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Résumé

Traiter les problèmes paraboliques multidimensionnels linéaires, non-linéaires et linéaires

inverses est l’objectif principal de ce travail. C’est le mot multidimensionnel qui rend pratique-

ment incontournable l’utilisation des méthodes de simulations fondées sur le Monte Carlo. Le

mot multidimensionnel rend aussi indispensable l’utilisation des architectures parallèles. En ef-

fet, les problèmes manipulant un large nombre d’actifs sont de grands consommateurs en temps

d’exécution, et il n’y a que la parallélisation pour faire chuter ce dernier.

De ce fait, le premier objectif de notre travail consiste à proposer des générateurs de nombres

aléatoires appropriés pour des architectures parallèles et massivement parallèles de clusters de

CPUs/GPUs. Nous testerons le gain en temps de calcul et l’énergie consommée lors de l’im-

plémentation du cas linéaire du pricing européen. Le deuxième objectif est de reformuler le

problème non-linéaire du pricing américain pour que l’on puisse avoir des gains de parallélisa-

tion semblables à ceux obtenus pour les problèmes linéaires. La méthode proposée fondée sur

le calcul de Malliavin est aussi plus avantageuse du point de vue du praticien au delà même

de l’intérêt intrinsèque lié à la possibilité d’une bonne parallélisation. Toujours dans l’objectif

de proposer des algorithmes paralléles, le dernier point est l’étude de l’unicité de la solution

de certains cas linéaires inverses en finance. Cette unicité aide en effet à avoir des algorithmes

simples fondés sur Monte Carlo.

Mots clés : Contrat européen, contrat américain, calcul de Malliavin, réduction de variance,

réduction de biais, régularité du flow, GPU, Monte Carlo, générateur de nombres aléatoires.

Abstract

Handling multidimensional parabolic linear, nonlinear and linear inverse problems is the

main objective of this work. It is the multidimensional word that makes virtually inevitable the

use of simulation methods based on Monte Carlo. This word also makes necessary the use of

parallel architectures. Indeed, the problems dealing with a large number of assets are major re-

sources consumers, and only parallelization is able to reduce their execution times.

Consequently, the first goal of our work is to propose "appropriate" random number gene-

rators to parallel and massively parallel architecture implemented on CPUs/GPUs cluster. We



quantify the speedup and the energy consumption of the parallel execution of a European pri-

cing. The second objective is to reformulate the nonlinear problem of pricing American options

in order to get the same parallelization gains as those obtained for linear problems. In addition to

its parallelization suitability, the proposed method based on Malliavin calculus has other prac-

tical advantages. Continuing with parallel algorithms, the last point of this work is dedicated to

the uniqueness of the solution of some linear inverse problems in finance. This theoretical study

enables the use of simple methods based on Monte Carlo.

Key words : European contract, American contract, Malliavin calculus, variance reduction, bias

reduction, flow regularity, GPU, Monte Carlo, random number generator.
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Chapitre 0

Introduction générale

Most important of all was Fibonacci’s introduction of Hindu-Arabic numerals.

He not only gave Europe the decimal system, which makes all kinds of calculation

far easier than with Roman numerals ; he also showed how it could be applied to

commercial bookkeeping, to currency conversions and, crucially, to the calculation

of interest. Significantly, many of the examples in the Liber Abaci are made more

vivid by being expressed in terms of commodities like hides, peppers, cheese, oil

and spices.

Niall Ferguson "The Ascent of Money"

La simulation numérique a aussi des liens forts avec la théorie et ça va dans les

deux sens. Parfois un calcul théorique va vous donner des algorithmes beaucoup

plus performants pour faire votre calcul. Parfois votre calcul va changer votre vision

théorique d’un problème.

Cédric Villani, durant la remise du prix Joseph Fourier 2011

0.1 Contexte du travail

La première citation ci-dessus mentionne la relation fondamentale en occident entre les

mathématiques et la finance. En effet, même si la physique théorique est le premier domaine

auquel on peut penser lorsqu’on parle de mathématiques appliquées, l’histoire nous enseigne

que la première activité à utiliser les mathématiques est la finance. Il est aussi important de

conditionner cette information au fait que les mathématiques en finance apparaissent beaucoup

plus naturelles même pour les novices, alors que l’utilisation des mathématiques pour la phy-

sique est impossible sans la maîtrise de certains principes fondamentaux et relations physiques.

1



2 Chap 0. Introduction générale

Cet argument est peut-être celui qui justifie le mieux ce fait historique et l’important nombre

des mathématiciens qui s’intéressent sans discontinuer à ce domaine d’application . En effet, il

est plus facile pour un mathématicien d’avoir une bonne intuition pour un problème financier

que pour un phénomène gravitationnel ou quantique.

Le travail présenté dans ce manuscrit est une illustration du propos relaté précédemment.

En effet, cette recherche résulte d’un intérêt croissant accordé à la simulation parallèle multi-

coeurs et many-coeurs 1 et les problèmes abordés relèvent de la finance de marchés. En plus de

la théorie et de l’expérience, la simulation numérique s’est imposée comme l’un des piliers de

la connaissance scientifique. Dans cette étude, la simulation parallèle a pris une place impor-

tante. Une autre partie de ce travail consiste à formuler ou à reformuler un problème financier

spécifique pour qu’il soit efficacement implémentable sur des architectures parallèles. Comme

mentionné par Cédric Villani (seconde citation), ce double objectif est puissant et peut non

seulement améliorer les résultats numériques, mais aussi nous procurer une meilleure vision du

problème théorique.

Nous allons profiter de cette introduction pour dresser les évolutions historiques de l’archi-

tecture informatique depuis 1945 et détailler les tournures actuelles que prennent ces évolutions.

A travers ce bref exposé, on essayera aussi de comprendre les changements progressifs qui ont

eu lieu sur l’orientation des avancées théoriques. Après, nous reviendrons vers le domaine qui

nous intéresse ici qui est les mathématiques appliquées à la finance de marchés. Nous allons

analyser les causes de la montée fulgurante de ce domaine durant ces trente dernières années et

voir l’action de la simulation sur les développements actuels et leurs orientations futures. Nous

espérons ainsi concilier l’évolution des mathématiques appliquées, de l’outil informatique et

des inventions financières. Nous précisons que l’objectif de notre propos n’est pas d’entrer dans

les détails techniques mais de donner un aperçu de l’évolution de l’architecture informatique et

des applications en mathématiques financières.

0.1.1 Du parallèle au séquentiel puis du séquentiel au parallèle

Malchanceux est l’être humain lorsqu’il cherche à se faire remplacer pour réduire ces ef-

forts, car cette recherche en demande déjà beaucoup. Heureusement, cette quête n’a pas été

vaine parce qu’elle a permis au moins de conforter la connaissance détaillée de certaines tâches,

puisqu’on ne peut donner à une machine un travail à faire sans maîtriser les différentes parties

1. autrement dit, parallèle et massivement parallèle.
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simples de cette tâche.

Certains retracent l’évolution des calculateurs à partir du boulier chinois (7 siècles avant

J.-C.) mais, comme annoncé précédemment, on s’intéressera exclusivement aux machines élec-

triques d’après guerre 2. En supposant que l’on manipule une tâche qui se scinde en parties

élémentaires (allocation mémoire d’une variable, initialisation d’une variable, addition de deux

variables,...) qui peuvent, par moments, être entreprises sans communications entre elles (in-

dépendantes au sens informatique), la définition d’une machine parallèle 3 et d’une machine

séquentielle devient naturelle :

– Une machine est dite séquentielle si elle ne peut exécuter les parties élémentaires indé-

pendantes que d’une manière séquentielle, c’est à dire l’une après l’autre.

– Une machine est dite parallèle si elle est capable d’exécuter au moins deux parties élé-

mentaires indépendantes d’une manière parallèle, c’est à dire l’une en même temps que

l’autre.

Définie ainsi, il est très difficile de trouver une machine séquentielle maintenant et pourtant

ce n’était pas le cas, durant une longue période, lors de la commercialisation des premiers cal-

culateurs à transistor. Aussi étonnant que cela puisse paraître, la première machine électronique

polyvalente (Turing-complète [11]), l’ENIAC, était parallèle [28]. Plus tard, une version modi-

fiée est devenue la toute première machine de Von Neumann [27], c’est à dire dans laquelle le

programme est aussi stocké en mémoire. Cette révolution a été accompagnée par la contribution

de Von Neumann au développement de la méthode de Monte Carlo. Tout ceci a fait de l’ENIAC

le premier supercalculateur à exécuter durant une année les tests de la bombe à hydrogène.

Ensuite, on trouve la période qui commence par la commercialisation par Intel de l’un des

premiers micro-ordinateurs en 1972. Entre la date de l’invention de la première machine à tran-

sistor (TRADIC 1954) et 1972, on avait toujours des machines parallèles parce qu’elles étaient

destinées à être manipulées par des spécialistes et pour des applications généralement militaires.

Démocratiser les calculateurs pour le grand public a posé de très grands challenges hardware et

software. Les premiers ont été en grande partie résolus grâce à une maîtrise de la conception de

mémoires et à leur hiérarchisation. Une fois que l’on a mis suffisamment de mémoire cache 4 et

2. La seconde guerre mondiale.
3. Cette définition est un exemple d’abus qu’on fait pour éviter des questions comme l’existence de plusieurs

types de parallélisme donnant lieu par exemple à des architectures comme : Hyperthreading, FPGA,...
4. C’est une mémoire faisant partie de la CPU.
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de mémoire vive 5 à la disposition 6 de l’unité de calcul, on pouvait beaucoup plus facilement

exécuter des tâches assez complexes pour qu’elles puissent intéresser un éventuel acheteur ama-

teur de nouvelles technologies.

Comme dans d’autres domaines, l’idée de l’amortissement des coûts de production en ven-

dant au grand public est devenue incontournable en informatique. De plus, comme l’être humain

raisonne séquentiellement, il se contente pour son premier achat d’une machine qui a un seul

coeur de calcul mais assez de mémoire pour faire du traitement de texte, dessiner ... ou regarder

une vidéo à basse résolution. Ainsi, la question de mettre plusieurs coeurs ne se posait même

pas puisqu’on doublait 7, tous les 18 mois, le nombre de transistors sur une carte et la fréquence

de fonctionnement. De ce fait, un coeur deux fois plus rapide peut être virtuellement considéré

comme deux travaillant en même temps.

Pour faire de la parallélisation entre les années 1980 et 2000, l’utilisateur scientifique avait

pratiquement pour unique choix l’achat de plusieurs machines séquentielles et de les connecter.

Ceci ne s’est pas déroulé sans douleurs pour la communauté scientifique qui s’est vue très désa-

vantagée par la multiplicité des plates-formes, par une communication inter-machine peu effi-

cace et par des documentations insuffisantes. Devant de telles difficultés, c’est dans un monde

de traitements séquentiels des EDPs 8 que les mathématiques appliquées ont eu leur essor, favo-

risant ainsi des méthodes itératives à fort caractère séquentiel. Un exemple standard saisissant

de cette orientation séquentielle des recherches théoriques est celui de la multiplication matri-

cielle : Dans une implémentation parallèle et avec une mémoire cache relativement faible pour

chaque coeur, il est simple de séparer les multiplications faites par chaque coeur indépendam-

ment des autres pour que le temps d’execution soit divisé par le nombre de coeurs disponibles.

Alors que dans une implémentation EDPiste séquentielle, on essayera d’abord en amont d’avoir

des matrices les plus creuses possibles et d’implémenter ensuite des algorithmes de multiplica-

tions qui utilisent intensément la grande quantité de cache disponible lorsqu’on travaille avec

un seul coeur [56].

Cette orientation de l’architecture informatique et des développements théoriques a duré

une vingtaine d’années, jusqu’au moment où on est arrivé à la limite en nombre de transis-

tors que l’on pouvait mettre sur un même coeur. D’après la figure 1, on voit qu’à partir d’une

5. C’est une mémoire séparée de la CPU qui ne stocke des données que lorsque la machine est alimentée.
6. La mise à disposition regroupe la quantité de mémoire disponible et la rapidité d’accès à celle-ci.
7. Loi de Moore.
8. Équations aux dérivées partielles.
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FIGURE 1 – Evolution historique sur une CPU de : nombre de coeurs, nombre de transistors,
fréquence et puissance de fonctionnement.

certaine fréquence, la puissance électrique de fonctionnement est devenue inacceptable 9 pour

justifier la conception mono-coeur des CPUs 10. Les limites de cette architecture proviennent

non seulement du fait que la puissance de fonctionnement est linéairement proportionnelle à la

fréquence 11, mais aussi des difficultés rencontrées pour réaliser des gravures des circuits de plus

en plus fines. Pour que la loi de Moore reste vérifiée, la solution directe consistait à augmenter

le nombre de coeurs sur une même puce. Ceci a assez bien fonctionné pour deux coeurs puis

pour quatre coeurs et a conduit à une ascension du nombre de coeurs dans les super-calculateurs

(voir figure 2).

Puis, le même problème d’accès mémoire s’est invité de nouveau dans la liste des problèmes

hardware. En fait, presque 80% de la CPU représente de la mémoire cache et augmenter le

nombre de coeurs réduit considérablement le cache pour chaque coeur. C’est aussi vrai pour

9. La diffusion de chaleur n’étant plus supportable par les matériaux utilisés.
10. Central Processing Unit est le processeur principal d’une machine qui regoupe plusieurs unités de calcul et

de la mémoire cache.
11. P = CV 2f où C est la capacité, V le potentiel et f la fréquence. Même si en général, la puissance totale de

la carte mère est non-linéairement reliée à la fréquence.
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FIGURE 2 – Croissance exponentielle du nombre de coeurs due au besoin de parallélisation.

la RAM 12 qui est sollicitée par plusieurs coeurs. Par conséquent, il faut augmenter le nombre

de bus 13 pour accéder à cette mémoire 14. La solution à ces problèmes est fondée sur plus de

localité de la mémoire et consiste à paralléliser le code sur les différents coeurs et à proposer des

achitectures qui contiennent encore beaucoup plus de coeurs que deux ou quatre. C’est encore

une fois la commercialisation au grand public qui mène la cadence, puisque ce sont les GPUs 15,

processeurs des consoles vidéos, qui se sont imposées comme alternative sérieuse pour la paral-

lélisation massive. C’est tellement vrai que l’introduction des GPUs dans les super-calculateurs

a complètement modifié le classement des machines les plus puissantes dans le monde (voir le

TOP500 sur http://www.top500.org/). La programmation de ce type d’architecture est devenue

de plus en plus simple avec le temps et plusieurs solutions sont envisagées comme l’utilisation

de :

12. Random Access Memory, ou mémoire vive en français.
13. Un système (essentiellement circuit + protocole de communication) de transfert des données.
14. pour ne pas réduire la bande passante pour chaque coeur.
15. Graphic processing unit est un coprocesseur vectoriel contenant beaucoup plus d’unités de calcul que le

CPU mais son organisation mémoire ne permet pas de faire efficacement des opérations aussi complexes que sur
le CPU.
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– OpenCL qui est de bas niveau 16, et qui est proposé comme un langage à implémenter sur

toutes les cartes.

– CUDA, langage de plus haut niveau qu’OpenCL, et qui a été conçu pour les cartes Nvidia

mais qui commence à être implémenté sur d’autres.

– OpenACC (issu du OpenHMPP) est un langage à directives 17. Son utilisation ne demande

pas de réécrire le code CPU, mais seulement de chercher les parties du programme sus-

ceptibles de contenir de la parallélisation.

0.1.2 Simulation dans la finance

Dans son passionnant livre "The Big Short", Michael Lewis décrit ses derniers jours dans

la finance, les années 1980, comme la période qui a vu la fin d’une espèce de financiers qui ar-

rivaient difficilement à évaluer les contrats et les couvertures à prendre. Il reconnaît aussi, qu’à

ce moment là, il n’avait pas saisi la montée en force d’une autre génération de scientifiques, les

analystes quantitatifs ou Quants, capables de faire rapidement les calculs financiers nécessaires.

Ceci a été le point de départ de la structuration de plusieurs types de contrats et de problèmes

de plus en plus durs à résoudre. Dans une présentation à Zurich durant l’été 2011, René Car-

mona a expliqué qu’une partie de la complexité des problèmes qu’on traite provient des contrats

susceptibles de simplifier notre positionnement dans le marché. Cette difficulté n’étant pas in-

trinsèque aux contrats, elle devient de plus en plus évidente avec le temps. Un exemple simple

est celui de la diversification d’un portefeuille d’actions par l’achat ou la vente de forward sur

les matières premières. La création de produits dérivés, faisant intervenir les actions et les ma-

tières premières, a créé une corrélation fictive 18 rendant plus délicat ce type de diversification.

Face à ce type de problème, les Quants qui pouvaient assez bien s’en sortir avec des for-

mules fermées ont commencé à avoir un peu plus de difficultés à justifier leurs démarches et

la simplicité de leurs modèles. Principalement, il restait la simulation par EDP car on pou-

vait avoir des temps de calcul raisonnables 19 pour les types de problèmes qu’on voulait traiter.

Bien que peu courante, la simulation de Monte Carlo était justifiée pour certaines applications,

surtout dans les marchés peu volatiles, qui permettaient une convergence assez rapide vers la

solution 20. L’utilisation de ces deux méthodes a commencé à créer une effervescence féconde

16. L’efficacité de l’implémentation dépend de notre bonne connaissance du hardware.
17. comme OpenMP.
18. La personne qui vend ce type de contrat doit se couvrir continuellement par des produits vanilles ou par

l’achat ou la vente des produits sous-jacents.
19. En front office, on demande à avoir des calculs de l’ordre de la seconde.
20. Comme l’a été le marché fixed-income, dont la meilleure traduction est taux d’intérêt, avant la crise de 2008.
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entre l’application et la théorie probabiliste et déterministe des EDPs. La parallélisation, quant

à elle, était complètement inexistante car on n’attendait pas d’un Quant de savoir vectoriser un

code mais plutôt de proposer un moyen d’émettre des prix sur des contrats, de plus en plus

complexes, pour une meilleure plus-value.

Le "Time to Market" de la parallélisation en finance était assez long et il a fallu une crise fi-

nancière globale pour prendre du recul par rapport à des pratiques de moins en moins justifiées.

On devait non seulement avoir une couverture consistante des contrats standards mais surtout

assurer une meilleure évaluation du risque. Dans un monde hautement interconnecté, ces deux

activités sont devenues très difficiles et ne peuvent avoir de sens sans augmenter la dimension

des problèmes traités. L’évaluation d’un contrat, sa couverture ou la détermination des risques

qu’il peut engendrer est une tâche qui devient presque impossible avec des EDPs lorsque le

nombre d’actifs excède 4. On revient donc à une utilisation massive des architectures parallèles

à travers l’implémentation de Monte Carlo pour les problèmes financiers qui sont majoritaire-

ment paraboliques linéaires, non-linéaires, linéaires inverses et non-linéaires inverses.

La parallélisation d’une simulation de Monte Carlo pour des problèmes linéaires a été déjà

traîtée sur les clusters de CPUs, par exemple [43, 41]. Cependant, sur cluster de GPUs, notre

travail est parmi les premiers sur le sujet. Nous citons aussi des recherches contemporaines

de l’entreprise NAG 21 et de [30]. Ensuite, en s’inspirant des travaux [19, 18] implémentés sur

clusters de CPUs, nous avons initié l’étude en détail de la parallélisation massive des problèmes

non-linéaires en finance. Les problèmes linéaires inverses, quant à eux, sont beaucoup plus

larges. Nous nous sommes principalement investis sur une application multidimensionnelle très

attractive d’un point de vue pratique qui met en évidence les difficultés que l’on peut rencontrer.

Nous ne nous sommes pas attardés sur les applications parallélisables que l’on trouve dans

les banques parce que, d’une part, les méthodes spécifiques sont confidentielles en général et,

d’autre part, ce que nous présentons comme problèmes englobe déjà l’essentiel de ce qu’on a

en pratique.

21. Numerical Algorithms Group.
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0.2 Objectif du travail

Traiter les problèmes paraboliques multidimensionnels linéaires, non-linéaires et linéaires

inverses est l’objectif principal de ce travail. C’est le mot multidimensionnel qui rend pratique-

ment incontournable l’utilisation des méthodes de simulations fondées sur le Monte Carlo. Le

mot multidimensionnel rend aussi indispensable l’utilisation des architectures parallèles. En ef-

fet, comme nous l’avons vu à la section précédente, les problèmes manipulant un large nombre

d’actifs sont de grands consommateurs en temps d’exécution, et il n’y a que la parallélisation

pour faire chuter ce dernier.

De ce fait, le premier objectif de notre travail consiste à proposer des générateurs de nombres

aléatoires appropriés pour des architectures parallèles et massivement parallèles de clusters de

CPUs/GPUs. Nous testerons le gain en temps de calcul et l’énergie consommée lors de l’im-

plémentation du cas linéaire du pricing européen. Le deuxième objectif est de reformuler le

problème non-linéaire du pricing américain pour que l’on puisse avoir des gains de parallélisa-

tion semblables à ceux obtenus pour les problèmes linéaires. La méthode proposée fondée sur

le calcul de Malliavin est aussi plus avantageuse du point de vue du praticien au delà même

de l’intérêt intrinsèque lié à la possibilité d’une bonne parallélisation. Toujours dans l’objectif

de proposer des algorithmes paralléles, le dernier point est l’étude de l’unicité de la solution

de certains cas linéaires inverses en finance. Cette unicité aide en effet à avoir des algorithmes

simples fondés sur Monte Carlo.

0.3 Organisation du manuscrit

Une fois l’objectif de ce travail introduit, il est plus simple d’appréhender son organisation.

Même si, d’un point de vue informatique, plusieurs recherches différentes ont été entamées

en parallèle, les résultats sont eux apparus d’une manière séquentielle. Ce manuscrit est donc

présenté d’une manière séquentielle, du plus simple vers le plus complexe. Les chapitres sont

rédigés comme des articles de journaux. Les deux premiers vont être publiés dans "Concurrency

and Computation : Practice and Experience" [3] et dans "SIAM Journal on Financial Mathema-

tics" [1] alors que le troisième sera soumis prochainement et le dernier l’a été déjà. De ce fait,

l’anglais s’est imposé naturellement comme langue de rédaction.
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Chapitre 1 [3]

Cet article de journal fait la synthèse de deux articles de conférences [2, 4]. Nous détaillerons

la parallélisation des générateurs de nombres aléatoires puis évaluerons le speedup et l’énergie

consommée pour un problème de pricing européen sur un cluster de GPUs. Nous implémentons

par la suite sur un seul GPU le pricing américain fondé sur l’algorithme de Longstaff-Schwartz.

Nous évaluerons donc le speedup obtenu et nous donnerons quelques idées sur une éventuelle

parallélisation de ce dernier algorithme sur un cluster de GPUs.

En plus de l’évaluation de l’avantage en temps et en énergie des architectures fondées

sur GPUs, nous proposons une solution au problème de générer "efficacement" de "bons"

nombres aléatoires malgré l’inexistence de mémoire cache. L’implémentation de l’algorithme

de Longstaff-Schwartz utilisant les GPUs a une valeur pratique irréfutable parce qu’elle nous

permet aussi de voir à quel point la partie régression détériore la parallélisation totale.

Chapitre 2 [1]

Soucieux d’avoir un meilleur speedup que lors de l’implémentation de l’algorithme de

Longstaff-Schwartz 22, nous proposons ici une reformulation du problème de pricing américain

en utilisant le calcul de Malliavin. L’algorithme obtenu ne fait plus appel à la communication

CPU/GPU nécessaire lorsqu’on implémente une méthode à régression. En plus, la précision

de la simulation n’est plus limitée par la base de régression mais seulement par le nombre de

trajectoires simulées. Enfin, les résultats théoriques développés sont assez généraux et peuvent

être appliqués sur une très large gamme de modèles.

Pour arriver à des résultats théoriques et numériques très intéressants, nous avons dû appor-

ter des améliorations diverses au problème originel. La première consiste à redéployer l’outil de

calcul de Malliavin pour réécrire complètement l’expression de l’espérance conditionnelle pour

qu’elle puisse être généralisée à un plus grand nombre de modèles possible. Le deuxième apport

est de montrer que la réduction de variance par conditionnement, de l’estimateur de l’espérance

conditionnelle, est suffisante pour avoir de bons résultats de pricing. Le troisième point impor-

tant repose sur l’observation que l’estimateur de l’espérance conditionnelle est biaisé 23. Nous

proposons alors une méthode pour réduire le biais total par une utilisation de nombres de tra-

jectoires différents entre le numérateur et le dénominateur de l’estimateur. Nous nous sommes

22. ou d’autres méthodes fondées sur la régression.
23. même s’il est asymptotiquement sans biais.
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aussi assurés que cette réduction de biais ne fait pas augmenter la variance de beaucoup. En-

fin, nous avons donné une multitude de simulations pour conforter la précision des résultats et

l’adaptabilité de la méthode sur des GPUs.

Chapitre 3

Le but de cette partie est double. D’une part, nous voulons détailler la parallélisation du

Monte Carlo non-linéaire pour le pricing américain proposé au chapitre 2. D’autre part, puisque

l’augmentation de la dimension rend le problème sensiblement plus complexe, nous présentons

et testons une méthode de simplification qui permet de traîter le pricing américain à très haut

nombre d’actifs 24. Nous démontrons ainsi une autre dimension de la puissance de notre mé-

thode à travers un algorithme qui passe à l’échelle 25 sur un cluster de GPUs. Nous évaluons le

speedup et la réduction importante en consommation énergétique et nous justifions l’efficacité

des simplifications faites à haute dimension.

Ce chapitre inclut une partie d’optimisation des différents paramètres de l’algorithme qui

permettent d’avoir une implémenatation efficace. Ces derniers ne proviennent pas du Monte

Carlo mais du fait que l’on traîte un problème non-linéaire qui conduit à une structure non-

coalescente des données et à une limitation en nombre de threads 26 pour une partie de l’algo-

rithme.

Chapitre 4

Dans cette partie, nous présentons une étude de la dépendance du prix de la structure de cor-

rélation. Elle est certainement la moins concluante mais elle reflète les difficultés rencontrées

lorsqu’on traîte des problèmes inverses avec des modèles autres que celui de Black et Scholes.

En revanche, nous arrivons à donner des résultats asymptotiques très intéressants du point de

vue du praticien et surtout à conforter la consistance de ces résultats asymptotiques par une

multitude de simulations pour un très large choix de paramètres. Nous introduisons la notion

de corrélation implicite, puis nous établissons nos principaux résultats de monotonicité sur un

modèle de Heston bidimensionnel. Enfin, nous montrons que les résultats obtenus peuvent être

généralisés pour des dimensions plus grandes et des modèles multidimensionnels dérivés du

24. Des tests présentés pour 5, 10 et 20 actifs.
25. Pour un nombre de trajectoires suffisamment grand, lorsqu’on multiplie par N le nombre de noeuds de

calcul, on divise par N le temps d’exécution de notre algorithme.
26. Nombre de tâches lancées en parallèle.



12 Chap 0. Introduction générale

Heston, comme le multidimensionnel double Heston.

En ce qui concerne le modèle de Heston ainsi que ceux qui en dérivent, des difficultés assez

techniques sont à relever lorsque la condition de Feller n’est pas vérifiée. En effet, en notant κ

l’intensité de retour à la moyenne, θ la volatilité long-terme, η la volatilité de la volatilité et y la

volatilité initiale, la condition

y > 0, 2κθ ≥ η2

simplifie le problème théorique, mais est très peu satisfaite en pratique. Pour garder l’intérêt

appliqué du problème traîté, nous avons vérifié numériquement la monotonie et la précision de

notre résultat d’approximation asymptotique lorsque

y > 0, 4κθ > η2

qui est assez bien vérifiée dans les marchés financiers à l’exception du marché du crédit (CDO,

CDS...et autres produits).



Chapitre 0

General Introduction

Most important of all was Fibonacci’s introduction of Hindu-Arabic numerals.

He not only gave Europe the decimal system, which makes all kinds of calculation

far easier than with Roman numerals ; he also showed how it could be applied to

commercial bookkeeping, to currency conversions and, crucially, to the calculation

of interest. Significantly, many of the examples in the Liber Abaci are made more

vivid by being expressed in terms of commodities like hides, peppers, cheese, oil

and spices.

Niall Ferguson "The Ascent of Money"

La simulation numérique a aussi des liens forts avec la théorie et ça va dans les

deux sens. Parfois un calcul théorique va vous donner des algorithmes beaucoup

plus performants pour faire votre calcul. Parfois votre calcul va changer votre vision

théorique d’un problème.

Cédric Villani, durant la remise du prix Joseph Fourier 2011

0.1 The work context

The first quotation above mentions the fundamental relation in occident between mathema-

tics and finance. Indeed, although theoretical physics is the first field to which we could think

when talking about applied mathematics, history teaches us that finance is the first activity to

use applied mathematics. This information has to be conditioned by the fact that mathematics

in finance appears much more natural even for novices, in contrast with the use of mathema-

tics in physics that is impossible without mastering some fundamental principles and relations.

This argument is maybe the best one that justifies the historic fact and the important number

13
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of mathematicians that are continuously interested by this application field. Indeed, for a ma-

thematician, it is easier to have a good intuition for a financial problem than to have it for a

gravitational or quantum phenomenon.

The work presented in this manuscript is an illustration of what we just said above. Indeed,

this research results from a growing interest in the parallel multi-core and many-core 1 simula-

tion and the addressed problems are taken from markets’ finance. In addition to the theory and

the experience, the numerical simulation has become a pillar of scientific knowledge. In this

study, the parallel simulation takes an important place. The other goal of this work is to for-

mulate or reformulate a specific financial problem so that it can be efficiently implemented on

parallel architectures. As mentioned by Cédric Villani (second quotation), this double objective

is powerful because it allows both to improve the numerical results and to have a better vision

on the theoretical aspects.

We will use this introduction to raise the historical development of the computing architec-

ture since 1945 and to detail the current directions that these developments take. Throughout

this brief presentation, we will try also to understand the progressive changes that occurred

on the theoretical advances. Afterwards, we return to the scientific application that interests us

which is mathematics for markets’ finance. We will analyze the causes of its fast growth during

the last thirty years and see the action of simulation on the actual developments and their future

orientations. We hope then to reconcile the evolution of applied mathematics, the computing

tools and the financial inventions. We point out that our objective is not to give a technical

presentation, but to provide a general survey on the evolution of computer architecture and the

applications in financial mathematics.

0.1.1 From parallel to sequential then from sequential to parallel

Unlucky is the human being when he seeks to be replaced to reduce his efforts, because this

research is already requiring a lot of it. Fortunately, this quest has not been in vain because it

allowed at least to consolidate the detailed knowledge of some tasks, since no one can give a

machine a job to do without mastering the different simple parts of it.

Some trace back the evolution of computers from the Chinese abacus (7 centuries BC) but,

1. said differently, parallel and massively parallel.
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as announced before, we will focus exclusively on postwar electric machines 2. Thinking of a

task that can be split into elementary parts (ex: memory allocation of a variable, initialization of

a variable, adding two variables) that enable non-communicative execution (independent within

the computing meaning), the definition of both the parallel machine 3 and the sequential one

becomes natural:

– A sequential machine is able to execute the different independent elementary parts only

in a sequential fashion, ie one after the other.

– A parallel machine is able to execute at least two independent elementary parts in a pa-

rallel fashion, ie more than two at the same time.

By this definition, it is very difficult to find now a sequential machine although this was

not the case, during a long period, after the commercialization of the first transistor computer.

As astonishing as it could seem, the first electronic general-purpose machine (Turing-complete

[11]), ENIAC, was parallel [28]. Later, a modified version of it became the first Von Neumann

machine [27], that refers to a machine in which the program is also stored in the memory. In

addition to this revolution, Von Neumann contributed to the development of Monte Carlo me-

thod. All this makes ENIAC the first supercomputer to execute during one year the tests of the

hydrogen bomb.

Then, there is the period that begins with the Intel commercialization of the first microcom-

puter in 1972. Between the date of the invention of the first transistor machine (TRADIC 1954)

and 1972, we had always had parallel machines because they were intended to be manipulated

by specialists and generally for military applications. Democratizing computers for the general

public has raised big hardware and software challenges. The hardware ones were resolved es-

sentially thanks to a better conception of memories and to their hierarchization. Once that we

provided sufficient 4 cache memory 5 and RAM 6 to the computing unit, we could execute much

easier sufficiently complex tasks to interest the amateurs of new technologies.

Like in other areas, the idea of amortizing the production costs, by selling to the large public,

2. World War II.
3. This definition is an example of an abuse being done to avoid some technical issues like the existence of

several types of parallelism resulting in architectures such as: Hyperthreading, FPGA
4. "Providing sufficient" includes the quantity of the memory and the speed of access to it.
5. this memory is a part of the CPU.
6. Random Access Memory: This memory is separated from the CPU.
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has become inescapable in computer science. Moreover, as the human being reasons sequen-

tially, for his first purchase, he is quite satisfied by a machine that has one core and sufficient

memory for a text editor, drawing ... or watch a low resolution video. Thus, the question of

increasing the number of cores on one chip was not justified because, each 18 months period,

both the number of transistors on each chip and the operating frequency were doubled 7. Sub-

sequently, one core twice faster could be considered virtually as two cores working at the same

time.

As far as the parallelization is concerned, between 1980 and 2000, the scientific user was

almost constrained to use connected sequential machines. This has not been without pain for the

scientific community that was very disadvantaged by the multiplicity of platforms, by an ineffi-

cient inter-machine communication and insufficient documentation. Faced to these difficulties,

applied mathematics has seen its expansion in the world of sequential resolution of PDEs 8,

promoting highly sequential iterative methods. A striking standard example of this sequential

orientation of theoretical research is given by matrices multiplication: In a parallel implemen-

tation and with small cache memory for each core, it is simple to separate the multiplications

done by each core independently from the others so that the execution time is divided by the

total number of cores. However, in a sequential PDE-like implementation, first we try to mani-

pulate matrices which are as sparse as possible, then implement a multiplication algorithm that

intensely uses the big quantity of the cache available when we use only one core [56].

This orientation in computer architecture and theoretical developments lasted twenty years,

until the moment that we reached the limit number of transistors that can be included in one

core. According to Figure 1, one can see that from a certain frequency, the electric operating

power has become unsustainable to justify a monocore conception of CPUs 9. The limit of this

architecture is due not only to the fact that the operating power is linearly proportional to the

frequency 10, but also to the faced problems to realize thinner printed circuits. To ensure that

the Moore’s Law remains fulfilled, the direct solution was to increase the number of cores on a

single chip. This worked well for two and four cores and has led to the ascent of the number of

cores in supercomputers (see Figure 2).

7. Moore’s Law.
8. Partial Differential Equations.
9. Central Processing Unit: The principal computer processor that includes some computing units and cache

memory.
10. P = CV 2f where C is the capacity, V the potential and f the frequency. Even though the total power of

the motherboard is no-linearly related to the frequency.
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FIGURE 1 – Historic evolution on one CPU of : cores number, transistors number, operating
frequency and operating power.

Then, the same memory access problem has become, one more time, an important hardware

issue. In fact, the cache memory represents about 80% of the CPU and increasing the number

of cores reduces considerably the amount of cache available for each core. This is also true for

the RAM that is used by multiple cores. Consequently, we should also increase the number of

buses 11 to access this memory 12. The solution to these problems is based on more localized

memory and uses both the code parallelization on different cores and proposing architectures

that contain much more than two or four cores. Once more, the commercialization to the large

public dictates the rhythm, because it is the GPUs 13, video game processors, that constitute a

serious solution to massively parallel applications. So much true that the introduction of GPUs

in supercomputers has completely changed the classification of the most powerful machines in

the world (see TOP500 on http ://www.top500.org/). Over the time, the programming of this

11. It is a system (essentially a printed circuit + communication protocol) to transfer data.
12. in order to keep a good bandwidth for each core.
13. Graphic processing unit: It is a vectorial coprocessor including much more computing units than the CPU,

but whose memory organization does not allow to implement efficiently as complex operations as the one that can
be performed by the CPU.
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FIGURE 2 – Exponential growth of cores number due to a parallelization need.

type of architecture has become increasingly simple and several solutions can be considered, as

the use of:

– OpenCL: A low level language 14, that is proposed as a language that can be implemented

on all cards.

– CUDA: Less low level than OpenCL, which was dedicated to Nvidia cards but it started

to be implemented on the others.

– OpenACC (came from OpenHMPP): Is a directives 15 language. Its use does not require

to rewrite the CPU code, but only to localize the parts that are likely to contain paralleli-

zation.

0.1.2 Simulation in finance

In his amazing book "The Big Short", Michael Lewis describes his last days in finance, the

80s, as the period which saw the end of a generation of bankers that had difficulties in evalua-

ting and hedging contracts. He also recognizes that he did not catch the strong ascent of another

14. The efficiency depends on our good knowledge of the hardware.
15. like OpenMP.
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generation of scientists, the quantitative analysts or Quants, able to easily make the financial

computations. This was the starting point of the structuring of various kinds of contracts which

led to increasingly difficult problems. During a summer school in 2011, in his presentation in

Zurich, René Carmona explained that a part of the financial problems complexity comes from

the contracts that are supposed to simplify our market positioning. This difficulty is not intrinsic

to the contracts, but becomes evident over the time. A simple example is the diversification of

a portfolio of stocks by buying or selling forwards on commodities. Using derivative products,

involving stocks and commodities, created fictitious correlation 16 leading to a more complex

diversification.

Faced to this type of problems, Quants that were used to closed formulas started to confront

bigger difficulties to justify their approach and the simplicity of the model used. For the pro-

blems that we wanted to solve, PDE simulation was a real alternative because it can be per-

formed within a reasonable time 17. Although less frequent, the Monte Carlo simulation was

justified for some applications, mostly in the least volatile markets like the fixed-income, that

allow sufficiently quick convergence to the solution. The use of these two methods created a fer-

tile effervescence between the application and both the probabilistic and deterministic theories.

Regarding parallelization, it was completely non-existent as we did not request from a Quant

to vectorize a code but rather to find a way to give a price on increasingly complex contracts

(which provide better gains).

The parallelization "Time to Market" in finance took a long period, a global financial cri-

sis was necessary to have a better vision on some practices that are no more justified. We are

not only obliged to have a good hedge of all the standard contracts but mostly ensure a better

risk evaluation. In a highly interconnected world, the latter activities become extremely diffi-

cult and cannot have any sense if we do not increase the dimension of the problems. When the

number of assets involved is bigger than 4, the evaluation of a contract, its hedge or the risks

that it produces is an almost impossible task using PDEs. We return then to the Monte Carlo

implementation using massively parallel architectures for financial problems that are generally

parabolic either linear and nonlinear or linear inverse and nonlinear inverse.

Regarding linear problems, the Monte Carlo parallelization was already explored for CPU

16. The person who sells this kind of contract should continually hedge himself by vanilla products or by buying
and selling the underlying assets.

17. In front office, we request simulations that do not take more than few seconds.
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clusters, we refer the reader for example to [43, 41]. However, our work was among the first

to do this parallel implementation on a GPU cluster, we cite also the NAG 18 contemporary re-

search and the reference [30]. Then, inspired from the CPU cluster pricing in [19, 18], we have

initiated the detailed study of the massively parallel implementation of nonlinear problems in

finance. Besides, the category of inverse problems is very large. From a practitioner point of

view, we have focused mainly on a very attractive multidimensional application that also shows

the kind of theoretical difficulties that we can encounter.

We did not linger on the parallel implementation of banks’ applications because, on the one

hand, the specific methods are confidential. On the other hand, the presented problems already

include the essential ideas found in practice.

0.2 The work objective

Handling multidimensional parabolic linear, nonlinear and linear inverse problems is the

main objective of this work. It is the multidimensional word that makes virtually inevitable the

use of simulation methods based on Monte Carlo. This word also makes necessary the use of

parallel architectures. Indeed, as we have already seen in the previous section, the problems

dealing with a large number of assets are major resources consumers, and only parallelization

is able to reduce their execution times.

Consequently, the first goal of our work is to propose "appropriate" random number gene-

rators to parallel and massively parallel architecture implemented on CPUs/GPUs cluster. We

quantify the speedup and the energy consumption of the parallel execution of a European pri-

cing. The second objective is to reformulate the nonlinear problem of pricing American options

in order to get the same parallelization gains as those obtained for linear problems. In addition to

its parallelization suitability, the proposed method based on Malliavin calculus has other prac-

tical advantages. Continuing with parallel algorithms, the last point of this work is dedicated to

the uniqueness of the solution of some linear inverse problems in finance. This theoretical study

enables the use of simple methods based on Monte Carlo.

Once the objective introduced, it is easier to understand the organization of the manuscript.

Although various research were conducted in parallel, the results were obtained sequentially.

