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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Towards Efficient and Fault-Tolerant Optical Networks:
Complexity and Algorithms

Abstract:
We study in this thesis optimization problems with application in optical net-

works. The problems we consider are related to fault-tolerance and efficient resource
allocation and the results we obtain are mainly related to the computational com-
plexity of these problems.

The first part of this thesis is devoted to finding paths and disjoint paths. Finding
a path is crucial in all types of networks in order to set up connections and finding
disjoint paths is a common approach used to provide some degree of protection
against failures in networks. We study these problems under different settings.
We first focus on finding paths and node or link-disjoint paths in networks with
asymmetric nodes, which are nodes with restrictions on their internal connectivity.
Afterwards, we consider networks with star Shared Risk Link Groups (SRLGs) which
are groups of links that might fail simultaneously due to a localized event. In these
networks, we investigate the problem of finding SRLG-disjoint paths.

The second part of this thesis focuses on the problem of Routing and Spectrum
Assignment (RSA) in Elastic Optical Networks (EONs). EONs are proposed as the
new generation of optical networks and they aim at an efficient and flexible use of
the optical resources. RSA is the key problem in EONs and it deals with allocating
resources to requests under multiple constraints. We first study the static version of
RSA in tree networks. Afterwards, we examine a dynamic version of RSA in which
a non-disruptive spectrum defragmentation technique is used.

Finally, we present in the appendix another problem that has been studied dur-
ing this thesis. It is a graph-theoretic problem referred to as minimum size tree-
decomposition and it deals with the decomposition of graphs in a tree-like manner
with the objective of minimizing the size of the tree.

Keywords: Asymmetric nodes, forbidden transitions, shared risk link group,
routing and spectrum assignment, tree-decomposition, complexity.





Vers des Réseaux Optiques Efficaces et Tolérants aux Pannes:
Complexité et Algorithmes

Résumé :
Nous étudions dans cette thèse des problèmes d’optimisation avec applications

dans les réseaux optiques. Les problèmes étudiés sont liés à la tolérance aux pannes
et à l’utilisation efficace des ressources. Les résultats obtenus portent principalement
sur la complexité de calcul de ces problèmes.

La première partie de cette thèse est consacrée aux problèmes de trouver des
chemins et des chemins disjoints. La recherche d’un chemin est essentielle dans tout
type de réseaux afin d’y établir des connexions et la recherche de chemins disjoints
est souvent utilisée pour garantir un certain niveau de protection contre les pannes
dans les réseaux. Nous étudions ces problèmes dans des contextes différents. Nous
traitons d’abord les problèmes de trouver un chemin et des chemins lien ou nœud-
disjoints dans des réseaux avec nœuds asymétriques, c’est-à-dire des nœuds avec
restrictions sur leur connectivité interne. Ensuite, nous considérons les réseaux avec
des groupes de liens partageant un risque (SRLG) en étoile : ensembles de liens qui
peuvent tomber en panne en même temps suite à un événement local. Dans ce type
de réseaux, nous examinons le problème de recherche des chemins SRLG-disjoints.

La deuxième partie de cette thèse est consacrée au problème de routage et
d’allocation de spectre (RSA) dans les réseaux optiques élastiques (EONs). Les
EONs sont proposés comme la nouvelle génération des réseaux optiques et ils visent
une utilisation plus efficace et flexible des ressources optiques. Le problème RSA
est central dans les EONs. Il concerne l’allocation de ressources aux requêtes sous
plusieurs contraintes. Nous étudions d’abord la version statique de RSA dans des
réseaux sous forme d’arbres. Ensuite, nous examinons une version dynamique de
RSA en utilisant une technique de défragmentation de spectre non-perturbatrice.

Enfin, nous présentons en annexe un autre problème traité durant cette thèse.
Il s’agit d’un problème de théorie de graphes appelé décomposition arborescente de
taille minimum, où l’objectif est de décomposer un graphe sous la forme d’un arbre
de taille minimum.

Mots clés : Nœuds asymétriques, transitions interdites, groupe de liens
partageant un risque, routage et allocation de spectre, décomposition arborescente,
complexité.
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Chapter 1

Introduction

Contents
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and organization of the thesis . . . . . . . . . 3

1.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . 7

We study in this thesis problems motivated by applications in optical networks.
In this introduction, we briefly present the context and motivations behind the prob-
lems we consider. Then, we present our contributions and the thesis organization.

1.1 Context and motivation

Optical networks are at the heart of long-distance communication networks [Sen92,
Muk97, RS02]. In optical networks, the data is encoded into pulses of light and
carried on a very thin strand of glass or plastic called the optical fiber. This fiber
is a very efficient transmission medium thanks to its large bandwidth and its low
dispersion and attenuation properties [Sen92, GT98]. It is usually composed of a
core of glass or plastic surrounded by a cladding of a different glass or plastic, with
a lower index of refraction. The light signal travels in the core of the fiber through
a series of reflections as illustrated in Fig. 1.1.

Light pulses

Cladding

Cladding

Core

Figure 1.1: Light guided in an optical fiber [Wik]

The optical fiber enables the optical networks to provision very high data rates
on very long distances and to constitute hence the backbone carrying the global data
traffic. This traffic is however, growing on a daily basis at exponential rates and is
not expected to slow down in the near future. According to a Cisco report [CS15], the
global IP traffic has increased more than fivefold in the past 5 years, and will increase
nearly threefold over the next 5 years. This makes it necessary to think of ways to
use the optical resources more efficiently, in order to satisfy the growing traffic, and
also to provide more fault-tolerance in order to protect this traffic on which the
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world has become very dependent. In this thesis, we tackle mainly optimization
problems related to these two desired properties of optical networks: fault-tolerance
and efficiency.

Fault-tolerant optical networks. Fault-tolerance is an important requirement
in optical networks [RS02]. These networks carry significant amounts of data and
any failure can result in the loss of considerable traffic and the disruption of numer-
ous services. Failures in optical networks can be full or partial, single or multiple,
software or hardware caused. They can be triggered by a fiber cut or a power out-
age, by a human error or a natural disaster. Service providers have to account for
all these types of failures while designing the schemes which ensure the resiliency
of their networks. These schemes are generally of two types: protection schemes
and restoration schemes [RM99]. In the protection schemes, redundant capacity is
reserved in the network and used to reroute the traffic in case of failures. These
schemes ensure a fast failure recovery (within 50 ms in general). In the restoration
schemes, the resources ensuring the recovery are computed after the detection of a
failure and the traffic is restored on a slower time scale [RS02]. We will be concerned
in the first part of this thesis with protection schemes and more precisely with the
dedicated path protection scheme (DPP).

The DPP consists in computing for each demand two paths. One path, called
working or primary path, is used to transmit data under normal operation and the
other one, the protection or alternate path, is reserved as a backup to carry the
traffic in case of failures. A general requirement is that these paths have to be
disjoint, so that at least one of them can survive a failure in the network. In the
first part of this thesis, we investigate the DPP problem under two different settings.

Firstly, we consider networks with asymmetric nodes. These are nodes with
restrictions or constraints on their internal connectivity; nodes in which the signal
entering from a given ingress port can only reach a subset of the egress ports. In
these networks, we consider single link or node failures and formulate the DPP as
the problem of finding link or node-disjoint paths with some restrictions.

Secondly, we consider a different type of failures; namely multiple simultaneous
localized failures captured by the notion of star Shared Risk Link Groups (SRLG).
An SRLG is a set of links that are likely to fail at the same time due to a single
event and star SRLGs are SRLGs localized around nodes. In networks with star
SRLGs, we formulate the DPP as the problem of finding SRLG-disjoint paths, i.e.
paths that share no risk of failing at the same time with respect to the multiple
failures we consider.

Efficient use of the optical spectrum. In order to meet the growing demand,
the optical networks need to evolve. New research has been conducted in this direc-
tion and a new generation of optical networks has emerged; one that is more efficient
and more scalable: the Elastic Optical Networks (EONs) [GJLY12, JTK+09]. EONs
offer the possibility to use the optical spectrum efficiently so as to allocate to de-
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mands exactly the resources they need. The technologies enabling EONs, e.g. new
transceivers and switches, are being actively developed and experiments are being
conducted both in the laboratory and in the field. In parallel, optimization problems
related to the resource allocation in EONs are being formulated and studied. In the
second part of this thesis, we are concerned with one of these problems, namely, the
problem of Routing and Spectrum Assignment (RSA).

In the RSA problem, we are given a network and a set of requests or connection
demands and the aim is to provision the requests or set up the connections with
the objective of minimizing the number of utilized optical resources and under con-
straints dictated by the new EON technologies. To provision a request, a path has
to be found from its source to its destination (routing), and a spectrum interval has
to be allocated to the request on all the links of this path (spectrum assignment).

We study different versions of the problem of RSA. Firstly, we study a static
version of RSA in the particular case of optical networks in form of trees. In the
static RSA, all of the demands are known in advance and the objective is to provision
them all with minimum spectrum. Since in tree networks, there is only one path
between each pair of nodes, the routing problem is already solved. RSA reduces then
to the problem of Spectrum Assignment (SA). Secondly, we study a dynamic version
of RSA. In the dynamic RSA, requests arrive and leave the network dynamically
and the objective is to provision each request as it arrives to the network. The
decisions made to allocate optical resources to an arriving request have to be wise in
the sense that they should not decrease the chances of provisioning future requests
nor cause more spectrum fragmentation.

1.2 Contributions and organization of the thesis

This thesis is organized in two parts and an appendix. In the first part, entitled On
paths and disjoint paths, the focus is on the problems related to the fault-tolerance
property in optical networks. In the second part, entitled On routing and spectrum
assignment, the focus is on the problems related to the efficiency. The appendix
is devoted to another approach followed in the study of the problem of routing
and spectrum assignment as well as to another graph-theoretic problem tackled
during this thesis. We use throughout the thesis graph models and various tools
of algorithmic graph theory (see [BM08] for definitions). Our contributions for
the problems we consider consist mainly of establishing computational complexity
results; we prove the NP-completeness of many of these problems and then we
design approximation algorithms or polynomial-time algorithms for special cases.
We provide, in what follows, short descriptions of the chapters of this thesis including
our contributions.

Part I: On paths and disjoint paths

Chapter 2: On paths in Networks with Asymmetric Nodes. We tackle in
this chapter the problems of finding a path and disjoint paths in optical networks
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with asymmetric nodes. The graph theoretic framework we use to study these
problems is the graph with forbidden transitions where a transition is a pair of
adjacent edges. In this model, the network is a graph G = (V,E) and the asymmetric
nodes are captured by a set of forbidden transitions F ✓ E ⇥ E associated to the
graph. If a signal entering via link e (ingress port e) cannot leave via link e0 (egress
port e0), then the pair of edges {e, e0} forms a forbidden transition.

Given a graph G = (V,E), a set of forbidden transitions F ✓ E ⇥ E and two
vertices s, t 2 V , we first study the problem of finding a path avoiding forbidden
transitions. This problem consists in finding a path, from s to t, which uses none
of the forbidden transitions of F ; said otherwise it is forbidden for the path to
consecutively use two edges forming a pair in F . It has been proved in the literature
that finding a non-elementary path (i.e. a path which can repeat vertices) avoiding
forbidden transitions is polynomial while finding an elementary path is NP-hard
in general graphs. We strengthen the hardness result and prove that finding an
elementary path avoiding forbidden transitions is NP-hard even in well-structured
graphs such as grids. We also prove that the problem is polynomial in graphs with
bounded treewidth.

Afterwards, we show that finding k � 2 arc-disjoint non-elementary paths avoid-
ing forbidden transitions can be done in polynomial time in directed graphs while
it is NP-complete to find k � 2 vertex-disjoint non-elementary paths in directed as
well as undirected graphs. We recently discovered that this last result follows also
from results of [GLMM12] and we highlight this in section 2.5. On the positive side,
we also prove that finding k � 2 vertex-disjoint non-elementary paths is polynomial
in directed acyclic graphs.

Some of the results presented in this chapter were presented in Algotel’2015
[KMMN15b] and WG’2015 [KMMN15a].

Chapter 3: On Disjoint Paths in Networks with Star SRLGs. This chapter
deals with the problem of k-diverse routing in networks with star Shared Risk Link
Groups (SRLGs). An SRLG is a set of network links that fail simultaneously when
a given event (risk) occurs and a star SRLG is an SRLG in which all links share
an endpoint. In networks with SRLGs, the k-diverse routing problem consists in
finding k pairwise SRLG-disjoint paths between a pair of nodes. The graph theoretic
framework we use for studying problems in networks with SRLGs is the colored
graph model. The network topology is modeled by a graph G = (V,E) and the set
of SRLGs by a set of colors C. Each SRLG is modeled by a distinct color, and that
color is assigned to all the edges corresponding to the network links subject to this
SRLG. A colored graph is therefore defined by the triple (V,E,C ), where C is a
coloring function, C : E ! 2

C , that assigns a subset of colors to each edge.
Using this model, we study the problem of finding SRLG-disjoint paths in net-

works with star SRLGs as the problem of finding k color-disjoint paths. We first
prove that finding k SRLG-disjoint paths is NP-complete even for only two paths
(this implies that the "polynomial" algorithm proposed in [LW05] to find two SRLG-
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disjoint paths in a network with star SRLGs is not correct unless P=NP). After-
wards, we show that the problem can be solved in polynomial time in particular
sub-cases which are relevant in practice. Namely, we solve the problem in polyno-
mial time when the maximum degree is at most 4 or when the input network is
a directed acyclic graph. Moreover, we show that the problem is fixed-parameter
tractable when parameterized by the number of SRLGs. Finally we consider the
problem of finding the maximum number of SRLG-disjoint paths in networks with
SRLGs satisfying the star property. We prove that this problem is hard to approxi-
mate within O(|V |1�"

) for any 0 < " < 1, where V is the set of nodes in the network.
Then, we provide exact and approximation algorithms for relevant sub-cases.

The results presented in this chapter have been published in TCS [BCDM15]
and have been presented in the Student Workshop ACM CoNEXT’2012 [BCDM12],
Algotel’2013 [BCDM13b], and DRCN’2013 [BCDM13a].

Part II: On Routing and Spectrum Assignment

We start this part by giving more details on Elastic Optical Networks (EONs) and
by defining the problem of Routing and Spectrum Allocation (RSA) and its different
versions.

Chapter 4: On Spectrum Assignment in Tree-Networks. In this chapter,
we focus on the problem of static routing and spectrum assignment in elastic optical
tree networks. In trees, since the routing is fixed, the RSA problem reduces to the
problem of Spectrum Allocation (SA). In the SA problem, we are given a graph
N = (N,L) modeling the optical network and a set of requests R such that each
request r 2 R has a path P (r) and a demand d(r). A spectrum assignment of (N ,R)

is a mapping f from R to N⇤ such that for every pair of requests r, r0 2 R, if P (r) and
P (r0) share a link, then {f(r), . . . , f(r)+d(r)�1}\{f(r0), . . . , f(r0)+d(r0)�1} = ;.
The objective of the SA problem is to find a spectrum assignment f which minimizes
the number of used spectrum slots, i.e. the smallest integer s(f) such that for each
request r 2 R, f(r) + d(r)� 1  s(f).

In trees, even though the routing is fixed, the spectrum allocation (SA) is NP-
hard. We survey the complexity and approximability results that have been estab-
lished for the SA in trees and prove new results for stars and binary trees. Namely,
we prove that SA is NP-hard in undirected stars of 3 links and in directed stars of
4 links, and show that it can be approximated within a factor of 4 in general stars.
Afterwards, we use the equivalence of SA with a graph coloring problem (interval
coloring) to find constant-factor approximation algorithms for SA on binary trees
with special demand profiles. Namely, we examine the cases where the demands
are in a set {k, kX} (k,X 2 N⇤), in a set {kX, k(X + 1)} (k,X 2 N⇤), or bounded
by D. For the latter case, we give a general approximation when the demands are
bounded by D 2 N and then give better approximations for the cases where the
demands are bounded by D 2 {3, 4, 5, 6}.

Results presented in this chapter were presented in Algotel’2015 [Moa15].
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Chapter 5: On Dynamic RSA with Push-Pull. In this chapter, we tackle
the problem of dynamic routing and spectrum assignment with the use of a non-
disruptive defragmentation technique called Push-Pull. In dynamic traffic scenarios,
as requests arrive and leave, the optical spectrum becomes fragmented. This means
that small and unusable fragments of spectrum are accumulated. This fragmenta-
tion can cause the blocking of a request even though the overall free resources in the
network can provision it. To deal with this problem, many defragmentation tech-
niques are proposed to consolidate the existing free spectrum. In this chapter, we
consider one of these techniques, namely the Push-Pull technique [CSS+12]. This
technique uses the characteristics of the EONs and of the flexible transponders to
shift the spectrum allocated to a request without disrupting the traffic. This is
done as follows. The frequency at the transmitter is pushed at a frequency sweep
rate, and since the difference between the frequencies of the transmitter and the
receiver should not exceed a given offset, the frequency at the receiver is pulled to-
wards the frequency of the transmitter. This technique can only perform spectrum
re-allocation and not re-routing. Furthermore, the order of the requests in the spec-
trum interval does not change. We propose algorithms to solve the dynamic RSA
with the use of Push-Pull while optimizing the length of the routing path and the
delay of the defragmentation.

Results presented in this chapter were presented in Algotel’2014 [CJM14]

Appendix

In the appendix, we present another direction we followed in the study of the static
routing and spectrum assignment problem in elastic optical networks. We also
present another problem tackled during this thesis; it is a problem not related to
optical networks and it concerns tree-decompositions with minimum size.

Appendix A: On static Routing and Spectrum Assignment. We present in
this chapter column generation formulations for the problem of routing and spectrum
assignment in a static setting. The formulations we present are inspired from a
column generation model for the problem of routing and wavelength assignment;
the counterpart of RSA in the classical optical networks.

Appendix B: Minimum Size Tree-Decompositions. We study in this chap-
ter, a problem of graph theory concerning graph decomposition. Namely we study
the problem of minimum size tree-decomposition. A tree-decomposition of a graph
is a way to represent it by a family of subsets (bags) of its vertex-set organized in
a tree-like manner and satisfying some connectivity property. Tree-decompositions
have been widely studied for their algorithmic applications especially that they are
the corner-stone of many dynamic programming algorithms for solving graph prob-
lems. We consider the problem of computing a tree-decomposition of a graph with
width (i.e number of vertices per bag) at most k and minimum size (i.e. number of
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bags). We prove that the problem is NP-complete for any fixed k � 4 and polyno-
mial for k  2; for k = 3, we show that it is polynomial in the class of trees and
2-connected outerplanar graphs.

The results of this chapter were presented in ICGT’2014 [LMN14] and LA-
GOS’2015 [LMNS15].
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Paths and Disjoint Paths





11

The aim in networks in general and optical networks in particular is to ensure
the communication between different nodes. This relies primarily on finding a path
from a source to a destination. This problem can be solved efficiently if there are
no constraints on the network using well-known algorithms such as the Dijkstra’s
algorithm and the Bellman-Ford’s algorithm. However, finding a path becomes more
challenging when some constraints are introduced. In the first chapter of this part
(Chapter 2) we focus on the problem of finding a path in networks with constraints
on the internal connectivity of their nodes. We refer to these networks as networks
with asymmetric nodes.

Another aim in optical networks is to provide fault-tolerance services and protect
the connections against failures (fiber cuts, failures of transceivers, power outages,
etc). Towards this purpose, many protection and restoration schemes have been
proposed [RM99, RS02]. In the protection schemes, backup resources are reserved
and dedicated to recover the traffic in case of failures. In the restoration schemes,
the backup resources are found upon the occurrence of a failure. Protection schemes
provide better guarantees on the recovery of the network and they perform on a fast
time scale. They can be broadly classified under four categories defined by whether
they are dedicated or shared, and whether they provide link or path protection
[RM99]. In dedicated protection, each connection has dedicated resources to ensure
its protection. In the shared protection, on the other hand, the reserved resources
are shared between many connections. In link protection, resources are reserved
such that the traffic on a failed link can be rerouted around that link. In path
protection, resources are reserved to restore the traffic between the endpoints of a
path upon its failure. We focus in this part on the dedicated path protection (DPP)
scheme. The DPP consists in computing for each demand two paths. One path,
called working or primary path, is used to carry the traffic under normal operation
and the other one, the protection or alternative path, is reserved to reroute the
traffic when failures occur. A general requirement is that these paths have to be
disjoint, so that at least one of them can survive a single failure in the network.
In this part, we investigate the DPP problem in two different contexts. First, in
Chapter 2, we consider single link or node failures in networks with asymmetric
nodes. In this setting, the DPP problem consists in finding link or node-disjoint
paths. Second, in Chapter 3, we consider multiple simultaneous localized failures
captured by the notion of star Shared Risk Link Groups (SRLG). In this setting,
the DPP problem consists in finding SRLG-disjoint paths.





Chapter 2

On Paths in Networks with
Asymmetric Nodes
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In this chapter, we study the problem of finding paths in networks with con-
straints on the internal connectivity of their nodes. This is particularly the case of
optical networks with asymmetric nodes and road networks with prohibited turns.
The results in Section 2.4 are joint work with N. Nisse, B. Momège and M. M. Kanté
and they were presented in WG’2015 [KMMN15a] and Algotel’2015 [KMMN15b].
The results in Section 2.5 are joint work with N. Nisse.

2.1 Introduction

In optical networks, nodes can be highly asymmetric with respect to their switching
capabilities as pointed out in [BLGM09]. This means that an optical node might not
be fully connected internally and that, consequently, signal on a certain ingress port
cannot reach all of the egress ports. As explained in [BLGM09, CHW+13, HTTN11],
a node can be asymmetrically configured for many reasons such as the limitation on
the number of physical ports of the optical switch components and the low cost of
asymmetric nodes compared to symmetric ones. Figure 2.1 from [CHW+13] shows a
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diagram of a 4-degree Reconfigurable Optical Add-Drop Multiplexer (ROADM) with
four directions named east, west, north and south. In Figure 2.1-a, the ROADM is
symmetrically configured and an ingress port can reach anyone of the egress ports.
In Figure 2.1-b, an asymmetric architecture of the ROADM is presented. In this
architecture, cheaper equipment is used at the ports and the optical signal coming
from any of the four directions can only reach two of the other three directions.

Asymmetric nodes are not exclusive to optical networks but can be found in road
networks as well. In road networks, it is possible that some roads are closed due to
traffic jams, construction, etc. It is also frequent to encounter no-left, no-right and
no U-turn signs at intersections. With these prohibited roads and turns, it might
be not possible to go from a given road to any other one at an intersection.

Figure 2.1: Diagram of a 4-degree ROADM [CHW+13]: a. symmetric case; b.
asymmetric case

The existence of asymmetric nodes in a network needs to be accounted for while
solving key problems such as finding one or many disjoint paths. In road networks
for instance, a path should not use a forbidden turn, and in optical networks a path
should cross an asymmetric node according to the way it is internally connected. The
graph theoretic framework we use to study problems in networks with asymmetric
nodes is the graph with forbidden transitions where a transition is a pair of adjacent
edges. In this model, the network is a graph G = (V,E) and the asymmetric nodes
are captured by a set of forbidden transitions F ✓ E⇥E associated to the graph. In
this setting, finding a path or k disjoint paths consists in finding a path or k disjoint
paths avoiding forbidden transitions. A path P = (v

0

, . . . , vq) is avoiding forbidden
transitions if it contains none of the transitions of F , i.e., {{vi�1

, vi}, {vi, vi+1

}} /2 F
for i 2 {1, . . . , q � 1}.
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Related work

Finding a path. When the problem of finding a path avoiding forbidden transi-
tions (PAFT) is studied, a distinction has to be made according to whether the path
to find is elementary (cannot repeat vertices) or non-elementary. Indeed, PAFT can
be solved in polynomial time [GM08, ABP96, SJK03, Win02] for the non-elementary
case while finding an elementary path avoiding forbidden transitions has been proved
NP-complete in [Sze03]. We will discuss in more details results related to each prob-
lem in Section 2.3.

PAFT is a special case of the problem of finding a path avoiding forbidden paths
(PFP) introduced in [VD05]. Given a graph G, two vertices s and t, and a set
S of forbidden paths, PFP aims at finding an s-t-path which contains no path of
S as a subpath. When the forbidden paths are composed of exactly two edges,
PFP is equivalent to PAFT. Many papers address the non-elementary version of
PFP, proposing exact polynomial-time solutions [VD05, HCD09, AL13]. The el-
ementary counterpart has been recently studied in [PG13] where a mathematical
formulation is given and two solution approaches are developed and tested. The
computational complexity of the elementary PFP can be deduced from the com-
plexity of PAFT which has been established in [Sze03]. Szeider proved in [Sze03]
that finding an elementary path avoiding forbidden transitions is NP-complete and
gave a complexity classification of the problem according to the types of the forbid-
den transitions. In more details, in [Sze03], Szeider defines for each vertex v 2 G;
a transition graph T (v). The vertices of T (v) are the edges incident to v and there
is an edge between two vertices of T (v) if and only if the two corresponding edges
form a forbidden transition. Afterwards, he shows that with respect to the class A
including T = {T (v) | v 2 V }, PAFT is either NP-complete or it can be solved in
linear time.

Another problem that is a generalization of PAFT is the problem of finding a
path avoiding forbidden pairs (PAFP). In this problem, we are given a graph G,
two vertices s and t and a set K of forbidden pairs of edges (or vertices) and the
objective is to find a path from s to t which contains at most one edge (or vertex) of
each pair of the set K. When each pair of K consists of adjacent edges, then PAFP
is equivalent to PAFT. This problem has been proven NP-complete in [GMO76] and
in [KP09], other complexity results with respect to the structure of the pairs have
been established.

PAFT is a generalization of the problem of finding a properly colored path in an
edge-colored graph (PEC). Given an edge-colored graph G and two vertices s and t,
the PEC problem aims at finding an s-t-path such that any consecutive two edges
have different colors. It is easy to see that PEC is equivalent to PAFT when the set
of forbidden transitions consists of all pairs of adjacent edges that have the same
color. The PEC problem is polynomial-time solvable in undirected graphs [Sze03]
and it has been proved to be NP-complete in directed graphs [GLMM13] which
directly implies that the PAFT problem is NP-complete in directed graphs1.

1Note that, in [GLMM13], the authors state that their result can be extended to planar directed
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In this chapter, we study the elementary version of the PAFT problem in planar
graphs and more particularly in grids. Our interest for planar graphs is motivated
by the fact that they are closely related to road networks. They are also an inter-
esting special case to study while trying to capture the difficulty of the problem.
Furthermore, to the best of our knowledge, this case has not been addressed be-
fore in the literature. We also study the elementary PAFT in general graphs with
bounded treewidth.

Finding disjoint paths. The problem of finding disjoint paths avoiding forbidden
transitions has not been addressed much before. In the context of dedicated path
protection in optical networks with asymmetric nodes, [HTTN11] study the problem
of finding two vertex-disjoint paths. In the paper, the authors present a heuristic
to solve the problem. The heuristic uses graph transformations in order to adapt
the classical Bhandari’s algorithm [Bha97] used to find 2 vertex-disjoint paths with
minimum cost. These transformations are designed to avoid some trap scenarios
caused by the asymmetric nodes. It is not specified in [HTTN11] whether the paths
to find are elementary or not and the algorithm used to find one path is not detailed.
In the context of road networks, the problem of alternate routing has been studied
in many papers such as [BDGS11, ADGW13, LS12]. In this problem, the objective
is not to find one route but several different ones. The papers discuss the different
criteria to choose good alternate routes and to quantify their quality and develop
algorithms to find them. In [DGSB10], disjointness is considered among the criteria
to choose alternate routes and a classical heuristic is proposed to compute disjoint
routes by iteratively computing the shortest path, adding it to the solution, and
deleting all its edges.

As discussed earlier, finding an elementary path avoiding forbidden transitions
is an NP-complete problem. It is straightforward then that the problem of finding k
disjoint paths (vertex-disjoint or edge-disjoint) is NP-complete as well if the paths
are required to be elementary. For this reason, we focus in this chapter on the
problem of finding k disjoint non-elementary paths avoiding forbidden transitions.
This problem still captures the protection and the alternate routing and at the same
time it is a relaxation of the elementary version and may be hence easier to solve.

Contribution

In this chapter we study two problems; the problem of finding an elementary path
avoiding forbidden transitions and the problem of finding k disjoint non-elementary
paths avoiding forbidden transitions. We establish the following results:

• We demonstrate that when the path is required to be elementary, the PAFT
problem is NP-complete in grids. This NP-completeness result strengthens

graphs. However, there is a mistake in the proof of the corresponding Corollary 7: to make their
directed graph planar, vertices are added when edges intersect. Unfortunately, this transformation
does not preserve the fact that the path is elementary.
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the one of Szeider [Sze03] established in 2003 and extends to the problems of
PFP and PAFP.

• We prove that the problem of finding an elementary path avoiding forbidden
transitions can be solved in time O(k�2

(3k�)

2kn) in n-node graphs with
treewidth at most k and maximum degree �. In other words, we prove that
the PAFT problem is FPT in k +�.

• We show that finding k arc-disjoint non-elementary paths avoiding forbidden
transitions can be done in polynomial time in directed graphs while it is NP-
complete to find k vertex-disjoint non-elementary paths in directed as well
as undirected graphs2. We also prove that finding k vertex-disjoint paths is
polynomial in directed acyclic graphs.

The chapter is organized as follows. In Section 2.2, we present some notations
and definitions. In Section 2.3, we discuss in details the difference between finding an
elementary and non-elementary path avoiding forbidden transitions. Afterwards, in
Section 2.4, we study the problem of finding an elementary path avoiding forbidden
transitions. We present the results obtained for the problem of finding k disjoint
paths avoiding forbidden transitions in Section 2.5. Finally, we give perspectives
and open questions in Section 2.6.

2.2 Notations and definitions

We model the network as an undirected graph G = (V,E), where the vertices
represent the nodes and the edges represent the links. Given a subgraph H of G, a
transition in H is a (not ordered) set of two distinct edges of H incident to a same
vertex. Namely, {e, f} is a transition if e, f 2 E(H) and e\f 6= ;. Let T denote the
set of all transitions in G. Let F ✓ T be a set of forbidden transitions. A transition
in A = T \ F is said allowed.

A walk in G is any sequence (v
0

, v
1

, · · · , vr) of vertices such that ei = {vi, vi+1

} 2
E for any 0  i < r. Given two vertices s and t in G, a walk P = (v

0

, v
1

, · · · , vr) is
called an s-t-walk if v

0

= s and vr = t. If the walk uses distinct edges, i.e., for any
0  i, j < r, ei 6= ej , then it is called a trail (or a non-elementary path). If the walk
uses distinct vertices, i.e., for any 0  i, j  r, vi 6= vj , then it is called a path (or an
elementary path). Finally, a walk, a trail or a path P = (v

0

, v
1

, · · · , vr) is F-valid
if any transition in P is allowed, i.e., {ei, ei+1

} /2 F for any 0  i < r. We say that
k walks, trails or paths are vertex-disjoint if they share no vertex and edge-disjoint
if they share no edge.

Since the model of a directed graph is also relevant in the networks we consider,
and because the problems we consider and particularly the problems of disjoint
trails seem to be different according to the class of graphs, we also prove and state

2After proving these results, we have found out recently that even stronger NP-completeness
results, for the problem of finding vertex-disjoint non-elementary paths, can be deduced from some
related problems. We discuss this in more details in the beginning of Section 2.5.
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results in terms of directed graphs (especially in Section 2.5). For a directed graph
D = (V,A), a transition in a subgraph K of D, is a pair of arcs (u, v), (u0, v0) such
that v = u0. All of the definitions above apply to directed graphs when considering
arcs instead of edges.

2.3 Walks, trails and paths avoiding forbidden transi-

tions

Finding a walk, a trail or a path are equivalent problems in directed and undirected
graphs. However, when the graph has a set of forbidden transitions F and the
walk, the trail or the path is required to be F-valid, the equivalence between the
three problems does not hold. In this section, we discuss the relation between the
following three problems in both directed and undirected graphs.

Problem 1 (Finding a Walk Avoiding Forbidden Transitions, WAFT). Given a
graph G = (V,E), a set F of forbidden transitions and two vertices s, t 2 V . Is
there an F-valid s-t-walk in G?

Problem 2 (Finding a Trail Avoiding Forbidden Transitions, TAFT). Given a graph
G = (V,E), a set F of forbidden transitions and two vertices s, t 2 V . Is there an
F-valid s-t-trail in G?

Problem 3 (Finding a Path Avoiding Forbidden Transitions, PAFT). Given a graph
G = (V,E), a set F of forbidden transitions and two vertices s, t 2 V . Is there an
F-valid s-t-path in G?

Table 2.1 summarizes the complexities of these three problems.

WAFT TAFT PAFT

Directed Graphs
WAFT () TAFT NP-complete [Sze03]

Polynomial [Win02, ABP96]

Undirected Graphs
Polynomial Polynomial NP-complete [Sze03]

(Theorem 1)

Table 2.1: Complexity of WAFT, TAFT, and PAFT.

2.3.1 Directed graphs

In directed graphs, any walk avoiding forbidden transitions contains a trail avoiding
forbidden transitions, and since any trail is a walk, the problems of WAFT and
TAFT are equivalent. The problems TAFT and PAFT are however different, be-
cause the existence of an F-valid trail does not imply the existence of an F-valid
path as illustrated in the example of Figure 2.2. In the example, there exists an F-
valid trail from s to t, namely (s, v

5

, v
6

, v
7

, v
4

, v
2

, v
1

, v
4

, t) while there is no F-valid
path from s to t.
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v1

v5 v7

s t

v2 v3

v4

v6

Figure 2.2: A directed graph G with a set of forbidden transitions
F = {(v

7

, v
4

), (v
4

, t)}

In fact, as pointed out in the introduction, TAFT and PAFT have different
complexities. The PAFT problem is NP-complete [Sze03] while TAFT can be solved
in polynomial time [Win02, ABP96]. The TAFT problem has been addressed in the
context of routing in road networks modeled as directed graphs. Two main solution
approaches can be distinguished:

Dual graph technique. This technique has been used in [Win02, ABP96]. Given
a directed graph D = (V,A), two vertices s and t in V and a set of forbidden
transitions F , a dual graph D0

= (V 0, A0
) is constructed (which is a subgraph of

the line graph [BLS99]). Vertices of D0 correspond to arcs of D and arcs of D0

correspond to allowed transitions. In more details, D0 is built as follows.

• A node va 2 V 0 is associated to each arc a 2 A.

• An arc (va, vb) is added to A0 if (a, b) is an allowed transition in D.

• Two additional vertices s0 and t0 are added to V 0. For each outgoing arc a of
s, an arc (s0, va) is added to A0 and for each ingoing arc b of t0, an arc (vb, t0)
is added to A0.

Finding a trail avoiding forbidden transitions from s to t in D is equivalent to
finding a path from s0 to t0 in D0. In fact, a trail (s, u

1

, . . . , uq, t) in D corresponds
to a path (s0, v

(u1,u2)
, . . . , v

(uq�1,uq)
, t0) and vice-versa.

Labeling algorithm technique. This technique is used in [GM08] to find a
trail avoiding forbidden turns in a directed road network. The authors propose
an algorithm which is an extension of the Dijkstra’s algorithm. The key idea is
to maintain labels and distances at arcs instead of vertices. At the beginning of
the algorithm, temporary labels are assigned to the outgoing arcs of the source.
Afterwards, at every iteration, the temporarily labeled arc at minimum distance
from the source is permanently labeled and the distances to the arcs which form
allowed transitions with it are updated. The algorithm stops when the destination
is reached or all arcs are permanently labeled.
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Remark for DAGs. Note that in DAGs, since there are no cycles, every trail is
a path. This implies that the PAFT problem is equivalent to TAFT and can be
solved in polynomial time in DAGs.

2.3.2 Undirected graphs

Unlike in directed graphs, the existence of an F-valid walk does not imply the
existence of an F-valid trail. This is mainly due to the fact that an edge can be
crossed in two different directions. In the example presented in Figure 2.3, there
exists an F-valid walk from s to t, namely (s, v

5

, v
6

, v
7

, v
4

, v
2

, v
1

, v
3

, v
2

, v
4

, t) while
there is no F-valid trail from s to t. The TAFT problem is then different from WAFT
in undirected graphs, and it is also different from PAFT. In fact, the undirected
version of the example of Figure 2.2 illustrates the fact that the existence of an
F-valid trail does not imply the existence of an F-valid path.

v1

v5

v3

v7

s t

v2

v4

v6

Figure 2.3: An undirected graph G with a set of forbidden transitions
F = {{v

7

, v
4

}, {v
4

, t}}

In undirected graphs, the PAFT problem is NP-complete [Sze03] and WAFT
can be solved in polynomial time as follows. Given a graph G, two vertices s and
t and a set of forbidden transitions F , we first transform G to the corresponding
symmetric digraph D where each edge {u, v} is replaced by two arcs (u, v) and
(v, u). Afterwards we associate to D, the set of forbidden transitions F 0 defined
as follows. If {{u, v}, {v, w}} 2 F , then {(u, v), (v, w)}, {(w, v), (v, u)} 2 F 0 and if
{{u, v}, {v, u}} 2 F , then {(u, v), (v, u)} 2 F 0. It is easy to check that an F-valid
walk from s to t in G is equivalent to finding an F 0-valid walk from s to t in D.
The latter problem can be solved using the techniques described in the previous
subsection.

As for the TAFT problem, we prove the following theorem.

Theorem 1. The TAFT problem can be solved in polynomial time in undirected
graphs with forbidden transitions.

Proof. Let G = (V,E) be a graph, s and t two vertices of V and F a set of forbidden
transitions. We build the dual graph G0

= (V 0, E0
) of G as we explained for the

directed graphs: for each edge e 2 E, we associate a vertex ve in V 0 and we connect
two vertices ve and v0e of V 0 if and only if {e, e0} is an allowed transition. We also
add a vertex s0 (resp. t0) connected to all vertices ve 2 V such that e is incident to
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s (resp. t0) in G. Furthermore, we color the edges of G0 with colors {cv | v 2 V } as
follows. To each edge {ve, vf} such that e\f = {u} of G0, we associate the color cu,
and to each edge {s0, ve} (resp. {ve, t0}), we associate the color cs (resp. ct). We are
going to prove that finding an F-valid trail from s to t in G is equivalent to finding
a properly colored path (PEC) from s0 to t0 in the edge-colored graph G0. As we
have stated in the introduction, in the problem of finding a PEC, we are given an
edge-colored graph Gc and two vertices s and t, the objective is to find an s-t-path
such that any consecutive two edges have different colors. It has been proved in
[Sze03] that finding a PEC can be done in polynomial time in undirected graphs.

Let T = (s, u
1

, . . . , uk, t) be an F-valid trail from s to t in G. Let e
0

= {s, u
1

},
ek = {uk, t} and ei = {ui, ui+1

} for i 2 {1, . . . , k � 1}. The path (s0, ve0 , . . . , vek , t
0
)

is a properly colored path in G0. In fact, for each i 2 {0, . . . , k�1}, fi = {vei , vei+1}
is an edge in G0 since {ei, ei+1

} is an allowed transition in G. Furthermore, if we
suppose that two consecutive edges fi and fi+1

have the same color, then the edges
ei, ei+1

, and ei+2

share a vertex v which implies that the trail T uses twice the edge
ei+1

(in two directions) which is not possible in a trail.
Now let us suppose that there is a properly colored path P = (s0, ve0 , . . . , vek , t

0
)

from s0 to t0 in G0. Let us prove that T = (s, e
0

, . . . , ek, t) is an F-valid trail in
G. Let us first suppose that T is not a trail, this implies that either there exist
0  i < j  k such that ei = ej or that T uses consecutively three edges sharing a
vertex (and hence that one of these edges is used twice in two different directions).
The first case would imply that there exist 0  i < j  k such that vei = vej , and
this is not possible since P is a path. The second case would imply that P is not
properly colored, which is not the case. The sequence of edges T is hence a trail
from s to t. Furthermore, since fi = {vei , vei+1}, for i 2 {0, . . . , k� 1}, is an edge in
G0, then {ei, ei+1

} /2 F . This implies that T is an F-valid trail.

2.4 A path avoiding forbidden transitions

We focus in this section on the PAFT problem. We prove first that the PAFT
problem is NP-complete in grids and then we present an FPT algorithm when the
parameter is the sum of the treewidth and the maximum degree. All proofs are
done for the undirected graph model but they also work for the directed model as
we will point out at the end of the first subsection.

2.4.1 NP-completeness in grids

We start by proving that the PAFT problem is NP-complete in grids. For this
purpose, we first prove that it is NP-complete in planar graphs with maximum degree
at most 8 by a reduction from 3-SAT. Then, we propose simple transformations to
reduce the degree of the vertices and prove that the PAFT problem is NP-complete
in planar graphs with degree at most 4. Finally, we prove it is NP-complete in grids.
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Lemma 1. The PAFT problem is NP-complete in planar graphs with maximum
degree 8.

Proof. The problem is clearly in NP. We prove the hardness using a reduction from
the 3-SAT problem. Let � be an instance of 3-SAT, i.e., � is a boolean formula
with variables {v

1

, · · · , vn} and clauses {C
1

, · · · , Cm}. We build a grid-like planar
graph G where rows correspond to clauses and columns correspond to variables.
We define a set of forbidden transitions F and two vertices s and t in G such that
an F-valid path from s to t passes through every row and for each row passes
through every column. The way the path crosses the columns of a row defines a
truth assignment which satisfies the corresponding clause. Moreover, the way the
graph G is built forces the same truth assignment to be defined at all rows. In what
follows, we present the gadgets used to build a row, the way we build a clause-graph
corresponding to a row and then the way we combine the rows to build the main
graph G.

Please note that the colors are only used to make the presentation easier. Note
also that we use a multigraph in the reduction for the sake of simplicity. This
multigraph can easily be transformed into a simple graph by subdividing each edge
once and without changing the maximum degree. We present in what follows the
gadgets needed to build the graph G.

Gadget Gij. For any i  n and j  m, we define the gadget Gij depicted in
Figure 2.4a and that consists of 4 edge-disjoint paths from sij to tij : two “blue"
paths BTij and BFij , and two “red" paths RTij and RFij defined as follows.

• RTij = (sij , aij , trueij , xij , true0ij , yij , zij , tij);

• BTij = (sij , bij , trueij , xij , true0ij , yij , zij , tij);

• RFij = (sij , xij , yij , cij , falseij , zij , false0ij , tij);

• BFij = (sij , xij , yij , dij , falseij , zij , false0ij , tij).

The forbidden transitions Fij (equivalently the set of allowed transitions Aij)
of the gadget Gij are defined in such a way that the only way to go from sij
to tij is by following one of the paths in {BTij ,BFij ,RTij ,RFij}. It is forbid-
den to use any transition consisting of two edges from two different paths of the
set {BTij ,BFij ,RTij ,RFij}. The allowed transitions are explicitly defined in Ta-
ble 2.4b. Note that in case there are multi-edges between two vertices x and y,
then there are exactly two parallel edges, a blue one and a red one. We denote the
blue edge by {x, y}b and the red edge by {x, y}r. We use this notation in the whole
chapter.

Intuitively, assigning the variable vi to True will be equivalent to choosing one of
the paths BTij or RTij (called positive paths) depicted with full lines in Figure 2.4a.
Respectively, assigning vi to False will correspond to choosing one of the paths BFij

or RFij (called negative paths) depicted with dotted lines in Figure 2.4a.
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trueij

true'ij false'ij

falseij

sij xij yij zij tij

aij bij
cij dij

RTij

BFij

RFij

BTij

(a) Example of the Gadget-graph Gij for variable vi, and 1  j  m. The pink (resp.,
green) edge is added if vi appears positively (resp., negatively) in Cj . If vi /2 Cj , none of

the green nor the pink edges appear.

vertex v allowed transitions around v

aij
{{sij , aij}, {aij , trueij}} and, if vi appears positively in Cj ,
{{sij , aij}, {aij , bij}} and {{bij , aij}, {aij , trueij}}

bij
{{sij , bij}, {bij , trueij}} and, if vi appears positively in Cj ,
{{sij , bij}, {bij , aij}} and {{aij , bij}, {bij , trueij}}

trueij {{aij , trueij}, {trueij , xij}r} and {{bij , trueij}, {trueij , xij}b}
xij

{{trueij , xij}r, {xij , true0ij}r}, {{trueij , xij}b, {xij , true0ij}b},
{{sij , xij}r, {xij , yij}r}, and {{sij , xij}b, {xij , yij}b}

true

0
ij {{xij , true0ij}r, {true0ij , yij}r} and {{xij , true0ij}b, {trueij , yij}b}

yij
{{xij , yij}r, {yij , cij}}, {{xij , yij}b, {yij , dij}},
{{true0ij , yij}r, {yij , zij}r}, and {{true0ij , yij}b, {yij , zij}b}

cij
{{yij , cij}, {cij , falseij}} and, if vi appears negatively in Cj ,
{{yij , cij}, {cij , dij}} and {{dij , cij}, {cij , falseij}}

dij
{{yij , dij}, {dij , fasleij}} and, if vi appears negatively in Cj ,
{{yij , dij}, {dij , cij}} and {{cij , dij}, {dij , falseij}}

falseij {{cij , falseij}, {falseij , zij}r}, and {{dij , falseij}, {falseij , zij}b}
zij

{{falseij , zij}r, {zij , false0ij}r}, {{falseij , zij}b, {zij , false0ij}b},
{{yij , zij}r, {zij , tij}r}, and {{yij , zij}b, {zij , tij}b}

(b) Allowed transitions Aij

Figure 2.4: Gadget Gij and the corresponding set of allowed transitions Aij

So far, it is a priori not possible to start from sij by one path and arrive in tij
by another path. In particular, the color by which sij is left must be the same by
which tij is reached. If Variable vi appears in Clause Cj , we add one edge to Gij as
follows. If vi appears positively in Cj , we add the pink edge {aij , bij} that creates a
“bridge" between BTij and RTij . Similarly, if vi appears negatively in Cj , we add
the green edge {cij , dij} that creates a “bridge" between BFij and RFij . When the
gadget Gij contains a pink (resp. green) edge, all the transitions containing the
pink (resp. green) edge are allowed; this makes it possible to switch between the
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positive (resp. negative) paths BTij and RTij (resp. BFij and RFij) when going
from sij to tij . Hence, if vi appears in Cj , it will be possible to start from sij with
one color and arrive to tij with a different one. Note that, the type of path (positive
or negative) cannot be modified between sij and tij .

We characterize the Fij-valid sij-tij-paths in Gij with the following straightfor-
ward claims.

Claim 1. The Fij-valid sij-tij-paths in Gij are RTij ,BTij ,RFij ,BFij and

• if variable vi appears positively in Clause Cj:

– the path RBTij that starts with the first edge {sij , aij} of RTij, then uses
pink edge {aij , bij} and ends with all edges of BTij but the first one;

– the path BRTij that starts with the first edge {sij , bij} of BTij, then uses
pink edge {aij , bij} and ends with all edges of RTij but the first one;

• if variable vi appears negatively in Clause Cj:

– the path RBFij that starts with the subpath (sij , xij , yij , cij) of RFij, then
uses green edge {cij , dij} and ends with the subpath of BFij that starts at
dij and ends at tij;

– the path BRFij that starts with the subpath (sij , xij , yij , dij) of BFij, then
uses green edge {dij , cij} and ends with the subpath of RFij that starts at
cij and ends at tij;

Claim 2. Let P be an Fij-valid sijtij-paths in Gij. Then, either

• P passes through trueij and true0ij and does not pass through falseij nor
false0ij, or

• P passes through falseij and false0ij and does not pass through trueij nor
true0ij.

Claim 3. Let P be an Fij-valid sijtij-paths in Gij. Then the first and last edges
of P have different colors if and only if P uses a green or a pink edge, i.e., if
P 2 {RBTij ,BRTij ,RBFij ,BRFij}.

Clause-graph Gj. For any j  m, the Clause-gadget Gj is built by combining
the graphs Gij , i  n, in a "line" (see Figure 2.5). The subgraphs Gij are combined
from "left to right" (for i = 1 to n) if j is odd and from "right to left" (for i = n
to 1) otherwise. In more details, for any j  m, Gj is obtained from a copy of each
gadget Gij , 1  i  n, and two additional vertices sj and tj as follows:

• If j is odd, the subgraph Gj starts with a red edge {sj , s1j} and then, for
1 < i  n, the vertices sij and ti�1,j are identified. Finally, there is a blue
edge from tnj to vertex tj .
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• If j is even, the subgraph Gj starts with a blue edge {sj , snj} and then, for
1 < i  n, the vertices tij and si�1,j are identified. Finally, there is a red edge
from t

1j to vertex tj .

The forbidden transitions Fj include, besides all transitions in Fij , i = 1, . . . , n,
new transitions which are defined such that, when passing from a gadget Gij to
the next one, the same color must be used. This means that if we enter a vertex
tij = si,j+1

by an edge with a given color, the same color must be used to leave this
vertex. However, in such vertices, we can change the type (positive or negative) of
path. These new transitions are explicitly given in Table 2.5c.

Note that if we enter a Clause-graph with a red (resp. blue) edge, we can only
leave it with a blue (resp. red) edge. This means that a path must change its color
inside the Clause-graph, and must hence use a pink or green edge in some gadget-
graph. The use of a pink (resp. green) edge forces a variable that appears positively
(resp. negatively) in the clause to be set to true (resp. false) and validates the
Clause.

The key property of Gj relates to the structure of Fj-valid paths from sj to tj ,
which we summarize in Claims 4 and 5.

Claim 4. Any Fj-valid path P from sj to tj in Gj consists of the concatenation of:

Case j odd. the red edge {sj , s1j}, then the concatenation of Fij-valid paths from
sij to tij in Gij, for 1  i  n in this order (from i = 1 to n), and finally the
blue edge {tnj , tj};

Case j even. the blue edge {sj , snj}, then the concatenation of Fij-valid paths from
sij to tij in Gij, for 1  i  n in the reverse order (from i = n to 1), and
finally the red edge {t

1j , tj}.
By the previous claim, for any Fj-valid path P from sj to tj , the colors of the

first and last edges differ. Hence, by Claim 3 and the definition of the allowed
transitions between two gadgets, we have the following claim.

Claim 5. Any Fj-valid path P from sj to tj must use a green or a pink edge in a
gadget Gij for some 1  i  n.

Main graph. To conclude, we have to ensure that the assignment of the variables
is coherent between the clauses. For this purpose, let us combine the subgraphs Gj ,
j  m, as follows (see Figure 2.6). First, for any 1  j < m, let us identify tj and
sj+1

. Then, some vertices (depicted in dark grey in Fig 2.6) of Gij are identified
with vertices of Gi,j+1

in such a way that using a positive (resp., negative) path in
Gij forces the use of the same type of path in Gi,j+1

. That is, the choice of the
path used in Gij is transferred to Gi,j+1

and therefore the same truth assignment
for Variable vi is defined at lines j and j + 1.

Namely, for each 1  j < m and for each 1  i  n, we identify the vertices
truei,j+1

and false0ij on the one hand, and the vertices true0ij and falsei,j+1

on
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s1j t1j t2j t3j t4j

tj

sj

v1 v2 v3 v4negative in positive in does not appear in positive in CjCjCjCj

(a) Clause-graph Gj for a Clause Cj = v̄1 _ v2 _ v4 in a formula with 4 Variables.

s1j t1j t2j t3j t4j

tj

sj

v1 v2 v3 v4is assigned True is assigned True is assigned False is assigned True

(b) The bold path corresponds to an assignment of v1, v2 and v4 to True, and of v3 to
False.

vertex v allowed transitions around v

s1j {{sj , s1j}, {s1j , aij}} and {{sj , s1j}, {s1j , x1j}r}
{{zij , tij}r, {tij , ai+1,j}}, {{zij , tij}r, {tij , xi+1,j}r},

ti,j = si+1,j {{zij , tij}b, {tij , bi+1,j}}, {{zij , tij}b, {tij , xi+1j}b},
1  i < n {{false0ij , tij}r, {tij , ai+1,j}}, {{false0ij , tij}r, {tij , xi+1,j}r},

{{false0ij , tij}b, {tij , bi+1,j}}, and {{false0ij , tij}b, {tij , xi+1,j}b}
tnj {{znj , tnj}b, {tnj , tj}} and {{false0nj , tnj}b, {tnj , tj}}

(c) Allowed transitions around vertices sij , tij

Figure 2.5: Gadget Gj (j is odd) and allowed transitions around the vertices sij
and tij

the other hand to obtain the "grey" vertices. Finally, forbidden transitions F of
G, include, besides all transitions in Fj for j = 1, . . . ,m, new transitions which are
defined in order to forbid "crossing" a grey vertex, i.e., it is not possible to go from
Gi,j to Gi,j+1

via a grey vertex (see Figure 2.6). The following claims present the
key properties of an F-valid path in G. Claim 6 is straightforward and its proof is
omitted.

Claim 6. Any F-valid path P from s
1

to tm in G consists of the concatenation of
Fj-valid paths from sj to tj in Gj from j = 1 to m.

Claim 7. Let P be an F-valid s
1

-tm-path in G. Then, for any 1  i  n, either

• for any 1  j  m, the subpath of P between sij and tij passes through trueij
and true0ij and does not pass through falseij nor false0ij, or
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• for any 1  j  m, the subpath of P between sij and tij passes through falseij
and false0ij and does not pass through trueij nor true0ij.

Proof of claim. By Claims 4 and 6, for any 1  i  n and any 1  j  m, there is
a subpath Pij of P that goes from sij to tij . Moreover, the paths Pij are pairwise
vertex-disjoint (since the path P does not use a vertex more than once).

For 1  i  n, by Claim 2, Pi1 either passes through truei1 and true0i1, or
through falsei1 and false0i1. Let us assume that we are in the first case (the second
case can be handled symmetrically). We prove by induction on j  m that Pij

passes through trueij and true0ij and does not pass through falseij nor false0ij .
Indeed, if P passes through trueij = false0i,j+1

and true0ij = falsei,j+1

, then Pi,j+1

cannot use falsei,j+1

nor false0i,j+1

since Pij and Pi,j+1

are vertex-disjoint. By
Claim 2, Pi,j+1

passes through truei,j+1

and true0i,j+1

.
⇧

t4j+1t3j+1t2j+1t1j+1 s4j+1

s1j t1j t2j t3j t4j

sj

tj+1

tj=sj+1

Figure 2.6: Combining Cj = v̄
1

_ v
2

_ v
4

and Cj+1

= v
2

_ v̄
3

_ v̄
4

(Case j odd).
The bold path corresponds to an assignment of v

1

, v
2

and v
4

to True, and of v
3

to
False and it satisfies both clauses.

Note that (G,F) can be constructed in polynomial-time. Moreover, G is clearly
planar with maximum degree 8. Hence, the next claim allows to prove Lemma 1.

Claim 8. � is satisfiable if and only if there is an F-valid s
1

-tm-path in G.

Proof of claim. Let ' be a truth assignment which satisfies �. We can build an
F-valid s

1

-tm-path in G as follows. For each row 1  j  m, we build a path Pj

from si to tj by concatenating the paths Pij , 1  i  n, which are built as follows.
Among the variables that appear in Cj , let vq be the variable with the smallest
index, which satisfies the clause. Note that this choice is arbitrary and that we can
choose any variable satisfying the clause.

