS reasoning
can have on update processing in a second experiment. For the purpose of the automated test
the ContextDerivationRules are kept at a low complexity in order to allow automatic generation
and to ensure that a su�cient amount of rules �re during runtime.
The output of the scenario generation program are OWL �les that contains the ontology de�-
nitions of the simulated context domain and the accompanying context derivation rules. After
initialization, the test script is used to perform actual generation of ContextAssertion instances
and collect runtime measures. We detail the type of collected information and its analysis in
the following section.

8.3.2 CONSERT Engine Test Results

During the run of a test we collected information regarding the trace left by each created
ContextAssertion within the system. We looked at insertion delay time (Step 1 in Figure
4.7: time spent from entering the update request queue until start of processing), insertion
processing time (Steps 2a � 2d: how long it takes to apply all the veri�cations detailed in
Section 4.4.2), inference delay (Step 4) and inference processing time (in the case the newly
created ContextAssertion triggers an inference - Steps 4a � 4c) and overall deduction time
(the amount it takes from the moment an inference triggering ContextAssertion enters the
system until the deduced one is also observed). For each of these parameters we also computed
minimum, average and maximum values.
To compute memory consumption we used the jPro�ler1 Java pro�ling framework to observe
live memory usage. At the end of a test run, after performing garbage collection, we speci�cally
recorded the number of instances and total size of several key data structures that would be
directly in�uenced by the number of created context assertions. We also looked at the total
memory size of the Java heap space, after garbage collection.

Runtime Processing Times

In Figure 8.11 we observe the runtime history of a test where the pushrate has been set to
20 ContextAssertion requests per second. The upper chart shows the insertion delay and
insertion processing metrics, the middle one draws overlaid bars showing the inference delay
and inference processing values, whereas the lower chart combines the two and shows a bar chart
of the deduction duration information for those ContextAssertion instances that triggered the
inference of a new one.

1http://www.ej-technologies.com/products/jpro�ler/overview.html

CHAPTER 8. PRACTICE AND EXPERIMENTATION 160

Figure 8.11: Runtime results for test run with 10 ContextAssertion classes of each arity type and 50

instances for each class. The validity duration of a ContextAssertion instance is set at 1000 ms and

the pushrate has a value of 20 instances generated per validity interval (i.e., 20 events per second).

Table 8.2: Minimum, average and maximum values for the collected runtime parameters of the 20

events per second test run (in ms)

Insertion Delay Insertion Processing Inference Delay Inference Processing Deduction Duration

min avg max min avg max min avg max min avg max min avg max
0 71 952 7 15 272 0 14 141 23 59 255 85 206 1258

The spike at the beginning of the insertion delay plot is attributed to the �warm-up" of the
thread pool handling the update, requests as well as, more decisively, that of the in-memory
TDB quadstore engine where the inserted ContextAssertions are stored. The average value
of the insertion delay metric is of only 71 ms, as can be seen in Table 8.2. The variation in
the delay time is in sync with the peeks of the inference plot and it is due to the addition
of the deduced ContextAssertions to the list of ones that have to be inserted as part of the
next �batch" of events. Given the low complexity of the employed Context Derivation Rules,
Table 8.2 shows that the inference duration time is fairly low and since the number of derived
ContextAssertions is much lower than that of the created ones, there is no build up in the
request queue of the inference thread pool and so the inference processing time dominates the
inference delay time (the time that an inference request spends in the InferenceRequest Queue
before actual execution).
For this test con�guration the average deduction duration is set around 206 ms. Considering
that one second can be seen as a decent response time for a realtime recognition of a situation,
it means that the current load of 20 ContextAssertion insertion events per second can actually
leave room to spare (in case the derivation rules are more complex and require more time for
evaluation).

CHAPTER 8. PRACTICE AND EXPERIMENTATION 161

Deduction Time Analysis

Figure 8.12: Same con�guration as for the test case presented in Figure 8.11, but with a pushrate set

at 60 instances generated per validity interval (i.e., 60 requests per second).

In general, the deduction duration plot helps us to determine two important aspects concerning
the runtime dynamics of a system. First, depending on the value that is considered accept-
able for the average deduction duration, we can set the corresponding maximum number of
ContextAssertion update requests that can be handled per second. This implicitly translates
into an upper threshold on the frequency with which di�erent physical, logical or virtual sensors
would provide updates to the data they perceive. Keeping a log of the deduction duration data
could help a future version of the system determine how to automatically negotiate such sensor
update rates. Second, the value of the deduction duration is also an indicator of the minimum
temporal validity that a detected situation must have in order to be usefully utilized. That is,
if the actual situation is shorter than the time it takes for the system to have it recognized and
available for query or decision making, the e�ort to infer it will not have brought any added
value.

We can see the e�ect of increasing the pushrate load in Figure 8.12 and Table 8.3. For both the
insertion and inference of ContextAssertions we observe a dramatic increase and dominance of
the delay component (the time spent in the request queues). Still, the insertion and inference
processing metrics remain almost the same.

Table 8.3: Minimum, average and maximum values for the collected runtime parameters of the 60

events per second test run (in ms)

Insertion Delay Insertion Processing Inference Delay Inference Processing Deduction Duration

min avg max min avg max min avg max min avg max min avg max
1 4478 7035 8 17 347 0 46 306 31 65 268 2897 5466 7842

This line of experimentation has led us to observe that the true limitation factor in the current

CHAPTER 8. PRACTICE AND EXPERIMENTATION 162

instantiation of the CONSERT engine is given by Jena TDBs ability to handle multiple con-
current READ and WRITE transactions. Since every new ContextAssertion update request
requires the creation of a WRITE transaction, a high amount of update events per second cre-
ates a contention with regard to synchronization after all the veri�cation steps of the insertion
processing cycle have been carried out. Under current test con�gurations we determined that
the push rate value ensuring a less than one second deduction duration resides somewhere along
the 30 update requests per seconds mark. This still represents a reasonable value for potential
real life scenarios.

Runtime Memory Consumption

In terms of memory consumption, our main consideration was the creation of a large amount of
named graphs (since every ContextAssertion has its own identi�er graph). From an insertion
and inference lookup point of view, the above analysis seems to indicate that this is not an issue,
since Jena TDBs quad indexing scheme is able to e�ciently handle the work. To investigate the
evolution of the memory consumed by the in-memory TDB quadstore used by the CONSERT
engine, we used a Java pro�ling framework and looked at classes that are in direct relation with
the number of generated and updated ContextAssertions: com.hp.hpl.jena.graph.Node_URI and
com.hp.hpl.jena.graph.Node_Literal. The �rst class is directly related to the number of named
graphs created as each named graph is identi�ed by an URI which becomes an instance of the
class. The number of instances of the second class is largely in�uenced by the annotations of
a ContextAssertion since it will refer to ContextAnnotations such as validity interval, certainty
or timestamp which have datatype representations. Apart from the classes mentioned above,
we also measured the total heap size at the end of a test run, after having performed garbage
collection.

Table 8.4: Memory consumption and instance count for selected data structures during di�erent test

runs. Showing values for con�gurations with 30, 90 and 150 ContextAssertion class types and 50

instances per class

30 x 50 90 x 50 150 x 50

instance count mem. size instance count mem. size instance count mem. size

Node_URI 3825 60 KB 8227 131 KB 12478 199 KB

Node_Literal 4385 69 KB 8035 128 KB 11857 189 KB

Total Heap size 25.798 KB 40.676 KB 53.325 KB

What we were most interested in seeing was how the memory consumption would scale with
increasing number of ContextAssertion class types and instances. The results of 3 tests can
be followed in Table 8.4. What is readily observable, and an important point, is that memory
usage increase between the 3 test runs is sublinear. We consider that the main motive for this
result is the existence of the continuity check. Though scenario ContextAssertion instances
are generated randomly, during test runs we observed a fair amount of successful continuity
checks (meaning that the content of a new ContextAssertion is the same as that of a previously
existing one). In such cases, no additional identifying named graph has to be created and
only the ContextAssertion's annotation data has to change, leading to a very small memory
increase.
Indeed, a theoretical analysis of the potential ContextAssertions of a context domain leads
us to see that, given the existence of the continuity check, the number of named graphs that
identify ContextAssertions is bounded by the number of distinct values that the ContextEntities
involved in the assertion can have. If this amount is either naturally low, or can be made so by
considering aggregations or discretization of physical or virtual sensor data, then the scalability
of the system in terms of memory consumption can be decently addressed.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 163

In�uence of ontology reasoning

We mentioned that the automated test was meant to assess the performance of the event pro-
cessing capability of the CONSERT Engine. To analyze the in�uence of ontology reasoning
over the background knowledge in the entityStore, we implemented an additional test script
using a subset of the ContextAssertions that make up the context model of the reference sce-
nario. Speci�cally, we simulated part of the AmI-Lab room with several sensors that supplied
the following ContextAssertions: sensesBluetoothAddress (1 sensor), hasNoiseLevel (7 sensors),
sensesTemperature (4 sensors), sensesLuminosity (4 sensors). We set each sensor to be in sync,
sending updates every 10 seconds, and furthermore ensured that at each update three Deriva-
tionRules would �re so as to infer the presence of the user's smartphone, the presence of the
user in the room and, by inclusion, their presence within the conference building. We simulated
the existence of 3 people in the laboratory (Alice, Bob and Cecille) and, in total, at every event
cycle there are 18 updates coming in simultaneously from the sensors, plus the ones generated
by the derivation rules. This creates conditions similar to the ones in the automated model
generation test.
To see the in�uence of additional reasoning, we performed two test runs. In the �rst one, the
sensors insert a description of themselves into the entityStore (as ContextEntities and Entity-
Descriptions) only in the beginning. In the second one, they change these descriptions whenever
they make an update. The entityStore is meanwhile bound to a Jena RDFS reasoner, triggered
whenever the entityStore is updated. Table 8.5 shows the results of the two test runs in terms

Table 8.5: RDFS reasoning in�uence in AmI-Lab simulation test: min., avg. and max. values for the

collected runtime parameters (in ms)

Insertion Delay Insertion Processing Inference Delay Inference Processing Deduction Duration

min avg max min avg max min avg max min avg max min avg max
0 44 677 6 21 164 0 33 5254 2 17 82 35 127 935

min avg max min avg max min avg max min avg max min avg max
0 1056 3756 6 101 667 0 34 5056 2 21 101 58 1221 4164

of the same measurement parameters used for the automated test. The upper rows show the
values for the case where the entityStore is touched only in the beginning and the lower row
for the one where it changes at every ContextAssertion update. While we can see that the
values corresponding to the execution of Derivation Rules (inference delay and processing) stay
the same, the important di�erence is highlighted for the insertion processing measure. Even
though only RDFS reasoning is performed, the average processing time is almost �ve times
greater when performing reasoning at every update. Cumulating this di�erence for 18 updates
obviously leads to increased insertion delay times, especially for assertions which get inserted
after having been inferred. The reported max values can be considered outliers, since they are
always recorded only at the beginning of the test runs, where the combination of TDB initial-
ization and RDFS reasoning drives the waiting and processing times up. This test shows why
the CONSERT Engine Tasking Service described in section 4.4.1 is crucial in regulating both
event processing and ontology related inferences.

