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Introduction 

 

The need of high-data-rate systems to answer the demand for big data exchanges, the 

demands of high-resolution radars and imaging systems for medicine and security, push the 

electronics systems to millimeter-wave (mm-wave) frequency bands. In that context, advanced 

CMOS-BiCMOS technologies are the preferred technologies to develop the future systems. They 

offer relative low-cost, as compared to AsGa technologies, and high performance, with 

transistors 𝑓𝑚𝑎𝑥  – 𝑓𝑡  higher than 300 GHz. However, while active circuits offer great 

performance, the development of passive circuits remains an issue. Beyond say 60 to 100 GHz, 

lumped circuits, like baluns, couplers, power dividers, etc, based on inductances and 

transformers, suffer from increased design complexity, due to parasitics that can no more be 

neglected. Hence, distributed circuits become a better option than the traditional lumped 

approaches, especially for applications as coupling, power division, balun, etc. But their size, 

even at mm-wave, remains an issue. Considering a given electrical length, the physical length of 

a transmission line is proportional to the working frequency. However, the guided wavelength 

for microstrip lines in CMOS-BiCMOS technologies is still around 1.5 mm at 100 GHz, leading to 

750 µm long quarter-wave length transmission lines. This is still very big as compared to 

nanoscale transistors. Moreover, whereas the length of the transmission lines decreases with 

frequency, this is not the case for their width. A 50- characteristic impedance transmission line 

has almost the same width at 1 GHz and 100 GHz. And last but not least, the electrical 

performance of classical microstrip lines, mainly used in CMOS-BiCMOS technologies at mm-

waves, are really poor in terms of losses, and tend to deteriorate the performances of the overall 

system composed of active and passive devices. As a consequence, efforts should be carried out 

towards the development of high-performance miniaturized passive circuits. 

Within this context, a new kind of transmission line called Slow-wave CPW (S-CPW), was 

proposed in 2003 by John Long1. Subsequently, several developments were carried out 

concerning S-CPWs. The first equivalent electrical model was proposed in 2013 by Anne-Laure 

Franc2. The calculus of the elements of the model was recently developed by Alfredo Bautista in 

20153, opening the way to much easier implementations of the S-CPWs. Where days were 

necessary to simulate and optimize S-CPWs by using 3D EM tools, it only takes a few minutes 

now! S-CPW provides a significant longitudinal miniaturization (a factor of 2 or 3 compared to 
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the microstrip lines), it presents a high quality factor (40 at 60 GHz, which is twice the value of a 

microstrip line) and lastly it is highly compatible with the CMOS back-end-of-line (BEOL) 

process. The width of S-CPW is twice that of a microstrip line, leading to comparable footprints 

in practical designs, but their highest electrical performances make these transmission lines 

very good candidates for the development of the future elite passive circuits for mm-wave 

integrated systems. A good designer has to deal with both microstrip lines and S-CPWs, in order 

to build the more performing system. 

All the mm-wave systems use passive circuits, the simplest ones being perhaps matching 

networks for LNAs or PAs. Among the wide family of passive circuits, directional couplers are a 

key element in many systems, since they are used for sensing or dividing purposes. Directional 

couplers are four-ports circuits. The energy from input port is flowing to two output ports with 

equal or unequal power division, and a phase shift between the output signals (90° in the 

classical case of a quarter-wave length coupler). One output port is called the coupled port. The 

fourth port is the isolated port. Depending of the energy travelling direction, the coupled and 

isolated ports are exchanged. This is the main characteristic of directional couplers, i.e. their 

ability to distinguish the direction of the travelling wave. This characteristic is given by the 

directivity of the coupler, which represents a metric of “how good is the coupler ?”. This device is 

therefore very useful for applications such as signal sampling, monitoring, feedback, combining, 

separating, receiving or beam forming.  

Two families of directional couplers are available, the coupled-line and the hybrid 

coupler. In this thesis, the work was focused on the development of coupled-line couplers. 

The technique used today to implement coupled-lines at mm-wave in advanced 

technologies is the microstrip structure. This structure provides good performances in terms of 

losses, and microstrip line topology seems thus to be a good solution to implement this type of 

passive circuit. However, numerous improvements should be done to this structure since it 

presents also many issues such as the inhomogeneity of the medium, which prevents the circuit 

to present high directivity or the difficulty to achieve tight coupling due to the limitations in the 

dimensions generally imposed by the fabrication process (design rules). Broadside coupled-lines 

were proposed to overcome the tight coupling problem; however it still presents poor 

directivity characteristic. 

 In this thesis, an alternative approach for mm-wave coupled-lines is proposed. It 

overcomes all the microstrip lines couplers limitations, and offers the possibility to design 

compact coupled-lines with an extra degree of freedom, leading to simpler design process. The 

concept is based on the novel coupled-slow-wave coplanar waveguide (CS-CPW) proposed in 
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this thesis. The modification on the floating electromagnetic shielding layer leads to great design 

flexibility. Cutting some floating ribbons can be used to modify coupling in order to provide 

equal magnetic and electric coupling coefficients. Similarly, even- and odd-modes characteristic 

impedances can be modified independently. Based on this characteristic, several passive devices 

were designed. Besides, the slow-wave behavior leaded to more compact devices as compared to 

their microstrip counterparts. The BiCMOS 55 nm technology from ST Microelectronics was 

considered for all the designs carried out in this thesis. However, the developed concepts can be 

applied to any CMOS-BiCMOS technologies without lack of generality. 

In the first chapter, a presentation of the theory for directional couplers is made. Then 

the traditional topologies for planar couplers are presented. One of the topologies is especially 

interesting because it can be integrated in advanced CMOS technologies and can achieve strong 

coupling. For this reason, the state-of-art of broadside coupled-line couplers compatible with 

CMOS is detailed. Finally the main objectives of this thesis are introduced. 

The second chapter is dedicated to the presentation and fully detailed explanation of 

the novel structure, the CS-CPW. First the traditional theory of coupled-microstrip line is 

presented. Next, the CS-CPW concept, electrical model as well as its extraction method from 3D 

EM simulations is featured. Thanks to 3D EM simulations, charts with the evolution of the 

electrical parameters are realized and they are compared to the coupled-microstrip solution. 

Later, the concept of cutting the floating electromagnetic shielding in the CS-CPW is presented 

and its effect over the (magnetic and electric) coupling is studied. At the end of this chapter, 

practical issues linked to the layout of CS-CPWs are discussed.  

Based on the developments carried out in the second chapter, a method to design 

directional couplers is developed in the third chapter. The general concept where the electric 

coupling 𝑘𝐶  can be controlled without perturbing the magnetic coupling 𝑘𝐿 is explained. Thanks 

to this method, couplers with 𝑘𝐶 = 𝑘𝐿 can be implemented, leading to high-directivity devices. 

Directional couplers designed with CS-CPWs are compared to their microstrip counterparts. 

Two directional couplers are realized in BiCMOS 55 nm technology as a proof-of-concept. One of 

them was experimentally characterized, and the results as well as its practical issues are 

presented. The second coupler has yet to be characterized. Finally, as directional couplers are 4-

port circuits, a multimode TRL method was also implemented in order to de-embed the 

measurements. 

Next, parallel coupled-lines filters are studied in the fourth chapter. A review of this 

kind of filters is briefly made; this highlights the significance of the characteristic impedances to 

design resonators and filters. Using the analytical model presented in the second chapter, charts 
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giving the evolution even- and odd-modes characteristic impedance 𝑍𝑐
𝑒𝑣𝑒𝑛  and 𝑍𝑐

𝑜𝑑𝑑 , are 

presented. Next, as a proof-of-concept, two CS-CPW-based devices were designed at 80 GHz: a 

resonator and a filter.  

Finally the fifth chapter presents very promising prospects for the use of this novel 

coupled-lines topology in the advanced technologies or for original applications. Three circuits 

are presented in this chapter. The first study is a reflection-type phase shifter. In this circuit the 

hybrid coupler is replaced by a CS-CPW-based coupler. The second device developed is an 

isolator at 77 GHz. The last circuit is a Marchand balun. For each one of the circuits an overview 

is made as well as a review of the state-of-art. Then the performances of the directional coupler 

designed for the specific application are presented and at the end the simulation results of the 

resulting systems using the CS-CPW-based coupler is also shown.   
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Chapter 1 
 

1. Directional Couplers in 
Millimeter-Waves: Presentation 

 

Among distributed passive circuits that are developed at millimeter waves (mm-wave), 

couplers take an important role. Applications as varied as filters, matched phase-shifters or high 

directivity couplers for in-situ measurement systems are targeted. In particular, to save place on 

a die, integrated coupled lines couplers are most interesting as compared to their counterparts, 

i.e. in phase, out-of-phase or 90° couplers such as power divider, rat-race or hybrid. Integrated 

coupled lines (CL) couplers are becoming mandatory for the development of future in-situ 

measurement systems, especially when working at frequencies beyond 100 GHz. In such case 

load-pull measurements are limited by the insertion loss of the cables that connect the wafer 

probes with the external tuner [1], thus there is a strong need for high directivity and low 

coupling couplers. 3-dB CL couplers could also replace hybrid ones used in reflection type phase 

shifters, leading to more compact circuits. In addition new topologies of transformers could be 

designed, as proposed in [2]. 

In this chapter, it is first reminded the general theory of directional, and the conventional 

theory for coupled lines couplers to later present a brief overview of the existing solutions in 

terms of couplers as well as some recent applications. Among the solutions for couplers, we will 

have special interest in the broadside coupled lines because it is the currently used structure in 

order to provide tight coupling in CMOS advanced technologies. Therefore a state-of-the-art of 
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this special structure is done in section 1.3 where many topologies are explained and compared. 

Finally, we address the approach proposed in this thesis: slow-wave effect as an alternative 

option to implement high performances coupled transmission lines with the possibility to reach 

any desired coupling. 

1.1.  Classical directional couplers theory 

1.1.1. General definitions for a 4-port symmetrical, reciprocal directional coupler 

A directional coupler is a 4-port network as presented in Figure 1-1. This figure is the 

specific example of coupled lines; however, it can be extended to any horizontally and vertically 

symmetrical 4-port networks. This leads to the general coupler ports and parameters definition. 

The considered structure is thus symmetrical in the AA’ and BB’ planes. Besides, all ports are 

assumed to be terminated by the same load 𝑍0. 

 

Figure 1-1: Coupled lines directional coupler ports definition. 