18. Numerical Algorithms Group.
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This dissertation is also presented sequentially from the simplest to the most complex pro-

blem. The chapters have been written like journal papers. Chapters 1 & 2 will be published

in "Concurrency and Computation: Practice and Experience" [3] and in "SIAM Journal on Fi-

nancial Mathematics" [1] while Chapter 4 has been already submitted and Chapter 3 will be

submitted shortly. Thus, the English language was indispensable for the redaction. Moreover,

in each chapter, the reader will find an extensive introduction for each studied subject.
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Chapitre 1

From linear to nonlinear simulation on
GPUs [3]

Abstract

This paper is about using the existing Monte Carlo approach for pricing European and Ame-

rican contracts on a state-of-art GPU architecture. First we adapt on a cluster of GPUs two dif-

ferent suitable paradigms of parallelizing random number generators which were developed for

CPU clusters’. Since in financial applications we request results within seconds of simulation,

the sufficiently large computations should be implemented on a cluster of machines. Thus, we

make the European contract comparison between CPUs and GPUs using from 1 up to 16 nodes

of a CPU/GPU cluster. We show that using GPUs for European contracts reduces the execution

time by ∼ 40 and diminishes the energy consumed by ∼ 50 during the simulation. In the se-

cond set of experiments, we investigate the benefits of using GPUs’ parallelization for pricing

American options that requires solving an optimal stopping problem and which we implement

using the Longstaff and Schwartz regression method. The speedup result obtained for American

options varies between 2 and 10 according to the number of generated paths, the dimension and

the time discretization.

1.1 Introduction and objectives

Monte Carlo (MC) simulation, the most widely used method in transport problems, owes

its popularity in the scientific community to its three features: (1) the possibility to use MC for

23
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complex transport problems that cannot be interpreted in deterministic language, (2) the ease

of implementation and parallelization, and (3) contrary to deterministic methods such as finite

element or finite difference methods, MC remains efficient in a dimension greater than 4 which

is appropriate for systems requiring high degrees of freedom.

In this article, it is shown that although MC is theoretically very efficient for multi-core

architectures, the methods based on Monte Carlo vary according to their effectiveness on these

architectures. In this work, we will present the practical point of view of the pricing methods

based on Monte Carlo and implemented on GPUs. This practical study will provide the compari-

son between CPUs and GPUs on pricing the two major derivative classes found in the financial

field which are European contracts (ECs) and American contracts (ACs). As in practice, one

multi-core card is generally insufficient for the execution of high-dimensional applications wi-

thin seconds, we will compare on the same cluster multi-core GPUs with four core CPUs for

pricing ECs. Moreover, we will explain how we can generalize this kind of cluster comparison

for pricing ACs.

After the introduction of MC and its applications for pricing ECs and ACs in the second sec-

tion, in the third section we will present two different methods of parallelizing random number

generation that aim at the highest adaptability on GPUs and we will give an example of each

method. In the fourth section, we give details on the implementation of a typical multidimensio-

nal EC on a multi-core CPU/GPU cluster. The fifth section will present a detailed study of the

accuracy of the results, the speedups and the energy consumed during the simulation of ECs.

Once the concept of pricing parallelization on ECs is understood through section four and five,

we devote the final sections to pricing ACs which is known as one of the most challenging pro-

blems in financial applications. Thus, in section six and seven, we aim at reducing the running

time of ACs simulation using GPUs and we will propose means of parallelizing it on a cluster

of machines.

Before going into the detail of this work, the main specifications of the machines on which

we implement our benchmark applications are as follows:

M1: is the XPS M1730 laptop composed of Intel Duo Core CPU with a clock rate of

2.50GHz and contains 2 nVIDIA 8800M GTX connected with SLI.

M2: is a cluster of 16 nodes. Each node is a PC composed of an Intel Nehalem CPU, with 4

hyperthreaded cores at 2.67GHz, and a nVIDIA GTX285 GPU with 1GB of memory. This

cluster has a Gigabit Ethernet interconnection network built around a small DELL Power

Object 5324 switch (with 24 ports). Energy consumption of each node is monitored by a

Raritan DPXS20A-16 device that continuously measures the electric power consumption

(in Watts) up to 20 nodes (in Watts). Then a Perl script samples these values and computes
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the energy (Joules or WattHours) consumed by the computation on each node and on the

complete cluster (including the interconnection switch).

1.2 Monte Carlo and multi-core programming

This section is divided into two parts: the first part goes over the general aspects of paral-

lelizing MC simulations and the benchmark model used. The second part gives some details

on pricing ECs and ACs. Indeed, in Markovian models, pricing ACs basically adds one step to

the pricing algorithm. Thus, based on what is known on ECs, we will present the problem of

pricing ACs.

1.2.1 An introduction to Monte Carlo methods

The general MC method is articulated by two theorems that constitute the two pillars of

the probability theory [25]. The first one is the Strong Law of Large Numbers (SLLN) that

announces the convergence of a certain series of independent random variables that have the

same distribution to a value of an integral. The second one is the Central Limit Theorem (CLT)

which determines the speed of the convergence revealed by SLLN. These two classic theorems

can be found, for instance, in [60].

TABLE 1.1 – Contracts and associated payoffs
Name of contracts Payoffs

Put (K − ST (ε))+

Call (ST (ε)−K)+

Lookback (maxTSt(ε)− ST (ε))

Up and Out Barrier (f(ST (ε))1maxTSt(ε)<L)

Floating Asian Put (meanTSt(ε)− ST (ε))+

A video game processor, the graphic processing unit (GPU) becomes a serious programming
device to massively parallel applications. The assumption that makes MC more attractive than
other methods for GPUs is the independence of the random variables. The main concern of using
MC on GPUs is how to spread this independence on the stream processor units. Unlike pricing
ACs, pricing ECs with MC is no more than using the result of SLLN and CLT on random
functions such as those presented in Table 1.1. In Table 1.1, (x)+ = max(x, 0) and maxT ,
meanT respectively stand for the maximum value and the average value on the trajectory of
the stock St(ε) on the time interval [0, T ]. On the one hand, in this article, we suppose that
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ε = (ε1, ..., εd) is a Gaussian vector and the coordinates ε1, ..., εd are independent. On the other
hand, we denote by St the price of a basket of stocks S1

t , ..., S
d
t and to describe the behavior of

each stock i, we will use the following standard geometric Brownian motion

Si
t = Si

0 exp

[(
ri − di −

σ2
i

2

i∑
k=1

ρ2ik

)
t+ σi

i∑
k=1

ρikW
k
t

]
(1.1)

which is equal in density to

Si
t = Si

0 exp

[(
ri − di −

σ2
i

2

i∑
k=1

ρ2ik

)
t+ σi

i∑
k=1

ρik
√
tεk

]

where:

Si
0 is the initial price of the asset i,
ri is the rate of the asset i,
di is the dividend of the asset i,
σi is the volatility of the asset i,√
tεk simulates the Brownian motion distribution W k

t ,
(ρik)1≤i,k≤d is a given matrix correlating the assets.

Thus, the first stage of using MC is to simulate the Gaussian distribution of ε through a set

of samples εi. For a detailed presentation on MC in financial applications, we refer the reader

to [25]. In order to parallelize pricing ECs, we implement algorithms that can be executed

similarly on all the trajectories at the same time. With MC methods, the best way to perform

this similarity task is to discretize the time interval then we run the same tasks sequentially

for the whole current trajectories at the same step of the discretization. For instance, we can

simulate the log-normal evolution of the stock Si
t(ε) at each time tk ∈ [0, T ] using the two

following steps:

1˚) The simulation of normal distribution variable εq associated with the trajectory q.

2˚) The actualization of the stock value using the recurrence relation

Siq
tk
= Siq

tk−1
exp(f(εq))

where f is an affine function.

In the example above also demonstrated in Figure 1.1, we carry out the two steps sequen-

tially. The parallelization takes part in performing the same step on different trajectories. Thus

a subset of the whole set of trajectories can be associated with one processor unit and carry

out each step independently from the other subsets. Moreover, parallelizing the simulation on a

cluster of multi-cores CPUs/GPUs is no more than parallelizing or enlarging the set of trajecto-

ries to add all the contributions of the different machines.
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FIGURE 1.1 – Parallelizing the same task on different trajectories

1.2.2 Pricing European and American options

A European contract is one that can be exerciced only the maturity T , unlike American

contract which can be exerciced anytime before the maturity T . Among ECs and ACs, the

"options" contracts are ones that are the most studied. The option payoff is generally given

using the function (x)+ = max(x, 0) which expresses the fact that options are contracts which

allow, without obligation, the holder to buy or to sell an asset at a fixed price. For example, the

put and call contracts given in Table 1.1 are options.

If r is the risk neutral rate and Φ(St) the payoff of a given contract, the price of a European

version of this contract, at each time t ∈ [0, T ], is defined by the following expression

PEuro
t (x) = Et,x

(
e−r(T−t)Φ(ST )

)
, (1.2)

where Et,x is the expectation associated to the risk neutral probability knowing that St = x.

Using the previous notations, American contracts can be exercised at any trading date until

maturity and their prices are given, at each time t, by

PAmer
t (x) = sup

θ∈Tt,T
Et,x

(
e−r(θ−t)Φ(Sθ)

)
, (1.3)

where Tt,T is the set of stopping times in the time interval [t, T ].

To simulate (1.3), we first need to approach stopping times in Tt,T with stopping times taking

values in the finite set t = t0 < t1 < ... < tn = T . When we do this approximation and use

the dynamic programming principle [25], we obtain the following induction for each simulated
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path

PAmer
T (ST ) = Φ(ST ), ∀k ∈ {n− 1, ..., 0},
PAmer
tk

(Stk) = max {Φ(Stk), C(Stk)}
(1.4)

C(Stk) in (1.4) represents the continuation value and is given by

C(Stk) = E
(
e−r(tk+1−tk)Ptk+1

(Stk+1
)
∣∣∣Stk

)
. (1.5)

Thus, to evaluate the price of (1.3), we need to estimate C(Stk). Longstaff and Schwartz consi-

der the stopping times formulation of (1.4) which allows them to reduce the bias by using the

actual realized cash flows. We refer the reader to [16] for a formal presentation of the LSR

algorithm.

Algorithms devoted to American pricing and based on Monte Carlo, differ essentially on

the way they estimate and use the continuation value (1.5). For example the authors of [57]

perform a regression to estimate the continuation value, but unlike [42], they use C(Stk) instead

of the actual realized cash flows to update the price. Other methods use Malliavin Calculus [7]

or quantization methods [8] for C(Stk) estimation. In addition to these methods based on MC,

there is a profusion of algorithms for American option pricing. However, the one that is gaining

widespread adoption in the financial industry is the Longstaff and Schwartz Regression (LSR)

method. This widespread adoption and the fact that LSR is based on Monte Carlo simulation

leads us to choose LSR implementation on GPU.

The LSR method approximates the continuation value by projecting the cash flow Ptk+1
(Stk+1

),

generated at tk+1, on a set of functions ψ(Stk) that depend only on the asset price at time

tk. However, contrary to an ordinary regression method, the LSR uses the drawings satisfying

Φ(Stk) > 0, the "in the money" drawings. Even if Longstaff and Schwartz give partial conver-

gence results in their original paper [42], the authors of [16] proved the convergence and analy-

zed the speed of this convergence according to the number of simulated paths. This convergence

analysis has been refined in [26] by studying the problems due to the degree of regression.

Strictly speaking, when r = 0, if we consider the regression vector A and we denote by

C(Stk) = Atψ(Stk) the estimated continuation value, one must find the vectorA that minimizes

the quadratic error

∣∣∣∣Ptk+1
(Stk+1

)− C(Stk)
∣∣∣∣

L2 . (1.6)
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We can easily check that the regression vector that minimizes (1.6) is given by

A = Ψ−1E
(
Ptk+1

(Stk+1
)ψ(Stk)

)
, (1.7)

where Ψ = E (ψ(Stk)ψ
t(Stk)).

Consequently, once we approximate the expectations in (1.7) by an arithmetic average using

Monte Carlo, we must invert the matrix Ψ. One of the most used and most stable methods

of inversion is the one based on a Singular Value Decomposition (SVD) [53]. However, this

method and other methods of inversion are not efficient to parallelize on GPUs for relatively

small and not sparse matrices. In the sixth section, we will explain how the GPU implementation

can be used to slightly (x1.2 to x1.4) accelerate this part of the algorithm.

Without loss of generality, we use the basis ψ(Stk) of monomial functions to perform our

regression. Also, in the case of geometric Brownian motion, the convergence study given in

[26] shows that the number of polynomials K = KN for which accurate estimation is possible

from N paths is O(
√

log(N)). Consequently, we use monomials of degrees less than or equal

to 2 for one dimension and we will use affine regression in the multidimensional simulation.

Finally, we subdivide the algorithm of pricing ACs in three parts as in [15]:

1˚) Paths Generation (PG) phase.

2˚) Regression (REG) phase.

3˚) Pricing (PRC) phase.

As the "Calibration phase" [15] can be a source of confusion with the model calibration activity

in finance, we preferred to rename it by the "Regression phase".

1.3 Parallel RNG for SIMD architecture

The parallelization on the GPU of Random Number Generation (RNG) is essential in GPU

implementation of MC. As a matter of fact, the GPU programmer must reduce the CPU/GPU

communication if he aims at a good speedup. Indeed, although we can simulate random numbers

on the CPU parallel to execute other tasks on the GPU, the communication time CPU/GPU

makes this solution less efficient. We also have the same communication time problem when

using True Random Number Generators (TRNG), this is why we adopt the traditional solution

of using Pseudo Random Number Generators as RNGs instead of using TRNGs.

In RNG literature, we find considerable work on sequential RNGs but much less on parallel

RNGs. The authors of [52] use the Mersenne Twister (MT) generator [44] even though this

generator is relatively slow on GPUs. Indeed, as it is already mentioned in [30], because the
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cache memory inexists on the GPU, MT presents problems due to the multiple accesses per

generator and thus per thread to the global RAM in order to serially update the large state needed

by MT. The two paradigms of generating random numbers that we are going to use are suited to

the GPU architecture and generally to architectures that do not possess a large cache memory.

The first one is based on period splitting and the second one is based on parametrization which

is used in the SPRNG [43] library and which is also recommended by the authors of MT in

[45]. For each parallelization method we will give an example and we will compare, at the end

of the second subsection, these two examples to the optimized implementation of MT and the

Niederreiter Quasirandom (NQ) generator given in [61]. Since our work was implemented on

GPU cards that basically compute in single precision, the two examples of random generators

that we are going to present in the next subsections are based on single precision. However the

reader can easily extend our constructions to the double precision cards.

Our first goal is to have an efficient random number generator for GPU architecture which

also provides sufficient good results. Thus, in the following, two methods that are proven to be

sufficiently good on CPU clusters are adapted on GPU and GPU clusters.

1.3.1 Parallel-RNG from period splitting of one RNG

The simplest theoretical solution to parallelizing random number generator (RNG) is to

split the period of a good sequential one into different random number streams. On the one

hand, because we are going to split the whole period, we need to have a long one to split. For

example, we cannot split a period of a standard ∼ 231 LCG because it considerably reduces

the period of each stream. On the other hand, because we use the RAM memory of the GPU,

we should limit the parameters of the RNG in order to reduce the access of each thread to

this memory. To explain the method of period splitting, we are going to take the example of

an RNG whose random behavior had already been studied in [40], that has a long period to

split and relatively few parameters. This RNG is the Combined Multiple Recursive Generator

(CMRG) given in example 4 of [40] and it is obtained from a judicious combination of two

MRGs and each MRG has the following general expression

xn = a1xn−1 + a2xn−2 + a3xn−3 mod(M)

The main goal of combining two MRGs is to reduce the memory storage of the past values

without really compromising the quality of the random numbers. To define the different streams

of CMRG, we determine the number of these streams 1, then we compute the power of the

1. which is for instance equal to the number of trajectories simulated or to the number of processors involved
in GPUs
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companion matrices associated to the recurrence of CMRG which allows us to initialize the

different streams at the different points of the period. Also the length of the streams should be

chosen carefully so that a vector formed by the first number from each stream, for example,

should have relatively independent coordinates. For further details, we refer the reader to [41].

Because splitting the period of CMRG implies the computation of huge 2 powers of 3 × 3

matrices, the operation of launching MC on an increasing number of machines can consume a

considerable amount of time. As a result, even though computing the powers of matrices uses

the efficient divide-and-conquer algorithm [36], we should precompute the jump-ahead matrices

once and for all. Thus, the best way of implementing CMRG is:

– to fix the maximum of streams associated with the maximum of multi-cores used,

– then compute the matrices of transition between streams only once before launching the

application.

For instance, let us consider the companion matrices of the CMRG given in example 4 of

[40]. Each matrix is associated with one MRG from the combination:

A1 =


0 1 0

0 0 1

−183326 63308 0

 A2 =


0 1 0

0 0 1

−539608 0 86098


The period of the matrix A1 is p1 = m3

1 − 1 and the period of the matrix A2 is p2 = m3
2 − 1,

which means:

Ap1+1
1 mod m1 = A1 mod m1, Ap2+1

2 mod m2 = A2 mod m2

For example, if we want:

– to associate an RNG stream with each trajectory,

– to perform the evolution of about 218 trajectories by each multi-core GPU,

– to use a maximum of 16 GPUs.

We divide the total period of the CMRG (p1 × p2)/2 ∼ 2205 by 218 × 16 = 222 to obtain

InitPower = 2205/222 = 2183 and perform the powers:

Ainit
1 = AInitPower

1 mod m1, Ainit
2 = AInitPower

2 mod m2

As shown in Figure 1.2, if we initialize the stream 0 with the seed vectors: X0
1 = (x11, x

2
1, x

3
1)

T

for the first MRG and X0
2 = (x12, x

2
2, x

3
2)

T for the second MRG of the combination, the seed

2. proportional to the length of the period
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FIGURE 1.2 – Splitting the period of CMRG

TABLE 1.2 – Comparison of the effectiveness of RNGs on M1
Name of the RNG PLCG CMRG MT NQ

Mega Samples generated per second 16.33 3.30 1.86 1.21

values associated to the ith stream are : X i
1 = (Ainit

1 )i × X0
1 mod m1 for the first MRG and

X i
2 = (Ainit

2 )i ×X0
2 mod m2 for the second MRG of the combination. Finally the algorithm of

the CMRG on a single precision architecture is detailed in full in Figure 1, page 12 of [40].

1.3.2 Parallel-RNG from parameterization of RNGs

As mentioned by the authors of the Mersenne Twister RNG in [45], an acceptable way

to parallelize RNGs is to parameterize them. Besides, if we consider the seeds of the RNGs

as the parameters of RNGs, the method based on period splitting can also be regarded as a

parametrization of these RNGs. In this article, we prefer to separate the two methods and to

concentrate on the parametrizations given in [43]. One of the generators that is really efficient

in implementing on double precision GPUs is the parameterized prime modulus LCG (261 − 1)

that allows us to specify each RNG with only one parameter which is the multiplier "a" of (1.8).

According to [43], this parameterization provides about 258 streams. The prime modulus LCG

(261 − 1) is based on the relation

xn = axn−1 mod(2
61 − 1) (1.8)

In [4] we use a parameterized prime modulus LCG (231 − 1) which is a single precision ver-

sion of (1.8) and we implement it on single precision GPUs to compare two clusters of GPUs

and CPUs. Because of its short period and its random behavior, the LCG (231 − 1) should be

taken as a benchmark and not used for standardized applications. In Table 1.2 we compare the

effectiveness of an optimized implementation of MT and NQ given in [61] with our sufficiently

optimized implementation of the CMRG detailed in the previous subsection and the Paramete-

rized LCG (PLCG) (231 − 1). The results presented in Table 1.2 are obtained by averaging on

various simulations performed on the GPU of M1.

Even if NQ is not an RNG but a quasirandom generator which is based on a different theory

from the RNG one, we consider it interesting to compare its effectiveness with RNGs. Accor-

ding to Table 1.2, we remark that CMRG is about 1.8 times faster than MT and that PLCG is
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about 5 times faster than CMRG. Nevertheless, in order to be more confident about the quality

of the random numbers, we will use the CMRG in our next applications.

1.4 Multi-paradigm parallel algorithm and implementation

1.4.1 Support application

In order to explore the effectiveness of pricing ECs on a cluster of GPUs, we are going to

process a typical high dimensional EC whose price depends on the whole simulation of the

trajectories of the stocks’ prices (path-dependent contracts). Here, we take the example of a

homogenous Asian option in 40 dimensions, this means that our contract is an Asian option on

a homogenous weighting basket of 40 stocks. We can find this kind of contract, for instance,

when managing the CAC 40 index. In the financial markets, we can find other contracts on high

dimensional indices like S&P 500, DAX 30, FTSE 100. The procedure that we are going to

illustrate can be easily generalized for all European path-dependent contracts like the lookback

or barrier options whose payoffs are given in Table 1.1.

The Asian option is a contract whose price depends on the trajectory average. We compute

the price of a floating Asian call option using:

E
[
e−rT (ST (ε)− ST )+

]
(1.9)

ST = mean0≤t≤TSt(ε) (1.10)

In expressions (1.9) and (1.10), ST represents the price of a homogenous weighting basket of

40 stocks at anytime T : ST = 1
40
.
∑40

i=1 S
i
T . Each stock has the log-normal distribution given

in (1.1). Besides, according to (1.10) ST represents the average price of S during the life time

of the contract. The third step of Algorithm 1 introduces a recursive method for computing this

average price. In Algorithm 1 the exterior time loop is used for time discretization and in our

application we take δt = T/100. Inside the time loop, we put another loop associated to the

number of stocks Si that take part in the pricing problem. The loops on trajectories are those

that we parallelize on the different stream processor units.

The third step of Algorithm 1 uses the well known rectangle approximation of an integral.

However in order to have a faster convergence, we use in the implemented version the trape-

zoidal approximation which is presented in [39] and characterized by the same implementation

ease as the rectangular one.
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Algorithm 1: 40 Dimension Floating Asian Call implemented on either CPU or GPU
Input: Model parameters and CMRG initialization
Output: CallAsian = E

(
e−rT (ST (ε)− ST (ε))+

)
for t ∈ {δt, 2δt, . . . , T} do

for i ∈ {1, . . . 40} do
for each trajectory k ∈ {1, 2, . . . , N} do

/* First step: generating a normal distributed
variable using CMRG and a distribution
transformation as a Box-Muller one */

uk ←− CMRG;
εk ←− Box−Muller(uk);

end
for each trajectory k ∈ {1, 2, . . . , N} do

/* Second step: price actualization during the
discretized time interval [0, T ] */

Si
t(εk) = Si

t−δt exp

[(
r − di −

σ2
i

2

i∑
k=1

ρ2ik

)
δt+ σi

i∑
k=1

ρikεk
√
δt

]

end
for each trajectory k ∈ {1, 2, . . . , N} do

/* Third step: recursive implementation of the
trajectory average using rectangle approximation

*/
S
i

t(εk)←− ((t− δt)/t)Si

t−δt(εk) + (1/t)Si
t(εk) ;

end
end

end
for each trajectory k ∈ {1, 2, . . . , N} do

/* Fourth step: a homogeneous weighing of 40 stocks */

ST (εk) =
1
40
.
∑40

i=1 S
i

T (εk);
ST (εk) =

1
40
.
∑40

i=1 S
i
T (εk);

end

CallAsian ←−
1

N

N∑
k=1

(
e−rT (ST (εk)− ST (εk))+

)
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In order to take advantage of various and heterogeneous architectures like multi-core CPUs,

GPUs, CPUs cluster and GPUs cluster, we have designed a multi-paradigm parallelization of

our option pricer. First, a coarse grained parallelization splits the problem in PN big tasks (one

per processing node), communicating by message-passing. Second, a fine grained paralleliza-

tion splits each big task into some threads on a multi-core CPU, or in many light-threads on a

GPU, communicating through a shared memory.

Input data files are read on processing node 0, and input data are broadcast to all other nodes.

Then each node locally achieves its initializations, function of the common input data and its

node number. Some of these initializations have been parallelized at fine-grained level, and the

parallel CMRG RNG is initialized on each node according to the specifications of section 1.3.

Afterwards each node processes its subset of MC trajectories, using its fine grained level of

parallelism. This is an embarrassingly parallel computing step, without any communications.

Then each node computes the sum of its computed prices and the sum of its square prices. All

nodes participate in a global reduction of these PN pairs of results: at the end of this step the

global sum of prices and global sum of square prices are available on node 0. Finally, node 0

computes the final price of the option and the associated error, and prints these results.

Broadcast and reduction are classic communication routines, efficiently implemented in the

standard MPI communication library [49] that we used. Conversely, reading some input files

concurrently from many nodes is not always supported by a file system. So, we prefer to read

input files from node 0 and to broadcast data to other nodes using an MPI routine. This strategy

is highly portable and scalable.

1.4.2 Fine grained parallelization on the CPU and the GPU

The implementation on multi-core CPU clusters M2 has been achieved using both MPI, to

create one process per node and to insure the few inter-node communications, and OpenMP to

create several threads per core and take advantage of each available core. The OpenMP paral-

lelization has been optimized to create the required threads (inside a large parallel region) only

once, and to load balance the work among these threads. Inside each thread, data storage and

data accesses are implemented in order to optimize cache memory usage. GPU implementation

: Again, MPI is used to create one process per node, to distribute data and computations on

the cluster and to collect results, while CUDA is used to send data and Monte Carlo trajectory

computations on the GPU of each node. In order to avoid frequent data transfers between CPU

and GPU, we have ported our RNG on the GPU: each CUDA thread computes random num-

bers and all node computations are executed on the GPU. Moreover, we have minimized the
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TABLE 1.3 – Pricing results: CPU vs GPU
Number of CPU pricing GPU pricing
trajectories Value ϵ Value ϵ

218 5.8614 0.0258 5.8616 0.0257
219 5.8835 0.0183 5.8836 0.0183
220 5.8761 0.0129 5.8763 0.0129

accesses to the global memory of the GPU, each GPU thread uses mainly fast GPU registers.

This strategy leads to a very efficient usage of the GPUs, and achieves a high speedup on GPU

clusters compared to a multicore CPU cluster.

To develop the CPU cluster version we used g++ 4.1.2 compiler and its native and inclu-

ded OpenMP library, and the OpenMPI 1.2.4 library. To develop the GPU cluster version we

used the nvcc 1.1 CUDA compiler and the OpenMPI 1.2.4 library. All these development

environments appeared compatible.

Our GPU version is composed of .h and .cu files, compiled with the following commands

:

nvcc --host-compilation C++

-O3 -I/opt/openmpi/include

-DOMPI_SKIP_MPICXX -c X.cu

nvcc -O3 -L/opt/openmpi/lib

-o pricer X.o Y.o .... -lmpi -lm

On our machines the OpenMPI library is installed in the /opt/openmpi/ directory. The

-DOMPI_SKIP_MPICXX flag allows us to avoid the exception mechanisms implemented in the

OpenMPI library (according to the MPI 2 standard), which are not supported by the nvcc

compiler. The -host-compilation C++ flag helps nvcc to understand the C++ code of the

non-kernel routines.

1.5 Cluster comparison for pricing European contracts

The following subsections introduce results of three benchmark programs, implementing

Algorithm 1 and computing ∼ 0.25, ∼ 0.5 and ∼ 1 million MC trajectories (corresponding to

different pricing accuracies).

The accuracy of the result

Table 1.3 represents the results of the same simulation using an increasing number of trajec-

tories. Each one of these simulations is either done on a CPU cluster or a GPU cluster. ’Value’
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FIGURE 1.3 – The execution time of pricing European options

is the price of our Asian option and ϵ mesures the accuracy of the results using 95% confidence

interval. ϵ is related to the standard deviation std of the simulation with the following relation

: ϵ = 1.96 ∗ std/
√
Number of trajectories. We notice very slight differences between CPU

and GPU simulations. The differences between GPU and CPU results are included in the 95%

confidence interval. Although we repeated the experiments with different parameters we ob-

tain the same similarity between GPU pricing and CPU pricing. This fact demonstrates that the

single precision on GPUs does not affect the results of our simulations.

The parameters of the simulations are the following: Maturity T = 1, the time discretization

δt = 0.01, Si
0 = 100, ri = r = 0.1, di = 0, σi = 0.2 and the 40 × 40 correlating matrix

(ρik)1≤i,k≤40 is equal to the square root of a matrix (in the sense of Cholesky factorization) that

is filled by 0.5 except on its diagonal which contains ones.

1.5.1 Computing efficiency

Effectiveness and speedup scaling: Figure 1.3 shows that the execution times of the three

benchmarks on each testbed decrease very regularly : using 10 times more nodes divides the

execution time by ∼ 10. This result is due to the embarrassingly parallel feature of our algo-

rithm, (communications are limited to input data broadcast and result reduction). So, Figure 1.3

shows our parallelization scales and efficiently uses the CPUs and GPUs of the cluster M2.

We process our largest benchmark (1 million MC trajectories) in 213.8s on 16 multi-core

CPUs, while it requires 61.3s on one GPU and 4.9s on 16 GPUs. Figure 1.3 shows N GPUs
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run about 45 times faster than N CPUs, so the speedup of our GPUs compared to our multi-

core CPUs is close to 50. This speedup becomes close to 200 if we use only 1 CPU core, but

using only 1 core of a CPU has no real sense. Also, according to Figure 1.3, when running the

smallest benchmark of of 0.25 million trajectories on 16 GPUs the computation time is 1.9s

where it takes 53.0s to run this simulation using 16 CPUs. The speedup on 16 GPUs of the 0.25

trajectories benchmark is small when compared to the 1 million trajectories benchmark, so the

initialization time becomes significant and limits the global processing performance.
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FIGURE 1.4 – Energetic consumption

1.5.2 Energy efficiency

We only consider the energy consumption of the nodes that are actually used during the

computation, as it is easy to remotely switch off unused nodes of our GPU cluster. However it

is not possible to switch off the GPU of one node when using only its CPU, and we have not

yet tried to reduce the frequency and the energy consumption of the CPU when using mainly

the GPU. Besides, we have not included the air conditioning energy consumption because the

energy consumed depends on the type of air conditioning facility.

Effectiveness of computing energy: The cluster switch consumption of M2 remains constant,

independently of the number of nodes used. Figure 1.4 shows that the GPU computations of M2
consume on average 0.0046 kW.h to run our largest benchmark on 1 to 16 nodes, while the CPU

computations consume on average 0.228 kW.h to run the same option pricing on 1 to 16 nodes.
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Complete balance sheet: Finally, using 16 GPU nodes we run our largest benchmark in 4.9s

consuming 0.004 kW.h, in place of 213.8s and 0.211 kW.h on 16 CPUs of the same M2 cluster.

It means we can perform our computation 43 times faster and consume 53 times less energy on

our GPU cluster than on our CPU cluster. If we roughly consider the product of the speedup

per the energy efficiency improvement, our GPU solution is globally 43 × 53 ≈ 2279 times

better than our CPU solution. As far as the smallest benchmark is concerned, we obtain a GPU

solution which computes 27 times faster and consumes 53 times less energy.

1.6 Implementation of Longstaff-Schwartz algorithm on GPU

Although a lot of work has been done in variance reduction techniques, here we prefer

the implementation of a basic LSR which will help a better understanding of the CPU/GPU

comparison. In more standard applications, one can also implement the importance sampling

method [46] or a European price as a control variable to accelerate the convergence. First of

all, we detail the different steps of LSR in Algorithm 2. Afterwards, we are going to present

the GPU version of Algorithm 2 in Algorithm 3. In Algorithm 2 and Algorithm 3, we use

the parameter l as a path index and i as a dimension indix, we also denote n the number of

simulated paths, m the total dimension and δt the time discretization. In addition, we use the

set Γl = {e−rδtC(S
(l)
t ) < Φ(S

(l)
t )} that tests the continuation for each trajectory l using the

indicator application 1.

1.6.1 Parallel Path Generation on GPU (PG)

This part of the algorithm depends on whether the random number generator can be paral-

lelized or not. But, as presented in subsection 1.3.1, we use the CMRG that is parallellized by

period splitting. Consequently, the PG phase is an embarrassingly parallel part of the simulation

and we generate independently the random numbers for each path, then we use the Brownian

bridge technique [25] to generate the Brownian motions and the asset prices at each time step

according to (1.1).

1.6.2 The Regression Phase on GPU+CPU (REG)

As mentioned previously, the convergence study given in [26] shows that the number of tra-

jectories needed to approximate the expectation (1.13) is more than exponentially proportional

to the degree of regression. Thus, for the REG phase we use monomials of degrees less than or
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Algorithm 2: LSR algorithm for an American put option
Input: Model parameters and CMRG initialization.
Output: P0(S0)
for t ∈ {T, . . . , 2δt, δt} do

/* Computations performed during the PG phase */
for i ∈ {1, . . .m} do

for l ∈ {1, . . . n} do
– Draw W

i,(l)
t using CMRG and the Brownian bridge induction

– Use (1.1) to update the asset price Si,(l)
tend

end
if (t < T ) and l ∈ {Φ(S(l)

t ) > 0} then
/* Computations performed during the REG phase */
– Approach the expectations: (1.12) and (1.13)
– A = Ψ−1E (Pt+δt(St+δt)ψ(St))
/* Computations performed during the PRC phase */
for l ∈ {1, . . . n} do

– C(S
(l)
t ) = Atψ(S

(l)
t )

– Compute the payoff Φ(S(l)
t )

– Pt(S
(l)
t ) = 1Γl

Φ(S
(l)
t ) + 1Γc

l
e−rδtPt+δt(S

(l)
t+δt)

end
if (t = δt) then

/* P0(S0) is the price of the option */

P0(S0) = max
(
Φ(S0),

e−rδt

n

∑l=n
l=1 Pδt(S

(l)
δt )
)

end
end
else

/* Computations performed during the PRC phase */
for l ∈ {1, . . . n} do

Pt(S
(l)
t ) = 1t=TΦ(S

(l)
T ) + 1

Φ(S
(l)
t )≤0

e−rδtPt+δt(S
(l)
t+δt)

end
/* We have, of course, ∀l ∈ {1, . . . n} PT+δt(S

(l)
T+δt) = 0 */

end
end
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equal to 2 for one dimension and we will use affine regression in the multidimensional simula-

tion. We do not use monomials of degrees up to 2 in the multidimensional simulation because

it does not improve significantly the numerical results either.

Besides, the inversion of matrices cannot be done in parallel. Subsequently we need to

transfer all the following values for each path l, from GPU to CPU:

Ptk+1
(S

(l)
tk+1

)ψ(S
(l)
tk
) and ψ(S

(l)
tk
)ψt(S

(l)
tk
) (1.11)

where l is the path index.

When the values of (1.11) are in the CPU memory, we approach expectations (1.12) and

(1.13) with an arithmetic average then we perform the SVD method according to [53].

E
(
Ptk+1

(Stk+1
)ψ(Stk)

)
≈ 1

n

n∑
l=1

Ptk+1
(S

(l)
tk+1

)ψ(S
(l)
tk
) (1.12)

E
(
ψ(Stk)ψ

t(Stk)
)
≈ 1

n

n∑
l=1

ψ(S
(l)
tk
)ψt(S

(l)
tk
) (1.13)

with n representing the number of paths.

In this simulation phase, the GPU plays a role in the computation of the different products.

For example in the case of three assets ψ(S(l)
tk
) = (1, S

1,(l)
tk

, S
2,(l)
tk

, S
3,(l)
tk

), one has to compute on

GPU the following products associated to each path l:(
(S

1,(l)
tk

)2, (S
2,(l)
tk

)2, (S
3,(l)
tk

)2, S
1,(l)
tk

S
2,(l)
tk

, S
1,(l)
tk

S
3,(l)
tk

, S
2,(l)
tk

S
3,(l)
tk

)
(
Ptk+1

(S
(l)
tk+1

)S
1,(l)
tk

, Ptk+1
(S

(l)
tk+1

)S
2,(l)
tk

, Ptk+1
(S

(l)
tk+1

)S
3,(l)
tk

,
) (1.14)

As will be demonstrated in Section 1.7.1, performing the above computations on the GPU com-

pensates for the loss due to the data transfer between GPU and CPU.

1.6.3 The Parallel Pricing on GPU (PRC)

Once we compute the regression vector A, the backward induction (1.4) can be done inde-

pendently for each path of the simulation. At the final step time, we transfer the different price

values from GPU to CPU and estimate the expectation using the arithmetic average of all prices.
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Algorithm 3: GPU version of LSR algorithm for an American put option
Input: The same as in Algorithm 2
Output: P0(S0)
GPU initialization.
for t ∈ {T, . . . , 2δt, δt} do

/* Computations performed during the PG phase */
Distribute the n trajectories on stream processors + Perform the same operations as
Algorithm 2.
if (t < T ) and l ∈ {Φ(S(l)

t ) > 0} then
/* Computations performed during the REG phase */
– Perform the products (1.14) on GPU.
– Transfer (1.11) from GPU to CPU.
– Same operations as Algorithm 2.
/* Computations performed during the PRC phase */
Distribute + Perform the same operations as Algorithm 2.
if (t = δt) then

– Transfer from GPU to CPU: (Pδt(S
(l)
δt ))l

– Compute the price of the option P0(S0) as in Algorithm 2.
end

end
else

/* Computations performed during the PRC phase */
Distribute + Perform the same operations as Algorithm 2.

end
end
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TABLE 1.4 – Running time (seconds): CPU vs GPU
Simulation 50 time steps 100 time steps 300 time steps

phases CPU GPU CPU GPU CPU GPU
PG 0.671 0.047 1.278 0.079 4.386 0.162

PRC 0.484 0.064 1.315 0.116 8.864 0.359
REG 0.266 0.222 0.557 0.447 1.919 1.324

1.7 Pricing American contracts using GPUs

In this work we were not able to directly compare our results to those presented in [15] as

the authors do not give precise enough information on the digital procedure. Note that we also

study here the running time of a multidimensional case which is more representative of real

American option challenges. The results presented in this section are evaluated by computing

an average value of the different simulation times

We divide this section in three parts. The first part includes the comparison between our

GPU implementation on M1 using the NVIDIA Cg Toolkit and the QuantLib open-source li-

brary [31] implementation on the same machine as the Longstaff and Schwartz algorithm. The

second part studies the dependance of the running time on M1 of a multidimensional American

option according to the number of paths simulated and the dimension of the contract. Using the

results of the previous subsections, in the last subsection, we discuss a possible parallelization

of pricing ACs on a cluster and which introduces one prospective work related to this article.

1.7.1 The running time comparison between GPU and CPU

The QuantLib open-source library is a highly object-oriented library. In order to make a fair

comparison between the GPU and the CPU, we need to avoid overheads which are unrelated

to our algorithm. Thus, we only concentrate on the execution time of the main three phases of

the simulation. Moreover, we only consider the original one-core implementation of QuantLib

implementation and we do not parallelize the simulation on the two cores of M1. In Table 1.4,

we compare the execution time between our GPU implementation and the QuantLib one-core

CPU implementation of ACs for an increasing number of time steps. We perform the simulation

of one-dimensional American put on 214 = 16384 trajectories. According to Table 1.4, the REG

phase is faster on the GPU than it is on the CPU. The two other phases are significantly improved

when using the GPU which reduces the total time of the simulation. It is also noticeable that

when we increase the number of time steps, we make the simulation more complex and this

provides a higher speedup.
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TABLE 1.5 – Increasing dimensions and trajectories on GPU (time in seconds)
Simulation 1 asset (214) 4 assets (214) 4 assets (216) 4 assets (218)
Total 1.092 1.591 2.605 7,360
PG 0.047 0.146 0.159 0.171
PRC 0.064 0.114 0.303 1.090
REG 0.222 0.588 1.400 5.387

1.7.2 Multidimensional American option

In this part, we compare the running times of one-dimensional American put (214 = 16384

trajectories and 50 time steps) with the running times of four assets American put (using 50

time steps) that has the following payoff Φ(ST ):

Φ(ST ) =

(
K −

4∏
i=1

(Si
T )

1/4

)
+

(1.15)

We study this multidimensional payoff, because it is easier to check the prices coherence. In-

deed, the American put on a geometric average of stocks can be approximated very well when

using the one-dimensional equivalence and a tree method. Besides, unlike [2], to reduce the

complexity of the REG phase, we restrict ourselves to the constant and linear monomials re-

gression for the multidimensional benchmark.

In Table 1.5, the first line provides the total running time that includes initialization and

CPU/GPU data transfer 3. The three columns on the right show the running times of the four

assets American put associated to an increasing number of trajectories: 214, 216, 218.

According to Table 1.5, the running time of the PG phase increases linearly with the number

of assets and is slightly modified when we increase the number of trajectories. This fact can be

explained by the lightness of the operations performed associated to the chosen model. Conver-

sely, the PRC phase is rather sensitive to the number of trajectories. Like the PRC phase, the

running time of REG is approximately linear with the number of trajectories, and this is also

the case when we increase the dimensionality of the problem 4. Finally, even if pricing multidi-

mensional ECs on GPUs allows better overall speedup, we obtain very short running times for

a multi-asset American option pricing using a large number of trajectories.

When comparing the phases in Table 1.5, we see that the total running time on GPU is

∼ 70% dominated by the running time of the REG phase. We will see, in the next subsection, a

method that can reduce the execution time of the REG phase using a cluster of machines.

3. The initialization and the data transfer takes at most 0.8 seconds
4. Because in the one-dimensional benchmark we use (1, S1, S

2
1) as a regression basis and we use

(1, S1, S2, S3, S4) for the four-dimensional benchmark
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FIGURE 1.5 – The histogram of simulated prices according to the number of trajectories.

1.7.3 About pricing American contracts on GPU cluster

Pricing multidimensional ACs remains one of the most challenging problems in financial

applications. The popularity of methods based on MC that use regression is due to the fact

that they provide, in a sufficiently short time, relatively good solutions to dimensions included

between one and three or one and five (It depends on the variance and the regression basis).

