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Computing [cs.NE]. Université Pierre et Marie Curie - Paris VI, 2014. English. <NNT :
2015PA066040>. <tel-01260338>

HAL Id: tel-01260338

https://tel.archives-ouvertes.fr/tel-01260338

Submitted on 22 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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IAbstract

Computer science currently undergoes a profound mutation. Gains in computa-

tional power associated to the availability of large datasets provide a fertile ground

for the development of machine learning research. First, it is now possible to

train complex representation learning models such as deep neural networks or ad-

vanced matrix factorizations that learn optimal representation spaces. The long

term goal behind representation learning is the design of completely automated

machine learning based processing chains, from raw input to final outputs. Such

complex models are prone to over-fitting. They require intensive computations and

large datasets. They use strong complexity control mechanisms as well as model

selection techniques to obtain sensible solutions. Second, this mutation opens new

opportunities by providing large corpora of data generated by users that requires

new types of analyses and provides new applications. The main challenge in this

context is to take into account user preferences to personalize information access

in the digital world. Machine learning algorithms already are ubiquitous: person-

alized answers in search engines, item recommendations and personalized ads are

now part of the Internet landscape. It drives machine learning research towards

another of its long term goals: the design of context aware models.

In this thesis, we study how representation learning methods can be applied to

user-generated data. Our contributions cover three different applications but share

a common denominator: the extraction of relevant user representations. Our first

application is the item recommendation task, where recommender systems build

user and item profiles out of past ratings reflecting user preferences and item char-

acteristics. Nowadays, textual information is often together with ratings available

and we propose to use it to enrich the profiles extracted from the ratings. Our hope

is to extract from the textual content shared opinions and preferences. The models

we propose provide another opportunity: predicting the text a user would write on

an item. We formalize this task as the generation of a synthetic review made of

relevant sentences selected among the sentences written by other users. To the best

of our knowledge we are the first to consider such a task to exploit the textual infor-

mation of user review with recommender systems as well as to personalized even

more the item recommendations made to users by presenting them additional in-

formation. Our second application is sentiment analysis and, in particular, polarity

classification. For the latter, the goal is to design generic models that decide whether

a given text expresses a positive or negative opinion. The domain largely benefited

from the availability of user reviews, as did recommender systems, since they pro-

vide large supervised datasets to train such models. Our idea is that recommender

ix



systems can be used for such a task. Recommender systems and traditional polarity

classifiers operate on different time scales. We propose two hybridizations of these

models: the former has better classification performance, the latter highlights a vo-

cabulary of surprise in the texts of the reviews. The third and final application we

consider is urban mobility. It takes place beyond the frontiers of the Internet, in the

physical world. Using authentication logs of the subway users, logging the time and

station at which users take the subway, we show that it is possible to extract robust

temporal profiles. We provide a matrix factorization algorithm that learns an easily

interpretable representations of users based on activities. Our matrix factorization

enables us to learn both user profiles and activities at the same time.
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Contents

1.1 Representation learning . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 User profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Information systems and computer science currently undergo a profound mutation

as shown by the Big Data phenomenon. This mutation takes root jointly in the

growth in computing power and storage capacities of IT infrastructures and in the

advances of data acquisition techniques. It provides a fertile ground for the rapid

development of research in machine learning, providing the appropriate context

to train complex models such as advanced matrix factorization or deep neural net-

works, which involve large numbers of free parameters. First, recent IT infrastruc-

tures are powerful enough to handle the intensive computation necessary to solve

the difficult optimization problems of training such models while using complex-

ity control mechanisms and model selection techniques. Second, datasets are now

larger and larger. For example, in image classification tasks, the old MNIST dataset

[LC+90] contains 60k training examples (handwritten digits) and 10 classes while

the dataset of the ImageNet classification challenge [Rus+14] contains 500k ex-

amples and 1000 classes. Similarly, for natural language processing and sentiment

analysis, huge textual datasets are available as shown by the dumps of Wikipedia

exploited in [Mik+13] and by the large quantities of user reviews [JL08]. Using

more training example is in itself a complexity control mechanism, the sample of

observed data is more exhaustive, which limits the over-fitting is limited.

For machine learning research, the first opportunity provided by this changing con-

text is the opportunity to extend traditional analyses and models. This is reflected,

in particular, by the rapid development of representation learning methods which

we study throughout this thesis. Representation learning aims at replacing the te-

dious task of hand-crafting representations of the data by the design of completely

automated machine learning based processing chains, a long term goal of artificial

intelligence. The performance of machine learning algorithms is strongly impacted

by the quality of the representation, discriminant features drastically helping the

models. The features where traditionally hand-crafted by analysts after reviewing

the data and task at hand. This generally is a long and costly process. For in-

stance, convolutional neural networks [Law+97] can take advantage of the large
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datasets of images available on the Internet and extract automatically pertinent

descriptors that provide better classification performances than traditional SIFT de-

scriptors [Kri+12]. For other signal processing tasks such as handwriting recogni-

tion and speech recognition, recurrent neural networks [Dor96] are now state of

the art models [Gra12] that build context dependent representations.

The second opportunity for the enrichment the field is the availability of new types

of data and of new applications. This is particularly true for the analysis and mod-

eling of user behaviors and preferences, a new field, as described in [FH10], to

which belong the models and analyses provided in this thesis. Considering the user

is the first step toward another long term goal of machine learning: the ability to

consider contexts. Even though the domain is relatively recent, it is already ubiqui-

tous and many Internet dwellers use such models on a daily basis. Search engines

analyze the browsing history of users to re-rank results of queries accordingly to the

preferences of the users [Tee+05] User profiles are exploited in many digital appli-

cations, due to the easiness of the data collection, such as on-line dating [Dia+10],

item recommendation of merchant website [Kan+11] or bidding on advertising

spaces on the Internet [Cha+10]. While considering user preferences is still absent

from many domains, such as sentiment analysis [PL08], the approach tends to be

more and more widely adopted, even beyond the frontiers of the digital world, for

instance in urban mobility studies where the understanding of user behavior is a

major issue for the development and maintenance of large urban networks.

This thesis is at the interplay of both representation learning and user behavior anal-

ysis It studies the application of representation learning methods for the extraction

of robust, informative and interpretable user profiles. This introduction presents

the challenges and context of the two axes, starting with representation learning

and continuing with the extraction of user profiles.

1.1 Representation learning

As said before, research in representation learning is driven by the long term goal

of designing fully automated machine learning based processing chains, from the

data acquisition to the final output such as object recognition in a stream of images.

The interest of using representation learning methods is twofold: to replace the te-

dious task of hand-crafting features for large and complex datasets such as images

or natural texts and to benefit from massive datasets to extract robust representa-

tions. Among the many approaches proposed in the literature, we focus, in this

thesis, on two families of models: artificial neural networks and matrix factoriza-

tion. These families compute the new representation of the data in different ways.

The former learn coding functions, often associated with an inverse decoding func-
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tion, to project data to into a new representation space. The latter extend classic

bag of word representations, typical for image, text and signal applications, where

a dictionary of basic elements is used to compute the representation, by learning

simultaneously the dictionary and the optimal representation of data with respect

to the dictionary.

As we will see in details in chapter 2, neural networks are representation learning

method based on the principle of coding functions. Many different formalisms have

been proposed for neural networks, such as the probabilistic Boltzmann Machines

and their restricted variants [HS06]. In this thesis, we focus on the determinis-

tic formalism of multi-layer perceptrons [LC+90], as it is widely used today for

representation learning applied to natural language processing and sentiment anal-

ysis [Col+11; Mik+13; LM14]. Within this formalism, each layer of a multi-layer

perceptron learns a coding or encoding function. In the typical setting, a MLP is

composed of one hidden layer and one output layer. Optimizing a loss function,

the design and training of neural networks, through back-propagation for exam-

ple, imposes that the coding function learned by the hidden layer disentangles the

data, to allow for good performance. However, when multiple hidden layers are

used, the gradient is rapidly diluted and only impact layers close to the output,

a phenomenon called the vanishing of the gradient. A solution, which allows to

learn deep neural networks [Ben+07], is to train each layer successively as hidden

layers of auto-encoders. These models, also known as self-associative memories

[Sou+87], are composed of one hidden and one output layer. The former learns a

coding function and the latter the inverse decoding function. They are trained in

an unsupervised way to correctly reconstruct data and this necessity of correct re-

construction replaces the necessity of correct classification of traditional MLPs and

imposes that the hidden layer learns disentangled representations as well. Taking

advantage of the theoretical knowledge gained on connectionist models [Bot91]

and of recent gains in computational power, neural networks have imposed them-

selves as state of the art models for many signal processing tasks as object recogni-

tion in images [Cha+14], handwriting and speech recognition [Gra12] and natural

language processing [Col+11; Mik+13; LM14]. However, explicating the decisions

of the (highly non-linear) coding functions learned by neural networks remains

very difficult, even counterintuitive [Sze+13]. Neural networks are and remain

black boxes.

Matrix factorization [LS01; Mai+10; GVL12] offers an interesting alternative to

neural networks. They do not learn parametric coding functions. Matrix factoriza-

tion, studied in chapter 3, proposes to learn a set of basic patterns from the data,

gathered in a dictionary, and to represent data in the space defined by these pat-

terns, at the same time. For signal processing applications, this means that the sig-

nal is encoded using a basis of vector corresponding to a dictionary that is learned

1.1 Representation learning 3



at same time as the code. This is a difficult optimization problem and, like neural

networks, it requires complexity control mechanisms to extract sensible represen-

tations. As neural networks, matrix factorization benefits from the gains in com-

putational power [Yin+14] since they can be efficiently parallelized and can then

be trained on large datasets. Control mechanisms include constraining the rank

of the terms involved for SVD (Singular Value Decomposition) [GVL12], imposing

that elements of the dictionary are uncorrelated like for PCA (Principal Component

Analysis) [Pea01; Hot33] or independent like for ICA (Independent Component

Analysis) [Com94]. Many variations have been proposed such as non-negative ma-

trix factorization [LS01] or sparse matrix factorization [Hoy02; Hoy04] to adapt the

factors to the nature of data. The drawback of matrix factorization, known at the

out-of-sample problem, is the absence of coding function to easily compute the rep-

resentation of new examples. Computing the code of new examples can however be

done efficient while updating the dictionary at the same time, such as [BG09] does

to remove the background of video streams. Their advantage is to provide easily in-

terpretable representations, in particular with the use of non-negativity constraints

[LS99].

1.2 User profiles

One of the deepest impact of the Big Data mutation is the availability of large dataset

of user traces that led to a proliferation of studies on user behaviors. The long term

goal behind this issue is to design context aware machine learning models: con-

sidering user preferences and/or browsing history amounts at creating a context

to provide a personalized access to information. While the analysis of user prefer-

ences is a recent field [FH10], it is already ubiquitous on the Internet and many

people use such models transparently on a daily basis: recommender systems and

customized advertising are part of the Internet landscape. It is a field of intensive

research, driven by major economical issues, as revealed by the 1M$ prize awarded

to the winner of the Netflix challenge [BL07]. For information retrieval, one of

the most common applications is the ranking of query results based on the prefer-

ences of users as most search engines do [Tee+05]. Similar problems arise when

searching for compatible profiles on online dating sites [ML10; Dia+10] Finally, rec-

ommender systems, famous in the community since the Netflix challenge [BL07],

use the navigation history of users to build profiles representative of their taste and

to recommend pertinent items.

Our first contributions in chapters 4 and 5 concern item recommendation. Among

the various approaches proposed to address this task, we have chosen the collabora-

tive filtering framework [KB11] which exploits the large quantities of reviews avail-

able when content based approaches rely on accurate description of items that are
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often missing. These methods are typically based on matrix factorization [Kor08;

Kor+09], using the ratings given by users on items. Matrix factorization provides

reference models for blind source separation problems and recommender systems

are an example of such a problem on dyadic data. Dyadic data are the result of

the interaction of two types of entities, such as transactions between a credit card

holder and a merchant or a review a user writes about an item. Recommender

systems can be interpreted as explaining an observed signal, the ratings, by the in-

teraction of a predetermined number of hidden sources describing user preferences

and item characteristics. The challenge is to exploit as best as possible the reviews

to learn profiles representative of user preferences. Our first contribution is to con-

sider, in addition to the ratings, the texts written by users as most user reviews

now contain both a text and a rating. As [ML13a] and [Gan+09], we assume that

texts carries important information about user preferences and individual style that

can enrich the profiles extracted by traditional recommender systems. We will con-

sider the extraction of textual profiles along with the extraction of the traditional

rating-based profiles. Our second contribution is to use these textual profiles to

predict the text a user will write about an item, in addition to the rating he will

give to this item. To our knowledge, we are the first to propose such a task along

with an evaluation method based on summary measures [AU07]. Our models can

be used to provide more personalized recommendations to users using the texts of

other reviews. We show in chapter 5 that recommender systems can also be used

in the context of polarity classification. We first compare various recommender sys-

tems together and then show that it is possible to use the user and item profiles

that recommender systems extract to contextualize a polarity classification model

[Pan+02] and improve it. Also in chapter 5, we show that it is possible to use a

combination of recommender systems and polarity classification models to extract

vocabulary of surprise.

Finally, among the many data generated by the current evolutions of information

systems, users reviews are just one example. Traces of access to different services

are another. The challenge here is to extract interpretable profiles characterizing the

temporal behavior of users. This study does not take place in the digital world but

in the physical world, in the context of urban mobility: we consider subway trips,

as detailed in chapter 6. In this context, extracting the temporal patterns explain-

ing the trips of individual user is important. We propose an adapted non-negative

matrix factorization that extracts out of these logs a set of activities, defined as

event occurring at a certain time of the day with possible repetitions during the

week, and represent users in this activity space. Our study reveals links between

socio-demographic patterns and the time at which users take the subway.

1.2 User profiles 5



1.3 Thesis outline

This thesis is focused on the extraction of relevant, robust representations char-

acterizing users from data they generate. We begin by studying two families of

representation learning models: neural networks and matrix factorization. We will

then present our contributions in three chapters, each chapter studies a specific

application but all share a common denominator: the extraction of relevant user

representations.

Chapter 2 This chapter provides background material on neural networks. We

will present the deterministic formalism of multi-layer perceptrons, trained

using the back-propagation algorithm. We follow a constructivist approach,

starting with the neuron and assembling then in layers to build MLPs. Next,

we present the auto-encoders, trained in an unsupervised fashion and used to

build deep neural networks. Finally, we will present different architectures,

all deterministic, such as recurrent networks and look-up tables networks.

Chapter 3 This chapter presents matrix factorization used throughout this thesis.

Matrix factorization provides an alternative to neural networks, simultane-

ously learning an optimal dictionary to decompose data onto and the optimal

decomposition. We formalize the matrix factorization as a regularized cost

minimization problem through the example of the low rank approximation.

Then we will present in detail two constraints commonly used: non-negativity

and sparseness. We will then review various extensions of these models.

Chapter 4 This chapter presents our central contribution and takes place in the

context of recommender systems. We enrich the profiles extracted on ratings,

using the collaborative filtering framework, with textual profiles extracted on

the texts of the user reviews. Our hypothesis is that text being a powerful me-

dia for the transmission of opinions, it will allow us to improve the character-

ization of users and the relevance of the recommendations. Also, considering

the text allows us to use recommender systems to predict the text of a user re-

view, in addition to its rating, as a short summary extracted out of the reviews

of other users on the same item by selecting sentences that correspond to the

taste and writing style of the user.

Chapter 5 In this chapter we use recommender systems in the context of polarity

classification. At first, we use the classification error of our models as polarity

classification models as another metric to confirm the interest of enriching

rating-based profiles with textual profiles. We then show that using recom-

mender systems to contextualize a polarity classification model improves the

classification performance of the latter. In addition, we show that it is possible,
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by combining these models to extract a surprise vocabulary used to express a

difference between the expectations of a user and reality.

Chapter 6 The two preceding chapters proceed on the same type of data gener-

ated by users, user reviews. This last chapter is concerned with authentication

traces generated by the access of a user to a service. We show that it is possible

to use them to extract a set of temporal patterns shared by users, and to rep-

resent users in this space. We propose an application in the context of urban

mobility, extracting temporal patterns using an adapted non-negative matrix

factorization. We show experimentally that temporal patterns extracted are

strong characterizations of users, linked to sociological and geographical phe-

nomena.

1.3 Thesis outline 7
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During their evolution, neural networks have turned to models of increasing com-

plexity. The complexity of a statistical model can partly be quantified using the con-

cepts of bias and variance. Given a model family and a problem, the bias measures

how far the prediction functions that can be learned are from the actual function

to learn. The variance measures the impact of small disturbances on the training

examples on learned prediction functions. A perfect model has zero bias and low

variance: it always converges to the optimal solution, but such models do not exist.

Decreasing the bias is done by adding to the model degrees of freedom, for example

by adding free parameters to determine during the training phase. These degrees of

freedom then make the model more sensitive to variations in the training examples,

thus increasing the variance. The perceptron [Ros58], which offers a simple linear

decision and a robust learning algorithm, has a strong bias and low variance.

A major gain in complexity performed with neural networks has been achieved

during the 80s [Bot91]. Benefiting from hardware developments and associated

computational power gains, the back-propagation algorithm [Sou+87; Rum+88;

BLC88] then allowed to train neural networks with enough units to deal with real

problems [Bot91] such as the recognition of handwritten numbers [LC+90] used

to read postal codes on envelopes. The archetype of these models is the multi-layer

9



perceptron (MLP), a model that assembles neurons in layers and connects the layers

together without loops. The back-propagation algorithm, inspired by the optimal

control theory [BH69] is an iterative algorithm that propagates the errors from the

output of the network back to its input. It is used to learn the parameters of MLPs,

minimizing iteratively a cost function that measures the quality of the model with

respect to the target task (for instance, classification in [LC+90]). In the 80s, the

MLPs used in practice mainly had one hidden layer and one output layer. These

MLPs have more parameters than the simple perceptrons and can learn more com-

plex decision functions (lower bias) at the price of a stronger variance. The low

bias comes from the capacity of the hidden layer to learn disentangling representa-

tions of the data that separate examples of each class, in the case of a classification

task, and allows the output layer, typically linear, to correctly classifies the data.

This ability to learn representations can also be exploited by training the MLPs in

an unsupervised way [Sou+87]: they are trained to output a good reconstruction

of their inputs. They are then called auto-associative memories or, more recently,

auto-encoders. The variance of MLPs must be addressed by complexity control

mechanisms, for example by using a regularization framework on the parameters,

which, coupled with the strong non-convexity of the optimization problem defined

by the training loss of the MLPs, makes relatively complex in practice the implemen-

tation of the back-propagation algorithm. This difficulty has been widely studied

and books like [Mon+12] gather knowledge on the subject to help choosing, de-

pending on the application, the best fitted implementation strategy. It nevertheless

means that, in practice, a large number of iterations and training several models

before selecting the best one is often required, which is costly in terms of computa-

tion.

The second gain in complexity is currently happening and has begun in the last

decade and is characterized by the emergence of effective architectures with more

than one hidden layer, called deep networks. It is based jointly on the knowledge of

the 80s (back-propagation [Rum+88; BLC88] and unsupervised learning of MLPs

[Sou+87]), on the newly available computing power (computer clusters [Dea+12]

and graphics processing unit computing [Coa+13]) and on the availability of large

amounts of data. Large datasets are still largely unsupervised as labeling data re-

quires tedious human labor. For typical classification tasks, deep networks are pre-

trained on large unlabeled datasets, then the parameters are fine-tuned for the task

in question, using the labeled data. Two main families of models are used to build

deep networks: Boltzmann Machines and deep MLPs. The former derive from a

Bayesian formalism and is mostly used in a restricted form called Restricted Boltz-

mann Machines [HS06]. The unsupervised pre-training phase is performed using

contrastive divergence [CPH05]. The latter are deterministic and are the natural

extension of MLPs and auto-encoders, using more layers. These deterministic mod-

els are today dominant in the literature and are trained with the back-propagation
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algorithm [Vin+08]. In both cases, parameters are fine-tuned on labeled data us-

ing back-propagation. The argument given by proponents of deep networks [HS06;

Ben+07; Hin+12; Dea+12; Glo+11; Coa+13] is that these models use the same

mechanism as the MLPs, each layer learns a better representation and provides, in

the end, excellent performance. These deep models have a very low bias but an un-

usually large variance. This variance means that today it is difficult to learn a deep

network directly and the strategy developed in the 2000s to work around this prob-

lem is to train each layer of the deep model in a greedy way, one after the other

[HS06; Ben+07]. Other families, such as recurrent networks [Gra12], can also

build deep architectures and suffer as well from the variance problem. However,

using large amounts of data and appropriate complexity of control mechanisms,

neural networks have emerged as state of the art models in many areas such as

image classification [HS06], voice recognition [Hin+12], handwriting recognition

[Gra12]. However, if classification models learned on representations extracted by

auto-encoders are effective [RS08; Cha+14], understanding the representations is

difficult: the decision process of neural networks is a black box, especially for deep

non-linear networks, as shown in [Sze+13].

Neural networks are now used as provide representation learning methods for text

applications. Text has always been fundamental to the transmission of information

over time and still is with the Internet. Text is unstructured, noisy as it contains er-

rors (spelling, grammar) and many individual variations representative of the style

of the writers. These characteristics induce many variations which can however be

learned by using large text corpora. Thus, new architectures have been proposed

[Col+11; Glo+11; Mik+13; LM14] to learn representations adapted to natural

language processing and to text analysis.

In this chapter, we will cover the major aspects of neural networks in the context

of representation learning, of which they are now one of the main family. Among

the many formalisms available, we limit ourselves to the study of deterministic for-

malism of MLPs and auto-encoders, with back-propagation as training algorithm,

as it is the most widely used in the literature on learning representations for text

[RS08; Glo+11; Col+11; Mik+13; LM14]. We will present this formalism starting

with the neuron and the MLPs, in the context of supervised learning. We will use

these definitions to introduce representation learning with auto-encoders, which

uses unsupervised learning, but are traditionally used as a brick for other classifi-

cation models [RS08] or for the initialization of deep networks [Ben+07]. Finally,

we will review some other deterministic architectures, such as recurrent networks

[Gra12] or networks with lookup tables [Col+11; Mik+13].
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2.1 Feed-forward artificial neural networks

Feed-forward neural networks are architectures without any loop: the input flows

directly forward to the output. Their basic building brick is a simple computing unit

(sec. 2.1.1) that mimics the behavior of neurons, of which they inherited the name.

These neurons can be assembled in layers and layers may be connected together

(sec. 2.1.3). Training the model is done by minimizing a loss function (sec. 2.1.2).

In this thesis, we choose to minimize such function using gradient descent algo-

rithms (sec. 2.1.2). Depending on the formalism, training neural networks can be

done using first or second order methods [Bat92], contrastive divergence [CPH05]

or even genetic algorithms [Bel+90]. However, steepest descent provides simple

yet powerful algorithms that can be straightforwardly adapted to additional con-

straints on the parameters of the network – for instance for regularization purposes

(sec. 2.2.2). Exploiting the absence of loops in the architecture, back-propagation

proposes a clever use of the derivation chain-rule (sec. 2.1.3). This section will

define all these concepts to provide the necessary background material on neural

networks along with notations used throughout the thesis.

2.1.1 Perceptron

A neuron is a computing unit that – artificially – mimics the behavior of actual

neurons. It takes as inputs n-dimensional vectors that we denote x ∈ R
n. We

will consider here dot product neurons of which the output is a real number: the

weighted sum of the input entries plus a bias term passed through an activation

function f : R → R. The n weights of the weighted sum are stored in the weight

vector that we denote w ∈ R
n. We denote b ∈ R the bias or intercept term and

θ = (w, b) the parameters of a unit. The neuron output gθ(x) is computed as:

gθ(x) = f(w.x + b) (2.1)

Figure 2.1 presents a neuron. Throughout the thesis, neural networks will be rep-

resented using the same formalism. Vectors are represented by successions of rect-

angles. Connections are represented by arrows linking rectangles. Outputs such as

gθ(x) (equation (2.1)) are represented by dashed arrows.

The perceptron is a neuron with f chosen as the sign function:

∀r ∈ R, f(r) =

{

1 if r ≥ 0,

−1 if r < 0.
(2.2)
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Input x

W

Neuron activation f(w.x + b)

gθ(x)

Fig. 2.1.: Representation of a neuron. From top to bottom the output, the neuron activa-
tion and the input x.

Its learning algorithm is based on trial and error [Ros58] and is presented in algo-

rithm 1. We present this algorithm in the context of binary classification where the

goal is to correctly predict the binary label y ∈ {−1, 1} of an input x. The trial

step consists in randomly selecting a random example x and its associated label y,

compute a prediction ŷ. The error step corrects the weights of the unit if the model

is mistaken. Algorithm 1 is a stochastic gradient descent that minimizes a function

called the classification error.

Data: {(x, y)}, θ0 = (w0, b0), γ, p
Result: θ = (w, b)
w← w0, b← b0;
for epoch ∈ {1, 2, . . . , nepochs} do

Randomly shuffle the training set;
for i ∈ {1, 2, . . . ,m} do

Draw the next training example (x, y);
Compute gθ(x);
if y ∗ gθ(x) < 0 then

Correct the weights w← w + γyx;
Correct the intercept b← b+ γy;

end
end

end
Algorithm 1: The perceptron algorithm is a trial and error approach to learn the
weights and intercept w and b of the neuron. During the nepochs epochs, all m
examples are seen in a random order and the model is updated every time a mistake
is made.

2.1.2 Minimizing a loss function

We briefly present here the technique of gradient descent that we will use repeatedly

throughout the thesis. This optimization technique is used to minimize functions.

In the context of machine learning, the quality of models is often quantified using

loss functions, that we will present next. These losses depend on the parameters of

the model and training a model amounts at finding the parameters minimizing the

loss.
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Loss functions

The perceptron algorithm (algorithm 1) tries to minimize the number of classifica-

tion errors on the training set. This number can be written as a function of the

parameters θ of the model, here a neuron (weights w and intercept b). We denote

LCE this function:

LCE(θ) = LCE(w, b) =
m

∑

i=1

δ(yi, gθ(xi))) (2.3)

δ is an indicator function that equals 1 if both its parameters are equal and 0 other-

wise. That is it equals 1 when yi equals gθ(x) – and 0 otherwise.

Such a function L is called a loss and quantifies the price of making a prediction

error. In machine learning, training the model means finding the parameters such

that the loss is the lowest possible. Many losses have been introduced to suit dif-

ferent needs. Another common one is the Mean Squared Error (MSE). We will

repeatedly use it throughout the thesis. It computes the average of the squared

distance between predictions gθ(xi) and expected values yi:

LMSE(θ) =
1

m

m
∑

i=1

(yi − gθ(xi))
2 (2.4)

Figure 2.2 represents different loss functions in the context of binary classification.

The objective is to minimize the hard zero-one loss, that is the classification error.

However, the derivative of this loss is always zero, expect in zero were it is unde-

fined, which makes it impossible to use as such with gradient techniques. Thus,

other losses have been introduced as surrogates [Bis+95], like the mean squared

error.