The scattering matrix of a 4-port network is given by: 

[𝑆] =  [

𝑆11 𝑆12

𝑆21 𝑆22

𝑆13 𝑆14

𝑆23 𝑆24

𝑆31 𝑆32

𝑆41 𝑆42

𝑆33 𝑆34

𝑆43 𝑆44

] (1-1) 

Because of the symmetrical and reciprocal nature of the structure, the scattering matrix 

can be expressed as: 

[𝑆] =  [

𝑆11 𝑆21

𝑆21 𝑆11

𝑆31 𝑆41

𝑆41 𝑆31

𝑆31 𝑆41

𝑆41 𝑆31

𝑆11 𝑆21

𝑆21 𝑆11

] (1-2) 

A directional coupler is described by the following factors:  

 Return loss. 

 Through/Direct (𝑇). 

 Coupling (𝐶). 

 Isolation (I). 

 

  2 

/4 
  4 

  1 

  3 

B’ 

B 

A A’ 
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 Directivity (D). 

These are expressed from equations (1-3) to (1-6). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ = 𝑇 = 10 log
𝑃1

𝑃2
= −20 log|𝑆21| (1-3) 

𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = 𝐶 = 10 log
𝑃1

𝑃3
= −20 log|𝑆31|  = 10 log 𝑘2 (1-4) 

𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐼 = 10 log
𝑃1

𝑃4
= −20 log|𝑆41| (1-5) 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝐷 = 10 log
𝑃3

𝑃4
= −20 log

|𝑆31|

|𝑆41|
= 𝐼 − 𝐶 (1-6) 

 

where 𝑃1 is the input power at port 1. 𝑃2, 𝑃3 and 𝑃4 are the output power at ports 3 and 4, 

respectively. 𝑘 is the coupling coefficient. In the ideal case, no output power flows through the 

isolated port (Port 4); however in practice there is a small power that is flowing out from this 

port. A very good directional coupler is a 4-port device where a desired amount of power is 

coupled while keeping a high directivity; which is equivalent to have a very high isolation for a 

desired coupling.  

In this thesis, the directional coupler is studied in its backward-wave configuration for 

the coupled port with the nomenclature of Figure 1-1. The ideal coupler matched at all ports, 

with infinite isolation (equivalent to an infinite directivity) presents thus the following matrix: 

[𝑆] =  [

0 𝑆21

𝑆21 0
𝑆31 0
0 𝑆31

𝑆31 0
0 𝑆31

0 𝑆21

𝑆21 0

] (1-7) 

As the considered coupler is symmetrical, theoretically, it can be studied with an even-

odd-modes approach with the symmetrical and reciprocal even- and odd matrices expressed as: 

[𝑆]𝑒𝑣𝑒𝑛 = [
𝑆11

𝑒 𝑆21
𝑒

𝑆21
𝑒 𝑆11

𝑒 ] (1-8) 

[𝑆]𝑜𝑑𝑑 = [
𝑆11

𝑜 𝑆21
𝑜

𝑆21
𝑜 𝑆11

𝑜 ] (1-9) 

Consequently, the coupler S-parameters can be defined from the even- and odd-ones. 
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𝑆11 = 
𝑆11

𝑒 + 𝑆11
𝑜

2
 (1-10) 

𝑆21 = 
𝑆21

𝑒 + 𝑆21
𝑜

2
 (1-11) 

𝑆31 = 
𝑆11

𝑒 − 𝑆11
𝑜

2
 (1-12) 

𝑆41 = 
𝑆21

𝑒 − 𝑆21
𝑜

2
 (1-13) 

 Having a fully matched, completely isolated coupler thus relies on the two assumptions 

presented in [3]: 

𝑆11𝑜 = −𝑆11𝑒 (1-14) 

𝑆21𝑜 = 𝑆21𝑒 (1-15) 

1.1.2. Coupled lines directional coupler 

A section of coupled lines of length 𝑙 carefully designed may act as a matched directional 

coupler. Considering a symmetrical coupled lines structure, its modal reduction is presented in 

Figure 1-2. 

 

(a) 

 

(b) 

Figure 1-2: Reduced symmetrical coupled lines structure (a) even-mode and (b) odd-mode. 

ABCD matrices are given for even- and odd-modes in eq. (1-16) and (1-17), respectively. 

[
𝐴𝑒 𝐵𝑒

𝐶𝑒 𝐷𝑒
] =  [

cos 𝛽𝑒𝑙 𝑗𝑍𝐶
𝑒𝑣𝑒𝑛 sin 𝛽𝑒𝑙

𝑗 sin 𝛽𝑒𝑙

𝑍𝐶
𝑒𝑣𝑒𝑛 cos 𝛽𝑒𝑙

] (1-16) 

[
𝐴𝑜 𝐵𝑜

𝐶𝑜 𝐷𝑜
] =  [

cos 𝛽𝑜𝑙 𝑗𝑍𝐶
𝑜𝑑𝑑 sin 𝛽𝑜𝑙

𝑗 sin 𝛽𝑜𝑙

𝑍𝐶
𝑜𝑑𝑑 cos 𝛽𝑜𝑙

] (1-17) 

From (1-16)and (1-17), the even- and odd-mode characteristic impedances as well as the 

propagation constant can be computed: 

  2 

H-Wall 

  1 

A A’ 

𝛽𝑒, 𝑍𝐶
𝑒𝑣𝑒𝑛, 

𝑙  
  2 

E-wall 

  1 

A A’ 

𝛽𝑜, 𝑍𝐶
𝑜𝑑𝑑, 𝑙  
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𝑍𝐶
𝑒𝑣𝑒𝑛/𝑜𝑑𝑑

= √
𝐵𝑒/𝑜

𝐶𝑒/𝑜
 (1-18) 

𝛾𝑒𝑣𝑒𝑛/𝑜𝑑𝑑 =
arccosh (𝐴𝑒/𝑜)

𝑙
 (1-19) 

 

To be matched and isolated, the coupled lines coupler must satisfy both equations (1-14) 

and (1-15). These conditions are achieved when: 

𝑍𝐶
𝑜𝑑𝑑𝑍𝐶

𝑒𝑣𝑒𝑛 = 𝑍0
2 (1-20) 

𝛽𝑒 = 𝛽𝑜 = 𝛽 (1-21) 

This is also equivalent to have similar phase velocities for both even- and odd-modes, 

leading to: 

𝑆21 =
√1 − 𝑘2

√1 − 𝑘2 cos 𝜃 + 𝑗 sin 𝜃
 (1-22) 

𝑆31 =
𝑗𝑘 sin 𝜃

√1 − 𝑘2 cos 𝜃 + 𝑗 sin 𝜃
 (1-23) 

𝜃 = 𝛽𝑙 is the electrical length of the coupler and 𝑘, as already told, the coupling 

coefficient defined as: 

𝑘 =
𝑍0𝑒 − 𝑍0𝑜

𝑍0𝑒 + 𝑍0𝑜
 (1-24) 

From equation (1-22) and (1-23) we can see that transmission and coupling between 

ports 1 and 3 when 𝑙 =
𝜆𝑔

4
 are equal to 

𝑆21 = −𝑗√1 − 𝑘2 (1-25) 

𝑆31 = 𝑘 (1-26) 

Equation (1-21) and therefore (1-22) and (1-23) are correct as long as the even- and 

odd-modes phase velocities are identical. In practice, in an inhomogeneous medium, this is not 

true. It becomes necessary to consider that the coupling coefficient 𝑘 depends on the electric 

coupling coefficient 𝑘𝐶 , and the magnetic coupling coefficient 𝑘𝐿 . In chapter 2 we will 

demonstrate this dependency. It will also be discussed that making 𝑘𝐶  and 𝑘𝐿 identical, is 

completely equivalent to equalizing even- and odd- modes phase velocities. As aforementioned, 
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this condition will lead theoretically to an infinite directivity for a quarter-wave length coupled-

lines coupler. 

We discussed in this part about couplers generalities and the validity of the coupled lines 

coupler theory which will serve as a basis for this thesis. There exist many other directional 

couplers. Next part will be addressed to an overview of various solutions for directional couplers 

in the current market. 

1.2.  General types of directional couplers and applications 

Three kinds of couplers are particularly interesting for RF applications because of their 

performances and their compatibility with the technologies: the branch-line coupler, the coupled 

lines coupler and the Lange coupler which is an extension of the coupled lines proficiencies. A 

review of these three couplers as well as a discussion of their applications is made in this 

section. 

1.2.1. Branch-line coupler 

1.2.1.1. Overview 

The branch-line coupler, also known as quadrature (90°) hybrid coupler, is a 4-port 

network as shown in Figure 1-3 [4].  

 

Figure 1-3: Branch-line coupler. 

In this structure, Port 1 is the “input” while Port 2 and Port 3 are the “outputs”, namely 

“through” or “direct” and “coupled” ports, respectively. Port 4 is the “isolated” port. The coupler 

is composed of four transmission lines. Every transmission line is a quarter wavelength section 

and it has a characteristic impedance of either 𝑍0 or 𝑍0/√2 , as in Figure 1-3. The length of each 

arm could be reduced in order to save space; however, this will lead to a decrease of the 

bandwidth.   
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Any signal entering at input port splits into two quadrature signals on port 2 and port 3 

while no power flows to port 4. In the ideal case, the structure does not have any losses and all 

ports are well matched. The scattering parameters of this structure follow the form: 

[𝑆] =
−1

√2
[

0 𝑗
𝑗 0

1 0
0 1

1 0
0 1

0 𝑗
𝑗 0

] (1-27) 

According to Eq. (1-27), input power is half divided to ports 2 and 3; and the phase 

difference between those ports is 90°. Branch-line coupler is good for tight-coupling; but it 

presents narrow bandwidth. This device is a particular case in the set of directional couplers, 

commonly used for 3-dB coupling factor.  

1.2.1.2. Applications 

The branch-line coupler can be used for single antenna transmitter/receiver system or 

I/Q signal splitter/combiner. Branch-line couplers are also commonly related as a part of the 

reflection-type phase shifter (RTPS) [5] (Figure 1-4 (a)). Moreover it can be included in a down-

conversion mixer [5] (Figure 1-4 (b)). 

 

 

  

(a) 

 

(b) 
Figure 1-4: Schematic of the (a) RTPS,[5] , and (b) down-conversion mixer, [6], with a branch-line 

coupler. 

The circuit in Figure 1-4 (a) is a RTPS with very high figure-of-merit. 360° of relative 

phase shift is reached while maintaining good return loss thanks to a 3-dB branch-line coupler 

and two similar reflective loads, [5]. Circuit in Figure 1-4 (b) presents a 138 GHz down-

conversion mixer using a branch-line coupler. The mixer is based on common-gate quadrature-

balanced topology [6]. 
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Another kind of applications for branch-line couplers are presented below. In Figure 1-5 

a microwave bandpass filter using transversal filtering sections is illustrated. Each section is 

made up of a classical hybrid with the coupled and direct ports loaded with open stubs in order 

to generate two input-to-output signal paths. The output port of this circuit is thus the isolated 

port. 