• For 1  i < q, if '(vi) = true, then Pij = RTij if j is odd and Pij = BTij if
j is even. If '(vi) = false, then Pij = RFij if j is odd, and Pij = BFij if j is
even.
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• For i = q, if '(vi) = true, then Pij = RBTij if j is odd, and Pij = BRTij if j
is even. If '(vis) = false, then Pij = RBFij if j is odd, and Pij = BRFij if
j is even.

• For q < i  n, if '(vi) = true, then Pij = BTij if j is odd, and Pij = RTij

otherwise. If '(vi) = false, then Pij = BFij if j is odd, and Pij = RFij

otherwise.

The path P obtained from the concatenation of paths Pj for 1  j  m is an F-valid
path from s

1

to tm.
Now let us suppose that there is an F-valid path P from s

1

to tm. According
to Claim 7, for any 1  i  n, for any 1  j  m, P passes through trueij and
true0ij and does not pass through falseij and false0ij or for any 1  j  m, P passes
through falseij and false0ij and does not pass through trueij and true0ij . Let us
then consider the truth assignment ' of � such that for each 1  i  n:

• If P uses trueij and true0ij in all rows 1  j  m, then '(vi) = true.

• If P uses falseij and false0ij in all rows 1  j  m, then '(vi) = false.

By Claim 7, ' is a valid truth assignment which means that each variable is assigned
either the value true or the value false and not both. We need to prove that '
satisfies �. According to Claim 6, for each row 1  j  m, P contains an Fj-valid
path Pj from sj to tj . Each path Pj uses a green or a pink edge as stated by Claim 3.
With respect to the possible ways to use a green or a pink edge which are stated in
Claim 2, the use of a pink edge in Pj forces Pj (and hence P ) to use the vertices
trueij and true0ij for a variable vi that appears positively in Cj . Similarly, the use
of a green edge in Pj forces Pj (and hence P ) to use the vertices falseij and false0ij
for a variable vi that appears negatively in Cj . This means that for each clause Cj ,
for one of the variables that appear in Cj which we denote vq, '(vq) = true (resp.
'(vq) = false) if vq appears positively (resp. negatively) in Cj . Thus, the truth
assignment ' satisfies �.

⇧
With this we have proved that the PAFT problem is NP-complete in planar

graphs with maximum degree 8.

Lemma 2. The PAFT problem is NP-complete in planar graphs with maximum
degree 4.

Proof. The graph G used in the reduction of the proof of Lemma 1 is planar and
each vertex of G has either degree 8, degree 5 or degree at most 4. Let E be the
planar embedding of G that is obtained by embedding the smaller gadgets as in
Figures 2.4a, 2.5, and 2.6. We transform G into a planar graph G0 with maximum
degree 4 and an associated set of forbidden transitions F 0 such that finding an F-
valid path in G is equivalent to finding an F 0-valid path in G0. The transformation
goes as follows.
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Vertices of degree 5. The vertices of degree 5 in G are the vertices s
1j and tnj

for j odd , and snj and t
1j for j even. We transform these to vertices of degree 3 as

follows. For j odd, we remove the two blue edges incident to s
1j and the two red

edges incident to tnj . For j is even, we remove the two red edges incident to snj and
the two blue edges incident to t

1j . The removed edges do not belong to any allowed
transitions around the vertices s

1j , tnj , snj and t
1j . Therefore, their removal does

not affect the elementary F-valid paths from s
1

to tm.

Vertices of degree 8. We replace each vertex v of degree 8 by a gadget gv of
maximum degree 4. Gadget gv is designed such that it can be crossed at most once
by a path of G0 and only if the edges used to enter and leave gv correspond to an
allowed transition around v. According to its corresponding transitions and to the
planar embedding of its adjacent vertices, a vertex v of degree 8 of G is of one of 3
different types. We present in what follows these types as well as the corresponding
gadget gv for each type.

Type 1: The edges incident to v are E(v) = {e, e0, f, f 0, g, g0, h, h0} and the allowed
transitions around v are A(v) = {{e, e0}, {f, f 0}, {g, g0}, {h, h0}}. The edges
incident to v appear in the planar embedding E as presented in Figure 2.7a.
In the graph G, v is one of the vertices xij or zij , 1  i  n, 1  j  m.

In this case, gv is built as follows. For each ↵ 2 E(v), a vertex v↵ is created.
For each {↵,�} 2 A(v), vertices v↵ and v� are linked with a path P↵� of
length four. The four paths P↵� , {↵,�} 2 A(v) are pairwise intersecting in
distinct vertices as illustrated in Figure 2.7b. The allowed transitions in gv
are the transitions of the paths P↵� , {↵,�} 2 A(v). Now to replace v with gv
in G, each edge ↵ 2 E(v) of G is linked to vertex v↵ of gv. The gadget gv is
planar, and edges ↵ 2 E(v) are connected to it in the same "order" they are
connected to v in the planar embedding E of G as illustrated in Figure 2.7.

Note the gadget gv cannot be crossed twice with the same path (i.e. no path
has two subpaths in gv), otherwise the path is not simple. Moreover, gv can
be crossed if and only if the edges used to enter and leave form an allowed
transition around v.

Type 2: The edges incident to v are E(v) = {e, e0, f, f 0, g, g0, h, h0} and the allowed
transitions around v are A(v) = {{e, e0}, {f, f 0}, {g, g0}, {h, h0}}. The edges
incident to v appear in the planar embedding E as presented in Figure 2.8a.
In the graph G, v is one of the vertices trueij , true0ij , falseij , false0ij , or yij ,
1  i  n, 1  j  m.

In this case, gv is built as follows. For each ↵ 2 E(v), a vertex v↵ is created.
For each {↵,�} 2 A(v), vertices v↵ and v� are linked with a path P↵� of
length 7. Each two of the four paths P↵� , {↵,�} 2 A(v) intersect in two
different vertices as illustrated in Figure 2.8b. The allowed transitions in gv
are the transitions of the paths P↵� , {↵,�} 2 A(v). Now to replace v with gv
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{g, g0}, {h, h0}} (edges are ordered as in
the planar embedding E of G)
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(b) Gadget gv: the paths Pee0 , Pff 0 ,Pgg0 , and
Phh0 are respectively the pink, yellow, green
and black paths. Transitions around vertices
v↵, ↵ 2 E(v) and transitions of paths Pee0 ,

Pff 0 ,Pgg0 , and Phh0 are allowed

Figure 2.7: Type 1

in G, each edge ↵ 2 E(v) of G is linked to vertex v↵ of gv. The gadget gv is
planar, and edges ↵ 2 E(v) are connected to it in the same "order" they were
connected to v in the planar embedding E of G as illustrated in Figure 2.8.

Note that the gadget gv cannot be crossed twice with the same path (i.e. no
path has two subpaths in gv), otherwise the path is not simple. Moreover, gv
can be crossed if and only if the edges used to enter and leave form an allowed
transition around v.
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(a) A vertex v of degree 8 and allowed
transitions A(v) = {{e, e0}, {e, f 0},

{f, f 0}, {f, e0}, {g, g0}, {g, h0}, {h, h0},
{h, g0}} (edges are ordered as in the

planar embedding E of G)

e

f

g

h

e'

h'

v

v

v

v

v

v

ve

g

h h'

g'

f'

e'

vf f'

g'

(b) Gadget gv: the paths Pee0 , Pff 0 ,Pgg0 ,
and Phh0 are respectively the pink,

yellow, green and black paths.
Transitions around vertices v↵, ↵ 2 E(v)
and transitions of paths Pee0 , Pff 0 ,Pgg0 ,

and Phh0 are allowed

Figure 2.8: Type 2

Type 3: The edges incident to v are E(v) = {e, e0, f, f 0, g, g0, h, h0} and the
allowed transitions around v are A(v) = {{e, e0}, {e, g0}, {f, f 0}, {f, h0},
{g, g0}, {g, e0}, {h, h0}, {h, f 0}}. The edges incident to v appear in the pla-
nar embedding E as depicted in Figure 2.9a. In the graph G, v is one of the
vertices sij , 1  i  n, 1  j  m.

In this case, gv is built as follows. Let A
1

(v) = {{e, e0}, {f, f 0}, {g, g0}, {h, h0}}.
For each {↵,�} 2 A

1

(v), vertices v↵ and v� are linked with a path P↵� of length
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(b) Gadget gv: the paths Pee0 , Pff 0 ,Pgg0 ,
and Phh0 are respectively the pink,

yellow, green and black paths.
transitions around vertices v↵,

↵ 2 E(v), transitions of the paths Pee0 ,
Pff 0 ,Pgg0 , and Phh0 , and transitions

containing the orange edge are allowed

Figure 2.9: Type 3

6. Each two of the paths P↵� intersect in one or two vertices as illustrated in
Figure 2.9b. Furthermore, we add two edges linking the paths Pee0 and Pgg0 ,
and Pff 0 and Phh0 , respectively, depicted by orange edges in Figure 2.9b. Now
to replace v with gv in G, each edge ↵ 2 E(v) of G is linked to vertex v↵ of
gv. The gadget gv is planar, and edges i 2 E(v) are connected to it in the
same "order" they were connected to v in the planar embedding E of G as
illustrated in Figure 2.9.

For {↵,�} 2 A(v) \ A
1

(v), let ↵0 and �0 be the vertices such that
{↵,↵0}, {�,�0} 2 A

1

(v). We define the path P↵� , as the path which starts
at v↵, uses a subpath of P↵↵0 , an orange edge and then a subpath of P��0 and
then ends at vr.

Note that the gadget gv cannot be crossed twice with the same path (i.e. no
path has two subpaths in gv), otherwise the path is not simple. Moreover, gv
can be crossed if and only if the edges used to enter and leave form an allowed
transition around v.

The graph G0 obtained from G after applying the transformations described
above is planar and has maximum degree 4. The set of forbidden transitions F 0

consists of the transitions of the set F and the forbidden transitions of the gadgets
gv as described above.

Let us now suppose that there is an F-valid path P from s to t in G. Let P 0 be
the s-t-path of G0 constructed as follows: P 0 uses all edges used by P . Furthermore,
if P uses a degree 8 vertex with a transition {e, e0} then P 0 uses e, subpath Pee0 ,
and e0. The path P 0 is F 0-valid.

Now, let us suppose that there is an F 0-valid path P 0 from s to t in G0. If P 0

only uses edges from G, then it can be considered as an F-valid path from s to
t in G. If P 0 uses an edge that is not in G, then P 0 crosses one of the gadgets
gv. Gadgets gv are designed such that they can be crossed at most once by a path
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(b) A planar grid embedding of G (v is
used to denote Q(v))

Figure 2.10: Example of a planar grid embedding

because otherwise the path is not simple, furthermore, the edges used to enter and
leave the gadget form an allowed transition in G. This implies that the intersection
of each gadget gv with the path P 0 is either the empty set or exactly one subpath of
P 0. If it is a subpath then the edges surrounding it in P 0 form an allowed transition
in G. We can then remove the edges of P 0 that do not belong to G to obtain an
F-valid path P in G.

Theorem 2. The PAFT problem is NP-complete in grids.

Proof. To prove the theorem we use the notion of planar grid embedding [Tam87].
A planar grid embedding of a graph G is a mapping Q of G into a grid such that:

• Q maps each vertex v of G into a distinct vertex Q(v) of the grid, and

• Q maps each edge e = (u, v) of G into a path of the grid Q(e) whose endpoints
are Q(u) and Q(v), the mappings of the vertices linked by e, and

• for every pair {e, e0} of edges of G, the corresponding paths Q(e) and Q(e0)
have no points in common, except, possibly, the endpoints.

Figure 2.10 illustrates an example of a planar grid embedding of a planar graph G.
In bold are the paths corresponding to the edges of G in the planar grid embedding.

It has been proved in [Val81], that if G = (V,E) is a planar graph with n
vertices and maximum degree �  4, then a planar grid embedding of G in a grid
of size at most 9n2 can be found in polynomial-time. Let us consider an instance
of the problem of finding a path avoiding forbidden transitions in a planar graph
G = (V,E) of maximum degree at most 4 with a set of allowed transitions A. Let
Q be a grid planar embedding of G into a grid K of size at most O(|V |2). Finding
a PAFT between two nodes s and t in G with the set A is equivalent to finding a
PAFT between the nodes Q(s) and Q(t) in K with the set of allowed transitions A0

defined such that:

• For each e 2 E, all the transitions in the path Q(e) are allowed.
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• For each {e, e0} 2 A, the pair of edges of Q(e) and Q(e0), which share a vertex,
is an allowed transition.

• All other transitions are forbidden.

Sometimes, vertices s and t might be mapped to adjacent vertices in K while they
are not adjacent in G. This would make the problem of solving PAFT between Q(s)
and Q(t) in K easier than solving PAFT between s and t in G. To avoid this, we
always make sure that except for Q((s, t)), no other path between Q(s) and Q(t)
consists of only one edge in K, if it is not already the case, we increase the size of
K to endure that the distance between Q(s) and Q(t) is at least 2.

Since we have proved in Lemma 2 that PAFT is NP-complete in planar graph
with maximum degree 4, Theorem 2 follows.

Remark for directed graphs. Please note that all of the constructions in the
NP-completeness proofs can be done with directed graphs, which implies that PAFT
is NP-complete in directed grids. In fact, the gadgets Gij which are the elementary
components of our construction, can be built with directed paths RTij ,BTij ,RFij

and BFij instead of undirected ones. As for the edges {aij , bij} and {cij , dij}, they
can be replaced by arcs (aij , bij) and (cij , dij) if j is odd and arcs (bij , aij) and
(dij , cij) otherwise. In the clause-graphs Gj , we can have arcs (sj , s1j) and (tnj , tn)
replace of the edges {sj , s1j} and {tnj , tn}. Now, to transform the vertices from
a degree 8 to a degree 4, it is always possible to use the mini-gadgets gv but with
directed paths instead of undirected ones. Finally, a directed graph of degree at most
4 can be embedded in a directed grid by first embedding its undirected underlying
graph and then directing the edges of the embedding.

2.4.2 Parameterized complexity

On the positive side, by using dynamic programming on a tree-decomposition of the
input graph, we prove that the PAFT problem is FPT when the parameter is the
sum of the treewidth and the maximum degree.

A tree-decomposition of a graph [RS86] is a way to represent G by a family of sub-
sets of its vertex-set organized in a tree-like manner and satisfying some connectivity
property. The treewidth of G measures the proximity of G to a tree. More formally,
a tree-decomposition of G = (V,E) is a pair (T,X ) where X = {Xu|u 2 V (T )} is a
family of subsets, called bags, of V , and T is a tree, such that:

• S

u2V (T )

Xu = V ;

• for any edge {a, b} 2 E, there is a bag Xu (for some node u 2 V (T )) containing
both a and b;

• for any vertex a 2 V , the set {u 2 V (T )|a 2 Xu} induces a subtree of T .
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Figure 2.11: Types of nodes in a nice tree-decompositions

The width of a tree-decomposition (T,X ) is maxu2V (T )

|Xu| � 1. The treewidth of
G, denoted by tw(G), is the minimum width over all possible tree-decompositions
of G.

Computing an optimal tree-decomposition - i.e., with width tw(G) - is NP-
complete in the class of general graphs G [ACP87]. For any fixed k � 1, Bodlaender
designed an algorithm that computes, in time O(kk

3
n), a tree-decomposition of

width k of any n-node graph with treewidth at most k [Bod96]. Very recently,
a single-exponential (in k) algorithm has been proposed that computes a tree-
decomposition with width at most 5k in the class of graphs with treewidth at most
k [BDD+13].

Many NP-hard problems can be solved in polynomial time in the class of graphs
of bounded treewidth using dynamic programming algorithms. For instance, the
Maximum Independent Set, the 3-Coloring, the Vertex Cover, and the Hamiltonian
cycle are all FPT when parametrized by the treewidth of the graph. A notion that
is usually used to prove such results and that we will also use in what follows is the
nice tree-decomposition [Klo94, CNP+11].

Definition 1. A rooted tree-decomposition ((T,X ), r) of G is nice if r 2 T , T is
rooted in r and for every node u 2 V (T ):

• u has no children and |Xu| = 1 (u is called a leaf node), or

• u has one child v with Xu ⇢ Xv and |Xu| = |Xv| � 1 (u is called a forget
node),or

• u has one child v with Xv ⇢ Xu and |Xu| = |Xv|+ 1 (u is called an introduce
node), or

• u has two children v and w with Xu = Xv = Xw (u is called a join node.).

The following lemma is a well-known result about tree-decomposition [Klo94].

Lemma 3. [Klo94] When given a tree-decomposition of width k of G, in polynomial
time we can construct a nice tree-decomposition (T,X ) of G of width at most k, with
|V (T )| 2 O(kn), where n = |V (G)|.

In this section, we use the nice tree-decomposition and dynamic programming
techniques described in a general context in [Bod97, TP97], to prove Theorem 3 .
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Our approach is similar to the one used to find Hamiltonian cycles in graphs with
bounded treewidth and which is nicely presented in [Mar10].

Theorem 3. The PAFT problem is FPT when parameterized by k +� where k is
the treewidth and � is the maximum degree. In particular, given a graph G with n
vertices and maximum degree �, and a tree-decomposition of G with width k, PAFT
can be solved in G in time O(k�2

(3k�)

2kn).

Proof. Let G = (V,E) be a graph with bounded treewidth k, F ✓ E ⇥ E a set
of forbidden transitions, and s and t two vertices of V . We would like to find the
shortest F-valid path P from s to t.

Let e and f be two edges incident to s and t, respectively. We define Ge,f as the
graph obtained from G, by deleting all edges incident to s and t except for e and
f . Finding the shortest F-valid path from s to t in G is equivalent to finding the
shortest path among all shortest F-valid paths from s to t in Ge,f , for each possible
pair (e, f). In the following we will present how to find the shortest F-valid path P
from s to t in Ge,f . To obtain the solution in G, we will need to repeat the algorithm
at most �

2 times.
Let (T,X ) be a nice tree-decomposition of width k of Ge,f . To minimize the

number of cases to handle in the proof, we assume that s appears in one introduce
bag which is the root of T and t in two bags, a leaf and its introduce parent. This is
easy to obtain since we can first find a tree decomposition of G\{s, t} and then add
a node containing e = {s, x} adjacent to a bag containing x and a node containing
{t, y} adjacent to a bag containing y. Finally, we root this tree-decomposition at
the bag containing s and make the tree-decomposition nice.

Let A ✓ V , G[A] is the subgraph of Ge,f induced by the vertices A. For each
u 2 V (T ) we denote by Xu,Tu and Vu the bag corresponding to u (i.e. the set Xu of
vertices of G), the subtree of T rooted at u, and the union of the bags corresponding
to the nodes of Tu, respectively. We also denote by �Xu, the set of vertices Xu\Xv,
where v is the parent of u and u is not the root of the tree. If u is the root, we set
�Xu = ;.

If there exists an F-valid path P from s to t, then the intersection of this path
with G[Vu] for a node u 2 T , which is not the root, is a collection of F-valid paths
with endpoints exclusively in �Xu[{t} as illustrated in Figure 2.12. We denote this
collection by Pu = G[Vu]\P . With respect to Pu, vertices in Xu can be partitioned
into three subsets (see Figure 2.12):

• X0

u, which are the vertices of Xu that are not in Pu.

• X1

u, which are the vertices of Xu that have degree 1 in Pu. Note that X1

u ⇢
�Xu [ {t}.

• X2

u, which are the vertices of Xu that have degree 2 in Pu.

To encode the collection of paths Pu at a node u, we need besides the sets X0

u,
X1

u, and X2

u, two more sets which are:
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Figure 2.12: Examples of the intersection of P with Gu

• Mu, which is a matching of the vertices of X1

u. This matching decides which
vertices are endpoints of the same path in Pu. According to whether t is in
Vu or not, M is either a matching of the vertices of X1

u, or a matching of the
vertices of X1

u [ {t}.

• Su, which for each vertex v in X1

u, contains an edge incident to v. This set
decides which edges incident to X1

u are in Pu and it is needed to be able to
extend Pu (using only allowed transitions) to a new collection of F-valid paths
in the dynamic programming approach.

For each node u 2 T , we say that (X,Y, Z,M, S) is a realization of u if there ex-
ists a set of F-valid paths Pu in Vu such that (X,Y, Z,M, S) = (X0

u, X
1

u, X
2

u,Mu, Su).
To find an F-valid path from s to t, we need to check whether there exists a re-
alization (X,Y, Z,M, S) of the root such that Y = {s}; the collection of paths
corresponding to such a realization is an F -valid path. To do that, we compute at
each node u of the tree-decomposition, from the leaves to the root, all of the realiza-
tions of u. Since several path collections may correspond to one realization, we only
keep for a realization (X,Y, Z,M, S) the collection which minimizes the number of
edges which we denote by S((X,Y, Z,M, S)). This way the F-valid path we obtain
at the end (if there exists one) is a shortest path.

For each node u 2 T , there are at most 3

k+1 possible partitions of the vertices
of Xu into the 3 different sets, kk possible matchings for a set of k elements and �

possible edges for each element of X1

u. Hence, at node u there are at most 3k+1kk�k

realizations. Let us see how to decide if (X,Y, Z,M, S) is a realization of a node u
supposing that all the realizations of its children have been computed.

For two collection of paths A and B, min(A,B), is the collection with the mini-
mum number of edges. We distinguish the following cases.

Node u is a leaf. We have Xu = {a}. The only realization of u is
({a}, ;, ;, ;, ;) and the corresponding collection of subpaths is the empty set, i.e.
S(({a}, ;, ;, ;, ;)) = ;.
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Node u is a forget node. Let v be the child of u. We have Xu = Xv \ {a} and
we can distinguish two cases:

• If a 6= t, then Ru = (X,Y, Z,M, S) is a realization of u if and only if R1

v =

(X [ {a}, Y, Z,M, S) or R2

v = (X,Y, Z [ {a},M, S) are realizations of v. In
this case S(Ru) = min(S(R1

v),S(R2

v)) (see Figure 2.13a).

• If a = t, then Ru = (X,Y, Z,M, S) is a realization of u if and only if Rv =

(X,Y [ {a}, Z,M, S) is a realization of v. In this case, S(Ru) = S(Rv) (see
Figure 2.13b).

To compute all the realizations of a forget node, we need at most O(3

kkk�k
) steps.
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Figure 2.13: Finding solutions at a forget node: u is a forget node and v is its child
and Xu = Xv \ {a}

Node u is a join node. Let v and v0 be its children. Recall that Xu = Xv = Xv0 .
For any two realizations of v and v0 we check if the union of the two solutions gives
a realization of node u. The union U of two solutions gives a realization of node u if
in U , every vertex v of Xu has degree at most two and the transitions used around
v are allowed (see Figure 2.14). For each realization of u, we keep the solution with
the minimum number of edges.

Since there are at most (3

k+1kk�k
)

2 pairs of realizations at v and v0 and for
each pair of solutions we need to check the degree and the transitions around each
vertex of Xu, we need at most O((3

kkk�k
)

2k) steps to find all of the realizations at
a join node.

Node u is an introduce node. Let v be the child of u. We have Xu = Xv [ {a}
and all neighbors of a in Vu are in Xu. Note that a 6= t since t appears in a leaf
node and its introduce parent. We can distinguish the following cases:

• If a 2 X, then (X,Y, Z,M, S) is a realization of u if and only if (X \
{a}, Y, Z,M, S) is a realization of v (see Figure 2.15a).

• if a 2 Y , let {a, b} be the edge incident to a in S. Since all neighbors of a
in Vu are in Xu, then b 2 Xu \Xv. If b = t, then Xu = {a, b} (recall that t
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Figure 2.14: Finding solutions at a join node: u is a join node and v and v0 are its
children

appears only in a leaf and its introduce parent) and Ru = (;, {a, t}, ;, {(a, t)},
{{a, t}}) is the only realization of u and S(Ru) is the edge {a, t}. If b 6= t, we
have the following cases:

– If b 2 Y , then Ru = (X,Y, Z,M, S) is a realization if and only if
(a, b) 2 M , the edge incident to b in S is {a, b} and Rv = (X [ {b}, Y \
{a, b}, Z,M 0, S0

) where M 0
= M \ {(a, b)} and S0

= S \ {{a, b}} is a re-
alization of v. In this case S(Ru) = S(Rv) [ {{a, b}} (see Figure 2.15b).

– If b 2 Z, then Ru = (X,Y, Z,M, S) is a realization of u if and only if v has
a realization among the collections Rc

v = (X,Y \{a}[{b}, Z \{b},M 0, S0
)

where M 0
= (M \ (a, c)) [ (b, c) and S0

= (S \ {a, b}) [ {b, c} where c is
a neighbor of b in Vv and {{a, b}, {b, c}} /2 F (there are at most � such
possible realizations). In this case S(Ru) = min

c
(S(Rc

v)) [ {{a, b}} (see
Figure 2.15c).

• If a 2 Z, then for every two neighbors b and c of a in Xu such that
{{b, a}, {a, c}} is an allowed transition, we have the following cases (Note
that the number of pairs of neighbors of a to consider is of the order of k2.).

– If b 2 Y and c 2 Y , then Ru = (X,Y, Z,M, S) is a realization of u if
and only if Rv = (X0 [ {b, c}, Y \ {b, c}, Z \ {a},M 0, S0

), where M 0
=

M \{(b, c)} and S0
= S \{{a, b}, {b, c}}, is a realization of v. In this case

S(Ru) = S(Rv) [ {{a, b}, {a, c}} (see Figure 2.15d).

– If b 2 Z and c 2 Z, then Ru = (X,Y, Z,M, S) is a realization
of u if and only if v has a realization among the following collec-
tions Rh,h0,b0,c0

v = Rv(X,Y [ {b, c}, Z \ {a, b, c},M 0, S0
), where M 0

=

M [ {(b, h), (c, h0)} \ {(h, h0)}, (h, h0) 2 M , and S0
= S [ {{b, b0}, {c, c0}}

where b0 and c0 are neighbors of b and c in Vv, respectively, and
{{a, b}, {b, b0}}, {{a, c}, {c, c0}} /2 F . There are at most �

2 possible
choices for a pair (b0, c0), and at most k possible choices for the pair
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(h, h0). In this case S(Ru) = min

h,h0,c0,b0
(S(Rh,h0,c0,b0

v )) [ {{a, b}, {a, c}} (see

Figure 2.15e).

– If b 2 Z and c 2 Y , Let d be the vertex matched with c in M . Ru =

(X,Y, Z,M, S) is a realization of u if and only if v has a realization among
the collections Rb0

v = (X [ {c}, Y \ {c} [ {b}, Z \ {a, b},M 0, S0
), where

M 0
= M \ {c, d} [ {b, d} and S0

= S \ {{a, c}} [ {{b, b0}} where b0 is a
neighbor of b in Vv such that {{a, b}, {b, b0}} /2 F . There are at most �

possible choices for b0. In this case S(Ru) = min

b0
(S(Rb0

v ))[{{a, b}, {a, c}}
(see Figure 2.15f).

To solve all of the subproblems at an introduce node, we need at most
O((3

kkk�k
)k�2

) steps.

X
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b

(b) a 2 Y , b 2 Y

X
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b
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d d

(c) a 2 Y , b 2 Z

X Y Z
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U
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\{a}

Vv

{a,b}
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Vu

a

(d) a 2 Z, b, c 2 Y

X Y Z X Y Z
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U

b c

{b,c} \{a,b,c}

Vu

h' hvb ch' h

Vv

c'b' c'b'

(e) a 2 Z, b, c 2 Z

X Y Z X Y Z

ua

U

bc

{b}\{c} \{a,b}

Vu

dv

b'

bc d

b'

Vv

U{c}

(f) a 2 Z, b 2 Z, c 2 Y

Figure 2.15: Finding solutions at an introduce node: u is an introduce and v is its
child, Xu = Xv [ {a}

Time complexity: The algorithm for Ge,f runs in time O(k(3k�)

2kn) and know-
ing that we repeat it at most �2 times to obtain the solution for G, the overall time
complexity is O(k�2

(3k�)

2kn).

Complexity for planar graphs The complexity of many dynamic program-
ming algorithms on graphs with bounded treewidth can be improved for planar
graphs using their planarity and structural properties. A speedup can usually be
achieved, by using instead of the classical tree-decompositions, new decompositions
that have been defined for planar graphs such as the sphere cut branch decomposi-
tion [DPBF05] and the geometric tree-decomposition [Dor10]. In particular, these
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techniques have been used to improve the complexity of the algorithm which solves
the Hamiltonian cycle problem in planar graphs from O((3k)k) to O(6

k
), where

k is the treewidth. This is primarily due to the fact that the number of match-
ings to consider in such special tree-decompositions is bounded by 2

k+1 as proved in
[DPBF05]. This is roughly due to the fact that, in these special tree-decompositions,
the vertices of a bag form a Jordan curve. This curve does not intersect with the
curves corresponding to the edges of the planar embedding of the graph. Since in
the matching we need to define, two matched vertices correspond to the endpoints of
a subpath and the subpaths cannot cross each other, the number of valid matchings
is bounded by a Catalan number. Taking this into consideration, our algorithm can
run in time O(k�2

(6�)

2kn)) for planar graphs.

2.5 Disjoint trails avoiding forbidden transitions

We have studied in the previous section the problem of finding a path avoiding
forbidden transitions and we have proved that it is NP-complete even in grids. This
implies that finding disjoint paths is also NP-complete. In fact, taking an instance
of PAFT from s to t in a graph G, we transform it into an instance of finding k � 2

disjoint paths avoiding forbidden transitions as follows. We construct a graph G0 by
taking G and adding k � 1 valid disjoint paths from s to t. Finding k valid paths
from s to t in G0 is equivalent to finding a valid path from s to t in G.

In this section, since finding a trail avoiding forbidden transitions can be solved
in polynomial time as we discussed in Section 2.3, we focus on the problem of finding
disjoint trails avoiding forbidden transitions. We present results on the problems
of finding k vertex-disjoint and k edge-disjoints trails avoiding forbidden transitions
which are formulated as follows.

Problem 4 (Finding a k Vertex-Disjoint Trails avoiding Forbidden Transitions,
k-VDT). Given a graph G = (V,E), a set F of forbidden transitions and two vertices
s, t 2 V . are there k vertex-disjoint F-valid s-t-trails in G?

Problem 5 (Finding a k Edge-Disjoint Trails avoiding Forbidden Transitions,
k-EDT). Given a graph G = (V,E), a set F of forbidden transitions and two vertices
s, t 2 V . are there k edge-disjoint F-valid s-t-trails in G?

We have proved that k-EDT can be solved in polynomial time in directed graphs
and then shown that k-VDT is NP-complete in directed and undirected graphs
and polynomial in DAGs. After proving our results, we have found out that even
though the complexity of the problem of finding disjoint F-valid trails has not
been established in the context of road networks nor optical networks, the related
problems of finding vertex-disjoint monochromatic paths and edge-disjoint properly
colored trails have been already studied and they imply stronger hardness results
than some of the results we have proven. We briefly present these results before
giving our proofs.
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2.5.1 Related work

In an edge-colored graph, a properly-colored path (trail or walk) is a path which
does not use consecutively two edges of the same color and a monochromatic path
(trail or walk) is a path (trail or walk) which uses only edges of the same color.
Both problems can be seen as problems of finding a path (trail or walk) avoiding
forbidden transitions. In the first one, we forbid all of the transitions consisting of
edges of the same color and in the second problem, we forbid all of the transitions
consisting of edges of different colors. It has been proved in [GLMM12], that finding
two vertex-disjoint monochromatic paths with different colors between two vertices is
NP-complete in undirected edge-colored graphs with maximum degree 4 and directed
graphs with maximum degree 8. Since the problems of monochromatic paths and
trails are equivalent, it is NP-complete to find two vertex-disjoint monochromatic
trails in undirected graphs. This implies that for k � 2, k-VDT is NP-complete in
undirected graphs with maximum degree 4 and directed graphs of maximum degree
8. In [ADF+08], it has been proven that finding 2 edge-disjoint properly colored
trails is NP-complete in undirected graphs. As a consequence, for k � 2, the problem
k-EDT is NP-complete for undirected graphs.

2.5.2 Arc-disjoint trails avoiding forbidden transitions

Theorem 4. Finding k � 2 arc-disjoint trails avoiding forbidden transitions between
two given vertices in a directed graph can be done in polynomial time.

Proof. Let D = (V,A) be a directed graph and s and t two vertices of V . Let
D0

= (V 0, A0
) be the corresponding dual graph (as defined in section 2.3.1). Finding

k arc-disjoint trails from s to t in D = (V,A) is equivalent to finding k vertex-disjoint
paths from s0 to t0 in D0

= (V 0, A0
). We do the proof for k = 2.

Let P
1

= (s, v
1

, . . . , vp, t) and P
2

= (s, w
1

, . . . , wq, t) be two arc-disjoint
F-valid trails in D. The two paths P 0

1

= (s0, u
(v1,v2), . . . , u(vp�1,vp), t

0
) and

P 0
2

= (s0, u
(w1,w2)

, . . . , u
(wq�1,wq)

, t0) are two vertex-disjoint paths in D0. In fact,
since {{vi, vi+1

}, {vi+1

, vi+2

}} /2 F and {{wj , wj+1

}, {wj+1

, wj+2

}} /2 F the arcs
(u

(vi,vi+1)
, u

(vi+1,vi+2)
) and (u

(wj ,wj+1)
, u

(wj+1,wj+2)
) exist in D0 and since every vertex

in D0 corresponds to an arc in D, the arc-disjointness implies the vertex-disjointness.
Now let us suppose that there are two vertex-disjoint paths in D0, P 0

1

=

(s0, ua1 , . . . , uap , t
0
) and P 0

2

= (s0, ub1 , . . . , ubq , t
0
). Let P

1

and P
2

be the trails of
D formed by the arcs a

1

, . . . , ap and the arcs b
1

, . . . , bq, respectively. Since there
is an arc between uai and uai+1 in D0 for 1  i  q, then the arcs ai and ai+1

form an allowed transition in D and hence P
1

is an F-valid trail. Similarly, P
2

is
an F-valid trail. Finally, since every vertex in D0 corresponds to an arc in D, the
vertex-disjointness implies the arc-disjointness.
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s1

s2

t1

t2
(a) A directed graph D with two pairs

of vertices (s1, t1) and (s2, t2)

s1

s2

t1

t2

s t

(b) The corresponding directed graph
D0 (The parallel directed paths of length

2 are represented by multi-arcs)

Figure 2.16: Example of the reduction

2.5.3 Vertex-disjoint trails avoiding forbidden transitions

We focus in this section on the k-VDT problem. We first prove that it is NP-hard
in general directed graphs and polynomial in directed acyclic graphs. Afterwards,
we show that it is NP-hard in undirected graphs.

2.5.3.1 Vertex-disjoint trails in directed graphs

As pointed out in Section 2.5.1, since finding two vertex-disjoint monochromatic
paths with different colors between two vertices is NP-complete in arc-colored di-
rected graphs with maximum degree 8 [GLMM12], then finding 2 vertex-disjoint
trails is NP-complete in directed graphs with maximum degree 8. We present in
what follows a weaker result with an easy reduction.

Theorem 5. The k-VDT problem, for k � 2, is NP-complete in directed graphs.

Proof. The problem is clearly in NP. To prove the hardness we use a reduction from
the problem of finding two vertex-disjoint paths in a directed graph. In this problem,
we are given a directed graph D and two pairs of vertices (s

1

, t
1

) and (s
2

, t
2

) and
the objective is to find two vertex-disjoint paths P

1

and P
2

in D such that P
1

is
from s

1

to t
1

and P
2

is from s
2

to t
2

. This problem has been proven NP-complete
in [FHW80].

Let (D = (V,A), (s
1

, t
1

), (s
2

, t
2

)) be an instance of the problem of finding 2
vertex-disjoint paths in a directed graph. We build a directed graph D0 with a set of
forbidden transitions F and two vertices s and t such that finding 2 vertex-disjoint
paths in D is equivalent to finding 2 vertex-disjoint F-valid trails from s to t in D0.
To build D0, we replace each arc of A with two parallel directed paths of length 2;
one red path and one blue path. We add a vertex s connected to s

1

with a red arc
(s, s

1

) and connected to s
2

with a blue arc (s, s
2

). We add a vertex t connected
to t

1

with a red arc (t
1

, t) and to t
2

with a blue arc (t
2

, t). The set of forbidden
transitions F contains all the transitions of D0 which consist of a blue arc and a red
arc. Figure 2.16 presents an example illustrating the reduction.
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Let P
1

and P
2

be two vertex-disjoint paths in D, such that P
1

is from s
1

to t
1

and P
2

is from s
2

to t
2

. Let P 0
1

(resp. P 0
2

) be the path in D0 obtained from P
1

(resp.
P
2

) by replacing each arc by the corresponding red (resp. blue) directed path of
length 2 in D0. Let P ”

1

be the directed path of D0 obtained from the concatenation
of the arc (s, s

1

), the directed path P 0
1

and then the arc (t
1

, t) and P ”

2

be the directed
path of D0 obtained from the concatenation of the arc (s, s

2

), the directed path P 0
2

and then the arc (t
2

, t). The two paths P ”

1

and P ”

2

are F-valid since they only use
transitions of arcs of the same colors, they are also vertex-disjoint since the subpaths
P 0
1

and P 0
2

are vertex-disjoint.
Now let P

1

and P
2

be two vertex-disjoint F-valid trails from s to t in D0 such that
P
1

is the path using arc (s, s
1

). Since P
1

is F-valid and F contains all transitions
consisting of a red and blue edge, P

1

only uses red arcs and it hence uses the arc
(t

1

, t). Similarly, P
2

uses only blue arcs and hence uses the arc (t
2

, t). Let P 0
1

be the
subtrail of P

1

from s
1

to t
1

and P 0
2

the subtrail of P
2

from s
2

to t
2

. By removing all
the subcycles of P 0

1

and P 0
2

, we obtain two vertex-disjoint paths in D, one from s
1

to t
1

and the other from s
2

to t
2

.

2.5.3.2 Vertex-disjoint trails in DAGs

We prove in this section, through Theorem 6, that k-VDT is polynomial in DAGs.
In the proof of the theorem, we use ideas of [Cha03], in particular that of layered
directed graph and a construction similar to that used to find a polynomial time
algorithm for disjoint paths with forbidden pairs in layered directed graphs (Theorem
6 of [Cha03]).

Definition 2 (Layered directed graph). A directed graph G = (V,E) is layered
if there is a layering function l : V ! [0, 1, . . . , (|V | � 1)] such that for every arc
(u, v) 2 E, l(v) = l(u) + 1. We say that vertex u is in layer l(u) and arc (u, v) is in
layer l(u). Layered directed graphs are acyclic.

Theorem 6. The k-VDT problem, for a fixed k � 2, can be solved in polynomial
time in directed acyclic graphs.

Proof. Let D be DAG with a set of forbidden transitions F and let s and t be two
given vertices. As we want to find (in polynomial time) directed paths from s to t,
we can delete the vertices not on a directed path from s to t, and so we suppose
in what follows that, in D, s is the unique vertex with no in-neighbor and t the
unique vertex with no out-neighbor. For the ease of presentation, we first give the
transformation for k = 2. The algorithm that finds 2 vertex-disjoint paths from s
to t in D uses two transformations:

Transformation 1 We first associate with the DAG D and the set of forbidden
transitions F a layered DAG LD and a set of forbidden transitions F 0 as follows. We
denote by �

�
(v) the set of the in-neighbors of v, i.e; vertices u such that (u, v) 2 E.
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u1 u4

t

u5
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(a) A DAG D with a set of forbidden
transitions F =

n

{{s, u1}, {u1, u4}},
{{s, u2}, {u2, u3}}, {{s, u3}, {u3, u5}}

o

s

u1 u4

t

u5

u3
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v3
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e1 e2
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(b) The corresponding layered DAG LD
with a set of forbidden transitions
F 0

=

�{e0, e1}, {g0, h1}, {g1, g2}
 

s t

(e0,f0)

(e0,g0)

(f0,g0)

(e1,g1)

(e1,l1)

(g1,l1)

(e1,h1)

(f1,l1)

(e2,h2)

(e2,g2)

(f2,h2)

(e3,f3)

(c) The corresponding directed graph H

Figure 2.17: Example the transformations for a DAG

We compute the function l : V ! N defined as follows:

l(v) =

(

0 when v = s,

1 + maxu2��
(v) l(u) otherwise.

In such a level function, l(v) is the length of the longest path from s to v, and
t has the maximum value as there is a directed path from any vertex to t in the
reduced DAG. In the example of Figure 2.17a, we have l(u

1

) = l(u
2

) = 1, l(u
3

) = 2,
l(u

4

) = l(u
5

) = 3, and l(t) = 4.
Now we replace every arc (u, v), such that l(v) > l(u) + 1, with a directed path

Puv from u to v of length l(v) � l(u) (thus possibly adding new vertices and arcs).
The set of forbidden transitions F 0 in LD is defined as follows. For an arc (u, v) of
D, all of the transitions of the path Puv are allowed. Furthermore, if (w, u) and (u, v)
form an allowed (resp. forbidden) transition in D, then the last arc of Pwu and the
first arc of Puv form an allowed (resp. forbidden) transition in LD. In Figure 2.17b,
we give the layered DAG LD obtained from the DAG D of Figure 2.17a. We have
given a name to each arc with a lower index indicating the level of the arc.

Therefore, in what follows we consider a layered DAG LD with its set of forbid-
den transitions F 0 and two specific vertices s and t.

Transformation 2 We use in this transformation ideas similar to that used
in [Cha03] to solve the problem of finding a pair of vertex-disjoint paths with for-
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bidden pairs of edges in a layered DAG such that the edges of a forbidden pair are
in the same layer.

With LD we will associate a directed graph H with two specific vertices s and t,
such that there exist 2 vertex-disjoint F 0-valid paths in LD from s to t if and only
if there exists a directed path from s to t in H.

There is a vertex in H for every pair {ei, fi} of arcs in LD at the same layer i,
with 0  i  l(t)�1, such that ei\fi 2 {s, t}. We also add to H two vertices s and t.
Now we join, by an arc in H, s to all the vertices (pairs) {e

0

, f
0

}. Similarly we join
every vertex {el(t)�1

, fl(t)�1

} in H by an arc to t. Finally, for 0  i  l(t) � 2, we
join in H each vertex {ei, fi} to a vertex {ei+1

, fi+1

} if in LD we have the following
properties:

1. the terminal vertex ui of ei is the initial vertex of ei+1

, and {ei, ei+1

} is an
allowed transition (i.e. not forbidden); and

2. the terminal vertex uv of fi is the initial vertex of fi+1

, and {fi, fi+1

} is an
allowed transition (i.e. not forbiden).

Figure 2.17c indicates the directed graph H obtained from the layered DAG LD of
Figure 2.17b. For example, we have three vertices corresponding to pairs of arcs of
layer 0 of LD: (e

0

, f
0

), (e
0

, g
0

) and (f
0

, g
0

) and 5 vertices corresponding to pairs of
arcs of layer 1: (e

1

, g
1

), (e
1

, h
1

), (e
1

, l
1

), (f
1

, l
1

), and (g
1

, l
1

). Vertex (e
0

, f
0

) is not
connected to vertex (e

1

, g
1

) since the transition (e
0

, e
1

) is forbidden.
The existence of two vertex-disjoint F 0-valid paths in LD

named P = (s, e
0

, u
0

, e
1

, . . . , el(t)�2

, ul(t)�1

, el(t)�1

, t) and Q =

(s, f
0

, v
0

, f
1

, . . . , fl(t)�2

, vl(t)�1

, fl(t)�1

, t) implies the existence of a directed
path from s to t namely PQ = (s, {e

0

, f
0

}, {e
1

, f
1

}, . . . , {el(t)�1

, fl(t)�1

}, t) in H.
Conversely, let W be a path in H written in the form W =

(s, w
0

, w
1

, . . . , wl(t)�1

, t) where wi corresponds to the pair {ei, fi} and wi+1

to the
the pair {ei+1

, fi+1

} such that {ei, ei+1

} and {fi, fi+1

} are allowed transitions in
LD. Then, the two directed paths P = (s, e

0

, u
0

, e
1

, . . . , el(t)�2

, ul(t)�1

, el(t)�1

, t)
and Q = (s, f

0

, v
0

, f
1

, . . . , fl(t)�2

, vl(t)�1

, fl(t)�1

, t) are vertex-disjoint and F 0-valid.
In the example of Figure 3.6c, H has two directed paths from s to t. For exam-
ple with the directed path P = (s, {e

0

, g
0

}, {f
1

, l
1

}, {f
2

, h
2

}, {e
3

, f
3

}, t), the vertex-
disjoint F 0-valid paths P

1

= (s, e
0

, f
1

, f
2

, e
3

, t) and P
2

= (s, g
0

, l
1

, h
2

, f
3

, t) in LD
and the two vertex-disjoint F-valid paths (s, u

1

, u
3

, u
4

, t) and (s, u
2

, u
5

, t) in D are
associated.

The algorithm can be generalized to find k color-disjoint paths from s to t in
a DAG D, for any k � 2. We first transform D to a layered graph LD as before.
Then, in the second transformation, instead of having a vertex for every pair of arcs
of the same layer, we create a vertex for every k-tuple of arcs {e1i , e2i , . . . , eki } at
the same layer i, such that the eji , for j = 1, . . . , k, are disjoint or only share s or
t. Then an arc is added from node {e1i , e2i , . . . , eki } to node {e1i+1

, e2i+1

, . . . , eki+1

} if
there exists an ordering of the eji and of the eji+1

such that the terminal vertex of eji
is the initial vertex of eji+1

and the transitions {eji , eji+1

} are allowed.
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2.5.3.3 Vertex-disjoint trails in undirected graphs

As pointed out in Section 2.5.1, since finding two vertex-disjoint monochromatic
paths with different colors between two vertices is NP-complete in undirected edge-
colored graphs with maximum degree 4 [GLMM12], then finding 2 vertex-disjoint
trails is NP-complete in undirected graphs with maximum degree 4. We present
in what follows a weaker result with a different reduction in which the graph is
1-planar, i.e. a graph that can be embedded in the plane in such a way that each
edge has at most one crossing point, where it crosses a single additional edge.

Theorem 7. The k-VDT problem, for k � 2, is NP-complete in undirected graph
with maximum degree 8.

Proof. The problem is clearly in NP. We prove the hardness using a reduction
from the 3-SAT problem. The reduction is similar to the one used in the proof
of Lemma 1. Let � be an instance of 3-SAT, i.e., � is a boolean formula with
variables {v

1

, · · · , vn} and clauses {C
1

, · · · , Cm}. We build a grid-like planar graph
G similar to the one in the proof of Lemma 1. The difference between the graph
G and the main graph in the proof of Lemma 1 is mainly in the way the clause-
graphs are combined; a new gadget called the 2-path-gadget is used to combine the
clause-graphs. In particular, this new way of combining the clause-graphs breaks
the planarity our reduction. In what follows we present how to build G using the
clause-gadgets and the 2-path-gadgets. Here again, multigraphs can be easily trans-
formed to graphs by subdividing the edges and the colors and the multi-edges are
only used to make the presentation easier.

Clause-graph Gj. For each 1  j  m, we build a Clause-gadget Gj with a set
of forbidden transitions Fj similar to the one built in the proof of Lemma 1 (see
Figure 2.18b).

Any Fj-valid trail from sj to tj starts with a red edge and ends with a blue edge
(or the inverse). Since it is not possible to go from a red edge to a blue edge without
using a pink or a green edge, Claim 9 follows.

Claim 9. Any Fj-valid trail P from sj to tj must use a green or a pink edge in a
gadget Gij for some 1  i  n.

Another important property of Fj-valid trails is the following.

Claim 10. If P is an Fj-valid trail from sj to tj in Gj, then for each 1  i  n:

• P passes through both vertices trueij and true0ij, or

• P passes through both vertices falseij and false0ij.
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trueij

true'ij false'ij

falseij

sij xij yij zij tij

aij bij
cij dij

RTij

BFij

RFij

BTij

(a) Gadget Gij

s1j t1j t2j t3j t4j

tj

sj

v1 v2 v3 v4negative in positive in does not appear in positive in CjCjCjCj

(b) Clause-graph Gj (j odd) for a Clause Cj = v̄1 _ v2 _ v4 in a formula with 4 Variables.

Figure 2.18: The clause-gadget (reminder)

Proof of claim.
Let P be an Fj-valid trail from sj to tj in Gj . For 1  i  n, P passes necessarily

through trueij or falseij . Let us suppose P uses vertex trueij , for a given 1  i  n.
If trueij appears in P after one of the vertices aij and bij , then with the way the
set of forbidden transitions Fj is defined, the vertices after trueij should be xij
and true0ij . Namely, around trueij the allowed transitions containing aij (resp. bij)
is {{aij , trueij}, {trueij , xij}} (resp. {{bij , trueij}, {trueij , xij}}) and the allowed
transition around xij is {{trueij , xij}, {xij , true0ij}}. Otherwise, if trueij appears
in P after xij , then with the way the set of forbidden transitions Fj is defined,
the vertex used before xij should be true0ij . If P uses vertex true0ij , for a given
1  i  n, then if true0ij appears in P after the vertex xij , then with the way the
set of forbidden transitions Fj is defined, the vertex before xij should be trueij .
Otherwise, if true0ij appears in P after the vertex yij , then with the way the set of
forbidden transitions Fj is defined, the vertices that appear after true0ij should be
xij and then trueij . The proof is similar for the case where P uses vertices falseij
and false0ij .

Note that unlike the paths in the proof of Lemma 1, an Fj-valid trail from sj to
tj in Gj can use trueij and true0ij and at the same time falseij and false0ij . ⇧

2-path-gadget ⇧. This gadget consists of two intersecting paths of length 4n
each.

• (x
1

, true
1

, y
1

, true0
1

, . . . , xn, truen, yn, true0n, xn+1

); this path is depicted in full
black in the example of Figure 2.19.
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x1 y1 x2 x3 x4y2 y3

true1

true'1

true2

true'2

true3

true'3false1

false'1

false2

false'2

false3

false'3

Figure 2.19: A 2-path-gadget for an instance with 3 variables {v
1

, v
2

, v
3

}

• (x
1

, false
1

, y
1

, false0
1

, . . . , xn, falsen, yn, false0n, xn+1

); this path is depicted
in dotted black in the example of Figure 2.19.

The set of forbidden transitions F⇡ in the 2-path-gadget ⇧ contains all the transi-
tions {{truei, yi}, {yi, false0i}}, and {{falsei, yi}, {yi, true0i}}, 1  i  n. Claim 11
presents the properties of an F⇡-valid trail in ⇧. Note that any F⇡-valid trail be-
tween x

1

and xn+1

is a path.

Claim 11. Let P be an F⇡-valid trail between x
1

and xn+1

in ⇧. Then, for 1  i  n
either

• P passes through truei and true0i and does not pass through falsei nor false0i,
or

• P passes through falsei and false0i and does not pass through truei nor true0i.

Main Graph G. The graph G is built by combining the clause-gadgets Gj , 1 
j  m, as well as m � 1 copies ⇧

j , 1  j < m, of the 2-path-gadget ⇧ (we denote
by vj a vertex v of the copy ⇧

j). An illustrating example of the combination is
presented in Figure 2.20 and the details are in what follows.

• For each 1  j < m, we identify the vertices tj and sj+1

.

• For each 1  j  m � 2, we add a black edge between xjn+1

and xj+1

1

. Note
that these are the only edges breaking the planarity.

• We add a black edge between s
1

and x1
1

and another black edge between xm�1

n+1

and tm.

• For each 1  j < m, and for each 1  i  n we do the following:

– We identify the vertices true0ij and false0ij of Gj with the vertices trueji
and false0ji of ⇧j , respectively.

– We identify the vertices true0ji and falseji of ⇧j with the vertices truei,j+1

and falsei,j+1

of Gj+1

, respectively.

The set of forbidden transitions F include besides all the forbidden transitions
Fj of Gj , 1  j  m, and F j

⇡ of ⇧j , 1  j < m, all transitions consisting of a black
edge and a blue or red one. This way it is not possible to go from Gj to ⇧

j . Note
that the maximum degree of the graph G is 8.

The following claims present the key properties of an F-valid trail from s
1

to tm
in G and the properties of 2 vertex-disjoint F-valid trails from s

1

to tm in G.
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x5
2 x1
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s11 t11 t21 t31 t41

t1=s2
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s13 t13 t23 t33 t43

t22 t32 t42

Figure 2.20: The graph G for an instance of 3-SAT with 4 variables v
1

, v
2

, v
3

and
v
4

and 3 clauses C
1

= v̄
1

_ v
2

_ v
4

, C
2

= v
2

_ v̄
3

_ v̄
4

and C
3

= v̄
1

_ v̄
3

_ v
4

. The
two bold paths in black and red-blue from s

1

to t
3

are 2 vertex-disjoint paths
corresponding to the assignment of v

1

, v
2

and v
4

to True and v
3

to False. This
assignment satisfies all clauses.

Claim 12. If P is an F-valid trail from s
1

to tm in G, then:

• P consists of the concatenation of Fj-valid trails from sj to tj in Gj, from
j = 1 to m, P is called then a colored trail; or

• P consists of the concatenation of F j
⇡-valid trails from xj

1

to xjn+1

in ⇧

j, from
j = 1 to m � 1, and the edges {s

1

, x1
1

}, {xjn+1

, xj+1

1

} for 1  j  m � 2 and
{xm�1

n+1

, tm}, P is called then a black trail.

Proof of claim. Let P be an F-valid trail from s
1

to tm in G. If P uses the black edge
{s, x1

1

}, then P only uses black edges since all transitions containing a black edge
and a blue or red edge are forbidden. In the subgraph of G induced by the black
edges, an F-valid trail from s

1

to tm consists of the concatenation of F j
⇡-valid trails

from xj
1

to xjn+1

in ⇧

j , from j = 1 to m�1, and the edges {s
1

, x1
1

}, {xjn+1

, xj+1

1

} for
1  j  m� 2 and {xm�1

n+1

, tm}. If P uses the red edge {s, s
11

}, then P cannot use
black edges. In the subgraph of G induced by the red, blue, pink and green edges,
an F-valid trail from s

1

to tm consists of the concatenation of Fj-valid trails from
sj to tj in Gj , from j = 1 to m. ⇧

Note that for every 2 vertex-disjoint F-valid trails from s
1

to tm in G, one trail
uses the black edge {s, x1

1

} and is hence a black trail and the other uses the red edge
{s, s

11

} and is hence a colored trail.
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Claim 13. If P and P 0 are 2 vertex-disjoint F-valid trails from s
1

to tm in G, then
P is a colored trail and P 0 is a black trail or vice-versa.

Claim 14. If P and P 0 are 2 vertex-disjoint F-valid trails from s
1

to tm in G and
P is the colored path, then, for any 1  i  n, either

• for any 1  j  m, the trail P passes through trueij and true0ij and does not
pass through falseij nor false0ij, or

• for any 1  j  m, the trail P passes through falseij and false0ij and does
not pass through trueij nor true0ij.