Gradient descent

As described in the previous section, learning the parameters of a model consists

in finding those minimizing the loss function that quantifies the performance of the

model. We denote here L : Rn → R a generic loss function that we assume continu-

ously derivable and θ ∈ R
n the parameter vector, argument of L. The minimization

of L consists in finding θ∗ that minimize L, if it exists:

θ∗ = argmin
θ∈Rn

L(θ) (2.5)

14 Chapter 2 Learning representation with artificial neural networks



Fig. 2.2.: Representation of multiple loss functions in the context of binary classification.
The x-axis is the output of the model and the y-axis is the value of the loss.

The gradient∇L(θ) of L at point θ indicates the direction of steepest ascent around

θ. The gradient descent algorithm presented in algorithm 2 exploits this property by

taking small steps in the opposite direction of the gradient to iteratively lower the

value of L. The size of the steps is controlled by parameter γ, also called learning

rate.

Data: θ0, γ, p
Result: θ̂
for t ∈ {1, 2, . . . , nepochs} do

Compute ∇L(θt−1);
Takes a step: θt = θt − γ∇L(θt−1);

end
Algorithm 2: The gradient descent iteratively updates parameter θ along the direc-
tion of ∇L to minimize the loss L. The gradient ∇L is computed using all training
examples. Here, nepochs iterations are made.

When using gradient descent, finding a global minimum is certain only if L is con-

vex. In other cases, the only guarantee is that it will fall in a local minimum. The

speed of the convergence depends on two parameters: the learning rate and the

slope of the loss. Very often, the closer θ is to the minimum – whether local or

global –, the closer the gradient ∇L(θ) is to 0. In practice, this means that the

actual minimum is never reached. For instance on figure 2.3, the minimization of a
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simple non-convex loss is depicted. Two gradient descent runs with different initial

parameters θ0 lead to different solutions. Moreover, it illustrates well the slowdown

due to the slope decrease around extrema.

Fig. 2.3.: Example of a non-convex loss function and two runs of 99 iterations of gradient
descent with different initializations.

Stochastic gradient descent

In machine learning, it is often the case that a loss L can be written as a sum of m

functions Li:

L(θ) =
m

∑

i=1

Li(θ) (2.6)

This is the case when the loss is the sum or average of a quality measure on each

example. For the MSE in equation (2.4), we have Li(θ) = (yi − gθ(xi))
2. Gradient

descents can be adapted to this special case by randomly selecting at each iteration

one function Li and only considering Li for the update. For the steepest descent,

that is taking a step in to opposite direction of ∇Li(θ) only as depicted in algorithm

3.

For the MSE, the stochastic approach updates the parameters θ with respect to the

squared prediction error for one random example of the training set at a time. As

only one example is needed for each update, this is efficient for large-scale learning

[LCB04]. The convergence of stochastic gradient approaches highly depends on

using a decreasing learning rate [Bac14]. An intermediate approach is provided by

mini-batch gradient descents, that computes stochastic updates on small batches

of examples. A complete discussion on stochastic, mini-batch and batch gradient

descents can be found in [Mon+12].
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Data: θ0, γ, p
Result: θp

for epoch ∈ {1, 2, . . . , nepochs} do
Randomly shuffle the training set;
for i ∈ {1, 2, . . . ,m} do

Draw the next example;
Compute ∇Li(θt−1) w.r.t to this example;
Takes a step: θt = θt − γ∇Li(θt−1);

end
end
Algorithm 3: Stochastically updating parameter θ using nepochs epochs to minimize
the loss L. For each epoch, all m training examples are seen in a random order.

2.1.3 Multi-Layer Perceptron

Neurons are the basic brick of neural networks that can be assembled in many differ-

ent architectures so they can tackle different tasks. We will now study one possible

way to do so: building layers and multi-layer perceptrons. The links between neu-

rons imply links between parameters of each neurons and these links have to be

taken into account when computing the gradient. This is commonly done using

back-propagation.

Neuron layers

We define a layer as a stack of u units that will all have the same input x and

activation function f . Each unit has its own set of parameters w and b. We stack all

these parameters into a weight matrix W ∈ R
u×n and an intercept vector b ∈ R

u.

As for neurons, we simplify our notations by using Θ = (W,b). We denote h the

activation of a layer – another name for its output – that is computed as:

h = f(Wx + b) (2.7)

This time f is applied element-wise on the vector Wx + b.

A multi-layer perceptron (MLP) is a neural network composed of a succession of

layers so that the input of a layer is the output of the preceding one. Subscript l

indicates the parameters of the l-th layer of the network, starting at l = 1. Now

Θ is used for all the parameters of the network and Θl for those of the l-th layer.

Feeding the input forward in the network can be defined recursively:

h0 = x (2.8)

hl = fl(Wlhl−1 + bl) (2.9)
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Figure 2.4 represents one such network. One can easily see by looking at this

representation that the number of parameters depends on the input size and the

number of units. In figure 2.4, they are less hidden units than input dimensions

(u < n) but it is of course possible to have more (u ≥ n). We denote by Θ all

parameters of the network. The activation of the last layer is the output gΘ(x) of

the network. If the task is binary classification, only one real output is needed, thus

the output layer should have only one unit. In the case of multi-class classification, a

common approach is to use one output per possible class and a one-vs-rest approach

[LC+90].

Input x

W1

Hidden layer h1 = f1(W1x + b1)

W2

Output layer f2(W2h1 + b2)

gΘ(x)

Fig. 2.4.: Representation of multi-layer perceptron. From top to bottom the output, the
activation of the output layer, the activation of the hidden layer and the input x.

The benefit of this layer-wise architectures is that each layer learns a disentangled

representation of the data as its activation. The representation of the last layer

should be disentangled enough to enable an effective linear classification of the

example, done by the output layer. The popularity and effectiveness of neural net-

work is due to this ability to learn disentangling representations. However, these

representations are hard to – humanly – interpret and can be considered as black

boxes. Some intuition can be gained by studying inputs and outputs as in [Dea+12]

but this should be considered carefully [Sze+13].

Back-propagation algorithm

Training multi-layer perceptrons is done using gradient descent. The computation

of the gradient is straightforward when only one layer is used. However, it gets

harder when more than one layer is used. The problem of minimizing a MSE (2.4)

loss using a neural network with L layers is written in (2.10). Here, we denote θl

the parameters Wl and bl of the layer l and Θ the complete set of parameters (all

layers).
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Θ∗ = argmin
(θl)l

1

m

∑

(yi − gΘ(xi))
2 (2.10)

= argmin
(θl)l

1

m

∑

(yi − fL(WLfL−1(. . . f1(W1xi + b1) . . . ) + bL))2

The back-propagation algorithm [Rum+88] computes the gradient of a loss func-

tion with respect to the parameters of all layers. Mathematically speaking, it uses

the chain rule of derivatives. It computes the gradient ∇LL of the loss with respect

to the parameters θL of the last layer. To obtain the derivative for the previous layer,

it computes the derivative∇L−1θL of the parameters θL of with respect to the one of

the previous layer θL−1 and multiplies the two quantities: ∇L−1L = ∇LL∗∇L−1θL.

The rule is iterated up to the parameters of the first layer of the MLP. This algo-

rithm is called back-propagation as it acts by propagating the error backward in the

network. The algorithm works independently of the output dimension.

Gradient vanishing

Training a neural network in not easy. Many parameters are involved in the algo-

rithm. The learning rate γ that we introduced in algorithms 2 and 3 was fixed. It

is possible to use decreasing learning rates or adaptive ones. Extensions of the gra-

dient descent such as the Wolfe method (first order) or Newton methods (second

order) provide (computationally expensive) ways of finding good learning rate at

each iteration. We presented algorithms using a fixed number of iterations when

many stopping criteria are possible. It is possible to stop when the delta in loss

function after an update is small enough or to use the loss on a validation set. Fi-

nally, choosing between batch, mini-batches and stochastic is not straightforward.

These problems are highly dependent on the usage context of the network and we

will not discuss them here. More information on those subjects can be found in the

complete review provided by [Mon+12].

Another difficulty arises from the concept of back-propagation: gradient vanishing.

Through the update rules of back-propagation, the output layer absorbs a great part

of the prediction errors. Only a small part is reported on the previous layer that, in

turns, absorbs a great part of it. This makes MLP with more than two layers hard to

train since most parameters in the lower layers will hardly have changed from their

initial values. One solution has been found by using unsupervised learning and auto-

encoders. Auto-encoders are a kind of MLP, composed of only one hidden layer and

one output layer, trained in a unsupervised manner, as described in the next section.

A first solution for training deep neural network architectures composed of multiple
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layers has been to stack several auto-encoders as explained in section 2.2.1. Note

that recent progress in the field involving weighted initialization procedures and

alternative neuron units now allow the training of large neural network architecture

from scratch.

2.2 Unsupervised learning and neural networks

Neural networks have not only been used in the context of supervised classification

and can be trained in an unsupervised way. For instance, Kohonen maps [Koh82]

are a type of artificial neural network, trained to learn low-dimensional representa-

tions of inputs. We will focus here on auto-encoders that are known to be effective

to extract text representations. We will begin by presenting them as well as their un-

supervised training procedure. Then we will present how to use them to overcome

the gradient vanishing problem and train deep neural networks.

2.2.1 Auto-encoders

The multi-layer perceptrons presented in section 2.1 where trained to correctly pre-

dict the label of each example. Auto-encoders are trained to predict the example

itself. The idea is to consider auto-encoders as a coding function – input to latent

spaces – and a decoding function – latent to input spaces. They are representation

learning techniques. In fact, linear auto-encoders – using linear activation functions

– are tightly linked to Principal Component Analysis [RM98]: they learn a similar

representation space.

Reconstruction loss

In this thesis we will focus on the deterministic framework using back-propagation

to train auto-encoders. However, other frameworks have been proposed like the

probabilistic Restricted Boltzmann Machines [HS06] trained using contrastive di-

vergence [CPH05]. An auto-encoder is represented on figure 2.5, in which a fully-

connected layer is only represented by 2 arrows.

We have seen in section 2.1.2 that the quality of a prediction is quantified by a loss

function and that learning the parameters of a neural network consists in minimiz-

ing this loss function. For auto-encoders, the prediction is called reconstruction of

input and should be close to the original input. For real output variables, this close-

ness is generally quantified by the MSE (2.4). Other loss functions can be used such
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Input: x

W1

Hidden layer: h = f1(W1x + b1)

W2

Output layer: f2(W2h + b2)

gΘ(x)

Fig. 2.5.: Representation of an auto-encoder. From top to bottom the output, the activation
of the output layer, the activation of the hidden layer and the input. Auto-encoder
are trained to reproduce as their output the input they are presented.

as the cross-entropy for binary data. An auto-encoder is composed of two layers:

an hidden and an output layer and, under MSE, the reconstruction loss is:

Θ∗ = argmin
(θl)l

1

m

∑

(xi − gΘ(xi))
2 (2.11)

= argmin
(θl)l

1

m

∑

(xi − f2(W2f1(W1xi + b1) + bL))2

As said in the last section, the back-propagation algorithm works independently of

the output size. Training an auto-encoders simply means replacing the target yi

by the input xi in the derivations. The back-propagation algorithm remains the

same.

Stacked auto-encoder

Auto-encoders are a well known kind of neural network, mainly used in the past to

learn compressed representation of the data points. They can also easily be stacked,

in the same way as layers are stacked in multi-layer perceptrons. The first auto-

encoder is trained to reconstruct the input data. It gives a first representation of the

data with its hidden layer. The second auto-encoder is then trained to reconstruct

the activation of the hidden layer of the first auto-encoder. This process is iterated

until all auto-encoders are learned. Figure 2.6 represents a stacked auto-encoder.

The first layer is trained to reconstruct the input x, the second layer is trained to

reconstruct h1, and so on.

Stacked auto-encoders form deep neural networks: hidden layers are connected

to each other, removing the output layer. This structure can then be fine-tuned

for classification tasks as in [HS06] or [Glo+11]. Using auto-encoders in such

a way can overcome the problem of vanishing gradients presented in 2.1.3. In
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Input: x

W1

Hidden layer 1: h1 = f1(W1x + b1)

W2

Hidden layer 2: h2 = f2(W2h1 + b2)

W3

Hidden layer 3: h3 = f3(W3h2 + b3)

W4

Output layer: f4(W4h3 + b4)

gΘ(x)

Fig. 2.6.: Representation of a deep neural network for classification built stacking auto-
encoders. From top to bottom the output, the activation of the output layer,
the activation of the hidden layer and the input. Auto-encoder are trained to
reproduce as their output the input they are presented. The last layer is an
output layer, similar to these of traditional MLPs.

[HS06], each auto-encoder (trained using the probabilistic framework of RBMs)

compresses the dimension of the representation space on images. In [Glo+11],

the same principle is applied for texts. In both cases, the network is fine tuned

at the end by adding a final classification layer and using back-propagation. Auto-

encoders are considered to provide a good weights initialization for the final fine-

tuning.

Learning representations

As presented above, hidden layers of auto-encoders learn coding functions mapping

input data into a latent representation space while the output layer learns the de-

coding operation. When using non-linear activation functions, such as the logistic

function (equation (2.12)), the coding and decoding operation are harder to inter-

pret.

s(x) =
1

1 + e−x
(2.12)

To understand the behavior of the network, it is possible to determine the input

vector x that maximizes the activation of each neuron. This method was used in

[Le+13] in which a deep neural network is trained using an impressive amount

of computing power on images extracted from YouTube. The authors argue that

neurons of deep layers learn high-level features able to detect generic concepts such
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as cat faces, human bodies or human faces. However, the recent study [Sze+13]

reveals that this analysis methods may lead to false conclusions and argue that deep

neural networks are black box models.

The ability of deep neural network to outperform state-of-the-art methods for tasks

such as object, speech and hand-writing recognition comes from their high expres-

siveness. This expressiveness often leads to over-fitting. It has to be dealt with

either by using a complexity control mechanism or by introducing prior knowledge

about the task or the data or by a combination of the two. This is often addressed

using some form of regularization and this is the setup adopted in this thesis.

2.2.2 Regularization

Consider a dataset lying in a n-dimensional input space and an auto-encoder with

a hidden layer composed of k hidden units. This models has a great number of

parameters: W1 ∈ R
k×n, b1 ∈ R

k, W2 ∈ R
n×k, b2 ∈ R

n. It amounts to 2kn+ k+n

parameters and the training may lead to over-fitting. In the context of classification,

over-fitting means that the frontiers the model sets between classes are more rep-

resentative of the distribution of the training data points than of the actual classes

distribution. Similarly, for representation learning, it means that learned represen-

tations will be too specific to training data and not generic and robust enough for

good generalization.

A first form of regularization used in this work is that we choose is to limit ourselves

to simple auto-encoders (one hidden layer). Many models using only one layer

(like auto-encoders do) are compared to deeper architectures on multiple datasets

in [Coa+11] and one-layered models are as good as those deeper models for clas-

sification tasks. A second form of regularization we will us is to impose W1 = Wt
2

where Wt is the transpose of W. This framework is often used in the literature and

is called tied-weights as the weights of both layers are tied and limits the number

of parameters to train. Both forms are using the same regularization mechanism:

they limit the number of parameters in the model.

We will now present regularization using L2 and L1 norms of the parameters. Then,

we will look at constraints forcing the auto-encoder to learn sparse representa-

tions.
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L2 and L1 norms

For neural networks, regularization using L2 and L1 norms is done by adding a

term to the loss L, the p-norm of the weights matrix W, to the power p:

Θ∗ = argmin
Θ

1

m

m
∑

i=1

‖x− f2(Wt
1f1(W1x + b1) + b2)‖22 + λ‖W1‖pp (2.13)

Such a term mechanically limits the possible values for the parameter W. The

intercept takes into account how badly centered the data is and is never regularized

nor tied. λ ∈ R+ controls the importance of the regularization term. It profoundly

impacts the quality of the result and has been extensively studied. We refer to

[Mon+12] for more details on the meaning of regularization.

L2 regularization, also known as Tikhonov regularization in other domains [TA77],

uses the L2 norm of the parameter. It is the Euclidean norm for vectors and the

Frobenius norm for matrices denoted ‖‖F in this case and defined as:

‖W‖F =
√

∑

i,j

W 2
ij (2.14)

As presented in (2.13), the squared norm is used to avoid the derivation of the

squared root. L2 can been either interpreted under the framework of Tikhonov’s

work on ill posed problems or as a Gaussian prior on the parameter distribution.

It forces values in W to have a smooth distribution: a high variance in values of

W is a symptom of over-fitting. In practice, it restricts possible values of W and,

mechanically, the decision functions that the model can learn.

L1 regularization uses the L1 norm:

‖W‖F =
∑

i,j

|Wij| (2.15)

L1 regularization has been popularized by the Lasso algorithm [Tib96]. It aims

at reducing the number of input dimensions to fit by selecting the relevant ones.

Weights of irrelevant dimensions are set to 0, this leads W to have only a few

non-zero entries: W is then a sparse matrix. This is a form of feature selection.

For feature selection, the L1 norm is a better choice than the L2 norm as shown

in [Ng04] However, the L1 norm is not differentiable. This is a drawback as sub-

gradients have to be used for the optimization making L1 regularization harder to

use in practice.

It is possible to use both norms at the same time. This configuration is called the

Elastic Net [ZH05]. It is used in [Raf+12] in the context of sentiment classification.
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The high dimensionality of bag-of-word representations provides an adequate con-

text for feature selection using the L1 norm. At the same time, the weight variance

due to the high variability of term frequencies can be controlled using the L2 norm.

As a result, in [Raf+12], sentiment classifiers regularized with the ElasticNet are

better than those which are not.

Sparse coding

In the field of signal processing, L1 regularization has also been used for learning

sparse representations, as, for instance, in compressed sensing [Don06]. Sparse-

ness is also frequently used in dictionary learning [Mai+10], matrix factorization

[Hoy02; Hoy04] and neural networks [Lee+06; Ben+09]. It has also been devel-

oped for probabilistic models such as RBMs [Lee+08]. Sparse coding concerns all

the works studying the learning of sparse representation. Sparseness is a way to

compress signals. Compressing signals means understanding them enough the fo-

cus on relevant parts. This is widely exploited in the field of signal processing, for

instance with the minimum description length principle [Bar+98].

We denote h the learned representation of an input vector x. In the context of an

auto-encoder, it corresponds to the activation of the hidden layer. As presented in

details in [Lee+06], a sparse representation is such that each vector h has only a

few non-zero entries. One of the many possible approaches to learn sparse repre-

sentations with neural networks is to use L1 regularization on h values:

L(Θ) =
1

m

m
∑

i=1

‖xi − gΘ(xi)‖22 + λ‖hi‖1 (2.16)

This additional terms modifies the computing of the gradient but back-propagation

straightforwardly adapts to it.

Sparseness can also come naturally from the data. For instance, in chapter 6, the

learned representation h represents the distribution of activities in a user profiles.

These activities explain the subway trips of the user. Among all activities shared by

the 600k users present in our application, the individual profile of each user can

only contain a few. Thus a sparse representation – sparse values of h – is a natural

choice here.

2.2.3 Auto-encoders for classification

The representation learned by auto-encoders are used for subsequent tasks such

as clustering, regression or classification. This section focuses on presenting an
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adaptation of these neural networks to the latter. We will begin by applications of

auto-encoder for supervised classification. We will then present how to benefit from

supervision while learning the parameters of the auto-encoder. Finally, it is often

the case that not all training examples are labeled and we will present how to adapt

auto-encoders to semi-supervised tasks.

Supervised classification

As presented in section 2.1, supervised classification includes:

Binary classification There are 2 possible classes. Examples are either in one or

the other.

Multi-class classification There are more than 2 possible classes. Examples be-

long to only one class.

Multi-label classification Examples can belong to multiple classes.

The idea behind representation learning is to exploit the regularities in the dataset

to build robust features. The long term goal behind this is to replace the tedious

design of hand crafted features with learning features. [Coa+11] compares the

quality of representations learned by different algorithms for image classification.

Object recognition is also a classification task where the goal is to predict which

object appears on an image. Unsupervised training of neural networks leads to the

extraction of robust representations that can then be exploited for object recogni-

tion [Ran+07]. Another application to image classification tasks is presented in

[Rif+11b; Rif+11a]. Authors exploit the plasticity of gradient based learning to

add terms that forces the representation to take into account the manifold support-

ing the data points.

Supervised auto-encoder

If the goal is supervised classification and the dataset is fully supervised, then it is

possible to consider a supervision loss in addition to the reconstruction loss of an

auto-encoder. It can be formulated as adding a classifier on top of the hidden layer,

next to the output layer of the auto-encoder as presented in (2.17). We denote fs

and Θs = (Ws,bs) the parameters of this classifier. The parameter λs is used to

balance the reconstruction and classification in the loss:

L(Θ) =
1

m

∑

(x,y)

‖x− f ′(Wth + b)‖22 + λs‖y− fs(Wsh + bs)‖22 (2.17)
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In [BL+12], a similar term is successfully used in the context of musical pitch iden-

tification to improve the quality of the learned representations for the task at hand.

It has also been used in [RL13] to correctly recognize handwritten digits as an ad-

ditional constraint on a recurrent auto-encoder. Supervised representation learning

models in [BL+12; RL13] are found significantly better than classifiers operating

on raw inputs and classifiers trained on representation learned in a purely unsuper-

vised manner.

Semi-supervised auto-encoder

Supervised data is however expensive. User reviews represent an exception where

huge quantities of fully supervised data points are available. In the context of ob-

ject recognition or scene labeling, images have to be hand labeled, which can be

expensive when downloading huge quantities of unlabeled images from the Inter-

net is not. This leads to datasets where only some data points are labeled, the

others are unlabeled. Models exploiting both labeled and unlabeled examples are

semi-supervised.

Semi-supervised auto-encoder have been extensively studied in the literature. In

[RS08], stacked auto-encoders are trained using a supervision criterion similar to

(2.17) for document classification. When the number of available labeled examples

is low, they found that semi-supervised auto-encoders outperform semi-supervised

SVM trained either on raw data or on the output of unsupervised auto-encoders.

2.3 Different deterministic architectures

The previous sections, 2.1 and 2.2, have provided background material on neural

networks, how to train them and how to use them to learn representations. They

have been deliberately focused on multi-layer perceptrons and auto-encoders as

these are the main techniques used in the thesis. However, other network architec-

tures exist. We describe below some of these extensions to the basic MLPs. We will

begin this review of recent advances in neural networks by presenting recurrent

neural networks. We will then present auto-encoders in the context of supervised

classification and we will finish this review by presenting specific architectures used

to learn text representations.

2.3.1 Recurrent neural networks

In vanilla MLPs, neurons are organized in layers and each layer is only connected

to the one before and the one after it. There is no connection inside the layer nor
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towards other layers. This means that the output of a network is only depending on

the current input and not on previous ones. This is a strong limitation in the context

of sequential datasets and more generally for time dependent analysis. Recurrent

architectures – networks with backward connections – have been proposed for these

problems. Recurrent Neural Networks (RNN) are not used in the main topic of this

thesis so we only briefly present them here. Our goal is to show the plasticity of the

learning algorithms used in this thesis and to present an example of time-sensitive

models. The reference [Gra12] provides a review of RNN.

Principle

As presented above, the main difference between MLPs and RNNs is that connec-

tions between neurons of RNNs can form loops. We will present the principles and

implications of RNNs by limiting ourselves to simple recurrent MLPs. We consider a

network with one hidden layer that is self-connected and refer to [Gra12] for more

material. This self-connection means that the activation of this layer for one input

also depends on its activation for the previous input.

Input: xt

Hidden layer and self-connection:

W1

ht = f1(W1x + b1) + fs(Wsht−1 + bs)

Ws
W2

Output layer: f2(W2ht + b2)

gΘ(xt)

Fig. 2.7.: Representation of a recurrent neural network. From top to bottom the output,
the activation of the output layer, the activation of the self-connected hidden
layer and the input.

Formally, this introduces a new set of parameters denoted θs = (Ws,bs). The

activation function of this connection is denoted fs. We also introduce time t to

distinguish the current input from the previous t − 1 one. The activation of the

hidden layer is denoted h and is computed as:

ht = f(Wxt + b) + fs(Wsht−1 + bs) (2.18)

Such a connection introduces memory in the network since predictions depend on

what was seen in the past. The back-propagation needs to be adapted to this new

situation. Back-propagation through time (BPTT) [Wer90] provides an adaptation

of the back-propagation algorithm to compute the gradient of parameters for a
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complete sequence of examples (xt)t. The learning principle is however the same

as for MLPs: a gradient descent. This shows the plasticity of this algorithm that

can be adapted to many different settings. It also means that RNNs benefit from

this plasticity and can be augmented as classic non recurrent networks with other

constraints. Note that in figure 2.7, we have considered recurrent connections with

a delay of 1 – prediction at t depends on t− 1. The same BPTT can be extended to

other delays – t− 1, t− 2, . . . .

Applications

RNNs have been used for different tasks for processing sequential data. On of these

tasks is sequence labeling, the main topic of [Gra12]. It consists in attributing a dis-

crete set of labels to a sequence of observations. These labels are often associated

to states of the sequence. In the context of handwriting recognition, the observa-

tions can be the position of the ink on the paper and the labels are the letters and

the states are the recognized letters or words. RNNs proposed in [Gra12] are con-

sidered as state-of-the-art for sequence labeling. The recent [PC14] successfully

applies RNNs to scene labeling. The study of time-series has long been another

domain of interest for RNNs [Dor96].

The data used in this thesis are coming from timed observations. However, we use

neural network to extract stable generic representations of the topics discussed in

user reviews. We make the assumption that the distribution of such topics is more

dependent of the item reviewed or of the reviewer than on the time of the review.

Thus, we chose not to use models such as recurrent neural networks that could

take previous reviews directly into account and to use the ability of auto-encoder

to benefit from regularities in the available reviews to learn robust representations.

The work of [ML13b] shows that taking into account how experienced the reviewer

is concerning the domain of the item to review – wine or beer tasting or music for

example – is beneficial for recommender systems. Considering time could provide

interesting extensions of our work.

2.3.2 Architectures for text representations

Representation learning has become a field of intensive research in NLP and text

mining. The former provides a quantity of hard tasks such as named entity recog-

nition or part of speech tagging. Recent works like [Col+11] exploits the co-

occurrences of words in large text corpora to infer semantical and syntactical prop-

erties on words and obtain performance equivalent to state-of-the-art NLP models

without using prior knowledge as the latter do. For the latter, text representations
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were most of the time based on bag-of-words or n-grams representations1. These

raw representations can be compressed by grouping words together in topics. These

topics can be obtained by training auto-encoders on bag-of-words [Glo+11]. Other

approaches have also been proposed for learning topic representations like the prob-

abilistic approach of Latent Dirichlet Allocation [Ble+03].

