
Echantillonnage compressé le long de trajectoires

physiquement plausibles en IRM

Nicolas Chauffert

To cite this version:
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Résumé

L'imagerie par résonance magnétique (IRM) est une technique d'imagerie non invasive

et non ionisante qui permet d'imager et de discriminer les tissus mous grâce à une bonne

sensibilité de contraste issue de la variation de paramètres physiques (T1, T2, densité

de protons) spéci�que à chaque tissu. Les données sont acquises dans l'espace-k, corre-

spondant aux fréquences spatiales de l'image. Des contraintes physiques et matérielles

contraignent le mode de fonctionnement des gradients de champ magnétique utilisés pour

acquérir les données. Ainsi, ces dernières sont obtenues séquentiellement le long de tra-

jectoires assez régulières (dérivée et dérivée seconde bornées). En conséquence, la durée

d'acquisition augmente avec la résolution recherchée de l'image.

Accélérer l'acquisition des données est crucial pour réduire la durée d'examen et ainsi

améliorer le confort du sujet, diminuer les coûts, limiter les distorsions dans l'image (e.g.,

dues au mouvement), ou encore augmenter la résolution temporelle en IRM fonctionnelle.

L'échantillonnage compressif permet de sous-échantillonner l'espace-k, et de reconstruire

une image de bonne qualité en utilisant une hypothèse de parcimonie de l'image dans

une base d'ondelettes.

Les théories d'échantillonnage compressif s'adaptent mal à l'IRM, même si certaines

heuristiques ont permis d'obtenir des résultats prometteurs. Les problèmes rencontrés en

IRM pour l'application de cette théorie sont i) d'une part, les bases d'acquisition (Fourier)

et de représentation (ondelettes) sont cohérentes ; et ii) les schémas actuellement couverts

par la théorie sont composés de mesures isolées, incompatibles avec l'échantillonnage

continu le long de segments ou de courbes.

Cette thèse vise à développer une théorie de l'échantillonnage compressif applicable à

l'IRM et à d'autres modalités. D'une part, nous proposons une théorie d'échantillonnage

à densité variable pour répondre au premier point. Les échantillons les plus informatifs

ont une probabilité plus élevée d'être mesurés. D'autre part, nous proposons des schémas

et concevons des trajectoires qui véri�ent les contraintes d'acquisition tout en parcourant

l'espace-k avec la densité prescrite dans la théorie de l'échantillonnage à densité variable.

Ce second point étant complexe, il est abordé par une séquence de contributions in-

dépendantes. D'abord, nous proposons des schémas d'échantillonnage à densité vari-

ables le long de courbes continues (marche aléatoire, voyageur de commerce). Ensuite,

nous proposons un algorithme de projection sur l'espace des contraintes qui renvoie la

courbe physiquement plausible la plus proche d'une courbe donnée (e.g., une solution

du voyageur de commerce). Nous donnons en�n un algorithme de projection sur des

espaces de mesures qui permet de trouver la projection d'une distribution quelconque

sur l'espace des mesures porté par les courbes admissibles. Ainsi, la courbe obtenue est
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physiquement admissible et réalise un échantillonnage à densité variable. Les résultats

de reconstruction obtenus en simulation à partir de cette méthode dépassent ceux asso-

ciées aux trajectoires d'acquisition utilisées classiquement (spirale, radiale) de plusieurs

décibels (de l'ordre de 3 dB) et permettent d'envisager une implémentation prochaine à

7 Tesla notamment dans le contexte de l'imagerie anatomique haute résolution.

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive and non-ionizing imaging tech-

nique that provides images of body tissues, using the contrast sensitivity coming from

the magnetic parameters (T1, T2 and proton density). Data are acquired in the k-space,

corresponding to spatial Fourier frequencies. Because of physical constraints, the dis-

placement in the k-space is subject to kinematic constraints. Indeed, magnetic �eld

gradients and their temporal derivative are upper bounded. Hence, the scanning time

increases with the image resolution.

Decreasing scanning time is crucial to improve patient comfort, decrease exam costs,

limit the image distortions (eg, created by the patient movement), or decrease temporal

resolution in functionnal MRI. Reducing scanning time can be addressed by Compressed

Sensing (CS) theory. The latter is a technique that guarantees the perfect recovery of

an image from undersampled data in k-space, by assuming that the image is sparse in a

wavelet basis.

Unfortunately, CS theory cannot be directly cast to the MRI setting. The reasons are:

i) acquisition (Fourier) and representation (wavelets) bases are coherent and ii) sampling

schemes obtained using CS theorems are composed of isolated measurements and cannot

be realistically implemented by magnetic �eld gradients: the sampling is usually per-

formed along continuous or more regular curves. However, heuristic application of CS in

MRI has provided promising results.

In this thesis, we aim to develop theoretical tools to apply CS to MRI and other modal-

ities. On the one hand, we propose a variable density sampling theory to answer the

�rst inpediment. The more the sample contains information, the more it is likely to be

drawn. On the other hand, we propose sampling schemes and design sampling trajec-

tories that ful�ll acquisition constraints, while traversing the k-space with the sampling

density advocated by the theory.

The second point is complex and is thus addressed step by step. First, we propose

continuous sampling schemes based on random walks and on travelling salesman (TSP)

problem. Then, we propose a projection algorithm onto the space of constraints that
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returns the closest feasible curve of an input curve (eg, a TSP solution). Finally, we

provide an algorithm to project a measure onto a set of measures carried by parameter-

izations. In particular, if this set is the one carried by admissible curves, the algorithm

returns a curve which sampling density is close to the measure to project. This designs

an admissible variable density sampler. The reconstruction results obtained in simula-

tions using this strategy outperform existing acquisition trajectories (spiral, radial) by

about 3 dB. They permit to envision a future implementation on a real 7 T scanner soon,

notably in the context of high resolution anatomical imaging.
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Chapter 1

Introduction

L'Imagerie par Résonance Magnétique (IRM) est une technique d'imagerie non-invasive

et non ionisante, qui permet d'imager certaines grandeurs physiques à l'intérieur d'un

objet, comme la densité de protons par exemple. Un scanner (Fig. 1.1(a)) est util-

isé et permet d'obtenir un signal à deux ou trois dimensions que l'on représente sous

forme d'image (Fig. 1.1(b)). Nous commençons par présenter brièvement les principes

d'acquisition d'images par IRM dans la section 1.1. Nous présentons ensuite quelques

notions de Compressed Sensing (CS) (section 1.2, et montrons comment cette théorie

d'échantillonnage peut s'appliquer à l'IRM (section 1.3. Cette partie a pour but de don-

ner les motivations principales de cette thèse, et à en �xer les hypothèses de travail.

En�n nous résumons les contributions qui composent le manuscrit et présentons son

organisation (sections 1.4 et 1.5).

(a) (b)

Figure 1.1: Illustration d'un scanner IRM (a), et exemple d'image obtenue sur un
cerveau humain (b)

1



2 Chapter 1 Introduction

1.1 L'imagerie par Résonance Magnétique

Nous donnons ici une description très schématique du fonctionnement de l'IRM. Le

lecteur intéressé par plus de détails pourra se référer à (Liang and Lauterbur, 2000).

1.1.1 Principes de résonance magnétique

Le principe de résonance magnétique a été décrit dans les années 1940 (Bloch, 1946)

(Purcell et al., 1946) Il repose sur le fait que certains noyaux (l'hydrogène, le phospore,

le sodium) possèdent une propriété quantique appelée spin. Cette grandeur peut être

interprétée comme le résultat du mouvement de rotation du noyau autour de son axe. On

la note généralement ~µ. En l'absence de champ magnétique extérieur, l'orientation des

moments ~µ est répartie aléatoirement au sein d'un échantillon, et l'aimantation globale

est nulle : ~M =
∑
~µ = ~0.

Les noyaux en présence d'un champ magnétique

En présence d'un champ magnétique ~B0, les spins tendent à s'aligner � parallèlement �

(faible énergie) ou � anti-parallèlement � (haute énergie) à la direction du champ magné-

tique. La di�érence d'énergie ∆E est proportionnelle à l'intensité du champ magnétique
~B0:

∆E = γ|~B0| (1.1)

où γ est le rapport gyromagnétique, et dépend du noyau (γ = 2, 675 s−1.T−1 pour le

noyau d'hydrogène). La statistique de Boltzmann donne le ratio entre le nombre de

noyaux à haute énergie N− et à basse énergie N+:

N−

N+
= e−∆E/kBT

où kB est la constante de Boltzmann (1, 38 × 10−23 J.K−1) et T est la température

du système. Par exemple, pour le noyau d'hydrogène à température ambiante dans un

champ magnétique de 1 Tesla (T), si N+ = 1000000, alors N− = 1000006.

Précisément, les spins ne sont exactement alignés à ~B0, mais réalisent un mouvement

de précession à la fréquence ω0 = γ|~B0| (fréquence de Larmor) autour de ce vecteur

(Fig. 1.2)(b). Les phases dans ce mouvement étant aléatoires, la magnétisation globale
~M0 au sein d'un échantillon est parallèle à ~B0, comme l'illustre la Fig. 1.2(c).



Chapter 1 Introduction 3

Figure 1.2: Illustration du moment magnétique dans un échantillon (a). Les spins
précessent autour de l'axe de ~B0 avec une phase aléatoire (b). L'aimantation macro-

scopique est dirigée selon ~B0. (Image tirée de (Poole, 2007)).

La magnétisation ~M0 étant négligeable devant ~B0, il faut � basculer � ce moment magné-

tique dans le plan transversal pour pouvoir mesurer ~M0. Une impulsion radio-fréquence

est alors utilisée.

Les impulsions radio-fréquence

Nous considérons désormais un modèle macroscopique, où l'aimantation macroscopique
~M suit un mouvement de précession à la pulsation ω0 autour de ~B0. L'application d'un

champ magnétique ~B1 oscillant à la pulsation ωr = ω0 dans le plan transversal provoque

un phénomène de résonance et bascule l'aimantation ~M dans le plan transversal suivant

une trajectoire d'hélice (Fig. 1.3). A 1 T, pour le noyau d'hydrogène, cela représente

une fréquence de 42, 58 MHz, ce qui correspond à une onde radio-fréquence (RF): ~B1 est

ainsi également impulsion radio-fréquence.

Figure 1.3: Évolution de la magnétisation macroscopique ~M sous l'application
d'une d'une onde électro-magnétique à la fréquence de résonance. (a) Évolution de
l'aimantation dans un repère �xe. (b) Évolution de l'aimantation dans un repère tour-

nant avec ~B1. Image tirée de (Poole, 2007).

L'e�et de l'impulsion radio-fréquence est double : d'une part l'aimantation longitudinale

Mz est diminuée à cause du phénomène de bascule. D'un point de vue quantique, l'apport
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d'énergie par l'onde fait passer des spins de basse à haute énergie. D'autre part, dans le

plan orthogonal, l'aimantation Mxy augmente car les spins précessent autour de ~B1 : il

se crée alors un moment magnétique résultant dans cette direction.

Le phénomène de relaxation

Lorsque l'impulsion radio-fréquence ~B1 s'arrête, l'aimantation macroscopique ~M re-

tourne dans sa position d'équilibre en suivant une trajectoire hélicoïdale. Le retour

à l'équilibre se fait via deux phénomènes indépendants:

• La relaxation longitudinale. Les spins retournent dans leur état d'équilibre : cela

provoque la repousse de l'aimantation longitudinale Mz. La vitesse de repousse

dépend du paramètre T1 qui traduit l'interaction des spins avec leur environnement.

Précisément:

Mz = M0 (1− exp(−t/T1))

où T1 est le temps nécessaire à la récupération de 63% de l'aimantation longitudi-

nale.

• La relaxation transversale. En l'absence du champ radio-fréquence, les spins vont

à nouveau se déphaser. Le moment résultant dans le plan orthogonal va alors

diminuer : c'est la relaxation spin-spin. Précisément :

Mxy(t) = Mxy(0) exp(−t/T2).

Le temps T2 représente le temps pour que la magnétisation transverse retombe

à 37% de la magnétisation initiale. En pratique, à cause des inhomogénéités du

champ B0, la vitesse de décroissance est plus rapide et régie par le paramètre T ∗2 .

La relation entre T2 et T ∗2 est :
1

T ∗2
=

1

T2
+

1

T ′2
où

1

T ′2
= γ∆B0, où ∆B0 est la

di�érence d'intensité locale de l'intensité du champ ~B0.

À ce stade, nous n'avons considéré que des grandeurs moyennes au sein d'un échantil-

lon. L'objectif de l'imagerie par résonance magnétique est d'e�ectuer des cartes de ces

grandeurs. En e�et, les di�érents paramètres (T1, T2) sont spéci�ques des tissus et per-

mettent une représentation de l'objet comme dans la Fig. 1.1(b). Des grandeurs typiques

sont fournies dans le tableau 1.1.
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Table 1.1: Exemples de valeurs de paramètres T1 et T2 en ms dans le cerveau à 1,5
et 3 Tesla. Étude tirée de (Stanisz et al., 2005).

matière blanche matière grise

T1 (3 T) 1100 1500
T2 (3 T) 60 70
T1 (1,5 T) 800 1100
T2 (1,5 T) 80 95

Le signal IRM

Le champ magnétique Mxy est mesuré par une antenne réceptrice. Puisque le vecteur de

magnétisation oscille autour de l'axe de ~B0 à la pulsation ω0 et décroit à la vitesse T ∗2 à

cause de la relaxation transversale, le signal S(t) a la forme présentée Fig. 1.4.

Figure 1.4: Signal S(t) avec l'enveloppe de la décroissance exponentielle en T ∗2 . Image
tirée de (Poole, 2007).

1.1.2 Utilisation en imagerie

Pour réaliser des images à partir des propriétés magnétiques de la matière, il faut localiser

spatialement le signal de résonance magnétique. Pour cela, des gradients de champ

magnétique sont utilisés. Il s'agit d'un champ magnétique supplémentaire, orienté selon

l'axe de ~B0 et d'intensité G(~r) = (x · Gx, y · Gy, z · Gz) où ~r = (x, y, z) (Fig. 1.5). Les

quantités Gx, Gy et Gz sont des grandeurs scalaires qui peuvent varier dans le temps.

Plaçons le temps t = 0 à la �n de l'impulsion radio-fréquence. Le moment magnétique

Mxy est alors non nul et oscille autour de l'axe de ~B0 à la pulsation ω0. En ajoutant un

gradient additionnel, la pulsation du mouvement autour de ~B0 est ω(~r, t) = ω0 +γ ~G(t).~r

et dépend donc de la position du point dans l'objet. Pour simpli�er, négligeons l'e�et
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Figure 1.5: Illustration des gradients de champ magnétique. a) Gx, b) Gy, c) Gz.
(Image tirée de (Poole, 2007)).

de relaxation du signal. Le signal dS émis par un élément de volume dV en ~r est donné

par:

dS(~r, t) ∝ ρ(~r) exp

(
i

∫ t

0
ω(~r, t′)dt′

)
dV,

où ρ(~r) est la densité de noyaux en ~r. L'antenne réceptrice mesure la somme du signal

sur tout le volume, c'est à dire:

S(t) ∝
∫
ρ(~r) exp

(
i

∫ t

0
ω(~r, t′)dt′

)
dxdydz

Après démodulation par ω0, le signal obtenu S′ est:

S′(t) ∝
∫
ρ(~r) exp

(
iγ

∫ t

0
~r. ~G(t′)dt′

)
dxdydz

Soit maintenant ~k(t) = −γ
∫ t

0
~G(t′)dt′. Alors l'équation précédente s'écrit:

S′(t) ∝
∫
ρ(~r) exp

(
−i ~r.~k(t)

)
dxdydz

Cette équation relie le signal à la transformée de Fourier de l'objet ρ(~r) à la fréquence

spatiale ~k(t). Cette relation est centrale et indique que les acquisitions en imagerie par

résonance magnétique se font dans l'espace de Fourier des fréquences spatiales (appelé

ici espace-k).

1.1.3 Exemple de trajectoires d'acquisition en IRM

La sélection de coupe

Les gradients présentés ci-dessus sont appliqués dès la �n de l'impulsion radio-fréquence.

Une technique classique consiste à appliquer un gradient dans une direction pendant
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l'impulsion RF. Cela permet de faire dépendre linéairement la fréquence de résonance

dans une direction, et donc d'exciter uniquement une coupe de noyaux dans l'objet.

Ainsi, une acquisition IRM peut être réalisée en 2D ou en 3D.

Exemple de séquences

On appelle répétition l'ensemble des données collectées après une impulsion RF. En

théorie, une image IRM peut être acquise en mesurant l'espace-k avec une répétition.

Ce type de séquence est utilisée principalement en imagerie fonctionnelle (IRMf) où la

résolution temporelle est très importante. Cependant, cela ne permet pas d'obtenir des

images de bonne résolution spatiale et crée des artefacts. En e�et, le signal décroît assez

rapidement (cf Tab 1.1), et une trajectoire trop longue est sensible à cette relaxation.

De plus, la vitesse de déplacement dans l'espace-k est limitée par les contraintes de la

machine sur la valeur du gradient (Gmax) et sa dérivée (limitée par le slew-rate Smax). Ces

deux éléments limitent le nombre de mesures par répétition. En IRM, il est donc commun

d'avoir recours à plusieurs répétitions. Une technique d'acquisition très classique consiste

à acquérir l'espace-k ligne par ligne (Fig. 1.6).

Figure 1.6: Chronogramme de séquence d'acquisition de l'espace-k ligne par ligne (a)
et parcours correspondant dans l'espace-k. Phase 1: excitation d'une seule coupe à
l'aide du gradient Gz et l'impulsion RF. Phase 2: déplacement sur le bord gauche de
l'espace-k (en vert dans le schéma (b)). Phase 3: Déplacement latéral dans l'espace-k
et acquisitions. Le vecteur de gradient est proportionnel à la vitesse de déplacement
dans l'espace-k. Par exemple, en phase 3, Gx > 0, Gy = 0, Gz = 0 correspond à un
mouvement rectiligne de la gauche vers la droite de l'espace-k. (Image tirée de (Poole,

2007)).

Au cours de cette thèse, nous comparons régulièrement nos trajectoires d'acquisition

aux trajectoires EPI (Echo-planar imaging) et spirales qui permettent un parcours de

l'espace-k au cours d'une seule répétition. Plusieurs répétitions peuvent toutefois etre

utilisées (en entrelaçant les trajectoires) pour augmenter la qualité de l'image (meilleure
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résolution, meilleur rapport signal-sur-bruit...). Ces trajectoires sont présentées en �g-

ures 1.7 et 1.8.

Figure 1.7: Chronogramme de la séquence EPI (acquisition de l'espace-k ligne par
ligne en une répétition) (a) et parcours correspondant dans l'espace-k. Phase 1: excita-
tion d'une seule coupe à l'aide du gradient Gz et l'impulsion RF. Phase 2: déplacement
sur un coin de l'espace-k (en vert dans le schéma (b)). Phase 3: Déplacement dans
l'espace-k et acquisitions. À nouveau, le gradient Gx permet de se déplacer latérale-
ment dans l'espace-k, alors que les décalages verticaux sont réalisées par de petites

impulsions (blips) selon Gy. (Image tirée de (Poole, 2007)).

Figure 1.8: Chronogramme de la séquence spirale (a) et parcours correspondant dans
l'espace-k. (Image tirée de (Poole, 2007)).

Pondération

La présentation de l'imagerie par résonance magnétique faite ici est loin d'être exhaustive.

L'objectif est de donner les clés au lecteur pour comprendre les contributions de ce travail.

Mentionnons toutefois qu'en IRM, il est possible d'obtenir plusieurs types d'informations,

à savoir des cartes dépendant d'un paramètre parmi le T1, T2, T ∗2 , et la densité de protons.

Pour cela, il su�t de faire varier les paramètres d'acquisition TR (le temps entre deux

répétitions, variant de 500 à 1500 ms) et TE (temps d'écho: le temps entre l'impulsion RF
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et la mesure du signal de quelques ms à 100 ms). Des images avec di�érentes pondérations

sont présentées Fig. 1.9.

Figure 1.9: Exemple d'images IRM avec des pondérations en T1 à gauche (TE et TR
courts), T2 au centre (TR et TE longs), et en densité de proton à droite (TR longs et

TE courts).

Une image pondérée T1 est obtenue en appliquant des TR courts. En e�et, d'une

excitation à la suivante, le signal disponible sera proportionnel à la repousse longitudinale

du signal à la �n de la répétition précédente, et dépendra donc T1. Un TE court évite

un trop grand déphasage dans le plan orthogonal à ~B0 et empêche que le signal dépende

de T2.

Rappelons qu'après une excitation RF, les protons perdent la cohérence de leur phase

dans leur mouvement de rotation dans le plan orthogonal à ~B0. Cette perte de cohérence

est due à l'interaction spin-spin (décroissance T2) et aux inhomogonéités locales de champ

magnétique (T ∗2 ). Une image pondérée T ∗2 est simplement obtenue en considérant des

longs TR (la repousse est complète et ne dépend plus de T1). Pour obtenir une image

pondérée T2, on utilise que le déphase dû aux inhomogénéités de ~B0 est réversible. En

e�et, soit t = 0 le temps à la �n de l'impulsion RF. Après celle-ci, les spins se déphasent

car leur vitesse de rotation dépend de la fréquence de Larmor locale. À t = TE/2,

on applique une impulsion RF deux fois plus longue (la rotation est alors de 180◦) qui

renverse les spins. Les spins les plus rapides sont désormais en retard sur les spins les

plus lents. À t = TE, les spins se réalignent et l'e�et des inhomogonéités du champ ~B0

sont annulés. Cette séquence s'appelle écho de spin et permet de réaliser une image

pondérée T2 (en considérant des TR longs pour éviter la dépendance en T1).

Une alternative aux séquences écho de spin sont les séquence à écho de gradient. Après

l'excitation RF, des gradients de champ magnétique sont appliqués et déphasent le signal.

Le signal est alors maximal lorsque les gradient symétriques ont été joués (le déphasage

dû aux gradients est alors annulé). Par exemple, dans la Fig. 1.6, pour chaque impulsion

RF, l'écho est obtenu au milieu de la phase 3, i.e., au milieu de la ligne acquise, car le

gradient déphasage du au gradient de lecture Gx est compensé à ce moment-là (c'est le
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temps d'écho d'une séquence écho de gradient). Dans cette thèse, nous considérerons des

séquences à écho de gradient, même si nous ne cherchons pas particulièrement à mesurer

l'écho, car celui correspondrait à un passage par le centre de l'espace-k.

L'avantage des séquences écho de gradients est qu'il est possible de basculer l'aimantation

d'un angle α <90◦. Le signal disponible ainsi que le rapport signal-sur-bruit sont plus

faibles. L'avantage est que la durée d'attente pour la repousse du signal est plus faible.

On a donc un compromis entre rapport signal-sur-bruit et TR.

1.1.4 Les limites de l'IRM

Un compromis résolution spatiale-résolution temporelle

Le nombre de données nécessaire à collecter dans l'espace-k est lié à la résolution à

laquelle on souhaite reconstruire l'image : c'est le théorème de Shannon (Mallat, 1999).

Cependant, la collecte des données prend du temps car la vitesse de déplacement dans

l'espace-k est limitée par les paramètres des gradients. Accélérer l'acquisition en IRM est

un challenge crucial car cela permet d'augmenter le confort du patient (environnement

bruyant et exigu), et peut permettre de diminuer les coûts dans un contexte clinique.

De plus, cela peut permettre d'augmenter la résolution temporelle en imagerie fonction-

nelle En IRMf de repos, réduire le TR permet de réduire les e�ets du mouvement du

patient, ou d'éviter les artefacts de repliement (TR < 1 s). En IRMf d'activation (i.e.,

le sujet doit e�ectuer une tâche pendant l'acquisition), réduire le TR permet de mieux

estimer la fonction de réponse hémodynamique, qui correspond à la réponse impulsion-

nelle du couplage neuro-vasculaire (Ciuciu et al., 2003). Une meilleure estimation de cette

fonction permet de recouvrer des activations plus �nes dans certaines régions cérébrales

impliquées dans les tâches à réaliser par le sujet au cours d'un paradigme (Handwerker

et al., 2004; Badillo et al., 2013). A temps d'acquisition �xé, la problématique réciproque

est d'améliorer la qualité et la résolution de l'image.

A très haut champ1 (|~B0| ≥ 7T), le rapport signal-sur-bruit (SNR) est accru dans les

images (le signal disponible est plus fort, et on a la formule SNR ∝ |~B0|). Il est donc

possible d'augmenter la résolution spatiale. Ainsi l'ensemble des fréquences à mesurer

dans l'espace-k est plus conséquent, et fait exploser le temps d'acquisition. Par exemple

l'acquisition de données d'une partie de cerveau à la résolution 300µm isotrope (image

de 640× 640× 192 pixels) a nécessité 1 heure et 20 minutes d'acquisition.

1Le centre d'acquisition NeuroSpin possède un scanner clinique de 7 T et attend un scanner de 11.7 T
pour février 2016: une première mondiale !
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Méthodes existantes pour accélérer l'acquisition.

L'imagerie parallèle (IRMp) a été la première méthode proposée pour accélérer l'acquisi-

tion IRM (Sodickson and Manning, 1997; Pruessmann et al., 1999; Griswold et al., 2002)

et consiste à utiliser plusieurs antennes pour la réception du signal. Ainsi chacune mesure

une partie de l'image, qui est �nalement reconstruite par une reconstitution de l'espace-

k (méthode GRAPPA) (Sodickson and Manning, 1997; Griswold et al., 2002), ou par

une reconstruction directe dans le domaine image (méthode SENSE) (Pruessmann et al.,

1999). L'utilisation de la redondance d'information collectée permet de réduire le nombre

de mesures et donc d'accélérer les acquisitions. D'autres techniques proposent d'acquérir

simultanément plusieurs coupes en IRMf avec une séquence EPI (Feinberg et al., 2010),

et permettent d'acquérir des volumes d'image en moins d'une seconde contre 2 à 4 en

imagerie fonctionnelle classique.

Dans cette thèse, nous développons des méthodes qui permettent d'accélérer l'acquisition

d'images IRM en échantillonnant l'espace-k, et en utilisant des informations a priori sur

l'image à reconstruire. Les méthodes utilisées dans cette thèse se basent sur la théorie

du Compressed Sensing (ou échantillonnage compressif) introduit dans la communauté

de l'IRM par (Lustig et al., 2008). Ces techniques peuvent être combinées avec l'IRMp.

Cependant, dans ce travail, nous nous sommes limités à l'imagerie � classique �, i.e,

avec une seule antenne. L'impact de l'utilisation de plusieurs antennes sur les stratégies

d'échantillonnage est illustré par exemple dans (Florescu et al., 2014).

1.2 Introduction à la théorie de l'échantillonnage compressif

Dans cette thèse, nous traiterons des images discrètes, c'est à dire dé�nies sur une grille

�nie de pixels. Nous les noterons souvent sous forme d'un vecteur de Rn où n est

le nombre de pixels. En imagerie par résonance magnétique, comme dans beaucoup

d'autres d'autres systèmes, le signal est observé via un ensemble de mesures linéaires

(e.g., des coe�cients de Fourier en IRM). Ainsi, il existe un vecteur y ∈ Rm et une

matrice A ∈ Rm×n tels que l'ensemble des mesures s'écrive:

y = Ax

Si la matrice A est inversible (en particulier m = n), la reconstruction du signal se

fait en inversant la matrice A. Par exemple, en imagerie par résonance magnétique,

lorsque les mesures se font sur une grille Cartésienne, l'image s'obtient par transformée

de Fourier inverse. L'échantillonnage compressif s'intéresse au cas où m � n, ce que

nous supposerons désormais.
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1.2.1 Parcimonie et incohérence : les clés du Compressed Sensing

Lorsque m < n, l'ensemble des solutions de l'équation y = Ax est in�ni. Pour pouvoir

retrouver x à partir de y, il faut donc avoir d'autres informations sur le vecteur x. Une

hypothèse généralement formulée est que x est parcimonieux (resp. compressible), c'est

à dire qu'il peut être représenté (resp. approché) par un vecteur de Rn contenant s

coe�cients non nuls, avec s � n. C'est le cas notamment des signaux sonores via la

représentation de Fourier à fenêtre, ou des images dans des bases d'ondelettes (le format

de compression JPEG-2000 utilise une telle représentation). Ainsi, quitte à modi�er la

matrice A, on suppose que x est parcimonieux. Une formulation naturelle pour retrouver

x est le problème:

arg min
y=Az

|z|0

où |z|0 est la pseudo-norme qui compte le nombre de coe�cients non-nuls de z. Cepen-

dant, ce problème est NP-complet, et ne peut être résolu pour des problèmes de taille in-

téressante. On considère généralement le problème convexe suivant, qui permet d'obtenir

des signaux parcimonieux également :

arg min
y=Az

‖z‖1 (1.2)

où ‖z‖1 =
n∑
i=1

|zi|.

Les premiers résultats de Compressed Sensing (Candès et al., 2006a; Candès, 2008;

Donoho, 2006), donnent des garanties de reconstructions reposant sur la propriété RIP :

Restricted Isometry Property. Une matrice A véri�e la condition RIP s'il existe δs > 0

tel que, quelque soit x s-parcimonieux :

(1− δ)‖x‖2 6 ‖Ax‖2 6 (1 + δ)‖x‖2. (1.3)

Cette condition permet d'obtenir le résultat suivant (Candès, 2008) :

Theorem 1.1. Si δ2s 6
√

2− 1, alors x est l'unique solution de (1.2).

Ce résultat est uniforme au sens où si cette propriété est véri�ée pour A, alors tous

les vecteurs s-parcimonieux pourront être reconstruits exactement. Les inconvénients

de cette approche sont multiples. À part pour des matrices très spéci�ques (matrices

aléatoires à entrées indépendentes identiquement distribuées (i.i.d). par exemple) ne

correspondant pas à des systèmes physiques, la constante RIP ne peut pas être calculée.

De plus, la condition RIP est très restrictive car elle garantit la reconstruction de tous
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les signaux s-parcimonieux. Or, dans les applications, l'objectif est de reconstruire un

seul signal. On peut donc espérer obtenir des conditions de reconstruction exacte bien

moins restrictives que le RIP.

Des résultats de reconstruction non uniformes (i.e., valables pour un signal x donné)

sont apparus plus récemment (Rauhut, 2010; Candès and Plan, 2011). Considérons une

matrice orthogonale

A0 =


a∗1
...

a∗n


et construisons A de la façon suivante :

A =


a∗J1

...

a∗Jn

 ,

où les entiers {J1, . . . , Jn} sont tirés de manière i.i.d. et uniformément dans l'ensemble

{1, . . . n}. Alors, un résultat typique s'écrit :

Theorem 1.2. Soit x un vecteur s-parcimonieux. Si le nombre de mesures m véri�e:

m > C · s ·
(
n · max

16k6n
‖ak‖2∞

)
· log

(
n

η

)
(1.4)

où C est une constante universelle, alors x est l'unique minimiseur de (1.2) avec proba-

bilité 1− η.

Ce théorème est riche en enseignements car il fait intervenir deux grandeurs cruciales de

la théorie de l'échantillonnage compressif. D'une part, le nombre de mesures nécessaires

m est proportionnel à la parcimonie s. Comme expliqué précédemment, sans information

a priori, il aurait fallu m = n mesures, alors que si s� n, on peut espérer reconstruire

le signal à partir de m� n mesures. L'autre grandeur cruciale est la cohérence κ(A0) =

n · max
16k6n

‖ak‖2∞. La cohérence est comprise entre 1 et n pour des matrices orthogonale.

Pour la transformée de Fourier discrète F , κ(F ) = 1, ce qui est un cas optimal. Un des

pire cas est l'identité car κ(In) = n. La cohérence mesure comment un atome de la base

dans laquelle le signal est parcimonieux s'� étale � dans la base d'acquisition. Mieux

l'énergie de ces atomes est répartie dans la base d'acquisition, plus une mesure fournit

d'information sur le signal.

En imagerie par résonance magnétique, la matrice A0 est égale à F ∗Ψ où Ψ est la matrice

d'une transformée en ondelettes orthogonale inverse. Dans ces conditions, κ(A0) = O(n),
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ce qui rend les résultats d'échantillonnage compressif non applicables en IRM : c'est la

� barrière de la cohérence � (Adcock et al., 2013).

1.2.2 Casser la � barrière de la cohérence �

La cohérence κ est un critère global sur les bases de représentation et d'acquisition. Beau-

coup de matrices ont ainsi une distribution de ‖ai‖2∞ très hétérogène, comme c'est le cas

de la matrice F ∗Ψ en IRM2. Un exemple pathologique est introduit dans le papier (Bigot

et al., 2013) où les auteurs considèrent la matrice :

A0 =

(
1 0

0 Fn−1

)
.

Cette matrice véri�e κ(A0) = 1. Dans ce cas, le théorème 1.2 n'est pas intéressant

car le nombre de mesures doit être O(n). Cependant, en mesurant la première com-

posante du signal de manière déterministe et les autres échantillons de manière aléatoire,

le théorème 1.2 assure la reconstruction dès que m > 1 + C · s · n
n−1 · log

(
n
η

)
avec

probabilité 1 − η. Un échantillonnage déterministe des échantillons correspondant aux

grandes valeurs de ‖ai‖2∞ est une manière simple de casser la barrière de cohérence. Une

formalisation de cette technique est donnée par le théorème 2.9 page 36.

Une seconde méthode pour casser la barrière de cohérence est de réaliser un échantil-

lonnage à densité variable : les échantillons les plus cohérents (ce sont les seuls qui

contiennent l'information de certains atomes de la bases de représentation) sont plus

importants et doivent être tirés avec une plus grande probabilité (Krahmer and Ward,

2014; Puy et al., 2011; Chau�ert et al., 2014a). Précisément, le théorème suivant, prouvé

dans (Rauhut, 2010; Candès and Plan, 2011) permet de déterminer une distribution � op-

timale � qui justi�e l'échantillonnage à densité variable:

Theorem 1.3. Soit x un vecteur s-parcimonieux et π la distribution dé�nie par

πk =
‖ak‖2∞∑n
j=1 ‖aj‖2∞

.

Si A est construite en tirant m lignes de A0 suivant π, et si

m > C · s ·

 n∑
j=1

‖aj‖2∞

 · log

(
n

η

)
2voir la �gure 2.3(b-c) page 38
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où C est une constante universelle, alors x est l'unique minimiseur de (1.2) avec proba-

bilité 1− η.

Ce théorème semble plus applicable à l'IRM car on peut montrer
∑n

j=1 ‖aj‖2∞ = O(log(n))

(Krahmer and Ward, 2014). Ainsi, le nombre de mesures nécessaires pour reconstruire

une image IRM est O(s log(n)2), dans le cas où A = F ∗Ψ. Cependant, pour une image

de taille 256 × 256, log(n)2 ' 123, ce qui rend le résultat peu intéressant. En e�et,

C > 1, et si s est de l'ordre de 0, 2 · n (ce qui correspond à une bonne approximation de

l'image), le nombre de mesures m dépasse n...

En pratique, le théorème 1.3 est utilisé pour donner une idée sur la stratégie d'échantillonnage

dans le cadre de simulations d'échantillonnage pour l'IRM, et un nombre de mesures de

l'ordre de m = 0, 2 ·n permet une très bonne reconstruction de l'image, même si les con-

ditions requises par le théorème sont loin d'être remplies ! Une réponse à ce phénomène

est donnée dans (Adcock et al., 2013). L'hypothèse e�ectuée jusqu'à présent est la parci-

monie du signal IRM. Or le signal possède une structure, sa parcimonie est di�érente

dans chaque sous-bande de sa décomposition en ondelettes (Fig. 1.10).

Figure 1.10: Décomposition d'une image de cerveau dans une base d'ondelettes.

Les auteurs de (Adcock et al., 2013) mettent en évidence l'importance de la structure

de la parcimonie par le �ip test. Sur des schémas classiques dans le cadre de l'IRM par

exemple, leur conclusion est que si les coe�cients non nuls sont permutés (le vecteur x

est renversé), alors la reconstruction ne fonctionne plus (en particulier, la matrice A en

IRM ne véri�e pas la condition RIP).

La parcimonie dans une base d'ondelettes croît avec la résolution (Fig. 1.10). Des ré-

sultats faisant intervenir la structure de la parcimonie sont apparus récemment (Boyer

et al., 2015a; Adcock et al., 2013). Le nombre de mesures nécessaires est alors plus

faible que celui donné par le théorème 1.3, et la distribution d'échantillonnage est légère-

ment di�érente. Elle est plus importante au centre, car ce sont les basses fréquences qui

contiennent l'essentiel de l'information du signal.
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Dans cette thèse, nous nous sommes limités à des tirages selon la distribution �xée par

le théorème 1.3, ou même selon des distributions heuristiques. La plupart des méthodes

présentées dans cette thèse sont génériques et s'adaptent à n'importe quelle distribution

d'échantillonnage.

1.2.3 Remarques

• Dans les systèmes physiques, les données observées sont souvent contaminées par

du bruit. En imagerie par résonance magnétique, celui-ci provient de l'agitation

thermique à l'intérieur de l'objet à imager, ainsi que des appareil électroniques.

Celui-ci peut être modélisé en première approximation par un bruit blanc gaussien

additif (Aja-Fernández and Tristán-Vega, 2013). L'acquisition peut alors être mod-

élisée par l'équation:

y = Ax+ n

où ni
i.i.d.∼ N (0, η2), 1 6 i 6 m. Les résultats de reconstruction présentés précédem-

ment sont stables par rapport au bruit, et également par rapport à l'approximation

du signal par un signal s-parcimonieux, si celui-ci est seulement compressible. Pré-

cisément, la méthode de reconstruction est modi�ée en :

arg min
z

1

2
‖y −Az‖22 + λ‖z‖1. (1.5)

Alors, avec le même nombre de mesures que dans le théorème 1.3, et en prenant

λ = 10 · η · log
√
n, la reconstruction est stable au sens où :

‖x− z∗‖ 6 C

(
‖x− xs‖1√

s
+

√
s log(n)

m
η

)
,

où z∗ est la solution de (1.5), et xs est le vecteur s-parcimonieux formé des s plus

grandes composantes de x en valeur absolue (Candès and Plan, 2011).

• Dans cette thèse, nous nous limitons à des reconstructions dans des bases d'ondelettes

orthogonales. Cependant, en pratique, il est possible d'obtenir des meilleures re-

constructions qu'avec le problème 1.5, qui crée des artefacts d'ondelettes. Des

méthodes reposant sur des ondelettes redondantes ou utilisant une pénalisation par

variation totale ont été proposées (Block et al., 2007; Boyer et al., 2012; Florescu

et al., 2014). Des garanties semblables aux théorème 1.3 commencent à apparaître

dans le cas de bases redondantes (Poon, 2015b) et pour des régularisations par

variation totale (Poon, 2015a).
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1.3 L'échantillonnage compressif en IRM : principes et lim-

ites actuelles.

La théorie de l'échantillonnage compressif a été rapidement introduite dans la commu-

nauté IRM (Lustig et al., 2007). Avant de discuter des résultats existants, rappelons les

contraintes d'échantillonnage en IRM.

Les contraintes d'échantillonnage en IRM

Le déplacement dans l'espace-k s'e�ectue grâce aux gradients de champ magnétique
~G(t) : ~̇k(t) = −γ · ~G(t). Ceux-ci étant créés par des courants dans trois bobines (chacune

créant un champ magnétique dans une direction), ils sont limités en intensité, et leur

dérivée est également bornée:

‖G(t)‖ 6 Gmax, ‖Ġ(t)‖ 6 Smax, ∀t ∈ [0, T ], (1.6)

où T est le temps d'acquisition le long de la trajectoire k(t). La norme utilisée est soit

la norme ‖ · ‖2, soit la norme ‖ · ‖∞, suivant si le courant dans chacune des trois bobines
est issu d'un même générateur ou non. Une trajectoire d'acquisition dans l'espace-k doit

donc appartenir à l'ensemble suivant :

ST =
{
s : [0, T ]→ R3, ‖ṡ(t)‖ 6 γ ·Gmax, ‖s̈(t)‖ 6 γ · Smax, ∀t ∈ [0, T ]

}
. (1.7)

De plus, les gradients sont appliqués après la �n de l'excitation RF, ce qui impose s(0) =

0. Si le temps de répétition est �xé, on peut également supposer s(k · TR) = 0, i.e., la

trajectoire repart du centre de l'espace-k tous les TR. Nous pouvons donc considérer

un ensemble de contraintes a�nes A. Une trajectoire IRM est jouable si elle véri�e les

contraintes cinématiques, i.e., ∈ ST , et si elle véri�e les contraintes a�nes, i.e., ∈ A,
dépendantes de la séquence.

L'application de l'échantillonnage compressif en IRM

La première utilisation de l'échantillonnage compressif en IRM (Lustig et al., 2007) a

cherché à adapter directement les résultats du type du théorème 1.2. Les auteurs ont

proposé d'utiliser un échantillonnage à densité variable de manière heuristique. Cepen-

dant, les schémas obtenus à partir de tirages i.i.d. (Fig. 1.11(a)) ne sont pas faisables

en 2D car ils ne sont même pas sur une courbe continue, et n'ont donc aucune chance

d'appartenir à ST . La solution proposée est de parcourir l'espace-k le long de lignes
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parallèles dans la troisième dimension (Fig. 1.11(b)), en e�ectuant plusieurs répétitions.

En ce sens, cette stratégie d'acquisition est très proche de celle proposée en Fig. 1.6,

s'avère donc réalisable en pratique, et très simple à mettre en ÷uvre.

(a) (b)

Figure 1.11: Schéma d'échantillonnage aléatoire 2D proposé dans (Lustig et al.,
2007) (a). Acquisition selon la troisième direction (direction de lecture) (b).

Les trajectoires ainsi obtenues sont physiquement réalisables, mais ne relèvent plus de la

théorie de l'échantillonnage compressif. De nouvelles théories sont apparues a posteri-

ori (Bigot et al., 2013; Boyer et al., 2015a) pour décrire une théorie de l'échantillonnage

par � blocs de mesures � (par exemple, des lignes), mais les lignes parallèles sont loin

d'être optimales selon cette théorie.

D'autres méthodes utilisent une pré-modulation du signal pendant l'impulsion RF pour

diminuer la cohérence entre les bases d'acquisition (qui n'est plus la transformée de

Fourier) et la base de représentation. Cette méthode appelée spread spectrum a été

introduite dans (Puy et al., 2012a; Haldar et al., 2011). L'objectif de ces tentatives est

de se rapprocher de la théorie de l'échantillonnage compressif. L'inconvénient est que la

structure du signal est détruite, et en particulier, il n'est plus possible de promouvoir les

basses fréquences qui contiennent l'information du signal.