8.3.3 Query Handling Test Setup

The query handling test aims to verify the routing performance of the context provisioning
agents. In essence, we created a test bed able to measure the response times for queries with
di�erent types of routing behavior.
For the experiment we only considered exact-domain queries. In the case of domain-range
queries the forward part of the routing process is similar to the single domain case. The

CHAPTER 8. PRACTICE AND EXPERIMENTATION 164

di�erence lies in the number of expected return messages (which can be much greater in the
case of domain-range queries). However, the objective of our test is to observe the nature of the
delay in query response times given our tree-based ContextDomain hierarchy, rather than testing
the throughput capabilities of CtxQueryHandler agents. Consequently, the exact-domain case
allows us to achieve our evaluation objective in a simple way.

In order to automate the testing we created a ContextDomain hierarchy generator, which is
able to produce setups involving multiple hierarchy trees, of di�erent heights and breadths.
The generator is controlled by three parameters:

- numTrees: determines the number of ContextDomain based hierarchy trees. The OrgMgr
agents from the CMU at the top of a tree play a root role and will therefore be connected
with all root OrgMgr at the top of other hierarchy trees.

- levels: speci�es the depth (in number of tree levels) of a ContextDomain hierarchy.

- branchingFactor: speci�es the number of child ContextDomains for each domain node
of the hierarchy.

For the purpose of automated generation we considered a simple application context model,
wherein the ContextDomain hierarchy is generated based on a spatial ContextDimension (locatedIn).
In each generated spatial environment, temperature and luminosity readings are collected pe-
riodically (every 2 seconds) by corresponding sensors. We implement ContextAssertion
Adaptors that simulate sensed data collection, by generating values according to a simple for-
mula. The query template then focuses on always demanding the temperature values registered
during the past 2 seconds.
The generator produces the required instances of all CMU con�guration �les detailed in Section
7.4 (platform con�guration �le, CMU con�guration �le, domain hierarchy �le, sensing and coor-
dination provisioning policy �les). It then packages these �les in corresponding OSGi bundles.
Each generated CMU speci�es the creation of the following context provisioning agents: one
CtxCoord agent, one CtxQueryHandler agent, two CtxSensor agents (one for handling
temperature sensing and one for luminosity updates) and one CtxUser agent. Furthermore,
the OrgMgr managing the CMU at the top of a generated ContextDomain hierarchy plays a
root role, while all the others play a node role.

In order to perform the test in conditions closer to a real-life deployment we used two physical
machines in the experiment. Since the CONSERTMiddleware uses a tree-based ContextDomain
hierarchy, it means that agents of a CMU for a given ContextDomain will perform inter-CMU
communications only with agents from CMUs in parent or child ContextDomains (except for
CMUs of root domains which are fully interconnected as explained in Section 6.3.3).
This e�ectively means that we can simulate a close-to-real network CMU deployment by hav-
ing the CMUs from each level of a ContextDomain hierarchy tree run on a di�erent physical
machine. Figure 8.13 shows a graphical representation of this deployment principle. One can
see that the CMU of each root domain is deployed on a di�erent machine. Furthermore, the
deployment of CMUs on the di�erent levels of a hierarchy tree alternates between the two
machines.

The �gure also depicts the generated setup that was actually used to obtain the results that
we discuss in the next section. Suspension dots are used in the diagram in some places to
reduce clutter. They mark expansions of the ContextDomain hierarchy that is similar to the
one already visible.
To obtain this setup we ran our generator with the following values for its parameters: numTrees
= 2, levels = 4, branchingFactor = 2. We choose to report on this one setting because
for the purpose of our query routing performance analysis, we observed that other setups pro-
duce comparable results.
In order to clearly distinguish between the target ContextDomains of exact-domain queries
later on in the results, we give each generated ContextDomain a unique naming scheme.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 165

In Figure 8.13 we show just the local names (i.e. without the full namespace) of the ContextDo-
main URIs, which use the following scheme: Domaintree−number_level_index−in−level.
For example this means that Domain1_2_1 is part of the �rst tree, on the second level and it
is the second one (index starts from 0) to be generated on this level. The number of domains
on a level depends of course on the branching factor.

One last detail visible in Figure 8.13 is the sequence of queries that are sent throughout the
test (shown in green, curved arrows). The generator always picks a leaf node from one of the
created ContextDomain hierarchy trees to be the one that emits all the queries.
The �rst query is always local, so as to set the baseline against which to compare the response
times for all other queries that require routing. Then, as shown in the diagram, we explore
requests made to target ContextDomains of increasing distance (hops) from the source one.
First, we direct queries to each ContextDomain from the direct path to the root ContextDomain
(requests 2 - 4) and then to sibling nodes of those which are on the direct path to the root from
the source (requests 5 - 7).
Finally, the last request wishes to observe the response time for the longest route possible, one
that crosses between hierarchy trees and targets another leaf node (request 8).
For each ContextDomain target, we repeated the request 5 times and then averaged the response
times, yielding the results we present in the following section.

8.3.4 Query Handling Test Results

The discussion on the results of our query handling test focuses on query response time analysis
and overview of the agent interaction trail. Figure 8.14 presents the observed response times
(in ms) for the 8 ContextDomain targets detailed in the previous section.
The baseline (local domain query) shows a response time of just 26 ms for the handling of
the query, with actual processing in the CONSERT Engine taking even less. This of course
is intentional, as we explained previously, since the query complexity is reduced in order to
evaluate just the overhead added by the routing protocol.
As observable in the graph, the e�ect of the latter on query response times shows a linear
dependence, as was to be expected. The delay is strongly correlated with the number of hops

Figure 8.13: Example of CMU distribution on two physical machines such that each inter-CMU

communication occurs in between the machines. The sequence of query request tasks is marked in

green.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 166

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Local D
om

ain

D
om

_1_2_0

D
om

_1_1_0

D
om

_1_0_0

D
om

_1_3_1

D
om

_1_2_1

D
om

_1_1_1

D
om

_2_3_0

Q
u

e
ry

 R
e

s
p

o
n

s
e

 T
im

e
s
 (

m
s
)

Target Domains

Query Performance Test for Exact-Domain Requests

Nr. Hops 0 1 2 3 2 3 4 7

Figure 8.14: Request response times for the exact-domain queries carried out in the test. Labels on

the bars show the number of hops (i.e. CtxQueryHandler agents) traversed by the query and its

answer.

that the query has to traverse along its route. The 170 ms response time for the longest
path (7 hops) shows that the routing overhead is completely manageable (e.g. a query for a
ContextAssertion instance whose validity is of only one second will still be delivered in time for
it to be still considered fresh information).

The graph shows that in the analyzed test run, the queries for the ContextDomains on a direct
path to the hierarchy root (bars 2, 3 and 4 from left to right) take longer to reply than those
to �sibling� domains of those on the direct path (bars 5, 6 and 7), even though in the case of
Dom1_1_1 the number of hops is greater (4) than that for Dom1_0_0 (3).
This behavior is explainable by the way the CONSERT Engine functions. It is not caused by
latencies in routing or actual processing, but rather by the time the query waits to be processed
in the queue of the CONSERT Engine query execution thread (cf. Figure 4.7).
It is the same e�ect measured by the insertion delay and inference delay parameters for the
CONSERT Engine reasoning performance tests discussed in Section 8.3.2. As explained pre-
viously, it is caused by the fact that the CONSERT Engine operates using full ContextStore
transactions. If the queries were enqueued for execution when an insertion of temperature or
luminosity updates was taking place, the request processing has to wait until those WRITE
transactions are �nished, before interrogating the ContextStore. This is why in Section 8.4 we
talk about possible near-term future work improvements that address the current limitations
of the CONSERT Engine execution cycle.

Figure 8.15 shows a snapshot of the agent interactions carried out as part of the query routing
process for the longest possible path given our test setup (Dom2_3_0 as target ContextDomain).
The interaction log was captured using the Sni�er Agent1 facility of the JADE platform. The
Sni�er Agent can however only inspect the agents running in his own container (in this case,
those running on machine 2). Since our experiments ran on two machines, Figure 8.15 shows

1http://jade.tilab.com/doc/tools/sni�er/html/intro.htm

CHAPTER 8. PRACTICE AND EXPERIMENTATION 167

Figure 8.15: JADE Sni�er Agent snapshot of the sequence of agent interactions during the query

routing protocol for the Dom2_3_0 ContextDomain target.

all interactions with agents from CMUs on machine 1 as exchanges with Other (far left in the
�gure).
However, the depicted messages allow us to follow the steps of the exact-domain routing algo-
rithm described in Section 6.4.1. The protocol starts with the request made by the CtxUser
agent (shown on the far right) from the CMU of domain Dom1_3_0. One can observe the query
forwarding requests (using FIPA QUERY-REF calls) as magenta coloured arrows on the graph
(i.e. all forwarded messages have the same conversation id). Notice the sequence of 7 QUERY-
REF arrows (corresponding to the 7 required hops) that alternate between CtxQueryHandler
agents from machine 1 and machine 2, until they reach the CtxQueryHandler from the CMU
of domain Dom2_3_0.
In between the magenta lines, one can observe the calls that are made by CtxQueryHandler
agents to the OrgMgr agents of their respective CMUs, in order to determine the list of agents
to which to forward the exact-domain query (cf. Algorithm 1).
The routing protocol ends with the FIPA INFORM messages (8 magenta lines at the end of
the graph - 7 hops plus the response to the CtxUser agent) sent in reply along the same path
followed by the forward query request.

The test on which we reported in this section aimed to establish the overhead in response time for
the current implementation of domain-based query routing. The results show that the obtained
delay is manageable and depends only on the number of hops through the ContextDomain tree
hierarchy, in a linear fashion. However, response latency can sometimes increase due to the
transaction based execution cycle of the CONSERT Engine, which determines us to investigate
corresponding improvements in near-term future work.

8.4 Discussion

To conclude on the evaluation of the CONSERT Middleware we focus on two elements: a
summarizing of the evaluation results and their interpretation, as well as a account of personal

CHAPTER 8. PRACTICE AND EXPERIMENTATION 168

experience of developing the reference scenario simulation using the CONSERT Middleware.
The latter aspect in particular is one that motivates many of the future work directions that
will be presented in the conclusions of this thesis.

8.4.1 CONSERT Middleware Evaluation Analysis

The reference scenario, even though reduced in scale and implemented as a simulated environ-
ment, featured many of the challenges that current and future context-aware applications are
expected to encounter, as we mentioned in the introduction of this thesis.
In this chapter we have shown that the CONSERT Middleware is a suitable and often advan-
tageous choice for the implementation of context management within an AmI application. For
the most part, we provided a qualitative overview of usage of our CMM in the reference scenario
simulation and one could observe that all context management challenges were well handled by
CONSERT. Speci�cally, the scenario presented our CMM with issues requiring:

• the ability to model information in a �exible way (e.g. the n-ary ContextAssertion spec-
ifying the detected body posture of a person)

• the ability to use meta-properties to perform complex reasoning over context statements
(e.g. the ContextDerivationRule for detecting ad hoc discussions)

• the ability to model, detect and resolve constraints stemming from contradictory context
information (e.g. the availability uniqueness constraint)

• the ability to dynamically control the active context information update and inference
processes (e.g. the provisioning control rules used in the scenario)

• the ability and need to perform consumption and production of context information at
the same time (e.g. the relay of Alice's location information and person count to her
personal context management CMU)

• the ability to structure the deployment of various context management control units
throughout the simulation and exploit this structure for the purpose of context dissem-
ination (e.g. ContextDomain-based deployment and domain-based queries used in the
scenario)

Apart from the above, we performed a series of performance tests with the purpose of validating
the e�ectiveness of the current CONSERT Middleware implementation. While the results from
Sections 8.3.2 and 8.3.4 may be considered satisfactory, it is clear that improvements can and
must be made in order to provide a middleware able to be used in real world application
development.
In what follows we present and analyze some of the problems and solutions to those problems
we can already identify.