Working units: texts, sentences or words

One of the main difficulty with text is to find the correct working unit. User reviews,

for instance, are short texts and [Glo+11] considers them as a whole assuming that

the overall polarity is more important than the polarity of each sentence. However,

in [Gan+09], authors take the opposite approach focusing on the polarity of each

sentence. The work on [Soc+11] proposes words as the working unit by learning

a latent representation for each word. This is the finest granularity that can be

considered for representation learning –letters would make little sense. It assumes

that is is possible to learn a representation space where semantically close words

are close. However this leads to a problem when representing sentences: sentences

can vary in number of words. Traditional machine learning models assume that the

input space has a fixed size. To overcome this issue [Soc+11] trains recursive auto-

encoders using a tree like structure that respects the word ordering of each sentence

and produce a fixed length representation for it. In [LM14] a latent representation

of sentences or paragraphs is learned additionally to the representation of words.

In this thesis, we will use auto-encoders to extract representation for text reviews

in chapter 4. As we said, they are typically short texts and express the overall

opinion of users on items. We want to select sentences relevant to each users. In

this context, working with topics gives more abstraction than working directly on

words. This is why we chose an approach similar to [Glo+11]. However, the work

of [LM14] provides insights for possible extensions of our work.

Multi-task representations

The impressive work in [Col+11] proposes to tackle multiple difficult Natural Lan-

guage Processing (NLP) tasks using one unified neural network. All tasks are la-

beling tasks that are traditionally performed using hand-crafted features and SVMs.

[Col+11] proposes to replace the tedious design of these features. The main idea

is to store vector representations for words in look-up tables.

1A review of these representation and preprocessing is done in 5.1.2
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Figure 2.8 represents the first architecture introduced in [Col+11]. The input layer

is the initial representation of words: each word is represented by a set of indexes.

One index is the index of the word itself in the vocabulary but other are possible:

index of the lowered-case stem of the word in the corresponding dictionary, index

for the capitalization of the word among all its possible capitalizations, . . . Each

word is described as multiple features and each feature is represented as a vector,

stored in a look-up table. To obtain a vector representation of each word, the vectors

of each feature of this word are concatenated. This is done, in this first architecture

for all words of a window of fixed length around the word. The vectors representing

all words of the window are then concatenated in one large vector. This vector

serves as the input to a MLP composed of one hidden layer, with hard hyperbolic

tangent2 as its activation function, and one linear output that predicts the label for

the word of interest.

k indexes per word (features)

I really love this movie

h0 k loop-up tables (vectors)

h1

W1

Concatenation

h2

W2
HardTanh hidden layer

Linear output layer

gΘ Label prediction for love

Fig. 2.8.: First architecture of [Col+11]: predicting labels for the word of interest, love,
using a fixed size context window. Words are described by the concatenation of
k features, each feature is a vector stored in a look-up table. A neural network is
trained on the concatenation and is composed of a HardTanh hidden layer and a
linear output. The prediction gΘ is the set of labels for the word of interest, love.

Now, the use of a window around the word of interest, love in figure 2.8, was an

heuristic to avoid considering the complete sentence that contains the word. Con-

sidering this sentence is more complicated as sentences have variable lengths. To

overcome this, [Col+11] proposes to replace the concatenation step by a convolu-

tion and candidate wise a max over time. The convolution gives a set of vectors of

the same length and the max over time takes the maximum for each dimension of

these vectors. The result is a vector that always has the same length, the output

dimension of the convolution.

Training these networks is done by back-propagations and [Col+11] pre-trains the

look-up tables in an unsupervised way before. They obtain performances that com-
2The hard hyperbolic tangent is a linear approximation of the hyperbolic tangent that provides faster

computations.
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pete with state-of-the-art methods. The benefit of this work was to show that many

different tasks in NLP could be achieved using machine learning and more specif-

ically using large size neural networks. It also proved the potential of learning

representations for text. However, because of their complicated training such ar-

chitectures remain challenging to use in practice. Also, the model is a black box,

understanding the decision is hardly possible.

Word2vec and paragraph vectors

Word2vec [Mik+13] is a neural network that aims at learning robust representa-

tions of word that embed semantic information. Words that are close in the repre-

sentation space should be close in semantics (like Berlin and Paris). One possible

architecture of word2vec is presented in figure 2.9. Here the goal is to predict the

last word (here movie) of parts of sentences of fixed length (here I really love this

movie), given the first words (here I, really, love and this). Representations h0 of

words are stored in look-up tables. They are concatenated or averaged into one

unique vector h1 that is used to predict h2 that should be close to the representa-

tion of the last word. Another architecture is to predict the window given the last

word. As explained in [Mik+13], robust representations are learned by alternating

the various architectures on large text datasets. This make training such models

complicated even if the implementation is available.

I really love this Words

W W W W Look-up tables

h0 Latent vectors

h1

Concatenation or average
Latent context. . .

W1

h2 Output layer

movie Prediciton: next word

Fig. 2.9.: One possible architecture of word2vec: predicting one word based on those be-
fore it and the paragraph

Paragraph vectors [LM14] is an extension of the word2vec model [Mik+13]. The

extension in [LM14] is to also learn a representation for paragraphs – also in a look-

up table – as well as for words. Figure 2.10 represent a neural network aiming at

predicting the latent representation of a word, movie, using the ones of the 3 words

before it – I, love, this – and the one of the paragraph they are part of.
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Paragraph I love this Document and words

D W W W Look-up tables

h0 Latent vectors

h1

Concatenation or average
Latent context. . .

W1

h2 Output layer

movie Prediciton: next word

Fig. 2.10.: One possible architecture of paragraph vectors: predicting one word based on
those before it and the paragraph

Different architectures are proposed in the two papers cited above: predicting the

middle word of the window based on those around, predicting one word based on

the paragraph only, predicting words before based on the last word of the window,

. . . As explained in [LM14], to correctly train the model it is necessary to use large

datasets and a combination of all architectures. Also, there is no procedure but

heuristic experimentation to select parameters such as the size of the latent repre-

sentation or the window. Because of this, training such models is tedious. Moreover,

learned representations are very difficult to interpret.

2.4 Conclusion

In this chapter, we provided background material on neural networks. We started

from the basic units that compose them, neurons [Ros58], and how to assemble

them in layers and multi-layer perceptrons [LC+90] or auto-encoders [Vin+08]

and how to train them. This is one framework – a deterministic one – for neural

networks and other have been proposed, like the probabilistic RBMs [HS06]. We

chose it because back-propagation provides a simple yet powerful, plastic and ele-

gant algorithm to train these models. To control the complexity of neural networks,

we chose to use regularization and presented L1 and L2 regularization. For more

detailed information on how to train neural networks, we referred to [Mon+12].

In this thesis, we will apply auto-encoders to learning representations for texts in

chapter 4, which has become a field of intensive research. We motivated our choice

of learning with auto-encoder, like in [Glo+11], topics out of raw text represen-

tation to represent interest of users. We also presented recent advances [Col+11;

LM14] in the domain that provide insights for future work.
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In data analysis and machine learning, two approaches can be distinguished. A first

family of models tries to extract a dictionary of explanatory functions, the number

of which is typically hand-fixed. This is the case of k-means, a popular cluster-

ing model [KR09], which computes k prototypes from the data and clusters data

around them using similarities. These k prototypes form a dictionary. The principal

component analysis (PCA) [Pea01; Hot33] computes k components from the data

that, again, form a dictionary. A second family considers a fixed explanatory dictio-

nary and, this time, looks for a code explaining, for each example, the contribution

of these dictionary elements. This approach allows, for example, to compress a

representation, as it is the case in compressed sensing where a fixed dictionary is

used to decompose a signal. The latter is then represented by its code: the contri-

bution of each dictionary element to the signal. If the dictionary is relevant, only

a small number of basic elements contributes to the signal and its code will only

have a few non-zero values, achieving compression. This is a common approach to

compress images [Hor+12]. Matrix factorization methods propose to unify these

two families by simultaneously learning a relevant dictionary and the associated

code. They differ from methods learning only the dictionary suc as PCA or k-means
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for which the code is simply infered in a second step by projecting the data onto

the dictionary basis. For the PCA, the data matrix is projected on the dictionary

of k principal components without control over the quality of reconstruction. For

k-means, the code is simplified in the allocation step search of the nearest centroid
1. Unlike projection methods such as compressed sensing or the random projection

[BM01], matrix factorization also learns the dictionary.

Matrix factorization techniques are named this way as they learn the product of

explanatory factors, usually two factors (the dictionary and the code matrix), that

best approximate a data matrix. They take root in the statistical analysis of data

with the PCA [Pea01; Hot33] and in linear algebra with SVD [GVL12]. Matrix fac-

torization allows to extract interpretable representations out of the data. This is

particularly the case for the blind source separation problem for which matrix fac-

torization provides state of the art models. In this setting, an observed signal must

be explained as resulting the combination of hidden sources. For a musical record-

ing, for instance, the observed signal can be broken down into several sources: the

contributions of each instrument. The sources are the elements of the dictionary

and the contribution of each source is the code. Learning both the dictionary and

the code enables learning both the optimal representation space and the optimal

encoding of data in this space. Interestingly, many problems can be seen as blind

source separation problems and thus find a natural solution using matrix factor-

ization techniques. aezThis is the case for facial recognition [PZ11]: each face,

the observed signal, is considered to be composed of several sources, the possible

face parts (different eyes, different noses . . . ). Recommender systems can also be

seen as blind source separation problems and use matrix factorization techniques

through the collaborative filtering framework [KB11]. They work with dyadic data

[Hof+99], data generated by links between two types of entities: users and items.

The ratings are the observed signals that can be decomposed on a set of hidden

sources, the user and item profiles.

For all these applications, matrix factorization propose to learn the dictionary and

the code at the same time. However, this is a difficult learning problem. As the

number of parameters involved in the factorization is large, matrix factorization

techniques are highly sensitive to small perturbations in the data and have a high

variance. Without complexity control mechanisms, e.g. regularization, learned so-

lutions are doomed to be too specific to the observed data and generalize poorly.

The complexity control mechanisms involved in matrix factorization limit the num-

ber of possible configurations, which increases the bias and limits the variance. A

first approach is to limit the rank of the reconstruction matrix, the product of the

explanatory factors, and is known as the search of the best low-order approxima-

tion of a matrix, the solution of which is given by the Singular Value Decomposition

1This corresponds to seek only the maximum amplitude in the code element
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(SVD) [GVL12] To control the variance of matrix factorization, the challenge is to

prohibit configurations that do not make sense with respect to the nature of data.

Principal Component Analysis (PCA) [Pea01; Hot33] explains each example as a lin-

ear combination of basis vectors by imposing the constraint that these components

must not be correlated. PCA is typically used for visualization purposes, by choosing

a two or three dimensional representation space, and for noise removal [Tho+02],

hypothesizing that noise is not correlated with the signal. Independent Component

Analysis (ICA) [Com94] forces components to be independent, which makes it the

reference method for the blind source separation problem [Ama+96] as sources

often are assumed independent. Non-negative matrix factorization [LS01] imposes

that each factor is composed only of non-negative values. It is a reference model

for facial recognition as it successfully decomposes faces in parts [LS99]. All these

constraints limit the number of different solutions of the factorization and mechan-

ically increase the bias and limit the variance. Hence the need to find appropriate

constraints for each problem, to limit the variance while preserving the best factor-

izations. It is also possible to use, in addition to or instead of these constraints, a reg-

ularization framework. For example, sparse matrix factorization [Hoy02; Hoy04]

forces factors to have few non-zero values (sparse matrices) using L1 regulariza-

tion. They take root in dictionary learning [Mai+08; Mai+10], a field of image

processing where the images, highly dimensional data, are compressed using dic-

tionaries of visual words. These dictionaries were initially hand fixed, but they

are now learned from the data [Mai+08; Mai+10], in a formalism close to matrix

factorization.

As neural networks, matrix factorization techniques are representation learning

methods. However, as we saw in chapter 2, neural networks learn coding and

decoding functions, so they can project data easily into the representation space.

Matrix factorization does not, it proposes instead to learn dictionaries and codes.

Computing the code of unseen example is called the out-of-sample problem and can

be treated as regression problem. It is possible to find this code and update the dic-

tionary at the same time as [BG09] does to remove the background of video streams.

Note that is is possible to learn coding functions using a framework close to matrix

factorization, called projective factorization [YO10], which shows that neural net-

works and matrix factorization share similarities. This relationship implies that

the control complexity mechanisms and supervision [BL+12] or semi-supervision

[Wan+09] constraints that we saw for neural networks can be transferred to ma-

trix factorization. However, the benefit of matrix factorization not learning coding

function but dictionaries and codes, with the exception of kernel methods such as

[Sch+97], is that learned representations are interpretable.

This and their plasticity make matrix factorization techniques reference models for

representation learning. They are intensively studied and are state of the art models
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in such areas as blind source separation and recommender systems. As do neural

networks, they benefit from advances in terms of computing capabilities to han-

dle very large matrices [Yin+14]. We provide in this chapter background material

on matrix factorization that we formalize as the minimization of a cost function

between the data matrix and reconstruction matrix, the product of explanatory

factors. We will first consider the low rank approximation problem in such a for-

malism and its optimal solution, in the sense of the least squares, given by the SVD.

We will then present in detail the two classical constraints that are non-negativity

and sparseness. We will conclude the chapter by a quick review of various other

constraints and formalisms.

3.1 Low-rank approximation

Let us begin by introducing the concept of low-rank approximation. Matrix factor-

ization assumes that observed examples can be explained by a limited number of

hidden factors. We will start by explaining how this concept of explaining factors

is related to matrix products. As we have seen in section 2.1.2, many learning al-

gorithms can be expressed as the minimization of a loss function that assesses the

quality of the model on the training set. Matrix factorization is no exception and

the losses quantify the differences between the data matrix and the reconstruction

matrix.

3.1.1 Optimization problem

We consider a dataset of m examples described by n continuous features. We rep-

resent this dataset by a data matrix that we denote X ∈ R
n×m, so each column of

X is an example xi ∈ R
n. We define the problem of matrix factorization as finding

two factor matrices D ∈ R
n×k and H ∈ R

k×m such that their product X̂ = DH, the

reconstruction matrix, is as close as possible to the data matrix X. This closeness

is expressed as a loss: the reconstruction error, that is low when X̂ = DH is close

to X. Solving the factorization is finding the values of D and H that minimizes the

loss. As for classification, many loss function have been studied. In this thesis we

chose to use the mean square error:

L(X,H,D) = ‖X− X̂‖2F ro = ‖X−DH‖2F ro =
∑

ij

(Xij − (DH)ij)2 (3.1)

We will now proceed to a quick analysis of the dimensions of D and H to understand

their respective roles in the factorization. D contains k elements of dimension n

(the same as the input space) and H contains m elements in dimension k. The i-th
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Fig. 3.1.: The i-th column of X, the data matrix, is computed as a linear combination of
columns of the dictionary D. The coefficient of this combination are given by the
i-th column of the code matrix H.

column of X (the i-th example of the dataset) is explained by a combination of

elements of D whose factors are stored in the i-th column of H:

X = DH⇔ ∀i ∈ {1, 2, . . . ,m}, xi =
k

∑

j=1

Hjidj (3.2)

The same principle is presented in figure 3.1 where the coloring explicits the coeffi-

cient used for each element of D in the combination that computes the i-th row of

X. We call D the dictionary matrix as its columns are basic elements, prototypes or

atoms, that are used to reconstruct every example of the dataset. H is the hidden

representation matrix as each of its columns represents the new coordinates of an

example on the dictionary.

3.1.2 Singular values decomposition

Solving the matrix factorization, given a data matrix and a loss, is finding the best

approximation of the data matrix as a product of factors. This involves a large num-

ber of parameters and, in practice, requires a regularization framework not to be

too sensitive to small variations in the data. One possible regularization framework

is to limit the rank of the reconstruction X̂ = DH to be at most r. The matrix fac-

torization problem under the rank limitation of the reconstruction matrix is called

the low rank approximation problem:

min
H,D
L(X,H,D) s.t. rank(X̂) ≤ r (3.3)

Singular Value Decomposition provides an answer to the low-rank approximation

problem presented in equation (3.3) Let us denote σ ∈ R+ a nonnegative scalar

3.1 Low-rank approximation 39



and u ∈ R
n and v ∈ R

m two vectors. u, v and σ are respectively called left and

right singular vectors and singular value of X ∈ R
n×m if they verify:

Xv = σu and Xtu = σv (3.4)

A complete decomposition is a set of such triplets (u,v, σ) with an additional con-

straint: the set of left singular vector and the set of right singular vectors should

both be orthonormal. Summing up all notations and denoting U and V the ma-

trices having left and right singular vectors as columns and Σ a diagonal matrix

containing the singular values σ of X as its diagonal coefficients, the singular value

decomposition of X is a set of matrices U,V,Σ such that:

X = UΣVt, UUt = VVt = I (3.5)

Such a decomposition always exists, for any real X matrix2. This comes from the

fact that XXt is symmetric and positive semi-definite thus can be diagonalized,

using the spectral theorem, with leads to the SVD. It also explains why the singular

values are positive: they are the eigen-values of the positive semi-definite matrix

XXt

As singular values are positive by definition, the matrix Σ contains only positive real

number on its diagonal (and zero elsewhere). We can then define
√

(Σ) as applying

the squared root to all entries of Σ. As the matrix is diagonal,
√

(Σ) satisfies the

property
√

(Σ).
√

(Σ) = Σ. We exploit this property to express the SVD using to

factors H and D in equation (3.6).

X̂ = UΣVt = DH, D = U
√

Σ and H =
√

ΣVt (3.6)

3.1.3 Truncated Singular Value Decomposition

In the solution provided by equation (3.6), the rank of the reconstruction matrix X̂

is a free parameter. Limiting the rank of X̂, with this formulation, is exactly limiting

the number of singular values to use. We denote Σ(r) ∈ R
r×r the diagonal matrix

only the r largest singular values sorted in non-increasing order, U(r) ∈ R
n×r and

V(r) ∈ R
m×r the matrices storing the r corresponding left and right (respectively)

singular vectors. The truncated SVD (Σ(r), U(r), V(r)) is computed as:

X ≈ X̂ = DH, D = U(r)
√

Σ(r) and H =
√

Σ(r)Vt
(r) (3.7)

2It also works for complex matrices.
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According to the Eckart-Young theorem, the best reconstruction matrix X̂ of rank r,

in the sense of the mean squared error, of any given matrix X ∈ R
n×m is given by

the truncated SVD (Σ(r), U(r), V(r)) that we have just defined.

3.2 Constrained matrix factorization

In practice there is a link between the rank r of the reconstruction matrix X̂ and

the inner dimension k of the product. The latter is an upper-bound of the former.

Thus, for other regularization framework that do not directly constrain the rank of

X̂, choosing small values of k still act as a regularization. We will focus here on the

non-negative and sparse matrix factorization that are two popular regularization

framework for matrix factorization that do not directly constrain the rank of X̂ but

rather impose the nature of the factors.

3.2.1 Non-negative matrix factorization

Images, texts or ratings have natural representations that are non-negative and this

non-negativity is meaningful and interpretable as concepts and proportions for the

dictionary and the code matrix. Elements of the dictionary are concepts respecting

the non-negativity of the data that are shared up to a certain proportion by each

example and this proportion is given by the code of each example. Consider texts

represented as binary bag of words: each dimension indicates the presence (1) or

absence (0) of a word in the text. As we have seen, D amounts to set of concept

that are common in the input data and use them to compute the new representation.

The matrix H holds the coefficients of the new representation and of the combina-

tion of rows of D that reconstruct each input example. Using traditional techniques,

like the truncated SVD, does not guaranty the sign of entries of D and H. For our

text example, it leads to two annoying facts. Firstly, we can end up with concepts,

columns of D, having negative values that we cannot interpret. Respecting the

natural domain of the input data would be more sensible. Secondly, linear combi-

nations with negative values are hard to grasp. It often leads to complex situations

where concepts cancel each others and are hard to fully understand. Non-negative

matrix factorization was introduced to respect the non-negativity of input data and

to obtain interpretable decompositions. It replaces the direct constraint on the rank

of X̂ = H.D by non-negativity constraints:

min
H,D
L(X,DH) s.t. H ≥ 0 and D ≥ 0 (3.8)

The non-negative constraint forces the models to reconstruct each data point using

only positive combinations of positive basic elements, the columns of D. It acts as a
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strong regularization of the parameters but also leads to part-based representations:

as described in [LS99], it forces the extraction of small parts occurring frequently

in the training set and combine them together to reconstruct each data point.

Fig. 3.2.: Illustration of part-based representations extracted by NMF, on a face recognition
task, from [LS99]. The matrix on the left of the × sign is the dictionary D that
contains the basic elements. The reconstruction is done here for one image only
x, that is represented mathematically as a vector for the model but represented
visually as a matrix. The vector is the flatten version of the matrix. The matrix
just right to the× sign is the code matrix h that contains the contribution of each
element to the reconstruction vector x̂ of one example only. This reconstruction
vector x̂ is presented after the = sign. The original vector x is presented above.

Non-negative matrix factorization has been used for many applications. In [Xu+03],

the authors compare SVD and NMF for document clustering: the H matrix is inter-

preted as a soft clustering allocation and rows of D as centroids. The work in

[Par08] proposes to use NMF to select relevant texts to generate summaries. The

part-based representations extracted by NMF work well with image analysis tasks

like facial recognition [Zaf+06]. It has also been applied to pitch [BL+12] and

musical instrument [Ben+06] classification.

The popularity of Non-negative Matrix Factorization (NMF) has largely benefited

from the algorithm proposed by [LS01]. The problem is not convex in H,D but

is in H when D is fixed and vice versa. The solution proposed in [LS01] exploits

this through alternate updates of H and D: Hp+1 is computed first using Hp and

considering D and X fixed, the same is then done for D:

Hp+1 = Hp ⊙
DtX

DtDHp
and Dp+1 = Dp ⊙

XHt

DpHHt
(3.9)
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These update rules are derived smartly fixing the learning rate of a gradient descent

and are proved to converge in [LS01]. The learning rate γ is different for each entry

of the matrix:

Hij ← Hij − γij [Dt(X−DH)]ij s.t. γij =
Hij

[DtDH]ij
(3.10)

A similar derivation is done for the updates of D. The associated algorithm is

presented in algorithm 4.

Data: X, H0, D0

Result: H, D

H← H0, D← D0;
while convergence is not reached do

H← H⊙DtX⊘DtDH;
D← D⊙XHt ⊘DHHt;

end
Algorithm 4: Multiplicative update rules for NMF using Frobenius loss.

The algorithm proposed by [LS01] is simple to implement and fast enough, in prac-

tice, for big matrices, assuming that everything fits in memory. One of the great

advantage of this algorithms is the absence of learning rate to tune as it is smartly

fixed to derive the multiplicative rules. However, it was argued in [Lin07] that

projected gradient methods with correct learning rate search techniques converge

faster to a good solution than these multiplicative update rules.

3.2.2 Sparse Matrix factorization

Sparse constraints provide an other interpretation of simple factors. Instead of limit-

ing the rank of the reconstruction matrix, they limit the number of non-zero entries.

In the context of matrix factorization, these constraints are inherited from other

domains, such as representation learning and dictionary learning where sparseness

is widely used. As described in [Lee+06], high sparseness means a compressed

representation even though the number of dimensions of the hidden space still has

many dimensions as few of them are active for each individual example. Replac-

ing the rank constraint in (3.3) by a sparseness constraint gives the formulation in

equation (3.11).

min
H,D
L(X,D,H) + λH‖H‖1 s.t. ∀i, ‖di‖2 = 1 (3.11)

In equation (3.11), ‖H‖0,the number of non-zero entries in the matrix H, should

be used instead of ‖H‖1, the sum of absolute values of entries of H. However, it is

impossible to derivate ‖H‖0 and ‖H‖1 is often used as a surrogate. The constraints

on the columns di of D, that they must have unit Euclidean norm, is there to discard

3.2 Constrained matrix factorization 43



all the solutions that can be obtained by multiplying D by any real number greater

than one and dividing H by the same number.

Stochastic updates

Multiplicative update rules are batch rules. It is possible to use stochastic (or mini-

batch rules) as well. However, in practice, it is necessary to control the evolution

of the dictionary D so it is not drastically modified after each stochastic update.

One solution comes from the domain of dictionary learning [Mai+10] by using

incremental updates and memory terms. These memory terms balance the influence

of the new data used to update the parameters and the previously seen examples.

[Mai+10] uses a derived loss function, expressed for only one example x:

min
H,D
L(x,D.h) + λH‖h‖1 s.t. ∀i, ‖d‖2 = 1 (3.12)

The algorithm developed by [Mai+10] comes from dictionary learning and focuses

on learning D. For each update, an example xi is drawn and its sparse coding hi

is computed using the Lasso [Tib96] considering D fixed. The two memory param-

eters are updated to take into account the input vector xi and its representation

hi, as well as previously seen examples. The update of the dictionary D is then

done using these memory parameters. Also, in practice, the constraint used on the

columns of D is relaxed to di.di ≤ 1 to avoid increasing the magnitude of columns

whose norm is already lower than 1.

In [BG09], the NMF is adapted to handle time-evolving datasets like video streams.

The hypothesis here is that, after a while, the prototypes in D should be relatively

stable when updated to take into account a new example in X. This leads the

authors to incremental updates of the parameters when each new image is received

and is closely related to updates of [Mai+10]. However, contrary to [Mai+10], they

proposed multiplicative update rules that are derived as explained in 3.2.1. They

also introduce memory terms and associated weights to balance the forgetfulness

of the parameters.

Stochastic updates are also useful when the data matrix X is not fully observed. It

provides a simple way to update the parameters using only the observed value and

is the basic method for recommender systems [Kor+09] when gradient updates

require the use of a filter to avoid considering unobserved parts of the matrix. It is

part of the relational learning framework. The work of [SG08] describes how to use

stochastic gradient descent in this context: parameters h and D are learned from

the observed values of X and used to complete the missing values. More details are

given in chapter 4.
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The main benefit of stochastic [Mai+10; SG08] and incremental [BG09] updates is

scalability to large datasets. In [Mit+10], the authors propose another approach to

large-scale factorization using low-rank semidefinite programming: they use a con-

vex relaxation of the non-convex reconstruction loss of (3.2) and a quasi-Newton

solver. The recent [Yin+14] decomposes the multiplicative update rules of [LS01]

to scale to very large matrices using large computer clusters.

3.2.3 Sparse Non-negative Matrix Factorization

It is of course possible to adapt non-negative matrix factorization by adding sparse-

ness constraints. The reference algorithm was proposed in [Hoy02]. The sparse-

ness constraint on H can easily be incorporated into the multiplicative update rules.

However, it is not the case for the constraint of unit-norm rows of D. [Hoy02]

proposes to use projected gradient instead of the multiplicative update rules for the

dictionary D, as presented in algorithm 5.

Data: X, H0, D0, λH, µ
Result: H, D

H← H0, D← D0;
while convergence is not reached do

H← H⊙DtX⊘ (λ+ DHHt);
D← max(0,D + µ(X−DH)Ht);
Normalize rows of D;

end
Algorithm 5: Learning Sparse NMF from [Hoy02].

As in algorithm 4, ⊙ and ⊘ are the element-wise multiplication and division on

matrices. This algorithm has more parameters to tune: µ the learning rate for the

gradient descent on D and λH the weight of the sparseness constraint on H.