 

 

 

Figure 1-5: Block diagram of the high-selective microwave active bandpass filter [7]. 

In Figure 1-6 the branch-line coupler is integrated in an optimized design of a Butler 

matrix. The Butler matrix is a microwave network, employed in beam forming and scanning 

network. The matrix consists of hybrid couplers, cross couplers and phase shifters. In [8] a 

reduced size branch-line using two step impedance stubs is developed. Signal entering different 

input ports in the Butler matrix produce different phase tapers among the output ports [9]. The 

schematic is shown in Figure 1-6. 

 

Figure 1-6: Block diagram of a 4x4 Butler matrix [8]. 

The branch-line coupler has been used during several years for many kinds of 

applications due to the practical aspects of this device for integration. This coupler has been 

widely implemented in different systems under 10 GHz. It provides good performances (tight-
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coupling) and it is compatible with most of the circuitry technologies at these frequencies. 

However it remains a cumbersome device. In the next section, the current competitor of the 

branch-line coupler is presented. 

1.2.2. Coupled lines coupler 

1.2.2.1. Overview 

Two neighboring transmission lines will show coupled power between them due to the 

interaction between the electromagnetic fields of each line. The proximity of the second line 

modifies the electromagnetic field of the propagating wave along the first one, transforming thus 

its characteristic impedance, and reciprocally. This pair of lines is referred to as coupled 

transmission lines. They can be implemented in different technologies as microstrips (edge or 

broad-side coupling), CPW, CPS, striplines. We will focus on technologies that could eventually 

be implemented in an integrated silicon technology, as broadside or edge coupled microstrips). 

Figure 1-7 shows examples of the implementation of coupled-lines in planar technology [10]. 

 

 

(d) 

Figure 1-7: Coupled transmission lines geometries. (a) Planar or edge- coupled striplines [10]. (b) 
Stacked or broad-side-coupled striplines [10]. (c) Planar or edge-coupled microstrip [10]. (d) Stacked or 
broad-side-coupled microstrip.  

Coupled lines topology present many advantages:  

 Compatibility with most of the fabrication process  

 Reduced surface consumption 
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 Better bandwidth compared to other solutions such as the branch-line 

The stripline topology presents the advantage of being homogeneous in RF. However, 

this is not the case anymore at mm-wave in a CMOS technology where each metallic and oxide 

layer differs in thickness and electrical parameters. This results into low directivity because of 

the signal dispersion. This is also the case for coupled lines in microstrip technology, edge- or 

broad-side coupling, that have inherently a difference in the even- and odd-modes phase velocity 

due to the inhomogeneity of the medium. Their design remains simpler to implement than 

striplines. For this reason, we will focus specifically on microstrip technology for that review, 

edge- and broad-side. 

For edge-side coupled lines couplers, the coupling factor depends on the distance 

between the two coupled lines. For planar technologies the resolution of the printing process 

(width of the transmission lines and their proximity) limits the coupling factor. Therefore, tight 

coupling is very challenging and most of the times 3-dB couplers use a different design in RF as 

well as in mm-wave. In section 1.3.1, we will see that the broad-side coupled lines coupler has 

been an appropriated alternative up to now. However, for historical background purpose in 

terms of application some of the applications for edge-side microstrip coupled lines are 

presented.  

1.2.2.2. Applications 

Edge-side coupled lines topology has been widely used during decades because of the 

straightforwardness of the theory and implementation, besides its bandwidth. In Figure 1-8 the 

schematic of some applications in the literature are showed. 

 

 

(a) 
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(b) 

Figure 1-8: (a) Second-order differentiators, [11], and (b) fourth-order bandpass filter, [12]. 

In Figure 1-8 (a) a second-order time differentiator composed of a coupled lines coupler 

and a time delayer is presented, [11]. The time-derivation effect of the coupled lines coupler is 

demonstrated by applying Kirchhoff’s law to infinitesimal electromagnetically coupled 

transmission lines. And finally in Figure 1-8 (b) the circuit model of a fourth-order coupled lines 

bandpass filter is shown. The filter is based on 𝜆/8 coupled-line sections, with multiple 

capacitive cross-couplings to create four transmission zeros [12]. 

As we can see, despite the issues for this topology, the coupled lines coupler based on 

planar edge-side coupling microstrips has been used in a large spectrum of applications. As its 

drawback essentially concerned tight coupling, an expansion towards interdigitated coupled 

lines sections was proposed by Lange. Inherently, the Lange coupler principle can be declined in 

various topologies of coupled lines, as it is the case for the coupled lines coupler itself. For 

similar reasons, striplines topologies are not presented. Broad-side topology will be focused on 

in section 1.3.1. Hence, next section highlights the historical background for planar edge-side 

coupling microstrips in a Lange coupler configuration. 

1.2.3. Lange coupler 

1.2.3.1. Overview 

The interdigitated directional coupler was invented by Lange in [13]. Also called the 

Lange coupler, it consists of interdigitated parallel, coupled microstrip lines with alternate lines 

tied together. A single ground plane, a single dielectric, and a single layer of metallization are 

necessary [13]. Later the structure was unfolded by Waugh in [14] (see Figure 1-9). It is 

therefore a suited topology for microwave integrated technology. Lange coupler has been 

reported by different authors [15]-[18]. Thanks to the interdigitated configuration, that stronger 

coupling will be reached than with the single coupled lines section. 
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Figure 1-9: Schematic of Lange unfolded interdigitated couplers [14]. 

Tight coupling is achieved easier than with non-interdigitated edge-coupled lines.  

1.2.3.2. Applications 

This solution is very effective and popular for the realization of band-tight-coupling 

devices such as octave-band quadrature hybrids for MIC applications [19]. Lange couplers are 

used in monolithic integrated circuit (MMIC) because of the high compatibility with the 

technology. In [20] a Lange coupler is implemented in a GaAs FET technology. In more recent 

works, Lange couplers are used as a part of different systems as presented in Figure 1-10. 

 

(a) 

 

(b) 
Figure 1-10: Block diagram of (a) RTPS [21] and (b) balanced amplifier with Lange coupler [22].  

In [21] a RTPS of 180° and 90° is implemented using an over-coupled Lange coupler to 

obtain a multi-octave bandwidth (Figure 1-10 (a)). In [22] a 3-dB Ka-band Lange coupler is 

integrated in a multilayer thick-film technology in order to realize a balanced amplifier.  

1.2.4. Discussion 

Coupled lines directional coupler is a very compact for coupling. This technique has been 

developed for different kinds of topologies (such as microstrip, CPW, CPS, striplines) during the 

last years, presenting good performances. Striplines topology is homogeneous and presents 

wide bandwidth but it is not easily implemented in a silicon technology at mm-wave.  
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As a general rule, microstrip coupled lines and the rest of planar topologies are simple to 

integrate on silicon and have wide bandwidth. However, they are very limited at mm-wave. 

Fabrication process limits the achievable levels of coupling and also they present low directivity 

because of inhomogeneity. Besides, the lack of flexibility in the design does not authorize to 

compensate for the phase velocity difference due to this inhomogeneity. 

The branch-line coupler is a compatible solution for almost all technologies in RF. 

Nonetheless, it is not a suitable topology in integrated technology because it requires a large 

surface; therefore it might be a more expensive technique for couplers once integrated in CMOS. 

In addition, it presents a narrower bandwidth than the coupled lines and it is not good for low-

coupling levels. 

The Lange coupler is a good technique to overcome the fabrication limitations of coupled 

lines in edge-side microstrip technology. It enables tight-coupling (more coupling than with 

simple coupled microstrip lines section) and larger bandwidth than the hybrid. However, due to 

its microstrip-based topology, it presents the same drawbacks it might present low directivity 

due to the inhomogeneity of the medium.  

To conclude this discussion and historical presentation, there is clearly a strong need in 

mm-wave integrated technologies, for compact, easy to design, low to strong coupling, high 

directivity couplers. Because of their advantages in terms of implementation and integration in 

advanced CMOS/BiCMOS technologies, up to now, broad-side coupled lines appeared to be the 

most promising approach for mm-wave directional couplers. They were declined in their simple 

form or as their interdigitated counterpart (Lange coupler). Next section draws up state-of-the-

art mm-wave couplers, all based on an integrated broad-side technology. We will make out with 

their advantages and imperfections. 

1.3.  State-of-the-art for integrated coupled lines directional couplers  

This section will be focused on the review of the current solution to implement 3-dB 

couplers in CMOS technology for mm-wave applications. As already mentioned, the previous 

couplers presented in section 1.2 are not always suitable for mm-wave applications because 

they are not compatible with advanced technologies. Hybrids are bulky, striplines coupled lines 

are no longer homogeneous, microstrip lines coupled lines are restricted in terms of high 

coupling due to process rules and Lange couplers are complex to design. Broad-side microstrip 

coupled lines are the most interesting candidate, as long as the medium inhomogeneity could be 

compensated for better directivity. 
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For these reasons, this section is focused on broad-side directional couplers only. The 

broadside solution is today one of the most implemented structure because of its compatibility 

with CMOS and BiCMOS process and its possibility to achieve high-coupling.  

1.3.1. Broad-side directional coupler  

A low-loss and high-directivity broadside coupler is proposed in [23]. It employs an 

array of air-bridges to enhance directivity via its phase-equalization effect on the c-mode and 𝜋-

modes.  

The structure of the proposed broadside coupler is shown in Figure 1-11 (a). It is 

composed of two broadside-coupled microstrip lines with an array of air-bridges deployed along 

both edges of the upper microstrip line. The set of air-bridge array results in better than 22 dB 

isolation from 27 GHz to 40 GHz on simulation. This isolation can be further extended down to 

20 GHz by adding interdigital-capacitors at both ends of the upper and lower microstrip lines as 

shown in Figure 1-11 (b). Those capacitors are here to compensate the phase velocity. 

 

 

 

 

 

 

 

(a) 

 

 

(b) 

 

(c) 
Figure 1-11: (a) Cross section of the proposed coupler with an array of air-bridges and (b) 

Microphotography of the coupler[23]. 
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The 3-dB quadrature MMIC coupler in [23], fabricated on a 75-µm GaAs substrate, 

demonstrates in measurements isolation greater than 18 dB, +0.7 dB in amplitude imbalance, 

and 6° in phase deviation from quadrature in the frequency range of 20 to 40 GHz. The 

advantage of this coupler is that it does not require modification of a standard foundry process 

and is insensitive to the conductor alignment process. 