Trajectoires d'échantillonnage en IRM

Bien avant la théorie de l'échantillonnage compressif, des trajectoires d'acquisitions par-

tielles de l'espace-k sont apparues pour accélérer les acquisitions IRM. Les deux grands

types de trajectoires utilisés pour sous-échantillonner l'espace-k en IRM sont les trajec-

toires spirales (Spielman et al., 1995; Tsai and Nishimura, 2000; Kim et al., 2003; Park

et al., 2005) et radiales (Feng et al., 2014). Ces trajectoires sont facile à implémenter et

véri�ent les contraintes, ce qui explique leur succès. D'autres types de trajectoires sont

également rencontrées dans la littérature : des spirales bruitées (Lustig et al., 2007), des

trajectoires en rosette (Noll, 1997), des trajectoires 3D hélicoïdales (Shu et al., 2006)...
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Ces méthodes n'ont pas de justi�cation théorique mais sont facile à implémenter sur

des scanners et permettent d'acquérir des images d'assez bonne qualité. Cependant, les

théories de l'échantillonnage laissent penser qu'un sous-échantillonnage plus important

de l'espace-k, et donc un gain en temps d'acquisition est possible. Les premières justi�-

cations théoriques concernant des trajectoires continues (radiales, spirales, et courbes de

Hilbert) ont reposé sur un calcul de la cohérence mutuelle (Willett, 2011)3. Récemment,

une série d'articles (Polak et al., 2012a; Bigot et al., 2013; Boyer et al., 2014) a généralisé

les résultats d'échantillonnage compressif pour des ensemble de mesures �xés à l'avance.

L'idée est de se donner un ensemble de courbes admissible (dans ST ) et de faire un tirage

i.i.d. parmi ces courbes, selon une distribution qui peut être calculée explicitement. Ceci

permet de réaliser un échantillonnage physiquement plausible, mais n'est pas générique

car il dépend d'un choix a priori d'un ensemble de courbes. Toutefois, cette approche

généralise les schémas radiaux et spirales, car il est possible d'inclure des segments par-

tant du centre de l'espace-k ainsi que des trajectoires spirales dans l'ensemble des courbes

que l'on se donne.

D'autres travaux ont tenté de générer des trajectoires d'échantillonnage dont l'objectif

est de mesurer une grille su�samment �ne de l'espace d'acquisition a�n de véri�er le

critère de Shannon (Unnikrishnan and Vetterli, 2013; Gröchenig et al., 2014) lorsque le

signal est à bande limitée.

Problématique

Les expériences d'échantillonnage compressé en deux dimensions (Knoll et al., 2011;

Chau�ert et al., 2013b) ont montré que la densité d'échantillonnage est cruciale pour

obtenir des bons résultats de reconstruction. L'approche classique qui consiste à ef-

fectuer un tirage aléatoire en deux dimension et de mesurer dans la troisième direction

comme présenté Fig. 1.11(b) est sous-optimale, car dans la troisième direction, la den-

sité d'échantillonnage est uniforme. Or, en deux dimensions, les meilleures densités

d'échantillonnage sont denses au centre, et décroissent lorsque l'on s'éloigne du centre.

Nous montrerons qu'en trois dimensions également, les densités à décroissance radiale

permettent d'obtenir les meilleurs résultats de reconstruction, et donc que l'approche

classique est sous-optimale.

L'objectif de cette thèse est donc le suivant: [modi�er]

Comment, à temps d'acquisition ou à nombre de mesures �xé, réaliser le

schéma d'échantillonnage physiquement admissible ?

3Le papier contenait des erreurs corrigées dans (Willett., 2011)
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1.4 Contributions

Les contributions présentées dans cette thèse sont les suivantes:

• Dans le Chapitre 2, nous reformulons les théorèmes d'échantillonnage compressif

de (Rauhut, 2010; Candès and Plan, 2011) à la manière du théorème 1.3, de manière

à dé�nir une distribution optimale dépendant des bases d'acquisition et de représen-

tation (Fig. 1.12(a)). Comme expliqué précédemment, un échantillonnage à densité

variable permet de casser la � barrière de la cohérence �. Nous introduisons une sec-

onde méthode pour casser cette barrière reposant sur l'échantillonnage déterministe

des basses fréquences de l'espace-k (Théorème 2.9) illustré Fig. 1.12(b). La densité

d'échantillonnage optimale est en�n comparée à des distributions heuristiques sur

des simulations en 2D.

(a) (b)

Figure 1.12: Distribution π optimale (a) et schéma d'échantillonnage déterministe
des basses fréquences correspondant aux grandes valeurs de ‖ai‖2∞ pour diminuer la

cohérence (b).

• Nous dé�nissons un p-échantillonneur à densité variable comme une trajectoire dont

la mesure empirique (ou mesure d'occupation) converge vers p quand le longueur

de la trajectoire converge vers l'in�ni. Nous en donnons deux exemples. Le premier

est fondé sur des marches aléatoires (Fig. 1.13(a)). Nous introduisons une inégalité

de concentration nouvelle pour une chaîne de Markov à valeurs dans les matrices

Hermitiennes (chapitre 3). Celle-ci permet de déduire un résultat d'échantillonnage

compressif où le nombre de mesures est O

s
ε
·
n∑
j=1

‖aj‖2∞ · log(6n/η)

, où ε est le
trou spectral de la chaîne de Markov. Le second est la solution d'un problème de

voyageur de commerce (Fig. 1.13(b)) et nous relions la distribution selon laquelle

les � villes � sont tirées et la distribution de la courbe reliant ces points. Le message

mis en avant par ces deux approches est qu'en plus de la densité d'échantillonnage,

le temps de mélange des processus d'échantillonnage est crucial.
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(a) (b)

Figure 1.13: Exemple d'échantillonneurs à densité variable reposant sur des marches
aléatoires (a) et sur la solution d'un problème de voyageur de commerce (b).

Figure 1.14: Exemple de projection d'une trajectoire non physiquement plausible
(la courbe bleue parcourue à vitesse constante). En rouge, la solution du problème de

projection sur ST .

• Les trajectoires continues n'étant pas physiquement jouables par un scanner, nous

développons un algorithme de projection sur l'ensemble (convexe) des contraintes

(chapitre 4). Une illustration sur un exemple synthétique est donné dans la Fig. 1.14.

• En s'appuyant sur l'algorithme précédent, nous proposons un nouvel algorithme de

projection sur des espaces de mesures. Le cas intéressant pour l'IRM est l'espace

des mesures portées par des courbes admissibles. Nous donnons des illustrations

pour des espaces de mesures plus généraux. En particulier, si la mesure que l'on

projette est proportionnelle aux niveaux de gris d'une image, il est possible de

la représenter par une mesure portée par une courbe, et donc de représenter une

image par une courbe (Fig. 1.15) !

• Cet algorithme de projection permet dans le cas de l'IRM de réaliser des sché-

mas d'échantillonnage à densité variable par des courbes admissibles (Fig. 1.16).

Les résultats de reconstruction correspondant permettent de dépasser les schémas

classiques (spirale, radial) de 3 dB au minimum en termes de SNR.
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Figure 1.15: Représentation de Mona Lisa par un élément de ST .

(a) (b)

Figure 1.16: Projection d'une densité cible à décroissance radiale sur l'ensemble des
mesures portées par des courbes de ST (a). Zoom sur les basses fréquences (b).
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1.5 Organisation

L'organisation de cette thèse sur articles suit les 4 travaux suivants:

• Variable Density Sampling with Continuous Trajectories. N Chau�ert, P Ciuciu,

J Kahn, P Weiss. SIAM Journal on Imaging Sciences 7 (4), 1962-1992.

• A projection algorithm for gradient waveforms design in Magnetic Resonance Imag-

ing. N. Chau�ert, P. Weiss, J. Kahn and P. Ciuciu, en révision à IEEE Trans. on

Medical Imaging en juin 2015.

• A projection method on measures sets. N. Chau�ert, P. Ciuciu, J. Kahn and P.

Weiss, soumis en 2015 à Constructive Approximation.

• On the generation of sampling schemes for Magnetic Resonance Imaging. C. Boyer,

N. Chau�ert, J. Kahn, P. Ciuciu, Pierre Weiss (article soumis prochainement).

Dans le chapitre 2, nous dé�nissons la notion d'échantillonneur à densité variable. Dans

le cadre de mesures isolées, cela correspond au théorème 1.3 évoqué précédemment.

Nous proposons des échantillonneurs à densité variable continus, et montrons que les

caractéristiques importantes des schémas d'échantillonnage sont la densité cible d'une

part, et la vitesse de recouvrement de l'espace-k d'autre part. Dans le cas des schémas

continus reposant sur des marches aléatoires, la quantité qui gouverne la vitesse de

recouvrement est le trou spectral: plus il est grand, plus l'espace est parcouru rapidement.

Nous introduisons également des schémas d'échantillonnage reposant sur des solutions

du voyageurs de commerce qui fournissent de meilleurs résultats en reconstruction, car

le processus recouvre plus rapidement l'espace que les marches aléatoires.

Dans le chapitre 3, nous prouvons une inégalité de concentration pour une chaîne de

Markov à valeurs dans les matrices Hermitiennes. Cela permet de donner un résultat

d'échantillonnage compressif pour un échantillonnage le long d'une marche aléatoire.

Les schémas continus proposés dans le chapitre 2 ne sont toutefois pas implémentables

sur des scanners IRM. Par exemple, pour les schémas solution du voyageur de commerce,

le parcours de la trajectoire à vitesse constante comporte des singularités au voisinage des

� villes �. Le seul parcours implémentable impose que les gradients soient nuls à chacun

de ces points critique. Cela induit un temps d'acquisition extrêment long d'une part,

et la densité est grandement modi�ée d'autre part. Dans le chapitre 4, nous proposons

un algorithme de projection d'une trajectoire qui peut être irréaliste (e.g., un parcours

à vitesse constante de la solution du problème de voyageur de commerce) sur l'ensemble

des contraintes. Un algorithme de descente de gradient proximal accéléré est utilisé pour
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résoudre ce problème. Les caractéristiques des trajectoires obtenues présentent de bonnes

propriétés pour l'échantillonnage: le temps d'acquisition est �xé et l'écart à la densité

d'échantillonnage de la courbe initiale est faible.

Dans le chapitre 5, nous proposons un algorithme de projection sur un espace de mesures

portés par des paramétrisations quelconques. Nous montrons que ce problème généralise

le problème de stippling (représentation d'une image en niveau de gris par des disques

noirs sur fond blanc). Ceci correspond au cas de la projection sur des mesures portées

par des mesures de Dirac. En ajoutant des contraintes sur les paramétrisations, nous

pouvons considérer des projections sur des mesures portées par des trajectoires avec

di�érents types de contraintes (sur la vitesse ou l'accélération, en norme `1, `2 ou `∞...).

En particulier, il est possible de projeter sur des mesures portées par des courbes de ST .

Dans le chapitre 6, nous appliquons cet algorithme pour projeter des mesures d'échantillon-

nage 2D utilisées en IRM (à décroissance radiale des basses vers les hautes fréquences).

La projection sur des mesures isolées (portées par des mesures de Dirac) donne des

meilleurs résultats de reconstruction que l'échantillonnage reposant sur le tirage i.i.d.

des échantillons. De même, nous montrons que la projections sur des mesures portées

par ST donne des meilleurs résultats de reconstruction que les schémas classique (ra-

dial et spiral). En�n, la projection sur des espaces portés par des segments donne des

meilleurs résultats que l'échantillonnage radial.

1.6 Organization and contributions

Compressed Sensing theory cannot be used directly in MRI for two reasons. First, the

incoherence property between the acquisition (Fourier) and sparsifying (Wavelet) basis

is not ful�lled. This is the �coherence barrier" (Adcock et al., 2013). Second, most

of Compressed Sensing schemes are obtained by drawing randomly and independently

the samples (Rauhut, 2010; Candès and Plan, 2011), leading to a sampling scheme of

isolated points. Magnetic �eld gradients impose kinematics constraints on the k-space

sampling trajectory (the set ST de�ned in Eq. (1.7)). To date, the application of CS

to MRI consists of drawing randomly sample locations in a 2D plane according to CS

theory, and then acquiring the MR signal along the third (readout) direction (Fig. 1.11).

This strategy is sub-optimal from a CS point of view because the sampling density is

constant in the readout direction, whereas according to CS theory, the sampling density

should decrease from low to high frequencies.

In Chapter 2, we show that a deterministic sampling of the k-space center combined

with an i.i.d. drawing can break the �coherence barrier� and that an optimal sampling
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density can be introduced to theoretically reduce the number of samples to be acquired

while allowing perfect recovery (Fig. 1.12(a)). We show that sampling strategies based

on empirical sampling distributions can provide better reconstruction results in CS-MRI,

since the signal structure is not taken into account in the model: the signal is supposed

to be sparse, although no prior knowledge is considered on the locations of non-zero

coe�cients. We de�ne a variable density sampler (VDS) as a process which empirical

distribution converges towards a target distribution. This de�nition encompasses both

the previous i.i.d. drawing and continuous sampling procedures. Continuity is a nec-

essary condition for a sampling trajectory to belong to ST . We give two examples of

continuous VDS: random walks and Travelling-Salesman Problem-based (Fig. 1.13(a)

and (b)). From these two examples, we illustrate two crucial properties of a VDS: its

empirical distribution and its mixing time, i.e., the time to cover the k-space.

Chapter 3 is dedicated to introducing a new Hermitian matrix-valued concentration in-

equality. This inequality is the cornerstone to prove that if the samples are acquired along

a Markov chain, the required number of measurements to ensure exacte reconstruction

is O

s
ε
·
n∑
j=1

‖aj‖2∞ · log(6n/η)

, where ε is the spectral gap of the chain.

To sum up, in Chapter 2, we described continuous sampling trajectories, which do not

belong to ST in general. Next, in Chapter 4, we introduce a projection algorithm that

projects an initial parameterization onto the set ST . This method provides admissi-

ble gradient waveforms to traverse a curve that is close to the initial parameterization.

Compared to existing reparameterization methods (Hargreaves et al., 2004; Lustig et al.,

2008), the main di�erence of our algorithm is that the curve support is no longer con-

strained. The consequence is that the sampling density is better preserved compared to

classical reparameterization techniques, and the sampling time is user-de�ned and thus

generally shorter than the one provided by existing methods. An illustration of the pro-

jection algorithm is given in Fig. 1.14: the input curve is shown in blue and its projection

onto the set ST is depicted in red.

In Chapter 5, we develop an algorithm to design a VDS that ful�lls the kinematics con-

straints. The proposed algorithm is actually more generic than the one we push forward

in the previous chapter: it allows to project a density p (e.g., the target distribution π

de�ned in Fig. 1.12(a)) onto a set of measures MN . We give necessary and su�cient

conditions on a sequence of sets (MN )N∈N such that the solution of the projection prob-

lem converges to p. In addition, we provide an algorithm to �nd an approximation of the

solution of the measure-projection algorithm for measures carried by parameterizations.

Such measures encompasses sums of Dirac and measures carried by (discrete) curves with
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kinematics constraints (e.g. ∈ ST ). This algorithm is generic enough to be deployed be-

yond the MRI �eld. For instance, if p is a grayscale image, the solution to the projection

problem gives a representation with isolated dots (sum of Dirac) called stippling, or with

a continuous trajectory (continuous line drawing). To illustrate this point, Mona Lisa is

represented by an element of ST in Fig. 1.15.

In Chapter 6, we apply this algorithm to design admissible sampling curves in MRI.

On retrospective CS simulations, we show that our approach improves reconstruction

results compared to spiral or radial sampling. The sampling schemes obtained with this

method ful�ll the two requirements described in Chapter 2, namely the sampling density

with a variable pro�le and the fast mixing time to cover the k-space su�ciently well. A

sampling pattern obtained with this method is provided Fig. 1.16(a) and (b): zoom on

the low frequencies. We conducted numerical experiments on image sizes of 256 × 256

and 2048× 2048.



Chapter 2

Variable density sampling with

continuous trajectories

This chapter is based on (Chau�ert et al., 2014a).

Abstract

Reducing acquisition time is a crucial challenge for many imaging techniques. Com-

pressed Sensing (CS) theory o�ers an appealing framework to address this issue since it

provides theoretical guarantees on the reconstruction of sparse signals by projection on a

low dimensional linear subspace. In this paper, we focus on a setting where the imaging

device allows to sense a �xed set of measurements. We �rst discuss the choice of an

optimal sampling subspace allowing perfect reconstruction of sparse signals. Its design

relies on the random drawing of independent measurements. We discuss how to select

the drawing distribution and show that a mixed strategy involving partial deterministic

sampling and independent drawings can help breaking the so-called �coherence barrier�.

Unfortunately, independent random sampling is irrelevant for many acquisition devices

owing to acquisition constraints. To overcome this limitation, the notion of Variable Den-

sity Samplers (VDS) is introduced and de�ned as a stochastic process with a prescribed

limit empirical measure. It encompasses samplers based on independent measurements

or continuous curves. The latter are crucial to extend CS results to actual applications.

We propose two original approaches to design continuous VDS, one based on random

walks over the acquisition space, and one based on Traveling Salesman Problem. Follow-

ing theoretical considerations and retrospective CS simulations in magnetic resonance

27
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imaging, we intend to highlight the key properties of a VDS to ensure accurate sparse

reconstructions, namely its limit empirical measure and its mixing time1.

2.1 Introduction

Variable density sampling is a technique that is extensively used in various sensing de-

vices such as magnetic resonance imaging (MRI), in order to shorten scanning time. It

consists in measuring only a small number of random projections of a signal/image on

elements of a basis drawn according to a given density. For instance, in MRI where

measurements consist of Fourier (or more generally k-space) coe�cients, it is common

to sample the Fourier plane center more densely than the high frequencies. The image

is then reconstructed from this incomplete information by dedicated signal processing

methods. To the best of our knowledge, variable density sampling has been proposed

�rst in the MRI context by (Spielman et al., 1995) where spiral trajectories were pushed

forward. Hereafter, it has been used in this application (see e.g. (Tsai and Nishimura,

2000; Kim et al., 2003; Park et al., 2005) to quote a few), but also in other applications

such as holography (Rivenson et al., 2010; Marim et al., 2010). This technique can hardly

be avoided in speci�c imaging techniques such as radio interferometry or tomographic

modalities (e.g., X-ray) where sensing is made along �xed sets of measurements (Wiaux

et al., 2009; Sidky et al., 2006).

In the early days of its development, variable density sampling was merely an e�cient

heuristic to shorten acquisition time. It has recently found a partial justi�cation in the

Compressed Sensing (CS) literature. Even though this theory is not yet mature enough

to fully explain the practical success of variable density sampling, CS provides good hints

on how to choose the measurements (i.e., the density), how the signal/image should be

reconstructed and why it works. Let us now recall a typical result emanating from the CS

literature for orthogonal systems. A vector x ∈ Cn is said s-sparse if it contains at most

s non-zero entries. Denote by ai, i ∈ {1, . . . , n} the sensing vectors and by yi = 〈ai, x〉
the possible measurements. Typical CS results state that if the signal (or image) x is

s-sparse and if A =


a∗1
...

a∗n

 satis�es an incoherence property (de�ned in the sequel), then

m = O(s log(n)α) measurements chosen randomly among the elements of y = Ax are

enough to ensure perfect reconstruction of x. The constant α > 0 depends on additional

properties on x and A. The set of actual measurements is denoted Ω ⊆ {1, . . . , n} and
AΩ is the matrix formed by selecting a subset of rows of A in Ω. The reconstruction of x

1Part of this work is based on the conference proceedings: (Chau�ert et al., 2013b; Chau�ert et al.,
2013a; Chau�ert et al., 2013c).
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knowing yΩ = AΩx is guaranteed if it results from solving the following `1 minimization

problem:

min
z∈Cn

‖z‖1 subject to AΩz = yΩ. (2.1)

Until recent works (Rauhut, 2010; Juditsky et al., 2011; Candès and Plan, 2011), no

general theory for selecting the rows was available. In the latter, the authors have

proposed to construct AΩ by drawing m rows of A at random according to a discrete

probability distribution or density p = (p1, . . . , pn). The choice of an optimal distribution

p is an active �eld of research (see e.g. (Chau�ert et al., 2013b; Krahmer and Ward,

2014; Adcock et al., 2013)) that remains open in many regards.

Drawing independent rows of A is interesting from a theoretical perspective, however

it has little practical relevance since standard acquisition devices come with acquisition

constraints. For instance, in MRI, the coe�cients are acquired along piece-wise contin-

uous curves on the k-space. The �rst paper performing variable density sampling in

MRI (Spielman et al., 1995) has ful�lled this constraint by considering spiral sampling

trajectories. The standard reference about CS-MRI (Lustig et al., 2007) has proposed to

sample the MRI signal along parallel lines in the 3D k-space. Though spirals and lines

can be implemented easily on a scanner, it is likely that more general trajectories could

provide better reconstruction results, or save more scanning time.

The main objective of this paper is to propose new strategies to sample a signal along

more general continuous curves. Although continuity is often not su�cient for practical

implementation on actual scanner, we believe that it is a �rst important step towards

more physically plausible compressed sampling paradigms. As far as we know, this

research avenue is relatively new. The problem was �rst discussed in (Willett., 2011)

and some heuristics were proposed. The recent contributions (Polak et al., 2012b; Bigot

et al., 2013) have provided theoretical guarantees when sampling is performed along �xed

sets of measurements (e.g. straight lines in the Fourier plane), but have not addressed

generic continuous sampling curves yet.

The contributions of this paper are threefold. First, we bring a well mathematically

grounded de�nition of variable density samplers and provide various examples. Second,

we discuss how the sampling density should be chosen in practice. This discussion

mostly relies on variations around the theorems provided in (Rauhut, 2010; Candès

and Plan, 2011). In particular, we justify the deterministic sampling of a set of highly

coherent vectors to overcome the so-called �coherence barrier�. In the MRI case, this

amounts to deterministically sampling the k-space center. Our third and maybe most

impacting contribution is to provide practical examples of variable density samplers along
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continuous curves and to derive some of their theoretical properties. These samplers are

de�ned as parametrized random curves that asymptotically �t a target distribution (e.g.

the one shown in Fig. 2.1 (a)). More speci�cally, we �rst propose a local sampler based

on random walks over the acquisition space (see Fig. 2.1 (b)). Second, we introduce a

global sampler based on the solution of a Travelling Salesman Problem amongst randomly

drawn �cities� (see Fig. 2.1 (c)). In both cases, we investigate the resulting density. To

�nish with, we illustrate the proposed sampling schemes on 2D and 3D MRI simulations.

The reconstruction results provided by the proposed techniques show that the PSNR can

be substantially improved compared to existing strategies proposed e.g. in (Lustig et al.,

2007). Our theoretical results and numerical experiments on retrospective CS show that

two key features of variable density samplers are the limit of their empirical measure

and their mixing properties.

(a) (b) (c)

Figure 2.1: (a): Target distribution π. Continuous random trajectories reaching
distribution π based on Markov chains (b) and on a TSP solution (c).

The rest of this paper is organized as follows. First, we introduce a precise de�nition of

a variable density sampler (VDS) and recall CS results in the special case of independent

drawings. Then, we give a closed form expression for the optimal distribution depending

on the sensing matrix A, and justify that a partial deterministic sampling may provide

better reconstruction guarantees. Hereafter, in Sections 2.3 and 2.4, we introduce two

strategies to design continuous trajectories over the acquisition space. We show that the

corresponding sampling distributions converge to a target distribution when the curve

length tends to in�nity. Finally, we demonstrate on simulation results that our TSP-

based approach is promising in the MRI context (Section 2.5) since it outperforms its

competing alternatives either in terms of PSNR at �xed sampling rate, or in terms of

acceleration factor at �xed PSNR.
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Notation

The main de�nitions used throughout the paper are de�ned in Tab. 2.1.

Table 2.1: General notation used in the paper.

Notation De�nition Domain

C
o
m
p
re
ss
ed

S
en
si
n
g

n Acquisition and signal space dimensions N

m Number of measurements N

R = n/m Sampling ratio Q

A Full orthogonal acquisition matrix Cn×n

Ω Set of measurements {1, . . . , n}m

AΩ Matrix formed with the rows of A corresponding to indexes belonging to Ω Cm×n

x Sparse signal Cn

s Number of non zero coe�cients of x N

∆n

{
p =

p1

...
pn

 , 0 6 pi 6 1,
∑n
i=1 pi = 1

}
Rn

‖ ‖1 `1 norm de�ned for z ∈ Cn by ‖z‖1 =
∑n
i=1 |zi|

‖ ‖∞ `∞ norm de�ned for z ∈ Cn by ‖z‖∞ = max16i6n |zi|

M
R
I
a
p
p
li
ca
ti
o
n

k =

(
kx
ky

)
or

kxky
kz

 Fourier frequencies R2 or R3

F∗n d-dimensional discrete Fourier transform on an n pixels image Cn×n

Ψn d-dimensional inverse discrete Wavelet transform on an image of n pixels Cn×n

F∗n and Ψn are denoted F∗ and Ψ if no ambiguity

V
D
S

Ξ A measurable space which is typically {1, . . . , n} or [0, 1]d

H The unit cube [0, 1]d

p A probability measure de�ned on Ξ

p(f) =

∫
x∈Ξ

f(x) dp(x), for f continuous and bounded R

λ[0,1] The Lebesgue measure on the interval [0, 1]

X = (Xn)n∈N∗ A time-homogeneous Markov chain on the state space {1, . . . , n} {1, . . . n}N∗

P := (Pij)16i,j6n the transition matrix: Pij := P(Xk = j|Xk−1 = i), ∀k > 1 Rn×n

λi(P) The ordered eigenvalues of P: 1 = λ1(P) > . . . > λn(P) > −1 [−1, 1]

ε(P) = 1− λ2(P), the spectral gap of P [−1, 1]

F A set of points ⊂ H HN

C(F ) The shortest Hamiltonian path (TSP) amongst points of set F ⊂ H
T (F,H) The length of C(F ) R+

T (F,R) For any set R ⊆ H, T (F,R) := T (F ∩R,H) R+

2.2 Variable density sampling and its theoretical founda-

tions

To the best of our knowledge, there is currently no rigorous de�nition of variable density

sampling. Hence, to �ll this gap, we provide a precise de�nition below.
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De�nition 2.1. Let p be a probability measure de�ned on a measurable space Ξ. A

stochastic process X = {Xi}i∈N or X = {Xt}t∈R+ on state space Ξ is called a p-variable

density sampler if its empirical measure (or occupation measure) weakly converges to p

almost surely, that is:

1

N

N∑
i=1

f(Xi)→ p(f) a.s.

or

1

T

∫ T

t=0
f(Xt)dt→ p(f) a.s.

for all continuous bounded f .

Example 2.1. In the case where X = (Xi)i∈N is a discrete time stochastic process with

discrete state space Ξ = {1, . . . , n}, de�nition 2.1 can be slightly simpli�ed. Let us set

ZNj =
1

N

N∑
i=1

1Xi=j. The random variable ZNj represents the proportion of points that

fall on position j. Let p denote a discrete probability distribution function. Using these

notations, X is a p-variable density sampler if:

lim
N→+∞

ZNj = pj a.s.

In particular, if (Xi)i∈N are i.i.d. samples drawn from p, then X is a p-variable density

sampler. This simple example is the most commonly encountered in the compressed

sensing literature and we will review its properties in paragraph 2.2.1.

Example 2.2. More generally, drawing independent random variables according to dis-

tribution p is a VDS if the space Ξ is second countable, owing to the strong law of large

numbers.

Example 2.3. An irreducible aperiodic Markov chain on a �nite sample space is a VDS

for its stationary distribution (or invariant measure); see Section 2.3.3.

Example 2.4. In the deterministic case, for a dynamical system, de�nition 2.1 closely

corresponds to the ergodic hypothesis, that is time averages are equal to expectations over

space. We discuss an example that makes use of the TSP solution in section 2.4.

The following proposition directly relates the VDS concept to the time spent by the pro-

cess in a part of the space, as an immediate consequence of the porte-manteau lemma (see

e.g. (Billingsley, 2009)).

Proposition 2.2. Let p denote a Borel measure de�ned on a set Ξ. Let B ⊆ Ξ be a

measurable set. Let X : R+ → Ξ (resp. X : N → Ξ) be a stochastic process. Let µ
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denote the Lebesgue measure on R. De�ne µtX(B) = 1
tµ({s ∈ [0, t], X(s) ∈ B}) (resp.

µnX(B) = 1
n

∑n
i=1 1X(i)∈B). Then, the following two propositions are equivalent:

(i) X is a p-VDS

(ii) Almost surely, ∀B ⊆ Ξ a Borel set with p(∂B) = 0,

lim
t→+∞

µtX(B) = p(B) a.s.

(resp.) lim
n→+∞

µnX(B) = p(B) a.s.

Remark 2.3. De�nition 2.1 is a generic de�nition that encompasses both discrete and

continuous time and discrete and continuous state space since Ξ can be any measurable

space. In particular, the recent CS framework on orthogonal systems (Rauhut, 2010;

Candès and Plan, 2011) falls within this de�nition.

De�nition 2.1 does not encompass some useful sampling strategies. We propose a def-

inition of a generalized VDS, which encompasses stochastic processes indexed over a

bounded time set.

De�nition 2.4. A sequence {{X(n)
t }06t6Tn}n∈N is a generalized p-VDS if the sequence

of occupation measures converges to p almost surely, that is:

1

Tn

∫ Tn

t=0
f(X

(n)
t )dt→ p(f) a.s.

Remark 2.5. Let (Xt)t∈R be a VDS, and (Tn)n∈N be any positive sequence such that

Tn →∞. Then the sequence de�ned by X(n)
t = Xt for 0 6 t 6 Tn is a generalized VDS.

Example 2.5. Let Ξ = R2, and consider r : [0, 1] 7→ R+ a strictly increasing smooth

function. We denote by r−1 : [r(0), r(1)] → R its inverse function and by ˙r−1 the

derivative of r−1. Consider a sequence of spiral trajectories sN : [0, N ]→ R2 de�ned by

sN (t) = r
( t
N

)(cos(2πt)

sin(2πt)

)
. Then sN is a generalized VDS for the distribution p de�ned

by:

p(x, y) =


˙r−1
(√

x2+y2
)

2π
∫ r(1)
ρ=r(0)

˙r−1(ρ)ρdρ
if r(0) 6

√
x2 + y2 6 r(1)

0 otherwise

A simple justi�cation is that the time spent by the spiral in the in�nitesimal ring {(x, y) ∈
R2, ρ 6

√
x2 + y2 6 ρ+ dρ} is

∫ r−1(ρ+dρ)
r−1(ρ)

dt ∝ ˙r−1(ρ).
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2.2.1 Theoretical foundations - Independent VDS

CS theories provide strong theoretical foundations of VDS based on independent draw-

ings. In this paragraph, we recall a typical result that motivates independent drawing

in the `1 recovery context (Rauhut, 2010; Foucart and Rauhut, 2013; Candès and Plan,

2011; Krahmer and Ward, 2014; Chau�ert et al., 2013b; Bigot et al., 2013; Adcock et al.,

2013). Using the notation de�ned in the introduction, let us give a slightly modi�ed

version of (Rauhut, 2010, Theorem 4.2).

Theorem 2.6. Let p = (p1, . . . , pn) denote a probability distribution on {1, . . . , n} and
Ω ⊂ {1, . . . , n} denote a random set obtained by m independent drawings with respect

to distribution p. Let S ∈ {1, . . . , n} be an arbitrary set of cardinality s. Let x be an

s-sparse vector with support S such that the signs of its non-zero entries is a Rademacher

or Steinhaus sequence2. De�ne:

K(A, p) := max
k∈{1...n}

‖ak‖2∞
pk

(2.2)

Assume that:

m > CK(A, p)s ln2

(
6n

η

)
(2.3)

where C ≈ 26.25 is a constant. Then, with probability 1 − η, vector x is the unique

solution of the `1 minimization problem (2.1).

Remark 2.7. Candès and Plan have stated stronger results in the case of real matrices

in (Candès and Plan, 2011). Namely, the number of necessary measurements was de-

creased to O(s log(n)), with lower constants and without any assumption on the vector

signs. Their results have been derived using the so-called �gol�ng scheme� proposed

in (Gross, 2011). It is likely that these results could be extended to the complex case,

however it would not change the optimal distribution which is the main point of this

paper. We thus decided to stick to Theorem 2.6.

The choice of an accurate distribution p is crucial since it directly impacts the number of

measurements required. In the MRI community, a lot of heuristics have been proposed so

far to identify the best sampling distribution. In the seminal paper on CS-MRI (Lustig

et al., 2007), Lustig et al have proposed to sample the k-space using a density that

polynomially decays towards high frequencies. More recently, Knoll et al have generalized

this approach by inferring the best exponent from MRI image databases (Knoll et al.,

2011). It is actually easy to derive the theoretically optimal distribution, i.e. the one

2A Rademacher (resp. Steinhaus) random variable is uniformly distributed on {−1; 1} (resp. on the
torus {z ∈ C; |z| = 1}).
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that minimizes the right hand-side in (2.3) as shown in Proposition 2.8, introduced

in (Chau�ert et al., 2013b).

Proposition 2.8. Denote by K∗(A) := min
p∈∆n

K(A, p).

(i) the optimal distribution π ∈ ∆n that minimizes K(A, p) is:

πi =
‖ai‖2∞∑n
i=1 ‖ai‖2∞

(2.4)

(ii) K∗(A) = K(A, π) =
∑n

i=1 ‖ai‖2∞.

Proof. (i) Taking p = π, we get K(A, π) =
∑n

i=1 ‖ai‖2∞. Now assume that q 6= π,

since
∑n

k=1 qk =
∑n

k=1 πk = 1, ∃j ∈ {1, . . . , n} such that qj < πj . Then K(A, q) >

‖aj‖2∞/qj > ‖aj‖2∞/πj =
∑n

i=1 ‖ai‖2∞ = K(A, π). So, π is the distribution that

minimizes K(A, p).

(ii) This equality is a consequence of π's de�nition.

The theoretical optimal distribution only depends on the acquisition matrix, i.e. on the

acquisition and sparsifying bases. For instance, if we measure some Fourier frequencies

of a sparse signal in the time domain (a sum of diracs), we should sample the frequencies

according to a uniform distribution, since ‖ai‖∞ = 1/
√
n for all 1 6 i 6 n. In this

case, K∗(F) = 1 and the number of measurements m is proportional to s, which is in

accordance with the seminal paper by Candès et al. (Candès et al., 2006a).

Independent drawings in MRI

In the MRI case, the images are usually assumed sparse (or at least compressible) in a

wavelet basis, while the acquisition is performed in the Fourier space. In this setting, the

acquisition matrix can be written as A = F∗Ψ. In that case, the optimal distribution

only depends on the choice of the wavelet basis. The optimal distributions in 2D and 3D

are depicted in Fig. 2.2(a)-(b), respectively if we assume that the MR images are sparse

in the Symmlet basis with 3 decomposition levels in the wavelet transform.

Let us mention that similar distributions have been proposed in the literature. First, an

alternative to independent drawing was proposed by Puy et al. (Puy et al., 2011). Their

approach consists in selecting or not a frequency by drawing a Bernoulli random variable.
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(a) (b)

Figure 2.2: Optimal distribution π for a Symmlet-10 tranform in 2D (a) and a
maximal projection of the optimal distribution in 3D (b).

Its parameter is determined by minimizing a quantity that slightly di�ers from K(A, p).

Second, Krahmer and Ward (Krahmer and Ward, 2014) tried to unify theoretical results

and empirical observations in the MRI framework. For Haar wavelets, they have shown

that a polynomial distribution on the 2D k-space which varies as 1/(k2
x + k2

y) is close to

the optimal solution since it veri�es K(A, p) = O(log(n)). Our numerical experiments

have con�rmed that a decay as a power of 2 is near optimal in 2D.

In the next section, we improve the existing theories by showing that a deterministic

sampling of highly coherent vectors (i.e. those satisfying ‖ai‖2∞ � 1
n) may decrease the

total number of required measurements. In MRI, this amounts to fully sampling the low

frequencies, which exactly matches what has been done heuristically hitherto.

2.2.2 Mixing deterministic and independent samplings

In a recent work (Chau�ert et al., 2013b), we observed and partially justi�ed the fact

that a deterministic sampling of the low frequencies in MRI could drastically improve re-

construction quality. The following theorem proven in Appendix 1 provides a theoretical

justi�cation to this approach.

Theorem 2.9. Let S ∈ {1, . . . , n} be a set of cardinality s. Let x be an s-sparse vector

with support S such that the signs of its non-zero entries is a Rademacher or Steinhaus

sequence. De�ne the acquisition set Ω ⊆ {1, . . . n} as the union of:

(i) a deterministic set Ω1 of cardinality m1.
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(ii) a random set Ω2 obtained by m2 independent drawing according to distribution p

de�ned on {1 . . . n} \ Ω1.

Denote m = m1 +m2, Ωc
1 = {1, . . . , n} \ Ω1 and let Ω = Ω1 ∪ Ω2. Assume that:

m > m1 + CK(AΩc1
, p)s ln2

(
6n

η

)
(2.5)

where C = 7/3 is a constant, and K(AΩc1
, p) = max

i∈{1,...,n}\Ω1

‖ai‖2∞
pi

. Then, with probabil-

ity 1− η, vector x is the unique solution of the `1 minimization problem (2.1).

This result implies that there exists an optimal partition between deterministically and

randomly selected samples, which is moreover easy to compute. For example, consider

the optimal distribution pi ∝ ‖ai‖2∞, then K∗(AΩc1
) =

∑
i∈{1,...,n}\Ω1

‖ai‖2∞. If the mea-

surement matrix contains rows with large values of ‖ai‖∞, we notice from inequality (2.5)

that these frequencies should be sampled deterministically, whereas the rest of the mea-

surements should be obtained from independent drawings. This simple idea is another

way of overcoming the so-called coherence barrier (Krahmer and Ward, 2014; Adcock

et al., 2013).

A striking example raised in (Bigot et al., 2013) is the following. Assume that A =(
1 0

0 F∗n−1

)
. The assumed optimal independent sampling strategy would consist in

independently drawing the rows with distribution p1 = 1/2 and pk = 1/
√
n− 1 for k > 2.

According to Theorem 2.6, the number of required measurements is 2Cs ln2
(

6n
η

)
. The

alternative approach proposed in Theorem 2.9 basically performs a deterministic drawing

of the �rst row combined with an independent uniform drawing over the remaining rows.

In total, this scheme requires 1+Cs ln2
(

6n
η

)
measurements and thus reduces the number

of measurements by almost a factor 2. Note that the same gain would be obtained by

using independent drawings with rejection.

Mixed deterministic and independent sampling in MRI

In our experiments, we will consider wavelet transforms with three decomposition levels

and the Symmlet basis with 10 vanishing moments. Fig. 2.3(a)-(b) shows the modulus of

A's entries with a speci�c reordering in (b) according to decaying values of ‖ai‖∞. This
decay is illustrated in Fig. 2.3(c). We observe that a typical acquisition matrix in MRI

shows large di�erences between its ‖ai‖∞ values. More Precisely, there is a small number
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of rows with a large in�nite norm, sticking perfectly to the framework of Theorem 2.9.

This observation justi�es the use of a partial deterministic k-space sampling, which had

already been used in (Lustig et al., 2007; Chau�ert et al., 2013b). In Fig. 2.3(d), the

set Ω1 is depicted for a �xed number of deterministic samples m1, by selecting the rows

with the largest in�nite norms.

(a) (b) (c) (d)

Figure 2.3: (a): Absolute magnitudes of A for a 2D Symmlet basis with 10 vanishing
moments and 3 levels of decomposition. (b): same quantities as in (a) but sorted by
decaying ‖ai‖∞ (i.e. by decreasing order). (c): decay of ‖ai‖∞. (d): Set Ω1 depicted

in the 2D k-space.

Hereafter, the strategy we adopt is driven by the previous remarks. All our sampling

schemes are performed according to Theorem. 2.9: a deterministic part is sampled, and

a VDS is performed on the rest of the acquisition space (e.g. the high frequencies in

MRI).

2.3 Variable density samplers along continuous curves

2.3.1 Why independent drawing can be irrelevant

In many imaging applications, the number of samples is of secondary importance com-

pared to the time spent to collect the samples. A typical example is MRI, where the

important variable to control is the scanning time. It depends on the total length of the

pathway used to visit the k-space rather than the number of collected samples. MRI is

not an exception and many other acquisition devices have to meet such physical con-

straints amongst which are scanning probe microscopes, ultrasound imaging, ecosystem

monitoring, radio-interferometry or sampling using vehicles subject to kinematic con-

straints (Willett., 2011). In these conditions, measuring isolated points is not relevant

and existing practical CS approaches consist in designing parametrized curves perform-

ing a variable density sampling. In what follows, we �rst review existing variable density
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sampling approaches based on continuous curves. Then, we propose two original con-

tributions and analyze some of their theoretical properties. We mostly concentrate on

continuity of the trajectory which is not su�cient for implementability in many applica-

tions. For instance, in MRI the actual requirement for a trajectory to be implementable

is piecewise smoothness. More realistic constraints are discussed in Section 2.6.

2.3.2 A short review of samplers along continuous trajectories

The prototypical variable density samplers in MRI were based on spiral trajectories (Spiel-

man et al., 1995). Similar works investigating di�erent shapes and densities from a

heuristic point of view were proposed in (Tsai and Nishimura, 2000; Kim et al., 2003;

Park et al., 2005). The �rst reference to compressed sensing appeared in the seminal

paper (Lustig et al., 2007). In this work, Lustig et al have proposed to perform inde-

pendent drawings in a 2D plane (de�ned by the partition and phase encoding directions)

and sample continuously along the orthogonal direction to design piecewise continuous

schemes in the 3D k-space (see Fig. 2.4). These authors have also suggested to make

use of randomly perturbed spirals. The main advantage of these schemes lies in their

simplicity of practical implementation since they only require minor modi�cations of

classical MRI acquisition sequences.

(a) (b)

Figure 2.4: Classical CS-MRI strategy. (a): 2D independent sampling according to
a distribution π. (b): measurements performed in the orthogonal readout direction.

Recent papers (Polak et al., 2012a; Bigot et al., 2013; Boyer et al., 2014) have generalized

CS results from independent drawing of isolated measurements to independent drawings

of blocks of measurements. In these contributions, the blocks can be chosen arbitrarily

and may thus represent continuous trajectories. Interestingly, these authors have pro-

vided closed form expressions for the optimal distribution on the block set. Nevertheless,

this distribution is very challenging to compute in large scale problems. Moreover, the
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restriction to sets of admissible blocks reduces the versatility of many devices such as

MRI and can therefore impact the image reconstruction quality.

In many applications the length of the sampling trajectory is more critical than the num-

ber of acquired samples, therefore, �nding the shortest pathway amongst random points

drawn independently has been studied as a way of designing continuous trajectories (Wil-

lett., 2011; Wang et al., 2012). Since this problem is NP-hard, one usually resorts to a

TSP solver to get a reasonable suboptimal trajectory. To the best of our knowledge, the

only practical results obtained using the TSP were given by Wang et al (Wang et al.,

2012). In this work, the authors did not investigate the relationship between the initial

sample locations and the empirical measure of the TSP curve. In Section 2.4, it is shown

that this relationship is crucial to make e�cient TSP-based sampling schemes.

In what follows, we �rst introduce an original sampler based on random walks on the ac-

quisition space and then analyse its asymptotic properties. Our theoretical investigations

together with practical experiments allows us to show that the VDS mixing properties

play a central role to control its e�ciency. This then motivates the need for more global

VDS schemes.