Matrices have two dimensions, rows and columns, thus the sparseness can be in-

terpreted in many way. Both [Mai+10] and [Hoy02] propose the same vision of

sparseness: a few non-zero entries overall in H. The interesting work in [Hoy04]

provide four interpretations of sparseness.

Sparse rows of H means that each concept, each column of D, should be used to

reconstruct only a small number of examples, columns of X. Concepts of D

are then expected to be more discriminant.

Sparse rows of D means that each input feature should be used in as few as pos-

sible concepts, columns of D. Learned parts are expected to be more discrim-

inant.
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Sparse columns of H means that each example, each column of X, is constructed

using only a few elements of D. It is the classic vision of sparseness.

Sparse columns of D means that each concept, each column of D, should use as

few features as possible. As argued above, NMF extract part-based represen-

tations and this aims at extracting small parts.

3.3 Extensions of the Matrix Factorizations

The popularity of matrix factorization depends on the plasticity of its original prob-

lem formulated in equation (3.3). This problem can easily be extended by adding

more constraints on the parameters or slightly modifying the formulation. We pro-

pose a brief review of these extensions here. However the list is of course not

exhaustive.

3.3.1 Various Non-negative Matrix Factorization

As discussed in 3.2, the NMF only adds non-negative constraints to the problem for-

mulation. It is still extremely generic and variations of NMF have been extensively

studied.

In the context of using NMF as a clustering method, which views D as centroids and

H as cluster allocations (soft or hard), [LD06] describes many possible variations

of NMF. For instance, semi-non-negative matrix factorization [Din+06] preserves

the property of only positive combination of atoms on negative data by removing

the non-negativity constraint on D but keeping it on H. A convex NMF is also pre-

sented. It works on a data matrix X that is not necessarily non-negative and find

H and D, non-negative, such that X ≈ DHX. This formulation is close to the one

of autoe-encoders that we have seen in chapter 2. Manifold or graph regulariza-

tions [Cai+08; Cai+09; Cai+11] can force a geometric structure in the extracted

representation. It is also possible to use more than two factors H and D to explain

the data matrix X as in [Li+09]. For instance, in the context of tri-factorization,

another factor S is added to factorize X as DSH. This S can be used to group

concepts, elements of the dictionary, together to increase the level of abstraction of

the representation: the code matrix operates here on groups of concepts and not

concepts directly.
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3.3.2 Supervised Factorizations

If the dataset is supervised, it is possible to use this supervision to guide the learn-

ing of H and D, as presented in [PZ11] for a face recognition application. It is then

expected that prototypes in D are discriminant. Similarly, but for pitch identifica-

tion [BL+12] uses a supervision constraint during the learning procedure. More-

over, the NMF is compared to a similar approach using auto-encoders, once again

showing the close relationship between the two families of models. In [DGX11], a

maximum margin criterion, as in Support Vector Machines (SVM), is added to the

reconstruction error of (3.8). A study of the links between SVM and NMF is pro-

posed in [Pot11]. An interesting idea is developed in [Wan+13] where each atom

of the dictionary D is expected to be the parameter of a linear classifier.

The central idea to supervised matrix factorization is to impose that the code matrix

H leads to good classification performance. The most common approach is to add

another term to the loss function, a classification term using H and a given model.

For instance, [PZ11] integrates a term corresponding to learning a k-nearest neigh-

bor classifier on H while learning the factorization. Other approaches have been

proposed. In [Jam+10], the authors introduce a criterion based on term frequency

and inverse document frequency (TF-IDF) on the code matrix H to separate the

classes and not a classifier on H. Clustering approaches maximizing the similarity

inside each class and the distance between separate classes, has also been proposed

for NMF in [Kot+07]. [Lia+10] extends this approach using kernels. Finally, an-

other idea, introduced in [Mai+08], is to learn one dictionary Dc per class c and to

use the residual rc = ‖x−Dchc‖2 for classification. The idea is that elements of the

class c should be best reconstructed by the dictionary Dc learned on examples com-

ing from the class c. The principle of extracting one dictionary per class is exploited

in [Wan+12] to speed up learning and scale up matrix factorization techniques.

3.3.3 Semi-supervised Factorizations

As labels are usually expensive, datasets are often only partially labeled. Semi-

supervised models have been developed to deal with this situation exploiting both

labeled and unlabeled training examples, they are covered in details in [Cha+06].

Non-negative matrix factorization can also benefit from the semi-supervised frame-

work. A first approach is to factorize the similarity matrix of the dataset instead

of the data matrix as presented in [Liu+06]. In [Wan+09], the similarity between

labeled examples is exploited so that points similar in the input space must lie in

similar regions of the latent space, using techniques similar to [Cai+09]. [LW10]

adds the constraints that examples with the same label must be projected at the

same point in the latent space while unlabeled examples are unconstrained. An-
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other approach developed in [CS11] forces the geometry of the latent space to

respect the margins of the input space. Two semi-supervised support vector ma-

chines are learned, the former in the input space and the latter in the latent space.

As the parameter vector of a SVM can be expressed as a linear combination of train-

ing examples, [CS11] constrains the parameter vectors of both models (input and

latent spaces) to share the same coefficient in the linear combination. In the con-

text of the tri-factorization proposed in [Li+09], two factors are explicitly linked to

supervision and must stay close, for labeled examples, to the actual value given by

the supervision.

3.3.4 Probabilistic models and factor analysis

The formulation that was presented above is deterministic. We briefly review here

work on corresponding probabilistic models. They can be seen as extending factor

analysis, models aiming at explaining the variability of observed data points x using

latent variables h. A classic formulation of factor analysis is presented in (3.13)

where D is a linear projector, µ accounts for the mean, centering the data, and ǫ is

a random noise.

x = Dh + µ+ ǫ (3.13)

Probabilistic Principal Component Analysis, introduced in [TB99], builds directly

on this by modeling the conditional probability x|h of x given h as following a

Gaussian distribution of mean Dh + µ, as in (3.14). This derivation was made con-

sidering the random noise ǫ to be a Gaussian white noise of variance σ2: N (0, σ2I).

x|h ≈ N (Dh + µ, σ2I) (3.14)

For matrix factorization [Kor+09], factor models have been adapted to explain

ratings with a similar formulation. In the context of recommendation of user com-

ments, [Aga+11] introduces latent vectors to account for ratings and rater/comment

affinity. The recent paper [Xu+13], introduces a probabilist context to the deter-

ministic max-margin models [DGX11] and a procedure to automatically select the

number of latent dimensions.

3.4 Conclusion

Matrix factorization will be used in all our contributions. In chapters 4 and 5 where

they are reference methods for collaborative filtering and recommender systems. In

chapter 6 to extract a latent representation that strongly characterizes users based

on activity logs, in the context of urban mobility. Interestingly, even though we
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chose a different formalism, our applications can be formalized as blind source

method problems, a field where matrix factorization techniques are reference mod-

els since ICA [Com94]. As said in the introduction, for recommender systems the

observed signal is the set of user reviews and the hidden sources are the latent rep-

resentations of users and items. For the extraction of temporal activities out of user

traces in chapter 6, the signal is the trace, the hidden sources are the activities of

users.

In this chapter, we have provided background material on matrix factorization. Our

intention clearly was to differentiate them from neural networks. We believe that

matrix factorization techniques are under-rated. They are excellent data mining

tools, mainly because they belong to a legacy of explanatory models [Hot33; GVL12;

Com94]. Still, they managed to survive over time, thanks to their plasticity and the

various constraints that can be added to control the bias/variance trade-off. The

most common regularizations are the non-negative [LS01] and sparse constraints

[Hoy02]. Matrix factorization is still a field of intense research. One of the current

challenges is how to scale to larger datasets, whether they come from video streams

[BG09] or recommender systems [Yin+14].

3.4 Conclusion 49





4Extending recommender systems

Contents

4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Collaborative filtering recommender systems . . . . . . . 54

4.1.2 Text summarization for consumer reviews . . . . . . . . 58

4.1.3 Mixed approaches combining texts and ratings . . . . . . 59

4.2 Enriching collaborative filtering with texts profiles . . . . . . . . 60

4.2.1 Building text profiles . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Extending recommender systems . . . . . . . . . . . . . . . . . . 69

4.3.1 Definition of the models . . . . . . . . . . . . . . . . . . 69

4.3.2 Generating a synthetic review . . . . . . . . . . . . . . . 71

4.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

One of the long term goal of machine learning is the design of context aware models.

Today, thanks to the availability of data, many models learn the preferences of users

to provide personalized access to information. This domain of preference learning

[FH10] is quite recent and is one step toward this long term goal. However, these

user-centered models are ubiquitous on the Internet today and many people benefit

from services using them on a daily basis. Search engines rerank the results of

users’ queries with respect to the individual preferences of users [Tee+05], based

on their browsing history. On-line dating website use user profiles to recommend

matching profiles to their subscribers [ML10; Dia+10]. Finally, merchant websites

extract user profiles out of navigation history and user reviews to recommend items

to their visitors [Sch+99]. We consider the latter context, the recommendation of

items, which is the most studied in the literature, due to the availability of user

reviews on the Web 2.0. These are traces of opinions expressed by users on goods

or services, and consist of four elements:

User the writer of the review. In most cases, users are forced to login to write

reviews. The latter are therefore associated with a user and it is possible to

track the reviews of each user over time. These reviews are used to build user

profiles reflecting the taste and expectations of user.
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Item The good or service described by the user. It can be an item on a commercial

website, Amazon offers goods ranging from books to microwave ovens, a type

of product analyzed by community of amateurs like beers on RateBeer, or

a service such as restaurants on Yelp!. They are part of the catalog of the

website and the challenge is to recommend relevant items to each user.

Rating It summarizes the overall assessment of an item by a user. It depends

both on the user (objective, biased, severe . . . ) and on the product (quality,

popularity, marketing . . . ). It is traditionally represented by an integer rating

from 1 to 5 (stars). The higher it is, the more the user likes the item.

text The text describes in details the rating and the opinion of the user on the item.

Our hypothesis is that considering the text, a rich medium to communicate

feelings and opinions, enriches user profiles extracted by recommender sys-

tems and may improve the relevance of the recommendations. In the text, we

look both for opinionated words such as awesome or disgusting and for traces

of the user writing style and consider that both enrich the profiles of users.

The problem of recommendation can be defined in to main ways: the prediction of

ratings or the generation of ranked lists of items. The first estimates the rating a

user gives to an item (thus modeling his interest in the latter). This is a regression

setup and the quality of the prediction is evaluated with respect to its distance to

the actual rating (eg using least squares error). This is the paradigm used by the

GroupLens engine [Res+94] and for the Netflix challenge [BL07; Kor08] and it is

the approach that we have adopted. The second ranks items based on user pref-

erences and returns only the top k (k is hand-fixed) most relevant items [Bre+98;

MH04]. This approach is used on e-commerce sites, which recommend a fixed num-

ber of items to visitors on each page of the website and the model is then evaluated

using TopK measures (recall and precision) or area under the ROC curve.

Four main approaches to recommender systems are generally distinguished in the

literature: content based, knowledge based, collaborative filtering and models hy-

bridizing the former ones. Several possibilities of hybridization between different

systems are presented in [Bur02]. Content based methods use navigation history

(past reviews) and item descriptors [PB07], such as keywords [AT05]. These meth-

ods allow an easy integration of metadata. However it is impossible to provide

a personalized recommendation to a new user and these models are intrinsically

dependent on the quality of the descriptors provided, if any. Knowledge-based

methods generally use prior knowledge on the item to recommend (house, car, fi-

nancial product) [Bur00]. This prior knowledge is used to establish scenarios that

lead to a recommendation when no history is available for the user. They provide

a solution to the troublesome problem of cold start: presenting the user a personal-
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ized recommendation when no or little history is available. Both content based and

collaborative filtering suffer from this problem. In this work, we focus on the en-

richment of user profiles and have not looked specifically at the cold start problem.

However, enriching profiles using text information is known to help in this matter

[ML13a].

We tackle problems with large catalogs of items for which we do not always have

descriptions or metadata but for which we do have many user reviews. Our work

fits naturally in the context of collaborative filtering, which is based solely on past

reviews. This framework has been proposed for the first time with the GroupLens

engine [Res+94]. The approach is further divided into two sub-categories: memory

based and model based approaches. The former is based on k nearest neighbors

algorithms [Kor08]. For the latter, prediction models are trained on user review

datasets [BL07]. The most common algorithms are matrix factorization and RBM

(Restricted Boltzmann Machine) [Kor08; KB11]. Matrix factorization simultane-

ously extracts users and items profiles [Kor+09]. Moreover, it allows the considera-

tion of bias models (user, item and overall bias) to reflect the characteristics of the

users, items and the overall data and simple integration of additional constraints.

For these reasons, we have chosen this approach. Our contributions propose to con-

sider in addition to profiles extracted from ratings, profiles extracted from the texts

of the reviews with notions coming from sentiment analysis.

Our contributions can be considered as methods to extract robust descriptors of

items from texts written by the users that enrich the profiles learned by matrix

factorization. Similar approaches have been proposed in [Gan+09; ML13a], con-

firming the interest of the text part of user reviews. In [Gan+09], the polarity of all

sentences of the text of a review are averaged to predict a rating. This confirms the

interest of sentiment based approaches to consider the text of reviews but require

a hand labeling of sentences of the training reviews. Our models do also consider

the polarity of texts while extracting textual profiles. Contrary to [Gan+09], our

models do not require sentences to be labeled and thus scale easily to large datasets.

In [ML13a], latent profiles are extracted from the texts, and the authors impose a

link between latent textual profiles and latent rating profiles. The former are ex-

tracted with LDA (Latent Dirichlet Allocation), the latter are computed with matrix

factorization. The training algorithm alternates the optimization of the LDA and the

matrix factorization which is quite cumbersome. Moreover they discard the polarity

of texts in the process while our models preserve this information.

We propose two contributions in the field of recommender systems. Both are based

on the assumption that the text is an important way to share feelings and opinions

and that the writing style of users is a relevant part of their profiles. Our first con-

tribution is the enrichment of profiles extracted from ratings. We show that raw
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and latent text profiles provide similar performance for the rating prediction task

but at different computational costs. Additionally, considering the polarity of texts

helps predicting more accurate ratings. While recommender systems are tradition-

ally confined to correctly predict ratings, our second contribution is to extend this

by also predicting the text of a review. Of course, the generation of natural text

is out of reach and we formalize the problem as a summarization problem. For a

given user and item couple, we select among all texts written by other users on the

item, the sentences that are the most likely to express the opinion of the user on the

item. To the best of our knowledge, we are the first to propose such a task. We also

introduce an evaluation framework based on the ROUGE metric [Lin04].

This chapter is organized as follows. We will first define classical models of collab-

orative filtering as well as review current advances in recommender systems. We

will then present our first contribution introducing text profiles and considering the

polarity of these text as an additional information for rating prediction. Finally, we

detail our second contribution: generating a personalized summary for each user

in addition to the rating prediction.

4.1 Related work

As discussed in the introduction of this chapter, we place ourselves in the context

of collaborative filtering for recommender systems. We propose to refine the user

and item profiles by considering information extracted out of the review texts and

to generate predictive summaries that are as close as possible to the actual review

texts. We start this section by presenting the classic models of collaborative fil-

tering that we use as building blocks. Then, we provide background material on

summarization, introducing the concepts used for the generation of our predictive

summaries.

4.1.1 Collaborative filtering recommender systems

Collaborative filtering recommender systems classically use matrix factorization to

extract latent profiles for users and items from the rating matrix. This matrix R ∈
R

nU ×nI is built by indexing the nU users and nI items from the reviews and setting

the value of each entry Rui to the value of the rating rui of the review (u, i, rui,dui).

We use matrix factorization in this work, with additional bias terms. We present

these bias terms first, and then the matrix factorization.
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Overall bias

The first (and simplest) bias term is the overall bias. It is a constant model that

always predicts the average rating computed on the training set:

g0 =
1

m

∑

(u,i)∈T rain

rui (4.1)

The overall bias gives a first indication of the rating habits in the dataset. It is

however a bit dull as it considers identically all users and items.

User bias

The second bias term g1 is the user bias. It assumes that each user has a different

rating behavior and rates all items similarly. The prediction for review (u, i) will be

the average of the mu ratings given by u in the training set (denoted Train) and is

independent of the item i:

g1(u) =
1

mu

∑

(u,i′)∈T rain

rui′ (4.2)

The user bias is less blunt than the overall bias but is still too restrictive. Usually, the

variance in ratings from one user is high as a user will rate items he likes and items

he dislikes. Thus considering the average of user ratings is usually not accurate

enough.

Item bias

The third bias term g2 is the item bias and is the mirror of the user bias, for items.

It assumes that each item as an average quality that is acknowledged by all users.

The prediction for review (u, i) will be the average of the mi ratings on item i in the

training set and is independent of the user u:

g2(i) =
1

mi

∑

(u′,i)∈T rain

ru′i (4.3)

Sadly for our free will, even though it does not consider the user, this models is

a strong baseline. Communities often agree on quality standards and tend to rate

items similarly.
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Matrix factorization

Collaborative filtering proposes to go beyond simple averages and to learn user and

item profiles as latent factors. This is commonly done using matrix factorization

[Kor+09] on the rating matrix:

R ≈ ΓU Γt
I (4.4)

The two factors are the latent profiles of the user, ΓU ∈ R
nU ×k, and item, ΓI ∈

R
nI×k and kis the number of latent variables. Some entries of R are not defined:

these of unobserved ratings. However, we assume that if the training set is large

enough, then the number of observed ratings will be enough to learn robust users

and items profiles. Then, the value of ΓU Γt
I at the entry (u, i) should be a correct

prediction of the rating of the review (u, i). We denote g3 the matrix factorization

prediction function, which is computed as follows1:

g3(u, i) =< γu, γi >= γu.γi (4.5)

Fig. 4.1.: Ratings given by users are gather in a tabular form, the rating matrix. Each
row corresponds to the ratings of one individual user. Each column corresponds
to the ratings given to one individual item. This matrix is decomposed as the
product of two factors. The left factor is the latent profiles of users, each row is
the latent profile of one individual user. The right factor is the latent profiles of
items, each column is the latent profile of one individual item.

Factorizing a partially observed matrix

The main difference with all matrix factorization algorithms presented in chapter 3

is that the data matrix here is the rating matrix and that it is not fully observed. The

first problem is to adapt the loss to minimize. We stick with the mean squared error

1<,> and . are two possible writings for the dot product and γ is a row of Γ.
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as it fits the regression context for predicting a note in range 1 to 5. The classic

formulation of the loss L would be:

L =
1

nuni

‖R − ΓUΓI
t‖2F (4.6)

However, this formulation takes into account unobserved values of R that are not

defined. One simple solution to avoid that is to use a mask matrix M ∈ R
nU ×nI such

that its entry (u, i) is 1 if (u, i) is an observed review, 0 otherwise. This formulation

is derived in equation (4.7) where ⊙ is the element-wise matrix multiplication.

L =
1

m
‖M⊙ (R − ΓUΓI

t)‖2F + λU‖ΓU‖2F + λI‖ΓI‖2F (4.7)

L =
1

m

∑

(u,i)∈ T rain

(γu.γi − rui)
2 + λU‖γu‖2F + λI‖γi‖2F (4.8)

The latter formulation is commonly preferred as it allows a straightforward imple-

mentation of a stochastic gradient descent to minimize the loss. Moreover, instead

of storing a (sparse) rating matrix of dimension nu times ni it only requires a list

of m triplets (rui, u, i). It is then easy in practice to shuffle the training set and

iterate through it. The stochastic gradient descent (SGD) algorithms will draw one

triplet (rui, u, i) and update parameters γu and γi with respect to it. Please note

that to avoid over-fitting, we use L2 regularization on both latent representation.

Also, it is possible and common to impose non-negativity of factor matrices. Algo-

rithm 6 presents SGD to optimize the loss of equation (4.8) with L2 penalties and

non-negativity constraint It offers another way to adapt gradient descent to solve

non-negative matrix factorization, here from a data matrix that is not fully observed.

Contrary to the multiplicative update rules (algorithm 4) and to the projected gradi-

ent (algorithm 5), algorithm 6 is stochastic and easily scales to big matrices 2. There

is also a practical difference between stochastic and batch algorithms. In batch al-

gorithms, parameters ΓU and ΓI were updated alternatively. Here they are updated

as the same time: to make this explicit in algorithm 6, we introduced temporary

variables γ′.

To lighten the notations and focus on the gradient descent, algorithm 6 is written

using a simple stopping criteria: a fixed number of iterations. This however may

not be optimal in practice, as discussed in details in many books such as [Mon+12].

For our experiments, described in details below, we have divided the reviews in

training, validation and test sets. As so, we can exploit the loss on the validation set

and use an early stopping criterion in addition to a maximal number of iterations:

we stop the training if the loss on the validation set stops decreasing. Moreover,

2Multiplicative update rules can be modified to scale up as in [Yin+14]
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Data: T = {(rui, u, i)}, ΓU0, ΓI0, λ, µ, p
Result: ΓU , ΓI

ΓU , ΓI ← ΓU0, ΓI0;
for t ∈ {1, 2, . . . , p} do

Shuffle T ;
for (rui, u, i) ∈ T do

γu is the u-th row of ΓU , γi is the i-th row of ΓI ;
Compute prediction r̂ui = γu.γi and δ ← r̂ui − rui;
γ′

u ← max(0, γu − µ.(λγu + δγi));
γ′

i ← max(0, γi − µ.(λγi + δγi));
u-th row of ΓU is set to γ′

u, i-th row of ΓI gets γ′
i;

end
end
Algorithm 6: Stochastic gradient descent for non-negative matrix factorization of
the partially observed ratings matrix.

the learning rate µ is not fixed but decreases3 over time to help the convergence of

the SGD [Bac14]. Also item and user parameters have each their own learning rate

µ and penalty weight λ (resp. (µi, λi) and (µu, λu)) which are all set using a grid

search and the performance on the validation set.

4.1.2 Text summarization for consumer reviews

Early reference work [HL06] on consumer reviews has focused on global summa-

rization of user reviews for each item. The motivation of this work was to extract

the sentiments associated to a list of features from all the item review texts. The

summarization took the form of a rating or of an appreciation of each feature. Here,

contrarily to this line of work, the focus is on personalized item summaries for a tar-

get user. Given the difficulty of producing a comprehensive natural synthetic sum-

mary, we have considered here extractive summarization which consists in selecting

from a set of documents a set if sentences that summarize the documents.

Evaluation of summaries is challenging: how to assess the quality of a summary

when the ground truth is subjective? However, this is not a problem to be dealt

with in our context. Our goal is to generate a summary that describe the experience

of a user concerning an item. As we have access to the actual text written by that

user about this item, in our context, this actual text is our ground truth. We have

used ROUGE-n [Lin04] (n from 1 to 3) to measure the quality of our generated

summaries with respect to the actual review texts. ROUGE-n is a commonly used

metric for summarization tasks that computes the ratio of n-grams of the ground

truth summary that are found in the candidate summary.

3We multiply the learning rate µ by a factor smaller than 1 after each epoch in this series of experi-
ments, here 0.97.
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4.1.3 Mixed approaches combining texts and ratings

Considering hybrid models mixing text and ratings is quite rare in recommender

systems, principally due to the very recent availability of large datasets [HL04;

ML13b] where both modalities are present. A first hybrid model was proposed by

[Gan+09]: it is based on hand labeling of review sentences (topic and polarity) to

identify relevant characteristics of the items. Topics and polarities are used to learn

classification models that are combined to predict the rating. Our approach does

not need such hand labeling and as so scales to larger datasets. [ML13a] pushes

further the exploitation of texts, by using a joint latent representation for ratings

and textual content with the objective of improving the rating accuracy. We pro-

pose here various approaches to extract text profiles. Also, the use of a constraint

to link the two representation spaces extracted from ratings and texts in [ML13b]

makes the optimization procedure cumbersome. We argue here that excellent per-

formance can be achieved using raw representation of text, that scale easily. Also,

[ML13b] is focused on rating prediction and do not consider delivering additional

information to the user, like our predictive summaries. Very recently, [Zha+14] has

considered adding an explanation component to a recommender system. For that,

they propose to extract some keywords from the review texts, which are supposed to

explain why a user likes or dislikes an item. This is probably the work whose spirit

is closest to ours, but the components of their system are only juxtaposed with no

common variables of parameters and keyword generation is difficult to evaluate.

[HL04; HL06] combined opinion mining and text summarization on product re-

views with the goal of summarizing the qualities and defaults of the items. [Tan+12]

proposed a system for delivering personalized answers to user queries on specific

products. They built the user profiles relying on topic modeling without any sen-

timent dimension. [Aga+11] proposed a personalized news recommendation al-

gorithm evaluated on the Yahoo portal using user feedback. This last reference is

quite different from our setting and it does not investigate ratings or summarization

issues. Overall, we propose here to go beyond a generic summary of item charac-

teristics by generating for each user a personalized summary that is close to what

they would have written about the item themselves.

For a long time, sentiment classification has ignored the user dimension and has

focused for example on the conception of "universal" sentiment classifiers able to

deal with a large variety of topics [Bli+07]. Considering the user has been stud-

ied only very recently. [Tan+11] for example exploited explicit relations in social

graphs for improving opinion classifiers, but their work is only focused on this as-

pect. [ML13b] proposed to distinguish different rating behaviors and show that

modeling the review authors in a scale ranging from connoisseur to expert offers a
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significant gain for an opinion classification task. Again they focused on sentiment

classification only.

4.2 Enriching collaborative filtering with texts profiles

Let us begin by presenting our first contribution: integrating texts along ratings in

collaborative filtering. As explained above, our data points are reviews: quadruplets

composed of a rating rui, a user u, an item i and a text document dui
4. Our goal is to

predict unobserved ratings from observed reviews and we proceed by learning the

parameters Θ of prediction function gΘ(u, i). We define this function as a generic

combination of 4 models:

gΘ(u, i) = λ0g0 + λ1g1(u) + λ2g2(i) + λ3g3(u, i) + λ4g4(u, i) (4.9)

The first three terms are biases, in the following order: g0 the overall bias, g1 the

user bias and g2 the item bias. The fourth term g3 is the matrix factorization of the

partially observed rating matrix. We have presented these models in the previous

section. The fifth term g4 is the heart of our contribution and takes into account text

reviews (documents doc). Lambda parameters (λi)0≤i≤4 control the contribution of

each model in the final prediction. For the fifth term, we present three different

expressions, thus three different models. The first one is based on bag of words

representations of user and item texts. The second one uses latent representations

instead of the bag of words representations. The third one uses three bag of words

per user and per item: one for all texts, one for positive texts and one for negative

texts. A natural fourth model would be to use three latent representations per user

and per item: one for all texts, one for positive texts and one for negative texts. The

performance of the first and second models are similar and so are the performance

of the third and fourth models. Thus we report only the performance of the first,

second and third models to focus on the gain of considering multiple representation

per user and item, based on the polarity of the texts.