It is presented in [24] the design, fabrication and characterization of a 3-dB broadside K-

band coupler integrated with a specifically developed low loss multi-layer Above-IC technology. 

The performances are attributed to the specifically developed technology and the optimization 

of the design methodology. The multilayer technology presented in [24] has been used to 

implement a multilayer broadside coupler, which cross section is presented in Figure 1-12 (a). 

 

 

(a) 

 

(b) 
Figure 1-12: (a) Cross section of the multilayer Above IC broadside coupler and (b) photography of 

the fabricated broadside coupler [24]. 

The photography of the fabricated design is presented in Figure 1-12 (a). This coupler 

occupies a surface of less than 1mm2. The measurement of this coupler showed 2.7 dB through 

and 3.9 dB coupling at 20 GHz, which is equivalent to an amplitude mismatch of 1.2 dB and 

insertion losses of only 0.25 dB. The low losses are due to the developed technology with BCB. 

As part of a I/Q mixer, a broadside coupler that has a top view similar to single Q-CPW is 

incorporated in [25]. This allows to simplify the mixer configuration. The cross-sectional view of 

the coupler is shown in Figure 1-13 (a). 
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(a) 

 

 

(b) 
Figure 1-13: (a) Microphotograph of a 3-D MMIC I/Q Mixer. The area closed by white dotted lines 

includes a pair of resistive mixers and a broadside coupler. The cross-sectional view of broadside coupler is 
also shown. (b) Measured performances of a broadside coupler with slit [25]. 

The coupler in Figure 1-13 (a) consists of a pair of conductor strips on the second and 

third metal layer respectively. Measured performances of the coupler are shown in Figure 1-13 

(b). Both coupling and through paths exhibited a -3.75 dB transmission, that is, merely 0.75 dB 

of insertion loss. The return losses are better than 15 dB. Finally isolation was greater than 

20 dB, and phase difference not optimized for this design was nearly 86° from 18 to 28 GHz. 

In [26] five different couplers are presented and compared. Among the couplers, a 

broadside coupler is designed and measured. The layer and the layout of the coupler are 

presented in Figure 1-14 (a). 

 

(a) 
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(b) 
Figure 1-14: (a) Layer stack (left), layout (right) and (b) Chip micrograph of broadside coupled 

directional coupler [26].  

In Figure 1-14 (a), the lower metal layer is directly below the upper conductor and is not 

seen in the layout. The slit in the ground plane increases the coupling of the structure. The 

coupler has been placed three times to measure 4-port S-parameters with a 2-port VNA (Figure 

1-14 (b)). The transmission coefficients at 110 GHz are 4.15 dB in measurements. The couplers 

have a 3-dB bandwidth of 156 GHz with corner frequencies at 32 GHz (measured) and 188 GHz 

(simulated). The measured isolation is above 12 dB. The phase difference between direct and 

coupled port is between 81° and 90° for the measured band from 20 GHz to 140 GHz. These 

results are interesting for mm-wave applications; however, the isolation of 12 dB is not so high.  

This is due to the lack of compensation of the inhomogeneity of the medium. 

An alternative approach for the implementation of a Lange coupler is done in [27]. It 

exploits the tightly stacked CMOS metal layers. It implements the unfolded Lange coupler in a 

broadside coupled lines structure to reduce the size through simple meandering, while 

enhancing the performances thanks to tight broadside coupling. The die photograph of the 

fabricated structure is shown in Figure 1-15 (a) and its measured performances in Figure 1-15 

(b). 

 

(a) 

 

 

(b) 
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Figure 1-15: (a) CMOS broadside coupled lines Lange coupler and (b) measured S-parameters [27]. 

The measurement results (Figure 1-15 (b)) show a broadband performance. They exhibit 

3.3 to 3.5 dB through, 3.3 to 3.7 dB coupling, and more than 12 dB isolation and 15 dB return 

loss across 25-35 GHz. Significant size reduction for the Lange coupler is achieved by 

implementing this technique.  

A broadside coupled lines coupler is used to generate the quadrature signals from the 

VCO’s fundamental output frequency in [28]. The coupler is composed of two metal lines 

realized in the two topmost metal layers, which are used for the signal paths, while the ground 

path is realized in the lowest metal layer. A slot in the ground layer is formed beneath the signal 

lines to enhance the coupling of the structure. The layer stack used to realize the coupler and its 

3-D micrograph are shown in Figure 1-16 (a) and (b). 

 

(a) 

 

(b) 
Figure 1-16: (a) 3-D image of the coupler. (b) Cross section of the coupler metal layer stack [28]. 

The coupler in [28] has a measured amplitude imbalance less than 1 dB and a phase 

imbalance less than 2.3° from 65 to 89 GHz. The coupler insertion loss is lower than 5 dB. This 

coupler topology is selected because of its wideband performance. 

A quadrature hybrid at 24 GHz with 3 dB coupling is designed in a 0.18-µm CMOS 

process in [29]. The diagram is illustrated in Figure 1-8 (a) and a top view of the layout is 

presented in Figure 1-8 (b). Upper lines are in Metal 6 and lower lines are stacked from Metal 4 

to Metal 5. These lines are stacked vertically to achieve high coupling. 
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(a) (b) 
Figure 1-17: (a) Layout and (b) photograph of 24 GHz CMOS quadrature hybrid [29]. 

The measured phase imbalance of the coupler in [29] is less than +1° and amplitude 

imbalance is less than 1.4 dB from 21.5 to 26.5 GHz. The return loss and isolation are both better 

than 20 dB. The interest of this approach is the transformer over-coupling technique, which 

compensates for the phase degradation. This can be seen as a way to offset the phase velocities. 

In [30] a phase shifter is implemented with a broadside coupler. It consists of five stages 

of reflection-type phase shifter (RTPS), where each stage contains an over-coupling broadside 

coupler loaded with accumulation-mode MOSTEF varactors, as presented in Figure 1-18.  

 

Figure 1-18: Schematic of a single stage of RTPS of the proposed CMOS phase shifter MMIC [30]. 

The coupler presents in simulation the magnitudes of 𝑆21 and 𝑆31 of 3.7+1.7 dB and 

3.7+1.5 dB, respectively, and the phase difference between Port 2 and Port 3 is 90.6+0.9° from 

40 to 100 GHz. Finally both return loss and isolation are better than 20 dB. These results 

indicate an excellent wideband phase balance performance. The over-coupling broadside 

coupler and single MOS varactor load reduce the size and also achieve low-loss variation. 
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In references [31], [32] and [34] a broadside coupler is implemented as part of a system. 

Reference [31] typically describes a wideband RTPS employing a broadside coupler in the 

multilayer metal structure of a CMOS technology. In [32] a 3-bit RTPS with shunt switches using 

MEMS technology is implemented; it employs a quadrature hybrid broadside coupler with two 

reflective loads. Finally in [35] a balanced amplifier is implemented where a meandered 

broadside coupler with shield is used to reduce the signal loss and dimensions. Unfortunately, 

the coupler is not measured on standalone in any of these references; measurement results are 

only for the entire system. 

A summary of the main characteristics of broadside couplers in the literature is made in 

Table 1-1. 

TABLE 1-1 STATE-OF-ART BROADSIDE COUPLERS IN CMOS 

The performances presented in Table 1-1 are the results of the couplers used today. 

Interesting results and techniques are proposed in the references in Table 1-1. As we can see in 

this table, it is feasible to implement directional coupler at high frequency with CMOS 

technologies.  However, in most of the cases they stay below 60 GHz. At frequencies beyond 

60 GHz, many losses are observed. For example, 5 dB are measured instead of 3 dB coupling in 

[28] or 5.4 dB instead of 3 dB in [30]. Besides, in general terms this structure presents low 

isolation results for being a 3-dB coupler which means it has a very low directivity. The 

broadside coupler is a good provisional solution to realize tight coupling in mm-wave but many 

improvements should be done in terms of performances, especially the directivity. 

Ref/Technology 𝒇𝟎 

(GHz) 

Size 

(mm2) 

Coupling** 

(dB) 

Isolation  

(dB) 

Return 

Loss 

(dB) 

Phase 

Imbalance 

(°) 

Magnitude 

Imbalance 

(dB) 

[23]/GaAs 75µm MMIC 20-40 0.55  3.6 18 17 6 0.7 

[24]/Aboce-IC Tech. 20 1 3.9 14 20 4 1.2 

[25]/3-D MMIC 18-28 0.9 3.75 20 15 4 NA 

[26] /IHP 130nm BiCMOS 110 0.02 3.8 13 20 9 NA 

[27]/TSMC 0.25µm CMOS 25-35 0.04 3.3-3.7 12 15 4 0.35 

[28]/SiGe 0.35µm CMOS 65-89 0.2 <5 17* 17 2.3 1 

[29]/0.18µm CMOS  24 0.05 3.7 20 22 0.6 NA 

[30]*/TSMC 0.18µm CMOS 40-100 NA 5.4 20 20 1.5 3.2 

[31]*/90nm CMOS 60 NA 4 16 16 0 0 

[32]*/MEMS 60 NA 3.5 17 18 0 0 

[35] */130nm CMOS 19-26 0.036 3.5 NA 20 5 NA 

*Only simulation 
**Coupling includes insertion loss 
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This thesis is thus focused in the research of an alternative approach for coupled lines 

compatible with silicon technologies, enabling low to high coupling, up to 3-dB as well as high 

directivity by compensating the inhomogeneity of the medium. This will be done by considering 

the available integrated technologies at mm-wave and the transmission lines topologies as slow-

wave CPWs. 

1.3.2. Integrated technologies available at mm-wave: Discussion 

The simulated and fabricated components in this thesis involve the Back End of Lines 

(BEOL) proposed by STMicroelectronics (STM) industry in the 55 nm BiCMOS technology (also 

called B55). The B55 BEOL is specially addressed to mm-wave applications. A BEOL is adapted 

to mm-wave when it shows the minimum losses for 50Ω transmission lines [33]. Figure 1-19 (a) 

compares different BEOL and Figure 1-19 (b) is a SEM (scanning electron microscopy) picture of 

the 65 nm CMOS technology BEOL by STM. 

 

(a) 

 

 

 

(b) 
Figure 1-19: (a) Comparison of different STM BEOL stacks. (b) SEM picture of the 65 nm CMOS 

technology BEOL from STM [34] . 