Limitations of DerivationRule Writing A �rst concern relates to the de�nition of the
ContextDerivationRules using the SPARQL syntax. In the current form, the SPARQL query
that implements a rule is quite verbose, as can be observed in the examples from Listings
8.1 and 8.2. While our logical named graph separation of ContextAssertion instances and the
stores that record their annotations are an advantage from an implementation point of view,
the necessity to explicitly identify the graph names in the rule clauses could a�ect developer
productivity signi�cantly.
A custom CONSERT-speci�c interpretation engine for the SPARQL queries (as already ex-
plored by works such as [Anicic et al., 2011]) could help introduce syntactic sugar that drives
down the complexity of DerivationRule writing.

CHAPTER 8. PRACTICE AND EXPERIMENTATION 169

Limitations of CONSERT Engine Execution A technical limitation observed in both
Sections 8.3.2 and 8.3.4 was our usage of TDB transactions to allow consistent views of the
context knowledge base when performing updates or inferences. This in turn translated into a
limit on the number of ContextAssertions that can be updated per second, whilst still attaining
decent real-time performance.
Besides considering to use alternative quadstore platforms (e.g. Sesame1) apart from Jena TDB
to see if they provide di�erent transactional behavior, one possible solution is to reconsider the
update mechanism. The information in the CONSERT knowledge base has a good logical
separation, given that every ContextAssertion has its own named graph identi�er and the
annotations of a given ContextAssertion class all reside within the same named graph. Thus,
when performing a new insertion of a ContextAssertion it is possible to determine what logical
partitions of the quadstore are going to be a�ected by the veri�cation steps applied by the
CONSERT engine during the insertion process. We can take advantage of this fact in attempting
to implement custom locks or transaction behavior that creates views only for the named graphs
concerned by an update. In this way update requests for di�erent ContextAssertions could take
place concurrently, since their locks or transaction views would not overlap.

8.4.2 Developing with the CONSERT Middleware

From a qualitative point of view, we report on the experience of developing the reference scenario
simulation using CONSERT. This analysis is important, since one of the stated goals of this
thesis is the ease of development and support for application engineering.

Modeling Experience Starting with the aspect of modeling the context information in the
scenario, one noted advantage is the use of ontologies for the implementation of the context
model. Model creation was aided by existing ontology development IDEs such as TopBraid
Composer1 or Protege2 which allowed an easier management of the created model. In addition,
the fact that the CONSERT Middleware allows a �le based separation of the content, annota-
tion, constraint, rule and function de�nition (cf. Section 6.2.2), provides additional structuring
capability for the person developing the model.
However, despite the obvious advantage of IDE based development, during the creation of the
context model for the reference scenario, it was still felt like the relations existing between
the di�erent instances of constructs from the CONSERT meta-model were not easily visible
or manipulable. For example, there is currently no means to specify which annotations should
be expected for instances of a given ContextAssertion. Likewise, while TopBraid Composer
together with the SPIN API allow one to visually observe the context constraint templates
attached to a given ContextAssertion type (i.e. an OWL ObjectProperty or Class), the impres-
sion is that the semantics of the CONSERT Meta-Model in itself escapes the capabilities of a
general ontology development IDE (e.g. the various constraint templates are only identi�ed as
such because they are located within a designated constraint de�nition RDF �le). Furthermore,
the assignment of a corresponding constraint resolution service for a given constraint violation
is deferred to the creation of another �le (the provisioning coordination policy).

Provisioning Con�guration Experience We �nd that implementation of a provisioning
control and adaptation logic for an application is signi�cantly aided by the existence of con�g-
uration �les. Since the provisioning vocabulary is implemented as the CONSERT Provisioning
Ontology, we found again support in existing ontology creation IDEs to edit the provisioning
control parameters and rules for the context provisioning agents.

1http://www.openrdf.org/
1http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
2http://protege.stanford.edu/

CHAPTER 8. PRACTICE AND EXPERIMENTATION 170

Speci�cally, the most useful fact is that the rules and parameters can be declaratively speci�ed
(as opposed to having to recompile built-in strategies after they are modi�ed in-code) and it
is thus easier to modify them and experiment with di�erent parameter values, add or remove
control rules.
Still, as in the case of modeling, it was felt that a visual editor giving the impression of a
closer binding with the context model for which the provisioning policies are created would
have reduced development time.

Middleware Deployment Experience As one could see from Table 8.1, a big number
of deployment con�gurations was required even for a small scale scenario such as the one we
presented. In this context, the ability to con�gure the deployment of CMUs for each simulated
physical machine (e.g. AmI-Lab server, EF301 server, Alice's smartphone, projector unit) in a
declarative way (i.e. as a con�guration �le) has positively a�ected the ease of development and
the time taken to create each con�guration.
Furthermore, we found that the existence of a deployment structure tied to the application
context model and the packaging of the con�guration �les as OSGi bundles were of great
support at simulation runtime, since it allowed an easy manipulation of the CMUs (tracking
the existing con�gurations, managing their installation) with just a few lines of code.
As in the previous two cases, given that our CMU structuring is tied to application context
model, it was felt that a custom editor and automatic builder of the con�guration �les would
have reduced development e�ort even further.

Application Engineering Experience The previous paragraphs generally show that our
experience in setting up the context management part of the simulation (which reduces to mid-
dleware con�guration and deployment) is a positive and encouraging one.
However, the development of our scenario simulation involved writing code around the function-
ality of our middleware. Speci�cally, we refer to the implementation of ContextAssertion
Adaptors and the code used to actually retrieve and relay context information from and to
the middleware.

Writing of ContextAssertionAdaptors was de�nitely aided by the existence of service
interfaces and the OSGi platform running underneath which allowed easy connection between
an adaptor implementation and the CtxSensor agent that required it. The more time con-
suming task was the development of the adaptor logic used to retrieve data from the sensors
simulated using the iCasa framework and converting that data into RDF statements built using
the CONSERT Ontology.
Creating ContextAssertion content and annotations as RDF statements using the Apache Jena
framework tends to be verbose. Consequently, wrapper code constructs that explicitly en-
capsulate the notions of ContextAssertion, ContextAnnotation or ContextConstraint and the
relation existing between them according to the CONSERT Meta-Model represent an obvious
development-time reducing solution.

The aspect of context information retrieval and manipulation was encumbered by the fact that
queries had to be explicitly given in their SPARQL form. Many context middleware solutions
from the ones reviewed in Chapter 3 fall short of providing a developer friendly way of accessing
the context information managed by the respective middleware system. Currently, this is true
for our CMM as well and it is an aspect that needs to be addressed quickly in future work.
Aside from this, we observed that the ContextDomain-based CMU structure of our CMM
provides a good means to keep account of the di�erent contextual interactions that are required
by an application at runtime. However, due to the fact that response to a context query is
obtained as an RDF result set, the relay of the relevant information instances from one CMU
to another (i.e. context prosuming behavior) is made more di�cult.
Both of the above observations suggest that improvements such as automatic query generation

CHAPTER 8. PRACTICE AND EXPERIMENTATION 171

for common ContextAssertion retrieval tasks, as well as templates or helper classes for inter
CMU context information transferring would greatly bene�t development e�orts.

From the previous experience accounts it is clear that the CONSERT Middleware o�ers en-
couraging advantages in terms of AmI application engineering support. Yet in order to really
become a productive solution for developers, it needs to be accompanied by modeling and con-
�guration tools and automatic code generation functionality that closely follow the meta-model
semantics and architectural design of the middleware, so as to alleviate boilerplate application
development tasks. This insight motivates an important part of the envisioned future work,
which will be explored in the next chapter.

Chapter 9

Conclusions

This chapter concludes the presented thesis. In closing, we will go over the initial objectives of
this work and provide a holistic overview of the contributions brought to obtain these objectives
(Section 9.1).
The work in this thesis has resulted in the creation of the CONSERT middleware for context
management. Furthermore, as noted in the evaluation chapter, the possible improvements of
the system bring about many perspectives for future work. In Section 9.2 we explore these
perspectives, from conceptual, implementation and vision related points of view.

9.1 Contributions

This thesis has focused on designing and implementing a Context Management Middleware
able to provide good support for the anticipated rapid innovation-oriented Ambient Intelli-
gence projects.
Consequently, the central features that characterize our middleware are �exibility in model-
ing and deployment, as well as explicit and declarative con�guration. Semantic Web
technologies, Multi-Agent System design principles and techniques, as well as component-based
software development are the key enabling factors that allow us to achieve these properties.

In the following we perform a recapitulation of the main take-away points from each chapter of
this thesis (Section 9.1.1) and then present a list of point-wise speci�ed contributions (Section
9.1.2).

9.1.1 Building a Flexible Context Management Middleware

In Chapter 1, we described Ambient Intelligence as being themain research �eld of which
context management is an integral and essential part. We discussed the fact that cur-
rent trends show that AmI is no longer a subject of pure technological research, but that it is
expected to be the object of many industry-backed innovation projects (Section 1.1.1).
Analyzing di�erent kind of scenarios in Section 1.1.2, we identi�ed a series of challenges for
the aspect of context management within AmI application. We grouped these challenges
according to three di�erent aspects that characterize a context management system: con-
text modeling, context provisioning and context management deployment (Section
1.2).
We determined that in order to be able to address the expected development trend of the Ambi-
ent Intelligence domain, the key focus points of the solution we develop should be �exibility

172

CHAPTER 9. CONCLUSIONS 173

of modeling and deployment, modularity of design and ease of con�guration and
development.

In Chapter 2 we started to explore the requirements (in terms of information representation
and reasoning) that make an approach successful for the speci�c task of context modeling. We
then reviewed the solutions that have been proposed in the literature for this task. We covered
the di�erent types of representation approaches, from simple key-value pairs to ontologies
and meta-modeling solutions and explained why we give more attention to the latter. We
studied various reasoning methods and argued that rule-based inferencing provides the best
trade-o� between expressiveness and understandability of a reasoning procedure
and the e�ectiveness of the employed deduction mechanism.
The analysis of reviewed works revealed a need for an expressive, uniform representation
model able to capture aspects of context content, meta-properties and dependencies,
as well as a reasoning approach combining rule-based and ontology-based inferences,
while also sporting temporal deduction capabilities.

Chapter 3 then focused on how context models were incorporated into architectures for context
management system. We investigated the steps of the main context provisioning life cycle
(acquisition, coordination, dissemination, usage) and identi�ed the set of transverse (com-
plementary) functionality blocks (producer discovery, mobility, adaptation management)
and non-functional characteristics (support for heterogeneity, scalability, privacy and se-
curity, traceability/control, robustness, ease of deployment/con�guration) required of a context
management system.
The subsequent review of context management solutions in terms of provisioning architec-
ture and deployment capabilities discovered the fact that many approaches provided seemingly
adequate responses to the identi�ed context management requirements. However, the main
drawback of almost all reviewed works was that they were enclosed, monolithic sys-
tems o�ering little support for declarative, designer-friendly means of specifying
how they should be employed within an application.
These facts constituted the motivation for the objectives presented at the end of the chap-
ter: agenti�cation of the provisioning architecture and component-based design in
support of middleware �exibility and modularity, as well as declarative policy-based
means to guide provisioning behavior and specify deployment con�gurations.