2.3.3 Random walks on the acquisition space

Perhaps the simplest way to transform independent random drawings into continuous

random curves consists in performing random walks on the acquisition space. Here, we

discuss this approach and provide a brief analysis of its practical performance in the

discrete setting. Through both experimental and theoretical results, we show that this

technique is doomed to fail. However, we believe that this theoretical analysis provides

a deep insight on what VDS properties characterize its performance.

Let us consider a time-homogeneous Markov chain X = (Xn)n∈N on the set {1, . . . , n}
and its transition matrix denoted P ∈ Rn×n. If X possesses a stationary distribution,

i.e. a row vector p ∈ Rn such that p = pP then, by de�nition, X is a p-variable density

sampler.

2.3.3.1 Construction of the transition matrix P

A classical way to design a transition kernel ensuring that (i) p is the stationary dis-

tribution of the chain and (ii) the trajectory de�ned by the chain is continuous, is the

Metropolis algorithm (Hastings, 1970). For a pixel/voxel position i in the 2D/3D ac-

quisition space, let us de�ne by N (i) ⊆ {1, . . . , n} its neighbourhood, i.e. the set of

possible measurement locations allowed when staying on position i. Let |N (i)| denote
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the cardinal of N (i) and de�ne the proposal kernel P∗ as P∗i,j = |N (i)|−1δj∈N (i). The

Metropolis algorithm proceeds as follows:

1. from state i, draw a state i∗ with respect to the distribution P∗i,:.

2. accept the new state i∗ with probability:

q(i, i∗) = min

(
1,
p(i∗)P∗i∗,i
p(i)P∗i,i∗

)
. (2.6)

Otherwise stay in state i.

The transition matrix P can then be de�ned by Pi,j = q(i, j)P∗i,j for i 6= j. The diagonal

is de�ned in a such a way that P is a stochastic matrix. It is easy to check that p is an

invariant distribution for this chain3. It is worth noticing that if the chain is irreducible

positive recurrent (which is ful�lled if the graph is connected and the distribution p

positive), the ergodic theorem ensures that X is a p-VDS.

Unfortunately, trajectories designed by this technique leave huge parts of the acquisition

space unexplored (see Fig. 2.5 (a)). To circumvent this problem, we may allow the

chain to jump to independent locations over the acquisition space. Let P̃ be the Markov

kernel corresponding to independent drawing with respect to p, i.e. P̃i,j = pj for all

1 6 i, j 6 n. De�ne:

P(α) = (1− α)P + αP̃ ∀ 0 6 α 6 1. (2.7)

Then the Markov chain associated with P(0) corresponds to a continuous random walk,

while the Markov chain associated with P(α), α > 0 has a nonzero jump probability.

This means that the trajectory is composed of continuous parts of average length 1/α.

2.3.3.2 Example

In Fig. 2.5, we show illustrations in the 2D MRI context where the discrete k-space is

of size 64 × 64. On this domain, we set a distribution p which matches distribution π

in Fig. 2.2 (a). We perform a random walk on the acquisition space until 10% of the

coe�cients are selected. In Fig. 2.5(a), we set α = 0 whereas α = 0.1 in Fig. 2.5(b). As

expected, α = 0 leads to a sampling pattern where large parts of the k-space are left

unvisited. The phenomenon is partially corrected using a nonzero value of α.

3If the neighboring system is such that the corresponding graph is connected, then the invariant
distribution is unique.
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(a) (b)

Figure 2.5: Example of sampling trajectories in 2D MRI. (a) (resp. (b)): 2D sampling
scheme of the k-space with α = 0 (resp. α = 0.1). Drawings are performed until 10%

of the coe�cients are selected (m = 0.1n).

Remark 2.10. Performing N iterations of the Metropolis algorithm requires O(N) com-

putations leading to a fast sampling scheme design procedure. In our experiments, we

iterate the algorithm until m di�erent measurements are probed. Therefore, the num-

ber of iterations N required increases non linearly with respect to m, and can be time

consuming especially when R = m/n is close to 1. This is not a tough limitation of the

method since the sampling scheme is computed o�-line.

2.3.3.3 Compressed sensing results

Let us assume4 that P(X1 = i) = pi and that Xi is drawn using P as a transition matrix.

The following result provides theoretical guarantees about the performance of the VDS

X:

Proposition 2.11 (see (Chau�ert et al., 2013c)). Let Ω := X1, . . . , Xm ⊂ {1, . . . , n}
denote a set of m indexes selected using the Markov chain X.

Then, with probability 1− η, if

m >
12

ε(P)
K2(A, p)s2 log(2n2/η), (2.8)

every s-sparse signal x is the unique solution of the `1 minimization problem.

The proof of this proposition is given in Appendix 2. Before going further, some remarks

may be useful to explain this theoretical result.

4By making this assumption, there is no burn-in period and the chain X converges more rapidly to
its stationary distribution p.
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Remark 2.12. Since the constant K2(A, p) appears in Eq. (2.8), the optimal sampling

distribution using Markov chains is also distribution π, as proven in Proposition 2.8.

Remark 2.13. In contrast to Theorem 2.6, Proposition 2.11 provides uniform results, i.e.

results that hold for all s-sparse vectors.

Remark 2.14. Ineq. 2.8 su�ers from the so-called quadratick bottleneck (i.e. anO(s2 log(n))

bound). It is likely that this bound can be improved to O(s log(n)) by developing new

concentration inequalities on matrix-valued Markov chains.5

Remark 2.15. More importantly, it seems however unlikely to avoid the spectral gap

O(1/ε(P )) using the standard mechanisms for proving compressed sensing results. In-

deed, all concentration inequalities obtained so far on Markov chains (see e.g. (Lezaud,

1998; Kargin, 2007; Paulin, 2012a)) depend on 1/ε(P ). The spectral gap satis�es

0 < ε(P ) 6 1 and corresponds to mixing properties of the chain. The closer the spec-

tral gap to 1, the fastest ergodicity is achieved. Roughly speaking, if |i − j| > 1/ε(P )

then Xi and Xj are almost independent random variables. Unfortunately, the spectral

gap usually depends on the dimension n (Diaconis and Stroock, 1991). In our exam-

ple, it can be shown using Cheeger's inequality that ε(P ) = O
(
n−

1
d

)
if the stationary

distribution π is uniform (see Appendix 3). This basically means that the number of

measurements necessary to accurately reconstruct x could be as large as O(sn1/d log(n)),

which strongly limits the interest of this CS approach. The only way to lower this number

consists in frequently jumping since Weyl's theorem (Horn and Johnson, 1991) ensures

that ε(P (α)) > α.

To sum up, the main drawback of random walks lies in their inability to cover the

acquisition space quickly since they are based on local considerations. Keeping this in

mind, it makes sense to focus on more global displacement strategies that allow a faster

exploration of the whole acquisition domain. In the next section, we thus introduce this

global sampling alternative based on TSP-solver. Our main contribution is the derivation

of the link between a prescribed a priori sampling density and the distribution of samples

located on the TSP solution so as to eventually get a VDS.

2.4 Travelling salesman-based VDS

In order to design continuous trajectories, we may think of picking points at random and

join them using a travelling salesman problem (TSP) solver. Hereafter, we show how

to draw the initial points in order to reach a target distribution p. In this section, the

probability distribution p is assumed to be a density.

5In chapter 3, we provide an improvement of the theorem that breaks the quadratick bottleneck (see
proposition 3.11, page 76).
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2.4.1 Introduction

The naive idea would consist in drawing some points according to the distribution p and

joining them using a TSP solver. Unfortunately, the trajectory which results from joining

all samples does not �t the distribution p, as shown in Fig. 2.6(b)-(d). To bring evidence

to this observation, we performed a Monte Carlo study, where we drew one thousand

sampling schemes, each one designed by solving the TSP on a set of independent random

samples. We notice in Fig. 2.6 (d) that the empirical distribution of the points along the

TSP curve, hereafter termed the �nal distribution, departs from the original distribution

p. A simple intuition can be given to explain this discrepancy between the initial and

�nal distributions in a d-dimensional acquisition space. Consider a small subset of the

acquisition space ω. In ω, the number of points is proportional to p. The typical distance

between two neighbors in ω is then proportional to p−1/d. Therefore, the local length of

the trajectory in ω is proportional to pp−1/d = p1−1/d 6= p. In what follows, we will show

that the empirical measure of the TSP solution converges to a measure proportional to

p1−1/d.

2.4.2 De�nitions

We shall work on the hypercube H = [0, 1]d with d > 2. In what follows, {xi}i∈N∗
denotes a sequence of points in the hypercube H, independently drawn from a density

p : H 7→ R+. The set of the �rst N points is denoted XN = {xi}i6N .

Using the de�nitions introduced in Tab. 2.1, we introduce γN : [0, 1] → H the function

that parameterizes C(XN ) by moving along it at constant speed T (XN ,H). Then, the

distribution of the TSP solution reads as follows:

De�nition 2.16. The distribution of the TSP solution is denoted P̃N and de�ned, for

any Borelian B in H by:

P̃N (B) = λ[0,1]

(
γ−1
N (B)

)
.

Remark 2.17. The distribution P̃N is de�ned for �xed XN . It makes no reference to the

stochastic component of XN .

Remark 2.18. A more intuitive de�nition of P̃N can be given if we introduce other

tools. For a subset ω ⊆ H, we denote the length of C(XN ) ∩ ω as T|ω(XN ,H) =

T (XN ,H)P̃N (ω). Using this de�nition, it follows that:

P̃N (ω) =
T|ω(XN ,H)

T (XN ,H)
, ∀ω. (2.9)
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Then P̃N (ω) is the relative length of the curve inside ω.

2.4.3 Main results

Our main theoretical result introduced in (Chau�ert et al., 2013a) reads as follows:

Theorem 2.19. De�ne the density p̃ =
p(d−1)/d∫

H p
(d−1)/d(x)dx

where p is a density de�ned

on H. Then almost surely with respect to the law p⊗N of the random points sequence

{xi}i∈N∗ in H, the distribution P̃N converges in distribution to p̃:

P̃N
(d)→ p̃ p⊗N-a.s. (2.10)

The proof of the theorem is given in Appendix 4.

Remark 2.20. The TSP solution does not de�ne as such a VDS, since the underlying

process is �nite in time. Nevertheless, since P̃N is the occupation measure of γN , the

following result holds:

Corollary 2.21. (γN )N∈N is a generalized p̃ VDS.

Remark 2.22. The theorem indicates that if we want to reach distribution p in 2D, we

have to draw the initial points with respect to a distribution proportional to p2, and

to p3/2 in 3D. Akin to the previous Monte Carlo study illustrating the behavior of the

naive approach in Fig. 2.6 (top row), we repeated the same procedure after having taken

this result into account. The results are presented in Fig. 2.6(e)-(g), in which it is shown

that the �nal distribution now closely matches the original one (compare Fig. 2.6(g) with

Fig. 2.6(a)).

Remark 2.23. Contrarily to the Markov chain approach for which we derived compressed

sensing results in Proposition 2.11, the TSP approach proposed here is mostly heuristic

and based on the idea that the TSP solution curve covers the space rapidly. An argument

supporting this idea is the fact that in 2D, the TSP curve C(XN ) does not self-intersect.

This property is clearly lacking for random walks.

Remark 2.24. One of the drawback of this approach is the TSP's NP-hardness. We

believe that this is not a real problem. Indeed, there now exist very e�cient approximate

solvers such as the Concorde solver (Applegate et al., 2006). It �nds an approximate

solution with 105 cities from a few seconds to a few hours depending on the required

accuracy of the solution. The computational time of the approximate solution is not

a real limitation since the computation is done o�-line from the acquisition procedure.

Moreover, many solvers are actually designed in such a way that their solution also ful�l
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(b) (c) (d)

(a)

(e) (f) (g)

Figure 2.6: Illustration of the TSP-based sampling scheme to reach distribution π.
(a): distribution π. (b) (resp. (e)): independent drawing of points from distribution π
(resp. ∝ π2). (c) (resp (f)): solution of the TSP amongst points of (b) (resp. (e)) . (d)
and (g): Monte Carlo study: average scheme over one thousand drawings of sampling

schemes, with the same color scale as in (a).

Theorem. 2.19. For example, in 2D, to reach a sampling factor of R = 5 on a 256× 256

image, one need N ' 104 cities, and an approximate solution is obtained in 142s. In 3D,

for a 256×256×256 image, N ' 9 105 and an approximate solution is obtained in about

4 hours. In each case the solutions seem to be correctly approximated. In particular

they do not self-intersect in 2D.

2.5 Experimental results in MRI

In this section, we focus on the reconstruction results by minimizing the `1 problem (2.1)

with a simple MRI model: A = F∗Ψ, where Ψ denote the inverse Symmlet-10 trans-

form6. The solution is computed using Douglas-Rachford's algorithm (Combettes and

Pesquet, 2011). We consider an MR image of size 256 × 256 × 256 as a reference, and

perform reconstruction for di�erent discrete sampling strategies. Every sampling scheme

was regridded using a nearest neighbour approach to avoid data interpolation.7

6We focused on `1 reconstruction since it is central in the CS theory. The reconstruction quality can
be improved by considering more a priori knowledge on the image. Moreover we considered a simple MRI
model, but our method can be extended to parallel MRI (Pruessmann et al., 1999), or spread-spectrum
techniques (Haldar et al., 2011; Puy et al., 2012a).

7We provide Matlab codes to reproduce the proposed experiments here:
http://chau�ertn.free.fr/codes.html
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2.5.1 2D-MRI

In 2D, we focused on a single slice of the MR image and considered its discrete Fourier

transform as the set of possible measurements. First, we found the best made a com-

parison of independent drawings with respect to various distributions in order to �nd

heuristically the best sampling density. Then we explored the performance of the two

proposed methods to design continuous schemes: random walks and Travelling Sales-

man Problem. We also compared our solution to classical MRI sampling schemes. In

every sampling schemes, the number of measurements is the same and equals 20% of

the number of pixels in the image, so that the sampling factor R is equal to 5. In cases

where the sampling strategy is based on randomness (VDS, random walks, TSP...), we

performed a Monte Carlo study by generating 100 sampling patterns for each variable

density sampler.

2.5.1.1 Variable density sampling using independent drawings

Here, we assessed the impact of changing the sampling distribution using independent

drawings. In all experiments, we sampled the Fourier space center deterministically as

shown on Figure 2.7.

Table 2.2: Quality of reconstruction results in terms of PSNR for 2D sampling with
variable density independent drawings.

π
polynomial decay: (k2

x + k2
y)
−d/2

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

mean PSNR (dB) 35.6 36.4 36.4 36.3 36.0 35.5 35.2
std dev. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Table 2.2 shows that the theoretically-driven optimal distribution π is outperformed

by the best heuristics. Amongst the latter, the distribution leading to the best re-

construction quality decays as 1/|k|2, which is the distribution used by Krahmer and

Ward (Krahmer and Ward, 2014) as an approximation of π for Haar wavelets. The stan-

dard deviation of the PSNR is negligible compared to the mean values and for a given

distribution, each reconstrucion PSNR equals its average value at the precision used in

Tab. 2.2.

2.5.1.2 Continuous VDS

In this part we compared various variable density samplers:
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• Random walks with a stationary distribution proportional to 1/|k|2 and di�erent

average chain lengths of 1/α,

• TSP-based sampling with distributions proportional to 1/|k|2 and π,

• Classical MRI sampling strategies such as spiral, radial and radial with random

angles. The choice of the spiral follows Example 2.5: the spiral is parameterized

by s : [0, T ] → R2, θ 7→ r(θ/T )

(
cos θ

sin θ

)
where r(t) := r(0)r(1)

r(1)−t(r(1)−r(0)) , so as the

spiral density decays as 1/|k|2.

The sampling schemes are presented in Fig. 2.7 and the reconstruction results in Tab. 2.3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7: 2D continuous sampling schemes based on random walks with α = .1 (a),
α = .01 (b), α = .001 (c), and based on TSP solutions with distributions proportional
to π (d) and to 1/|k|2 (e). Classical sampling schemes: spiral (f), radial (g) and radial

with random angles (h).

Table 2.3: Quality of reconstruction results in terms of PSNR for continuous sampling
trajectories.

Markovian drawing (α) TSP sampling
spiral radial

radial
0.1 0.01 0.001 ∝ π ∝ 1/|k|2 random

mean PSNR 35.7 34.6 33.5 35.6 36.1 35.6 34.1 33.1
std dev. 0.1 0.3 0.6 0.1 0.1 0.4
max value 36.0 35.1 34.8 35.9 36.2 34.0
in Fig. 2.7: (a) (b) (c) (d) (e) (f) (g) (h)
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As predicted by the theory, the shorter the chains the better the reconstructions. The

optimal case corresponds to chains of length 1 (α = 1) i.e. corresponding to indepen-

dent VDS. When the chain is too long, large k-space areas are left unexplored, and the

reconstruction quality decreases.

Besides, the use of a target distribution proportional to 1/|k|2 instead of π for TSP-based

schemes provides slightly better reconstruction results.

We also considered more classical sampling scheme. We observe that the spiral scheme

and the proposed ones provide more accurate reconstruction results than radial schemes.

We believe that the main reason underlying these di�erent behaviors is closely related

to the sampling rate decay from low to high frequencies, which is proportional to 1/|k|
for radial schemes.

2.5.2 3D-MRI

Since VDS based on Markov chains have shown rather poor reconstruction results com-

pared to the TSP-based sampling schemes in 2D simulations, we only focus on comparing

TSP-based sampling schemes to classical CS sampling schemes. Moreover, the compu-

tational load to treat 3D images being much higher than in 2D, we only perform one

drawing per sampling scheme in the following experiments. Experiments in 2D suggest

that the reconstruction quality is not really impacted by the realization of a particular

sampling scheme, except for drawing with Markov chains or with radial with random

angles, which are not considered in our 3D experiments.

2.5.2.1 Variable density sampling using independent drawings

The �rst step of the TSP-based approach is to identify a relevant target distribution.

For doing so, we consider independent drawings as already done in 2D. The results are

summarized in Tab. 2.4. In this experiment, we still use a number of measurements equal

to 20% of the total amount (R = 5).

Table 2.4: Quality of reconstruction results in terms of PSNR for sampling schemes
based on 3D variable density independent drawings, with densities ∝ 1/kd and π, and

with 20% of measured samples.

d 1 2 3 4 π

PSNR (dB) 44.78 45.01 44.56 44.03 42.94
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The best reconstruction result is achieved with d = 2 and not the theoretically optimal

distribution π. This illustrates the importance of departing from the sole sparsity hy-

pothesis under which we constructed π. Natural signals have a much richer structure.

For instance wavelet coe�cients tend to become sparser as the resolution levels increase,

and this feature should be accounted for to derive optimal sampling densities for natural

images (see Section 2.6.)

2.5.2.2 E�ciency of the TSP sampling based strategy

Let us now compare the reconstruction results using the TSP based method and the

method proposed in the original CS-MRI paper (Lustig et al., 2007). These two sampling

strategies are depicted in Fig. 2.8. For 2D independent drawings, we used the distribution

providing the best reconstruction results in 2D, i.e. proportional to 1/|k|2. The TSP-

based schemes were designed by drawing city locations independently with respect to a

distribution proportional to p
3
2 . According to Theorem 2.19 this is the correct way to

reach distribution p after joining the cities with constant speed along the TSP solution

path. The experiments were performed with p = π (see Fig. 2.2 (b)), and p ∝ 1/|k|2, since
the latter yielded the best reconstruction results in the 3D independent VDS framework.

We also compared these two continous schemes to 3D independent drawings with respect

to a distribution proportional to 1/|k|2.

Reconstruction results with an sampling rate R = 8.8 are presented in Fig. 2.10, with a

zoom on the cerebellum. The reconstruction quality using the proposed sampling scheme

is better than the one obtained from classical CS acquisition and contains less artifacts.

In particular, the branches of the cerebellum are observable with our proposed sampling

scheme only. At higher sampling rate, we still observe less artifacts with the proposed

schemes, as depicted in Fig. 2.11 with a sampling rate R = 14.9. Moreover, Fig. 2.9 shows

that our proposed method outperforms the method proposed in (Lustig et al., 2007) by

up to 2dB. If one aims at reaching a �xed PSNR, we can increase r by more than 50%

using the TSP based strategy. In other words, we could expect a substantial decrease of

scanning time by using more advanced sampling strategies than those proposed until to

now.

The two di�erent choices of the target density π and∝ 1/|k|2 provide similar results. This

is a bit surprising since 3D independent VDS with these two probability distributions

provide very di�erent reconstruction results (see Tab. 2.4). A potential explanation

for that behavior is that the TSP tends to �smooth out� the target distribution. An

independent drawing would collect very few Fourier coe�cients in the blue zones of

Fig. 2.2, notably the vertical and horizontal lines crossing the Fourier plane center.
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(a) (b)

(c) (d)

Figure 2.8: Compared sampling strategies in 3D-MRI.Top: 2D independent drawing
sampling schemes designed by a planar independent drawing and measurements in
the orthogonal readout direction. Bottom: 3D TSP-based sampling scheme. Left:

Schematic representation of the 3D sampling scheme. Right: Representations of 4
parallel slices.

Sampling these zones seems to be of utmost importance since they contain high energy

coe�cients. The TSP approach tends to sample these zones by crossing the lines.

Perhaps the most interesting fact is that Fig. 2.9 shows that the TSP based sampling

schemes provide results that are similar to independent drawings up to important sam-

pling rates such as 20. We thus believe that the TSP solution proposed in this paper is

near optimal since it provides results similar to unconstrained acquisition schemes. The

price to be paid by integrating continuity constraints is thus almost null.
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Figure 2.9: Quality of 3D reconstructed images in terms of PSNR as a function of
sampling rates R for various sampling strategies: independent drawings with respect
to distribution ∝ 1/|k|2 (dashed blue line), TSP-based sampling with target densities
π (black line) and ∝ 1/|k|2 (red line), and parallel lines with 2D independent drawing
with respect to ∝ 1/|k|2 distribution (green line) as depicted in Fig. 2.8[Top row].

2.6 Discussion and perspectives

In this paper, we investigated the use of variable density sampling along continuous tra-

jectories. Our �rst contribution was to provide a well-grounded mathematical de�nition

of p-variable density samplers (VDS) as stochastic processes with a prescribed limit em-

pirical measure p. We identi�ed through both theoretical and experimental results two

key features characterizing their e�ciency: their empirical measure as well as their

mixing properties. We showed that VDS based on random walks were doomed to fail

since they were unable to quickly cover the whole acquisition space. This led us to pro-

pose a two-step alternative that consists �rst of drawing random points independently

and then joining them using a Travelling Salesman Problem solver. In contrast to what

has been proposed in the literature so far, we paid attention to the manner the points

have to be drawn so as to reach a prescribed empirical measure. Strikingly, our numerical

results suggest that the proposed approach yields reconstruction results that are nearly

equivalent to independent drawings. This suggests that adding continuity constraints to

the sampling schemes might not be so harmful to derive CS results.

We believe that the proposed work opens many perspectives as outlined in what follows.

How to select the target density? We recalled existing theoretical results to address

this point in Section 2.2 and showed that deterministic sampling could reduce the total
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(a) (b)

(c) (d)

Figure 2.10: Reconstruction results for R = 8.8 for various sampling strategies.
Top row: TSP-based sampling schemes (PSNR=42.1 dB). Bottom row: 2D random
drawing and acquisitions along parallel lines (PSNR=40.1 dB). Sagital view (left) and

zoom on the cerebellum (right).

number of required measurements. The analysis we performed closely followed the proofs

proposed in (Rauhut, 2010; Candès and Plan, 2011) and was based solely on sparsity

hypotheses on the signal/image to be reconstructed. The numerical experiments we

performed indicate that heuristic densities still outperform the theoretical optimal ones.

This suggests that the optimality critera used so far to derive target sampling densities

does not account for the whole structure of the sought signal/image. Although sparsity

is a key feature that characterizes natural signals/images, we believe that introducing

stronger knowledge like structured sparsity might contribute to derive a new class of

optimal densities that would compete with heuristic densities.

To the best of our knowledge, the recent paper (Adcock et al., 2013) is the �rst contribu-

tion that addresses the design of sampling schemes by accounting for a simple structured

sparsity hypothesis. The latter assumes that wavelet coe�cients become sparser as the
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(a) (b)

Figure 2.11: Reconstruction results for R = 14.9 for various sampling strategies.
Left: TSP-based sampling schemes (PSNR=39.8 dB). Right: 2D random drawing

and acquisitions along parallel lines (PSNR=38.3 dB).

resolution increases. The main conclusion of the authors is the same as that of Theo-

rem 2.9 even though it is based on di�erent arguments: the low frequencies of a signal

should be sampled deterministically.

Finally, let us notice that the best empirical convex reconstruction techniques do not rely

on the resolution of a simple `1 problem such as (2.1). They are based on regularization

with redundant frames and total variation for instance (Boyer et al., 2012). The signal

model, the target density and the reconstruction algorithm should clearly be considered

simultaneously to make a substantial leap on reconstruction guarantees.

What VDS properties govern their practical e�ciency? In Section 2.3, it was

shown that the key feature characterizing random walks e�ciency was the mixing prop-

erties of the associated stochastic transition matrix. In order to derive CS results using

generic random sets rather than point processes or random walks, it seems important to

us to �nd an equivalent notion of mixing properties.

How to generate VDS with higher degrees of regularity? This is probably the

most important question from a practical point of view. We showed that the TSP based

VDS outperformed more conventional sampling strategies by substantial acceleration

factors for a given PSNR value or recovers 3D images at an improved PSNR for a given

acceleration factor. However, this approach may not really be appealing for many appli-

cations: continuity is actually not a su�cient condition for making acquisition sequences

implementable on devices like MRI scanners or robot motion where additional kinematic

constraints such as bounded �rst (gradients) and second (slew rate) derivatives should
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be taken into account. Papers such as (Lustig et al., 2008) derive time-optimal wave-

forms to cross a given curve using optimal control. By using this approach, it can be

shown that the angular points on the TSP trajectory have to be visited with a zero

speed. This strongly impacts the scanning time and the distribution of the parametrized

curve. The simplest strategy to reduce scanning time would thus consist in smoothing

the TSP trajectory, however this approach dramatically changes the target distribution

which was shown to be a key feature of the method. The key element to prove our TSP

Theorem 2.19 was the famous Beardwood, Halton and Hammersley theorem (Beardwood

et al., 1959). To the best of our knowledge, extending this result to smooth trajectories

remains an open question8. Recent progresses in that direction were obtained in recent

papers such as (Le Ny et al., 2012), but they do not provide su�cient guarantees to

extend Theorem 2.19. Answering this question is beyond the scope of this paper. We

believe that the work (Teuber et al., 2011) based on attraction and repulsion potentials

opens an appealing research avenue for solving this issue.

Appendix 1 - proof of Theorem 2.9

For a symmetric matrix M , we denote by λmax(M) its largest eigenvalue and by ‖M‖
the largest eigenvalue modulus. The crucial step to obtain Theorem 2.9 is Proposition

2.25 below. The rest of the proof is the same as the one proposed in (Rauhut, 2010) and

we refer the interested reader to (Rauhut, 2010, Section 7.3) for further details.

Proposition 2.25. Let Ω = Ω1∪Ω2 ⊆ {1, . . . , n} be a set constructed as in Theorem 2.9.

De�ne

ãi =

{
ai if i ∈ Ω1

ai/
√
pi if i ∈ {1 . . . n} \ Ω1.

and

Ã =



ãΩ1(1)

...

ãΩ1(m1)

1√
m2
ãΩ2(1)

...
1√
m2
ãΩ2(m2)


∈ Cm×n. (2.11)

8To be precise, many crucial properties of the length of the shortest path used to derive asymptotic
results are lost. The most important one is subadditivity (Steele, 1981).
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Then for all δ ∈ [0, 1
2 ]:

P
(∥∥∥ÃS∗ÃS − Is

∥∥∥ > δ
)
6 2s exp

(
− m2δ

2

CK2
2s

)
.

where ÃS ∈ Cm×s is the matrix composed of the s columns of Ã belonging to S. C = 7/3

is a constant.

The proof of this proposition relies heavily on the matrix Bernstein inequality below

(Tropp, 2012).

Proposition 2.26 (Matrix Bernstein inequality). Let Zk be a �nite sequence of indepen-

dent, random, self-adjoint matrices in Cd×d. Assume that each random matrix satis�es

E(Zk) = 0 and λmax(Zk) 6 R a.s.

Denote σ2 =
∥∥∥∑

k

E(Z2
k)
∥∥∥. Then, for all t > 0:

P
(∥∥∥∑

k

Zk

∥∥∥ > t
)
6 2d exp

(
− t2/2

σ2 +Rt/3

)
.

We are now ready to prove Proposition 2.25.

Proof. For any vector v ∈ Cn, denote by vS ∈ Cs the vector composed of the entries

of v belonging to S ⊆ {1, . . . , n}. Consider the random sequence X1, . . . , Xm2 where

Xi = j ∈ {1 . . . n} \ Ω1 with probability pj , and denote by Ω2 the set {X1, . . . Xm2}.
Denote by M1 :=

∑
i∈Ω1

aSi a
S
i
∗
. Consider the matrices Zj := M1+ãSj ã

S∗
j −Is. According

to Eq. (2.11), we get by construction:

ÃS∗ÃS − Is =
1

m2

∑
j∈Ω2

Zj .

Since Is =
∑n

i=1 a
S
i a

S
i
∗
, we notice that ∀i ∈ {1, . . . ,m2} (i) E(ZXi) = 0, (ii) E(ãSXi ã

S∗
Xi

) =

Is −M1. Moreover, we have (iii) 0 � Is −M1 � Is and (iv) 0 �M1 � Is.

Using the identity (ãSj ã
S∗
j )2 = ‖ãSj ‖2ãSj ãS∗j and the fact that ‖ãSi ‖ 6

√
s‖ãSi ‖∞, we get

E((ãSXi ã
S∗
Xi

)2) � K2
2s(Is −M1) using (ii). We can then proceed as follows using points
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(iii) to (iv):

E(Z2
Xi) = M2

1 − 2M1 + Is + E((ãSXi ã
S∗
Xi)

2) + 2M1E(ãSXi ã
S∗
Xi)− 2E(ãSXi ã

S∗
Xi)

≤ M2
1 − 2M1 + Is +K2

2s(Is −M1) + 2M1(Is −M1)− 2(Is −M1)

= −(Is −M1)2 +K2
2s(Is −M1)

� K2
2sIs.

Then ‖
m2∑
i=1

E(Z2
Xi)‖ 6 m2K

2
2s.

By noticing that ãSXi ã
S∗
Xi
− Is � ZXi � ãSXi ã

S∗
Xi
, we obtain ‖ZXi‖ 6 K2

2s. Finally, by

applying Bernstein inequality to the sequence of matrices ZX1 , . . .ZXm2
, we derive for

all t > 0:

P
(∥∥∥∑

j∈Ω2

Zj

∥∥∥ > t
)
6 2s exp

(
− t2/2

m2K2
2s+K2

2st/3

)
.

Plugging δ := t/m2, and noticing that δ 6 1/2 ⇒ 2(1 + δ/3) 6 2(1 + δ/3) 6 7/3, the

announced result is shown.

Appendix 2 - proof of Proposition 2.11

Our approach relies on the following perfect recovery condition introduced in (Juditsky

and Nemirovski, 2011):

Proposition 2.27 ((Juditsky and Nemirovski, 2011)). If AΩ ∈ Rm×n satis�es

γ(AΩ) = min
Y∈Rm×n

‖In −YTAΩ‖∞ <
1

2s
,

all s-sparse signals x ∈ Rn are recovered exactly by solving the `1 minimization prob-

lem (2.1).

We noted ‖A‖∞ the maximal modulus of all the entries of A. This can be seen as an

alternative to the mutual coherence (Donoho, 2006). We limit our proof to the real case

but it could be extended to the complex case using a slightly di�erent proof.

We aim at �nding Y ∈ Rm×n, such that ‖In−YTAΩ‖∞ < 1
2s , for a given positive integer

s, where AΩ is the sensing matrix de�ned in Proposition 2.11. Following (Juditsky et al.,

2011), we set Θi =
aia

T
i

pi
and use the decomposition In = ATA =

∑n
i=1 piΘi. We

consider a realization of the Markov chain X1, . . . , Xm , with X1 ∼ p and Xi ∼ PXi−1,:

for i > 1. Let us denote Wm = 1
m

∑m
l=1 ΘXl . Then Wm may be written as YTAΩ.
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Lemma 2.28. ∀ 0 < t 6 1,

P (‖In −Wm‖∞> t)6n(n+ 1)e
ε(P)

5 exp
(
− mt2ε(P)

12K2(A, p)

)
. (2.12)

Before proving the lemma, let �rst recall a concentration inequality for �nite-state

Markov chains (Lezaud, 1998).

Proposition 2.29. Let (P, p) be an irreducible and reversible Markov chain on a �nite

set G of size n with transition matrix P and stationary distribution p. Let f : G → R
be such that

∑n
i=1 pifi = 0, ‖f‖∞ 6 1 and 0 <

∑n
i=1 f

2
i pi 6 b2. Then, for any initial

distribution q, any positive integer m and all 0 < t 6 1,

P
( 1

m

m∑
i=1

f(Xi) > t
)
6 e

ε(P)
5 Nq exp

(
− mt2ε(P)

4b2(1 + g(5t/b2))

)

where Nq = (
∑n

i=1( qipi )
2pi)

1/2 and g is given by g(x) = 1
2(
√

1 + x− (1− x/2)).

Now, we can prove Lemma 2.28

Proof. By applying Proposition 2.29 to a function f and then to its opposite −f , we get:

P
(∣∣∣ 1

m

m∑
i=1

f(Xi)
∣∣∣ > t

)
6 2e

ε(P)
5 Nq exp

(
− mt2ε(P)

4b2(1 + g(5t/b2))

)
.

Then we set f(Xi) = (In − ΘXi)
(a,b)/K(A, p) as real-valued function. Recall that p

satis�es
∑n

i=1 pif(Xi) = 0. Since ‖f‖∞ 6 1, b = 1 and t 6 1, we deduce 1 + g(5t) < 3.

Moreover, since the initial distribution is p, qi = pi, ∀i and thus Nq = 1. Finally, resorting

to a union bound enables us to extend our result for the (a, b)th entry to the whole in�nite

norm of the n× n matrix In −Wm (2.12).

Finally, set s ∈ N∗ and η ∈ (0, 1). If m satis�es Ineq. (2.8), then

P
(
‖In −Wm‖∞ >

1

2s

)
< η .

In other words, with probability at least 1− η, every s-sparse signal can be recovered by

`1 minimization (2.1).

Remark 2.30. It is straightforward to derive a similar result to Theorem 2.9 and thus to

justify that a partial deterministic sampling reduces the total number of measurements

required for perfect recovery.
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Appendix 3 - proof of Remark 2.15

In this part, we prove that for a random walk with uniform stationary distribution p,

ε(P) = O(n−
1
d ). We use geometric bounds known as Cheeger's inequality in (Diaconis

and Stroock, 1991) and Conductance Bounds in (Jerrum and Sinclair, 1989; Brémaud,

1999). Let us recall a useful result concerning �nite state space irreducible reversible

transition matrices P.

The capacity of a set B ⊂ {1, . . . , n} is de�ned as p(B) :=
∑

i∈B p(i) and the ergodic

�ow out of B is de�ned by F (B) :=
∑

i∈B,j∈Bc p(i)Pi,j . The conductance of the pair

(P, p) is:

ϕ(P) := inf
B

(
F (B)

p(B)
; 0 < |B| < n, p(B) 6

1

2

)
.

Then the following result holds (see (Jerrum and Sinclair, 1989) and (Brémaud, 1999,

Theorem 4.3)):

Proposition 2.31.

ϕ(P)2

2
6 ε(P) 6 2ϕ(P).

Now, assume that n1/d ∈ N is even and construct a �nite graph with n nodes representing

a Euclidean grid of the unit hypercube of dimension d. Assume that the vertices of the

graph at one grid point are the 2d nearest nodes, with periodic boundary conditions (the

graph can be seen as a d-dimensional torus). Assume that the transition probability

is uniform over the neighbors, thus the stationary distribution is also the uniform one.

This graph is depicted in Fig. 2.12[Left], with d = 2.

Let B be the halved graph de�ned by the hyperplane parallel to an axis of the grid and

including its center, so that p(B) = 1/2. An illustration is given in 2D in Fig. 2.12[Right].

Since we assumed periodic boundary conditions, the number of nodes belonging to B

and having a neighbor in Bc is 2n(d−1)/d. Each of these nodes have 2d neighbors, but

only one belonging to Bc. Since the stationary distribution is equal to 1/n on each node,

the ergodic �ow is 2n(d−1)/d( 1
n

1
2d). It follows that ε(P) 6 4

dn
− 1
d .
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Figure 2.12: Illustration of the proof of Remark 2.15 in dimension 2. Left: regular
grid with n =

√
n×
√
n nodes. Right: Graph partitioning inB andBc with p(B) = 1/2.

Appendix 4 - proof of Theorem 2.19

Let h ∈ N. The set H = [0, 1]d will be partitioned in hd congruent hypercubes (ωi)i∈I of

edge length 1/h. The following proposition is central to obtain the proof:

Proposition 2.32. Almost surely, for all ωi in {ωi}1≤i≤hd :

lim
N→∞

P̃N (ωi) = p̃(ωi) (2.13)

=

∫
ωi
p(d−1)/d(x)dx∫

H p
(d−1)/d(x)dx

p⊗N-a.s. (2.14)

The strategy consists in proving that T|ωi(XN ,H) tends asymptotically to T (XN , ωi).

The estimation of each term can then be obtained by applying the asymptotic result of

Beardwood, Halton and Hammersley (Beardwood et al., 1959; Steele, 1981):

Theorem 2.33. If R is a Lebesgue-measurable set in Rd such that the boundary ∂R has

zero measure, and {yi}i∈N∗, with YN = {yi}i6N is a sequence of i.i.d. points from a

density p supported on R, then, almost surely,

lim
N→∞

T (YN , R)

N (d−1)/d
= β(d)

∫
R
p(d−1)/d(x)dx, (2.15)

where β(d) depends on the dimension d only.

To show Prop.2.32, we need to introduce the boundary TSP. For a set of points F and an

area R, we denote by TB(F,R) its length on the set F ∩R. The boundary TSP is de�ned

as the shortest Hamiltonian tour on F ∩ R for the metric obtained from the Euclidean
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metric by the quotient of the boundary of R, that is d(a, b) = 0 if a, b ∈ ∂R. Informally,

it matches the original TSP while being allowed to travel along the boundary for free.

We refer to (Frieze and Yukich, 2002) for a complete description of this concept.

We shall use a set of classical results on TSP and boundary TSP, that may be found in

the survey books (Frieze and Yukich, 2002) and (Yukich, 1998).

Lemma 2.34. Let F denote a set of n points in H.

1. The boundary TSP is superadditive, that is, if R1 and R2 have disjoint interiors.

TB(F,R1 ∪R2) > TB(F,R1) + TB(F,R2). (2.16)

2. The boundary TSP is a lower bound on the TSP, both globally and on subsets. If

R2 ⊂ R1:

T (F,R) > TB(F,R) (2.17)

T|R2
(F,R1) > TB(F,R2) (2.18)

3. The boundary TSP approximates well the TSP (Yukich, 1998, Lemma 3.7)):

|T (F,H)− TB(F,H)| = O(n(d−2)/(d−1)). (2.19)

4. The TSP in H is well-approximated by the sum of TSPs in a grid of hd congruent

hypercubes (Frieze and Yukich, 2002, Eq. (33)).

|T (F,H)−
hd∑
i=1

T (F, ωi)| = O(n(d−2)/(d−1)). (2.20)

We now have all the ingredients to prove the main results.
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Proof of Proposition 2.32.

∑
i∈I

TB(XN , ωi)
(2.16)

6 TB(XN ,H)

(2.17)

6 T (XN ,H) =
hd∑
i=1

T |ωi(XN ,H)

(2.20)

6
hd∑
i=1

T (XN , ωi) +O(N (d−1)/(d−2))

Let Ni be the number of points of XN in ωi.

Since Ni 6 N , we may use the bound (2.19) to get:

lim
N→∞

T (XN , ωi)

N (d−1)/d
= lim

N→∞

TB(XN , ωi)

N (d−1)/d
. (2.21)

Using the fact that there are only �nitely many ωi, the following equalities hold almost

surely:

lim
N→∞

∑hd

i=1 TB(XN , ωi)

N (d−1)/d
= lim

N→∞

∑hd

i=1 T (XN , ωi)

N (d−1)/d

(2.20)
= lim

N→∞

∑hd

i=1 T|ωi(XN ,H)

N (d−1)/d
.

Since the boundary TSP is a lower bound (cf. Eqs. (2.18)-(2.17)) to both local and global

TSPs, the above equality ensures that:

lim
N→∞

TB(XN , ωi)

N (d−1)/d
= lim

N→∞

T (XN , ωi)

N (d−1)/d
(2.22)

= lim
N→∞

T|ωi(XN ,H)

N (d−1)/d
p⊗N-a.s, ∀i.

Finally, by the law of large numbers, almost surely Ni/N → p(ωi) =
∫
ωi
p(x)dx. The law

of any point xj conditioned on being in ωi has density p/p(ωi). By applying Theorem

2.33 to the hypercubes ωi and H we thus get:

lim
N→+∞

T (XN , ωi)

N (d−1)/d
= β(d)

∫
ωi

p(x)(d−1)/ddx p⊗N-a.s, ∀i.

and

lim
N→+∞

T (XN ,H)

N (d−1)/d
= β(d)

∫
H
p(x)(d−1)/ddx p⊗N-a.s, ∀i.

Combining this result with Eqs. (2.22) and (2.9) yields Proposition 2.32.
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Proof of Theorem 2.19. Let ε > 0 and h be an integer such that
√
dh−d < ε. Then any

two points in ωi are at distance less than ε.

Using Theorem 2.32 and the fact that there is a �nite number of ωi, almost surely, we

get:

limN→+∞
∑hd

i=1

∣∣∣P̃N (ωi)− p̃(ωi)
∣∣∣ = 0. Hence, for any N large enough, there is a coupling

K of P̃N and p̃ such that both corresponding random variables are in the same ωi with

probability 1−ε. Let A ⊆ H be a Borelian. The coupling satis�es P̃N (A) = K(A⊗H) and

p̃(A) = K(H⊗A). De�ne the ε-neighborhood by Aε = {X ∈ H | ∃Y ∈ A, ‖X−Y ‖ < ε}.
Then, we have: P̃N (A) = K(A ⊗ H) = K({A ⊗ H} ∩ {|X − Y | < ε}) + K({A ⊗ H} ∩
{|X − Y | > ε}). It follows that:

P̃N (A) 6 K(A⊗Aε) +K(|X − Y | > ε)

6 K(H⊗Aε) + ε = p̃(Aε) + ε.

This exactly matches the de�nition of convergence in the Prokhorov metric, which implies

convergence in distribution.
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Chapter 3

A new concentration inequality

In this chapter, we introduce a new concentration inequality on the largest eigenvalue

of the sum of zero-mean Hermitian matrix-valued Markov chain. This result generalizes

the existing scalar concentration inequalities for Markov chains, as well as the case of

sum of independent matrices, the dependencies being encoded by the spectral gap of the

chain. We give an application in Compressed Sensing when the sampling is based on

random walks that improves the proposition 2.11 page 42.