The BEOLs in Figure 1-19 (a) present at least three thick metal layers (M6, M7 and 

Alucap) in the upper levels. In the B55 technology, an eighth level (M8) of very thick metal is 

added before the aluminum cap. The thick layers in B55 (M6, M7 and M8) have the objective to 

reduce the resistive losses in the interconnections, which allows to realize low-loss passive 

structures. On the other hand, the dimensions of the lower layers (from M1 to M5) significantly 

decrease in terms of thickness and authorized small widths for metallic paths. This reduction of 
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metal layer thickness also leads to a smaller dielectric thickness. Both lead to a decrease in the 

quality factor of the passive components built in these layers. 

Technological limitations are important and must be taken into account. Remarkably, 

BEOL metal layers density rules must be respected in order to guarantee flatness over the wafer 

when the mechanical operations are done as CMP (Chemical Mechanical Planarization). Besides, 

the evolution of the technologies is leading to a reduction of the maximal allowed widths for 

metallic layers. The broadside coupled lines solution is not the fittest option for implementing 

directional couplers. For this reason, at IMEP-LAHC an alternative topology is being studied for 

the last few years: the slow-wave coplanar waveguide is studied in its coupled version. 

1.4.  Solution: coupled lines based on slow-wave effect  

Slow-wave effect is explained in this section in order to show the performances in terms 

of high quality factor, miniaturization and also, its potential as a structure to reach any level of 

coupling. First, a review of the transmission lines characteristic parameters is briefly done. Next, 

the slow-wave coplanar waveguide is introduced as well as the slow-wave effect and its 

advantages. 

1.4.1. Characteristic parameters of the transmission lines 

The performances of the transmission lines can be characterized and compared thanks 

to their self-parameters. The behavior of transmission lines presenting transverse 

electromagnetic (TEM) wave propagation is usually modeled with the telegrapher model in 

Figure 1-20. The series parameters denote the effects of conductors: the linear resistance 𝑅𝑙 

(Ω/𝑚) represents the losses in the resistive conductors and the linear inductance 𝐿𝑙 (H/𝑚) 

represents the reaction of the conductor to the current variation. The parallel parameters 

denote the effect of the substrate: the linear capacitance 𝐶𝑙 (F/𝑚) represents the coupling 

between the conductors through the substrate and finally the linear conductance 𝐺𝑙  (S/𝑚) 

represents the losses due to the leaks, still through the substrate. 

 

Figure 1-20: Telegrapher model (or RLCG model). 
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It is also possible to define the behavior of a transmission line with its characteristic 

impedance 𝑍𝑐  and propagation constant 𝛾. These parameters are linked to the linear parameters 

with equations (1-28) and (1-29).  

𝑍𝑐 = √
𝑅𝑙 + 𝑗𝐿𝑙𝜔

𝐺𝑙 + 𝑗𝐶𝑙𝜔
 ≈ √

𝐿𝑙

𝐶𝑙
 (1-28) 

𝛾 = √(𝑅𝑙 + 𝑗𝐿𝑙𝜔)(𝐺𝑙 + 𝑗𝐶𝑙𝜔) = 𝛼 + 𝑗𝛽 (1-29) 

It is important to notice that 𝑅𝑙 and 𝐺𝑙  can be neglected, see (1-28). This is possible to do 

when transmission lines present very low losses. The characteristic impedance is thus the 

square root of the ratio between 𝐿𝑙 and 𝐶𝑙. The propagation constant can be decomposed into 

real and imaginary part where 𝛼 is the attenuation constant which is generally expressed in 

dB/m and 𝛽 is the phase constant which is expressed in rad/m. 

An approximation of the propagation constant is done in order to present an expression 

for 𝛼 and 𝛽, see (1-30) and (1-31). 

𝛼 =
1

2
(
𝑅𝑙

𝑍𝑐
+ 𝐺𝑙𝑍𝑐) (1-30) 

𝛽 =
𝜔

𝑣𝜑
=

𝜔√𝜀𝑟𝑒𝑓𝑓

𝑐0
= 𝜔√𝐿𝑙𝐶𝑙 

(1-31) 

where 𝜔 is the angular frequency (rad/s), 𝑣𝜑 is the phase velocity (m/s) and 𝑐0 is the 

velocity in the vacuum which is 3,0e8 m/s. 

The attenuation constant is very useful for interconnections. It allows comparing the 

performances between two transmission lines: a high attenuation represents a low performance 

transmission line as a connecting path.  

However, when dealing with an electrically fixed length, as 90° phase shift or quarter 

wavelength, the quality factor 𝑄 of a transmission line, defined by [36], is best suited as it 

represents the phase shift divided by the insertion loss. The higher the quality factor, the most 

efficient the transmission lines for a given phase shift. According to [37], this definition is true 

for high quality factors, over 5, which is the case for all the studied transmission lines.  

𝑄 =
𝛽

2𝛼
 (1-32) 
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1.4.2. Slow-wave coplanar waveguide S-CPW 

1.4.2.1. Presentation 

According to equation (1-32), the improvement of the quality factor can be made either 

by the reduction of the losses or the increase of the phase constant, and therefore the dielectric 

constant. [38] showed that the reduction of the wave velocity, obtained by periodically loading a 

CPW line with floating ribbons, allows increasing the phase constant while the attenuation 

remains the same. This solution consequently improves the quality factor without modifying the 

fabrication process. 

The slow-wave coplanar waveguide, or S-CPW, consists of a traditional CPW with a 

floating electromagnetic shielding underneath. The shielding is composed of floating metallic 

ribbons. The floating ribbons are placed perpendicularly to the direction of propagation at a 

distance ℎ from the CPW, as in Figure 1-21. 

 

Figure 1-21: Slow-wave coplanar waveguide and the associated electromagnetic field lines. 

The floating shielding confines the electric field which does not penetrate through the 

low-resistivity silicon (for bulk technologies), hence increasing the capacitance while removing 

the silicon losses. In the same time, the magnetic field remains unchanged and so is the 

inductance [39]. Finally, the general capacitance C increases as compared to a conventional CPW 

whilst the inductance L remains almost the same, hence from a circuit point-of-view, equation 

(1-33) shows that a slow-wave mode propagates in the S-CPW structure. In other words, electric 

and magnetic fields are spatially dissociated below the shielding, which means that from now 

electric or magnetic field can be modified independently without disturbing the other one. 

Besides, the floating shielding increases the electric coupling which increases the general level of 

coupling of the structure. 
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The phase velocity 𝑣𝜑 given by equation (1-33) is therefore reduced in the S-CPW 

compared to the traditional CPW, hence the name “slow-wave”. Consequently, a high relative 

effective permittivity 𝜀𝑟𝑒𝑓𝑓 is obtained (see (1-34)) leading to a high quality factor Q, since it is 

proportional to 𝜀𝑟𝑒𝑓𝑓 (cf. equation (1-31)and (1-32)). 

𝑣𝜑 =
1

√𝐿𝑙𝐶𝑙

 (1-33) 

𝜀𝑟𝑒𝑓𝑓 = 𝑐0(𝐿𝑙𝐶𝑙)
2 (1-34) 

In practical terms, the slow-wave structure allows to obtain quality factors Q twice or 

thrice better than those of traditional transmission lines in the same fabrication technology. 

Besides, the increase of 𝜀𝑟𝑒𝑓𝑓 leads to an increase also of the propagation constant 𝛽 (see 

(1-31)), which leads to a reduction of the physical length of the lines 𝑙 for a fixed electrical length 

𝜃 (see (1-35)). 

𝜃 = 𝛽𝑙 (1-35) 

The phase constant 𝛽 is increased with the slow-wave effect. The attenuation constant is 

not deteriorated as compared to classical transmission lines, the slow-wave propagation 

combines therefore both efficient miniaturization and high quality factor. In addition, S-CPW 

topology allows maintaining a reasonably high value for characteristic impedance in comparison 

to microstrip or grounded-CPW, even if the high characteristic impedance that could be reached 

with CPW is no more attainable. A more detailed study of the S-CPWs performances is made in 

[40], [41] and specially developed in [39]. It is explained how the better stack configuration is 

chosen. 

1.4.2.2. Electrical model 

The classical RLCG electrical model does not fit well with the physical behavior of the 

S-CPW, especially when losses have to be considered. Therefore it is necessary to develop a new 

electrical model based on a fine study of the physical behavior of the S-CPW. However, for the 

phase velocity calculation, except at very high frequencies as discussed at the end of this section, 

the series 𝐿𝑙  and the parallel 𝐶𝑙 are still accurate. As the magnetic field has the same spatial 

distribution in a S-CPW as in a classical CPW, the modeled inductance 𝐿𝐶𝑃𝑊 is almost equal for 

both topologies having the same geometrical dimensions. Similarly, the capacitance 𝐶𝐶𝑃𝑊𝐺  is 

almost the same for the S-CPW and the grounded CPW because the electric field is concentrated 

between the two metal layers in both transmission lines.  
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Losses do not only come from conductive losses in the CPW strips and substrate losses in 

the silicon. Conductive and eddy current losses also appear in the patterned metallic shield. This 

is why the full electrical model is the one proposed in Figure 1-22. 

 

Figure 1-22: Proposed equivalent model. 

The resistance RCPW-strips+Reddy includes conductive losses in the CPW strips and eddy 

currents losses introduced by the patterned shield. Due to the capacitance between the CPW 

strips and the shield, a current propagates in the floating shield ribbons, leading to conductive 

losses in the shield modeled as a resistance Rshield. In addition, the conductance Gbulk expresses 

the losses in the bulk silicon. In [41], an additional study pointing out the effect of the floating 

strips length on the loss distribution for both standard Bulk and HR-SOI substrates 

demonstrated that eddy currents losses induced by the magnetic field into the substrate are 

negligible for these transmission lines for current gap width G (i.e. to about 100 µm). Above 100-

150 µm, eddy current losses occur in the low-resistivity silicon substrate. Hence, in practice, if 

the shield is efficient enough to ensure that no electrical field propagates through the substrate, 

this term can be neglected. The four last parameters can be extracted thanks to a quasi-static 

tool. More details about the S-CPW model is explained in [42] and [43]. It is important to state 

that the LRCR model in Figure 1-22 is similar to the RCLG model when losses in the shielding are 

not considered. 

1.4.3. Discussion 

S-CPWs topology not only present compactness and high quality factor but also could 

provide tight coupling thanks to high capacitances between signal and grounds via the shielding. 

Also the shielding might afford new possibilities for coupling design. Hence coupled slow-wave 

transmissions lines are an interesting solution to address high directivity, low to high coupling 

and easy and compatible design. 