Chapters 4 through 6 presented the conceptual overview of the contributions brought with the
intent of achieving our objectives.
In terms of representation and reasoning (Chapter 4), we started with the presentation of the
formal context meta-model we are proposing. The purpose of the formalization was to introduce
the modeling concepts and the way they relate to one another. We then showed that semantic
web technologies, namely ontology-based representation and SPARQL as a rule-based inference
language, are an appropriate choice for the implementation of the CONSERT meta-model.
Noteworthy characteristics of the CONSERT context modeling approach are its �exibility (e.g.
ContextAssertions of variable arity, de�ning ContextAnnotation types and the seman-
tics of how such annotations are combined during runtime inference) and uniformity
(ontology-based implementation of context information content, annotations and con-
straint de�nitions).
The CONSERT Engine is implemented in such a way as to exploit the characteristics of the
CONSERT meta-model. It uses an execution cycle that emphasises temporal continuity
of sensed or derived ContextAssertions, leading to the identi�cation of semantically distin-
guishable situations. The engine o�ers support for expressive rule-based reasoning,
since the rule-based derivation formalism is translated to SPARQL inference queries which
allow complex expressions such as aggregation and grouping.
The CONSERT Engine is also implemented as an extensible service component. It presents
control options that a�ect the reasoning process (e.g. integrate ontology-based reasoning into
the rule-processing cycle, clean up runtime history) and uses pluggable services that imple-

CHAPTER 9. CONCLUSIONS 174

ment derivation scheduling and constraint resolution.

The CONSERT Engine becomes a central piece of the agent-based context provisioning ar-
chitecture of the CONSERT Middleware described in Chapter 5. We explained that, in the
context of goals for �exible deployment and con�guration, the characteristics of multi-agent
oriented programming (autonomy, social ability, reactivity, pro-activity) are an optimal �t.
The proposed multi-agent de�nes agent types (CtxCoord, CtxQueryHandler, CtxSensor,
CtxUser) that encapsulate the functionality of each main context management life cycle
aspect.
Control of the provisioning process is speci�ed through declarative policies that govern the
functionality of the CtxSensor and CtxCoord agents and the messages exchanged between
agents (provisioning interaction protocols).

The multi-agent based architecture o�ers the ability of a �exible deployment, that is, di�erent
agents can run on di�erent machines. Chapter 6 presented the means by which an explicit
deployment structure can be con�gured. We introduced the concepts of ContextDimen-

sion and ContextDomain as the elements that bind a deployment structure to the
multi-dimensionality of the application context model. The de�ned concepts permit
two deployment schemes: centralized and decentralized (with the ability to form a
tree-based hierarchy of ContextDomains).
Context provisioning agents de�ned in Chapter 5 are assembled into Context Manage-
ment Units (CMU) which are assigned to handle one or several aspects of provisioning
(acquisition, coordination, dissemination, usage) pertaining to the contextual interactions
within a ContextDomain .
We then introduced the OrgMgr agent as the entity that supervises the lifecycle (install,
start, stop, uninstall) of the agents within a CMU. Furthermore, we explained that declarative
deployment policies allow the application designer to specify the con�guration in terms
of: ContextDomain settings (context model of the domain, domain hierarchy of which it
may be part), CMU agent composition for the given ContextDomain and individual agent
speci�cations (e.g. policy �les that de�ne agent behavior).
All these deployment options confer the CONSERT Middleware the ability to be used in
multiple scenario situations of di�erent scale sizes. On hand of the reference scenario,
we explained how our CMM enabled complex, but structured prosuming behavior and
e�ective distributed query routing.

In Chapter 7 the service component based implementation of the CONSERT Middleware
became apparent as a means to ensure additional modularity and runtime �exibility.
We showed how ontology-based vocabularies are used to give shape to context pro-
visioning and deployment policies and how these CMU con�gurations are packaged as
OSGi bundles. Adaptors and services (e.g. ContextAssertion Adaptor for sensing,
ConstraintResolution Services) used by context provisioning agents are implemented
in an OSGi-compatible way.
The component-based middleware design and bundle-based con�guration packaging
o�er bene�ts in terms of runtime management and tracking of deployed CMUs. Fur-
thermore, we explained why the JADE agent development language is a good �t for the
proposed agent functionality in terms of behavior and interaction implementation, as well as
agent deployment infrastructure support.

Finally, Chapter 8, evaluated the contributions of this thesis on hand of the reference scenario.
We simulated the environment of the scenario and o�ered a complete application im-
plementation based on the CONSERT Middleware functionality.
The qualitative evaluation of modeling, provisioning and deployment aspects showed sub-
stantial application engineering bene�ts stemming from the �exibility of context model
design and declarative speci�cation of provisioning and deployment policies.
Quantitative evaluation of CONSERT Engine reasoning and distributed query handling

CHAPTER 9. CONCLUSIONS 175

performance showed adequate runtime performance and identi�ed necessary improve-
ment requirements.
The directions of future work arising from evaluation discussions are presented later in Section
9.2.

9.1.2 Contribution Summary List

The main contributions of this work can be point-wise grouped into the categories shown below
and summarized by the following list:

• Context Modeling and Reasoning:

� Ontology-based Context Meta-Model providing uniform representation support for
the main context modeling concerns: content, annotation, dependencies. Main dif-
ference with state-of-the-art is the uniformity of representation which leads to ease
of conception for context model developers. (Section 4.2)

� Extensibility in terms of annotation de�nition (this includes both the kind of anno-
tation, as well as the functions that implement the annotation inference operators -
Section 4.2.2)

� De�nition of annotation inference usage semantics (a speci�cation of how and when
annotation information is combined during inference). This is not explicitly handled
in related works (Sections 4.2.2 and 4.4.2).

� Reasoning cycle which includes automatic computation of temporal continuity of
events, leading to semantically distinguishable situations. This facilitates complex
situation de�nition, and is di�erent from state-of-the-art, because the mechanism is
implicit, rather than on-demand (Section 4.4.2).

� Reasoning engine supporting customizable constraint resolution services and de�ni-
tion of derivation rule scheduling heuristics. We exploit our component-based design
to provide both default services, as well as con�gurable customizations. The di�er-
ence from state-of-the-art lies in the o�ered customization support (Sections 4.4.1
and 7.2.2).

• Context Information Provisioning:

� Agenti�cation of context provisioning units (sensing, coordination, dissemination,
usage). Di�erence with state-of-the-art lies in better encapsulation and the potential
for increased autonomy of individual provisioning units (Section 5.1.2).

� Declarative policy-based control speci�cation for the context provisioning process.
Di�erence with state-of-the-art is in providing the policy vocabulary, which helps
reduce development e�ort (Section 5.2).

• Context Management Middleware Deployment:

� De�nition of concepts that use the dimensionality of a context model to induce
decentralized structure of context management units (CMUs). Di�erence with state-
of-the-art is that we provide a notion of ContextDomain which is tied to a context
model. This guides application design and eases application development by making
an explicit mapping between a CMU and a ContextDomain (Section 6.1).

� Vocabulary for declaring a context provisioning deployment structure (Section 6.2).

� Support for runtime management of CMU life cycles. This aspect is not explicitly
addressed in state-of-the-art and is a consequence of our component-based design
(Sections 6.3 and 7.4).

CHAPTER 9. CONCLUSIONS 176

• Service component based Middleware Implementation:

� OSGi-compatible implementation of the CONSERT Engine, the services it uses (e.g.
inference scheduling, constraint resolution) and of the adaptors used by provisioning
agents to interact with sensor and application layers. This brings an advantage in
term of modularization and runtime management (e.g. set/alter service implemen-
tation) of deployed agents and services (Section 7.2).

� OSGi Bundle based packaging of CMU con�guration, giving the capability of tracking
and managing possible CMU deployments at runtime (Section 7.4).

9.2 The Future of the CONSERT Middleware

In terms of future work, we consider two aspects. The �rst one refers to improvements that
are easily observable and that constitute near-term objectives. The other aspect refers to more
elaborate visions of development which will require more time to investigate, but which have an
increased potential of rendering the CONSERT Middleware as a noteworthy tool for context-
aware application development.

9.2.1 Improvements there for the taking

We discuss the near future improvement objectives grouped by the aspects of context manage-
ment as they were presented in this thesis.

Model related Regarding the CONSERT context meta-model, one potential line of work
revolves around the idea of a better structure for ContextAnnotations and a more elaborate set
of ContextAnnotation types.
The need for structuring is based on observations made by Marie et al., who explain that,
despite the more than a decade long research into context modeling, a consensus has not been
reached as to what constitutes an exhaustive list of quality of context (QoC) criteria [Marie
et al., 2013]. Their proposal to this problem, as in our case, is that of a meta-model for context
annotations. However, their QoC modeling e�orts include aspects of computability and ability
to more easily and generically manipulate meta-properties, which are currently absent from our
annotation model. They therefore constitute the object of immediate possible extensions.
Furthermore, aside from aspects of QoC, ContextAnnotations can serve additional information
processing purposes, as for example in works such as [Henricksen and Indulska, 2004a; Hen-
ricksen et al., 2005c]. Henricksen et al. propose models that capture context access control
indications and user preference speci�cations (e.g. the preference of a user for a given value of
a ContextAssertion statement). Though the authors of these papers do not mention if these
modeling e�orts are part of a more general attempt to represent context meta-properties, the
methods they propose could be adapted and included in our ContextAnnotation extension en-
deavours. This would grant the CtxCoord agent the ability to understand the nature of context
annotation information provided by CtxSensor or CtxUser agents to a greater extent and,
therefore, make more informed provisioning control decisions.

CONSERT Engine related Improvements to the CONSERT Engine relate both to a bet-
tering of existing functionality, as well as to the addition of new processing capabilities. Some
improvements to existing services (e.g. syntactic sugar to reduce complexity of ContextDeriva-
tionRules, alternatives to the current transaction-based processing of the CONSERT Engine)
have already been suggested in Section 8.4.

CHAPTER 9. CONCLUSIONS 177

Other possible optimizations concern the performance of ContextDerivationRule and subscrip-
tion query execution. Currently, both rule and query executions are being triggered every time
an update to a ContextAssertion type referenced in the body of the rule/query occurs. How-
ever, the analysis made in [Kang et al., 2008] shows that the possibility exists where updates
to ContextAssertion instances (especially environment sensing such as temperature, noise, light
level, etc) will not actually trigger any changes in the outcome of registered rules or queries.
The authors therefore propose performing a more thorough analysis of query or rule trigger
conditions and creating an index of these elements based on �change points�, i.e. regions in the
value domain of a ContextAssertion where the output of a rule/query changes.
Furthermore, in his thesis, Gero Mühl proposes di�erent optimization techniques for content-
based publish/subscribe systems [Mühl, 2002] (of which our CONSERT Engine is an example).
For example, one option to reduce the number of registered subscriptions is to perform a query
coverage analysis, that is, determine whether the conditions in a subscription made by a new
client are already �covered� by an already existing (but not necessarily identical) one.
Both suggestions are subject of near-term investigation and will require an improvement to the
current ContextDerivationRule and query analysis capabilities of the CONSERT Engine.