Proof of claim. By Claims 12, for any 1  j  m, there is a subtrail Pj of P that
goes from sj to tj . Let us prove first that for 1  j  m, for any 1  i  n the
subtrail Pj passes through trueij and true0ij and does not pass through falseij nor
false0ij or passes through falseij nor false0ij and does not pass through trueij and
true0ij . By Claim 10, for 1  i  n, Pj either passes through trueij and true0ij ,
or through falseij and false0ij . Let us assume that we are in the first case (the
second case can be handled symmetrically). Since Pj is using true0ij = trueji and P

is vertex disjoint from P 0, then by Claims 12 and 11, P 0 is using false0ji = false0ij .
Again, since P and P 0 are vertex disjoint, Pj does not use false0ij nor falseij .

Now, let us suppose that for a given 1  i  n, that P
1

passes through truei1
and true0i1, and does not pass through falsei1 and false0i1 (the second case can be
handled symmetrically). We prove by induction on j  m that Pj passes through
trueij and true0ij and does not pass through falseij nor false0ij . Indeed, if Pj passes
through trueij = true0j�1

i and true0ij = trueji , then Pj+1

cannot use falsei,j+1

nor false0i,j+1

since P 0 which is vertex disjoint from P uses by claim 11 falseji =

falsei,j+1

. ⇧

Claim 15. � is satisfiable if and only if there are 2 vertex-disjoint F-valid trails
from s

1

to tm in G.

Proof of claim. Let ' be a truth assignment which satisfies �. We can build two
vertex-disjoint F-valid trails P and P 0 from s

1

to tm in G.
The trail P is a colored trail and can be built as was built the path in the proof

of Claim 8. In more details, For each row 1  j  m, we build a path Pj from si
to tj by concatenating the paths Pij , 1  j  m, which are built as follows. Among
the variables that appear in Cj , let vq be the variable with the smallest index, which
satisfies the clause.

• For 1  i < q, if '(vi) = true, then Pij = RTij if j is odd and Pij = BTij if
j is even. If '(vi) = false, then Pij = RFij if j is odd, and Pij = BFij if j is
even.

• For i = q, if '(vi) = true, then Pij = RBTij if j is odd, and Pij = BRTij if j
is even. If '(vis) = false, then Pij = RBFij if j is odd, and Pij = BRFij if
j is even.
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• For q < i  n, if '(vi) = true, then Pij = BTij if j is odd, and Pij = RTij

otherwise. If '(vi) = false, then Pij = BFij if j is odd, and Pij = RFij

otherwise.

The path P obtained from the concatenation of paths Pj for 1  j  m is an F-valid
path from s

1

to tm.
The trail P 0 is a black trail and is built from the concatenation of the edges

{s
1

, x1
1

}, {xjn+1

, xj+1

1

} for 1  j  m � 2 and {xm�1

n+1

, tm} and the subtrails P j ,
1  j < m, built as follows. From i = 1 to m, P j uses the vertex xji , then:

• If Pij uses trueij , P j uses vetices falsei,j+1

, yji and then false0ij .

• If Pij uses falseij , P j uses vetices truei,j+1

, yji and then true0ij .

At last, P j uses vertex xjn. The trail P 0 is F-valid and by definition vertex-disjoint
from P

1

.
Now let us suppose that there are two vertex-disjoint F-valid paths P and P 0

from s
1

to tm. Let P be the colored one. According to Claim 14, for any 1  i  n,
for any 1  j  m, P passes through trueij and true0ij and does not pass through
falseij and false0ij , or P passes through falseij and false0ij and does not pass
through trueij and true0ij . Let us then consider the truth assignment ' of � such
that for each 1  i  n:

• If P uses trueij and true0ij in all rows 1  j  m, then '(vi) = true.

• If P uses falseij and false0ij in all rows 1  j  m, then '(vi) = false.

Thanks to Claim 14, ' is a valid truth assignment. We need to prove that '
satisfies �. According to Claim 12, for each 1  j  m, P contains an Fj-valid path
Pj from sj to tj and according to Claim 9, Pj uses a green or a pink edge. We prove
in the following that for 1  i  n and 1  j  m, if Pj uses a pink edge {aij , bij},
then P uses the vertex trueij and if Pj uses a pink edge {cij , dij}, then P uses the
vertex falseij .

• Let us suppose that Pj uses a pink edge {aij , bij} and does not use the vertex
trueij . This implies that P

1

contains the cycle {ti�1,j , aij , bij} and hence P
1,j

uses at least 3 edges incident to ti�1,j from the side of s (two edges to leave
and enter the cycle and an additional edge to cross again the cut-vertex ti�1,j

towards tj). Trail Pj uses then at least one edge {zi,j�1

, ti,j�1

} and at least
one edge {false0i,j�1

, ti,j�1

}. This is not possible since it implies that Pj uses
vertices truei�1,j and falsei�1,j which contradicts Claim 14.

• Let us suppose that Pj uses a green edge {cij , dij} and does not use the vertex
falseij . This implies that Pj contains the cycle {yij , cij , dij} and hence Pj

uses at least 3 edges incident to yi,j from the side of s (two edges to enter
and leave the cycle and an additional one to cross again the cut-vertex yi,j
towards tj ). This implies that P uses one edge {zi�1,j , ti�1,j} and one edge
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{false0i�1,j , ti�1,j}. This is not possible since it implies that Pj uses vertices
truei�1,j and falsei�1,j which contradicts Claim 14.

Thus, the use of a pink edge in Pj forces Pj (and hence P ) to use, for a variable
vi that appears positively in Cj , the vertices trueij and true0ij . Similarly, the use
of a green edge in Pj forces Pj (and hence P ) to use, for a variable vi that appears
negatively in Cj , the vertices falseij and falce0ij . This means that for each clause
Cj , for one of the variables that appear in Cj which we denote vi, '(vi) = true
('(vi) = false) if vi appears positively (negatively) in Cj , respectively. Thus, the
truth assignment ' satisfies �. ⇧

Remark. Please note that all of the constructions in the NP-completeness proof
of Theorem 7 can be done with directed graphs, which implies that k-VDT is
NP-complete in directed graphs with maximum degree 8. In fact, the gadgets
Gij can be built with directed paths RTij ,BTij ,RFij and BFij instead of undi-
rected ones. As for the edges {aij , bij} and {cij , dij}, they can be replaced
by arcs (aij , bij) and (cij , dij) if j is odd and arcs (bij , aij) and (dij , cij) oth-
erwise. In the clause-graphs Gj , we can have arcs (sj , s1j) and (tnj , tn) re-
place of the edges {sj , s1j} and {tnj , tn}. Moreover, the 2-path-gadget can be
built with two directed paths (x

1

, true
1

, y
1

, true0
1

, . . . , xn, truen, yn, true0n, xn+1

) and
(x

1

, false
1

, y
1

, false0
1

, . . . , xn, falsen, yn, false0n, xn+1

) and the edges {xjn+1

, xj+1

1

}
can be replaced by the arcs (xjn+1

, xj+1

1

).

2.6 Conclusion

Table 2.2 summarizes the complexity results on the problems we have investigated in
this chapter: finding a path, a trail and disjoint trails avoiding forbidden transitions.

We have proved that the problem of finding a path avoiding forbidden transitions
is NP-complete even in well-structured graphs as grids. We have also proved that
PAFT can be solved in polynomial time when the treewidth is bounded. In fact,
we believe that the PAFT problem is actually W [1]-hard when parameterized by
the treewidth. This would imply that unless FPT = W [1], PAFT is not FPT when
parameterized by the treewidth only, that is there is no algorithm which finds a
path avoiding forbidden transitions in O(f(k)poly(n)), where k is the treewidth and
n is the size of the graph. Future work might focus on proving this conjecture as
well as on the study of the parameterized complexity with other parameters such
as the number of asymmetric nodes or forbidden transitions. Another interesting
direction in the study of PAFT could be to consider the optimization problem where
the objective is to find a path with minimum number of forbidden transitions and
to investigate possible approximation solutions.

As for the problem of finding disjoint trails, we have proved that when the
trails are required to be vertex-disjoint the problem is NP-complete both in directed
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Directed graphs Undirected graphs
Finding a path
(PAFT)

• NP-complete in general
[Sze03]
• NP-complete in directed
grids
• Polynomial in DAGs

• NP-complete in general
[Sze03]
• NP-complete in grids
• Polynomial in graphs
with bounded treewidth

Finding a trail
(TAFT)

Polynomial
[Win02, ABP96]

Polynomial

Finding k

vertex-disjoint
trails (k-VDT)

• NP-complete in directed
graphs with maximum de-
gree 8 (also implied by
[GLMM12])
• Polynomial in DAGs

• NP-complete in undi-
rected graphs with maxi-
mum degree 8

• NP-complete in undi-
rected graphs with degree
 4 [GLMM12]

Finding k edge-
disjoint trails
(k-EDT)

Polynomial NP-complete [ADF+08]

Table 2.2: Summary of complexity results for problems of finding paths avoiding
forbidden transitions.

and undirected graphs. On the positive side, if the paths are only required to be
edge-disjoint, the problem can be solved in polynomial time in directed graphs. The
reduction graph in the proof of the NP-completeness of finding 2 vertex-disjoint trails
avoiding forbidden transitions is 1-planar, which means that it can be embedded in
the plane in such a way that each edge has at most one crossing point, where
it crosses a single additional edge. This makes us wonder if the k-VDT problem is
NP-complete in planar graphs. Future work might focus on answering this question.
Moreover, we have proved that for a fixed k, k-VDT is polynomial in DAGs. Since,
the algorithm we use has time complexity O(npoly(k)

), we would like to see if this
complexity can be improved and if k-VDT is FPT in DAGs when parameterized by k
the number of disjoint paths. It would be also interesting to study the generalization
of the k-EDT problem in which we look for k edge-disjoint paths avoiding forbidden
subpaths. Since k-EDT is polynomial in directed graphs, it would be nice to see if
the generalized problem is polynomial as well in directed graphs. We would also like
to investigate possible approximations for the optimization version of the k-VDT
problem. That is the problem of finding k minimum vertex-overlapping trails, i.e.
trails sharing the minimum number of vertices.
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We study in this chapter, the problem of finding risk disjoint paths in networks
where links are subject to risks localized around the nodes. Results presented in this
chapter are joint work with J.-C. Bermond, D. Coudert, and G. D’Angelo and they
have been published in Theoretical Computer Science [BCDM15] and presented in
the Student Workshop ACM CoNEXT’2012 [BCDM12], Algotel’2013 [BCDM13b],
and DRCN’2013 [BCDM13a].

3.1 Introduction

The dedicated path protection scheme, which we have defined in the beginning
of Part I, is used to ensure reliable communications in networks in general and
optical networks in particular. It consists in finding a pair of disjoint paths: one
working path to ensure the communication and one protection path to reroute the
traffic in case of a failure. This method works well in a single link failure scenario,
as it consists in finding two edge-disjoint paths between a pair of nodes. This is
a well-known problem in graph theory for which there exist efficient polynomial
time algorithms [Suu74, ST84]. However, the problem of finding two disjoint paths
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between a pair of nodes becomes much more difficult, in terms of computational
complexity, in case of multiple correlated link failures that can be captured by the
notion of Shared Risk Link Group (or SRLG, for short). In fact, a SRLG is a set
of network links that fail simultaneously when a given event (risk) occurs. The
scope of this concept is very broad. It can correspond, for instance, to a set of fiber
links of an optical backbone network that are physically buried at the same location
and therefore could be cut simultaneously (i.e. backhoe or JCB fade). It can also
represent links that are located in the same seismic area, or radio links in access
and backhaul networks subject to localized environmental conditions affecting signal
transmission, or traffic jam propagation in road networks. Note that a link can be
affected by more than one risk. In practice, the failures are often localized and
common SRLGs satisfy the star property [LW05] (coincident SRLGs in [DG05]).
Under this property, all links of a given SRLG share an endpoint. Such failure
scenarios can correspond to risks arising in router nodes like card failures or to the
cut of a conduit containing links issued from a node (see Figure 3.1).

l1 l6l5l4l3l2

l8

l7

l1 l6l5l4l3l2

l8

l7

r4

r3

r2r1

v

v

Card1

Card3

Card2

Figure 3.1: Example of localized risks: link l
4

shares risk r
2

, corresponding to
Card 2 failure, with links l

5

and l
6

, and shares risk r
4

, corresponding to a conduit
cut, with links l

2

and l
3

.

The graph theoretic framework for studying optimization problems in net-
works with SRLGs is the colored graph model [DS08, YVJ05, Far06, DG05, LW05,
CDP+07]. In this model, the network topology is modeled by a graph G = (V,E)

and the set of SRLGs by a set of colors C. Each SRLG is modeled by a distinct
color, and that color is assigned to all the edges corresponding to the network links
subject to this SRLG. Also, an edge modeling a network link subject to several
SRLGs will be assigned as many colors as SRLGs. A colored graph is therefore
defined by the triple (V,E,C ), where C is a coloring function, C : E ! 2

C , that
assigns a subset of colors to each edge. The colored graph model is also known as
the labeled graph model [FGK10]. Furthermore, some studies assumed that an edge
is assigned at most one color [CDP+07, FGK10, JRN04]. Notice that the compu-
tational complexity of some optimization problems may be different in the model
in which an edge is assigned at most one color than in the model in which it can
be assigned multiple colors, and the impact of the transformation from one model
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to the other on problems complexities has been investigated in [CPRV14]. In the
setting of colored graphs, the star property means that all the edges with a given
color share a common vertex.

3.1.1 Related work

In the context of colored graphs, basic graph connectivity problems have been re-
stated in terms of colors and proven much more difficult to address than their basic
counterparts. For instance, the minimum color st-path problem is to find a path
from vertex s to vertex t in the graph that minimizes the cardinality of the union
of the colors of the edges along that path. This problem has been proven NP-
hard [SYR05, BLWZ05, CDKM00] and hard to approximate [CDP+07, HMS07] in
general, W [2]-hard when parameterized by the number of used colors and W [1]-hard
when parameterized by the number of edges of the path [FGK10]. However, it has
been proven in [CPRV14] that the minimum color st-path problem can be solved
in polynomial time in colored graphs with the star property. Other optimization
problems on graphs have been studied in the context of colored graphs such as
the minimum color cut [Far06, CDP+07], the minimum color st-cut [CDP+07], the
minimum color maximum matching [FGK10] .

The k-diverse routing problem in presence of SRLGs consists in finding a set
of k SRLG-disjoint paths between a pair of vertices (i.e. paths having no risk in
common). Note that many authors use, in the case k = 2, diverse routing instead of
2-diverse routing. With no restriction on the graph structure and on the assignment
of SRLGs to edges, even finding two SRLG-disjoint paths is NP-complete [Hu03],
and therefore many heuristics have been proposed [SYR05, YVJ05, GL07, TR04b,
TR04a, ZSXT07]. The problem is polynomial in some specific cases of localized
failures: when SRLGs have span 1 (i.e. an edge can be affected by only one SRLG,
and the set of edges belonging to the same SRLG forms a connected component,
see [CDP+07]), and in a specific case of SRLGs having the star property [DS08] in
which a link can be affected by at most two risks and two risks affecting the same
link form stars at different nodes (this result also follows from [CDP+07]).

3.1.2 Our results

We study the k-diverse routing problem when SRLGs have the star property and
there are no restrictions on the number of risks per link nor on the number of
links per risk. This case has been studied in [LW05] in which the authors claim that
finding two SRLG-disjoint paths under the star property can be solved in polynomial
time. In this chapter, we establish the following results:

• We demonstrate that the algorithm proposed in [LW05] is not correct; indeed
we exhibit, in Section 3.3, counterexamples for which their algorithm concludes
to the non existence of two SRLG-disjoint paths although two such paths exist.

• We prove, in Section 3.4, that finding k SRLG-disjoint paths is in fact NP-
complete even for only two paths.
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• On the positive side, we show in Section 3.5, that the k-diverse routing prob-
lem can be solved in polynomial time in particular subcases which are rele-
vant in practice. Namely, we solve the problem in polynomial time when the
maximum degree is at most 4 or when the input network is a directed acyclic
graph. Moreover, we show that the problem is fixed-parameter tractable when
parameterized by the number of colors in C.

• Finally, we consider the problem of finding the maximum number of SRLG-
disjoint paths. We prove that, under the star property, the problem is hard to
approximate within O(|V |1�"

) for any 0 < " < 1, where V is the set of nodes
in the network, and we give polynomial time algorithms for some of the above
relevant subcases.

We give the notation used in this chapter in Section 3.2.

3.2 Notations and problem statement

We model the network as an undirected connected graph G = (V,E), where the
vertices in V represent the nodes and the edges in E represent the links. We associate
a color with each SRLG. Let us denote by C the set of all the colors. Then a network
with SRLGs is modeled by a colored graph that is a triple Gc = (V,E,C ), where
(V,E) is a graph and C is a coloring function, C : E ! 2

C , that assigns a subset of
colors to each edge of E.

We denote by E(c) the set of edges having color c 2 C, by C (e) the set of colors
associated with edge e 2 E, by cpe = maxe2E |C (e)| the maximum number of
colors per edge, and by epc = maxc2C |E(c)| the maximum number of edges having
the same color. We assume that C (e) 6= ; for each e 2 E. Given a vertex v, �(v)
denotes the set of neighbors of v and d(v) = |�(v)| its degree. A color is incident
to v if it is assigned to an edge incident to v. The colored degree of v, denoted by
dC(v), is the number of colors incident to v. The maximum degree and the maximum
colored degree of a graph are denoted by � and �C , respectively.

We can now model the star property defined in the introduction as follows. A
color c 2 C is called a star color if all edges of E(c) are incident to the same vertex.
A colored graph has the star property if it has only star colors.

Given a colored graph Gc and two vertices s and t, an st-path is an alternating
sequence of vertices and edges, beginning with s and ending with t, in which each
edge is incident to the vertex immediately preceding it and to the vertex immediately
following it. A path is denoted by the sequence of vertices and edges. We say that
two paths P

1

and P
2

are color-disjoint if ([e2P1C (e)) \ ([e2P2C (e)) = ;, i.e. the
edges of one path do not have any color in common with the edges of the other path.

The k-diverse routing problem defined in the introduction consists then in finding
k color-disjoint paths and for every k can be formally formulated as follows:

Problem 6 (k-Diverse Colored st-Paths, k-DCP). Given a colored graph Gc and two
vertices s and t, are there k color-disjoint paths from s to t?
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In this chapter we study the k-DCP problem where the colored graphs have the
star property.

3.3 Counterexamples to the algorithm of Luo and Wang

Luo and Wang [LW05] proposed an algorithm to find a pair of color-disjoint paths
with minimum total cost from a source s to a destination t in graphs with colors
(SRLGs) satisfying the star property. The algorithm is an adaptation of the Bhan-
dari’s edge-disjoint shortest-pair of paths algorithm [Bha98, Chapter 3.3, pages 46-
68] (which itself is a variation of the Suurballe-Tarjan’s algorithm [Suu74, ST84])
and is based on augmenting a shortest path Pa between s and t.

In what follows, we argue that the algorithm is incorrect, as there are at least
two problems with it.

Counterexample 1

The first problem comes from the fact that the algorithm implies that the first and
last edges of the shortest s-t path Pa should be contained necessarily in the pair of
paths returned by the algorithm. However, if no edge incident to s (to t) is color-
disjoint with the first (the last) edge of Pa, respectively, the algorithm will ignore
the existence of 2 color-disjoint paths even if they exist.

The counterexample in Figure 3.2 illustrates this first problem: color c is shared
between edges {s, v

0

} and {s, v
1

} and color c0 6= c is shared between edges {s, v
0

}
and {s, v

2

}. All other unmarked edges have distinct colors different from c and c0.
The shortest path from s to t is Pa = (s, v

0

, t). Applied on the graph of Figure 3.2,
the algorithm described in [LW05, page 451, lines 9–10] does not find any edge to
start and hence terminates concluding that there are no two color-disjoint paths.
However two color-disjoint paths clearly exist, namely they are P

1

= (s, v
1

, w
1

, t)
and P

2

= (s, v
2

, w
2

, t).

v
2

w
1

w
2

v
0

c0

c0c
c

v
1

ts

Figure 3.2: Example 1.

Counterexample 2

The second problem is that the algorithm only checks color-disjointness around
nodes of Pa and never checks other nodes. It assumes implicitly that the only nodes
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that can be shared by the two color-disjoint paths are nodes belonging to Pa and
ignores the existence of any other possibilities.

ts

a

a0

z

w

v

b0

b

u0

u
c c0 c

c
c0 c0

Figure 3.3: Example 2

Figure 3.3, illustrating the second problem, shows a counterexample to the al-
gorithm in [LW05] that furthermore can give to the reader a flavor of the difficulty
of the problem. In this figure, we have 2 specific colors c and c0 6= c forming a
star in v. All other unmarked edges have distinct colors different from c and c0.
As vertex v is a cut-vertex any s-t path should contain v. Moreover {a, v} cannot
be used as it shares a color both with {v, b} and {v, b0}. Therefore, to ensure the
color-disjointness, one path should use the subpath u, v, b and the other one should
use the subpath (u0, v, b0). We have two color-disjoint paths P

1

= (s, a, z, w, u, v, b, t)
and P

2

= (s, a0, w, u0, v, b0, t). However, the algorithm of [LW05] uses the shortest
path Pa = (s, a, v, b, t) and then performs a backwards phase which never finds w
again. Then the algorithm terminates, missing the fact that there exist two color-
disjoint paths. Note that the disjointness is not ensured, if there exists in w some
common color for example on the edges {w, u} and {w, u0}, showing that a local
consideration around the shortest path is not sufficient. In fact, in the next section
we will prove that the problem is NP-complete.

3.4 NP-completeness

In this section we will prove that, even with the star property, the k-DCP problem
is NP-complete for every constant k � 2. We use a reduction from the problem of
finding a path avoiding forbidden transitions which we have studied in Chapter 2
and which was proven NP-complete in [Sze03]. This again contradicts the supposed
correctness of the polynomial algorithm of [LW05], unless P = NP .

We recall that in the PAFT problem we are given a graph G = (V,E), a set F
of forbidden transitions and two vertices s, t 2 V and we need to decide whether an
F-valid s-t-path (i.e. a path which uses none of the transitions in F) exists in G or
not.

It has been proven in [Sze03] that PAFT is NP-complete and it remains NP-
complete for the family G

4

of simple graphs where vertices s and t have degree 3
and any other vertex has degree 3 or 4, and the set of allowed transitions A(v)
around a vertex v is such that:

• If d(v) = 3, A(v) consists of two pairs of edges {e, h} and {f, h} where e, f
and h are the 3 edges incident to v;
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v
h

e

f

(a) v in G,
A(v) = {{e, h}, {f, h}}

v
x0
e

xe

xf

x0
f

xh

x0
h

(b) v in H

Edge Colors
{v, xe} Cef , Cef 0

{v, x0e} Ce0f , Ce0f 0

{v, xf} Cef , Ce0f

{v, x0f} Cef 0 , Ce0f 0

{v, xh} Ch,
{v, x0h} C 0

h,

(c) Color assignment

Figure 3.4: Color assignment for vertices with degree 3.

v

e g

f h

(a) v in G, A(v) =
{{e, f}, {g, h}}

v
x0
g

xg

x0
f

xf

x0
e

x0
h

xe

xh

(b) v in H

Edge Colors
{v, xe} Ceg, Ceg0 , Ceh, Ceh0

{v, x0e} Ce0g, Ce0g0 , Ce0h, Ce0h0

{v, xf} Cfg, Cfg0 , Cfh, Cfh0

{v, x0f} Cf 0g, Cf 0g0 , Cf 0h, Cf 0h0

{v, xg} Ceg, Ce0g, Cfg, Cf 0g

{v, x0g} Ceg0 , Ce0g0 , Cfg0 , Cf 0g0

{v, xh} Ceh, Ce0h, Cfh, Cf 0h

{v, x0h} Ceh0 , Ce0h0 , Cfh0 , Cf 0h0

(c) Color assignment

Figure 3.5: Color assignment for vertices with degree 4.

• If d(v) = 4, A(v) consists of two pairs of distinct edges {e, f} and {g, h} where
e, f, g and h are the 4 edges incident to v.

Theorem 8. The k-DCP problem is NP-complete for any fixed constant k � 2, even
if all the following properties hold:

• the star property;

• the maximum degree � is fixed with � � max{8, k};
• cpe, epc and �C are fixed with either [cpe � 4, epc � 2, and �C �
max{16, k}] or [cpe � 2, epc � 4 and �C � max{4, k}].

Proof. We first prove the statement for k = 2 and then extend it for any fixed k � 3.
It is easy to see that the problem is in NP since, given two paths, we just have

to check whether they are color-disjoint.
Given an instance (G, s, t,F) of the PAFT problem with G in the family G

4

,
we define an instance of 2-DCP as follows. We associate with G a colored graph
H = (VH , EH ,C ) where:

• For each node in G, we associate a node in H;
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• For each edge e = {u, v} in G, we associate in H two nodes xe and x0e and
two paths of length 2: {u, xe, v} and {u, x0e, v}. H has then |V (G)|+ 2|E(G)|
vertices and 4|E(G)| edges.

• We assign the colors to edges incident to a vertex v in H as follows:

– Distinct new colors are assigned to the edges incident to t.

– For each pair of edges e and f incident to s in G, such that e 6= f , we will
use 4 colors Cef , Cef 0 , Ce0f and Ce0f 0 . We assign colors Cef and Cef 0 to
the edge {s, xe}; colors Ce0f and Ce0f 0 to the edge {s, x0e}, colors Cef and
Ce0f to the edge {s, xf} and colors Cef 0 and Ce0f 0 to the edge {s, x0f}.

– For each v 6= s, t, and for each pair of edges e and f incident to v in G
such that e 6= f and {e, f} is a forbidden transition (i.e. {e, f} 2 F), we
assign colors Cef and Cef 0 (Ce0f and Ce0f 0) to the edge {v, xe} ({v, x0e}),
and colors Cef and Ce0f (Cef 0 and Ce0f 0) to the edge {v, xf} ({v, x0f}),
respectively. As each vertex has either degree 3 or 4, two cases can occur:

(i) If d(v) = 3, let e, f and h be the 3 edges incident to v and let
A(v) = {{e, h}, {f, h}}, then the colors are assigned as described in
Figure 3.4.

(ii) If d(v) = 4, let e, f, g and h be the 4 edges incident to v and
A(v) = {{e, f}, {g, h}}, then the colors are assigned as described
in Figure 3.5.

The transformation is polynomial time computable and the star property holds.
Moreover, note that each edge has at most 4 colors, each color is associated with
two edges, the degree of each vertex is at most 8 and the color degree is at most 16.
It follows that cpe  4, epc  2, �  8, and �C  16.

To prove the theorem, we will use the following properties.

Property 1. Given an edge e incident to s in G, the edge {s, xe} in H shares a color
with all the other edges incident to s, except {s, x0e}. In other words, the only pair
of edges incident to s having no color in common are of the form {{s, xe}, {s, x0e}}
for some e.

Property 2. If v 6= s, t, d(v) = 3 and A(v) = {{e, h}, {f, h}}, then two edges
incident to v share a color if and only if one is {v, xe} or {v, x0e} and the other is
{v, xf} or {v, x0f}.
Property 3. If v 6= s, t, d(v) = 4 and A(v) = {{e, f}, {g, h}}, then two edges
incident to v share a color if and only if one is {v, xe}, {v, x0e}, {v, xf} or {v, x0f}
and the other is {v, xg}, {v, x0g}, {v, xh} or {v, x0h}.

In other words, two edges incident to a node v are color-disjoint if and only if
they correspond to an allowed transition of v or are of the form {v, xe} and {v, x0e}.

We first show that if there exists an F-valid path in G, then there exist two
color-disjoint paths in H. Let P = (s, e

1

, v
1

, . . . , ep, vp, ep+1

, t) be an F-valid path
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from s to t in G. Then Q = (s ⌘ v
0

, xe1 , v1, . . . , xep , vp, xep+1 , t) and Q0
= (s ⌘

v
0

, x0e1 , v1, . . . , x
0
ep , vp, x

0
ep+1

, t) are two color-disjoint paths in H. In particular, by
Properties 1, 2, and 3, any edge {vi, xei+1} ({xei , vi}) has no color in common with
{vi, x0ei+1

} ({x0ei , vi}), respectively, for each i = 0, 1, . . . , p.
Conversely, we now show that if there exist two color-disjoint paths in H, then

there exists an F-valid path in G. Let the two color-disjoint paths in H be Q =

(s, x
1

, v
1

, . . . , xp, vp, xp+1

, t) and Q0
= (s, y

1

, u
1

, . . . , yp0 , up0 , yp0+1

, t). We prove by
induction on i 2 {1, . . . , p+ 1}, that {xi, yi} = {xei , x0ei}, vi = ui and p = p0.

For i = 1, by Property 1, {s, x
1

} and {s, y
1

} have no color in common only if
{x

1

, y
1

} = {xe, x0e} for an edge e incident to s and then v
1

= u
1

.
Let us suppose that the statement is true until i = l; we will prove it for

i = l + 1. Let the two edges entering ul = vl used by Q and Q0 be {xel , vl} and
{x0el , vl}.

If d(vl) = 3, we distinguish two cases:

• el belongs to only one allowed transition of A(vl) say {el, hl} and the paths Q
and Q0, being color-disjoint, can only use the edges {vl, xhl

} and {vl, x0hl
}.

• el belongs to two allowed transitions of A(vl), {el, fl} and {el, hl}. If one
path uses the edge {vl, xhl

} ({vl, x0hl
}) the other path cannot use the edge

{vl, xfl} or {vl, x0fl} by Property 2, it has then to use edge {vl, x0hl
} ({vl, xhl

}),
respectively.

Therefore, in both cases {xl+1

, yl+1

} = {xhl
, x0hl

} and vl+1

= ul+1

.

If d(vl) = 4, by Property 3, the only possibility as Q and Q0 are color-disjoint
is that they use the edges {vl, xel+1} and {vl, x0el+1

}, respectively, where {el, el+1

} 2
A(vl) and so the statement is true for i = l + 1.

It follows that the path P = (s, e
1

, v
1

, . . . , ep, vp, ep+1

, t) satisfies
{ei, ei+1

} 2 A(vi) for every i 2 {1, . . . , p} and then it is F-valid.

To show that the problem remains NP-complete even for fixed cpe � 2, epc � 4

and �C � 4, it is enough to modify the above transformation by using a different
color assignment. In detail, the color assignment differs from the one given above
as follows:

• Edges incident to vertex s (which has degree 3) have the color assignment
reported in Table 3.1a;

• Edges incident to vertices with degree 4 in G have the color assignment re-
ported in Table 3.1b;

• The other vertices (i.e. t and those with degree 3 in G) keep the same color
assignment as before.
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The above proof works with this color assignment with slight changes. Indeed in
Property 3 edge {v, xe} shares colors with edge {v, xf}. But the proof is still valid
as when d(vl) = 4, if Q (Q0) uses the edge {vl, xel} ({vl, x0el}), then Q (Q0) uses the
edge {vl, xel+1} ({vl, x0el+1

}), respectively, where {el, el+1

} 2 A(vl). It follows that
2-DCP is NP-hard even for fixed cpe � 2, epc � 4 and �C � 4.

Edge Colors
{s, xe} C

1

, C
2

{s, x0e} C
3

, C
4

{s, xf} C
1

, C
3

{s, x0f} C
2

, C
4

{s, xh} C
1

, C
4

{s, x0h} C
2

, C
3

(a) Color assignment for vertex s.

Edge Colors
{v, xe} C

1

, C
2

{v, x0e} C
3

, C
4

{v, xf} C
1

, C
2

{v, x0f} C
3

, C
4

{v, xg} C
1

, C
3

{v, x0g} C
2

, C
4

{v, xh} C
1

, C
3

{v, x0h} C
2

, C
4

(b) Color assignments for vertices with
degree 4.

Table 3.1: Color assignments for vertex s (Table 3.1a) and for vertices with degree
4 (Table 3.1b) when cpe � 2 and epc � 4.

We can extend the proof to the case where k � 3 in various ways. In a first
version we added k�2 paths of length 2 from s to t, Pi = (s, wi, t) for i = 3, 4, . . . k,
with a new color assigned to each edge {s, wi}. The following construction which
gives better results was suggested by one referee; we modify H = (VH , EH ,C ) as
follows:

• We introduce two additional vertices s0 and t0.

• We add k � 2 paths of length 2 from s0 to t0, Pi = (s0, wi, t0) for i = 3, 4, . . . k,
with a new color assigned to each edge {s0, wi} and {t0, wi}. These paths are
pairwise color-disjoint.

• We add two paths of length 2 from s to s0, Ai = (s0, ai, s) for i = 1, 2, with a
new color assigned to each edge {s, ai} and {s0, ai}.

• We add two paths of length 2 from t to t0, Bi = (t, bi, t0) for i = 1, 2, with a
new color assigned to each edge {t, bi} and {t0, bi}.

Finding k color-disjoint paths from s0 to t0 in this new graph is equivalent to
finding 2 color-disjoint paths from s to t . Moreover, this assignment does not change
cpe and epc,and � and �C are either the same or equal to k.
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3.5 Polynomial cases

In this section we give polynomial time algorithms for k-DCP for some important
special cases. In detail, we solve k-DCP for the cases where the number of colors is
bounded by a constant (i.e. |C| = O(1)), for some cases where the maximum degree
of the graph is strictly smaller than 5, and for the cases where the input graph
is a Directed Acyclic Graph (DAG). All the given algorithms work only when the
star property holds, but the one for the case when |C| = O(1) which works for any
possible color assignment.

3.5.1 Bounded number of colors

In this section, we give an algorithm to find k color-disjoint paths in the special
case where the number |C| of colors in the network is bounded by a constant, i.e.
|C| = O(1). We observe that such an algorithm works for every graph topology and
even if the star property does not hold.

We will reduce our problem to the Set Packing problem.

Problem 7 (Set Packing). Given a set X, a collection S of subsets of X and an
integer k, is there a collection of disjoint sets S 0 ✓ S such that |S 0| = k?

The Set Packing problem is known to be NP-hard [GJ79, Problem SP3, page 221]
but is polynomial-time solvable when the size of X is bounded [BHK09].

A subset A ✓ C of colors will be called realizable, if the subgraph GA induced
by the edges whose colors are all in A (i.e. edges e such that C (e) ✓ A) contains
at least one path from s to t. Note that such a path uses only colors of A.

The idea of the algorithm is to enumerate all the realizable subsets of C and then
find k disjoint realizable subsets by using an exact algorithm for the Set Packing.
As the size of C is constant, the computational time required by such algorithm is
polynomial.

The details of the algorithm along with its correctness and complexity are given
in the next theorem.

Theorem 9. The k-DCP problem is FPT when parameterized by the number of colors
|C|. In particular, there exists an algorithm for solving the k-DCP problem in time
O(f(|C|)(|V |+ |E|)), where f is a function depending solely on |C|.
Proof. Let X = C and let S be the family of realizable subsets of colors. Then
there exists a collection of k disjoint sets S 0 ✓ S if and only if there exist k color-
disjoint paths from s to t. Indeed, to each subset A0 of S 0 is associated a path using
uniquely colors of A0 (as A0 is realizable) and two disjoint subsets correspond to two
color-disjoint paths.

Determining if a subset of colors is realizable requires O(|V |+|E|) computational
time. Furthermore, it is known that there exist polynomial time algorithms to
solve the Set Packing problem when the size of X is bounded. For instance, the
exact algorithm proposed in [BHK09] has time complexity O(|S|2|X||X|O(1)

). As
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|X| = |C| and |S|  2

|C|, we deduce that finding k color-disjoint paths requires
O(2

2|C||C|O(1)

(|V |+ |E|)) overall time, and so that the k-DCP problem is FPT when
parameterized by the number of colors |C|.

3.5.2 Bounded degree

In this section, we assume that the star property holds and that |C| is unbounded
and we give algorithms for finding k color-disjoint paths when � < 4 and for finding
2 color-disjoint paths when � = 4. First, note that the maximum number of color-
disjoint paths in a graph is upper bounded by �.

If �  2 the problem is trivial as the graph is either a path or a cycle. In the
first case, there always exists only one path from s to t. In the second case, the only
vertices where the two possible paths can share colors are s and t and hence it is
enough to check if the two edges incident to s (and t) are color-disjoint.

If �  3, observe that if two paths share an internal vertex of degree 3, they
necessarily share also an edge and hence all the colors of that edge. Consequently,
they cannot be color-disjoint. Furthermore, if two paths are color-disjoint the colors
of their first edges should be disjoint and also the colors of their last edges should
be disjoint.

If � = 3 and k = 3, there are 3 color-disjoint paths if and only if G has 3 vertex-
disjoint paths between s and t and the 3 first edges of these paths have disjoint colors
and also the 3 last edges. That can be checked in O(|V |+ |E|) time: constant time
for checking the color disjointness of the 3 first (last) edges, and O(|V |+ |E|) time
for checking the existence of 3 vertex-disjoint paths between s and t (see [FF57]).

If k = 2 and � = 3 or 4, we give an algorithm in the proof of the following
theorem:

Theorem 10. Algorithm 1 solves 2-DCP in graphs with the star property and � = 3

or 4 in time O(|V |+ |E|).

Proof. We say that a pair {si, sj} of neighbors of s in G is admissible, if the edges
joining s to them have disjoint colors, i.e. C ({s, si}) \ C ({s, sj}) = ; and similarly
we say that {ti0 , tj0} is an admissible pair of neighbors of t if the edges joining them to
t have disjoint colors. Then, with each admissible pair {si, sj} and each admissible
pair {ti0 , tj0}, we associate the admissible graph G(si, sj , ti0 , tj0) obtained from G by
deleting the edges {s, s`} with ` 6= i, j and the edges {t`0 , t} with `0 6= i0, j0.

We solve 2-DCP when � = 3, 4 by using Algorithm 1 whose correctness is given
in what follows.

Note first that since all colors satisfy the star property, they are localized
around vertices and the color-disjointness of two paths can be ensured by the color-
disjointness around their shared vertices.

By definition, if there exist two vertex-disjoint paths from s to t in G(si, sj , ti0 , tj0)
the first edges and last edges of such paths have disjoint colors and so we conclude
that there are 2 color-disjoint paths (lines 2, 3).
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Algorithm 1: Solving 2-DCP when � = 3, 4.
1 foreach admissible graph G(si, sj , ti0 , tj0) do
2 if there exist 2 vertex-disjoint paths from s to t in G(si, sj , ti0 , tj0) then
3 There exist two color-disjoint paths from s to t in G;
4 else
5 if all the cut-vertices that separate s from t in G(si, sj , ti0 , tj0) have

degree 4 and are not incident to bridges then
6 foreach cut vertex v that separates s from t in G(si, sj , ti0 , tj0) do
7 Let e and f be the edges incident to v in the connected

component containing s, and let e0 and f 0 be the incident
edges in the connected component containing t;

8 if not

0

@

C (e) \ C (f) = ; and C (e0) \ C (f 0
) = ;

and


[C (e) \ C (e0) = ; and C (f) \ C (f 0
) = ;]

or [C (e) \ C (f 0
) = ; and C (f) \ C (e0) = ;]

�

1

A

then
9 No 2 color-disjoint paths from s to t exist in G;

10 There exist two color-disjoint paths from s to t in G;

11 No 2 color-disjoint paths from s to t exist in G.

Otherwise, if there exists a cut vertex (i.e., a vertex which removal disconnects
s from t and hence should be included in any path from s to t) v of degree 3,
we cannot have color-disjoint paths containing this vertex. That is in particular
the case when � = 3. If there exists a cut-vertex v of degree 4 that is incident
to a bridge, then v belongs to at most one 2-connected component which is not a
bridge. In this case, there are no two color-disjoint paths from s to t. So, let us
now assume that � = 4, all the cut vertices are of degree 4 and, each cut vertex is
incident to two 2-connected components which are not bridges. Between every two
cut vertices, the two paths use vertex-disjoint subpaths. If at the cut vertex v one
path uses edges e and e0 (e and f 0), the other path uses necessarily f and f 0 (f and
e0), respectively, and the conditions on colors are necessary and sufficient for the
color disjointness of the paths at v (the center of the colors used in v).

Since we have at most 6 admissible pairs of neighbors of s (of t), respectively,
we have at most 36 graphs to consider. For each graph we have to check if it is
2-connected (that can be done in time O(|V | + |E|) [HT73]) and if it is not 2-
connected to satisfy coloring conditions at each cut vertex (all of the cut-vertices
can be determined in linear time using the algorithm for finding the biconnected
components of a graph in [HT73]), which can be done in constant time for a given
vertex and so overall in time O(|V |).
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Note that Algorithm 1 cannot be extended in a straightforward manner neither
to find 3 or 4 color-disjoint paths on a graphs with � = 4, nor to the case of � =

5, 6, 7 in polynomial time. In fact, for these cases, while the number of admissible
graphs stays bounded and finding vertex-disjoint path segments stays polynomial,
the number of possible ways to cross the cuts explodes exponentially.

3.5.3 Directed acyclic graphs

In this section, we propose an algorithm for finding k color-disjoint paths in a
colored directed acyclic graph (DAG) with the star property. The definitions given
for undirected colored graphs can be easily extended to colored DAGs by assigning
an acyclic orientation to the edges of the graph. As each color is a star color we
can associate with each color c its center v defined as the common vertex to all arcs
with color c. If the color has only one occurrence we choose arbitrarily as associated
center one of the end vertices of the arc containing this color. We will say that the
color c is centered in v.

The algorithm given in the proof of the next theorem is similar to the one pro-
posed in Section 2.5.3.2 to find k vertex-disjoint paths avoiding forbidden transitions
in DAGs. We again use ideas from [Cha03] and especially the notion of layered di-
rected graph that we have defined in Section 2.5.3.2. Although the transformations
are a bit similar, we include them in detail for the sake of completeness.

In Theorem 11, we present an algorithm for solving the k-DCP problem in a
DAG with the star property in time O(cpe

2|V ||E|2k). This algorithm is therefore
polynomial only when k is a fixed constant.

We will then show in Section 3.6 that the problem is W [1]-hard and therefore
it is not possible to find an FPT algorithm (i.e. having time complexity O(f(k) ·
poly(|V |+ |E|)), for any function f), unless FPT = W [1].

Theorem 11. There exists an algorithm that solves k-DCP in a DAG with the star
property in time O(cpe

2|V ||E|2k).

Proof. Let D be a multicolored DAG and let s and t be two given vertices. As
we want to find (in polynomial time) directed paths from s to t, we can delete the
vertices not on a directed path from s to t, and so we suppose in what follows that
D is this reduced DAG. Now s is the unique vertex with no in-neighbor and t the
unique vertex with no out-neighbor. The algorithm that finds k color-disjoint paths
from s to t in D uses two transformations:

Transformation 1 We first associate with a multicolored DAG D a multicolored
layered DAG LD as follows. We denote by �

�
(v) the set of vertices preceding v,

i.e; vertices u such that (u, v) 2 E. We compute the function l : V ! N defined as
follows:

l(v) =

(

0 when v = s,

1 + maxu2��
(v) l(u) otherwise.
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t
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c1, c2

c1, c4
c3
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(a) Example of
muticolored DAG D

s

u1

u2

u3

u4u5u6

t

g0(c3)
f0(c1)

e0(c1)

h1(c3)

g1(c3)f1(c2)e1(d)

g2(c6)

f2(c2, c5)

e2(c4)

g3(c4, c6)
f3(c6)

e3(c5)

g4(c9)
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(b) LD obtained after the
layering of D

s

f0g0e0g0

f1g1
f1h1

e1g1e1f1
e1h1

f2g2e2g2e2f2

e3g3e3f3

f4g4e4g4e4f4

t

(c) The graph H
associated with LD

Figure 3.6: Transformations for the DAG.

In such a level function, t has the maximum value as there is a directed path
from any vertex to t in the reduced DAG. In the example of Figure 3.6a, we have
l(u

1

) = 1, l(u
2

) = 2, l(u
3

) = 3, l(u
4

) = l(u
5

) = l(u
6

) = 4, and l(t) = 5.
Now we replace every arc (u, v), such that l(v) > l(u) + 1, with a directed path

Puv from u to v of length l(v) � l(u) (thus possibly adding new vertices and arcs).
We assign to the first arc of the directed path Puv the colors of the arc (u, v) centered
in u (or a new color if there are no colors centered in u) and to the last arc of the
directed path Puv the colors of the arc (u, v) centered in v (or a new color if there
are no colors centered in v) and to the intermediate arcs, if any, new distinct colors.
The resulting layered DAG LD is such that there exist k color-disjoint paths in the
DAG D from s to t if and only if there exist k color-disjoint paths in LD from s to
t. In Figure 3.6b, we indicate the layered DAG LD obtained from the DAG D of
Figure 3.6a. We have given a name to each arc with a lower index indicating the
level of the arc; we also indicate inside parentheses the colors attributed to each arc.
For example the arc (s, u

3

) which had colors c
1

, c
4

has been replaced by a path with
3 arcs: e

0

at level 0 which gets the color c
1

(centered at s), e
1

at level 1 which gets
a new color d and e

2

at level 2 which gets the color c
4

(centered at u
3

).
Therefore, in what follows we consider a layered DAG LD with two specific

vertices s and t.

Transformation 2 We use in this transformation ideas similar to that used
in [Cha03] to solve the problem of finding a pair of vertex-disjoint paths with for-
bidden pairs of edges. Here instead of vertex-disjointness we seek edge-disjointness
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and the forbidden pairs of edges are forbidden pairs of subpaths sharing a color.
With LD we will associate a directed graph H with two specific vertices s and t,

such that there exist k color-disjoint directed paths in LD from s to t if and only if
there exists a directed path from s to t in H. For the ease of presentation, we first
give the transformation for k = 2.

There is a vertex in H for every pair {ei, fi} of arcs in LD at the same layer i,
with 0  i  l(t)� 1, such that C (ei)\C (fi) = ;. We also add to H two vertices s
and t. Now we join, by an arc in H, s to all the vertices (pairs) {e

0

, f
0

}. Similarly we
join every vertex {el(t)�1

, fl(t)�1

} in H by an arc to t. Finally, for 0  i  l(t)�2, we
join in H each vertex {ei, fi} to a vertex {ei+1

, fi+1

} if in LD we have the following
properties:

1. the terminal vertex ui (vi) of ei (fi) is the initial vertex of ei+1

(fi+1

), respec-
tively, and

2. either ui 6= vi

3. or ui = vi and the set of colors of C (ei) [ C (ei+1

) is disjoint from the set of
colors of C (fi) [ C (fi+1

)

4. or ui = vi and the set of colors of C (ei) [ C (fi+1

) is disjoint from the set of
colors of C (fi) [ C (ei+1

).

Figure 3.6c indicates the graph H obtained from the layered DAG LD of Figure 3.6b.
For example, we have three vertices corresponding to pairs of arcs of layer 2 of LD:
e
2

f
2

, e
2

g
2

and f
2

g
2

but only two vertices corresponding to pairs of arcs of layer 3:
e
3

f
3

and e
3

g
3

. Vertex e
2

g
2

is connected to vertex e
3

g
3

as condition 3 is fulfilled but
it is not connected to f

3

g
3

as none of the conditions 3 and 4 is fulfilled.
The existence of two disjoint colored directed paths in LD

named P = (s, e
0

, u
0

, e
1

, . . . , el(t)�2

, ul(t)�1

, el(t)�1

, t) and Q =

(s, f
0

, v
0

, f
1

, . . . , fl(t)�2

, vl(t)�1

, fl(t)�1

, t) implies the existence of a directed
path from s to t namely PQ = (s, {e

0

, f
0

}, {e
1

, f
1

}, . . . , {el(t)�1

, fl(t)�1

}, t) in H.
Conversely, let W be a path in H written in the form W =

(s, w
0

, w
1

, . . . , wl(t)�1

, t) where wi corresponds to the pair {ei, fi} and wi+1

to the pair {ei+1

, fi+1

} such that the set of colors of C (ei) [ C (ei+1

)

is disjoint from the set of colors of C (fi) [ C (fi+1

); such ordering
is possible since one of the color conditions is fulfilled. Then, the
two directed paths P = (s, e

0

, u
0

, e
1

, . . . , el(t)�2

, ul(t)�1

, el(t)�1

, t) and Q =

(s, f
0

, v
0

, f
1

, . . . , fl(t)�2

, vl(t)�1

, fl(t)�1

, t) are color-disjoint. In the example of Fig-
ure 3.6c, H has many directed paths from s to t. For example with the directed
path P = (s, {e

0

, g
0

}, {e
1

, h
1

}, {e
2

, f
2

}, {e
3

, g
3

}, {e
4

, g
4

}, t), the two color-disjoint di-
rected paths P

1

= (s, e
0

, e
1

, e
2

, g
3

, g
4

, t) and P
2

= (s, g
0

, h
1

, f
2

, e
3

, e
4

, t) in LD and
the two color-disjoint directed paths (s, u

3

, u
4

, t) and (s, u
1

, u
2

, u
3

, u
6

, t) in D are
associated.

The algorithm can be generalized to find k color-disjoint paths from s to t in
a DAG D, for any k � 2. We first transform D to a layered graph LD as before.
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Then, in the second transformation, instead of having a vertex for every pair of arcs
of the same layer, we create a vertex for every k-tuple of arcs {e1i , e2i , . . . , eki } at
the same layer i, such that the C (eji ) , for j = 1, . . . , k, are disjoint. Then an arc
is added from node {e1i , e2i , . . . , eki } to node {e1i+1

, e2i+1

, . . . , eki+1

} if there exists an
ordering of the eji and of the eji+1

such that the terminal vertex of eji is the initial
vertex of eji+1

and the sets C (eji ) [ C (eji+1

) are pairwise disjoint.
To decide if a k-tuple {e1i , e2i , . . . , eki } is a vertex of H, we need to check the color-

disjointness of C (eji ) , for j = 1, . . . , k. This can be done in at most k(k�1)

2

cpe

2

steps. Deciding on the existence of an edge between two vertices of H can be done in
k!k(k�1)cpe

2 (O(cpe

2

)) time; indeed we can choose an ordering of {e1i , e2i , . . . , eki }
and for each of the k! possible orderings of {e1i+1

, e2i+1

, . . . , eki+1

}, we check whether
the sets C (eji )[C (eji+1

) are pairwise disjoint in at most k(k�1)cpe

2 steps. Finally,
as each arc in D is replaced in LD by a path containing at most one arc of each
layer, the number of arcs at a given layer in LD is at most |E|. So, the graph H
has at most l(t)|E|k vertices and l(t)|E|2k edges. Therefore, we get the complexity
of the theorem as l(t)  |V |.

Remark 1. The algorithm presented in the proof of Theorem 11 can be adapted to
find a minimum cost pair of color-disjoint paths in an arc-weighted DAG by applying
the modifications presented in what follows.

Let us consider a weight function on the arcs of a DAG D. We assign the original
weight of the arc (u, v) to the first arc of the path replacing it in LD. Then, in H
we assign to the edge joining s to {e

0

, f
0

} the sum of the weights of e
0

and f
0

, and
to the edge joining {ei, fi} to {ei+1

, fi+1

} the sum of the weights of {ei+1

and fi+1

}.
With these modifications, the shortest path in H corresponds to the optimal pair
of color-disjoint paths in D.

Remark 2. We can also use the algorithm presented in the proof of Theorem 11
to find a pair of color-disjoint paths with the minimum total number of colors by
applying the modifications presented in what follows.

Let C�
((u, v)) (C+

((u, v))) be the set of colors of arc (u, v) centered at u (v),
respectively. In H, we assign to the arc from {ei, fi} to {ei+1

, fi+1

} a weight equal
to |C+

(ei) [ C�
(ei+1

) [ C+

(fi) [ C�
(fi+1

)|, to the arc from s to {e
0

, f
0

} a weight
equal to |C�

(e
0

)[C�
(f

0

)| and to the arc from {el(t)�1

, fl(t)�1

} to t a weight equal
to |C+

(el(t)�1

) [ C+

(fl(t)�1

)|. We have proven above that every directed path P
from s to t in H corresponds to two color-disjoint directed paths P

1

and P
2

from
s to t in the layered graph LD (and equivalently to two color-disjoint paths from s
to t in D ) and with the way we have defined the weights in H, the weight of P is
equal to the number of colors used by P

1

and P
2

. The shortest path in the weighted
graph H will then correspond to the pair of color-disjoint paths with the minimum
number of colors.
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3.6 Maximum number of color-disjoint paths

In this section we reformulate the problem of finding SRLG-disjoint paths as an
optimization problem where we aim at finding the maximum number of color-disjoint
paths:

Problem 8 (Max Diverse Colored st-Paths, MDCP). Given a colored graph Gc and
two vertices s and t, find the maximum number of color-disjoint st-paths.

In the next theorem we give complexity results for MDCP by using an approxima-
tion factor preserving reduction from Maximum Set Packing (MSP).

Definition 3 (Maximum Set Packing, MSP). Given a set X and a collection S of
subsets of X, find the maximum cardinality set packing, i.e., a collection of disjoint
sets S 0 ✓ S such that |S 0| is maximized.

It has been proven that problem MSP is equivalent to the problem of finding a
maximum clique in a graph under a PTAS reduction where the number n of vertices
in the graph corresponds to |S| [ADP80]. In detail, approximation algorithms and
inapproximability results (in terms of the number of vertices in the graph) carry
over to the MSP problem. It is NP -hard to approximate the problem of finding a
maximum clique within O(n1�"

), for any 0 < " < 1 [H̊99] and then, unless P = NP ,
MSP is not approximable within O(|S|1�"

), for any 0 < " < 1. Moreover, if the
cardinality of all sets in S is upper bounded by a constant c � 3, then the problem
is APX-complete [Kan91]. The next theorem gives inapproximability results for
the MDCP problem. The proof uses an approximation-preserving reduction from MSP

to MDCP where the vertices of V correspond to the elements of S.

Theorem 12. Unless P = NP , MDCP cannot be approximated within O(|V |1�"
),

for any 0 < " < 1, even if epc is fixed, epc � 2. Moreover, it is APX-hard if cpe

is fixed, cpe � 3. These inapproximability results hold even in DAGs with the star
property.

Proof. Given an instance IMSP of MSP over a set X and a collection S , we define an
instance IMDCP of MDCP on a graph GC as follows.

• for each element Si of S, we associate a vertex vSi ;

• we add two vertices s and t and the edges {s, vSi} and {vSi , t}, for each Si 2 S;

First Coloring

• for each Si, Sj 2 S, such that i 6= j and Si \ Sj 6= ;, we add a new color cij
and associate it with {s, vSi} and {s, vSj};

• for each edge not yet colored (in particular for each edge {vSi , t}) we put a
new color.
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Figure 3.7: Examples where S = {S
1

= {a, b, c}, S
2

= {d, e, f}, S
3

= {a, b, d}}
(left) and S = {S

1

= {a, b, d}, S
2

= {b, c, d}, S
3

= {b, e, f}} (right).

See Figure 3.7 for two examples. In the left figure as S
1

\S
3

6= ; and S
2

\S
3

6= ;
we have a color c

13

on {s, vS1} and {s, vS3} and a color c
23

on {s, vS2} and {s, vS3}.
On the right figure we have furthermore a color c

12

on {s, vS1} and {s, vS2} as
S
1

\ S
2

6= ;. By definition each color is associated with at most two edges and
hence epc  2.