4.2.1 Building text profiles

Current collaborative filtering approaches commonly leave out the texts dui of user

reviews and only [Gan+09] and [ML13a] do consider the text, to the best of our

knowledge. Only the latter provides a model extracting text profiles along with

rating profiles. Both profiles are latent profiles, the former is extracted with Latent

Dirichlet Allocation [Ble+03] on the texts and the latter is extracted with a clas-

sic matrix factorization. However, [ML13a] impose a link between the two latent

spaces. If the approach is very elegant, the training protocol is quite cumbersome

4We represent texts using vectors that are indicated by bold letters throughout the thesis.
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as alternates two training algorithms. We propose here to simplify it by disconnect-

ing both representations. We also argue that a systematic projection is not often the

best approach: performance are similar to raw bag of words models but at a greater

computational cost.

Raw text approach

We propose here a first, simple approach. To create a text profile for user u, we

simply concatenate all documents {dui′ , i′} that user u has written and extract a

binary bag of words representation5 of this document that we denote du. The same

representation is computed for items and denoted di for item i. To evaluate the

match between user u and item i, we simply use the cosine:

g4,T (u, i) = cos(du,di) =
< du,di >

‖du‖‖di‖
(4.10)

Combining this model with the other four terms coming from collaborative filtering

gives us our first model, that we denote gT :

gT (u, i) = λ0g0 + λ1g1(u) + λ2g2(i) + λ3g3(u, i) + λ4g4,T (u, i) (4.11)

LDA based approach

The second model we propose uses LDA to learn latent representations of texts,

and build topic models of comments. Training texts are represented as binary bag

of words and a LDA is trained on these bag of words using [PN07]. We use the LDA

model as a projector ψ that can take any text (as a binary bag of words) as its input

and outputs a vector: the distribution of topics for the input text, as described in

[Ble+03]. We then simply feed the binary bag of words du and di to this LDA model

to obtain latent representations for the texts of user u an item i. The prediction is

done using the dot product, which computes the topic similarity of reviews6:

g4,L(u, i) =< ψ(du), ψ(di) > (4.12)

Combining this models with the other four terms from collaborative filtering, as for

gT , gives us our second model, that we denote gL:

gL(u, i) = λ0g0 + λ1g1(u) + λ2g2(i) + λ3g3(u, i) + λ4g4,L(u, i) (4.13)

5This representation focuses on extracting vocabularies without considering frequencies.
6This computation is the same as the cosine if ψ profiles are normalized
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Sentiment based approach

The third, and last, model that we propose here refines the two previous models

by adding the notion of sentiment. Ratings indicates the opinion of users on items.

They can be translated into polarities: positive and negative opinions about items.

We do so by considering ratings lower than 3 as negative opinions, discarding those

equal to 3 as motivated in [PL08], and considering ratings greater than 3 as positive

opinions. We then create three profiles for user u:

du is the same as before: binary bag of words extracted from all texts of the user

u.

d
(+)
u is the binary bag of words extracted on all positive texts of the user u: that is

texts with rating rui > 3.

d
(−)
u is the binary bag of words extracted on all negative texts of the user u: that is

texts with rating rui < 3.

In the same way, profiles di, d
(+)
i and d

(−)
i are computed for items This model could

be derived for both the raw and latent representations of texts. We chose to report

the results only for its implementation with raw text representations both models

have equivalent performance. The rating prediction is based on all nine matchings

of the six vectors, three for the user and three for the item:

g4,S(u, i) = λs1 cos(du,di) +λs2 cos(du,d
(+)
i ) +λs3 cos(du,d

(−)
i )+

λs4 cos(d
(+)
u ,di) +λs5 cos(d

(+)
u ,d

(+)
i ) +λs6 cos(d

(+)
u ,d

(−)
i )+

λs7 cos(d
(−)
u ,di) +λs8 cos(d

(−)
u ,d

(+)
i ) +λs9 cos(d

(−)
u ,d

(−)
i ))

(4.14)

Combining this models with the other four terms from collaborative filtering, as for

gT and gL, gives us our third model, that we denote gS :

gS(u, i) = λ0g0 + λ1g1(u) + λ2g2(i) + λ3g3(u, i) + λ4g4,S(u, i) (4.15)

4.2.2 Experiments

We will now continue by presenting the dataset on which a series of experiments is

conducted as well as the training protocol. We will then discuss the results.
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Datasets

This series of experiments is conducted on datasets that are extracted from real

websites: Amazon [JL08] and Ratebeer [McA+12]. From these datasets, we ex-

tracted many subsets by filtering out users activity and items popularity: smaller

datasets are restricted to the most active users and to the most commented items.

For each dataset, we randomly split the reviews into three sets: training, validation

and test set. The number of reviews, users and items of all datasets can be found in

table 4.1.

Name #Users #Items #Training #Validation #Test
RB_U50_I200 52 200 7200 900 906
RB_U500_I2k 520 2000 388200 48525 48533
RB_U5k_I20k 5200 20000 1887608 235951 235960
RB_U30k_I110k 29265 110364 2339296 292412 292415
A_U200_I120 213 122 984 123 130
A_U2k_i1k 2135 1225 31528 3941 3946
A_U20k_I12k 21353 12253 334256 41782 41791
A_U210k_I120k 213536 122538 1580576 197572 197574
A_U2M_I1M 2135360 1225387 4642808 580351 580357

Tab. 4.1.: Description of the datasets in terms of number of users, items and reviews in
training, validation and test set. RB stands for RateBeer and A for Amazon. The
name of a dataset is composed as these initials to indicate the provenance of the
data, followed by the number of users and the number of items. For instance,
RB_U50_I200 is the dataset extracted from RateBeer containing the top 500
users and top 200 items in number of reviews.

Training protocol

We will now present how all models were trained. For the three biases, no training

procedure is necessary: they only involve computing averages of ratings. The matrix

factorization term is trained using the stochastic gradient algorithm presented in

section 4.1.1 (algorithm 6). Our regularization framework is composed of two

parts: factors ΓU and ΓI are non-negative and a strong L2 penalty is imposed

on the parameters. Without this regularization, the high variance of the matrix

factorization on a partially observed matrix leads to over-fitting. The use of the

bias terms also prevents over-fitting. Please note from table 4.1 that the number of

users and items are quite different in the datasets. To take this into account, we use

different learning rates and penalty weights for users and items parameters. All the

parameters of the SGD are fine-tuned using the MSE on the validation set. For the

texts, we build a dictionary removing terms appearing in less than 10 documents.

For the LDA, we used the excellent implementation of [PN07].

The bias models are still denoted g0, g1 and g2 for the overall, user and item biases

respectively. The models gC , gL, gT and gS are composite models that integrate the

biases term, the matrix factorization g3 and, for the three later, our contributions.
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• gC(u, i) corresponds to λ0g0(u, i) + λ1g1(u, i) + λ2g2(u, i) + λ3g3(u, i) where

g3 is the non-negative matrix factorization learned with stochastic gradient.

• gT (u, i) corresponds to λ0g0(u, i)+λ1g1(u, i)+λ2g2(u, i)+λ3g3(u, i)+λ4g4,T (u, i)

where g4,T is the raw text model.

• gL(u, i) corresponds to λ0g0(u, i)+λ1g1(u, i)+λ2g2(u, i)+λ3g3(u, i)+λ4g4,L(u, i)

where g4,L is the LDA model that incorporate texts in the ratings prediction.

• gS(u, i) corresponds to λ0g0(u, i)+λ1g1(u, i)+λ2g2(u, i)+λ3g3(u, i)+λ4g4,S(u, i)

where g4,S is the raw text model taking sentiments into account.

All parameters λj are found by minimizing the loss on the validation set. This allows

good generalization. It corresponds to solving a linear system: Φ.λ = r where Φ is

the matrix of prediction (one model per column, one review per row), lambda is

the vector of parameters to fit and r is the vector of actual ratings of the validation

reviews. We use linear algebra solvers to solve this optimization problem.

Recommender system performance

We will now discuss and compare the performance of our models on the rating

prediction task. To do so, as in [ML13a], we use the MSE on the m examples of the

test set:

MSE(g) =
1

m

∑

(u,i)

(g(u, i) − rui)
2 (4.16)

Performance of all model can be found in table 4.2. They confirm our thought about

bias models. The worst model is the overall bias g0 that is too simple to provide

good predictions. It is worth mentioning that the item bias g2 performs better than

the user bias g1: it corresponds to the fact that the variance of ratings given by a

user is usually greater to the one of the ratings given to an item. As it was experi-

mentally shown many times in the literature, using collaborative filtering improves

performances. As expected, gC , combining all biases and the matrix factorization,

is almost always better than biases. The only exception is for the smallest Ama-

zon dataset where the factorization failed to generalize. Finally, using text for the

prediction always improves performance.

Both models without sentiment, gT and gL have similar performance. This is sur-

prising as gT is much more efficient in terms of computations. Our last model, gS

performs most often better than gT and gL. We believe the gain comes from the

integration in gS of a polarity through the separation of positive and negative re-

views that is not present in gL. Firstly, training the LDA is long (around 10 hours
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for largest databases) but also the representation is denser. Cosine of the raw text

representation exploit the high sparseness of the bag of words and are faster.

Base g0 g1 g2 gC gT gL gS

RB_U50_I200 0.6758 0.6533 0.2091 0.1916 0.1933 0.1939 0.1951
RB_U500_I2k 0.5685 0.5256 0.2509 0.2204 0.2202 0.2202 0.2190
RB_U5k_I20k 0.6774 0.5878 0.3079 0.2315 0.2292 0.2287 0.2253
RB_U30k_I110k 0.70296 0.60644 0.34876 0.2479 0.2412 0.2409 0.2389
A_U200_I120 1.5348 1.5658 1.4916 1.7636 1.3560 1.3734 1.3382
A_U2k_I1k 1.5316 1.3043 1.2785 1.0989 1.0539 1.0567 1.0614
A_U20k_I12k 1.4711 1.2858 1.2361 1.1098 1.0498 1.0501 1.0452
A_U210k_I120k 1.5072 1.4454 1.3223 1.1872 1.1230 1.1233 1.1181
A_U2M_I1M 1.6051 1.6313 1.4928 1.2700 1.2013 1.2017 1.1961

Tab. 4.2.: Test mean squared errors of models on datasets. Each row corresponds to a
dataset, each column to a model. The models that we propose, using text pro-
files, are emphasized in blue (1st row) and are the three last columns.

One surprising fact is the evolution of the performance with the size of the dataset.

It appears that – roughly – the bigger the dataset is, the worse the models are, which

is the opposite of the expected behavior. However, it has a simple explanation:

smaller datasets contains most active users and most commented items for which

lots of reviews are available to estimate robust profiles. Larger datasets have more

noise and contain users and items with but a few reviews for which parameters are

harder to learn.

Explaining gains & losses

We will now study in detail the predictions to understand why our text model gS

outputs better predictions. We define the gain (4.18) and loss (4.19) in MSE to

compare the prediction of the collaborative filtering model gC and our best text

model gS . A gain corresponds to a better estimation, a loss to a worse estimation,

of the text model with respect to the collaborative filtering model. These gain/loss

measures are average on all predictions.

δ(u, i) = (gS(u, i) − rui)
2 − (gC(u, i) − rui)

2 (4.17)

GainMSE =
1

m

∑

(u,i)

|δ(u, i)|+ (4.18)

LossMSE =
1

m

∑

(u,i)

|δ(u, i)|− (4.19)

A current bias on recommender system datasets is that most reviews have positive

ratings. This mostly comes from the fact that most people mildly satisfied or disap-
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pointed do not bother to review. For our datasets, it is also the case. We provide

here an in depth analysis of our predictions on two datasets: A_U20k_I12k and

RB_U5k_I20k. Figures 4.2a and 4.2c represent the population per rating. We can

see that most reviews are above three. The figures also represent the gain and

loss per rating of our model gS with respect to gC as defined above. The interest-

ing fact is that out text model is better at predicting good ratings and a bit worse

at predicting low ratings. However, the bias in the ratings distribution favors our

model. Figures 4.2b and 4.2d represent the values of δ. In both cases, the median

is positive: for most predictions our model is better.

(a)Amazon Population and overall gains
and losses of MSE per note
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(b)Amazon Histogram of δ(u, i) for
test reviews and associated median
(0.164)

(c)RateBeer Population and overall
gains and losses of MSE per note

−0.4 −0.2 0.0 0.2 0.4
Gain

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Po
p
u
la
ti
o
n

(d)RateBeer Histogram of δ(u, i) for
test reviews and associated median
(0.019)

Fig. 4.2.: The left column represents populations (black) and MSE gains (gray) and losses
(light gray) per rating. The right column represents the distribution of MSE
gains/losses, with the median. Overall, our model are better as they estimate the
majority ratings 4 & 5 better.

We present in table 4.3 a few hand picked examples that show predictions of gC

and gS . They exhibit texts containing highly polarized words that benefit to our

text model.
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Actual rating 5
gC 4.479377
gS 4.764128
One of the best historical novels I’ve read
This book is a wonderful tapestry of Nor-
man/Angevin England and Wales. The
characters are well-developed and com-
plex. For example, historical treatments
of King John invariably cast him as a vil-
lain, but here we see him as a charac-
ter with many facets. The plot follows
Joanna, or Joan, the illegitimate daugh-
ter of John, through her life from about
age five to her late thirties. A reader of
this book will learn much about culture
clash, women, the Angevins, and Eng-
land and Wales in the Middle Ages. The
book is captivating – I was hardly able to
put it down

Actual rating 1
gC 1.669823
gS 0.700161
Not taking it back. After comparing the
print quality in best mode to my HP 970
CSE inkjet in best mode from the same
source there is no comparison. The HP
wins in print quality hands down. The
CX5200 with its pigment ink is printing
unsaturated colors and not sharp in best
mode on my first day of use. The HP dye
based ink colors are deep and the print is
super sharp. I’m not taking this machine
back to the dealer for a refund because
the wife says the long life durabright ink
is required for her scrapbooking. The
software install is buggy on an XP home
machine and the software is fairly worth-
less as well. Fortunately my MS Picture
It that came with the Dell works with the
scanner.

Actual rating 1
gC 1.296613
gS 0.900824
Man! This one gave me a hemorrhoid
This is just an awful attempt at making
music. This guys music literally irritates
my [ears] when I hear it. What is really
messed up about the whole situation is
this guy is polluting the minds of the chil-
dren with the poor lyrics and ignorant
subject matter.

Actual rating 4
gC 2.963587
gS 3.619592
Enjoy after repeated Play After spending
hours actually forcing myself to listen to
this CD, I have to begrudgingly admit
that Alicia Keys MAY deserve some of the
accolades she has received. The CD is
set up so that each song compliments the
one before. This is a nice album to mel-
low out and chill with.

Tab. 4.3.: Test examples of A_U20k_I12k where gS outperforms gS . Each cell presents the
rating of the review, the text of the review and the predictions of gC and gS .
These examples stand out as the text strongly impacts the decision of gS due to
the presence of strongly opinionated words.
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Actual text
Great story and characters; often mannered writing I
am going to weigh in very briefly on this book. It has a
great story, but it is marred by Arundhati Roy’s too fre-
quent displays of mannerism. Many of the characters
are very original and the story is full of credible twists
and turns, but every thirty pages or so, Ms. Roy lapses
into several pages of writing in apretentious stream-of-
conscience/surreal style that soon had me skimming
toward the next section of narrative substance. Ms.
Roy must have felt that she needed to show off how
well she could write, but she ended up underscoring
the fact that this was her first novel.
Selected sentences
The individual stories of at least twelve characters are
told and each story would be rather simple but the sto-
ries are all shuffled together with no regard for tense
and this makes the book seem much more complex
than it actually is.
Plus she moves forwards and backwards and sideways
in time towards a central event which has been hinted
at in countless ways but by the time you get to that
event you are mad because all of the confusion could
so easily have been avoided if she’d simply told the
story, or each of the twelve stories, chronologically.
At times the repetitions and sentence fragments and
other affectations become more of a hindrance than
a benefit, but it seems that some Indian writers feel
compelled to write in this sort of native style, and if it
is inevitable, then better Roy’s fairly controlled method
than Rushdie’s incomprehensible over-the-top method.

Actual text
This is a good read, it is a beautiful epic whose true
force lies in the poignant details of its characters, richly
detailed, woven into a wonderful tapestry. You all so
get three books in one, a good bargin, and a good story
for teen readers. OVERALL SCORE: (B+) READABIL-
ITY: (B), PLOT: (B-), CHARATERS: (A-), DIALOGUE:
(B-), SETTING: (B+), ACTION/COMBAT: (B-), MON-
STERS/ANTAGONISTS: (B-), ROMANCE: (B+), SEX:
(n/a), AGE LEVEL: (PG)
Selected sentences
Terry Brooks is probably the most talented of the
derivative-of-Tolkien authors, a pleasant read for those
who enjoy basic fantasy tales with a few original bits
among the "Tough Guide to Fantasyland" plotlines.
Best of the subgenre Terry Brooks’ Shannara series was
one of the first doorstopper series, varying in original-
ity and in quality but good brain-candy fun.
Now the first three books of his trilogy are rereleased in
a hardvcover three-in-one edition, not recommended
for people with weak wrists, but for those who like
good covers and big heavy tomes.

Actual text
Has a pitch black pour with a super thick brown bub-
bly foam head. The head retention is just rediculous,
sticks around for a long time. The aromas I got were
chocolate malts, coffee, and a little bit of honey. The
taste has a medium body mouthfeel to it, with a bitter-
ish finish to it. From the first whiff you know exactly
what its going to taste like. Taste like heaven.
Selected sentences
The dark fruits that tend to dominate early on are still
detectable (almost as if this were some weirdly lagered
impy, shading into a Baltic porter) but are integrated
superbly with the roasted malts, giving this one a really
unique quality.
bottle, thanks to SS, black walnut color with soapy tan
foam, aroma has a lot of alcohol and coffee, flavor is
well balanced smoked meat, coffee, dried plum, cocoa,
finish is well balanced with malty cocoa and coffee
The taste is just what I expected from DR; a amazingly
smooth silky body, tons of dark fruits, brown sugar,
some dry roasted malts, coffee, and a bitter dark choco-
late finish

Actual text
Pours a hazy reddish brown with a nice tan head.
Aroma of yeast, fruits, caramel, spices, malt. Flavor
is fruit, caramel, yeasts, rasins and malt. Good stuff.
Selected sentences
The taste is medium sweet, with a Belgian yeast,
roasted caramel malts, and some fruity notes
The nose is fairly sweet, with caramel malts, some dark
fruits, Belgian yeast, and spice Appearance: The pour
is a cloudy dark orange-brown with a thick and creamy,
lasting, lacy beige crown
Smell is one complex mother of a dubble, quite
unique, good smokeyness comes through with bacon
and smoked dried oranges, sweet smokey malts, other
dark but dullish fruit of plum and raisin, candied toffee
notes and what I’m guessing is alot of wild yeast and a
bit of cherry as well.

Tab. 4.4.: 4 hand-picked examples of comments written by users, reported under Actual
text in each cell, and sentences written by other users on the same item selected
using a cosine similarity between the text profile of the user that has written the
actual text and the bag of words representation of the sentence. These examples
motivated us to provide a proper framework for a task consisting of predicting
how a user will comment an item.

Selecting relevant sentences

One interesting by-product of our hybrid models is the possibility of extracting rel-

evant sentences with respect to a review of user u on item i. The simple idea is

to use the text profile of u to select sentence written by other users on item i and

compare them to the actual text review dui. The selection is done looking at the

cosine between du and the binary bag of words representing sentences of text re-

views du′i. A sample of such hand-picked sentences, without any proper formalism,

is presented table 4.4.
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4.3 Extending recommender systems

This section describes our second contribution: a new task for recommender system,

with an appropriate evaluation framework. This task is the prediction of the text

dui written by user u on item i. Generating natural text is out of reach, so we

will use extraction techniques from automated summarization [AU07]. We will use

recommender systems to select among sentences written by other users on item

i these which are relevant to user u. We will provide different scoring functions

to reflect this relevance as well as different aggregation procedures to generated

the final text with the relevant sentences. The point of the study is to generate a

synthetic document d̂ui that is close to the actual text dui. We quantify the quality

of our generated documents using the ROUGE measure [Lin04] used to assess the

qualities of summaries [AU07].

The purpose of this task is not the generation of a synthetic document in itself but

rather to provide a framework to assess the capabilities of recommender to select

from comments written by other users these who reflect the most the style and

preferences of a user. Selected comments can be, for instance, presented to the user

as part of the recommendation process. The hypothesis behind it is that text conveys

more information than ratings, in particular, about the opinion and preferences of

users. And we believe that this information should be exploited by recommender

systems.

4.3.1 Definition of the models

We first define the recommender systems that we will use for this work. Compared

to these presented in the previous section, we modified how we enrich the profiles

with text. In the previous sections, our hybrid systems could be considered as hy-

bridizations of collaborative filtering and content-based methods, the descriptors

required for the content-based part being extracted from the comments. Here, we

will propose models that aim at detecting communities of users. We assume that

users of a community have similar writing styles and tastes and that we can exploit

these similarities both for the rating prediction and the generation of a synthetic

document that we have defined earlier.

The overall bias g0, the user bias g1, the item bias g2 and the matrix factorization

g3 are the same as for the previous series. We propose to integrate texts in the

following way:

g4(u, i) =
1

mi

∑

(u′,i)

ru′iσt(π
′
u, πu) (4.20)
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As we said, this approach is different than the one in section 4.2 as we consider only

text profiles of users and not of items anymore. We aim at detecting communities of

users using the hypothesis that they write similarly (same vocabulary, same topics,

. . . ). We know that the item bias model performs well as, overall, users of a website

rate items similarly. This is a refinement of this fact: users of a community rate items

similarly.

In equation (4.20), we denote πu the text profile of user u. The function σt is a

similarity measure on text profiles π′
u and πu of user u and u′: it takes high values

for similar users. We use light notations for the sum: the meaning of
∑

(u′,i) is

summing on all reviews made on item i by other users (u′) in the training set. The

number of such reviews is mi. We will compare two approaches, one with raw

bag of words and the other using representation learning. Each will have different

representations of text, of course, but also different similarity measures.

Raw bag of words

The first model that we consider is using raw bag of words to represent the text

of each review. A preprocessing step removes all words appearing in less than 10

documents. Then, the 100 000 most frequent words are kept. Although the number

of features is large, the representation is sparse and scales well. πu is simply the

binary bag of words of all texts of user u. In this high dimensional space, the

proximity in style between two users is well described by a cosine function, a high

value indicates similar usage of words:

σt(πu′ , πu) = πu′πu/(‖πu′‖‖πu‖) (4.21)

Latent representation using an auto-encoder

For the latent representation, we trained an auto-encoder, similarly to the approach

of [Glo+11] and as a replacement of the LDA used before. We have presented in

details auto-encoders in chapter 2. It has two components: a coding operator and

a decoding operator denoted respectively cod and dec. The two vectorial operators

are learned so as to enable the reconstruction of the original text after a projection

in the latent space. Namely, given a sentence suik, represented as a binary bag of

words vector, we obtain a latent profile πuik = cod(suik) and then, we reconstruct

an approximation of the sentence using ŝuik = dec(πuik).
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The auto-encoder is optimized so as to minimize the reconstruction error on the

sentences suik
7 of the training set:

cod∗,dec∗ = argmin
cod,dec

∑

suik

‖suik − dec(cod(suik))‖2 (4.22)

We use the settings proposed in [Glo+11]: our dictionary is obtained after stop-

words removal and selecting the most frequent 5000 words. We did not use a larger

dictionary such as the one used for the bag of word representation since it does not

lead to improved performance and simply increases the computational load. All the

sentences are represented as binary bag of words using this dictionary. The coding

dimension has been set to 1000 after a few evaluation trials. Note that the precise

value of this latent space is not important and the performance is similar on a large

range of dimension values. Both cod and dec use sigmoid units:

cod(suik) = πuik = sig(Wsuik + b)

dec(πuik) = sig(Wtπuik + b′)

sig(x) = 1
1+exp(−x)

(4.23)

Here, πuik is a vector, W is a 5000x1000 weight matrix and sig() is an element-wise

sigmoid operator on the vector Wsuik + b.

As motivated in [ML13a; Gan+09], such a latent representation helps exploiting

term co-occurrences and thus introduces some semantic. It provides a robust text

representation. The hidden activity of this neural network produces a continuous

representation for each sentence accounting for the presence or absence of groups

of words.

πu is obtained by coding the vector corresponding to all the texts written by user u

in the past. It lies in a latent word space where a low Euclidean distance between

users means a similar usage of words. Thus, for the similarity σt, we use an inverse

Euclidean distance in the latent space:

σt(πu′ , πu) = 1/(α + ‖πu′ − πu‖2) (4.24)

4.3.2 Generating a synthetic review

As we explained above, our task requires the generation of a synthetic document.

This generation a two step process that we will now present. First, for a given re-

view (u, i, rui,dui), we rank sentences from comments du′i written by other users

7This is the k-th sentence of the review of user u on item i.
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u′ 6= u on the item i. This ranking is done by using scoring function that output

a score for each sentence such that a higher value means a more relevant sen-

tence. Second, once the sentences are ranked, we combine the most relevant ones

to create the synthetic document. We will define three different procedures for this

combination.

Ranking sentences

We start by presenting how to rank sentences using a scoring function. We consider

here, as our target, a test review (u, i, rui,dui) for which we aim at estimating both

rui and dui. We will present how to use recommender systems to rank sentences.

The first idea is to use the rating prediction of a recommender system r̂ui to select

sentences from other reviews that have similar ratings ru′i ≈ r̂ui. The more sim-

ilar the ratings are, the more relevant the sentences are. This is our first scoring

function. The second idea is to additionally use the similarity between sentence of

other reviews and the text profile of user u. This similarity directly gives a perti-

nence score: the higher the similarity is, the more relevant the sentence is. We have

two means of considering the text in the models that we defined above, these two

means can be exploited for this ranking purpose.

Assembling sentences

Now that sentences are ranked according to their relevance, we need a procedure to

assemble them. This procedure comes from automated summarization [AU07]: we

select the most relevant sentences that are also the most distinct from each others.

The distinction is made in the sense of the cosine similarity measure on a bag of

word representation of the sentence. This forces the selection of sentences using

different words and helps generating synthetic documents that looks more natural

and less redundant. A pseudo-code implementation of this selection procedure is

given by algorithm 7.