Lastly, an alternative, but more elaborate, approach to CONSERT Engine optimization is the
idea to investigate the possibility of adapting/extending existing SPARQL-based RDF stream
processors (e.g. C-SPARQL [Barbieri et al., 2010], EP-SPARQL [Anicic et al., 2011], ETALIS
[Teymourian et al., 2012] or INSTANS [Rinne et al., 2012]) to/with the execution cycle of
the CONSERT Engine (most notably, the handling of ContextAnnotations and the continuity
check).
Furthermore, one existing feature of the CONSERT Engine which has not been thoroughly
explored and evaluated in the current experiments is the aspect of mixed ontology and rule-based
reasoning. Speci�cally, we are interested in o�ering application developers clearer guidelines and
means to specify how ontology-based reasoning integrates with the event-processing behavior
of the CONSERT Engine. In this sense, an analysis of the functionality of EP-SPARQL, for
example, could help provide valuable insights into issues and performance trade-o�s that are
to be expected in this attempt.

Context Provisioning related The provisioning speci�c aspect that we wish to improve in
the near term concerns the introduction of an additional provisioning agent: the CtxAggregator.
In some of the works reviewed in chapter 3 (e.g. [Sehic and Dustdar, 2010], [Conan et al., 2007],
[Chen et al., 2008]), the proposed context management solutions o�er a pre-processing step (e.g.
simple value �lters, computation of average/min/max values from several sensors providing the
same ContextAssertion type), before more complex reasoning is applied to information coming
from sensors.
Though it could be argued that some of this functionality could be taken care of by corre-
sponding implementation of ContextAssertionAdaptors, the objective of �exibility and
modularity in middleware design leads us to the desire of creating a special provisioning agent
who would be assigned to manage such tasks. A CtxAggregator agent would have policies
specifying the ContextAssertion types and the nature of the pre-processing operations that it
needs to manage. Furthermore, at deployment speci�cation level, CtxSensor agents would no
longer connect only to CtxCoord agents. Instead, it will be possible for several CtxSensor
and CtxAggregator agents to constitute a processing pipeline, before the ContextAssertions
managed by these agents reach the CtxCoord where reasoning on hand of the CONSERT
Engine can be applied.

Context Middleware Deployment related One of the deployment speci�c topics which
requires immediate attention is the appropriate support for mobility and resource discovery
management. In Section 6.5 we explained that these functionality aspects are currently in-
completely handled by the CONSERT Middleware. While the existence of ContextDomainEn-

CHAPTER 9. CONCLUSIONS 178

tered and ContextDomainLeft rules provides some level of support for detecting ContextDomain
changes, these features are not yet fully �edged, nor were they evaluated by the current simu-
lation experiments.
Further work is needed to ensure adequate support for mobility management to application
developers. On the one hand, given our ContextDimension and ContextDomain based deploy-
ment structure, we consider it relevant to study the practical translation of the operational
concepts of change-of-focus and shift-of-attention de�ned in [Zimmermann et al., 2007] into
actions that manage the lifecycle of deployed CMUs (e.g. start/stop an installed CMU, install
another CMU in place of an existing one to handle the context information that is now in focus).
Some support for this idea, but within the frame of a single CMU, is already available under the
form of context provisioning rules, which can inspect the ContextStore and try to �anticipate�
the change in the relevance (i.e. shift-of-attention) of certain ContextAssertion updates coming
from CtxSensor agents that are part of the CMU.
On the other hand, besides these conceptual inquiries, the API provided by the Application
Client Adaptor exposed by a CtxUser agent needs to be augmented with functionality
that allows the application to take command of session handover during mobility (e.g. decide
how the subscriptions and ongoing queries that were submitted to the CtxQueryHandler of
an existing ContextDomain are transferred over to the query handler of the new ContextDomain
during a detected domain change operation).

Another deployment related improvement stems from the observations discussed in Section
8.4.2, where we talk about the experience of developing applications with the CONSERT Mid-
dleware. One concern was tied to the prosumer behavior of the CtxUser agent and the ability
to more easily (i.e. have clearer and more straightforward code support) perform the relay of
context information from a CMU responsible for one ContextDomain to another.

Finally, in terms of domain-based query management, the tests discussed in Sections 8.3.3
and 8.3.4 measured that the overhead in query response times introduced by the CONSERT
Middleware routing protocol is reasonably negligible. However, the experiment only attempted
to evaluate the routing procedure itself. Further, more complex and real application based
evaluations are required to determine the throughput and load handling capabilities of the
current CtxQueryHandler implementation. This too constitutes the object of near term
investigation.

9.2.2 Hidden Potentials

The ideas presented previously constitute extensions of the CONSERT Middleware which are
mostly based on its current design and functionality and can therefore be regarded as near
future investigations.
The �hidden potentials� aspects that we want to discuss here relate more closely to the goals ex-
pressed in the introduction to this thesis, namely to provide a context management middleware
solution that is able to address the trend towards technological innovation in Ambient Intelli-
gence, by means of strong support for application development. As in the previous section, we
present the features that we have in mind grouped by context management aspects.

Exploiting the CONSERT Meta-Model The �rst feature we envision is the introduction
of a visual context model development environment, i.e. an IDE for context modeling on hand
of the CONSERT Ontology. This idea was already noted as a nice-to-have feature in the anal-
ysis from Section 8.4.2. As opposed to simple ontology editor software, this IDE would give
the developer a much clearer overview of the context model he is developing, since it would be
directly aligned with the CONSERT meta-model. Furthermore, the fact that an OSGi-based
packaging of the resulting model �les has been established means that the output of the IDE
build process is already known and can be readily exploited within applications.

CHAPTER 9. CONCLUSIONS 179

The beginning of development of this feature is already planned under the form of student
internships that will start this summer within the AI-MAS laboratory of the University Po-
litehnica of Bucharest.

Exploiting the agent-based provisioning architecture When we performed the moti-
vation for using multi-agent based design principles and technologies, we mentioned that one
advantage of using MAS techniques is the potential for increased autonomy of individual pro-
visioning agents.
In the chapter on problem de�nition, we presented challenges related to management of body
worn sensors (e.g. in the �Care for the elderly� scenario), where the need to employ the right
sensors at the right moment became clearly apparent. This need was largely driven by the con-
text usage patterns, i.e. the nature of queries and subscriptions sent to a context management
system by the context consumption clients (e.g. the smartphone of the elder).
One possibility to implement management functionality as the one described above revolves
around the idea of Context Level Agreements (CLA). CLAs are the context-management equiv-
alent of service level agreements (SLA) in current network- or web-service implementations.
They have already been explored in the context management literature in works such as [Khedr
and Karmouch, 2004].
However, in addition to what is proposed by Khedr and Karmouch, our vision for CLAs in
the CONSERT Middleware would include policy-based goals of CtxCoord and CtxSensor
agents. For example, a CtxCoord could have a goal of executing the least amount of Con-
textDerivationRules as possible, while a CtxSensor agent could be con�gured to try and limit
the amount of power spent sending ContextAssertion updates.
Thus, when a CtxUser agent would make a subscription request, the agreement would involve
determining which DerivationRules and which CtxSensor agents would be required to func-
tion and in what way, so as to adequately respond to the user request (for example in terms of
providing query answers of acceptable accuracy and within acceptable delay). The establishing
of such CLAs, could then help create an execution strategy (who is active, when and how) for
all the CtxSensor agents coordinated by the CtxCoord in the same CMU.
Still, important research questions arise. For example, an interesting consideration is how new
requests are handled. Does determining a new CLA consider only currently available resources
or can existing CLAs be modi�ed/altered in favour of the new one? On what criteria would
such concessions be made?
This is why the aspect of CLAs is left as an element of long-term future work.

Exploiting the declarative con�guration options This aspect is closely tied to the IDE
for context model development. The idea is to extend the previous IDE with complementary
functionality such that the IDE build process would be able to generate desired CMM de-
ployment scheme. This relies on the fact that within CONSERT Middleware, such schemes
are tied to the existing context model. Once again, the OSGi based packaging of deployment
and provisioning policies means that the output of the editor build process is already clearly
determined.

Exploiting the OSGi-based implementation The ideas discussed next come back to the
challenges discussed initially, in the chapter on problem de�nition. One speci�c set of inquiries
was based on the �Maria� scenario where we saw that many, unrelated and brie�y-used services
were employed by the same application running on Maria's smart watch. Consequently, the
main questions raised during the discussion on that scenario focused on the very aspect of how
such an application would be engineered, given that it relied on a sense of global ubiquity (in-
sofar as the AmI infrastructure in the foreign country would seamlessly interact with Maria's
smart watch which would have been developed by entirely di�erent engineers).
One possible vision regarding the context management aspects of the �Maria� scenario is based

CHAPTER 9. CONCLUSIONS 180

on the deployment modularity and �exibility features of the CONSERT Middleware and its
OSGi-based implementation in particular. We have seen that a CMU is conceptually designed
as a control encapsulation unit for the context management requirements of a given ContextDo-
main. Furthermore, each ContextDomain comes with its own context model de�nition.
This brings to mind the perspective of a CONSERT App Store similar in functionality to Google
Play1 or the iOS App Store2. In the CONSERT App Store, CMU code (e.g. for the di�erent
adaptor implementations) and con�guration bundles become downloadable for the contextual
interactions speci�c to a place, activity, organization or service.
The end user device would only be required to host a CONSERT Base Platform where the
CMUs could be installed and their lifetime managed. The user could manage the downloads
him-/herself or, as in the extended reference scenario from Section 6.1.1, there could be a
bootstrap CMU that could detect the various ContextDomains and demand the installation of
corresponding CMU con�gurations from the CONSERT App Store.
Furthermore, services or organizations could be con�gured to automatically push the CMU
bundles that would be required for contextual interactions within their domain. Engineering
support for the latter idea has even already been developed in [Boujbel et al., 2014], where a
domain speci�c language (MuScADeL) for multiscale and autonomic software deployment is
presented.
Altogether, the vision of the CONSERT App Store would provide a practical and feasible
solution to the questions raised in the �Maria� scenario.

1https://play.google.com/store
2store.apple.com/us

List of Publications

The work from and leading up to this thesis has been published in 9 research papers, of which
1 in an ISI indexed journal, 4 in ISI indexed conference proceedings and 4 in the proceedings
of international, peer-reviewed conferences. All papers were published as �rst author.

Sorici, A., Boissier, O., Picard, G. and Santi, A. (2011, October). Exploiting the jacamo frame-
work for realising an adaptive room governance application. In Proceedings of the compilation
of the co-located workshops on DSM'11, TMC'11, AGERE! 2011, AOOPES'11, NEAT'11, &
VMIL'11 (pp. 239-242). ACM.

Sorici, A., Picard, G., Boissier, O., Santi, A. and Hübner, J. F. (2012, June). Multi-Agent
Oriented Reorganisation within the JaCaMo infrastructure. In Proceedings of The Third Inter-
national Workshop on Iinfraestructures and tools for multiagent systems: ITMAS (pp. 135-148).

Sorici, A., Boissier, O., Picard, G., and Zimmermann, A. (2013). Applying semantic web
technologies to context modeling in ambient intelligence. In Evolving Ambient Intelligence (pp.
217-229). Springer International Publishing. (ISI Proceedings)

Sorici, A., Picard, G., and Boissier, O. (2014, September). Towards an Agent enabled Con-
text Management Middleware. In Proceedings of the 2014 International Workshop on Web
Intelligence and Smart Sensing (pp. 1-2). ACM.