Second Coloring
We define a color cx for each element x 2 X and, for each Si = {x

1

, . . . , xh} 2 C,
we associate the |Si| colors cx1 , . . . , cxh

with the edge {s, vSi}. For each edge not
yet colored (in particular for each edge {vSi , t} we put a new color. In this way,
if the cardinality of all sets in S is upper bounded by a constant c � 3, then cpe  c.

In both cases the transformation is polynomial-time computable and the star
property holds. Furthermore, the graph we obtain is the bipartite complete graph
K

2,|S|. This graph can be oriented into a DAG in a straightforward way.
Now we can associate to a family S 0

= {S
1

, S
2

, . . . , Sq} of sets in S, the set
P of paths Pj = (s, vSj , t), j = 1, 2, . . . , |S 0| of GC and vice versa. Note that by
construction two sets Si and Sj are disjoint if and only if the corresponding paths
Pi and Pj are color-disjoint.

Consider an optimal solution S 0
OPT for MSP, with S 0

OPT = {S
1

, S
2

, . . . , S|S0
OPT |};

the associated set P of paths Pj = (s, vSj , t), for each j = 1, 2, . . . , |S 0
OPT | is a

feasible solution for IMDCP with |P| = |S 0
OPT |, and so,

OPT (IMSP)  OPT (IMDCP). (3.1)

Now suppose that there exists an ↵-approximation algorithm A for MDCP, the out-
put of this algorithm for the instance IMDCP is a set P of disjoint paths Pj = (s, vSj , t),
j = 1, 2, . . . , |P|, whose cardinality satisfies |P| = valA(IMDCP) � 1

↵OPT (IMDCP).
Consider the algorithm A0 applied to IMSP which gives as output the family
S 0

= {S
1

, S
2

, . . . , S|P|} associated with P. The family S 0 is a feasible solution
for IMSP, whose value is valA0

(IMSP) = |P| � 1

↵OPT (IMDCP) and by inequality (3.1)
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valA0
(IMSP) � 1

↵OPT (IMSP) and so A0 is an ↵-approximation algorithm for MSP.
Finally the first statement of the theorem follows from the O(|S|1�"

) inapprox-
imability of MSP, for any 0 < " < 1, and from the fact that |V | = |S|+2. Note that
in the first coloring each color is associated with at most two edges which implies
that epc  2. The second statement follows from the fact that MSP is APX-hard
if the cardinality of all sets in S is upper bounded by a constant c � 3 and that
using the second coloring cpe  c. The results for DAGs come from the fact that
the graph K

2,|S| obtained in the transformation can be oriented into a DAG in a
straightforward way.

Parameterized complexity

The next results are expressed in terms of parameterized complexity [DF13]. Recall
that a problem with input size n is fixed parameter tractable with respect to some
parameter k (and so is in FPT ) if it can be solved in time O(f(k) · nO(1)

) where
the function f depends only on k. A problem is W [1]-hard if a W [1]-complete
problem (e.g., deciding if the graph contains a clique of size k) can be reduced to it
in FPT-time.

Theorem 13. MDCP is W [1]-hard when parameterized by the number k of color-
disjoint paths, even in DAGs and when the star property holds.

Proof. It is enough to observe that the reduction used in Theorem 12 is a
parameterized-preserving reduction where the parameter is the number of color-
disjoint paths which corresponds to the number of disjoint subsets in a set packing.
In [DF95] (see also [Nie06, Chapter 11.4.2, pages 193–195]) it has been shown that
MSP is W [1]-hard if the parameter is the number of disjoint subsets.

The above theorem implies that, unless FPT = W [1], MDCP is not in FPT when
parameterized by the number of color-disjoint paths, that is there is no algorithm
which finds k color-disjoint paths in O(f(k) · poly(|V |+ |E|)) time in DAGs, unless
FPT = W [1]. Moreover, Theorem 8 shows that even finding a fixed number k � 2

of color-disjoint paths is NP-complete in general undirected graphs. This implies
that MDCP is ParaNP-hard in undirected graphs, that is, it is impossible to devise
an algorithm which finds k color-disjoint paths in O((|V | + |E|)f(k)) time, unless
P = NP .

The algorithm in Section 3.5.1 can be used to find an exact polynomial-time
algorithm for MDCP when |C| = O(1). In fact, it is enough to search for the maximum
k for which such algorithm returns k color-disjoint paths. As the maximum number
of color-disjoint paths is upper bounded by �, we can use a binary search approach
to solve the problem, applying at most log� times the algorithm of Section 3.5.1.
The next corollary follows.

Corollary 1. The MDCP problem is FPT when parameterized by the number of col-
ors |C|. Moreover, there exists an algorithm for solving the MDCP problem in time
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O(f(|C|)(|V | + |E|) log�), where f is a function depending solely on |C|, and � is
the maximum degree of the graph.

We can use the algorithms for bounded degree presented in Section 3.5.2 for
solving MDCP when �  4. We get a polynomial-time exact algorithm for �  3 and
a 2-approximation algorithm for � = 4 as the maximum number of color-disjoint
paths is upper bounded by � = 4. Both algorithms require O(|V |+ |E|) time.

�

�

� epc

epc

epc cpe

cpe

cpe k-DCPk-DCPk-DCP MDCPMDCPMDCP

Undirected
graphs

unbounded
1 unbounded Solvable in O(|V |+ |E|) Solvable in O(�|E|)

unbounded 1 Solvable in O(|V | + |E|)
[CDP+07] Solvable in O(�C |E|) [CDP+07]

� 8

� 2 � 4

NP-hard for � � max{8, k} Not approximable within
O(|V |1�"

), for any 0 < " < 1� 4 � 2

 3 unbounded unbounded Solvable in O(|V |+ |E|) Optimum in O(|V |+ |E|)
= 4 unbounded unbounded Solvable in O(|V | + |E|) for

k = 2

2-approximation in O(|V |+ |E|)

|C| =

O(1), even
without
star

unbounded unbounded unbounded
Solvable in O(f(|C|)(|V | +
|E|)), in FPT when param-
eterized by |C|

Optimum in O(f(|C|)(|V | +

|E|) log�), in FPT when param-
eterized by |C|

DAG unbounded

� 3 � 3

Solvable in O(cpe

2|V ||E|2k)

NP-hard� 2 � 6

� 2 unbounded Not approximable within
O(|V |1�"

), for any 0 < " < 1

unbounded = 3 APX-hard

unbounded unbounded W [1]-hard when parameterized
by the number of paths

Table 3.2: Summary of complexity results for k-diverse routing.

3.7 Conclusion

Our results, presented in this chapter and summarized in Table 3.2, give an almost
complete characterization of the problem of finding SRLG-disjoint paths in networks
with SRLGs satisfying the star property. For the case epc = 1, the problem of
finding k color-disjoint paths is equivalent to finding k edge-disjoint paths, thus a
flow algorithm such as the Ford-Fulkerson’s [FF57] can be used to solve k-DCP in
time O(|V | + |E|) and MDCP in time O(�|E|). As for the case cpe = 1, every
edge has one color and since the star property is satisfied, all colors have span 1
(i.e. an edge has only one color and the set of edges having the same color forms a
connected component). The problem of finding color disjoint-paths in graphs with
span 1 has been proven polynomial in [CDP+07]. To conclude, we point out some
open questions for further research:

• The complexity of the problem is still open for the cases where the maximum
degree of the network is equal to 5, 6 or 7 and for the cases where epc 2
{2, 3} and cpe 2 {2, 3}. Solving these cases will give a complete complexity
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characterization of the problem with respect to the maximum degree of the
network and the parameters epc and cpe.

• In the problem definition, we assumed that C (e) 6= ;, for each e 2 E, which
means that each edge of the network must have at least one color associated
with. If we allow edges with no colors, then color-disjoint paths are not nec-
essarily edge-disjoint, since an edge that is not affected by any SRLG can be
shared by any number of paths. Therefore, an interesting direction would be
to constrain the paths to be edge-disjoint as well; so, the problem would be
to find k SRLG-disjoint edge-disjoint paths in the case where the number of
SRLGs is bounded by a constant and the number of edges with no SRLG is
linear in the size of the network. This does not affect the hardness results
that hold for the (restricted) case where each edge has a color and hence also
for the (more general) case where colorless edges are allowed. However, the
polynomial-time algorithms proposed in Section 3.5 do not work in this case.

• It would be interesting to consider the unsolved cases for directed graphs since
we only have results for the specific case of DAGs so far.



Part II

Routing and Spectrum
Assignment
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We have tackled in the first part of this thesis problems of finding paths and
disjoint paths. These problems are related to the dedicated path protection scheme
used to make networks more fault-tolerant. In this part, we focus on problems of
resource allocation in optical networks with improved spectrum efficiency.

The internet traffic has been growing exponentially due to the emergence of
high-rate applications, such as high-definition videos and cloud-based services. To
face this rapid growth, a new more efficient generation of optical networks is being
developed; the Elastic Optical Networks (EONs), also known as Flex-grid or SLICE
optical networks [GJLY12, JTK+09]. EONs are emerging as a potential candidate to
replace the currently deployed Wavelength Division Multiplexing (WDM) networks.

In WDM networks [Muk97, MG02], which have been in use for more than
a decade, the optical spectrum is subdivided into channels of fixed width (e.g.
50GHz) called wavelengths. This results in what is referred to as the ITU fixed-
grid. Each wavelength of this fixed-grid can provision a connection with a bitrate
up to 100Gbps. When a connection requires less than 100Gbps, it is still assigned
a full wavelength which leads to an inefficient use of the spectrum. On the other
hand, when a connection requires more than 100Gbps, it cannot be supported by
one wavelength. High bitrate connections can still be provisioned on a fixed grid
network by demultiplexing the demand to smaller ones, this however results in the
use of more spectrum than if the connection was carried as a single entity.

In EONs [GJLY12, WLV13, JTK+09], new technologies such as optical Orthog-
onal Frequency Division Multiplexing (OFDM), modulation techniques (such as the
Quadrature phase shift keying (QPSK) and the 16-ary quadrature-amplitude (16-
QAM) ), bandwidth variable transponders (BV-Ts), and flexible spectrum selective
switches are used to ensure an efficient utilization of the optical resources and to
enable a flexible grid as opposed to the WDM fixed-grid. In this flexible grid, the
available optical spectrum is divided into a set of slots of a fixed and finer spectral
width, e.g. 25GHz, 12.5GHz or even 6.25GHz. With these fine granularity slots,
connections of small bitrates are not over-provisioned and big bitrates can be satis-
fied as single entities by using multiple contiguous slots. In other words, instead of
forcing all connections to use the same spectrum width, EONs allow connections to
use a number of slots according to their needs.

Figure 3.8, taken from [GJLY12], shows an existing ITU grid (top) vs. a flexible
grid (bottom) and spectral widths of different bitrates (side). In the fixed grid, we
can see that for small bitrates a channel is not fully utilized and that bitrates of
400Gbps and 1Tbps cannot be supported as such since they overlap with at least
one 50 GHz grid boundary. On the other side, for the flexible grid, these big bitrates
can be provisioned and the spectrum is used more efficiently for small bitrates.

EONs offer then an efficient and flexible use of the spectrum as presented in
more details in [GJLY12, WLV13, JTK+09]. However, the advantages they propose
make the problems of resource allocation more difficult than their counterparts in
WDM networks. The key resource allocation problem in WDM networks is the
Routing and Wavelength Assignment (RWA) [RS95, ZJ00]. In this problem, we
are given an optical network and a set of requests where each request has a source
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Figure 3.8: Fixed-grid vs Flexgrid [GJLY12]

and a destination and the objective is to find for each request a path from the
source to the destination and a wavelength over this path. Each request must use
the same wavelength over all the links of its path (continuity constraint) and on
a given link, a wavelength can be used by at most one request (non-overlapping
constraint). In EONs, since we allow heterogeneous demands and we accord to each
request contiguous slots, RWA is replaced by the problem of Routing and Spectrum
Assignment (RSA). In RSA, we are still given an optical network and a set of requests
and each request has, besides its source and destination, a demand in terms of the
number of slots it needs. The objective in RSA is to allocate to each request a
path in the optical network and an interval of spectrum slots along that path. The
spectrum allocated to a demand has to be contiguous (contiguity constraint), it
has to be the same over all links of the routing path (continuity constraint), and
a spectrum slot on a link can be used by at most one request (non-overlapping
constraint). RWA can be seen as the special case of RSA where all requests have
unit demands.

With respect to the pattern of the considered traffic, we can distinguish two
versions of RSA: the static RSA and the dynamic RSA.

• Static Routing and Spectrum Assignment, also referred to as offline RSA. In
this case, the traffic is static and the entire set of requests is known in advance.
Static RSA allocates paths and spectrum to these known requests with the
objective of minimizing the utilized spectrum or alternatively, maximizing the
number of provisioned requests for a fixed spectrum interval. Since static RWA
is NP-complete [CGK92], static RSA is NP-complete as well and to make it
more tractable, it is usually partitioned into two subproblems that are solved
separately: the routing subproblem where the aim is to find paths for the
requests and the Spectrum Assignment (SA) subproblem. In SA, we suppose
that each request has a fixed path and the objective is to assign spectrum to
the requests under the continuity, contiguity and non-overlapping constraints.
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• Dynamic Routing and Spectrum Assignment, also referred to as online RSA.
In this case, the traffic is dynamic, i.e. requests arrive and leave the network
dynamically. The objective of dynamic RSA is to allocate paths and spectrum
to the arriving requests so as to minimize the spectrum blocking probability.
This is not an easy problem to solve, since without a prior knowledge of the
requests that will arrive or leave, it is difficult to make routing and spectrum
assignment decisions that are guaranteed to cause less blocking. Furthermore,
the dynamicity of the traffic usually causes spectrum fragmentation which is
the accumulation of small unusable fragments of spectrum. This makes it
necessary to use some defragmentation techniques together with the dynamic
RSA algorithms.

This part of the thesis is devoted to the problem of Routing and Spectrum As-
signment. In Chapter 4, we study static RSA in tree networks. Since the routing
is fixed in trees, the problem reduces to Spectrum Assignment. In Chapter 5, we
investigate the problem of dynamic RSA with the use of a non-disruptive defrag-
mentation technique called Push-Pull.
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In this chapter, we study the problem of static routing and spectrum allocation in
elastic optical tree-networks. In trees, even though the routing is fixed, the Spectrum
Allocation (SA) is NP-hard. We look at the complexity and approximability results
that have been established for the SA in paths and prove new results for stars and
binary trees. The results in this chapter are joint work with J.-C. Bermond and
they have been presented in Algotel’2015 [Moa15].

4.1 Introduction

In the problem of Spectrum Assignment (SA) in elastic optical networks, we are
given a network and a set of requests where each request has a demand and a
predefined path. The objective is to assign to each request an interval of spectrum
of width equal to its demand such that no two requests share the same spectrum
slot on a given link. This problem is a generalization of the well studied problem of
Wavelength Assignment (WA) in fixed-grid networks. In fact, WA can be seen as the
special case of SA where all requests have unit demands. Since WA has been proved
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NP-complete in [CGK92], SA is also NP-complete. In fact, SA remains NP-hard
even in networks where WA is tractable, particularly in path networks. Indeed,
SA has been proved to be equivalent to other problems studied in the literature
which we describe in details in Section 4.2. Using the results obtained for the
equivalent problems, SA is NP-complete in paths even if the requests’ demands do
not exceed 2 slots [BEJ+06]. Furthermore, SA is NP-complete in paths with 4 links
and unidirectional rings with 3 links [TBL+14]. On the positive side, SA can be
approximated within a factor of 2+" in paths, a factor of 4+" in rings (for all " > 0),
and a factor of O(log(k)) in binary trees where k is the number of requests [SZDS13].

Contribution In this chapter, we study the spectrum assignment problem in
trees. We focus on special cases where the tree is a star or where the demands of
the requests are bounded by a constant and the tree is binary. By studying these
special cases, we hope to gain more insight into the general problem in trees and
design a constant-factor approximation algorithm or prove that such algorithm does
not exist. We establish the following results.

• We prove that SA is NP-hard in undirected stars of 3 links and in directed
stars of 4 links, and show that it can be approximated within a factor of 4 in
stars in general.

• Afterwards, we use the equivalence of SA with a graph coloring problem (inter-
val coloring) to find constant-factor approximation algorithms for SA on binary
trees with special demand profiles. Namely, we examine the cases where the
demands are in a set {k, kX} (k,X 2 N⇤), in a set {kX, k(X+1)} (k,X 2 N⇤),
or bounded by D. For the latter case, we give a general approximation when
the demands are bounded by D 2 N and then give better approximations for
the cases where the demands are bounded by D 2 {3, 4, 5, 6}.

This chapter is organized as follows. In Section 4.2, we formally define the
problem of spectrum assignment and survey its relation to other problems and its
complexity in path networks in particular. Afterwards, we present our results in
stars and binary trees in Sections 4.3 and 4.4, respectively.

4.2 Problem statement and related problems

In this section, we first define the problem of Spectrum Allocation (SA) and then
present some related problems and highlight their equivalence to SA. In the last
subsection, we list implications of these equivalences on the complexity of SA in
paths.

4.2.1 Spectrum Assignment

Let N = (N,L) be a graph modeling an optical network such that N is the set
of nodes and L is the set of links. Let R be a set of requests where each r 2 R
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has a path P (r) in N and a spectrum demand d(r) 2 N (number of slots). We
say that two requests r, r0 2 R are conflicting if their paths P (r) and P (r0) share
a link. A spectrum assignment of (N ,R) is a mapping f from R to N⇤ such that
for every pair of conflicting requests r, r0 2 R, we have {f(r), . . . , f(r)+ d(r)� 1}\
{f(r0), . . . , f(r0) + d(r0) � 1} = ;. We say that all the slots in {f(r), . . . , f(r) +
d(r) � 1} are occupied by r. In fact, the set of slots {f(r), . . . , f(r) + d(r) � 1}
corresponds to the spectrum interval ]f(r) � 1, f(r) + d(r) � 1] and we sometimes
use them interchangeably.

The span of a spectrum assignment f , denoted s(f), is the smallest integer s
such that for each request r 2 R, f(r) + d(r) � 1  s. The span of an instance
(N ,R), denoted by s(N ,R) is the minimum of spans over all possible spectrum
assignments. We formulate the spectrum assignment problem as follows:

Problem 9 (Spectrum Assignment (SA)). Given an instance (N ,R), compute
s(N ,R).

For an instance (N ,R) of SA, the load of a link `, denoted by ⇡(`), is the
sum of the demands of the requests using ` and the load of an instance, denoted
by ⇧(N ,R), is the maximum load over all its links. It is straightforward that
⇧(N ,R)  s(N ,R). In the approximations we obtain for SA in this chapter, the
span is usually upper bounded by a function of the maximum load.

The greedy algorithm for SA is an algorithm which assigns spectrum to requests
ordered in a given order r

1

, . . . , rn, such that a request ri is assigned the smallest
positive integer g(ri) such that {g(ri), . . . , g(ri)+d(i)�1}\{g(rj), . . . , g(rj)+dj �
1} = ; for each rj in {r

1

, . . . , ri�1

} conflicting with ri. We will use this algorithm
many times in the remainder of this chapter.

4.2.2 Related problems

We list in this section problems which are related to SA.

4.2.2.1 Scheduling Tasks on Multiprocessor Systems

It has been proved in [TBL+14] that SA in a network of k links can be reduced to the
problem of Scheduling Tasks on Multiprocessor Systems (STMS) with k processors.
In the STMS we are given a set of n tasks and a set of identical processors, a
processing time dj and a prespecified set Pj of processors for each task j, j 2
{1, . . . , n}. The objective is to schedule the tasks so as to minimize the makespan
Cmax = max

j
Cj , where Cj denotes the completion time of task j, under the following

constraints: (1) preemptions (interruptions of a task) are not allowed, (2) each task
must be processed simultaneously by all processors in Pj , and (3) each processor
can work on at most one task at a time.

Given an instance (N ,R) of SA, an instance of STMS is constructed as follows.
For each link ` of N , we associate a processor w`, and for each request r in R with
path P (r) and demand d(r), we associate a task tr with processing time d(r) and a
set of processors {w` | ` 2 P (r)}.
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Complexity of STMS. It has been shown in [HvdVV94] that the problem of
STMS is strongly NP-complete even if the number of used processors is at most
3. On the positive side, it has been proved in [Goe95] and [HCC00] that STMS
can be approximated within 7

6

and 1.5 when the number of processors is 3 and 4,
respectively. Theorem 14 follows from these approximations.

Theorem 14. There are approximation algorithms with ratios 7

6

and 1.5 for SA in
networks with 3 and 4 links, respectively.

4.2.2.2 Dynamic Storage Allocation

When the network is a path, the SA problem is equivalent to the problem of Dynamic
Storage Allocation (DSA). In the DSA problem, we are given a set A of items to
be stored, each a 2 A having size d(a), an arrival time ↵(a), and a departure time
�(a) (with �(a) > ↵(a)). A storage allocation for A is a function f : A ! N⇤

which associates to each item a 2 A a storage interval I(a) = {f(a), . . . , f(a) +
d(a) � 1} such that for all a, a0 2 A with a 6= a0, if I(a) \ I(a0) is non empty then
]↵(a),�(a)]\]↵(a0),�(a0)] is empty. The storage size used by a storage allocation
f denoted by s(f) is the smallest integer s such that for each item a 2 A, f(a) +
d(a)� 1  s. The objective in DSA is to find a storage allocation which minimizes
the used storage size.

If we consider the time interval as a path network and each of the items to
be stored as requests we can see the equivalence between the problem of SA in
paths and the DSA problem. In more details, given an instance of SA on a path
(v

1

, . . . , vk), we associate to each request r with demand d(r), an item ar of size
d(r). We also associate to each vertex vi of the path network time i. Let vi and
vj be the endvertices of the path P (r) of the request r (i < j), then we choose for
the associated item ar the arrival time ↵(ar) = i and the departure time �(ar) = j.
The fact that two requests r and r0 are conflicting corresponds to the fact that
the time intervals ]↵(ar),�(ar)] and ]↵(ar0),�(ar0)] intersect. Then a spectrum
assignment with value � corresponds to a storage allocation using a storage size �.
Conversely, using the opposite transformation, we can associate to an instance of
DSA an instance of SA on a path.

Complexity of DSA. The problem of DSA has been extensively studied. It has
been proved that DSA is strongly NP-complete, even when restricted to instances
where the storage size of all items is in {1, 2}. The proof of NP-completeness is
by reduction from the 3-PARTITION problem and can be found in the appendix of
[BEJ+06]. On the positive side, many approximation algorithms have been proposed
to solve DSA. The first proposed algorithms are based on a greedy algorithm called
First Fit (FF) and its performance for online coloring of interval graphs. The relation
between online coloring of interval graphs and dynamic storage allocation can be
found in [CS88]. Using FF, a linear approximation of DSA has been proved in
[Kie88] and a 6-approximation was given in [Kie91]. Gergov has adopted another
approach not using FF, yielding an approximation of 5 and 3 sequentially in [Ger96]
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and [Ger99]. In his approach, Gergov defines and uses a 2-allocation which is a
storage allocation where two items but not three are allowed to overlap. A better
approximation has been achieved in [BKK+04] where the authors use the idea of
boxing items to design a 2 + "-approximation algorithm. Better approximations
were achieved for DSA with restricted item sizes. In [LLQ04], the authors present a
4

3

-approximation algorithm when the maximum size is 2, and a 1, 7-approximation
algorithm when the maximum size is 3. In [MB99], it is proved that for instances
with sizes of 1 and X, an approximation of ratio 2� 1

X can be guaranteed. All these
results established for DSA apply, by equivalence, to SA in paths.

4.2.2.3 Interval Coloring

As pointed out in [SZDS13], the problem of SA is also equivalent to a graph coloring
problem called Interval Coloring (IC). An interval coloring or a contiguous coloring
[Gol04] of a vertex-weighted graph (G = (V,E), w) is a mapping f : V ! N⇤

such that for every v, v0 2 V , if (v, v0) 2 E then {f(v), . . . , f(v) + w(v) � 1} \
{f(v0), . . . , f(v0)+w(v0)�1} = ;. The number of colors used by an interval coloring
f , denoted by �f (G,w) is the smallest integer ↵ such that for each vertex v 2 V ,
f(v) + w(v) � 1  ↵. The interval chromatic number of a weighted graph (G,w),
denoted by �(G,w), is the least number of colors needed to color the vertices with
intervals, i.e. it is the minimum �f (G,w) among all possible interval colorings f of
(G,w). The interval coloring problem is defined as follows.

Problem 10 (Interval Coloring (IC)). Given a vertex-weighted graph (G,w), com-
pute �(G,w).

To see the equivalence between SA and IC, we do the following. For an instance
(N ,R) of SA, we create a weighted graph (G = (V,E), w) modeling the dependency
between the different requests and call it the conflict graph. We associate to every
request r 2 R a vertex vr in V . We add an edge between two vertices vr and vr0 if
and only if the corresponding requests r and r0 are conflicting. The weight w(vr) of
each vertex vr is equal to the bandwidth demand of the corresponding request r (i.e.
w(vr) = d(r)). Figure 4.1 illustrates an instance of SA on a tree (ri(j) is request
ri with demand j) and the corresponding conflict graph (weights of the vertices are
inside the vertices).

If (N ,R) is an instance of SA and (G,w) is its conflict graph, then finding a
spectrum assignment of (N ,R) is equivalent to finding an interval coloring of (G,w)
and s(N ,R) = �(G,w).

Complexity of IC. The problem of IC has been introduced in [Gol04] where
its relation to other problems such as DSA has been highlighted. It has also been
proved in [Gol04] that IC is equivalent to the problem of finding, for a vertex-
weighted graph, an acyclic orientation which minimizes the length of the longest
path, where the length of a path is the sum of the weights of its vertices. The
complexity of DSA implies that IC is strongly NP-complete in interval graphs. IC is
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Figure 4.1: Example of the construction of a conflict graph

also strongly NP-complete in proper interval graphs [Sha15]. On the positive side,
IC is polynomial in comparability graphs [Gol04] and can be approximated within a
factor of 2 + " in interval graphs [BKK+04], a factor of 2 for proper interval graphs
[Sha15] and claw-free chordal graphs [CDG02], and a factor of O(log(n)) in chordal
graphs where n is the number of vertices.

Since the conflict graph associated to an instance of SA in a path is an interval
graph, all the results established for IC in interval graphs apply to SA in paths. In
section 4.4, we will use the fact that the conflict graph associated to a binary tree
is a chordal graph to obtain results for SA in binary trees using interval coloring of
chordal graphs.

4.2.3 Spectrum Assignment in Paths

The problem of spectrum assignment in paths has been studied in [TBL+14] and
[SZDS13]. The complexity results established in these two papers as well as the ones
deduced from the equivalence to the problems defined above can be summarized as
follows.

• With respect to the number of links, SA is NP-complete in path networks with
4 links and polynomial in paths with at most 3 links [TBL+14], and it can be
approximated within a factor of 1.5 in paths with 4 or 5 links [TBL+14].

• With respect to the demands, SA is strongly NP-complete even if the requests
have demands in the set {1, 2} [BEJ+06]. It can be approximated within
a factor of 4

3

and a factor of 1, 7 when the maximum demand is 2 and 3,
respectively [LLQ04]. It also can be approximated within a factor of 2 � 1

X
when the demands are in the set {1, X} [MB99].

• In general, SA in paths can be approximated in paths within a factor of 2+ "
[BKK+04] and it can be approximated within a factor of 2 when the paths of
the requests are such that no path is strictly included in another [Sha15].
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4.3 Spectrum Assignment in Stars

A star is a tree-network with at most one node of degree at least 2. The problem
of wavelength assignment (WA) is NP-complete in undirected stars but polynomial
in directed stars [Bea00]. The polynomiality of WA in directed stars was useful
because optical networks are usually symmetrically directed and because it helped
in the design of constant-factor approximation algorithms for WA in directed trees
[Bea00]. We prove in this section that SA is not only NP-complete in undirected
stars but also in directed stars with 4 links. On the positive side, we prove the
existence of a 4-approximation algorithm for the general case.

Theorem 15. The problem of Spectrum Assignment is strongly NP-complete in
undirected stars with 3 links.

Proof. It was shown in [TBL+14] that the SA problem is strongly NP-complete
in a 3-link unidirectional ring. Let us consider an instance of SA in a 3-link ring
C = (l

1

, l
2

, l
3

) with a request set R. Let us build a star S with three links l0
1

, l0
2

and l0
3

, and a set of requests R0 defined as follows. For each request r 2 R using
at most 2 links, we create a request r0 in R0 such that if the path of r in C is
P (r) = li, i 2 {1, 2, 3}, then the path of r0 in S is P (r0) = l0i, and if P (r) = lilj ,
then P (r0) = l0il

0
j . Solving SA in (C,R) is equivalent to solving SA in (S,R0

).

Theorem 16. The problem of Spectrum Assignment is weakly NP-complete in di-
rected stars with 3 ingoing links and one outgoing link or 3 outgoing links and one
ingoing link.

Proof. The proof is by reduction from the 2-PARTITION problem. In the 2-
PARTITION problem, we are given a set A of k integers a

1

, a
2

, . . . , ak such that
B =

Pk
j=1

aj and the objective is to decide whether A can be partitioned into two
disjoint sets A

1

and A
2

such that
P

aj2A1
aj =

P

aj2A2
aj .

Given an instance of the 2-PARTITION problem with a set of k integers
A = {a

1

, a
2

, . . . , ak} such that B =

Pk
j=1

aj , we create an instance of spectrum
assignment in a 4-link directed star network S (Figure 4.2a) and a set of requests
R. The star S has 3 ingoing links l

1

,l
2

, and l
3

and one outgoing link l
4

. The set
of requests R consists of the requests presented in Figure 4.2b: requests ra, rb, rc,
r
1

, and r
2

and for every integer ai in the set A, a request ri
3

with demand ai and
using link l

3

. We prove that finding a spectrum assignment for (S,R) with span
3

2

B is equivalent to finding a partition of A into two sets A
1

and A
2

such that
P

aj2A1
aj =

P

aj2A2
aj =

B
2

. In fact, if there is a partition of A into A
1

and A
2

such that
P

aj2A1
aj =

P

aj2A2
aj =

B
2

, then we can assign spectrum as shown in
Figure 4.2c. Now let us suppose there is a spectrum assignment for (S,R) with
span 3

2

B. There are two possible symmetric assignments to the requests on links l
1

and l
2

. We suppose we assign to r
1

, ra, r2 and rb spectrum intervals ]0, B], ]B, 3
2

B],
]

B
2

, 3
2

B], and ]0, B
2

], respectively (the analysis is similar for the other assignment).
This assignment forces request rc to use the interval ]B

2

, B] and the other requests
on link l

3

will have to be partitioned into two sets of the same size B
2

.
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Figure 4.2: Reduction from 2-PARTITION to SA in a directed star

The proof is similar if we consider a reduction graph which is a star with 3
outgoing links and 1 ingoing link.

Theorem 17. The problem of Spectrum Assignment in directed stars with at most
3 links or exactly 2 ingoing links and 2 outgoing links can be solved in polynomial
time.

Proof. In all of these cases, the span is equal to the maximum load and the greedy
algorithm with specific orders can achieve the optimal span.

• When the star has only ingoing or outgoing links, the problem is trivial since
any conflicting requests use the same link and the greedy algorithm with any
order can achieve the optimal span.

• For the case where the star is a directed path of length 2, an optimal spectrum
assignment consists in using the greedy algorithm with an order where the
requests using two links come first. This way, the spectrum span will be
defined by the link with the maximum load.

• For the case where the star has two ingoing links l
1

and l
2

and one outgoing link
l
3

(or the opposite), let Ai3 be the sum of the demands of the requests using li
and l

3

for i 2 {1, 2} and let Ai be the sum of the demands of the requests using
only link li for i 2 {1, 2, 3}. First, the requests using l

1

and l
3

are assigned
with the greedy algorithm; the span of the spectrum used on links l

1

and l
3

is equal to A
13

. Afterwards all requests using only one link are assigned with
the greedy algorithm; the span of the spectrum used on links l

1

, l
2

, and l
3

is
A

13

+ A
1

, A
2

, and A
13

+ A
3

, respectively. Finally the requests using links l
2

and l
3

are assigned; the span of the spectrum of links l
1

, l
2

, and l
3

is A
13

+A
1

,
max(A

2

, A
13

+A
3

)+A
23

, and max(A
2

, A
13

+A
3

)+A
23

, respectively. The span
of this spectrum assignment is equal to max(A

13

+A
1

,max(A
2

, A
13

+A
3

)+A
23

)

which is exactly the maximum load of the instance.

• When the star has 2 ingoing links l
1

and l
2

and 2 outgoing links l
3

and l
4

, let
Aij be the sum of the demands of the requests using li and lj for i 2 {1, 2} and
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j 2 {3, 4} and let Ai be the sum of the demands of the requests using only link
li for i 2 {1, 2, 3, 4}. First, the requests using l

1

and l
3

and the requests using
l
2

and l
4

are assigned with the greedy algorithm; the span of the spectrum
used on links l

1

and l
3

is equal to A
13

, and the span of the spectrum used
on links l

2

and l
4

is equal to A
24

. Afterwards, the requests using only one
link are assigned; the span of the spectrum used on links l

1

, l
2

, l
3

, and l
4

is A
13

+ A
1

, A
24

+ A
2

, A
13

+ A
3

, and A
24

+ A
4

, respectively. Finally, the
requests using l

1

and l
4

and the requests using l
2

and l
3

are assigned with the
greedy algorithm; the span of the spectrum used on links l

1

and l
4

is equal to
max(⇡(l

1

),⇡(l
4

)), and the span of the spectrum used on links l
2

and l
3

is equal
to max(⇡(l

2

),⇡(l
3

)). This means that the span of this spectrum assignment is
equal to the maximum load of the instance.

Theorem 18. Let (N ,R) be an instance of SA. If the length of the paths associated
to the requests in R is at most ↵, then the greedy algorithm gives a 2↵-approximation
for the SA problem. In particular there is a 4-approximation polynomial-time algo-
rithm for the SA problem in stars.

Proof. Let (N ,R) be an instance of SA. Let the requests of R be ordered in the
non-increasing order of demands r

1

, r
2

, . . . , rq (i.e., d(r
1

) � d(r
2

) � · · · � d(rq)). Let
⇧ be the maximum load. We will use at most 2↵⇧ slots to allocate spectrum to the
requests of R. Suppose that we have already assigned spectrum to the first requests
rj , j < i with the span 2↵⇧ and consider the request ri with demand d(ri) = d.
For each link l of the path P (ri), let Ri(l) be the set of already assigned requests
conflicting with ri on the link l. As the load of the link l is at most ⇧, the sum of
the demands of the requests of Ri(l) is at most ⇧� d. Since each of these requests
has demand at least d, we have at most ⇧�d

d requests in Ri(l). This implies that the
path P (ri) has at most ↵(⇧�d)

d requests conflicting with ri which have been already
assigned spectrum. Consider the slots not occupied by these requests (available
slots). If there exists an interval of d or more available slots below these requests or
between two requests, we can assign to request ri the first such interval.

Otherwise, between slot 1 and the first slot occupied by the conflicting requests
and between the last slot occupied by a request and the first slot of the next re-
quest there are at most d � 1 available slots. As there are at most ↵(⇧�d)

d re-
quests conflicting with ri, we have at most ↵(⇧�d)

d such intervals. As the requests
in Ri(l) occupy at most (⇧ � d) slots, we have at most ↵(⇧ � d) slots occupied
by the conflicting requests and at most ↵(⇧�d)

d (d � 1) slots available where we
cannot provision ri. Altogether, we have a number of non usable slots equal to
↵(⇧ � d) + ↵(⇧�d)

d (d � 1) = 2↵⇧ � 2↵d � ↵(⇧�d)
d . So, there is an interval of

2↵d +

↵(⇧�d)
d available contiguous slots above all of the requests conflicting with

ri. We can allocate to ri d contiguous slots in this interval. Therefore, if ↵ = 2 as
is the case in stars, we obtain a 4-approximation.
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This approximation algorithm for stars together with the 2 + "-approximation
algorithm for paths presented in [BKK+04], imply constant factor approximations
for tree networks which are spiders. A spider is a tree with one vertex of degree
at least 3 and all others with degree at most 2. The following theorem states the
approximation result on SA in spiders.

Theorem 19. There is a 6 + "-approximation for SA in spiders, for all " > 0.

Proof. Let (S,R) be an instance of SA in a spider tree. Let v be the vertex of S of
degree 3 and let S0 be the star induced by v and all the vertices of S which are at
distance 1 from v. The idea is to use the 4-approximation presented in Theorem 18,
to allocate spectrum to the requests R0 using the star S0 and then for each path P of
the paths of S\S0, use the 2+"-approximation algorithm to allocate spectrum to the
requests using P and which are not in R0. This would yield the 6+"-approximation
algorithm.

4.4 Spectrum Assignment in Binary Trees

The problem of Spectrum Assignment in binary trees has been studied in [SZDS13].
It has been proved that SA can be approximated within a ratio of O(log(k)) where
k is the number of requests. The proof is based on the equivalence between SA and
the problem of Interval Coloring (IC). In fact, the conflict graph of an instance of
SA in a binary tree corresponds to an edge intersection graph of paths in a binary
tree. These graphs have been proved to be chordal graphs in [GLS08, GJ85]. Using
the problem of interval coloring in chordal graphs, we give in this section some
constant-factor approximation algorithms for the problem of spectrum assignment
in binary trees with special demand profiles. Namely, we examine the cases where
the demands are in a set {k, kX} (k,X 2 N⇤), in a set {kX, k(X +1)} (k,X 2 N⇤),
or bounded by D. For the latter case, we give a general approximation when the
demands are bounded by D 2 N and then give better approximations for the cases
where the demands are bounded by D 2 {3, 4, 5, 6}. It is important to recall here
that even if the network is a path and the demands are bounded by 2, SA is strongly
NP-complete. We first start by giving some definitions and then we state our results.

4.4.1 Definitions

A chord of a cycle C in a graph is an edge of the graph connecting two vertices that
are not adjacent in C. A graph G is chordal if every cycle of G with at least 4 vertices
has a chord. One important property of chordal graphs is their perfect elimination
order. The perfect elimination order (PEO) of a graph is an ordering x

1

, x
2

, . . . , xn
of the vertices of the graph such that for i = 1, . . . , n � 1, the neighbors of xi in
G[{xi+1

, . . . , xn}]1 form a clique. It is well known that a graph is chordal if and only
1For S ✓ V , we define G[S] as the subgraph of G induced by the vertices of S, i.e. the subgraph

of G containing the vertices of S and all the edges of G which have both endpoints in S.
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if it has a perfect elimination order. Paper [TY84] describes a linear time algorithm
called maximum cardinality search that can be used to determine if a given graph has
a perfect elimination order and construct such an ordering if it exists. Throughout
the remainder of this chapter, we use the reverse perfect elimination order (RPEO)
in the design of some algorithms. Note that if v

1

, v
2

, . . . , vn is a RPEO of the vertices
of a chordal graph, then for i = 2, . . . , n, the neighbors of vi in G[{v

1

, . . . , vi�1

}]
form a clique. Another tool we will be using is the greedy algorithm for IC. Defined
similarly to the greedy algorithm for SA, the greedy algorithm for IC, also called
the First Fit algorithm (FF) is an algorithm which assigns colors to vertices in a
given order v

1

, . . . , vn such that a vertex vi is assigned the smallest positive integer
g(vi) such that {g(vi), g(vi)+w(vi)� 1}\ {g(vj), g(vj)+w(vj)� 1} = ; for each vj
in {v

1

, . . . , vi�1

} which is adjacent to vi.
In a weighted graph (G = (V,E), w), we define the weight of a subset S ✓ V to

be the quantity w(S) =
P

v2S w(v). The maximum weighted clique is a clique with
the biggest weight. The density of (G = (V,E), w) is the weight of the maximum
weighted clique and is denoted by �(G,w). It is straightforward that �(G,w) 
�(G,w), where �(G,w) is the interval chromatic number of (G,w).

In the remainder of this section, we present our results for SA in binary trees with
bounded demands as corollaries after proving theorems for IC in weighted chordal
graphs with bounded weights. We note here that even though every conflict graph
of an instance of SA in a binary tree is a chordal graph, the opposite is not true
[GJ85]. In what follows, we provide approximation algorithms for IC in weighted
chordal graphs with bounded weights. These algorithms give an upper bound on
the interval chromatic number in terms of the density. The results we prove for IC
in weighted chordal graphs with bounded weights with respect to upper bounds on
�(G,w) in terms of �(G,w) are summarized in Table 4.1.

4.4.2 Demands k and kX

In this section, we present an approximation algorithm for the SA problem when
the demand of each request is either k or kX, k,X 2 N⇤. We start by proving the
following theorem for interval coloring in chordal graphs.

Theorem 20. Let (G,w) be a weighted chordal graph with weights in the set {1, X}.
There exists a polynomial-time algorithm that finds an interval coloring of (G,w)
with 2�(G,w)� b�(G,w)

X c colors.

Proof. It has been proved in [MB99] that there is an algorithm to find a (2 � 1

X )-
approximation for the problem of interval coloring in interval graphs whenever we
have only two weights 1 and X. We generalize this algorithm for chordal graphs as
follows.

Let (G,w) be a weighted chordal graph with weights in {1, X} and let � =

�(G,w) be its density. We will use 2�� b�X c colors to color (G,w) as follows. We
partition the colors into two sets. The first set S

1

contains colors from 1 to � and
the second set S

2

contains colors from �+ 1 to 2�� b�X c.
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Weights Upper bounds

{k, kX}
(2� 1

X )�(G,w) + k
k,X 2 N⇤

{kX,k(X + 1)}
(1 +

1

X )�(G,w)
k,X 2 N⇤

 3 19

10

�(G,w) + 8

5

 4 59

27

�(G,w) + 67

27

 5 859

336

�(G,w) + 229

56

 6 287

100

�(G,w) + 885

200

 W 2 dlog
2

(W )e�(G,w)

Table 4.1: Summary of the upper bounds obtained on �(G,w) for bounded weights

We order the vertices of G in the reverse perfect elimination order. Let v
1

, . . . , vn
be the obtained ordering. Recall that the neighbors of vi in {v

1

, . . . , vi�1

} form a
clique in the graph induced by {v

1

, . . . , vi�1

}. We use the greedy algorithm to assign
colors to the vertices in this order with the additional property that colors assigned
to a vertex are either included in S

1

or S
2

(We cannot use colors from both sets).
We prove that with this algorithm, all vertices will be assigned colors in S

1

or S
2

.

• All vertices of weight 1 will have a color in S
1

. In fact, if a vertex vi of weight
1 cannot be assigned a color in S

1

, then its neighbors in {v
1

, . . . , vi�1

} occupy
all colors of S

1

. This implies that the density of the graph is at least � + 1

which is not possible.

• For vertices of weight X, suppose that there is a vertex vj of weight X to
which we cannot assign colors in S

1

nor in S
2

. The minimum number of colors
used in S

1

that can make it not possible to color vj with colors from S
1

is
b�X c (X � 1 free colors then 1 occupied color, then X � 1 free colors and 1
occupied color . . . ). The weight of the neighbors of vj in {v

1

, . . . , vj�1

} which
use colors in S

1

is at least b�X c. Since we cannot assign colors from S
2

to vj
and knowing that only vertices of the same weight X use colors from S

2

with
the greedy algorithm, we deduce that the sum of the weights of the neighbors
of vj in {v

1

, . . . , vj�1

} which use colors in S
2

is at least |S
2

|� (X � 1). So vj
and its neighbors form a clique of size X + b�X c+ |S

2

|� (X � 1) = �+ 1 as
|S

2

| = �� b�X c. This implies that the density of G is at least �+1, which is
not possible.

We have proved that when the weights are in the set {1, X}, we can color the
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graph with at most 2�� b�X c colors.

Corollary 2. Let (G,w) be a weighted chordal graph with weights in the set {k, kX}.
There exists a polynomial time algorithm that finds an interval coloring of (G,w)
with 2�(G,w)� kb�(G,w)

kX c colors.

Proof. Note that to color a graph (G,w) with weights in {k, kX}, we can transform
it to a graph (G,w0

) with weights in {1, X}, color (G,w0
) and then transform the

colors we found into intervals of colors of size k. The number of colors used for G
will be then at most k times the number of colors used for G0. Note also that the
density of (G,w) is k times the density of (G,w0

). This means that if we can color
(G,w0

) with a�((G,w0
)) + b colors, then we can color (G,w) with a�((G,w)) + kb

colors.
This implies that when the weights are in the set {k, kX}, we can color the

graph with at most 2�(G,w)� kb�(G,w)

kX c colors.

Thanks to Corollary 2, we can deduce the following corollary.

Corollary 3. Let I be an instance of SA in a binary tree such that the demands of
requests are in the set {k, kX} and the span of I is OPT . There is a polynomial-time
algorithm that finds a spectrum assignment for I with span less than (2� 1

X )OPT +k.

Now, in what follows of this subsection, we find a lower bound on the number
of colors that can be used to find an interval coloring of a weighted chordal graph
with weights in {k, kX}.
Theorem 21. There exists a family of weighted chordal graphs (Gm)m2N⇤ , with
weights in the set {k, kX}, for which the ratio between the interval chromatic number
and the density tends to 2� 1

X when m tends to infinity.

Proof. For m > 0, we build the weighted graph Gm of density k(mX2

+1) as follows.

• mX2

+ 1 vertices of weight k each forming a "big" clique.

• For each subset S of mX +1 vertices of the big clique, we add m(X � 1) new
vertices of weight kX each. These vertices form a clique with the vertices of
S.

In any contiguous coloring of Gm, there exists an integer � in {0, . . . , kX�1} such
that the "big" clique uses mX + 1 colors congruent to � modulo kX. Suppose that
this is not true and that the big clique uses for each integer i in {0, . . . , kX � 1} at
most mX colors which are congruent to i modulo kX. This means that the number
of colors used is at most kmX2. This is not possible since this maximum clique has
weight k(mX2

+1). Let S be the subset of vertices of the big clique using colors that
are congruent to � modulo kX. Vertices of S form a clique with m(X � 1) vertices
of weight kX. Each of these vertices uses a color congruent to � modulo kX. In
total, m(2X � 1)+1 colors which are congruent to � are used. This means that the
number of colors used is at least kmX(2X�1)+1. The ratio between the chromatic
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number and the density is then at least kmX(2X�1)+1

k(mX2
+1)

= 2� 1

X � (2k�1)X�k
kX(mX2

+1)

. When
m goes to infinity, this ratio goes to 2� 1

X .

4.4.3 Demands kX and k(X + 1)

In this section, we present an approximation algorithm for the SA problem when the
demand of each request is either kX or k(X+1). We start by proving the following
theorem for interval coloring in chordal graphs.

Theorem 22. Let (G,w) be a weighted chordal graph with weights in {kX, k(X+1)}.
There is a polynomial time algorithm to color G with at most X+1

X �(G,w) colors.

Proof. Let (G,w) be a weighted chordal graph with weights in {kX, k(X + 1)}.
Let m = b�(G,w)

kX c, we prove that we can color (G,w) with k(X + 1)m colors.
We partition the set of colors {1, . . . , k(X + 1)m} into m contiguous intervals Ii,
1  i  m of size k(X + 1) each. Let us order the vertices of (G,w) in the RPEO
order. We use the greedy algorithm to color the vertices in this order using for each
vertex colors from exactly one interval Ii, 1  i  m. Suppose that we cannot color
some vertex vj , this means that each interval Ii, 1  i  m, contains a neighbor of
vj with weight at least kX (recall that the weights are either kX or k(X+1)). Since
the neighbors of vj which appear first in the RPEO form a clique with vj , we have
a clique of weight at least mkX + kX > �(G,w) which is not possible. Therefore
we can color all the vertices.

Theorem 22 implies the following corollary.

Corollary 4. There is a X+1

X -approximation algorithm for SA in binary trees when
the demands of the requests are in the set {kX, k(X + 1)}.

4.4.4 Maximum demand D

In this section, we present an approximation algorithm for the SA problem when
the maximum demand is D. The approximation algorithm proposed for Interval
Coloring in chordal graphs in [PPR05] and which gives 2log

2

(n) approximation
where n is the number of vertices, allows to prove the following theorem.

Theorem 23. Let (G,w) be a weighted chordal graph with maximum weight W .
There is a polynomial time algorithm that finds an interval coloring of (G,w) which
uses at most 2 dlog

2

(W )e�(G,w) colors.

Proof. The proof is due to [PPR05] which proposes a O(log

2

(n))-approximation
where n is the number of vertices. We only replace n by the maximum weight. We
include it for completeness.

We prove that there is a 2 dlog
2

(W )e-approximation for interval coloring of
chordal graphs where W is the maximum weight. Let (G,w) be a vertex-weighted
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chordal graph with maximum weight W . We set k = dlog
2

(W )e. Let us partition
the set of vertices V into k subsets Si, i 2 {1, . . . , k} such that for each vertex v 2 Si,
w(v) 2 [

W
2

i ,
W
2

i�1 ]. We first ignore the weights and optimally color each graph Gi

induced by the subset Si. As the graphs are chordal, we can color the vertices of Gi

with !(Gi) colors where !(Gi) is the clique number of Gi. Afterwards, we replace
the color of each vertex v 2 Gi by an interval of w(v) colors. This way, we obtain an
interval coloring of Gi with at most W

2

i�1!(Gi) colors. Therefore, the vertices of G

can be colored with c colors where c =
k
P

i=1

W
2

i�1!(Gi). Note that W
2

i !(Gi)  �(G,w)

which implies that c 
k
P

i=1

2�(G,w) = 2k�(G,w). The 2 dlog
2

(W )e-approximation

follows.

Theorem 23 implies the following corollary.

Corollary 5. There is a 2 dlog
2

(D)e-approximation for SA in binary trees where D
is the maximum demand.

4.4.5 Maximum demand at most 6

In the previous subsection, a 2 dlog
2

(D)e-approximation algorithm for the SA prob-
lem in binary trees where the maximum demand is at most D has been presented.
This approximation is achieved by partitioning the requests into subsets of close
demands. This technique is used not only in binary trees but also in general graphs
as a heuristic [WM14]. In what follows, we use different techniques to find better ap-
proximations for SA in binary trees for some given values of the maximum demand
D. The techniques we use were introduced in [LLQ04] to approximate DSA. Results
in [LLQ04] can extend directly to SA in path networks giving approximation algo-
rithms with factors 4

3

and 1.7 when the spectrum demands are bounded by 2 and 3,
respectively. In what follows we use the same techniques to design constant-factor
approximations for SA in binary trees when the spectrum demand is bounded by 6.

We first prove the following theorem for interval coloring.

Theorem 24. Let (G,w) be a weighted chordal graph. There are polynomial-time
algorithms which find an interval coloring of (G,w) with at most 19

10

�(G,w) + 8

5

,
59

27

�(G,w) + 67

27

, 859

336

�(G,w) + 229

56

and 287

100

�(G,w) + 885

200

colors when the maximum
weight is bounded by 3,4,5 and 6, respectively.

Proof. As in the previous sections, �(G,w) refers to the density of the weighted
graph (G,w) and will be abbreviated in this proof to �.

Let C(d, S) denote the set of instances of IC in which the graph is chordal, the
density is at most d and the weights are in the set S. Let c(d, S) denote the smallest
integer ↵ such that for each instance of C(d, S), there is an interval coloring with at
most ↵ colors (if such ↵ exists).

We present first the general approach to solve the problem for any maximum
weight W before presenting the cases W 2 {3, 4, 5, 6} in details.
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General Approach Let (G,w) be a weighted chordal graph with maximum
weight W . To color the graph G, we proceed in two phases as follows.

• Partitioning the vertices into multi-level blocks: in this phase, the vertices are
partitioned into blocks. We will have for each i 2 {1, . . . ,W}, a set Bi of
ni level-i blocks B1

i , . . . , B
ni
i each of density di. We order the blocks in the

lexicographic order: block Bj
i is before block Bj0

i0 if i < i0 or i = i0 and j < j0.

Our algorithm consists in considering successively the vertices in the RPEO
order and assigning a new vertex v to the first available block (in the block’s
order). In more details, we assign a vertex v to a block B if the weight of
the clique induced by v and its neighbors in B does not exceed the density of
the block. The vertex v and its neighbors in B indeed form a clique since the
graph is chordal and we consider the vertices in the RPEO order.

We will choose the parameters di and ni (see details after) in such a way that
the following property is satisfied:

Property *: Each vertex of weight i is assigned to some block in the set Bl

such that l  i.

In particular, this means that at the end of the algorithm each vertex is as-
signed to some block.

• Solving the problem of interval coloring for each block: in this second phase,
the vertices of each block Bj

i are colored using an algorithm to solve instances
with density di and weights in Si = {i, . . . ,W} (the possible weights of the
vertices in Bj

i ). Note that the vertices of a block Bj
i induce a graph which

belongs to C(di, Si). The algorithm we use is designed to use no more than
c(di, Si) colors.

Therefore, the total number of colors used to color the whole graph is at most

W
X

i=1

nic(di, {i, . . . ,W})

The total number of colors depends on ni and di. In fact, we will proceed as fol-
lows. For a chosen set of values of the densities di, we will choose the smallest possi-
ble ni such that Property* is satisfied. Afterwards, we will compute c(di, {i, . . . ,W})
and therefore the total number of colors for the chosen values of di. We will do this
for many values of the densities di and keep the set of values which minimize the
total number of colors.

Choice of the ni Note that, if for some i, di < i, then ni = 0 as a block of Bi

cannot be used to assign a vertex of weight � i (recall that the vertices of weight
< i are by Property * all assigned to blocks of Bl with l < i). So, in the following
claims, we suppose di � i for all i.
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Claim 16. n
1

=

l

�

d1

m

Proof. Suppose that a vertex v of weight 1 cannot be assigned to any block of B
1

.
This means that, for each block B of B

1

, vertex v and its neighbors in B form
a clique of size > d

1

and so the weight of the neighbors of v in B is at least d
1

.
This implies that the weight of the neighbors of v in all of the blocks in B

1

is at
least n

1

d
1

. Since we are considering the vertices in the RPEO, this implies that the
clique induced by v and its neighbors in B

1

is of weight n
1

d
1

+1 which exceeds � for
n
1

=

l

�

d1

m

. This is not possible.

Claim 17. n
2

=

l

��1�n1(d1�1)

�

2
2

m

where �

2

2

= max{2, d
2

� 1}.

Proof. Suppose that a vertex v of weight 2 cannot be assigned to any block of B
1

or
B
2

. This means that, for each block B of B
1

(resp. B
2

), vertex v and its neighbors
in B form a clique of size > d

1

(resp. > d
2

) and so the weight of the neighbors of
v in B is at least d

1

� 1 (resp. d
2

� 1). However, if d
2

= 2, as all the vertices of
weight 1 are assigned to blocks of B

1

, v has necessarily one neighbor of weight 2 in
each block of B

2

. Therefore, if we let �

2

2

= max{2, d
2

� 1}, the clique induced by v
and its neighbors in the RPEO has a weight at least n

1

(d
1

� 1) + n
2

�

2

2

+ 2 which
exceeds � for n

2

=

l

��1�n1(d1�1)

�

2
2

m

.