3.1 Introduction

We consider a �nite graph G with N vertices and an irreducible and reversible Markov

chain (Xn) on this graph. Let f be a matrix-valued mapping from G to Hd, the set of

Hermitian matrices of size d×d. If π denotes the stationary distribution of the chain, we

expect that n−1
∑n

i=1 f(Xi) converges to πf =
∑

y∈G π(y)f(y). Here, we are interested

in controlling the deviation from the mean, i.e., the largest eigenvalue λmax of the partial

sum process in the case where πf = 0. Our concentration result reads:

Proposition 3.1 (Bennett's inequality for matrix-valued Markov chains). Let X1, . . . , Xn

be an irreducible and reversible Markov chain and denote by P its transition matrix with

stationary distribution π and spectral gap ε. Assume that X1 ∼ q and that:

∑
y∈G

π(y)f(y) = 0 and λmax(f(y)) 6 R, ∀y ∈ G. (3.1)

De�ne the variance parameters:

σ2 := λmax

∑
y∈G

π(y)f(y)2

 , and σ2
n = n · σ2

65
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Then, for all t > 0,

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 d · sup(

qi
πi

) · exp

(
2σ2

n

R2ε
· h
(
R · εt
2σ2

n

))
, (3.2)

where h(x) = (1 + x) log(1 + x).

A more common inequality is Bernstein's one. It is a direct consequence of Proposi-

tion 3.1.

Proposition 3.2 (Bernstein's inequality for matrix-valued Markov chains). With the

same hypothesis as in Prop 3.1, for all t > 0:

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 d · sup(

qi
πi

) · exp

(
− εt2

4σ2
n + 2Rtε/3

)
. (3.3)

To the best of our knowledge, there is no such concentration inequality in the literature.

Existing results consider either a sum of scalar-valued (or vector-valued) variables de�ned

over a Markov chain, or a sum of independent Hermitian matrices. The contribution of

this work is thus a generalization of these inequalities to matrix-valued Markov chains.

Let us start by discussing the accuracy of our result introduced in Proposition 3.2.

3.1.1 Existing concentration results on real-valued Markov chains

One of the �rst results of this type was proven by Lezaud (Lezaud, 1998). We notice

that the quantities involved in his result were really similar to our results introduced in

Propositions 3.1 and 3.2. For a real mapping f : G → R, such that |f(y)| 6 R ∀y ∈ G
and πf = 0, he showed that for all t > 0:

P
( n∑
i=1

f(Xi) > t
)
6 eε/5Nq exp

(
− εt2

4nb2(1 + g(5t/nb2R))

)
,

where g is given by g(x) =
1

2
(
√

1 + x − (1 − x/2)), Nq =

∑
y∈G

π(y)
q(y)2

π(y)2

1/2

, b2 =∑
y∈G π(y)f(y)2, and ε denotes the spectral gap of the chain. This concentration results

is based on Kato's theory on perturbation operator (Kato, 1976). Lezaud improved the

concentrations results obtained by Gillman (Gillman, 1993) and Dinwoodie (Dinwoodie,

1995) that also used tools from operator perturbation theory. Kargin (Kargin, 2007)

uses Kato's theory to prove a concentration inequality for vector-valued Markov chains.
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Using a di�erent approach based on Marton coupling, Paulin (Paulin, 2012a) proved

Hoe�ding and Bernstein inequalities using the more intuitive notion of mixing time

instead of spectral properties of P . Mixing time is de�ned as

tmix(η) = min

{
t : sup

x∈Ω
dTV (P t(x, ·), π) 6 η

}
,

where dTV is the total variation distance, and P t(x, ·) is the distribution of the chain

starting from x with transition matrix P at time t. He proved also that the mixing time

tmix(η) is an upper bound of 1/ε times a constant that depends on the precision of the

mixing time. His Bernstein inequality reads:

P
( n∑
i=1

f(Xi) ≥ t
)
≤ exp

(
− nt2/τ ′min

8V + 4
√

2t

)
,

where V = E
(∑N

i=1 f(Xi)
2
)
, and τ ′min ' tmix(1/4). In (Paulin, 2012a), the author shows

that the mixing time is the natural quantity governing the speed of convergence. The

framework is more general since it encompasses continuous and discrete, such as homo-

geneous and non-homogeneous chains (in particular, the last formula is valid even if the

chain is not homogeneous). Finally, let us mention that Joulin and Ollivier (Joulin et al.,

2010) obtained concentration inequalities for Lipschtiz functions with bounds depending

on the Ricci curvature of the chain. The Ricci curvature is smaller than the spectral gap

for reversible chains, providing weaker concentration bounds (see also (Paulin, 2014)).

One of the motivation of this method is that there is no dependency on the initial ditri-

bution, i.e., one can start from any location of the state space.

3.1.2 Sum of independent Hermitian matrices.

First works on matrix-valued concentration inequalities relied on the matrix Laplace

transform for matrices, introduced by Ahlswede and Winter (Ahlswede and Winter,

2002). They extended Bernstein's method developed for the sum of independent scalar

variables to the set of Hermitian matrices. Their result was then used in (Oliveira, 2009;

Tropp, 2012) in the following form:

P
(
λmax

(∑
k

Xk

)
> t
)
6 inf

θ>0

{
e−θtEtr exp

(
θ
∑
k

Xk

)}
, ∀t > 0.

where Xk are Hermitian random matrices. The �rst impediment of this method is that

the so-called moment generating function E exp
(
θ
∑

kXk

)
is not equal to E

∏
k exp

(
θXk

)
as in the scalar case since matrices do not commute in general. An alternative is to use
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Golden-Thompson inequality (Golden, 1965; Thompson, 1965) that states

tr exp (θ(X1 +X2)) 6 tr exp(θX1) exp(θX2),

but this inequality cannot be generalized to more than two matrices. Therefore, in

the original papers (Ahlswede and Winter, 2002; Vershynin, 2009; Gross, 2011), the

Golden-Thompson inequality was used within iterative methods to obtain concentration

inequalities.

Further developments (Tropp, 2012; Oliveira, 2009) used more powerful tools based on

Hermitian matrix properties. For example, using Lieb's theorem (Lieb, 1973), Tropp (Tropp,

2012) obtained the following concentration inequality, for a sequence of i.i.d. random

Hermitian matrices (Yk)16k6n such that E(π)Yk = 0 and λmax(Yk) 6 R almost surely:

P

(
λmax

(
n∑
k=1

Yk

)
> t

)
6 d · exp

(
− t2

2σ2
n + 2Rt/3

)
. (3.4)

where σ2
n = λmax

(∑
k EY 2

k

)
1. The inequality obtained by Oliveira (Oliveira, 2009)

only di�ers by weaker constants. Note that σ2
n is the norm of the sum of variances,

whereas original Ahlswede and Winter's method (Ahlswede and Winter, 2002; Vershynin,

2009; Gross, 2011) involved the sum of variance norms, that is in general larger (see the

discussion in (Tropp, 2012, Section 1.1)). In our context, since E(π)f(Xi) = σ2 does

not depend on i, hence these two variance parameters are equal. In an independent

framework (corresponding to ε = 1), our result reads:

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 d · exp

(
− t2

4σ2
n + 2Rt/3

)
, (3.5)

that is similar to the stat-of-art, except that the constants are di�erent (our bound is

slightly weaker because of the 4σn term, instead of 2σn in (3.4)).

Finally, let us mention that a new technique for proving concentration inequality has

recently emerged, based on a matrix generalization of Stein's method of exchangeable

pairs (Paulin, 2012b; Paulin et al., 2013; Mackey et al., 2014). A similar Bernstein

concentration inequality is obtained with this method (Mackey et al., 2014, Corollary

5.2). In addition, this technique permits to introduce weak dependencies between random

variables.
1Here λmax is equivalent to the spectral norm, since the matrix is positive.
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3.1.3 Chapter overview

In the next section, we introduce the background that will be used to prove propo-

sitions 3.1 and 3.2. We introduce the notation of the paper, such as technical tools

about Kronecker product. We also recall crucial properties on Hermitian matrices and

on Markov chains that are the two key concepts hereafter. Then, section 3.3 contains

the proof of our main results (prop. 3.1 and 3.2).

3.2 Preliminaries

3.2.1 General notation

We denote by (ei)16i6N the canonical basis of CN , and by (fi)16i6d the canonical basis

of Cd. For vectors q, π ∈ RN , we denote by Q = diag(q1, . . . , qN ) = diag(q) and Π =

diag(π) the diagonal matrices in RN×N . We de�ne 1 ∈ RN the vector containing ones.

We denote by F ∈ RN ·d×N ·d the Hermitian block-diagonal matrix diag(f(g1), . . . , f(gN )),

where g1, . . . gN are the vertices of G. Let us recall some properties of the Kronecker

product:

Proposition 3.3. If A ∈ Cm×n and B ∈ Cp×q, we denote A⊗B ∈ Cm·p×n·q the matrix:
a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

The Kronecker product satis�es the following properties:

1. If A,B,C,D are four matrices and if the sizes are compatible,

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

2. (A⊗B)∗ = A∗ ⊗B∗

3. If A ∈ Rp×p and B ∈ Rq×q are two hermitian matrices, and if (λ1, . . . , λp) and

(µ1, . . . , µq) are the eigenvalues (with multiplicity) of A and B, A ⊗ B is also

Hermitian and diagonalizable with eigenvalues (λi · µj , 1 6 i 6 p, 1 6 j 6 q)

For notation compacity, we also denote:

• P = P ⊗ Id ∈ CN ·d×N ·d, and Π = Π⊗ Id ∈ CN ·d×N ·d:
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P =


P11Id P12Id . . . P1NId

P21Id P22Id . . . P2NId
...

. . .

PN1Id PNNId

 Π =


π1 · Id 0 . . . 0

0 π2 · Id . . . 0
...

. . .

0 πN · Id


• ek = ek ⊗ Id ∈ CN ·d×d. We also denote 1 = 1 ⊗ Id ∈ CN ·d×d and π = π ⊗ Id ∈
CN ·d×d.

Finally, we equip the complex Hilbert space CN ·d with the Hermitian product 〈·, ·〉Π
de�ned by 〈x, y〉Π = x∗Πy and the complex Hilbert space CN with the Hermitian product

〈·, ·〉Π de�ned by 〈x, y〉Π = x∗Πy.

3.2.2 The set of Hermitian matrices.

We denote the real vector space of Hermitian matrices by Hd := {X ∈ Cn×n, X∗ = X},
where X∗ denote the conjugate transpose of X. The eigenvalues of a matrix X ∈ Hd are

real and we denote by λmax(X) (resp. λmin(X)) its largest (resp. smallest) eigenvalue.

tr denote the trace operator of a matrix. For X1, X2 ∈ Hd, we say that X1 � X2 if the

eigenvalues of X2 −X1 are positive.

First, let us recall the following lemma,

Lemma 3.4. For all A,B ∈ Hd such that A � B, tr(A) 6 tr(B).

The following lemma was proposed by Tropp (Tropp, 2012) to bound the exponential of

a zero-mean random matrix in expectation:

Lemma 3.5. ∀M ∈ Hd a random matrix, such that λmax(M) 6 1, and EM = 0:

EeθM � exp
(
g(θ)E(M2)

)
∀θ > 0

where g(θ) = (eθ − θ − 1).

This lemma is crucial to obtain sharp bounds in the �nal concentration inequality. For

comparison, Oliveira (Oliveira, 2009) used the weaker bound : eM � Id+M +M2. This

explains that he obtained a larger bound in his Bernstein concentration inequality.
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We now recall properties that hold for any random matrices. Let M be a measurable

matrix. The de�nition of the expectation implies that

trEM = EtrM (3.6)

EM∗ = (EM)∗ (3.7)

3.2.3 Background on Markov chains

E(π) will denote the expectation relative to the invariant distribution, whereas E(π) will

denote the expectation with respect to the initial distribution. We denote by Ei the
conditional expectation E[·|Xi].

Since P de�nes a reversible Markov chain (i.e., such that ΠP = P TΠ), its eigenvalues

are real and its eigenvectors are orthogonal for the scalar product 〈·, ·〉Π de�ned in sec-

tion 3.2.1 (since Π
1
2PΠ−

1
2 is a symmetric matrix, see (Brémaud, 1999) for details). We

order the eigenvalues as follows:

1 = λ1 > λ2 > . . . > λN > −1. (3.8)

The inequality λ1 > λ2 comes from the irreducibility of the chain. 1 spans the eigenspace

associated with the eigenvalue 1. ε := 1− λ2 is the spectral gap of the chain.

3.3 Proof of propositions 3.1 and 3.2

3.3.1 The Laplace transform method

The matrix Laplace transform is crucial in many proofs of matrix valued concentration

inequalities. It was introduced by Ahlswede and Winter (Ahlswede and Winter, 2002),

and a di�erent proof is provided in (Oliveira, 2010; Tropp, 2012).

Lemma 3.6 (Matrix Laplace transform). For all random matrix M ∈ Hd:

P
(
λmax

(
M
)
> t
)
6 inf

θ>0

{
e−θtEtr exp

(
θM
)}
, ∀t > 0.

The term E(π)tr exp
(
θM
)
is called matrix moment generating function since the moments

of the random matrix M can be obtained by successive derivations and evaluations in



72 Chapter 3 A new concentration inequality

zero. In our case, Lemma 3.6 ensures that:

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 inf

θ>0

{
e−θtEtr exp

(
θ

n∑
i=1

f(Xi)
)}
. (3.9)

Now, the quantity to control is the matrix moment generating function (mgf):

Etr exp
(
θ

n∑
i=1

f(Xi)
)

(3.10)

The outline of the proof is classical (Tropp, 2012; Oliveira, 2009). We �rst use the

Ahlswede and Winter transform to express our problem as the bounding of the trace

of an exponential matrix (the mgf in Eq. (3.10)). Then, we try to �nd a relationship

between the expectations E(π) and E, that is to say, how the expectation will change

if the initial value X0 is drawn from law π or law q. Following (Tropp, 2012), we

bound the moment generating function with only the second-order moment by resorting

to lemma 3.5. Finally, the main di�culty of the proof is to bound this second-order

moment in a Markov chain framework. We propose an upper-bound of this term that

relies on the spectral properties of the chain.

3.3.2 In�uence of the initial distribution

In this section, we are looking for a relation between E(π) and E. By de�nition,

Etr exp
(
θ

n∑
i=1

f(Xi)
)

=
∑

X1,...,Xn

tr exp

(
θ

n∑
i=1

f(Xi)

)
q(X1)

n∏
i=2

P (Xi−1, Xi),

here the summation is taken over all the possible trajectories X1, . . . , Xn of the chain.

Hence, we set

∑
X1,...,Xn

tr exp

(
θ

n∑
i=1

f(Xi)

)
q(X1)

n∏
i=2

P (Xi−1, Xi)

6 sup(
qi
πi

)
∑

X1,...,Xn

tr exp

(
θ

n∑
i=1

f(Xi)

)
π(X1)

n∏
i=2

P (Xi−1, Xi)

Then, it comes the following lemma:
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Lemma 3.7.

Etr exp
(
θ

n∑
i=1

f(Xi)
)
6 sup(

qi
πi

)E(π)tr exp
(
θ

n∑
i=1

f(Xi)
)

(3.11)

This bound involves sup( qiπi ), that also appear in the �nal results 3.1 and 3.2. For

comparison, in the context of sum of scalar valued Markov chains, Lezaud (Lezaud,

1998) introduced an `2-norm of q/π, instead of this `∞-norm. In (Paulin, 2012a), the

author succeeded in removing this dependency from the concentration inequality. Finally

notice that this term appear through a log term when we want to compute con�dence

intervals.

3.3.3 Control of the mgf with the second-order moment

Thanks to the previous section, we have to control the mgf E(π)tr exp
(
θ
∑n

i=1 f(Xi)
)
,

which corresponds to the expectation of a Markov chain generated with X1 ∼ π and

with transition matrix P .

By lemmas 3.4 and 3.5, and using that trace and E(π) commute, we have, for all θ > 0:

E(π)tr exp(θ
n∑
i=1

f(Xi)) = trE(π) exp(θ
n∑
i=1

f(Xi)) 6 tr exp

g(θ)E(π)

(
n∑
i=1

f(Xi)

)2
 .

(3.12)

3.3.4 Control of second-order moment

In what follows, the main novelty of our result is exposed. It is largely based on matrix

manipulations. We aim at controlling the term E(π)

(
n∑
i=1

f(Xi)

)2

. First let us develop

the square:

E(π)

(
n∑
i=1

f(Xi)

)2

=
n∑
i=1

n∑
j=1

E(π) (f(Xi)f(Xj)) (3.13)

Let us introduce two crucial lemmas, proven in Appendices 1 and 2.

Lemma 3.8. For all 1 6 i, j 6 n,

E(π) (f(Xi)f(Xj)) = 1
TFΠP |j−i|F1.
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Lemma 3.9. For all k > 0

1
TFΠP kF1 � λk2 · σ2 · Id,

where λ2 is the second largest eigenvalue of P , and where

σ2 = λmax

∑
y∈G

π(y)f(y)2

 .

Using these two lemmas we are now able to bound the second-order moment:

Proposition 3.10.

E(π)

(
n∑
i=1

f(Xi)

)2

� 2σ2
n

ε
· Id, (3.14)

where

σ2
n = n · σ = n · λmax

∑
y∈G

π(y)f(y)2

 .

Proof. Let us write the sum in Eq. (3.13) as:

E(π)

(
n∑
i=1

f(Xi)

)2

=

n∑
i=1

i∑
j=1

E(π) (f(Xi)f(Xj)) +

n∑
i=1

n∑
j=i+1

E(π) (f(Xi)f(Xj))

Thanks to lemmas 3.8 and 3.9, we have

i∑
j=1

E(π) (f(Xi)f(Xj)) �
i−1∑
k=0

λk2σ
2 · Id

� σ2 1− λi−1
2

1− λ2
· Id

� σ2 1

1− λ2
· Id

Similarly,

n∑
j=i+1

E(π) (f(Xi)f(Xj)) � σ2 λ2

1− λ2
· Id
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Then, by summation, we have that

E(π)

(
n∑
i=1

f(Xi)

)2

� nσ2

(
1 + λ2

1− λ2

)
· Id

� σ2
n ·

2

ε
· Id

3.3.5 End of the proof

Now, we can use the di�erent lemmas to control the mgf. Starting from Eq. (3.10), we

have:

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 inf

θ>0

{
e−θtEtr exp

(
θ

n∑
i=1

f(Xi)
)}

6 sup(
qi
πi

) inf
θ>0

{
e−θtE(π)tr exp

(
θ

n∑
i=1

f(Xi)
)}

(lemma 3.7)

6 sup(
qi
πi

) inf
θ>0

{
e−θttr exp

g(θ)E(π)

(
n∑
i=1

f(Xi)

)2
} (lemma 3.5)

6 d · sup(
qi
πi

) inf
θ>0

{
exp

(
−θt+ g(θ) · 2σ2

n

ε

)}
. (proposition 3.10)

Following (Tropp, 2012), we notice that the minimal value is reached for θ = log(1 +

tε/(2σ2
n). Let us de�ne h by h(x) = (1 + x) log(1 + x), it comes that:

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 d · sup(

qi
πi

) · exp

(
−2σ2

n

ε
· h
(
εt

2σ2
n

))
.

Proposition 3.1 is obtained with a normalization by R. Finally, Corollary 3.2 is a conse-

quence of Bennett's bound since h(x) > x2/2
1+x/3 for x > 0.

3.4 Application to drunk man sampling

In this section, we prove a new Compressed Sensing result, for a sampling scheme based

on a random walk on the acquisition space. A CS result was proven in theorem 2.11

page 42. The number of measurements needed to reconstruct any s-sparse vector was

O
(
s2

ε
K∗2(A) log(2n2/η)

)
, where ε is the spectral gap of the chain associated to the
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random walk. This bound su�ers from the quadratick bottleneck (s2 term). This is a

major drawback of this bound, since the number of measurements required to guarantee

reconstruction is linear in s in classical CS results in the independent framework. Here

we prove that the bound can be improved to O
(s
ε
K∗2(A) log(6n/η)

)
in a non-uniform

framework. In particular, the bound is tight in the independent framework, where ε = 1.

The inequality introduced in proposition 3.2 is the cornerstone to prove the following

result, using the notation of chapter 2:

Proposition 3.11. Let x be an s-sparse random vector such that the signs of its nonzero

entries is a Rademacher or Steinhaus sequence. Let Ω = X1, . . . , Xm denote a set of

m indexes selected using a Markov chain of transition kernel P with gap ε and π its

stationary distribution. Assume that X1 ∼ π. Let AΩ be the matrix obtained by selecting

the m lines of A belonging to the set Ω. Then, if

m >
14

3ε
·K∗2(A) · s · log2

(
6n

η

)
,

with probability 1− η, x is the unique solution of the `1 problem (2.1)

The proof of proposition follows the proof in (Rauhut, 2010). The main di�erence is that

the (Rauhut, 2010, Theorem 7.3) is replaced by:

Proposition 3.12. Let 0 6 δ 6 1
2 . Then, with probability at least

1− s exp

(
− mδ2ε

14
3 K

∗2(A)s

)

the matrix AΩ satis�es ∥∥∥∥ 1

m
A∗ΩAΩ − In

∥∥∥∥ 6 δ

Proof. Notice that A∗ΩAΩ =
∑m

i=1 aXia
∗
Xi
. The proposition is a direct consequence of

proposition 3.2 with f : i ∈ {1, . . . , n} 7→ aia
∗
i − In.

A more general CS result could be obtained, without the hypothesis on the sign of the

non-zero entries of x. Actually, it is possible to improve the result by resorting to the

so-called gol�ng scheme technique (Gross, 2011; Candès and Plan, 2011). However,

such a proof require other concentration inequalities on sums of vectors with Markovian

dependencies, and existing concentration results (Kargin, 2007) should be improved.
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Appendix 1 - Proof of lemma 3.8

In this lemma, we aim at showing that E(π)[f(Xi)f(Xj)] = 1TFΠP |j−i|F1. First, we

consider the case j > i. We notice that

E(π)[f(Xi)f(Xj)] = E(π)E(π)
i[f(Xi)f(Xj)]

= E(π)[f(Xi)E(π)
i[f(Xj)]]

Let us show that E(π)
i[f(Xj)] = eTXiP

j−iF1 for 0 6 i 6 j, where Xi is the vertex number

reached by the chain after i iterations. For a �xed j, let us denote by (Pi) the assertion:

E(π)
i[f(Xj)] = eTXiP

j−iF1. (Pi)

Let us show that (Pi) is true for all i 6 j. (Pj) is true, and we assume that (Pi) is true
for a �xed i. Let us show that (Pi−1) is also true.

E(π)
i−1[f(Xj)] =

N∑
k=1

PXi−1,kE
(π)[f(Xj)|Xi = k]

=
N∑
k=1

eTXi−1
Peke

T
k P

j−iF1

= eTXi−1
P j−i+1F1.

Indeed, eTXi−1
Peke

T
k = eTXi−1

Peke
T
k ⊗ Id. Using that

∑N
k=1 eke

T
k = IN and the linearity

of ⊗, it comes that
∑N

k=1 e
T
Xi−1

Peke
T
k = eTXi−1

P , �nishing the proof by induction.

Now, notice that f(Xi) = eTXiFeXi . It comes that

f(Xi)E(π)
i[f(Xj)] = eTXiFeXie

T
XiP

j−iF1

= eTXiFP
j−iF1,

because of the block-diagonal structure of F . Finally, E(π)eTXi = (E(π)eTXi)⊗Id = πT ⊗Id.
Since πT = 1TΠ and Id = Id · Id, it comes from Prop 3.3 (1) that E(π)eTXi = 1TΠ. The

�nal formula is obtained by noticing that Π and F commute.
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Now, if j 6 i, we can write:

E(π) [f(Xi)f(Xj)] = E(π) [f(Xi)
∗f(Xj)

∗]

= E(π) [(f(Xj)f(Xi))
∗]

=
(
E(π) [f(Xj)f(Xi)]

)∗
Eq. (3.7))

= 1TFΠP |j−i|F1,

since P ∗Π = ΠP .

Appendix 2 - Proof of lemma 3.9

First, we notice that σ2 = λmax

(
1TFΠF1

)
, or again, that 1TFΠF1 � σ2 · Id. Hence,

we aim at showing that 1TFΠP kF1 � λk21TFΠF1. Now, we can write:

1TFΠP kF1− λk21TFΠF1 = 1TFΠ(P k − λk2IN ·d)F1

Since the chain is reversible, the matrix 1TFΠ(P k − λk2IN ·d)F1 is Hermitian of size

d. In order to show that it is a negative matrix, we �x a ∈ Cd and we show that

a∗1TFΠ(P k − λk2IN ·d)F1a 6 0.

Since P is self-adjoint for 〈·, ·〉Π, there exists (ui)16i6N an orthogonal basis of CN such

that Pui = λiui, where λis are sorted in decreasing order as in Eq. (3.8). In particular

(λ1, u1) = (1,1). Hence, {ui ⊗ fj , 1 6 i 6 N, 1 6 j 6 d} is an orthogonal basis of CN ·d

for 〈·, ·〉Π, and we have:

〈1⊗ fi, F1a〉Π =
N∑
j=1

(πjf(gj)a)i

= 0,
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since
∑N

j=0 πjf(gj) = 0. Therefore, there is a sequence of complex numbers (αij)26i6N,16j6d

such that F1a =
∑N

i=2

∑d
j=1 αijui ⊗ fj . We notice that

a∗1TFΠ(P k − λk2IN ·d)F1a =

〈
N∑
i=2

d∑
j=1

αijui ⊗ fj , (P k − λk2IN ·d)
N∑
i=2

d∑
j=1

αijui ⊗ fj

〉
Π

=

〈
N∑
i=2

d∑
j=1

αijui ⊗ fj , (P k − λk2IN )⊗ Id
N∑
i=2

d∑
j=1

αijui ⊗ fj

〉
Π

=

〈
N∑
i=2

d∑
j=1

αijui ⊗ fj ,
N∑
i=2

d∑
j=1

αij(λ
k
i − λk2)ui ⊗ fj

〉
Π

=
N∑
i=2

d∑
j=1

α2
ij(λ

k
i − λk2)

6 0.

In other words, 1TFΠ(P k − λk2IN ·d)F1 � 0.





Chapter 4

A projection algorithm for gradient

waveforms design in Magnetic

Resonance Imaging

This chapter is based on (Chau�ert et al., 2014b).

Collecting the maximal amount of useful information in a given scanning time is a major

concern in Magnetic Resonance Imaging (MRI) to speed up image acquisition. The

hardware constraints (gradient magnitude, slew rate, ...), physical distortions (e.g., o�-

resonance e�ects) and sampling theorems (Shannon, compressed sensing) must be taken

into account simultaneously, which makes this problem extremely challenging. To date,

the main approach to design gradient waveform has consisted of selecting an initial

shape (e.g. spiral, radial lines, ...) and then traversing it as fast as possible. In this paper,

we propose an alternative solution: instead of reparameterizing an initial trajectory,

we propose to project it onto the convex set of admissible curves. This method has

various advantages. First, it better preserves the density of the input curve which is

critical in sampling theory. Second, it allows to smooth high curvature areas making

the acquisition time shorter in some cases. We develop an e�cient iterative algorithm

based on convex programming and propose comparisons between the two approaches. For

piecewise linear trajectories, our approach generates a gain of scanning time ranging from

20% (echo planar imaging) to 300% (travelling salesman problem) without degrading

image quality in terms of signal-to-noise ratio (SNR). For smoother trajectories such as

spirals, our method better preserves the sampling density of the input curve, making the

sampling pattern relevant for compressed sensing, contrarily to the reparameterization

based approaches.

81
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4.1 Introduction

The advent of new hardware and sampling theories (e.g., Compressed Sensing or CS)

provide unprecedented opportunities to reduce acquisition times in MRI. The design of

gradient waveforms minimizing the acquisition time while providing enough information

to reconstruct distortion-free images is however an important challenge. Ideally, these

two concerns (sampling scheme and gradient waveform design) should be addressed si-

multaneously, but current theoretical results in sampling theories (either Shannon-based

or CS-based) do not permit to incorporate complex physical constraints like the starting

position or the traversal speed in k-space, despite recent progresses (Chau�ert et al.,

2014a; Boyer et al., 2015a; Unnikrishnan and Vetterli, 2013; Gröchenig et al., 2014)

To date, the most widespread technique therefore consists of designing gradient wave-

forms sequentially: a �rst step aims to �nd the trajectory support or at least control

points, and a second step essentially builds the gradient waveforms to traverse this sup-

port or linking these control points. The �rst step either relies on Shannon sampling

theorem (Unnikrishnan and Vetterli, 2013; Gröchenig et al., 2014) or on the concept of

variable density sampling (VDS) (Puy et al., 2011; Krahmer and Ward, 2014; Chau�ert

et al., 2014a). In Shannon theory, the samples located in the k-space should lie on a

Cartesian grid with a su�ciently small grid step size. A typical instance of such schemes

is the echo planar imaging (EPI) trajectory. The wealth of trajectories in VDS is con-

stantly increasing and becomes more and more anchored in theory. It initially started

with spirals (Gurney et al., 2006; Pipe and Zwart, 2014) and was progressively enriched

with di�erent patterns such as parallel or radial lines (Lustig et al., 2007; Feng et al.,

2014), noisy spirals (Lustig et al., 2005), Rosette trajectories (Noll, 1997), shell trajecto-

ries (Shu et al., 2006), ... The second step is currently solved by using reparameterization:

the goal is to �nd a feasible waveform traversing the support in the minimum amount

of time. This problem can be solved using optimal control (Lustig et al., 2008), convex

optimization (Simonetti et al., 1993; Hargreaves et al., 2004), or optimal interpolation of

k-space control points (Davids et al., 2015). These simple principles however su�er from

potentially severe drawbacks. First, reparameterizing the curve changes the density of

samples along the curve. This density is now known to be a key aspect in CS (Puy et al.,

2011; Chau�ert et al., 2014a; Krahmer and Ward, 2014; Adcock et al., 2013), since it di-

rectly impacts the number of required measurements to ensure exact recovery (noiseless

case) or accurate (noisy case) reconstruction. Second, the challenge of rapid acquisitions

is to reduce the scanning time (echo train duration) and limit geometric distortions in-

duced by inhomogeneities of the static magnetic �eld (B0) by covering the k-space as

fast as possible. The perfect �t to any arbitrary curve (support constraint) may be time

consuming, especially in the high curvature parts of the trajectory. In particular, the
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time to traverse piecewise linear trajectories (Chau�ert et al., 2014a; Chau�ert et al.,

2013a; Chau�ert et al., 2013c; Wang et al., 2012; Willett., 2011) may become too long.

Indeed, the magnetic �eld gradients have to be set to zero at each singular point of such

trajectory. To overcome these two limitations, new gradient waveform design methods

have to be pushed forward.

4.1.1 Contributions

In this paper, we propose an alternative to reparameterization based on a convex opti-

mization formulation. Given any parameterized curve, our algorithm returns the closest

curve that ful�lls the gradient constraints. The main advantages of the proposed ap-

proach are the following: i) the time to traverse the k-space is �xed enabling to �nd the

closest curve in a given time, ii) the distance between the input and output curves is

the quantity to be minimized ensuring a low deviation to the original sampling distribu-

tion, iii) it is �exible enough to handle additional hardware constraints (e.g., trajectory

starting from the k-space center, di�erent kinematic constraints,...) in the same frame-

work. We propose an e�cient �rst order dual algorithm to solve the resulting problem

and provide theoretical guarantees in terms of convergence rate. We also demonstrate

through theory and numerical experiments that the distortion to the initial density is

minimized compared to the reparameterization approach. We eventually illustrate the

performances of our approach on simulations.

4.1.2 Paper organization

In Section 4.2, we review the formulation of MRI acquisition, by recalling the gradient

constraints and introducing the projection problem. Then, in Section 4.3, it is shown

that curves generated by the proposed strategy (initial parameterization followed by the

projection onto the set of physical constraints) may be used to design MRI sampling

schemes with locally variable densities. In Section 4.4, we provide an optimization al-

gorithm to solve the projection problem, and estimate its rate of convergence. Next,

the behavior of our algorithm is illustrated in Section 4.5 on three complementary cases:

one popular sampling scheme, namely EPI trajectory and two VDS strategies (travelling

salesman problem or TSP-based curves and spirals), yet advertising the usefulness of the

proposed approach for practical MRI applications. The pros and cons of our method are

discussed in Section 4.6 and concluding remarks are drawn in Section 4.7.
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4.2 Design of k-space trajectories using physical gradient

waveforms.

In this section, we recall the standard modeling of the acquisition constraints in MRI (Har-

greaves et al., 2004; Lustig et al., 2008). We justify the lack of accuracy of current

reparameterization methods in the VDS context, and motivate the introduction of a new

projection algorithm that preserves the sampling density.

4.2.1 Sampling in MRI

In MRI, images are sampled in the k-space domain along parameterized curves s :

[0, T ] 7→ Rd where d ∈ {2, 3} denotes the image dimensions. The i-th coordinate of

s is denoted si. Let u : Rd → C denote a d dimensional image and û be its Fourier

transform. Given an image u, a curve s : [0, T ]→ Rd and a sampling step ∆t, the image

u shall be reconstructed using the set1:

E(u, s) =

{
û(s(j∆t)), 0 6 j 6

⌊
T

∆t

⌋}
. (4.1)

4.2.2 Gradient constraints

The gradient waveform associated with a curve s is de�ned by g(t) = γ−1ṡ(t), where

γ denotes the gyro-magnetic ratio (Hargreaves et al., 2004). The gradient waveforms

being obtained by energizing orthogonal gradient coils with electric currents, they are

submitted to hardware constraints.

4.2.2.1 Kinematic constraints

Due to physical but also safety (i.e. avoid nerve stimulation) constraints, the electric

currents passing through gradient coils have a bounded amplitude and cannot vary too

rapidly (slew rate). Mathematically, these constraints read:

‖g‖ 6 Gmax and ‖ġ‖ 6 Smax

1For ease of presentation, we assume that the values of u in the k-space correspond to its Fourier
transform and we neglect distortions occurring in MRI such as noise. We also neglect the energy decay
due to signal relaxation.
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where ‖·‖ denotes either the `∞-norm de�ned by ‖f‖∞ := max
1≤i≤d

sup
t∈[0,T ]

|fi(t)|, or the `∞,2-

norm de�ned by ‖f‖∞,2 := sup
t∈[0,T ]

( d∑
i=1

|fi(t)|2
) 1

2 . These constraints might be Rotation

Invariant (RIV) if ‖ · ‖ = ‖ · ‖∞,2 or Rotation Variant (RV) if ‖ · ‖ = ‖ · ‖∞, depending
on whether each gradient coil is energized independently from others or not. The set of

kinematic constraints is denoted S:

S :=
{
s ∈

(
C2([0, T ])

)d
, ‖ṡ‖ 6 α, ‖s̈‖ 6 β

}
, (4.2)

where α = γGmax and β = γSmax.

4.2.2.2 Additional a�ne constraints

Speci�c MRI acquisitions may require additional constraints, such as:

• Imposing that the trajectory starts from the k-space center (i.e., s(0) = 0) to save

time and avoid blips. The end-point can also be speci�ed by s(T ) = sT , if sT can

be reached during travel time T .

• In the context of multi-shot MRI acquisition, several radio-frequency pulses are

necessary to cover the whole k-space. Hence, it makes sense to enforce the trajec-

tory to start from the k-space center at every TR (repetition time)2: s(m · TR) =

0, 0 6 m 6
⌊
T
TR

⌋
.

• In addition to starting from the k-space center, one could impose the initial speed

as for instance: ṡ(0) = 0.

• To avoid artifacts due to �ow motion in the object of interest, gradient moment

nulling (GMN) techniques have been introduced in (Majewski et al., 2010) for spin

or gradient echo sequences. In terms of constraints, nulling the ith moment reads∫ TE

t=0
tig(t)dt = 0, where TE denotes the echo time. For example, cancelling the

�rst-order moment compensates the motion of spins moving with constant speed.

Each of these constraints can be modelled by an a�ne relationship. Hereafter, the set of

a�ne constraints is denoted by A:

A :=
{
s : [0, T ]→ Rd, A(s) = v

}
,

where v is a vector of parameters in Rp (p is the number of additional constraints) and

A is a linear mapping from the curves space to Rp.
2 corresponding to the delivery of every radio-frequency pulse.
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A sampling trajectory s : [0, T ]→ Rd will be said to be admissible if it belongs to the set

S∩A. In what follows, we assume that this set is non-empty, i.e. S∩A 6= ∅. Moreover, we

assume, without loss of generality, that the linear constraints are independent (otherwise

some could be removed).

4.2.3 Finding an optimal reparameterization

The traditional approach to design an admissible curve s ∈ S given an arbitrary curve

c : [0, T ]→ Rd consists of �nding a reparameterization p such that s = c ◦ p satis�es the
physical constraints while minimizing the acquisition time. This problem can be cast as

follows:

TRep = minT ′ such that ∃ p : [0, T ′] 7→ [0, T ], c ◦ p ∈ S. (4.3)

It can be solved e�ciently using optimal control (Lustig et al., 2008) or convex optimiza-

tion (Hargreaves et al., 2004). The resulting solution s = c◦p has the same support as c.

This method however su�ers from an important drawback when used in the CS frame-

work: it does not provide any control on the density of samples along the curve. For

example, for a given curve support shown in Fig. 4.1(a), we illustrate the new parameter-

ization (keeping the same support) and the corresponding magnetic �eld gradients (see

Fig. 4.1(b) for a discretization of the curve and (c) for the gradient pro�le). We notice

that the new parameterized curve has to stop at every angular point of the trajectory,

yielding more time spent by the curve in the neighbourhood of these points (and more

points in the discretization of the curve in Fig. 4.1(b)). This phenomenon is likely to

modify the sampling distribution, as illustrated in Section 4.3.

The next part is dedicated to introducing an alternative method relaxing the constraint

of keeping the same support as c.

4.2.4 Projection onto the set of constraints

Here, we propose to �nd the projection of the given input curve c onto the set of admis-

sible curves S:

s∗ : = argmin
s∈S∩A

1

2
d2(s, c) = argmin

s∈S∩A

1

2
‖s− c‖22 (4.4)

where d2(s, c) = ‖s − c‖22 :=
∫ T
t=0 ‖s(t) − c(t)‖22 dt. This method presents important

di�erences compared to the above mentioned optimal control approach: i) the solution

s∗ and c have di�erent support (see Fig. 4.1(d)) unless c is admissible; ii) the sets
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composed of the discretization of c and s∗ at a given sampling rate are close to each

other (Fig. 4.1(e)); iii) the acquisition time T is �xed and equal to that of the input curve

c. Time to traverse a curve is generally di�erent from optimal reparameterization. In

particular for piecewise linear curves, it is generally lower (see Fig. 4.1(f) where T < TRep).

(a) (b) (c)

g
(t

)

t
(d) (e) (f)

g
(t

)

t

Figure 4.1: Comparison of two methods to design gradient waveforms. Top row:

Optimal control-based parameterization (Lustig et al., 2008). (a): input curve support.
(b): discrete representation of the optimal reparameterization of the curve in S. (c):
corresponding gradient waveforms (gx, gy). Dashed lines correspond to 0 and +/- Gmax.
Bottom row: Illustration of the projection algorithm. (d): same input curve c as in
(a) parameterized at maximal speed, and the support of the projected curve s∗ onto
S. (e): discrete representation of the input and projected curves. (f): corresponding
gradient waveforms (gx, gy) with the same time scale as in (c): the time to traverse the

s∗ is 39% shorter.

In the next section, we explain why the empirical distribution of the samples along the

projected curve is closer to that of points lying on the input curve. Also, we illustrate

how the parameterization can distort the sampling distribution.

4.3 Control of the sampling density

Recent works have emphasized the importance of the sampling density (Chau�ert et al.,

2014a; Puy et al., 2011; Krahmer and Ward, 2014; Adcock et al., 2013) in the CS-MRI

framework, i.e. in an attempt to reduce the amount of acquired data while preserving

image quality at the reconstruction step. The choice of an accurate sampling distribution

is crucial since it directly impacts the number of required measurements (Rauhut, 2010).

In this paper, we will denote by π a distribution de�ned over the k-space K. The pro�le
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of this distribution can be obtained by theoretical arguments (Chau�ert et al., 2014a;

Puy et al., 2011; Krahmer and Ward, 2014; Adcock et al., 2013) leading to distributions

as the one depicted in Fig. 4.2(a). Some heuristic distributions (e.g., radial) are known

to perform well in CS-MRI experiments (Fig. 4.2(b)). A comparison between these two

approaches can be found in (Chau�ert et al., 2013b).

(a) (b)

Figure 4.2: Examples of 2D sampling distribution. (a): optimal distribution for a
Symmlet transform (Puy et al., 2011; Chau�ert et al., 2014a). (b): radial distribution

advocated in (Krahmer and Ward, 2014; Chau�ert et al., 2014a): p(k) ∝ 1/|k|2.

However, designing a trajectory that performs sampling according to a �xed distribution

while satisfying gradient constraints is really challenging and has not been addressed so

far. The classical approach consists of:

1. Finding an input curve (admissible or not) c with good distribution; We provide

various strategies to achieve this step in Appendix 4.7.

2. Estimating the fastest reparameterization of c that belongs to the set of constraints.

In this paper, we suggest to replace the second step by:

2') Estimating s∗ the projection of c onto the set of constraints, by solving Eq. (4.4).

We show that step 2') is preferable to step 2) since it better preserves the sampling

density (or empirical measure). We begin by showing it through a theoretical study in

paragraph 4.3.1 and then validate it through numerical experiments in paragraph 4.3.2.

The reader not interested by theoretical arguments can go directly to Subsection 4.3.2.

4.3.1 Theoretical study of the density control

To formalize the notion of density, we need to introduce the de�nition of the empirical

distribution of a curve.
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De�nition 4.1 (Empirical measure of a curve). Let λ denote the Lebesgue measure and

λT = λ
T denote the Lebesgue measure normalized on the interval [0, T ]. The empirical

measure of a curve s : [0, T ] 7→ K ⊆ Rd is de�ned for any measurable set ω of K as:

Ps(ω) = λT (s−1(ω)).

This de�nition means that the mass of a set ω is proportional to the time spent by the

curve in ω.

To measure the distortion between an input curve and the projected one, we need to

design a distance between measures. In this work, we propose to use the Wasserstein

distance W2 de�ned hereafter:

De�nition 4.2 (Wasserstein distance W2). Let M be a domain of Rd and P(M) be the

set of measures over M . For µ, ν ∈ P(M), W2 is de�ned as:

W2(µ, ν) =

(
inf

σ∈Π(µ,ν)

∫
‖x− y‖22dσ(x, y)

) 1
2

(4.5)

where Π ⊂ P(M ×M) denote the set of measures over M ×M with marginals µ and ν

on the �rst and second factors, respectively.