Sorici, A, Picard, G., Boissier, O., Zimmermann, A., and Florea A.M. (2015). CONSERT:
Applying Semantic Web Technologies to Context Modeling in Ambient Intelligence. Com-
puters and Electrical Engineering, Volume 44, May 2015, pages 280-306, ISSN 0045-7906,
http://dx.doi.org/10.1016/j.compeleceng.2015.03.012. (ISI Indexed Journal)

Sorici, A., Boissier, O., Picard, G., and Florea, A. M. (2015). Policy-based Adaptation of
Context Provisioning in AmI. In Ambient Intelligence - Software and Applications, volume
376 of Advances in Intelligent Systems and Computing, pages 33 - 43. Springer International
Publishing. (ISI Proceedings)

Sorici, A., Boissier, O., Picard, G., and Florea, A. M. (2015). Multi-Agent based Context Pro-
visioning Deployment in AmI Applications. In Advances in Practical Applications of Agents,
Multi-Agent Systems, and Sustainability: The PAAMS Collection, volume 9086 of Lecture
Notes in Computer Science, pages 225 - 239. Springer International Publishing. (ISI Proceed-
ings)

Sorici, A., Picard, G., and Florea, A. M. (2015). Multi-agent based context management
in AmI applications. In Control Systems and Computer Science (CSCS), 20th International
Conference on (pp. 727-734), doi: 10.1109/CSCS.2015.65. IEEE. (ISI Proceedings)

Sorici, A., Picard, G., Boissier, O., and Florea, A. M. (2015). Gestionnaire multi-agent de
contexte pour les applications d'intelligence ambiante. In 23es Journées Francophones sur les
Systèmes Multi-Agents (JFSMA'15). Cépaduès.

181

Bibliography

Aguiar, R. L., Sarma, A., Bijwaard, D., Marchetti, L., and Pacyna, P. (2007). Pervasiveness in
a competitive multi-operator environment: the daidalos project. Communications Magazine,
IEEE, 45(10):22�26.

Alonso, E., D'inverno, M., Kudenko, D., Luck, M., and Noble, J. (2001). Learning in multi-agent
systems. The Knowledge Engineering Review, 16(03):277�284.

Anicic, D., Fodor, P., Rudolph, S., and Stojanovic, N. (2011). Ep-sparql: a uni�ed language for
event processing and stream reasoning. In Proceedings of the 20th international conference
on World wide web, pages 635�644. ACM.

Augusto, J. C., Nakashima, H., and Aghajan, H. (2010). Ambient intelligence and smart envi-
ronments: A state of the art. In Handbook of ambient intelligence and smart environments,
pages 3�31. Springer.

Balazinska, M., Balakrishnan, H., and Karger, D. (2002). Ins/twine: A scalable peer-to-
peer architecture for intentional resource discovery. In Pervasive Computing, pages 195�210.
Springer.

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263.

Barbieri, D. F., Braga, D., Ceri, S., VALLE, E. D., and Grossniklaus, M. (2010). C-sparql: a
continuous query language for rdf data streams. International Journal of Semantic Comput-
ing, 4(01):3�25.

Bates, J. et al. (1994). The role of emotion in believable agents. Communications of the ACM,
37(7):122�125.

Bellavista, P. and Corradi, A. (2012). A survey of context data distribution for mobile ubiquitous
systems. ACM Computing Surveys (. . . , 44(4):1�45.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., and
Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and
Mobile Computing, 6(2):161�180.

Bettini, C., Maggiorini, D., and Riboni, D. (2007). Distributed context monitoring for the
adaptation of continuous services. World Wide Web, 10(4):503�528.

Bevan, N. (2009). Usability. In Encyclopedia of Database Systems, pages 3247�3251. Springer.

Bikakis, A. and Antoniou, G. (2010). Defeasible contextual reasoning with arguments in ambient
intelligence. IEEE Transactions on Knowledge and Data Engineering, 22(11):1492�1506.

Bikakis, A., Antoniou, G., and Hasapis, P. (2011). Strategies for contextual reasoning with
con�icts in ambient intelligence. Knowledge and Information Systems, 27(1):45�84.

Bikakis, A. and Patkos, T. (2008). A survey of semantics-based approaches for context reasoning
in ambient intelligence. Constructing Ambient Intelligence, pages 14�23.

182

BIBLIOGRAPHY 183

Bolchini, C., Curino, C. a., Quintarelli, E., Schreiber, F. a., and Tanca, L. (2007a). A data-
oriented survey of context models. ACM SIGMOD Record, 36(4):19.

Bolchini, C., Schreiber, F. A., and Tanca, L. (2007b). A methodology for a very small data
base design. Information Systems, 32(1):61�82.

Bordini, R. H., Dastani, M., Dix, J., and Seghrouchni, A. E. F. (2005). Multi-Agent Program-
ming. Springer.

Boujbel, R., Rottenberg, S., Leriche, S., Taconet, C., Arcangeli, J.-P., and Lecocq, C. (2014).
MuScADeL: A Deployment DSL Based on a Multiscale Characterization Framework. In 2014
IEEE 38th International Computer Software and Applications Conference Workshops, pages
708�715. Ieee.

Brdiczka, O., Crowley, J. L., and Reignier, P. (2009). Learning situation models in a smart home.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(1):56�63.

Broda, K., Clark, K., Miller, R., and Russo, A. (2009). SAGE: A logical agent-based en-
vironment monitoring and control system. Lecture Notes in Computer Science (including
subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics), 5859
LNCS:112�117.

Brodie, M. L. (1984). On the development of data models. In On conceptual modelling, pages
19�47. Springer.

Brown, P. J. (1995). The stick-e document: a framework for creating context-aware applications.
ELECTRONIC PUBLISHING-CHICHESTER-, 8:259�272.

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B. (2006). The fractal
component model and its support in java. Software: Practice and Experience, 36(11-12):1257�
1284.

Buchholz, S., Hamann, T., and Hubsch, G. (2004). Comprehensive structured context pro�les
(cscp): Design and experiences. In Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on, pages 43�47. IEEE.

Buchmann, A. and Koldehofe, B. (2009). Complex event processing. it-Information Technology
Methoden und innovative Anwendungen der Informatik und Informationstechnik, 51(5):241�
242.

Bucur, O., Beaune, P., and Boissier, O. (2006). Steps towards making contextualized decisions.
Lnai.

Calvanese, D., Lenzerini, M., and Nardi, D. (1998). Description logics for conceptual data
modeling. In Logics for databases and information systems, pages 229�263. Springer.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named graphs. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(4):247�267.

Chang, K.-H., Chen, M. Y., and Canny, J. (2007). Tracking free-weight exercises. Springer.

Chen, G., Li, M., and Kotz, D. (2008). Data-centric middleware for context-aware pervasive
computing. Pervasive and Mobile Computing, 4:216�253.

Chen, H., Finin, T., and Joshi, A. (2003). An intelligent broker for context-aware systems.
Adjunct proceedings of Ubicomp, pages 183�184.

Chen, H., Finin, T., and Joshi, A. (2005). The SOUPA Ontology for Pervasive Computing.
Computing Systems, pages 233�258.

Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., and Chakraborty, D. (2004a). Meet the
Semantic Web in Smart Spaces. IEEE Internet Computing, 8(October):69�79.

BIBLIOGRAPHY 184

Chen, H., Perich, F., Finin, T., and Joshi, A. (2004b). SOUPA: Standard ontology for ubiquitous
and pervasive applications. Proceedings of MOBIQUITOUS 2004 - 1st Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services, pages 258�267.

Chen, L. and Nugent, C. (2009). Ontology-based activity recognition in intelligent pervasive
environments. International Journal of Web Information Systems, 5(4):410�430.

Conan, D., Rouvoy, R., and Seinturier, L. (2007). Scalable processing of context information
with cosmos. In Distributed Applications and Interoperable Systems, pages 210�224. Springer.

Cook, D. J., Augusto, J. C., and Jakkula, V. R. (2009a). Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing, 5(4):277�298.

Cook, D. J., Augusto, J. C., and Jakkula, V. R. (2009b). Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing, 5(4):277�298.

Corradi, A., Fanelli, M., and Foschini, L. (2010). Adaptive context data distribution with
guaranteed quality for mobile environments. In Wireless Pervasive Computing (ISWPC),
2010 5th IEEE International Symposium on, pages 373�380. IEEE.

Courtrai, L., Guidec, F., Le Sommer, N., and Mahéo, Y. (2003). Resource management for
parallel adaptive components. In Parallel and Distributed Processing Symposium, 2003. Pro-
ceedings. International. IEEE.

Da Rocha, R. C. A. and Endler, M. (2012). Context management for distributed and dynamic
context-aware computing. Springer Science & Business Media.

Dargie, W. (2007). The role of probabilistic schemes in multisensor context-awareness. Work-
shops, 2007. PerCom Workshops' 07. Fifth, pages 1�6.

Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing,
5(1):4�7.

Doukas, C., Maglogiannis, I., Tragas, P., Liapis, D., and Yovanof, G. (2007). Patient fall
detection using support vector machines. In Arti�cial Intelligence and Innovations 2007:
from Theory to Applications, pages 147�156. Springer.

Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., and Burgelman, J.-C. (2001). Scenarios
for ambient intelligence in 2010. O�ce for o�cial publications of the European Communities.

Ejigu, D., Liris-umr cnrs, L., Lyon, I. D., Scuturici, M., and Brunie, L. (2008). Hybrid Approach
to Collaborative Context-Aware Service Platform for Pervasive Computing. Proceedings of
the IEEE, 3(1):40�50.

El Fallah Seghrouchni, A. and Suna, A. (2005). Claim and sympa: A programming environ-
ment for intelligent and mobile agents. In Bordini, R., Dastani, M., Dix, J., and El Fal-
lah Seghrouchni, A., editors, Multi-Agent Programming, volume 15 of Multiagent Systems,
Arti�cial Societies, and Simulated Organizations, pages 95�122. Springer US.

Fuchs, F., Hochstatter, I., Krause, M., and Berger, M. (2005). A metamodel approach to
context information. Third IEEE International Conference on Pervasive Computing and
Communications Workshops, PerCom 2005 Workshops, 2005:8�14.

Giunchiglia, F. and Sera�ni, L. (1994). Multilanguage hierarchical logics, or: how we can do
without modal logics. Arti�cial intelligence, 65(1):29�70.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic programs:
Combining logic programs with description logic. In Proceedings of the 12th international
conference on World Wide Web, pages 48�57. ACM.

Gross, T. and Specht, M. (2001). Awareness in context-aware information systems. In Mensch
& Computer 2001, pages 173�182. Springer.

BIBLIOGRAPHY 185

Gu, T., Pung, H. K., and Zhang, D. Q. (2005a). A service-oriented middleware for building
context-aware services. Journal of Network and Computer Applications, 28(1):1�18.

Gu, T., Qian, H., Yao, J. K., and Pung, H. K. (2003). An architecture for �exible service
discovery in octopus. In Computer Communications and Networks, 2003. ICCCN 2003.
Proceedings. The 12th International Conference on, pages 291�296. IEEE.

Gu, T., Tan, E., Pung, H., and Zhang, D. (2005b). A peer-to-peer architecture for context
lookup. The Second Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services, pages 333�341.