Knowing the strengths and the weaknesses of these methods, we only tried to take advantage of

the parallel architecture of the GPU to reduce the execution time of the Longstaff and Schwartz

algorithm. As a result of the previous subsections, we show that we can efficiently execute on

GPUs the phases PRC and PG. In this subsection we present how to reduce the execution time

of the REG phase using a cluster of machines.

In Figure 1.5 we sketch the histogram of 200 simulated prices of the four dimensional Ame-

rican put whose payoff is given by (1.15). The parameters of the simulations are the following

: Maturity T = 1, time discretization δt = 0.02, Si
0 = 100, ri = r = 0.0953, di = 0, σi = 0.2

and the 4 × 4 correlating matrix (ρik)1≤i,k≤4 is equal to the identity matrix. As said above, we

choose this multidimensional benchmark because we can have a good approximation of the

price of the option using the one-dimensional equivalence and a tree method. In Figure 1.5, we
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give the real value 5 of this option and the prices resulting from the MC simulation of 210 and

214 trajectories.

According to Figure 1.5, the two histograms are centered approximately around the same

value which is different from the real value of the option. This difference is due to regression

errors and even if we use more trajectories (214 instead of 210) the average of simulated values

remains relatively unchanged. Nevertheless, when we increase the number of the simulated

trajectories we shrink the distribution of simulated prices and thus we reduce the difference

between the real value and the simulated value. We refer the reader to [16] for a CLT result of

ACs.

Consequently, we can parallelize the AC pricing on a cluster of 16 machines using 210 tra-

jectories for each machine then averaging instead of simulating 214 trajectories on only one

machine. The former solution will improve the running time of the PG and the PRC phases.

Also, according to the results of subsection 1.7.2, the decrease of the number of trajectories

simulated per machine reduces almost linearly the execution time of the REG phase. The ove-

rall solution obtained would be more effective on a cluster of machines than it is on only one

machine.

In the previous analysis, in order to parallelize our implementation on a cluster of machines,

we use the fact that the reduction of the number of simulated trajectories does not affect the

errors implied by the regression phase. However, there are limits to this result, indeed [26]

recommends to have a number of polynomials K = KN ∼ O(
√
log(N)) where N is the

number of paths. Thus, for a fixed number of polynomials this determines approximately the

minimum number of the simulated paths needed for a good regression.

1.8 Conclusion and future work

The main results of this research work are the following:

– We have analyzed two different methods of parallelizing RNGs for parallel and distri-

buted architectures. The results of this study are two examples of RNGs which are most

suited to the GPU architecture.

– When running MC simulations, the accuracy of the results obtained with a cluster of

GPUs using single precision is similar to the one obtained with a cluster of CPUs using

double precision.

– Mixed coarse and fine grain parallelization of MC simulations for pricing ECs, using

5. It is the value approximated using the tree method.
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MPI and OpenMP on multi-core CPU cluster, or MPI and CUDA on GPU cluster, is an

efficient strategy and scales.

– Execution time and energy consumption of MC simulations can be both efficiently redu-

ced when using GPU clusters in place of pure CPU clusters.

– In the case of American options that depend on one asset, we compare our GPU imple-

mentation with the one given in QuantLib library. Even if the speedup is small compared

to pricing ECs, we observe a 2 to 10 improvement of the execution time and the speedup

increases with the complexity of the problem.

– We look into the multi-asset American option and how the execution time can change with

the dimension and the number of trajectories. As a result, when using GPUs, the execution

time is almost only dominated by the REG phase because it is the only phase that cannot

be parallelized on the GPU. Consequently, we give a method that aims at reducing the

running time of the REG phase and which is based on a cluster implementation.

Algorithms introduced in this paper remain adapted to the new multi-core CPUs and the new

generation of graphic cards which computes in double precision.

Like for the European contracts, we are going to extend the ACs pricing on a CPU/GPU

cluster using the method presented in the subsection 1.7.3. Subsequently, we will compare the

speedup and the energy efficiency of the parallelization on GPUs and CPUs using the coarse

grained and fine grained paradigms.

Besides, in order to improve the parallelization of the American options pricing, we are

studying now the Malliavin Calculus-based algorithms [7] which completly avoid matrix re-

gressions and allow an efficient computation of the hedge.

Acknowledgment: This research is part of the ANR-CIGC GCPMF project, and is supported

both by ANR (French National Research Agency) and by Region Lorraine. The authors want
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Chapitre 2

American Options Based on Malliavin
Calculus [1]

Abstract

This paper is devoted to pricing American options using Monte Carlo and Malliavin calcu-

lus. We develop this method on two types of models, the multidimensional exponential model

with deterministic (non-constant) volatility and the multidimensional Heston model. To obtain

good numerical results, we introduce a variance reduction technique based on conditioning and

a bias reduction method that relies on an appropriate choice of the number of simulated paths

in the computation of the quotient of two expectations. Since our techniques are well-suited to

parallel implementation, our numerical experiments are performed using multi-core CPU and

many-core GPU environments.

2.1 Introduction and objectives

In this paper, we explore a Monte Carlo (MC) method based on Malliavin calculus (MCM)

for pricing American Options (AO). Unlike usual American option algorithms as Longstaff-

Schwartz (LS) [42] or Malliavin calculus techniques based on localization, the method presen-

ted here does not need any parametric regression and higher dimensional problems can be dealt

with more easily as the accuracy of results depends only on the number of simulated trajectories.

Assuming that the asset S follows a Markovian model, American contracts can be exercised

at any trading date until maturity and their prices are given, at each time t, by (see [25]) Pt(St)

49
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with

Pt(x) = supθ∈Tt,T Et,x

(
e−r(θ−t)Φ(Sθ)

)
, (2.1)

where Tt,T is the set of stopping times in the time interval [t, T ], Et,x is the expectation asso-

ciated to the risk neutral probability given that St = x and r and Φ(St) are respectively the

instantaneous interest rate and the payoff of the contract.

In order to evaluate numerically the price (2.1), we first need to approach continuous stop-

ping times in Tt,T with discrete stopping times taking values in the finite set t = t0 < t1 < ... <

tn = T (Bermudan approximation). When we do this approximation, pricing American options

can be reduced to the implementation of a discrete time dynamic programming algorithm (see

[25]). Like the LS algorithm [42], we implement the dynamic programming principle in terms

of the optimal stopping times τk, for each path, as follows

τn = T,

∀k ∈ {n− 1, ..., 0}, τk = tk1Ak
+ τk+11Ac

k
,

(2.2)

where the set Ak = {Φ(Stk) > C(Stk)} and C(Stk) is the continuation value, given by

C(Stk) = E
(
e−r∆tPtk+1

(Stk+1
)
∣∣∣Stk

)
, (2.3)

where ∆t = tk+1 − tk. Thus, to evaluate the price (2.1), we need to estimate C(Stk).

Algorithms devoted to American pricing and based on Monte Carlo, differ essentially in the

way they estimate and use the conditional expectation (2.3). For example the authors of [57]

perform a regression to estimate the continuation value, but unlike [42], they use C(Stk) instead

of the actual realized cash flow Ptk+1
(Stk+1

) to update the price in (2.2). We refer the reader to

[16] for a presentation of the way this estimation is done for the LS algorithm and details on the

convergence. Other methods use the Malliavin calculus with localization [7] or the quantization

method [8] for C(Stk) computation.

In this work, we rewrite (2.3) using Malliavin calculus but unlike [7] we use the induc-

tion (2.2) for the implementation and we propose a nonparametric variance and bias reduction

methods, without using localization. Formally speaking, for a constant r, we can rewrite the

conditional expectation using the Dirac distribution εx(·) at point x then using the Malliavin

calculus for a large class of diffusion models, we get

C(x) =
E
(
e−r∆tPtk+1

(Stk+1
)εx(Stk)

)
E (εx(Stk))

=
E
(
e−r∆tPtk+1

(Stk+1
)1Stk

≥xΘtk,tk+1

)
E
(
1Stk

≥xΘtk,tk+1

) . (2.4)
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where 1Stk
≥x is equal to the tensorial product

d∏
i=1

1Si
tk
≥xi

, when d ≥ 1.

In this paper, we provide the value of Θtk,tk+1
for two classes of models: Multidimens-ional

Exponential Diffusions with deterministic Coefficients (MEDC) and the Multi-dimensional

Heston (MH) model. In the MEDC models, the dynamics of the assets {Si
t}1≤i≤d is given by

dSi
t

Si
t

= ridt+
i∑

j=1

σij(t)dW
j
t , Si

0 = zi, i = 1, .., d.

In the MH models, the dynamics of the assets {Si
t}1≤i≤d is given by

for 1 ≤ i ≤ d
dνit = κi(θi − νit)dt+ ηi

√
νitdZ̃

i
t , νi0 = yi,

dSi
t = Si

t

(
ridt+

√
νitdZ

i
t

)
, Si

0 = zi.

For the conditional expectation (2.4) simulation, a variance reduction method and a bias re-

duction method can be applied for MEDC and MH models as well as for other models. Without

loss of generality, for the MEDC model, instead of simulating directly the last term in (2.4), we

project 1Stk
≥x(Stk)Θtk,tk+1

using a conditioning as follows

C(x) =
E
(
e−r∆tPtk+1

(Stk+1
)E
[
1Stk

≥xΘtk,tk+1

∣∣{∫ tk+1

0
σij(u)dW

j
u}1≤j≤i≤d

])
E
(
E
[
1Stk

≥xΘtk,tk+1

∣∣{∫ tk+1

0
σij(u)dW

j
u}1≤j≤i≤d

]) . (2.5)

Then, the bias reduction method is applied by setting the continuation value to the approxima-

tion below

C(x) ≈
1
N ′

∑N ′

l=1 e
−r∆tP l

tk+1
(Stk+1

)h(x, {
∫ tk+1

0
σij(u)dW

j
u}l1≤j≤i≤d)

1
N

∑N
l=1 h(x, {

∫ tk+1

0
σij(u)dW

j
u}l1≤j≤i≤d)

, (2.6)

with h(x, {wij}j≤i) = E(1Stk
≥xΘtk,tk+1

∣∣{∫ tk+1

0
σij(u)dW

j
u}1≤j≤i≤d = {wij}1≤j≤i≤d) and N ̸=

N ′. Thus, we improve the convergence to the real price of an American option by empirically

using an appropriate relation between N and N ′ that does not increase much the variance of the

estimator (2.6) (when compared to the case N = N ′). Note that, even if one can also reduce

the variance by an "appropriate" control variate, here we choose not to implement this kind of

method because it is not standard for American options.

Regarding the numerical simulation, we test MCM on a multi-core CPU (Central Processing

Unit) as well as a many-core GPU (Graphic Processing Unit). We will discuss the advantages
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of the parallel implementation of MCM on a desktop computer that has the following specifica-

tions: Intel Core i7 Processor 920 with 9GB of tri-channel memory at frequency 1333MHz. It

also contains one NVIDIA GeForce GTX 480.

The outline of this paper is as follows. In section 2.2 we establish the notations and the

Malliavin calculus tools. We give in section 2.3 (see (2.14)) the value of Θtk,tk+1
for the MEDC

model and we extend it to the MH model in section 2.4. Section 2.5 is devoted to a variance

reduction method based on conditioning and section 2.6 to the bias reduction method based on

the appropriate relation between N and N ′ (2.6). In the last section, we show that the multi-

dimensional MCM implementation on a many-core GPU is more than 60 times faster than its

implementation on a multi-core CPU. We also provide the numerical comparison between LS

and MCM. Finally, we study the results of using the two variance reduction methods (2.5) and

(2.6) which allow to obtain accurate prices even when simulating only 210 trajectories.

2.2 Notations, hypothesis and key tools

Let T be the maturity of the American contract, (Ω,F , P ) a probability space on which we

define a d-dimensional standard Brownian motion W = (W 1, ...,W d) and F = {Fs}s≤T the P -

completion of the filtration generated by W until maturity. Moreover, we denote by {F i,...,d
s }s≤t

the P -completion of the filtration generated by (W i, ...,W d) until the fixed time t ∈ [0, T ].

Throughout sections 2.3 and 2.4, we will use two operators: The Malliavin derivative D and

the Skorohod integral δ and we define them in the same way as in [55]. For a fixed m ∈ N, we

define the subdivision {tkm}k≤2m of the finite interval [0, T ] by: tkm = kT/2m. Then we introduce

S(Rd×2m) the Schwartz space of infinitely differentiable and rapidly decreasing functions on

Rd×2m . Let f ∈ S(Rd×2m), we define the set Sm of simple functionals by

F ∈ Sm ⇔ F = f
(
Wt1m

−Wt0m
,Wt2m

−Wt1m
, ...,Wt2

m
m
−Wt2

m−1
m

)
.

One can prove that S =
∪

m∈N S
m is a linear and dense subspace in L2(Ω) and that the Mal-

liavin derivatives DiF of F ∈ S defined by

Di
tF =

2m−1∑
k=0

∂f

∂xi,k

(
Wt1m

−Wt0m
, ...,Wt2mm

−Wt2
m−1

m

)
1[tkm,tk+1

m [(t)
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is a process in L2(Ω× [0, T ]). We associate to S the norm || · ||1,2 defined by

||F ||21,2 = E|F |2 +
d∑

i=1

E

∫ T

0

(Di
tF )

2dt.

Finally, the space D1,2 is the closure of S with respect to this norm and we say that F ∈ D1,2

if there exists a sequence Fm ∈ S that converges to F in L2(Ω) and that DuFm is a Cauchy

sequence in L2(Ω× [0, T ]).

Now we use the duality property between δ and D to define the Skorohod integral δ. We say

that the process U ∈ Dom(δ) if ∀F ∈ D1,2

∣∣∣∣E (∫ T

0

Ut ·DtFdt

)∣∣∣∣ ≤ C(U)||F ||1,2,

where C(U) is a positive constant that depends on the process U . If U ∈ Dom(δ), we define

the Skorohod integral δ(U) =
∫
UtδWt by

∀F ∈ D1,2, E

(
F

∫ T

0

Ut · δWt

)
= E (Fδ(U)) = E

(∫ T

0

Ut ·DtFdt

)
, (2.7)

(·) is the inner scalar product on Rd.

Below, we give some standard properties of the operators D and δ:

1. If the process Ut is adapted, δ(U) =
∫
UtδWt coincides with the Itô integral

∫
UtdWt.

2. The Chain Rule: Let F = (F1, F2, ..., Fk) ∈ (D1,2)k and ϕ : Rk → R a continuously

differentiable function with bounded partial derivatives.

Then ϕ(F1, F2, ..., Fk) ∈ D1,2 and:

Dtϕ(F1, F2, ..., Fk) =
k∑

i=1

∂ϕ

∂xi
(F1, F2, ..., Fk)DtFi.

3. The Integration by Parts: The IP formula will be extensively used in the next section on

the time intervals I = (0, s) and I = (s, t) with s < t ∈]0, T ] : Assume F ∈ D1,2, U

is an adapted process in Dom(δ) and FU ∈ Dom(δ). For each 1 ≤ i ≤ d we have the

following equality

E

(∫
I

FUuδ
iWu

)
= E

(
F

∫
I

UudW
i
u

)
− E

(∫
I

UuD
i
uFdu

)
. (2.8)
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To simplify the notations, we denote Hi(S
i
s) = H(Si

s − xi) for the Heaviside function of the

difference between the ith stock and the ith coordinate of the positive vector x.

Throughout this article, we will suppose that g ∈ Eb(Rd) is a measurable function with

polynomial growth

Eb(Rd) =
{
f ∈M(Rd) : ∃C > 0 and m ∈ N; |f(y)| ≤ C(1 + |y|d)m)

}
, (2.9)

where M(Rd) is the set of measurable functions on Rd and | · |d is the euclidean norm. The

elements of the set Eb(Rd) satisfy the finiteness of the expectations computed in this article.

2.3 The continuation for a deterministic diffusion matrix

The process St models the price of a vector of assets S1
t , ..., S

d
t which constitute the solution

of the following stochastic differential equation

dSi
t

Si
t

= ridt+
i∑

j=1

σij(t)dW
j
t , Si

0 = zi, i = 1, .., d, (2.10)

where ri are constants and σ(t) = {σij(t)}1≤i,j≤d is a deterministic triangular matrix, thus

{σij(t)}i<j = 0. We suppose that the matrix σ(t) is invertible, bounded and uniformly elliptic

which ensures the existence of the inverse matrix ρ(t) = σ−1(t) and its boundedness. Dynamics

(2.10) is widely used for equity models, HJM interest rate models and variance swap models.

Moreover, one should note that in the case where the dynamics of S is given by local volatility

model, we can use a discretization scheme to reduce it to an SDE of type (2.10) on subintervals.

The first theorem of this section provides the expression of the continuation value (2.3) when

using Malliavin calculus for MEDC models. This theorem can be considered as an extension of

the results on the continuation value for the multidimensional model with constant parameters

detailed in [7]. In Theorem 2.2, we provide a closed-form expression for Γk
s,t, introduced in

Theorem 2.1. Corollary 2.1 treats the special case σij(t) = σiδ(i − j) (σij is a constant) that

will be used, with other models, to test numerically our nonparametric variance reduction and

bias reduction methods detailed in section 2.5 and section 2.6.

Theorem 2.1 For any s ∈]0, t[, g ∈ Eb(Rd) and x = (x1, ..., xd) with xi > 0,

E
(
g(St)

∣∣∣Ss = x
)
=
Ts,t[g](x)

Ts,t[1](x)
, (2.11)



2.3. THE CONTINUATION FOR A DETERMINISTIC DIFFUSION MATRIX 55

where Ts,t[f ](x) is defined for every function 1 f ∈ Eb(Rd) by

Ts,t[f ](x) = E

(
f(St)Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

)
, (2.12)

Γs,t = Γ1
s,t and Γ1

s,t can be computed by the following induction scheme

Γd
s,t = πd,d

s,t , for k ≤ d− 1: Γk
s,t = Γk+1

s,t π
k,d
s,t −

d∑
j=k+1

∫ t

0

Dj
uΓ

k+1
s,t D

j
uπ

k,d
s,t du, (2.13)

with

πk,d
s,t = 1 +

d∑
j=k

∫ t

0

φjk(u)dW
j
u , φjk(u) =

1

s
ρjk(u)1u∈]0,s[ −

1

t− s
ρjk(u)1u∈]s,t[,

where ρ is the inverse matrix ρ(u) = σ−1(u).

Hk(S
k
s ) is the Heaviside function of the difference between the kth stock and the kth coordinate

of the positive vector x, Eb(Rd) is defined in (2.9).

From this theorem we obtain

E
(
g(St)

∣∣∣Ss = x
)
=
E
(
e−r∆tPtk+1

(Stk+1
)1Stk

≥xΘtk,tk+1

)
E
(
1Stk

≥xΘtk,tk+1

) , Θtk,tk+1
=

Γtk,tk+1∏d
i=1 S

i
tk

. (2.14)

with 1Stk
≥x equal to the tensorial product

d∏
i=1

1Si
tk
≥xi

.

To prove Theorem 2.1, we need the following two lemmas which are proved in the appendix.

It follows from Lemma 2.1 that the sum
∑d

i=k ρik(u)D
i
ug(St) does not depend on u.

Lemma 2.1 For any u ∈]0, t[, f ∈ C1(Rd) and S given by the SDE (2.10), we have

d∑
i=k

ρik(u)D
i
uf(St) = Sk

t ∂xk
f(St). (2.15)

The second lemma is based on the duality property of the Malliavin calculus.

1. In our case f = g or f = 1
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Lemma 2.2 For any I ⊂]0, t[, h ∈ C∞b (R), x ∈ Rd
+, F ∈ D1,2 and S given by the SDE (2.10),

we have

E

(∫
I

FDk
uh(S

k
s )

σkk(u)
du

)
= E

(
h(Sk

s )F
d∑

i=k

∫
I

ρik(u)dW
i
u

)

− E

(
h(Sk

s )
d∑

i=k

∫
I

ρik(u)D
i
uFdu

)
.

(2.16)

Proof of Theorem 2.1:
We will prove that for hi ∈ C∞b (R), 0 ≤ k ≤ d and f ∈ Eb(Rd)

E

(
f(St)

d∏
i=1

h′i(S
i
s)

)
= E

(
f(St)Γ

k+1
s,t

k∏
i=1

h′i(S
i
s)

d∏
i=k+1

hi(S
i
s)

Si
s

)
(2.17)

and that Theorem 2.1 is obtained directly from (2.17) by setting k = 0.

Step 1: ((2.17) with k = 0)⇒ (2.11).

Heuristically E
(
g(St)

∣∣∣Ss = x
)

can be viewed as E (g(St)εx(Ss)) /E (εx(Ss)) where εx is the

Dirac distribution at x and we know that εxi
= H ′

i. In order to make this reasoning rigorous

we use ps,t(u, v), the distribution of the vector (S1
s , ..., S

d
s , S

1
t , ..., S

d
t ). Indeed, according to our

assumption, the distribution of this vector admits a log-normal joint density with respect to the

Lebesgue measure on Rd
+ × Rd

+. Then

E
(
g(St)

∣∣∣Ss = x
)
=

∫ d

R g(v)ps,t(x, v)dv∫ d

R ps,t(x, v)dv
.

Let ϕ ∈ C∞c (R) be a mollifier function with support equal to [−1, 1] and such that
∫
R ϕ(u)du =

1, then for any u ∈ R we define

hmk(u) = (Hk ∗ ϕm)(u) ∈ C∞b (R), ϕm(u) = mϕ(mu).

If the equality (2.17) is correct for any k, then it is correct for k = 0 which means

E

(
f(St)

d∏
k=1

h′mk(S
k
s )

)
= E

(
f(St)Γs,t

d∏
k=1

hmk(S
k
s )

Sk
s

)
. (2.18)

On the one hand, hmk(u) converges to Hk(u) except at u = xk and the absolute continuity of

the law of Sk
s ensures that hmk(S

k
s ) converges almost surely to Hk(S

k
s ). Using the dominated
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convergence theorem, we prove the convergence of hmk(S
k
s ) to Hk(S

k
s ) in Lp(Ω) for p ≥ 1. By

Cauchy-Schwarz inequality, we prove the convergence

E

(
f(St)Γs,t

d∏
k=1

hmk(S
k
s )

Sk
s

)
−→ E

(
f(St)Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

)
.

On the other hand, h′mk(uk) =
∫
RHk(vk)ϕ

′
m(uk − vk)dvk = ϕm(uk − xk). Moreover, using the

log-normal joint density ps,t(u, v) of the vector (S1
s , ..., S

d
s , S

1
t , ..., S

d
t ) with u = (u1, ..., ud) and

v = (v1, ..., vd), we get

E

(
f(St)

d∏
k=1

h′mk(S
k
s )

)
=

∫
Rd

f(v)

(∫
Rd

d∏
k=1

ϕm(uk − xk)ps,t(u, v)du1...dud

)
dv1...dvd

Because
∫
Rd

∏d
k=1 ϕm(uk − xk)ps,t(u, v)du1...dud converges to ps,t(x, v) and due to the regula-

rity properties of the density and the growth condition on f , we easily have

E

(
f(St)

d∏
k=1

h′mk(S
k
s )

)
−→

∫
Rd

f(v)ps,t(x, v)dv1...dvd,

which concludes this step of the proof.

Step 2: We prove (2.17). Note that by a standard density argument of S in L2(Ω), we can

assume f ∈ C1(Rd) ∩ Eb(Rd).

We prove (2.17) by induction, we introduce the following notations:

ĥdk(x) =
d∏

i=k

hi(xi)

xi
, ĥ′k(x) =

k∏
i=1

h′i(xi), x = (x1, ..., xd).

When k = d, we have by the chain rule h′d(S
d
s ) =

Dd
uhd(S

d
s )

Dd
uS

d
s

and Dd
uS

d
s = σdd(u)S

d
s , thus

E
(
f(St)ĥ′d(Ss)

)
= E

(
1

s

∫ s

0

f(St)ĥ′d−1(Ss)
Dd

uhd(S
d
s )

Dd
uS

d
s

du

)
= E

(
1

s

∫ s

0

f(St)ĥ′d−1(Ss)
Dd

uhd(S
d
s )

σdd(u)Sd
s

du

)
.

Using Lemma 2.2 with

F =
f(St)

Sd
s

d−1∏
i=1

h′i(S
i
s) =

f(St)

Sd
s

ĥ′d−1(Ss)
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and the fact that ĥ′d−1(Ss) does not depend on the dth coordinate of the Brownian motion yields

E

(
1

s

∫ s

0

f(St)ĥ′d−1(Ss)
Dd

uhd(S
d
s )du

σdd(u)Sd
s

)

= E

(
Fhd(S

d
s )
1

s

∫ s

0

dW d
u

σdd(u)

)
− E

(
hd(S

d
s )
1

s

∫ s

0

Dd
u

ĥ′d−1(Ss)f(St)

Sd
s

du

σdd(u)

)
= E

(
Fhd(S

d
s )
1

s

∫ s

0

dW d
u

σdd(u)

)
− E

(
ĥ′d−1(Ss)hd(S

d
s )
1

s

∫ s

0

Dd
u

f(St)

Sd
s

du

σdd(u)

)
.

(2.19)

Besides using Lemma 2.1 for the Malliavin derivative of f(St), we get for v ∈]s, t[

1

σdd(u)
Dd

u

[
f(St)

Sd
s

]
=

1

Sd
sσdd(v)

Dd
vf(St)−

f(St)

Sd
s

.

Thus, the value of the last term of (2.19) is given by

E

(
ĥ′d−1(Ss)hd(S

d
s )
1

s

∫ s

0

Dd
u

f(St)

Sd
s

du

σdd(u)

)
= −E

(
ĥ′d−1(Ss)hd(S

d
s )
f(St)

Sd
s

)
+E

(
ĥ′d−1(Ss)

hd(S
d
s )

Sd
s

1

t− s

∫ t

s

Dd
vf(St)

dv

σdd(v)

)
.

And by duality (2.7) we remove the Malliavin derivative of f(St) in the last term of the previous

equality

E

(
ĥ′d−1(Ss)hd(S

d
s )

Sd
s

1

t− s

∫ t

s

Dd
vf(St)dv

σdd(v)

)

= E

(
ĥ′d−1(Ss)hd(S

d
s )

Sd
s

E

{
1

t− s

∫ t

s

Dd
vf(St)dv

σdd(v)

∣∣∣Fs

})

= E

(
ĥ′d−1(Ss)hd(S

d
s )

Sd
s

E

{
f(St)

1

t− s

∫ t

s

dW d
v

σdd(v)

∣∣∣Fs

})
.

Regrouping all terms together gives

E
(
f(St)ĥ′d(Ss)

)
= E

(
f(St)Γ

d
s,tĥ

′
d−1(Ss)ĥ

d
d(Ss)

)
, Γd

s,t = πd,d
s,t .

Now, let us suppose that (2.17) is satisfied for k and prove it for k − 1. We have by the chain

rule h′k(S
k
s ) =

Dk
uhk(S

k
s )

Dk
uS

k
s

and Dk
uS

k
s = σkk(u)S

k
s , thus
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E
(
f(St)ĥ′d−1(Ss)

)
= E

(
f(St)Γ

k+1
s,t ĥ

d
k+1(Ss)ĥ′k(Ss)

)
= E

(
1

s

∫ s

0

f(St)Γ
k+1
s,t ĥ

d
k+1(Ss)ĥ′k−1(Ss)

Dk
uhk(S

k
s )

σkk(u)Sk
s

du

)

= E

(
1

s

∫ s

0

f(St)Γ
k+1
s,t ĥ

d
k+1(Ss)ĥ′k−1(Ss)

Sk
s

Dk
uhk(S

k
s )

σkk(u)
du

)
.

Using Lemma 2.2 with

F =
f(St)Γ

k+1
s,t ĥ

d
k+1(Ss)ĥ′k−1(Ss)

Sk
s

and the fact that ĥ′k−1(Ss) does not depend on the jth coordinate (j ≥ k) of the Brownian

motion yields

E

(
1

s

∫ s

0

FDk
uhk(S

k
s )

σkk(u)
du

)
=

d∑
j=k

E

(
Fhk(S

k
s )
1

s

∫ s

0

ρjk(u)dW
j
u

)

−
d∑

j=k

E

(
hk(S

k
s )ĥ

′
k−1(Ss)

1

s

∫ s

0

Dj
u

[
f(St)ĥ

d
k+1(Ss)Γ

k+1
s,t

Sk
s

]
ρjk(u)du

)
.

(2.20)

Besides, if for x = (x1, ..., xd) we denote Π(x) =
ĥd
k+1(x)

xk
, the Malliavin derivative of the last

term of (2.20) provides

Dj
u

[
Γk+1
s,t Π(Ss)f(St)

]
= Dj

uΓ
k+1
s,t Π(Ss)f(St) + Γk+1

s,t D
j
uΠ(Ss)f(St)

+ Γk+1
s,t Π(Ss)D

j
uf(St).

Using Lemma 2.1 for the Malliavin derivative in the two last terms, we get

d∑
j=k

ρjk(u)D
j
uΠ(Ss) = Sk

s ∂xk
Π(Ss) = −Π(Ss), (2.21)

d∑
j=k

ρjk(u)D
j
uf(St) = Sk

t ∂xk
f(St). (2.22)

From (2.21), we deduce that

ĥ′k−1(Ss)hk(S
k
s )f(St)Γ

k+1
s,t

1

s

∫ s

0

d∑
j=k

ρjk(u)D
j
uΠ(Ss)du = −

ĥ′k−1(Ss)ĥ
d
k(Ss)f(St)Γ

k+1
s,t

Sk
s

.
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Thus, introducing the random variable π̃k,d
s,t = 1 + 1

s

∑d
j=k

∫ s

0
ρjk(u)dW

j
u and using (2.20)

E

(
1

s

∫ s

0

FDk
uhk(S

k
s )

σkk(u)
du

)
= E

(
ĥdk(Ss)ĥ′k−1(Ss)f(St)Γ

k+1
s,t

Sk
s

π̃k,d
s,t

)

− E

(
ĥdk(Ss)ĥ′k−1(Ss)f(St)

Sk
s

1

s

∫ s

0

d∑
j=k

ρjk(u)D
j
uΓ

k+1
s,t du

)

− E

(
ĥdk(Ss)ĥ′k−1(Ss)Γ

k+1
s,t

Sk
s

1

t− s

∫ t

s

d∑
j=k

ρjk(u)D
j
uf(St)du

)
,

(2.23)

where we used the fact that
∑d

j=k ρjk(u)D
j
uf(St) does not depend on u (see (2.22)). Let us

develop the last term of (2.23)

E

(
ĥdk(Ss)ĥ′k−1(Ss)Γ

k+1
s,t

Sk
s

1

t− s

∫ t

s

d∑
j=k

ρjk(u)D
j
uf(St)du

)

= E

(
ĥdk(Ss)ĥ′k−1(Ss)

Sk
s

d∑
j=k

E

[
1

t− s

∫ t

s

Γk+1
s,t ρjk(u)D

j
uf(St)du

∣∣∣Fs

])

= E

(
ĥdk(Ss)ĥ′k−1(Ss)

Sk
s

d∑
j=k

E

[
f(St)

1

t− s

∫ t

s

Γk+1
s,t ρjk(u)δW

j
u

∣∣∣Fs

])

=
d∑

j=k

E

(
f(St)ĥ

d
k(Ss)ĥ′k−1(Ss)Γ

k+1
s,t

Sk
s

1

t− s

∫ t

s

ρjk(u)dW
j
u

)

−
d∑

j=k

E

(
f(St)ĥ

d
k(Ss)ĥ′k−1(Ss)

Sk
s

1

t− s

∫ t

s

ρjk(u)D
j
uΓ

k+1
s,t du

)
.

We applied (2.7) in the second equality to remove the Malliavin derivative of f(St). We also

used (2.8) in the last equality. To complete the proof, we should remark that

1

s

∫ s

0

Dj
uΓ

k+1
s,t ρjk(u)du−

1

t− s

∫ t

s

Dj
vΓ

k+1
s,t ρjk(v)dv = −

∫ t

0

Dj
yΓ

k+1
s,t D

j
yπ

k,d
s,t dy

and because Γk+1
s,t is an Fk+1,...,d

t -measurable random variable (F i,...,d
t defined in section 2.2)

Γk
s,t = Γk+1

s,t π
k,d
s,t −

d∑
j=k

∫ t

0

Dj
uΓ

k+1
s,t D

j
uπ

k,d
s,t du = Γk+1

s,t π
k,d
s,t −

d∑
j=k+1

∫ t

0

Dj
uΓ

k+1
s,t D

j
uπ

k,d
s,t du.

�
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Although Dj
uπ

k,d
s,t = φjk(u), note that the Malliavin derivative of Γk+1

s,t intervenes in the induc-

tion (2.13) which is difficult to compute numerically. Consequently, we propose in Theorem 2.2

a new formula which enables us to get rid of the Malliavin derivatives and its computation can

be easily done using (2.27).

We will use in Theorem 2.2 the set of the second order permutations Pk,d defined as the

following

Pk,d = {p ∈ Pk,d; p ◦ p = Id}, (2.24)

where Pk,d is the set of permutations on {k, ..., d} and Id is the identity application. Because

the second order permutations on {k, ..., d} can be written as a combination of disjoint transpo-

sitions on this set, one can prove the following recursive relation between those permutations

defined on {k, ..., d} and the one defined on {k + 1, ..., d}

Pk,d = {τ kk ◦ p; p ∈ Pk+1,d} ∪ {τ lk ◦ p; p ∈ Pk+1,d, p(l) = l, l ∈ {k + 1, ..., d}}, (2.25)

with the transposition application τ ji : i↔ j defined on {k, ..., d} as the application that swaps

only i to j and j to i. We also denote by ∆ the quasi-determinant that involves only the per-

mutations of Pk,d, that is to say, the ∆ associated to the matrix C = {Ci,j}k≤i,j≤d is given

by

∆ =
∑

p∈Pk,d

ϵ(p)
d∏

i=1

Ci,p(i)

where ϵ(p) is the signature of the permutation p.

C11 C12 C13

C21 C22 C23

C31 C32 C33

= +( 12)( 11) ( 13)+

=

C11 C12 C13

C21 C22 C23

C31 C32 C33

+

C11 C12 C13

C21 C22 C23

C31 C32 C33

C11 C12 C13

C21 C22 C23

C31 C32 C33

-C11 C12C21 C13C31

= +-C11 C12C21 C13C31(C22 C23)C32C33- C33 C22

1211 13C11 C12C21 C13C31

FIGURE 2.1 – Illustration of the computation of ∆ (2.27) for d = 3 and k = 1.



62 Chap 2. American Options Based on Malliavin Calculus

Theorem 2.2 Based on the assumptions of Theorem 2.1, for k ∈ {1, ..., d} the value of Γk
s,t is

given by

Γk
s,t =

∑
p∈Pk,d

ϵ(p)
d∏

i=k

Ai,p(i), (2.26)

with ϵ(p) as the signature of the permutation p ∈ Pk,d, Pk,d defined in (2.24) and

A =



π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

... . . . . . . . . . ...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,d
s,t


,

where Ck,l is the covariance of πk,d
s,t and πl,d

s,t .

Remark: In the theorem above, Ck,l admits a closed-form expression because πk,d
s,t and πl,d

s,t are

two correlated Gaussian variables whose general value is given in Theorem 2.1. Please remark

that Γ1
s,t = Γs,t is a quasi-determinant that involves only the permutations of P1,d and for a

quasi-determinant ∆, associated to an arbitrary (d−k+1)×(d−k+1) matrixC = {Ci,j}k≤i,j≤d,

whose permutations are in Pk,d, we use (2.25) to prove easily that

∆ = Ck,k∆k,k +
d∑

i=k+1

ϵ(τ ik)Ci,kCk,i∆k,i, (2.27)

where ∆k,i is the quasi-determinant associated to the Ci,k obtained from C by suppressing the

line and the column i as well as the line and the column k. Based on the development according

to the first line, relation (2.27) provides a recursive formula which is even more efficient than the

determinant formula. Of course, we can generalize the relation (2.27) to the one that involves

the development according to a jth line or a jth column with k ≤ j ≤ d. In Figure 2.1, we

provide an illustration of the computation of ∆ when C is a 3× 3 matrix.

Proof of Theorem 2.2:
We prove (2.26) by a decreasing induction. For k = d, the expression (2.26) is clearly satisfied.

We suppose that (2.26) is satisfied for k + 1 and we prove it for k. According to Theorem 2.1,



2.3. THE CONTINUATION FOR A DETERMINISTIC DIFFUSION MATRIX 63

Γk
s,t = Γk+1

s,t π
k,d
s,t −

∑d
j=k+1

∫ t

0
Dj

uΓ
k+1
s,t D

j
uπ

k,d
s,t du, but

Dj
uΓ

k+1
s,t =

∑d
l=k+1

∑
p∈Pk+1,d

ϵ(p)
∏d

i=k+1,i̸=lAi,p(i)D
j
uAl,p(l)

=
∑d

l=k+1

∑
p∈Pk+1,d,p(l)=l ϵ(p)

∏d
i=k+1,i ̸=lAi,p(i)D

j
uAl,l,

the second equality is due to the fact that Al,p(l) is a constant except for p(l) = l. Subsequently

−
∑d

j=k+1

∫ t

0
Dj

uΓ
k+1
s,t D

j
uπ

k,d
s,t du

= −
∑d

l=k+1

∑
p∈Pk+1,d,p(l)=l ϵ(p)

∏d
i=k+1,i̸=lAi,p(i)

∑d
j=k+1

∫ t

0
Dj

uAl,lD
j
uπ

k,d
s,t

= −
∑d

l=k+1

∑
p∈Pk+1,d,p(l)=l ϵ(p)

∏d
i=k+1,i̸=lAi,p(i)Ck,l.

Finally

Γk
s,t = Γk+1

s,t π
k,d
s,t −

d∑
j=k+1

∫ t

0

Dj
uΓ

k+1
s,t D

j
uπ

k,d
s,t du

= πk,d
s,t

∑
p∈Pk+1,d

ϵ(p)
d∏

i=k+1

Ai,p(i) −
d∑

l=k+1

Ck,l

∑
p∈Pk+1,d,p(l)=l

ϵ(p)
d∏

i=k+1,i ̸=l

Ai,p(i)

=
∑

p∈Pk,d

ϵ(p)
d∏

i=k

Ai,p(i).

The last equality is due to the development of
∑

p∈Pk,d
ϵ(p)

∏d
i=k Ai,p(i) according to the kth

line of A which can be justified by (2.25).

�

As a corollary of Theorem 2.1 and Theorem 2.2, we obtain the following result for the

multidimensional Black & Scholes model with independent coordinates

Corollary 2.1 For any s ∈]0, t[, g ∈ Eb(Rd) and x = (x1, ..., xd) with xi > 0, if σij(t) =

σiδ(i− j) then

E
(
g(St)

∣∣∣Ss = x
)
=
Ts,t[g](x)

Ts,t[1](x)
,
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with

Ts,t[f ](x) = E

(
f(St)

d∏
k=1

Hk(S
k
s )W

k
s,t

σks(t− s)Sk
s

)
, (2.28)

and

W k
s,t = (t− s)(W k

s + σks)− s(W k
t −W k

s ), k = 1, ..., d.

When compared to the previous results, the proof of this corollary is rather easy because the{
πk,d
s,t

}
1≤k≤d

are independent and equal to πk
s,t = 1 +

W k
s

sσk
− W k

t −W k
s

(t− s)σk
.

2.4 Extension to the multidimensional Heston model

In this section, we consider the multidimensional Heston model

for 1 ≤ i ≤ d
dνit = κi(θi − νit)dt+ ηi

√
νitdZ̃

i
t , νi0 = yi,

dSi
t = Si

t

(
ridt+

√
νitdZ

i
t

)
, Si

0 = zi,
(2.29)

where (Z1, ..., Zd, Z̃1, ..., Z̃d) is a vector of correlated Brownian motions with R as a non-

singular constant correlation matrix. The first step is to rewrite (2.29) using independent Brow-

nian motions by the Cholesky decomposition of R = LL′ where L is a lower triangular matrix

which provides

dν1t
...

dνdt

dS1
t

...

dSd
t


=



κ1(θ1 − ν1t )
...

κd(θd − νdt )
r1S

1
t

...

rdS
d
t


dt+ diag



η1
√
ν1t

...

ηd
√
νdt√

ν1t S
1
t

...√
νdt S

d
t


L



dW̃ 1
t

...

dW̃ d
t

dW 1
t

...

dW d
t


,
νi0 = yi

Si
0 = zi

, (2.30)

where (W̃ 1, ..., W̃ d,W 1, ...,W d) is a vector of independent Brownian motions. Because the

matrix L is a lower triangular matrix, conditionally to the Brownian motions (W̃ 1, ..., W̃ d), the

dynamics of the asset vector S = (S1, ..., Sd) is similar to the one given in (2.10). This basic

argument is the first we use to extend the results of the previous section to the multidimensional
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Heston model and it can also be used with other stochastic volatility models. Indeed, it allows

us to use the Malliavin calculus directly on (W 1, ...,W d) as in the previous section and to

completely forget the dependence on (W̃ 1, ..., W̃ d). It is worth noting that the conditioning

method is widely used for stochastic volatility models, we refer the reader for example to [13].