1.5.  Conclusion 

Broadside coupled lines are the current structure to implement directional coupler at 

high frequency. An extensive review of the state-of-art for broadside couplers is presented in 

this chapter. Broadside couplers present good advantages in terms of compatibility with CMOS 
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technologies as well as reduction of the space occupied by the circuit; besides it is possible to 

achieve tight coupling with this structure. However improvements should be realized in terms of 

performances with this structure, especially the directivity and the control of the coupling level. 

Transmission lines based on slow-wave effect are therefore introduced as an alternative 

and effective solution to fabricate high performances circuits in mm-wave. It presents a better 

quality factor than any other topology of transmission line compatible with CMOS technologies. 

S-CPWs are a planar structure, which means it is easy to implement in most of the stacks for 

CMOS or BiCMOS technologies.  

Furthermore, slow-wave coplanar waveguide can be used also to reach any coupling at 

high frequency. The presence of the floating shielding eases the coupling between the 

conductors and therefore it achieves very tight coupling. In this thesis the detailed development 

of the theory for coupled-slow-wave-line is presented.  
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Chapter 2 
 

2. Coupled Slow-wave  
CoPlanar Waveguide (CS-CPW) 

 

Now that the historical background for slow-wave transmission lines, their interest in 

integrated CMOS/BiCMOS technologies, and their way of characterization has been described in 

Chapter 1, it is time to focus on a variant for slow-wave transmission lines, very useful for 

compactness of circuits: the coupled slow-wave transmission lines.  

2.1.  Introduction 

The principle of coupled lines has been widely used in many essential applications in 

microwave circuits such as filters, DC blocks, phase shifters, baluns [1], balanced amplifiers and 

directional couplers, [2]-[3]. Such applications may be directly translated towards millimeter 

waves (mm-wave). At mm-wave, coupled lines are also a crucial component for the on-wafer 

characterization issues [4]-[6] demanding the implementation of high directivity couplers [7]-

[9] . This point will be detailed further in chapter 3. 

Solutions have been proposed based on integrated coupled microstrip lines [8]-[10]. The 

main problem with coupled lines comes with the intrinsic relationship between the electric and 

magnetic field. Also the inhomogeneity due to the advanced technologies prevents the lines to 

have the same phase velocity and therefore high directivity. Besides coupled microstrip lines 
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have limited coupling because of design rules.  This is why in this thesis a new solution based on 

integrated slow-wave coupled lines, namely coupled S-CPW (CS-CPW) is proposed.  

Conventional coupled microstrip lines are described in several microwave books, [1]-[3]. 

However, a brief remainder is made here to give a theoretical background. Besides the coupled 

microstrip lines limitations at mm-wave are emphasized. Then coupled slow-wave coplanar 

waveguide are studied in details. The latter offers new possibilities for developing integrated 

circuits based on coupled lines [11].  

For this purpose, after a brief presentation on the coupled microstrip lines theory 

including their limitations, a rigorous study of CS-CPWs is carried out. The simulation methods 

as well as the electrical parameters extraction are carefully described. Then, millimeter-waves 

coupled microstrip lines and CS-CPWs performances are compared. Next, the effect of cutting 

the shielding in CS-CPW is analyzed. The last part of the chapter will be addressed to some 

implementation issues. 

2.2.  Classical coupled microstrip line 

The symmetrical coupled microstrip lines consist of a two signal strips integrated on a 

substrate with a backside ground plane, as shown in Figure 2-1 (a). Being a three-conductor 

device, two modes will propagate in such structure. The symmetry in the configuration allows us 

to use the even- and odd-mode approach; which consist in divide the structure into two 

independent cases (even and odd) and at the end superpose the results of each one of them [12]. 

The even-mode, plotted in Figure 2-1 (b), is excited when a voltage of the same 

magnitude and phase is applied to each one of the signal strips. While the odd-mode plotted in 

Figure 2-1 (c), is excited when a voltage of the same magnitude and opposite phase is applied to 

each one of the signal strips.  

The section of coupled lines can behave as a 4-port coupler which its design has to be 

optimized in order to get the desired coupling, matching, and isolation. The couplers’ design is 

specified in chapter 3. To begin with, it is necessary to detail the equivalent lumped circuit 

model from which the coupling coefficients can be calculated. 
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(a) 

 

(b) 

 

(c) 
Figure 2-1: Coupled microstrip lines, (a) general configuration and their electromagnetic field: (b) 

even-mode and (c) odd-mode. 

The equivalent circuit is derived from the electrical model given in Figure 2-2 (a), 

composed of a self and a mutual inductance 𝐿0−𝜇 and 𝐿𝑚−𝜇, along with a self and a mutual 

capacitance, 𝐶0−𝜇 and 𝐶𝑚−𝜇. The µ subscript stands for microstrip, the subscript m for mutual 

and 0 for self. As losses are not taken into account, the resistances and conductances will not 

appear in the presented model. An even- and odd-mode analysis (Figure 2-2 (b) and (c)) is made 

to derive the coupling coefficients: magnetic coupling 𝑘𝐿−𝜇 and electric coupling 𝑘𝐶−𝜇.  

For the even-mode, there is an even symmetry about the center of the structure which 

means that no current flows between the two strips; thus the symmetry plane acts as a 

magnetic-wall (open circuit). In Figure 2-2 (b), the equivalent capacitance is determined by the 

capacitance of either line with the magnetic wall (H-plane). 𝐿µ
𝑒𝑣𝑒𝑛 and 𝐶µ

𝑒𝑣𝑒𝑛 are the even-mode 

effective inductance and capacitance respectively, they are expressed in equations (2-1) and 

(2-2). 

𝐿µ
𝑒𝑣𝑒𝑛 = 𝐿0−𝜇 + 𝐿𝑚−𝜇 (2-1) 

𝐶µ
𝑒𝑣𝑒𝑛 = 𝐶0−𝜇 (2-2) 

 

Similarly for the odd-mode, there is an odd symmetry about the center of the structure 

which means that a voltage between the two strips is null, thus the symmetry plane acts as an 

electric-wall (short circuit). In this case Figure 2-2 (c), the equivalent capacitance is determined 
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by the capacitance of either line with the electric-wall (E-plane). 𝐿µ
𝑜𝑑𝑑 and 𝐶µ

𝑜𝑑𝑑 are the even-

mode inductance and capacitance respectively, they are expressed in equations (2-3) and (2-4). 

𝐿µ
𝑜𝑑𝑑 = 𝐿0−𝜇 − 𝐿𝑚−𝜇 (2-3) 

𝐶µ
𝑜𝑑𝑑 = 𝐶0−𝜇 + 2𝐶𝑚−𝜇 (2-4) 

 

 

(a) 

 

(b) 
 

(c) 
Figure 2-2: Coupled microstrip lines (a) Equivalent electrical circuit, (b) even-mode and (c) odd-

mode. 

𝐿0−µ, 𝐿𝑚−µ, 𝐶0−µ and 𝐶𝑚−µ are imposed by the permittivity of the dielectric substrate 

and the dimensional parameters, i.e. the separation 𝑆 between the coupled strips, the height ℎ𝜇 

between strips and ground plane, and the strips widths W. The variation of the electrical 

parameters versus the dimensions are presented in [1],[3], and [13].  

The coupling coefficients are then derived as: 

𝑘𝐿−µ =
𝐿µ
𝑒𝑣𝑒𝑛 − 𝐿µ

𝑜𝑑𝑑

𝐿µ
𝑒𝑣𝑒𝑛 + 𝐿µ

𝑜𝑑𝑑
=

𝐿𝑚−µ

𝐿0−µ
 (2-5) 

𝑘𝐶−µ = |
𝐶µ

𝑒𝑣𝑒𝑛 − 𝐶µ
𝑜𝑑𝑑

𝐶µ
𝑒𝑣𝑒𝑛 + 𝐶µ

𝑜𝑑𝑑
| =

𝐶𝑚−µ

𝐶𝑚−µ + 𝐶0−µ
 (2-6) 

The general coupling level of a transmission line can be calculated with (2-7). 
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𝑘 =  
√(

1 + 𝑘𝐿

1 − 𝑘𝐿
) (

1 − 𝑘𝐶

1 + 𝑘𝐶
) − 1

√(
1 + 𝑘𝐿

1 − 𝑘𝐿
) (

1 − 𝑘𝐶

1 + 𝑘𝐶
) + 1

 (2-7) 

This expression is valid for coupled microstrip case as well as for any type of structure 

where 𝑘𝐿 is the corresponding magnetic coupling, 𝑘𝐶  is the electrical coupling and 𝑘 the total 

coupling level.  

It can be shown that infinite directivity of a coupled line structure is reached if phase 

velocities are identical. See condition (2-8): 

𝑣𝜙
𝑒𝑣𝑒𝑛 = 𝑣𝜙

𝑜𝑑𝑑 (2-8) 

It is important to notice that condition (2-8) is equivalent to have: 

𝑘 = |𝑘𝐿| = |𝑘𝐶| (2-9) 

Equation (2-9) presents the ideal case to provide theoretically infinite directivity. This 

condition is most of the time not achieved because of the inhomogeneity presented in several 

technologies. For this reason, in this thesis an approach to achieve (2-9) with any kind of 

integrated technology is proposed. This approach is not only compatible with any 

CMOS/BiCMOS technology but also it is straightforward to implement because of its simplicity. 

In this way, high-performances couplers at mm-wave could be now designed. 

2.3. New Coupled Slow-wave CoPlanar Waveguide (CS-CPW) concept 

The topology of the CS-CPW is presented in Figure 2-3. The structure is composed of two 

central signal strips, with coplanar lateral ground strips. Thin floating ribbons (also called 

floating shielding) of width 𝑆𝐿, separated by a gap 𝑆𝑆, are placed below as for classical S-CPWs, 

in order to create the CS-CPW structure. As explained in Chapter 1, S-CPW lead to high 

miniaturization and high quality factor Q, compared to microstrip or CPW transmission lines 

implemented in silicon technologies, thanks to their slow-wave behavior [14]. 
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Figure 2-3: Coupled Slow-wave Coplanar Waveguide (CS-CPW). 

In this structure, as for S-CPWs, the electric field will be confined between the main 

strips and the floating shielding; therefore specific capacitances, not present in microstrip or 

CPW models, will appear in the model. Meanwhile, the magnetic field will be almost not 

undisturbed by the floating ribbons due to their extremely thin thickness and length, hence the 

model will present the same inductance as in a classical CPW. This brings a separation of the 

magnetic and electric fields, which brings the slow-wave effect. This particularity offers a new 

degree of freedom in couplers’ design by letting the magnetic and electric coupling coefficients 

vary independently. Consequently, magnetic and electric couplings can be controlled separately, 

depending on the floating shield design.  