Gu, T., Wang, X. H., Pung, H. K., and Zhang, D. Q. (2004). An Ontology-based Context Model
in Intelligent Environments. In in Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference, pages 270�275.

Guo, B. and Zhang, D. (2010). The architecture design of a cross-domain context management
system. 2010 8th IEEE International Conference on Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), pages 499�504.

Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., and Scholkopf, B. (1998). Support vector
machines. Intelligent Systems and their Applications, IEEE, 13(4):18�28.

Henricksen, K. (2003). (Thesis) A framework for context-aware pervasive computing applica-
tions,. PhD thesis, The University of Queensland.

Henricksen, K. and Henricksen, K. (2006). Indulska, J.: Developing context-aware pervasive
computing applications: Models and approach. Pervasive and Mobile Computing, 2(July
2005):37�64.

Henricksen, K. and Indulska, J. (2004a). A software engineering framework for context-aware
pervasive computing. Proceedings - Second IEEE Annual Conference on Pervasive Computing
and Communications, PerCom, pages 77�86.

Henricksen, K. and Indulska, J. (2004b). Modelling and using imperfect context information.
Proceedings - Second IEEE Annual Conference on Pervasive Computing and Communica-
tions, Workshops, PerCom, pages 33�37.

Henricksen, K., Indulska, J., and Mcfadden, T. (2005a). Middleware for Distributed Context-
Aware Systems. On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, pages 846 � 863.

Henricksen, K., Indulska, J., and McFadden, T. (2005b). Modelling context information with
ORM. Lecture Notes in Computer Science (including subseries Lecture Notes in Arti�cial
Intelligence and Lecture Notes in Bioinformatics), 3762 LNCS:626�635.

Henricksen, K., Wishart, R., McFadden, T., and Indulska, J. (2005c). Extending context models
for privacy in pervasive computing environments. In Pervasive Computing and Communica-
tions Workshops, 2005. PerCom 2005 Workshops. Third IEEE International Conference on,
pages 20�24. IEEE.

Hirschheim, R., Klein, H. K., and Lyytinen, K. (1995). Information systems development and
data modeling: conceptual and philosophical foundations, volume 9. Cambridge University
Press.

Hong, J.-y., Suh, E.-h., and Kim, S.-J. (2009). Context-aware systems: A literature review and
classi�cation. Expert Systems with Applications, 36(4):8509�8522.

Horrocks, I., Patel-Schneider, P. F., and Van Harmelen, F. (2003). From shiq and rdf to owl:
The making of a web ontology language. Web semantics: science, services and agents on the
World Wide Web, 1(1):7�26.

BIBLIOGRAPHY 186

Huang, S.-H., Wu, T.-T., Chu, H.-C., and Hwang, G.-J. (2008). A decision tree approach
to conducting dynamic assessment in a context-aware ubiquitous learning environment. In
Wireless, Mobile, and Ubiquitous Technology in Education, 2008. WMUTE 2008. Fifth IEEE
International Conference on, pages 89�94. IEEE.

Hull, R., Neaves, P., and Bedford-Roberts, J. (1997). Towards situated computing. In Wearable
Computers, 1997. Digest of Papers., First International Symposium on, pages 146�153. IEEE.

Indulska, J., Robinson, R., Rakotonirainy, A., and Henricksen, K. (2003). Experiences in
using CC/PP in Context-Aware Systems. In Mobile Data Management.4th International
Conference, MDM 2003 Melbourne, Australia, January 21�24, 2003 Proceedings, pages 247�
261.

Juszczyk, L., Psaier, H., Manzoor, A., and Dustdar, S. (2009). Adaptive Query Routing on
Distributed Context - The COSINE Framework. 2009 Tenth International Conference on
Mobile Data Management: Systems, Services and Middleware, pages 588�593.

Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S., Park, T., and Song, J. (2008). Seemon:
scalable and energy-e�cient context monitoring framework for sensor-rich mobile environ-
ments. In Proceedings of the 6th international conference on Mobile systems, applications,
and services, pages 267�280. ACM.

Kang, S., Lee, Y., Min, C., Ju, Y., Park, T., Lee, J., Rhee, Y., and Song, J. (2010). Orchestrator:
An active resource orchestration framework for mobile context monitoring in sensor-rich
mobile environments. In Pervasive Computing and Communications (PerCom), 2010 IEEE
International Conference on, pages 135�144. IEEE.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y.
(2002). An e�cient k-means clustering algorithm: Analysis and implementation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 24(7):881�892.

Khedr, M. and Karmouch, A. (2004). Negotiating context information in context-aware systems.
Intelligent Systems, IEEE, 19(6):21�29.

Khedr, M. and Karmouch, A. (2005). ACAI: agent-based context-aware infrastructure for
spontaneous applications. Journal of Network and Computer Applications, 28(1):19�44.

Knappmeyer, M., Kiani, S. L., Frà, C., Moltchanov, B., and Baker, N. (2010). ContextML: A
light-weight context representation and context management schema. ISWPC 2010 - IEEE
5th International Symposium on Wireless Pervasive Computing 2010, pages 367�372.

Knublauch, H., Hendler, J. A., and Idehen, K. (2011). Spin-overview and motivation. W3C
Member Submission, W3C.

Kohonen, T. (2001). Self-organizing maps, volume 30. Springer Science & Business Media.

Korel, B. T., Koo, S. G., et al. (2010). A survey on context-aware sensing for body sensor
networks. Wireless Sensor Network, 2(08):571.

Lim, B. Y. and Dey, A. K. (2010). Toolkit to support intelligibility in context-aware applications.
Proceedings of the 12th ACM international conference on Ubiquitous computing - Ubicomp
'10, pages 13�22.

Luckham, D. (2008). The power of events: An introduction to complex event processing in
distributed enterprise systems. Springer.

Lyu, C. H., Choi, M. S., Li, Z. Y., and Youn, H. Y. (2010). Reasoning with imprecise context
using improved dempster-shafer theory. In Web Intelligence and Intelligent Agent Technology
(WI-IAT), 2010 IEEE/WIC/ACM International Conference on, volume 2, pages 475�478.
IEEE.

BIBLIOGRAPHY 187

Ma, J., Russo, A., Broda, K., and Clark, K. (2008). Dare: a system for distributed abductive
reasoning. Autonomous Agents and Multi-Agent Systems, 16(3):271�297.

Marie, P., Desprats, T., Chabridon, S., and Sibilla, M. (2013). QoCIM : un méta-modèle de
qualité de contexte. In Ubimob 2013.

Meditskos, G., Dasiopoulou, S., Efstathiou, V., and Kompatsiaris, I. (2013). SP-ACT : A
Hybrid Framework for Complex Activity Recognition Combining OWL and SPARQL Rules.
(March):25�30.

Mühl, G. (2002). Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis.

Müller, J. P. and Fischer, K. (2014). Application impact of multi-agent systems and technolo-
gies: A survey. In Agent-Oriented Software Engineering, pages 27�53. Springer.

Olaru, A. (2011). A context-aware multi-agent system for ami environments. PhD Thesis.

Olaru, A., Florea, A. M., and Seghrouchni, A. E. F. (2011). Graphs and patterns for context-
awareness. In Ambient Intelligence-Software and Applications, pages 165�172. Springer.

Olaru, A., Florea, A. M., and Seghrouchni, A. E. F. (2013). A context-aware multi-agent system
as a middleware for ambient intelligence. Mobile Networks and Applications, 18(3):429�443.

Peizhi, L. and Jian, Z. (2008). A context-aware application infrastructure with reasoning mech-
anism based on dempster-shafer evidence theory. In Vehicular Technology Conference, 2008.
VTC Spring 2008. IEEE, pages 2834�2838. IEEE.

Pereira, D., Oliveira, E., and Moreira, N. (2008). Formal modelling of emotions in bdi agents.
In Computational Logic in Multi-Agent Systems, pages 62�81. Springer.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2012). Ca4iot: Context
awareness for internet of things. In 2012 IEEE International Conference on Green Computing
and Communications (GreenCom), pages 775�782.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014a). Context aware com-
puting for the internet of things: A survey. Communications Surveys & Tutorials, IEEE,
16(1):414�454.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014b). Sensing as a service
model for smart cities supported by internet of things. Transactions on Emerging Telecom-
munications Technologies, 25(1):81�93.

Pietschmann, S., Mitschick, A., Winkler, R., and Meiÿner, K. (2008). Croco: Ontology-based,
cross-application context management. In Semantic Media Adaptation and Personalization,
2008. SMAP'08. Third International Workshop on, pages 88�93. IEEE.

Preuveneers, D., Bergh, J. V. D., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers,
Y., and Coninx, K. (2004). Towards an extensible context ontology for Ambient Intelligence.
Electronics.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81�106.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257�286.

Riboni, D. and Bettini, C. (2009). Context-aware activity recognition through a combination
of ontological and statistical reasoning. Ubiquitous Intelligence and Computing.

Riboni, D. and Bettini, C. (2011). OWL 2 modeling and reasoning with complex human
activities. Pervasive and Mobile Computing, 7(3):379�395.

Rinne, M., Törmä, S., and Nuutila, E. (2012). Sparql-based applications for rdf-encoded sensor
data. SSN, 904:81�96.

BIBLIOGRAPHY 188

Robinson, R., Henricksen, K., and Indulska, J. (2007). XCML: A runtime representation for
the Context Modelling Language. In Pervasive Computing and Communications Workshops,
2007. PerCom Workshops' 07. Fifth Annual IEEE International Conference on, pages 20�26.
IEEE.

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., and Nahrstedt, K.
(2002). A middleware infrastructure for active spaces. IEEE pervasive computing, 1(4):74�83.

Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing applications. In Mobile
Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on, pages 85�90.
IEEE.

Schmidt, A. (2006). Ontology-based user context management: The challenges of imperfection
and time-dependence. In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, pages 995�1011. Springer.

Sehic, S. and Dustdar, S. (2010). COPAL: An adaptive approach to context provisioning.
2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking
and Communications, pages 286�293.

Sharon, G. and Etzion, O. (2008). Event-processing network model and implementation. IBM
Systems Journal, 47(2):321�334.

Shoham, Y. (1993). Agent-oriented programming. Arti�cial intelligence, 60(1):51�92.

Sorici, A., Picard, G., Boissier, O., and Florea, A. M. (2015). Multi-agent based �exible deploy-
ment of context management in ambient intelligence applications. In Practical Applications
of Agents and Multi-Agent Systems, 2015 13th International Conference on, volume in print.
Springer.

Strang, T., Linnho�-Popien, C., and Frank, K. (2003). CoOL: A context ontology language to
enable contextual interoperability. Distributed applications and interoperable systems, pages
236�247.

Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge engineering: principles and
methods. Data & knowledge engineering, 25(1):161�197.

Tapia, E. M., Intille, S. S., and Larson, K. (2004). Activity recognition in the home using simple
and ubiquitous sensors. Springer.

Teymourian, K., Rohde, M., and Paschke, A. (2012). Fusion of background knowledge and
streams of events. In Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, pages 302�313. ACM.

To�er, A., Longul, W., and Forbes, H. (1981). The third wave. Bantam books New York.

Toninelli, A., Montanari, R., Kagal, L., and Lassila, O. (2006). A semantic context-aware
access control framework for secure collaborations in pervasive computing environments. In
The Semantic Web-ISWC 2006, pages 473�486. Springer.