The second argument used in our extension is based on the following result, proved in [21].

Lemma 2.3 E
[(∫ t

0
νisds

)r]
is finite for all r ∈ R and i ∈ {1, ..., d}.

Before stating Theorem 2.3, we decompose the matrix L into three d × d blocks and we

define the matrix σ(u) using the constant third block σ.

L =

(
σ′ 0

σ′′ σ

)
, σ(u) =


√
ν1uσ11 0 ... 0
... . . . . . . ...√

νd−1
u σd−11 ...

√
νd−1
u σd−1d−1 0√

νduσd1 ...
√
νduσdd−1

√
νduσdd

 (2.31)

Theorem 2.3 For any s ∈]0, t[ let

Γs,t =
∑

p∈P1,d

ϵ(p)A1,p(1)A2,p(2)...Ad,p(d) =
∑

p∈P1,d

ϵ(p)
d∏

i=1

Ai,p(i), (2.32)

with ϵ(p) as the signature of the permutation p ∈ P1,d, P1,d defined in (2.24) and

A =



π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

... . . . . . . . . . ...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,d
s,t


,

πk,d
s,t = 1 +

d∑
j=k

∫ t

0

φjk(u)dW
j
u , φjk(u) =

1

s

ρjk√
νku

1u∈]0,s[ −
1

t− s
ρjk√
νku

1u∈]s,t[, (2.33)

and

Ck,l =
d∑

j=k

ρjkρjl
s2

∫ s

0

du√
νkuν

l
u

+
d∑

j=k

ρjkρjl
(t− s)2

∫ t

s

du√
νkuν

l
u

. (2.34)
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ρ is the inverse matrix ρ = σ−1 and σ is the third-block matrix in the decomposition (2.31). If

there is 1 < q < ∞ such that Γs,t ∈ Lq(Ω) then, for g ∈ Eb(Rd) and x = (x1, ..., xd) with

xi > 0

E
(
g(St)

∣∣∣Ss = x
)
=
Ts,t[g](x)

Ts,t[1](x)
, (2.35)

where Ts,t[f ](x) is defined for every function f ∈ Eb(Rd) by

Ts,t[f ](x) = E

(
f(St)Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

)
. (2.36)

Proof of Theorem 2.3:
To prove Theorem 2.3, it is sufficient to prove the following recursive relation for k = 0,

hi ∈ C∞b (R) and f ∈ Eb(Rd)

E

(
E

[
f(St)

d∏
i=1

h′i(S
i
s)
∣∣∣F̃t

])
= E

(
E

[
f(St)Γ

k+1
s,t

k∏
i=1

h′i(S
i
s)

d∏
i=k+1

hi(S
i
s)

Si
s

∣∣∣F̃t

])
, (2.37)

where F̃t is the completed filtration generated by (W̃ 1, ..., W̃ d) until t. If we subdivide this

proof into two steps, Step 2 is similar to the one in the proof of Theorem 2.1 because, as we

said earlier, conditionally to (W̃ 1, ..., W̃ d), the processes {νit}1≤i≤d can be considered as de-

terministic. Moreover the expression of Γs,t can be found in the same fashion as for Theorem

2.2.

Step 1: ((2.37) with k = 0)⇒ (2.35).

Let ϕ ∈ C∞c (R) be a mollifier function with support equal to [−1, 1] and such that
∫
R ϕ(u)du =

1, then for any u ∈ R we define

hmk(u) = (Hk ∗ ϕm)(u) ∈ C∞b (R), ϕm(u) = mϕ(mu).

If the equality (2.37) is correct for any k, then it is correct for k = 0 which means

E

(
f(St)

d∏
k=1

h′mk(S
k
s )

)
= E

(
f(St)Γs,t

d∏
k=1

hmk(S
k
s )

Sk
s

)
.
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The proof of the convergence

E

(
f(St)Γs,t

d∏
k=1

hmk(S
k
s )

Sk
s

)
−→ E

(
f(St)Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

)

is also similar to the one in the proof of Theorem 2.1, the only difference is due to the replace-

ment of the Cauchy-Schwartz inequality by the Hölder inequality that uses the Lq-boundedness

of Γs,t.

Besides, h′mk(uk) =
∫
RHk(vk)ϕ

′
m(uk − vk)dvk = ϕm(uk − xk) and the distribution of

the vector (S1
s , ..., S

d
s , S

1
t , ..., S

d
t ), conditionally to (W̃ 1, ..., W̃ d), admits a log-normal joint den-

sity with respect to the Lebesgue measure on Rd
+ × Rd

+, we denote it by p̃s,t(u, v) with u =

(u1, ..., ud) and v = (v1, ..., vd) where

p̃s,t(u, v) =
1

(det(Σ1) det(Σ2))
1
2

q(u, v)

and

q(u, v) =

∏d
i=1 1ui>0,vi>0

(2π)d
∏d

i=1 ui
∏d

i=1 vi
exp

(
−1

2
(lnu− d1)′Σ−1

1 (lnu− d1)
−1

2
(ln v − lnu− d2)′Σ−1

2 (ln v − lnu− d2)

)
,

d1 =
(
sr1 − 1

2
Σ11

1 , ..., srd − 1
2
Σdd

1

)
, d2 =

(
(t− s)r1 − 1

2
Σ11

2 , ..., (t− s)rd − 1
2
Σdd

2

)
,

Σ1 =
∫ s

0
σ(w)σ′(w)dw, Σ2 =

∫ t

s
σ(w)σ′(w)dw and σ(w) is given in (2.31), thus

E

(
f(St)

d∏
k=1

h′mk(S
k
s )
∣∣∣F̃t

)
=

∫
Rdf(v)

(∫
Rd

∏d
k=1 ϕm(uk − xk)q(u, v)du1...dud

)
dv1...dvd

(det(Σ1) det(Σ2))
1
2

To prove the convergence

E

(
f(St)

d∏
k=1

h′mk(S
k
s )

)
−→ E

(∫
Rd

f(v)p̃s,t(x, v)dv1...dvd

)
,

we should first remove the term (det(Σ1) det(Σ2))
1
2 using the Cauchy-Schwarz inequality thanks

to Lemma 2.3, then we use the convergence of
∫
Rd

∏d
k=1 ϕm(uk−xk)q(u, v)du1...dud to q(x, v)

as in Step 1 of the proof of Theorem 2.1.

�

In Theorem 2.3, we made the assumption that Γs,t ∈ Lq(Ω) and one should find the parame-

ters κi, θi and ηi of νiu that fulfill this condition. In this article, we test only the one-dimensional
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Heston model for which the Feller conditions are sufficient to ensure that Γs,t ∈ L2(Ω). Indeed,

if d = 1, Γs,t = π1,1
s,t and it is sufficient to prove that

∫ t

0
du
ν1u
∈ L1(Ω) which is given in the

following lemma. Because d = 1, in the lemma below, we remove the dimension index.

Lemma 2.4 If κ ≥ 0 and 2κθ ≥ η2 then E
(∫ t

0
du
νu

)
is finite.

Proof of Lemma 2.4:
According to Lemma A.2. in [9]

E exp

η2
(

2κθ
η2
− 1
)2

8

∫ t

0

du

νu

 <∞

and the finiteness of E
(∫ t

0
du
νu

)
follows directly from the application of the Jensen’s inequality

on the logarithmic function.

�

2.5 Variance reduction method based on conditioning

As was said in the previous section, conditionally to the Brownian motions that generate the

volatilities, studying the stochastic volatility model (2.30) is equivalent to studying the MEDC

model (2.10). Thus, except for Theorem 2.6, in this section we suppose that the price of the

asset St is given by (2.10) for which we show that one can reduce the variance by a projection

on L2

({∫ t

0
σij(u)dW

j
u

}
i,j

)
and by using the closed-form expression of Ts,t[1](x).

We begin with Ts,t[1](x), we can compute the explicit value of this function of x. The

Ts,t[1](x) closed formula can be got, for instance, from a change of probability. Indeed, we

define the probability P = Ncoeff (
∏d

k=1 S
k
0/S

k
s )P which yields

Ts,t[1](x) =
1

Ncoeff

E

([
d∏

k=1

Hk(S
k
s )

]
Γs,t

)
,

Ncoeff is a deterministic normalization coefficient such that Ms = Ncoeff (
∏d

k=1 S
k
0/S

k
s ) is an

exponential martingale with E(Ms) = 1. Under P, Γs,t has the same law as a polynomial of

Gaussian variables which is sufficient to conduct the computations.
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Let us now denote

h(x,wij) = E

(
Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

∣∣ {∫ t

0

σij(u)dW
j
u

}
1≤j≤i≤d

= {wij}1≤j≤i≤d

)
(2.38)

In what follows, we are going to prove that the function h(x, {wij}1≤j≤i≤d) can be explicitly

known if, for each j, the (d−k)×(d−k) matrix Σjt =
{
Σik

jt

}
j≤i,k≤d

=
{∫ t

0
σij(u)σkj(u)du

}
j≤i,k≤d

is invertible. First, please note that according to our notations i − j + 1 and k − j + 1 are the

indices of the element Σik
jt in the matrix Σjt (we will use a similar convention for Aj , Bj , Ψjt

and Φjt). Also, we notice that the invertibility condition of Σjt is not an important constraint,

because one can choose a time discretization {tm} such that the matrices {Σjtm}k≤d fulfill this

condition 2.

The computation of h(x, {wij}1≤j≤i≤d) is based on a regression of Gaussian variables ac-

cording to the Gaussian variables Yij =
∫ t

0
σij(u)dW

j
u . First, we perform a linear regression of∫ t

0
φjk(u)dW

j
u according to Yij

∫ t

0

φjk(u)dW
j
u =

d∑
i=j

aji,kYij +Xjk, (2.39)

where {Xjk}1≤k≤j≤d is a Gaussian vectorN (0, CX) orthogonal to Y . Using Itô isometry twice

and the orthogonality of Y and X , we obtain

E

(∫ t

0

φjk(u)dW
j
uYlj

)
=

∫ t

0

φjk(u)σlj(u)du =
d∑

i=j

Σli
jta

j
i,k.

If we denote Aj = {aji,k}j≤i,k≤d and Ψjt =
{∫ t

0
φjk(u)σlj(u)du

}
k,l

, we get

Aj = Σ−1
jt Ψjt.

In the same way, we perform a linear regression of
∫ s

0
σkj(u)dW

j
u according to Yij

∫ s

0

σkj(u)dW
j
u =

d∑
i=j

bji,kYij + Zkj, (2.40)

where {Zkj}1≤j≤k≤d is a Gaussian vector N (0, CZ) orthogonal to Y . Using Itô isometry twice

2. Nevertheless, this is a difficult task when the dimension is sufficiently big.
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and the orthogonality of Y and Z, we obtain

E

(∫ s

0

σkj(u)dW
j
uYlj

)
=

∫ s

0

σkj(u)σlj(u)du =
d∑

i=j

Σli
jtb

j
i,k.

If we denote Bj = {bji,k}j≤i,k≤d, we get

Bj = Σ−1
jt Σjs.

Now using (2.39), (2.40) and the value ofA andB, the covariance matrices CX , CZ and CXZ =

E(XZ) are given by (Φi,k
jt =

∫ t

0
φji(u)φjk(u)du)

[CX ]
j
i,k = E(XjiXjk) = Φi,k

jt − (Aj
k)

′Ψi
jt − (Aj

i )
′Ψk

jt + (Aj
k)

′ΣjtA
j
i ,

[CZ ]
j
i,k = E(ZijZkj) = Σi,k

js − (Bj
k)

′Σi
js − (Bj

i )
′Σk

js + (Bj
k)

′ΣjtB
j
i ,

[CXZ ]
j
i,k = E(XjiZkj) = Ψi,k

js − (Aj
k)

′Σi
js − (Bj

i )
′Ψk

jt + (Aj
k)

′ΣjtB
j
i .

Employing (2.39) and (2.40), we express Γs,t and Sk
s according to Yij , Zij and Xji then we

conduct standard Gaussian computations to obtain the expression of h(x,wij)
3. In Theorem

2.4, we give an explicit expression of Ts,t[1](x) and h(x,wij) in the case of multidimensional

B&S models with independent coordinates.

Regarding the model (2.10), we see that now that we know the explicit value of Ts,t[1](x)

and h(x, {wij}1≤j≤i≤d), subsequently, we should choose between the simulation of:

P1) N paths of g(St)h
(
x, {
∫ t

0
σij(u)dW

j
u}i,j

)
then set the continuation value to

C(x) :=

1
N

∑N
l=1 e

−r∆tgl(St)h
(
x, {
∫ t

0
σij(u)dW

j
u}l1≤j≤i≤d

)
Ts,t[1](x)

.

P2) N ′ paths of g(St)h
(
x, {
∫ t

0
σij(u)dW

j
u}i,j

)
and N paths of h

(
x, {
∫ t

0
σij(u)dW

j
u}i,j

)
then

3. One can use Mathematica to compute it formally.
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set the continuation value to

C(x) :=

1
N ′

∑N ′

l=1 e
−r∆tgl(St)h

(
x, {
∫ t

0
σij(u)dW

j
u}l1≤j≤i≤d

)
1
N

∑N
l=1 h

(
x, {
∫ t

0
σij(u)dW

j
u}l1≤j≤i≤d

) .

We will see in sections 2.7.2 and 2.7.3 that sometimes it is preferable to use P2).

In the case of the multidimensional Heston model, please note that Ts,t[1](x) is not given

explicitly, however we explicitly know the value of the function

h(x, {wij}j≤i)=E
(
1Ss≥xΓs,t

∏d
k=1

Hk(S
k
s )

Sk
s

∣∣F̃t

∨
{
∫ t

0

√
νiudW

j
u}j≤i ={wij}j≤i

)
, (2.41)

for 1 ≤ j, i ≤ d. Thus, we will exclusively use a P2) alike procedure, that is to say, simulate

N ′ paths of g(St)h
(
x, {
∫ t

0

√
νiudW

j
u}i,j

)
and N paths of h

(
x, {
∫ t

0

√
νiudW

j
u}i,j

)
then set the

continuation value to

C(x) :=

1
N ′

∑N ′

l=1 e
−r∆tgl(St)h

l
(
x, {
∫ t

0

√
νiudW

j
u}1≤j≤i≤d

)
1
N

∑N
l=1 h

l
(
x, {
∫ t

0

√
νiudW

j
u}1≤j≤i≤d

) .

In this approximation of the continuation value, the trajectory index l is on the function h be-

cause it resulted from a conditioning according to F̃t and consequently h is not deterministic.

We provide in Theorem 2.4, Theorem 2.5 and Theorem 2.6 the expression of the conditio-

ning for three cases that will be tested in section 2.7. The proofs of these theorems are given

in the appendix. Unlike in the Theorem 2.4, in Theorem 2.5 and Theorem 2.6 we only give the

expression of the function h because we will only use the procedure P2) for the simulation.

Theorem 2.4 We suppose that St has the dynamics (2.10) and σij(t) = σijδ(i − j) then, by

conditioning, the function h defined in (2.38) and the denominator Ts,t[1](x) given in Theorem

2.1 have the following values

Ts,t[1](x) =
d∏

k=1

e(σ
2
k−rk)s

σkSk
0

1√
s2π

e−
d̃2xk
2 , d̃xk

=
ln
(

xk

Sk
0

)
− rks+

3σ2
ks

2

σk
√
s

and

h(x, {wk}1≤k≤d) =
d∏

k=1

e(σ
2
k−rk)s

σkSk
0

√
t

s(t− s)2π
exp

(
−sσk
t

(sσk
2

+ wk

)
− (dxk

(wk))
2

2

)
,
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with

dxk
(wk) =

(
ln
(

xk

Sk
0

)
− rks+

3σ2
ks

2
− (sσk + wk)

sσk

t

)/(
σk
√
s(t− s)/t

)
.

Theorem 2.5 We suppose that St has the dynamics (2.10) and that d = 2 with ρ, σ1 and σ2
three constants such that

σ(u) =

(
σ1 0

ρσ2
√
1− ρ2σ2

)
, |ρ| < 1.

By conditioning, the expression of the function h defined in (2.38) is given by

h(x,w1, w2)= E
(
Γs,t

∏2
k=1

Hk(S
k
s )

Sk
s

∣∣W 1
t = w1,W

2
t = w2

)
= e

(
(σ2

1+σ2
2)

2 −r1−r2

)
s+

s(t−s)(σ2
1+2ρσ1σ2+σ2

2)
2t − (σ1+ρσ2)sw1+σ2

√
1−ρ2sw2

t

S1
0S

2
0

Λx1,x2,w1,w2 ,

(2.42)

with

Λx1,x2,w1,w2 = tρ(σ2−σ1)

s(t−s)(1−ρ2)σ2
1σ

2
2
Λ1

x1,x2,w1,w2
+

t((1−ρ2)σ2+ρ2σ1)
s(t−s)σ1σ2

22π
√

1−ρ2
Λ2

x1,x2,w1,w2

+
√

t
s(t−s)

ρ(σ1−σ2)
σ1σ2

[
1 +

d2
√

1−ρ2

σ2

√
t

s(t−s)

]
1√
2π
Λ3

x1,x2,w1,w2
,

and

Λ1
x1,x2,w1,w2

= 1

2π
√

1−ρ2

∫ d1
−∞

∫ d2
√

1−ρ2

−∞ e
−u21+u22−2ρu1u2

2(1−ρ2) du1du2,

Λ3
x1,x2,w1,w2

= e−
(1−ρ2)d22

2
1√
2π

∫ d1√
1−ρ2

−ρd2

−∞ e−
u2

2 du, Λ2
x1,x2,w1,w2

= e
− d21

2(1−ρ2)
+

ρd1d2√
1−ρ2

− d22
2 ,

where d1 and d2 are functions of x1,x2,w1 and w2

d1(x1, w1) =
ln

(
S1
0

x1

)
+r1s+

σ1sw1
t

− s(3t−2s)σ2
1

2t
− s(t−s)ρσ1σ2

t

σ1

√
s(t−s)

t

,

d2(x2, w1, w2) =
ln

(
S2
0

x2

)
+r2s+

σ2ρsw1
t

+
σ2

√
1−ρ2sw2

t
− s(3t−2s)σ2

2
2t

− s(t−s)ρσ1σ2
t

√
1−ρ2σ2

√
s(t−s)

t

.

Theorem 2.6 For d = 1, we suppose that St satisfies (2.29), σ(u) =
√
1− ρ2√νu with |ρ| < 1

and κ > 0, 2κθ > η2. By conditioning, the expression of the function h defined in (2.41) is given
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by

h(x,w) =
F(

∫ t
0 νudu,

∫ s
0 νudu)

S0

√
2π(1−ρ2)

exp

−d2x(w)− rs−√1− ρ2
∫ s
0 νudu∫ t
0 νudu

w − ρ
∫ s

0

√
νudW̃u

+
(
1− ρ2

2

) ∫ s

0
νudu− 1−ρ2

2

(
∫ s
0 νudu)

2∫ t
0 νudu

 ,

with

dx(w) =
ln(S0

x )+rs+
√

1−ρ2
( ∫ s

0 νudu∫ t
0 νudu

)
w+ρ

∫ s
0

√
νudW̃u+(ρ2− 3

2)
∫ s
0 νudu+

(1−ρ2)(
∫ s
0 νudu)2∫ t

0 νudu√
1−ρ2

√
(
∫ t
0 νudu)(

∫ s
0 νudu)−(

∫ s
0 νudu)

2
/
√∫ t

0 νudu
,

and

F

(∫ t

0

νudu,

∫ s

0

νudu

)
=

√∫ t

0
νudu√∫ t

0
νudu

∫ s

0
νudu−

∫ s

0
νudu

∫ s

0
νudu

.

2.6 Bias reduction method

At each time step we estimate the conditional expectation by computing the quotient Q

E(X)

E(Y )
∼

1
N ′

∑N ′

i=1Xi

1
N

∑N
i=1 Yi

= Q, (2.43)

where {Xi}1≤i≤N ′ and {Yi}1≤i≤N are respectively independent copies of the square integrable

random variables X , Y . Although with some models the expectation E(Y ) is known explicitly,

the approximation of E(X) by 1
N ′

∑N ′

i=1Xi already produces a bias on the overall simulation

of the price of the American option (we refer the reader to [25] for more details). In addition to

that, if E(Y ) is not known explicitly, the estimatorQ is also biased which can be easily checked

when {Xi}1≤i≤N ′ and {Yi}1≤i≤N are independent. The combination of the two bias produces

an unpredictable bias on the price of the Bermudan option that approaches the American option

price.

Using the notations

A = E(X), B = E(Y ), σ2
1 = V ar(X), σ2

2 = V ar(Y ) and ρ = Cov(X,Y )/(σ1σ2), (2.44)
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in section 2.7.2, we will observe on some experiments that

N ′ =
N

2
if A2σ2

2 ≥ B2σ2
1 and N =

N ′

2
if A2σ2

2 ≤ B2σ2
1, (2.45)

reduces significantly the bias of the overall simulation. Moreover, in this section, we are going

to verify that the choice (2.45) does not increase significantly the variance of the estimator Q.

Indeed, if |E(Yi)| ≥ ε > 0, Q converges to E(Xi)/E(Yi) and in the following theorem we

will study asymptotically the error of this estimator when acting on the relation between N and

N ′ and we consider the two cases:

case 1: N ′ = ⌈λ1N⌉ with λ1 ∈]0, 1[, then (2.43) becomes

Q =
1
N ′

∑N ′

i=1Xi

1
N

(
N ′

N ′

∑N ′

i=1 Yi +
N−N ′

N−N ′

∑N
i=N ′+1 Yi

) = g1(AN ′ , BN ′ , BN,N ′),

where

g1(x, y, z) = x/(λ1y + (1− λ1)z),
AN ′ = 1

N ′

∑N ′

i=1Xi, BN ′ = 1
N ′

∑N ′

i=1 Yi, BN,N ′ = 1
N−N ′

∑N
i=N ′+1 Yi.

(2.46)

case 2: N = ⌈λ2N ′⌉ with λ2 ∈]0, 1[, then (2.43) becomes

Q =

1
N ′

(
N
N

∑N
i=1Xi +

N ′−N
N ′−N

∑N ′

i=N+1Xi

)
1
N

∑N
i=1 Yi

= g2(AN , AN ′,N , BN),

where

g2(x, y, z) = (λ2x+ (1− λ2)y)/z,
AN = 1

N

∑N
i=1Xi, AN ′,N = 1

N ′−N

∑N ′

i=N+1Xi, BN = 1
N

∑N
i=1 Yi.

(2.47)

Theorem 2.7 Based on the notations (2.44) and the variables defined in (2.46) and (2.47), if

|B| > 0 then as N →∞ and N ′ →∞

g1(AN ′ , BN ′ , BN,N ′) a.s.−→
A

B
,
√
N

(
g1(AN ′ , BN ′ , BN,N ′)− A

B

)
law
−→ N (0,Σ1(λ1)),

Σ1(λ1) =
1

λ1

σ2
1

B2
+

4A2σ2
2

B4

(
1

4
− Bσ1ρ

2Aσ2

)
(2.48)
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and

g2(AN , AN ′,N , BN)
a.s.
−→

A

B
,
√
N ′
(
g2(AN , AN ′,N , BN)−

A

B

)
law
−→ N (0,Σ2(λ2)),

Σ2(λ2) =
1

λ2

A2σ2
2

B4
+

4σ2
1

B2

(
1

4
− Aσ2ρ

2Bσ1

)
. (2.49)

Proof of Theorem 2.7:
Since the computations are similar for the case 2, we give only the proof associated to the case 1.

First, the variablesAN ′ ,BN ′ andBN,N ′ are square integrable thanks to the fact that the variables

X , Y involved in Q are square integrable. The almost sure convergence of g1(AN ′ , BN ′ , BN,N ′)

follows from the law of large numbers and from the continuity of g1 at (A,B,B). For the same

reasons, the gradient vector ∇g1(AN ′ , BN ′ , BN,N ′) converges a.s. to ∇g1(A,B,B). Besides

√
N(g1(AN ′ , BN ′ , BN,N ′)− g1(A,B,B))

=
√

N
N ′

√
N ′(AN ′ − A)∂g1

∂x
(A,B,B) +

√
N
N ′

√
N ′(BN ′ −B)∂g1

∂y
(A,B,B)

+
√

N
N−N ′

√
N −N ′(BN,N ′ −B)∂g1

∂z
(A,B,B) +

√
N ||∆N ||ϵN ,

where ∆N = (AN ′ −A,BN ′ −B,BN,N ′ −B) and ϵN convergences a.s to 0. Using the Slutsky

Theorem, with G = (G1, G2, G3) ∼ N (0, C) and the continuity of (x, y) 7→ xy and (x, y) 7→
x+ y provide

√
N(g1(AN ′ , BN ′ , BN,N ′)− g1(A,B,B))

law
−→

√
1

λ1

∂g1
∂x

(A,B,B)G1 +

√
1

λ1

∂g1
∂y

(A,B,B)G2 +

√
1

1− λ1
∂g1
∂z

(A,B,B)G3,

with

C =


σ2
1 σ1σ2ρ 0

σ1σ2ρ σ2
2 0

0 0 σ2
2

 ,

which allows us to compute Σ1(λ1).

�

Theorem 2.7 tells us that one should use λ1 = 1 and λ2 = 1 to reduce the variance. But, as
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we said previously, we prefer to use (2.45) because it reduces the bias of the overall simulation

of the price and it also does not change a lot the variance of the estimatorQ. Indeed, for instance,

if A2σ2
2 ≫ B2σ2

1 it does not really matter to multiply the term σ2
1

B2 in (2.48) by two.

Finally, when E(Y ) is known explicitly, we point out that even though the estimator Q is

biased, it has sometimes smaller variance than the estimator
1
N′

∑N′
i=1 Xi

E(Y )
. Indeed, for λ1 = 1 or

λ2 = 1 and from Theorem 2.7, the variance produced by Q is equal to σ2
1

B2 +
A2σ2

2

B4 − 2Aσ1σ2ρ
B3

which can be lower than σ2
1

B2 for some values of ρ.

2.7 Simulation and numerical results

In this section, we perform three sets of tests that involve the results of Theorem 2.4, Theo-

rem 2.5 and Theorem 2.6. But before that, we study the parallel adaptability of MCM as well

as some considerations that one should respect when using GPUs to reduce the execution time.

2.7.1 Parallel considerations

To manage CPU (Central Processing Unit) power dissipation, the processor makers have

oriented their architectures to multi-cores. This switch in technology led us to study the pricing

algorithms based on Monte Carlo for multi-core and many-core architectures using CPUs and

GPUs (Graphics Processing Units) in [4] and [2]. In the latter articles we basically studied the

impact of using GPUs instead of CPUs for pricing European options using MC and American

options using the Longstaff and Schwartz algorithm [42]. The results of this study prove that we

can greatly decrease the execution time and the energy consumed during the simulation. Unlike

the LS method that uses a regression phase which is difficult to parallelize according to [2], the

MCM is a squared 4 Monte Carlo method which is more adapted to multi-core and many-core

environments than the LS method. Moreover, since using MCM without localization does not

involve any parametric regression, higher dimensional problems can be dealt with more easily

and the accuracy of results depends only on the number of simulated trajectories.

Let us study the parallel adaptability of MCM for parallel architectures. In Figure 2.2, we

present the speedup of parallelizing 5 MCM on the four cores of the CPU instead of implemen-

ting it on only one core. We notice that the speedup increases quickly according to the number

of simulated trajectories and it reaches a saturation state for > 9000 trajectories. For a large

4. What we mean by squared Monte Carlo is not necessarily simulating a square number of trajectories, but a
Monte Carlo simulation that requires a Monte Carlo estimation, for each path, of an intermediate value (here the
continuation value) and this can be done by using the same set of trajectories as the first Monte Carlo simulation.

5. We use OpenMP directives.
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dimensional problem, the maximum speedup obtained is greater than the number of physical

cores 6 on the CPU which indicates that MCM is very appropriate for parallel architectures. We

point out, however, that our parallelization of MCM is done on the trajectories 7, so the speedup

is invariable according to dimensions and time steps.
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FIGURE 2.2 – The speedup of using all the CPU cores according to the number of trajectories.

Regarding GPU implementation, we also use a path parallelization of simulations. In Figure

2.3, we present the speedup of parallelizing 8 MCM on the GPU instead of implementing it on

the four cores of the CPU. The speedup increases quickly not only according to the number of

simulated trajectories, but also according to the dimension of the contract. The latter fact can be

easily explained by the memory hierarchy of the GPU [48]. The speedups provided in Figure

2.3 prove, once again, the high adaptability of MCM on parallel architectures.

MCM is well suited to parallel architecture because it is completely based on Monte Carlo,

unlike the Longstaff-Schwartz algorithm that performs a regression which cannot be efficiently

parallelized. Indeed, for a regression that uses less than 10 polynomials, the Longstaff-Schwartz

algorithm have almost the same behavior on the CPU as the one described for MCM in Figure

2.2. However, the many-core GPU implementation of the Longstaff-Schwartz algorithm is at

most two times faster than its multi-core CPU implementation. For more details, we refer the

reader to [2] which compares the GPU implementation of the Longstaff-Schwartz algorithm to

its one-core CPU implementation.

6. which is due to hyper-threading.
7. which is the most natural procedure of parallelizing Monte Carlo.
8. We use CUDA language.
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FIGURE 2.3 – The speedup of using the GPU instead of the CPU cores according to the number
of trajectories.

Although MCM is based on Monte Carlo, one should, at least, respect the four points below

when programming MCM on GPUs:

– Reduce the communication between CPU and GPU to its minimum, even more when

implementing MCM whose trajectories are coupled, that is to say, one needs the other

trajectories’ data to simulate one value associated to one trajectory.

– Ensure the maximum coalescence of the data on the GPU because it affects greatly the

execution time.

– Find the right compromise between the number of threads on each block and the number

of blocks on the GPU when implementing MCM using less than 216 trajectories.

– Saturate the GPU with as many instructions as possible thanks to the use of multi-streaming.

We refer the reader to [48] and [47] for more details on programming GPUs using CUDA.

2.7.2 Geometric average on independent B&S model

In this part, we simulate the prices associated to Theorem 2.4 and we test our simulations

on a geometric average payoff that has the following expression

Φd
geo(ST ) =

(
K −

d∏
i=1

(Si
T )

1/d

)
+

. (2.50)
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The parameters of the simulations are the following : The strike K = 100, the maturity

T = 1, the risk neutral interest rate r = ln(1.1), the time discretization is defined using the

time steps that is given as a parameter in each simulation, Si
0 = 100 and σij(t) = σij(t)δ(j − i)

with σii = 0.2. The true values, to which we compare our simulation results, are set using

the one-dimensional equivalence and a tree method [12], available in Premia [32]. The values

obtained by the latter procedure are very accurate and can be considered as the real prices of

the American (not the Bermudan) contract.

As a continuation of what we began in section 2.6, we study the bias of the price of the

American option when changing the values of N (= ⌈λ2N ′⌉) or N ′(= ⌈λ1N⌉) that intervene

in the estimator (2.43). According to Figure 2.4, we see that the error of the overall simulation

barely changes according to the value of λ in the one dimensional case. However, for five and

ten dimensions the error is less important when we take λ = 1/2 as detailed in (2.45).
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FIGURE 2.4 – The bias of the simulation according to λ for thirty time steps and 214 trajectories.

In order to decide which value to use in (2.45), we should have a "sufficiently good" ap-

proximation of σ1, σ2, A and B. Consequently, we can implement one of the two methods

below:

M0) If B = Ts,t[1](x) and σ2 are explicitly known, using all the simulated paths Nmax,

we approximate the values of σ1 and A then we use either λ1 = 1/2 or λ2 = 1/2 to

re-simulate Q.

M1) Using all the simulated paths Nmax, we approximate the values of σ1, σ2, A and B

then we use either λ1 = 1/2 or λ2 = 1/2 to re-simulate Q.
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FIGURE 2.5 – MCM Vs. LS for Φd
geo(ST ) : PR is the real price. PM and PL are the prices

obtained respectively by MCM and LS represented with their standard deviations.

In Figure 2.5, we compare the P2 (̸=) version of MCM with a standard LS algorithm. The

LS is implemented using linear regression for multidimensional contracts and using up to three

degree monomials for the one-dimensional contract. The reason behind the choice of linear

regression in the multidimensional case is the fact that the regression phase of LS can really

increase the execution time without a significant improvement of the prices tested.

In Figure 2.5, even if all the prices are sufficiently good, we see that MCM provides better

prices than those of LS. Also when we increase the time steps, MCM is more stable than LS.
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However, for d = 10 and time steps> 10, we remark that one should simulate 214 trajectories to

stablize MCM. This fact is expected due to the high variance of the ten dimension contract and

that one should simulate more trajectories. The executions of MCM and LS with 210 trajectories

are carried out in less than one second. Moreover, using 214 trajectories the LS and MCM are

executed within seconds (< 5s). As a conclusion from this figure, MCM provides better results

than LS in approximately the same execution time. When we increase the simulated trajectories

to 214, the MCM prices are stabilized for high dimensions and are always better than LS prices.

In Table 2.1, we remain with the same payoff Φd
geo(ST ) but this time we compare the dif-

ferent nonparametric methods of implementing MCM. In P2(=) and P2( ̸=), we use the same

P2 method but with N = N ′ for the first one and N ̸= N ′ for the second (the relation between

N and N ′ is given in (2.45)). First, we notice that P2(=) is not stable in the multidimensional

case and can give wrong results if the time steps > 10. This kind of bad results are also ob-

tained for different values of the model parameters. However the P2 method is stabilized when

we implement the version N ̸= N ′ that reduces the bias. Also when we use 210 trajectories, P1
and P2(̸=) are almost similar. Nevertheless, with 214 trajectories, P2(̸=) outperforms P1. As far

as the execution time is concerned, the time consumed by P2( ̸=) is not very different from P1
when we use 210 trajectories. In addition, using 214 trajectories, to decide whether N = N ′/2

or N ′ = N/2 is performed on the GPU independently on each trajectory and P2(̸=) is < 5%

slower than P1 for the tests that we have implemented.

2.7.3 Call on max and put on min on two-dimensional B&S model

In this part, we simulate the prices associated to Theorem 2.5 and we test our simulations on

the American put on minimum and on the American call on maximum that have the following

payoffs

Φmin(ST ) =
(
K −min(S1

T , S
2
T )
)
+
, Φmax(ST ) =

(
max(S1

T , S
2
T )−K

)
+
. (2.51)

The parameters of the simulations are the following: The strike K = 100, the maturity T = 1,

the risk neutral interest rate r = ln(1.1), the time discretization is defined using the time steps

that is given as a parameter in each simulation, Si
0 = 100.

The true values, to which we compare our simulation results, are set using the Premia

implementation of a finite difference algorithm [58] in two dimensions. Besides, we use the

approximation presented in [20] for the bivariate cumulative distribution in the expression of
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TABLE 2.1 – P1 Vs. P2 for Φd
geo(ST ): The real values are equal to 4.918, 1.583 and 0.890 for

dimensions one, five and ten respectively
Simulated Dim Time Price Std Deviation

Paths d Steps P1 P2(=) P2( ̸=) P1 P2(=) P2( ̸=)
210 1 10 4.750 4.826 4.789 0.213 0.167 0.160
210 1 20 4.729 4.880 4.800 0.270 0.226 0.216
210 1 30 4.679 4.909 4.853 0.270 0.179 0.190
210 5 10 1.548 1.681 1.526 0.071 0.073 0.067
210 5 20 1.632 > 2.0 1.588 0.070 0.048
210 5 30 1.650 > 2.3 1.619 0.074 0.069
210 10 10 0.900 1.112 0.869 0.039 0.045 0.044
210 10 20 0.921 > 1.3 0.936 0.043 0.047
210 10 30 0.908 > 1.5 0.949 0.035 0.046

214 1 10 4.738 4.812 4.807 0.057 0.046 0.047
214 1 20 4.675 4.869 4.825 0.047 0.044 0.043
214 1 30 4.638 4.876 4.856 0.072 0.059 0.058
214 5 10 1.487 1.526 1.506 0.057 0.012 0.012
214 5 20 1.504 1.639 1.534 0.047 0.021 0.016
214 5 30 1.508 > 1.8 1.543 0.072 0.015
214 10 10 0.845 0.938 0.842 0.013 0.015 0.012
214 10 20 0.901 > 1.2 0.893 0.012 0.014
214 10 30 0.923 > 1.3 0.916 0.015 0.016

Λ1
x1,x2,w1,w2

(Theorem 2.5). For higher dimensions, we refer the reader to [24] for the approxi-

mation of the multivariate normal cumulative distribution.

Because of the bad results obtained previously with P2(=), we eliminate this method and

we only consider P2(̸=) and P1. In Table 2.2, we analyze the American put on minimum and

the American call on maximum in two dimensions. As far as Φmin is concerned, P2(̸=) out-

performs P1 even when we use only 210. Regarding Φmax, P1 performs better than P2( ̸=) for

210 trajectories which indicates that, because of the big variance produced by Φmax relatively

to Φmin, the relation between N and N ′ is not well estimated. Simulating 214 trajectories, we

obtain similar results for P1 and P2(̸=) for Φmax.

In Table 2.3, we show that our results are accurate even when ρ ̸= 0 and when simulating

only 210 trajectories with P2(̸=).
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TABLE 2.2 – P1 Vs. P2 for Φmin and Φmax: Simulations for ρ = 0 and σ1 = σ2 = 0.2. The real
values are equal to 8.262 and 21.15 respectively

Simulated The Time Price Std Deviation
Paths Payoff Steps P1 P2( ̸=) P1 P2( ̸=)
210 Φmin 10 7.734 7.986 0.190 0.248
210 Φmin 20 7.618 7.895 0.257 0.270
210 Φmin 30 7.564 7.920 0.224 0.263
210 Φmax 10 21.03 20.33 0.66 0.86
210 Φmax 20 20.46 19.38 0.61 0.73
210 Φmax 30 19.73 18.13 0.73 0.93

214 Φmin 10 7.755 8.088 0.058 0.067
214 Φmin 20 7.584 8.098 0.098 0.052
214 Φmin 30 7.467 8.087 0.082 0.043
214 Φmax 10 20.96 20.91 0.09 0.24
214 Φmax 20 20.58 20.56 0.16 0.16
214 Φmax 30 20.36 20.05 0.15 0.22

TABLE 2.3 – Φmin and Φmax: Simulations for ρ ̸= 0 and σ1 = σ2 = 0.2 using 210 trajectories
Real The Time Price Std Deviation

values Payoff Steps ρ = 0.5 ρ = −0.5 ρ = 0.5 ρ = −0.5
(+)7.23 Φmin 10 7.31 9.10 0.06 0.03

Φmin 20 7.47 9.29 0.07 0.06

(−)9.05 Φmin 30 7.64 9.48 0.09 0.08

(+)18.74 Φmax 10 18.78 23.23 0.53 0.35

Φmax 20 19.03 23.57 0.37 0.12

(−)23.08 Φmax 30 19.29 23.94 0.19 0.20

TABLE 2.4 – Φmax: Simulations for ρ ̸= 0, σ1 = 0.1 and σ2 = 0.2 using 210 trajectories
Time Price Std Deviation

Steps ρ = 0.3 −0.3 0.7 −0.7 0.3 −0.3 0.7 −0.7
10 17.17 19.07 15.44 20.20 0.29 0.24 0.29 0.22

20 17.17 19.24 15.37 20.36 0.20 0.23 0.27 0.27

30 17.22 19.30 15.40 20.44 0.15 0.18 0.25 0.19

Real values 17.27 19.11 15.70 20.21

When σ1 = σ2, the terms Λ1
x1,x2,w1,w2

and Λ3
x1,x2,w1,w2

of (2.42) do not intervene, thus in

Table 2.4, we show that our results are also accurate even when σ1 ̸= σ2 and when simulating
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only 210 trajectories with P2(̸=). We also considered, in Table 2.3, the case of highly correlated

assets |ρ| = 0.7.

2.7.4 Put on Heston model

In this part, we simulate the prices associated to Theorem 2.6. Unlike the previous tests, in

this part we do not know the real price of the American options. Thus, we will test the cohe-

rency of the results obtained with MCM to the results obtained using two different algorithms

in Premia [32] (version 13). The methods to which we compare MCM are : The Longstaff-

Schwartz(LS) method [42] implemented with a second order discretization scheme for the CIR

process [5] and the Andersen-Broadie(AB) method [6] also implemented with a second order

discretization scheme for the CIR process. We take the default parameters given in Premia for

the two methods and we have tested various model parameters configurations including the one

associated to Table 2.5: Dimension d = 1, maturity T = 1, strike K = S0 = 100, ν0 = 0.01,

κ = 2, θ = 0.01, η = 0.2 and r = ln(1.1). Moreover, we have implemented MCM using the

Milstein scheme for the CIR process and we used only 210 trajectories with P2(̸=) because we

judged it sufficient for our simulations.

According to Table 2.5, the results obtained with MCM are coherent to the one obtained

with LS and AB. In Table 2.5, we only present the results for the put option, but we obtained

the same kind of coherence for the call option and even for high values of ν0, θ and η but always

under the Feller conditions.