Performance and baselines

To evaluate the quality of the generated synthetic documents, we use the ROUGE

measure, introduced in [Lin04]. The ROUGE-n measure counts the ratio of n-

grams8 of the actual text dui that are present in the generated synthetic text d̂ui. It

is a recall oriented measure and suffers from classic biases of these measures: the

8n-grams are a successions of n words, more details are given on n-gram in section 5.1.2
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Data: u, i, S = {(su′i, ru′i, u
′)}, σ

Result: d̂ui

s∗
u′i ← argmax

su′i∈S

(

σ(su′i, ru′i, u
′, u, i)

)

;

d̂ui ← s∗
u′i;

Remove s∗
u′i from S;

while length d̂ui < averagelength(u) do
s∗

u′i ← argmax
su′i∈S

(

σ(su′i, ru′i, u
′, u, i)− cos(su′i, d̂ui)

)

;

d̂ui ← [d̂ui, s
∗
u′i];

Remove s∗
u′i from S;

end
Algorithm 7: XS greedy procedure: selection of successive sentences to maximize
both relevance, according to the scoring function σ, and diversity. d̂ui is the text
generated sentence after sentence.

longer the prediction is, the higher the chances are to catch many n-grams. We will

counter this flaw by limiting the size of our prediction in the greedy procedure. The

value of n influences what ROUGE actually measure, by changing the length of the

subsequences to match. ROUGE-1 focuses on correctly matching themes or topics

present in the document and is not far from a cosine on bag of words. ROUGE-2

and ROUGE-3 are more representative of the style. However, the number of 2 and

3-grams available for the prediction is huge and, as a result, values of ROUGE-2 and

-3 usually are low. In the following, we will use ROUGE-1, ROUGE-2 and ROUGE-3

as our evaluation measures.

Our contribution consists in using recommender systems to select relevant sentence

among the comments written by other user on an item. To the best of our knowl-

edge, we are the first to tackle such a task. Thus, we consider additional baselines

to compare our models to. First, to evaluate whether our procedure assembling

sentences is pertinent, we propose two other procedures. The former selects only

the most relevant sentence, in the sense of the scoring function. The latter uses the

scoring function on document rather than on sentences to select the most relevant

document. Second, to evaluate the quality of our scoring functions, we compare

them to two other means of selecting sentences: a random baseline and an oracle.

The former simply randomly select sentences among these of comments written on

the same item instead of using a relevance score9. The latter selects sentences that

have the highest ROUGE-n measure w.r.t to the (unobserved) document dui. As this

model uses the (unobserved) text of the test review from which the prediction is

computed, it is an oracle.

9This baseline is not as naive as it seems: recommender systems show that most users agree on many
product (item bias model).
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As a result we have a total of 21 models, mixing the 3 procedures to generate the

text and the 7 ways to select texts: 1 random baseline, 3 ROUGE-1/2/3 oracles, 3

recommender system scorings (ratings only, ratings + raw text profiles, ratings +

latent text profiles).

4.3.3 Experiments

We will first present the results of the models for rating prediction, as in 4.2. We will

then discuss the results of text generators using the 21 models we have described.

This series of experiments is conducted on the same dataset as before (table 4.1).

Rating prediction

For the rating prediction, we use the mean squared error, once again. Performance

of our models are presented in table 4.5. The analysis for models g0, g1, g2 and

g3 is similar to the one of the previous series of experiments. Once again, using

texts improves the performance of recommender systems. Both texts models are

able to capture the similarities between users (whether using latent representation

or not).

Subsets g0 g1 g2 g3 gL4 gT 4

RB_U50_I200 0.7476 0.7291 0.3096 0.2832 0.2772 0.2773
RB_U500_I2k 0.6536 0.6074 0.3359 0.3168 0.3051 0.3051
RB_U5k_I20k 0.7559 0.6640 0.3912 0.3555 0.3451 0.3451
A_U200_I120 1.5348 2.0523 1.6563 1.7081 1.4665 1.4745
A_U2k_I1k 1.5316 1.4391 1.3116 1.0927 1.0483 1.0485
A_U20k_I12k 1.4711 1.4241 1.2849 1.0797 1.0426 1.0426
A_U210k_I120k 1.5072 2.1154 1.5318 1.2915 1.1671 1.1678

Tab. 4.5.: Test performance (mean squared error) for recommendation. g0, g1, g2 are the
overall bias, user bias and item bias baselines. g3 is the matrix factorization
baseline. gL4 and gT 4 are our hybrid recommender systems relying respectively
on latent and raw text representations.

Text generation

Our main contribution here however is the framework to evaluate text generation.

Table 4.6 reports the results on datasets extracted from RateBeer and table 4.7 re-

ports these on datasets extracted from Amazon. We also present here an aggregated

version using histograms in figure 4.3. An histogram corresponds to a text selection

entity (whole review text, best single sentence, greedy sentence selection. Groups

in the histograms (respectively row block of the tables) are composed of three cells
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corresponding respectively to the ROUGE-1, -2, -3 metrics. Not surprisingly, the

results for the single sentence selection procedure (1S) are always worse than for

the other two (CT: complete review and XS: multiple sentences). This is simply

because a sentence contains fewer words than a full review and it can hardly share

more n-grams with the reference text than a longer text. For the Ratebeer datasets,

our greedy procedure assembling a set of relevant sentences clearly offers a better

performance than selecting a whole review in all cases. Texts written to describe

beers also describe the tasting experience. Was it in a bar or at home ? Was it a

bottle or on tap ? Texts of the community share the same structure and the same

vocabulary to describe both the tasting and the flavors of the beer. Most users write

short and precise sentences. This is an appropriate context for our sentence scoring

model, where the habits of users are caught by our recommender systems.

The performance slightly decreases when the size of the dataset is increased as

seen on tables 4.6 and 4.7 in appendix ??. As for the series of experiments in

section 4.2.2, this is in accordance with the selection procedure of these datasets

which focuses first on the most active users and commented items. For Amazon, the

conclusion is not so clear and depending on the conditions, either whole reviews

or selected sentences get the best score. It is linked to the higher variety in the

community of users on the website: well structured sentences like those present in

RateBeer are here mixed here with different levels of English and troll reviews.

The different models, overall, are following a clear hierarchy. First, stating the ob-

vious, the random model has the worst performance. Then, using a recommender

system to select relevant sentences helps in terms of ROUGE-n performance. Over-

all our models only offer small improvements here with respect to random or NMF

text selection. After analyzing this behavior, we believe that this is due to the short-

ness of the text reviews, to their relatively standardized form (arguments are very

similar from one review to another), to the peaked vocabulary distribution of the

reviews, and to the nature of ROUGE. This also shows that there is room for im-

provement on this aspect, for instance by considering additional metrics.

Concerning the oracle several conclusions can be drawn. They are oracle as they use

the actual text (that should be hidden) of a review when generating our extractive

summary. For both single sentence and complete text selection, the performance

gap between oracles and our models is important suggesting that there is still room

for improvements here too. For the greedy sentence selection, the gap between

the oracles and the hybrid recommender systems is moderate suggesting that the

procedure is here fully efficient. However this conclusion should be moderated. It

can be observed that whereas, our oracles are effectively an upper bound for single

sentence or whole review selection, this is no more the case for multiple sentences

selection. Because of the complexity of selecting the best subset of sentences ac-
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cording to a loss criterion (which amounts at a combinatorial selection problem)

we have been using a sub-optimal forward selection procedure: we first select the

best ROUGE sentence, then the second best, etc. In this case the ROUGE procedure

is no more optimal. Concerning the measures, the performance decreases rapidly

when we move from ROUGE-1 to ROUGE-2 or ROUGE-3. Given the problem formu-

lation and the context of short product reviews, ROUGE-2 and ROUGE-3 are clearly

too constraining.

4.4 Conclusion

Recommender systems are a typical application for representation learning and

user-centered studies. In the context of rating prediction, that is the most stud-

ied recommendation problem in academic research due to data availability, as we

said at the begin of this chapter, state-of-the-art collaborative filtering models com-

monly consider the ratings only. We demonstrated twice the interest of also consid-

ering the rich information provided by the text of user reviews. We proposed two

formulations. The former has an information retrieval heritage and creates repre-

sentation of both users and items from texts. The second is deeply user-centered

and considers only text profiles for users. Both lead to gains in performance for the

rating prediction task. We also proposed a new evaluation framework, to use along

with the rating prediction: generating a synthetic text similar to the review that the

user would write. To the best of our knowledge, we are the first to propose such

an extension. Overall, in our experiments there appears to be little difference be-

tween the latent and raw representation in this case. We believe that this is due to

the complex nature of text. Recent breakthroughs in natural language processing

with representation learning require extremely large text corpora and maybe the

datasets we tackled here are big not enough. This work lead to one publication in

a conference [Pou+14b] (best paper) and one arxiv publication [Pou+14a]

These studies leave many open questions. Firstly, one natural extension is to provide

an unified framework for the two tasks (rating prediction and text generation).

Secondly, the ROUGE evaluation can be completed: it is a recall-oriented measure

that can be balanced with other ones such as BLEU [Pap+02]. Finally, we did not

consider the evolution of user profiles over time as in [ML13b]; it could however

improve our text generation performance by including a time dependent similarity

so as to take time trends into account.
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(a)RateBeer experiments

(b)Amazon experiments

Fig. 4.3.: Histograms of the performances of the summarizer on the two biggest datasets.
The scores of the ROUGE-1 metrics are represented in blue while the scores of
the ROUGE-2 and ROUGE-3 metrics are in yellow and black. 7 models are com-
pared: the random baseline RNG, the 3 oracles (OR-1, OR-2 and OR-3), the gC

for the collaborative filtering model and the gL and gT text-based models. 3
frameworks are investigated: CT (review extraction), 1S (One sentence extrac-
tion), XS (Multiple sentence extraction).
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Dataset RB_U50_I200 RB_U500_I2k RB_U5k_I20k
Performance measure R-1 R-2 R-3 R-1 R-2 R-3 R-1 R-2 R-3

C
om

pl
et

e
Te

xt

Random review 0.2339 0.0160 0.0018 0.2321 0.0150 0.0014 0.2190 0.0143 0.0016
Best ROUGE-1 review 0.4903 0.0843 0.0489 0.5463 0.0976 0.0571 0.5334 0.0900 0.0501
Best ROUGE-2 review 0.3693 0.1307 0.0512 0.3995 0.1614 0.0614 0.3849 0.1567 0.0548
Best ROUGE-3 review 0.3106 0.0730 0.0722 0.3263 0.0892 0.1022 0.3108 0.0819 0.0968
γu.γi (best review) 0.2499 0.0178 0.0013 0.2317 0.0159 0.0015 0.2191 0.0147 0.0017
fA (best review) 0.2543 0.0183 0.0013 0.2334 0.0160 0.0015 0.2204 0.0148 0.0016
fT (best review) 0.2543 0.0182 0.0013 0.2334 0.0160 0.0015 0.2206 0.0148 0.0017

Si
ng

le
se

nt
en

ce

Random sentence 0.0524 0.0026 0.0002 0.0429 0.0026 0.0002 0.0440 0.0026 0.0003
Best ROUGE-1 sentence 0.1486 0.0221 0.0071 0.1490 0.0256 0.0079 0.1569 0.0271 0.0087
Best ROUGE-2 sentence 0.0971 0.0587 0.0080 0.1012 0.0704 0.0102 0.1061 0.0740 0.0118
Best ROUGE-3 sentence 0.0724 0.0151 0.0215 0.0780 0.0228 0.0429 0.0805 0.0241 0.0441
γu.γi (best sentence) 0.0557 0.0045 0.0001 0.0455 0.0034 0.0003 0.0471 0.0036 0.0004
fA (best sentence) 0.0556 0.0043 0.0002 0.0456 0.0034 0.0003 0.0472 0.0036 0.0004
fT (best sentence) 0.0557 0.0043 0.0002 0.0456 0.0034 0.0003 0.0471 0.0035 0.0004

Se
t

of
se

nt
en

ce
s Random greedy sel. 0.2785 0.0163 0.0005 0.2508 0.0115 0.0008 0.2437 0.0121 0.0011

ROUGE-1 greedy sel. 0.5088 0.0576 0.0092 0.5088 0.0576 0.0092 0.1470 0.0075 0.0013
ROUGE-2 greedy sel. 0.3126 0.0632 0.0062 0.3126 0.0632 0.0062 0.2549 0.0138 0.0019
ROUGE-3 greedy sel. 0.3972 0.0299 0.0150 0.3972 0.0299 0.0150 0.3210 0.0154 0.0031

γu.γi (sentence, greedy) 0.4251 0.0313 0.0053 0.3450 0.0171 0.0012 0.3428 0.0176 0.0015
fA (sentence, greedy) 0.4248 0.0316 0.0041 0.3484 0.0173 0.0012 0.3426 0.0177 0.0015
fT (sentence, greedy) 0.4247 0.0314 0.0041 0.3482 0.0173 0.0012 0.3446 0.0177 0.0014

Tab. 4.6.: ROUGE-n evaluation on RateBeer subsets. Top columns are different datasets (see text); R-n is ROUGE-n measure. Row blocks represent
generating procedures (CT, 1S, XS). Each row corresponds to a text prediction model.
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Dataset A_U200_I100 A_U2k_I1k A_U20k_I10k A_U200k_I100k
Performance measure R-1 R-2 R-3 R-1 R-2 R-3 R-1 R-2 R-3 R-1 R-2 R-3

C
om

pl
et

e
Te

xt

Random review 0.3786 0.0393 0.0038 0.3350 0.0337 0.0047 0.3213 0.0304 0.0039 0.3085 0.0283 0.0044
Best ROUGE-1 review 0.6059 0.0957 0.0245 0.6030 0.0918 0.0204 0.5945 0.0882 0.0205 0.5530 0.0793 0.0215
Best ROUGE-2 review 0.5642 0.1076 0.0260 0.5511 0.1116 0.0213 0.5371 0.1104 0.0218 0.4950 0.1001 0.0226
Best ROUGE-3 review 0.4897 0.0815 0.0339 0.4510 0.0691 0.0368 0.4345 0.0661 0.0385 0.4085 0.0611 0.0367
γu.γi (best review) 0.3944 0.0467 0.0041 0.3525 0.0358 0.0050 0.3379 0.0325 0.0042 0.3414 0.0325 0.0049
fA (best review) 0.4118 0.0468 0.0046 0.3546 0.0365 0.0051 0.3385 0.0326 0.0042 0.3501 0.0327 0.0046
fT (best review) 0.4124 0.0468 0.0045 0.3552 0.0366 0.0051 0.3385 0.0326 0.0042 0.3441 0.0325 0.0046

Si
ng

le
se

nt
en

ce

Random sentence 0.0226 0.0023 0.0006 0.0180 0.0012 0.0001 0.0199 0.0014 0.0001 0.0226 0.0016 0.0002
Best ROUGE-1 sentence 0.0435 0.0047 0.0007 0.0437 0.0063 0.0016 0.0496 0.0077 0.0020 0.0531 0.0077 0.0019
Best ROUGE-2 sentence 0.0304 0.0170 0.0018 0.0303 0.0181 0.0024 0.0341 0.0205 0.0027 0.0363 0.0198 0.0024
Best ROUGE-3 sentence 0.0210 0.0035 0.0041 0.0241 0.0054 0.0086 0.0265 0.0061 0.0100 0.0283 0.0055 0.0087
γu.γi (best sentence) 0.0199 0.0013 0.0004 0.0181 0.0016 0.0001 0.0195 0.0015 0.0002 0.0222 0.0017 0.0002
fA (best sentence) 0.0191 0.0016 0.0005 0.0181 0.0016 0.0001 0.0196 0.0015 0.0002 0.0222 0.0017 0.0002
fT (best sentence) 0.0191 0.0016 0.0005 0.0182 0.0016 0.0001 0.0196 0.0015 0.0002 0.0222 0.0017 0.0002

Se
t

of
se

nt
en

ce
s Random greedy sel. 0.3518 0.0325 0.0025 0.3753 0.0323 0.0035 0.3613 0.0298 0.0030 0.3038 0.0237 0.0025

ROUGE-1 greedy sel. 0.3747 0.0338 0.0022 0.3625 0.0253 0.0024 0.3440 0.0234 0.0024 0.2896 0.0200 0.0023
ROUGE-2 greedy sel. 0.3615 0.0430 0.0029 0.3650 0.0259 0.0024 0.3544 0.0259 0.0026 0.2988 0.0243 0.0025
ROUGE-3 greedy sel. 0.3571 0.0341 0.0048 0.3730 0.0272 0.0043 0.3665 0.0260 0.0043 0.3054 0.0213 0.0042

γu.γi (sentence, greedy) 0.3615 0.0329 0.0034 0.3785 0.0309 0.0032 0.3710 0.0296 0.0030 0.3087 0.0232 0.0025
fA (sentence, greedy) 0.3589 0.0331 0.0029 0.3794 0.0313 0.0034 0.3726 0.0298 0.0030 0.3103 0.0233 0.0025
fT (sentence, greedy) 0.3586 0.0332 0.0029 0.3792 0.0312 0.0033 0.3726 0.0298 0.0030 0.3103 0.0233 0.0025

Tab. 4.7.: ROUGE-n evaluation on Amazon subsets. Top columns are different datasets (see text); R-n is ROUGE-nmeasure. Row blocks represent generating
procedures (CT, 1S, XS). Each row corresponds to a text prediction model.
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Recommender systems are, as we said, a typical user-centered models. As for other

methods of personalized access to information, they are able to take the preference

of users into account, which is a first step towards the consideration of context for

machine learning algorithms. We believe that using context can help for many other

applications, and in particular for sentiment analysis and polarity classification. In

the previous chapter, we have shown the benefit of using the polarity of texts to

enrich the profiles extracted by recommender systems, and in this chapter we will

consider the opposite: we will show the benefit of using the profiles extracted by

recommender systems to contextualize polarity classification models.

The challenge of the polarity classification task is to decide whether texts contain a

positive or a negative opinion by assessing the polarity of words. As well described

in [PL08], review texts are an important resource for this task: they provide huge

quantities of supervised polarized texts, thanks to ratings, that can be used to design

generic polarity models. Ideally, those models can be applied to other texts to assess

their polarities. We claim that such generic models can benefit from contextual

information provided by the analysis of user preferences and writing styles. For
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instance, the use of irony is very personal, depends on the author’s style and can

change the polarity of a text.

In this chapter, we will consider the use of a collaborative filtering based recom-

mender system to extract user and item profile and use them to improve polarity

classification performances by contextualizing the prediction with respect to the

user and the item. We will experiment using classic recommender systems and also

the ones introduced in chapter 4. Additionally, we propose a model chaining a rec-

ommender system and a polarity classification model. The latter, instead of learning

the polarity of words in the vocabulary, is contextualized by the former and extracts

a vocabulary highlighting the difference between the expectations of a user and the

reality.

5.1 Opinion mining

A complete description of opinion mining and polarity classification can be found

in the excellent [PL08]. We will begin this section by presenting the task of polarity

classification on user reviews. We will then review various possible representations

of the text, from the classic bag of words to recent word tables, that we already

used in chapter 4 without a proper definition.

5.1.1 Polarity classification

The long-term goal behind sentiment analysis is to create generic models able to

detect sentiments. The most common task, due to data availability is polarity clas-

sification. The goal of this task is to predict whether a text contains a positive or a

negative opinion. As presented in [PL08], three main classifiers have been used for

this task: naive Bayes, logistic regression and linear SVM. We have chosen the latter

and will explain how it works later on in the chapter. The domain of opinion classi-

fication has benefited from the availability of large datasets of user reviews. These

review provide supervised (thanks to the ratings) example of opinionated texts. We

will present later on how the text is processed to focus here on how the rating is

exploited to create a binary classification problem.

As [PL08] describes, user reviews are typically a text with a rating from 1 to 5.

These ratings are converted to binary labels as follows:

• Ratings 1 and 2 are considered as negative examples.

• Ratings 4 and 5 are considered as positive examples.
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• Ratings 3 are discarded as it is unclear whether they are positive or negative.

One difficulty arising when considering the task of creating a generic model is the

shift in vocabulary among domains. This difficulty is called domain generalization.

For instance, words describing good movies are not the same as words describing

good refrigerators. The domain of transfer learning studies how to transfer knowl-

edge on one task to another provides techniques to overcome such difficulties. For

instance, it is possible to use deep neural network to generalize across domains,

using massive unsupervised datasets [Glo+11]. The recent [LM14] extends the

word2vec model presented in [Mik+13] to tackle polarity classification [Mik+13]

has no representation for documents, only for words, and cannot be used for this

task. As presented in chapter 2, [LM14] learns latent representation of documents

additionally to latent representation of words. It exploits the semantic proximity of

words to overcome the domain generalization problem. However, these approaches

all aim at creating a generic model able to classify all texts. The approach that we

propose here consists in using the ability of recommender systems to consider con-

text (the preference of users) in the context of polarity classification.

5.1.2 Text representations

We briefly introduce two classic techniques used to represent text as vectors for clas-

sification purposes, bag of words and n-grams, as well as associated pre-processing

techniques.

Bag of words

The most popular technique for text representation in a classification context is the

bag of words. It is used to represent texts of various lengths as vectors of the same

length. A vocabulary V (a set of words) is extracted from the texts of the training

set, V contains |V | = n words. This vocabulary is often called dictionary, but we

will stick to the name of vocabulary to avoid confusion with the dictionary in the

context of matrix factorization. Each of the n words defines a dimension, giving a

n-dimensional representation x ∈ R
n of each text. In the simplest case, for each

text xi is set to 1 if the i-th word of the vocabulary is present in the texts. Such a

representation is called binary bag of words. It is possible to use counts instead of

a binary variable for each words. For the term frequency representation, xi is then

set to the number of times the i-th word of the document appears in the text. Many

different variants of these weighting schemes have been proposed. Another popular

text encoding is tf-idf (term frequency and inverse document frequency) where
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the term frequency is multiplied by a function of the inverse document frequency1

However, since [PL08], it is known that binary bag of words are well adapted to

sentiment classification, which is why we use them in this work.

n-grams

We discussed n-grams through the use of the ROUGE-n measure in chapter 4. This

representation scheme is similar to bag of words. However, instead of using single

words to build the vocabulary, n-grams are used. A n-gram is a succession of n

words from the training set texts. Using subsequent words gives additional infor-

mation. For polarity information it is possible to catch immediate negations such as

not good and combinations such as so bad. This gain comes from the context that is

extracted by using n-grams. However, this gain comes at the cost of an explosion of

the dimensionality of the representation. For |V | words, there exist
(|V |

n

)

possible n-

grams. Of course, not all are semantically correct – it is hard to imagine a sentence

with dog computer if dog and computer are in the vocabulary – but the number is

still great. It is also highly sensitive to spelling mistakes.

Word preprocessing

One important consideration for text representation, when extracting the dictionary

(either of words or n-grams) is word preprocessing. One of the first operation is the

segmentation of each text as a list of words. For the English language, one strong

heuristic is to split on common punctuations (,.-’. . . ).

Once text are split in lists of words, one possible step is the removal of stop-words.

Words like a, the, we, . . . are part of the language but do not carry information about

the topic discussed. This is why they are commonly removed when using topic

modeling method like LDA [Ble+03] or auto-encoders [Glo+11]. In the context

of polarity classification, however, the usage of such stop-words appears to act as a

bias that catches the average polarity of the domain for which the model is trained

and this helps achieve better predictions. As usually done for this task, we keep

stop words in the vocabulary for our series of experiments.

It is possible to refine further the preprocessing by using stemming and/or lemma-

tization. Stemming consists in representing each word by its statistical root by

implementing basic rules suppressing pre/postfix. For instance stampeding can be

represented by its root stamped-. Lemmatization is closely related. Instead of look-

ing for the root of a word, lemmatization searches for its lemma – its canonical

1The document frequency of a word is the number of distinct documents in which the word appears.
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form. For instance worst will be map to bad using lemmatization while being left

untouched by stemming. Such preprocessing, as for stop-words removal, are im-

portant when looking at the topics discussed in the texts. Using raw input is more

effective for polarity classification. As for stop words, the usage of certain words is

highly discriminant of the user (language level, spelling errors, . . . ) and consider-

ing all recurrent versions of each word actually helps models.

5.2 Improving polarity prediction

We will use the different hybrid recommender systems defined in chapter 4 as polar-

ity predictors instead of rating predictors, using simple thresholds on the predicted

ratings. We will first use models of section 4.2 to show that improving the quality

of user and item profiles improves the performance as polarity predictor as well.

Then, using those of section 4.3, we will also compare them to the strong baseline

of a linear SVM classifier.

5.2.1 Recommender systems as polarity classifiers

As briefly described above, we restrict ourselves to recommender systems as polarity

classification models in this setting. This is an original approach since sentiment

classification usually does not use information from the past since it is traditionally

a survey tool, not a predictive one.

Classification error rate

The metric that we use in polarity classification is the Classification Error Rate

(CER). For a model φ and a dataset D containing m examples, the CER is defined

as follows:

CER(φ,D) =
1

m

∑

(x,y)

1(y 6= φ(x)) (5.1)

In this formulation, 1 is an indicator function that equals one only if the boolean

property it takes as input is true and zero otherwise. Basically, the CER counts the

ratio of errors made by model φ among all examples of dataset D.

5.2 Improving polarity prediction 85



Models

We will here give a brief reminder of the models that were introduced in section

4.2. We will use these recommender systems as polarity classifiers in the next series

of experiments.

φ0 the overall bias, the average rating on the training set. In the context of polarity

classification it always predicts the same class. As we have seen in chapter

4, positive texts are over represented in most user reviews datasets, thus the

prediction of φ0 is – for most datasets – always 1.

φ1 the user bias, the average rating per user. Each user will output the same pre-

diction over time, considering here that some users only like items and some

only dislike items.

φ2 the item bias, the average rating per item. Here the prediction is the same for

an item independently of the user. It considers that there exists good and bad

items and that all users respect this separation.

φC the matrix factorization with all bias terms is the most common model for col-

laborative filtering, predictions depend both on the item and the user.

φL our hybrid model including review texts using LDA2.

φS our hybrid model including review texts using a raw representation of texts as

well as polarity information.

We do not report the performance of φT as, as for the rating prediction task in the

last chapter, they are equivalent to the performance of φL.

Sentiment classification performance

Classification gives another perspective on the recommender system predictions.

Here, predicting 5 (class +1) instead of 4 (same class) is not an error. Predicting 4

instead of 2 (class −1) is. The performance of our models as sentiment classifiers

can be found in table 5.1. We use the same datasets as in chapter 4, the description

of which can be found in table 4.1.

In this context, both the overall bias φ0 and user bias φ1 fail to output correct

prediction. The item bias φ2 confirms that it is the best bias model: considering

2Once again, the texts used to build the models do not concern the current reviews but only past
data are processed here.
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Base φ0 φ1 φ2 φC φL φS

RB_U50_I200 18.75 19.11 8.21 8.91 7.62 7.17
RB_U500_I2k 18.75 18.60 10.73 10.26 10.16 9.92
RB_U5k_I20k 25.03 24.65 14.43 14.32 12.54 12.42
RB_U30k_I110k 26.33 25.83 16.05 15.20 13.88 13.70
A_U200_I120 17.50 21.67 17.50 25.83 19.23 16.92
A_U2k_I1k 15.94 15.16 15.92 14.10 11.38 11.68
A_U20k_I12k 14.74 14.47 14.19 14.24 11.26 11.28
A_U210k_I120k 14.73 15.99 14.81 14.42 12.22 12.05
A_U2M_I1M 14.91 16.39 15.78 15.91 13.14 13.05

Tab. 5.1.: Classification Error Rates on test datasets.

the average rating of an item is a strong baseline. It correctly reflects the sentiment

of most users. Also it is worth mentioning that the matrix factorization φ3 is not

significantly better than the item bias. The text models are however better. It

is known since [Pan+02] that considering raw text leads to good performances

for sentiment classification. So it is not surprising to see the gain coming from

considering text. We believe that the gap between the two models is due to the fact

that φS includes a notion of polarity that φL does not.