Example: Consider the case W = 2, and let d
1

= 2 and d
2

= 2. Applying the
formula we get n

1

=

⌃

�

2

⌥

and n
2

=

⌃

��1�n1
2

⌥

. Using the fact that c(2, {1, 2}) =

c(2, {2}) = 2, the number of colors used by the algorithm to color a chordal graph
with weight bounded by 2 is at most 2n

1

+ 2n
2

 �+

⌃

�

2

⌥

.

Claim 18. ni =

2

6

6

6

�+1�i�
i�1P
l=1

nl�
l
i

�

i
i

3

7

7

7

where �

l
i = max{l, dl + 1� i}.

Proof. Suppose that a vertex v of weight i cannot be assigned to any block of Bl

with l  i. This means that, for each block B of Bl, vertex v and its neighbors
in B form a clique of size > dl and so the weight of the neighbors of v in B is at
least dl +1� i. Furthermore, as all the vertices of weight < l are assigned to blocks
of Bj for j < l, v has necessarily one neighbor of weight at least l in any block
of Bl. Therefore, if we let �

l
i = max{l, dl + 1 � i}, the clique induced by v and

its neighbors in the RPEO has a weight at least
i
P

l=1

nl�
l
i + i which exceeds � for

ni =

2

6

6

6

�+1�i�
i�1P
l=1

nl�
l
i

�

i
i

3

7

7

7

.
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Maximum weight 3 Let W = 3. We choose some values for di and using the
claims above, we obtain the following values of ni:

• d
1

= d
2

= d
3

= 3. n
1

=

⌃

�

3

⌥

and n
2

=

⌃

��1�2n1
2

⌥

and n
3

=

⌃

��2�n1�2n2
3

⌥

.

• d
1

= 5, d
2

= d
3

= 3. n
1

=

⌃

�

5

⌥

and n
2

=

⌃

��1�4n1
2

⌥

and n
3

=

⌃

��2�3n1�2n2
3

⌥

.

• d
1

= d
2

= 5, d
3

= 3. n
1

=

⌃

�

5

⌥

and n
2

=

⌃

��1�4n1
4

⌥

and n
3

=

⌃

��2�3n1�2n2
3

⌥

.

To compare the values of the total number of colors we need to compute c(3, S)
for some basic sets S. We recall that c(d, S) is the minimum number of colors which
can be used in an interval coloring of any chordal graph with density d and weights
in S.

• c(3,{1,2,3}) = 4.

We first prove that c(3, {1, 2}) � 4. Let us consider the example presented in
Figure 4.3 in which the density is 3 and the maximum weight is 2. The graph
in the example consists of a clique of 3 vertices of weight one, such that each
vertex of weight one is joined to a vertex of weight 2. This graph cannot be
colored using only 3 colors. If we suppose that it can be colored with 3 colors
{1, 2, 3}, then one of the vertices of weight one will have to be assigned color
2. For this vertex, the neighbor of weight 2 cannot be colored since the only
available colors are 1 and 3 which are not contiguous.

To prove that c(3, {1, 2, 3})  4, we use the First Fit algorithm in the RPEO
which needs at most 4 colors .

1

1

1 2

2

2

Figure 4.3: An example showing that c(3, {1, 2}) 6= 3

• c(3,{2,3}) = c(3,{3}) = 3.

In fact in an instance of C(3, {2, 3}), all vertices are isolated and we can hence
easily color them with at most 3 colors.

• c(4,{1,2,3}) = 6.

We first prove that c(4, {1, 2, 3}) � 6. Let us consider the example presented
in Figure 4.4 which consists of a clique of four vertices of weight one. Each
vertex of weight one is joined to a vertex of weight 3 and each pair of vertices
of weight one is joined to a vertex of weight 2. Suppose that we only use 5
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colors {1, 2, 3, 4, 5} to color this graph. If one of the vertices of weight 1 uses
color 3, then its neighbor which has weight 3 cannot be colored. Otherwise,
if the vertices of weight 1 use colors {1, 2, 4, 5}, then the vertex of weight 2
which is adjacent to the vertices of weight 1 which have colors 2 and 4 cannot
be colored.

To color any instance in C(4, {1, 2, 3}) with at most 6 colors, we use the first
fit algorithm in the RPEO.

1 1

11
3

3 3

32

2

2

2

2 2

Figure 4.4: An example showing that c(4, {1, 2, 3}) 6= 5

• c(4,{2,3}) = 4.

The First Fit algorithm in the RPEO, colors any instance in C(4, {2, 3}) with
at most 4 colors.

• c(5,{1,2,3}) = 7.

We first prove that c(5, {1, 3}) � 7. Let us consider the graph G consisting of
a clique of 5 vertices each of weight 1 and such that each pair of vertices of
the clique is connected to a vertex of weight 3. The graph G is chordal with
density 5 and weights in {1, 3}. Let us suppose that we can color G with only
six colors. There are either two vertices of weight one colored with colors 2
and 4 or two vertices of weight one colored with colors 3 and 5. In both cases
the vertex of weight 3 adjacent to these two vertices cannot be colored.

Now let us describe an algorithm that takes an instance of C(5, {1, 2, 3}) and
colors it with at most 7 colors. The algorithm is a First Fit algorithm in
the RPEO of the vertices with the additional feature that colors 5 and 6 are
forbidden for vertices of weight 1.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight
2 colored with {↵,↵ + 1}, we color v with {1, 2, 3} if ↵ � 4 or {5, 6, 7}
if ↵  3. If v has two neighbors of weight 1; if color 7 is not used we
color v with {5, 6, 7}. If color 7 is used, but not color 4 we color v with
{4, 5, 6}. If both colors 4 and 7 are used, we color v with {1, 2, 3}.
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– If a vertex v of weight 2 is considered, then if v has 3 neighbors of weight
1, we color v with {5, 6}. If it has one neighbor of weight 2 colored
{↵,↵ + 1} and one of weight 1 colored �, then we color v with {5, 6} if
↵  3; with {1, 2} if ↵ � 4 and � � 3; with color {6, 7} if ↵ = 4 and
�  2 or {3, 4} if ↵ � 5 and �  2.

• c(5,{2,3}) = 5.

The First Fit algorithm in the RPEO in which we forbid color 3 to vertices of
weight 2 uses at most 5 colors.

Now, we can compute the number of colors for the 3 cases considered above.

• If we set d
1

= d
2

= d
3

= 3, the number of colors used is n
1

c(3, {1, 2, 3}) +
n
2

c(3, {2, 3})+n
3

c(3, {3}) = 4n
1

+3n
2

+3n
3

. As n
3

 ��n1�2n2
3

the number
of colors is at most �+ 3n

1

+ n
2

and as n
2

 ��2n1
2

it is at most 3�

2

+ 2n
1

.
Finally, as n

1

 �

3

+

2

3

, the number of colors used is at most 13

6

�+

4

3

.

• If we set d
1

= 5, d
2

= d
3

= 3, the number of colors used is n
1

c(5, {1, 2, 3}) +
n
2

c(3, {2, 3})+n
3

c(3, {3}) = 7n
1

+3n
2

+3n
3

. As n
3

 ��3n1�2n2
3

the number
of colors is at most �+ 4n

1

+ n
2

and as n
2

 ��4n1
2

it is at most 3�

2

+ 2n
1

.
Finally, as n

1

 �

5

+

4

5

, the number of colors used is at most 19

10

�+

8

5

.

• If we set d
1

= d
2

= 5, and d
3

= 3, the number of colors used is
n
1

c(5, {1, 2, 3}) + n
2

c(5, {2, 3}) + n
3

c(3, {3}) = 7n
1

+ 5n
2

+ 3n
3

. As n
3


��3n1�3n2

3

the number of colors is at most �+4n
1

+2n
2

and as n
2

 ��4n1+2

4

it is at most 3�

2

+ 2n
1

+ 1. Finally, as n
1

 �

5

+

4

5

, the number of colors used
is at most 19

10

�+

13

5

.

We have tried other values of di and ni but we obtained bigger numbers of colors.
For example:

• If we set d
1

= 4, d
2

= d
3

= 3, using c(4, {1, 2, 3}) = 6, the number of colors is
at most 17

8

�+O(1).

• If we set d
1

= d
2

= 4, and d
3

= 3, using c(4, {2, 3}) = 4 the number of colors
is at most 13

6

�+O(1).

• If we set d
1

= 6, and d
2

= d
3

= 3, then using c(6, {1, 2, 3}) = 9 (to be
computed after), the number of colors is at most 23

12

�+O(1).

• If we set d
1

= 6, d
2

= 5 and d
3

= 3, then using c(5, {2, 3}) = 5, the number of
colors is at most 23

12

�+O(1).

In summary, the best approximation obtained for maximum weight 3
is with a multiplicative ratio of 19

10

and an additive constant of 8

5

.
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Maximum weight 4 Let us first compute c(4, S) for some basic sets S.

• c(4,{2,3,4}) = 4.

A First Fit algorithm in the RPEO uses at most 4 colors. In fact, in an
instance of C(4, {2, 3, 4}), vertices of weights 3 or 4 are isolated and it suffices
to color vertices of weight 2 with {1, 2} or {3, 4}.

• c(4,{3,4}) = c(4,{4}) = 4.

In an instance of C(4, {3, 4}), all vertices are isolated and can be colored inde-
pendently.

• c(6,{1,2,3,4}) = c(6,{1,2,3}) = 9.

We first prove that c(6, {1, 3}) � 9. Let us consider the graph G consisting of
a clique of 6 vertices of weight 1 each and such that the vertices of each triple
of the clique are connected to a vertex of weight 3. The graph G is chordal
with density 6 and weights in {1, 3}. Let us suppose that we can color G
with only 8 colors. There are three vertices of weight 1 using colors {1, 4, 7}
or three vertices of weight 1 using colors {2, 5, 8} or two vertices of weight 1
using colors {3, 6}. In any of these three cases, a vertex of weight 3 cannot be
colored.

Now let us describe an algorithm that takes an instance of C(6, {1, 2, 3, 4})
and colors it with at most 9 colors. The algorithm is a First Fit algorithm in
the RPEO of the vertices with two additional features: colors 6,7 and 8 are
forbidden to vertices of weight 1, and each vertex of weight 2 is assigned colors
{1, 2}, {3, 4}, {5, 6}, or {7, 8} and not any other contiguous combination of
two colors. This algorithm uses at most 9 colors.

– If a vertex v of weight 4 is considered, then if v has a neighbor of weight
2 which has been already colored, the possible sets of color used by this
neighbor are {1, 2}, {3, 4}, {5, 6}, or {7, 8}. In any case, v can be colored
with 4 contiguous colors. If v has two neighbors of weight 1 each that
have been already colored, then either one of the colors 9 or 5 is not
used by this neighbor, and in this case v can use it along with the colors
{6, 7, 8} (which are forbidden for vertices of weight 1), or both colors 9

and 5 are used and v can use colors {1, 2, 3, 4}.
– If a vertex v of weight 3 is considered, then if v has a neighbor of weight

3 colored with {↵,↵ + 1,↵ + 2}, we color v with {1, 2, 3} if ↵ � 4 or
with {7, 8, 9} if ↵  3. If v has two neighbors one of weight 2 colored
with {↵,↵+1} and one of weight 1 colored with �, then we color v with
{6, 7, 8} if ↵ = 1 or 3; {1, 2, 3} if ↵ = 5 or 7 and � � 4; {7, 8, 9} if ↵ = 5

and �  3; {4, 5, 6} if ↵ = 7 and �  3.

– If a vertex v of weight 2 is considered. If all its neighbors that have been
already colored are of weight 1, then v can be assigned colors {7, 8}. If
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v has two colored neighbors of weight 2 each, or one colored neighbor of
weight 2 and two other colored neighbors with weight 1, or one colored
neighbor of weight 3 and another of weight 1, or one vertex of weight 4,
then one of the channels {1, 2}, {3, 4}, {5, 6}, or {7, 8} is necessarily free
to be used.

• c(6,{2,3,4}) = 8.

We first prove that c(6, {2, 4}) � 8. Let us consider the graph G which consists
of a clique of 3 vertices of weight 2 each, and such that each vertex of weight 2
is connected to a vertex of weight 4. The graph G is chordal and has density 6
and weights in {2, 4}. Let us suppose that we can color G with only 7 colors.
In any possible coloring of the vertices of weight 2, a vertex v of weight 2 has
to use either colors {3, 4} or {4, 5}. In both cases, the neighbor of v which has
weight 4 cannot be colored.

Now let us describe the algorithm that colors an instance of C(6, {2, 3, 4}).
The algorithm uses First Fit in the RPEO with the additional feature that
the possible combinations of colors for vertices of weight 2 are the following:
{1, 2}, {3, 4}, {5, 6}, and {7, 8}.

Now, we can compute the number of colors for d
1

= 6 and d
2

= d
3

= d
4

= 4.
The number of colors used is n

1

c(6, {1, 2, 3, 4})+n
2

c(4, {2, 3, 4})+n
3

c(4, {3, 4})+
n
4

c(4, {4}) = 9n
1

+ 4n
2

+ 4n
3

+ 4n
4

.
We have n

1

=

⌃

�

6

⌥

; n
2

=

⌃

��1�5n1
3

⌥

; n
3

=

⌃

��2�4n1�2n2
3

⌥

, and n
4

=

⌃

��3�3n1�2n2�3n3
4

⌥

.
As n

4

 ��3n1�2n2�3n3
4

the number of colors is at most � + 6n
1

+ 2n
2

+ n
3

.
As n

3

 ��4n1�2n2
3

the number of colors is at most 4�

3

+

14

3

n
1

+

4

3

n
2

, and as
n
2

 ��5n1+1

3

it is at most 16�

9

+

22

9

n
1

+

4

9

. Finally, as n
1

 �+5

6

, the number of
colors is at most 59

27

�+

67

27

.

We have computed the number of colors for other choices of the di but the values
are bigger.

• For d
1

= d
2

= d
3

= d
4

= 4, we obtain 91

36

�+O(1) colors.

• For d
1

= d
2

= 5 and d
3

= d
4

= 4, we obtain 73

30

�+O(1) colors.

• For d
1

= 5 and d
2

= d
3

= d
4

= 4, we obtain 109

45

�+O(1) colors.

• For d
1

= d
2

= d
3

= 6, d
4

= 4, we obtain 139

60

�+O(1) colors.

• For d
1

= d
2

= 6 and d
3

= d
4

= 4, we obtain 67

30

�+O(1) colors.

The best approximation obtained for maximum weight 4 is with a
multiplicative ratio of 59

27

and an additive constant of 67

27

.
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Maximum weight 5 Let us first compute c(5, S) for some basic sets S.

• c(5,{1,2,3,4,5}) = 8.

In fact, we know that c(5, {1, . . . , 4}) = 8 and for any chordal graph with
density 5 and maximum weight 5, vertices of weight 5 are isolated and can be
colored independently from the others.

• c(5,{2,3,4,5}) = 5.

In a chordal graph of density 5 and weights in {2, . . . , 5}, vertices of weight 4
or 5 are isolated and can be easily colored. For other vertices, we know that
c(5, {2, 3}) = 5.

• c(5,{3,4,5}) = c(5,{4,5}) = 5.

All vertices are isolated and can be easily colored.

• c(6,{1,2,3,4,5}) = 10.

We first prove that c(6, {1, . . . , 5}) = 10. Let us consider the graph G which
consists of a clique C of 6 vertices of weight 1 each such that each of the vertices
of C is connected to a vertex of weight 5, and each pair of vertices of C is
connected to a vertex of weight 4. Let us suppose that we can color G with 9
colors. No vertex of weight 1 can use color 5 because otherwise its neighbor of
weight 5 cannot be colored. In any possible coloring of the vertices of weight
1 without using color 5, there are two vertices whose neighbor of weight 4
cannot be colored.

The First Fit in the RPEO colors any instance of C(6, {1, . . . , 5}) with at most
10 colors.

• c(6,{2,3,4,5}) = 8.

Vertices of weight 5 are isolated and can be easily colored. As for other vertices
we have already proved that c(6, {2, 3, 4}) = 8.

• c(6,{3,4,5}) = 6.

Vertices of weight 4 and 5 are isolated and vertices of weight 3 can be colored
using First Fit in the RPEO with either the colors {1, 2, 3} or {4, 5, 6}.

• c(7,{1,2,3,4,5})  12.

To obtain a coloring with 12 colors, we use the First Fit algorithm in the RPEO
with the additional feature of forbidding colors {8, 9, 10, 11, 12} to vertices of
weight 1 and colors {8, 9} and {9, 10} for vertices of weight 2. The proof that
the algorithm works is done by considering the various possibilities when a
new vertex is added.

Now we can compute the number of colors for d
1

= 7 and d
2

= d
3

= d
4

= d
5

= 5.
The number of colors used is n

1

c(7, {1, 2, 3, 4, 5}) + n
2

c(5, {2, 3, 4, 5}) +

n
3

c(5, {3, 4, 5}) + n
4

c(5, {4, 5}) + n
5

c(5, {5}) = 12n
1

+ 5n
2

+ 5n
3

+ 5n
4

+ 5n
5

.
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We have n
1

=

⌃

�

7

⌥

, n
2

=

⌃

��1�6n1
4

⌥

, n
3

=

⌃

��2�5n1�3n2
3

⌥

, n
4

=

⌃

��3�4n1�2n2�3n3
4

⌥

, and n
5

=

⌃

��4�3n1�2n2�3n3�4n4
5

⌥

.
As in the preceding cases, we, successively, use upper bounds for the ni. The

number of colors is at most �+ 9n
1

+ 3n
2

+ 2n
3

+ n
4

, then 5�

4

+ 8n
1

+

5

2

n
2

+

5

4

n
3

,
then 5�

3

+

71

12

n
1

+

5

4

n
2

, then 95�

48

+

97

24

n
1

+

5

8

 859

336

�+

229

56

.

We have computed the number of colors for other choices of the di but we
obtained bigger values as we present in what follows.

• If we set d
1

= d
2

= d
3

= d
4

= d
5

= 5, then the number of colors used is
8n

1

+ 5n
2

+ 5n
3

+ 5n
4

+ 5n
5

which is at most 679

240

�+O(1) .

• If we set d
1

= d
2

= d
3

= 6,d
4

= d
5

= 5, then the number of colors used is
10n

1

+ 8n
2

+ 6n
3

+ 5n
4

+ 5n
5

which is at most 659

240

�+O(1).

• If we set d
1

= 6, d
2

= d
3

= d
4

= d
5

= 5, then the number of colors used is
10n

1

+ 5n
2

+ 5n
3

+ 5n
4

+ 5n
5

which is at most 763

288

�(G,w) +O(1).

The best approximation obtained for maximum weight 5 is with a
multiplicative ratio of 859

336

and an additive constant of 229

56

.

Maximum weight 6 Let us first compute c(6, S) for some basic sets S. Note
that with a density at most 6, any vertices of weight 6 are isolated. We can then
deduce the following from what we have computed for a maximum weight of 5.

• c(6,{1,2,3,4,5,6}) = 10.

• c(6,{2,3,4,5,6}) = 8.

• c(6,{3,4,5,6}) = c(6,{4,5,6}) = c(6,{5,6}) = c(6,{6}) = 6.

• c(7,{1,2,3,4,5,6}) = 12.

We use the algorithm which gives c(7, {1, 2, 3, 4, 5, })  12. If a vertex v of
weight 6 is added it is joined to at most one vertex of weight 1 of color �.
If �  6, we color v with colors {7, 8, 9, 10, 11, 12}) and if � = 7 with colors
{1, 2, 3, 4, 5, 6}) and so c(7, {1, 2, 3, 4, 5, 6})  12.

To show that c(7, {1, 2, 3, 4, 5, 6}) � 12, we consider the chordal graph consist-
ing of a clique of 7 vertices of weight one such that each vertex of this clique
is joined to a vertex of weight 6. Furthermore we join each pair of vertices of
weight 1 to a vertex of weight 5. Suppose that we can color the graph with
11 colors. Color 6 cannot be used for any vertex of weight 1, otherwise its
neighbor of weight 6 cannot be colored. Furthermore we can use for vertices
of weight 1 at most one of the pair of colors {2, 7}, {3, 8}, {4, 9}, {5, 10}. So
we have altogether 5 colors forbidden for vertices of weight 1 and so only 6

available colors which is impossible.
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Now we can compute the number of colors for d
1

= 7 and d
2

= d
3

= d
4

= d
5

=

d
6

= 6.
The number of colors used is n

1

c(7, {1, 2, 3, 4, 5, 6}) + n
2

c(6, {2, 3, 4, 5, 6}) +
n
3

c(6, {3, 4, 5, 6}) + n
4

c(6, {4, 5, 6}) + n
5

c(6, {5, 6}) + n
6

c(6, {6}) = 12n
1

+ 8n
2

+

6n
3

+ 6n
4

+ 6n
5

+ 6n
6

.
We have n
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⌃
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⌥

, and n
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6

⌥

.
Like in the preceding cases, we obtain upperbounds on ni. The number of colors

is at most �+ 10n
1

+ 6n
2

+ 3n
3

+ 2n
4

+ n
5

, then 6�

5

+

47

5

n
1

+

28

5

n
2

+

12

5

n
3

+

6

5

n
4

,
then 3�

2

+

41

5

n
1

+

47

10

n
2

+

3

2

n
3

, then 15�

8

+
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40

n
1

+

16

5

n
2

+

3

8

, then
503�

200

+

497

200

n
1

+

459

200

 287

100

�+

885

200

.

If we set d
1

= d
2

= d
3

= 6 = d
4

= d
5

= d
6

= 6, the number of colors used is
10n

1

+ 8n
2

+ 6n
3

+ 6n
4

+ 6n
5

+ 6n
6

which is at most 603

200

�(G,w) +O(1).
We could improve the value if we could prove that c(8, {1, 2, 3, 4, 5, 6})  14 but

that seems not possible. We can only prove c(8, {1, 2, 3, 4, 5, 6})  15 which gives a
bigger number of colors.

For maximum weight 6, we obtain an approximation is with a multi-
plicative ratio of 287

100

and an additive constant of 885

200

.

Theorem 24 implies the following corollary.

Corollary 6. Let I be an instance of SA in a binary tree. Let OPT be the span
of I. There are polynomial-time algorithms which find a spectrum assignment for I
with a span less than 19

10

OPT +

8

5

, 59

27

OPT +

67

27

, 859

336

OPT +

229

56

and 287

100

OPT +

885

200

when the maximum request demand is bounded by 3,4,5 and 6, respectively.

4.5 Conclusion

We have studied in this chapter the problem of spectrum assignment in tree net-
works. We have proved that SA is NP-complete in undirected stars with 3 links
and directed stars with 4 links. We have also shown that there is a 4-approximation
algorithm to solve the problem in general stars. Afterwards, we have focused on
SA in binary trees with special demand profiles and we have designed constant ap-
proximation algorithms for several cases. As future work, we would like to find
approximation algorithms for interval coloring in chordal graphs in general and to
SA in binary trees in particular. Towards this objective, we believe the following
directions might be useful.

• It would be interesting to try to use the clique graph of the chordal graph
[GHP95] to find an acyclic orientation where the number of maximal cliques
to which a path belongs is bounded. In fact, finding a k-approximation for
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interval coloring is equivalent to finding an acyclic orientation in which the
longest directed path has vertices in at most k maximal cliques [Gol04]. This
approach has been used to find a 2-approximation for interval coloring in claw-
free chordal graphs [CDG02].

• It would be also helpful to try to use ideas from the approximation algorithms
used for interval coloring in interval graphs. These algorithms were developed
for the problem of Dynamic Storage Allocation (DSA) as we mentioned in
Section 4.2.2.2 and they use mainly three techniques.

– 2-coloring (2-allocation) [Ger99]: in this technique, which yields a 3-
approximation for Interval Coloring (IC) in interval graphs, first, a 2-
coloring is found where 2 adjacent vertices but not three might use the
same color. This 2-coloring is transformed afterwards to a normal color-
ing. Is it possible to find a 2-coloring for chordal graphs in polynomial
time? Knowing that if we directly apply the technique used by Ger-
gov [Ger99] to find a 2-coloring for an interval graph to chordal graphs,
we will have instances where a color is shared by an unbounded number
of adjacent vertices.

– Boxing vertices [BKK+04]: in this technique, which yields a 2 + " ap-
proximation for IC in interval graphs, vertices are modeled as rectangles
(the dimensions of a rectangle corresponding to a vertex v are the weight
of v and the interval corresponding to v in the interval representation
of the graph). These rectangles are cleverly boxed or gathered in larger
rectangles. Afterwards an exact algorithm is used to color these large
rectangles. Is it possible to adapt such technique to chordal graphs and
find a clever way to box the vertices?

– Buddy-decreasing-size algorithm [CS88]: in this algorithm, which yields
a 6-approximation for IC in interval graphs, vertices are colored in the
decreasing order of their weights. Some of the challenges in this direction
is that using it as it is for chordal graphs cannot give better than a log(n)-
approximation; there is a tight example in [PPR05]. In the tight example
however all the vertices have the same weight which means that there is an
exponential number of possible orders. Is there a clever order (something
similar to lexicographic order?) which can give a better approximation
ratio?
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In this chapter, we study the problem of dynamic Routing and Spectrum As-
signment with the use of a non-disruptive technique called Push-Pull to deal with
spectrum fragmentation. Results in this chapter are joint work with D. Coudert
and B. Jaumard and have been presented in Algotel’2014 [CJM14].

5.1 Introduction

Spectrum fragmentation [WLV13] in Elastic Optical Networks is one of the issues
that are subject to significant research in the optical community. As connections are
set up and torn down in the network, the optical spectrum becomes fragmented as
the hard disk of a computer does. Small free fragments of spectrum are accumulated
and might become unusable either because they are not well aligned on the links of a
given path or because they are not contiguous. The spectrum fragmentation caused
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by the misalignment of free spectrum fragments is due to the continuity constraint
and it was a problem even in the traditional optical networks; it is referred to as
horizontal fragmentation. On the other hand, the fragmentation caused by the
non-contiguity was introduced in elastic optical networks and is mainly due to the
contiguity constraint; it is referred to as vertical fragmentation. To illustrate these
types of fragmentation, let us consider a simple path network of 4 nodes, and an
optical spectrum of 4 slots. In the first example in Figure 5.1a, request r

1

from
a to c is using the spectrum interval ]0, 2] and request r

2

from c to e is using the
spectrum interval ]2, 4]. If a new request r requiring two spectrum slots from a
to e arrives, it cannot be provisioned even though 2 contiguous spectrum slots are
available on each link of the path from a to e. This is because the spectrum is
horizontally fragmented and the continuity constraint cannot be satisfied. In the
second example in Figure 5.1b, request r

1

from a to d is using the spectrum interval
]0, 1] and request r

2

from b to e is using the spectrum interval ]2, 3]. If a new request
r requiring two spectrum slots from a to e arrives, it cannot be provisioned even
though the same 2 spectrum slots are available on each link of the path from a to e.
This is because the spectrum is vertically fragmented and the contiguity constraint
cannot be satisfied.

0
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r2

b c d e

1
2
3

4

r1

(a) Horizontal fragmentation

0
a

r2

b c d e

1
2
3

4

r1

(b) Vertical fragmentation

Figure 5.1: Fragmentation in EONs

To address the issue of fragmentation, many techniques have been proposed.
These techniques are either preventive or remedial. The preventive techniques
are used to avoid or limit the fragmentation and they consist in general in using
fragmentation-aware routing and spectrum allocation algorithms. These are algo-
rithms which allocate routes and spectrum to requests in a way to give new requests
more chances to be accepted. For instance, in a preventive technique proposed in
[WM14], the spectrum is partitioned and requests of almost the same demand are
provisioned on the same partition, and we have seen in Chapter 4 that, for spectrum
assignment in an offline setting, this partition technique achieves good approxima-
tion ratios in some types of networks.

The remedial techniques, on the other hand, offer a cure to fragmentation after
it happens and they perform a defragmentation of the spectrum, which is a con-
solidation of the small fragments of free spectrum. To defragment the spectrum,
rerouting and spectrum re-allocation of the already established requests are usually
performed. This can cause some disruption to the traffic or can be done seamlessly
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without causing any disruption in the network. The Make-before-Break technique
[ABG+01], is one of the non-disruptive defragmentation techniques. In the Make-
before-Break, to reroute or re-allocate spectrum to a request, a new connection is
established from the source to the destination, the traffic is switched to this new
connection and then the first connection is torn down. To establish the second con-
nection, additional costly transponders are needed. Lately, a new non-disruptive
technique, which does not require additional transponders, has been proposed. This
technique uses the characteristics of the EONs and of the flexible transponders to
shift the spectrum allocated to a request without disrupting the traffic. It is referred
to as Push-Pull (PP) [CSS+12] and it performs as follows. The frequency at the
transmitter is pushed at a certain frequency sweep rate and since at the receiver,
the difference between the frequencies of the transmitter and the receiver should not
exceed a given offset, the frequency at the receiver is pulled. This technique can
only perform spectrum re-allocation and not re-routing. Furthermore, the order of
the requests in the spectrum interval does not change. This means that if requests
r and r0 occupy on a link ` slots � and �0, respectively, such that � < �0, then
under any shifting with Push-Pull the new slots � and �0 occupied by the requests
r and r0, respectively, are such that � < �0. All in all, with Push-Pull, requests are
shifted in the spectrum, a request does not change its path and does not transgress
other requests. We study in this part, spectrum defragmentation in EONs using
Push-Pull.

Related work. The Push-Pull technique has been first introduced in [CSS+12].
It is considered to be cheap and non-disruptive because it does not require ad-
ditional transponders and does not disrupt the optical layer by requiring channel
re-equalizations [CSS+12]. To prove its feasibility, experimentations have been con-
ducted with Push-Pull in [CPM+13] and with what seems to be a similar technique
in [SAX14]. Moreover, algorithms have been proposed in [WM13] to use Push-Pull
in the defragmentation of networks that are not heavily loaded where it performs
quite well.

In [WM13], proactive and reactive algorithms are designed to defragment net-
works using non-disruptive defragmentation. The proactive algorithms are run pe-
riodically to defragment the spectrum and consist in general in shifting all requests
to one end of the spectrum. In the reactive algorithms, the defragmentation is per-
formed only when a request is blocked and already provisioned requests are shifted
in order to create enough free contiguous spectrum for the blocked request.

Simulations in [WM13] showed that reactive strategies perform better than the
proactive ones in terms of the blocking propability. Particularly, the proposed reac-
tive optimal algorithm has the best performance. The algorithm routes and allocates
spectrum to a new request in an EON, using the non-disruptive defragmentation
Push-Pull. It first pre-computes a set of paths for the request. Then, it finds on
each path a position in the spectrum which minimizes the delay. The delay of in-
sertion of a new request using Push-Pull indicates the duration of the shifting done
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to free the needed space. In [WM13], the authors take the number of slots through
which the shifting is done over as an indicator of the delay and consider two types
of parallelism to compute it as illustrated in Figure 5.2.
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(a) Requests r1 and r2 are both shifted in
the same direction by two slots and one
slot, respectively. The delay of shifting is

� = max(2, 1) = 2
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(b) Request r1 is shifted by two slots and
r2 is shifted in the opposite direction by

one slot. The delay of shifting is
� = max(2, 1) = 2

Figure 5.2: Shifting requests with Push-Pull

Contribution. In this chapter, we study the problem of dynamic and spectrum
assignment in an online setting where requests arrive and leave dynamically and
the Push-Pull defragmentation can be used. Given an optical network and already
established requests, a new request arrives, we aim at deciding whether we can route
and allocate spectrum to the new request knowing that the Push-Pull defragmen-
tation can be used and respecting the continuity, contiguity and non-overlapping
constraints. We first suppose that the routing is fixed and study the spectrum al-
location and then we focus on the problem where we need to route and allocate
spectrum. Our contribution is as follows.

• We introduce a graph-theoretic framework to manage requests and Push-Pull
shiftings in the network (Section 5.2).

• We build on the algorithm of Wang and Mukherjee [WM13] to solve SA with
PP with minimum delay (Section 5.3).

• We solve exactly the routing and spectrum assignment with two different
objectives; shortest path and minimum delay. Both algorithms are pseudo-
polynomial, i.e. polynomial in the size of the input and the numerical value
of the available spectrum (Section 5.4).

5.2 Preliminaries

In this section, we give some definitions and notations used throughout the chapter.
Afterwards, we give the graph model we use to manage the shiftings of the requests.
Finally, we state the problems we tackle in the chapter.
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5.2.1 Definitions and notations

Let N = (N,L) be a graph modeling an optical network, N is the set of nodes
and L is the set of links. The available spectrum on each link is S; the spectrum
is slotted into S slots. Slot i, for i 2 {1, . . . , S}, represents the spectrum interval
]i � 1, i]. Let R be a set of established requests where each request r 2 R has a
path Pr in N , a spectrum demand dr (number of slots) and an interval ]b(r), e(r)]
in the spectrum such that e(r) = b(r) + dr. We refer to b(r) as the beginning slot
of r and e(r) as the ending slot of r. Note that the non-overlapping, continuity and
contiguity constraints are all satisfied. With respect to the possible shiftings of the
requests, two network states have been defined in [WM13], the delta state and the
del state.

• The delta state (4 state) is the state of the network after shifting all the
requests down (towards 0) until they are blocked.

• The del state (O state) is the state of the network after shifting all the requests
up (towards S) until they are blocked.

In these states we define b4(r)/e4(r) and bO(r)/eO(r) which are the begin-
ning/ending spectrum slots of request r in the 4 state (i.e. when all existing re-
quests are shifted to their lowest spectrum) and the O state (i.e. when all existing
requests are shifted to their highest spectrum), respectively.

5.2.2 Dependency DAG

We introduce in this section the model used to capture the dependency between the
requests and the possible shiftings in the spectrum. This model is the dependency
DAG and it is similar to the conflict graph we used in Chapter 4: vertices correspond
to requests and two vertices are linked by an arc if they are routed through paths
which share at least one link. In more details, the spectrum dependency graph
D = (V,E), is a directed acyclic graph with two special vertices floor and ceiling
and where each vertex r of V \ {floor, ceiling} is associated with a request r 2 R.
For each vertex r, there exists an arc from ceiling to r with weight S � e(r) and an
arc from r to the floor with weight b(r). There exists an arc from r to r0 if r and
r0 occupy consecutive spectrum intervals on some link ` 2 L and b(r) � e(r0); this
means that both r and r0 use link `, b(r) � e(r0), and no slot between b(r) and e(r0)
is used by another request on `. The arc (r, r0) has a weight equal to b(r)�e(r0) and
a set of colors (labels) equal to the set of links in L used by both the paths of r and
r0 and where the requests are consecutive on the spectrum band. The example in
Figure 5.3 illustrates how to build the dependency DAG. Note that we keep labels
on arcs in order to keep track of the origin of the dependency. This is useful when we
delete nodes since it helps establishing the dependencies between the in-neighbors
and out-neighbors of the deleted node. We can restrain from using labels, but in
that case we will need to have much more arcs in the DAG.
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Figure 5.3: Dependency DAG

The dependency DAG is used to capture the dependency between the requests
and to compute the possible shiftings. It can be updated in case of shiftings by
changing the weights of the arcs, and in case of arrival or departure of requests
by adding or deleting nodes and updating the weights and labels of the arcs (see
Figure 5.3 for a simple example). Moreover, the dependency DAG is used to compute
for every request r the values of eO(r) and b4(r) which are related respectively to
the length of the shortest path from the ceiling to r and the length of the shortest
path from r to the floor. Expressly, if ↵

1

and ↵
2

are the length of the shortest
path from the ceiling to r and the length of the shortest path from r to the floor,
respectively, then eO(r) = e(r) + ↵

1

and b4(r) = b(r)� ↵
2

.

The dependency DAG also helps keeping track of the dependency between the
requests. In particular, we say that a request ri is constrained to be below another
request rj if on the dependency graph, ri is in a path from rj to the floor (i.e. ri
is a successor of rj). In the spectrum, the position of ri cannot be bigger than the
position of rj , under any shifting, particularly, e4(ri)  b4(rj) and eO(ri)  bO(rj).
A request ri is constrained to be above another request rj if on the dependency
graph, ri is in a path from the ceiling to rj (i.e. ri is a predecessor of rj). In the
spectrum, the position of ri cannot be smaller than the position of rj , under any
shifting, particularly, e4(rj)  b4(ri) and eO(rj)  bO(ri).
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5.2.3 Problems Statement

We have introduced the definitions and the notations we need and the model we
use to keep track of the dependency between the requests. Now, in this section, we
formally state the problems we consider using Push-Pull. Given an optical network
and a set of provisioned requests. We consider two problems. The first problem is
spectrum assignment using Push-Pull. In this problem, a new request arrives with a
predefined path and the objective is to allocate spectrum to this request respecting
all of the constraints and knowing that the spectrum can be defragmented using
Push-Pull. The second problem we consider is more general. Given a new request
with no predefined path, we would like to route and allocate spectrum to this new
request. We recall that with Push-Pull, requests can be shifted in the spectrum but
their order stays the same. We formally state the problems as follows.

Problem 11 (SA-PP). Given a network, a set of provisioned requests R, and a
new request q with demand dq and path Pq. Is it possible to assign spectrum to q,
knowing that only Push-Pull defragmentation can be used?

Problem 12 (RSA-PP). Given a network, a set of provisioned requests R, and a
new request q with demand dq, source s and destination t. Is it possible to route and
assign spectrum to q, knowing that only Push-Pull defragmentation can be used?

5.3 Spectrum Assignment with Push-Pull

It has been proved in [WM13], that SA-PP can be solved in polynomial time. We
prove here that SA-PP with minimum delay can be solved in polynomial time. We
will first explain the polynomial algorithm presented in [WM13], show that it does
not necessarily allocate spectrum with minimum delay, and then state and prove
our result.

5.3.1 Algorithm of Wang and Mukherjee [WM13]

Let us first present some definitions and notations borrowed from [WM13]. Let
q be a new request and Pq its path. We call the conflict set, CS(Pq), the set
of provisioned requests that use paths sharing some links with Pq. We set k =

|CS(Pq)|. If provisioned, the new request q will partition the set CS(Pq) into two
subsets, requests above q and requests below q, i.e., every position in the spectrum
of q corresponds to a partition A [ ¯A of CS(Pq).

A partition A[ ¯A gives the largest free interval when we shift the requests that are
above (i.e. A) to the O state and those below (i.e., ¯A) to 4 state. We define the floors
of a position ↵ = (A, ¯A) before and after defragmentation as f(↵) = max{e(r) : r 2
A} and f⇤

(↵) = max{e4(r) : r 2 A}, respectively. Similarly, we define the ceilings
before and after defragmentation of the position ↵ as c(↵) = min{b(r) : r 2 ¯A}
and c⇤(↵) = min{bO(r) : r 2 ¯A}, respectively. The widths of a position ↵ = (A, ¯A)

before and after defragmentation are given by w(↵) = c(↵) � f(↵) and w⇤
(↵) =
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c⇤(↵) � f⇤
(↵), respectively. To check if we can provision request q on a position

↵ = (A, ¯A), it is enough to check if w⇤
(↵) � dr.

If w⇤
(↵) � dr, then if w(↵) � dr, the minimum delay of insertion in position ↵

is null. Otherwise, if w(↵) < dr, this delay is given by the following formula (taking
into account the types of parallelism presented in Figure 5.2):

�(↵) = dr �w(↵)�min

⇢

f(↵)� f

⇤(↵), c⇤(↵)� c(↵),
dr � w(↵)

2

�

(1)

Let CS(Pq) be sorted as < r
1

, r
2

, . . . , rk > in the ascending order of the requests
ending slots in the 4 state, i.e., e4(r

1

)  e4(r
2

)  · · ·  e4(rk). We define
the decision-positions of q over path Pq as the k + 1 positions ↵i such that ↵

0

=

(;, {r
1

, . . . , rk}) and ↵i = ({r
1

, . . . , ri}, {ri+1

, . . . , rk}), for i 2 {1, . . . , k}. Wang and
Mukherjee have proved that to decide if it is possible to allocate spectrum to q on
path Pq, it is sufficient to check the k + 1 decision-positions ↵i, i 2 {0, . . . , k}, and
that the following theorem holds.

Theorem 25. [WM13] Let q be a request of demand dq and path Pq, |CS(Pq)| = k
and ↵i, i 2 {0, . . . , k} the corresponding decision-positions. Request q is provision-
able over Pq using Push-Pull, if and only if there exists some i 2 {0, . . . , k}, such
that w⇤

(↵i) � dq.

Thanks to Theorem 25, to solve the SA-PP problem, Wang and Mukherjee have
designed an algorithm which checks all of the decision-positions then chooses the
one over which the new request can be provisioned with minimum delay. However,
we show with the following example that the returned position does not minimize
the delay over all possible positions.

5.3.2 Example

Let us consider the example presented in Figure 5.4a. We have a path network
of length 6 with an available spectrum of 9 slots and 4 requests: r

1

from a to
d occupying the spectrum interval ]5, 6] , r

2

from c to e occupying the spectrum
interval ]1, 3], r

3

from b to e occupying the spectrum interval ]8, 9], and r
4

from e
to g occupying the spectrum interval ]8, 9]. Suppose that a new request r

5

from c
to f requiring 4 spectrum slots arrives and needs to be provisioned. This request
is conflicting with r

1

, r
2

, r
3

and r
4

. To allocate spectrum to r
5

, the algorithm of
Mukherjee and Wang will first sort the existing requests in the increasing order of
their spectrum occupancy e4(r). The obtained order is < r

4

, r
1

, r
2

, r
3

> and the
five possible decision-positions according to this order are:

• (;, {r
4

, r
1

, r
2

, r
3

}); below {r
4

, r
1

, r
2

, r
3

}, with delay 3

• ({r
4

}, {r
1

, r
2

, r
3

}); above r
4

and below {r
1

, r
2

, r
3

} with delay 8

• ({r
4

, r
1

}, {r
2

, r
3

}); above {r
4

, r
1

} and below {r
2

, r
3

} with delay 6
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• ({r
4

, r
1

, r
2

}, {r
3

}); above {r
4

, r
1

, r
2

} and below r
3

with delay 5

• ({r
4

, r
1

, r
2

, r
3

}, ;); above {r
4

, r
1

, r
2

, r
3

} with delay 4

Among these positions, the one with minimum delay is (;, {r
4

, r
1

, r
2

, r
3

}) which
is illustrated in Figure 5.4b. The position with minimum delay over all possible
positions is, however, above r

1

and below {r
2

, r
3

, r
4

} with delay 1 as illustrated in
Figure 5.4c.
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Figure 5.4: Spectrum assignment to a request with Push-Pull

5.3.3 SA-PP with minimum delay

In this section, we prove that by checking more positions, we can find a position
which minimizes the delay. We prove the following theorem.

Theorem 26. The SA-PP problem with minimum delay can be solved in polynomial
time.

Let q be the new request, Pq its path, and |CS(Pq)| = k. Instead of checking
only the k + 1 decision-positions ↵i, i 2 {0, . . . , k}, defined earlier, we check O(k2)
relative positions ↵j

i , i 2 {0, . . . , k}, j 2 {0, . . . , i � 1}, defined as follows. For
i 2 {1, . . . , k}, let ↵i = (Ai, ¯Ai) and let < x

1

, . . . , xi > be the set Ai sorted in the
descending order of their ending slots, i.e. e(x

1

) � e(x
2

) � · · · � e(xi). For j = 0,
we set ↵j

i = ↵i and for j 2 {1, . . . , i�1}, we set Bj = {x
1

, x
2

, . . . , xj} and we define
the position ↵j

i = (Ai \Bj , ¯Ai[Bj). Algorithm 2 (page 119) is the algorithm solving
SA with minimum delay. It checks if it is possible to empty spectrum for the new
request q with the use of one of the positions ↵j

i , and then chooses the position with
the minimum delay. Its correctness is drawn from Lemma 4.

Lemma 4. Request q is provisionable over Pq with delay � using Push-Pull, if and
only if there exists some i 2 {0, . . . , n}, and j 2 {0, . . . , i�1} such that w⇤

(↵j
i ) � dq

and �(↵j
i )  �.
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Proof. Let us suppose that a request q can be provisioned on path Pq with position
� = (B, ¯B) (i.e. in the spectrum interval, q is above the requests in B and below
the requests of ¯B) and delay �(�) = �.

In the proof of Theorem 25, � can be transformed into a decision-position ↵i =

(A, ¯A), i 2 {0, . . . , n} such that q can be provisioned on ↵i. The position ↵i is
found as follows. Suppose r is the request that yields the floor of � = (B, ¯B) after
defragmentation, i.e. e4(r) = f⇤

(�). Let < r
1

, r
2

, . . . , rn > be the requests in
CS(Pq) sorted in the ascending order of 4 state, i.e., e4(r

1

)  e4(r
2

)  · · · 
e4(rn) and let i be the index such that e4(ri) = e4(r) and e4(ri+1

) > e4(r). It is
proved in Theorem 25 that if q is provisionable on path Pq with position � = (B, ¯B)

then q is provisionable on path Pq with position ↵i = (A, ¯A) where A = {r
1

, . . . , ri}.
Note that the position ↵i is obtained by shifting down some requests of ¯B, and

that B ✓ A and ¯A ✓ ¯B. These shiftings may affect the delay � (see formula of delay
in equation (1) page 116). The idea is to shift back up some of the requests that
might change the delay which are the requests x such that e(x) > e(r0) where r0 is
the request that yields the floor of �, i.e., f(�) = e(r0) .

Let < x
1

, x
2

, . . . , xi > be the list of requests of A sorted in the descending order
of their ending slots, i.e., e(x

1

) � e(x
2

) � · · · � e(xi). Let xj be the request such
that e(xj+1

) = e(r0) and e(xj) > e(r0). We prove that ↵j
i = (A\{x

1

, x
2

, . . . , xj}, ¯A[
{x

1

, x
2

, . . . , xj}) is a position which can provision q with delay �(↵j
i )  �.

We first set ↵ = ↵j
i to simplify the notation. For positions ↵ and �, we have the

following.

• c⇤(↵) � c⇤(�); this is due to the fact that ¯A [ {x
1

, x
2

, . . . , xj} ✓ ¯B.

• f⇤
(↵)  f⇤

(�); this is due to the fact that f⇤
(↵)  f⇤

(↵i) (since A \
{x

1

, x
2

, . . . , xj} ✓ A) and ↵i and � have the same floor after defragmenta-
tion (by construction of ↵i).

• f(↵) = f(�); this is due to the fact that f(�) = e(r0), f(↵) = e(xj+1

) and
e(r0) = e(xj+1

).

• c(↵) � c(�); this is due to the fact that ¯A [ {x
1

, x
2

, . . . , xj} ✓ ¯B.

Since w⇤
(↵) = c⇤(↵) � f⇤

(↵) and with the equations above, we deduce that
w⇤

(↵) � c⇤(�) � f⇤
(�), and hence w⇤

(↵) � w⇤
(�) � dq. This implies that ↵ can

provision q. The equations above also imply that w(↵) � w(�).
Now, let us prove that �0 = �(↵)  �. Note that if � = 0, then w(�) � dq. This

implies that w(↵) � dq and �0 = 0. Let us assume that both � and �0 are not null.
We recall that

� = dr � w(�)�min

⇢

f(�)� f⇤
(�), c⇤(�)� c(�),

dr � w(�)

2

�

and

�0 = dr � w(↵)�min

⇢

f(↵)� f⇤
(↵), c⇤(↵)� c(↵),

dr � w(↵)

2

�
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Let us evaluate the difference between � and �0 according to the following cases:

• If min

n

f(↵)� f⇤
(↵), c⇤(↵)� c(↵), dr�w(↵)

2

o

= f(↵) � f⇤
(↵), then �0 = dr �

w(↵)�(f(↵)�f⇤
(↵)), and since w(↵) � w(�) and f(↵)�f⇤

(↵) � f(�)�f⇤
(�),

this implies that �0  dr � w(�)� (f(�)� f⇤
(�))  �.

• If min

n

f(↵)� f⇤
(↵), c⇤(↵)� c(↵), dr�w(↵)

2

o

= c⇤(↵) � c(↵), then �0 = dr �
w(↵) � (c⇤(↵) � c(↵)). In this case, since w(↵) � c(↵) = f(↵) = f(�) =

w(�) � c(�), then �0 = dr � w(�) + c(�) � c⇤(↵) and since c⇤(↵) � c⇤(�) we
have �0  dr � w(�) + c(�)� c⇤(�)  �.

• If min

n

f(↵)� f⇤
(↵), c⇤(↵)� c(↵), dr�w(↵)

2

o

=

dr�w(↵)
2

, then �0 =

dr�w(↵)
2

and since w(↵) � w(�), we have �0  �.

Algorithm 2: SA-PP with minimum delay
Require: Network N = (N,L), a set of provisioned requests R and a new

request q with a path P
Ensure: Allocate spectrum to q on P with minimum delay
1: b(q) = None, � = ; and � = 1
2: Find CS(P ) the set of requests conflicting with q on P and sort it in the

ascending order of e4. The sorted list is < r
1

, r
2

, . . . , rk >. The
corresponding decision-positions are ↵

0

,↵
1

, . . . ,↵n such that ↵i = (Ai, ¯Ai)

3: for all i 2 0, . . . , n do
4: if w⇤

(↵i) � dq then
5: Sort the requests in Ai in the descending order of e(x). The sorted list

is < x
1

, x
2

, . . . , xi > and
↵j
i = ({Ai \ {x1, x2, . . . , xj}} [ { ¯Ai, {x1, x2, . . . , xj}}) for j 2 {1, . . . , i� 1}

and ↵0

i = ↵i

6: for all j 2 {0, . . . , i� 1} do
7: if �(↵j

i ) < � then
8: � = ↵j

i and � = �(↵j
i ) and b(q) = max(f(�)� �, f⇤

(�))

5.4 Routing and Spectrum Assignment with Push-Pull

In this section we solve the problem of RSA-PP. We first solve RSA-PP with the
shortest path and then solve RSA-PP with minimum delay.

Let q be a request from s to t with spectrum demand dq. We call absolute
position, a position in the spectrum range i.e., a value in the interval [0, S] which
can be assigned to b(q). We call a relative position (A,B), a position between two
sets of requests. Allocating position (A,B) to a request r means that request r is
above the set of requests A, and below the set of requests B in the spectrum range.
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We say that (A,B) is a valid relative position if no request of B is constrained
to be below a request of A. A relative position (A,B) is valid on a link ` if it is
valid and (A,B) is a partition of the requests using `.

To every relative position (A,B), we associate a complete relative position
(Ac, Bc) such that Ac contains the requests in A and all the requests constrained to
be below them and Bc contains the requests in B and all the requests constrained
to be above them. We recall that requests constrained to be above or below a given
request r are respectively the requests corresponding to the predecessors and the
successors of the vertex r in the dependency DAG.

We say that two relative positions (A,B) and (C,D) are conflicting if and only
if Ac \Dc 6= ; or Cc \Bc 6= ;.

5.4.1 RSA-PP with the shortest path

Theorem 27. The RSA-PP problem with shortest path can be solved in pseudo-
polynomial time.

Algorithm 3 is the algorithm we use to solve RSA-PP with shortest path. It is a
natural approach to such problems. Since there are S�dq +1 absolute positions on
the spectrum to allocate to request q, then for each absolute position �, we create
the graph consisting of all of the links of N where the position � can be freed for
request q (by shiftings) and then find the shortest path from s to t in this graph.
At the end we choose the shortest path among the ones found for each position and
on this path we allocate spectrum with minimum delay.

The correctness of the algorithm is based on the fact that if we can free a position
� on a set of links (i.e. free all slots of ]�,� + dq]), then we can free this position
on the same set using non-conflicting shiftings or in other words non-conflicting
relative positions on the links. This is what we prove with Lemma 5. Note that
freeing position � on link ` using the relative position (A,B) means that (A,B) is
a valid relative position on `, and requests of A can be shifted below � and requests
of B can be shifted above �+ dq.

Lemma 5. If the absolute position � can be freed for a request q with demand dq on
a set of links E, then there are valid non-conflicting relative positions on the links
of E which can free � for q.

Proof. We proceed by induction on the size of E. Let E = {`, `0} and let (A,B)

and (A0, B0
) be the two relative positions with which ` and `0 free �, respectively.

Let (Ac, Bc) and (A0
c, B

0
c) be the complete relative positions corresponding to (A,B)

and (A0, B0
) , respectively. Let us suppose that (A,B) and (A0, B0

) are conflicting.
We suppose without loss of generality that Ac \ B0

c = I 6= ;. This implies that
A0

c \ Bc = ;. Let J be the set of the requests I and all the requests that are
constrained to be below them. We prove that (C,D), where C = (A0

c [ J) \CS(`0)
and D = (B0

c \ J)\CS(`0), is a valid relative position on link `0, that frees position
� and that is not conflicting with (A,B).
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Algorithm 3: RSA-PP with shortest path
Require: A network N = (V, L), a set of provisioned requests R and a new

request q with demand dq, source s and destination t
Ensure: Route and allocate spectrum to q using the shortest path
1: for all ` 2 L do
2: sort requests using ` by the increasing order of their beginning slots b(r);

the sorted list is < r
1

, . . . , rk >.
3: e4(r

0

) = 0 and bO(rk+1

) = S
4: for all � 2 {0, 1, . . . , S � dq} do
5: for all i 2 {0, 1, . . . , k} do
6: if [�,�+ dq] ✓ [e4(ri), bO(ri+1

)] then
7: color link ` with color � and break
8: Find the shortest monocolored st-path P . {a monocolored path is a path

whose links share a color}
9: Find a position on P using Algorithm 2

• First, (C,D) is a valid position on `0. C [D = (A0
c [ B0

c) \ CS(`0) = CS(`0)
and C \ D = A0

c \ B0
c = ;, so (C,D) is a partition of CS(`0). Let rC be a

request of C. If rC 2 A0 then rC is below all the requests in D (this conclusion
comes from the validity of the position (A0, B0

)). Otherwise, if rC 2 J , we
know that all the requests constrained to be below rC are in the same set J
and no one of them can be in D = (B0\J) \ CS(`0). Position (C,D) is then
valid.

• Second, (C,D) can free �. This means that if we define as before the floor and
ceiling of (C,D) after defragmentation as f⇤

((C,D)) = max{e4(r) : r 2 C}
and c⇤((C,D)) = min{bO(r) : r 2 D}, respectively, then f⇤

((C,D))  � and
c⇤((C,D)) � �+dq. In fact, we have D ✓ B0, then c⇤((C,D)) � c⇤((A0, B0

)) �
�+ dq and we have f⇤

((C,D))  max{e4(r) : r 2 J}  f⇤
((A,B))  �.

• Third, (C,D) is not conflicting with (A,B). (Ac, Bc) and (Cc, Dc) are the
complete relative positions corresponding to (A,B) and (C,D), respectively.
We prove that Ac\Dc = ; and Bc\Cc = ;. In fact, D ✓ B0

c\J , which implies
that Ac \Dc = ;. Suppose that Bc \ Cc 6= ; and let rs be an element of this
intersection. Let C 0 be the set of requests constrained to be below C. Since
C = (A0

c [ J) \ CS(`0) and (A0
c [ J) \Bc = ;, then C \Bc = ;. This implies

that rs 2 C 0 \ Bc. Since rs 2 Bc, all the requests constrained to be above it
should be also in Bc, among which at least one element of C (since rs 2 C 0),
which is not possible since C \Bc = ;.