TABLE 2.5 – Put option using 210 trajectories and 50 time steps
Correlation(ρ) Price(MCM) Std Deviation(MCM) LS AB

−0.5 1.79 0.05 1.78 1.74

0.0 1.60 0.05 1.61 1.59

0.5 1.41 0.05 1.41 1.35

2.8 Conclusion and future work

In this article we provided, on the one hand, theoretical results that deal with the computation

of the continuation value using the Malliavin calculus and how one can reduce the Monte Carlo

variance only by conditioning. On the other hand, we presented numerical results related to a

bias reduction method, to the accuracy of the prices obtained and the parallel adaptability of the

MCM method on multi-core and many-core architectures.
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As far as the theoretical results are concerned, based on the Malliavin calculus, we provided

a generalization of the value of the continuation for the multidimensional models with determi-

nistic and nonconstant triangular matrix σ(t) as well as for the multidimensional Heston model.

Moreover, we pointed out that one can judiciously reduce the variance by a simple conditioning

method. Finally, we presented a very effective bias reduction method based on an appropriate

choice of the number of trajectories used to approximate the quotient of two expectations.

Regarding the numerical part, we proved that instantaneous simulations on the CPU can be

obtained using only 210 trajectories and the results got with MCM are sufficient and better than

with LS. Also, unlike LS, our nonparametric variance reduction implementation of MCM does

not require parametric regression. Thus we improve the results of the simulation by only increa-

sing the number of trajectories. Finally, increasing the number of trajectories is time consuming

but MCM can be effectively parallelized on CPUs and GPUs. Indeed, for all the implemented

tests, the MCM simulation of 214 trajectories using the GTX 480 GPU can be performed within

seconds (< 5s).

As future work, we plan to extend the results presented for the multidimensional Heston mo-

del to other stochastic volatility models. We will also look for a weaker and sufficient condition

than the one presented in Lemma 2.4 for the Heston model and to extend it for the multidi-

mensional case. Regarding the parallelization aspects, we are working on the parallelization of

MCM on a CPU/GPU cluster using MPI+OpenMP+CUDA.

2.9 Appendix

Proof of Lemma 2.1:
The equality (2.15) can be easily proved. Indeed, using the chain rule

Dk
uf(St) =

d∑
p=k

σpk(u)S
p
t ∂xpf(St)

Besides, we assumed that ρ(u) = σ−1(u) which completes the proof.

�
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Proof of Lemma 2.2:
Using duality (2.7) we have

E
(
h(Sk

s )F
∑d

i=k

∫
I
ρik(u)dW

i
u

)
= E

(∑d
i=k

∫
I
Di

u

[
h(Sk

s )F
]
ρik(u)du

)
= E

(
h(Sk

s )
∑d

i=k

∫
I
Di

uFρik(u)du
)
+ E

(
F
∑d

i=k

∫
I
h′(Sk

s )σki(u)ρik(u)S
k
s du
)

Moreover, the fact that σ(u) and ρ(u) are two triangular matrices such that ρkk(u) = 1/σkk(u)

simplifies the last term which can be also rewritten using the Malliavin derivative

E

(
F

∫
I

h′(Sk
s )S

k
s du

)
= E

(
F

∫
I

Dk
uh(S

k
s )

σkk(u)
du

)
This provides the required result.

�

Proof of Theorem 2.4:
Let us begin with Ts,t[1](x), by independence of the coordinates we obtain

Ts,t[1](x) = E

(
d∏

k=1

Hk(S
k
s )W

k
s,t

σks(t− s)Sk
s

)
=

d∏
k=1

1

σks(t− s)
E

(
Hk(S

k
s )W

k
s,t

Sk
s

)
.

Afterwards, we use the independence of the increments to obtain

E
(

Hk(S
k
s )

Sk
s

W k
s,t

)
= E

(
Hk(S

k
s )

Sk
s

[(t− s)(W k
s + σks)− s(W k

t −W k
s )]
)

= (t− s)E
(

Hk(S
k
s )

Sk
s

(W k
s + σks)

)
− sE

(
Hk(S

k
s )

Sk
s

)
E(W k

t −W k
s )

= (t− s)E
(

Hk(S
k
s )

Sk
s

(
√
sG+ σks)

)
,

where the random variable G has a standard normal distribution. Moreover we have the follo-

wing equality in distribution

Sk
s
.
= Sk

0 exp

((
rk −

σ2
k

2

)
s+ σk

√
sG

)
.

By computing the expectation, we obtain the requested result.

Regarding function h, we condition according to W k
t = wk and we use the independence of
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coordinates

E

(
g(St)

d∏
k=1

Hk(S
k
s )W

k
s,t

σks(t− s)Sk
s

)
= E

(
g(St)

d∏
k=1

1

σks(t− s)
hk(xk,W

k
t )

)
,

with

hk(xk, wk) = E
(
Hk(S

k
s )W

k
s,t/S

k
s

∣∣∣W k
t = wk

)
.

Knowing W k
0 = 0 and W k

t = wk, when we fix s the random variable W k
s
.
= swk

t
+
√

s(t−s)
t
G

and G has a standard normal distribution. Also, we have the following equality in distribution

for W k
s,t:

W k
s,t

.
= σks(t − s) +

√
ts(t− s)G and Sk

s
.
= Sk

0 exp

((
rk −

σ2
k

2

)
s+ σk

swk

t
+ σk

√
s(t−s)

t
G

)
.

Then we compute hk(xk, wk) which yields:

hk(xk, wk) =
e(σ

2
k−rk)s

Sk
0

√
ts(t− s)

2π
exp

(
−sσk
t

(sσk
2

+ wk

)
− (dxk

(wk))
2

2

)
.

�

Proof of Theorem 2.5:
For this model Γs,t = π1,2

s,t π
2,2
s,t − C1,2 with

π1,2
s,t = 1 +

√
1− ρ2W 1

s − ρW 2
s

sσ1
√
1− ρ2

−
√
1− ρ2(W 1

t −W 1
s )− ρ(W 2

t −W 2
s )

(t− s)σ1
√
1− ρ2

,

π2,2
s,t = 1 +

W 2
s

sσ2
√

1− ρ2
− (W 2

t −W 2
s )

(t− s)σ2
√
1− ρ2

, C1,2 =
−tρ

s(t− s)(1− ρ2)σ1σ2
.

For k = 1, 2, knowing W k
0 = 0 and W k

t = wk, when we fix s the random variable W k
s
.
=

swk

t
−
√

s(t−s)
t
Gk where G1 and G2 are two independent with standard normal distribution. In

addition, we obtain the following equalities in distribution

∏2
i=1 S

i
s

S1
0S

2
0

.
= e

(
(−σ2

1−σ2
2)

2
+r1+r2

)
s+

(σ1+ρσ2)sw1+σ2

√
1−ρ2sw2

t
−
√

s(t−s)
t

(
(σ1+ρσ2)G1+σ2

√
1−ρ2G2

)

Γs,t
.
=

(
1 +

√
t

s(t− s)

[
ρG2

σ2
√

1− ρ2
− G1

σ1

])(
1−

√
t

s(t− s)
G2

σ2
√
1− ρ2

)
− C1,2,
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which allows us to compute h(x,w1, w2) and obtain the result of Theorem 2.5.

�

Proof of Theorem 2.6:
We perform the regression presented in pages 69-73 that provides the following equalities in

distribution when we condition according to F̃t and
∫ t

0

√
νudWu = w

1

s
√

1−ρ2

∫ s

0
dWu√
νu
− 1

(t−s)
√

1−ρ2

∫ t

s
dWu√
νu

.
= −1

s(t−s)
√

1−ρ2

√
(t− s)2

∫ s

0
du
νu

+ s2
∫ t

s
du
νu
G1,∫ s

0

√
νudWu

.
=

∫ s
0 νudu∫ t
0 νudu

w −
√
(
∫ t
0 νudu)(

∫ s
0 νudu)−(

∫ s
0 νudu)

2

√∫ t
0 νudu

G2,

where the Gaussian vector (G1, G2) ∼ N (0,Γ) with

Γ =

(
1 R

R 1

)
, R =

s(t−s)
√∫ t

0 νudu√
(
∫ t
0 νudu)(

∫ s
0 νudu)−(

∫ s
0 νudu)

2
√

(t−s)2
∫ s
0

du
νu

+s2
∫ t
s

du
νu

.

Thus Ts,t[g](x) = E
(
E
(
g(St)h

(
x,
∫ t

0

√
νudWu

) ∣∣∣F̃t

))
with

h(x,w)=E

(
H(Ss)
Ss

(
1− 1

s(t−s)
√

1−ρ2

√
(t− s)2

∫ s

0
du
νu

+ s2
∫ t

s
du
νu
G1

)∣∣∣F̃t

∨∫ t

0

√
νudWu=w

)
and after Gaussian computations we get the requested result.

�
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Chapitre 3

High-Dimensional American Pricing
Algorithm on GPU Cluster

As it is widely known, the Feynman-Kac formula establishes a link between a linear para-

bolic PDE (Partial Differential Equation) and a stochastic problem that can be solved by linear

Monte Carlo (MC) algorithms. The advantages of solving linear parabolic PDEs by linear MC,

for pricing European contracts, were studied in Chapitre 1, especially the suitability of this

method for massively parallel architectures based on a GPU cluster.

Some recent results, as the one provided in [14], establish a similar link between nonli-

near parabolic PDEs and stochastic problems using BSDEs (Backward Stochastic Differential

Equations) which can be solved by MC algorithms. We will call nonlinear MC algorithms the

MC algorithms used to solve nonlinear parabolic PDEs. Unlike linear MC, the effectiveness

of nonlinear MC algorithms is not obvious. A challenging nonlinear problem in mathematical

finance is pricing American contracts. Like [1, 7, 10, 22], we use an MC method based on the

Malliavin calculus (MCM) for pricing American contracts. In Chapitre 2, we proved that the

formulation of pricing American options using the Malliavin calculus is very suited to parallel

architectures. In this chapter, the latter fact will be explored more deeply: We will detail how

to tune the algorithm parameters that act on the efficiency of the algorithm implemented on a

GPU (Graphics Processing Unit) cluster. These parameters do not exist in a linear MC but come

from the fact that we are dealing with a nonlinear problem. We also introduce a natural way of

reducing the dimension 1 for problems that involve, at least, from five to ten assets. For this di-

mension reduction, we give a straightforward method that allows to check whether the accuracy

of the result is sufficient. Finally, we study the execution time and the energy consumption of

1. As it will be explained later, we basically reduce the number of Brownian motions that drives the SDE, but
only for the computation of the continuation and not for the payoff.

89
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our MCM algorithm on a CPU/GPU cluster.

In section 3.1, we remind briefly the theoretical and algorithmic formulation of the problem

of pricing American options using the Malliavin calculus. Afterwards, we detail in section 3.2

the dimension reduction method for the computation of the conditional expectation, then give

the explicit formula obtained once this approximation is used. From a practitioner’s point of

view, the latter formula is important because it can be directly implemented regardless of all the

theory and simplifications that justify it. In section 3.3, we present our multiparadigm procedure

implemented on top of Cuda+MPI. In section 3.4, after a discussion on the accuracy of the

results, we study the different parameters that help us to tune the heterogeneous CPU/GPU

implementation. Finally, we compare, in section 3.5, the mono-node multi-threaded CPU and

GPU implementations according to the execution time and the energy consumed. Also, on an

increasing number of nodes, we test the scalability of our algorithm on a GPU cluster (16 GPUs

NVIDIA Fermi architecture) for different trajectory size problems.

3.1 Theoretical and algorithmic presentation

3.1.1 State of art & brief theoretical considerations

In [50], the authors implemented an embarrassingly parallel algorithm for pricing American

options thanks to a quantification that can be performed off-line. Although this method provides

very accurate results for dimensions d ≤ 3, it is limited for higher dimensions by the definition

of a quantification grid. Other methods that give also very good results are the one presented in

[33] & [51] and whose parallelization is studied in [19]. In addition to the dimension limitations,

as described in [19], these two methods also have scalability limitations on a CPU cluster,

even if some parts of the algorithms can be done off-line. The authors of [18] provide some

interesting experiences in a grid computing environment that summarizes very well the kind of

programming problems that one can face when dealing with American option pricing.

In Chapitre 1, we proposed the parallelization of the widely used Longstaff-Schwartz (LS)

algorithm. The advantage of this algorithm is its efficiency in low and medium dimensional

problems d < 5, which means that we can simulate small number of trajectories and have a suf-

ficiently good prices sometimes even for five dimensional problems. However, the drawback of

LS is the bias introduced by the parametric regression and that cannot be removed by increasing

the number of the simulated trajectories (see Figure 3.1), but it requires increasing the cardinal

of the regression basis which can suppress completely the original efficiency of LS (see [26] for

more details). Consequently, even for dimensions less than 5, the errors of regression methods
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FIGURE 3.1 – Histogram of prices obtained by Monte Carlo using Longstaff-Schwartz algo-
rithm with maturity T = 1 and thirty exercise dates.

lead to very important errors on the Greeks computation. Moreover, pricing American options

with Monte Carlo using regression methods (see [2] or Chapitre 1) is intrinsically difficult to

parallelize, because the regression part cannot be parallelized effectively on the GPU and it

should be done on the CPU.

In this chapter, we study the parallel implementation and suitability of MCM presented in

Chapitre 2. In contrast to regression and quantification algorithms, this approach aims at a non-

parametric algorithm in which the accuracy can be improved by increasing only the number

of the simulated trajectories. This fact is demonstrated on Figure 3.2 in which we can see that

MCM performs better than LS when we increase the number of simulated trajectories. Moreo-

ver, according to Figure 3.2, MCM is as efficient as LS because it provides sufficiently good

results even when simulating only 210 trajectories which requires less than one second for exe-

cution.

Nevertheless, as we will see in section 3.2, for high-dimensional problems (dimension > 5)

the expression of the conditional expectation using the Malliavin calculus becomes complex

enough that one need to reduce the dimension using a PCA-like (Principal components analysis)

method. Before introducing the simplifications in section 3.2, we want here to detail the part of

the algorithm in which those simplifications are done.

As explained previously, for a multidimensional Markovian asset model S, the price of

an American contract can be approximated for large number of time steps by the price of a
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Bermudan contract. The price of a Bermudan contract can be obtained thanks to the following

induction that allows to get the optimal stopping time

τN = T,

∀k ∈ {N − 1, ..., 0}, τk = tk1Ak
+ τk+11Ac

k
,

(3.1)

where the set Ak = {Φ(Stk) > C(Stk)}, Φ(Stk) is the payoff of a given contract on the time

interval tk ∈ [t, T ] and C(Stk) represents the continuation value and is given by

C(Stk) = E
(
e−rδtPtk+1

(Stk+1
)
∣∣∣Stk

)
. (3.2)

This formulation of the dynamic programming allows us to reduce the bias (we refer the

reader to [25]). It also makes effective the dimension simplifications that we will perform in

section 3.2: Reducing the number of Brownian motions that drive the SDE will be done only

for the approximation of the continuation (3.2) which is involved in the determination of the

optimal stopping time.

3.1.2 Algorithmic details

As it was done for LS in Chapitre 1, we subdivide the entire algorithm of MCM in three

phases:

1) Paths Generation (PG) phase.

2) Approximation of the Continuation (AC) phase.

3) Pricing (PRC) phase.



3.1. THEORETICAL AND ALGORITHMIC PRESENTATION 93

Algorithm 4 is the global algorithm that includes the three phases of the simulation and Algo-

rithm 5 is the one that details the operations performed in the AC phase (that replaces the REG

phase of LS). In Algorithm 4 and Algorithm 5, we use the parameter l (l = l1, l2) as a path

index and i as a dimension index, we also denote n the number of simulated paths, d the total

dimension and δt the time discretization.

Algorithm 4: MCM algorithm for an American option
Input: Model parameters and random number generator initialization.
Output: P0(S0)
for t ∈ {T, . . . , 2δt, δt} do

/* Computations performed during the PG phase */
for i ∈ {1, . . . d} do

for l ∈ {1, . . . n} do
– Draw W i,l

t using RNG and the Brownian
bridge induction

– Use (3.3) to update the asset price Si,l
t

end
end
if (t < T ) and l ∈ {Φ(Sl

t) > 0} then
/* Computations performed during the AC phase */
This part is detailed in Algorithm 5
/* Computations performed during the PRC phase */
for l ∈ {1, . . . n} do

– Compute the payoff Φ(Sl
t)

– Pt(S
l
t) = 1Λl

Φ(Sl
t) + 1Λc

l
e−rδtPt+δt(S

l
t+δt)end

if (t = δt) then
/* P0(S0) is the price of the option */

P0(S0) = max
(
Φ(S0),

e−rδt

n

∑l=n
l=1 Pδt(S

l
δt)
)

end
end
else

/* Computations performed during the PRC phase */
for l ∈ {1, . . . n} do

Pt(S
l
t) = 1t=TΦ(S

l
T ) + 1Φ(Sl

t)≤0e
−rδtPt+δt(S

l
t+δt)

end
/* We have, of course, ∀l ∈ {1, . . . n} PT+δt(S

l
T+δt) = 0 */

end
end
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Algorithm 5: The AC phase
Input: Pt+δt(S

l
t+δt) and {W i

t+δt}l1≤i≤d with l ∈ {1, . . . n}
Output: C(Sl

t) with l ∈ {1, . . . n}
for l1 ∈ {1, . . . n} do

AC1) For l2 ∈ {1, . . . n}, evaluate

h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
AC2) For either (n′, n′′) = (n/2, n) or (n′′, n′) = (n, n/2), we refer to Chapitre 2 for
more details

C(Sl1
t ) ≈

1
n′

∑n′

l2=1 e
−rδtPt+δt(S

l2
t+δt)h

(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
1
n′′

∑n′′

l2=1 h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
end

Path Generation phase (PG)

In this part of the algorithm, we simulate the paths of the multidimensional asset St =

(S1
t , ..., S

d
t ) by simulating the multidimensional Brownian motion Wt = (W 1

t , ...,W
d
t ) and the

dynamic of St is given by

Si
t = Si

0 exp

[(
ri −

1

2

i∑
k=1

σ2
ik

)
t+

i∑
k=1

σikW
k
t

]
, (3.3)

where:

Si
0 is the initial price of the asset i,
ri is the rate of the asset i,
σik is an element of the diffusion matrix associated to the asset i and to the Brownian motion
k.

Although, the theoretical results in section 3.2 are established for a very general model, the

basic model given in (3.3) is sufficient to reflect the computational difficulties. Moreover, the

Brownian bridge technique simulation (see [25]) of W k
t does not reduce the generality of our

algorithm because the GPU memory storage of the Brownian motion paths is negligible when

compared to the memory storage needed for the AC phase. Moreover, the MPI implementation

implies a communication between GPUs thanks to the CPU, subsequently the Brownian motion

paths can be stored in the CPU memory until they are requested by the GPU. We simulate

the Brownian motion paths thanks to the parallel CMRG Random Number Generator (RNG)

[40, 41], the parallelization of this RNG on a GPU cluster is detailed in Chapitre 1. By setting an

RNG for each trajectory, this phase can be executed independently on each streaming process.
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Approximation of the Continuation phase(AC)

Using Malliavin calculus [1, 7, 10], for each path l1, the continuation C(Sl1
t ) can be ap-

proximated in our model (3.3) by

C(Sl1
t ) ≈

1
n′

∑n′

l2=1 e
−rδtPt+δt(S

l2
t+δt)h

(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
1
n′′

∑n′′

l2=1 h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

) (3.4)

where:

h (x, {yi}1≤i≤d) = E
(
1St≥xΘt,t+δt

∣∣{W i
t+δt}1≤i≤d = {yi}1≤i≤d

)
where 1St≥x is equal to the tensorial product

d∏
i=1

1Si
t≥xi

, when d ≥ 1. Moreover, the value

of Θt,t+δt was already given in Chapitre 2 as well as the relation between n′ and n′′ (either

(n′, n′′) = (n/2, n) or (n′′, n′) = (n, n/2)). After reminding in Theorem 3.1 the principal result

of Chapitre 2, we give in (3.12) a detailed expression of the function h.

Due to the fact that we use a backward algorithm, we consider tk as the actual time step and

tk+1 = tk + δt as the previous time step. For each path l1, to compute C(Sl1
tk
) at the actual time

step tk, we need the whole path data of Ptk+1
(Sl2

tk+1
) and {W i

tk+1
}l21≤i≤d at the previous time step

tk+1. Nevertheless, due to a shift of the time step, for each path l2, Ptk+1
(Sl2

tk+1
) is computed in

the PRC phase and can be transferred from each GPU to the other GPUs during the PG phase.

For the same reason, {W i
tk+1
}l21≤i≤d is computed in the PG phase and can be transferred during

the AC and the PRC phase. Thanks to Algorithm 5, one can easily see that the complexity of

the AC phase is equal to O(n2) and it is divided into:

AC1) the evaluation of the function h (x, {yi}1≤i≤d),

AC2) the computation of the sum of the Monte Carlo approximation.

Pricing phase (PRC)

Once we compute the continuationC(Sl
t) in the AC phase, this phase performs the backward

induction (3.1) independently on each path of the simulation. The set Λl = {C(Sl
t) < Φ(Sl

t)}
allows to test the continuation for each trajectory l using the indicator application 1.

3.2 The expression of function h after a dimension reduction

Like in section 2.3, we work here with a model that is more general than the one imple-

mented in our tests and that satisfies the SDE (3.3). Thus, we suppose the assets S1
t , ..., S

d
t are
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solution of the following stochastic differential equations

dSi
t

Si
t

= ridt+
i∑

j=1

σij(t)dW
j
t , Si

0 = zi, i = 1, .., d, (3.5)

where ri are constants and σ(t) = {σij(t)}1≤i,j≤d is a deterministic triangular matrix ({σij(t)}i<j =

0). Also, we suppose that the matrix σ(t) is invertible, bounded and uniformly elliptic.

3.2.1 Dimension reduction

Let us remind the principal results of section 2.3. Applying Theorem 2.1 and 2.2, given in

Chapitre 2, to the model (3.5), we get the following theorem

Theorem 3.1 We take s ∈]0, t[, g an Rd-measurable function with polynomial growth and x =

(x1, ..., xd) with xi > 0. We denote Hi(yi) = H(yi−xi) the Heaviside function of the difference

between yi and xi, then

E
(
g(St)

∣∣∣Ss = x
)
=
Ts,t[g](x)

Ts,t[1](x)
, (3.6)

where Ts,t[f ](x) is defined for every function 2 f ∈ Eb(Rd) by

Ts,t[f ](x) = E

(
f(St)Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

)
, (3.7)

Γs,t is given by

Γs,t =
∑

p∈P1,d

ϵ(p)
d∏

i=1

Ai,p(i), (3.8)

with ϵ(p) as the signature of the permutation p ∈ P1,d, P1,d is the set of the second order

permutations i.e. p ◦ p = Id where Id is the identity application and

A =



π1,d
s,t C1,2 C1,3 · · · C1,d

1 π2,d
s,t C2,3 · · · C2,d

... . . . . . . . . . ...

1 · · · 1 πd−1,d
s,t Cd−1,d

1 1 · · · 1 πd,d
s,t


, (3.9)

2. In our case f = g or f = 1.
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where Ck,l is the covariance of πk,d
s,t and πl,d

s,t with

πk,d
s,t = 1 +

d∑
j=k

∫ t

0

φjk(u)dW
j
u , φjk(u) =

1

s
ρjk(u)1u∈]0,s[ −

1

t− s
ρjk(u)1u∈]s,t[,

ρ is the inverse matrix ρ(u) = σ−1(u).

As we have already seen, the expression (3.8) represents a quasi-determinant that can be

computed in practice thanks to the development according to the first line as in Figure 2.1 of

Chapitre 2 (In this figure, the computations are done for a general 3 × 3 matrix). In fact, the

use of only the second order permutations P1,d implies a symmetry in the expression of Γs,t,

thus when suppressing, for example, column 2 in the development we must also suppress line

2. Thanks to this symmetry, the number of the terms involved in the expression of Γs,t is less

than the number of terms involved in the determinant expression (d!). Unfortunately, according

to the following proposition, the number of terms remains big for high-dimensional contracts

d > 5. Before announcing this theorem, we provide a definition that explains all the needed

notations.

Definition 3.1 For a d× d matrix A of the form (3.9), we call nd the number of non zero terms

to sum in the computation of the quasi-determinant of A defined in (3.8). For 1 ≤ i ≤ d, we call

ni
d the number of non zero terms to sum in the computation of the quasi-determinant of the ith

order simplification of the matrix A obtained when we put {Cd−k,j}1≤k≤i,d−k+1≤j≤d = 0.

For instance, when d = 3, a 1st order simplification of a 3 × 3 matrix of the form (3.9) is

given by 
π1,d
s,t C1,2 C1,3

1 π2,d
s,t 0

1 1 π3,3
s,t

 , with n1
3 = 3,

when, as illustrated in Figure 2.1, n3 = 4.

Proposition 3.1 For d ≥ 3 and i ∈ {1, ..., d − 1}, nd and ni
d, introduced in Definition 3.1,

satisfy the following inductions

nd = nd−1 + (d− 1)nd−2 (3.10)

and
ni
d = ni−1

d−1 + (d− i− 1)ni−1
d−2 (3.11)
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with: n1 = 1, n2 = 2 and n0
d = nd.

Proposition 3.1 can be easily proved by induction using the relation

P1,d = {τ d−1
d−1 ◦ p; p ∈ P1,d−1} ∪ {τ ld−1 ◦ p; p ∈ P1,d−1, p(l) = l, l ∈ {1, ..., d− 1}},

where τ ji : i ↔ j is the transposition application on {1, ..., d − 1} that swaps only i to j and

j to i. This relation is another version of the relation (2.16) given in Chapitre 2. Although the

induction (3.10) provides an nd which is by far smaller than d!, for high dimensions nd can

be quite big. However, taking the (d − 2)th and the (d − 3)th order simplification, we reduce

drastically the number of terms. Table 3.1 provides examples of values taken by ni
d.

TABLE 3.1 – Values of ni
d for some dimensions d and orders of simplification i

Dimension d i = 0 i = d− 3 i = d− 2

5 26 14 5

6 76 22 6

7 232 32 7

8 764 44 8

9 2620 58 9

10 9496 74 10

In the special case of the Black & Scholes model (3.3), we point out that one can perform a

change-of-variables method as explained in [7] and no approximation is needed. The proposed

approximation is required for the general model (3.5) when σ is not constant.

Now, we provide two successive approximation strategies for the expression of the function

h defined by

h(x,wij) = E

(
Γs,t

d∏
k=1

Hk(S
k
s )

Sk
s

∣∣ {∫ t

0

σij(u)dW
j
u

}
1≤j≤i≤d

= {wij}1≤j≤i≤d

)
, s < t. (3.12)

Approximation I

The first approximation consists in replacing the matrix given in (3.9) by a matrix that is

sparse above its diagonal. A way of doing it is by replacing the diffusion matrix σ(u) by σ̃(u)

expressed in (3.13). Here, σ(u) is replaced by σ̃(u) only 3 for the computation of h and this is

3. and not for the evaluation of the payoff.
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done by placing in the first lines the assets that intervene the most in the value of the option 4.

Then we hold only the diagonal and the two Brownian motions (W 1,W 2) that are associated

to the two biggest eigenvalues of the correlation matrix. Afterwards, using the parameter q, we

suppress some dependencies with respect toW 2 of the assets that intervene the least in the value

of the option 5. To summarize, σ̃(u) comes from σ(u) by holding the diagonal, the first column

and q − 1 terms (q ≥ 2) of the second column.

σ̃(u) =



σ1,1(u) 0 0 0 · · · 0 0 0

σ2,1(u) σ2,2(u) 0 0 0

σ3,1(u) σ3,2(u) σ3,3(u) 0 0
...

... 0
. . . . . . ...

... σq,2(u) 0 0
. . . . . . ...

... 0
... . . . . . . 0 0

σd−1,1(u)
... 0 0 σd−1,d−1(u) 0

σd,1(u) 0 0 · · · · · · 0 0 σd,d(u)


. (3.13)

With this simplification, the inverse matrix ρ̃(u) = σ̃−1(u) has elements equal to zero in the

same places where the elements of σ̃ are null. Replacing σ by σ̃ also changes the matrix A of

the expression (3.9) by the matrix Ad

Ad =



π1,d
s,t C1,2 C1,3 C1,4 · · · · · · C1,d−1 C1,d

1 π2,d
s,t C2,3 · · · C2,q 0 · · · 0

1 1 π3,d
s,t 0 0 · · · 0 0

... . . . . . . 0 0

... . . . . . . . . . ...

1 1
. . . 0 0

1 1 · · · · · · 1 1 πd−1,d
s,t 0

1 1 · · · · · · · · · 1 1 πd,d
s,t


, with (3.14)

4. Or the assets that have the biggest volatilities.
5. Or the assets that have the smallest volatilities.
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

π1,d
s,t = 1 +

∑d
j=1

∫ t

0
φj1(u)dW

j
u , φj1(u) =

1
s
ρ̃j1(u)1u∈]0,s[ − 1

t−s
ρ̃j1(u)1u∈]s,t[,

π2,d
s,t = 1 +

∑q
j=2

∫ t

0
φj2(u)dW

j
u , φj2(u) =

1
s
ρ̃j2(u)1u∈]0,s[ − 1

t−s
ρ̃j2(u)1u∈]s,t[,

i ≥ 3, πi,d
s,t = 1 +

∫ t

0
φii(u)dW

i
u, φii(u) =

1
s
ρ̃ii(u)1u∈]0,s[ − 1

t−s
ρ̃ii(u)1u∈]s,t[.

(3.15)

where Ck,l is the covariance of πk,d
s,t and πl,d

s,t whose general expression is given in (3.15) above.

By this approximation, the number of non zero terms to sum in the computation of the

quasi-determinant of Ad is included between nd−3
d and nd−2

d , which remains computationally

acceptable when d > 5 (see Table 3.1). In addition, this approximation is justified numerically

by the fact that we can increase the value of q until we are satisfied by the accuracy of the result.

This helps us also to quantify, more or less, the error committed by this kind of approximation.

If we use the notation | · | for a quasi-determinant that involves only the second order permu-

tations p ∈ P1,d, the following lemma provides the expression of |Ad|. The proof of this lemma

is given in the appendix.

Lemma 3.1 We consider Ad and πi,d
s,t defined as in (3.14) and (3.15), then

|Ad| =
∑

p∈P1,d
ϵ(p)

∏d
i=1A

d
i,p(i)

=
∏

1≤i≤d π
i,d
s,t − C1,2

∏i ̸=1,2
1≤i≤d π

i,d
s,t − C2,3

∏i̸=2,3
1≤i≤d π

i,d
s,t

+
∑q

k=4(−1)k+1C1,k

[∏i̸=k
2≤i≤d π

i,d
s,t +

∑k−1
j=3(−1)jC2,j

(∏i̸=j,k
3≤i≤d π

i,d
s,t

)]
+

∑q
k=4(−1)k+2C2,k

[∏i̸=2,k
1≤i≤d π

i,d
s,t +

∑k−1
j=3(−1)jC1,j

(∏i̸=j,k
3≤i≤d π

i,d
s,t

)]
+

∑d
k=q+1(−1)k+1C1,k

[∏i̸=k
2≤i≤d π

i,d
s,t +

∑q
j=3(−1)jC2,j

(∏i̸=j,k
3≤i≤d π

i,d
s,t

)]
,

(3.16)

with the convention that the last term of the previous equality is equal to zero when q = d.

As presented in Chapitre 2 (section 2.5), the proof of Lemma 3.2 is based on a regression

argument according to
∫ t

0
σij(u)dW

j of the other Gaussian random variables. This Lemma de-

fines also the regression parameters that intervene in the computation of the approximation of

the function h.

Lemma 3.2 and Definition There exist independent families of correlated Gaussian vectors,

Z11 ∼ N (0, V1), (Z12, Z22) ∼ N (0, V2), (Z13, Z23, Z33) ∼ N (0, V3), ..., (Z1q, Z2q, Zqq) ∼
N (0, Vq) then (Z1(q+1), Z(q+1)(q+1)) ∼ N (0, Vq+1), ..., (Z1d, Zdd) ∼ N (0, Vd) that are orthogo-

nal to
{∫ t

0
σ̃ij(u)dW

j
u

}
i,j≤d

such that the random variables
{
πk,d
s,t

}
1≤k≤d

, defined in (3.15), are
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also equal to

π1,d
s,t = 1 +

∑d
i=1 a

1
i

∫ t

0
σi1(u)dW

1
u + Z11 +

∑q
i=2 a

12
i

∫ t

0
σi2(u)dW

2
u + Z12

+
∑d

i=3 a
i
1

∫ t

0
σii(u)dW

i
u +

∑d
i=3 Z1i,

π2,d
s,t = 1 +

∑q
i=2 a

22
i

∫ t

0
σi2(u)dW

2
u + Z22 +

∑q
i=3 a

i
2

∫ t

0
σii(u)dW

i
u +

∑q
i=3 Z2i,

i ≥ 3, πi,d
s,t = 1 + aii

∫ t

0
σii(u)dW

i
u + Zii,

(3.17)

with a1 = {a1i }1≤i≤d = Σ−1
1t Ψ1t, (a12, a22) = {(a12i , a22i )}2≤i≤q = Σ−1

2t Ψ2t where
Σ1t =

{∫ t

0
σi1(u)σk1(u)du

}
1≤i,k≤d

, Σ2t =
{∫ t

0
σi2(u)σk2(u)du

}
2≤i,k≤q

,

Ψ1t =
{∫ t

0
φ11(u)σk1(u)du

}
1≤k≤d

,

Ψ2t = (Ψ1
2t,Ψ

2
2t) =

{(∫ t

0
φ21(u)σk2(u)du,

∫ t

0
φ22(u)σk2(u)du

)}
2≤k≤q

and
{
aij
}
i≥3, j=1,2,i

=
{(∫ t

0
φij(u)σii(u)du

)
/
(∫ t

0
σ2
ii(u)du

)}
i≥3, j=1,2,i

. Moreover


V1 =

∫ t

0
φ2
11(u)du− tΨ1t

tΣ−1
1t Ψ1t, V2 =

{∫ t

0
φ2i(u)φ2j(u)du

}
i,j∈{1,2}

− tΨ2t
tΣ−1

2t Ψ2t,

i ≥ 3, Vi =
{∫ t

0
φij(u)φik(u)du− 1∫ t

0 σ2
ii(u)du

∫ t

0
φij(u)σii(u)du

∫ t

0
φik(u)σii(u)du

}
j,k∈{1,2,i}

.

Thanks to what was defined above, there exist three independent families {X1j}1≤j≤d, {X2j}2≤j≤d

and {Xjj}3≤j≤d of correlated and centered Gaussian random variables orthogonal to both{∫ t

0
σ̃ij(u)dW

j
u

}
i,j≤d

and the Z’s families, such that


1 ≤ j ≤ d,

∫ s

0
σj1(u)dW

1
u =

∑d
i=1 b

1
ij

∫ t

0
σi1(u)dW

1
u + c11j Z11 +X1j,

2 ≤ j ≤ q,
∫ s

0
σj2(u)dW

2
u =

∑q
i=2 b

2
ij

∫ t

0
σi2(u)dW

2
u + c12j Z12 + c22j Z22 +X2j,

3 ≤ j ≤ d,
∫ s

0
σjj(u)dW

j
u = bjj

∫ t

0
σjj(u)dW

j
u + c1jZ1j + c2jZ2j + cjjZjj +Xjj,

(3.18)

where b1 = Σ−1
1t Σ1s, b2 = Σ−1

2t Σ2s and {bjj}j≥3 =
{(∫ s

0
σ2
jj(u)du

)
/
(∫ t

0
σ2
jj(u)du

)}
j≥3

.

Finally, c11j = V −1
1 U1j , (c12j , c

22
j ) = V −1

2 U2j and {(c1j, c2j, cjj)}j≥3 =
{
V −1
j Ujj

}
j≥3

with



{U1j}1≤j≤d =
{∫ s

0
φ11(u)σj1(u)du

}
j≥1
− Σ1sΣ

−1
1t Ψ1t,

{U2j}2≤j≤q =
{(∫ s

0
φ12(u)σj2(u)du,

∫ s

0
φ22(u)σj2(u)du

)}
q≥j≥2

− Σ2sΣ
−1
2t Ψ2t,

3 ≤ j,
{
U i
jj

}
i=1,2,j

=

{∫ s

0
φji(u)σjj(u)du− 1∫ t

0 σ2
jj(u)du

∫ t

0
φji(u)σjj(u)du

∫ s

0
σ2
jj(u)du

}
i=1,2,j

.
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For the previous lemma, we point out that the Z vectors have different sizes because of the

structure of the matrix σ̃(u) given in (3.13). For instance, (Z1(q+1), Z(q+1)(q+1)) has only two

coordinates because σ̃q+1,2(u) = 0.

Approximation II

The second approximation strategy consists to set the Gaussian variables X , in Lemma 3.2,

equal to zero. This is justified numerically, by the fact that the elements of the covariance matrix

of the X’s vectors are small enough that they can be neglected. The latter approximation is not

needed in the Black & Scholes case (SDE (3.3)), because each Brownian motionW i
s = W i

t−Zii

with Zii = (W i
t −W i

s).

3.2.2 The expression of the function h

First, we denote by the matrix Li the Cholesky decomposition of the matrix Vi (Vi = LiL
′
i).

Thanks to Lemma 3.2, we know that Vi is a 3 × 3 matrix when 3 ≤ i ≤ q and we will use the

following notation for the elements of Li

3 ≤ i ≤ q, Li =


li11 0 0

li21 li22 0

li1 li2 lii

 .

When i > q, Vi is a 2 × 2 matrix and we set li21 = li22 = li2 = 0. Also, we define the vector κi
as the product of the vector ci, introduced in Lemma 3.2, and the matrix Li, then

if 3 ≤ i ≤ q, κi = (κi1, κi2, κii) = (c1i, c2i, cii)Li

if i > q, κi = (κi1, κii) = (c1i, cii)Li.
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Finally we define the variables λi, θi and µi as follows

λ1 = −1
2

∫ s

0
σ2
11(u)du+

∑d
j=1 b

1
j1

∫ t

0
σj1(u)dW

1
u + c111 Z11,

λ2 = −1
2

∫ s

0
(σ2

21(u) + σ2
22(u)) du+

∑d
j=1 b

1
j2

∫ t

0
σj1(u)dW

1
u

+
∑q

j=2 b
2
j2

∫ t

0
σj2(u)dW

2
u + c112 Z11 + c122 Z12 + c222 Z22,

{λi}3≤i≤q = −1
2

∫ s

0

(∑
j=1,2,i σ

2
ij(u)

)
du+

∑d
j=1 b

1
ji

∫ t

0
σj1(u)dW

1
u

+
∑q

j=2 b
2
ji

∫ t

0
σj2(u)dW

2
u + bii

∫ t

0
σii(u)dW

i
u + c11i Z11 + c12i Z12 + c22i Z22,

{λi}q<i≤d = −1
2

∫ s

0

(∑
j=1,2,i σ

2
ij(u)

)
du+

∑d
j=1 b

1
ji

∫ t

0
σj1(u)dW

1
u

+ bii
∫ t

0
σii(u)dW

i
u + c11i Z11,

θi = ln
(
xi/S

i
0

)
− λi, (3.19)



µ1 = 1 +
∑d

i=1 a
1
i

∫ t

0
σi1(u)dW

1
u + Z11 +

∑q
i=2 a

12
i

∫ t

0
σi2(u)dW

2
u + Z12

+
∑d

i=3 a
i
1

∫ t

0
σii(u)dW

i
u,

µ2 = 1 +
∑q

i=2 a
22
i

∫ t

0
σi2(u)dW

2
u + Z22 +

∑q
i=3 a

i
2

∫ t

0
σii(u)dW

i
u,

i ≥ 3, µi = 1 + aii
∫ t

0
σii(u)dW

i
u,

Using the regression parameters defined in Lemma 3.2 and setting the X random variables

that intervene in (3.18) to zero (see Approximation II), the following expressions are purely

computational and the expressions were established and verified thanks to Mathematica.