Turhan, A.-Y., Springer, T., and Berger, M. (2006). Pushing doors for modeling contexts with
owl dl-a case study. In Pervasive Computing and Communications Workshops, 2006. PerCom
Workshops 2006. Fourth Annual IEEE International Conference on, pages 5�pp. IEEE.

Van Kasteren, T., Noulas, A., Englebienne, G., and Kröse, B. (2008). Accurate activity recog-
nition in a home setting. In Proceedings of the 10th international conference on Ubiquitous
computing, pages 1�9. ACM.

Van Laerhoven, K. (2001). Combining the self-organizing map and k-means clustering for on-
line classi�cation of sensor data. In Arti�cial Neural Networks-ICANN 2001, pages 464�469.
Springer.

BIBLIOGRAPHY 189

Weiser, M. (1991). The computer for the 21st century. Scienti�c american, 265(3):94�104.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The
knowledge engineering review, 10(02):115�152.

Yager, R., Fedrizzi, M., and Kacprzyk, J. (1994). Advances in the dempster-shafer theory of
evidence.

Yegnanarayana, B. (2009). Arti�cial neural networks. PHI Learning Pvt. Ltd.

Youssef, M. A., Agrawala, A., and Udaya Shankar, A. (2003). Wlan location determination
via clustering and probability distributions. In Pervasive Computing and Communications,
2003.(PerCom 2003). Proceedings of the First IEEE International Conference on, pages 143�
150. IEEE.

Zahid, N., Abouelala, O., Limouri, M., and Essaid, A. (2001). Fuzzy clustering based on
k-nearest-neighbours rule. Fuzzy Sets and Systems, 120(2):239�247.

Zhang, D., Cao, J., Zhou, J., and Guo, M. (2009). Extended dempster-shafer theory in context
reasoning for ubiquitous computing environments. In Computational Science and Engineer-
ing, 2009. CSE'09. International Conference on, volume 2, pages 205�212. IEEE.

Zimmermann, A., Lopes, N., Polleres, A., and Straccia, U. (2012). A general framework for
representing, reasoning and querying with annotated semantic web data. Web Semantics:
Science, Services and Agents on the World Wide Web, 11:72�95.

Zimmermann, A., Lorenz, A., and Oppermann, R. (2007). An operational de�nition of context.
In Modeling and using context, pages 558�571. Springer.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2015 EMSE 0790

Alexandru SORICI

MULTI-AGENT BASED CONTEXT MANAGEMENT MIDDLEWARE IN

SUPPORT OF AMBIENT INTELLIGENCE APPLICATIONS

Speciality : COMPUTER SCIENCE

Keywords : Ambient Intelligence, Context Management, Multi-Agent Systems, Semantic

Web

Abstract :

The complexity and magnitude of Ambient Intelligence scenarios imply that attributes

such as modeling expressiveness, flexibility of representation and deployment, as well as ease

of configuration and development become central features for context management systems.

However, existing works in the literature seem to explore these development-oriented

attributes at a low degree.

Our goal is to create a flexible and well configurable context management

middleware, able to respond to different scenarios. To this end, our solution is built on the

basis of principles and techniques of the Semantic Web and Multi-Agent Systems.

We use the Semantic Web to provide a new context meta-model, allowing for an

expressive and extensible modeling of content, meta-properties (e.g. temporal validity,

quality parameters) and dependencies (e.g. integrity constraints).

In addition, we develop a middleware architecture that relies on Multi-Agent Systems

and a service component based design. Each agent of the system encapsulates a functional

aspect of the context provisioning processes (acquisition, coordination, distribution, use).

We introduce a new way to structure the deployment of agents depending on the

multi-dimensionality aspects of the application's context model. Furthermore, we develop

declarative policies governing the adaptation behavior of the agents managing the

provisioning of context information.

Simulations of an intelligent university scenario show that appropriate tooling built

around our middleware can provide significant advantages in the engineering of context-

aware applications.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2015 EMSE 0790

Alexandru SORICI

UN INTERGICIEL DE GESTION DU CONTEXTE BASÉ MULTI-AGENT

POUR LES APPLICATIONS D'INTELLIGENCE AMBIANTE

Spécialité: Informatique

Mots clefs : Intelligence Ambiante, Gestion du Contexte, Systèmes Multi-Agent, Web

Semantique

Résumé :
La complexité et l'ampleur des scénarios de l'Intelligence Ambiante impliquent que

des attributs tels que l'expressivité de modelisation, la flexibilité de representation et de

deploiement et la facilité de configuration et de developpement deviennent des

caracteristiques centrales pour les systèmes de gestion de contexte. Cependant, les ouvrages

existants semblent explorer ces attributs orientés-developpement a un faible degré.

Notre objectif est de créer un intergiciel de gestion de contexte flexible et bien

configurable, capable de répondre aux différents scenarios. A cette fin, notre solution est

construite a base de techniques et principes du Web Semantique (WS) et des systèmes multi-

agents (SMA).

Nous utilisons le WS pour proposer un noveau meta-modèle de contexte, permettant

une modelisation expressive et extensible du contenu, des meta-proprietés (e.g. validité

temporelle, parametres de qualité) et des dépendances (e.g. les contraintes d'integrité) du

contexte.

De plus, une architecture a base de SMA et des composants logiciels, ou chaque agent

encapsule un aspect fonctionnel du processus de gestion de contexte (acquisition,

coordination, diffusion, utilisation) est developpée.

Nous introduisons un nouveau moyen de structurer le deploiement d'agents selon les

dimensions du modèle de contexte de l'application et nous elaborons des politiques

déclaratives gouvernant le comportement d'adaptation du provisionnement contextuel des

agents. Des simulations d'un scenario d'université intelligente montrent que un bon outillage

construit autour de notre intergiciel peut apporter des avantages significatifs dans la génie des

applications sensibles au contexte.

	Abstract
	Introduction
	Motivation
	Objectives
	Thesis Structure

	1 Problem Definition
	1.1 What is Ambient Intelligence
	1.1.1 Defining the Field
	1.1.2 Scenarios

	1.2 What is Context Management
	1.2.1 What is Context
	1.2.2 Challenges in Deploying Context-Aware Applications
	1.2.3 Challenges in Controlling Context-Aware Applications
	1.2.4 Challenges in Modeling Context Information

	1.3 Reference Scenario

	2 A State of the Art in Context Modeling
	2.1 Representing Context Information
	2.1.1 Context Representation Requirements
	2.1.2 Context Representation Methods
	2.1.3 Ontology-based Context Representation
	2.1.4 Representation using Context Meta-Models
	2.1.5 Context Representation Summary

	2.2 Reasoning about Context Information
	2.2.1 Reasoning Concerns
	2.2.2 Categories of Context Reasoning
	2.2.3 Ontology-based Reasoning
	2.2.4 Rule-based Reasoning
	2.2.5 Other Approaches
	2.2.6 Context Reasoning Summary

	2.3 Our Context Modeling Objectives

	3 Advances in Context Management Systems
	3.1 Provisioning Context Information
	3.1.1 Operational Aspects
	3.1.2 Non-Functional Aspects
	3.1.3 Context Provisioning Architectures
	3.1.4 Context Provisioning Summary

	3.2 Deploying Context Management Solutions
	3.2.1 Deployment Concerns
	3.2.2 Deployment Approaches
	3.2.3 Deployment Summary

	3.3 Our Context Management Objectives

	4 Representing and Reasoning About Context
	4.1 CONSERT Context Formal Model
	4.1.1 Representation Concepts
	4.1.2 Reasoning Formalism
	4.1.3 Context Dimensions and Context Domains

	4.2 Ontology-based Meta-Model
	4.2.1 Content Representation
	4.2.2 Annotation Representation
	4.2.3 Constraint Representation

	4.3 Rule-based Context Inference
	4.3.1 Context Derivation Rules
	4.3.2 Context Consistency

	4.4 Reasoning Engine
	4.4.1 Architecture
	4.4.2 Execution Cycle

	4.5 Discussion
	4.5.1 Analysis of Modeling Contributions
	4.5.2 Analysis of Reasoning Contributions

	5 Adaptable Context Provisioning
	5.1 Multi-Agent Based Architecture
	5.1.1 Rationale
	5.1.2 Context Provisioning Agents
	5.1.3 Context Provisioning Agent Environment

	5.2 Context Provisioning Agent Policies
	5.2.1 Sensing Policies
	5.2.2 Coordination Policies

	5.3 Context Provisioning Policy Execution
	5.3.1 Gathering Provisioning Statistics
	5.3.2 Control Process

	5.4 Context Provisioning Interactions
	5.4.1 Provisioning Sensing Chain
	5.4.2 Provisioning Request Chain

	5.5 Discussion

	6 Flexible Deployment of Context Provisioning
	6.1 Deployment: A Domain-Based View
	6.1.1 Using ContextDimensions and ContextDomains
	6.1.2 Using ContextDomain Hierarchies
	6.1.3 CONSERT Middleware Deployment Schemes

	6.2 Deployment Policies
	6.2.1 Platform Configuration
	6.2.2 ContextDomain Configurations
	6.2.3 Agent Configurations

	6.3 Managing Deployment: the OrgMgr agent
	6.3.1 Launching Platform and CMUs
	6.3.2 OrgMgr Roles
	6.3.3 Initialization and Provisioning Agent Setup

	6.4 Distributed Deployment Usage
	6.4.1 Domain Query Management
	6.4.2 Domain Query Complexity Analysis
	6.4.3 Domain Broadcast Management
	6.4.4 Context Prosuming Exemplification
	6.4.5 Mobility Management

	6.5 Discussion

	7 CONSERT Middleware Implementation
	7.1 Context Representation Implementation
	7.1.1 Using Named Graphs as Identifiers
	7.1.2 Rule Encoding using SPIN
	7.1.3 Provisioning Ontology
	7.1.4 Deployment Ontology

	7.2 CONSERT Engine Implementation
	7.2.1 Data Structures and Execution Cycle
	7.2.2 CONSERT Engine: A Software Service Component

	7.3 Context Provisioning Implementation
	7.3.1 Provisioning Agent Implementation with JADE
	7.3.2 Provisioning Agent Adaptor Services
	7.3.3 Context Provisioning Adaptation

	7.4 Context Provisioning Deployment Implementation
	7.4.1 Deployment Specification Files
	7.4.2 Runtime Deployment Management

	7.5 Discussion

	8 Practice and Experimentation
	8.1 Evaluation Considerations
	8.1.1 Evaluation Objectives
	8.1.2 Scenario Implementation
	8.1.3 Scenario Simulation Framework

	8.2 Scenario Evaluation
	8.2.1 Context Modeling Evaluation
	8.2.2 Reasoning Evaluation
	8.2.3 Provisioning Control Evaluation
	8.2.4 Deployment Evaluation

	8.3 Performance Testing
	8.3.1 CONSERT Engine Test Setup
	8.3.2 CONSERT Engine Test Results
	8.3.3 Query Handling Test Setup
	8.3.4 Query Handling Test Results

	8.4 Discussion
	8.4.1 CONSERT Middleware Evaluation Analysis
	8.4.2 Developing with the CONSERT Middleware

	9 Conclusions
	9.1 Contributions
	9.1.1 Building a Flexible Context Management Middleware
	9.1.2 Contribution Summary List

	9.2 The Future of the CONSERT Middleware
	9.2.1 Improvements there for the taking
	9.2.2 Hidden Potentials

	List of Publications
	Bibliography