5.2.2 Mixing predictions with a linear SVM

The series of experiments from section 5.2.1 confirms the criticality of the richness

of profiles extracted by recommender systems to achieve good performance in sen-

timent classification. We now add a comparison with a strong baseline from the

domain and hybrid models mixing recommender systems and polarity classification

models. The novelty of this approach consists in mixing models that operate on

different time scales: recommender systems consider past information to output

the rating of an unobserved review while SVMs (our polarity classification model)

observe the current text to predict a polarity.

The series of experiment of confirms that the more informative the profiles are,

the better the performance as polarity classifier are, like for the rating predictions.

However they lack of a comparison with a strong baseline from the domain, which

is what we will do now.

Baseline: linear support vector machine

The first model that we use here, our baseline in terms of performance, is a linear

SVM. Because of the high dimensionality and sparseness of text representations,

linear classifiers are the most popular learning machines used in most classification

tasks, including polarity classification [PL08]. We provide here a short introduc-
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tion of linear support vector machines in the context of polarity classification. This

presentation is of course incomplete as it focus mainly on the cost to optimize, the

description of the weight vector and regularization strategies. Complete descrip-

tions can be found in many reviews of the literature like the [Bur98; SS02].

Fig. 5.1.: Illustration from [SS02] of a binary classification problem where data points, the
black and white sheep are linearly separable. The sheep dog is looking for an
hyperplane separating the two flocks.

The best hyperplane Linear models for classification aim at separating regions of

space using an hyperplane. The distance of a set of points to an hyperplane is the

minimal value of the distance of the points in this set to the hyperplane. Considering

two classes which are linearly separable, the margin is the minimal value of the

distance between the hyperplane and each class. The SVM classifier will select the

hyperplane that maximizes the margin, thus maximizing the separation between the

two classes. This concept is presented, with humor, on the illustration in figure 5.1,

extracted from [SS02] where the dog aims at separating the two classes – black and

white flocks – using a linear frontier.

As presented in the illustration from [SS02] in figure 5.2, the margin M(w, b) is:

x∗
1 = argmin

(x,y),y=1
< x,w > −b

x∗
−1 = argmin

(x,y),y=−1
< x,w > −b

M(w, b) =<
w

‖w‖ ,x
∗
1 − x∗

−1 >=
2

‖w‖ (5.2)

We denote by w the normal vector of the separating hyperplane learned by the SVM

and b the bias. The margin is the distance between the points of each class closest
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Fig. 5.2.: This plot from [SS02] illustrates the computation of the margin. White points
are members of the −1 class and black squares of the +1 class. The hard line is
the separating hyperplane, dotted lines are parallel hyperplanes passing through
the support vectors: points the closest to the separating hyperplane.

to the separating hyperplane and is 2
‖w‖ as presented in Maximizing this distance

is equivalent to minimizing the norm of w under the constraint that examples are

on the correct side of the hyperplane, respecting the margins. This is formulated as

the following optimization problem:

θ̂ = argmin
w,b

‖w‖22 s.t. ∀(x, y), y(w.x + b) ≥ 1 (5.3)

This formulation is called the primal form of the SVM loss and is used as such in

general for linear classifiers. When more complex kernels are used, the dual form

is generally preferred. The latter uses Lagrange multipliers for the constraints and

Karush-Kuhn-Tucker conditions for the optimization.

Hinge loss In this work, we will use the primal form and for the loss the following

surrogate:

θ̂ = argmin
w,b

1

m

∑

(x,y)

|1− y(w.x + b)|+ + λw‖w‖22 (5.4)

In the formulation of equation (5.4), the constraints y(w.x + b) ≥ 1 of the the pri-

mal form in equation (5.3) are directly optimized. The minimization of the norm

of w corresponds the classic L2 regularization scheme. This loss formulation can

easily be minimized using stochastic gradient descent. It acts as a support vector

machine in the sense that only examples that are in the margin or ill-classified –

such that y(w.x + b) < 1 – are considered for update. As discussed in [LCB04],

using stochastic gradient descent is a good choice for large scale problems, both

in terms of computational complexity and generalization of the model. Consider-

ing the case of bag of words, even using large dictionaries, the representation is

extremely sparse. This leads to efficient computations of the dot product and up-

dates. The L2 regularization is necessary to address the high variations in terms

frequencies as described in [Raf+12].
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Interpretation of the weights In the context of polarity classification, we will con-

sider two possible labels [PL08]: the text is either expressing a positive (+1) or

negative (−1) opinion. The prediction of the model, given a vectorial representa-

tion x of a text is:

ŷ = sign (w.x + b) = sign (b+
∑

i

wi.xi) (5.5)

Consider that, as it will be the case for our series of experiment, x is a binary bag of

word. We denote by T the indexes of the words present in the text that x represent,

then:

ŷ = sign (w.x + b) = sign (b+
∑

i∈T

wi) (5.6)

The last formulation explicits the meaning of weights w. Each weight wi repre-

sented the polarity of the i-th word of the vocabulary and the decision simply is the

sum of weights of each word in the text.

ŵ, b̂ = argmin
w,b

1

m

∑

x,y

|1− y(w.x + b)|+ + ‖w‖22 (5.7)

We use LibLinear [Fan+08] to train the models in our case, selecting the optimal

set of parameters based on validation performance – performance on the validation

dataset.

Models

For this series of experiments, we will use the models that we introduced in section

4.3. We will briefly describe them here:

φ2 the item bias. It is the only bias model that we consider here as both the overall

and user bias models only have poor performance, as seen in table 5.1

φC considers the matrix factorization as a prediction model.

φL our hybrid model using a latent representation of texts extracted with an auto-

encoder

φT our hybrid model using a raw representation of texts

The baseline, LibLinear is denoted LL. We will also introduce two additional hybrid

models: LL + φL and LL + φT . They combine the prediction of the linear clas-
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sifier and our hybrid models. Predictions are combined linearly a posteriori, with

combination coefficients that are set on the validation set.

Sentiment classification

We conducted similar experiments as the previous series. But this time we added a

strong baseline: a linear SVM – trained using [Fan+08] that is know to give good

classification performance [PL08]. The results are reported in table 5.2. From the

three biases, we report only the performance of the item bias as both the overall

and user biases have low performance. The performance is different from the one

in table 5.1 as the splits were different.

Subsets LL φ2 φC φL φT LL + φL LL + φT

RB_U50_I200 5.35 5.12 6.01 5.57 5.57 3.79 3.79
RB_U500_I2k 7.18 10.67 9.73 8.55 8.55 6.52 6.92
RB_U5k_I20k 8.44 11.80 10.04 9.17 9.17 8.33 8.35
A_U200_I120 10.00 15.83 22.50 20.00 20.83 10.00 10.00
A_U2k_I1k 7.89 15.25 12.85 12.62 12.62 7.5 7.5
A_U20k_I12k 6.3 13.99 12.79 12.38 12.37 6.29 6.29
A_U210k_I120k 6.25 14.04 14.40 13.32 13.31 6.22 6.22

Tab. 5.2.: Test performance (classification error rate) as polarity classifiers. LL stands for
LibLinear (SVM), φ2, φC , φL, φT are the recommender systems as in table 4.5.
LL + φL and LL + φT are two hybrid opinion classification models combining
the SVM classifier and φL and φT recommender systems.

The hierarchy among recommender systems was expected since the last series of

experiments. The main difference is that the linear SVM is always better than the

recommender systems at predicting sentiments. This leads to the idea of mixing

both predictions. The linear SVM uses the text dui of the review for which the

prediction is done while the recommender systems rely on ratings only. Combining

both predictions gives us two additional models LL + φL and LL + φT that are

performing well on all the datasets.

5.3 Extraction of a surprise vocabulary

Here we modify our experimental setup and present a method to train linear SVMs

that compensates mistakes made by recommender systems (and explains these mis-

takes). Contrary to previous approaches in this chapter, the SVM is not trained as a

classifier to predict the polarity of a text but as a regressor to predict the difference

between the rating prediction of the recommender system and the actual rating.

As a result, its weights will no longer represent the polarity of a word but rather
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how much this word indicates that the opinion of the user is not the one that was

expected, learning a surprise vocabulary.

5.3.1 Model

Our baseline is a linear SVM, as before, trained using the stochastic gradient descent

models from the Python library named Scikit Learn (based on Liblinear code). For

the recommender system, we use the python API to GraphLab [Low+10].

Recommender and regression machine

We provide here a simple model that combines a recommender system and a linear

regression machine. We first train a collaborative system to predict ratings. We

use this model to output a rating prediction for all reviews as in equation (5.9).

The linear SVM is trained on the difference between the predicted ratings and the

actual ratings as in equation (5.10) given the text. That is, given a review d, r and

the rating prediction of the recommender system r̂, our SVM must learn a prediction

function g such that:

g(d) = r − r̂ (5.8)

For instance, consider a review d = "I love this series but was disappointed by this

movie" and r = 3, where the user like a series of movies, such as Harry Poter, but

not this particular movie. As the history indicates that previous episodes were liked

by the user, the recommender system will probability predict a rating r̂ ≥ 3 that is

greater than the actual rating. We train the SVM so it can learn the words in the

text that indicate why this user did not rate the movie as expected. In our example,

but and disappointed are such words.

Γ̂U , Γ̂I = argmin
ΓU ,ΓI≥0

∑

(u,i,rui)

(rui − γu.γi)
2 + λU‖γu‖22 + λI‖γi‖22 (5.9)

ŵ, b̂ = argmin
w,b

1

m

∑

x,u,i,rui

(1− (rui − γu.γi)(w.x + b))2 + ‖w‖22 (5.10)

5.3.2 Results and discussion

We now discuss the results of our series of experiments. We begin by presenting

the protocol that we have followed for all datasets and models. We then compare

the performance over all dataset of the models used as polarity classifiers with the
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standard classification error metric. At last, we analyze the weight vectors of our

models.

We used a similar protocol for all models across all datasets for which we give the

implementation details and the procedures we used to select the parameters for

each models later on.

Datasets

Our experiments are conducted on different datasets parsed from real websites.

They are all collections of user reviews with both a rating and an associated (rather

short) text:

Yelp This dataset is made available for research purposes by Yelp. It contains more

than 1M reviews.

RateBeer This dataset was parsed by McAuley and Leskovec [ML13b; ML13a]. It

contains 2.9M beer reviews from RateBeer.com.

Movies This dataset was also parsed by McAuley and Leskovec [ML13b; ML13a].

It contains 7.9M movie reviews from Amazon.com.

AmazonLiu This dataset was parsed by Jindal and Liu [JL08], originally for opin-

ion spam detection. It contains 5.8M reviews from Amazon.com.

We focus on the extraction of a surprise vocabulary: words that indicates the user

did not rate the item as expected from past ratings. To do so, we focus on users

and items for which enough data is available and ignore the problem of cold start.

This is the first step of our preprocessing. First, we select users and items having

more than 10 reviews. We then split the dataset ensuring that users have similar

proportion of reviews in training, validation and test sets. Each user will have 70

% of their reviews in the training set and 15 % for the validation and test sets

respectively. The characteristics of the resulting datasets are given in table 5.3.

Name Users Items Training Validation Test
Yelp 38665 25384 411735 88229 88229
AmazonLiu 135599 186009 1260457 270098 270098
RateBeer 11732 46935 931226 199549 199549
Movies 258356 129512 4017660 860927 860928

Tab. 5.3.: Description of the datasets used for this series of experiments. Each row corre-
sponds to a different dataset. Columns are, from left to right: the number of
users in the dataset, the number of items in the dataset, the number of reviews
in the training, validation and test sets respectively.
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Text preprocessing

We use a simple procedure for text representation which is known to provide ef-

ficient and robust classifiers. We build a vocabulary from the texts of training re-

views (reviews in the training set). We limit ourselves to words appearing in more

than 10 documents to filter out less frequent spellings or errors in the tokenization.

Each text is then presented as a binary bag of words. All words of the vocabu-

lary that match the above criteria are kept. Table 5.4 gives the vocabulary size of

each dataset. The column titled Unique words gives the number of unique token

– here considered as words – in the training reviews. The vocabulary column is

the number of words selected in the vocabulary. This is a sparse high dimensional

representation.

Name Training Vocabulary Unique words
Yelp 411735 48983 161394
AmazonLiu 1260457 101004 542545
RateBeer 931226 53217 199548
Movies 4017660 269385 447247

Tab. 5.4.: The first column recalls the number of reviews in the training set. The second
column gives the number of words in the selected vocabulary, used for the bag
of words representation, while the last gives the number of words in the dataset.

Parameter tuning

Our protocol for parameter tuning is the following: we have split the dataset into

three sets (training, validation and test sets) and we exploit the validation set to set

the hyper-parameters, using grid searches.

For linear classifiers used in the baseline and the combined models, we proceed as

follows. We first do a simple grid search, training the model on the training set and

computing performance on the validation set. We then select the set of parameters

(learning rate, weight of the regularization, number of iterations, . . . ) that gives

the best validation performance. We finally train the model once more using this set

of parameters and examples from both the training and validation sets. The same

procedure is done for the non-negative matrix factorization to set the learning rate,

rate decay, weight of the regularization, . . .

5.3.3 Polarity classification performances

As for the last series of experiments, we will compare the performance of the models

as polarity classifiers. Performances are provided in table 5.5. Three models are

presented:
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LSVM the linear classification machine on the text, this is our strong baseline.

Surprise our hybrid model that learns a regression machine to correct the outputs

of a recommender system.

LSVM + Surprise both models mixed a posteriori using a linear combination.

Datasets LSVM Surprise LSVM + Surprise
Yelp 6.07 8.51 5.97
AmazonLiu 6.26 9.51 6.04
RateBeer 8.75 10.22 6.01
Movies 4.16 5.57 3.88

Tab. 5.5.: Test performance (classification error rate) as polarity classifiers. LSVM stands
for Linear SVM. Surprise is our model mixing a recommender system and a
linear regression machine. Finally, LSVM + Surprise mixes both predictions a
posteriori.

The Surprise model provides lower performances than the strong SVM baseline. It

is mainly due to the difficulty to control over-fitting in this context. However, the

information learned by this model is different from the one of the SVM, as indicates

the last column of table 5.5: the mixed models have better performance. This is the

point of our study: to learn a different vocabulary, a surprise vocabulary.

5.3.4 Analysis of the weights

We propose here to compare the weights given to each term of the vocabulary by

the two linear models: LSVM and the regression machine of our so called Sur-

prise model. Both models attribute a weight to each term of the vocabulary. For

the former model, top words are expected to express positiveness while bottom

ones express the opposite. For the latter model, top words are used to increment

the prediction of the recommender system, bottom ones to decrement it. Overall,

extremely polarized words such as disgusting or amazing will often have similar

weights. As we will see, the difference will be made on other terms, often related

an unusual event that lowered or increased the satisfaction of the user.

We will focus on top and bottom words of the parameters of both the baseline and

our disjoint model. Top words are referenced, for each dataset, in table 5.6. In each

cell, words are ordered by non-increasing weight – as attributed in the weights

vector of each model. As we can see, the top vocabulary is affected by the shift in

formalism. Words like upgraded or cares for the Yelp dataset captures that the user –

client of a business, typically a restaurant – received more attention than expected.

On AmazonLiu, a dataset that contains many book reviews, it is interesting to see

that top words defend the book w.r.t. other reviews that they find inaccurate. The

same applies on the Movies dataset, that contains movie reviews. We are pleased
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to find this differences between the top words as it clearly indicates that our model

take into account the context the user is in when writing the review. A similar

behavior is observed when looking at the bottom words, presented in table 5.7. On

Yelp, rude describes a bad service experience. On movie and book reviews, some

users are so disappointed they want a refund. We believe that – in the grand scheme

of centering studies around the users, concept is key.

Datasets Top words baseline Top words disjoint model
Yelp delicious, excellent, perfec-

tion, pleasantly, downside,
amazing, awesome, com-
plaint, fantastic, perfect

amazing, outstanding, excel-
lent, cares, best, blast, com-
plaints, upgraded, incredible,
thorough

AmazonLiu refreshing, complaint, pleas-
antly, excellent, hilarious,
awesome, bravo, rocks,
funniest, succeeds

haters, best, complaining,
refreshing, awsome, misun-
derstood, rocks, reviewers,
skeptical, great

RateBeer delicious, excellent, superb,
wonderful, awesome, yummy,
rjt, fantastic, lovely, perfect

underrated, refreshing, fa-
vorite, surprised, favorites,
enjoyed, marks, rocks, lagers,
girls

Movies pleasantly, bbii, coulardeau,
balian, quotable, complaints,
refreshing, complacency, bed-
ford, unfairly

awesome, awsome, haters,
complaints, complaining,
complain, great, funniest,
rocked, refreshing

Tab. 5.6.: Top words per dataset for the baseline and our disjoint models. In order are the
top 10 words of each model, ordered by non-increasing weight

Datasets Bottom words baseline Bottom words disjoint model
Yelp worst, mediocre, meh, horri-

ble, bland, disappointing, ter-
rible, overrated, disappoint-
ment, poisoning

worst, horrible, rude, terri-
ble, awful, mediocre, bland,
waste, meh, poisoning

AmazonLiu disappointment, yawn, worst,
waste, uninspired, overrated,
stinks, poorly, boring

waste, disappointing, disap-
pointment, ugh, worst, over-
rated, boring, stinks, horrible,
refund

RateBeer mode, drain, meh, infected,
disappointing, mess, disap-
pointment, boring, mediocre,
undrinkable

drain, yuck, overrated, disap-
pointment, disappointing, un-
drinkable, mess, awful, drain-
pour, worst

Movies kgharris, stinks, noooo, over-
rated, disappointing, disap-
pointment, stinker, waste, dis-
graceful, lucasfilm

waste, worst, refund, bor-
ing, disappointing, disap-
pointment, stinks, horrible,
overrated, defective

Tab. 5.7.: Bottom words per dataset for the baseline and our disjoint models. In order are
the bottom 10 words of each model, ordered by non-decreasing weight
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5.4 Conclusion

As of [PL08], we know that for the classification of short English texts, linear models

provide decent polarity classification models. But problems arise when enlarging

the scope of the classifier. Generalization is one of them: how will the weights I

learn a on particular dataset behave on another one ? With the abundance of user

reviews available on the Internet, it is possible to use more training examples to

improve generalization [Glo+11]. However, this is still limited to short texts, in

the same language, on similar reviews – same website, same community. We be-

lieve that considering the context of a text is an important piece of the puzzle and

have shown in this chapter that it was possible to add some context information

to a linear classifier using recommender systems. Firstly, we have experimentally

demonstrated that the more informative the profiles are, the better the classifica-

tion is – in 5.2.1. Secondly, we conducted a series of experiments that confirmed

that the information learned by recommender systems and linear classifier, in the

context of polarity classification are different and can be combined efficiently (see

section 5.2.2). Finally, we have proposed a way to use recommender systems to

learn different weights for the vocabulary highlighting the surprise phenomenon in

user reviews. This work is also presented in [Pou+14a] and [Pou+14b] for the

polarity classification part and [] for the surprise part. Of course, this study could

be followed in many ways. One is based on the idea of generalization and consists

on validating the approach on datasets mixing reviews of various communities. An-

other is to drop the item profiles that are present through the recommender systems

to use only user profiles. If these two steps are conclusive, then it would be possi-

ble to imagine extending the work to texts of various lengths: from tweets to full

lengths blog posts.
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6Sparse event logs of user

activities

„Une journée type dans le coin: un facteur, un

tracteur et rien.

— Kamini
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For our final contribution, we consider another type of data generated by users: user

authentication logs. These logs gather traces generated each time a user accesses

a service such as servers and application databases of a company or identifies to

work stations or websites. Compared to user reviews, authentication logs are mas-

sive, noisy and with a poor semantic. The useful information lies in the repetition

over time of actions or sequences of actions. The characterization of stereotypes

(of actions or sequences of actions) is an important task for the analysis of such

data. Our contribution is a representation learning model that extracts such stereo-

types in an interpretable way. We will experiment on the authentication logs of

users of the Paris Metro. The database we use is provided by the STIF, Syndicat

des Transports en Île-de-France, which is the political authority in charge of regu-

lating transport in Paris and Ile-de-France. More than seven million people have

subscribed to the Pass’Navigo, an identification card that grants unlimited access
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to the subway network in areas for which the user has subscribed. Our database

gathers all authentications of theses users at station turnstiles.

With such data, it is possible to track user travels over time and to study their pat-

terns. These patterns lead in turn to the extraction of robust user profiles. Our

hypothesis is that the time and frequency of subway travels is a strong characteri-

zation of users. Our goal is to extract a set of typical activities and represent each

user based on these activities. We define an activity or habit as a temporal event

taking place at a certain time of the day, with possible repetitions during the week.

For instance, taking the subway every working day at 8am is an activity.

Urban mobility is currently a field of intensive research, benefiting from the develop-

ment of digital and physical tracking services that monitor users and provide huge

amounts of data that can be used for various purposes. Firstly, in the context of de-

velopment policies, such as [Bla+02], to propose key performance indicators for the

development of sustainable transport systems. Many studies [Bro+06; Gon+08]

are also interested in monitoring private vehicles, mainly cars, and use data from

cellphone networks to track these trips and characterize their temporal scales. In

[Son+10], the authors show that most of these private vehicle trips are predictable.

They follow up on this work in [Wan+11] where they highlight the links between

traffic profiles and profiles on social networks. Using data from cellphone networks

as well, the recent study [Lou+14] analyses bottlenecks for each day of the week

in the traffic of 31 Spanish cities. These data can also be used to detect anomalies

in the network as in [Her10]. GPS data is a second type of data used widely in

the literature, for example, in order to monitor taxis in Shanghai: [Pen+12] uses

matrix factorization to characterize the behavior of taxi drivers. Due to the nature

of the data, [Pen+12] cannot however track passengers over time. Other tracking

techniques exist, such as using Bluetooth detector to monitor visitors of the Duis-

burg Zoo [Lie+12]. Similarly, in Paris, [Ran+13] extracts spatio-temporal clusters

to analyze the usage of the Vélib’ in Paris1, which correspond to the trips of each in-

dividual bicycle but not of each user. The creation of cards identifying users [Gol02]

allows large-scale analysis of trips with a fine-grained vision because it is possible

to track users over time and to know precisely the time at which occurs each trip.

This allows the authors to detect bottlenecks in transport networks in order, for in-

stance, to propose alternative routes. [Cea+12] studies the spatial and temporal

distribution of users in the London Underground. Similarly, [Foe+13] focuses on

the prediction of future trips during the week days and for buses only. The purpose

of [Foe+13] is to inform users in case of problems on the network. However, only

a few studies are user-centered, even when working with timestamped user data,

most work proceeds by data aggregation and characterizes the overall traffic rather

than the behavior of individual users.

1A public bike sharing system.
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In contrast to previous work, our contribution focuses on the discovery of a dictio-

nary of activities and the representation of users in this space of activities. An activ-

ity is defined as an authentication at a given time of day, with a possible repetition

during the week. As [Pen+12], our model uses a non-negative matrix factorization.

We propose a new learning algorithm that, in addition to the non-negativity, im-

poses elements of the dictionary to have a certain shape, which corresponds to our

definition of an activity.

6.1 Data representation

This first section discusses our choice of data representation, from the raw data,

the user authentication logs to the final user profiles. These profiles are composed

of three independent parts, each corresponding to independent authentication logs

for the user. These logs are split into different sets based on the usage frequency

of station. This split is necessary to push the analysis beyond the most recurrent

trips, responsible of the vast majority of the traffic and on which most related work

focuses. In our setting, it is possible to characterize infrequent trips as well.

6.1.1 User authentication logs

The authentication of user u accessing service s at time t is defined as a triplet

(u, s, t). A log is a collection of such triplets, a user log gathers all authentications of

one user over time. In our context (urban mobility), we study the usage of public

transportation networks and the service that a user accesses is a subway station. On

figure 6.1 is represented the log of an individual user, with all his authentications

during the 13 weeks span of the dataset. The x-axis corresponds to time and the

y-axis to stations (one line corresponds to a given station). Stations are ordered by

usage frequencies, the most frequent ones are at the bottom and the less frequent

ones are at the top. This log represents a typical user and two important facts have

to be pointed out. Firstly, a limited set of stations, here two, are involved in the vast

majority of the trips. We assume that these stations correspond to the ones closest

to the user’s home and to the user’s workplace. Secondly, and as a consequence

of the first point, a vast majority of the trips are made during working days and

correspond to commuting. This has important implications, as we will see later

on, on the ability of the model to correctly represent less frequent trips, occurring

during evenings or the week-end for example. On figure 6.1, for the line of a given

station, each spike corresponds to an authentication: the user takes the subway at

this station. In the Parisian subway network, users only identify themselves using

the Pass’Navigo when taking the train, not when exiting the network. This leads to

an incomplete view of the trips as only the starting point of the trip is known. While
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knowledge about the destination would certainly be helpful, we believe that the

information about the time at which each trip occurs provides enough information

to strongly characterize users in terms of activities. For instance, trips corresponding

to evening outs are strongly characterized by the time at which they occur.

Fig. 6.1.: Individual user log: each spike is an authentication at a station, each station has
its own temporal line. For most users, a small set of stations are frequently used.
Here stations are sorted by usage frequency with the most frequent ones at the
bottom.

6.1.2 Two temporal scales: day and week

Our definition of an activity implies two time scales: one for the time of the day

at which a trip occurs and another for repetitions over the week. Our data is a

collection of user logs, i.e. sets of triplets Lu = {(u, s, t)}, and we want to extract

activities out of these logs and represent users in terms of these activities. We pro-

pose here a representation of these logs that consists of a daily and a weekly part

and is robust to the individual variance inherent to the logs. This representation is

based on an aggregation of the triplets into two vectors per user, one daily profile

and one weekly profile. Both are based on time histograms, independently from the

station s. For the daily profile, we divide the day into bins of 15 minutes, giving us

96 = 24 ∗ 60/15 features. For the weekly profile, we divide the week into bins of 2

hours, giving us 84 = 7∗24∗60/120 features. Both are concatenated into one vector

with n = 180 = 96 + 84 dimension. The contribution of a particular authentication

in a user log to this representation can be visualized on figure 6.2. Independently

of the station from which the trip originates, we construct histograms of the times
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at which they occur, using the two scales defined above. As a result, this representa-

tion records only temporal information, the spatial information is discarded, which

corresponds to our definition of activities as temporal patterns.

Fig. 6.2.: Computation of the histograms for a particular user. On the left are all the au-
thentications of the user, as in figure 6.1. On the right, the bins corresponding to
the time of the day and the day of the week of the selected authentication are in-
cremented. At the bottom, the two histograms (day and week) are concatenated
in one final vector.