If the asset vector S̃ satisfies the SDE (3.5) in which the elements of σ are replaced by the

elements of σ̃, then

h

(
x, {wi1}1≤i≤d

{wi2}2≤i≤q, {wii}3≤i≤d

)
= E

[
h̃

(
x, {wi1}1≤i≤d, {wi2}2≤i≤q

{wii}3≤i≤d, Z11, Z12, Z22

)]
(3.20)
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and

h̃

(
x, {wi1}1≤i≤d, {wi2}2≤i≤q

{wii}3≤i≤d, z11, z12, z22

)
=E

|Ad|
d∏

k=1

Hk(S̃
k
s )

S̃k
s

∣∣∣∣∣∣∣∣∣∣

∫ t

0
σi1(u)du = wi1,∫ t

0
σi2(u)du = wi2,∫ t

0
σii(u)du = wii,

(Z11, Z12, Z22) = (z11, z12, z22)


= Ew

z

[
|Ad|

d∏
k=1

Hk(S̃
k
s )

S̃k
s

]
, w = ({wi1}1≤i≤d, {wi2}2≤i≤q{wii}3≤i≤d), z = (z11, z12, z22)

whose expression, thanks to (3.16), is given by

Ew,z − C1,2Ew,z
1,2 − C2,3Ew,z

2,3 +
d∑

k=q+1

(−1)k+1C1,k

[
Ew,z
1,k +

q∑
j=3

(−1)jC2,jEw,z
1,2,j,k

]

+

q∑
k=4

(−1)k+1

{
C1,k

[
Ew,z
1,k +

k−1∑
j=3

(−1)jC2,jEw,z
1,2,j,k

]
− C2,k

[
Ew,z
2,k +

k−1∑
j=3

(−1)jC1,jEw,z
1,2,j,k

]}
,

(3.21)

where

Ew,z
1,2 = Cst

∏
3≤i≤d

(
µiR

i0 + li1R
i1
1 + li2R

i1
2 + liiR

i1
i

)
,

Ew,z
1,2,j,k =

Ew,z
1,2(

µjRj0 + lj1R
j1
1 + lj2R

j1
2 + ljjR

j1
j

) (
µkRk0 + lk1Rk1

1 + lk2Rk1
2 + lkkRk1

k

) ,

Ew,z
1 = Ew,z

1,2

µ2 +

q∑
p=3

lp21

(
µpR

p1
1 +

∑
j=1,2,p lpjR

p2
1j

)
+ lp22

(
µpR

p1
2 +

∑
j=1,2,p lpjR

p2
2j

)
(
µpRp0 +

∑
j=1,2,p lpjR

p1
j

)
 ,

Ew,z
2 = Ew,z

1,2

µ1 +
d∑

p=3

lp11

(
µpR

p1
1 +

∑
j=1,2,p lpjR

p2
1j

)
(
µpRp0 +

∑
j=1,2,p lpjR

p1
j

)
 ,
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Ew,z
1,k =

Rk0Ew,z
1(

µkRk0 +
∑

j=1,2,k lkjR
k1
j

)
+
Ew,z
1,2

∑
j=1,2,k lkj

(
lk21
[
Rk1

1 R
k1
j −Rk0Rk2

1j

]
+ lk22

[
Rk1

2 R
k1
j −Rk0Rk2

2j

])(
µkRk0 +

∑
j=1,2,k lkjR

k1
j

)2 ,

Ew,z
2,k =

Rk0Ew,z
2(

µkRk0 +
∑

j=1,2,k lkjR
k1
j

) +
Ew,z
1,2

∑
j=1,2,k lkjl

k
11

[
Rk1

1 R
k1
j −Rk0Rk2

1j

](
µkRk0 +

∑
j=1,2,k lkjR

k1
j

)2 ,

Ew,z = µ1E1 + µ2E2 − µ1µ2E1,2 +
d∑

e=3

q∑
p=3

(le11l
p
21Y

11
ep + le11l

p
22Y

12
ep ),

with

Y 11
ep =

δe−pE1,2
(
µpR

p2
11 +

∑
j=1,2,p lpjR

p3
11j

)
(
µpRp0 +

∑
j=1,2,p lpjR

p1
j

) +
δe−pE1,2

∏
k=e,p

(
µkR

1k
1 +

∑
j=1,2,p lkjR

2k
1j

)
∏

k=e,p

(
µkRk0 +

∑
j=1,2,k lkjR

k1
j

)

Y 12
ep =

δe−pE1,2
(
µpR

p2
12 +

∑
j=1,2,p lpjR

p3
12j

)
(
µpRp0 +

∑
j=1,2,p lpjR

p1
j

)
+
δe−pE1,2

(
µeR

e1
1 +

∑
j=1,2,p lejR

e2
1j

)(
µpR

p1
2 +

∑
j=1,2,p lpjR

p2
2j

)
∏

k=e,p

(
µkRk0 +

∑
j=1,2,k lkjR

k1
j

)
and

Cst =
e−

∑d
i=1 λi∏

1≤i≤d S
i
0

1θ1<01θ2<0, Ri0 = Fi1, Ri1
j = −κjFij + F ij,

Ri2
jj = κ2jFij +

(
mij

vij
− 2κj

)
F ij, Ri2

jk = κjκkFij +

(
θiκk
κ2jvij

− κk
)
F ij,

Ri3
jjj = −κj(3 + κ2j)Fij +

(
θ2i
κ2jv

2
ij

− (1 + θi)

vij
+ (3 + κ2j)

)
F ij,
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Ri3
jkk = −κj(1 + κ2k)Fij +

(
θ2i κ

2
k

κ4jv
2
ij

− κ2k(1 + θi)

κ2jvij
+ (1 + κ2k)

)
F ij,

Ri3
jkl = −κjκkκlFij +

κkκl
κ2j

(
θ2i
κ2jv

2
ij

− (1 + θi)

vij
+ κ2j

)
F ij.

where δ is the Kronecker delta and δe−p = (1− δe−p), besides, for i ≤ q and j ∈ {1, 2, i}

Fij = exp

(
κ2i1 + κ2i2 + κ2ii

2

)
∗

{
ϕvij(mij) if κij ≤ 0

1− ϕvij(mij) if κij ≥ 0
, ϕv(x) =

∫ x

−∞

e
−u2

2v

√
2πv

du

F ij =
−κij
|κij|

exp

(
κ2i1 + κ2i2 + κ2ii

2

) exp
(

−m2
ij

2vij

)
√
2πvij

vij =
κ2i1 + κ2i2 + κ2ii

κ2ij
, mij =

θi + κ2i1 + κ2i2 + κ2ii
κij

.

If i > q, then j ∈ {1, i} and both Fij and F ij have the same expression but with κi2 = 0.

Equality (3.20) tells us that one should perform a Monte Carlo simulation to get the expres-

sion of the function h. Using an importance sampling technique (we refer the reader to [25]),

denoting ω = (ω11, ω12, ω22) and ω · Z = ω11Z11 + ω12Z12 + ω22Z22 then

h

(
x, {wi1}1≤i≤d

{wi2}2≤i≤q, {wii}3≤i≤d

)
=E

[
eω·Z− |ω|2

2 h̃

(
x, {wi1}1≤i≤d, {wi2}2≤i≤q, {wii}3≤i≤d

Z11 + ω11, Z12 + ω12, Z22 + ω22

)]
(3.22)

Although this method is not mandatory to have good results, we will see in section 3.4.1 that

one can choose ω that allows to perform very few drawings (< 32) of the random variables Z11,

Z12 and Z22 and obtain accurate simulations.

Finally, we conclude this theoretical parts by some thoughts on the positive aspects of this

method. In fact, beyond its parallelization suitability and its easy extension to high dimensional

contracts, this method allows to have a good idea on the accuracy of the result by changing

the value of q. Moreover, the American pricing by Malliavin calculus can be easily applied to

more complex diffusions than the one presented in (3.5). We have already presented the latter

aspect in the previous chapter for the multidimensional Heston model, but this method can be

also applied to a large class of multidimensional jump diffusion processes that are built by

subordination 6. In addition to all that, by the function h which is known thanks to (3.22) and

6. This can be done simply by conditioning according to the jump times which are independent from the
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(3.21), one can price various contracts 7 at the same time with the same function h.

3.3 Multi-paradigm parallel program

Although the PG and the PRC phases can be efficiently parallelized, the AC phase is tricky

and one needs to manage the CPU/GPU data transfer before launching this phase. In fact, even

thought no communication is needed during computations in the one core implementation, the

cluster version requests communications between all GPUs. Moreover, unlike the PG and the

PRC phases which are linear according to the number of the simulated paths n, the complexity

of the AC phase 8 is equal to O(n2). Indeed, during the AC phase, for each path l ∈ {1, . . . n},
the computation of the continuation C(S(l)

t ) is linear according to n. For all these reasons, the

details of our parallelization will take into account the necessity to optimize as much as possible

the AC phase. We will see some considerations of this optimization in this section and the rest

of it in the section 3.4.

3.3.1 Development strategy

Clusters of multicore CPUs and manycore GPUs require three different grains of paralle-

lism. Coarse grained parallelism is used to distribute computations across the cluster nodes and

to achieve message-passing between nodes. Medium grain is used to run in parallel some CPU

tasks on the different CPU cores of the processors. Finally, fine grained parallelism is required

to parallelize computations on all hardware threads of each GPU, according to an SIMD-like

programming paradigm.

In this version of implementation, we did not take the whole advantage of the use of me-

dium grain parallelism based on the OpenMP multithreading library. However, we have only

focused on the use of coarse and fine grained parallelism based on OpenMPI library and CUDA

programming language.

We have identified four main difficulties and objectives in multi-paradigm developments.

First, the synchronization of : Message-passing (on the cluster), data transfers between CPU

and GPU (on each node), and GPU computations. A basic algorithm optimization consists in

attempting to overlap communications, transfers and computations. Second, the design of data

structures leading to fast data accesses in any part of the application, because optimized data

Brownian motions.
7. contracts that hold the Markov property and that differ only by their payoff.
8. This is the price to pay to have a pure Monte Carlo solution, since the continuation here is also computed by

Monte Carlo.
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access rules are different on CPUs and GPUs and can require different data storage. Third,

minimizing all kinds of communications: inter-nodes cluster communications and data transfers

between CPUs and GPUs. Fourth, the limited amount of GPU RAM (compared to the CPU

RAM): When processing large problems, either several GPU cards are needed or one has to

optimize the algorithm to allow a better use of the memory. The latter point is well explained

in the section "Parameters tuning" and enabled us to reduce the CPU/GPU communications to

their minimum.

3.3.2 Multi-paradigm parallel algorithm

Algorithm 6: Non-overlapping parallel algorithm run on each node of a GPU cluster.
Initialization on the CPU
Initialization on the GPU
Transfer initial values from the CPU to the GPU
Compute Gaussian random numbers on the GPU
Compute Brownian motion arrays at time step N on the GPU
Compute asset prices on the GPU
Compute the payoff on the GPU
Compute trajectory prices array at time step N on the GPU
for Step = N-1 to 1 do

Transfer Brownian motion arrays from the GPU to the CPU
Transfer trajectory price arrays from the GPU memory to the CPU
Route Brownian motion arrays across the cluster nodes (all-to-all)
Route trajectory price arrays across the cluster nodes (all-to-all)
Transfer received Brownian motion arrays from the CPU to the GPU
Transfer received trajectory price arrays from the CPU to the GPU
Compute Gaussian random numbers on the GPU
Compute new Brownian motion arrays on the GPU
Compute (update) asset prices on the GPU
Compute the trajectory payoff arrays on the GPU
Compute new trajectory price arrays on the GPU

end
Transfer trajectory price arrays from the GPU to the CPU
Compute payoff value on the CPU
Reduction of sums across the cluster on node 0
Compute final price and error values on node 0, on the CPU
Print results (price and error) and performances
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Algorithm 6 shows the main steps of our non-overlapping algorithm. The size of the ar-

rays will be specified later on Figure 3.3.The bold text lines concern the computations and the

transfers that have to be done before launching the computations of the AC phase given in the

mathematical Algorithm 5 on page 94.

All computations are carried out on the GPUs except some small ones performed after the

computation loop. All data transfers between CPU and GPU in the computation loop are requi-

red to complete inter-node cluster communications and to participate to inter-GPU communi-

cations.

The inter-node communications of Brownian motion arrays (B) 9 and price arrays (Pr) 10 are

expensive all-to-all communications. Then, each node stores in its CPU and GPU memories

results of all nodes: it stores a large array indexed by all Monte Carlo trajectories computed

in the cluster (see section 3.3.3). This solution has not an infinite scaling (it is not possible to

process very large problems using a larger number of nodes). But considering the number of

trajectories required by the American pricing problem and the current size of GPU memories,

we will see in section 4 that our algorithmic solution is efficient and scales at least from 1 to

16 nodes on a 219 trajectory problem (with 5 assets). Our first investigations prove it is possible

to replace the one step all-to-all and total storage on each node by several substeps of a data

circulation with limited storage. However, it would replace each large MPI communication

and CPU/GPU transfer by many small ones, and should decrease efficiency. This alternative

solution should be regarded for problems that require large number of trajectory simulation or

dimension d > 10, some of these are multidimensional stochastic control problems formulated

with BSDEs [14].

3.3.3 CPU and GPU data structures

Figure 3.3 introduces all arrays and variables implemented on each cluster node. All the

computations are done in single precision using mainly float arrays and few integer arrays nee-

ded for the random number generation. On top of Figure 3.3 we can see four CPU arrays used to

store model parameters, random number generator parameters and initial values of asset prices.

These arrays are transferred just once to the GPU, at the beginning of the program. In the middle

of Figure 3.3 are the Brownian motion and trajectory price output arrays of the node. They are

double buffers, storing results of previous and current time steps. Results of the previous time

step are transferred into CPU buffers and routed to all other nodes, in order to compute the

9. contains the values of {W i
t+δt}l1≤i≤d, see Algorithm 5 on page 94.

10. contains the values of Pt+δt(S
l
t+δt), see Algorithm 5 on page 94.
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TabCMRGCPU[n][6] TabCMRGGPU[n][6]

TabCombCMRG[n][2]

TabAssetInGPU[n][d]TabAssetInCPU[n][d]

TabAssetOutGPU[n][d]

TabLengGPU[n][m]

TabPIn[n]

TabPOut[n]

TabPriceCPU[n]

GPUCPU
paraCPU[d] paraGPU[d]

corrCPU[d] corrGPU[d]

TabPrOutOneGPU[BuId][n]

TabBOutOneGPU[BuId][n][d]

TabPrInAllGPU[n][NbP]

TabBInAllGPU[n][d][NbP]

TabPrSendOneCPU[n]

TabBSendOneCPU[n][d]

TabPrRecvAllCPU[n][NbP]

TabBRecvAllCPU[n][d][NbP]
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FIGURE 3.3 – Overview of all data structures implemented on each node (the parameter NbP
is defined in section 3.4.2).

approximation (3.4) (see section 2). Then, some large 3-dimensional CPU arrays storing data

of all nodes are transferred into symmetric GPU arrays on each GPU. On each node these large

arrays store results of all trajectories computed on the cluster and impede our application to

have an infinite scalability. But this solution allows to group data and to speedup data transfer

and routing, as introduced in section 3.3.2. In section 4, we will see the application performance

scales right from 1 up to 16 nodes on 219 trajectories (which is the largest problem considered).

Finally, on the bottom of Figure 3.3, the remaining GPU tables are used to compute intermediate

results. Arrows on the right side of Figure 3.3 show the data arrays involved in computations of

other data arrays, during the three phases of the algorithm detailed in Algorithm 4.

Besides, the different buffers of Pr and B can be allocated in the CPU memory in a standard

way using malloc routine, or can be allocated by cudaMallocHost routine and compound of

locked memory pages. Theoretically, this last solution leads to faster data transfers between

CPU and GPU memories, but can not be used on too large buffers without disturbing the CPU

memory management. During our numerous experiments, some unexpected bad termination of

our application appeared when calling some MPI communication routines with locked memory.

So, we have implemented both CPU buffer allocation mechanisms, controlled at runtime by an

option on the command line.
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3.3.4 Fine grained GPU computations

Our American option pricer includes 15 GPU kernels. Fourteen are classical intensive com-

puting kernels, designed to carry out a maximum of coalescent data accesses. When calling

these kernels we run one thread per trajectory processed by the node, and we run classical

numbers of 128 or 256 threads per block (a CUDA block of threads is run on one SIMD multi-

processor of a NVIDIA GPU). The last kernel (the fifteenth) is the AC2 kernel of the AC phase

that reduces some price arrays to mean prices.

Depending on the size of the problem, the most complex kernel (the biggest execution time)

is either first or second in term of time consumption. On the whole it performs AC1 com-

putations and some reductions (depending on the configuration) of AC2 of Algorithm 5 (see

section 2): it computes an evaluation of the h function (defined (3.12), approximation discus-

sed in 3.2.2), and a part of the sum of the Monte Carlo approximation (AC2 of algorithm 5).

Because the data are coalescent, in kernel the AC2 reduction is efficiently achieved during the

AC1 computations. As this kernel runs a large number of threads, we use 16 CUDA streams to

asynchronously and concurrently run several medium grids of thread blocks (in place of a large

one). This solution allows the GPU scheduler to optimize the kernel runs and to saturate the

GPU that leads to an increase in performance close to 10% using 16 streams.

The fifteenth kernel completes the rest of this reduction, and aims to reduce a 2-dimension

array 11 TabLengGPU [n][m] (Figure 3.3) of prices into a 1-dimension array 12 TabCont[n]

(Figure 3.3) of average prices 13 (one per trajectory processed by the kernel). This important re-

duction has been implemented according to the strategy recommended by NVIDIA [29]. Each

computation of one value of the final array is achieved running a set of blocks of threads, with

optimized memory accesses, using the shared memory of each multiprocessor of the GPU, and

optimizing the code at compilation time according to the problem size. To reduce the results of

all these blocks to a unique value, we have chosen to use an atomicAdd on float values,

available on FERMI architecture with CUDA 4.0. The overall strategy achieves good perfor-

mances, however we will see in section 3.4.2 the global performance of our application can be

increased with an over-splitting of the problem, in order to run several MPI processes on each

node.

11. nx × ny ×mx ×my

12. nx × ny

13. A conditional expectation averages and the continuation is considered as a price because it is the expected
price of the future knowing the present.
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Due to the limitation in the GPU memory, we process the trajectories of the node per sub-

parts. This strategy reduces the size of some intermediate result arrays stored in the GPU me-

mory. It also allows to process a large number of trajectories per node without requiring new

data transfers between CPU and GPU. However, it appeared more efficient to process big sub-

parts and section 3.4.2 introduces the impact of the sub-part size on the global efficiency.

3.4 Experimentation and optimization

3.4.1 Results accuracy

We test our simulations on a geometric average put option and a put option on minimum

that both respectively have the following payoffs

Φd
geo(St) =

(
K −

d∏
i=1

(Si
t)

1/d

)
+

, Φd
min(St) =

(
K − min

1≤i≤d
(Si

t)

)
+

. (3.23)

The parameters of the simulations are the following: The strike K = 100, the maturity T = 1,

the risk neutral interest rate r = ln(1.1), the time discretization is defined using the number

of exercise dates given as a parameter in each simulation, Si
0 = 100 and σ = {σij}1≤i,j≤d =

0.2{δj−i+cp(1−δj−i)}1≤i,j≤d where δ is the Kronecker delta and cp is the correlation parameter

∈ [0, 1] that we will fix for each simulation.

When cp = 0, the simulations using the d-dimensional payoff Φd
geo can be compared to the

true values that are artificially set by the one-dimensional equivalence and a tree method [12],

available in Premia [32]. For Φd
min, we only compared the coherence of the obtained results

with the ones simulated by the Longstaff-Schwartz algorithm implemented on Premia that uses

control variates and importance sampling techniques to reduce the variance.

First the importance sampling constants ω = (ω11, ω12, ω22) in (3.22) are chosen in order

to ensure a sufficient number of positive occurrence of the random variables θ1 and θ2 (defined

in (3.19)). A good solution was found when taking ω11, ω12 and ω22 that satisfy c112 ω11 = 2δt,

c122 ω12 = 2δt and c222 ω22 = 2δt. For example, in the Black & Scholes model we have c222 = 0

and using the parameters of the model above, it was sufficient to take ω11 = ω12 =

√
k + 1

k ∗ δt
where k is the time step of the algorithm.
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TABLE 3.2 – The accuracy of the results when changing the number of drawings Nω of

(Z11, Z12, Z22). The number of simulated trajectories n = 210, we used 10 exercise dates and

the standard deviation of the simulations is less than 5% of the price

Dimension d Nω = 4 Nω = 16 Real price for Φd
geo

5 1.68 1.63 1.58

10 0.89 0.90 0.89

From Table 3.2, we see clearly that Nω can be taken < 32. This is the case for other per-

formed simulations, in particular, the one given in Table 3.3 that shows also the accurate results

that we obtain even when we take q = 2.

TABLE 3.3 – The accuracy of the results when changing the value of q involved in (3.13) and

(3.14). The number of simulated trajectories n = 214, Nω = 4, d = 10, we used 10 exercise

dates and the standard deviation of the simulations is less than 2% of the price

Correlation parameter cp q = 2 q = 5 q = 10 Premia version of LS Φd
min

0.2 15.35 15.66 16.01 16.63

0.5 13.01 13.17 13.24 13.17

0.8 9.04 9.02 9.10 9.31

3.4.2 Parameters tuning

Among the parameters that act on the efficiency of the simulations, we study the two pa-

rameters m and NbP that are highly influential on the execution time and their reaction is

completely understandable from the AC phase of Algorithm 5 on page 94. The definition of m

and NbP will be given during the explanations that follow.

In Algorithm 5 on page 94, we make n evaluations of h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
, for each

l1 ∈ {1, . . . n}, on n different points. If the memory space of the GPU were sufficient, we

would make n × n evaluations of the function h according to l1 and l2. Nevertheless, we

can only saturate the GPU memory size for an l1 ∈ {1, . . .m} and make m × n evalua-

tions of the function h that yield to m × n data on the GPU which are stored in the table

TabLengGPU [n][m] =
{
h
(
S
(l1)
t , {W i

t+δt}
l2
1≤i≤d

)}
1≤l1≤m,1≤l2≤n

(Figure 3.3). Once we per-

form these m × n evaluations, we launch in parallel 2 × m reductions 14 associated to the

14. one reduction for the numerator and one for the denominator. Here we present only the principal reductions
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Algorithm 7: The AC phase when NbP = 1.
Input: Pt+δt(S

l
t+δt) and {W i

t+δt}l1≤i≤d with l ∈ {1, . . . , n}
Output: C(Sl

t) with l ∈ {1, . . . , n}
for l3 ∈ {0, . . . , n/m− 1} do

AC1) For l1 ∈ {1 + l3 ∗m, . . . ,m+ l3 ∗m} and l2 ∈ {1, . . . , n}, evaluate

h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
AC2) For l1 ∈ {1 + l3 ∗m, . . . ,m+ l3 ∗m} and either (n′, n′′) = (n/2, n) or
(n′′, n′) = (n, n/2), set

C(Sl1
t ) ≈

1
n′

∑n′

l2=1 e
−rδtPt+δt(S

l2
t+δt)h

(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
1
n′′

∑n′′

l2=1 h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
end

computation of the sum of the Monte Carlo approximation AC2. In our simulations, n can be

divided by m because they are both equal to a power of two. Thus, we repeat n/m times the

sequence of m × n evaluations as well as m parallel reductions and Algorithm 5 changes into

Algorithm 7.

Although Algorithm 7 seems optimal when compared to Algorithm 5, we have found our-

selves facing two problems:

– The non-coalescence of TabLengGPU [n][m] data, indeed, during the AC2, we reduce

them sub-blocks of n prices arrays intom average prices stored in a sub-part of TabCont[n]

(thanks to an index in ∈ {1, ..., n/m}).
– The number blocks of GPU threads used in the reduction phase AC2 is related to the

number m. Figure 3.4 shows how the parameter m acts on the execution time for a given

problem.

The number m is fixed by the memory space of the GPU, consequently we cannot increase, as

much as we want, the number of blocks needed for the AC2 phase unless we transfer the data at

each step to the CPU 15. Fortunately, we reach a sufficient number of blocks with an m ≥ 512

(see Figure 3.4) that allow to have good performances. Besides, we can use the parameter NbP

to reduce the non-coalescence of the data and to perform some AC2 reductions during the

AC1 operations. The parameter NbP is used to determine the number of processes used in our

application on the cluster, that is to say

because in reality there are 4 reductions, performed in the same time, needed to fix also the value of n′ and n′′

according to what is detailed in the previous chapter.
15. All the tested solutions based on CPU/GPU transfers were inefficient.
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NbP = nb of processes per node × nb of nodes. (3.24)

Algorithm 8: The AC phase launched by each process l4 with l4 ∈ {1, ..., NbP}.
Input: Pt+δt(S

l
t+δt) and {W i

t+δt}l1≤i≤d with l ∈ {1, . . . , n}
/* The output data are not the same and depend on l4. */

Output: C(Sl
t) with l ∈ {1 + (l4 − 1) ∗ n/NbP, . . . , n/NbP + (l4 − 1) ∗ n/NbP}

for l3 ∈ {0, . . . , n/(NbP ∗m)− 1} do
AC1) For l1 ∈ {1 + l4 ∗ l3 ∗m, . . . ,m ∗NbP + l4 ∗ l3 ∗m} and

l2 ∈ {1 + (l4 − 1) ∗ n/NbP, . . . , n/NbP + (l4 − 1) ∗ n/NbP}, evaluate

h
(
Sl1
t , {W i

t+δt}
l2
1≤i≤d

)
.

Then for l2 ∈ {1, . . . , n/NbP} compute Nul1,l2 and Del1,l2 , such that

Nul1,l2=
NbP∑
l5=1

Pt+δt(S
l2∗l5
t+δt )h

(
Sl1
t , {W i

t+δt}
l2∗l5
1≤i≤d

)
, Del1,l2=

NbP∑
l5=1

h
(
Sl1
t , {W i

t+δt}
l2∗l5
1≤i≤d

)
AC2) For l1 ∈ {1 + l4 ∗ l3 ∗m, . . . ,m ∗NbP + l4 ∗ l3 ∗m} and either

(n′, n′′) = (n/2, n) or (n′′, n′) = (n, n/2), set

C(Sl1
t ) ≈

1
n′

∑n′/NbP
l2=1 e−rδtNul1,l2

1
n′′

∑n′′/NbP
l2=1 Del1,l2

end

To keep it simple, let us consider the operations performed on one node: If NbP = 8 instead

of 1, 8 sums of AC2 reductions are done in the most complex kernel that executes the AC1

phase. Subsequently, TabLengGPU [n][m] becomes TabLengGPU [n/8][m] which decreases

the number of non-coalescent reductions executed in the fifteenth kernel that performs the re-

maining reduction of AC2. Moreover, to perform AC1, the different processes l4 ∈ {1, ..., 8}
will launch concurrently on the GPU the same task but with 8 different result data arrays

TabLengGPU [n/8][m] which provides TabLengGPU [n/8][m× 8]. Subsequently, Algorithm

7, which was launched by only one process, becomes Algorithm 8 that is launched concurrently

by NbP processes.

From Algorithm 8, we remark that the non-coalescent table of data used in the reduction

AC2 is NbP times smaller. Moreover, the reduction performed in AC1 uses a coalescent struc-

ture of data produced by the NbP concurrent evaluations of h and this reduction is well defined
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FIGURE 3.4 – The execution time according to the size of the sub-problems : 216 trajectory
simulation processing 5 asset problem. Here, the number of processes (NbP) is equal to one.

because it is performed once the data of the evaluation are available.
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FIGURE 3.5 – On one node : The speedup obtained when using the appropriate number of

processes (NbP) instead of only one process for pricing American Option on 5 assets.

In Figure 3.5, we quantify the benefits of using NbP on one node. It shows an increasing

speedup when we increase the size of the problem which can be explained by the high non-

coalescence of the data when we use a large number of trajectories. We should also point out

that the value of the appropriate NbP varies according to the number of simulated trajectories

as well as the dimension of the problem and the best choice of NbP does not exceed 8 for
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the whole implemented simulations. According to our experimentations, for five assets and on

one node, the best NbP appeared to be equal to 4 for 216 trajectories and equal to 8 for 217,

218 and 219 trajectories. The solution based on using NbP to decrease the non-coalescence of

the data is possible on Fermi architecture and it is interesting because it does not increase the

complexity of our code and provides fair overall speedups when compared to the CPU OpenMP

implementation (see section 3.5.2).

3.5 Mono-node comparison and scalability

3.5.1 Testbed introduction

Our testbed is a cluster of 16 nodes. Each node is a PC composed of an Intel Nehalem CPU

with 4 hyperthreaded cores at 2.67GHz, 4GB of RAM, and a NVIDIA GTX480 GPU with

1.5GB of memory. This cluster has a Gigabit Ethernet interconnection network built around

a small DELL Power Object 5324 switch (with 24 ports). The energy consumption of each

node is monitored by two Raritan DPXS20A-16 device, that continuously measures the electric

power dissipation (in Watts). Each of these device can monitor up to 20 nodes, but can deliver a

maximum of 16A current power. It appeared we need to use two Raritan DPXS20A-16 devices

to monitor our 16 node cluster. These devices host a SNMP server that a client can question to

get the instantaneous power consumption of each node.

We developed SNMP clients to get these data with a sampling period of 1s and compute

the consumed energy as a definite integral using the trapezoidal rule. This complete energy

measurement system is a little bit complex, and can disturb the application execution. Moreover,

the measurement resolution of our complete system appears to be close to 6Watts on each node.

However, this mechanism allows to take into account the total energy consumed by the entire

node: the PC hosting the CPU and the GPU, not just the energy consumed by the CPU and GPU

cards.

During all our experiments we observe some systematic variations between two consecutive

measurements. All time measures introduced in this work are means of 10, 20 or 50 successive

executions. Moreover, we never take into account the first execution of a sequence, because

the GPU increases its frequency and its performances during this first computation. All energy

measurements are achieved on a sequence of 10 to 20 executions (avoiding the first execution)

in order to measure significant amounts of energy. Then we deduce the energy consumed by

only one execution.
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3.5.2 Mono-node GPU vs CPU comparison

In this subsection, the execution time and the energy consumption of using one GPU with

CUDA are compared with the ones of using one CPU with OpenMP. Due to GPU memory

architecture (shared memory), the effectiveness of the implementation on GPUs increases when

we increase the dimension. This fact justifies the speedup results obtained in Figure 3.6 and

thus we compare the energy efficiency only for an average dimensional problem (5 assets).

According to Figure 3.7, the efficiency of using the GPU instead of the CPU increases when

we increase the number of simulated paths which indicates that the GPU is under-exploited

under 216 trajectories. Thus, in subsection 3.5.3, we will study only the problem larger than 216

trajectories. For 216 trajectories problem, we obtain ∼ 107 as a speedup and ∼ 52 as an energy

ratio which promotes clearly the GPU implementation.

3.5.3 GPU cluster performances

We only consider, in this section, the lowest 16 dimension (five assets) for which the other

methods based on regression become insufficiently accurate especially for evaluating greeks.

For dimensions d > 5, one can reasonably multiply the execution time and the energy consu-

med, provided in the figures below, by d/5 to obtain the ones associated to the dimension d.

As we will see in Figure 3.11, the latter approximation becomes wrong for dimensions d & 20

because of the communication time between CPUs in the cluster implementation.

16. Because benchmarking would take much more time to do for larger problems.
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FIGURE 3.7 – Mono-node comparison (Energy + Speedup): CPU OpenMP implementation vs
GPU CUDA implementations

Speedup and scalability

The curves of Figure 3.8 show a regular decrease of the execution time on our GPU cluster

from 1 node up to 16 nodes, function of to the number of trajectories for 5 assets. The curves

identified with � represent the implementations that use a number of MPI processes equal to the

number of nodes, when the other curves represent the simulations obtained by the appropriate

choice of NbP . When we increase the number of nodes, the best choice of NbP tends clearly

to be equal to the number of nodes (see equality (3.24)).

The curves of Figure 3.9 show the speedup associated to the best configuration of m and

NbP on several nodes when compared to the best configuration of m and NbP on one node.

When processing 216 trajectories on the five assets problem, the speedup slows down on 16

nodes (Figure 3.9). The problem becomes too small to fully use 16 NVIDIA GTX480 GPUs.

When processing 217 or 218 trajectories problem, the scalability of our parallelization is very

good from 1 to 16 nodes. The 217 size problem speedup is very close to the ideal speedup

(S(p) = p), and the 218 size problem speedup exhibits some hyper-accelerations. Indeed, our

parameter tuning allows to use both more GPUs (using more nodes) and more GPU memories

(increasing the size of the sub-problem we can process on each node).

Fixing the execution time, Figure 3.10 represents the different problem sizes that can be

simulated when we increase the number of nodes. We remark that doubling the number of

trajectories requires quadrupling the number of nodes if we want to keep the same execution

time. This can be explained by the complexity of the AC phase that is equal to O(n2). This

affirmation is a bit less verified for the average sized problems (216, 217 and 217), for which
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FIGURE 3.11 – When the communication time cannot be neglected

the PG and the PRC phases remain time consuming when compared to the overall execution

time 17.

Finally, we point out that the excellent speedup of our simulations is largely due to the

fact that the cluster communication time can be neglected when compared to the computation

time. However this is not true for pricing contracts on a high number of assets. According to

Figure 3.11, even for computations that provide a speedup equivalent to the number of nodes,

the communication time becomes sufficiently big for d = 20 which deteriorates significantly

the total speedup from 2.013 to 1.76. This leads us to explore, in future work, new ideas to

overlap communications with computations.

17. The complexity of these two phases is equal to O(n).
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Energy consumption issues

Figure 3.12 shows the energy consumption of our application when processing 5 assets

and different numbers of trajectories. This consumption is computed considering the energy

consumed by the entire nodes (the complete PCs) and the fraction of the energy consumed by

the switch of the cluster. We measured and summed the exact electrical power dissipated by each

used node (we did not considered all nodes dissipate the same power). We considered a cluster

is shared by several users, and each user allocates some nodes to run his applications (this is

the management strategy of our clusters). We measured that the electrical power dissipated by

our switch remains constant, independently of the network trafic, and was P sw
0 = 34Watts.

So, we have taken into account the power dissipation P sw = P sw
0 ×NbUsedNodes/NbNodes.

Finally, we integrated all these measures during the execution time, and we obtained the energy

consumption curves of Figure 3.12 (in W.h).

We observe that the energy consumed by our GPU cluster does not increase when we use

more nodes, in fact, it tends to remain constant. Because of the relatively small size of the

216 trajectories problem, we observed a significant slow down on 16 nodes which leads to hi-

gher energy consumption. When processing 217 trajectories the speedup was close to the ideal

speedup (S(P ) = P ) and the energy consumption remains approximately constant. When si-

mulating 218, trajectories we achieved a small hyper-speedup up to 16 nodes that leads to a

regular decrease of the energy consumption. This decrease and the associated hyper-speedup

would stop if we could use more nodes.
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3.6 Conclusion and future work

Pricing American contracts is one of the most challenging problems in mathematical fi-

nance. Our approach was to solve the problem of pricing multidimensional American contracts

with a nonparametric method whose accuracy is only related to the number of the simulated

paths. In this chapter we provided appropriate approximations for high dimensional problems

and we proved the high adaptability of MCM on parallel architectures based on GPUs. Thanks

to our experiments and results, we know that parallelism solves very efficiently the problem of

increasing the number of simulated trajectories used in the nonlinear problem of pricing mul-

tidimensional American contracts. The pricing of an American option on ten assets using 217

trajectories provided very accurate results and was performed within 11 seconds on our cluster

of 16 GPUs.

To achieve these performances we designed some parallel algorithms cumulating 2 grains

of parallelism and 2 parallel programming paradigms using MPI+CUDA, in order to run on

clusters of CPU+GPU hybrid nodes. An optimal configuration was found for each number of

nodes and problem size, on a specified GPU cluster. Speedups were close to the ideal speedup

and sometimes better (small hyper-speedup) due to usage of both more GPUs and more GPU

memories. Energy consumption tends to remain constant when increasing the number of nodes.

Finally, we obtain a very suited solution for GPU clusters that scales well on our benchmarks

and allows very good speedup and energy consumption. However, our solution has a scalability

limit replicating some data on each node, and requires a tuning to select best configurations.

In addition, due to large communications when d ≥ 10, we aim to design, in future work, a

fully scalable variant to process very large problems and that cumulates 3 grains of parallelism

implemented on top of MPI+OpenMP+CUDA which overlaps well the computations and the

data transfers between GPUs.

3.7 Appendix

Proof of Lemma 3.1:
We use Ai,j to denote a matrix, derived from Ad, that has πj,d as the last element of its diagonal

and on which we suppress the line and the column of index i. For example, if (i, j) = (1, q+1)
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then

A1,q+1 =



π2,d
s,t C2,3 C2,4 · · · C2,q 0

1 π3,d
s,t 0 · · · 0 0

... . . . . . . . . . ...
...

1 · · · 1 πq−1,d
s,t 0 0

1 1 · · · 1 πq,d
s,t 0

1 1 1 · · · 1 πq+1,d
s,t


.

By induction, one can easily prove the following equalities

∣∣Ad
∣∣ = ∣∣A1,q

∣∣( d∑
l=q+1

(−1)l+1C1,l

[
i̸=l∏

q+1≤i≤d

πi,d
s,t

])
+

[ ∏
q+1≤i≤d

πi,d
s,t

]
|Aq| ,

with

∣∣A1,q
∣∣ = q∑

j=3

(−1)jC2,j

[
i̸=j∏

3≤i≤q

πi,d
s,t

]
+

[ ∏
2≤i≤q

πi,d
s,t

]

and

|Aq| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

π1,d
s,t C1,2 C1,3 · · · C1,q−1 C1,q

1 π2,d
s,t C2,3 · · · C2,q−1 C2,q

1 1
. . . 0 · · · 0

... . . . . . . . . . ...

1 1 πq−1,d
s,t 0

1 1 · · · 1 1 πq,d
s,t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

πq,d
s,t |Aq−1|+ (−1)q+2C2,q |A2,q−1|

+(−1)q+1C1,q |A1,q−1|
,

then, by induction

|Aq| =
∏

1≤i≤q

πi,d
s,t − C1,2

i ̸=1,2∏
1≤i≤q

πi,d
s,t − C2,3

i ̸=2,3∏
1≤i≤q

πi,d
s,t

+

q∑
l=4

(−1)l+1C1,l

[
i̸=l∏

2≤i≤q

πi,d
s,t +

l−1∑
j=3

(−1)jC2,j

(
i ̸=j,l∏
3≤i≤q

πi,d
s,t

)]

+

q∑
l=4

(−1)l+2C2,l

[
i̸=2,l∏
1≤i≤q

πi,d
s,t +

l−1∑
j=3

(−1)jC1,j

(
i̸=j,l∏
3≤i≤q

πi,d
s,t

)]
.
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Combining all the previous equalities, we get the required result.
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Chapitre 4

European Options Sensitivity with Respect
to the Correlation for Multidimensional
Heston Models

Abstract

This paper is devoted to the sensitivity study of the European option prices according to the

correlation parameters when dealing with the multi-asset Heston model. When the Feller condi-

tion is not fulfilled, the CIR flow regularity is needed to prove the differentiability of the price

according to the correlation. In the bidimensional case when the Feller condition is satisfied,

the regularity of the volatility according to the correlation allows us to establish an asymptotic

expression of the derivative of the price with respect to the correlation. This approximation pro-

vides the monotony for the exchange options then heuristically for spread option prices at short

maturities. We also obtain this monotony for some restrictive choices of the products {ηiρi}i=1,2

and {ηi
√

1− ρ2i }i=1,2 where ηi is the volatility of the volatility and ρi is the asset/volatility cor-

relation coefficient. Then, we explain how to extend the overall study to options written on

more than two assets and on models that are derived from Heston model, like the double Heston

model. We conclude by a large number of simulations that comfort the theoretical results.

4.1 Introduction

For a convex payoff, the authors of [34] prove the monotony of the price of a European

contract according to the volatility of the Black & Scholes (B&S) model. In the same fashion,

127
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let us prove the monotony according to the correlation parameter for the bidimensional B&S

model

dS1
t = S1

t σ1dW
1
t , S1

0 = x10,

dS2
t = S2

t σ2(ρdW
1
t +

√
1− ρ2dW 2

t ), S2
0 = x20.

(4.1)

Let f be the convex payoff

f(s) = (a1s1 + a2s2 ±K)+ = max(a1s1 + a2s2 ±K, 0), (a1, a2) ∈ R2 (4.2)

and F (t, x) the price of the studied contract, given under the risk-neutral probability by

F (t, x) = E
(
f(ST )

∣∣∣St = x
)
= Et,x (f(ST )) .

Associated to the model (4.1) and to the convex payoff (4.2), the price function F (t, x) ∈
C1,2

(
(0, T )× R2

+

)
. This can be justified by the fact that the asset vector ST has a log-normal

distribution which is sufficient to perform the wanted differentiations. Besides, F (t, x) satisfies

the Black & Scholes PDE

∂F

∂t
(t, x) +

σ2
1

2

∂2F

∂x21
(t, x)x21 +

σ2
2

2

∂2F

∂x22
(t, x)x22 + ρσ1σ2

∂2F

∂x1∂x2
(t, x)x1x2 = 0, F (T, x) = f(x),

We suppose now that the misspecified asset vector has the dynamic (4.1) but with a misspecified

correlation ρ ̸= ρ, that is to say

dS
1

t = S
1

tσ1dW
1
t , S

1

0 = x10,

dS
2

t = S
2

tσ2(ρdW
1
t +

√
1− ρ2dW 2

t ), S
2

0 = x20.