W2 is a distance over P(M) (see e.g., (Villani, 2008)). Intuitively, if µ and ν are seen

as mountains, the distance is the minimum cost of moving the mountains of µ into the

mountains of ν, where the cost is the `2-distance of transportation multiplied by the mass

moved. Hence, the coupling σ encodes the deformation map to turn one distribution (µ)

into the other (ν).

Let us now analyze the distortion between the empirical distribution of the projected

curve Ps∗ and the target distribution π. Since W2 is a distance between measures, the

triangle inequality holds:

W2(Ps∗ , π) 6 W2(Pc, π)︸ ︷︷ ︸
Initial distortion

+ W2(Ps∗ , Pc)︸ ︷︷ ︸
Projection distortion

. (4.6)

The deviation is controlled by two terms: the initial distortion term W2(Pc, π) and the

projection distortion term W2(Ps∗ , Pc). The �rst term depends of the choice of the input

curve c. This choice is crucial but is out the scope of this paper since it is not directly

related to gradient waveform design. We still show in Appendix A that this term can be

controlled precisely in a few cases of interest (spiral, TSP).

We are now interested in controlling the Projection distortion term W2(Ps∗ , Pc). The

following proposition shows that the W2 distance between the empirical distributions of
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the input and output curves (c and s∗, respectively) is controlled by the quantity d(s∗, c)

to be minimized when solving Eq. (4.4).

Proposition 4.3. For any two curves s and c : [0, T ]→ Rd:

W2(Ps, Pc) 6 d(s, c).

Proof. In terms of distributions, the quantity d(s, c) reads:

d2(s, c) =

∫
M×M

‖x− y‖22dσs,c(x, y) (4.7)

where σs,c is the coupling between the empirical measures Ps and Pc de�ned for all couples

of measure sets (ω1, ω2) ∈ M2 by σs,c(ω1, ω2) =
1

T

∫ T

t=0
1ω1(s(t))1ω2(c(t))dt, where 1ω

denote the indicator function of ω. The choice of this coupling is equivalent to choosing

the transformation map as the association of locations of c(t) and s(t) for every t. We

notice that the quantity to be minimized in Eq. (4.7) is an upper bound of W2(Ps, Pc)
2,

with the speci�c coupling σs,c.

To sum up, solving the projection problem (4.4) and �nding s∗ amounts to minimizing an

upper-bound of W2(Ps∗ , π), the Wasserstein distance between the target density π and

the empirical distribution Ps∗ , if we neglect the in�uence of the initial parameterization c.

In some sense, our projection algorithm is therefore the best way to obtain a feasible curve

and to preserve the input curve empirical measure. As will be seen in the next paragraph,

densities are indeed much better preserved using projections than reparameterizations.

4.3.2 Numerical study of the density control

Next, we performed simulations to show that the sampling density is better preserved

using our algorithm compared to the optimal control approach. For doing so, we use

travelling salesman-based (TSP) sampling trajectories (Chau�ert et al., 2013c; Chau�ert

et al., 2014a), which are an original way to design random trajectories which empirical

distribution is any target density π such as the one represented in Fig. 4.2(a). 10, 000

such independent TSP were drawn and parameterized with arc-length: note that these

parameterizations are not admissible in general. Then, we sampled each trajectory at

constant rate ∆t (as in Fig. 4.3 (top-row, left)), to form an histogram depicting the

empirical distribution shown in Fig. 4.3 (top-row, center). The latter was eventually

compared to π in Fig. 4.3 (top-row, right). It is worth noting that the error was actually

not close to zero, since the convergence result enounced in (Chau�ert et al., 2014a) is
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asymptotic, i.e. when the length of the TSP curve tends to in�nity whereas the latter

remains bounded in this experiment.

In Fig. 4.3 (second row), we show that the classical reparameterization technique (Lustig

et al., 2008) leads to a major distortion of the sampling density, because of its behavior on

the angular points already illustrated in Fig. 4.1(b). Then, we considered three constant

speed parameterizations and projected them onto the same set of constraints (Gmax = 40

mT.m−1 and Smax = 150 mT.m−1.ms−1). Among these three initial candidates, we

started by using an initial parameterization with low velocity (10 % of the maximal

speed γGmax with γ = 42.576 MHz.T−1 for proton imaging), which projection �ts the

sampling density quite well. Then, we increased the velocity to progressively reach

50 % and even 100 % of the maximal speed. The distortion of the sampling density of

the projected curve increased, but remained negligible in contrast to what we observed

for the exact reparameterization. Hence, this example illustrates that starting from a

continuous trajectory whose an empirical sampling distribution is close to the target π,

our projection algorithm yields feasible gradient waveforms while sampling the k-space

along a discretized trajectory whose empirical density is close to π too.

4.4 Finding feasible waveforms using convex optimization

Since the set of constraints S ∩A is convex, closed and non-empty, Problem (4.4) always

admits a unique solution. Even though S has a rather simple structure3, it is unlikely

that an explicit solution to Problem (4.4) can be found. In what follows, we thus propose

a numerical algorithm to compute the projection.

Problem discretization

A discrete-time curve s is de�ned as a vector in Rn·d where n is the number of time

points. Let s(i) ∈ Rd denote the curve location at time (i − 1)δt with δt = T
n−1 . The

discrete-time derivative ṡ ∈ Rn·d is de�ned using �rst-order di�erences:

ṡ(i) =

{
0 if i = 1,

(s(i)− s(i− 1))/δt if i ∈ {2, . . . , n}.

In the discrete setting, the �rst-order di�erential operator can be represented by a matrix

Ṁ ∈ Rn·d×n·d, i.e. ṡ = Ṁs. We de�ne the discrete second-order di�erential operator by

M̈ = −Ṁ∗Ṁ ∈ Rn·d×n·d.
3it is just a polytope when the `∞-norm is used.
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k-space trajectory Emp. distribution P ‖P − π‖2/‖π‖2
a
rc
-l
en
g
th

p
a
ra
m

 

 

Not-admissible rel. error = 12 %

re
p
a
ra
m
et
er
iz
a
ti
o
n

TRep = 92 ms rel. error = 60 %

1
0
%

m
a
x
.
sp
ee
d

T = 90 ms rel. error = 10 %

5
0
%

m
a
x
.
sp
ee
d

T = 18 ms rel. error = 12 %

m
a
x
.
sp
ee
d

T = 9 ms rel. error = 14 %

Figure 4.3: Illustration of TSP trajectories traversed with arc-length parameter-
ization (top row), optimal control (second row) and with our projection algo-
rithm (rows 3-5). Columns represent the k-space trajectory (left), the empirical
distribution P (center) and the di�erence with the target distribution π shown in
Fig. 4.2(a) (right). At the bottom, the relative error ‖P − π‖2/‖π‖2 between the two

is reported.
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An e�cient projection algorithm

The discrete primal problem we consider is the same as (4.4) except that all objects are

discretized. It reads:

min
s∈S∩A

1

2
‖s− c‖22, (P)

where S :={s ∈ Rn·d, ‖Ṁs‖ 6 α, ‖M̈s‖ 6 β} with all norms discretized, and A are the

discrete counterparts of S and A, respectively. Next, the main idea is to take advantage

of the structure of the dual problem of P to design an e�cient projection algorithm. The

following proposition speci�es this dual problem and the primal-dual relationships.

Proposition 4.4. Let ‖q‖∗ := sup
‖s‖≤1

〈s, q〉 denote the dual norm of ‖ · ‖. The following

equality holds:

min
s∈S∩A

1

2
‖s− c‖22 = sup

q1,q2∈Rn·d
F (q1, q2)− α‖q1‖∗ − β‖q2‖∗, (4.8)

where

F (q1, q2) = min
s∈A
〈Ṁs, q1〉+ 〈M̈s, q2〉+

1

2
‖s− c‖22. (4.9)

Moreover, let (q∗1, q
∗
2) denote any minimizer of the dual problem (4.8), s∗ denote the

unique solution of the primal problem (P) and s∗(q∗1, q∗2) denote the solution of the min-

imization problem (4.9). Then s∗ = s∗(q∗1, q
∗
2).

Proof. The proof is given in Appendix B.

The following proposition gives an explicit expression of s∗(q∗1, q
∗
2).

Proposition 4.5. The minimizer

s∗(q∗1, q
∗
2) = arg min

s∈A
〈Ṁs, q1〉+ 〈M̈s, q2〉+

1

2
‖s− c‖22

is given by

s∗(q1, q2) = z +A+(v −Az), (4.10)

where A ∈ Rp×n·d is a matrix encoding the a�ne constraints, and A+ = A∗(AA∗)−1

denotes its pseudo-inverse4. In addition, z = c− Ṁ∗q1 − M̈∗q2.

Proof. The proof is given in Appendix C.

4Since the constraints are supposed to be linearly independent, A+ is well-de�ned.
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Let us now analyse the smoothness properties of F .

Proposition 4.6. Function F (q1, q2) is concave di�erentiable with gradient given by

∇F (q1, q2) = −

(
Ṁs∗(q1, q2)

M̈s∗(q1, q2)

)
. (4.11)

Moreover, the gradient mapping ∇F is Lipschitz continuous with constant L = |||Ṁ∗Ṁ+

M̈∗M̈|||, where |||M||| denotes the spectral norm of M.

Proposition 4.6 is a direct application of (Nesterov, 2005, Theorem 1) (see also (Hiriart-

Urruty and Lemaréchal, 1996)). The dual problem (4.8) has a favorable structure for its

optimization: it is the sum of a di�erentiable convex function F̃ (q1, q2) = −F (q1, q2)

and of a simple convex function G(q1, q2) = α‖q1‖∗+β‖q2‖∗. The sum F̃+G can thus

be minimized e�ciently using accelerated proximal gradient descents (Nesterov, 1983)

(see Algorithm 1 below).

Algorithm 1: Projection algorithm in the dual space

Input: c ∈ Rn·d, α, β > 0, nit.
Output: s̃ ∈ Rn·d an approximation of the solution s∗.
Initialize q(0) = (q

(0)
1 , q

(0)
2 ) with q(0)

i = 0 for i = 1, 2. Set y(0) = q(0).
Set ` = 1/L.
for k = 1 . . . nit do

q(k) = prox`G(y(k−1) − `∇F̃ (y(k−1)))
y(k) = q(k) + k−1

k+2(q(k) − q(k−1))

return s̃ = s∗
(
q

(nit)
1 , q

(nit)
2

)
.

Moreover, by combining the convergence rate results of (Nesterov, 1983; Beck and

Teboulle, 2009b) and some convex analysis (see Appendix D), we obtain the following

convergence rate:

Theorem 4.7. Algorithm 1 ensures that the distance to the minimizer decreases as

O
(

1
k2

)
:

‖s(k) − s∗‖22 ≤
2L‖q(0) − q∗‖22

k2
. (4.12)

4.5 Numerical experiments

To compare our results with (Lustig et al., 2008), we used the same gradient con-

straints. In particular, the maximal gradient norm Gmax was set to 40 mT.m−1, and
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the slew-rate Smax to 150 mT.m−1.ms−1. We assume that the constraints are Ro-

tation Invariant (RIV). The image �eld of view (FOV) is assumed to be 20 cm and

Kmax = N/(2 · FOV ) where N is the target spatial grid size for image reconstruction.

The sampling rate was �xed to ∆t = 4 µs except for spiral imaging. For the ease of tra-

jectory representation, we limit ourselves to 2D sampling curves, although our algorithm

encompasses the 3D setting.

The Matlab codes embedding the projection algorithm as well as the scripts to reproduce

the results depicted hereafter are available at http://chauffertn.free.fr/codes.html.

Hereafter, the supplementary a�ne constraints (e.g., nulling moments) are not taken

into account. However, they have been implemented in the code so that every end-user

can play with. Simulations were performed on a Linux Ubuntu (64 bits) workstation

with an Intel Xeon(R) CPU E5-2630 v2 @2.60GHz processor and 64 GB of RAM. The

computation time required to run the experiments range from 2 min. (EPI with 17, 225

points) to 4 min. (TSP trajectory with 45, 000 points) and the number of iterations of

Algorithm 1 to achieve convergence was 15, 000, to satisfy ||(s(k+1)− s(k))/s(k)|| < 10−3.

To measure the impact of the proposed projection algorithm and compare it with the

optimal reparameterization, we also performed image reconstruction and computed image

quality in terms of Signal-to-Noise-Ratio (SNR). To this end, we performed simulations

by starting from a high-resolution N×N MRI phantom (N = 1024) depicted in Fig. 4.4.

Next, we massively undersampled its Fourier transform by the two competing sampling

strategies and analyzed image quality after non-Cartesian reconstruction. For the sake of

self-containedness, all investigated trajectories are depicted in Fig. 4.7 and quantitative

results corresponding traversal times and SNR of reconstructed images are reported in

Tab. 4.1. In what follows, we �rst discuss the results of our method in the context

Figure 4.4: MRI phantom of size N ×N (N = 1024) used for the experiments.

of classical (piecewise linear) EPI trajectory. Then, we illustrate the behavior of our

http://chauffertn.free.fr/codes.html


96 Chapter 4 A projection algorithm for gradient waveforms design

Standard EPI Projected EPI
g
(t

)

g
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)

Figure 4.5: Comparison between magnetic �eld gradients g = (gx, gy) during the

�rst 5 ms for standard EPI trajectory (left) and projected EPI (right).

algorithm on two VDS: classical spiral (smooth) trajectories and TSP-based (piecewise

linear) trajectories.

4.5.1 EPI trajectories

EPI trajectories are a classical way of probing the k-space on a 2D-Cartesian grid. We

compared a standard EPI with ramp-sampling (a sample was measured every ∆t from

t = 0 to TRep) on N = 128 lines, parameterized with optimal control and a trajectory

that traverses the k-space at constant speed (70% of the maximal gradient intensity),

projected onto S using our algorithm.

As shown in Fig. 4.7 (third row), the projected trajectory has a smaller support than

standard EPI. In particular, the resolution in the readout direction is slightly decreased.

However, the time to traverse k-space is shorter (T = 68.9 ms) using our algorithm as

compared to the EPI trajectory (TRep = 89.6 ms). To provide a better insight on this ac-

celeration factor, we depict in Fig. 4.5 the �rst 5 ms of the gradient waveforms for the two

approaches. The corresponding acquired lines are colored in red in Fig. 4.7. While stan-

dard EPI is able to acquire 6.5 lines (Fig. 4.5-left) in this amount of time, the projected

trajectory achieves the extended coverage of 8.5 lines (Fig. 4.5-right). Indeed, gradient

blips are smoothed providing a substantial time reduction. In terms of image quality, we

observed that the degradation of resolution along one direction has no signi�cant impact

since the SNR of reconstructed image is higher for the projected trajectory compared to

standard EPI (Tab. 4.1). Hence, in the EPI context, the projection algorithm allows us

to traverse the k-space faster without degrading the image quality.
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Input spiral Reparametrization Projection

|k| |k| |k|

Figure 4.6: Decay of the spiral for an input spiral with density π(k) ∝ 1/|k|2. His-
togram of the values r(t) for input spiral (not admissible), optimal reparametrization,

and projection.

4.5.2 Spiral trajectories

The case of spiral trajectories is more tricky as explained below. For any radial density

π, there exists a spiral that performs k-space sampling according to π. This trajectory is

parameterized by c(t) = r(t/T ) exp(i2πnθ(t/T )) and thus controlled by its time-varying

modulus r(t) and phase θ(t) and by the number of revolutions n ∈ R+ over the �xed

traversal time T . The relation between π and r(·) is given in Appendix A, Eq. (4.14),

hence the choice of r(·) determines π, whereas θ(·) and n control the shape of the spiral.

For �xed T and r(·), �nding θ(·) and n such that the spiral is optimal in the sense that the

kinematics constraints S are saturated, is an open issue. Indeed, in the literature (Kim

et al., 2003), it has been shown that di�erent types of gradient parameterizations may

yield di�erent sampling patterns, hence various π. However, to the best of our knowl-

edge, the inverse problem which consists of inferring the parameterization from the target

density π, has never been solved.

Here, we provide a partial solution that relies on two ingredients: �rst, setting the func-

tion r(·) according to (4.14) and second choosing a constant angular speed ω such that

θ(t) = ωt. This approach actually remains suboptimal since considering a constant ω im-

poses too low gradient magnitudes at the beginning of the trajectory (i.e. for the k-space

center). The pair (ω, n) must satisfy the constraints in S. For instance, to saturate the

magnitude gradient constraint one may choose (ω, n) such that: 2πnωKmax = γGmax.

In our experiment, we adopted this strategy for the above de�ned Gmax and the selected

Kmax (see Fig. 4.7). We also set T = 200 ms and ∆t = 24 µs, in order to meet an

additional memory size constraint5. In Fig. 4.6, we illustrate how the sampling density

π(k) ∝ 1/|k|2 is impacted after optimal control reparametrization whereas it is preserved

when applying our projection algorithm. The histogram peak associated with the repa-

rameterization is shifted to the right i.e. towards high frequencies meaning that the low

frequencies are undersampled. This is the direct consequence of using a too fast traversal

5the bu�er size of the analog-to-digital converter is 8912 in standard MRI scanners.
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speed (see Fig. 4.7: the samples of the spiral are more spaced in the reparameterization

scenario). The traversal time of the spiral is indeed TRep = 42 ms with reparametrization

and T after projection (Tab. 4.1). This also explains the signi�cant di�erence of image

quality by almost 5 dB in favor of the projection approach.

On the contrary, if the initial parameterization is not admissible (ω too large), we ob-

served that the output trajectory of the projection algorithm concentrates on concentric

circles corresponding to the maximal speed allowed by the gradient magnitude con-

straint (results not shown). In contrast, the optimal reparameterization is not impacted

since it only depends on the support of the spiral. Hence, the choice of the initial

parametrization is crucial for spiral imaging, and it seems that neither our algorithm nor

reparametrization technique provides a universal answer to the issue of spiral sampling

in MRI.

4.5.3 TSP sampling

In the same spirit of Fig. 4.3, we performed numerical experiments using a TSP tra-

jectory (Chau�ert et al., 2014a; Chau�ert et al., 2013c). To perform a comparison at

constant traversal time, we draw two sets of 4,500 and 45,000 �cities� in order to design

a short and a long trajectory (Fig. 4.7 top row-right). The short curve is traversed with

optimal reparameterization in a given time TRep = 160 ms (Fig. 4.7 middle row-right).

The longer curve is parameterized at constant speed such that T = TRep, that corre-

sponds to 25 % of the maximal speed γGmax. Then, this parameterization is projected

onto S (Fig. 4.7 last row).

We notice that for a �xed time, the curve obtained with our algorithm provides a larger

k-space coverage compared to optimal reparameterization. The main reason is that TSP

trajectories embody singular points that require the gradients to be set to zero for each

of them. Therefore, a sampling trajectory with singular points is time consuming. The

main advantage of our algorithm is that the trajectory can be smoothed around these

points, which saves a lot of acquisition time. In terms of image quality, the main con-

sequence is that our projection algorithm outperforms the reparameterization approach

by 3.2 dB.

This example demonstrates that existing methods do not permit to implement TSP-

based sequences in many MRI modalities (e.g., short TE for a small number of �cities�),

since the time to collect data can be larger than any realistic repetition time (here,

the traversal time of the longer trajectory based on optimal reparameterization would

require 1.1 s). In contrast, our method enables traversal of such curves in a reasonable

time which can be tuned according to the image weighting (T1, T2 or proton density).
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Table 4.1: Comparison between traversal time and reconstruction SNR for optimal
reparameterization and projection

EPI Spiral TSP-based
Resolution 128 512 512

Optimal
reparam.

TRep (ms) 89.6 42.4 180
SNR (dB) 20.1 7.9 11.3

Projection
T (ms) 68.9 200 180
SNR (dB) 21.4 12.7 14.5

4.5.4 Nonlinear image reconstruction

To demonstrate the e�ectiveness of the proposed approach not only for gradient waveform

design but also for imaging, we performed nonlinear image reconstruction as prescribed

in the CS context (Candès et al., 2006a; Lustig et al., 2007). Additionally, to fully take

advantage of the projection algorithm, our reconstruction scheme was non-Cartesian.

Hence, we used non-uniform Fourier transforms (Keiner et al., 2009) to compute the

k-space values out of the grid (on locations s(i), i = 1, . . . , n). For comparison purposes,

we started from a high resolution phantom u (see Fig. 4.4) that was used to compute

the sets E(u, sRep) and E(u, sproj). The latter are given by Eq. (4.1) where sRep and sproj

denote the optimal reparameterization and projected trajectory, respectively. Next, the

images were reconstructed using non-linear `1 penalization, i.e.:

u∗ = arg min
ũ

‖
n∑
i=1

̂(u− ũ)(s(i))‖22 + λ‖Φũ‖1 (4.13)

where Φ is a sparsifying transform (here Daubechies wavelets), λ is a hyper-parameter,

and s is either srep or sproj. The minimizer of (4.13) was computed using accelerated

proximal gradient descent ((Nesterov, 1983), FISTA (Beck and Teboulle, 2009b)). The

image solutions (u∗Rep and u∗proj) were then compared to a low resolution version of the

N ×N phantom where N ranged from 128 to 512 to compute SNR values in Tab. 4.1.

On top of this, it is worth noting that we could still improve the SNR of reconstructed

images by resorting either to more redundant decompositions such as tight frames (Flo-

rescu et al., 2014) or even by learning dictionaries over which the image can be sparsely

decomposed (Huang et al., 2014). However, this aspect is beyond the scope of our current

proof of concept.
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Figure 4.7: Representation of input trajectory, optimal reparametrization and projec-
tion for EPI, spiral and TSP-based trajectories. The frame [−Kmax,Kmax]2 is depicted

with various values of Kmax that depend on the reconstruction resolution.

4.6 Discussion

In this paper, it has been shown that our projection algorithm has potential interests

for smoothing sampling curves such as EPI or TSP-based trajectories. In this context,

our algorithm delivers physically plausible trajectories while drastically reducing the

traversal time and improving image quality. This is a direct consequence of its ability

to project any piecewise linear initial parameterization onto admissible trajectories with

di�erent support. In applications such as functional MRI, this o�ers the opportunity

to shorten the echo train length and then to optimally select the e�ective echo time

so as to maximize the blood oxygenated level-dependent contrast (e.g., TE = 30 ms

at 3T). Finally, our method can be used in addition with other acceleration methods

such as parallel imaging (Pruessmann et al., 1999; Griswold et al., 2002) or simultaneous

multi-slice imaging technique (Feinberg et al., 2010).

Beyond this context, our projection method provides a more accurate control of the

sampling density as shown for variable density sampling on spirals. This has a positive
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impact on image reconstruction quality at the expense of longer traversal times. Set-

ting a fair trade-o� between image quality and acquisition time is a usual concern in

MRI that may depend on the application at hand (e.g., static vs dynamic imaging).

Interestingly, our algorithm prescribes the acquisition time a priori what actually pro-

vides the practitioner with an e�ective control on such trade-o�. As we illustrated on

TSP sampling, this acquisition time is tightly linked to sampling accuracy with respect

to the target density. Hence, our approach clearly compensates a major drawback of

reparametrization methods that do not o�er such control: the traversal time can be too

fast hence an insu�cient number of data are collected (spiral case), or too slow and not

implementable (TSP-based sampling case).

Usually in MRI acquisition, a number of trajectories are interleaved to provide enough

k-space samples. So far, we have not demonstrate the optimization of a set of interleaves

except that the segmentation of the trajectory can directly enter in our global optimiza-

tion problem through a�ne constraints if the interleaving sequence is thought of as a

way of crossing the k-space center at evenly spaced time intervals. More generally, we

can prove theoretically and practically that if the combination of two input trajectories

provides a good k-space coverage, the combination of the two projected curves admits

the same property. The theoretical argument comes from the following observation: if

we consider two interleaves c1 and c2 and apply our projection method by searching for

s1 and s2 from initial candidates c1 and c2 respectively, we actually control an upper

bound of W2(Ps1 , Pc1) +W2(Ps2 , Pc2). Practical illustration of this property is available

in our Matlab toolbox.

On the other hand, our projection method has also limitations. In particular, the pro-

jected trajectory strongly depends on the initial parameterization. As we illustrated,

parameterizing a given initial curve at di�erent speeds provides very di�erent projected

trajectories. This clearly calls for extensions that might iterate until convergence between

the two key steps, namely approximating the target density and �nding an admissible

trajectory from this approximation (Chau�ert et al., 2015a). In such generalizations, the

�rst step can be seen as a density-consistency stage where the sampled k-space locations

might change from one iteration to the next to �t a target density. We believe that

this idea might become the most important aspect of our contribution in the future:

projections are one of the most basic tools from optimization and might serve in many

di�erent contexts.
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4.7 Conclusion

We developed an algorithm to project any parameterized curve onto the set of curves

which can be implemented on actual MRI scanners. Our method is an alternative to the

existing gradient waveform design based on optimal control. The major advantages are

that: i) the sampling time is �xed which is crucial to adapt the proposed scheme to any

MR imaging modality; ii) the sampling density is close to the target one, as required by

compressed sensing theory; iii) the behavior of our algorithm is similar to the state-of-the

art for smooth trajectories, but it provides shorter k-space coverage when the trajectory

comprises numerous high curvature points, as illustrated in the TSP and EPI cases.
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Appendix 1 - Density deviation, control of W2-distance.

In Section 4.3.1, we aim at controlling the Wasserstein distance W2(Ps∗ , π), where π is a

target �xed sampling distribution, and Ps∗ is the empirical distribution of the projected

curve. We used the triangle inequlity (4.6) to bound this quantity by W2(Ps∗ , Pc) +

W2(Pc, π). Here, we show that the quantity W2(Pc, π) can be as small as possible if c is

Variable Density Sampler (VDS) (Chau�ert et al., 2014a). First, we de�ne the concept

of VDS, and then we provide two examples. Next, we show that if c is a VDS, W2(Pc, π)

tends to 0 as the length of c tends to in�nity.

De�nition of a VDS

First, we need to introduce the de�nition of weak convergence for measure:

De�nition 4.8. A sequence of measures µn ∈ P(K), the set of distributions de�ned

over K, is said to weakly converge to µ if for any bounded continuous function φ∫
K
φ(x)dµn(x)→

∫
K
φ(x)dµ(x).

We use the notation µn ⇀ µ.
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According to (Chau�ert et al., 2014a), a (generalized) π-VDS is a set of times Tn, such

that Tn → ∞ when n → ∞, and a sequence of curves cTn : [0, Tn] → Rd such that

PcTn ⇀ π when n tends to in�nity. A consequence of the de�nition is that the relative

time spent by the curve in a part of the k-space is proportional to its density. Before

showing that this implies that W2(PcTn , π) tends to 0, we give two examples of VDS.

VDS examples

We give two examples to design continuous sampling trajectories that match a given dis-

tribution. The two examples we propose provide a sequence of curves, hence a sequence

of empirical measures that weakly converge to the target density.

Spiral sampling

The spiral-based variable density sampling is now classical in MRI (Spielman et al., 1995;

Kim et al., 2003). For example, let n ∈ R+ be the number of revolutions, r : [0, 1] 7→ R+

a strictly increasing smooth function, and θ : [0, 1]→ [0, 2π]. Denote by r−1 the inverse

function of r. De�ne the spiral for t ∈ [0, n] by cn(t) = r
( t
n

)
exp

(
i · n · θ

(
t

n

))
and

the target distribution π by:

π(x, y)=


.

r−1
(√

x2+y2
)

2π
∫ r(1)
r(0)

.

r−1(ρ)ρdρ
if r(0)6

√
x2+y26r(1)

0 otherwise

(4.14)

then Pcn ⇀ π when n tends to in�nity.

Travelling Salesman-based sampling

The idea of using the shortest path amongst a set of points (the �cities") to design

continuous trajectories with variable densities has been justi�ed in (Chau�ert et al.,

2013a; Chau�ert et al., 2014a). Let us draw n k-space locations uniformly according to a

density q de�ne over the dD k-space (d = 2 or 3), and join them by the shortest path (the

Travelling Salesman solution). Then, denote by cn a constant-speed parameterization of

this curve. De�ne the density:

π =
q(d−1)/d∫

q(d−1)/d(x)d(x)

Then Pcn ⇀ π when the number of cities n tends to in�nity.
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These two sampling strategies are e�cient to cover the k-space according to target distri-

butions, as depicted in Fig. 4.7(top row) where TSP (resp. spiral) is a VDS for distribu-

tion depicted in Fig. 4.2(a) (resp. (b)). For spiral sampling, the target distribution may

be any 2D radial distribution, whereas the Travelling salesman-based sampling enable

us to consider any 2D or 3D density.

Control of W2 distance

Let us now assume without loss of generality that K = [−kmax, kmax]d.

Let us recall a central result about W2 (see e.g.,(Villani, 2008)):

Proposition 4.9. Let M ⊂ Rd, µ ∈ P(M) and µn be a sequence of P(M). Then, if M

is compact

µn ⇀ µ⇔W2(µn, µ)→ 0

An immediate consequence of this proposition and of the compactness of K is the fol-

lowing proposition:

Proposition 4.10. Let (cTn)n>1 be a π-VDS, and ε > 0. Then, there exists n > 1 such

that cTn : [0, Tn]→ K ful�lls:

W2(PcTn , π) 6 ε.

To sum up, Proposition 4.10 ensures that we can �nd an input curve which empirical

distribution is as close to the target distribution π as we want.

Appendix 2 - Proof of Proposition 4.4

De�nition 4.11 (indicator function). Let B ⊆ Rn. The indicator of B is denoted ıB

and de�ned by:

ıB(x) =

{
0 if x ∈ B
+∞ otherwise

Let us now recall a classical result of convex optimization (Hiriart-Urruty and Lemaréchal,

1996, P. 195):
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Proposition 4.12. Let Bα = {x ∈ Rn, ‖x‖ 6 α}. Then the following identity holds:

ıBα(x) = sup
y∈Rn

〈x,y〉 − α‖y‖∗.

Now, we can prove Proposition 4.4.

min
s∈S∩A

1

2
‖s− c‖22

= min
s∈A

1

2
‖s− c‖22 + ıBα(Ṁs) + ıBβ

(M̈s)

= min
s∈A

1

2
‖s− c‖22 + sup

q1,q2∈Rn·d
〈Ṁs, q1〉 − α‖q1‖∗

+ 〈M̈s, q2〉 − β‖q2‖?

= sup
q1,q2∈Rn·d

min
s∈A

1

2
‖s− c‖22 + 〈s, Ṁ∗q1〉+ 〈s, M̈∗q2〉

− α‖q1‖∗ − β‖q2‖∗

The relationship between the primal and dual solutions reads s∗ = arg min
s∈A

1

2
‖s− c‖22 +

〈s, Ṁ∗q∗1〉+ 〈s, M̈∗q∗2〉. The sup and the min can be interverted at the third line, due to

standard theorems in convex analysis (see e.g. (Rockafellar, 1997, Theorem 31.3)).

Appendix 3 - Proof of Propositions 4.5

To show Proposition 4.5, �rst remark that

arg min
s∈A

〈Ṁs, q1〉+ 〈M̈s, q2〉+
1

2
‖s− c‖22

= arg min
s∈A

1

2
‖s− (c− Ṁq1 − M̈∗q2)‖22.

Therefore, s∗(q1, q2) is the orthogonal projection of z = c−Ṁq1−M̈∗q2 onto A. Since

A is not empty, AA+v = v, and the set A = {s ∈ Rn·d,As = v} can be decomposed

as

A = A+v + ker(A).

The vector z− s∗(q1, q2) is orthogonal to A, it therefore belongs to ker(A)⊥ = im(A∗).

Hence s∗(q1, q2) = z +A∗λ for some λ such that:

A(z +A∗λ) = v.
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This leads to λ = (AA∗)−1(v −Az). We �nally get

s∗(q1, q2) = z +A∗(AA∗)−1(v −Az),

ending the proof.

Appendix 4 - Proof of theorem 4.7.

Let us �rst recall that the relative interior of a convex set C ri(C) is the interior of

C relative to the a�ne hull of C (Hiriart-Urruty and Lemaréchal, 1996). The analysis

proposed to prove Theorem 4.7 closely follows ideas proposed in (Weiss et al., 2009;

Boyer et al., 2014; Beck and Teboulle, 2009b; Beck and Teboulle, 2014). We will need

two results. The �rst one is a duality result from (Boyer et al., 2014).

Proposition 4.13. Let f : Rm → R ∪ {∞} and g : Rn → R ∪ {∞} denote two closed

convex functions, and A ∈ Rm×n denote a matrix. Assume that g is σ-strongly convex

(Hiriart-Urruty and Lemaréchal, 1996) and that Ari(dom(f)) ∩ ri(dom(g)) 6= ∅.

Let p(x) = f(Ax)+g(x) and d(y) = −g∗(A∗y)−f∗(y). Let x∗ be the unique minimizer

of p and y∗ be any minimizer of d.

Then g∗ is di�erentiable with 1
σ Lipschitz-continuous gradient. Moreover, by letting

x(y) = ∇g∗(−A∗y):

‖x(y)− x∗‖22 ≤
2

σ
(d(y)− d(y∗)).

The second ingredient is the standard convergence rate for accelerated proximal gradient

descents given in (Beck and Teboulle, 2009b, Theorem. 4.4).

Proposition 4.14. Under the same assumptions as Proposition 4.13, consider Algo-

rithm 2.

Algorithm 2: Accelerated proximal gradient descent
Input: q0 ∈ ri(dom(f∗)) ∩Ari(dom(g∗)) and nit
Initialize Set ` = 1/L, with L = |||A|||2

σ .
Set y0 = q0. for k = 1 . . . nit do

q(k) = prox`f∗(y
(k−1) + `A∇g∗(−A∗y(k−1)))

y(k) = q(k) + k−1
k+2(q(k) − q(k−1))

Then ‖y(nit) − y∗‖22 = O
(
|||A|||2
σ·n2

it

)
.
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To conclude, it su�ces to set g(s) = 1
2‖s− c‖

2
2, f(q1, q2) = ıBα(q1) + ıBα(q2) and A =(

Ṁ

M̈

)
. By doing so, the projection problem rewrites min

s∈Rnḋ
p(s) = f(As) + g(s). Its dual

problem (4.8) can be rewritten more compactly as min
q=(q1,q2)∈Rnḋ×Rnḋ

d(q) = g∗(−A∗q) +

f∗(q). Note that function g is 1-strongly convex. Therefore, Algorithm 2 can be used to

minimize d, ensuring a convergence rate in O
(
L
k2

)
on the function values d(y(k)), where

L = |||A|||2. It then su�ces to use Proposition 4.13 to obtain a convergence rate on the

distance to the solution ‖s(k) − s∗‖22. This ends the proof of Theorem 4.7.

4.8 Additionnal simulations on 3D angiography

This section was published in the proceedings (Chau�ert et al., 2015b) and shows the

behaviour of the projection algorithm on 3D TSP-based sampling trajectories and its

application to angiography.

In this part, we compare the time to traverse k-space along di�erent trajectories using

gradients computed either by the standard optimal control approach or by our pro-

posed projection algorithm. For comparison between sampling schemes, we work on

retrospective CS, meaning that a full dataset has been acquired, and then a posteri-

ori downsampling is performed. We compare the reconstruction results in terms of peak

signal-to-noise ratio (PSNR) with respect to the acquisition time and to the �acceleration

factor�6 r.

4.8.1 Experimental framework

Data acquisition. The initial experimental setup aimed at observing blood vessels of

living mice using an intraveinous injection of an iron oxide-based contrast agent (Mag-

netovibrio Blakemorei MV1). Because of natural elimination, it is necessary to speed

up acquisition to improve contrast and make easier post-processing such as angiography.

The experiments have been performed on a 17.2T preclinical scanner which physical

rotation-invariant constraints are, for all t ∈ [0, T ]:

‖g(t)‖ 6 1 T.m−1 and ‖ġ(t)‖ 6 5.3 T.m−1.ms−1.

A FLASH sequence (Fast Low Angle SHot) has been used to reveal the T∗2 contrast

induced by the injection of the contrast agent (TE/TR = 8/680 ms). The sequence was

repeated 12 times to improve the signal-to-noise ratio (SNR), leading to a total acquistion

6r quanti�es the reduction of the number of measurements m. If the k-space is a grid of N pixels
r := N/m is commonly used in CS-MRI.
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time of 30 minutes to acquire the k-space slice by slice. The spatial resolution achieved

is 90×90×180 µm3.

Hypothesis. The aim of this experiment is to prove that one can expect a large acquisi-

tion time reduction using partial k-space measurements. The time to traverse a sampling

curve is computed satisfying the gradient constraints. To achieve a fair comparison, let

us mention the additional hypothesis that our acquisitions are single-shot, meaning that

the partial k-space is acquired after a single RF pulse. We did not take echo and repeti-

tion times into account to ensure the recovery of a T∗2-weigthed image. We only compare

the time to traverse a curve using the gradients with their maximal intensity. We assume

that there is no error on the k-space sample locations. In practice we have to measure

the three magnetic �eld gradients that are actually played out by the scanner to correct

the trajectory and avoid distortions. We shall work on a discrete cartesian k-space, and

consider that a sample is measured if the sampling trajectory crosses the corresponding

cell of the k-space grid. Using this hypothesis, the estimated time to visit the 2D k-space

is 110 ms.

Strategy. We used the TPS-based sampling method (Appendix 1) as input of our pro-

jection algorithm (see Fig. 4.8(b)), since it is a way of designing sampling trajectories

that match any sampling density π. The latter is central in CS-MRI since it impacts

the number of required measurements (Adcock et al., 2013; Krahmer and Ward, 2014;

Chau�ert et al., 2014a). To compare our projection method to existing reparameteriza-

tion, the proposed sampling strategy is:

(i) Sample deterministically the k-space center as adviced in (Adcock et al., 2013; Chauf-

fert et al., 2013b; Chau�ert et al., 2014a), using an EPI sequence (see Fig. 4.8(a)). The

scanning time can be estimated to 12 ms in 2D using optimal control.

(ii) Select a density π proportional to 1/|k|2 as mentioned in (Krahmer and Ward, 2014;

Chau�ert et al., 2014a). Draw independently points according to π
d−1
d and join them by

the shortest path to form a π-VDS (Appendix 1).

(iii) Parameterize the TSP path at constant speed and project this parameterization onto

the set of gradient constraints, or (iii bis) Parameterize the TSP path using optimal

control (the exact solution can be computed explicitely).

(iv) Form the sampling curve, de�ne a set Ω of the selected samples, mask the k-space

with Ω, and reconstruct an image using `1 minimization of the constrained problem. Let

F∗ denote the d-dimensional discrete Fourier transform and F∗Ω the matrix composed of

the lines corresponding to Ω. Denote also by Φ an inverse d-dimensional wavelet trans-

form (here a Symmlet transform). Then the reconstructed image is the solution of the
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problem:

x∗ = Argmin
y=F∗Ωx

∥∥Φ−1x
∥∥

1
(4.15)

An approximation of x∗ is computed using Douglas-Rachford algorithm (Combettes and

Pesquet, 2011). Solving the penalized form associated with (4.15) might be addressed

by competing algorithms (ADMM, 3MG); see (Florescu et al., 2014) for a recent com-

parison. The reconstruction results could be improved by resorting to non-Cartesian

reconstruction (Keiner et al., 2009), which would avoid the approximation related to the

projection onto the k-space grid.

4.8.2 Results

4.8.2.1 2D reconstructions

In this experiment, we considered a 2D k-space (d = 2) corresponding to an axial slice.

We considered �ve sampling strategies, depicted in Fig. 4.8(�rst row): a classical EPI

coverage used as reference (a); a TSP-based sampling trajectory parameterized using

optimal control (b); two projected TSP-based trajectories, one with the same number of

samples collected as in (b) (r = 11.2) (c) and the other with the same scanning time as

in (b) (62 ms) (d); a variable density spiral trajectory for comparison purpose in terms

of time and sampling ratio (e).

As expected, the reconstruction results shown in Fig. 4.8(g,h) are really close, since

the number of collected samples is the same, and the sampling densities are similar.

However, in this comparison the gain in traversal time is signi�cant (one half). In

contrast, the longer and smoothed TSP depicted in Fig. 4.8(d) allows us to improve image

reconstruction (1 dB gain) as illustrated by Fig. 4.8(i) while keeping the same acquisition

time as in Fig. 4.8(b). For comparison purposes, we implemented spiral acquisition which

consists of replacing steps (ii)-(iii) in the above mentioned sampling strategy by a spiral

with density proportional to 1/|k|2, projected onto the set of constraints. This strategy

doubles the acquisition time (118 ms compared to 62 ms) whereas the acceleration factor

was larger (r = 7.5 vs. r = 6.6). In this experimental context (regridding and variable

density spiral), the spiral is not appealing compared to EPI acquisition, since it is time

consuming and degrades the image quality.

In each of these reconstructions, the major vessels can be recovered, although the smallest

ones can only be seen for r < 8. Finally, the best compromise between acquisition

time and reconstruction quality is achieved using the speci�c combination of TSP-based

sampling and our projection algorithm onto the set of constraints shown in Fig. 4.8(d).
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Figure 4.8: Full k-space acquisition with an EPI sequence (a) and corresponding
reference image (f). Comparison between an exact parameterization of the TSP tra-
jectory (b) and projection from TSP trajectory onto the set of constraints (c),(d). In
experiments (b,c), the number of measured locations is �xed to 9% (r = 11.2), whereas
in (b,d), the time to traverse the curve is �xed to 62 ms. (e): Spiral trajectory with
full acquisition of the k-space center. (g-j): Reconstructed images corresponding to

sampling strategies (b-e) by solving Eq. (4.15).

4.8.2.2 3D angiography

Using the same method as in 2D, namely TSP-sampling and projection onto the set of

constraints, we reconstructed volumes from 3D k-space. In order to estimate the quality

of the reconstructions, we compared the angiograms computed from the 3D images using

Frangi �ltering (Frangi et al., 1998). The results are shown in Fig. 4.9 for acceleration

factors r = 7.3 (Fig. 4.9(b,e)) and r = 17.4 (Fig. 4.9(c,f)) and compared to the angiogram

computed from the whole data.

Using the strategy described in Part 4.8.1 the time to traverse k-space would be 3.53 s

(full acquisition), 3.15 s (r = 7.2) and 0.88 s (r = 17). The main drawback of TSP-based

sampling schemes is that the time reduction is not directly proportional to r, in contrast

to classical 2D downsampling and reading out along the third dimension. Nevertheless,

if the number of measurements is �xed, the TSP-based approach leads to more accurate

reconstruction results since the sampling scheme may �t any density (see Appendix 1).

Angiograms shown in Fig. 4.9 illustrate that one can reduce the travel time in the k-

space and still observe accurate microvascular structure. If r = 7.3, time reduction is

minor (about 10% less), but the computed angiogram is almost the same as the one

obtained with a complete k-space. It is interesting to notice that with a higher accel-

eration factor (r = 17.4), the acquisition time is reduced by 75%, but the computed

angiogram remains of good quality. The angiogram appears a bit noisier, especially
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in the pre-injection setting (Fig. 4.9(c)), but the post-injection image allows recovering

Willis polygon and most of the major vessels of the mouse brain (Fig. 4.9(f)).