However, some users take the subway more than twice a day when others take it

once or twice a week. This high variability in usage would lead to an unbalanced

representation of users. To overcome this we simply normalize user profiles and

we choose to normalize the daily and weekly parts independently: each part must

sum to one. This gives the same weight to both part when an overall normalization

would favor the daily one. Profiles of multiple users are presented in figure 6.3.

This representation is oriented so the x-axis corresponds to time. Thus, each row

represents a user and columns represent the bins of the histograms. The darker

a column is, for a given row, the more often this given user takes the subway at

this time. To augment the contrast of the representation, a logarithmic color scale

is used. The Parisian subway is closed between 2am and 6am (approximatively),

thus there are no authentications during this period of time. The observation of

figure 6.3 indicates that most of the traffic occurs during mornings and evenings of

the workdays.

6.1.3 Frequency filters

This last observation hints that with the current representation, extracting infre-

quent activities will be difficult. This comes from the properties of the squared

error loss for which, without regularization, models tend to overfit by focusing on

signals with high energy values (here, highly frequent trips). As a consequence,

we choose to split the original problem into three independent subproblems corre-

sponding to different energy levels. This split is based on the observation already

6.1 Data representation 103



Fig. 6.3.: Raw user profile. Each line represents a user, the darker a column is, the more
frequent it is for the user to take the subway at this time. Time is divided in two
parts: time of the day or moment of the week. The former uses a 15 minute
scale, the latter a 2 hours one. Most traffic occurs during mornings and evenings
of workdays.

made on figure 6.1. Most of the traffic is generated by authentications at frequent

stations where users takes the subway more than twice a week. Another intermedi-

ate part is due to recurrent trips due to sport clubs, visits to family and so on. The

rest is due to infrequent trips happening less than once a week. This segmentation

corresponds to our experience as users and has been validated with experts from

the STIF. As a result, for a given user u, the stations where u have taken the subway

are split into three groups, that we call frequency bands. The high frequency band

S(high)(u) groups together stations used more than twice a week by user u. The

medium frequency band S(medium)(u) groups together stations used less than twice

a week but more than once a week by user u. The low frequency band S(low)(u)

groups together stations used less than once a week by user u. Figure 6.4 presents

three visualization of the log presented in figure 6.1, each one with a dotted rectan-

gle around stations of the corresponding frequency band.

(a)High-frequency stations (b)Medium frequency band (c)Low frequency band

Fig. 6.4.: Stations of each user are separated based on the usage frequency of the user in
three groups.
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This segmentation of stations can be applied to user logs: logs are split in three

frequency bands. Given u, a user, the low frequency band log of u, L(low)
u , is the log

of all trips starting at a station of the low frequency band S(low)(u) for user u:

L(low)
u = {(u, s, t), s ∈ S(low)(u)} (6.1)

We define in the same way the medium and high frequency band logs, L(medium)
u and

L
(high)
u . Using these three user authentication logs per user, we can now compute

three vector representations for each user. Each representation is computed as

before using the user log of one energy band. Grouping these vectors in matrices,

we can then define three data matrices, one per frequency band, X(low) ∈ R
n×m,

X(medium) ∈ R
n×m and X(high) ∈ R

n×m. We denotem the number of users. The i-th

column of each matrix is the vector representing the i-th user in the corresponding

frequency band.

Figure 6.5 displays the profiles of the same users as in figure 6.3 but with the

frequency filter. Matrices are presented in the same way and from bottom to top are

X(low), X(medium) and X(high)2. As for figure 6.3, we augment the contrast through a

logarithmic color scale. As expected, the high frequency band contains commuting

patterns: a validation in the morning and one in the evening, often with really low

variability, and repetitions on working days. The medium frequency seems to catch

late morning departures, lunch break and evening activities. The low has a high

variance for most users, which corresponds well to occasional activities.

6.2 Extraction of activities through matrix factorization

In the previous section, we have built a representation of the data where each user

is represented as three independent vectors, one per frequency band. Our goal is

to extract activities out of this representation and represent users in terms of these

activities at the same time. We will proceed independently on each frequency band

and we use a non-negative matrix factorization for this purpose. Matrix factor-

ization provides a framework to simultaneously learn a dictionary and a code as

described in chapter 3. Here the dictionary is the set of activities and the code is

the repartition of activities among users. Moreover, the non-negativity constraint

is meaningful here and leads to an interpretable solution. However it is not clear

whether elements of the dictionary will satisfy our definition of an activity: a tem-

poral event occurring at a certain time of the day, with a possible repetition during

the week. In this section, we propose a factorization algorithm that forces elements

of the dictionary to match this definition.

2Figures represent the transpose of the matrices so the x-axis is the time axis, which is a more natural
representation for visualization purposes.
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Fig. 6.5.: Representation of each data matrix: one per frequency band. As in figure 6.3,
each row represents a user and the i row of each plot corresponds to the same
user. Each column is a time bin, counting the number of authentication at sta-
tions of this frequency band, for each frequency band. We use the transpose so
that time is along the x-axis, which is more natural.
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6.2.1 Problem formulation

We denote X(b) ∈ R
n×m the data matrix of frequency band b, as presented in 6.1.3.

The i-th column of X(b) is the temporal profile of the i-th user, described by n fea-

tures, for the frequency band b. We will learn one non-negative matrix factorization

per frequency band. The same algorithm is used independently for all bands, thus

we now drop the (b) subscript.

We wish to extract a dictionary of k typical behaviors D ∈ n× k as well as the

coordinates H ∈ R
k×m of the m points in the k dimensional space defined by the k

columns of D. Hence the reconstructed user profiles are obtained by computing the

product X̂ = DH. We use a non-negative matrix factorization with a regularized

mean squared error for the reconstruction loss. We assume that each user has to

be described by a few typical behaviors and thus constrain H to be sparse, as in

[Hoy02; Mai+10]. As a result, the regularized loss that our model optimize is:

L(X,D,H) =
1

m
‖X−DH‖2 + λ|H| (6.2)

The non-negativity constraint is written:

H ≥ 0,D ≥ 0 (6.3)

As in [Hoy02; Mai+10], columns of D are normalized to avoid unreasonable solu-

tions obtained by arbitrarily transferring the magnitude of H to D. The nature of

the elements of the dictionary, columns of D, is a bit peculiar in our setting: each

column is divided in two parts, a daily one and a weekly one. Since we normal-

ized the columns of the data matrix (user profiles) X so that the daily and weekly

part independently summed to one, we do the same thing for the dictionary. We

denote nday the index such that feature i is from the daily profile if i ≤ nday. The

normalization of both parts of each dictionary element is written as:

∀j,
nday
∑

i=1

Dij = 1 and ∀j,
n

∑

i=nday+1

Dij = 1 (6.4)

As we said above, with such a setting, the elements of the dictionary may not match

our definition of activities: events happening at a certain time in the day with a

repetition during the week. We want each column of D to identify a specific and

easily interpretable activity so that a user could be described as a simple mixture of

these events. Such a typical event would be: recurrent trip on weekdays at 8am (in-

terpretable as going to work), recurrent trip at 1pm on Mondays or occasional trip

at 11pm on Thursdays. To force elements of the dictionary to match this definition,

we will force the daily part of each column of D to have a Gaussian like distribution
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with one peak corresponding to the time of the day at which the activity associated

to this column vector occurs. We control the width of the peak using an hand-fixed

ratio δt

2σ
and denote ipeak the index of the peak in the vector. The constraint we

impose on the dictionary is written as:

∀j, ∀i ≤ nday, Dij ≈ exp(−δ
2
t (i− ipeak)2

2σ2
) (6.5)

For our application, as it is not physically possible to authenticate twice in less than

a few minutes, we set δt to 15 minutes.

6.2.2 Training algorithm

The learning algorithm we propose is based on the algorithm of [Hoy02] and that

is presented in section 3.2.3. We adapt it to our constraint on the shape of the

elements of the dictionary. Optimisation is performed by a batch gradient descent.

The dictionary is updated with a projected gradient algorithm: the projection en-

sures that constraints are satisfied. In our algorithm, algorithm 8, the projections

associated to the non-negativity and normalization are always performed, thus the

elements of the dictionary remain non-negative and well normalized. However,

the projection associated to the shape constraint is performed every nG iterations,

with nG hand fixed to 200 for our experimentations. This is a hard projection, that

erases great proportions of the signal of each element of the dictionary. Thus, ap-

plying it more often may hinder the convergence of the matrix factorization. The

code matrix is updated with multiplicative update rules.

Data: X, D0, H0, λ, nepochs, µ, nG

Result: D, H

D← D0 and H← H0;
while e ≤ nepochs do

D← D− µ(X−DH)Ht;
D← max(D,0);
Normalize daily and weekly profiles of D to sum to 1;
if e mod nG = 0 then

∀j,dj ← dj ⊙ exp(− δ2

t (i−ipeak)2

2σ2 )
end
H← H⊙DtX⊘DtDH

end
Algorithm 8: Batch gradient based algorithm to solve the constrained matrix fac-
torization. It alternates projected gradient updates on D and multiplicative update
rules on H. The projection associated to the shape constraint is done only every nG

iterations.

We will derive here a sketch of convergence proof. Our goal is not to obtain analyt-

ical bounds on the convergence speed but to claim that imposing shape constraints

as we do leads to convergence. The overall convergence of the algorithm without
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the shape constraint is well known. Multiplicative update rules are known to con-

verge as shown in [LS01]. The work of [GZ05] shows that the convergence rate can

be increased in practice but confirms the convergence of multiplicative update rules.

For gradient updates, [Hoy02] provides an experimental justification of the conver-

gence. Theoretical arguments are provided in [Lin07] that propose to update both

parameters using gradient update rules and to increase convergence rate by select-

ing optimal parameter at each step instead of single updates. As described earlier,

the projection associated to the shape constraint is done only every nG iterations.

Thus, we propose to see the algorithm as follows. First, we use an algorithm that is

known to reach convergence, without the shape constraint to find good parameters

H and D. We then apply the constraint and use the parameters as initial values

for the basic algorithm. It is basically a warm restart. Applying the constraint too

often may hinder convergence, but we found that, in practice, applying it every 200

iteration is a good compromise.

6.2.3 Analysis of extracted dictionaries

We will now analyze the patterns extracted by our algorithm on a dataset containing

around 80 million trips, 600k users and 300 stations. We have implemented our

models using Python and Numpy [VDW+11] and we have run the computations on

commodity machines with 8 cores (3.07GHz) and 16GB of RAM. The computations

took around 10 hours.

As we said early, algorithm 8 is applied independently on each frequency band.

Thus, we obtain three dictionary matrices: D(low), D(medium) and D(high). Each of

them contains k = 100 basic elements that represent activities. These dictionaries

are represented in figure 6.6. For this visualization, the columns of the matrices

are ordered according to the hour of the highest peak to exhibit that each different

band focuses on different parts of the day. The dictionary associated to the high

frequency band, on the left of figure 6.6 focuses on mornings and workdays, which

was expected as we observed from the data that most trips occur during mornings

or evenings of workdays. The benefit of our approach is that our analysis can got

beyond these frequent trips when related works, as [Foe+13], focus only on these.

Thanks to our frequency filtering, we have two additional dictionaries. The one

for the medium frequency band focuses on afternoons and evenings of the work-

days and of the Saturdays. The one for the low frequency band focuses mainly

on evenings of all days, which corresponds to what was expected: this dictionary

provides a characterization of infrequent (recreational) activities. As for other vi-

sualization, figure 6.6 is oriented so the x-axis is the time: each row corresponds

to one element of a dictionary. An interesting behavior emerged in the high fre-

quency dictionary. Even though basic elements are constrained to have only one
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peak, many have two. This is due to the high regularity in commuting pattern: they

are based on office hours that are mostly fixed and part of the high frequency band.

This phenomenon is not observed on other bands.

6.3 Application to station clustering

Our non-negative matrix factorization algorithm provides, in addition to the dictio-

naries, code vectors that are the representation of each user in the space of activi-

ties. We will describe this representation first. We believe that it provides a strong

characterization of the users. We would like to use this representation to predict

personal information about the users, such as the socio-professional category. We

claim that the time at which users take the subway is representative of their social

status. Firstly, the user’s job influences directly the user’s commuting pattern and

the dictionary of the high frequency band is able to encode many different patterns.

Secondly, social groups also impact the number of recreational activities of users,

which impacts in turn the encoding of users for the low and medium frequency

bands. However, personal information on the users is not available, for obvious

privacy reasons. We propose here a surrogate evaluation by clustering stations.

6.3.1 Users as bag of activities

The previous section analyzes the dictionaries extracted by our algorithm, one per

frequency band. We will now discuss briefly the code that represents each users: we

aim at obtaining bag of activities for each user, the activities being the elements of

the dictionary. The code vectors representing users can be seen as quantifiers of the

repartition of activities for each user. For a given user and a given frequency band,

the value of the i-th entry is directly linked to the ratio of authentications made by

this user that corresponds to the i-th activity.

Let us consider a practical example. Say a user only takes the subway on mornings

of workdays at 8am and on evenings of workdays at 6pm. Say that the extracted

dictionary for the high frequency band contains these two activities (8am on work-

days and 6pm on workdays) as its 10th and 57th activities. Then, the code vector of

this user for the high frequency band will only have two non-zero entries, the 10th

and the 57th, that should have equivalent magnitudes. Moreover, code vectors for

the two other frequency bands are zero, as no authentication happens for this user

in these bands. The direct implication of such a representation is that this user will

be strongly separated from users having authentication in the low or medium fre-

quency band, on the one hand, and from users having different commuting times,

on the other hand. As the dictionary provides many different activities, we can

obtain a fine-grained representation of users.
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Matrix (% of non-zero entries and std) low medium high

Data sparseness (std) 16.98 (0.38) 7.97 (0.27) 16.88 (0.37)
Dictionary sparseness (std) 51.15 (0.50) 52.41 (0.50) 51.93 (0.50)
Code sparseness (std) 9.23 (0.29) 4.33 (0.20) 5.46 (0.23)
Important activities (std) 4.38 (0.20) 1.94 (0.14) 1.68 (0.13)

Tab. 6.1.: Sparseness measures on the low, medium and high frequency bands. The first
row reports the average number of non-zero entries per user in the raw profiles.
The second row reports the average number of non-zero entries per activity in
the dictionaries. The third row reports the average number of non-zero entries
per user in the code matrices. The fourth and last row reports the number of
important activities per user, a quantification, detailed in the text, of the number
of significant activities per user.

The code representing each user is typically sparse as reports table 6.1. For the first

row, the sparseness of the data, it can be observed that the high and low frequency

bands have profiles with similar sparseness. However, the reason is different for

each band. The high frequency band correspond to heavy traffic concentrated on

the mornings (and evenings in a smaller proportion) with many repetitions during

the week. Typically, the weekly part of user profiles in the high frequency band is

not sparse. For the low frequency band, this is simply due to the high variance in

the time of trips done in this frequency band that correspond to infrequent activities,

scatter across the week, explaining the (relatively) low sparseness. In average, for

all the frequency bands, out of the 100 activities per frequency band, a user is

described by less than 10 in average. Also, among these non-zeros entries, some

have a low magnitude. We define the number of important activities as the number

of top-magnitude entries necessary to account for 90% of the total magnitude of

the code vector. It is a concept similar to the ratio of explained variance for PCA.

The average number of important activities are reported on the last row of table 6.1.

This confirms our interpretation of the decomposition. On the one hand, the high

frequency band focuses on commuting patterns and can be described by one or two

activities (going to work, going back home). On the other hand, the low frequency

band gathers many infrequent activities, justifying the greater number of activities

necessary to explain the behavior of a user.

6.3.2 Projection of user behaviors on stations

The spatial information has been discarded when computing the user profile for

each frequency band. Thus, we currently have no information to describe stations.

We will use the user logs once more to build a representation for each station and

for each frequency band. We project the representation of each user to the station

he uses, per frequency band. Thus a user visiting a particular station for the high

frequency band will transfer his code, his repartition of activities, for this band

to the station. As a result, each station is represented by average repartitions of

6.3 Application to station clustering 111



activities per frequency band and reflects the behaviors of the users. Also, using

the dictionaries, we can project the representation in the activity space back to the

temporal space. We will use this in the following section to analyze the traffic of

each station cluster.

Analyzing the spatio-temporal usage patterns requires establishing connections be-

tween a temporal event and a station. This is not straightforward and we propose

below, for each frequency band some possible interpretation. The key concept is

that a validation corresponds to leaving a place, not going to this place.

high This bands corresponds to users that frequently take the subway at these sta-

tions. Most of the traffic here is due to commuting patterns. As so, interpreta-

tion is easy for this band: it corresponds to people leaving or working nearby.

Activities related to this frequency band are leaving home or work.

medium This band corresponds the stations where users take the subway once or

twice a week. It corresponds to recurrent activities such as meals with family

members or friends nearby or a club or regular activity. However, as only the

origin of trips is known, it means that the user is leaving after this activity.

low It corresponds to users that takes this station less than once a week. There

are no regular patterns here. It could be a meeting elsewhere or a restaurant.

Once again, the important thing is that we detect the user when he leaves this

activity to go somewhere else.

6.3.3 Station clustering

Each station is represented by three vectors, one per frequency band. Best results

were obtained with a simple concatenation of this vectors. Each station is repre-

sented by one vector concatenating the low, medium and high latent representa-

tions. We use a k-means algorithm on this representation to cluster stations in

coherent groups that share similar activities distributions.

Figure 6.8 represents the map of the subway stations in Paris where each station is

colored (and shaped) according to its cluster. Some geographical patterns clearly

emerge. We have reported on figure 6.9 the difference between the average traffic

and the reconstructed traffic of each centroid: a positive spike means more traffic

in this cluster than in the network. Finally, to given so background material on the

sociological context of Paris, figure 6.7 reports the geographical distribution of the

incomes in the region. The data for this is provided by the INSEE, a political insti-

tution in charge of population surveys in France. We will now provide an analysis

of our cluster. It is interesting to compare this clustering presented in figure 6.8
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to the sociological geography of the city in figure 6.7: our clustering matches the

geographical distribution of incomes. For instance, western suburbs are wealthier

than eastern ones with the exception of Vincennes and, in our clustering, Vincennes

is part of the western cluster. Overall, there are two inner clusters describing the

center of the city, one belt-shaped cluster around this center and the separation of

the western and eastern sub-urban regions around Paris.

First the touristic center in green triangles (c03) of Paris with Champs Élysées and

Concorde, the Louvre Museum, the Garnier Opera, Notre Dame and the Sacré Cœur

and also, noticeably, the Parc des Princes stadium are in the same cluster. Second,

the belt-shaped cluster, here in yellow squares (c02), corresponds to the limits be-

tween Paris and the surronding cities. The city limits are marked by gates (Porte in

French) as a reminder of the gates piercing the old fortified walls of the medieval

Paris.

And last but not least, the clustering opposes the posh western sub-urban regions

of Paris, in dark blue squares (c05) to poorer eastern sub-urban regions in red

circles (c01). The similar distinction can be observed on the data of the INSEE

on figure 6.7, reporting the repartition of incomes in Île-de-France. The distinction,

based on temporal patterns, is interesting as the users might have the same patterns

since they are at the same distance from the city center. So the distinction goes

beyond the simple geographic explanation and touches a sociological repartition of

work hours.

We will now analyze the temporal profiles of each centroid. We have reconstructed

it by projecting the bag of activities representation of each centroid back to the

temporal domain using our dictionaries. The difference between each cluster have

small magnitude with respect to the average traffic load. Thus, we choose to focus

on these differences by reporting on figure 6.9 the delta to the average traffic load

for each centroids. A positive spike means more users authenticating themselves at

any station of the cluster than in average over the network. A negative spike is the

opposite: a deficit of users compared to average load. Each row corresponds to a

centroid and columns are grouped by pairs: each pair corresponds to a frequency

band (from left to right: high, medium and low) and within each pair the first col-

umn is the daily profile, the second is the weekly profile. Each cluster centroid is

colored as the corresponding cluster in figure 6.8. As only the check-in authentica-

tions are available to us, the high frequency band corresponds to the habit of the

people living or working near the stations of the cluster while the medium and low

frequency bands correspond to people check-in to travel elsewhere, meaning that

they came to the stations of the cluster for some periodical activity like pubs, restau-

rants, theaters and so on and are now leaving. The last line is the belt cluster that
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corresponds to the average behavior of standard Paris dwellers which is coherent

with the fact that stations composing this cluster are at the limit of the city.

The first line and third lines are close one to other. The former corresponds to the

touristic center of Paris which is sensible as it is characterized by a lack of check-

ins in the morning for no working class is living there. Once again the temporal

pattern is linked to a sociological repartition. The latter contains the big clusters

corresponding to train stations. People working in sub-urban regions where the sub-

way network is not present typically take the train to one hub and then finish their

journey with the subway. This explains the main difference in the high frequency

band between the two clusters: the peak around nine in the morning. It is also

noticeable that these two clusters are the only ones having people departing after

infrequent activities, as can be seen on the low frequency band. The second and

fourth lines correspond respectively to the western and eastern sub-urban regions

around Paris. As said earlier they are mainly residential areas with the western part

being wealthier than the eastern one. This is confirmed by the night part of the

medium and low frequency bands, in contrast to the center clusters, few people are

leaving these clusters after some episodic activities. The phenomenon of a peak in

the medium band correspond to the activity of leaving for work from a station that

is not the main home of a user and is typical of sleepovers. Finally the commuting

patterns of the two clusters is different. The model is able to extract fine grained

representations and distinguish the clusters as they do not commute at the same

time.

6.4 Conclusion

This is the first user-centered study on the Parisian subway using authentication

logs. We have provided a framework to build out of these logs robust profiles that

strongly characterize users. To do so, we have proposed an adapted matrix fac-

torization, demonstrating once again the plasticity of these representation learning

methods. The extracted profiles, once projected on stations, lead to a clustering that

is linked to socio-demographic patterns. The work we conducted on urban mobility

lead to a publication [Pou+]. Many perspectives arise from this study. Firstly, we

integrated in the representation the notion of repetition during the week by using

daily and weekly parts. This has provided a simple way to extract interpretable

activities in the dictionary using matrix factorization as event occurring at a certain

time of the day repeated during the week. However, it may be possible to use mod-

els with memory capability such as recurrent neural networks [Gra12] or adapted

matrix factorization [BG09] and to work on days only. Secondly, we have proposed

a user-centered analysis by extracting profiles that characterize the users and seem

to be linked to socio-demographic patterns. It could be interesting to use external
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data, such as information about places around stations extracted from services like

Google Map, to validate our clustering of stations. Finally, other uses of the ex-

tracted profiles are possible. Comparing the logs of a day to what is expected for

such a day based on extracted profiles can be used as an anomaly detection tech-

nique. It is similar to the idea of [Mai+08] that uses the reconstruction error of

matrix factorization to discriminate examples.
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Fig. 6.6.: Dictionaries extracted using algorithm 8, one per frequency band. From top to
bottom are D(high), D(medium) and D(low). The scale is common to all plots.
Dictionaries are transposed to the x-axis is the time. Each row is a basic element
of the associated frequency band. Basic elements are sorted by non-decreasing
time of the highest peak.
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Fig. 6.7.: Income per household in the Ile-de-France. Clusters extracted by our analysis
and presented in figure 6.8 align with the geographical distribution of income.
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Fig. 6.8.: Map of Paris subway stations with colors coming from our clustering.
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Fig. 6.9.: Temporal representation of the centroids of the clustering in Figure 6.8. The x-axis is the time.
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7Conclusion

We have studied, throughout this thesis, various ways to represent users. This

problem is at the crosspoint of two research axis of study: representation learning

and user profiles.

Representation learning proposes to replace the laborious task of hand-crafting fea-

tures by machine learning algorithms. Traditional approaches rely heavily on such

hand-crafted features; indeed, models operating on relevant features have good per-

formance for classification or regression tasks. However it is a tedious and time con-

suming task. We have seen two families of representation learning methods: neural

networks and matrix factorization, both can be used on very large datasets.

Neural networks are complex models with an extremely high variance: they are

very sensitive to small perturbations in the datasets [Sze+13]. We have

presented neural networks, in chapter 2, using the deterministic framework

of multi-layer perceptrons. For these stacked models, each layer learns a

representation of the data that disentangles it for the next layer. Recent

breakthroughs in deep neural networks, especially for signal processing tasks

such as image classification [Cha+14] or handwriting and speech recognition

[Gra12] and text representations [Col+11; Mik+13; LM14] have been made

possible thanks to the availability of large datasets and efficient computers.

Matrix factorization provide a natural framework to code each example of a dataset

as a combination of basic elements learned from the data, gather in a dictio-

nary. While most methods of machine learning focus on learning either the

dictionary or the code matrix, matrix factorization learns both at the same

time. This is a difficult problem as it involves many parameters and matrix

factorization has quite a strong variance as well as neural network. One com-

mon way to limit the impact of the variance is to impose constraints on the

dictionary and/or the code. These constraints, the most common ones are

non-negativeness [LS01] and sparseness [Hoy04], deal with the variance by

adapting the factorization to the nature of the data as well as providing inter-

pretable representations of the data.

These representation learning techniques provide a gateway for user modeling. We

started by considering the case of recommender systems in chapter 4 where we

demonstrated the benefits of considering both the ratings and texts of user reviews
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to learn more informative profiles. We have also proposed an extension of the

traditional framework of recommender systems that consists in generating a text in

addition to the rating prediction task. This led us to study the impact of user profiles

on the classical task polarity classification in chapter 5. We have shown that it was

possible to jointly train a recommender system and a classifier to detect words that

highlight the surprise of a user given a product. Finally, we built on the experience

gained from the work with user reviews to adapt and apply a classical tool – namely

non-negative matrix factorization – to learn user profiles in the context of subway

usage in chapter 6. We have demonstrated that it was possible to constrain the

factorization so as to extract habits out of the data and explain each trip made by

a subway user using one of these hidden habits. This work however can be easily

adapted to various kind of user event logs as it only requires only logs of the form

(user, event, time).

We believe that the mass of available data tends to drown users. Correctly appre-

hending user profiles to provide a personalized access to information is the way

to overcome this challenge. We have shown the impact of enriching user (and

item) profiles of recommender systems both to improve the performance of existing

models and to provide a more personalized recommendation by generating short

summaries of other reviews. Additionally, we provided a method that extract robust

profiles out of noisy data, the authentication log of users. This study takes place in

the physical world, using authentication of users at subway station turnstiles and

offers new opportunities, ranging from the recommendation of social events in the

city to personalized real-time information about the service status.

For future work, we have considered two main options. The first is the proposal of

a unified model that could bind together the tasks of chapters 4 and 5. We would

like to use new representation models as SkipGrams or C-Bow networks to do so

by adding additional look-up tables for the users, items and using supervision to

take into accounts the available ratings. The second is to look at the dynamics of

the user profiles. This can be tackled in many ways. For the work on the subway

usage for instance, we may want to extract regular pattern and use these to predict

expected traffic or trips and detect when the ground truth diverges from what we

predict. Adapting models to take time into account is far from trivial. Both matrix

factorization and neural network already propose some algorithms. Going deeper

in this direction is certainly an interesting perspective.
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