We have already seen that F (t, x) ∈ C1,2
(
(0, T )× R2

+

)
and using Ito calculus

F (T, ST ) = F (0, S0) +
2∑

i=1

∫ T

0

∂F

∂xi
(t, St)dS

i

t +

∫ T

0

∂F

∂t
(t, St)dt

+
1

2

∫ T

0

(
σ2
1

∂2F

∂x21
(t, St)

[
S
1

t

]2
+ σ2

2

∂2F

∂x22
(t, St)

[
S
2

t

]2
+ 2ρσ1σ2

∂2F

∂x1∂x2
(t, St)S

1

tS
2

t

)
dt,

Combining the previous equality with the Black & Scholes PDE we get

E(F (T, ST )) = F (0, S0) + (ρ− ρ)E
{∫ T

0

σ1σ2
∂2F

∂x1∂x2
(t, St)S

1

tS
2

tdt

}
. (4.3)
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To compute the cross derivative, we consider the derivatives of ST with respect to St = x

(t < T ),

∂x1S
1
T =

S1
T

S1
t

, ∂x2S
2
T =

S2
T

S2
t

, ∂x2S
1
T = ∂x1S

2
T = 0.

When the payoff (4.2) is used then

∂2F

∂x1∂x2
(t, x) = a1a2Et,x

(
S1
T

x1

S2
T

x2
ε(a1S

1
T + a2S

2
T ±K)

)
, (4.4)

where ε is the Dirac distribution that can be justified thanks to the log-normal distribution g of(
S1
T

x1
,
S2
T

x2

)
:

∂2F

∂x1∂x2
(t, x) = −a2

x1

∫
R2
+

1a1x1v1+a2x2v2≥±K∂v1 [v1v2g(v1, v2)] dv1dv2

= −a1
x2

∫
R2
+

1a1x1v1+a2x2v2≥±K∂v2 [v1v2g(v1, v2)] dv1dv2.

From equality (4.4), a1a2 ∂2F
∂x1∂x2

(t, x) is clearly positive and the price is monotonous with respect

to ρ. The direction of the latter monotony depends on the sign of the product a1a2. As an

analogue of the implied volatility, thanks to the uniqueness of ρ one can define it as the implied
correlation obtained from the market calibration of two assets that has the bidimensional B&S

dynamics. As we will see in section 4.3, this notion of implied correlation is difficult to prove

theoretically when using more complex models, like the Heston model.

In this paper, the assumed bidimensional version of the Heston model presumes the follo-

wing dynamic for the couples asset/volatility (Si
T , ν

i
T )i=1,2

S1
T = x1 exp

(∫ T

t

√
ν1sdW

1
s −

1

2

∫ T

t

ν1sds

)
, (4.5)

S2
T = x2 exp

(∫ T

t

√
ν2s

(
ρdW 1

s +
√
1− ρ2dW 2

s

)
− 1

2

∫ T

t

ν2sds

)
, (4.6)

ν1T = y1 + κ1
∫ T

t
(θ1 − ν1s )ds+ η1

∫ T

t

√
ν1sdB

1
s ,

B1
s = ρ1W

1
s +

√
1− ρ21W̃ 1

s ,

(4.7)
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ν2T = y2 + κ2
∫ T

t
(θ2 − ν2s )ds+ η2

∫ T

t

√
ν2sdB

2
s ,

B2
s = ρ2

(
ρW 1

s +
√

1− ρ2W 2
s

)
+
√

1− ρ22W̃ 2
s ,

(4.8)

where (W 1,W 2, W̃ 1, W̃ 2) is a four-dimensional Brownian motion (these four Brownian mo-

tions are independent).

We point out that the model specified by the previous SDEs does not include all the bidimen-

sional Heston models. Indeed, the choice of this correlation structure is justified from a practi-

tioner’s point of view because it allows to calibrate simply each asset to the one-dimensional put

and call options, then add a correlation parameter ρ that can be calibrated from a spread option.

Thus, the overall model will reproduce the prices of vanilla options and spread options. Al-

though this model was already considered by various authors (see for example [17]) and widely

used by practitioners, one of its drawbacks comes from constraining the correlation, between

the Brownian motions of the two volatilities, to be equal to ρρ1ρ2.

Using the results of Bessel flow regularity in [59], we study in section 4.2 the regularity

of the CIR flow related to the SDEs (4.7) and (4.8) then the volatility regularity with respect

to the correlation of the Brownian motions. In section 4.3, we prove the differentiability of

the price according to the correlation when the Feller condition is not fulfilled and we study

some restrictive cases for which the price is monotonous with respect to the correlation. The

derivative of ν2 according to ρ is needed to establish in section 4.4 an asymptotic expression of

the derivative of the price that works well for maturities T ≤ 0.3. In sections 4.3 and 4.4, we

present also the basic ideas that allow to generalize our results to the multi-asset Heston and to

models that are derived from Heston model, like the double Heston model. Thanks to a parallel

implementation on the GPU Nvidia 480GTX, section 4.5 shows several tests of the error of our

asymptotic approximation and it provides various Monte Carlo simulations that illustrate the

monotony.

4.2 CIR flow & volatility regularity according to the correla-

tion

For a fixed t ≥ 0 and for s ≥ t, ν1 and ν2 share the same common CIR SDE given by

dνs = κ(θ − νs)ds+ η
√
νs

(
rdW 1

s +
√
1− r2dW 2

s

)
, νt = y, r ∈ [−1, 1], (4.9)
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where here the Brownian motions W 1 and W 2 are independent but are not the same as the ones

used in the previous section. However, it is quite clear that studying the flow of ν in (4.9) is

equivalent to studying the flow of ν1 and ν2 in (4.7) and (4.8). Moreover, the differentiability

results of ν2 with respect to ρ are similar to the differentiability results of ν with respect to r.

In this section, we use either the Feller condition

(A0) y > 0, 2κθ ≥ η2,

or the following weaker assumption

(A1) y > 0, 4κθ > η2.

Introducing the process (0,∞) ∋ y 7→ τ0(y) defined by

τ0(y) = inf {s ≥ t, νs(y) = 0} , (4.10)

we refer for example to [38] for the proof of the finiteness of τ0(y) once (A0) is not satisfied,

which means for a fixed y > 0 we have P (τ0(y) <∞) = 1.

The result of this section is summarized in the following theorem

Theorem 4.1 Let ν be a CIR process driven by the SDE (4.9). Under the assumption (A0), both

applications (0,∞) ∋ y 7→ νs and (−1, 1) ∋ r 7→ νs are C1. When (A0) is not fulfilled but (A1)
is satisfied, (−1, 1) ∋ r 7→ νs remains continuous and there exists a modification ν̃ of ν such

that (0,∞) ∋ y 7→ ν̃s is C1 in probability sense. Moreover, the first derivative ∂yν̃ coincides

with ν̇ := ∂yν on [t, τ0(y)[ and the former derivative vanishes on [τ0(y),∞[.

Besides, when either (A0) is fulfilled or (A1) is satisfied with 0 ≤ t ≤ s < τ0(y) then

ν̇s√
νs

=
1
√
νt

exp

(
−κ(s− t)

2
− 1

2

(
κθ − η2

4

)∫ s

t

du

νu

)
. (4.11)

for these same assumptions and taking t = 0, ∂rν satisfies the following SDE

∂rνs = −κ
∫ s

0

∂rνudu+ η

∫ s

0

∂rνu
2
√
νu

(
rdW 1

u +
√
1− r2dW 2

u

)
+ η

∫ s

0

√
νu

(
dW 1

u −
r√

1− r2
dW 2

u

) , ∂rν0 = 0, (4.12)
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that can be solved by a variation of constants method, to obtain

∂rνs = ν̇s

(
ηr

∫ s

0

√
νu
ν̇u

(
dW 1

u −
r√

1− r2
dW 2

u

))
, (4.13)

where in the latter equality, ν̇ is the flow derivative at t = 0 (replace t by 0 in (4.11)).

Note that (4.12) is only valid before time τ0(y). Therefore, in order to prove the differentia-

bility of the price with respect to the correlation under (A1), we need additional work. This will

be the main goal of section 4.3, in which we use the infinitesimal generator and the regularity

of the flow. Unfortunately, the latter trick does not allow us to establish an asymptotic approxi-

mation and the only thing that we were able to do is to show that the asymptotic approximation,

established when (A0) is fulfilled, works well numerically even for cases when only (A1) is

satisfied.

Proof of Theorem 4.1:
We subdivide this proof into three steps

Step1 : Proving the regularity of the flow.

The solution of (4.9) is locally differentiable with respect to y, this means that we can differen-

tiate with respect to y up to the time τ0(y) which is the upper limit of τn1/n(y) = inf{s ≥ t :

νns ≤ 1/n}, such that νns is the solution of the truncated SDE associated to (4.9) with ν1t = y

(we refer to [37] for more details). For s ∈ [t, τ0(y)[, we get

ν̇s = 1− κ
∫ s

t

ν̇udu+ η

∫ s

t

ν̇u
2
√
νu

(
rdW 1

u +
√
1− r2dW 2

u

)
. (4.14)

By a change of variable using the logarithmic function, we obtain the solution of (4.14) for

s < τ0(y)

ν̇s = exp

(
−κ(s− t) + η

∫ s

t

rdW 1
u +
√
1− r2dW 2

u

2
√
νu

− 1

2
η2
∫ s

t

du

4νiu

)
. (4.15)

Moreover, by another change of variable Xs = ln
(
eκ(s−t)νs

)
, this time on the ν SDE, using Ito

calculus we get

exp

(
η

∫ s

t

rdW 1
u +
√
1− r2dW 2

u

2
√
νu

)
=

√
νu
y
exp

(
κ(s− t)

2
− 1

2

(
κθ − η2

2

)∫ s

t

du

νu

)
,

which combined with (4.15) provides (4.11) for s < τ0(y).

According to [59] (Proof of theorem 1.3), when δ ∈]1, 2[ the bessel flow (0,∞) ∋ x 7→
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Θ(x, s), that satisfies (4.16) driven by the Brownian motion β

Θ(x, s) = x+ βs +
δ − 1

2

∫ s

t

du

Θ(x, u)
, Θ(x, t) = x, (4.16)

has a modification that admits a continuous derivative in probability sense that vanishes when

s ≥ τ0(y). Consequently, one can use the same modification for the CIR flow because they are

both related by the following equalities

νs = exp [−κ(s− t)] Θ2

(
√
y,
η2

4κ
(eκ(s−t) − 1)

)
, δ =

4κθ

η2
. (4.17)

To prove (4.17), we use Ito calculus on Zs = exp [κ(s− t)] νs and we employ the time

change ls =
1

κ
ln

(
4κs

η2

)
+ t to get

Zls = y +
4κθ

η2
(s− t) + 2

∫ s

t

√
Zludβu.

Finally, defining Θ(
√
y, s) =

√
Zls , we obtain (4.16) with x =

√
y.

Step2 : Proving the continuity of ν with respect to r.

We define two Brownian motions Bs = rW 1
s +
√
1− r2W 2

s and Bs = rW 1
s +
√
1− r2W 2

s

thanks to which we set

dνs = κ(θ − νs)ds+ η
√
νsdBs, ν0 = y,

dνs = κ(θ − νs)ds+ η
√
νsdBs, ν0 = y

(4.18)

and we will prove that limr→r νs = νs a.s.

Let an be a positive decreasing sequence defined by an = an−1e
−n, that satisfies∫ an−1

an

dx

x
= n. (4.19)

Afterwards, we set ϕn ∈ C∞c (R) a mollifier function with support equal to [an, an−1] such that

0 ≤ ϕn(x) ≤(∗)
2

nx
and (4.19) allows to have

∫
R ϕn(x)dx = 1. Thanks to ϕn, we define an

approximation

ψn(x) =

∫ |x|

0

dy

∫ y

0

ϕn(z)dz (4.20)
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of the function absolute value | · |. Indeed

|x| =
∫ |x|
0
dy
(∫ y

0
ϕn(z)dz +

∫∞
y
ϕn(z)dz

)
= ψn(x) +

∫ |x|
0
dy
∫∞
y
ϕn(z)dz

thus, |x| ≥ ψn(x) and because
∫∞
y
ϕn(z) ≤ 1[0,an−1](y), then |x|−an−1 ≤(∗∗) ψn(x). In addition,

for |x| ≥ an (otherwise the first and the second derivative are equal to zero),

ψ′
n(x) = Sgn(x)

∫ |x|
0
ϕn(z)dz with |ψ′

n(x)| ≤(∗∗∗) 1[0,an−1](|x|) &

ψ′′
n(x) = ϕn(|x|) ∈

[
0,

2

n|x|

]
.

Applying Ito calculus to ψn(∆s), with ∆s = νs − νs, we obtain

ψn(∆s) =

∫ s

0

ψ′
n(∆u)d∆u +

1

2

∫ s

0

ψ′′
n(∆u)d ⟨∆⟩u

= −κ
∫ s

0

ψ′
n(∆u)∆udu+ Ls +

1

2

∫ s

0

ψ′′
n(∆u)d ⟨∆⟩u ,

where Ls =
∫ s

0
ψ′
n(∆u)d(Mu +Nu) is a square integrable martingale, because of the inequality

(∗ ∗ ∗) and that both M and N are two square integrable martingales (we refer the reader to

[21]) with

Ms = η

∫ s

0

√
νud(Bu −Bu), Ns = η

∫ s

0

(
√
νu −

√
νu)dBu.

Employing Doob’s L2-inequality on L∗
s = sup0≤u≤s Ls and (∗ ∗ ∗) provide

E ((L∗
s)

2) ≤ 4E (L2
s) = 4E

(∫ s

0
(ψ′

n)
2(∆u)d ⟨M +N⟩u

)
≤ 4E

(∫ s

0
1[0,an−1](|∆u|)d ⟨M +N⟩u

)
.

(4.21)

Besides

d ⟨∆,∆⟩u = d ⟨M +N,M +N⟩u ≤ 2d ⟨M,M⟩u + 2d ⟨N,N⟩u

= 2η2
(
νud

⟨
B −B

⟩
u
+ (
√
νu −

√
νu)

2du
)
.

(4.22)
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Using both inequalities (∗∗) and (∗ ∗ ∗)

|∆s| ≤ an−1 + κ

∫ s

0

|∆u|du+ L∗
s +

1

2

∫ s

0

ψ′′
n(∆u)d ⟨M +N,M +N⟩u .

Denoting the supremum Xs = sup0≤u≤s |∆u| and using the inequality (a + b + c + d)2 ≤
4(a2 + b2 + c2 + d2) we get

X2
s ≤ 4a2n−1 + 4

(
κ

∫ s

0

Xudu

)2

+ 4(L∗
s)

2 +

(∫ s

0

ψ′′
n(∆u)d ⟨M +N,M +N⟩u

)2

,

afterwards, we take the expectation and we use (4.21) and Cauchy-Schwarz inequality for the

first integral term (s ≤ T )

E [X2
s ] ≤ 4a2n−1 + 4Tκ2E

[∫ s

0
X2

udu
]

+ 16E
[∫ s

0
1[0,an−1](|∆u|)d ⟨M +N⟩u

]
+ E

[(∫ s

0
ψ′′
n(∆u)d ⟨M +N⟩u

)2]
then (4.22), (∗) and (

√
νu −

√
νu)

2 ≤ |νu − νu| provide

E [X2
s ] ≤ 4a2n−1 + 4κ2TE

[∫ s

0
X2

udu
]

+ 16η4E
[∫ s

0
νud

⟨
B −B

⟩
u
+
∫ s

0
1[0,an−1](|∆u|)|∆u|du

]
+

16η4

n2
E

(
s+

∫ s

0

1[an,an−1](|∆u|)
νu
|∆u|

d
⟨
B −B

⟩
u

)2

,

by continuing the computations, we obtain

E [X2
s ] ≤ 4a2n−1(1 + 4sη4) + 4κ2TE

[∫ s

0

X2
udu

]
+ 16η4E

[∫ s

0

νud
⟨
B −B

⟩
u

]
+

16η4

n2
E

(
s+

∫ s

0

νu
an
d
⟨
B −B

⟩
u

)2

.

Let us take a sequence B = Bk of Brownian motions that converges a.s. to B, once we

apply Gronwall lemma

E
[
X2

s

]
≤ α(n, k)e4κ

2T 2

(4.23)
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with

α(n, k) = 4a2n−1(1 + 4sη4) + 16η4s/n2 + (16η4/n2)E

(∫ s

0

νu
an
d
⟨
Bk −B

⟩
u

)2

+ 16η4E

(∫ s

0

νud
⟨
Bk −B

⟩
u

)
.

To conclude, we take n such that 4a2n−1(1+4sη4)+
16η4s

n2
< ϵ/2 then, for a fixed n, we choose

k such that
16η4

n2
E

(∫ s

0

νu
an
d
⟨
Bk −B

⟩
u

)2

+ 16η4E

(∫ s

0

νud
⟨
Bk −B

⟩
u

)
< ϵ/2. The latter

fact is possible because νu admits moments of all orders (see the reference [21]). Finally, we

complete the proof of the continuity by using Fatou lemma on the left side of inequality (4.23).

Step3 : Proving the differentiability of ν with respect to r.

Taking ϵ ∈]0, y[, we define τϵ(y), τ ϵ(y) and τ̃ϵ(y) as

τϵ(y) = inf{s > 0 : νs(y) = ϵ}, τ ϵ(y) = inf{s > 0 : νs(y) = ϵ}, τ̃ϵ(y) = τϵ(y) ∧ τ ϵ(y),(4.24)

We introduce the stochastic processes ∆s = (νs − νs)/(r − r) and Λs that satisfy the

following SDEs

d∆s = −κ∆sds+ η

√
νs −

√
νs

r − r
dBs + η

√
νsd

(
Bs −Bs

r − r

)
= −κ∆sds+ η

∆s√
νs +

√
νs
dBs + η

√
νsd

(
Bs −Bs

r − r

) , ∆0 = 0,

dΛs = −κΛsds+ η
Λs√

νs +
√
νs
dBs, Λ0 = 1,

which provides, by a variation of constants technique ∆s∧τ̃ϵ(y)= Cs∧τ̃ϵ(y)Λs∧τ̃ϵ(y) with

Λs∧τ̃ϵ(y) = exp

(
−κ(s ∧ τ̃ϵ(y)) + η

∫ s∧τ̃ϵ(y)

0

dBu√
νu +

√
νu
− η2

2

∫ s∧τ̃ϵ(y)

0

du

(
√
νu +

√
νu)2

)
(4.25)

and

Cs∧τ̃ϵ(y) =

∫ s∧τ̃ϵ(y)

0

η
√
νu

Λu

d

(
Bu −Bu

r − r

)
−
∫ s∧τ̃ϵ(y)

0

η2
√
νu

Λu(
√
νu +

√
νu)

d

⟨
B,

B −B
r − r

⟩
u

(4.26)
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where

Bu −Bu

r − r
=W 1

u +

√
1− r2 −

√
1− r2

r − r
W 2

u

and

⟨
B,

B −B
r − r

⟩
u

=

(
r +

√
1− r2

√
1− r2 −

√
1− r2

r − r

)
u

(4.27)

Now, we are going to take the limit as r → r in equality (4.25). For this task, we use the

continuity result established in Step2, the lower bounds {νu}u<s∧τϵ(y) ≥ ϵ, {νu}u<s∧τϵ(y) ≥ ϵ

and applying the dominated convergence theorem for the deterministic integral

lim
r→r

Λs1s<τ̃ϵ(y) = exp

(
−κs+ η

∫ s

0

dBu

2
√
νu
− η2

2

∫ s

0

du

4νu

)
1s<τϵ(y) = ν̇s1s<τϵ(y).

In the limit above, the proof of the convergence of the stochastic term comes from the equality∫ s∧τ̃ϵ(y)

0

dBu√
νu +

√
νu

= r

∫ s∧τ̃ϵ(y)

0

dW 1
u√

νu +
√
νu

+
√

1− r2
∫ s∧τ̃ϵ(y)

0

dW 2
u√

νu +
√
νu

and from the Doob’s

L1-maximal inequality for the convergence of each term of this sum.

As for (4.26), let us first prove that the second term vanishes. Indeed, using (4.27), we have

lim
r→r

⟨
B,

B −B
r − r

⟩
u

= lim
r→r

(
r +

√
1− r2

√
1− r2 −

√
1− r2

r − r

)
u = 0. (4.28)

Thus

lim
r→r

Cs∧τ̃ϵ(y)= lim
r→r

∫ s∧τ̃ϵ(y)

0

η
√
νu

Λu

d

(
Bu −Bu

r − r

)
=η lim

r→r

[∫ s∧τ̃ϵ(y)

0

√
νu

Λu

dW⊥
u +

(
r√

1− r2
+

√
1− r2 −

√
1− r2

r − r

)∫ s∧τ̃ϵ(y)

0

√
νu

Λu

dW 2
u

]
,

with W⊥ =

(
W 1 − r√

1− r2
W 2

)
. The limit of

(
r√
1−r2

+

√
1−r2−

√
1−r2

r−r

)
is null, conse-

quently

lim
r→r

Cs∧τ̃ϵ(y) = lim
r→r

∫ s∧τ̃ϵ(y)

0

η
√
νu

Λu

d

(
W 1

u −
r√

1− r2
W 2

u

)

and thanks to the independence of ν̇ and W⊥ = W 1 − r√
1− r2

W 2 (fact that can be seen
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directly form (4.14)), we have

lim
r→r

∫ s∧τ̃ϵ(y)

0

η
√
νu

Λu

dW⊥
u =

1

ν̇s∧τϵ(y)
lim
r→r

∫ s∧τ̃ϵ(y)

0

ην̇s∧τ̃ϵ(y)
√
νu

Λu

dW⊥
u

Once more, we employ Doob’s inequality onM r
T = sup

0≤s≤T

∫ s∧τ̃ϵ(y)

0

ν̇s∧τ̃ϵ(y)
√
νu[ν̇u − Λu]

ν̇uΛu

dW⊥
u

and for λ > 0

P
(
M r

T ≥ λ
)
≤ 1

λ2
sup

0≤s≤T
E

(∫ s∧τ̃ϵ(y)

0

ν̇2s∧τ̃ϵ(y)νu[ν̇u − Λu]
2

ν̇2uΛ
2
u

du

)

≤ 1

λ2
E

(∫ T

0

ν̇2τ̃ϵ(y)νu∧τ̃ϵ(y)[ν̇u∧τ̃ϵ(y) − Λu∧τ̃ϵ(y)]
2

ν̇2u∧τ̃ϵ(y)Λ
2
u∧τ̃ϵ(y)

du

)

≤ 1

λ2

∫ T

0

E

(
νu∧τ̃ϵ(y)

[
ν̇u∧τ̃ϵ(y)
Λu∧τ̃ϵ(y)

− 1

]2)
du.

Thus, one can choose a sequence rk that tends to r such that :
∑
k≥1

P(M rk
T ≥ λ) < ∞ and

Borel-Cantelli Lemma allows us to conclude for the a.s. convergence

lim
r→r

Cs∧τ̃ϵ(y) = η

∫ s∧τϵ(y)

0

√
νu
ν̇u

(
dW 1

u −
r√

1− r2
dW 2

u

)
.

Finally, we have for s < τ0(y)

∂rνs = lim
ϵ→0

lim
r→r

∆s = ην̇s

∫ s

0

√
νu
ν̇u

(
dW 1

u −
r√

1− r2
dW 2

u

)
.

�

4.3 Sensitivity using the infinitesimal generator

The presentation of this part is subdivided into two subparts : In section 4.3.1, we reuse

the same operations performed in the introduction (section 4.1) but with stochastic volatility

models. We also present the result of the formal computations to show the key tools that allow

to extend the proven results obtained in section 4.3.2 for the bidimensional Heston model. Thus

the last part of section 4.3.1 can be skipped for a first reading.
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4.3.1 A general framework for stochastic volatility models

In this part, we suppose that the real price of the asset vector given by the market has the

following multidimensional stochastic volatility dynamic

dSi
t = Si

t

√
νitdZ

i
t , Si

0 = xi0,

dνit = bi(t, ν
i
t)dt+ σi(t, ν

i
t)dZ̃

i
t , νi0 = yi0,

(4.29)

where (Z1
t , ..., Z

d
t , Z̃

1
t , ..., Z̃

d
t ) is a vector of correlated Brownian motions.

Let f be a payoff of a multidimensional European contract on the considered asset vector,

the price F (t, x, y) of this contract is given by

F (t, x, y) = E
(
f(ST )

∣∣∣St = x, νt = y
)
= Et,x,y (f(ST )) .

Thus F (t, x, y) satisfies the Black & Scholes PDE

∂F

∂t
(t, x, y) +

d∑
i

∫ T

0

∂F

∂yi
(t, x, y)bi(t, y) +

1

2

2d∑
i,j=1

∂2F

∂zi∂zj
(t, x, y)Γij(t, x, y) = 0,

F (T, x, y) = f(x),

with zi = xi if i ≤ d and zi = yi−d if i > d and Γ(t, x, y) has the following expression

Γ(t, x, y) =

( (
ρ′ijxixj

√
yiyj

)
1≤i,j≤d

(
ρijxi
√
yiσj(t, yj)

)
1≤i,j≤d(

ρijxi
√
yiσj(t, yj)

)
1≤i,j≤d

(
ρ′′ijσi(t, yi)σj(t, yj)

)
1≤i,j≤d

)
,

with R is the 2d× 2d correlation matrix of the vector (Z1
t , ..., Z

d
t , Z̃

1
t , ..., Z̃

d
t ) of standard Brow-

nian motions

R =

(
ρ′ ρ

ρ ρ′′

)
. (4.30)

We suppose now that the misspecified price of the asset vector has the dynamic (4.29) but with

R ̸= R and different volatility of the volatility parameters σi ̸= σi, that is to say

dS
i

t = S
i

t

√
νitdZ

i
t , S

i

0 = xi0,

dνit = bi(t, ν
i
t)dt+ σi(t, ν

i
t)dZ̃

i
t , νi0 = yi0.

(4.31)
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Using formally Ito calculus

F (T, ST , νT ) = F (0, S0, ν0) +
d∑

i=1

∫ T

0

∂F

∂xi
(t, St, νt)dS

i

t +

∫ T

0

∂F

∂t
(t, St, νt)dt

+
d∑

i=1

∫ T

0

∂F

∂yi
(t, St, νt)dν

i
t +

1

2

2d∑
i,j=1

∫ T

0

∂2F

∂zi∂zj
(t, St, νt)Γij(t, St, νt)dt,

where zi = xi if i ≤ d and zi = yi−d if i > d and the matrix Γ(t, x, y) has the following

expression

Γ(t, x, y) =

( (
ρ′ijxixj

√
yiyj

)
1≤i,j≤d

(
ρijxi
√
yiσj(t, yj)

)
1≤i,j≤d(

ρijxi
√
yiσj(t, yj)

)
1≤i,j≤d

(
ρ′′ijσi(t, yi)σj(t, yj)

)
1≤i,j≤d

)
, (4.32)

and R is the 2d× 2d correlation matrix of the vector (Z1
t , ..., Z

d
t , Z̃

1
t , ..., Z̃

d
t ) of standard Brow-

nian motions

R =

(
ρ′ ρ

ρ ρ′′

)
. (4.33)

Taking the expectation of the previous equality and using the localization for the local martin-

gale term

E(F (T, ST , νT )) = F (0, S0, ν0) +
1

2
E

{
2d∑

i,j=1

∫ T

0

∂2F

∂zi∂zj
(t, St, νt)Γij(t, St, νt)dt

}

+ E

{∫ T

0

∂F

∂t
(t, St, νt)dt+

d∑
i

∫ T

0

∂F

∂yi
(t, St, νt)bi(t, νt)dt

}
,

where zi = xi if i ≤ d and zi = yi−d if i > d. Combining the previous equality with the Black

& Scholes PDE we get

E(F (T, ST , νT )) = F (0, S0, ν0) +
1

2
E

{∫ T

0

2d∑
i,j=1

[
(Γij − Γij)

∂2F

∂zi∂zj

]
(t, St, νt)dt

}
.

When σi = σi and the misspecified SDE (4.31) is different from (4.29) only through a
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different correlation matrix R, then the difference (Γ− Γ)(t, x, y) is given by the expression

(Γ− Γ)(t, x, y) = Q(t, x, y)
(
R−R

)
Q(t, x, y), with

Q(t, x, y) =

( (
δi−jxi

√
yi
)
1≤i,j≤n

0

0 (δi−jσi(t, yi))1≤i,j≤n

) (4.34)

and using the trace operator tr

E(F (T, ST , νT ))− F (0, S0, ν0) =
1

2
E

{∫ T

0

tr
[
Q
(
R−R

)
Q∂2F

]
(t, St, νt)dt

}
. (4.35)

We give now the result of the formal computation of the matrix ∂2F
∂zi∂zj

(t, x, y), with zi = xi

if i ≤ d and zi = yi−d if i > d. An example of the mathematical justifications of the derivatives

used and the permutation between the differentiation operator and the expectation depend on

the model chosen and can be found in the section 4.3.2 for the bidimensional Heston model.

The different terms of the Hessian matrix of the price ∂2F
∂zi∂zj

(t, x, y), are given by

∂2xi,xj
F (t, x, y) = Et,x,y(∂

2
si,sj

f(ST )∂xi
Si
T∂xj

Sj
T ), (4.36)

∂2yi,yjF (t, x, y) = Et,x,y(∂
2
si,sj

f(ST )∂yiS
i
T∂yjS

j
T ) + Et,x,y(∂sif(ST )∂

2
yi
Si
T δi−j), (4.37)

∂2xi,yj
F (t, x, y) = Et,x,y(∂

2
si,sj

f(ST )∂xi
Si
T∂yjS

j
T ) + Et,x,y(∂sif(ST )∂

2
xi,yi

Si
T δi−j) (4.38)

with the notation

f(s) = f(s1, s2, ..., sd) and ∂si+d
f(s) =

∂f(s)

∂si+d

=
∂f(s)

∂si
= ∂sif(s1, ..., si, ..., sd). (4.39)

If the function f is convex,Mij =
{
Et,x,y(∂

2
si,sj

f(ST )∂zjS
j
T∂ziS

i
T )
}

i,j
, with zi = xi if i ≤ d

and zi = yi−d if i > d, is clearly a positive matrix. Consequently, if f is convex, we can rewrite

the Hessian matrix of the price as a sum of a positive matrix M and a matrix N such that

∂2F

∂zi∂zj
(t, x, y) =M(t, x, y) +N(t, x, y), zi = xi if i ≤ d and zi = yi−d if i > d
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with  Mij(t, x, y) = Et,x,y(∂
2
si,sj

f(ST )∂ziS
i
T∂zjS

j
T ),

Nij(t, x, y) = (δi−j−d + δi−j + δi−j+d)Et,x,y(∂sif(ST )∂
2
zi,zj

Si
T )

(4.40)

where δ represents the Kronecker delta.

Let us now focus on models based on the Heston model like the multidimensional Heston

model (dimension> 2) and the multidimensional double Heston model. The choice of these

models is largely due to the fact that the results established in section 4.3.2 for the bidimensional

Heston model can be easily extended to these models. However, the extension to a larger class of

models is conceivable but will request other techniques to overcome some theoretical problems.

For example, the assumption (A1) (in section 4.2) is an important point in the proofs given in

sections 4.3.2 and 4.4.

As already mentioned, the correlation structure chosen for the bidimensional Heston model

does not include all the configurations. The extension models considered here will have the

same kind of correlation structure used for the bidimensional Heston model in (4.5), (4.6), (4.7)

and (4.8), that is to say, we correlate each pair of stocks (Si
T , S

j
T ) independently by a coefficient

ρij and we propagate this correlation on the volatilities (νiT , ν
j
T ) thanks to ρi and ρj which are

known from the one-dimensional calibration.

The idea here is first to check that trace [(Q(t, St, νt)∆RQ(t, St, νt))N ] = 0. A sufficient

condition is to have a matrix ∆R orthogonal to the matrixOij = (δi−j−d+δi−j+δi−j+d)1≤i,j≤2d

in the sense of the bilinear symmetric form Φ(A,B) = trace(AB). This condition is fulfilled

by all symmetric matrices that have zeros on the diagonal of the four blocks

∆R =



0 × ... × × 0 × ... × ×
× 0 × ... × × 0 × ... ×
... . . . . . . . . . ...

... . . . . . . . . . ...

× ... × 0 × × ... × 0 ×
× × ... × 0 × × ... × 0

0 × ... × × 0 × ... × ×
× 0 × ... × × 0 × ... ×
... . . . . . . . . . ...

... . . . . . . . . . ...

× ... × 0 × × ... × 0 ×
× × ... × 0 × × ... × 0



. (4.41)

Regarding the multi-asset Heston model, as it will be done for the two-dimensional case, if
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we fix the correlation between each asset and its volatility we easily obtain a matrix ∆R similar

to (4.41). Consequently, if the misspecified asset vector S differs only from the market asset S

by ρij , the difference quotient (4.35) becomes

E(f(ST ))− E(f(ST ))

∆ρij
= E

{∫ T

0

S
i

tS
j

t

√
νitν

j
tEt,St,νt

[
∂2si,sjf(ST )Ṡ

i
T Ṡ

j
Tα

i
t,Tα

j
t,T

]
dt

}
, (4.42)

where αi
t,T and αj

t,T have similar values as α1
t,T and α2

t,T given later in (4.48).

The same idea can be used for multi-asset models based on the double Heston model, indeed

each stock i has the following dynamic

dSi
t = Si

t

(√
νi1t dZ

i1
t +

√
νi2t dZ

i2
t

)
, Si

0 = xi0,

dνi1t = κi1(θ
i
1 − νi1t )dt+ ηi1

√
νi1t dZ̃

i1
t , νi10 = yi10 ,

dνi2t = κi2(θ
i
2 − νi2t )dt+ ηi2

√
νi2t dZ̃

i2
t , νi20 = yi20 ,

d
⟨
Zi1, Zi2

⟩
t
= d

⟨
Z̃i1, Z̃i2

⟩
t
= 0, d

⟨
Zi1, Z̃i1

⟩
t
= ρi1dt, d

⟨
Zi2, Z̃i2

⟩
t
= ρi2dt.

Because of the decorrelation of (Z1i, Z̃1i) and (Z2i, Z̃2i), if (ρi1, ρi2) are already known using

the one-dimensional calibration for each stock i, we obtain a matrix ∆R similar to (4.41) which

allows to have a difference quotient analogous to (4.42).

4.3.2 Differentiability of the price and studying some specific cases

We suppose that the misspecified price of the asset vector is also given by (4.5), (4.6),

(4.7) and (4.8) but with different inter-asset correlation ρ, that is to say, the only misspecified

parameter is the inter-asset correlation. Thus, the difference (Γ−Γ)(t, x, y) is given as in (4.34)

with

R−R = (ρ− ρ)


0 1 0 ρ2

1 0 ρ1 0

0 ρ1 0 ρ1ρ2

ρ2 0 ρ1ρ2 0


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and

Q(t, x, y) =


x1
√
y1 0 0 0

0 x2
√
y2 0 0

0 0 η1
√
y1 0

0 0 0 η2
√
y2

 ,
x = (x1, x2)

y = (y1, y2)
.

The matrix N given in (4.40) is orthogonal to R−R by the trace operator and thus it is also

orthogonal to (Γ− Γ). In fact

N(R−R)
ρ− ρ

=


0 ρ1D1 0 ρ2ρ1D1

ρ2D2 0 ρ1ρ2D2 0

0 D′
1 0 ρ2D

′
1

D′
2 0 ρ1D

′
2 0


with D1 = Et,x,y

(
∂s1f(ST )∂

2
x1,y1

S1
T

)
, D′

1 = Et,x,y

(
∂s1f(ST )

[
∂2x1,y1

S1
T + ρ1∂

2
y1,y1

S1
T

])
, D2 =

Et,x,y

(
∂s2f(ST )∂

2
x2,y2

S2
T

)
and D′

2 = Et,x,y

(
∂s2f(ST )

[
(∂2x2,y2

S2
T + ρ2∂

2
y2,y2

S2
T )
])

.

Consequently, tr
[
N(Γ− Γ)(t, x, y)

]
= 0 and, with this model, (4.35) is reduced to

E(F (T, ST , νT ))− F (0, S0, ν0) =
1

2
E

{∫ T

0

tr
[
(Γ− Γ)M

]
(t, St, νt)dt

}
, (4.43)

where M given in (4.40).

Although we do get rid of the matrix N , we cannot obtain the uniqueness of ρ from (4.43).

Indeed, even though we are happy that only the positive matrix M (positive when the payoff f

is convex) remains in (4.43), the trace of the difference (Γ − Γ) is equal to zero which makes

difficult the conclusion on the positivity of E(F (T, ST , νT )) − F (0, S0, ν0). This is why, in

Proposition 4.2, we study only specific cases. The following proposition provides the difference

quotient of the price according to ρ, here ∆ρ = ρ− ρ.

Proposition 4.1 We consider the model specified by (4.5), (4.6), (4.7) and (4.8), we make also

the assumption (A1). Then, the flow derivatives

Ṡi
s = Si

s/xi, (4.44)

∂y1S
1
s = S1

sγ
1
t,s, γ

1
t,s =

∫ s

t

ν̇1u
2
√
ν1u
dW 1

u −
1

2

∫ s

t

ν̇1udu, (4.45)
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∂y2S
2
s = S2

sγ
2
t,s, γ

2
t,s =

∫ s

t

ν̇2u
2
√
ν2u

(
ρdW 1

u +
√
1− ρ2dW 2

u

)
− 1

2

∫ s

t

ν̇2udu. (4.46)

where the CIR flow derivative ν̇is is either given in (4.11) or replaced by its modification that

vanishes once the volatility reaches zero.

Using these expressions, the difference quotient (4.35) becomes

E(f(ST ))− E(f(ST ))

∆ρ
= E

{∫ T

0

S1
t S

2

t

√
ν1t ν

2
tEt,St,νt

[
∂2s1,s2f(ST )Ṡ

1
T Ṡ

2
Tα

1
t,Tα

2
t,T

]
dt

}
(4.47)

with S = (S1, S
2
), ν = (ν1, ν2), α1

t,T and α2
t,T provided by the equalities

α1
t,T = 1 + η1ρ1γ

1
t,T = 1 + η1ρ1

(∫ T

t

ν̇1s
2
√
ν1s
dW 1

s −
1

2

∫ T

t

ν̇1sds

)
,

α2
t,T = 1 + η2ρ2γ

2
t,T = 1 + η2ρ2

(∫ T

t

ν̇2s
2
√
ν2s

(
ρdW 1

s +
√
1− ρ2dW 2

s

)
− 1

2

∫ T

t

ν̇2sds

)
.

(4.48)

Proof of Proposition 4.1:
The difference (Γ− Γ)(t, x, y) is equal to

∆ρ
√
y1y2


0 x1x2 0 η2ρ2x1

x1x2 0 η1ρ1x2 0

0 η1ρ1x2 0 η1η2ρ1ρ2

η2ρ2x1 0 η1η2ρ1ρ2 0


with x = (x1, x2) and y = (y1, y2). Using this expression of (Γ− Γ)(t, x, y), the expression of

M given in (4.40) and the value of the derivatives (4.44), (4.45) and (4.46) we get

tr
[
(Γ− Γ)M

]
(t, x, y)

2∆ρ
√
y1y2

= Et,x,y

[
∂2s1,s2f(ST )S

1
TS

2
T

(
1 + η1ρ1γ

1
t,T

) (
1 + η2ρ2γ

2
t,T

)]
(4.49)

where the value of γ1 and γ2 are given in (4.45) and (4.46).

�

Based on the assumptions (A1) (section 4.2) and

(A2) |ρ| < 1, |ρ1| < 1, |ρ2| < 1,
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the following theorem gives a sense to the differentiation ∂2s1,s2f(ST ) in (4.47) and it is based on

the fact that the system of SDEs (4.7), (4.8), (4.5) and (4.6) driven by A1
t(W 1, W̃ 1,W 2, W̃ 2)

with

A1 =


ρ1

√
1− ρ21 0 0

ρρ2 0 ρ2
√
1− ρ2

√
1− ρ22

1 0 0 0

ρ 0
√

1− ρ2 0

 ,

can be rewritten thanks to the Brownian motion vector (β1, β2, β3, β4) by setting the equality

A1
t(W 1, W̃ 1,W 2, W̃ 2) = C1

t(β1, β2, β3, β4) with

C1 =


1 0 0 0

ρρ1ρ2
√
1− ρ2ρ21ρ22 0 0

ρ1
ρρ2(1−ρ21)√
1−ρ2ρ21ρ

2
2

√
1−ρ21

√
1−ρ2ρ22√

1−ρ2ρ21ρ
2
2

0

ρρ1
ρ2(1−ρ2ρ21)√

1−ρ2ρ21ρ
2
2

ρ(1−ρ22)
√

1−ρ21√
1−ρ2ρ21ρ

2
2

√
1−ρ2ρ22

√
1−ρ2
√

1−ρ22√
1−ρ2ρ22

 ,

this also implies that

t(W 1, W̃ 1,W 2, W̃ 2) = A−1
1 C1

t(β1, β2, β3, β4). (4.50)

Theorem 4.2 We suppose that the couples asset/volatility (Si
T , ν

i
T )i=1,2 have the dynamic given

by (4.5), (4.6), (4.7) and (4.8). We also assume (A1), (A2) and f(s) = max(a1s1+a2s2−K, 0)
with a1, a2 ∈ (R∗)2. For a square integrable random variable X , the conditional expectation

Et,x,y,β1,β2

(
∂2s1,s2f(ST )S

1
TS

2
TX
)
= Et,x,y

(
∂2s1,s2f(ST )S

1
TS

2
TX
∣∣∣(β1, β2)t≤w≤T

)
is equal to the

two following values

Et,x,y,β1,β2

[
a2
x1
S2
T

(
K − a2S2

T

|a1|

)
g1

(
K − a2S2

T

a1x1

∣∣∣S2
T

x2

)
h

(
K − a2S2

T

a1
, S2

T

)]
(4.51)

and

Et,x,y,β1,β2

[
a1
x2
S1
T

(
K − a1S1

T

|a2|

)
g2

(
K − a1S1

T

a2x2

∣∣∣S1
T

x1

)
h

(
S1
T ,
K − a1S1

T

a2

)]
, (4.52)

with

h (s1, s2) = Et,x,y,β1,β2

(
X
∣∣∣S1

T = s1, S
2
T = s2

)
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and

g1(v1|v2) =
exp

(
− 1

2(1−ρ̃2)

[
u1(v1)
σ1
− ρ̃u2(v2)

σ2

]2)
√
2πv1σ1

√
1− ρ̃2

1v1>0, (4.53)

g2(v2|v1) =
exp

(
− 1

2(1−ρ̃2)

[
u2(v2)
σ2
− ρ̃u1(v1)

σ1

]2)
√
2πv2σ2

√
1− ρ̃2

1v2>0. (4.54)

where

σ1 =
√

(1−ρ21)(1−ρ2ρ22)

1−ρ2ρ21ρ
2
2

√∫ T

t
ν1sds, σ2 =

√
(1−ρ22)(1−ρ2ρ21)

1−ρ2ρ21ρ
2
2

√∫ T

t
ν2sds,

u1(v) = ln(v) + 1
2

∫ T

t
ν1sds− ρ1

∫ T

t

√
ν1sdβ

1
s −

ρρ2(1−ρ21)√
1−ρ2ρ21ρ

2
2

∫ T

t

√
ν1sdβ

2
s ,

u2(v) = ln(v) + 1
2

∫ T

t
ν2sds− ρρ1

∫ T

t

√
ν2sdβ

1
s −

ρ2(1−ρ2ρ21)√
1−ρ2ρ21ρ

2
2

∫ T

t

√
ν2sdβ

2
s ,

ρ̃ =
ρ
√

(1−ρ21)
√

(1−ρ22)√
(1−ρ2ρ21)

√
(1−ρ2ρ22)

∫ T
t

√
ν1sν

2
sds

σ1σ2
.