Original (T = 3.53s) r = 7.3 (T = 3.15s) r = 17.4 (T = 0.88s)
(a) (b) (c)

pr
e-
in
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ct
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n

PSNR=29.0 dB PSNR=26.6 dB
(d) (e) (f)

p
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Figure 4.9: Angiograms computed from full k-space pre-(a) and post-(d) injection
data. Angiograms computed from pre-(resp., post-) injection data for decimated k-

space with r=7.3 (b) and r=17.4 (c) (resp., (e) and (f)).





Chapter 5

A projection method on measures

sets

This chapter is based on (Chau�ert et al., 2015a).

We consider the problem of projecting a probability measure π on a setMN of Radon

measures. The projection is de�ned as a solution of the following variational problem:

inf
µ∈MN

‖h ? (µ− π)‖22,

where h ∈ L2(Ω) is a kernel, Ω ⊂ Rd and ? denotes the convolution operator. To

motivate and illustrate our study, we show that this problem arises naturally in various

practical image rendering problems such as stippling (representing an image with N

dots) or continuous line drawing (representing an image with a continuous line). We

provide a necessary and su�cient condition on the sequence (MN )N∈N that ensures weak

convergence of the projections (µ∗N )N∈N to π. We then provide a numerical algorithm

to solve a discretized version of the problem and show several illustrations related to

computer-assisted synthesis of artistic paintings/drawings.

5.1 Introduction

Digital Halftoning consists of representing a grayscale image with only black and white

tones (Ulichney, 1987). For example, a grayscale image can be approximated by a variable

distribution of black dots with over a white background. This technique, called stippling,

is the cornerstone of most printing digital inkjet devices. A stippling result is displayed

in Figure 5.1b. The lion in Figure 5.1a can be recognized from the dotted image shown

in Figure 5.1b. This is somehow surprising since the di�erences between the pixel values

113
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of the two images are far from fzero. One way to explain this phenomenon is to invoke

the multiresolution feature of the human visual system (Daugman, 1980; Pappas and

Neuho�, 1999). Figures 5.1c and 5.1d are blurred versions of Figures 5.1a and 5.1b

respectively. These blurred images correspond to low-pass versions of the original ones

and are nearly impossible to distinguish.

(a) (b)

(c) (d)

Figure 5.1: Explanation of the stippling phenomenon. Images (a) and (b) are similar
while the norm of their di�erence is large. Figures (c) and (d) are obtained by convolving
(a) and (b) with a Gaussian of variance equal to 3 pixels. After convolution, the images

cannot be distinguished.

Assuming that the dots correspond to Dirac masses, this experiment suggests placing the

dots at locations p1, . . . , pN corresponding to the minimizer of the following variational

problem:

min
(p1,...,pN )∈ΩN

∥∥∥∥∥h ?
(
π − 1

N

N∑
i=1

δpi

)∥∥∥∥∥
2

2

(5.1)

where Ω ⊂ R2 denotes the image domain, δpi denotes the Dirac measure at point pi ∈ R2,

π denotes the target probability measure (the lion) and h is a convolution kernel that
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should depend on the point spread function of the human visual system. By letting

M(ΩN ) =

{
µ =

1

N

N∑
i=1

δpi , (pi)1≤i≤N ∈ ΩN

}
(5.2)

denote the set of N -point measures, problem (5.1) rereads as a projection problem:

min
µ∈M(ΩN )

‖h ? (π − µ)‖22 . (5.3)

This variational problem is a prototypical example that motivates our study. As ex-

plained later, it is intimately related to recent works on image halftoning by means of

attraction-repulsion potentials proposed in (Schmaltz et al., 2010; Teuber et al., 2011;

Gwosdek et al., 2014). In references (Gräf et al., 2012; Fornasier et al., 2013; Fornasier

and Hütter, 2013) this principle is shown to have far reaching applications ranging from

numerical integration, quantum physics, economics (optimal location of service centers)

or biology (optimal population distributions).

In this paper, we extend this variational problem by replacingM(ΩN ) with an arbitrary

set of measures denotedMN . In other words, we want to approximate a given measure π

by another measure in the setMN . We develop an algorithm to perform this projection

in a general setting.

To motivate this extension, we consider a practical problem: how to perform continuous

line drawing with a computer? Continuous line drawing is a starting course in all art

cursus. It consists of drawing a picture without ever lifting the paintbrush from the page.

Figure 5.2 shows two drawings obtained with this technique. Apart from teaching, it is

used in marketing, quilting designs, steel wire sculptures, connect the dot puzzles,... A

few algorithms were already proposed in (Li and Mould, 2014; Xu and Kaplan, 2007;

Kaplan et al., 2005; Bosch and Herman, 2004; Wong and Takahashi, 2011). We propose

an original solution which consists of setting MN as a space of pushforward measures

associated with sets of parameterized curves.

Apart from the two rendering applications discussed in this paper, this paper has poten-

tial for diverse applications in �elds such as imaging, �nance, biology,...

The remaining of this paper is structured as follows. We �rst describe the notation and

some preliminary remarks in Section 5.2. We propose a mathematical analysis of the

problem for generic sequences of measures spaces (MN )N∈N in Section 5.3. In particu-

lar, we give conditions on h ensuring that the mapping µ 7→ ‖h ? µ‖2 de�nes a norm on

the space of signed measures and provide necessary and su�cient conditions on the se-

quence (MN )N∈N ensuring consistency of the projection problem. We propose a generic

numerical algorithm in Section 5.4 and derive some of its theoretical guarantees. In
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(a) (b)

Figure 5.2: Two examples of continuous line drawing. (a) A sketch of Marylin Monroe
by Pierre Emmanuel Godet http://pagazine.com/ using a continuous line. A close
inspection reveals that the line represents objects and characters. (b) Meisje met de
Parel, Vermeer 1665, represented using a spiral with variable width. Realized by Chan

Hwee Chong http://www.behance.net/Hweechong.

Section 5.5, we study the particular problem of continuous line drawing from a math-

ematical perspective. Finally, we present some results in image rendering problems in

Section 5.6.

5.2 Notation and preliminaries

In this paper, we work on the measurable space (Ω,Σ), where Ω = Td denotes the torus
Td = Rd/Zd. An extension to other spaces such as Rd or [0, 1]d is feasible but requires

slight adaptations. Since drawing on a donut is impractical, we will set Ω = [0, 1]d in the

numerical experiments.

The space of continuous functions on Ω is denoted C(Ω). The Sobolev space (Wm,p([0, T ]))d,

where m ∈ N, is the Banach space of d dimensional curves in Ω with derivatives up to

the m-th order in Lp([0, T ]). LetM∆ denote the space of probability measures on Ω, i.e.

the space of nonnegative Radon measures p on Ω such that p(Ω) = 1. Throughout the

paper π ∈M∆ will denote a target measure. LetM denote the space of signed measures

on Ω with bounded total variation, that is µ = µ+− µ− where µ+ and µ− are two �nite

nonnegative Radon measures and ‖µ‖TV = µ+(Ω) + µ−(Ω) <∞.

http://pagazine.com/
http://www.behance.net/Hweechong
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Let h : Ω → R denote a continuous function. Let µ ∈ M denote an arbitrary �nite

signed measure. The convolution product between h and µ is de�ned for all x ∈ Ω by:

µ ? h(x) :=

∫
Ω
h(x− y)dµ(y) (5.4)

= µ(h(x− ·))

In the Fourier space, the convolution (5.4) translates to, for all ξ ∈ Zd (see e.g., (Katznel-
son, 1968)):

µ̂ ? h(ξ) = µ̂(ξ)ĥ(ξ),

where µ̂ is the Fourier-Stieltjes series of µ. The Fourier-Stieltjes series coe�cients are

de�ned for all ξ ∈ Zd by:
µ̂(ξ) :=

∫
Ω
e−2iπ〈ξ,x〉 dµ(x).

We recall the Parseval formula:∫
Ω
|h(x)|2 dx =

∑
ξ∈Zd

∣∣∣ĥ(ξ)
∣∣∣2 .

Let J : Rn → R denote a function and ∂J its limiting-subdi�erential (or simply sub-

di�erential) (Mordukhovich, 2006; Attouch et al., 2013). Let C ⊆ Rn denote a closed

subset. The indicator function of C is denoted iC and de�ned by

iC(x) =

{
0 if x ∈ C,
+∞ otherwise.

The set of projections of a point x0 ∈ Rn on C is denoted PC(x0) and de�ned by

PC(x0) = Arg min
x∈C

‖x− x0‖22.

The notation Arg min stands for the whole set of minimizers while arg min denotes one

of the minimizers. Note that PC is generally a point-to-set mapping except if C is convex

closed, since the projection on a closed convex set is unique. The normal cone at x ∈ Rn

is denoted NC(x). It is de�ned as the limiting-subdi�erential of iC at x. A critical point

of the function J + iC is a point x∗ that satis�es 0 ∈ ∂J(x∗) + NC(x∗). This condition

is necessary (but not su�cient) for x∗ to be a local minimizer of J + iC .
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5.3 Mathematical analysis

Let

Nh(µ) := ‖h ? µ‖2. (5.5)

In this section, we study some basic properties of the following projection problem:

min
µ∈MN

Nh(π − µ), (5.6)

where (MN )N∈N denotes an arbitrary sequence of measures sets inM∆.

5.3.1 Norm properties

We �rst study the properties of Nh on the space M of signed measures with bounded

total variation. The following proposition shows that it is well de�ned provided that

h ∈ C(Ω).

Proposition 5.1. Let h ∈ C(Ω) and µ ∈M. Then h ? µ ∈ L2(Ω).

Proof. It su�ces to remark that ∀x ∈ Ω, |h ? µ(x)| ≤ ‖µ‖TV ‖h‖∞ < +∞. Therefore,

h ? µ ∈ L∞(Ω). Since Ω is bounded, h ∈ L∞(Ω) implies that h ∈ L2(Ω).

Remark 5.2. In fact, the result holds true for weaker hypotheses on h. If h ∈ L∞(Ω),

the set of bounded Borel measurable functions, h ? µ ∈ L2(Ω) since

∀x ∈ Ω, |h ? µ(x)| ≤ ‖µ‖TV
(

sup
x∈Ω
|h(x)|

)
< +∞.

Note that the L∞-norm is de�ned with an ess sup while we used a sup in the above

expression. We stick to h ∈ C(Ω) since this hypothesis is more usual when working with

Radon measures.

The following proposition gives a necessary and su�cient condition on h ensuring that

Nh de�nes a norm onM.

Proposition 5.3. Let h ∈ C(Ω). The mapping Nh de�nes a norm on M if and only if

all Fourier series coe�cients ĥ(ξ) are nonzero.

Proof. Let us assume that ĥ(ξ) 6= 0, ∀ξ ∈ Zd. The triangle inequality and absolute

homogeneity hold trivially. Let us show that µ 6= 0 ⇒ Nh(µ) 6= 0. The Fourier series

of a nonzero signed measure µ is nonzero, so that there is ξ ∈ Zd such that µ̂(ξ) 6= 0.

According to our hypothesis ĥ(ξ) 6= 0, hence µ̂ ? h(ξ) 6= 0 and Nh(µ) 6= 0.
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On the contrary, if there exists ξ0 ∈ Zd such that ĥ(ξ0) = 0. The non-zero measure

de�ned through its Fourier series by

µ̂(ξ) =

{
1 if ξ = ξ0

0 otherwise

satis�es Nh(µ) = 0 and belongs toM.

From now on, owing to Proposition 5.3, we will systematically assume - sometimes with-

out mentioning - that h ∈ C(Ω) and that ĥ(ξ) 6= 0, ∀ξ ∈ Zd. Finally, we show that Nh
induces the weak topology onM. Let us �rst recall the de�nition of weak convergence.

De�nition 5.4. A sequence of measures (µN )N∈N is said to weakly converge to µ ∈M,

if

lim
N→∞

∫
Ω
f(x)dµN (x) =

∫
Ω
f(x)dµ(x)

for all continuous functions f : Ω→ R. The shorthand notation for weak convergence is

µN ⇀
N→∞

µ.

Proposition 5.5. Assume that h ∈ C(Ω) and that ĥ(ξ) 6= 0, ∀ξ ∈ Zd. Then for all

sequences (µN )N∈N inM satisfying ‖µN‖TV ≤M < +∞, ∀N ∈ N,

lim
N→∞

Nh(µN ) = 0 ⇔ µN ⇀
N→∞

0.

Proof. Let (µN )N∈N be a sequence of signed measures inM.

If µN ⇀ 0, then µ̂N (ξ) = µN (ei2π〈ξ,·〉)→ 0 for all ξ ∈ Zd. Since |µ̂N (ξ)ĥ(ξ)| ≤ 2M |ĥ(ξ)|
for all ξ ∈ Zd and

∑
ξ∈Zd
|2Mĥ(ξ)|2 <∞, dominated convergence yields that Nh(µN )→ 0.

Conversely, assume that Nh(µN )→ 0. Since the µN are bounded, there are subsequences

µNs that converge weakly to a measure ν that depends on the subsequence. We have

to prove that ν = 0 for all such subsequences. Since Nh(µN ) → 0, we have µ̂N (ξ) → 0

for all ξ ∈ Zd. Therefore, ν̂(ξ) = 0, ∀ξ ∈ Zd. This is equivalent to ν = 0 (see e.g.

(Katznelson, 1968, p.36)), ending the proof.

5.3.2 Existence of solutions

The �rst important question one may ask is whether Problem (5.6) admits a solution or

not. Theorem 5.6 provides su�cient conditions for existence to hold.
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Proposition 5.6. If MN is weakly compact, then Problem (5.6) admits at least a so-

lution. In particular, if MN is weakly closed and bounded in TV-norm, Problem (5.6)

admits at least a solution.

Proof. Assume MN is weakly compact. Consider a minimizing sequence µn ∈ MN .

By compacity, there is a µ ∈ MN and a subsequence (µnk)k∈N such that µnk ⇀
k→+∞

µ.

By Proposition 5.5, Nh induces the weak topology on any TV-bounded set of signed

measures, so that lim
k→∞

Nh(π − µk) = Nh(π − µ).

Since closed balls in TV-norms are weakly compact, any weakly closed TV-bounded set

is weakly compact.

A key concept that will appear in the continuous line drawing problem is that of push-

forward or empirical measure (Bogachev and Ruas, 2007) de�ned hereafter. Let (X, γ)

denote an arbitrary probability space. Given a function p : X → Ω, the empirical

measure associated with p is denoted p∗γ. It is de�ned for any measurable set B by

p∗γ(B) := γ(p−1(B)),

where γ denotes the Lebesgue measure on the interval [0, 1]. Intuitively, the quantity

p∗γ(B) represents the �time� spent by the function p in B. Note that p∗γ is a probability

measure since it is positive and p∗γ(Ω) = 1. Given a measure µ of kind µ = p∗γ, the

function p is called parameterization of µ.

Let P denote a set of parameterizations p : X → Ω andM(P) denote the associated set

of pushforward-measures:

M(P) := {µ = p∗γ, p ∈ P}.

In the rest of this paragraph we give su�cient conditions so that a projection onM(P)

exists. We �rst need the following proposition.

Proposition 5.7. Let (pn)n∈N denote a sequence in P that converges to p pointwise.

Then (pn∗γ)n∈N converges weakly to p∗γ.

Proof. Let f ∈ C(Ω). Since Ω is compact, f is bounded. Hence dominated convergence

yields
∫
X f(pn(x))− f(p(x))dγ(x)→ 0.

Proposition 5.8. Assume that P is compact for the topology of pointwise convergence.

Then there exists a minimizer to Problem (5.6) withMN =M(P).

Proof. By Proposition 5.6 it is enough to show that M(P) is weakly compact. First,

M(P) is bounded in TV-norm since it is a subspace of probability measures. Consider a
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sequence (pn)n∈N in P such that the sequence (pn∗γ)n∈N weakly converges to a measure

µ. Since P is compact for the topology of pointwise convergence, there is a subsequence

(pnk)k∈N converging pointwise to p ∈ P. By Proposition 5.7, the pushforward-measure

p∗γ = µ so that µ ∈M(P) and P is weakly closed.

5.3.3 Consistency

In this paragraph, we consider a sequence (MN )N∈N of weakly compact subsets ofM∆.

By Proposition 5.6 there exists a minimizer µ∗N ∈MN to Problem (5.6) for every N . We

provide a necessary and su�cient condition on (MN )N∈N for consistency, i.e. µ∗N ⇀
N→∞

π.

In the case of image rendering, it basically means that if N is taken su�ciently large, the

projection µ∗N and the target image π will be indistinguishable from a perceptual point

of view. The �rst result reads as follows.

Theorem 5.9. The following assertions are equivalent:

i) For all π ∈M∆, µ
∗
N ⇀

N→∞
π.

ii) ∪N∈NMN is weakly dense inM∆.

Proof. We �rst prove ii) ⇒ i). Assume that ∪N∈NMN is weakly dense in M∆. This

implies that, ∀π ∈M∆, ∃(µN )N∈N ∈ (MN )N∈N such that µN ⇀
N→∞

π. From Proposition

5.5, this is equivalent to lim
N→∞

Nh(µN − π) = 0. Since µ∗N is the projection

0 ≤ Nh(µ∗N − π) ≤ Nh(µN − π)→ 0.

Proposition 5.5 implies that µ∗N ⇀
N→∞

π.

The proof of i) ⇒ ii) is straightforward by contraposition. Indeed, if ∪N∈NMN is not

weakly dense in M∆, there exists π0 ∈ M∆ that can not be approximated weakly by

any sequence (µN )N∈N ∈ (MN )N∈N.

We now turn to the more ambitious goal of assessing the speed of convergence of µ∗N to

π. The most natural metric in our context is the minimized norm Nh(µ∗N −π). However,

its analysis is easy in the Fourier domain, whereas all measures sets in this paper are

de�ned in the space domain. We therefore prefer to use another metrization of weak

convergence, given by the transportation distance. Moreover we will see in Theorem

5.11 that the transportation distance de�ned below dominates Nh.
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De�nition 5.10. The L1 transportation distance, also known as Kantorovitch or Wasser-

stein distance, between two measures with same TV norm is given by:

W1(µ, ν) := inf
c

∫
‖x− y‖1 dc(x, y)

where the in�mum runs over all couplings of µ and ν, that is the measures c on Ω × Ω

with marginals satisfying c(A,Ω) = µ(A) and c(Ω, A) = ν(A) for all Borelians A.

Equivalently, we may de�ne the distance through the dual, that is the action on Lipschitz

functions:

W1(µ, ν) = sup
f :Lip(f)≤1

µ(f)− ν(f). (5.7)

We de�ne the point-to-set distance as

W1(MN , π) := inf
µ∈MN

W1(µ, π).

Obviously this distance satis�es:

W1(MN , π) ≤ δN := sup
π∈M∆

inf
µ∈MN

W1(µ, π). (5.8)

Theorem 5.11. Assume that h ∈ C(Ω) denote a Lipschitz continuous function with

Lipschitz constant L. Then

Nh(µ− π) ≤ LW1(µ, π) (5.9)

and

Nh(µ∗N − π) ≤ LW1(MN , π) ≤ LδN . (5.10)

Proof. Let τx : h(·) 7→ h(x − ·) denote the symmetrization and shift operator. Let us

�rst prove inequality (5.9):

‖h ? (µ− π)‖22 =

∫
Ω

[h ? (µ− π)(x)]2 dx

=

∫
Ω
|µ(τxh)− π(τxh)|2 dx

≤ |Ω|L2W 2
1 (µ, π),

where we used the dual de�nition (5.7) of the Wasserstein distance to obtain the last

inequality.
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Let µN denote a minimizer of inf
µ∈MN

W1(µ, π). If no minimizer exists we may take an

ε-solution with arbitrary small ε instead. By de�nition of the projection µ∗N , we have:

Nh(µ∗N − π) ≤ Nh(µN − π) ≤W (µN , π) ≤ δN . (5.11)

Even though the bound (5.10) is pessimistic in general, it provides some insight on which

sequences of measure spaces allow a fast weak convergence.

5.3.4 Application to image stippling

In order to illustrate the proposed theory, we �rst focus on the case of N -point measures

M(ΩN ) de�ned in Eq. 5.2. This setting is the standard one considered for probability

quantization (see (Gruber, 2004; Kloeckner, 2012) for similar results). As mentioned

earlier, it has many applications including image stippling. Our main results read as

follows.

Theorem 5.12. Let h denote an L-Lipschitz kernel. The set of N -point measures

M(ΩN ) satis�es the following inequalities:

δN = sup
π∈M∆

inf
µ∈M(ΩN )

W1(µ, π) ≤

(√
d

2
+ 1

)
1

N1/d − 1
(5.12)

and

sup
π∈M∆

inf
µ∈M(ΩN )

Nh(µ− π) ≤ L

(√
d

2
+ 1

)
1

N1/d − 1
. (5.13)

As a direct consequence, we get the following corollary.

Corollary 5.13. Let MN = M(ΩN ) denote the set of N-point measures. Then there

exist solutions µ∗N to the projection problem (5.6).

Moreover, for any L-Lipschitz kernel h ∈ C(Ω):

i) µ∗N ⇀
N→∞

π.

ii) Nh(µ∗N − π) = O
(
LN−

1
d

)
.

Proof. We �rst evaluate the bound δN de�ned in (5.8). To this end, for any given π, we

construct an explicit sequence of measures µ0, . . . , µN , the last of which is an N -point

measure approximating π.
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Note that Td can be thought of as the unit cube [0, 1)d. It may therefore be partitioned

in Cd smaller cubes of edge length 1/C with C = bN1/dc. We let (ωi)1≤i≤Cd denote the

small cubes and xi denote their center. We assume that the cubes are ordered in such a

way that ωi and ωi+1 are contiguous.

We de�ne µ0 =
Cd∑
i=1

π(ωi)δxi . The measure µ0 satis�es

W1(π, µ0) 6
1

2
sup
i
Diameter(ωi)

6

√
d

2
bN1/dc−1

6

√
d

2

1

N1/d − 1
,

but is not an N -point measure since Nπ(ωi) is not an integer.

To obtain an N -point measure, we recursively build µl as follows:

µl({xl}) =
1

N
bNµl−1({xl})c ,

µl({xl+1}) = µl−1({xl+1, xl})−
1

N
bNµl−1({xl})c

if l ≤ (1/C)d − 1,

µl({xi}) = µl−1({xi}) if i /∈ {l, l + 1}.

We stop the process for l = (1/C)d and let µ̃ = µ(1/C)d . Notice that Nµl(xi) is an integer

for all i 6 l and that µl is a probability measure for all l. Therefore µ̃ is an N -point

measure. Moreover:

W1(µl, µl+1) 6
1

N
‖xl − xl+1‖2

6
1

N(N1/d − 1)
.

Since the transportation distance is a distance, we have the triangle inequality. Therefore:

W1(π, µ̃) ≤W1(π, µ0) +
N∑
l=1

W1(µl−1, µl),

=

√
d

2

1

N1/d − 1
+N

1

N(N1/d − 1)

=

(√
d

2
+ 1

)
1

N1/d − 1
.

The inequality (5.13) is a direct consequence of this result and Proposition 5.11.
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We now turn to the proof of Corollary 5.13. To prove the existence, �rst notice that

the projection problem (5.6) can be recast as (5.1). Let p = (p1, · · · , pN ) ∈ ΩN . The

mapping p 7→
∥∥∥h ? (π − 1

N

∑N
i=1 δpi

)∥∥∥2

2
is continuous. Problem (5.1) therefore consists

of minimizing a �nite dimensional continuous function over a compact set. The existence

of a solution follows. Point ii) is a direct consequence of Theorem 5.11 and bound (5.13).

Point i) is due to the fact that Nh metrizes weak convergence, see Proposition 5.5.

5.4 Numerical resolution

In this section, we propose a generic numerical algorithm to solve the projection prob-

lem (5.6). We �rst draw a connection with the recent works on electrostatic halftoning

(Schmaltz et al., 2010; Teuber et al., 2011) in subsection 5.4.1. We establish a connec-

tion with Thomson's problem (Thomson, 1904) in subsection 5.4.2. We then recall the

algorithm proposed in (Schmaltz et al., 2010; Teuber et al., 2011) whenMN is the set

of N -point measures. Finally, we extend this principle to arbitrary measures spaces and

provide some results on their theoretical performance in section 5.4.4.

5.4.1 Relationship to electrostatic-halftoning

In a recent series of papers (Schmaltz et al., 2010; Teuber et al., 2011; Gräf et al.,

2012; Gwosdek et al., 2014), it was suggested to use electrostatic principles to perform

image halftoning. This technique was shown to produce results having a number of nice

properties such as few visual artifacts and state-of-the-art performance when convolved

with a Gaussian �lter. Motivated by preliminary results in (Schmaltz et al., 2010),

the authors of (Teuber et al., 2011) proposed to choose the N points locations p =

(pi)1≤i≤N ∈ ΩN as a solution of the following variational problem:

min
p∈ΩN

1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)︸ ︷︷ ︸
Repulsion potential

− 1

N

N∑
i=1

∫
Ω
H(x− pi) dπ(x)︸ ︷︷ ︸

Attraction potential

, (5.14)

where H was initially de�ned as H(x) = −‖x‖2 in (Schmaltz et al., 2010; Teuber et al.,

2011) and then extended to a few other functions in (Gräf et al., 2012). The attraction

potential tends to attract points towards the bright regions of the image (regions where

the measure π has a large mass) whereas the repulsion potential can be regarded as a

counter-balancing term that tends to maximize the distance between all pairs of points.

Proposition 5.14 below shows that this attraction-repulsion problem is actually equivalent

to the projection problem (5.6) on the set of N -point measures de�ned in (5.2). We let
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P∗ denote the set of solutions of (5.14) andM(P∗) = {µ = 1
N

∑N
i=1 δp∗i , p

∗ ∈ P∗}. We

also letM∗ denote the set of solutions to problem (5.6).

Proposition 5.14. Let h ∈ C(Ω) denote a kernel such that |ĥ|(ξ) > 0, ∀ξ ∈ Zd. De�ne
H through its Fourier series by Ĥ(ξ) = |ĥ|2(ξ). Then problems (5.6) and (5.14) yield

the same solutions set:

M∗ =M(P∗).

Proof. First, note that since H and h are continuous both problems are well de�ned and

admit at least one solution. Let us �rst expand the L2-norm in (5.6):

1

2
‖h ? (µ− π)‖22 =

1

2
〈h ? (µ− π), h ? (µ− π)〉

=
1

2
〈H ? (µ− π), µ− π〉

=
1

2
(〈H ? µ, µ〉 − 2〈H ? µ, π〉+ 〈H ? π, π〉) .

Therefore

Arg min
µ∈MN

1

2
‖h ? (µ− π)‖22 = Arg min

µ∈MN

1

2
(〈H ? µ, µ〉 − 2〈H ? µ, π〉) .

To conclude, it su�ces to remark that for a measure µ of kind µ = 1
N

∑N
i=1 δpi ,

1

2
(〈H ? µ, µ〉 − 2〈H ? µ, π〉)

=
1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)−
1

N

N∑
i=1

∫
Ω
H(x− pi) dπ(x).

Remark 5.15. It is rather easy to show that a su�cient condition for h to be continuous

is that H ∈ C3(Ω) or H be Hölder continuous with exponent α > 2. These conditions

are however strong and exclude kernels such as H(x) = −‖x‖2.

From Remark 5.2, it is actually su�cient that h ∈ L∞(Ω) for Nh to be well de�ned.

This leads to less stringent conditions on H. We do not discuss this possibility further

to keep the arguments simple.

Remark 5.16. Corollary 5.13 sheds light on the approximation quality of the minimizers

of attraction-repulsion functionals. Let us mention that consistency of problem (5.14) was

already studied in the recent papers (Gräf et al., 2012; Fornasier et al., 2013; Fornasier

and Hütter, 2013). To the best of our knowledge, Corollary 5.13 is stronger than existing

results since it yields a convergence rate and holds true under more general assumptions.
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Though formulations (5.6) and (5.14) are equivalent, we believe that the proposed one

(5.6) has some advantages: it is probably more intuitive, shows that the convolution ker-

nel h should be chosen depending on physical considerations and simpli�es some parts

of the mathematical analysis such as consistency. However, the set of admissible mea-

suresM(ΩN ) has a complex geometry and this formulation as such is hardly amenable

to numerical implementation. For instance,M(ΩN ) is not a vector space, since adding

two N -point measures usually leads to (2N)-point measures. On the other hand, the

attraction-repulsion formulation (5.14) is an optimization problem of a continuous func-

tion over the set ΩN . It therefore looks easier to handle numerically using non-linear

programming techniques. This is what we will implement in the next paragraphs follow-

ing previous works (Schmaltz et al., 2010; Teuber et al., 2011).

5.4.2 Link with Thomson's problem

Before going further into the design of a numerical algorithm, let us �rst show that a

speci�c instance of problem (5.6) is equivalent to Thomson's problem (Thomson, 1904).

This is a longstanding open problem in numerical optimization. It belongs to Smale's

list of mathematical questions to solve for the XXIst century (Smale, 1998). A detailed

presentation of Thomson's problem and its extensions is also proposed in (Hiriart-Urruty,

2009).

Let S = {p ∈ R3, ‖p‖2 = 1} denote the unit 3-dimensional sphere. Thomson's problem

may be enounced as follows:

Find p ∈ Arg min
(p1,...,pN )∈SN

∑
i 6=j

1

‖pi − pj‖2
. (5.15)

The term
∑

i 6=j
1

‖pi−pj‖2 represents the electrostatic potential energy of N electrons.

Thomson's problem therefore consists of �nding the minimum energy con�guration of N

electrons on the sphere S.

To establish the connection between (5.6) and (5.15), it su�ces to set H(x) = 1
‖x‖2 ,

Ω = S and π = 1 in Eq. (5.14). By doing so, the attraction potential has the same value

whatever the points con�guration and the repulsion potential exactly corresponds to the

electrostatic potential.

This simple remark shows that �nding global minimizers looks too ambitious in general

and we will therefore concentrate on the search of local minimizers only.
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5.4.3 The case of N-point measures

In this section, we develop an algorithm speci�c to the projection on the set of N -

point measures de�ned in (5.2). This algorithm generates stippling results such as in

Fig. 5.1. In stippling, the measure is supported by a union of discs, i.e., a sum of diracs

convoluted with a disc indicator. We simply have to consider the image deconvoluted

with this disc indicator as π to include stippling in the framework of N -point measures.

We will generalize this algorithm to arbitrary sets of measures in the next section. We

assume without further mention that Ĥ(ξ) is real and positive for all ξ. This implies

that H is real and even. Moreover, Proposition 5.14 implies that problems (5.6) and

(5.14) yield the same solutions sets. We let p = (p1, . . . , pN ) and set

J̃(p) :=
1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)︸ ︷︷ ︸
F (p)

− 1

N

N∑
i=1

∫
Ω
H(x− pi) dπ(x)︸ ︷︷ ︸
G̃(p)

. (5.16)

The projection problem therefore rereads as:

min
p∈ΩN

J̃(p). (5.17)

For practical purposes, the integrals in G̃(p) �rst have to be replaced by numerical

quadratures. We let G(p) ' G̃(p) denote the numerical approximation of G̃(p). This

approximation can be written as

G(p) =
1

N

N∑
i=1

n∑
j=1

wjH(xj − pi)πj ,

where n is the number of discretization points xj and wj are weights that depend on the

integration rule. In particular, since we want to approximate integration with respect to

a probability measure, we require that

n∑
j=1

wjπj = 1.

In our numerical experiments we use the rectangle rule. We may then take πj as the in-

tegral of π over the corresponding rectangle. After discretization, the projection problem

therefore rereads as:

min
p∈ΩN

J(p) := F (p)−G(p). (5.18)

The following result (Attouch et al., 2013, Theorem 5.3) will be useful to design a con-

vergent algorithm. We refer to (Attouch et al., 2013) for a comprehensive introduction
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to the de�nition of Kurdyka-�ojasiewicz functions and to its applications to algorithmic

analysis. In particular, we recall that semi-algebraic functions are Kurdyka-�ojasiewicz

(Kurdyka, 1998).

Theorem 5.17. Let K : Rn → R be C1 function whose gradient is L-Lipschitz continuous

and let C be a nonempty closed subset of Rn. Being given ε ∈
(
0, 1

2L

)
and a sequence of

stepsizes γ(k) such that ε < γ(k) < 1
L − ε, we consider a sequence (x(k))k∈N that complies

with

x(k+1) ∈ PC
(
x(k) − γ(k)∇K(x(k))

)
, with x(0) ∈ C (5.19)

If the function K + iC is a Kurdyka-�ojasiewicz function and if (x(k))k∈N is bounded,

then the sequence (x(k))k∈N converges to a critical point x∗ in C.

A consequence of this important result is the following.

Corollary 5.18. Assume that H is a C1 semi-algebraic function with L-Lipschitz con-

tinuous gradient. Set 0 < γ < N
3L . Then the following sequence converges to a critical

point of problem (5.18)

p(k+1) ∈ PΩN

(
p(k) − γ∇J(p(k))

)
, with p(0) ∈ ΩN . (5.20)

If H is convex, 0 < γ < N
2L ensures convergence to a critical point.

Remark 5.19. The semi-algebraicity is useful to obtain convergence to a critical point. In

some cases it might however not be needed. For instance, in the case where C is convex

and closed, it is straightforward to establish the decrease of the cost function assuming

only that ∇J is Lipschitz. Nesterov in (Nesterov, 2013, Theorem 3) also provides a

convergence rate in O
(

1√
k+1

)
in terms of objective function values.

Proof. First notice that J is semi-algebraic as a �nite sum of semi-algebraic functions.

Function J is C1 by Leibniz integral rule. Let ∂k denote the derivative with respect to

pk. Then, since H is even

∂kF (p) =
1

N2

N∑
i=1

∇H(pk − pi) (5.21)

and

∂kG(p) = − 1

N

n∑
j=1

wj∇H(xj − pk)πj . (5.22)
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For any two sets of N points p(1) = (p
(1)
k )16k6N , p

(2) = (p
(2)
k )16k6N :

‖∇F (p(1))−∇F (p(2))‖22 =
N∑
k=1

∥∥∥∂kF (p(1))− ∂kF (p(2))
∥∥∥2

2

=
1

N4

N∑
k=1

∥∥∥ N∑
i=1

∇H(p
(1)
k − p

(1)
i )−∇H(p

(2)
k − p

(2)
i )
∥∥∥2

2

6
1

N4

N∑
k=1

( N∑
i=1

L‖p(1)
k − p

(1)
i − (p

(2)
k − p

(2)
i )‖2

)2

6
L2

N4

N∑
k=1

( N∑
i=1

‖p(1)
k − p

(2)
k ‖2 + ‖p(1)

i − p
(2)
i ‖2

)2

6
L2

N4

N∑
k=1

N
( N∑
i=1

(
‖p(1)
k − p

(2)
k ‖2 + ‖p(1)

i − p
(2)
i ‖2

)2)
6

2L2

N3

N∑
k=1

N∑
i=1

‖p(1)
k − p

(2)
k ‖

2
2 + ‖p(1)

i − p
(2)
i ‖

2
2

=
4L2

N2
‖p(1) − p(2)‖22,

and

‖∇G(p(1))−∇G(p(2))‖22 =
N∑
k=1

∥∥∥∂kG(p(1))− ∂kG(p(2))
∥∥∥2

2

=
1

N2

N∑
k=1

∥∥∥ n∑
j=1

wjπj
(
∇H(p

(1)
k − x)−∇H(p

(2)
k − x)

)∥∥∥2

2

6
1

N2

N∑
k=1

( n∑
j=1

wjπjL‖p(1)
k − p

(2)
k ‖
)2

=
L2

N2

( n∑
j=1

wjπj

)
‖p(1) − p(2)‖22

=
L2

N2
‖p(1) − p(2)‖22.

Finally,

‖∇J(p(1))−∇J(p(2))‖2

6 ‖∇F (p(1))−∇F (p(2))‖2 + ‖∇G(p(1))−∇G(p(2))‖2

6
(2L

N
+
L

N

)
‖p(1) − p(2)‖2 =

3L

N
‖p(1) − p(2)‖2.

Now, if we assume thatH is convex and C2 (this hypothesis is not necessary, but simpli�es

the proof). Then F and G are also convex and C2. We let∇2F denote the Hessian matrix
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of F . Given the previous inequalities, we have 0 4 ∇2F 4 2L
N Id and 0 4 ∇2G 4 L

N Id.

Hence, the largest eigenvalue in magnitude of ∇2(F −G) is bounded above by 2L
N .

Moreover, the sequence (x(k))k∈N is bounded since ΩN is bounded.

5.4.4 A generic projection algorithm

We now turn to the problem of �nding a solution of (5.6), where MN denotes our

arbitrary measures set. In the previous paragraph, it was shown that critical points

of J + iΩN could be obtained with a simple projected gradient algorithm under mild

assumtpions. Although this algorithm only yields critical points, they usually correspond

to point con�gurations that are visually pleasing after only a few hundreds of iterations.

For instance, the lion in Figure 5.1b was obtained after 200 iterations. Motivated by

this appealing numerical behavior, we propose to extend this algorithm to the following

abstract construction:

1. ApproximateMN by a subset An of n-point measures.

2. Use the generic Algorithm (5.19) to obtain an approximate projection µ∗n on An.

3. When possible, reconstruct an approximation µN ∈ MN of a projection µ∗N using

µ∗n.

To formalize the approximation step, we need the de�nition of Hausdor� distance:

De�nition 5.20. The Hausdor� distance between two subsets X and Y of a metric

space (M,d) is:

Hd(X,Y ) := max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)

}
.

In words, two sets are close if any point in one set is close to at least a point in the other

set. In this paper, the relevant metric space is the space of signed measuresM with the

norm Nh. The corresponding Hausdor� distance is denoted HNh .

The following proposition clari�es why controlling the Hausdor� distance is relevant to

design approximation sets An.

Proposition 5.21. Let An andMN be two TV-bounded weakly closed sets of measures

such that HNh(An,MN ) ≤ ε. Let µ∗n be a projection on An. Then there is a point

µN ∈MN such that Nh(µ∗n − µN ) ≤ ε and Nh(π − µN ) ≤ inf
µ∈MN

Nh(π − µ) + 2ε.
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Corollary 5.22. If lim
n→∞

HNh(An,MN ) = 0, then (µ∗n)n∈N converges weakly along a

subsequence to a solution µ∗N of Problem (5.6).

Proof. We �rst prove Proposition 5.21. Since An and MN are bounded weakly closed,

by Proposition 5.6, there exists at least one projection µ∗n on An and one projection µ∗N
onMN .

Moreover since An andMN are bounded weakly closed, they are also closed for Nh, so
that the in�mum in the Hausdor� distances are attained. Hence there exists µn ∈ An
such that Nh(µn−µ∗N ) ≤ HNh(An,MN ) ≤ ε and µN ∈MN such that Nh(µN−µ∗n) ≤ ε.
The proposition follows from the triangle inequality:

Nh(µN − π) ≤ Nh(µN − µ∗n) +Nh(µ∗n − π)

≤ ε+Nh(µn − π)

≤ ε+Nh(µn − µ∗N ) +Nh(µ∗N − π)

≤ Nh(µ∗N − π) + 2ε.

For the corollary, let us consider the sequence (µ∗n)n∈N as n tends to in�nity. Since all

µn are inM∆, which is weakly compact, we have a subsequence that converges to µ∗∞.

Since Nh is a metrization of weak convergence onMN , this µ∗∞ is indeed a solution to

Problem (5.6):

Nh(µ∗∞ − π) = lim
n→∞

Nh(µ∗n − π)

= inf
µ∈MN

Nh(π − µ).

To conclude this section, we show that it is always possible to construct an approximation

set An ⊆ M(Ωn) with a control on the Hausdor� distance toMN . LetMε
N denote an

ε-enlargement ofMN w.r.t. the Nh-norm, i.e.:

Mε
N = ∪µN∈MN

{µ ∈M∆,Nh(µ− µN ) ≤ ε}. (5.23)

We may de�ne an approximation set Aεn as follows:

Aεn =M(Ωn) ∩Mε
N . (5.24)
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For su�cient large n, this set is non-empty and can be rewritten as

Aεn =

{
µ =

1

n

n∑
i=1

δpi , with p = (pi)1≤i≤n ∈ Pεn

}
, (5.25)

where the parameterization set Pεn depends on MN and ε. With this discretization of

MN at hand, one can then apply (at least formally) the following projected gradient

descent algorithm:

p(k+1) ∈ PPεn
(
p(k) − γ∇J(p(k))

)
, with p(0) ∈ Pεn. (5.26)

The following proposition summarizes the main approximation result:

Proposition 5.23. Assume that h is L-Lipschitz. Set ε =
(√

d
2 + 1

)
L

n1/d−1
and An =

Aεn, then
HNh (An,MN ) = O

(
Ln−1/d

)
.

Proof. By construction, An satis�es

sup
µn∈An

inf
µN∈MN

Nh(µn − µN ) ≤ ε.

Let µN be an arbitrary measure inMN . By inequality (5.12), there exists µn ∈M(Ωn)

such that Nh(µn − µN ) ≤ ε. Therefore µn also belongs to Aεn. This shows that

sup
µN∈MN

inf
µn∈An

Nh(µn − µN ) ≤ ε.

The approximation process proposed (5.24) is non-constructive in the does not induce

any explicit formula for Pεn. Moreover, Pεn can be an arbitrary set and the projection

on Pεn might not be implementable. We will provide constructive approximations for

speci�c measures spaces in Section 5.5.

5.5 Application to continuous line drawing

In this section, we concentrate on the continuous line drawing problem described in the

introduction. We �rst construct a set of admissible measures MT that is a natural

representative of artistic continuous line drawings. The index T represents the time

spent to draw the picture. We then show that using this set in problem (5.6) ensures
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existence of a solution and weak convergence of the minimizers µ∗T to any π ∈M∆. We

�nish by designing a numerical algorithm to solve the problem and analyze its theoretical

guarantees.

5.5.1 Problem formalization

Let us assume that an artist draws a picture with a pencil. The trajectory of the pencil

tip can be de�ned as a parameterized curve p : [0, T ] → Ω. The body, elbow, arm

and hand are subject to non-trivial constraints (Marteniuk et al., 1987). The curve p

should therefore belong to some admissible parameterized curves set denoted PT . In this

paper, we simply assume that PT contains curves with bounded �rst and second order

derivatives in Lq([0, T ]). More precisely, we consider the following sets of admissible

curves:

1. Curves with bounded speed:

P1,∞
T =

{
p ∈ (W 1,∞([0, T ]))d, p([0, T ]) ⊂ Ω, ‖ṗ‖∞ ≤ α1

}
,

where α1 is a positive real.

2. Curves with bounded �rst and second-order derivatives:

P2,∞
T =

{
p ∈ (W 2,∞([0, T ]))d, p([0, T ]) ⊂ Ω, ‖ṗ‖∞ ≤ α1,

‖p̈‖∞ ≤ α2

}
,

where α1 and α2 are positive reals. This set models rather accurately kinematic

constraints that are met in vehicles. It is obviously a rough approximation of arm

constraints.

3. The proposed theory and algorithm apply to a more general setting. For instance

they cover the case of curves with derivatives up to an arbitrary order bounded in

Lq with q ∈ [1,∞]. We let

Pm,qT =
{
p ∈ (Wm,q([0, T ]))d, p([0, T ]) ⊂ Ω,

∀i ∈ {1, . . . ,m}, ‖p(i)‖q ≤ αi
}
.

where (αi)i=1...m are positive reals. This case will be treated only in the numerical

experiments to illustrate the variety of results that can be obtained in applications.