Based on this statement, the interesting idea developed in the next sections consists in 

modifying the coupling coefficients 𝑘𝐶  and 𝑘𝐿, by cutting the shielding ribbons, either between 

the two coupled strips (cut in the center, CC-ribbons), or between the coupled strips and the 

ground strips (cut on the sides, CS-ribbons) [11]. This will be explained in details in sections 2.6 

and 2.7. 

2.4.  Electrical equivalent model for CS-CPW 

2.4.1. Equivalent electrical model 

For coupled microstrip lines, the electrical model has been used. The developed model 

for CS-CPW differs due to the presence of the floating shield ribbons. The resulting model can 

take three forms according to the configuration of the floating shield: uncut, center cut, or side 

cut. The first one will be detailed below and the last two will be explained in sections 2.6.2 and 

2.6.3. 

For better understanding, Figure 2-4 presents the steps for the development of the CS-

CPW model. The model can be considered as “electrical” since it is based on the electromagnetic 

behavior. Conductive losses are not considered. First, according to the electric field distribution 
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in Figure 2-4 (a), the equivalent capacitances are shown in Figure 2-4 (b). Instead of going 

directly from the central strips to the ground (as in CPW), the electric field is taking a shortcut 

through the floating ribbons, which adds new capacitances in the model (𝐶𝑠 and 𝐶𝑔). Then in 

Figure 2-4 (c) the magnetic flux of each conductor in the structure is presented, and its 

equivalent parameter 𝐿0 is drawn in Figure 2-4 (d). The last interaction to review is the one of 

the magnetic field between the conductors (Figure 2-4 (e)), represented by a mutual inductance 

𝐿𝑚 in Figure 2-4 (f).  As mentioned before, the magnetic field is almost not disturbed by the 

presence of the floating shield underneath the coupled CPW, therefore the self and mutual 

inductances, 𝐿0 and 𝐿𝑚, are almost similar to the ones of a coupled CPW. 

 

 

(a) 

 

(b) 
 

 

(c) 

 

(d) 
 

 

(e) 

 

(f) 
Figure 2-4: Evolution process to propose a new the model for CS-CPW (a) Distribution of the electric 

field and its (b) equivalent capacitances. (c) Distribution of the magnetic field around each conductor and its 
(d) equivalent representative inductances and finally the (e) distribution of the magnetic flux between the 

two central conductors and its respective (f) equivalent mutual inductance. 

The final equivalent electrical circuit is given in Figure 2-5. Inductances of the floating 

ribbons have been added. Depending on design considerations, some elements of the model can 

be neglected. For example, the capacitance between signal and ground strips, 𝐶𝑠𝑔 (Figure 2-4 

(b)), is often negligible in comparison to 𝐶𝑔 and 𝐶𝑠, which are the capacitances between the 

floating shield and ground or signal strips, respectively. This is valid as long as the gap width 𝐺 

(see Figure 2-3) is much greater than h. Consequently, in this chapter, 𝐶𝑠𝑔 will not be considered 

anymore. It is worth noticing that it should be considered for small gaps 𝐺 reaching twice or 
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three times the thickness ℎ. This will be the case in the chapter dedicated to filters. Finally, the 

floating shielding ribbons bring inductances, 𝐿𝐺  and 2𝐿𝑠, their effect should be considered at 

very high frequency (from 150 GHz and above) but often neglected in our study, especially in 

this chapter dedicated to simple analytical models for different topologies.  

 
Figure 2-5: Lumped element equivalent circuit model for the CS-CPW. 

In practical cases, 𝐶𝑠 is greater than 𝐶𝑠𝑠, because the gap 𝑆 is equal to a few micrometers 

compared to ℎ ≃ 2 𝜇𝑚 at a maximum. The reason is purely technological: in CMOS or BiCMOS 

technologies having a thick top metal layer, the minimum spacing allowed by the design rules for 

parallel strips patterned on the top metal layer is equal to a few micrometers (~ 5 µm).  

2.4.2. Even- and odd-mode Analysis 

CS-CPW considered in this thesis are symmetric structures and as explained before, 

symmetry allows studying the device as two separate circuits (even- and odd-mode approach), 

as for coupled microstrip lines. Figure 2-6 (a) and (b) represent the electromagnetic fields for 

the even-mode and odd-mode, respectively. It is expected that the even-mode prioritize the 

magnetic coupling whilst electric coupling is strengthened in the odd-mode. Figure 2-7 (a) and 

(b) draw the even- and odd-mode circuits. 

 

(a)  

 

(b)  
Figure 2-6: Coupled Slow-wave CoPlanar Waveguide and the associated electromagnetic field, when 

floating shield ribbons are uncut. (a) Even-mode electromagnetic field lines and (b) odd-mode 
electromagnetic field lines. 
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𝐿0 and 𝐿𝑚 inductances being almost not disturbed by the presence of the floating 

ribbons, as for coupled microstrip lines, 𝐿0 and 𝐿𝑚 vary with the distance between coupled 

strips 𝑆; the signal strip width 𝑊, and the distance between signal and ground strips 𝐺. 

Equations (2-10) and (2-11) give the relationship between self, mutual, and even- and odd-mode 

inductances. 

𝐿0 =
𝐿𝑒𝑣𝑒𝑛 + 𝐿𝑜𝑑𝑑

2
 

(2-10) 

𝐿𝑚 =
𝐿𝑒𝑣𝑒𝑛 − 𝐿𝑜𝑑𝑑

2
 (2-11) 

On the other hand, even- and odd-capacitances of CS-CPW, 𝐶𝑒𝑣𝑒𝑛 and 𝐶𝑜𝑑𝑑 , differ from 

the microstrip case. They are calculated according to the schematic in Figure 2-7, and are given 

by equations (2-12) and (2-13), respectively.  

𝐶𝑒𝑣𝑒𝑛 =
𝐶𝑔𝐶𝑠

𝐶𝑔 + 𝐶𝑠
 (2-12) 

𝐶𝑜𝑑𝑑 = 2𝐶𝑠𝑠 + 𝐶𝑠 (2-13) 

 

 

(a) 

 

(b) 

Figure 2-7: Equivalent electrical circuit for CS-CPW with uncut floating shield ribbons. (a) Even-mode 
and (b) odd-mode. 

The coupling coefficients are finally defined by: 

𝑘𝐿 =
𝐿𝑒𝑣𝑒𝑛 − 𝐿𝑜𝑑𝑑

𝐿𝑒𝑣𝑒𝑛 + 𝐿𝑜𝑑𝑑
=

𝐿𝑚

𝐿0
 (2-14) 

𝑘𝐶 = |
𝐶𝑒𝑣𝑒𝑛 − 𝐶𝑜𝑑𝑑

𝐶𝑒𝑣𝑒𝑛 + 𝐶𝑜𝑑𝑑
| =

𝐶𝑚

𝐶𝑚 + 𝐶0
 (2-15) 
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𝑘𝐶 =
𝐶𝑠

2 + 2𝐶𝑠𝑠( 𝐶𝑠 + 𝐶𝑔)

𝐶𝑠
2 + 2(𝐶𝑠𝐶𝑠𝑠 + 𝐶𝑠𝑠𝐶𝑔 + 𝐶𝑠𝐶𝑔)

 (2-16) 

In the estimation of the electric coupling, the inductance of the shielding ribbons (𝐿𝐺  and 

2𝐿𝑠 in Figure 2-5) is neglected.  

Figure 2-7 and equation (2-16) show that the electric coupling is imposed by 𝐶𝑠𝑠, 𝐶𝑠 

and 𝐶𝑔, thanks to the presence of the floating shielding. This is the degree of freedom brought by 

the CS-CPW solution, not available while using the coupled microstrip line. Despite this new 

degree of freedom; there are still some limitations in the control of coupling. Cutting the floating 

shielding will allow easy control of the electric coupling coefficient without affecting the 

magnetic one. 

2.5. New method to simulate a coupled slow-wave coplanar waveguide 

and extract its electrical parameters 

As previously explained, symmetric structures can be divided into odd- and even-mode. 

This applies for theoretical developments but also for simulation.  

The even- and odd-mode theory allows separating the problem into two, without losing 

any information on the circuit. Because of their independence, each mode can be studied (or in 

this case, simulated) in an isolated way and then superposed to the other to find the general 

response. To sum up, the idea is basically to divide a four-port network into two two-port 

networks with one main goal: reduce the dimension of the problem for (i) simpler analytical 

theory and (ii) simulation time and memory saving.  

2.5.1. Validation of the method with the microstrip case 

The first approach to this issue is the simulation of a well-known structure like a coupled 

microstrip line in order to validate the proposed algorithm and methodology; then the same 

algorithm will be implemented for our specific CS-CPW. 

 

Figure 2-8: Coupled microstrip line (C-µstrip). 
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The coupled microstrip line (or C-µstrip) being an already known, analyzed and 

characterized circuit, a considerable amount of data and simulation tools exist. It will help to 

understand the coupling principle.  

2.5.2. Simulation method: even- and odd-mode  

In the first part of this section a description of the simulation on HFSS (High Frequency 

Structural Simulator by Ansys) [16] will be shown, and then it will be compared to the results 

provided by ADS (Advanced Design System by Keisight) [17]. 

 

Figure 2-9: Half coupled microstrip line with the symmetry plane. 

As previously explained, the study of a C-µstrip can be diced into odd- and even-mode. 

HFSS is an electromagnetic simulation tool. In this environment it is possible to impose a 

boundary condition in the structure, thus only the desired mode is excited. To simulate these 

modes in HFSS only half of the structure will be drawn, as shown in Figure 2-9. Full-wave 

analysis is required to simulate half a structure with specific boundary conditions on the 

symmetry plane (Figure 2-10). To simulate the odd-mode, a perfect E symmetrical boundary 

(short-circuit) must be chosen while a perfect H (open circuit) must be chosen for the even-

mode, respectively.  

Simulation has been performed using a conventional Rogers PCB substrate as reference, 

with the characteristics specified in Figure 2-10. 
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Figure 2-10: C-µstrip: Simulation of even- and odd-mode in HFSS. 

Once the simulation with HFSS is done, the S Parameters of even and odd-mode are 

known. Then the characteristic impedance (𝑍𝐶) and the effective dielectric constant (𝜀𝑟𝑒𝑓𝑓) are 

calculated as described in Figure 2-11.  

Note: When using a symmetrical boundary, HFSS asks for the port impedance multiplier. 

It must be equal to 1 for both modes (even/odd). Otherwise ports impedance will be incorrectly 

renormalized. Ports impedance multipliers of 2 and ½ correspond to common and differential 

mode, respectively. 