The proof of this theorem is provided in the appendix.

Remark 4.1 1) According to section 4.2 (equality (4.11)), for i = 1, 2 and p ≥ 1, ν̇iT or

their modifications (once we reach τ0(y), we replace them by their modifications that

vanish) are Lp random variables and this is also the case for
(∫ T

t
νisds

)−1/2

thanks to

the results developed in [21]. Thus α1
t,Tα

2
t,T ∈ L2(Ω) and Theorem 4.2 tells us that the

equality (4.49), expressed formally thanks to some elements of the matrix M (see (4.40)),

is equal to Et,x,y(Λt,x,y,β1,β2) where Λt,x,y,β1,β2 is almost surely equal to both (4.51) and

(4.52) with

h (s1, s2) = Et,x,y,β1,β2

(
α1
t,Tα

2
t,T

∣∣∣S1
T = s1, S

2
T = s2

)
,

which provides the sense of our previous use of the Dirac distribution without justification for

the model specified by (4.5), (4.6), (4.7) and (4.8).
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2) The permutations of the differentiation and the expectation, that were done in the pre-

vious sections, are justified by the fact that for :

X ∈
{
1,
√
y1γ

1
t,T ,
√
y2γ

2
t,T ,
√
y1y2γ

1
t,Tγ

2
t,T

}
either the expression :

a2
x1
S2
T

(
K−a2S2

T

|a1|

)
h
(

K−a2S2
T

a1
, S2

T

)
g1

(
K−a2S2

T

a1x1

∣∣∣S2
T

x2

)
or a1

x2
S1
T

(
K−a1S1

T

|a2|

)
h
(
S1
T ,

K−a1S1
T

a2

)
g2

(
K−a1S1

T

a2x2

∣∣∣S1
T

x1

)
can be dominated according to x =

(x1, x2) and y = (y1, y2) by an L1-bounded random variable. Indeed, taking for example

the first expression, we have first to get rid of S2
T by a change of probability (S2

T is a po-

sitive martingale and not only a local martingale, we refer the reader to [35] and [54]),

afterwards,
(

K−a2S2
T

x1|a1|

)
can be simplified with denominator of g1, finally, h can be easily

dominated using the previous remark.

3) The assumption (A2) is necessary to have the two expressions (4.51) and (4.52). Indeed,

for instance if |ρ1| = 1, |ρ2| < 1 and |ρ| < 1 then the expression (4.52) still can be used

but (4.51) cannot.

4) Although Theorem 4.2 considers that f(s) = max(a1s1 + a2s2 − K, 0) with a1, a2 ∈
(R∗)2, the result for f(s) = max(a1s1 + a2s2 +K, 0) with a1, a2 ∈ (R∗)2 can be easily

derived in the same way. When dealing with f(s) = max(a1s1 + a2s2 − K, 0), a1 and

a2 can be both positive and, subsequently, the result of Theorem 4.2 can be applied on

contracts beyond the spread options.

Now that we give a sense to all the formal expressions established previously, we provide

the monotony result for some values of the products {ηiρi}i=1,2 and {ηi
√
1− ρ2i }i=1,2.

Proposition 4.2 We suppose that the couples asset/volatility (Si
T , ν

i
T )i=1,2 have the dynamic

given by (4.5), (4.6), (4.7) and (4.8). Assuming (A1), (A2) and a European option that has

f(s) = max(a1s1 + a2s2 ±K, 0) as payoff, then the price is differentiable according to ρ and

if :

c1) {ηiρi}i=1,2 = 0 or

c2) η1ρ1 = 0, η2
√
1− ρ22 = 0 and 2κ2 − η2ρ2 > 0 or

c3) η2ρ2 = 0, η1
√
1− ρ21 = 0 and 2κ1 − η1ρ1 > 0,

then the price is monotonous with respect to ρ. For these three cases, the price increases with

respect to ρ if a1a2 > 0 and decreases if a1a2 < 0. Moreover, the prices of the one-dimensional

calls and puts (a1a2 = 0) do not depend on ρ.

Remark 4.2 – This result does not include the case {ηi
√

1− ρ2i }i=1,2 = 0 because, as we

pointed out previously in Remark 4.1 3), one should have, at least, |ρ1| ̸= 1 or |ρ2| ̸= 1

to be able to use (4.51) or (4.52).
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– Even though these choices are restrictive, in some cases, practitioners can found them-

selves using this kind of assumptions on the parameters. We refer the reader for example

to [23].

– Because the price is continuous according to ηi and ρi (because νi is continuous accor-

ding to these parameters and the payoff is continuous with respect to νi), we can replace

the zeros in this proposition by "small values". However, we preferred not to announce

this more general result because its proof is heavier and it does not help to clarify all the

situations for which we have the monotony.

– From a numerical point of view, remark also that the condition (A1) : 4κiθi > η2i is

generally sufficient to have ηi . 2. Indeed, θi represents the long term volatility and it

is generally smaller than 0.4, also the mean reversion coefficient κi used in applications

can be considered smaller than 3. Subsequently, ηi|ρi| . 1 or ηi
√
1− ρ2i . 1 is true.

Proof of Proposition 4.2:
According to (4.47), the domination remark 4.1.2) of the term under the double integral and the

continuity of (−1, 1) ∋ r 7→ νs announced in Theorem 4.1 (here r = ρ), we have

∂ρE(f(ST )) = lim
ρ→ρ

E

{∫ T

0

S
1

tS
2

t

√
ν1tν

2
tEt,St,νt

[
∂2s1,s2f(ST )Ṡ

1
T Ṡ

2
Tα

1
t,Tα

2
t,T

]
dt

}
= E

{∫ T

0

lim
ρ→ρ

S1
t S

2

t

√
ν1t ν

2
tEt,St,νt

[
∂2s1,s2f(ST )Ṡ

1
T Ṡ

2
Tα

1
t,Tα

2
t,T

]
dt

}
= E

{∫ T

0

S1
t S

2
t

√
ν1t ν

2
tEt,St,νt

[
∂2s1,s2f(ST )Ṡ

1
T Ṡ

2
Tα

1
t,Tα

2
t,T

]
dt

}
.

(4.55)

This then prove the differentiability of the price according to ρ when only (A1) is fulfilled.

Using formally the derivative ∂2s1,s2f(s) = a1a2ε(a1s
1 + a2s

2 ±K) (ε is the Dirac distribu-

tion) in (4.47), it is sufficient to prove the positivity of αi
t,T . If ηiρi = 0 then αi

t,T = 1 which is

sufficient to prove c1). Also if η1ρ1 = 0 and η2
√
1− ρ22 = 0 then α1

t,T = 1 and thanks to (4.11),

α2
t,T = ν̇2T +

(
κ1 −

η1ρ1
2

)∫ T

t

ν̇isds and provided that 2κ2 − η2ρ2 > 0, α2
t,T > 0 which proves

c2) and the proof of c3) is analogous.

�

4.4 Asymptotic approximation for short maturities

In this section, we remain working with the model specified by (4.5), (4.6), (4.7) and (4.8),

we will establish, for short maturities, an asymptotic approximation of the derivative of the price
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with respect to ρ. For the sake of simplicity, we consider the option that has the following payoff

f(s1, s2) = (s1 − s2)+.

However, the general result for the payoff of the exchange option f(s1, s2) = (a1s1 − a2s2)+,

with (a1, a2) ∈ (R∗
+)

2, is given in Theorem 4.3 and a numerically good approximation for the

spread options is given in (4.68). Provided that we can commute the derivative with respect to ρ

and the expectation, and that the expression under the expectation is differentiable with respect

to ρ (see the proof of Theorem 4.3, Step2), the derivative of the price with respect to ρ is given

by

∂

∂ρ
E
(
(S1

T − S2
T )+
)
= −E

(
∂ρS

2
T1S1

T≥S2
T

)
, (4.56)

where 1 represents the indicator function. Provided that we can differentiate S2 and ν2 with

respect to the correlation ρ (when the assumption (A0) of the section 4.2 is fulfilled)

∂ρS
2
T = S2

T

(∫ T

0

√
ν2s

(
dW 1

s −
ρ√

1− ρ2
dW 2

s

))

+ S2
T

(∫ T

0

∂ρν
2
s

2
√
ν2s

(
ρdW 1

s +
√

1− ρ2dW 2
s

)
− 1

2

∫ T

0

∂ρν
2
sds

)
.

(4.57)

Replacing the value of ∂ρS2
T in (4.56), we get

∂
∂ρ
E ((S1

T − S2
T )+) = E

(
1S1

T≥S2
T
S2
T

(
1

2

∫ T

0

∂ρν
2
sds

))
− E

(
1S1

T≥S2
T
S2
T

∫ T

0

∂ρν
2
s

2
√
ν2s

(
ρdW 1

s +
√
1− ρ2dW 2

s

))

− E

(
1S1

T≥S2
T
S2
T

(∫ T

0

√
ν2s

(
dW 1

s −
ρ√

1− ρ2
dW 2

s

)))
.

(4.58)

According to various works like the one presented in [35] and [54], we know that S2
T is a real

positive martingale and not only a local martingale. This allows us to define a new probability

measure P 2 whose density is given by
dP 2

dP
=
S2
T

S2
0

. Under this new probability, Z1 and Z2 are
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two independent Brownian motions related to W 1 and W 2 by

dZ1
t = dW 1

t − ρ
√
ν2t dt,

dZ2
t = dW 2

t −
√
1− ρ2

√
ν2t dt.

Also, under the probability P 2, the value of S1 and S2 are given by

S1
T = x1 exp

(∫ T

0

√
ν1sdZ

1
s + ρ

∫ T

0

√
ν1sν

2
sds− 1

2

∫ T

0
ν1sds

)
,

S2
T = x2 exp

(∫ T

0

√
ν2s

(
ρdZ1

s +
√
1− ρ2dZ2

s

)
+ 1

2

∫ T

0
ν2sds

)
.

By this change of probability and using (4.58), we obtain

E
(
∂ρS

2
T1S1

T≥S2
T

)
= S2

0E
2

(
1S1

T≥S2
T

∫ T

0

√
ν2s

(
dZ1

s −
ρ√

1− ρ2
dZ2

s

))

+ S2
0E

2

(
1S1

T≥S2
T

∫ T

0

∂ρν
2
s

2
√
ν2s

(
ρdZ1

s +
√

1− ρ2dZ2
s

))
.

(4.59)

For short maturities and under the assumption

(A3) ∃C ∈ R∗ such that ln

(
a2x2
a1x1

)
= C
√
T + o(

√
T ), (a1, a2) ∈ (R∗

+)
2,

we will see in the proof of Theorem 4.3 that the second term of (4.59) can be neglected because

it tends to zero with respect to T faster than the first one. Also, in Theorem 4.3, the asymptotic

derivative of the price with respect to ρ is established thanks to the following lemma obtained

by Ito isometry.

Lemma 4.1 On Rd, we define a Brownian motion Wt and [0,∞) ∋ t 7→ Ht ∈ L2(Rd) an

adapted random process such that lim
t↓0

E
(
||Ht −H0||2

)
= 0, where || · || is the Euclidean

norm. Then

lim
t→0

1

t
E

(∥∥∥∥∫ t

0

Hs · dWs −H0 ·Wt

∥∥∥∥2
)

= 0.

Theorem 4.3 We suppose that the couples asset/volatility (Si
T , ν

i
T )i=1,2 have the dynamic given

by (4.5), (4.6), (4.7) and (4.8). We also make the assumptions (A0), (A2) and (A3). For short
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maturities, the derivative with respect to ρ of a European option that has f(s1, s2) = (a1s1 −
a2s2)+, with (a1, a2) ∈ (R∗

+)
2 as payoff can be asymptotically approximated by

∂

∂ρ
E
(
(a1S

1
T − a2S2

T )+
)

=

T ∼ 0

− a2x2

√
Tν10ν

2
0

2πλ
exp

(
−1

2

[
C√
λ

]2)
+ o(
√
T ) (4.60)

with λ = ν10 + ν20 − 2ρ
√
ν10ν

2
0 and the constant C comes from (A3).

From Theorem 4.3 and because a2 > 0, it is clear that the price of an exchange option is

decreasing according to ρ for short maturities.

Proof of Theorem 4.3:
We divide the proof of this theorem into two steps : In the first step, we detail the computations

of (4.60). In the second step, we show that the commutation of the derivative with respect to ρ

and the expectation in (4.56) is correct.

Step1 :
The use of the constants a1 and a2 is not restrictive because they can be included in the spot

prices S1
0 = x1 and S2

0 = x2. Defining the triplet of random variables (L1
T , L

2
T , L

3
T ) by

L1
T =

1√
T

∫ T

0

√
ν2t

(
dZ1

t −
ρ√

1− ρ2
dZ2

t

)
, L2

T =
1√
T

∫ T

0

√
ν1t dZ

1
t ,

L3
T =

1√
T

∫ T

0

√
ν2t

(
ρdZ1

t −
√
1− ρ2dZ2

t

)
+

ln (S2
0/S

1
0)√

T
− 1√

T

∫ T

0

(
ρ
√
ν1t ν

2
t −

ν1t + ν2t
2

)
dt,

(4.61)

as T → 0, Lemma 4.1 and the assumption (A3) allows us to have the convergence in probability

of (L1
T , L

2
T , L

3
T ) to (L1

0, L
2
0, L

3
0) with

L1
0 =

√
ν20

(
G1 −

ρ√
1− ρ2

G2

)
, L2

0 =
√
ν10G1

L3
0 =

√
ν20

(
ρG1 −

√
1− ρ2G2

)
+ C.

where G1 and G2 are two independent standard Normal random variables and C is the constant

of the assumption (A3).

Moreover the first term of (4.59) is equal to S2
0

√
TE2

(
L1
T1L2

T≥L3
T

)
and thanks to both facts

P 2(L2
0 = L3

0) = 0 and E2
(
(L1

T )
2
)
= E2

(
1

T

∫ T

0

ν2t dt

)
<∞,
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we obtain the convergence

E2
(
L1
T1L2

T≥L3
T

)
−→
T → 0

E2
(
L1

01L2
0≥L3

0

)
.

Let us compute E2
(
L1
01L2

0≥L3
0

)
,

E2
(
L1
01L2

0≥L3
0

)
=
√
ν20E

2

(
1A

(
G1 −

ρ√
1− ρ2

G2

))

with
A =

{
G1 −

√
ν20(ρG1 +

√
1− ρ2G2)√

ν10
≥ C

}
.

By the decomposition of G1 into two independent standard Normal random variables G̃ and Ĝ :

G1 = ρG̃+
√
1− ρ2Ĝ, with

G̃ = ρG1 +
√

1− ρ2G2, Ĝ =
√
1− ρ2

(
G1 − ρ√

1−ρ2
G2

)
(4.62)

and A becomes

A =
{
Ĝ ≥ g(G̃)

}
, with g(u) =

(
√
ν20 − ρ

√
ν10)u√

1− ρ2
√
ν10

+ C. (4.63)

The computation of this expectation provides

E2

(
1A

(
G1 − ρ√

1−ρ2
G2

))
= E2

(
E2

[
1A

Ĝ√
1− ρ2

∣∣∣G̃])

=
1√

1− ρ2
E2

(
1√
2π

∫ ∞

g(G̃)

ue−u2/2du

)

=
1√

1− ρ2
√
2π
E2

(
exp

{
− [g(G̃)]2

2

})
.

(4.64)

By finishing the calculation of the expectation and multiplying it by S2
0

√
Tν20 , we obtain the

expression given in (4.60).

To conclude that the derivative with respect to ρ is asymptotically given by (4.60), it is

sufficient to prove that the second term of (4.59) divided by
√
T vanishes as T tends to zero. By
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Cauchy-Schwarz inequality

1√
T
E2

∣∣∣∣∣1S1
T≥S2

T

∫ T

0

∂ρν
2
s

2
√
ν2s

(
ρdW 1

s +
√
1− ρ2dW 2

s

)∣∣∣∣∣ ≤√IT

√
E2
(
1S1

T≥S2
T

)
(4.65)

with IT = 1
T
E2
(∫ T

0

(∂ρν2s )
2

4ν2s
ds
)

. Thanks to a conditioning with respect to B2 and using Ito

isometry, we get

IT =
1

T
E2

(∫ T

0

E2 [(∂ρν
2
s )

2|B2]

4ν2s
ds

)

=
η22ρ

2
2

4T (1− ρ2)

∫ T

0

∫ s

0

E2

e−κ2(s− u)−
(
κ2θ2 −

η22
4

)∫ s

u

dr

ν2r

duds ≤ η22ρ
2
2T

8(1− ρ2)
.

(4.66)

Step2 : The commutation of the derivative with respect to ρ and the expectation in (4.56)

remains to be proven. When taking |ρ| < 1 − ϵ with 0 < ϵ ≪ 1, we can dominate the square

of the random variables in the expectations E2 of (4.59) by integrable random variables. The

latter fact can be easily seen for the first term and regarding the second term, one should use the

inequalities (4.65) and (4.66) to obtain it.

�

Remark 4.3 1) First, we point out that assumption (A0) is necessary to have the diffe-

rentiability of ν2 according to ρ in the strong sense which was needed in Theorem 4.3.

However, it is sufficient to have 4κ2θ2 > η22 to use the boundedness of (4.66) in Step1 and

Step2 of the previous proof. Also because of the differentiability of the price according to

ρ (see proposition 4.2), we conjecture the validity of the asymptotic approximation when

the assumption (A0) is replaced by (A1).
2) Rewriting the asymptotic approximation (4.60) without the constant C of the assumption

(A3), we get

−a2x2

√
Tν10ν

2
0

2πλ
exp

−1

2

 ln
(

a2x2

a1x1

)
√
Tλ

2
 ,

with λ = ν10 + ν20 − 2ρ
√
ν10ν

2
0 . Although this approximation works well for T ≤ 0.2, we
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find out numerically that the expression

−a2x2

√
Tν10ν

2
0

2πλ
exp

−1

2

 ln
(

a2x2

a1x1

)
√
Tλ

+

√
Tλ

2

2
 (4.67)

allows us to have good results even when T = 0.3. The term
√
Tλ
2

comes from the finite

variation process 1√
T

∫ T

0

(
ρ
√
ν1t ν

2
t −

ν1t +ν2t
2

)
dt in the expression of L3

T in (4.61).

3) As we will see in section 4.5.1, the expression (4.67) provides a good estimation of the

derivative with respect to ρ for exchange options with maturities T ≤ 0.3. For short

maturity, using the following approximations

E ((a1S
1
T − a2S2

T +K)+) ≃ 0.5 ∗ E
(
(a1S

1
T − a2S̃2

T )+

)
+ 0.5 ∗ E

(
(a1S̃

1
T − a2S2

T )+

)
with S̃1

T = (x̃1/x1)S
1
T , S̃

2
T = (x̃2/x2)S

2
T and x̃1 = x1 +

K
a1
, x̃2 = x2 − K

a2
.

and applying (4.67) on these approximations, we obtain another good estimation of the

derivative of the spread options with respect to ρ, given by

−a2x̃2
2

√
Tν10ν

2
0

2πλ
exp

−1

2

[
ln (a2x̃2/a1x1)√

Tλ
+

√
Tλ

2

]2
+
−a2x2

2

√
Tν10ν

2
0

2πλ
exp

−1

2

[
ln (a2x2/a1x̃1)√

Tλ
+

√
Tλ

2

]2 ,

(4.68)

with λ = ν10 + ν20 − 2ρ
√
ν10ν

2
0 .

4) Finally, for short maturities we point out that using models based on Heston like the two-

dimensional double Heston model and driving the same computations as the one done in

this section, one can also obtain an approximation of the derivative of the price of an

exchange option with respect to ρ.

4.5 Numerical results

From a practitioner’s point of view, it is interesting to figure out the interval of maturities

for which the approximation (4.68) (or (4.67)) is acceptable and to estimate, thanks to a Monte

Carlo simulation, the value of the errors produced by this approximation. In addition to that,

because the monotony result is established for some values of ηi, ρi and
√
1− ρ2i , it is important

to show, at least numerically, that the practical values of these parameters ensure the monotony.
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When using Monte Carlo, in order to check the monotony of the price according to ρ, one

has to decrease significantly the variance of the simulations by using as many trajectories as

possible. The latter fact is even more true for the approximation of the derivative with respect

to ρ using Monte Carlo. In all the implemented simulations we make sure that the obtained

results are, at least, ten times bigger than the error induced by the 95% confidence interval 1. To

reach this high accuracy Monte Carlo simulation in an acceptable execution time, we simulated

M = 222 trajectories on an Nvidia 480 GTX GPU (Graphics Processing Unit).

The reader may have noticed that the correlation structure, used in (4.5), (4.6), (4.7) and

(4.8), does not allow the model to be affine. Consequently, we cannot use, for instance, the

Alfonsi discretization scheme [5] for the Monte Carlo simulations. Nevertheless, for the volati-

lities, we implement the Milstein scheme because it is known to provide good results. Indeed,

as already mentioned in [23], when the assumption 4κ2θ2 ≥ η22 is fulfilled, by setting

νtk+1
=
(√

νtk +
η

2

√
∆tG

)2
+ κ(θ − νtk)∆t−

η2

4
∆t, ∆t = tk+1 − tk, G ∼ N (0, 1)

then νtk+1
> 0 when νtk = 0 which reduces considerably the cases when νtk+1

< 0. If the

simulation provides νtk+1
< 0, then it is sufficient to set νtk+1

= 0 (for more details on the

choice of discretization schemes, we refer the reader to [25]). Besides, the assets are simulated

by an Euler scheme and the discretization time δt = 0.01. Consequently, in both sections 4.5.1

& 4.5.2, the parameters of the performed simulations fulfill the assumption (A1).

4.5.1 Results for short maturities

This section is exclusively dedicated to testing the asymptotical derivative (4.68) thanks to a

Monte Carlo simulation. We will consider spread options with maturities T = 0.1, 0.2, 0.3. We

take the correlations ρi ∈ {−0.85,−0.8, ..., 0.8, 0.85} such that ∆ρ = ρi+1 − ρi = 0.05 and we

approach the derivative of the price with respect to ρ by the expression

∂ρF (ρi) =
F (ρi+1)− F (ρi)

∆ρ
(4.69)

where F (ρi+1) and F (ρi) are the prices obtained by Monte Carlo. The resulted error between

(4.68) and (4.69) will be quantified in percentage :

Error Percentage = 100 ∗
∣∣∣∣Expression(4.68)− Expression(4.69)Expression(4.69)

∣∣∣∣ . (4.70)

1. The difference F (ρi+1)− F (ρi) defined in (4.69) is at least, ten times bigger than the error induced by the
95% confidence interval.
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We point out that the assumption |ρ| < 1, in Theorem 4.3, plays an important role in the pre-

cision of the approximation (4.69). In addition, because simulating M = 222 trajectories with

a discretization time step δt = 0.01 is already time consuming, we have chosen to restrict

ourselves to the values ρi ∈ {−0.85,−0.8, ..., 0.8, 0.85}. Besides, after a large number of si-

mulations, we have decided to present only the most important numerical results related to the

precision of the expression (4.68). For example, after a large set of simulations, we concluded

that ρ1 and ρ2 do not intervene a lot in the accuracy of the approximation (4.68) and we took

for all figures ρ1 = ρ2 = −0.5 that is also a reasonable choice in practice.

We first study the impact of the model parameters on the error. This allows us to derive the

"worst" cases for which the error is big. We then examine the error behavior of the approxima-

tion (4.68) as a function of the maturity.

The parameters that deteriorate the most the asymptotic approximation

According to Figure 4.1, η1 and η2 change barely the error produced by (4.68). In fact, for

short maturities, using small values of ηi creates bigger errors when the value of ρ is close to

−1, but the average value of errors remains the same.

According to figures 4.2, 4.3 and 4.4, we notice that the precision of (4.68) is altered much

more when κi is big and when θi is very different form νi0. The latter fact can be explained

heuristically by the mean reversion characteristic of the Heston model and because (4.68) does

not include the action of θi which plays quickly an important role when κi is big.

The maturities for which the asymptotic approximation can be accepted

Now that we know the model parameters that reduce the most the accuracy of the approxi-

mation (4.68), we want to study the action of the payoff parameters a1, a2, S1
0 = x1, S2

0 = x2

and the strike K on the precision of the approximation (4.68). In figures 4.5, 4.6, 4.7 and 4.8,

we have tested an extreme choice of model parameters in order to be pretty sure that the error

obtained, more or less, dominates the errors gotten with standard market parameters.

From these figures, when the option is In The Money (ITM) or Out of The Money (OTM),

we remark that the error increases quickly when ρ is close to 1. Although a small part 2 of the

error is due to the approximation (4.69), the other part tells us that, when T = 0.3, ρ > 0.8

and the payoff is 20% ITM or OTM, one has to have small values of κi (κi ≤ 1) or small

difference between θi and νi0 (θi/νi0 ≥ 1/2), otherwise the approximation (4.68) is strongly

2. When simulating M = 226 trajectories and using ∆ρ = 0.005, we found out that the maximum error
attained in Figure 4.5 is 24% instead of 28%.
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FIGURE 4.1 – The error according to η1 and
η2, the other parameters used are : κ1 = κ2 =
2.25, θ1 = θ2 = 0.1, ν10 = ν20 = 0.5, a1x1 =
a2x2 = 100, the maturity T = 0.2 and the
strike K = 0.
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FIGURE 4.2 – The error according to θ1 and
θ2, the other parameters used are : κ1 = κ2 =
2.25, η1 = η2 = 0.4, ν10 = ν20 = 0.5, a1x1 =
a2x2 = 100, the maturity T = 0.2 and the
strike K = 0.
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FIGURE 4.3 – The error according to κ1 and
κ2, the other parameters used are : θ1 = θ2 =
0.1, η1 = η2 = 0.4, ν10 = ν20 = 0.5, a1x1 =
a2x2 = 100, the maturity T = 0.2 and the
strike K = 0.
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FIGURE 4.4 – The error according to {θi}i=1,2

and {κi}i=1,2, the other parameters used are :
η1 = η2 = 0.4, ν10 = ν20 = 0.5, a1x1 =
a2x2 = 100, the maturity T = 0.2 and the
strike K = 0.

wrong. When T = 0.3, we have found out that the error percentage is always lower than 18%

when either κi ≤ 1.5 and θi/ν
i
0 ≥ 1/3 or κi ≤ 2 and θi/ν

i
0 ≥ 1/2. The maximum error

percentage associated to all these cases is lower than 18% and the average error is lower than

10%.

To sum up, with |ρ| ≤ 0.9 and νi0 ≤ 0.5, when

– T ≤ 0.1 and the payoff is less than 20% ITM or OTM, the approximation (4.68) can be

accepted when θi/νi0 ≥ 1/4 and κi ≤ 3.

– T ≤ 0.2 and the payoff is less than 20% ITM or OTM, the approximation (4.68) can be

accepted when θi/νi0 ≥ 1/4 and κi ≤ 1.5.
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– T ≤ 0.3 and the payoff is less than 10% ITM or OTM, the approximation (4.68) can be

accepted when θi/νi0 ≥ 1/5 and κi ≤ 3.

– κi ≤ 1.5 and θi/νi0 ≥ 1/3 or κi ≤ 2 and θi/νi0 ≥ 1/2, the approximation (4.68) can be

accepted for maturities T ≤ 0.3 and payoffs less than 20% ITM or OTM.
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FIGURE 4.5 – The error percentage for a ma-

turity T = 0.1 when changing a1/a2, the pa-

rameters used are : κ1 = κ2 = 3.0, θ1 =

θ2 = 0.1, η1 = η2 = 0.1, ν10 = ν20 = 0.5,

x1 = x2 = 100 and the strike K = 0.
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FIGURE 4.6 – The error percentage for a ma-

turity T = 0.3 when changing a1/a2, the pa-

rameters used are : κ1 = κ2 = 3.0, θ1 =

θ2 = 0.1, η1 = η2 = 0.1, ν10 = ν20 = 0.5,

x1 = x2 = 100 and the strike K = 0.
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turity T = 0.1 when changing the strike K,

the parameters used are : κ1 = κ2 = 3.0,

θ1 = θ2 = 0.1, η1 = η2 = 0.1, ν10 = ν20 = 0.5

and a1x1 = a2x2 = 100.
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FIGURE 4.8 – The error percentage for a ma-

turity T = 0.3 when changing the strike K,

the parameters used are : κ1 = κ2 = 3.0,

θ1 = θ2 = 0.1, η1 = η2 = 0.1, ν10 = ν20 = 0.5

and a1x1 = a2x2 = 100.
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In Figure 4.9, we give an example of a standard choice of parameters when η1 and η2 do not

fulfill the Feller assumption, but we remark that we still obtain good numerical results.
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FIGURE 4.9 – The error percentage for 20% ITM or OTM contracts, the parameters used are :

κ1 = κ2 = 2.0, θ1 = θ2 = 0.2, η1 = η2 = 1.2, ν10 = ν20 = 0.4 and x1 = x2 = 100.

4.5.2 Results for medium and large maturities

We have already seen, in section 4.3.2, that the monotony of the price according to ρ is

fulfilled when ηi, ρi or
√
1− ρ2i are sufficiently small. As far as ρi and

√
1− ρ2i are concerned

in our successive simulations, changing the value of ρ1 and ρ2 did not change much numerically

the rate of the monotony of the price according to ρ. Consequently, we took for all figures

ρ1 = ρ2 = −0.5. Nevertheless, comparing Figure 4.10 to Figure 4.11 and Figure 4.12 to Figure

4.13, we notice that the monotony is much stronger for small values of ηi than when ηi is close

to 2
√
κiθi. What we call "Relative Increment %" in these figures is the quantity defined by

100 ∗ F (ρi)− F (ρi+1)

F (ρi)
, (4.71)

where ρi ∈ {−0.9,−0.8, ..., 0.8, 0.9} and F (ρi) is the price obtained by Monte Carlo.

We have preferred to simulate the value of (4.71), instead of the price or its derivative, for

two reasons. The first one is due to the heaviness of the simulation of the derivative of the price.

In fact, for T ≥ 5, to have a good Monte Carlo approximation of the derivative of the price

according to ρ, one should simulate M = 224 trajectories and preferably use ∆ρ = 0.05 instead

of 0.1.
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FIGURE 4.10 – The relative increment % for

a maturity T = 5 when changing a1/a2, the

parameters used are : η1 = η2 = 0.1, κ1 =

κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 = 0.4,

x1 = x2 = 100 and the strike K = 0.
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FIGURE 4.11 – The relative increment % for

a maturity T = 5 when changing a1/a2, the

parameters used are : η1 = η2 = 1.5, κ1 =

κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 = 0.4,

x1 = x2 = 100 and the strike K = 0.
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FIGURE 4.12 – The relative increment % for

a maturity T = 5 when changing the strike

K, the parameters used are : η1 = η2 = 0.1,

κ1 = κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 =

0.4 and a1x1 = a2x2 = 100.
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FIGURE 4.13 – The relative increment % for

a maturity T = 5 when changing the strike

K, the parameters used are : η1 = η2 = 1.5,

κ1 = κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 =

0.4 and a1x1 = a2x2 = 100.

In addition to a maturity T ≥ 5 and a discretization δt = 0.01, the simulations would take

an enormous time even on a GPU. The second reason comes from the fact that the monotony of

the price when ρ > 0.5 is much bigger than for the other values of ρ. This behavior makes the

curves almost flat when ρ ≤ −0.5 which deteriorates the monotony information.

Because of what we said above, in figures 4.14, 4.15, 4.16 and 4.17, we restrict ourselves

to study only the case for which the monotony is the least strong, that is to say, the case when
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ηi is close to 2
√
κiθi. We remark that, not only, all the prices are monotonous, but also, the

speed of this monotony decreases according to the maturity. Indeed, for maturities T ≥ 10 and

ρ < −0.5, the monotony can be barely seen from prices when simulating less than M = 220

trajectories.
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FIGURE 4.14 – The relative increment % for

a maturity T = 1 when changing a1/a2, the

parameters used are : η1 = η2 = 1.5, κ1 =

κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 = 0.4,

x1 = x2 = 100 and the strike K = 0.
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FIGURE 4.15 – The relative increment % for

a maturity T = 1 when changing the strike

K, the parameters used are : η1 = η2 = 1.5,

κ1 = κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 =

0.4 and a1x1 = a2x2 = 100.
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FIGURE 4.16 – The relative increment % for

a maturity T = 10 when changing a1/a2, the

parameters used are : η1 = η2 = 1.5, κ1 =

κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 = 0.4,

x1 = x2 = 100 and the strike K = 0.
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FIGURE 4.17 – The relative increment % for

a maturity T = 10 when changing the strike

K, the parameters used are : η1 = η2 = 1.5,

κ1 = κ2 = 3.0, θ1 = θ2 = 0.2, ν10 = ν20 = 0.4

and a1x1 = a2x2 = 100.
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We conclude that, even though the conditions of Proposition 4.2 can be considered as res-

trictive, the simulation results strengthen our faith in the global monotony result of the multidi-

mensional Heston model.

4.6 Conclusion

In this work, we tried to present, as consistent as possible, the study of the price according to

the correlation. We provided a good approximation of the derivative of the price with respect to

ρ for short maturities. We also saw theoretically that the monotony is fulfilled for special choices

of the parameters of the model. When compared to the simulation results, the theoretical ones

are a bit frustrating because we remarked numerically the clear monotony of the price according

to ρ. However, only from the proofs, one can identify the important difficulties that one can

face when dealing with this kind of problem. In contrast to the simulation heaviness for which

the parallel GPU implementation provides serious advantages that allowed us to have solid

numerical study of the monotony of the price.

4.7 Appendix

Proof of Theorem 4.2:

All the computations will be done thanks to the fact that the couple
(
S1
T

x1
,
S2
T

x2

)
has a log-

normal density conditionally to the Brownian vector (β1
w, β

2
w)t≤w≤T that drives the volatility

SDEs. Indeed, this log-normality can be easily proven by rewriting the couple (W 1,W 2) in

term of (β1, β2) and to (β3, β4) as described previously by (4.50) in which

A−1
1 C1 =



ρ1
ρ2ρ(1− ρ21)√
1− ρ2ρ21ρ22

√
1− ρ21

√
1− ρ2ρ22√

1− ρ2ρ21ρ22
0

√
1− ρ21

−ρρ1ρ2
√
1− ρ21√

1− ρ2ρ21ρ22

−ρ1
√

1− ρ2ρ22√
1− ρ2ρ21ρ22

0

0
ρ2
√

1− ρ2√
1− ρ2ρ21ρ22

−ρρ22
√

1− ρ2
√

1− ρ21√
1− ρ2ρ22

√
1− ρ2ρ21ρ22

√
1− ρ22√
1− ρ2ρ22

0

√
1− ρ22√

1− ρ2ρ21ρ22

−ρρ2
√

1− ρ21
√

1− ρ22√
1− ρ2ρ22

√
1− ρ2ρ21ρ22

−ρ2
√

1− ρ2√
1− ρ2ρ22


.

If we denote by g(v1, v2) the log-normal density of
(
S1
T

x1
,
S2
T

x2

)
conditionally to (β1

w, β
2
w)t≤w≤T ,
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then

g(v1, v2) =

exp

(
− 1

2(1− ρ̃2)

[
u21(v1)

σ2
1

+
u22(v2)

σ2
2

− 2ρ̃
u1(v1)u2(v2)

σ1σ2

])
2πv1v2σ1σ2

√
1− ρ̃2

1v1>01v2>0.

g1(v1|v2) and g2(v2|v1), given in (4.53) and (4.54), are the conditional densities respectively

to S2
T

x2
= v2 and to S1

T

x1
= v1. Besides, if we denote

Φβ1,β2(s1, s2) = s1s2E
(
X
∣∣∣S1

T = s1, S
2
T = s2, {β1

w, β
2
w}t≤w≤T

)
then, setting vi = si/xi, Et,x,y,β1,β2

(
∂2s1,s2f(ST )S

1
TS

2
TX
)

is equal to

Et,x,y

(
∂2s1,s2f(ST )Φβ1,β2(S1

T , S
2
T )|{β1

w, β
2
w}t≤w≤T

)
=

1

x1x2

∫
R2
+

∂2v1,v2f (x1v1, x2v2) Φβ1,β2 (x1v1, x2v2) g(v1, v2)dv1dv2

(∗)
=

−a2
x1

∫
R2
+

1a1x1v1+a2x2v2≥K∂v1 [Φβ1,β2 (x1v1, x2v2) g(v1, v2)] dv1dv2

(∗∗)
=

−a1
x2

∫
R2
+

1a1x1v1+a2x2v2≥K∂v2 [Φβ1,β2 (x1v1, x2v2) g(v1, v2)] dv2dv1.

If a1 > 0, equality (∗) provides

Et,x,y,β1,β2

(
∂2s1,s2f(ST )Φβ1,β2(S1

T , S
2
T )
)

=
a2
x1

∫
R+

Φβ1,β2

(
K − a2x2v2

a1
, x2v2

)
g

(
K − a2x2v2

a1x1
, v2

)
dv2.

Denoting g(v2) =
∫
R+
g(v1, v2)dv1, we obtain

Et,x,y,β1,β2

(
∂2s1,s2f(ST )Φβ1,β2(S1

T , S
2
T )
)

=
a2
x1

∫
R+

Φβ1,β2

(
K − a2x2v2

a1
, x2v2

)
g

(
K − a2x2v2

a1x1
, v2

)
g(v2)

g(v2)
dv2

= Et,x,y,β1,β2

(
Et,x,y,β1,β2

[
a2
x1

Φβ1,β2

(
K − a2S2

T

a1
, S2

T

)
g1

(
K − a2S2

T

a1x1

∣∣∣S2
T

x2

) ∣∣∣S2
T

])

= Et,x,y,β1,β2

(
a2
x1
S2
T

(
K − a2S2

T

a1

)
g1

(
K − a2S2

T

a1x1

∣∣∣S2
T

x2

)
h

(
K − a2S2

T

a1
, S2

T

))
.
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If a1 < 0, equality (∗) provides

Et,x,y,β1,β2

(
∂2s1,s2f(ST )Φβ1,β2(S1

T , S
2
T )
)

= −a2
x1

∫
R+

Φβ1,β2

(
K − a2x2v2

a1
, x2v2

)
g

(
K − a2x2v2

a1x1
, v2

)
dv2

= −a2
x1

∫
R+

Φβ1,β2

(
K − a2x2v2

a1
, x2v2

)
g

(
K − a2x2v2

a1x1
, v2

)
g(v2)

g(v2)
dv2

= −Et,x,y,β1,β2

(
Et,x,y,β1,β2

[
a2
x1

Φβ1,β2

(
K − a2S2

T

a1
, S2

T

)
g1

(
K − a2S2

T

a1x1

∣∣∣S2
T

x2

) ∣∣∣S2
T

])

= −Et,x,y,β1,β2

(
a2
x1
S2
T

(
K − a2S2

T

a1

)
g1

(
K − a2S2

T

a1x1

∣∣∣S2
T

x2

)
h

(
K − a2S2

T

a1
, S2

T

))
.

The expression (4.51) comes from a combination of this result with the one obtained when

a1 > 0.

In the same fashion, using equality (∗∗) and (4.54), we obtain (4.52).

�
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