Note that all above mentionned sets are convex. The convexity property will help deriving

e�cient numerical procedures.
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In the rest of this section, we consider the following projection problem:

inf
µ∈M(Pm,qT )

Nh(µ− π), (5.27)

with a special emphasis on the setM
(
Pm,∞T

)
since it best describes standard kinematic

constraints. This problem basically consists of �nding the �best� way to represent a

picture in a given amount of time T .

5.5.2 Existence and consistency

We �rst provide existence results using the results derived in Section 5.3 for q =∞.

Theorem 5.24. For any m ∈ N∗, Problem (5.27) admits at least one solution in

M
(
Pm,∞T

)
.

Proof. From Proposition 5.8, it su�ces to show that Pm,∞T is compact for the topology

of pointwise convergence.

Let (pn)n∈N be a sequence in Pm,∞T that converges pointwise to p. Since pn is inWm,∞, its

(m−1)-th derivative is Lipschitz continuous. By de�nition of Pm,∞T , the p(m−1)
n are both

uniformly bounded by αm−1 and αm-Lipschitz, hence equicontinuous. Next, by Ascoli's

theorem, up to taking a subsequence, p(m−1)
n uniformly converges to a continuous p(m−1).

Integrating yields that p(i)
n → p(i) uniformly for all i ≤ m − 1, so that

∥∥p(i)
∥∥
∞ ≤ αi

for i ≤ m − 1. Finally, a limit of L-Lipschitz functions is also L-Lipschitz, so that∥∥p(m)
∥∥
∞ ≤ αm. Hence p ∈ P

m,∞
T , ending the proof.

Let us now turn to weak convergence.

Theorem 5.25. Let T be an arbitrary positive real. Let µ∗T ∈ M
(
Pm,∞T

)
denote any

solution of Problem (5.27). Then, for any Lipschitz kernel h ∈ C(Ω):

i) µ∗T ⇀
T→∞

π,

ii) Nh(µ∗T − π) = O
(
T
− m
m(d+1)−1

)
.

Proof. Let us consider a function u : [0, 1]→ R such that:

• The m-th derivative is bounded by αm, that is
∥∥u(m)

∥∥
∞ ≤ αm.

• For all integers i ∈ {1, . . . ,m − 1}, endpoint values are zero, that is u(i)(0) =

u(i)(1) = 0.
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• Start point is zero, that is u(0) = 0.

• Endpoint is positive, that is u(1) = C > 0.

Let x and y in Ω, such that ‖x− y‖2 = Crm, and let τxy be the unit vector from x to y.

Then, for r small enough, the function s[x, y] : t 7→ x + τxyu( tr ) belongs to Pm,∞T , with

all its �rst (m− 1) derivatives zero at its endpoints. The condition r small enough is for

controlling the norm of the i-th derivatives for i ≤ m− 1, which scale as rm−i.

Now, let us split Ω = [0, 1]d in Nd small cubes ωi. We may order them such that each

ωi is adjacent to the next cube ωi+1. We write xi for the center of ωi. We now build

functions s ∈ Pm,∞T by concatenating paths from xi to xi+1 and waiting times in xi:

0 = t11 ≤ · · · ≤ t2i−1 ≤ t1i ≤ t2i ≤ t1i+1 ≤ · · · ≤ t2Nd = T,

t2i − t1i =

(
1

NC

) 1
m

,

s(t) =

{
xi if t1i ≤ t ≤ t2i ,
s[xi, xi+1](t− t2i ) if t2i ≤ t ≤ t1i+1,

under the condition T ≥ TN := (Nd − 1)
(

1
NC

) 1
m , that is to say that we have enough

time to loop through all the cube centers.

Let now π ∈ M∆. We may choose t2i − t1i ≤ Tπ(ωi) for all i. Then, we may couple π

and s∗γT with c(xi, ωi) =
t2i−t1i
T . Since the small cubes have radius

√
d/N and the big

one has radius
√
d, we obtain:

W1(π, s∗γT ) ≤
√
d

2N

∑
i

t2i − t1i
T

+
√
d
∑
i<Nd

t1i+1 − t2i
T

=

√
d

2N

T − TN
T

+
√
d
TN
T
.

In particular, takingN = T
m

m(d+1)−1 , we �nd thatW1

(
M
(
Pm,∞T

)
, π
)

= O
(
T
− m
m(d+1)−1

)
,

hence
⋃
TM

(
Pm,∞T

)
is weakly dense inM∆.

5.5.3 Numerical resolution

We now turn to the numerical resolution of problem (5.27). We �rst discretize the

problem. We set ∆t := T
N and de�ne discrete curves s as vectors of RN ·d. We let

s(i) ∈ Rd denote the curve location at discrete time i, corresponding to the continuous

time i∆t.
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We de�ne D1 : RN ·d → RN ·d, the discrete �rst order derivative operator, as follows:

(D1s)(i) =
1

∆t

{
0 if i = 1,

s(i)− s(i− 1) if i ∈ {2, . . . , N}.

In what follows, Di denotes a discretization of the derivative operator of order i. In the

numerical experiments, we set D2 = −D∗1D1.

We de�ne Pm,qN , a discretized version of Pm,qT , as follows:

Pm,qN =
{
s ∈ RN ·d, such that ∀i ∈ {1, . . . N}, s(i) ∈ Ω, (5.28)

and ∀j ∈ {1, . . . ,m}, ‖Djs‖q 6 αj
}
. (5.29)

Here, ‖·‖q is de�ned by: ‖x‖q =

(
N ·d∑
i=1

‖xi‖q2

) 1
q

for q ∈ [1,+∞) and ‖x‖∞ = max
16i6N ·d

‖xi‖2.

The measures setM(Pm,qT ) can be approximated by the set ofN -point measuresM(Pm,qN ).

From Corollary 5.22, it su�ces to control the Hausdor� distanceHW1(M(Pm,qT ),M(Pm,qN )),

to ensure that the solution of the discrete problem (5.6) withMN =M(Pm,qN ) is a good

approximation of problem (5.27). Unfortunately, the control of this distance is rather

technical and falls beyond the scope of this paper for general m and q. In the following

proposition, we therefore limit ourselves to the case m = 1, q =∞.

Proposition 5.26. HW1(M(P1,∞
T ),M(P 1,∞

N )) 6 α1
T
N .

Proof. 1. Let us show that sup
µ∈M(P1,∞

T )

inf
µ̃∈M(P 1,∞

N )
W1(µ, µ̃) 6

α1T

N
.

Let µ ∈ M(P1,∞
T ) and denote by p ∈ P1,∞

T a parameterization such that µ = p∗γ.

De�ne µ̃ =
1

N

N−1∑
i=0

δp( iTN ). Then a parameterization of µ̃ is de�ned by s(i) =

p
(
iT
N

)
. Moreover, for i ∈ {2, . . . N}, |(D1s)(i)| =

1

∆t

∣∣∣∣p( iTN
)
− p

(
(i− 1)T

N

)∣∣∣∣ =

1

∆t

∣∣∣∣∣
∫ iT

N

(i−1)T
N

ṗ(t) dt

∣∣∣∣∣ 6 1

∆t

∫ iT
N

(i−1)T
N

|ṗ(t)| dt 6 α1. Therefore s ∈ P 1,∞
N .

Let us consider the transportation map coupling the curve arcs between times

(i− 1) TN and i TN and the Diracs at p
(
i TN
)
. Then

W1(p∗γ, s∗γ) 6
N∑
i=1

1

N
sup

(i−1) T
N
6t6i T

N

∥∥∥∥s(t)− s((i− 1)
T

N

)∥∥∥∥
6 α1

T

N
.
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2. Let us �x µ ∈M
(
P 1,∞
N

)
and let s ∈ P 1,∞

N such that s∗γ = µ. We set p(0) = s(1),

and:

p(t)=

s(1) for t ∈
]
0, TN

]
,

s(i)+
(
t

∆t − i
)

(s(i+ 1)−s(i))for t ∈
]
iT
N ,

(i+1)T
N

]
, i ∈ {1, . . . N − 1}.

Since s ∈ ΩN and Ω is convex, p([0, T ]) ⊂ Ω. Moreover, p is continuous and

piecewise di�erentiable. Finally, for i ∈ {1, . . . , N − 1} and t ∈
]
iT
N ,

(i+1)T
N

]
, ṗ(t) =

1
∆t (s(i+ 1)− s(i)) = D1(s)(i). Therefore, ‖ṗ‖∞ 6 α1, ensuring that p ∈ P1,∞

T .

With the same coupling as above, we have W1(p∗γ, s∗γ) 6 α1
T
N , which ends the

proof.

To end up, let us describe precisely a solver for the following variational problem:

inf
µ∈M(P1,∞

T )
Nh(µ− π). (5.30)

We letM∗ denote the set of minimizers and P∗ denote the associated set of parameter-

izations.

Algorithm 3: A projection algorithm onM
(
P1,∞
T

)
.

Input:

- π: target measure.

- N : a number of discretization points.

- s(0) ∈ P 1,∞
N : initial parameterized curve.

- H: a semi-algebraic function with Lipschitz continuous gradient.

- nit: number of iterations.

Output:

- s(nit): an approximation of a curve in P∗.

- µ(nit) = (s(nit))∗γT : an approximation of an element ofM∗.

for 0 ≤ k ≤ nit do

- Compute η(k) = ∇J(s(k))

- Set s(k+1) = P
P 1,∞
N

(
s(k) − τη(k)

)
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Remark 5.27. The implementation of Algorithm 3 requires computing the gradients

(5.21) and (5.22) and computing a projection on P 1,∞
N . Both problems are actually

non trivial.

The naive approach to compute the gradient of F consists of using the explicit formula

(5.21). This approach is feasible only for a small amount of points N (less than 1000)

since its complexity is O
(
N2
)
. In our numerical experiments, we therefore resort to fast

summation algorithms (Potts and Steidl, 2003; Keiner et al., 2009) commonly used in

particles simulation. This part of the numerical analysis is described in (Teuber et al.,

2011) and we do not discuss it in this paper.

The set P 1,∞
N and more generally the sets Pm,qN are convex for q ∈ [1,∞]. Projections can

be computed using �rst-order iterative algorithms for convex functions. In our numerical

experiments, we use accelerated proximal gradient descents on the dual problem (Beck

and Teboulle, 2009a; Nesterov, 2013; Weiss et al., 2009). A precise description is given

in (Chau�ert et al., 2014b).

5.6 Results

To illustrate the results, we focus on the continuous line drawing problem discussed

throughout the paper. It is performed using Algorithm 3. In the following experiments,

we set H as the opposite of a smoothed L2-norm. This is similar to what was proposed

in the original halftoning papers in (Schmaltz et al., 2010; Teuber et al., 2011).

5.6.1 Projection onto P 1,∞
N

In this part, we limit ourselves to the projection onto P 1,∞
N as studied in the previous

section. In Figure 5.3, we show the evolution of the curve s(k) across iterations, for

di�erent choices of s(0). After 30, 000 iterations, the evolution seems to be stabilized.

The cost function during the 400 �rst iterations is depicted in Figure 5.4 for the three

di�erent initializations.

In Figure 5.5, we show the projection of the famous Girl with a Pearl Earring painting,

after 10, 000 iterations. To really see the precision of the algorithm, we advise the reader

to blink the eyes or to take a printed version of the paper away. From a close distance,

the curves or points are visible. From a long distance, only the painting appears.
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5.6.2 Projection onto Pm,q
N

We now consider projections onto more general measure spaces, such as M
(
Pm,qT

)
, in

order to show that di�erent measures spaces can be considered. In Fig. 5.6, we show

di�erent behaviours for di�erent m ∈ {1, 2} and q ∈ {1, 2,∞}. We also show a large

scale example with a picture of Marylin Monroe in Figure 5.7.

5.7 Conclusion

We analyzed the basic properties of a variational problem to project a target Radon

measure π on arbitrary measures setsMN . We then proposed a numerical algorithm to

�nd approximate solutions of this problem and gave several guarantees. An important

application covered by this algorithm is the projection on the set of N -point measures,

which is often called quantization and appears in many di�erent areas such as �nance,

imaging, biology,... To the best of our knowledge, the extension to arbitrary measures set

is new, and opens many interesting application perspectives. As examples in imaging,

let us mention open topics such as the detection of singularities (Aubert et al., 2005)

(e.g. curves in 3D images) and sparse spike deconvolution in dimension d (Duval and

Peyré, 2013).

To �nish, let us mention an important open question. We provided necessary and

su�cient conditions on the sequence (MN )N∈N for the sequence of global minimizers

(µ∗N )N∈N to weakly converge to π. In practice, �nding the global minimizer is impossible

and we can only expect �nding critical points. One may therefore wonder whether all

sequences of critical points weakly converge to π. An interesting perspective to answer

this question is the use of mean-�led limits (Fornasier et al., 2013).
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Figure 5.3: Projection of the lion image onto P 1,∞
N with N = 8, 000. The �gure

depicts s(k) with several values of the iterate k in Algorithm 3.
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Figure 5.4: Decay of the cost function J for the three experiments depicted in
Fig. 5.3. We represent log10(J(k)−m) for k ≤ 400 where m is the mimimal value of J

during the �rst 30, 000 iterations.
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Figure 5.5: Projection of Meisje met de Parel, Vermeer 1665, onto P 1,∞
N with N =

150, 000. The �gure depicts s(10,000) obtained with Algorithm 3.
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m = 1, q = 1 m = 1, q = 1
(small α1) (large α1)

m = 1, q = 2 m = 1, q =∞

m = 2, q =∞ m = 2, q =∞
(isotropic norm)

Figure 5.6: Projection of the lion image onto Pm,qN with N = 8, 000, and m ∈ {1, 2}
and q ∈ {1, 2,∞}.
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Figure 5.7: Projection of Marylin image, onto the set:
C = {p ∈ (W 2,∞([0, T ]))2, sup

i∈[1,N ]

(‖D1p(i)‖2) ≤ α1, sup
i∈[1,N ]

(‖D2p(i)‖2) ≤ α2}, with

N = 100, 000. The �gure depicts s(10,000) obtained with Algorithm 3.





Chapter 6

On the generation of sampling

schemes for magnetic resonance

imaging

Magnetic resonance imaging (MRI) is probably one of the most successful application

�elds of compressed sensing. Despite recent advances, there is still a large discrepancy

between theories and actual applications. Overall, many important questions related

to sampling theory remain open. In this paper, we attack one of them: given a set of

sampling constraints (e.g. sampling Fourier coe�cients along smooth curves), how to

optimally design a sampling pattern? We �rst derive three key aspects that should be

carefully designed by inspecting the literature, namely admissibility, limit of the empir-

ical measure and coverage speed. To ful�ll them jointly, we then propose an original

approach which consists of projecting a probability distribution onto a set of admissible

measures. The proposed algorithm allows to handle arbitrary constraints and then auto-

matically generates e�cient sampling patterns. In MRI, the images reconstructed with

the proposed approach have a signi�cantly higher SNR (2-3 dB) than those reconstructed

using more standard sampling patterns (e.g. radial, spiral), both for mid and very high

resolution imaging.

6.1 Introduction

Magnetic resonance imaging (MRI) is one of the �agship applications of compressed

sensing (CS). The combination of CS and MRI initially appeared in (Lustig et al., 2007),

very shortly after the seminal CS papers (Candès and Tao, 2006; Candès et al., 2006b;

Donoho, 2006). However, the way CS was initially implemented on real scanners strongly

147
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departed from theory. Despite having no solid theoretical foundations, it proved useful in

practice and triggered a massive interest both in the MRI and mathematics communities.

Since then, many researchers have tried improving the way CS-MRI is implemented.

These attempts can be divided into two distinct tracks:

• The �rst one consists of improving the incoherence of the sensing basis by using

techniques termed phase scrambling or spread spectrum and originally proposed

by (Haldar et al., 2011; Puy et al., 2012a). This can be implemented using speci�c

radio-frequency pulses (Haldar et al., 2011) or shim-coils (Puy et al., 2012a). A few

available theories support these techniques (Romberg, 2009; Puy et al., 2012b).

• The second one consists of keeping the sensing basis unchanged: images are ac-

quired by collecting Fourier samples and assuming sparsity in a wavelet basis. The

problem then reformulates as the design of new sampling patterns. Examples rang-

ing in this second category include patterns made of parallel lines (Lustig et al.,

2007), radial lines (Winkelmann et al., 2007), spirals (Nishimura et al., 1995), noisy

spirals (Lustig et al., 2005), Poisson disc sampling (Vasanawala et al., 2011), ... De-

spite recent progresses, solid theoretical foundations for those approaches are still

lacking.

To the best of our knowledge, and even though no report formally compared both ap-

proaches, the second is adopted more widely and provides a more e�cient under-sampling

and thus a faster acquisition in practice. A few numerical simulations to illustrate this

fact were recently proposed in (Roman et al., 2014). In this paper, we will therefore

concentrate on the second approach.

Sampling patterns proposed in the literature may seem somewhat arbitrary. For instance,

even though existing theories recommand using completely random sampling patterns,

it is not clear that adding random perturbations to a spiral will improve its practical

e�ciency.

Contributions. The �rst contribution of this paper is to provide a review of existing

theoretical CS results in Section 6.3. This review permits to establish general principles

for designing e�cient sampling patterns.

The second and most signi�cant contribution is to provide a constructive algorithm

that generates feasible sampling patterns complying with the proposed principles in

Sections 6.4�6.5. The main idea is to project a probability distribution onto a space

of admissible measures. The reader can look at the result on Figure 6.1 to get an idea
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Figure 6.1: A glance at our contribution: our algorithm generates a sampling pattern
complying with the MRI scanner constraints in which sampling locations consist of a

piece of text, namely How to sample me e�ciently?.

of what the algorithm does: given an initial distribution (here a piece of text), the

algorithm �nds a sampling pattern complying with physical constraints that best �ts the

distribution. A few experiments led on low and high resolution images suggest that the

proposed sampling patterns signi�cantly outperform more traditional approaches.

Related works. A few works in the literature address the problem of optimizing the

acquisition space coverage using computational techniques.

The works (Mir et al., 2004; Spiniak et al., 2005) propose an algorithm to cover the

whole k-space as fast as possible by using techniques used for missile guidance. This

idea departs from the proposed one since the objective of these authors was to satisfy

Shannon's sampling theorem, meaning that the samples should cover the space uniformly.

In (Kumar Anand et al., 2008; Curtis and Anand, 2008), the authors have proposed to

synthetize random feasible trajectories using optimization techniques. Their idea was

to generate random control points uniformly distributed over the surface of a sphere.

They then searched for a feasible trajectory that passed close to them using second order

cone programming. Multiple random trajectories were then generated this way and a
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genetic algorithm was involved to select the most relevant ones so as to ensure a uniform

k-space coverage. This idea does not stem from a clear sampling theory and is based on

randomness, contrarily to the approach proposed in our paper.

Finally, a few authors (Seeger et al., 2010; Ravishankar and Bresler, 2011a; Liu et al.,

2012) have borrowed ideas from statistical design for generating e�cient sampling tra-

jectories. In (Seeger et al., 2010), the key point is to �x a set of feasible trajectories (e.g.

pieces of spirals) and to select them iteratively by picking the one that brings the largest

amount of information at each step. Hence, �nding the most meaningful trajectory

becomes computationnaly intensive and hardly compatible with a real-time acquisition.

The main contribution of (Ravishankar and Bresler, 2011a; Liu et al., 2012) is to propose

alternative approaches to reduce the computational burden, by working on training im-

ages. These adaptive approaches su�er from a few drawbacks. First, the whole versatility

of the MRI scanner is not exploited since �xed trajectories are imposed. Our formalism

does not impose such a restriction. Second, even though adaptivity to the sampled image

may seem appealing at the �rst glance, it still seems unclear whether this learning step

is really helpful (Arias-Castro et al., 2013). Last but not least, these approaches strongly

depart from existing sampling theories, while our contribution, though heuristic, is still

motivated by solid and very recently established theories.

Outline of the paper. We �rst brie�y describe the way images are acquired and

reconstructed in MRI in Section 6.2. We then propose a short review of theoretical

compressed sensing results in Section 6.3. Section 6.4 describes the main idea of the

paper: we explain how the design of sampling patterns can be formulated as a measure

projection problem. We then develop a numerical algorithm to solve this projection

problem in Section 6.5. Finally, numerical experiments in a retrospective CS framework

are conducted in Section 6.6 and conclusions are drawn in Section 6.7.

6.2 Acquisition and reconstruction in MRI

In this section, we �rst recall how images are sampled in MRI. We then describe stan-

dard reconstruction methods based on least squares or `1-norm reconstructions using

regridding techniques or non-uniform fast Fourier transforms.

6.2.1 Acquisition in MRI

In MRI, images are usually sampled in the so-called k-space domain, which corresponds

to the 2D or 3D Fourier domain (Twieg, 1983). The acquisition domain can be slightly
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di�erent (i) in the parallel MRI context where spatial sensitivity encoding associated with

the multiple channel coil introduces a convolution in k-space (Sodickson and Manning,

1997; Pruessmann et al., 1999) or (ii) when shim coils (e.g. phase scrambling/spread

spectrum) are involved (Maudsley, 1988; Haldar et al., 2011; Puy et al., 2012a). In this

paper, we focus on the Fourier domain, but the proposed ideas could be extended to

these other settings.

The samples lie along parameterized curves s : [0, T ] 7→ Rd, where d ∈ {2, 3} denotes
the image dimensions. The i-th coordinate of s is denoted si. Let u : Rd → C denote

a d dimensional image and û be its Fourier transform. Given an image u, a curve

s : [0, T ] → Rd and a sampling period ∆t, the image u shall be reconstructed from the

following dataset:

E =

{
û(s(j∆t)), 0 6 j 6

⌊
T

∆t

⌋}
. (6.1)

In what follows, the scalar m =
⌊
T
∆t

⌋
+ 1 denotes the total number of collected samples.

Vector y with components yj = û(s(j∆t)) denotes the vector of measurements. In this

paper, we neglect typical distortions occurring in MRI such as noise, geometric distor-

tions, signal loss at tissue/air interfaces or o�-resonance e�ects which would strongly

a�ect the dataset in Equation (6.1). We also neglect imprecisions in the trajectory due

to Eddy currents that induce gradient errors (Brodsky et al., 2009). These are very

important features that we plan to consider in forthcoming works.

The gradient waveform associated with a curve s is de�ned by g(t) = γ−1ṡ(t), where

γ denotes the gyro-magnetic ratio (Hargreaves et al., 2004). The gradient waveform

is obtained by supplying electric power to gradient coils. This electric current has a

bounded amplitude and cannot vary too rapidly (slew rate). Mathematically, these

constraints read:

‖g‖ 6 Gmax and ‖ġ‖ 6 Smax

where ‖ · ‖ denotes either the `∞-norm de�ned by

‖f‖∞ := max
1≤i≤d

sup
t∈[0,T ]

|fi(t)|,

or the `∞,2-norm de�ned by

‖f‖∞,2 := sup
t∈[0,T ]

(
d∑
i=1

|fi(t)|2
) 1

2

.

Additional a�ne constraints could be added depending on the targeted application (e.g.
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structural or functional imaging) and the chronogram of the sequence (i.e. the interplay

between the orthogonal gradients). For instance, s usually starts from the k-space center,

i.e. s(0) = 0. Multiple sampling trajectories (or interleaves) starting from the origin

can be used to improve the signal-to-noise ratio: this typically leads to additional linear

constraints of type s(k ·TR) = 0 for all k ∈ N, where TR is the time of repetition. Overall

these additional constraints can be summarized under the compact form A(s) = b where

A is a linear mapping and b is a �xed vector. We refer to (Hargreaves et al., 2004;

Chau�ert et al., 2014b) for a more thorough discussion on these issues.

A sampling trajectory s : [0, T ]→ Rd will be said admissible if it belongs to the set:

ST :=
{
s ∈

(
C2([0, T ])

)d
, ‖ṡ‖ 6 α, ‖s̈‖ 6 β,A(s) = b

}
. (6.2)

In addition to the above mentioned kinematics constraints, important considerations

regarding the MR signal acquisition have to be taken into account. The MR signal mea-

sures the amount of transversal relaxation, which exponentially decays as exp(−t/T2),

where T2 is the transverse relaxation parameter. At the same time, the longitudinal

relaxation begins to recover at a speed proportional to (1− exp(−t/T1)) where T1 is the

longitudinal relaxation time. Both T1 and T2 are tissue speci�c. Two acquisition param-

eters (TE, TR) permit to generate di�erent weighted images (see (Brown et al., 2014)

for details) depending on the choice for this pair. The echo-time TE corresponds to the

timing where the echo is generated, hence where the signal level is maximal whereas

the TR parameter re�ects the duration between two consecutive RF pulses. Here, we

will consider that the MR signal is available for about 200 ms. Therefore, the sampling

time along one 2D trajectory should not exceed 200 ms. This requires choosing a long

TE of about 110 ms around which the readout of the signal will be performed by any

trajectory (eg, from 10 ms to 210 ms). From a physical point of view, our numerical

experiments will target T2-weighted (long TE) imaging1. Hence, TR should be chosen

long too to unweight the contrast image from any longitudinal relaxation component.

This constraint is not stringent in practice since 3D imaging is performed by iterating

over slices. Hence, the TR value for the whole volume corresponds to the number of

slices multiplied by 2D acquisition time.

The last supplementary constraint is the maximal number of samples that can be stored

in the bu�er of the analogic-to-digital converter. This bu�er length may depend on the

imaging device but here we set this constraint to 8192 samples per readout.

1To be more accurate, T ∗2 -weighted are obtained when involving gradient echo sequences.
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6.2.2 Reconstruction in MRI

Reconstruction of MRI images from k-space measurements E is an involved problem that

has been studied thoroughly. The main technical di�culties to solve it are (i) the fact

that k-space locations s(j∆t) do not lie on a Cartesian grid, (ii) the ill-posedness of

the problem, (iii) the large image dimensions and (iv) an inaccurate knowledge of the

acquisition operator owing to magnetic �eld inhomogeneities, subject movements,... The

aim of this paragraph is to recall the main techniques developed so far to solve problems

(i), (ii) and (iii). Altough of primary importance for implementing new sampling designs

on scanners, we do not discuss problem (iv) since it is beyond the scope of this paper.

6.2.2.1 Regridding or nonuniform fast Fourier transforms

In practice, the locations of Fourier samples s(j · ∆t) seldom lie on a Cartesian grid.

Standard discrete Fourier transforms can therefore not be used. To handle this situation,

two strategies have been devised: regridding or non-uniform Fourier transforms.

Regridding techniques (see eg (Jackson et al., 1991; O'sullivan, 1985)) are probably the

most widespread techniques. They consist of interpolating the information lying on

available arbitrary locations to positions lying on a Cartesian grid. The basic idea is to

convolve the non-uniform Fourier samples with a regularizing kernel (e.g. Kaiser-Bessel)

and to resample the result.

In this paper we will use a less common approach based on Non-Uniform Fast Fourier

transforms (NUFFT) (Knopp et al., 2007). This approach was actually shown to be

equivalent to regridding techniques with a Gaussian kernel (Sarty et al., 2001). It presents

the advantage of coming with good parallel implementations on multi-core or GPU ar-

chitectures (Keiner et al., 2009; Freiberger et al., 2013).

6.2.2.2 Regularization

In cases where the whole Fourier domain is sampled on a su�ciently �ne Cartesian grid,

the reconstruction problem is well posed, in the sense that there exists a unique image

that explains the measurements. Moreover, this image can be reconstructed in a stable

manner by simply inverting the sensing matrix. This can be done using the fast Fourier

transform.

In contrast, when the samples are not located on a Cartesian grid and/or if each slice of

the image to be reconstructed contains more pixels than the number of collected samples,

the problem becomes ill-posed and a direct inversion of the sensing matrix is impossible.
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To solve it, various strategies have been developed. Some of them are brie�y discussed

hereafter.

Regridding and inversion. One of the most standard techniques to reconstruct MRI

images consists of �rst regridding the non-uniform samples on a Cartesian grid and per-

forming an inverse Fast Fourier transform to recover an image. This technique provides

good results when the samples are su�ciently dense. It performs very poorly for strongly

undersampled data.

Reconstruction using least squares. To regularize the problem, another standard

technique consists of using least squares or Tikhonov regularization. Let S : Cn → Cm

denote the linear operator that maps the discrete image to its Fourier transform values

at locations s(j · ∆t). Matrix-vector products with this operator can be computed us-

ing regridding techniques or NUFFT. The least squares formulation consists of �nding

the minimizer of ‖Su − y‖2, where u ∈ Cn denotes the discrete image to reconstruct.

Tikhonov regularization is then incorporated for minimizing the following penalized cri-

terion:

min
u∈Rn

1

2
‖Su− y‖22 +

λ

2
‖Du‖22

where D is a matrix that de�nes the regularizer (e.g. identity or �nite di�erences) and

λ ∈ R+ is the regularization parameter.

Both the least squares and Tikhonov regularization can be solved very e�ciently using

simple (preconditioned) conjugate gradient descents. This feature explains their suc-

cess. It is however now well known that better results can be obtained using non-linear

programming.

Reconstruction using `1-norms. The theory of compressed sensing triggered a mas-

sive interest in the use of the sparsity promoting `1-norm regularization. We will review

some of its theoretical guarantees in Section 6.3. The idea is to decompose the image

u on a basis or a frame Ψ ∈ Rp×n, where p ≥ n denotes the number of atoms in the

frame. In matrix notation, the decomposition reads u = Ψx where x ∈ Rp denotes the
coe�cients of u in the frame. For a basis, p = n and the decomposition x is unique.

For a redundant frame (p > n) there is an in�nity of decompositions in a frame. It

is well known that many bases or frames such as wavelets, curvelets or shearlets allow

compressing the information present in u, meaning that among all decompositions, there

exists at least one of kind u = Ψx such that most of the energy of x is concentrated in

a small number of nonzero coe�cients.
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This observation motivated the introduction of the basis pursuit algorithm that consists

of solving:

min
x∈Rp,SΨx=y

‖x‖1. (6.3)

The use of the `1-norm is often justi�ed as a convex relaxation of the `0-counting function,

that counts the number of nonzero components in x. When the data y is degraded by

noise, the exact constraint SΨx = y is relaxed and transformed into a penalized data

consistency term. Then, the following quadratic programming problem has to be solved

instead:

min
x∈Rp

‖x‖1 +
λ

2
‖SΨx− y‖22. (6.4)

Scalar λ > 0 is a parameter that balances the quadratic data consistency term and the

regularization term. In this paper, we will mainly use this last formulation, since to the

best of our knowledge, it is the one associated with the strongest theoretical reconstruc-

tion guarantees. In all the paper, Ψ is de�ned as an orthogonal wavelet transform with

Daubechies wavelets and 4 vanishing moments. Therefore p = n.

Problem (6.4) can be solved by using various well documented techniques. In this paper

we will use an accelerated proximal gradient descent algorithm (aka FISTA) (Nesterov,

1983; Beck and Teboulle, 2009b).

More advanced reconstruction techniques. Finally, let us acknowledge that the

most e�cient reconstruction strategies do not rely on a simple `1-minimization as de-

scribed in the last paragraph. More advanced regularizers are usually more e�ective. One

possibility is to use analysis prior as regularizers such as total variation (Block et al.,

2007). One of the most popular approaches currently consists of combining analysis and

synthesis priors. The idea is to use an objective function of type:

min
x∈Rp

γ‖DΨx‖1 + ‖x‖1 +
λ

2
‖SΨx− y‖22, (6.5)

where D is a matrix that may represent di�erential or time-frequency operators (Ma

et al., 2008; Boyer et al., 2012). Another recent trend consists of learning the repre-

sentation dictionary (i.e. Ψ) rather than �xing it in advance (Ravishankar and Bresler,

2011b).

Overall, these methods provide more competitive alternatives to the simple `1-reconstruction

method (6.4). We do not use them in this paper for three reasons. First, solving the

optimization problems arising with such approaches is usually more computationally

demanding. Second, it is often hard to set the additional regularization parameters

properly, making numerical tests much more complicated. Finally, the most e�cient

image reconstructors have so far few theoretical reconstruction guarantees.
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6.2.2.3 Wavelet crime

In this paper, we consider a discrete problem, meaning that we evaluate Fourier transform

values of a discrete signal.

On a real MRI scanner, the acquired data come from a continuous signal which is dis-

cretized by the analogous-to-digital converter. Many authors commit what is commonly

referred to as the wavelet crime: one implicitely assumes that the signal is discrete

whereas it is actually continuous (see (Strang and Nguyen, 1996)). This usually leads to

severe ringing artifacts in the reconstruction. Solutions to this problem have been pro-

posed in many works. We refer to eg (Guerquin-Kern et al., 2011; Adcock and Hansen,

2011) for a more thorough description of these methods.

6.2.2.4 Parallelization

One of the main di�culties in MRI image reconstruction lies in the high dimensionality

of images. This usually leads to very long computing times that may be incompatible

with clinical routine. Many authors recently made use of the progresses in computers

and multicore programming to accelerate their reconstructions.

Some are based on standard multi-core architectures using e.g. OpenMP (Murphy et al.,

2012; Chang and Ji, 2010). Others are based on the more recent GPU parallelization

(Smith et al., 2012).

In this paper, all the numerical experiments are based on the NUFFT3 package delivered

by Chemnitz university (Keiner et al., 2009). This library is natively parallel.

6.3 Theoretical foundations of variable density sampling

In this section, we brie�y review the existing theoretical CS results. The conclusions of

this section motivate the main contribution of this work: the design of undersampling

patterns by measure projection.

6.3.1 The �rst compressed sensing results

Let us �rst describe the compressed sensing theory as it appeared in the seminal pa-

per (Candès et al., 2006b) and more recently in (Candès and Plan, 2011). The authors
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consider an orthogonal matrix

A0 =


a∗1
...

a∗n

 .

They propose to construct a random sensing matrix as:

A =


a∗J1

...

a∗Jm

 ,

where the integers Jk ∈ {1, . . . , n} are i.i.d. uniform random variables.

Knowing that y = Ax the authors propose to recover x by solving Problem (6.3). Let

x̄ = arg min
x∈Rp,Ax=y

‖x‖1.

Their main result in the noiseless case reads as follows:

Theorem 6.1. Assume that x is s-sparse, i.e. that it contains at most s nonzero com-

ponents. If the number of measurements m satis�es:

m ≥ Cs
(
n max

1≤k≤n
‖ak‖2∞

)
log
(n
ε

)
,

where C is a universal constant, then x̄ = x with probability 1− ε.

Moreover, the authors show that if the measurements are noisy, i.e. y = Ax + b, where

b is a random perturbation, then the solution to the relaxed Problem (6.4) also provides

stable reconstruction results.

The coherence κ(A0) = n max
1≤k≤n

‖ak‖2∞ belongs to the interval [1, n]. In particular,

κ(F) = 1 and κ(Id) = n. In the favorable case of a Fourier transform, this theorem

indicates that only s log
(
n
ε

)
measurements are enough to perfectly recover an arbitrary

s-sparse signal.

Even though this type of theorem got a huge impact in the literature, it is not applicable

to MRI. The natural transform A0 in MRI reads A0 = F∗Ψ, i.e. the product of Fourier

and wavelet transforms. In that case, one can show that κ(A0) = O(n). Theorem 6.1 is

thus irrelevant in such a setting.
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6.3.2 The emergence of variable density sampling

In most practical applications, the transforms A0 are coherent. This is the case in MRI

and more generally in Fourier or space imaging. A simple technique to break the so-called

�coherence barrier� consists of drawing the coherent samples more often than the ones

with low coherence (Puy et al., 2011; Krahmer and Ward, 2014; Chau�ert et al., 2014a).

Let us clarify this idea. Let π ∈ ∆n denote the distribution of the i.i.d. random variables

Jk, i.e. P (Jk = i) = πi. The following theorem (Chau�ert et al., 2014a) justi�es the use

of variable density sampling.

Theorem 6.2. Assume that x is s-sparse, i.e. that it contains at most s nonzero com-

ponents. Set

πk =
‖ak‖2∞∑n
j=1 ‖aj‖2∞

.

If the number of measurements satis�es

m ≥ Cs

 n∑
j=1

‖aj‖2∞

 log
(n
ε

)
,

where C is a universal constant, then x̄ = x with probability 1− ε.

One can show that in the case of MRI,
∑n

j=1 ‖aj‖2∞ = O(log(n)). It is therefore possible

to reconstruct exactly an s-sparse image with O(s log(n)2) samples. Let us mention that

variable density sampling was the basis for the seminal paper on compressed sensing

MRI (Lustig et al., 2007). Theorem 6.2 is a �rst argument that supports that type of

technique.

6.3.3 Variable density sampling with structured sparsity

Theorem 6.2 is quite attractive from a theoretical point of view. A simple analysis

however suggests that it is still insu�cient to justify the use of compressed sensing in

MRI. First, the constant appearing in the O is large. This may only be an artifact of

the proofs, but it is currently unknown how much it can be lowered. More importantly,

the term log(n)2 that appears when using the Fourier-Wavelet pair cannot be improved

by using only variable density sampling arguments. Most often, the logarithmic terms

are disregarded and considered as negligible. It is however important to look at them

carefully, for instance log(1024 × 1024)2 = 192. A method needing 192s samples to

reconstruct a 1024× 1024 image is of little practical interest.
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A recent advance that seems very promising is proposed in (Adcock et al., 2013). The

authors show that it is possible to exploit a structured sparsity to obtain better recon-

struction guarantees. In the case of imaging, structured sparsity may mean that the

wavelet subbands become sparser as the scale increases. Let us provide a typical result

from this active �eld of research. This result is quite similar to (Adcock et al., 2013) and

comes from a recent preprint (Boyer et al., 2015b).

Let (Ωj)0≤j≤J denote the wavelet subbands with J the number of decomposition levels.

Assume that x is supported on S ⊂ {1, . . . , n} with |S ∩ Ωj | = sj . This means that

x restricted to the subband Ωj is sj-sparse. This model is called sparsity by levels in

(Adcock et al., 2013). In such a setting, we can prove the following theorem.

Theorem 6.3. Assume that matrix A0 is the product of the Fourier and Haar Wavelet

matrices. Let j(k) denote the scale of index k, i.e. j(k) = j if k ∈ Ωj. Set

πk =
2−j(k)

∑J
p=0 2−|j(k)−p|/2sp

γ
with γ =

J∑
j=0

J∑
p=0

2−|j−p|/2sp.

Set

m ≥ Cγ log(s) log
(n
ε

)
(6.6)

where C is a universal constant.

Under the previous sparsity-by-level hypothesis x̄ = x with probability 1− ε.

Note that contrarily to previous results, the drawing probability π in Theorem 6.3 ex-

plicitly depends on the sparsity structure. The number of measurements in Theorem 6.3

is always lower than that of Theorem 6.2, but the gain once again depends on the signal

support. At the price of extra technicalities (the weak-balancing property in (Adcock

et al., 2013)), the term log(s) in Equation (6.6) can also be discarded.

6.3.4 Variable density sampling with structured acquisition

Another element that was not considered in the seminal works on compressed sensing is

structured acquisition. In practice, sampling isolated measurements is not practical or

even feasible. In MRI, radio-interferometry, X-ray tomography and many other systems,

the samples have to lie on particular shapes or curves imposed by the physics of acquisi-

tion. The vast majority of compressed sampling schemes are based on heuristic sampling

patterns such as radial lines (Lauterbur et al., 1973; Winkelmann et al., 2007), spirals

(Spielman et al., 1995), noisy spirals (Vasanawala et al., 2011) or other exotic shapes.
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Even though they often perform well, until very recently there were missing theoretical

results that allow to justify their use in practice.

In the spirit of traditional Shannon's sampling theorem, the papers (Unnikrishnan and

Vetterli, 2013; Gröchenig et al., 2014) propose theoretical guarantees for the reconstruc-

tion of bandlimited functions from sets of measurements along lines or curves. These

results usually lead to sampling patterns that span the acquisition space uniformly.

Concomitantly to these developments, we have proposed a few results in (Bigot et al.,

2013; Chau�ert et al., 2014a; Boyer et al., 2015b) to explain the success of structured

acquisitions by using sparsity assumptions on the signal to be reconstructed. These

results promoted variable density sampling strategies. In (Bigot et al., 2013; Boyer et al.,

2015b), theoretical guarantees were derived for block sampling strategies: instead of

probing isolated measurements, �xed groups of measurements are acquired, irrespective

of the structured sparsity assumptions. Still in these references, it is shown that only

speci�c sparsity patterns that depend on the acquisition constraints can be recovered.

In (Chau�ert et al., 2014a), we proposed to sample signals using generic stochastic

processes. The conclusions of this work actually de�ne the starting point of the present

paper. We �rst gave a mathematical de�nition of variable density samplers as sequences

of stochastic processes with a prescribed limit empirical measure, termed density. We

also showed through mathematical arguments and experimental validation that the key

features characterizing the e�ciency of a variable density sampler are:

i) The density : the stochastic processes should cover the space non-uniformly accord-

ing to a certain density.

ii) The coverage speed : a sampler will be e�cient only if it covers the space fast enough.

More precisely, we showed that the mixing time should be as low as possible. The

mixing time characterizes the speed at which the empirical measure converges to

its limit.

Since most readers may not be familiar with these concepts, we illustrate them in Figure

6.2. In this Figure, we constructed three di�erent variable density samplers with a density

π illustrated on Figure 6.2 (a). This density was de�ned as suggested by Theorem 6.2 by

setting πk ∝ ‖ak‖∞, where ak is the k-th row of the Fourier-Wavelet matrix A = F∗Ψ.

The wavelet transforms was de�ned using Daubechies 4 �lters. The sampling schemes in

Figure 6.2 (b,c,d) all cover the 256 × 256 grid non uniformly with 20% measurements.

For the sampling patterns (b) and (d), the samples density in a given region of space

looks like π. It is also the same for (c) with a little bit of imagination. This property of
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non uniform coverage is captured by the sampler's density (more precisely, the limit of

the empirical measure), i.e. feature i).

It is pretty intuitive when looking at (b,c,d) that they are likely to have di�erent e�-

ciencies. The samples in Figure 6.2(b) cover the space quite uniformly locally, while the

samplers in Figure 6.2(c)-(d) leave large portions of the space unexplored. Clearly, this

lack of information might result in unsatisfactory reconstruction results. This feature is

captured by the notion of coverage speed, i.e. feature ii). Let us mention that the so-

called poisson disc sampling (Bridson, 2007; Murphy et al., 2012), which is quite popular

in prospective compressed sensing MRI, is also based on the idea of covering the k-space

as fast as possible.

6.4 Generation of sampling schemes by projection

In this section, we describe the main idea of this paper. We propose a general principle

to construct samplers that comply with the three following rules:

• Admissibility : the sampler should be feasible, and therefore belong to a given set.

For instance in the case of MRI, it can be a set of straight lines or the set of curves

de�ned in Equation (6.2).

• Density : as mentioned earlier, a sampler should approximate a given density π.

• Coverage speed : the sampler should cover the space as fast as possible.