Now suppose it is true for |E| = n � 1 and let us prove it for |E| = n. Let
E = {`

1

, . . . , `n} be a set of links that can all free absolute position �. With
the induction assumption, considering the set E0

= {`
1

, . . . , `n�1

}, for every `i 2 E0

there is a relative position (Ai, Bi
) that can free � such that all the relative positions
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(Ai, Bi
), i 2 {1, . . . , n�1}, are not conflicting. Let (Ai

c, B
i
c) be the complete relative

position corresponding to (Ai, Bi
), for i 2 {1, . . . , n�1}. We set A =

S

i2{1,...,n�1}A
i
c

and B =

S

i2{1,...,n�1}B
i
c.

We know there is a relative position (An, Bn
) on `n corresponding to the absolute

position �, let (An
c , B

n
c ) be the corresponding complete relative position.

If A\Bn
c = ; and B\An

c = ;, then (An, Bn
) is not conflicting with any (Ai, Bi

),
for i 2 {1, . . . , n � 1}. Otherwise, as we did for the case where n = 2, we find a
position (Cn, Dn

) on `n not conflicting with (A,B). With the same arguments, it
will be a valid position that can free � and that is not conflicting with any of the
positions (Ai, Bi

), for i 2 {1, . . . , n� 1}.

5.4.2 RSA-PP with minimum delay

Theorem 28. The RSA-PP problem with minimum delay can be solved in pseudo-
polynomial time.

Let q be a request with demand dq, source s and destination t. The delay of
freeing position � on link ` for request q with relative position (A,B) is given by the
formula: �`(A,B) = max{0, e(A)��,�+dq�b(B)} where e(A) = max{e(x) : x 2 A}
and b(B) = min{b(x) : x 2 B}. The delay of insertion in position � on a path P
is �P = max`2P �`(A`, B`) where (A`, B`) is the relative position used to free � on
link `.

Algorithm 4 is the algorithm we use to solve RSA-PP with minimum delay.
For each absolute position �, the algorithm checks for each link ` of the network if
position � can be freed on `. The link is then weighted with the minimum delay
�` with which � can be freed. Afterwards, a path P� from s to t is found. This
path should use only links which can free �, and minimize the value �P�

= max{�` |
` 2 P�}. Among all the paths P�, the one with the minimum delay �� is chosen for
the routing and the corresponding absolute position � is chosen for the spectrum
assignment. The correctness of the algorithm is drawn from Lemmas 6 and 7.

Lemma 6. For an absolute position � and a link `, there are at most two relative
positions freeing � on ` with minimum delay and if there are two such positions they
are of the form (A,B) and (A [ {x}, B \ {x}), where x is a request using `.

Proof. We have the following two cases.

• If the minimum delay to free � on ` is 0, then there is exactly one corresponding
relative position (A,B). Suppose that there are two relative positions (A,B)

and (C,D) freeing � with delay 0, and suppose without loss of generality that
C = A[ I and D = B \ I, I 6= ;. �`(A,B) = 0 implies that b(I) � �+ dq and
then e(I) > �. On the other hand, �`(C,D) = 0 implies that e(I)  �, which
is not possible.

• If the minimum delay to free � on ` is � 6= 0, then there are at most two relative
positions freeing � with delay � and they are of the form (A,B) and (A [
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Algorithm 4: RSA-PP with minimum delay
Require: Network N = (N,L), a set of provisioned requests R and a new

request q with demand dq, source s and destination t.
Ensure: Route and allocate spectrum to q with minimum delay.
1: P = ;, b(q) = None and � = 1
2: for all ` 2 L do
3: �` = 1 and sort requests using ` by the increasing order of their spectrum

occupancy; the sorted list < r
1

, . . . , rj` >.
4: for all � 2 J0, S � dqK do
5: for all ` 2 L do
6: for all i 2 J0, jlK do
7: if [�,�+ dq] ✓ [e4(ri), bO(ri+1

)] then
8: if ` is not colored with � then
9: Color link ` with color �

10: if �` > �`({r1, . . . , ri}, {ri+1

, . . . , rj`}) then
11: �` = �`({r1, . . . , ri}, {ri+1

, . . . , rj`})
12: Find shortest path P� from s to t using only links colored with � and

which minimizes �P�
= max{�` | ` 2 P�}

13: if �P�
< � then P = P�, � = �P�

and b(q) = �

{x}, B \ {x}). Let (A,B) and (C,D) be two relative positions corresponding
to � with delay �. Suppose without loss of generality that C = A [ I and
D = B \ I, I 6= ;. Suppose that |I| � 2 and let J be a proper subset of
I and (E,F ) = (A [ J,B \ J). First, recall that � = max{e(A) � �,� +

dq � b(B)} = max{e(C) � �,� + dq � b(D)}. Since A ✓ C and D ✓ B we
have e(A) � � < e(C) � � and � + dq � b(D) < � + dq � b(B). Thus, � =

�+dq� b(B) = e(C)��. Now, since E ✓ C and F ✓ B, e(E)�� < e(C)��
and � + dq � b(F ) < � + dq � b(B). This implies that �`(E,F ) < � which is
not possible since � is the minimum delay. So |I|  1.

By convention, if two positions (A,B) and (A [ {x}, B \ {x}) free � on ` with
minimum delay, we will refer to (A,B) as the position minimizing the delay.

Remark 3. Note that if (A,B) is the position minimizing the delay on `, then any
relative position on ` obtained by shifting up some requests of A has a delay strictly
bigger than the minimum delay.

Lemma 7. For an absolute position � and two links ` and `0, if (A,B) is the relative
position that frees � on ` with minimum delay and (C,D) is the relative position
that frees � on `0 with minimum delay, then, (A,B) and (C,D) are not conflicting
(i.e. their respective complete relative positions are not conflicting).



124 Chapter 5. On Dynamic RSA with Push-Pull

Proof. Let � be an absolute position and ` and `0 two links in the network. Let
(A,B) and (C,D) be the two positions that free � with minimum delay on ` and `0,
respectively. Suppose that (A,B) and (C,D) are conflicting and suppose without
loss of generality that Ac \ Dc = I. Let J be the set containing the requests in
I and all the requests constrained to be below them and K the set containing the
requests in I and all the requests constrained to be above them.

As shown in the proof of Lemma 5, (A0, B0
) = (A\ (K\CS(`)), B[ (K\CS(`))

is a valid relative position on ` that frees � and (C 0, D0
) = (C [ (J \ CS(`0)), D \

(J \CS(`0))) is a valid relative position on `0 that frees �. We have then �`(A,B) <
�`(A0, B0

) (according to Remark 3) and �`0(C,D)  �`0(C 0, D0
). With respect to the

sets A, B0, D, and C 0, we have the following two inequalities.

• e(A)�� < �+dq�b(B0
); in fact, �`(A,B) < �`(A0, B0

) means that max(e(A)�
�,�+dq�b(B)) < max(e(A0

)��,�+dq�b(B0
)), and since e(A)�� � e(A0

)��
(because A0 ⇢ A), this implies that max(e(A0

)� �,�+ dq � b(B0
)) = �+ dq �

b(B0
) and then that e(A)� � < �+ dq � b(B0

).

• � + dq � b(D)  e(C 0
) � �; in fact, �`0(C,D)  �`0(C 0, D0

) means that
max(e(C) � �,� + dq � b(D))  max(e(C 0

) � �,� + dq � b(D0
)), and since

� + dq � b(D0
) < � + dq � b(D) (because D0 ⇢ D), this implies that

max(e(C 0
) � �,� + dq � b(D0

)) = e(C 0
) � � and then that � + dq � b(D) 

e(C 0
)� �.

Now, we know that e(C 0
) = e(J \ CS(`0)), b(D) = b(J \ CS(`0)), b(B0

) =

b(K \ CS(`)) and e(A) = e(K \ CS(`)). The two inequalities above will be then
written as:

e(K \ CS(`))� � < �+ dq � b(K \ CS(`)) (2)

and
�+ dq � b(J \ CS(`0))  e(J \ CS(`0))� � (3)

Since J contains the requests of I and all the requests constrained to be below
them, then e(J) = e(I), which implies that e(J \CS(`0))  e(I). Moreover, for any
request r 2 I, if r /2 K \CS(`), then r /2 CS(`) (r is necessarily in K since I ✓ K).
Since I ✓ Ac, then r is constrained to be below a request r0 2 CS(`) which implies
that e(r)  e(r0). The request r0 belongs to K \CS(`) (r0 2 K by definition of K).
So, e(I)  e(K \ CS(`)). This implies that

e(J \ CS(`0))  e(K \ CS(`)) (4)

Since K contains the requests of I and all the requests constrained to be above
them, then b(I) = b(K), which implies b(I)  b(K \ CS(`)). Moreover, for any
request r 2 I, if r /2 J \CS(`0), then r /2 CS(`0) (r is necessarily in J since I ✓ J).
Since I ✓ Dc, then r is constrained to be above a request r0 2 CS(`0) which implies
that b(r) � b(r0). The request r0 belongs to J \ CS(`0) (r0 2 J by definition of J).
So, b(J \ CS(`0))  b(I). This implies that

b(J \ CS(`0))  b(K \ CS(`)) (5)
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Inequalities (2), (3), (4) and (5) give

e(K \ CS(`))� � � �+ dq � b(K \ CS(`))

and
e(K \ CS(`))� � < �+ dq � b(K \ CS(`))

which is not possible.

5.5 Simulations

We use settings similar to the ones used in [WM13]. We run our simulations on
the following network topologies: USNET (24 nodes and 43 links) in Figure 5.5a,
NSFNET (14 nodes and 22 links) in Figure 5.5b, and COST239 (11 nodes and 26
links) in Figure 5.5c.

(a) USNET (b) NSFNET

(c) COST239

Figure 5.5: Network topologies

The spectrum is slotted into 380 slots where each slot corresponds to a spectrum
interval of width 12.5 GHz. The requests arrive to the network with a Poisson dis-
tribution (with arrival rate �). Each request spends in a network an exponentially
distributed duration (with normalized mean 1/µ = 1). The offered load is deter-
mined by ⇢ = �/µ = � (Erlang). For each load, a total of 105 requests is simulated.
The source and destination are uniformly selected between the nodes of the network.
Three types of request demands are considered 100Gb/s , 400Gb/s and 1Tb/s cor-
responding to 4, 10 and 24 slots respectively. We capture three measurements with
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our simulations: the Spectrum Blocking Ratio (SBR) which is equal to the ratio
of the spectrum of the blocked requests to the overall spectrum, the Average Delay
(AD) which is equal to the ratio of the sum of all delays to the number of accepted
requests and the Average Shifted Distance (ASD) which is equal to the ratio of the
sum of all performed shiftings to the number of accepted requests.

MinDelay is the exact algorithm which minimizes the delay (Algorithm 4,
page 123). ShortPath is the exact algorithm which finds the shortest path (Al-
gorithm 3, page 121). R-opt is the algorithm proposed by Mukherjee and Wang
in [WM13]. In this algorithm, we compute the k = 3 shortest paths between each
pair of nodes of the network. Afterwards, when a request r arrives, for each path
P of the k shortest paths between the source and the destination of r, we solve the
spectrum assignment problem on P as explained in Section 5.3.1. Finally, we choose
among the k paths, the path and the spectrum assignment with the minimum delay.
R-optM is an algorithm similar to R-opt in which we use Algorithm 2 (page 119)
to solve the spectrum allocation problem over a path.
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Figure 5.6: Spectrum Blocking Ratio (SBR)

It has already been demonstrated through simulations in [WM13] that R-opt
performs well in terms of minimizing the blocking probability compared to classical
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algorithms using First-Fit and also compared to proactive algorithms using Push-
Pull. In what follows, we compare the performance of R-opt with our algorithms.

In Figure 5.6, the SBR is plotted as function of the load. We observe that
the Shortpath algorithm gives the minimum SBR. This due to the fact that we
always choose the path with the minimum number of links and hence minimize the
utilized resources offering new requests more chances to be accepted. We also see
that R-opt and R-optM have almost the same SBR. This is understandable since
the two algorithms differ only in the position chosen to minimize the delay. As for
MinDelay, we can see that in NSFNET and COST239, it performs poorly, since it
can choose very long paths to assign spectrum with minimum delay and hence uses
more resources causing the blocking of new requests. This is not the case for the less
connected network USNET. This might be due to the fact that the path chosen by
MinDelay cannot deviate much from the shortest paths due to the limited number
of paths between two nodes in the network.
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Figure 5.7: Average Delay (AD)

As for the average delay, we observe that R-optM performs only slightly better
than R-opt. The improvement is in fact negligible and seems not to be worth the
increased running time (compared to the running time of R-opt). MinDelay gives
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the minimum AD for USNET which is coherent with the blocking probability of the
same algorithm. As for NSFNET and COST239, MinDelay gives even worst delay
than R-opt. This might be because the fragmentation scenarios caused by MinDelay
are more complex than the ones caused by R-opt (this fragmentation might also be
the reason behind the high blocking probability). It is important to recall here that,
with our algorithms, the local decisions (for a given request) are guaranteed to be
optimal in terms of the acceptance of the request and in terms of the delay or the
length of the path, however, globally (for all requests), no guarantees are given.
Finally for ShortPath, the delay presented is the largest since minimizing the delay
is not the primary objective.
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Figure 5.8: Average Shifted Distance (ASD)

For the Average Shifted Distance (ASD), we observe that the algorithm that
does the maximum number of shiftings is ShortPath and the one performing the
minimum number of shiftings is MinDelay. It is important to note here that even if
MinDelay does not give the minimum AD in COST239 and NSFNET, it gives the
minimum ASD. This highlights the difference between the two measurements AD
and ASD.

Overall, the simulations reveal that choosing the shortest path is always a good
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choice for the blocking ratio but not necessarily for the delay. Also, the R-opt gives
a good trade-off between the blocking probability and the delay especially since the
improvement in the delay brought by R-optM is negligible.

5.6 Conclusion

We have studied in this chapter dynamic RSA with Push-Pull. We have proposed
two exact algorithms to solve the problem with two different criteria, the length
of the routing path and the delay of the spectrum assignment. We have also built
up an existing algorithm of SA with Push-Pull, to solve SA with Push-Pull with
minimum delay. Simulations showed that our algorithms are mainly of theoretical
interest and that the existing algorithm offers a good trade-off between the delay,
the blocking probability and the running time. We have also developed some Integer
Linear Programming (ILP) formulations for the problem that we did not include in
the chapter since they have not been validated with simulations. Future research
directions for the problem of dynamic RSA with Push-Pull might focus on the three
following axes.

• Optimizing another criterion instead of the delay. This criterion might be
the number of requests shifted in order to empty space for the new arriving
request. This number is significant since it translates the number of messages
exchanged at the control plane in order to enable the shiftings.

• Combining the proactive and reactive techniques using Push-Pull in order to
decrease even more the spectrum blocking probability. We note here that in
the proactive techniques requests are shifted periodically in order to consoli-
date the free spectrum.

• Examining the case where not only one request but a set of requests arrives
at the same time and we need to decide if they can all be provisioned.





Chapter 6

Conclusions and perspectives

Fault-tolerance and efficient resource use, these are two of the highly desired prop-
erties in optical networks; the backbone of long-distance communication networks.
It is important to provide fault-tolerance services in optical networks in order to
protect the huge amounts of data they carry and to avoid costly service disruptions.
It is also crucial to make an efficient use of the optical resources so as to meet the
exponential growth of the traffic. We have studied in this thesis problems related
to these two properties. Namely, we have considered the problem of finding disjoint
paths related to the dedicated path protection scheme (DPP). In this scheme, the
purpose is to protect connections against network faults by reserving resources on
backup paths to reroute the traffic in case of failures. We have also tackled the
problem of Routing and Spectrum Assignment (RSA) in Elastic Optical Networks,
the new efficient and scalable generation of optical networks. In RSA, the objective
is to set up connections in the network so as to make optimum use of the available
resources.

Using mainly graph-theoretic models and tools, we established complexity results
for these problems under different settings and we have answered questions such
that: How hard is it to find a path or disjoint paths in networks with nodes which
are not fully connected internally? How hard is it to find disjoint paths in networks
where sets of links around a node can fail simultaneously? How hard is RSA in
star networks? Can RSA be approximated in special cases of tree networks? How
to utilize a non-disruptive defragmentation technique in EONs so as to minimize
the spectrum blocking probability? The results we have obtained suggest that both
problems DDP and RSA are hard to solve under the settings we consider. However,
it is sometimes possible to identify polynomial cases or approximation algorithms.
These cases and algorithms can hopefully help design efficient heuristics to tackle
these problems for practical cases. We briefly describe in what follows the established
results and recall some of the questions we have presented at the end of the chapters.

In Chapter 2, we have used graphs with forbidden transitions to model networks
with asymmetric nodes. We have proved that the problem of finding a path avoiding
forbidden transitions (PAFT) is NP-complete even in well-structured graphs such as
grids. We have also proved that PAFT can be solved in polynomial time in graphs
with bounded treewidth. Afterwards, we have tackled the problem of finding disjoint
trails. We have shown that when the trails are required to be vertex-disjoint the
problem is NP-complete in both directed and undirected graphs. On the positive
side, if the paths are only required to be edge-disjoint, the problem can be solved in
polynomial time in directed graphs. There are many interesting questions to inves-
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tigate in graphs with forbidden transitions. For instance, it would be nice to look
deeper into the parameterized complexity of the problem of finding a path avoiding
forbidden transitions. In fact, we believe that the PAFT problem is W [1]-hard when
parameterized by the treewidth. It would be hence interesting to try to prove this
conjecture and also to consider other parameters, instead of the treewidth, such as
the number of asymmetric nodes. It would be also nice to study the complexity of
the problem of finding disjoint trails avoiding forbidden transitions in planar graphs.
Finally, it would be interesting to explore the optimization versions of the problems
we have studied with the aim of finding good approximations. Namely, the problem
of finding a path using a minimum number of forbidden transitions and the problem
of finding trails avoiding forbidden transitions which overlap on a minimum number
of links of nodes can be considered.

In Chapter 3, we gave an almost complete characterization of the complexity of
the problem of finding SRLG-disjoint paths in networks with SRLGs satisfying the
star property. We have shown that finding k SRLG-disjoint paths is NP-complete
even for k = 2. On the positive side, we have proved that the problem can be solved
in polynomial time in particular subcases which are relevant in practice. Namely,
we solve the problem in polynomial time when the maximum degree is at most 4
or when the input network is a directed acyclic graph. Moreover, we have shown
that the problem is fixed-parameter tractable when parameterized by the number of
SRLGs. Finally, we have considered the problem of finding the maximum number of
SRLG-disjoint paths. We have proved that, under the star property, the problem is
hard to approximate within O(|V |1�"

) for any 0 < " < 1, where V is the set of nodes
in the network, and we have given polynomial time algorithms for some of the above
relevant subcases. The complexity of the problem of finding k SRLG-disjoint paths,
under the star property is still open for the cases where the maximum degree of the
network is equal to 5, 6 or 7 and for the cases where the number of SRLGs per link
or the number of links per SRLG are equal to 2 or 3. Solving these cases will give a
complete complexity characterization of the problem with respect to the maximum
degree of the network, SRLGs per link and the number of links per SRLG. It would
also be interesting to consider the unsolved cases for directed graphs since we only
have results for the specific case of DAGs so far.

In Chapter 4, we have studied the problem of spectrum assignment in tree net-
works. We have proved that SA is NP-complete in undirected stars with 3 links and
directed stars with 4 links. We have also shown that there is a 4-approximation al-
gorithm to solve the problem in general stars. Afterwards, we have focused on SA in
binary trees with bounded demands and we have designed constant approximation
algorithms for several cases using the problem of interval coloring of chordal graphs.
As future work, we would like to find constant-factor approximation algorithms for
interval coloring in chordal graphs in general and to SA in binary trees in particu-
lar, or prove that such algorithms do not exist. Towards this objective, we believe
it would be useful to try to adapt the approximation algorithms proposed for the
problem of interval coloring in interval graphs.

In Chapter 5, we have studied in this chapter dynamic RSA with Push-Pull. We
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have proposed two exact algorithms to solve the problem with two different criteria,
the length of the routing path and the delay of the spectrum assignment. We have
also built up an existing algorithm of SA with Push-Pull, to solve SA with Push-
Pull with minimum delay. Simulations showed that our algorithms are mainly of
theoretical interest and that the existing algorithm offers a good trade-off between
the delay, the blocking probability and the running time. Future research directions
for the problem of dynamic RSA with Push-Pull might focus on optimizing another
criterion instead of the delay. It would be also interesting to try to combine the
proactive and reactive techniques using Push-Pull in order to decrease even more
the spectrum blocking probability. Finally, it would be nice to examine the case
where not only one request but a set of requests arrives at the same time and we
need to decide if they can all be provisioned.

As a general perspective, we believe that heuristics are a strong tool to confront
the difficulty of the problems of DPP and RSA. It would be then interesting to
invest in finding good performant heuristics for the problems. These heuristics can
be inspired by the polynomial algorithms used to solve exactly or approximately
some special cases.
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We give in this chapter column generation formulations for the problem of static
routing and spectrum assignment. These formulations were written in collaboration
with D. Coudert and B. Jaumard.

A.1 Introduction

In the problem of static routing and spectrum assignment, the input is a set of traffic
requests and the objective is to allocate to each request, a path in the optical network
and an interval of spectrum slots along that path, minimizing the utilized spectrum
or maximizing the number of accepted requests for a fixed spectrum interval. The
spectrum allocated to a demand has to be contiguous (contiguity constraint), it has
to be the same over all links of the routing path (continuity constraint), and on
a given link of the network a spectrum slot can be used by at most one request
(non-overlapping constraint).

The problem of static RSA is NP-complete even when the routing is fixed and the
network has few links as detailed in Chapter 4. Since heuristics and ILPs are usually
used to deal with difficult problems, many ILP formulations have been proposed in
the literature for RSA [KW11, CTV11, WCP11]. In [VKRC12], these formulations
were surveyed and a new more compact formulation was proposed. In this new
formulation, the contiguity and continuity constraints which are usually difficult to
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model and handle are removed from the ILP and the notion of channel is introduced.
A channel is a set of contiguous spectrum slots of a given width. With channels,
the RSA consists in assigning to each request a path and a channel of width equal
to the demand of the request.

The ILP formulations proposed for RSA are not practical to solve moderate
size realistic instances because of the large number of variables. To deal with this
issue, decomposition methods can be used. In [RPZ+13], Ruiz et al. presented an
application of a decomposition method called Column Generation (CG) to RSA.
In CG, the Linear Programming (LP) problem is solved with a small list of the
variables (or columns). This list is iteratively extended with variables which can
improve the objective function value. To generate these variables (columns), a
pricing problem is formulated and solved. CG has been widely studied in the context
of RWA [JMT09]. A classical CG-based formulation for RWA consists in generating
lightpaths, where a lightpath consists of a path and a wavelength. This formulation
is somehow similar to the one proposed in [RPZ+13] which also consists in lightpath
generation, where a lighthpath consists of a path and a channel. Another formulation
for RWA which performs quite well consists in generating, instead of lightpaths,
configurations, where a configuration is a set of paths which can provision a fraction
of the traffic over the same wavelength. In this chapter, we examine the applicability
of the configuration-based formulation proposed in [JMT09] to the problem of static
routing and spectrum assignment.

We first start by stating the problem in Section A.2. In Section A.3, we present
the principal of column generation and briefly comment on the CG-based formu-
lations for RWA. Afterwards, in Section A.4, we present the formulation presented
in [RPZ+13] and give our configuration-based formulations. Finally in Section A.5,
we discuss some numerical results we obtained and give our conclusions.

A.2 Problem Statement

We model the elastic optical network represented by a graph N = (V, L) with a node
set V = {v

1

, v
2

, . . . , vn} and link set L = {`
1

, `
2

, . . . , `m}. The bandwidth over each
link is slotted into S small intervals of width 1 each called slots. The traffic is defined
by a set R of requests where each request r 2 R has a source sr, a destination tr
and a demand in spectrum dr . We denote by Pr the set of elementary paths from
the source of r to its destination and by P the overall collection of elementary paths.

The RSA problem can be formally stated as follows. Given a graph N cor-
responding to an elastic optical network, and a set of requests, find a path and
a spectrum allocation for every request respecting the continuity and contiguity
constraints. The objective is to minimize the blocking rate, that is equivalent to
maximizing the number of accepted requests. We detail in what follows the con-
straints which need to be respected.

• Spectrum contiguity: each request is assigned contiguous spectrum i.e., con-
secutive slots of the spectrum.
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• Spectrum continuity: the assigned spectrum slots should be the same for each
link of the routing path.

• Non-overlapping: each slot in each link can be allocated to at most one request.

• Link capacity: the number of slots used at a link cannot exceed the available
bandwidth.

We recall that the Routing and Wavelength Assignment (RWA) problem can be
considered as the special case of RSA where all requests have unit demands. In this
case, there is no contiguity constraint.

A.3 About Column Generation

A linear program (LP) is a problem of optimization (minimization or maximization)
of a linear function of variables, called the objective function, subject to a set of
linear inequality constraints. If the variables are constrained to be integer, the LP is
then called Integer Linear Program (ILP). Some LPs are very large and have a huge
number of variables. Since it is hard to consider all these variables explicitly, some
techniques have been designed to consider only a subset of the variables. Column
generation (CG) is one of these techniques. In CG, the goal is to find the optimal
solution without enumerating all of the variables (also referred to as columns), but by
generating the columns which have the potential to improve the objective function.
In CG, the problem to solve, referred to as the master problem (MP), is split into
two problems: the restricted master problem (RMP) and the pricing problem (PP).

• The restricted master problem consists of the master problem over a subset of
the variables.

• The pricing problem is a problem created to generate the variables that can
improve the objective function if included in the subset over which the RMP
is solved. According to whether the MP is a maximization or a minimization
problem, the pricing problem consists in general in finding variables with pos-
itive (in case of maximization) or negative (in case of minimization) reduced
cost. This reduced cost depends on the dual optimal solution of the RMP.

The column generation technique consists in solving iteratively the RMP followed
by the PP. When the RMP is solved, its dual optimal solution is used to create
the PP. If the PP generates new variables then these variables are added to the
subset over which the RMP is solved. If no new variable is generated by the PP,
then the optimal solution has been achieved and the column generation algorithm
terminates.

When we have ILPs instead of LPs (which is the case in this chapter), a branch-
and-price approach utilizing column generation is used to solve the ILP to optimality
[BJN+98]. In this chapter, we will not use branch-and-price, instead we will solve
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the relaxation of the MP using the column generation technique. Afterwards, we
will use the final set of columns, which gives the optimal value for the relaxed MP,
to solve the integer MP. We hope to have, by this approach usually, good bounds on
the optimal solution of the ILP. For more details on column generation, the reader
is referred to [NW88, DL05].

Column generation for RWA

Many column generation formulations have been proposed for the problem of Rout-
ing and Wavelength Assignment. In [JMT09], a review and comparison of several
of these formulations are presented.

One of the straightforward and classical formulations for RWA is the path formu-
lation. In this formulation, the variables correspond to lightpaths, where a lightpath
is the combination of a routing path and a wavelength. Each request should be as-
signed a lightpath from its source to its destination such that the non-overlapping
and the link capacity constraints are respected. With such formulation, the pricing
problem consists in finding lightpaths with positive reduced cost. For RWA, this
formulation suffers from the drawback of exhibiting a wavelength symmetry as ex-
plained in [JMT09], one can deduce a factorial number (as a function of the number
of wavelengths) of alternate solutions for any given solution through wavelength
permutations. This symmetry causes any branch-and-bound approach to perform
poorly because the problem does not change much after branching.

Other column generation formulations with better performance and qualities
have been proposed. One of which is based on the notion of configuration [JMT09].
A configuration is associated with a set of paths that can be used for satisfying a
fraction of requests with the same wavelength. The formulation based on configu-
rations is such that the number of used configurations cannot exceed the number
of available wavelengths on a link and a request r is satisfied if one of the configu-
rations containing a path of Pr is used. The pricing problem consists in finding a
configuration with positive reduced cost. It can be noted that with this formulation
the symmetry (with respect to the permutations of wavelength) is not problematic
as it is the case for the path formulation. In fact, the wavelengths are assigned to
configurations only after the problem is solved to optimality.

Since the configuration-based formulations work well for RWA, our purpose in
this chapter is to find configuration-based formulations for the problem of RSA
and check their performance with comparison to the CG-formulation proposed by
[RPZ+13] and which rather resembles the path formulation of RWA.

A.4 Column generation for RSA

We first present in this section the column generation model presented in [RPZ+13]
and then our configuration-based model.
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A.4.1 Model of Ruiz et al. [RPZ+13]

To the best of our knowledge, only one paper has proposed a column generation
formulation for the problem of routing and spectrum allocation so far, and that is
[RPZ+13]. The authors of [RPZ+13] use the notions of channel which is a set of
contiguous spectrum slots of given width and lightpath which is the combination
of a path and a channel. A lightpath (p, c) can provision request r if p 2 Pr and
the width of the channel c is equal to drs. They formulate their master problem
in terms of lightpaths which allows them to hide the constraints of continuity and
contiguity. Their pricing problem consists in generating a new lightpath that can
improve the objective function if included in the solution and it is equivalent to
finding a shortest path in the network, with weights that depend on the solution
of the dual of the master problem. To generate new columns, the shortest path
algorithm is ran for every source-destination pair for each possible channel. Note
that this formulation is similar to the path formulation for RWA with the difference
that a ligthpath for RWA is a path combined with a wavelength and a lightpath in
RSA is a path combined with a channel.

A simplified version of the master problem in [RPZ+13] in what follows. In
fact, in [RPZ+13], each request has a minimum demand and a maximum demand
(these demands translate the bit-rates interval in which the request should operate
if satisfied) and the objective of the master problem is to maximize the number of
accepted requests (primary objective) and the amount of served bit-rate (secondary
objective). In the version we present, we consider requests with fixed demand.

Notations

P (r) set of all the lightpaths (path,channel) that can accommodate re-
quest r.

P (r, `, s) set of all the lightpaths (path,channel) using link ` and slot s, that
can accommodate request r.

S overall set of slots
Sp set of slots used by lightpath p.
xpr binary decision variable; equal to 1 if request r uses lightpath p

and 0 otherwise.

Master Problem

max

X

r2R

X

p2P (r)

xpr
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subject to:

u(A.1)
r

X

p2P (r)

xpr  1 r 2 R (A.1)

u(A.2)
s`

X

r2R

X

p2P (r,`,s)

xpr  1 s 2 S, ` 2 L (A.2)

xpr 2 {0, 1} r 2 R, p 2 P (r) (A.3)

A.4.2 Our configuration model

A configuration is associated with a set of paths that can be used for satisfying a
given fraction of the requests with the same spectrum slot. There is at most one
path per request in a configuration. Let Cs be the set of configurations associated
to slot s and let C be the set of all configurations:

C =

[

s2S
Cs.

We present in what follows two column generation formulations for the problem
of RSA based on configurations: a path formulation and a link formulation. In the
path formulation, variables xpr are used to decide if a request r can be routed with
path p and a link-path flow formulation is used for the pricing problem. In the link
formulation, variables x`r are used to decide if a request r can be routed using link
` and a node-link flow formulation is used for the pricing problem.

A.4.2.1 Path formulation

We use the following notations.
acr,p equal to 1 if request r can use path p in configuration c.
zc binary decision variable; equal to 1 if configuration c is used and 0 oth-

erwise.
xpr binary decision variable; equal to 1 if request r uses path p and 0 other-

wise.
ysr binary decision variable; equal to 1 if the starting slot of request r is s

and 0 otherwise.

The master problem. Maximize the grade of services, i.e., the number of granted
requests

max

X

r2R

X

s2S
ysr

subject to:
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u(A.4)
s

X

c2Cs

zc  1 s 2 S (A.4)

u(A.5)
r

X

p2Pr

xpr 
X

s2S
yrs r 2 R (A.5)

u(A.6)
rp

X

c2C
acr,pzc  |S|xpr r 2 R, p 2 Pr (A.6)

u(A.7)
r

X

s2S
ysr  1 r 2 R (A.7)

u(A.8)
rs dry

s
r 

X

i2[s,min(|S|,s+dr�1)]

X

c2Ci

X

p2Pr

acr,pzc r 2 R, s 2 S (A.8)

zc 2 {0, 1} c 2 C (A.9)
xpr 2 {0, 1} r 2 R, p 2 Pr (A.10)
ysr 2 {0, 1} r 2 R, s 2 S (A.11)

Constraints (A.4) ensure that one spectrum slot is used by at most one configuration
(non-overlapping constraint). Constraints (A.5) ensure that each request, if granted,
uses at most one path. Constraints (A.6) ensure that for a given request r only
configurations using the same path for r are used. Constraints (A.7) ensure that
a request has at most one starting slot. Constraints (A.8) ensure that if a request
has a starting slot, then it is fully provisioned with contiguous spectrum. Note
that in constraints (A.8), the contiguous slots are used on the same path thanks to
constraints (A.7).

Pricing problem PP(sc). The reduced cost for variable zc is (note that the dual
variables are introduced next to their corresponding constraints and that sc is the
slot used by configuration c )

c(zc) = �u(A.4)
sc �

X

r2R

X

p2Pr

acr,pu
(A.6)
rp +

X

r2R

X

s2{max(1,sc�dr+1),...,sc}

X

p2Pr

u(A.8)
rs acr,p

To find whether there is a configuration with a positive reduced cost, let us
consider the following problem which needs to be solved for each slot sc:

max �usc �
X

r2R

X

p2Pr

u(A.6)
rp ↵p +

X

r2R

X

s2{max(1,sc�dr+1),...,sc}

X

p2Pr

u(A.8)
rs ↵p

X

p2P
�p`↵p  1 ` 2 L (A.12)

X

p2Pr

↵p  1 r 2 R (A.13)

↵p 2 {0, 1} p 2 P (A.14)
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Constraints A.12 ensure that the paths chosen for the configuration are disjoint
(�p` = 1 if path p uses link ` and 0 otherwise) and constraints A.13 ensure that at
most one path is selected for each request.

A.4.2.2 Link Formulation

We use the following notations.
acr` is equal to 1 if request r uses link ` in configuration c.
zc binary decision variable; equal to 1 if configuration c is used and 0 otherwise.
x`r binary decision variable; equal to 1 if request r uses link ` and 0 otherwise.
ysr binary decision variable; equal to 1 if the starting slot of request r is s and

0 otherwise.

Master Problem. Maximize the grade of services, i.e., the number of granted
requests

max

X

r2R

X

s2S
ysr

subject to:

u(A.15)
s

X

c2Cs

zc  1 s 2 S (A.15)

u(A.16)
vr

X

`2!+
v

x`r  1 v 2 V, r 2 R (A.16)

u(A.17)
r`

X

c2C
acr,`zc  |S|x`r r 2 R, ` 2 L (A.17)

u(A.18)
r

X

s2S
ysr  1 r 2 R (A.18)

u(A.19)
rs dry

s
r 

X

i2[s,min(s+dr�1,|S|)]

X

c2Ci

X

`2!+
sr

ack,`zc r 2 R, s 2 S (A.19)

zc 2 {0, 1} c 2 C (A.20)

x`r 2 {0, 1} r 2 R, ` 2 L (A.21)
ysr 2 {0, 1} r 2 R, s 2 S (A.22)

Constraints (A.15) ensure that each slot is used by at most one configuration. Con-
straints (A.16) ensure that for each node, a request uses at most one outgoing link.
Constraints (A.17) ensure that if a link is not used, all the configuration using it
are not. Constraints (A.17) and (A.16) ensure that a request uses at most one
path. Constraints (A.18) ensure that a request has at most one starting slot. Con-
straints (A.19) ensure that if a request has a starting slot, then it is fully provisioned
with the same contiguous spectrum over the first link of the path and hence to all
other links of the path.
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The pricing problem PP(sc). The reduced cost for variable zc is (note that the
dual variables are introduced next to their corresponding constraints and that sc is
the slot used by configuration c )

c(zc) = �usc �
X

r2R

X

`2L
acr,`u

(A.17)
r` +

X

r2R

X

s2{max(1,sc�dr+1),...,sc}

X

`2!+
sr

u(A.19)
rs acr,`

To find whether there is a configuration with a positive reduced cost, let us
consider the following problem which needs to be solved for each slot sc:

max �usc �
X

r2R

X

`2L
u(A.17)
r` ↵r

` +
X

r2R

X

s2{max(1,sc�dr+1),...,sc}

X

`2!+
sr

u(A.19)
rs ↵r

`

X

r2R
↵r
`  1 ` 2 L (A.23)

X

`2!+
v

↵r
` =

X

`2!�
v

↵r
` r 2 R, v 2 V \ {sr, tr} (A.24)

X

`2!+
sr

↵r
` =

X

`2!�
tr

↵r
`  1 r 2 R (A.25)

X

`2!�
sr

↵r
` =

X

`2!+
tr

↵r
` = 0 r 2 R (A.26)

↵r
` 2 {0, 1} ` 2 L (A.27)

(A.28)

Constraints A.23 ensure that an link in a configuration is used by at most one
request and the other constraints are flow conservation constraints.

A.4.3 Discussion

Compared to the formulation using lightpaths in [RPZ+13] and to the configuration
based formulation for RWA in [JMT09], the configuration formulations for RSA seem
to be more complex and have more constraints and variables. This is mainly due to
the fact that it is difficult to handle the contiguity constraints with configurations.
These constraints were successfully hidden with the use of channels in [RPZ+13],
but with configurations, we could not ensure them without the use of additional
constraints.

For the configuration formulation of RWA, a variable acr is used to indicate if a
request r can be provisioned with a configuration c, and only decision variables zc
are used to decide if a configuration is used or not and hence is a request is satisfied
or not. In our formulation, we use variables acr,p instead of acr since we need to know,
not only if a request can be provisioned with a configuration, but also with which
path. We also use decision variables xpr and x`r besides the variables zc to ensure
that the used configurations use the same path for a given request.
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Furthermore, while in RWA, configurations are defined independently from wave-
lengths and wavelengths are assigned to the configurations after the problem is
solved, in our formulation, each configuration should be defined with a slot in order
to ensure the contiguity constraint.

Because of the complexity of our formulations, we were not optimistic about
their performance. We have nonetheless run some simulations to have more insight
on how they work in practice.

A.5 Numerical results and conclusion

A.5.1 Numerical results

As in [RPZ+13], we run our simulations with:

• Network: the Spanish Telefonica network which has 21 nodes and 35 links as
illustrated in Figure A.1.

Figure A.1: The Spanish network

• Requests R: randomly generated requests; we use a random selection of the
(source,destination) among the nodes of the network and a random selection of
the demand from the set {1, 2, 4, 8} corresponding to bitrates {10, 40, 100, 200}
Gbps. For each request r, the set Pr consists of the 5 shortest paths from the
source of r to its destination.

• Instances: for each load, we solve the problem for 5 instances and return the
average in the tables.

• Slots: we have run the simulations for 10 slots and 40 slots.

• Initial configurations: we proceed similarly to the MaxLeft algortihm pre-
sented in [RPZ+13]: we sort requests in the decreasing order of the demand,
then create greedily the maximum independent set of requests (i.e. requests
whose shortest paths do not intersect), then create configurations from this
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set using slots from 1 the size of the biggest request. We repeat this process
until all requests have been allocated to some configuration. We refer to the
initial set of configurations with Ci and to the final set of configuration (at
the termination of the CG algorithm) with Cf .

We have implemented the formulations in Python using the PuLP modeler and
the CPLEX 12.4 solver. The simulation were run on a 2,6 GHz Core i7 machine
with 8 GB RAM running an OS X 10.8.3.

We capture in the tables the load in Tbps, the number of requests |R|, the num-
ber of initial configurations |Ci|, the number of final configurations |Cf |, the solution
of the LP relaxation obtained with the column generation algorithm, solution of the
ILP problem with the final set of configurations as variables, the CPLEX time used
in the CG algorithm and to solve the ILP, the gap between the LP and ILP solutions
and finally the number of iterations in the CG.

Total
load
(Tbps)

|R| |Ci| |Cf | LP
relax.

Integer
lower
bound

CG
CPLEX
time
(s)

ILP
CPLEX
time
(s)

Gap
(%)

Iter.

2 23 27.8 29.8 23 12 0.265 0.064 47.40 1.2
3 36 41.4 51.4 36 15.4 0.591 0.135 56.09 2
4 46.4 42.6 50.6 46.4 16.6 0.626 0.162 63.99 1.8
5 50.2 49 63 50.2 15 1.011 0.192 56.10 2.2
6 68.8 57.4 77.4 68.8 20.6 1.502 0.283 69.67 3
7 81.2 68.2 94.2 81.2 19 2.194 0.355 76.44 3.6
8 101.4 85.8 113.8 101.4 23 2.713 0.479 77.27 3.8
9 108 83.8 111.8 108 24 2.897 0.516 77.66 3.8

Table A.1: Path formulation with 10 slots

Total
load
(Tbps)

|R| |Ci| |Cf | LP
relax.

Integer
lower
bound

CG
CPLEX
time
(s)

ILP
CPLEX
time
(s)

Gap
(%)

Iter.

2 23 27.8 31.6 23 14.6 5.625 0.411 47.46 1.4
3 36 41.4 51.4 36 21 13.771 1.377 41.93 2
4 46.4 42.6 50.6 46.4 22.2 17.514 2.152 52.38 1.8
5 50.2 49 63 50.2 21.6 29.572 4.928 45.78 2.2
6 68.8 57.4 75.4 68.8 29.4 47.31 5.60 57.43 2.8
7 81.2 68.2 94.2 81.2 29.8 68.608 31.346 63.55 3.4
8 101.4 85.8 113.8 101.4 37.6 119.033 261.24 63.24 3.8
9 108 83.8 113.8 108 35.8 136.05 176.09 66.76 4

Table A.2: Link formulation with 10 slots
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Total
load
(Tbps)

|R| |Ci| |Cf | LP
relax.

Integer
lower
bound

CG
CPLEX
time
(s)

ILP
CPLEX
time
(s)

Gap
(%)

Iter.

2 23 27.8 29.6 23 12 1.08 0.167 47.40 1.2
3 36 41.4 81.4 36 18.2 2.287 0.315 48.83 2
4 46.4 42.6 74.6 46.4 18 2.7036 0.799 60.77 1.8
5 50.2 49 105 50.2 22.8 3.978 3.076 43.96 2.2
6 68.8 57.4 145.4 68.8 30 6.226 4.640 55.86 3.2
7 81.2 68.2 164.2 81.2 35 7.655 8.296 56.64 3.4
8 101.4 85.8 197.8 101.4 45.8 8.555 16.164 54.90 3.8
9 108 83.8 203.8 108 44.6 11.787 14.503 58.96 4

Table A.3: Path formulation with 40 slots

Total
load
(Tbps)

|R| |Ci| |Cf | LP
relax.

Integer
lower
bound

CG
CPLEX
time
(s)

ILP
CPLEX
time
(s)

Gap
(%)

Iter.

2 23 27.8 37.6 23 17 23.154 0.522 28.72 1.4
3 36 41.4 81.4 36 21.6 55.588 2.714 40.27 2
4 46.4 42.6 74.6 46.4 22.8 69.951 4.241 50.8 1.8
5 50.2 49 97 50.2 24 121.346 7.816 41.98 2
6 68.8 57.4 129.4 68.8 31.6 233.729 11.851 54.52 2.8
7 81.2 68.2 148.2 81.2 39.2 247.77 26.93 51.501 3
8 101.4 85.8 197.8 101.4 52.2 452.876 77.964 52.2 3.8
9 108 83.8 203.8 108 46.2 528.462 240.71 46.2 4

Table A.4: Link formulation with 40 slots

Since the link formulation (Tables A.2, A.4) has more constraints and variables
than the path formulation (Tables A.1, A.3), it performs slower. However, it gives
better integer solutions and hence better gaps than the path formulation. The
important thing to note here is that in both cases, the gap between the linear and
integer solutions is big. In order to reduce this gap, we have tried an implementation
of the path formulation with rounding off: we run a column generation iteration,
examine the solution to see the variables y that are close enough to one (� 0.7),
round them off to one (which implies forcing the acceptance of a given request on
a given starting slot), and then run another column generation iteration. This is
repeated until no new variables y can be rounded off i.e. no variables are close
enough to one. However, this has not yielded better gaps.

Afterwards, we have implemented the channel-based compact formulation (the
master problem presented in Section A.4.1) proposed in [RPZ+13] to check the
quality of the integer solutions we can have. To obtain the set of channels, for
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every request, the 5 shortest paths are computed and then for each path all possible
channels are created (considering all possible contiguous sets of slots of width equal
to the demand of the request). Results of the experiments captured in Tables A.5,A.6
show a very small gap between the linear and integer solutions.

The fact that the gap is small with the compact formulation of [RPZ+13] in-
dicates that there are indeed configurations which can give good integer solutions.
These configurations were not generated with our formulations.

Total
load
(Tbps)

|R| |Channels| Linear
relax.

Integer
solution

Time to
solve LP
(s)

Time
to solve
ILP

Gap
(%)

2 19 626 19 18.66 0.09 0.89 1.55
3 35 1243 33.87 32.66 0.33 1.42 4.21
4 46 1660 42.79 42 0.92 21.42 1.61
5 61 2226 52.84 51 1.15 287.36 3.47
6 72 2603 60.6 58.33 4.18 1934 3.74
7 78 2703 60.25 58 4.06 1159.5 3.77
8 104 3982 86.625 84 3.48 20229 3.01

Table A.5: Ruiz et al. compact formulation with 10 slots

Total
load
(Tbps)

|R| |Channels| Linear
relax.

Integer
solution

Time to
solve LP
(s)

Time
to solve
ILP

Gap
(%)

2 19 3526 19 19 0.36 1.65 0
3 35 6493 35 35 0.45 2.1 0
4 46 8660 46 46 0.57 2.72 0
5 61 11426 61 61 0.78 3.33 0
6 72 13453 72 72 0.77 4.27 0
7 78 14353 78 78 16.75 29.75 0
8 104 19456 104 104 27.88 57.8 0
9 110 20486 110 110 21.19 60.53 0
10 113 20926 113 113 25.53 112.04 0
20 244 45605 229.7 565 > 10h

Table A.6: Ruiz et al. compact formulation with 40 slots

A.5.2 Conclusion

Our approach of using configuration-based column generation formulations for the
problem of Routing and Spectrum Assignment, added complexity to the model
instead of simplifying it as discussed in Section A.4.3. Furthermore, preliminary
numerical results show that while there exist configurations which can give good



148 Appendix A. On Static Routing and Spectrum Assignment

integer solutions for the problem, the configurations generated by our formulations
are not of good quality in terms of the integer solution they provide. This has
discouraged us from investing more in these formulations by trying a branch-and-
price approach.
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In this chapter, we consider the problem of computing a tree-decomposition of
a graph with width at most k and minimum size, i.e. the number of bags in the
tree-decomposition. More precisely, we focus on the following problem: given a fixed
k � 1, what is the complexity of computing a tree-decomposition of width at most
k with minimum size in the class of graphs with treewidth at most k? The results
of this chapter are in a collaboration with B. Li and N. Nisse. They were presented
in the conference ICGT 2014 [LMN14] and LAGOS 2015 [LMNS15].

B.1 Introduction

A tree-decomposition of a graph [RS86] G, as we have defined it in Section 2.4.2 of
Chapter 2, is a way to represent G by a family of subsets of its vertex-set organized
in a tree-like manner and satisfying some connectivity property. The treewidth of
G measures the proximity of G to a tree. More formally, a tree-decomposition of
G = (V,E) is a pair (T,X ) where X = {Xt|t 2 V (T )} is a family of subsets of V ,
called bags, and T is a tree, such that:

• S

t2V (T )

Xt = V ;

• for any edge uv 2 E, there is a bag Xt (for some node t 2 V (T )) containing
both u and v;
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• for any vertex v 2 V , the set {t 2 V (T )|v 2 Xt} induces a subtree of T .

The width of a tree-decomposition (T,X ) is maxt2V (T )

|Xt| � 1 and its size is the
order |V (T )| of T . The treewidth of G, denoted by tw(G), is the minimum width
over all possible tree-decompositions of G. If T is constrained to be a path, (T,X )

is called a path-decomposition of G. The pathwidth of G, denoted by pw(G), is the
minimum width over all possible path-decompositions of G.

Tree-decompositions are the corner-stone of many dynamic programming algo-
rithms for solving graph problems. For example, the famous Courcelle’s Theorem
states that any problem expressible in MSOL can be solved in linear-time in the class
of bounded treewidth graphs [Cou90]. Another framework based on graph decom-
positions is the bi-dimensionality theory that allowed the design of sub-exponential-
time algorithms for many problems in the class of graphs excluding some fixed
graph as a minor (e.g., [DH08]). Given a tree-decomposition with width w and size
n, the time-complexity of most of such dynamic programming algorithms can often
be expressed as O(2

wn) or O(2

w logwn). These algorithms have mainly theoreti-
cal interest because their time-complexity depends exponentially on the treewidth
and, on the other hand, no practical algorithms are known to compute a “good”
tree-decomposition for graphs with treewidth at least 5.

Since the computation of tree-decompositions is a challenging problem, we pro-
pose in this chapter to study it from a new point of view. Namely, we aim at min-
imizing the number of bags of the tree-decomposition when the width is bounded.
This new perspective is interesting on its own and we hope it will allow to gain
more insight into the difficulty of designing practical algorithms for computing tree-
decompositions.

We consider the problem of computing tree-decompositions with minimum size.
If the width is not constrained, then a trivial solution is a tree-decomposition of the
graph with one bag (the full vertex-set). Hence, given a graph G and an integer
k � tw(G), we consider the problem of minimizing the size of a tree-decomposition
of G with width at most k.

Related work The problem of computing "good" tree-decompositions has been
extensively studied. Computing optimal tree-decomposition - i.e., with width tw(G)

- is NP-complete in the class of general graphs G [ACP87]. For any fixed k � 1, Bod-
laender designed an algorithm that computes, in time O(kk

3
n), a tree-decomposition

of width k of any n-vertex graph with treewidth at most k [Bod96]. Very re-
cently, a single-exponential (in k) algorithm has been proposed that computes a
tree-decomposition with width at most 5k in the class of graphs with treewidth at
most k [BDD+13]. As far as we know, the only practical algorithms for computing
optimal tree-decompositions hold for graphs with treewidth at most 1 (trivial since
tw(G) = 1 if and only if G is a tree), 2 (graphs excluding K

4

as a minor) [WC83],
3 [AP86, KIU86, MT91] and 4 [San96].

In [DKZ13], Dereniowski et al. consider the problem of size-constrained path-
decompositions. Given any positive integer k and any graph G with pathwidth at
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most k, let lk(G) denote the smallest size (length) of a path-decomposition of G with
width at most k. For any fixed k � 4, computing lk is NP-complete in the class of
general graphs and it is NP-complete, for any fixed k � 5, in the class of connected
graphs [DKZ13]. Moreover, computing lk can be solved in polynomial-time in the
class of graphs with pathwidth at most k for any k  3. Finally, the "dual" problem
is also hard: for any fixed s � 2, it is NP-complete in general graphs to compute
the minimum width of a tree-decomposition with size s [DKZ13]1. We have gener-
alized the problem of minimum size path-decomposition presented in [DKZ13], and
introduced the problem of minimum size tree-decomposition in [LMN14, LMNS15].
To the best of our knowledge, no other paper has dealt with the computation of
tree-decompositions with minimum size before [LMN14, LMNS15]. However, very
recently, following the work in [LMN14] and [DKZ13], Bodlaender et al. [BN15] have
proposed exact subexponential time algorithms to solve the problems of minimum
size tree-decomposition and minimum size path-decomposition for a fixed width k in
2

O(n/ log(n)) time and showed that the two problems cannot be solved in 2

o(n/ log(n))

time, assuming the Exponential Time Hypothesis.

Contribution Let k be any positive integer and G be any graph. If tw(G) > k,
let us set sk(G) = 1. Otherwise, let sk(G) denote the minimum size of a tree-
decomposition of G with width at most k. See a simple example in Figure B.1. We
first prove in Section B.2 that, for any (fixed) k � 4, the problem of computing sk is
NP-hard in the class of graphs with treewidth at most k. Moreover, the computation
of sk for k � 5 is NP-hard in the class of connected graphs with treewidth at most
k. Furthermore, the computation of s

4

is NP-complete in the class of planar graphs
with treewidth 3. In Section B.3, we present a general approach for computing sk
for any k � 1. In the rest of the chapter, we prove that computing s

2

can be solved
in polynomial-time. Finally, we prove that s

3

can be computed in polynomial time
in the class of trees and 2-connected outerplanar graphs.
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Figure B.1: Given a tree G with five vertices, for any k � 1, a minimum size
tree-decomposition of width at most k is illustrated: s

1

(G) = 4,
s
2

(G) = s
3

(G) = 2, and sk>3

(G) = 1.

1This result was proved in [DKZ13] in terms of path-decomposition but it is straightforward to
extend it to tree-decomposition.
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B.2 NP-hardness in the class of bounded treewidth

graphs

In this section, we prove that:

Theorem 29. For any fixed integer k � 4 (resp., k � 5), the problem of computing
sk is NP-complete in the class of graphs (resp., of connected graphs) with treewidth
at most k.

Note that the corresponding decision problem is clearly in NP. Hence, we only
need to prove it is NP-hard.

Our proof mainly follows the one of [DKZ13] for size-constrained path-
decompositions. Hence, we recall here the two steps of the proof in [DKZ13]. First,
it is proved that, if computing lk is NP-hard for any k � 1 in general graphs, then
the computation of lk+1

is NP-hard in the class of connected graphs. Second, it is
shown that computing l

4

is NP-hard in general graphs with pathwidth 4. In par-
ticular, this implies that computing l

5

is NP-hard in the class of connected graphs
with pathwidth 5. The second step consists of a reduction from the 3-PARTITION
problem [GJ79] to the one of computing l

4

. Precisely, for any instance I of 3-
PARTITION, a graph GI is built such that I is a YES instance if and only if
l
4

(GI) equals a defined value `I .
Our contribution consists first in showing that the first step of [DKZ13] directly

extends to the case of tree-decompositions. That is, it directly implies that, if com-
puting sk is NP-hard for some k � 4 in general graphs, then so is the computation
of sk+1

in the class of connected graphs. Our main contribution of this section
is to show that, for the graphs GI built in the reduction proposed in [DKZ13],
any tree-decomposition of GI with width at most 4 and minimum size is a path-
decomposition. Hence, in this class of graphs, l

4

= s
4

and, for any instance I of
3-PARTITION, I is a YES instance if and only if s

4

(GI) equals a defined value `I .
We describe the details in what follows.

Lemma 8. If the problem of computing sk for an integer k � 1 is NP-complete in
general graphs, then the computation of sk+1

is NP-complete in the class of connected
graphs.

Proof. Let G be any graph. We construct an auxiliary connected graph G0 from G
by adding a vertex a adjacent to all vertices in V (G). Given two integers k, s � 1, in
the following, we prove that there is a tree-decomposition of G with width at most
k and size at most s if and only if there is a tree-decomposition of G0 with width at
most k + 1 and size at most s.

First, let us assume that (T,X ) is a tree-decomposition of G with width at most
k and size at most s. By adding a in each bag of X , we obtain a tree-decomposition
of G0 with width at most k + 1 and size at most s.