This problem is probably more complex than it looks at �rst sight. In this section we will

�rst recall the notion of pushforward measure that is crucial to establish our algorithm.

We then present its overall principle.

Let us mention that this idea, the associated algorithm and some of its theoretical guar-

antees were presented in more detail in our recent preprint (Chau�ert et al., 2015a) for

a completely di�erent purpose, namely image stippling or continuous line drawing.

6.4.1 Pushforward measures

As can be seen in Figure 6.2, the density (a) is somehow similar to the sampling schemes

(b, c and d). To make this statement more accurate, we resort to measure theory. Let

us introduce a few de�nitions. Here, we work on the space Ω = [0, 1]d where d = 2

denotes the space dimension. Extensions to other dimensions are straightforward. We
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equip Ω with the Borel algebra B. Let (X,Σ) be a measurable space, f : X → Ω denote a

measurable mapping and µ : X → [0,+∞] denote a measure. The pushforward measure

of µ is denoted ν de�ned by

ν(B) = f∗µ(B) = µ
(
f−1(B)

)
, ∀B ∈ B.

The function f is called parameterization of ν. Note that if µ is a probability measure,

then ν is also a probability measure. Let us now illustrate this concept with two concrete

examples.

Atomic measures. The set of m-points in Figure 6.2 (b) can be ordered and parame-

terized as a function f : {1, . . . ,m} → Ω, where f(i) = pi denotes the i-th point.

Set µ as the normalized counting measure de�ned for any set I ⊆ {1, . . . ,m} by
µ(I) = |I|

m . Let B ∈ B, then f−1(B) is the set of indices of points in B. The

pushforward of µ is therefore an atomic measure de�ned by

ν = µ∗f =
1

m

m∑
i=1

δpi .

Measures supported on curves. Let s : [0, T ] → Ω denote a parameterized curve.

Set µ as the normalized Lebesgue measure on [0, T ] de�ned for any interval I ⊆
[0, T ] by µ(I) = |I|

T . Then ν(B) = s∗µ(B) measures the relative time spent by the

curve s in the set B.

Now, let P denote a set of admissible parameterizations. We letM(P) the set of push-

forward measures associated with elements of P:

M(P) = {ν = f∗µ, f ∈ P} .

Depending on the context, µ will be either the normalized counting measure or the

normalized Lebesgue measure. Hereafter, we will be particularly interested in exploring

3 di�erent sets P which are particularly relevant in MRI.

Isolated points. The set of sums of m Dirac delta functions is:

M(Ωm) =

{
ν =

1

m

m∑
i=1

δpi , pi ∈ Ω

}
. (6.7)

This case is not feasible or useful in MRI, but it is commonly used in simulations.

It will therefore serve as a reference.
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Admissible curves for MRI. It corresponds toM(ST ), where ST is de�ned by Equa-

tion (6.2). This case is the one that permits to exploit the full sampling potential

in MRI.

Lines of variable length. Finally, we propose to use N lines with variable lengths (or

crossed with variable speed at constant time). To this end, we de�ne:

L = {λ : [0, 1]→ Ω, ∃(x1, x2) ∈ Ω2, λ(t) = (1− t)x1 + tx2, ∀t ∈ [0, 1]}.

The associated set of measures is de�ned by:

M(LN ) =

{
ν =

1

N

N∑
i=1

(λi)∗µ, λi ∈ L

}
, (6.8)

where µ is the Lebesgue measure on [0, 1]. This set of measures o�ers more versatil-

ity than the previous one and is quite simple to implement too. In this description,

we implicitly assume that lines of di�erent lengths are traversed at di�erent speeds

since the traversal time is �xed to 1.

6.4.2 Measuring distances between measures

Pushforward measures allow us to map a sampling pattern to the space of probability

measuresM∆. The target distribution π also belongs toM∆. This mapping therefore

enables to perform quantitative comparisons by de�ning distances onM∆. Various dis-

tances exist to compare probability measures (e.g. total variation, Wasserstein distance,

...). In this work, motivated by our previous results in (Chau�ert et al., 2015a), we

propose to construct a distance as follows. Let h : Ω→ R denote a continuous function

with a Fourier series that does not vanish. The following mapping:

dist(π, ν) = ‖h ? (π − ν)‖22 (6.9)

de�nes a distance (or metric) onM∆. Moreover, we showed in (Chau�ert et al., 2015a)

that it metrizes the weak convergence. Therefore, if π and ν are su�ciently weakly close,

their distance will be small.

This measure is interesting numerically for at least two reasons. First, it has a simple

direct expression compared to more standard tools such as the Wasserstein distance.

Second, it is quadratic and this property will be exploited intensively in the numerical

algorithms.
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6.4.3 Design of sampling scheme as a projection problem

The distance onM∆ being de�ned, we can construct a sampler by solving the following

variational problem:

min
ν∈M(P)

dist(π, ν) (6.10)

where P is the set of admissible parameterizations. In other words, we are looking for

the admissible measure ν∗ that is the closest to the target measure π. This is therefore

a projection problem.

Let us mention that the mapping ν 7→ dist(π, ν) is a nice convex and smooth function.

However, for most parameterization sets P, the associated measure setM(P) is highly

nonconvex. This makes the resolution of Problem (6.10) very involved. In fact, in the

�simple case� P = Ωm, Problem (6.10) corresponds to Smale's 7th problem to solve for

the XXIst century (Smale, 1998).

6.5 Numerical implementation

In this section, we describe a numerical algorithm to solve Problem (6.10). Starting from

an initial user provided sampling pattern, the algorithm iteratively minimizes (6.9).

6.5.1 The attraction-repulsion formulation

In order to numerically solve Problem (6.9), we need to discretize it. It was shown in

(Chau�ert et al., 2015a) that any measure setM(P) can be approximated by a subset

of p-point measures Np ⊆M(Ωp) with an arbitrary precision. Precisely, it is possible to

control their Hausdor� distance de�ned by:

Hdist(Np,M(P)) = max

(
sup
π∈Np

inf
µ∈M(P)

dist(µ, π), sup
µ∈M(P)

inf
π∈Np

dist(µ, π)

)
.

Moreover, the set Np can always be written as

Np =

{
µ =

1

p

p∑
i=1

δqi , for q = (qi)1≤i≤p ∈ Qp

}
,

where the parameterization set Qp depends on P. The abstract de�nition of Qp proposed
in (Chau�ert et al., 2015a) is not constructive. Explicit constructions for the parama-

terizations considered hereafter are provided in the next section. Once an approximate
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space of parameterizations Qp is constructed, Problem (6.9) can be replaced by

min
ν∈Np

1

2
‖h ? (ν − π)‖22 , (6.11)

where Np = M(Qp) is a suitable approximation of M(P). Then, by developing the

L2-norm, we may rewrite Problem (6.11) as follows:

min
q∈Qp

1

2

p∑
i=1

p∑
j=1

H(qi − qj)︸ ︷︷ ︸
J1(q)

−
p∑
i=1

∫
Ω
H(x− qi)dπ(x)︸ ︷︷ ︸
J2(q)

, (6.12)

where H is de�ned in the Fourier domain by Ĥ(ξ) = |ĥ|2(ξ) for all ξ ∈ Zd. In this

paper, we consider a kernel H de�ned by H(x) = −‖x‖2. It is rather easy to check that

this kernel has a non-negative Fourier series and that it ensures rotation, translation and

scale invariance of the global minimizers of (6.12).

The functional (6.12) can be decomposed in two terms:

• The �rst one J1 is a repulsion potential : it tends to maximize the distance between

all point pairs. It will ensure that no cluster of points emerges and therefore ensures

a good space coverage.

• The second one J2 is an attraction potential : it attracts the particles qi in the

regions of high density of π. This term ensures that the solution of Problem (6.12)

will have an appropriate density.

Let us note that the attraction-repulsion functional (6.12) was initially proposed in

(Schmaltz et al., 2010; Teuber et al., 2011) as an alternative to Poisson disk sampling

(Bridson, 2007; Vasanawala et al., 2011). The idea we propose can therefore be consid-

ered as a generalization of Poisson disk sampling, allowing to handle arbitrary additional

constraints.

6.5.2 Projected gradient descents

The attraction-repulsion formulation (6.12) of the projection problem (6.10) is easily

amenable to a numerical resolution. Similarly to (Chau�ert et al., 2015a), we propose

to use a projected gradient descent. We only describe it brie�y hereafter and refer to

(Chau�ert et al., 2015a) for its theoretical guarantees and more details. The algorithm

reads as follows:
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Algorithm 4: Projected gradient descent to solve the projection problem.
Input:

An initial parameterization q ∈ Qp
A number of iterations nit.

Output:

An approximation q̃ of the solution q∗ of (6.12)

for k = 1 to nit do

q(k+1) ∈ ΠQp

(
q(k) − τ∇(J1 − J2)(q(k))

)
(6.13)

The step-size τ should be selected depending on the regularity of the kernel h. Note

that Qp has no reason to be convex in general and the projection on Qp might therefore

not be unique. This explains the sign ∈ instead of = in Equation (6.13). If τ is well

chosen, this algorithm is shown to converge to critical points of (6.12) in (Chau�ert et al.,

2015a). Let us �nally mention that computing ∇J1 and ∇J2 is also a complicated issue

that requires the use of tools developed for particle simulations. In this work, we use the

parallelized non-uniform fast Fourier transform (Keiner et al., 2009; Teuber et al., 2011).

6.5.3 Discretization of the parameterization sets

In this section, we explicitly give the expressions of Qp and ΠQp for the measures sets

given in paragraph 6.4.1.

Isolated points. In the context of isolated points, Qp = Ωp, hence the projection ΠQp

is the identity on Ωp. The updating step in Algorithm 4 is then q(k+1) = q(k)− τ∇(J1−
J2)(q(k)).

Admissible curves for MRI. The projection in the case where P = ST is the topic

of (Chau�ert et al., 2014b). The discretization of an element of ST is a vector of Rp·d

where d is the space dimension and p is the number of points. Let s(i) denote the curve

location at time (i− 1)δt with δt =
T

p− 1
. We de�ne the �rst-order derivative by:

ṡ(i) =

{
0 if i = 1,

(s(i)− s(i− 1))/δt if i ∈ {2, . . . , p}.

In the discrete setting, the �rst-order di�erential operator can be represented by a matrix

Ṁ ∈ Rp·d×p·d, i.e. ṡ = Ṁs. We de�ne the discrete second-order di�erential operator by
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M̈ = −Ṁ∗Ṁ ∈ Rp·d×p·d. The projection problem is:

ΠQp(c) = arg min
‖Ṁs‖6α
‖M̈s‖6β

‖s− c‖22

This problem can be solved using an iterative algorithm, resorting to the dual formulation

of the problem (Chau�ert et al., 2014b).

Lines of variable length. In this case, the admissible set is the set of measures

supported by N segments of variable length. Assuming that each segment is discretized

in k points, the total number of discretization points is p = kN and the set can be

written as follows

Qp(LN ) = {q ∈ Ωp×d, qj = qi +
j − i− 1

k − 1
(qi+k − qi) ,

for i = 1 : k : kN and i ≤ j ≤ i+ k},

where 1 : k : kN denotes the set {1, k + 1, 2k + 1, . . . , (N − 1)k + 1}.

The projection onto this set can be explicitly computed, as presented in Algorithm 5.

For the sake of clarity, Algorithm 5 presents the projection onto the set of measures

supported only by one segment in two dimensions.
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Algorithm 5: Projection on Qp(L).

Input:

u : a vector of k points

Output:

q : a vector of Qp(L)

• Compute C = k(k2 − 3k + 2)/(6(k − 1)2)

• Compute D = k(2k2 − 3k + 1)/(6(k − 1)2)

• Compute x(1)
i = (k − i)ui for 1 ≤ i ≤ k

• Compute x(2)
i = (i− 1)ui for 1 ≤ i ≤ k

• Compute s(1) =
∑k

i=1 x
(1)
i

• Compute s(2) =
∑k

i=1 x
(2)
i

• Evaluation of the end points

� qk = C/(C2 −D2)
(
s(1) −D/Cs(2)

)
� q1 = 1/C(s(2) −Dqk)

• Place (qi)2≤i≤k−1 uniformly distributed on [q1, qk]

6.5.4 Implementation details

Solving the projection problem (6.9) is computationally intensive. Hopefully, the design

of sampling patterns is performed o�ine and large computing times are therefore accept-

able. In practice, we used a workstation with 192 Gb of RAM and 32 Cores at 2.4 GHz.

All codes were multithreaded.

The computing times varied from 2 hours to generate the sampling schemes for low

resolution images proposed in Figure 6.5 up to 48 hours for the schemes adapted to very

high resolutions images in Figure 6.12. In practice, we used 4,000 iterations to generate

the sampling schemes with isolated measurements. For the sampling schemes composed

of lines or curves, we used a multi-resolution strategy: we �rst optimize a undersampled

curve and progressively oversampled it, thus reducing the number of iterations as the

resolution increases. We observed that this strategy provides improved results and speeds

up convergence.
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6.6 Results

In this section, we test the proposed ideas for reconstructing a 2D image (i.e. a slice) of

a brain phantom at 2 di�erent resolutions on a �eld of view of 20 cm. In all experiments,

we used the analytical phantoms provided in (Guerquin-Kern et al., 2012).

The �rst image is of size 256 × 256, which corresponds to an isotropic resolution of

780× 780µm. This is a rather high but still feasible resolution for actual MRI scanners.

The second image size is 2048 × 2048, which corresponds to an isotropic resolution of

98×98µm. The latter is really uncommon in the literature and is actually an important

challenge since it might allow us to uncover the meso-scale of brain organization. For

instance, (Fatterpekar et al., 2002) reported ex-vivo experiments on brains at a reso-

lution of 78 × 78 × 500µm allowing to much better understand the cytoarchitecture of

the human cortex. However, such spatial resolution cannot be achieved during in-vivo

experiments owing to the very long scanning times. For instance, the images used in

(Fatterpekar et al., 2002) took more than 14 scanning hours. Compressed sensing may

therefore play a key role in the future to push forward such resolutions, especially with

the emergence of ultra-high �eld MRI at 7T or even 11.7T in the near future. Moreover,

recent theoretical results (Roman et al., 2014) suggest that compressed sensing should

be used as a resolution enhancer rather than a time saver.

6.6.1 Constraints used in our experiments

To apply our projection algorithm, the kinematic constraints have to be speci�ed. To

this end and in order to make our numerical experiments realistic, we used typical con-

straints met on real MRI scanners. The kinematic constraints imposed by MRI ac-

quisition are the gradient magnitude and slew-rate: here, we set Gmax = 40mT.m−1

and Smax = 150mT.m−1.ms−1. For proton imaging, γ = 42.576MHz.T−1, which al-

lows to compute α = γGmax and β = γSmax in Equation (6.2). In addition to those

constraints, we imposed our trajectories to last less than 200µs2 to keep a signi�cant

amount of signal. This constraint is particularly relevant in the context of echo pla-

nar imaging (EPI) where a full 2D k-space plane is sampled from a single radio fre-

quency pulse. Indeed, in other classical acquisition scenarios (line-by-line sampling),

line-dependent radio-frequency pulses are delivered which means that a single trajectory

does not cover the complete 2D k-space but instead a single line only.

2Beyond this limit, the T ∗2 relaxation decay makes the noise predominant.
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6.6.2 Empirical choice of the target density π

The theorems in Section 6.3 provide some general guidelines to design a reasonable

density. However, �nding the best target density π is still an open issue depending on

the number of measurements, the sparsity basis and the signal's structure.

In this paper, we therefore used an empirical method. The basic idea was to optimize

π experimentally in the family of polynomially decaying densities of type 1/(|k| + 1)η.

Those simple parametric densities have been used a lot in recent articles and have proved

their e�ciency in practice. Note however that they increase fastly at the origin, leading

to high samples concentrations. Even though there is no formal proof of this fact, we

observed that such concentrations are deleterious. The basic reason is that they bring

more information than necessary for low frequencies, which in turn, reduces the number

of samples available for higher frequencies.

Given an initial discrete distribution πη with a pro�le proportional to 1/(|k| + 1)η, we

therefore constructed a truncated version π̃η of πη de�ned by

π̃η = min(λπη, τ) (6.14)

where λ is chosen in such a way that ‖π̃η‖1 = 1. The distribution π̃η has all components

less than τ , and approximates πη.

In all our experiments, the threshold τ is chosen in such a way that the expectation of the

number of samples in each pixel does not exceed 4 for an i.i.d. drawing. Assuming that

π ∈ Rn where n is the number of pixels in the image, it means that mτ = 4, where m is

the number of drawn samples. An illustration of density (6.14) is given in Figure 6.3.

6.6.3 New sampling patterns

We designed sampling schemes with the proposed algorithm and compared them to the

state-of-the-art on the reconstructed brain phantom images. We compared 6 sampling

patterns identi�ed by letters:

• Standard patterns:

� (a) Independent and identically distributed drawings according to a

prescribed density π. This is the pattern considered in most compressed

sensing theories. This pattern is not feasible in reasonable times, but serves

as a reference.
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(a) (b)

(c) (d)

Figure 6.2: A few variable density samplers. (a) density π. (b) π-variable density
sampler with i.i.d. drawings. (c) π-variable density sampler with a Markov chain. (d)

π-variable density sampler with a traveling salesman problem solution.

100 200 300 400 500

0.5

1

1.5

2

2.5

·10−4

πη
π̃η

Figure 6.3: Action of the thresholding algorithm. The initial density πη in dashed
line and its thresholded version π̃η de�ned in (6.14) in solid line.
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� (b) Equispaced radial lines. This is another sampling pattern that is com-

monly used in MRI (Winkelmann et al., 2007). We consider that a spoke is a

line composed of n/2 samples, such that the distance between two samples is

the pixel size.

� (c) Spiral sampling. We consider a spiral with the chosen target density

π (see (Chau�ert et al., 2014b)), and reparameterize it to be admissible (Lustig

et al., 2008). We replicate and rotate it a few times, to obtain a pattern made

of interleaved spirals.

• Measure projection patterns:

� (d) Projection of π on the set of isolated measurements de�ned in

(6.7).

� (e) Projection of π on the set of lines with varying lengths. It is

denotedM(LN ) and de�ned in (6.8). Each line contains the same number of

samples n/2 as a radial spoke.

� (f) Projection of π on the set of admissible curves ST , de�ned in

Equation (6.2).

6.6.3.1 Standard resolution imaging

In this section, we focus on the reconstruction of 256 × 256 images. We imposed each

trajectory to contain exactly 8192 k-space points, which corresponds to a typical value of

the maximal bu�er size. We also �xed the sampling rate to ∆t = 20µs. In practice, this

would ensure a high signal-to-noise (SNR) ratio. The trajectories length was therefore

164ms. With this choice of ∆t and the number of pixels for a given slice, a full acquisition

of the Cartesian k-space would take around 1.3 s using an EPI trajectory (the fastest full

k-space acquisition scheme). Since the MR signal is not available for that period given

the T ∗2 decay, this means that at this spatial resolution, EPI is not feasible as such

and require a segmented acquisition strategy with 8 segments. The sampling patterns

introduced hereafter contain m = 16384 samples, i.e. 25% of the size of the Cartesian

grid. This also corresponds to 2 curves of 8192 samples, i.e. an acquisition of about

328ms (i.e. 4 times faster than the EPI scenario). For this resolution, we found out that

the best decay η de�ned in Section 6.6.2 is η = 1.5.

Description of experiments. We compared the di�erent sampling patterns described

above. To achieve a fair comparison, the number of samples (16384) and the sampling

rate (20µs) were �xed in each experiment wherever it was meaningful (i.e. except for
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Figure 6.4: Axial slice of the phantom used in the experiments of size 256 × 256.
The left brain hemisphere is shown on the right: left is right.

i.i.d. or isolated points). For the spiral experiment, we considered two interleaved spirals

traversed in 164 ms each.

Data were simulated using the phantom depicted in Figure 6.4. The inverse problem

used to reconstruct an image from simulated k-space data is Problem (6.4). Parameter λ

parameter was selected by hand once for all so as to nearly reach the equality constraint

SΨx = y and to provide a visually satisfactory solution in less than 1,000 iterations.

Results. In Figure 6.6, we show the reconstruction results for the di�erent sampling

schemes depicted in Figure 6.5. Let us summarize the main conclusions.

• First, we noticed that the two schemes composed of isolated measurements provided

rather satisfactory reconstruction results despite a few artifacts (17.7 and 18.3 dB in

(a) and (d), respectively) with one fourth of the measurements. This is an appealing

result, but unfortunately the schemes cannot be implemented on a scanner.

• The repulsion between isolated samples in (d) improved the reconstruction result

slightly by 0.6 dB. This result tends to validate the interest for this strategy and

for a good coverage of the sampling space.

• Classical sampling patterns were feasible and reduced the scanning times by a

factor 4, but provided results that may not be considered as su�cient by clinicians

(15.4 dB for radial in (b) and 13.2 dB for spirals in (c)). The reconstruction based

on radial lines induced many small artifacts while the reconstruction based on

spirals su�ered from ringing.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Classical sampling schemes (a-c) and sampling schemes obtained with the
proposed projection algorithm (d-f). Top row: (a): independent drawing; (b): radial
lines ; (c): spiral trajectory. Second row: zooms on the k-space centers. Third row:
(d): isolated points; (e): isolated lines of �xed length; (f): admissible curves for MRI.
Bottom row: zooms on the k-space center. Corresponding reconstruction results are

provided in Figure 6.6.
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(a) SNR=17.7 dB (b) SNR=15.4 dB (c) SNR=13.2 dB

(d) SNR=18.3 dB (e) SNR=18.0 dB (f) SNR=18.0 dB

Figure 6.6: Reconstruction results for the sampling patterns proposed in Figure 6.5
on the phantom (Figure 6.4). Left is right.

• Quite unexpectedly, the new sampling patterns generated by our algorithm yielded

improved reconstruction results as compared to i.i.d. drawings. The latter sampling

scheme is often considered as the best existing undersampling strategy. This result

shows that adding complicated but realistic sampling constraints can still permit

to get competitive reconstruction results. In particular, the sampling pattern in

Figure 6.6(f) took only one fourth of the scanning time and yielded satisfactory

reconstructions.

6.6.3.2 Very high resolution imaging

Here, we focussed on the reconstruction of very high resolution (2048 × 2048) images.

We used the same constraints as before including the maximum duration of 200ms per

trajectory. We decreased the sampling period down to ∆t = 8µs which corresponds to

the minimal value of a clinical scanner. We no longer managed the bu�er size constraint

as done in the previous section and performed experiments with 100,000 and 200,000

measurements. This corresponds to 2.4% and 4.8% of the total number of pixels in the

image respectively. This also corresponds to a total sampling duration of 0.8 s or 1.6 s,
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which again might be feasible on a real scanner considering a segmented acquisition

scheme, with 4 and 8 segments, respectively.

The radial lines were composed of 1024 equispaced measurements. The distance between

two measurements is 1 pixel. The spiral pattern was composed of 4 (resp. 8) rotated

versions of an initial spiral designed as described at the beginning of Section 6.6.3 for

100,000 (resp. 200,000) measurements. The line of varying lengths were all composed

of 512 samples. This corresponds to 196 lines for the 100,000 measurement experiments

and 391 lines for the 200,000 experiment.

We aimed at reconstructing the phantom in (Guerquin-Kern et al., 2012). We modi�ed

it slightly by superimposing the high resolution text COGITO ERGO SUM to white matter

in the left frontal region (see Figure 6.7).

Similarly to the previous section, the sampling density was optimized experimentally

in the family of truncated, polynomially decaying densities of type 1/(|k| + 1)η. For

this resolution, the best decay was η = 2. The resulting patterns are shown at di�er-

ent resolutions in Figures 6.8�6.9 for 100,000 measurements and Figures 6.11�6.12 for

200,000 measurements. For each scheme we reconstructed a 2048×2048 image by solving

Problem (6.4).

Let us summarize our main observations.

• The use of 200,000 measurements yielded signi�cantly better reconstruction results

than 100,000 samples. However, the relative di�erences between the sampling

schemes did not vary between the two sampling ratios. In what follows, we therefore

draw conclusions that are valid for both.

• Similarly to the standard resolution experiment, sampling schemes made of i.i.d.

drawings signi�cantly outperformed radial lines and spirals sampling.

• Radial lines performed particularily poorly. This was probably due to the fact

that for this resolution, the best sampling decay was η = 2, whereas we found

η = 1.5 for the standard resolution experiment. Note that radial lines have a slow

decay of order 1/|k|, which might explain the observed discrepancy. Also note that

the embedded text for radial reconstruction was readable, whereas it was not for

spiral sampling. Once again, this is very likely a consequence of the slower decay

for the sampling density. On the contrary, the cortex is not correctly recovered

by radial lines, while the reconstruction is acceptable for spirals. This experiment

thus suggests that the sampling density should depend on the relative importance

of low and high resolution details.
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• The repulsed isolated measurements scheme performed slightly better than i.i.d.

drawings, but not signi�cantly so.

• Similarly to the previous section, the sampling schemes generated by our algorithm

performed signi�cantly better than spiral and radial patterns. The gain ranged

from 1.7 dB to 3.6 dB which is signi�cant, since they require the same scanning

time.

• In contrast to the previous section, we observed that the feasible sampling schemes

performed signi�cantly worse than i.i.d. drawings in terms of SNR. A reason that

might explain this behavior was that ∆t = 8µs for this resolution while we used

∆t = 20µs in the previous experiment. This means that the distance between

consecutive samples was more than twice smaller (harder constraint). It is also

important to realize that, although the di�erences between reconstructions were

strong in terms of SNR, the visual perceptual di�erences mainly rely on small

artifacts which do not severely degrade image analysis.

• The results obtained with 200,000 samples were of a high quality, despite the real-

istic sampling constraints added. This very positive result suggest that obtaining

2048×2048 images might be feasible in 1.6 s obly using a segmented acquisition (8

segments) scheme. This should be de�nitely deemed as a major advance for MRI.

Of course, these results were preliminary since we did not manage all degradations

appearing on actual scanners such as noise, Eddy currents ...

• Finally, it is possible to infer the gain in terms of scanning times using the proposed

approach by comparing Figure 6.10 and Figure 6.13. The SNR of the reconstructed

image with 4 admissible curves and 0.8 seconds is 20.7 dB (see Figure 6.10 (f)).

To reach the same quality, radial lines and spirals need roughly twice as long (see

Figure 6.13 (b) and (c)). This result shows that the proposed ideas may reduce

the actual scanning times by a factor 2 compared to existing approaches.

6.7 Conclusion

This paper has provided an overview of existing compressed sensing results for MRI,

both from theoretical and practical points of view. We also proposed an original ap-

proach to design e�cient sampling schemes complying with the physical constraints of

MRI scanners. Even though we focussed on standard anatomical MRI, the proposed

ideas could be used, with some adaptations, in nearly all MRI �elds (functional imag-

ing, di�usion-weigted imaging, perfusion imaging, ...) and might have applications well

beyond.
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Figure 6.7: Axial slice of the brain phantom used in our 2048×2048 images (left) with
a magni�cation on the left frontal area where the text has been superimposed (right).

.

The numerical procedure we proposed for generating sampling schemes was based on a

projection of sampling distributions onto a set of admissible measures using a taylored

dissimilarity measure. Even though computationally intensive, this algorithm was able

to solve very large scale problems and could be extended to 3D quite easily. Probably the

most promising result of this paper is practical: we showed through simulations that 1.6 s

using a multi-shot acquisition (8 segments) might be enough to reconstruct a very high

resolution slice of size 2048 × 2048. The validity of this result will be tested quite soon

on the 7T scanner of NeuroSpin to check whether this constitutes a major improvement

over existing sampling strategies which currently need a dozen of hours to reconstruct a

hundred slices at this spatial resolution.
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(a) (b) (c)

Figure 6.8: Standard sampling schemes composed of 100,000 samples. (a): i.i.d.
drawings. (b): Radial lines. (c): 4 interleaved spirals.
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Figure 6.9: Sampling schemes yielded by our algorithm and composed of 100,000
samples. (d): Isolated measurements. (e): Lines of variable length. (f): 4 feasible

curves in MRI.
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(a) SNR=23.0 dB (b) SNR=16.1 dB (c) SNR=19.0 dB

(d) SNR=23.2 dB (e) SNR=19.7 dB (f) SNR=20.7 dB

Figure 6.10: Very high resolution reconstructions using 100,000 samples (2.4% of the
number of pixels) and di�erent sampling schemes. Letters correspond to Figures 6.8�

6.9.
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(a) (b) (c)

Figure 6.11: Standard sampling schemes composed of 200,000 samples. (a): i.i.d.
drawings. (b): Radial lines. (c): 8 interleaved spirals.
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Figure 6.12: Sampling schemes yielded by our algorithm and composed of 200,000
samples. (d): Isolated measurements. (e): Lines of variable length. (f): 8 feasible

curves in MRI.
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(a) SNR=26.7 dB (b) SNR=20.6 dB (c) SNR=21.0 dB

(d) SNR=27.0 dB (e) SNR=22.9 dB (f) SNR=23.5 dB

Figure 6.13: Very high resolution reconstructions using 200,000 samples (4.8% of the
pixels number) and di�erent sampling schemes. Letters correspond to Figures 6.11�6.12.
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Résumé des chapitres

Résumé du chapitre 2

Ce chapitre se repose sur l'article (Chau�ert et al., 2014a). L'objectif est ici de montrer

que l'application directe de l'échantillonnage compressif n'est pas possible en imagerie par

résonance magnétique. En e�et, les bases de représentation et d'acquisition ne sont pas

incohérentes d'une part, et les schémas obtenus à partir de tirages i.i.d. comme décrits

par la théorie de l'échantillonnage compressif ne sont pas physiquement admissibles en

IRM d'autre part. Dans cet article, nous justi�ons que l'échantillonnage déterministe

du centre de l'espace-k permet de répondre à la première question, et nous donnons

une expression de la distribution optimale π qui permet de réduire le nombre de mesures

nécessaires à la reconstruction exacte. Cette distribution, représentée Fig 7.1, véri�e πi ∝
‖ai‖2∞, où ai est la i-ème ligne de la matrice A = F ∗Ψ. D'autre part, nous dé�nissons

la notion d'échantillonneur à densité variable. Cette notion s'adapte également aux

trajectoires continues qui sont une condition nécessaire (mais non su�sante) pour véri�er

les contraintes cinématiques sur la trajectoire imposés par les gradients de la machine.

Nous donnons deux stratégies pour générer des schémas continus à densité variable.

L'une est basée sur des marches aléatoires et l'autre sur une solution de voyageur de

Figure 7.1: Distribution optimale π pour la matrice A = F ∗Ψ.

185
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commerce. Pour la première, nous donnons un résultat d'échantillonnage compressif qui

fait dépendre le nombre de mesures en 1/ε(P) où ε(P) est le trou spectral de la chaîne

de Markov associé à la marche aléatoire. Le résultat présenté ici peut être amélioré,

cf. annexe 3. Des exemples de chaînes de Markov sont donnés dans la Fig. 7.2. Dans

un second temps, nous relions la distribution de tirage des � villes � p du voyageur de

commerce à celle de la courbe q par la relation q ∝ p
d−1
d où d est la dimension. En

particulier, en 2D, il faut tirer les villes selon la distribution proportionnelle à π2 pour

obtenir un échantillonnage à la densité π, comme illustré Fig. 7.3(a,b).

(a) (b)

(c) PSNR=32,4 dB (d) PSNR=30,3 dB

Figure 7.2: Schémas d'échantillonnage reposant sur des chaînes de Markov de
longueur moyenne 10 (a) ou 1000 (b), et reconstruction d'images après échantillon-

nage selon les schémas (a) et (b).

Nous décrivons deux quantités centrales d'un processus à densité variable, à savoir :

• Sa densité cible. Nous montrons théoriquement et par des expériences numériques

que la densité doit décroître des basses vers les hautes fréquences. En e�et, les

vecteurs de la transformée en ondelettes et de la transformée de Fourier sont plus

cohérents aux basses fréquences (i.e., correspondent à des valeurs de ‖ai‖2∞ plus

grandes), et sont donc cruciaux car eux seuls contiennent les informations des coef-

�cients d'ondelettes d'approximation. D'autre part, la plupart des l'information de
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((a) (b)

(c) PSNR=24,1 dB (d) PSNR=34,1 dB

Figure 7.3: Exemples de schémas d'échantillonnage reposant sur une solution du
voyageur de commerce dont les villes sont tirées selon π (a) et∝ π2 (b), et reconstruction

des images après échantillonnage de l'espace-k selon les schémas (a) et (b).

l'image étant contenue dans les basses fréquences, ceci renforce l'intérêt d'échantil-

lonner plus les basses fréquences. L'importance de la densité d'échantillonnage sur

les résultats de reconstruction est illustrée Fig. 7.3(c,d).

• Le temps de mélange. Cette grandeur mesure la vitesse de convergence de la

mesure empirique de la courbe vers la mesure cible. Dans le cas des marches

aléatoires, cette quantité vaut 1/ε(P). Celle-ci représente également la rapidité

pour le processus à recouvrir l'espace. Le cas optimal est un tirage i.i.d. qui

correspond à ε(P) = 1. Le succès des solutions du voyageur de commerce s'explique

par leur rapidité à couvrir rapidement l'espace, alors que les marches aléatoires

laissent de grandes zones de l'espace-k non explorées, ce qui explique les mauvais

résultats en reconstruction. Ceci est illustré dans la Fig. 7.2, où plus les chaînes

sont courtes, et plus le trou spectral est grand.

Résumé du chapitre 3

Dans ce chapitre, nous montrons une nouvelle inégalité de concentration pour des chaînes

de Markov à valeurs dans les matrices Hermitiennes. Considérons G un graphe à N
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n÷uds, et X1, . . . Xn une chaîne de Markov dé�nie sur ce graphe, dont l'évolution est

donnée par X1 ∼ q et P est la matrice de transition. Soit π le vecteur de RN tel que

πTP = πT (π est appelée distribution stationnaire de la chaîne). Supposons en�n que la

chaîne est réversible, c'est-à-dire que πiPij = πjPji.

Soit f une fonction de G à valeur dans Hd := {M ∈ Cd×d,M∗ = M}. Supposons sans

perte de généralité que
∑
y∈G

π(y)f(y) = 0, et notons R = sup
y∈G

λmax(f(y)). Alors :

P

(
λmax

(
n∑
i=1

f(Xi)

)
> t

)
6 d · sup(

qi
πi

) · exp

(
− εt2

4σ2
n + 2Rtε/3

)
. (7.1)

où ε est le trou spectral de la chaîne, i.e., la di�érence de ses deux plus grandes valeurs

propres, et

σ2
n := n · λmax

∑
y∈G

π(y)f(y)2

 .

Cette inégalité est ensuite utilisée pour démontrer un résultat d'échantillonnage com-

pressif. Dans le cas d'un échantillonnage le long d'une chaîne de Markov comme décrit

dans le chapitre 2, le nombre de mesures nécessaires pour garantir la reconstruction est

O

s
ε
·
n∑
j=1

‖aj‖2∞ · log(6n/η)

, ie, est plus grand que dans le cas i.i.d. d'un rapport 1/ε,

car ε 6 1. Cette borne est cohérente car dans le cas i.i.d., ε = 1.

Résumé du chapitre 4

Les résultats de ce chapitre reposent sur la soumission (Chau�ert et al., 2014b). Dans le

chapitre 2, nous proposons des trajectoires d'échantillonnage continues. Les contraintes

physiques de l'IRM imposent que les dérivées première et seconde de la trajectoire soient

bornées, i.e., une courbe admissible doit appartenir à :

ST =
{
s : [0, T ]→ R3, ‖ṡ(t)‖ 6 γ ·Gmax, ‖s̈(t)‖ 6 γ · Smax,∀t ∈ [0, T ]

}
.

Pour une trajectoire donnée, une première approche (Lustig et al., 2008; Hargreaves

et al., 2004) consiste à trouver la reparamétrisation optimale de la trajectoire. Nous

proposons ici une approche alternative qui consiste à projeter une courbe paramétrée
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initiale sur l'espace des contrainte ST :

s∗ = arg min
s∈ST

‖s− c‖22 :

Une illustration de la solution de ce problème de projection est donné (Fig. 7.4)

(a) (b) (c)

g
(t

)

t
(d) (e) (f)

g
(t

)

t

Figure 7.4: Exemple synthétique de la di�érence entre les deux approches :
reparamétrisation optimale et projection. Première ligne: Reparamétrisation op-
timale (Lustig et al., 2008). (a): paramétrisation initiale. (b): représentation discrète
de la reparamétrisation optimale de la courbe ∈ ST . (c): Gradients (gx, gy). Les
lignes pointillées correspondent à 0 and +/- Gmax. Deuxième ligne: Illustration
de l'algorithme de projection. (d): support de la courbe d'entrée c de l'algorithme
paramétrisé à vitesse constante γ · Gmax et support de la projection s∗ sur S. (e):
représentation discrète de la courbe d'entrée et de la projection. (f): Gradients corre-
spondants (gx, gy) avec la même échelle temporelle qu'en (c): le temps de parcours de

s∗ est plus court de 39%.

Les avantages de l'approche par projection sont multiples :

• Le temps de parcours est �xé à l'avance dans cette méthode (c'est le même que

celui de la paramétrisation initiale), alors qu'il dépend de la trajectoire pour la

reparamétrisation optimale. En particulier, si la trajectoire comporte des parties

à forte courbure (et dans un cas extrême, des points anguleux comme dans une

trajectoire de voyageur de commerce ou EPI), la durée d'acquisition peut exploser

et rendre cette méthode inexploitable.

• La distribution empirique de la courbe projetée est � proche � de celle de la courbe

d'entrée.
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• Cet algorithme de projection permet d'intégrer de nombreuses contraintes supplé-

mentaires qui jouent un rôle important en IRM (cf chapitre 5).

Nous présentons des résultats de reconstruction en 2D sur di�érents types de trajectoires :

EPI, spirale et solution du voyageur de commerce. Des exemples de reconstruction en 3D

pour des trajectoires de voyageur de commerce projetées sur l'ensemble des contraintes,

ainsi que des applications à l'angiographie sont également fournies.

La solution du problème de projection se calcule en écrivant le problème de projection

dans l'espace dual où le problème a une structure favorable. Celui-ci s'écrit en e�et

comme somme d'un terme convexe di�érentiable et d'un terme convexe dont on sait

calculer l'opérateur proximal.

Résumé du chapitre 5

Dans ce chapitre, nous étudions un problème de projection de mesures. Soit Ω ⊆ Rd le
domaine de dé�nition d'une mesure de probabilité π et h ∈ L2(Ω) un noyau. Le problème

de projection s'écrit:

inf
µ∈MN

‖h ? (µ− π)‖2 (7.2)

où ? est l'opérateur de convolution etMN est un ensemble de mesures. Pour illustrer ces

notions, nous considérons le cas où h est un noyau gaussien, π est une image (Fig. 7.5(a))

et

MN =

{
1

N

N∑
i=1

δpi , (pi)16i6N ∈ ΩN

}

où δpi est une mesure de Dirac en pi. Dans la Fig. 7.5(b), nous représentons la solution

du problème de projection où les mesures de Dirac sont représentées par un disque noir.

Les convolutions de π et la solution sont représentées en Fig. 7.5(c) et (d).

La convolution par un noyau gaussien permet la comparaison entre les images (a) et (b)

dont la di�érence est très grande. Le �ltre gaussien est représentatif du système visuel

humain et peut être exagéré en regardant les images (a) et (b) de plus loin et en plissant

les yeux. Le problème de représenter une image par des points est connu sous le nom de

stippling et est utilisé en imprimerie par exemple.

Dans ce chapitre, nous considérons des ensembles de mesures plus généraux que des

sommes de mesures de Dirac. Dé�nissons une paramétrisation comme une fonction

p : X → Ω et P un ensemble de paramétrisations. Alors nous pouvons dé�nirM(P) =
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(a) (b)

(c) (d)

Figure 7.5: Illustration du problème de projection. Distribution π (a) et représenta-
tion de la solution du problème (b). Représentation de la convolution par h.

{p?γ, p ∈ P} l'ensemble des mesures portées par les paramétrisations de P, où γ est la

mesure de Lebesgue normalisée sur [0, T ]. Un exemple de résultats théorique démontré

dans ce papier est que si PT est un ensemble de courbes de [0, T ] dans Ω avec des

contraintes sur ses dérivées en norme in�nie (e.g., sup
t
‖p(k)‖∞ 6 αk, 0 6 k 6 N), alors si

µT est la solution du problème (7.2) pourMN =M(PT ), µT converge faiblement vers

π quand T →∞.

Une application possible de ce résultat est la représentation d'images par une ligne con-

tinue (Fig. 7.6).
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Figure 7.6: Exemple de projection sur un ensemble de mesures portées par des
courbes.

Après discrétisation, le critère à minimiser s'écrit comme di�érence de deux fonctions

convexes:

min
p∈PN

1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)︸ ︷︷ ︸
potentiel de répulsion

− 1

N

N∑
i=1

∫
Ω
H(x− pi) dπ(x)︸ ︷︷ ︸

potentiel d'attraction

,

où PN est une discrétisation de PT par N points et H est un noyau relié à h par

Ĥ(ξ) = |ĥ|2(ξ). Un exemple de noyau possible est H(x) = −‖x‖2. En pratique, nous

utilisons une norme `2 avec une régularisation en 0 pour la rendre in�niment dérivable.

Ainsi les deux termes sont di�érentiables, et si nous supposons que PN est convexe, un

algorithme de descente de gradient projeté converge vers un point critique de la fonction

à minimiser. L'étape de projection sur l'ensemble des contraintes se fait en utilisant

l'algorithme présenté au chapitre précédent.

Résumé du chapitre 6

L'objectif de ce chapitre est d'appliquer les idées de projection de mesures dans le cas

de simulations pour l'IRM. Nous �xons une mesure empirique p qui fournit des résultats

de reconstruction satisfaisants dans le cadre de tirages i.i.d.. Nous e�ectuons ensuite des

projections de la mesure p sur di�érents espaces de mesures:



Chapter 7 Résumé des chapitres 193

• Des sommes de mesures de Dirac (Fig. 7.7(a)). Les schémas obtenus sont composés

de mesures isolées, et améliorent (légèrement) les résultats de reconstruction par

rapport aux tirages i.i.d. (6 1 dB).

• Des mesures portées par des lignes de longueur variables (Fig. 7.7(b)). Ces tra-

jectoires ne sont pas toujours physiquement plausibles, car les contraintes sur la

vitesse ne sont pas prises en compte.

• Des mesures portées par des trajectoires de l'ensemble ST (Fig. 7.7(c)). Cet ensem-

ble est le plus grand ensemble contenant les trajectoires physiquement plausibles

et exploite au maximum les capacités de la machine.

(a) (b) (c)

Figure 7.7: Exemple de schémas d'échantillonnage obtenus par projection de mesures
sur : (a): une somme de mesures de Dirac; (b): des mesures portées par des lignes; (c):

des mesures portées par des courbes admissibles de ST .

Les schéma continus obtenus par projection de mesures (Fig. 7.7(b-c)) permettent d'obtenir

des résultats de reconstructions meilleurs que les stratégies classiques (spirales, radiales)

avec un gain de l'ordre de 2 à 3 dB.
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