Now let (T 0,X 0
) be a tree-decomposition of G0 with width at most k + 1 and

size at most s. We are going to find a tree-decomposition of G with width at most
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Figure B.2: Examples of gadgets in graph G(S, b) [DKZ13]

k and size at most s. Let Xa be the set of all bags in X 0 containing a. Let Ta be the
subtree of T 0 induced by the bags in Xa. Every vertex v 2 V (G) is contained in a
bag in Xa because va 2 E(G0

). For any edge uv 2 E(G), there is a bag X ◆ {a, u, v}
in X 0 since {a, u, v} induces a clique in G0. This implies that X 2 Xa. We delete a
from each bag of Xa and denote by X� the obtained set of bags. So (Ta,X�

) is a
tree-decomposition of G with width at most k and size at most s.

Before doing the reduction from the 3-Partition problem to the problem of
computing s

4

, let us first recall its definition.

Definition 4. [3-Partition]

Instance: A set S of 3m positive integers S = (w
1

, . . . , w
3m) and an integer b.

Question: Is there a partition of the set {1, . . . , 3m} into m sets S
1

, . . . , Sm such
that

P

i2Sj
wi = b for each j = 1, . . . ,m?

This problem is NP-complete even if |Sj | = 3 for all j = 1, . . . ,m [GJ79].
Given an instance of 3-Partition, in the following, we construct a disconnected

graph G(S, b) as in [DKZ13]. First, for each i 2 {1, . . . , 3m}, we construct a con-
nected graph Hi as follows. We take wi copies of K

3

, denoted by Ki,q
3

, q = 1, . . . , wi,
and wi�1 copies of K

4

, denoted by Ki,q
4

, q = 1, . . . , wi�1 (the copies are mutually
disjoint). Afterwards, for each q = 1, . . . , wi�1, we identify two different vertices of
Ki,q

4

with a vertex of Ki,q
3

and with a vertex of Ki,q+1

3

, respectively. This is done in
such a way that each vertex of each Ki,q

3

is identified with at most one vertex from
other cliques. Informally, the cliques form a ’chain’ in which the cliques of size 3
and 4 alternate. See Figure B.2a for an example of Hi for wi = 3.

Second, we construct a graph Hm,b as follows. We take m + 1 copies of K
5

,
denoted by K1

5

, . . . ,Km+1

5

, and m copies of the path graph Pb of length b (Pb has
b edges and b+ 1 vertices), denoted by P 1

b , . . . , P
m
b (again, the copies are mutually

disjoint). Now, for each j = 1, . . . ,m, we identify one of the endpoints of P j
b with a

vertex of Kj
5

, and identify the other endpoint with a vertex of Kj+1

5

. Moreover, we
do this in a way that ensures that, for each j, no vertex of Kj

5

is identified with the
endpoints of two different paths. See Figure B.2b for an example of H

2,4.
Let G(S, b) be the graph obtained by taking the disjoint union of the graphs

H
1

, . . . , H
3m and the graph Hm,b. In the following, we prove that there is a tree-

decomposition of G(S, b) of width 4 and size at most s = 1� 2m+2

P

3m
i=1

wi if and
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only if there is a partition of the set {1, . . . , 3m} into m sets S
1

, . . . , Sm such that
P

i2Sj
wi = b for each j = 1, . . . ,m in the instance of 3-Partition.

In Lemma 2.2 of [DKZ13], a path-decomposition of G(S, b) of width 4 and length
1� 2m+ 2

P

3m
i=1

wi is constructed if there is a partition of the set {1, . . . , 3m} into
m sets S

1

, . . . , Sm such that
P

i2Sj
wi = b for each j = 1, . . . ,m in the instance of

3-Partition. Obviously, this path-decomposition is also a tree-decomposition of
G(S, b) of width 4 and size s. So we have the following lemma.

Lemma 9. Given a multiset S of 3m positive integers S = (w
1

, . . . , w
3m) and an

integer b, if there is a partition of the set {1, . . . , 3m} into m sets S
1

, . . . , Sm such
that

P

i2Sj
wi = b for each j = 1, . . . ,m, then G(S, b) has a tree-decomposition of

width at most 4 and size at most s = 1� 2m+ 2

P

3m
i=1

wi.

Now we prove the other direction.

Lemma 10. If G(S, b) has a tree-decomposition (T,X ) of width at most 4 and size
at most s = 1�2m+2

P

3m
i=1

wi, then there is a partition of the set {1, . . . , 3m} into
m sets S

1

, . . . , Sm such that
P

i2Sj
wi = b for each j = 1, . . . ,m.

Proof. Lemma 2.6 in [DKZ13] proved that if G(S, b) has a path-decomposition
(T,X ) of width at most 4 and length at most 1 � 2m + 2

P

3m
i=1

wi, then there is
a partition of the set {1, . . . , 3m} into m sets S

1

, . . . , Sm such that
P

i2Sj
wi = b for

each j = 1, . . . ,m. In what follows, we prove that any tree-decomposition (T,X)

of G(S, b) of width at most 4 and size at most s = 1 � 2m + 2

P

3m
i=1

wi is a path-
decomposition of G(S, b).

As proved in Lemma 2.3 of [DKZ13], each bag in (T,X) contains exactly one of
the cliques Ki,q

3

,Ki,q
4

,Kj
5

. Indeed, each of these cliques has size at least 3. Moreover,
any two of them share at most one vertex, and no two cliques of size 3 (Ki,q

3

) share
a vertex. So each bag of (T,X ) contains at most one of the cliques Ki,q

3

,Ki,q
4

,Kj
5

.
Moreover, any clique of the graph is fully contained in a bag of (T,X ). Since s
equals the number of the cliques Ki,q

3

,Ki,q
4

,Kj
5

, each bag of (T,X ) contains exactly
one of them.

Now, let us prove that any edge in Ki,q
4

,Kj
5

, P j
b (i.e. both the two endpoints of the

edge) is contained in exactly one bag. Since each bag in (T,X) contains exactly one
of the cliques Ki,q

3

,Ki,q
4

,Kj
5

, the two endpoints of any edge in the paths P 1

b , . . . , P
m
b

are contained in a bag containing some Ki,q
3

. In fact, the bags containing a Ki,q
4

(resp., Kj
5

) cannot contain two additional vertices (resp., one vertex) since (T,X ) is
a tree-decomposition of width at most 4. Every bag containing some Ki,q

3

contains
at most one edge in the paths P 1

b , . . . , P
m
b , because the bag can contain at most two

additional vertices and Ki,q
3

and P j
b are disjoint. There are mb edges in the paths

P 1

b , . . . , P
m
b and there are mb bags containing some Ki,q

3

, so every bag containing
a Ki,q

3

contains exactly one edge in the paths P 1

b , . . . , P
m
b . Any edge in the paths

P 1

b , . . . , P
m
b is then contained in exactly one bag. Also each bag containing some

Ki,q
3

contains 5 vertices, so it does not contain any edge (i.e. both its endpoints) in
Ki,q

4

or Kj
5

. Therefore, any edge on Ki,q
4

,Kj
5

is contained in exactly one bag.
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(a) F
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(b) H2,4

Figure B.3: Example of the new gadget in G(S, b).

Now we prove that there are only two leaves in T and so T is a path. If a bag
containing some Ki,q

3

and an edge uv on some path P j
b is a leaf bag in T , then its

neighbor bag also contains u, v because both u and v are incident to other edges in
G(S, b). This is a contradiction with the fact any edge (its two endpoints) on P j

b is
contained in only one bag. Hence, any bag containing some Ki,q

3

is not a leaf bag in
T . Similarly, we can prove that any bag containing any Ki,q

4

or Kj
5

for 1 < j < m+1

is not a leaf bag in T . Thus there are only two bags containing K1

5

and Km+1

5

which
are leaves in T .

Thus, we obtain the following corollary.

Corollary 7. It is NP-complete to compute s
4

in the class of graphs of treewidth at
most 4.

Theorem 29 follows from Lemma 8 and Corollary 7. We furthermore modify the
reduction to prove theorem 30.

Theorem 30. It is NP-complete to compute s
4

in the class of planar graphs of
treewidth at most 3.

Proof. As in the previous reduction, we build a graph G(S, b) for an instance of
3-PARTITION; we keep the subgraphs Hi as they are and modify the graph Hm,b

as follows. We replace the m+ 1 copies of K
5

by m+ 1 copies of the graph F that
consists of a K

4

and a K
3

sharing an edge as depicted in Figure B.3a. We denote
the copies by F

1

, F
2

, . . . , Fm+1

. The new graph G(S, b) we obtain is planar and has
treewidth 3.

Lemma 9 is still true and for Lemma 10 to be correct, we need to prove that
if G(S, b) has a tree-decomposition (T,X ) of width at most 4 and size at most
s = 1 � 2m + 2

P

3m
i=1

wi, then there is a bag of (T,X ) containing Fi, for each Fi,
i 2 {1, . . . ,m + 1}. Let us denote by Ki

3

and Ki
4

the two cliques sharing exactly
one edge that form Fi. Each of these cliques, should appear in one bag. Note that
among all the cliques of G(S, b), the only cliques that can coexist in a bag are of the
form Ki

3

and Ki
4

since the sum of the number of vertices of any other two cliques is
more than 5. Let us suppose that there exists j 2 {1, . . . ,m+1} such that no bag of
(T,X ) contains Fj , i.e. Kj

3

and Kj
4

are not in the same bag. In this case the number
of bags of (T,X ) is at least the number of the cliques Ki,q

3

,Ki,q
4

,Ki0
4

(i0 6= j), plus
the two bags containing Kj

3

and Kj
4

. This gives a size of at least 2�2m+2

P

3m
i=1

wi

wich is not possible.
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B.3 Preliminaries

In this section, we present the definitions and notations used throughout the chapter
and some well-known facts about tree-decompositions.

B.3.1 Notations

Let G = (V,E) be a graph. Throughout this chapter we refer to an edge of E
as uv instead of {u, v}, for ease of presentation. Given a subset S ✓ V , and two
vertices a, b 2 V \ S, we say that S separates a and b if any path between a and
b contains a vertex in S. A subset S ⇢ V is a separator in G if there exists two
vertices a, b 2 V \ S such that S separates a and b in G. For an integer c � 0, G is
c-connected if |V | > c and no subset V 0 ✓ V with |V 0| < c is a separator in G. A
2-connected component of G is a maximal 2-connected subgraph.

Let (T,X ) be any tree-decomposition of G. Abusing the notations, we will
identify a node t 2 V (T ) and its corresponding bag Xt 2 X . This means that,
e.g., instead of saying t 2 V (T ) is adjacent to t0 2 V (T ) in T , we can also say that
Xt 2 X is adjacent to Xt0 2 X in T . A bag B 2 X is called a leaf-bag if B has
degree one in T . Let G be a graph with tw(G)  k (k � 1). A subset B ✓ V (G) is a
k-potential-leaf if there is a tree-decomposition (T,X ) with width at most k and size
sk(G) such that B is a leaf bag of (T,X ). A subgraph H ✓ V is a k-potential-leaf
of G if V (H) is a k-potential-leaf of G. Note that a k-potential-leaf has size at most
k + 1. Given a class of graphs C and integer k 2 N⇤, a set of graphs P is called a
complete set of k-potential-leaves of C, if for any graph G 2 C, there exists a graph
H 2 P such that H is a k-potential-leaf of G.

A tree-decomposition is reduced if no bag is contained in another one. It is
straightforward that, in any leaf-bag B of a reduced tree-decomposition, there is
v 2 V such that v appears only in B and so N [v] ✓ B. Note that it implies that
any reduced tree-decomposition has at most n� 1 bags.

In the following we define two transformation rules which take a tree-
decomposition (T,X ) of a graph G, and computes another one without increasing
the width nor the size.

Leaf. Let X 2 X and NT (X) = {X
1

, · · · , Xd}. Assume that, for any 1 < i  d,
Xi \ X ✓ X

1

. Let (T ⇤,X ⇤
) = Leaf(X,X

1

, (T,X )) denote the tree-
decomposition of G obtained by replacing each edge XiX 2 E(T ) by an edge
XiX1

for any 1 < i  d. Note that X becomes a leaf-bag after the operation.
See in Figure B.4.

Reduce. Let XX 0 2 E(T ) with X ✓ X 0. Let (T ⇤,X ⇤
) = Reduce(X,X 0, (T,X ))

denote the tree-decomposition of G obtained by deleting the bag X from
the tree-decomposition Leaf(X,X 0, (T,X )). Note that the size of the tree-
decomposition is decreased by one after the operation.

From any tree-decomposition of G with width k and size s, it is easy to obtain a
reduced tree-decomposition of G with width at most k and size at most s � 1 by
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applying the Reduce operation if it is possible (i.e., if a bag is contained in another
one). In particular, any minimum size tree-decomposition is reduced.

1X

2X

dX

X

1T

2T

dT

1X

2X

dX

X

1T

2T

dT

➡( T, X ) ( T*, X*) 

Figure B.4: In a tree-decomposition (T,X ), NT (X) = {X
1

, · · · , Xd} and for any
1 < i  d, Xi \X ✓ X

1

. For 1  i  d, Ti [Xi induces the subtree containing Xi

in T \ {XXi}. We replace each edge XiX 2 E(T ) by an edge XiX1

for any
1 < i  d. This gives a tree-decomposition (T ⇤,X ⇤

) = Leaf(X,X
1

, (T,X )). X is a
leaf-bag in (T ⇤,X ⇤

).

We conclude this section by a general lemma on tree-decompositions. This
lemma is known as folklore, we recall it for completness.

Lemma 11. Let (T,X ) be a tree-decomposition of a graph G. Let X 2 X and
v, w 2 X. If there exists a connected component in G \X containing a neighbor of
v and a neighbor of w, then there is a neighbor bag of X in (T,X ) containing v and
w.

Proof. First, let us note that, for any connected subgraph H of G, the set of bags
of T which contain a vertex of H induces a subtree of T (the proof can be done by
induction on |V (H)|).

Let C be a connected component in G \ X containing a neighbor of v and a
neighbor of w. Let T 0

C be the subtree of T induced by the bags that contain at least
a vertex of C. Because no vertices of C are contained in the bag X, then T 0

C is a
subtree of T \X. Let TC be the connected component of T \X that contains T 0

C .
Let Y 2 V (TC) be the bag of TC which is a neighbor of X in T . Let x 2 N(v) \ C
be a neighbor of v in C. Then there exists a bag Z 2 X in TC containing both x
and v. So both X and Z contain vertex v. Then the bag Y , which is on the path
between X and Z in T , also contains v. Similarly, we can prove that w 2 Y .

Corollary 8. Let (T,X ) be a tree-decomposition of a 2-connected graph G. Let
X 2 X and |X|  2. Then there is a neighbor bag Y of X in (T,X ) such that
X ✓ Y .

Proof. Since G is 2-connected, |V (G)| � 3. So there exist at least another bag
except X in X .
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If |X| = 1, let X = {v}. Then there is a neighbor bag Y of X containing v, since
G is 2-connected and v is adjacent to some vertices in G. If X = 2, let X = {v, w}.
Let G

1

be any connected component in G \ X. If v is not adjacent to any vertex
in G

1

, then {w} separates V (G
1

) from {v}. This contradicts with the assumption
that G is 2-connected. So any connected component in G\X contains a neighbor of
v and a neighbor of w. From Lemma 11, there is a neighbor bag Y of X containing
v, w, i.e. X ✓ Y .

B.3.2 General approach

In what follows, we present the general approach used to design polynomial-time
algorithms to compute minimum-size tree-decompositions of graphs with small
treewidth. Our algorithms mainly use the notion of potential-leaf.

Let k � 1 and G = (V,E) be a graph with tw(G)  k. The key idea of our algo-
rithms is to identify a finite complete set of potential-leaves. Then, our algorithms
are recursive: given a graph G and a k-potential-leaf H from the complete set, we
compute a minimum-size tree-decomposition of G by adding H to a minimum-size
tree-decomposition of a smaller graph.

The next lemmas formalize the above paragraph.

Lemma 12. Let k � 1 and G = (V,E) be a graph with tw(G)  k. Let B ✓ V be a
k-potential-leaf of G and S ⇢ B be the set of vertices of B that have a neighbor in
V \B. Then sk(G) = sk(GS \ (B \ S)) + 1.

Proof. Let us first prove sk(G)  sk(GS \ (B \ S)) + 1. Suppose that (TS ,XS) is a
minimum size tree-decomposition of width at most k of the graph GS \(B\S). Then
there exists a bag X 2 XS containing S because S induces a clique in the graph
GS \(B\S). We add the bag B and make it adjacent to X in the tree-decomposition
(TS ,XS). We obtain then a tree-decomposition of width at most k for graph G of
size sk(GS \ (B \ S)) + 1.

Now we prove that sk(G) � sk(GS \ (B \ S)) + 1. Let (T,X ) be a minimum
size tree-decomposition of G of width at most k such that B is a leaf bag in (T,X )

. Note that, if B = V then GS \ (B \ S) is the empty graph. Let us assume that
B ⇢ V . Then (T,X ) is also a tree-decomposition of GS . Let B be adjacent to
the bag Y in (T,X ). Then S ⇢ Y since each vertex in S is contained in another
bag in (T,X ). Let (T 0,X 0

) be the tree-decomposition obtained by deleting the
vertices in B \ S in all the bags of (T,X ). Then B is changed to B0

= S 2 X 0

and let Y be changed to Y 0 2 X 0. So B0 ✓ Y 0. Then the tree-decomposition
Reduce(B0, Y 0, (T 0,X 0

)) is a tree-decomposition of GS \ (B \ S) of size sk(G) � 1.
So sk(G)� 1 � sk(GS \ (B \ S)).

This lemma implies the following corollary:

Corollary 9. Let k 2 N⇤ and C be the class of graphs with treewidth at most k.
If there is a g(n)-time algorithm Ak that, for any n-vertex-graph G 2 C, computes
a k-potential-leaf of G. Then sk can be computed in O(g(n) · n) time in the class
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of n-vertex graphs in C. Moreover, a minimum size tree-decomposition of width at
most k can be constructed in the same time.

Proof. Let G 2 C be a n-vertex-graph. Let us apply Algorithm Ak to find a subgraph
H of G in g(n) time, which is a k-potential-leaf of G. Let S ⇢ V (H) be the set of
vertices having a neighbor in G\H and G0

= GS \ (V (H)\S). Then, by Lemma 12,
sk(G) = sk(G0

) + 1. Finally, |V (G0
)|  n � 1 and G0 has treewidth at most k. We

then proceed recursively. So the total time complexity is O(g(n) · n). Moreover,
for any minimum size (sk(G0

)) tree-decomposition (T 0,X 0
) of G0 of width k, there

is a bag X containing S since S induces a clique in G0. Add a new bag N = V (H)

adjacent to X in (T 0,X 0
). The obtained tree-decomposition is a minimum size

(sk(G) = sk(G0
) + 1) tree-decomposition of G of width at most k.

B.4 Graphs with treewidth at most 2

In this section, we describe the algorithm A
2

which computes a 2-potential-leaf of
a given graph. In particular, all graphs considered in this section have treewidth
at most 2, i.e. partial 2-trees. Please see a complete set of 2-potential-leaves of
graphs of treewidth at most 2 in Figure B.5. We are going to prove that any of the
subgraphs in Figure B.5 is a potential-leaf and then that each non-empty graph of
treewidth at most 2 contains one of them as a 2-potential-leaf.

q

p

q

b

G

f

c

a

c

(a)

a

f ffp bα

G G G G

(b) (c) (d) (e)

Figure B.5: Complete set of 2-potential-leaves of graphs of treewidth at most 2.

Lemma 13. Let G be a graph with treewidth at most 2 and p 2 V (G) such that
N(p) = {f, q} and f has degree one (see Figure B.5(a)). Then {f, p, q} is a 2-
potential-leaf of G.

Proof. Let (T,X ) be any tree-decomposition of G with width at most 2 and size at
most s � 1. We show how to modify (T,X ) to obtain a tree-decomposition with
width at most 2 and size at most s and in which {f, p, q} is a leaf bag.

Since fp 2 E(G), there is a bag B in (T,X ) containing both f and p. We may
assume that B is the single bag containing f (otherwise, we delete f from any other
bag). Similarly, since pq 2 E(G), let X be a bag in (T,X ) containing both p and q.

First, let us assume that X = B = {f, p, q}. In this case, we may assume that
X is the single bag containing p (otherwise, we delete p from any other bag). If X is
a leaf bag, then the lemma is proved. Otherwise, let X

1

, · · · , Xd be the neighbors of
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X in T . Since f and p appear only in X, then X \Xi ✓ {q} for any 1  i  d. By
definition of the operation Leaf , the tree-decomposition Leaf(X,X

1

, (T,X )) has
width at most 2 and the same size as (T,X ), and X is a leaf.

Second, consider the case when X 6= B. There are two cases to consider. Either
B = {f, p} or B = {f, p, x} with x 6= q. In the latter case, note that there is another
bag B0, neighbor of B, that contains x unless x is an isolated vertex of G. In the
former case or if x appears only in B (in which case, x is an isolated vertex), let B0

be any neighbor of B. Let (T 0,X 0
) be obtained by deleting f, p in all bags of (T,X ).

Then, we contract the edge BB0 in T 0, i.e., we remove B and make any neighbor of
B adjacent to B0. Note that, in the resulting tree-decomposition of G\{f, p}, there
is a bag X 0 containing q and with |X 0|  2 (the bag that results from X). Finally,
we add a bag {f, p, q} adjacent to X 0 and, if node x was only in B, then we add x
to X 0. The result is the desired tree-decomposition.

Lemma 14. Let G be a graph with treewidth at most 2 and q 2 V (G) such that q
has at least two one-degree neighbors f and p (see Figure B.5(b)). Then {f, p, q} is
a 2-potential-leaf of G.

Proof. Let (T,X ) be any tree-decomposition of G with width at most 2 and size at
most s � 1. We show how to modify (T,X ) to obtain a tree-decomposition with
width at most 2 and size at most s and in which {f, p, q} is a leaf bag.

Since fq 2 E(G), there is a bag B in (T,X ) containing both f and q. We may
assume that B is the single bag containing f (otherwise, we delete f from any other
bag). Similarly, since pq 2 E(G), let X be a bag in (T,X ) containing both p and q.
Again, we may assume that X is the single bag containing p (otherwise, we delete
p from any other bag).

First, let us assume that X = B = {f, p, q}. If X is a leaf bag, then the lemma
is proved. Otherwise, let X

1

, · · · , Xd be the neighbors of X in T . Since f and p
appear only in X, then X \ Xi ✓ {q} for any 1  i  d. By definition of the
operation Leaf , the tree-decomposition Leaf(X,X

1

, (T,X )) has width at most 2,
and the same size as (T,X ), and X is a leaf.

Second, let us assume that X = {f, q} or B = {p, q}. In the former case, we
remove p from any bag and add p to X. In the latter case, we remove f from any
bag and add f to B. In both cases, we obtain a bag {f, p, q} as in the first case.

Otherwise, let B = {f, q, x}, x 6= p, and X = {p, q, y}, y 6= f .

• If B and X are adjacent in T , then we add a new bag N = {q, x, y}, remove
B and X and make each of their neighbors adjacent to the new bag N and,
finally, add a leaf-bag {f, p, q} adjacent to N . see Figure B.6a. The obtained
tree-decomposition has the desired properties.

• Otherwise, if there is a neighbor B0 of B with q, x 2 B0, then we remove B,
make all neighbors of B adjacent to B0 and finally add a leaf-bag {f, p, q}
adjacent to X. The obtained tree-decomposition has the desired properties.
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• Otherwise, let B0 be the neighbor of B on the path between B and X. In
this case, q 2 B0 and x /2 B0. Moreover, q does not belong to any neighbor of
B that contains x and the other way around. For any neighbor Y of B with
q 2 Y (and hence x /2 Y ), we replace the edge Y B 2 E(T ) with the edge Y B0.
Finally, we replace the edge BB0 2 E(T ) by the edge BX. See Figure B.6b.
In the resulting tree-decomposition of G, B and X are adjacent and we are
back to the first case.

B X

1T 2T

➡

q,p,yf,q,x

f,p,q

N

1T 2Tq,x,y

(a) In the tree-decomposition (T,X ), let
T1 [B (resp. T2 [B) induce the subtree
containing B (resp. X) in T \ {B}. We

delete B and X, make each of their
neighbors adjacent to the new bag
N = {q, x, y}, and add a leaf-bag

{f, p, q} adjacent to N .

B X

➡

q,p,yf,q,x

Y

q,...
q,...

B'

B X

q,p,yf,q,x

Y

q,...
q,...

B'

x,...
Z

x,...
Z

(b) For the sake of simplicity, we show
only the induced path from B to X in T

and two neighbors Y, Z 6= B0 of B. Y
contains q and Z contains x. Then we

just make Y adjacent to B0 instead of B
and make B adjacent to X instead of

B0.

Figure B.6: Examples illustrating the proof of Lemma 14.

Lemma 15. Let G be a graph with treewidth at most 2 and q 2 V (G) such that q
has one neighbor f with degree 1 and for any vertex w 2 N(q) \ {f}, {w, q} belongs
to a 2-connected component of G.

If G has an isolated vertex ↵, then {q, f,↵} is a 2-potential-leaf; otherwise {q, f}
is a 2-potential-leaf (see Figure B.5(c)).

Proof. Let (T,X ) be any tree-decomposition of G with width at most 2 and size at
most s � 1. We show how to modify (T,X ) to obtain a tree-decomposition with
width at most 2 and size at most s and in which {f, q,↵} is a leaf bag if G has an
isolated vertex ↵; and {f, q} is a leaf bag otherwise.

Since fq 2 E(G), there is a bag B in (T,X ) containing both f and q. We assume
that B is the single bag containing f (otherwise, delete f from any other bag).

1. If B = {f, q}, then the intersection of B and any of its neighbor in T is
empty or {q}. If there is a neighbor of B containing q, then let X be such a
neighbor; otherwise let X be any neighbor of B. By definition of the operation
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Leaf , the tree-decomposition Leaf(B,X, (T,X )) has width at most 2, same
size as (T,X ), and B is a leaf. If there are no isolated vertices, we are done.
Otherwise, if there is an isolated vertex ↵ in G, then we delete ↵ in all bags
of the tree-decomposition Leaf(B,X, (T,X )) and add ↵ to bag B, i.e. make
B = {f, p,↵}. The result is the desired tree-decomposition.

2. Otherwise let B = {f, q, x}.
(a) If x is a neighbor of q, then x and q are in a 2-connected component of

G. So there exists a connected component in G \ B containing a vertex
adjacent to x and a vertex adjacent to q. From Lemma 11, there is a
neighbor X of B in (T,X ) containing both x and q. By definition of the
operation Leaf , the tree-decomposition Leaf(B,X, (T,X )) has width at
most 2, same size as (T,X ), and B is a leaf. Then we delete x in B, i.e.
B = {f, q}. Finally, if ↵ is an isolated vertex of G, we remove it from any
other bag and add it to B. The result is the desired tree-decomposition.

(b) If x is not adjacent to q. If there is a neighbor X of B in (T,X ) containing
both x and q, then (T,X ) is modified as in case 2a. Otherwise, any
neighbor of B in (T,X ) contains at most one of the vertices q and x.
If there is a neighbor of B in T containing q, then let Y be such a neighbor
of B; otherwise let Y be any neighbor of B. We delete the edges between
B and all its neighbors not containing x except Y in (T,X ) and make
them adjacent to Y .
If there is no neighbor of B containing x, then x is an isolated ver-
tex and we obtain a tree-decomposition of the same size and width as
(T,X ), in which there is a leaf bag B = {f, q, x}. It is a required tree-
decomposition.
Otherwise, let Z be a neighbor of B in (T,X ) containing x, then we
delete the edges between B and all its neighbors containing x except Z
in (T,X ) and make them adjacent to Z. Now B has only two neighbors
Y and Z and B \ Y ✓ {q}, B \ Z = {x} and Y \ Z = ;. We delete
the edge between B and Z and make Z adjacent to Y . We delete x in
B, i.e. make B = {f, q}. See the transformations in Figure B.7. Then
we obtain a tree-decomposition of the same size and width as (T,X ), in
which B = {f, q} is a leaf bag. Again, if ↵ is an isolated vertex of G, we
remove it from any other bag and add it to B. The result is the desired
tree-decomposition.

Lemma 16. Let G be a graph of treewidth at most 2. Let b 2 V (G) with N(b) =
{a, c}. If N(a) = {b, c} (see Figure B.5(d)) or if there is a path, with at least one
internal vertex, between a and c in G \ {b} (see Figure B.5(e)), then {a, b, c} is a
2-potential-leaf of G.
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B

➡f,q,x

Y

no x

q,...

x,...

x,...

Z B

f,q,x

Y

no x

q,...

x,...

x,...
Z

➡
B

f,q

Y

no x

q,...

x,...

x,...
Z

W

U

W

U

W

U

Figure B.7: To the sake of simplicity, we show only the subtree induced by B, Y
and three neighbors Z,W,U of B. Y contains q; Z,U both contain x and W does

not contain x. First we make the bag not containing x, e.g. W adjacent to Y
instead of B; and make the bag containing x except Z, e.g. U adjacent to Z

instead of B. Second, we make Z adjacent to Y instead of B and delete x in B.
Then B = {f, q} is a leaf-bag.

Proof. Let G = (V,E) be a graph of treewidth at most 2. Let b 2 V with exactly
2 neighbors a, c 2 V satisfying the hypotheses of the lemma. If V = {a, b, c}, the
result holds trivially, so let us assume that |V | � 4.

Let (T,X ) be a reduced tree-decomposition of width at most 2 of G. From
(T,X ), we will compute a tree-decomposition (T ⇤,X ⇤

) of G without increasing the
width nor the size and such that {a, b, c} is a leaf-bag of (T ⇤,X ⇤

).
Let X be any bag of (T,X ) containing {a, b} and Y be any bag containing {b, c}.

The bags X,Y exist because ab, bc 2 E. If X = {a, b}, then there exists a connected
component in G \X containing a neighbor of a and a neighbor of b. By Lemma 11,
there is a neighbor of X in (T,X ) that contains both a and b, contradicting the fact
that (T,X ) is reduced. So |X| = 3 and, similarly, |Y | = 3.

• Let us first assume that X = Y = {a, b, c}. In particular, it is the case when
N(a) = {b, c} since {a, b, c} induces a clique. We may assume that b only
belongs to bag X (otherwise, we remove b from any other bag).

If N(a) = {b, c}, then we can also assume that a only belongs to X. Let Z be
any neighbor of B containing c if it exists; otherwise let Z be any neighbor of
B (Z exists since |V | � 4).

Otherwise, there exists a path P between a and c in G \ {b} with at least
one internal vertex. In this latter case, there exists a connected component in
G\X containing a neighbor of a and a neighbor of c. So by Lemma 11, there
is a neighbor bag Z of X in (T,X ) containing both a and c. In both cases,
Leaf(X,Z, (T,X )) is the desired tree-decomposition.

• X = {a, b, x} and Y = {b, c, y} with x 6= c and y 6= a; and there exists a path
P between a and c in G \ {b} with at least one internal vertex. Let Q be the
path between X and Y in (T,X ). We may assume that b only belongs to the
bags in Q, because otherwise b can be removed from any other bag.

– If X is adjacent to Y , then by properties of tree-decomposition, X \ Y
separates a and c. Since {b} does not separate a and c, X \ Y = {b, x},
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i.e. x = y. In this case, (T ⇤,X ⇤
) is obtained by making X = {a, c, x}

and removing Y from (T,X ), then making all neighbors of Y adjacent to
X and finally, adding a bag {a, b, c} adjacent to X.

– Otherwise, let X 0 be the bag in the path Q containing a, which is closest
to Y . Similarly, let Y 0 be the bag in the path Q containing c, which is
closest to X. Finally, let Q0 be the path from X 0 to Y 0 in T and note that
b belongs to each bag in Q0 and a and c do not belong to any internal
bag in Q0. Also we may assume that b only belongs to the bags in Q0,
because otherwise b can be removed from any other bag.
If X 0 and Y 0 are adjacent in T , the proof is similar to the one in previous
item. Otherwise, let Z be the neighbor of X 0 in Q0. By properties
of tree-decompositions, X 0 \ Z separates a and c. Since {b} does not
separate a and c, let X 0 \ Z = {b, x0}. Since Z 6= {b, x0} because (T,X )

is reduced, then Z = {b, x0, z} for some z 2 V . We replace b with a in
all the bags. By doing this (T,X ) is changed to a tree-decomposition
(T c,X c

) of the graph G/ab obtained by contracting the edge ab in G. In
(T c,X c

), the bag X 0 has become Xc
= {a, x0} and Z is changed to be

Zc
= {a, x0, z}. So Xc can be reduced in (T c,X c

). Moreover Y is changed
to Y c

= {a, c, y}. To conclude, let us add the bag {a, b, c} adjacent to
Y c in the tree-decomposition Reduce(Xc, Zc, (T c,X c

)). see Figure B.8.
The result is the desired tree-decomposition (T ⇤,X ⇤

) of G.

X' Y'

➡

b,c,y'a,b,x' b,x',z

Z

Replace b with a in all bags

Y

b,c,y

X

a,b,x

X' Y'

a,c,y'a,x' a,x',z

Z Y

a,c,y

X

a,x

➡

Reduce X' and add {a,b,c} adjacen to Y

Y'

a,c,y'a,x',z

Z Y

a,c,y

X

a,x a,b,c

Figure B.8: For the sake of simplicity, we show only the path from X to Y . After
the two transformations, {a, b, c} is a leaf-bag.

Before going further, let us introduce some notations. A bridge in a graph
G = (V,E) is any subgraph induced by two adjacent vertices u and v of G (i.e.,
uv 2 E) such that the number of connected components strictly increases when
deleting the edge uv, but not the two vertices u, v in G, i.e., G0

= (V,E \ {uv}) has
strictly more connected components than G. A vertex v 2 V is a cut vertex if {v}
is a separator in G. A maximal connected subgraph without a cut vertex is called a
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block. Thus, every block of a graph G = (V,E) is either a 2-connected component
of G or a bridge or an isolated vertex. Conversely, every such subgraph is a block.
Different blocks of G intersect in at most one vertex, which is a cut vertex of G.
Hence, every edge of G lies in a unique block, and G is the union of its blocks.

Let G = (V,E) be a connected graph and let r 2 V . A spanning tree T of G is
a BFS-tree of G if for any v 2 V (G), the distance from r to v in G is the same as
the one in T . Let B = {C : C is a block of G}. The block graph of G is the graph
B(G) whose vertices are the blocks of G and two block-vertices of B(G) are adjacent
if the corresponding blocks intersect, that is, B(G) = (B, {C

1

C
2

: C
1

, C
2

2 B and
C
1

\ C
2

6= ;}). Note that B(G) is connected. Finally, a block-tree of G is any
BFS-tree F (with any arbitrary root) of B(G). See an example in Figure B.9.

1C

2C 3C

5C
4C

6C

7C
8C

9C
10C

11C

1C

2C 3C

4C 5C

6C

7C 8C 9C
10C 11C

G B(G)

Figure B.9: Graph G is connected. For i = 1, . . . , 11, each Ci is a block of G.
B(G) is the block graph of G. The BFS tree of B(G) with bold edges is a block

tree of G with root C
1

.

There is a linear (in the number of edges) algorithm for computing all blocks
in a given graph [HT73]. Also a BFS-tree can be found in linear (in the number
of vertices plus the number of edges) time. So given a graph G = (V,E), we can
compute a block tree F of G in O(|V |+ |E|) time.

Now we are ready to prove the next theorem by using the Lemmas 13-16.

Theorem 31. There is an algorithm that, for any n-vertex-m-edge-graph G with
treewidth at most 2, computes a 2-potential-leaf of G in time O(n+m).

Proof. If n  3, then V (G) is a 2-potential-leaf of G. Let us assume that n � 4.
First, let us compute the set of isolated vertices in G, which can be done in O(n)
time. If G has only isolated vertices, then any three vertices induce a 2-potential-leaf
of G. Otherwise, there is at least one edge in G.

Let G
1

be any connected component of G containing at least one edge. If
|V (G

1

)| = 2, then from Lemma 16, either G has an isolated vertex ↵ and {↵, u, v}
is a 2-potential-leaf or {u, v} is a 2-potential leaf.

Otherwise, |V (G
1

)| � 3. We compute a block tree F of G
1

rooted in an arbitrary
block R. This can be done in time O(n+m). Note that any node in F corresponds
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to either a 2-connected component of G or a bridge uv 2 E(G). Let C be a leaf
block in F , which is furthest from R and |V (C)| is maximum. There are several
cases to be considered.

1C

2C 3C

5C
4C

7C
8C

9C
11C

1C

2C 3C

4C 5C

7C 8C 9C
11C

G F

Figure B.10: This graph G is an induced subgraph of the graph in Figure B.9. Its
block tree F , with root C

1

, has two blocks less than the one in Figure B.9 (the
blocks C

6

and C
10

). Each one of the leaf blocks, C
7

, C
8

, C
9

, C
11

, in F contains two
vertices of G.

• let us first assume that C is a bridge in G, i.e. C consists of one edge fp 2 E(G)

and p is a cut vertex. Then f has degree one in G because C is a leaf block
in F . Let P be the parent block of C in F . Then any child block A of P in F
consists of one edge because C has the maximum number of vertices among
all the children of P ; and A is a leaf block in F because C is a furthest leaf
from the root block R.

If P has another child block except C in F containing the cut vertex p, then
this child block also consists of one edge f 0p 2 E(G), where f 0 has degree one
in G because this child is also a leaf block in F . For example, in Figure B.10,
we take C as C

8

, which intersects C
9

with a cut vertex. From Lemma 14,
{f, p, f 0} is a 2-potential-leaf.

Otherwise, P has only one child block C in F containing the cut vertex p.
Then any vertex in NG(p) \ {f} belongs to P . If P is also a bridge in G, i.e.,
P consists of one edge pq 2 E(G), then p has degree 2 in G. (For example,
in Figure B.10, take C as C

11

, whose parent C
5

is also a bridge in G.) From
Lemma 13, {f, p, q} is a 2-potential-leaf of G. Otherwise, P is a 2-connected
component of G and p 2 V (G) satisfies the hypothesis of Lemma 15. For
example, in Figure B.10, we take C as C

7

, whose parent C
4

is a 2-connected
component of G. Hence, either G has an isolated vertex ↵ and {↵, f, p} is a
2-potential-leaf or {f, p} is a 2-potential-leaf.

• Finally, let us assume that C is a 2-connected component of G. It is known
that any graph with at least two vertices of treewidth k contains at least
two vertices of degrees at most k [BK11]. There is no degree one vertex in
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C because C is 2-connected. So there exists two vertices with degree 2 in
C. Since C is a leaf in F , there is only one cut vertex of G in C. So there
exists a vertex b in C which has degree two in G. If |V (C)| � 4, then there
exists a path between two neighbors a, c of b in G \ {b} containing at least
one internal vertex. For example, in Figure B.9, we take C as C

10

. From
Lemma 16, {a, b, c} is a 2-potential-leaf. Otherwise C is a triangle {a, b, c}
with at least two vertices with degree 2 in G. Again from Lemma 16, {a, b, c}
is a 2-potential-leaf.

So the total time complexity is O(n+m).

Corollary 10. s
2

can be computed in polynomial-time in general graphs. Moreover,
a minimum size tree-decomposition can be constructed in polynomial-time in the
class of partial 2-trees.

Proof. Let G be any graph. It can be checked in polynomial-time whether tw(G)  2

(e.g. see [WC83]). If tw(G) > 2, then s
2

= 1. Otherwise tw(G)  2, then the
result follows from Theorem 31 and Corollary 9.

B.5 Minimum-size tree-decompositions of width at most

3

In this section, we present algorithms to compute s
3

in the class of trees and 2-
connected outerplanar graphs.

B.5.1 Computation of s
3

in trees

In this subsection, given a tree G, we show how to find a 3-potential-leaf in G. We
characterize a complete set of 3-potential-leaves of trees in Figure B.11. We first
prove that each of the subgraphs in Figure B.11 is a 3-potential-leaf and then that
any tree with at least four vertices contains one of them.

g
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p

(a)

p

f

g

f

p

GG G

(b) (c) (d) (e)

'f

g

f
p
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'
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f f '
f ''f

Figure B.11: Complete set of 3-potential-leaves of trees.
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Lemma 17. Let (T,X ) be a tree-decomposition of a tree G. Let X 2 X and
NT (X) = {X

1

, . . . , Xd}, d � 1. Suppose that for any 1  i  d, Xi \ X ✓ {x}.
Then there is a tree-decomposition (T 0,X 0

) of G of the same width and size as (T,X )

such that X is a leaf bag.

Proof. If there is a bag Xi for 1  i  d containing x, then let B be Xi. Otherwise let
B be any neighbor of X. By definition of the operation Leaf , the tree-decomposition
Leaf(X,B, (T,X )) is the desired tree-decomposition.

Lemma 18. Let G be a tree rooted at r 2 V (G). Let f be a leaf in G, p be the
parent of f and g be the parent of p in G. Let p have degree 2 in G. Let (T,X ) be
a tree-decomposition of G of width at most 3 and size at most s � 1. If there is no
bag in (T,X ) containing all of f, p, g, then there is a tree-decomposition (T 0,X 0

) of
G of width at most 3 and size at most s such that {f, p, g} 2 X 0 is a leaf bag.

Proof. Since fp 2 E(G), there is a bag B in (T,X ) containing both f and p. We
may assume that B is the single bag containing f (otherwise, we delete f from any
other bag). Similarly, since pg 2 E(G), let X be a bag in (T,X ) containing both p
and g. Let P be the path in T from B to X. Then p is contained in all bags on P
and we may assume that p is not contained in any other bags (otherwise, we delete
p from any other bag). Let B0 be the neighbor of B on P . Then {p} ✓ B \ B0.
Note that it is possible that B0

= X.
If B = {f, p}, then we make all other neighbors of B adjacent to B0 and delete B.

We add a bag {f, p, g} adjacent to X. The result is the desired tree-decomposition
(T 0,X 0

).
Otherwise, B contains at least one vertex not in {f, p}. If B \ B0

= {p}, then
{p} separates g from any vertex in B \ {p}. So B \ {p} = {f}, i.e., B = {f, p}. This
contradicts the assumption.

So |B\B0| � 2 and let {p, x} ✓ B\B0. Then we create a bag Z = (B \{f, p})[
(B0 \ {p, x}) (note that x 2 Z since x 2 B.) So |Z|  4. We make Z adjacent to all
neighbors of B and all neighbors of B0, delete the two bags B and B0, and delete
f, p from all bags. Finally, we add another new bag N = {f, p, g} adjacent to some
bag containing g. The obtained tree-decomposition has width at most 3, same size
as (T,X ), and a bag N = {f, p, g} as a leaf.

Lemma 19. Let G be a tree rooted at r 2 V (G) and |V (G)| � 4. Let f be a leaf in
G, p be the parent of f and g be the parent of p in G. Suppose that both p and g have
degree 2. Let h be the parent of g (see Figure B.11(a)), then H = G[{f, p, g, h}] is
a 3-potential-leaf of G.

Proof. Let (T,X ) be any reduced tree-decomposition of width at most 3 and size
at most s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition
with width at most 3 and size at most s and in which {f, p, g, h} is a leaf bag.

From Lemma 18, we can assume that there is a bag B in (T,X ) containing all
f, p, g. We may assume that B is the single bag containing f, p (otherwise, we delete
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f, p from any other bag). Since gh 2 E(G), let Y be a bag in (T,X ) containing
both h and g.

1. If B = Y = {f, p, g, h}, then the intersection of B and any of its neighbor
in T is contained in {h}. A desired tree-decomposition can be obtained from
Lemma 17.

2. If B = {f, p, g}, then the intersection of B and any of its neighbors in T is
contained in {g}. From Lemma 17, there is a tree-decomposition (T 0,X 0

) of
the same width and size as the ones of (T,X ) such that B = {f, p, g} is a leaf.
Then we delete B in the tree-decomposition Leaf(B,B0, (T,X )) and add a
new bag N = {f, p, g, h} adjacent to Y . The obtained tree-decomposition has
the desired properties.

3. Otherwise, B = {f, p, g, x} where x 6= h. Then the intersection of B and any
of its neighbor in T is contained in {g, x}. Let P be the path in T from B to
Y . Then g is contained in all bags on P . Let B0 be the neighbor of B on P .
Note that it is possible that B0

= Y . If B \ B0
= {g}, then {g} separates h

from x. So x 2 {f, p} i.e. B = {f, p, g}, a contradiction with the assumption.
So we have B \ B0

= {g, x}. By definition of the operation Leaf , the tree-
decomposition Leaf(B,B0, (T,X )) has width at most 3, same size as (T,X ),
and B = {f, p, g, x} is a leaf. Then we delete B in the tree-decomposition
Leaf(B,B0, (T,X )) and add a new bag N = {f, p, g, h} adjacent to Y . The
obtained tree-decomposition has the desired properties since {g, x} ✓ B0 and
{g, h} ✓ Y .

Lemma 20. Let G be a tree rooted at r 2 V (G) and |V (G)| � 4. Let f be a leaf in
G, p be the parent of f and g be the parent of p in G. If p has degree 2 and g has
a child f 0, which is a leaf in G (see Figure B.11(b)), then H = G[{f, p, g, f 0}] is a
3-potential-leaf of G.

Proof. Let (T,X ) be any reduced tree-decomposition of width at most 3 and size
at most s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition
with width at most 3 and size at most s and in which {f, p, g, f 0} is a leaf bag.

From Lemma 18, we can assume that there is a bag B in (T,X ) containing
all of the vertices f, p, g. We may assume that B is the only bag containing f, p
(otherwise, we delete f, p from any other bag). Since gf 0 2 E(G), let Y be a bag in
(T,X ) containing both f and g. We may assume that Y is the single bag containing
f 0 (otherwise, we delete f 0 from any other bag).

• If B = Y = {f, p, g, f 0}, then the intersection of B and any of its neighbors
in T is contained in {g}. A desired tree-decomposition can be obtained from
Lemma 17.
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• If B = {f, p, g}, then we delete f 0 in Y and add f 0 in B; we will be back then
to the previous case.

• Otherwise, B = {f, p, g, x} where x 6= f 0. The intersection of B and any
of its neighbors in T is contained in {g, x}. Let P be the path in T from
B to Y . Then g is contained in all bags on P . Let B0 be the neigh-
bor of B on P . If B \ B0

= {g, x}, then by definition of the operation
Leaf , the tree-decomposition Leaf(B,B0, (T,X )) has width at most 3, same
size as (T,X ), and B = {f, p, g, x} is a leaf. In the tree-decomposition
Leaf(B,B0, (T,X )), we delete f 0 in Y , remove x from B, and add f 0 to B,
i.e. make B = {f, p, g, f 0}. The obtained tree-decomposition has the desired
properties since {g, x} ✓ B0. Otherwise, if B \ B0

= {g}. We delete f 0

from the bag Y , add x to Y , delete x from B, and add f 0 in B, i.e., make
B = {f, p, g, f 0}. Finally, we make all neighbors of B except B0 adjacent to Y
since now {g, x} ✓ Y . The result is the desired tree-decomposition.

Lemma 21. Let G be a tree rooted at r 2 V (G) and |V (G)| � 3. Let f be one of
the furthest leaves from r, p be the parent of f and g be the parent of p in G. If g
has degree at least 3 and any child of g has degree 2 in G (see Figure B.11(c)), then
H = G[{f, p, g}] is a 3-potential-leaf of G.

Proof. Let (T,X ) be any reduced tree-decomposition of width at most 3 and size
at most s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition
with width at most 3 and size at most s, and in which {f, p, g, f 0} is a leaf bag.

From Lemma 18, we can assume that there is a bag B in (T,X ) containing all the
vertices f, p, g. We may assume that B is the only bag containing f, p (otherwise,
we delete f, p from any other bag).

1. If B = {f, p, g}, then the intersection of B and any of its neighbors in T
is contained in {g}. The desired tree-decomposition can be obtained from
Lemma 17.

2. Otherwise, B = {f, p, g, x}. In this case, the intersection of B and any of its
neighbors in T is contained in {g, x}.

(a) If there is a neighbor B0 of B such that B\B0
= {g, x}, then by definition

of the operation Leaf , the tree-decomposition Leaf(B,B0, (T,X )) has
width at most 3, same size as (T,X ), and B = {f, p, g, x} is a leaf.
We delete x in B in the tree-decomposition Leaf(B,B0, (T,X )) since
{g, x} ✓ B0. The obtained tree-decomposition has the desired properties.

(b) Otherwise any neighbor of B contains at most one of the vertices g and
x. If x is not adjacent to g, then there is a connected component in
G \B containing a neighbor of g and a neighbor of x. From Lemma 11,
there exists a neighbor bag of B in (T,X ) containing g and x. This is a
contradiction and x is hence adjacent to g in this case.
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i. x is a child of g. Then x has exactly one child y, which is a leaf in G
since f is one of the furthest leaves from r. Since yx 2 E(G), there is
a bag Y in (T,X ) containing both y and x. We may assume that Y
is the only bag containing y (otherwise, we delete y from any other
bag). Since {g, x} ⇢ B and any neighbor of B contains at most one
of the vertices g and x, any bag except B contains at most one of
the vertices g and x. Then g /2 Y because x 2 Y . The vertices y, x, g
are hence not contained in one bag. From Lemma 18, we can modify
(T,X ) to obtain a tree-decomposition (T 0,X 0

) of width at most 3 and
size at most s having a leaf bag X = {y, x, g}. Note that x (resp.
y) plays the same role as p (resp. f) in G, i.e., g, p, f and g, x, y are
symmetric in G. Hence, the result is the desired tree-decomposition.

ii. x is the parent of g. Let p0 be another child of g and let f 0 be the child
of p0, which is a leaf in G. Let B0 be the bag in (T,X ) containing
both f 0 and p0. We may assume that B0 is the only bag containing
f 0 (otherwise, we delete f 0 from any other bag). Let X 0 be a bag
containing both p0 and g. Then we have X 0 6= B (because p0 /2 B).
Since g 2 X 0, any bag except B contains at most one of the vertices
g and x, we have x /2 X 0. In the following, we modify (T,X ) to
obtain a tree-decomposition (T 0,X 0

) with width at most 3 and size
at most s having a bag {f 0, p0, g}. We will be back then to case 1,
since g, p, f and g, p0, f 0 are symmetric in G.
If B0

= X 0
= {f 0, p0, g} then, we are done. If B0

= X 0
= {f 0, p0, g, x0}.

Then x0 6= x, which is the parent of g, since x /2 X 0. So we can do
as in case 2a or case 2(b)i.
Otherwise, B0 6= X 0. From Lemma 18, we can modify (T,X ) to
obtain a tree-decomposition with width at most 3 and size at most
s having a leaf bag {f 0, p0, g}.

Lemma 22. Let G be a tree rooted at r 2 V (G) and |V (G)| � 4. Let f a leaf in G,
p be the parent of f , and g be the parent of p. If p has exactly two children f, f 0 in
G (see Figure B.11(d)), then H = G[{f, f 0, p, g}] is a 3-potential-leaf of G.

Proof. Let (T,X ) be any reduced tree-decomposition of width at most 3 and size
at most s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition
with width at most 3 and size at most s and in which {f, f 0, p, g} is a leaf bag.

Since fp 2 E(G), there is a bag B in (T,X ) containing both f and p. We may
assume that B is the only bag containing f (otherwise, we delete f from any other
bag). Similarly, let B0 be the only bag in (T,X ) containing both f 0 and p. Let X
be a bag containing both p and g.

1. If B = B0
= X = {f, f 0, p, g}, then we can assume that B is the only bag

containing p (otherwise, we delete p from any other bag). The intersection
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of B and any of its neighbor in T is contained in {g}. The desired tree-
decomposition can then be obtained from Lemma 17.

2. If B = B0
= {f, f 0, p}, then the intersection of B and any of its neighbors

in T is contained in {p}. Let Y be a neighbor of B in T containing p. By
definition of the operation Leaf , the tree-decomposition Leaf(B, Y, (T,X ))

has width at most 3, same size as (T,X ), and B = {f, f 0, p} is a leaf. We
delete B and add a new bag N = {f, f 0, p, g} adjacent to X. The result is the
desired tree-decomposition.

3. If B = B0
= {f, f 0, p, x} and x 6= g, then the intersection of B and any of its

neighbors in T is contained in {p, x}. Since x /2 {f, f 0, g}, p is not adjacent to
x. There is a connected component in G \ B containing a neighbor of p and
a neighbor of x. From Lemma 11, there exists a neighbor bag of B in (T,X )

containing p and x. Let Y be such a neighbor of B in T . By definition of the
operation Leaf , the tree-decomposition Leaf(B, Y, (T,X )) has width at most
3, same size as (T,X ), and B = {f, f 0, p, x} is a leaf. We delete x from B and
obtain a tree-decomposition having a bag {f, f 0, p}. We will be back then to
case 2.

4. If B 6= B0 and |B|  3, then we delete f 0 from B and add f 0 to B. We will be
back then to case 2 or 3. The proof is similar if B 6= B0 and |B0|  3.

5. Otherwise, if B 6= B0 and |B| = |B0| = 4, let B = {f, p, x, y} and B0
=

{f 0, p, x0, y0}. Let P be the path in T from B to B0. Then p is contained in all
bags on P . Let Y be the neighbor of B on P . If B\Y = {p}, then {p} separates
x from x0. But p is not a separator for any two vertices in V (G)\{f, f 0}. This
is a contradiction. So w.l.o.g. we can assume that B \ Y ◆ {p, x}. We
delete f, f 0, p in all bags of (T,X ), add a new bag Z = {x, y} [ Y \ {p, x}
adjacent to all neighbors of the two bags B, Y and delete B and Y . Finally,
we add another new bag N = {f, f 0, p, g} adjacent to a bag containing g. The
obtained tree-decomposition has the desired properties.

Lemma 23. Let G be a tree rooted at r 2 V (G) and |V (G)| � 4. Let all children
of p be leaves in G and p have at least three children f, f 0, f 00 (see Figure B.11(e)).
Then H = G[{p, f, f 0, f 00}] is a 3-potential-leaf of G.

Proof. Let (T,X ) be any reduced tree-decomposition of width at most 3 and size
at most s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition
with width at most 3 and size at most s and in which {p, f, f 0, f 00} is a leaf bag.

Since fp 2 E(G), there is a bag B in (T,X ) containing both f and p. We may
assume that B is the only bag containing f (otherwise, we delete f from any other
bag). Similarly, let B0 (resp. B00) be the only bag in (T,X ) containing both f 0 (resp.
f 0) and p.
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1. If B = B0
= B00

= {f, f 0, f 00, p}, then the intersection of B and any of its neigh-
bors in T is contained in {p}. A desired tree-decomposition can be obtained
from Lemma 17.

2. If B = B0
= {f, f 0, p}, then we delete f 00 from B00 and add f 00 to B. We

will be back then to case 1. The proof is similar for B = B00
= {f, f 00, p} or

B0
= B00

= {f 0, f 00, p}.
3. If B = B0

= {f, f 0, p, x} and x 6= f 00, then the intersection of B and any of its
neighbors in T is contained in {p, x}. If x is a child of p, then x is also a leaf
in G and x play the same role as f 00. We are then in case 1. Therefore, in the
following we assume that x is not a child of p.
If x is not the parent of p, then p is not adjacent to x. So there is a connected
component in G \ B containing a neighbor of p and a neighbor of x. From
Lemma 11, there exists a neighbor bag of B in (T,X ) containing p and x.
Let Y be such a neighbor of B in T . By definition of the operation Leaf ,
the tree-decomposition Leaf(B, Y, (T,X )) has width at most 3, same size as
(T,X ), and B = {f, f 0, p, x} is a leaf. We delete x from B and obtain a
tree-decomposition having a bag {f, f 0, p}. We are back then to case 2.
Otherwise, if x is the parent of p, let P be the path in T from B to B00.
Then p is contained in all bags on P . Let Y be the neighbor of B on
P . If B \ Y = {p, x}, then by definition of the operation Leaf , the tree-
decomposition Leaf(B, Y, (T,X )) has width at most 3, same size as (T,X ),
and B = {f, f 0, p, x} is a leaf. By deleting x from B we will be back to case 2.
Otherwise, if B \ Y = {p}, then {p} separates x from all vertices in B00 \ {p}.
All vertices in B00 \ {p} are children of p and so they are leaves in G. We can
assume then that any vertex in B00 \ {p} is contained only in B00 (otherwise
we can delete it in any other bag). We delete f, f 0 from B, add vertices of
B00 \ {f 00, p} in B, and make B00

= {f, f 0, f 00, p}. We will be back then to
case 1.
The cases B = B00

= {f, f 00, p, x} and x 6= f 0 or B0
= B00

= {f 0, f 00, p, x} and
x 6= f can be proved in a similar way.

4. Otherwise, no two vertices of f, f 0, f 00 are contained in a same bag.
If |B|  3, then we delete f 0 in B0 and add f 0 in B. We will be then in case 2
or 3. The proof is similar if |B0|  3 or |B00|  3.
Otherwise |B| = |B0| = |B00| = 4. In the following, we are going to modify
(T,X ) to obtain a tree-decomposition with width at most 3 and size at most
s having a bag X containing at least two of the vertices f, f 0, f 00 or f 2 X and
|X|  3. We are then in the above cases. Note that all children of p play the
same role (they are all leaves) in G. So it is enough to have that X contains
at least two children of p or that X contains one child of p and |X|  3.
Let Tp be the subtree in T induced by all the bags containing p. If |V (Tp)|  2,
there exists one bag containing at least two children of p since p has at least
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three children. We assume then that |V (Tp)| � 3. There is a bag R 2 V (Tp)

containing both p and g. We root Tp at R. Let L 2 V (Tp) be one of the
furthest leaf bags in Tp from R. If there is no child of p in L, then we can
delete p from L and consider Tp \ {L}. We can assume then that there is a
vertex l 2 L, which is a child of p in G. Let Y be the neighbor of L in Tp. If
the intersection of L\Y = {p}, then p separate any vertex in L \ {p} and any
vertex in Y \{p}. So at least one of the bags L, Y contains only p and children
of p. We denote this bag by X. Either X contains at least two children of
p or X contains only one children and |X| = 2. So (T,X ) and X satisfy the
desired properties.

Otherwise, |L \ Y | � 2. If Y has no other child except L in Tp, then Y 6= R
since |V (Tp)| � 3. Let X = {p, l} if Y contains no child of p and X = {p, l, l0}
if Y contains one child l0 of p. We add a new bag Z = Y [ L \ X. Since
|Y \L| � 2, we have |Y [L|  6. Also |Z|  4, since X ✓ Y [L and |X| � 2.
We make Z adjacent to all neighbors of Y, L in T and delete Y, L. Finally,
we make X adjacent to R. The obtained tree-decomposition and X have the
desired properties.

Otherwise, Y has at least another child L0 in Tp. Then L0 is also a furthest
leaf from R in Tp, since L is a furthest leaf from R. For the same reason as
L, there is a vertex l0 2 L, which is a child of p in G. Let L = {l, p, x, y} and
L0

= {l0, p, x0, y0}. The intersection of L (resp. L0) and any of its neighbors
in T except Y is contained in {x, y} (resp. {x0, y0}). We create a new bag
N = {x, y, x0, y0} adjacent to all neighbors of L and L0 and delete L and
L0. Finally, we add another bag X = {p, l, l0} adjacent to Y . The obtained
tree-decomposition and X have the desired properties.

From Lemmas 19- 23 and Corollary 9, we obtain the following result.

Corollary 11. s
3

and a minimum size tree-decomposition of width at most 3 can
be computed in polynomial-time in the class of trees.

Proof. From Corollary 9, it is enough to prove that we can find a 3-potential-leaf in
any tree in polynomial time.

Let G be any tree. If |V (G)|  4, then V (G) is a 3-potential-leaf. Let us assume
that |V (G)| � 5. We root G at any vertex r. Let f be one of the furthest leaves
from r in G. Let p, g, h be the first three vertices on the path from f to r in G (if
they exist), i.e. p is f ’s parent; g is the parent of p, and h is the parent of g in G.

• If g, p both have only one child in G, then {f, p, g, h} is a 3-potential-leaf of
G from Lemma 19;

• If p has only one child and g has a child f 0, which is a leaf in G, then {f, p, g, f 0}
is a 3-potential-leaf of G from Lemma 20;
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• If p has only one child and any child of g has exactly one child, then {f, p, g}
is a 3-potential-leaf of G from Lemma 21;

• If p has only one child and there exists a child p0 of g, which has exactly two
children f

1

, f
2

, then {f
1

, f
2

, p0, g} is a 3-potential-leaf of G from Lemma 22;

• If p has only one child and there exists a child p0 of g, which has at least three
children f

1

, f
2

, f
3

, then {f
1

, f
2

, f
3

, p0} is a 3-potential-leaf of G from Lemma 23;

• If p has exactly two children f, f 0, then {f, f 0, p, g} is a 3-potential-leaf of G
from Lemma 22;

• Otherwise, if p has at least three children f, f 0, f 00, then {f, f 0, f 00, p} is a
3-potential-leaf of G from Lemma 23.

In fact, the algorithm for trees can be extended to forests by considering their
connected component, i.e., trees. The only difference is in Lemma 21 the 3-potential-
leaf becomes {f, p, g,↵} if there is an isolated vertex ↵ in the given forest.

B.5.2 Computation of s
3

in 2-connected outerplanar graphs

In this subsection, given a 2-connected outerplanar graph G, we show how to find
a 3-potential-leaf in G. We give in Figure B.12 a complete set of 3-potential-leaves
of 2-connected outerplanar graphs. We first prove that each subgraph in the Fig-
ure B.12 is a 3-potential-leaf and then we show that any 2-connected outerplanar
graph contains one of them.

a
e

dcb a dcb

x ya

dcb

(a) (b) (c)

G G G

Figure B.12: Complete set of 3-potential-leaves of 2-connected outerplanar graphs.

The following fact is well known for 2-connected outerplanar graphs.

Lemma 24. [Sys79] A 2-connected outerplanar graph has a unique Hamiltonian
cycle.

In the rest of this subsection, let G be a 2-connected outerplanar graph and C
be the Hamiltonian cycle in G.
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Definition 5. Any edge in E(G) \ E(C) is called a chord in G.

The vertices v
1

, . . . , vj 2 V (G), for 2  j  |V (G)|, are consecutive in C (we
also say that they are consecutive in G) if vivi+1

2 E(C) for 1  i  j � 1.

Lemma 25. Let a, b, c, d 2 V (G) be consecutive vertices in C. If {a, b, c} induces
a clique and c has degree 3 in G (see Figure B.12(a)), then H = G[{a, b, c, d}] is a
3-potential-leaf of G.

Proof. Let (T,X ) be any tree-decomposition of width at most 3 and size at most
s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition with
width at most 3 and size at most s, and in which {a, b, c, d} is a leaf bag.

Since {a, b, c} induces a clique in G, there is a bag B containing all of the
vertices a, b, c. Let X be a bag in (T,X ) containing both c and d (such bag exists
since cd 2 E(G)). Note that b is not incident to any chords, i.e. has degree 2.
In fact, if by 2 E(G) is a chord in G, then deleting all chords except ac, by in G
and contracting the edges in C except ab, bc we get a K

4

-minor in G. This is a
contradiction with the fact that G is outerplanar.

We replace vertices b, c with vertex a in all bags of (T,X ). Then (T,X ) becomes
a tree-decomposition (T 0,X 0

) of the graph G0 obtained by contracting the edges ab
and bc. The bag X becomes X 0, which contains both a and d, and B becomes
B0

= {a} if B = {a, b, c} or B0
= {a, x} if B = {a, b, c, x}. From Corollary 8, in

both cases there exists a neighbor Y of B0 such that B0 ✓ Y . So B0 can be reduced
in (T 0,X 0

). The tree-decomposition Reduce(B0, Y, (T 0,X 0
)) has one bag less than

(T,X ). Finally, add a new bag N = {a, b, c, d} adjacent to X 0, which contained both
a and d, in the tree-decomposition Reduce(B0, Y, (T 0,X 0

)). The result is the desired
tree-decomposition, because b, c are not adjacent to any vertices in V (G) \N .

Lemma 26. Let a, b, c, d, e 2 V (G) be consecutive vertices in C. If {a, b, c} and
{c, d, e} induce two cliques respectively in G and ae 2 E(G) (see Figure B.12(b)),
then H = G[{a, b, c}] is a 3-potential-leaf of G.

Proof. Let (T,X ) be any tree-decomposition of width at most 3 and size at most
s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition with
width at most 3 and size at most s and in which {a, b, c} is a leaf bag.

Since {a, b, c} (resp. {c, d, e}) induces a clique in G, there is a bag X (resp. Y )
containing all the vertices a, b, c (resp. c, d, e). Note that b, c, d are not adjacent to
any vertices in V (G) \ {a, b, c, d, e}.

We delete b, c, d in all bags of (T,X ). Then (T,X ) becomes a tree-decomposition
(T 0,X 0

) of the graph G0
= G \ {b, c, d}. The bag X becomes becomes X 0

= {a}
if X = {a, b, c} or X 0

= {a, x} if B = {a, b, c, x}. From Corollary 8, in both
cases there exists a neighbor A of X 0 such that X 0 ✓ A. So X 0 can be reduced in
(T 0,X 0

). Similarly, the bag Y becomes Y 0, which can also be reduced in (T 0,X 0
).

After reducing the two bags X 0, Y 0 in (T 0,X 0
), let the obtained tree-decomposition

be (T 00,X 00
). Finally, add two new bags N

1

= {a, b, c} and N
2

= {a, c, d, e}; make
N

1

adjacent to N
2

and make N
2

adjacent to a bag Z containing both a and e in
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the tree-decomposition (T 00,X 00
) (Z exists because ae 2 E(G0

).) The result is the
desired tree-decomposition.

Lemma 27. Let Cl be a cycle of l � 4 vertices. Let (T,X ) be a tree-decomposition of
Cl of width at most 3. Then there exist either a bag containing all vertices of V (Cl)

(only if l = 4) or two bags X,Y 2 X such that X (resp. Y ) contains at least three
consecutive vertices x

1

, x
2

, x
3

(resp. y
1

, y
2

, y
3

) and the two edge sets {x
1

x
2

, x
2

x
3

}
and {y

1

y
2

, y
2

y
3

} are disjoint i.e. {x
1

x
2

, x
2

x
3

} \ {y
1

y
2

, y
2

y
3

} = ;.
Proof. The treewidth of any cycle is bigger than 1, so there exists a bag in any tree-
decomposition of a cycle (with at least 4 vertices) containing two vertices which are
not consecutive (not adjacent in the cycle). We prove the lemma by induction on l
in the following.

First let us prove that it is true for l = 4. Let a, b, c, d be the four consecutive
vertices in C

4

. Let (T,X ) be a tree-decomposition of width at most 3. Then there
exists a bag containing a, c or b, d. W.l.o.g we assume that a, c are contained in one
bag. So (T,X ) is also a tree-decomposition of the graph H obtained from C

4

by
adding the edge ac. The set {a, b, c} induces a clique in H. So there is a bag X
containing a, b, c. For the same reason, there is a bag Y containing c, d, a. If X = Y
then there is a bag containing all a, b, c, d of V (C

4

). Otherwise there are two bags
X,Y such that X ◆ {a, b, c} and Y ◆ {c, d, a}. We see that {ab, bc}\ {cd, da} = ;.
So the lemma is true for l = 4.

Now, let us suppose it is true for l  n � 1 and prove it for l = n � 5. Note
that since (T,X ) has width 3 and l � 5, there is no bag containing all vertices of
V (Cl). So in the following we prove that there always exist two bags X,Y with
the desired properties. Let v

1

, . . . , vn be the n consecutive vertices in Cn. Let
(T,X) be a tree-decomposition of width at most 3 of Cn. Then there exists a bag
containing two non-adjacent vertices vi, vj for 1  i < j  n. So (T,X ) is also
a tree-decomposition of the graph H obtained from Cn by adding the edge vivj .
The graph H is also the union of two subcycles C1 induced by {vi, . . . , vj} and
C2 induced by {vj , . . . , vn, . . . , vi}. Then max{|C1|, |C2|}  n � 1. Let (T 1, X1

)

(resp. (T 2, X2

)) be the tree-decomposition of C1 (resp. C2) obtained by deleting
all vertices not in C1 (resp. C2) in the bags of (T,X).

If |V (C1

)| = 3 then there is a bag in (T 1, X1

) containing V (C1

) = {vi, vi+1

, vj =
vi+2

}. So vivj /2 {vivi+1

, vi+1

vj}.
If |V (C1

)| � 4 then, by induction, there exist either a bag in (T 1, X1

) containing
all vertices of V (C1

) = {vi, vi+1

, vi+2

, vj = vi+3

} or two bags A,B in (T 1, X1

) con-
taining three consecutive vertices a

1

, a
2

, a
3

and b
1

, b
2

, b
3

respectively in C1; more-
over, {a

1

a
2

, a
2

a
3

} \ {b
1

b
2

, b
2

b
3

} = ;. So we have either vivj /2 {a
1

a
2

, a
2

a
3

} or
vivj /2 {b

1

b
2

, b
2

b
3

}.
In both cases (|V (C1

)| = 3 and |V (C1

)| � 4), there is at least one bag X in
(T 1, X1

) containing three consecutive vertices in C1, denoted as x
1

, x
2

, x
3

, such that
vivj /2 {x

1

x
2

, x
2

x
3

}. So x
1

, x
2

, x
3

are also consecutive in C. Similarly, there is at
least one bag Y in (T 2, X2

) containing three consecutive vertices in C2, denoted
as y

1

, y
2

, y
3

, such that vivj /2 {y
1

y
2

, y
2

y
3

}. So y
1

, y
2

, y
3

are also consecutive in C.
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Finally, we have {x
1

x
2

, x
2

x
3

} \ {y
1

y
2

, y
2

y
3

} = ; because E(C1

) \ E(C2

) = {vivj}
and vivj /2 {x

1

x
2

, x
2

x
3

}.

Lemma 28. Let xy be a chord in G. Let C 0 be the set of all the consecutive vertices
from x to y in C and |C 0| � 4. If each vertex in C 0 \ {x, y} has degree 2 in G, then
for any consecutive vertices a, b, c, d 2 C 0 (see Figure B.12(c)), H = G[{a, b, c, d}]
is a 3-potential-leaf of G.

Proof. Let (T,X ) be any tree-decomposition of width at most 3 and size at most
s � 1 of G. We show how to modify (T,X ) to obtain a tree-decomposition of G,
which has width at most 3, size at most s and a leaf bag {a, b, c, d}.

Note that the vertices of C 0 induce a cycle in G. Without confusion, we denote
this cycle by C 0. Let (T 0, X 0

) be the tree-decomposition of C 0 obtained by deleting
all vertices not in C 0 in the bags of (T,X). From Lemma 27, there is either a bag
containing all vertices in C 0 (only if |C 0| = 4), or two bags X,Y containing three
consecutive vertices in C 0 respectively and the two corresponding edge sets do not
intersect.

In the former case, V (C 0
) = {a, b, c, d} and so (T,X ) is also a tree-decomposition

of G [ {ac}, from Lemma 25, {a, b, c, d} is a 3-potential-leaf of G.
In the latter case, let X ◆ {u, v, w} and Y ◆ {u0, v0, w0}, where u, v, w (resp.

u0, v0, w0) are consecutive in C 0. Since {uv, vw} \ {u0v0, v0w0} = ;, we have either
xy /2 {uv, vw} or xy /2 {u0v0, v0w0}. W.l.o.g. we assume that xy /2 {uv, vw}. Then
u, v, w are also consecutive in C and at least one of u,w has degree 2 in G. W.l.o.g.
we suppose that w has degree 2 in G, i.e.w /2 {x, y} (since x, y have degree at
least 3 in G). Let z 2 C 0 be the other neighbor (except v) of w in C 0 (z exists
because w /2 {x, y}.) (T,X ) is also a tree-decomposition of G [ {uw}, which is still
an outerplanar graph by our assumptions. Note that w has degree 3 in the graph
G[{uw}. So from Lemma 25, we can modify (T,X ) to obtain a tree-decomposition
(T 0,X 0

) of G [ {uw}, which has width at most 3, size at most s and a leaf bag L
containing four consecutive vertices {u, v, w, z}. Note that (T 0,X 0

) is also a tree-
decomposition of G. So we obtain a tree-decomposition where a leaf bag contains
4 consecutive vertices of C 0. It remains to show how to modify it to obtain a tree-
decomposition with a leaf bag {a, b, c, d}.

Let B be the neighbor of L in T . Then u, z 2 B since each of u, z is adjacent to
some vertices in G \ L. We can assume that L is the single bag containing v, w in
(T 0,X 0

), because otherwise we can delete them in any other bags. Thus, by deleting
the bag L in (T 0,X 0

), we get a tree-decomposition (T
1

,X
1

) of the graph G
1

, which
is the graph obtained by deleting v, w and adding an edge uz in G. So (T

1

,X
1

) has
width at most 3 and size at most s�1. Note that the graph G

1

is isomorphic to the
graph G

2

⌘ G [ {ad} \ {b, c} since z 2 C 0. So from the tree-decomposition (T
1

,X
1

)

of G
1

we can obtain a tree-decomposition (T
2

,X
2

) of G
2

with the same width and
size. Note that since ad 2 E(G

2

), there is a bag Y containing both a and d. Finally,
we add a new bag N = {a, b, c, d} adjacent to Y in (T

2

,X
2

). The result is the desired
tree-decomposition.
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Lemma 29. There is an algorithm that, for any 2-connected outerplanar graph G,
computes a 3-potential-leaf of G in polynomial time.

Proof. Let G be a 2-connected outerplanar graph and C be the unique Hamiltonian
cycle of G. If |V (G)|  4, then V (G) is a 3-potential-leaf of G. Otherwise, |V (G)| �
5 and we consider the outerplanar embedding of G.

• If there exists an inner face f with at most one chord of G and f has at least
four vertices, then from Lemma 28, the set of any four consecutive vertices in
f , which are also consecutive in C, is a 3-potential-leaf in G.

• If there is an inner face f = {a, b, c} with only one chord ac of G and c has
degree 3, then let d be the other neighbor of c except b, a. From Lemma 25,
the set of four consecutive vertices a, b, c, d, is a 3-potential-leaf in G.

• Otherwise, let F be the set of all inner faces with only one chord of G. Then
any face f 2 F has three vertices and both the two endpoints of the chord in
f have degree at least 4, i.e., they are incident to some other chords except
this one. We can prove by induction on |V (G)| that:

Claim 19. There exist two faces f
1

, f
2

2 F such that (1)f
1

= {a, b, c}; (2)
f
2

= {c, d, e}; (3) a, b, c, d, e are consecutive in G; (4) there is a face f
0

con-
taining both ac and ce and at most one chord, which is not in any face of F .
see Figure B.13.

This is true when |V (G)| = 5. Assume that it is true for |V (G)|  n � 1.
We prove that it is true for |V (G)| = n. Note that F 6= ; if there is at least
one chords in G, which is valid in this case. Let f 2 F have three consecutive
vertices x, y, z and let xz 2 E(G) be the single chord in f . Then the graph G\y
is a 2-connected outerplanar graph with n� 1 vertices. From the assumption,
we have the desired faces f 0

0

, f 0
1

, f 0
2

in G \ y. If xz is not an edge in any face of
f 0
1

, f 0
2

, then these faces are also the desired faces in G. Otherwise, let xz be an
edge of f 0

1

or f 0
2

= {x, z, t}. Then z has degree 3 in G, i.e. it is not incident to
any other chords except xz, since xt 2 E(G). So we are in second case above,
which contradicts with the assumption.

In the following, let f
0

, f
1

, f
2

be the faces as in Claim 19. If ae 2 E(G), then
from Lemma 26, {a, b, c} is a 3-potential-leaf of G.

Otherwise, we can prove that any tree-decomposition of G of width at most 3
can be modified to a tree-decomposition of G[ {ae} with the same width and
size in the following. So {a, b, c} is a 3-potential-leaf of G.

Let (T,X ) be a tree-decomposition of width at most 3 and size at most s � 1

of G. Let (T
0

,X
0

) be the tree-decomposition obtained by deleting all vertices
not in f

0

. Then (T
0

,X
0

) is a tree-decomposition of f
0

(f
0

is used to denote
the face and the cycle induced by vertices in f

0

as well). From Lemma 27,
there is a bag containing three consecutive vertices u, v, w in f

0

and uv, vw
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1

a

f

2
f

0
f

0
f
_

e

d

c

b

1
f
_ 2

f
_ x

y

Figure B.13: F is the set of all inner faces with only one chord of G, such as
f
1

, f
2

, ¯f
1

, ¯f
2

. The faces f
0

, f
1

, f
2

satisfy the properties in Claim 19. But ¯f
0

, ¯f
1

, ¯f
2

does not satisfy the properties since ¯f
0

contains two edges ey, xy which are not in
any face of F .

are edges of some faces in F (note that u, v, w are not consecutive in C). So
(T,X ) is also a tree-decomposition of G[uw. The graph G[uw and the graph
G [ ae are isomorphic. So from (T,X ) we can obtain a tree-decomposition
(T 0,X 0

) of G [ ae with the same width and size. Then (T 0,X 0
) is the desired

tree-decomposition.

From Lemmas 29 and Corollary 9, we obtain the following result.

Corollary 12. s
3

can be computed and a minimum size tree-decomposition of width
at most 3 can be constructed in polynomial-time in the class of 2-connected outer-
planar graphs.

B.6 Conclusion

In this chapter, we gave preliminary results on the complexity of minimizing the
size of tree-decompositions with given width. Table B.1 summarizes our results as
well as the remaining open questions.

As future research direction, we would like to investigate the problem of com-
puting s

3

in the class of connected graphs with treewidth 2 or 3. We have already
solved the problem for trees and 2-connected outerplanar graphs. However, solving
the problem for the general case seems to be more tricky. It seems that a global view
of the graph needs to be considered to decide wether a subgraph is a 3-potential-
leaf. The example in Figure B.14a illustrates this fact. In the example, G is a
connected outerplanar graph and {r, a, b, c} is not a 3-potential-leaf of G, but it is
a 3-potential-leaf of G \ {yw}. Let G0 ⌘ G \ {a, b, c}, G0 is 2-connected outerplanar.
Using the algorithm of computing s

3

in 2-connected outerplanar graphs presented
in subsection B.5.2, we have s

3

(G0
) = 5. So if {r, a, b, c} is a potential-leaf of G,
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s1 s2 s3 s4
sk

k = max{tw + 1, 5}
Graphs of treewidth P (trivial) P P ? ?

at most tw = 1

Graphs of treewidth - P ? ? ?
at most tw = 2

Graphs of treewidth - - ? NP-hard ?
at most tw = 3

Graphs of treewidth - - - NP-hard NP-hard
at most tw � 4

Table B.1: Complexity of MSTD (P=Polynomial)

then s
3

(G) = 6. However, there exists a tree-decomposition of G of width 3 and
size 5, where the bags are {a, r, z, y}, {r, y, x, w}, {b, r, w, v}, {r, v, u, e}, {c, r, d, e}.
This implies that {r, a, b, c} is not a 3-potential-leaf of G. Now, let us consider the
graph G00 ⌘ G \ {yw}. We can prove that s

3

(G00
) = 5 and there is a minimum size

tree-decomposition containing {r, a, b, c} as a leaf bag. This implies that {r, a, b, c}
is 3-potential-leaf of G00. Therefore, the existence of the edge yw, not incident to
any vertex in {r, a, b, c}, has an influence on whether {r, a, b, c} is a 3-potential-leaf
or not.

a

e

d

cb

x

y

u

w v

z

G

r

(a) {r, a, b, c} is not a 3-potential-leaf of G,
but it is a 3-potential-leaf of G \ {yw}.

The five bags
{a, r, z, y}, {r, y, x, w}, {b, r, w, v}, {r, v, u,
e}, {c, r, d, e} connected as a path in this
order forms a tree-decomposition of G.

1
a

r

2a

3a

1b

2b

3b

1c

2c

3c

(b) In any minimum size
tree-decomposition of width 5 (and size 2)
of this tree, there exists a bag inducing a

non-connected subgraph. For example, in a
tree-decomposition of width 5 and size 2,
one bag is {r, a1, a2, a3, b1, b2} and the

other one is {r, b2, b3, c1, c2, c3}.

Figure B.14

The problem of computing sk, for k � 4, seems more intricate already in the
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case of trees. Indeed, our polynomial-time algorithms to compute sk, k  3, in
trees mainly rely on the fact that, for any tree T , there exists a minimum-size
tree-decomposition of T with width at most 3, where each bag induces a connected
subtree. This is unfortunately not true anymore in the case of minimum size tree-
decompositions with width 5. The example in Figure B.14b illustrates this fact. In
the example, we have a tree G (with 10 nodes) obtained from a star with three 3

leaves by subdividing twice each edge. For G, s
5

(G) = 2 and any minimum size
tree-decomposition has a bag X such that G[X] is disconnected.



Appendix C

Résumé des travaux de thèse

Contents
C.1 Contexte et motivation . . . . . . . . . . . . . . . . . . . . . . 183

C.2 La tolérance aux pannes dans les réseaux optiques . . . . . 184

C.2.1 Chapitre 2 : Les chemins dans les réseaux optiques avec nœuds
asymétriques . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.2.2 Chapitre 3 : Chemins disjoints dans les réseaux avec des
SRLGs en étoile . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.3 L’utilisation efficace du spectre dans les réseaux optiques . 187

C.3.1 Chapitre 4 : Allocation de spectre dans les réseaux en arbre . 190
C.3.2 Chapitre 5 : RSA dynamique avec Push-Pull . . . . . . . . . 191

C.4 La décomposition arborescente . . . . . . . . . . . . . . . . . 191

C.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.6 Liste des publications . . . . . . . . . . . . . . . . . . . . . . . 194

C.1 Contexte et motivation

Les réseaux optiques sont au cœur des communications longues distances [Sen92,
RS02]. Les données y sont codées en impulsions de lumière et transportées sur un
fil très fin en verre ou en plastique, appelé fibre optique. Cette fibre constitue un
support de transmission très efficace grâce à sa large bande passante et ses propriétés
de faibles dispersion et atténuation [Sen92, GT98]. Elle est généralement composée
d’un noyau en verre ou en plastique entouré d’une gaine de verre ou de plastique
d’un indice de réfraction moins élevé. Le signal lumineux se déplace dans le cœur
de la fibre à travers une série de réflexions, comme illustré sur la Figure C.1.

Lumière

Gaine

Gaine

Coeur

Figure C.1: Lumière transmise dans une fibre optique [Wik]

La fibre optique permet de véhiculer des données à très haut débit sur de longues
distances. C’est pour cela que la quasi-totalité du trafic internet est transportée
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dans des réseaux optiques. Ce trafic est cependant en croissance exponentielle;
selon un rapport de Cisco [CS15], le trafic IP mondial a quintuplé au cours des 5
dernières années et devrait tripler au cours des 5 prochaines années. Pour satisfaire
cette demande croissante en bande passante et protéger le trafic, il est indispensable
d’utiliser les ressources optiques plus efficacement et de fournir plus de tolérance aux
pannes dans les réseaux optiques. Dans cette thèse, nous abordons principalement
des problèmes d’optimisation liés à ces deux propriétés très importantes dans les
réseaux optiques: la tolérance aux pannes et l’efficacité.

C.2 La tolérance aux pannes dans les réseaux optiques

Les réseaux optiques transportent de gros volumes de données et toute panne peut
entraîner la perte d’un trafic important et la perturbation de nombreux services. Il
est donc essentiel de fournir des services de tolérance aux pannes dans ces réseaux
[RS02]. Les pannes dans les réseaux optiques peuvent être totales ou partielles,
uniques ou multiples. Elles peuvent être déclenchées par une coupure de fibre ou
par une panne de courant, par une erreur humaine ou une catastrophe naturelle.
Les fournisseurs de services doivent tenir compte de tous ces types de pannes et
concevoir des stratégies qui assurent la survie de leurs réseaux. Ces stratégies sont
généralement de deux types : les stratégies de protection et celles de restauration
[RM99]. Les stratégies de protection consistent à utiliser des ressources prédéter-
minées et réservées pour rerouter le trafic interrompu, alors que dans les stratégies de
restauration, les ressources utilisées pour rétablir le trafic sont calculées au moment
de la panne. Nous nous intéressons dans la première partie de cette thèse aux straté-
gies de protection et plus précisément à la protection avec chemin dédié (DPP). La
DPP consiste à calculer pour chaque demande deux chemins. Un chemin, dit chemin
principal, est utilisé pour transmettre les données dans les conditions normales et
l’autre, chemin secondaire ou chemin de protection, est réservé pour rerouter le
trafic en cas de panne. Ces deux chemins doivent être disjoints de sorte qu’au moins
un d’entre eux peut survivre en cas de défaillance dans le réseau. Dans la première
partie de cette thèse, nous étudions le problème DPP dans deux contextes différents.
D’abord, dans le chapitre 2, nous considérons des scénarios de pannes d’un lien ou
d’un nœud dans des réseaux avec nœuds asymétriques; nous examinons le problème
de trouver un seul chemin et puis le problème de trouver des chemins disjoints. En-
suite, dans le chapitre 3, nous nous focalisons sur un autre type de pannes, à savoir,
les pannes simultanées multiples localisées autour des nœuds (les SRLGs en étoile).

C.2.1 Chapitre 2 : Les chemins dans les réseaux optiques avec
nœuds asymétriques

Dans ce chapitre, nous étudions le problème de trouver des chemins et des chemins
disjoints dans les réseaux optiques avec nœuds asymétriques [BLGM09]. Les nœuds
asymétriques sont des nœuds qui ne sont pas entièrement connectés à l’intérieur;
cela veut dire que le signal entrant d’un certain port ne peut pas arriver à tous les
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autres ports. Dans [BLGM09, CHW+13, HTTN11], il est expliqué qu’un nœud peut
être configuré de façon asymétrique pour plusieurs raisons comme le nombre limité
de ports dans les commutateurs optiques et le coût réduit des nœuds asymétriques
par rapport aux nœuds symétriques. La Figure C.2 de [CHW+13] présente un dia-
gramme d’un multiplexeur optique d’insertion-extraction reconfigurable (ROADM)
de degré 4. Dans la Figure C.2-a, le ROADM est symétrique et d’un port d’entrée, on
peut atteindre n’importe quel port de sortie. Dans la Figure C.2-b, une architecture
asymétrique du ROADM est présentée. Dans cette architecture, des équipements
moins chers sont utilisés au niveau des ports. Le signal optique provenant d’une
direction peut atteindre seulement deux parmi les trois autres directions.

Figure C.2: Diagramme d’un ROADM [CHW+13]: a. cas symétrique; b. cas
asymétrique

Nous modélisons les réseaux avec nœuds asymétriques avec des graphes avec
transitions interdites. Une transition dans un graphe est une paire d’arêtes adja-
centes. Etant donnés un graphe G = (V,E) et un ensemble associé de transitions
interdites F ✓ E ⇥ E, le problème de trouver un chemin avec transitions inter-
dites (PAFT) consiste à trouver un chemin qui n’utilise aucune des transitions de
F . Nous étudions le problème de trouver un chemin élémentaire avec transitions
interdites dans les graphes planaires. Nous prouvons que le problème est NP-difficile
dans les graphes planaires et plus particulièrement dans les grilles. Nous montrons
également que le problème est FPT quand le paramètre est la somme de la largeur
arborescente et le degré maximum. Nous traitons ensuite les problèmes de trou-
ver k nœud-disjoints chemins non élémentaires évitant les transitions interdites (k-
VDT) et k lien-disjoints chemins non élémentaires évitant les transitions interdites
(k-EDT). Nous démontrons que k-VDT (k � 2) est NP-difficile dans les graphes
orientés et non-orientés et que k-EDT est polynomial dans les graphes orientés. La
Table C.1 résume les résultats de complexité obtenus pour les problèmes considérés.
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Graphes orientés Graphes non-orientés
Trouver un
chemin élémen-
taire

• NP-complet en général
[Sze03]
• NP-complet dans les
grilles orientées
• Polynomial dans les
DAGs

• NP-complet en général
[Sze03]
• NP-complet dans les
grilles
• Polynomial dans les
graphes avec treewidth
borné

Trouver un
chemin non-
élémentaire

Polynomial
[Win02, ABP96]

Polynomial

k-VDT • NP-complet dans les
graphes orientés avec un
degré  8

• Polynomial dans les
DAGs

• NP-complet dans les
graphes non-orientés avec
un degré  8

• NP-complet dans les
graphes non-orientés avec
un degré  4 [GLMM12]

k-EDT Polynomial NP-complet [ADF+08]

Table C.1: Résultats de complexité des problèmes dans les réseaux avec transitions
interdites

C.2.2 Chapitre 3 : Chemins disjoints dans les réseaux avec des
SRLGs en étoile

Dans ce chapitre, nous nous focalisons sur les groupes de liens partageant un risque
(Shared Risk Link Groups, (SRLGs)). La notion de SRLG a été introduite pour
modéliser des problèmes de tolérance aux pannes simultanées d’ensembles de liens
d’un réseau. Un SRLG peut correspondre par exemple à un ensemble de liens
enterrés dans la même tranchée et qui peuvent tous tomber en panne à cause d’un
coup de pelleteuse ou qui peuvent tous être affectés par un tremblement de terre ou
par la pluie.

Dans un réseau avec des SRLGs, le problème du routage diversifié consiste à
trouver un ensemble de chemins SRLG-disjoints entre une paire donnée de nœuds
du réseau. Ce problème a été prouvé NP-complet en général [Hu03] et certains
cas polynomiaux ont été caractérisés [CDP+07]. Nous avons étudié le problème du
routage diversifié dans les réseaux satisfaisant la propriété d’étoile [LW05]. Dans un
réseau satisfaisant la propriété d’étoile, un lien peut être affecté par plusieurs SRLGs,
mais tous les liens affectés par un même SRLG sont incidents à un même sommet.
Un exemple de tels SRLGs est présenté dans la Figure C.3. Dans l’exemple, des
liens incidents à la même carte d’un routeur forment un SRLG puisqu’ils peuvent
tous être affectés par une panne de la carte.

Nous avons trouvé des contre-exemples à l’algorithme polynomial proposé
dans [LW05] pour le calcul de paires de chemins SRLG-disjoints dans les réseaux
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l1 l6l5l4l3l2

l8

l7

l1 l6l5l4l3l2

l8

l7

r4

r3

r2r1

v

v

Card1

Card3

Card2

Figure C.3: Exemple de risques localisés : le lien l
4

partage un risque r
2

,
correspondant à une panne de la carte 2, avec les liens l

5

et l
6

, et il partage un
risque r

4

, correspondant à une coupure du conduit, avec les liens l
2

et l
3

.

satisfaisant la propriété d’étoile. Puis, en utilisant un modèle de graphes colorés où
les couleurs correspondent aux SRLGs, nous avons prouvé que ce problème est en
effet NP-difficile. Plus généralement, nous avons montré que le problème du routage
diversifié dans les réseaux avec la propriété d’étoile est NP-difficile, APX-difficile, et
W[1]-difficile lorsque le paramètre est le nombre de chemins SRLG-disjoints. Enfin,
nous avons caractérisé des instances polynomiales, en particulier lorsque le degré
maximum des sommets est 4, ou lorsque le réseau est acyclique. La Table C.2 ré-
sume les résultats de complexité obtenus pour les problèmes considérés. Dans la
table, V , E, C, epc, cpe, k-DCP, et MDCP dénotent respectivement l’ensemble des
nœuds, l’ensemble des liens, l’ensemble des SRLGs, le nombre de liens atteints par
le même SRLG, le nombre de SRLGs auxquels peut appartenir un lien, le problème
de trouver k chemins SRLG-disjoints, et le problème de trouver le nombre maximum
de chemins SRLG-disjoints.

C.3 L’utilisation efficace du spectre dans les réseaux op-

tiques

Pour faire face à la croissance exponentielle du trafic Internet, une nouvelle
génération de réseaux optiques est en cours de développement; les réseaux op-
tiques élastiques (les EONs), aussi connus sous le nom des réseaux Flex-grid
[GJLY12, JTK+09]. Les EONs sont proposés pour remplacer les réseaux Wavelength
Division Multiplexing (WDM) actuellement déployés. Dans les réseaux WDM, le
spectre optique est divisé en canaux de largeur fixe (par exemple 50 GHz) appelés
longueurs d’onde, formant la grille fixe traditionnelle de WDM. Chaque longueur
d’onde de cette grille fixe peut assurer une connexion à un débit qui peut atteindre
100 Gbps. Même si une connexion nécessite moins de 100 Gbps, on y alloue une
longueur d’onde complète. Ce qui résulte en une utilisation inefficace du spectre.
D’autre part, quand une connexion exige plus de 100Gbps, on y alloue plusieurs
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�

�

� epc

epc

epc cpe

cpe

cpe k-DCPk-DCPk-DCP MDCPMDCPMDCP

Graphes
non orien-
tés

non borné
1 non borné O(|V |+ |E|) O(�|E|)

non borné 1 O(|V |+ |E|) [CDP+07] O(�C |E|) [CDP+07]

� 8

� 2 � 4 NP-difficile pour
� � max{8, k}

Non approximable à
O(|V |1�"

), pour 0 < " < 1� 4 � 2

 3 non borné non borné O(|V |+ |E|) Optimum en O(|V |+ |E|)
= 4 non borné non borné O(|V |+ |E|) pour k = 2 2-approximation en O(|V |+ |E|)

|C| = O(1)

non borné non borné non borné O(f(|C|)(|V |+ |E|)), FPT si
parametré par |C|

Optimum en O(f(|C|)(|V | +

|E|) log�), FPT si parametré
par |C|

DAG non borné

� 3 � 3

O(cpe

2|V ||E|2k)

NP-difficile� 2 � 6

� 2 non borné Non approximable à O(|V |1�"
),

pour tout 0 < " < 1

non borné = 3 APX-difficile

non borné non borné W [1]-difficile si parametré par le
nombre de chemins

Table C.2: Résultats de complexité des problèmes dans les réseaux avec des
SRLGs en étoile.

longueurs d’onde. Ceci mène à l’utilisation de plus de spectre que si la connexion a
été satisfaite par un seul canal contigu de spectre.

Figure C.4: Fixed-grid vs Flexgrid [GJLY12]

Dans les EONs, des nouvelles technologies telles que l’OFDM (Orthogonal Fre-
quency Division Multiplexing) optique, les techniques de modulation adaptative
(tels que le QPSK (quadrature phase-shift keying) et la modulation d’amplitude
en quadrature (16-QAM)), et les commutateurs sélectifs en longueur d’onde, sont
utilisées pour assurer une utilisation efficace des ressources optiques et pour trans-
former la grille fixe des réseaux WDM en une grille souple. Dans cette grille souple,
le spectre optique est divisé en un ensemble de bandes de largeur spectrale fixe et
fine (25 GHz, voire 12.5GHz ou 6.25GHz), appelées slots ou minigrids. Ainsi, les
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connexions à petits débits ne sont pas sur-provisionnées et les grands débits peuvent
être satisfaits sur des slots contigus multiples. En d’autres termes, au lieu de forcer
toutes les connexions à utiliser la même largeur de spectre, les EONs permettent
aux connexions d’utiliser un certain nombre de slots optiques contigus en fonction
de leurs besoins.

La Figure C.4, tiré de [GJLY12], illustre le différence entre la grille fixe de WDM
(en haut) et la grille souple des EONs (en bas). Dans la grille fixe, un canal n’est pas
pleinement utilisé par un petit débit, et les débits de 400 Gbps et 1 Tbps ne peuvent
pas être pris en charge par un seul canal. De l’autre côté, dans la grille souple, les
grands débits peuvent être approvisionnés et le spectre est utilisé de manière plus
efficace pour les petits débits. D’autres avantages des EONs sont détaillés dans
[GJLY12, WLV13, JTK+09].

La flexibilité offerte par les EONs n’est cependant pas gratuite; elle est accom-
pagnée de plus de complexité dans les problèmes d’allocation de ressources. Dans
les réseaux WDM, le poblème clé d’allocation de ressources est dit routage et alloca-
tion de longueurs d’ondes (RWA) [RS95, ZJ00]. Ce problème consiste à attribuer à
chaque connexion un chemin optique, c’est-à-dire un chemin et une longueur d’onde
de la source à la destination. Chaque connexion doit utiliser la même longueur
d’onde sur tous les liens de son chemin (contrainte de continuité) et deux connex-
ions traversant le même lien ne peuvent pas utiliser la même longueur d’onde (con-
trainte de non-chevauchement). Dans les EONs, puisqu’il est possible d’attribuer
des bandes de spectre de largeurs quelconques, RWA est remplacé par le problème
de routage et d’allocation de spectre (RSA). Le problème RSA consiste à attribuer
à chaque requête un chemin et un intervalle de spectre. Le spectre attribué à une
demande doit être contigu (contrainte de contiguïté), il doit être le même sur tous
les liens du chemin de routage (contrainte de continuité) et les intervalles attribués
à deux requêtes traversant le même lien doivent être disjoints (contrainte de non-
chevauchement). RWA peut être considéré comme le cas particulier de RSA où
toutes les requêtes ont la même demande.

On peut distinguer deux versions du problème RSA par rapport au type du
trafic: RSA statique et RSA dynamique.

• Le RSA statique. Dans ce problème, l’ensemble des requêtes est connu à
l’avance. L’objectif est d’allouer des chemins et du spectre à ces requêtes
en minimisant le spectre utilisé ou en minimisant le nombre de requêtes blo-
quées. Puisque le problème RWA statique est NP-complet [CGK92], le RSA
statique est NP-complet aussi. Pour le résoudre, il est généralement divisé
en deux sous-problèmes qui sont résolus séquentiellement: le sous-problème
de routage où le but est de trouver des chemins pour les requêtes et le sous-
problème d’allocation de spectre (SA). Nous avons traité le problème SA dans
des réseaux en arbre dans le chapitre 4.

• Le RSA dynamique. Dans ce problème, les requêtes arrivent et quittent le
réseau dynamiquement. L’objectif est de minimiser le taux de blocage des re-
quêtes dans le réseau. La dynamicité du trafic peut causer la fragmentation du



190 Appendix C. Résumé des travaux de thèse

spectre. Ceci veut dire l’accumulation de petites bandes de spectre qui devi-
ennent inutilisables, soit parce qu’elles ne sont pas continues ou parce qu’elles
ne sont pas contiguës. Dans le chapitre 5, nous avons étudié le problème RSA
dynamique avec une technique de défragmentation non-perturbatrice appelée
Push-Pull.

C.3.1 Chapitre 4 : Allocation de spectre dans les réseaux en arbre

Dans le problème d’allocation de spectre (SA), nous avons en entrée un réseau et un
ensemble de requêtes tel que chaque requête a un chemin et une demande en spectre.
L’objectif est d’allouer du spectre aux requêtes sous les contraintes de la contiguïté
et le non-chevauchement. Dans ce chapitre, nous traitons le problème d’allocation
de spectre dans les réseaux optiques élastiques en arbre. Nous démontrons que
le problème est NP-difficile dans les étoiles non-orientées à trois liens et les étoiles
orientées à deux liens entrants et deux liens sortants. Ensuite, nous présentons une 4-
approximation du problème dans les étoiles orientées et non-orientées. Nous étudions
également le problème dans les graphes binaires. Nous démontrons qu’il y a des
approximations à facteurs constants pour le problème de SA dans les arbres binaires
avec des profils de demandes spécifiques. Ces approximations sont présentées dans
la Table C.3. Dans la table, OPT est la valeur optimale du spectre qui peut être
utilisée pour résoudre le problème.

Demandes Bornes supérieures

{k, kX}
(2� 1

X )OPT + k
k,X 2 N⇤

{kX,k(X + 1)}
(1 +

1

X )OPT
k,X 2 N⇤

 3 19

10

OPT +

8

5

 4 59

27

OPT +

67

27

 5 859

336

OPT +

229

56

 6 287

100

OPT +

885

200

 W 2 dlog
2

(W )eOPT

Table C.3: Bornes supérieures sur le spectre utilisé par nos algorithmes
d’approximation pour résoudre SA dans des arbres binaires avec des profils de

demandes spécifiques.
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C.3.2 Chapitre 5 : RSA dynamique avec Push-Pull

Pour remédier au problème de la fragmentation, des techniques de défragmentation
sont utilisées. Nous avons étudié le problème RSA dynamique avec une technique de
défragmentation qui s’appelle le Push-Pull. Cette technique permet de décaler les
bandes de spectre utilisées par d’autres requêtes en vue de libérer de la place pour
les nouvelles. D’abord, nous avons travaillé avec un algorithme proposé par Wang
and Mukherjee dans [WM13] pour résoudre le problème d’allocation de spectre avec
Push-Pull. Nous avons modifié l’algorithme pour qu’il retourne la position dans
le spectre qui minimise le délai d’attribution du spectre à la nouvelle demande.
Ensuite, nous avons proposé des algorithmes pseudo-polynomiaux pour résoudre
exactement le problème de routage et d’allocation de spectre avec Push-Pull. Le
premier algorithme minimise la longueur du chemin alloué à la nouvelle requête alors
que le deuxième minimise le délai d’attribution du spectre.

C.4 La décomposition arborescente

Un autre problème traité durant cette thèse, présenté en annexe, est les décomposi-
tions arborescentes de taille minimum. Une décomposition arborescente d’un graphe
est une manière de le représenter sous forme d’un arbre (chaque sommet de l’arbre
est appelé ’sac’), en préservant des propriétés de connexité. Les décompositions
arborescentes ont été beaucoup étudiées pour leurs applications algorithmiques qui
utilisent, en particulier, la programmation dynamique.

En annexe B, nous étudions les décompositions de taille minimum, c’est-à-dire
avec un nombre minimum de sacs. Etant donné un entier k � 4 fixé, nous prouvons
que le problème de calculer une décomposition arborescente de largeur au plus k
et de taille minimum est NP-complet dans les graphes de largeur arborescente au
plus 4. Nous décrivons ensuite des algorithmes qui calculent des décompositions de
taille minimum dans certaines classes de graphes de largeur arborescente au plus
3 (en particulier dans les arbres et les graphes planaires extérieurs). La Table C.4
résume nos résultats sur le problème de décomposition arborescente de taille mini-
mum (MSTD). Dans la table, sk dénote le problème de calculer une décomposition
arborescente de largeur au plus k et de taille minimum.

C.5 Conclusion

La tolérance aux pannes et l’utilisation efficace des ressources sont des propriétés
bien souhaitées dans les réseaux optiques. Il est important de fournir des services
de tolérance aux pannes dans les réseaux optiques en vue de protéger les quantités
énormes de données qu’ils transportent. Il est également essentiel d’utiliser avec
efficacité le spectre optique pour pouvoir répondre à la croissance exponentielle du
trafic. Nous avons étudié dans cette thèse des problèmes liés à ces deux propriétés.
Nous avons d’abord examiné le problème de trouver des chemins disjoints. Ce
problème est essentiel dans la stratégie de protection par chemin dédié (DPP). Dans



192 Appendix C. Résumé des travaux de thèse

s1 s2 s3 s4
sk

k = max{tw + 1, 5}
Graphes de treewidth P P P ? ?

tw = 1

Graphes de treewidth - P ? ? ?
tw = 2

Graphes de treewidth - - ? NP-difficile ?
tw = 3

Graphes de treewidth - - - NP-difficile NP-difficile
tw � 4

Table C.4: Complexité of MSTD (P=Polynomial)

cette stratégie, pour protéger le trafic entre deux nœuds, deux chemins disjoints sont
réservés : un chemin pour assurer la connexion et un chemin pour rerouter le trafic
en cas de panne du premier. Nous avons également abordé le problème de routage
et d’allocation de spectre (RSA) dans les réseaux optiques élastiques; la nouvelle
génération des réseaux optiques. Dans RSA, l’objectif est d’établir des connexions
dans le réseau de manière à assurer une utilisation optimale des ressources optiques.

En utilisant des modèles et des outils de la théorie des graphes, nous avons établi
des résultats de complexité de ces problèmes sous différentes hypothèses. Nous
avons répondu à des questions telles que: quelle est la difficulté de trouver un ou
plusieurs chemins disjoints dans les réseaux avec des nœuds avec restrictions sur leur
connectivité interne ? Quelle est la difficulté de trouver des chemins disjoints dans
les réseaux où des ensembles de liens partageant un nœud peuvent tomber en panne
simultanément ? Quelle est la difficulté du problème RSA dans les réseaux sous
forme d’étoiles ? Le problème RSA peut-il être approché dans des cas particuliers
de réseaux d’arbres ? Comment utiliser une technique de défragmentation non-
perturbatrice dans les EONs de façon à minimiser la probabilité de blocage du
spectre ? Les résultats que nous avons obtenus suggèrent que les deux problèmes
DDP et RSA sont difficiles à résoudre sous les conditions que nous avons considérées.
Cependant, il est parfois possible de trouver des cas polynomiaux et des algorithmes
d’approximation. Ces cas et des algorithmes pourraient peut être aider à concevoir
des heuristiques efficaces. Nous décrivons brièvement dans ce qui suit les résultats
établis et nous présentons quelques questions ouvertes.

Dans le chapitre 2, nous avons utilisé les graphes avec transitions interdites pour
modéliser les réseaux avec nœuds asymétriques. Nous avons prouvé que le problème
de trouver un chemin évitant les transitions interdites (PAFT) est NP-complet,
même dans des graphes bien structurés comme les grilles. Nous avons également
prouvé que PAFT peut être résolu en temps polynomial lorsque la largeur arbores-
cente est bornée. Nous avons aussi abordé le problème de trouver des chemins
disjoints. Nous avons montré que lorsque les chemins doivent être nœud-disjoints le
problème est NP-complet à la fois dans les graphes orientés et non-orientés. Sur le
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côté positif, si les chemins sont lien-disjoints, le problème peut être résolu en temps
polynomial dans les graphes orientés. Il serait intéressant d’étudier plus pronfondé-
ment la complexité paramétrée du problème PAFT. En effet, nous pensons que
PAFT est W [1]-difficile quand il est paramétré par la largeur arborescente. Il serait
aussi intéressant d’étudier la complexité du problème de trouver des chemins nœud-
disjoints évitant les transitions interdites dans les graphes planaires. Enfin, il serait
aussi possible d’explorer les versions d’optimisation des problèmes que nous avons
étudiés dans le but de trouver de bonnes approximations. A savoir, le problème
de trouver un chemin utilisant un nombre minimum de transitions interdites et le
problème de trouver des chemins évitant les transitions interdites et partageant un
nombre minimum de liens ou de nœuds.

Dans le chapitre 3, nous avons donné une caractérisation presque complète de la
complexité du problème de trouver des chemins SRLG-disjoints dans les réseaux avec
SRLGs satisfaisant la propriété de l’étoile. Nous avons montré qu’il est NP-complet
de trouver k chemins SRLG-disjoints même quand k = 2. Sur le côté positif, nous
avons prouvé que le problème peut être résolu en temps polynomial dans des cas
particuliers. À savoir, nous avons résolu le problème en temps polynomial lorsque le
degré maximum est au plus 4 ou lorsque le réseau est un graphe orienté acyclique.
En outre, nous avons montré que le problème est FPT quand il est paramétré par le
nombre de couleurs dans C. Enfin, nous avons considéré le problème de trouver le
nombre maximum de chemins SRLG-disjoints. Nous avons prouvé que, le problème
est difficile à approcher à un facteur de O(|V |1�"

) pour tout 0 < " < 1, où V est
l’ensemble des nœuds du réseau, et nous avons donné des algorithmes polynomiaux
pour certains cas. La complexité du problème de trouver k chemins SRLG-disjoints,
sous la propriété d’étoile, est toujours ouverte pour les cas où le degré maximum
du réseau est égal à 5, 6 ou 7 et pour les cas où le nombre de SRLGs par lien
(ou le nombre de liens par SRLG) est égal à 2 ou 3. La résolution de ces cas
donnera une caractérisation complète de la complexité du problème par rapport au
degré maximum du réseau, au nombre de SRLGs par lien et au nombre de liens par
SRLG.

Dans le chapitre 4, nous avons étudié le problème d’allocation de spectre (SA)
dans les réseaux sous forme d’arbre. Nous avons prouvé que SA est NP-complet
dans les étoiles non orientées à 3 liens et les étoiles orientées à 4 liens. Nous avons
également montré qu’il existe un algorithme d’approximation d’un facteur 4 pour
résoudre le problème dans les étoiles orientées et non-orientées. Ensuite, nous nous
sommes focalisés sur le problème SA dans les arbres binaires avec des profils de
demandes spécifiques. Nous avons conçu des algorithmes d’approximation de fac-
teurs constants en utilisant le problème de coloration par intervalles des graphes
chordaux. Comme piste de recherche pour ce problème, il serait intéressant de
trouver un algorithme d’approximation de facteur constant pour le problème de
coloration par intervalles des graphes chordaux en général ou de prouver qu’un tel
algorithme n’existe pas. Pour ce faire, il serait utile d’essayer d’utiliser les algo-
rithmes d’approximation conçus pour le problème de la coloration par intervalles
des graphes d’intervalles.
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Dans le chapitre 5, nous avons étudié le problème RSA dynamique avec Push-
Pull. Nous avons proposé deux algorithmes exacts pour résoudre le problème en
optimisant deux critères différents, la longueur du chemin de routage et le délai
d’attribution du spectre. Nous avons également modifié un algorithme existant de
SA avec Push-Pull, pour qu’il retourne la position dans le spectre qui minimise le
délai. Les résultats d’expérimentations ont montré que l’intérêt de nos algorithmes
est plutôt de nature théorique car un algorithme existant offre un meilleur com-
promis entre le délai, la probabilité de blocage et le temps d’exécution. Les pistes
de recherche pour le problème RSA dynamique avec Push-Pull pourraient inclure
l’optimisation d’autres critères à la place du délai et de la longueur du chemin de
routage. Il serait également intéressant d’essayer de combiner les techniques proac-
tives et réactives de défragmentation avec Push-Pull afin de diminuer encore plus
la probabilité de blocage du spectre. Enfin, il serait bien d’examiner le cas où non
seulement une demande, mais plusieurs demandes arrivent en même temps et nous
avons besoin de décider si elles peuvent toutes être satisfaites.
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