 

 

Figure 2-11: Algorithm to extract Zc and 𝜸. 

The same process is held in ADS. Simulation of the even- and odd-mode is carried out. 

ADS being a circuit simulation tool, specific circuits must be realized to simulate the desired 

modes. In that case the common- and differential-mode are the one implemented in the software 

and then, when calculating the characteristic impedance (𝑍𝐶) from the S-Parameters, it must be 

divided/multiplied by 2 following the note in Figure 2-12. 

 

Even- and odd-
mode 

Simulation 
[S]even,odd matrix stoabcd ([S]even,odd)  (Zc, g)even,odd 



New method to simulate a coupled slow-wave coplanar waveguide and extract its electrical 
parameters 

55 

 

Figure 2-12: Even and odd-modes simulation in ADS. 

The results from HFSS, ADS[17] and Linecalc (Transmission Line Calculator from 

Keisight) are compared in Table 2-1.  

TABLE 2-1 COMPARISON OF 𝑍𝐶  AND 𝜺𝒓𝒆𝒇𝒇 PARAMETERS EXTRACTED 

Parameter Linecalc ADS HFSS 

𝑍𝑐
𝑒𝑣𝑒𝑛 123 123 126 

𝑍𝑐
𝑜𝑑𝑑 74 74 71 

𝜀𝑟𝑒𝑓𝑓_𝑒𝑣𝑒𝑛 2.34 2.34 2.31 

𝜀𝑟𝑒𝑓𝑓_𝑜𝑑𝑑 2.26 2.27 2.22 

 

As expected, the S-parameters obtained from simulation with Linecalc and ADS are 

similar since they both use the same electrical equations. From Table 2-1 the precision of HFSS is 

also assessed, since the results are similar.  

At this point the method to extract characteristic impedance and propagation constant 

from simulations is validated. In the next section, these two parameters are used to calculate 

electrical parameters. 
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2.5.3. Electrical parameters extraction from even- and odd-mode simulation 

First, the even- and odd-mode 𝑆 parameters, 𝑆𝑖𝑗
𝑒𝑣𝑒𝑛 and 𝑆𝑖𝑗

𝑜𝑑𝑑, of the matrices [𝑆]𝑒𝑣𝑒𝑛 and 

[𝑆]𝑜𝑑𝑑 , were extracted and transformed into matrices [𝐴𝐵𝐶𝐷]𝑒𝑣𝑒𝑛  and [𝐴𝐵𝐶𝐷]𝑜𝑑𝑑 . Then 

according to equations (1-18) and (1-19), characteristic impedances, 𝑍𝐶
𝑒𝑣𝑒𝑛 and 𝑍𝐶

𝑜𝑑𝑑 , and 

propagation constants, 𝛾𝑒𝑣𝑒𝑛
 and 𝛾𝑜𝑜𝑑𝑑 , were calculated. 

Now,  𝑍𝑐  and 𝛾 for each mode will be arranged in two matrices, [𝑍𝑐 𝑚𝑜𝑑𝑎𝑙] and [𝛾𝑚𝑜𝑑𝑎𝑙]: 

[𝑍𝑐 𝑚𝑜𝑑𝑎𝑙] = [
𝑍𝐶

𝑒𝑣𝑒𝑛 0

0 𝑍𝐶
𝑜𝑑𝑑] (2-17) 

[𝛾𝑚𝑜𝑑𝑎𝑙] = [
𝛾𝑒𝑣𝑒𝑛 0

0 𝛾𝑜𝑑𝑑] (2-18) 

Going through the symmetrical matrix [𝑀] (2-19), the observable matrix [𝑍𝑜𝑏𝑠] is 

calculated in (2-20): 

[𝑀] =  
1

√2
[
1 1
1 −1

] (2-19) 

[𝑍𝑜𝑏𝑠] = [𝑀][𝑍𝑐 𝑚𝑜𝑑𝑎𝑙][𝛾𝑚𝑜𝑑𝑎𝑙][𝑀]−1 (2-20) 

from which [𝑅] and [𝐿] are derived: 

[𝑍𝑜𝑏𝑠] = [𝑅] + 𝑗𝜔[𝐿] (2-21) 

When losses are not taken into account, [𝑅] is neglected. The term 𝐿11 of [𝐿] represents 

the self-inductance (𝐿0), which is equal to the difference between even- and odd-mode 

inductances. The term 𝐿12 represents the mutual inductance (𝐿𝑚), its equivalent is the sum of 

even- and odd-mode inductances.  

Similarly, [𝑌𝑜𝑏𝑠] is obtained with (2-22). Matrices [𝐺] (negligible in a lossless study) and 

[𝐶] are derived (2-23). The term 𝐶11 of [𝐶] represents the difference between even- and odd- 

mode capacitances while 𝐶12 is the sum. 

[𝑌𝑜𝑏𝑠] = [𝑀][𝛾𝑚𝑜𝑑𝑎𝑙][𝑍𝑐𝑚𝑜𝑑𝑎𝑙]
−1[𝑀]−1 (2-22) 

[𝑌𝑜𝑏𝑠] = [𝐺] + 𝑗𝜔[𝐶] = 𝑗𝜔[𝐶] (2-23) 

 

Finally from [𝐿] and [𝐶], the electric and magnetic coupling coefficients are calculated 

[15]:  
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𝑘𝐶 = |
𝐶12

𝐶11
| (2-24) 

𝑘𝐿 =
𝐿12

𝐿11
 (2-25) 

The process flow to extract electrical parameters from simulations is summarized in 

Figure 2-13.  

 

Figure 2-13: Algorithm to extract elecrtical parameters from the coupled lines. 

Coming back to the previous case of study where a coupled microstrip line was analyzed, 

and according to Figure 2-13, the next step consists in converting the characteristic impedance 

and propagation constant from each mode (already extracted in the last section) into the 

electrical parameters of the transmission line (following Eq. (2-17) - (2-23)). Also from (2-24) 

and (2-25), coupling coefficients are computed. The results of the coupled microstrip simulation 

are shown in Table 2-2.  

TABLE 2-2 COMPARISON OF 𝑍𝐶 , 𝜀𝑟𝑒𝑓𝑓AND LC PARAMETERS 

Parameter ADS HFSS 

𝑍𝑐
𝑒𝑣𝑒𝑛 123 126 

𝑍𝑐
𝑜𝑑𝑑 74 71 

𝜀𝑟𝑒𝑓𝑓_𝑒𝑣𝑒𝑛 2.34 2.31 

𝜀𝑟𝑒𝑓𝑓_𝑜𝑑𝑑 2.27 2.22 

Self-C (pF/m) 54.9 55.8 

Mutual-C (pF/m) 13.3 15.7 

Self-L (nH/m) 498 489 

Mutual-L (nH/m) 128 129 

𝑘𝐶  0.24 0.28 

𝑘𝐿 0.25 0.26 

 

As a conclusion, it is worth to notice that simulations in HFSS fits well with the circuit 

simulation results on microstrip lines. Hence, the deembedding technique afforded by the 3D 

Even- and 
odd-mode 
Simulation 

[S]even,odd 
matrix 

s2abcd 
([S]even,odd)  

(Zc,g)even,odd 
Electrical 

parameters 
Extraction 
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electromagnetic simulator will be used in further simulations when dealing with less 

conventional transmission lines.  

Besides, an interesting parameter to focus on is the coupling coefficient, which can be 

inductive or capacitive. In the case of a microstrip, both coefficients are close to each other 

(presented in Table 2-2) and they will keep alike because of the strong link between them, 

irrespective of the topology of the microstrip transmission line. One of the problems with this 

technology is the difficulty of changing the coupling between the signals while keeping the same 

characteristic impedance. 

2.5.4. Simulation method on the CS-CPW 

As for the microstrip case, the even- and odd-mode theory will be used to simulate the 

CS-CPW and to extract its electrical parameters. From even- and odd-mode simulations, S-

Parameters are extracted and converted into propagation constants 𝛾𝑒𝑣𝑒𝑛  and  𝛾𝑜𝑑𝑑  and 

characteristic impedances  𝑍𝑐
𝑒𝑣𝑒𝑛  and 𝑍𝑐

𝑜𝑑𝑑 ; then these two are carried out to build the 

transmission line electrical model, as suggested in the methodology described in Figure 2-13.  

The first step is to carry out the simulation with an electromagnetic simulation tool (in 

this case HFSS). Figure 2-14 shows the implemented structure. The integration line should be 

imposed from signal to ground. 

 

Figure 2-14: Even- and odd-mode simulation in HFSS for CS-CPW. 

It is worth mentioning that when imposing the symmetrical boundary, it is important to 

ensure that the right mode is being excited in the structure. Specifically, during the 

implementation of a symmetrical E boundary (short-circuit) in HFSS, modifications in the 

excitation port must be done in order to energize the right mode. Symmetrical H plan (open 

circuit) does not present this issue. In both cases, HFSS will ask the port impedance multiplier 

which still should be fixed to 1 for both modes (even and odd). 
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2.5.5. Simulation results: electrical performance of CS-CPW vs C-µstrip 

A simulation was made on the basis of the BiCMOS 55nm technology by ST 

Microelectronics. A simplified view of the back-end-of-line has already been shown in chapter 1.  

The floating shielding was positioned in Metal 5 and both signals and grounds strips 

from Metal 7 to 8. This configuration leads to a distance ℎ of 2 µm from the floating ribbons to 

the main conductors and a relative dielectric constant 𝜀𝑟 of 4.32. 𝑊𝑔 and 𝐺 were fixed to 12 µm 

and 50 µm, respectively. The signals width 𝑊 varies from 5 to 25 µm. To observe the effect of S 

on the coupling coefficients, simulations were achieved for two different values (5 µm and 

15 µm). Figure 2-15 gives some results for the LC parameters extraction of a slow-wave coupled 

line when varying the signal width W. 

 

(a) 

 

(b) 

 

(c) 

Figure 2-15: LC parameters vs W at 60 GHz. (a) Capacitances for CS-CPW with two different 𝑺, (b) 
inductances for CS-CPW with two different 𝑺 and (c) coupling coefficients for CS-CPW and C-µstrip with 

𝑺 =5 µm in both cases. 
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Figure 2-15 presents the first results for a CS-CPW. As expected, capacitances increase 

with width (Figure 2-15 (a)); meanwhile inductances decrease with width (Figure 2-15 (b)) 

because magnetic flux decreases. Self-capacitance and self-inductance hardly depend on the 

distance 𝑆 between the signal strips, whereas mutual capacitance and inductance do, which 

means that the coupling coefficient is going to vary with 𝑆.  

The coupling in a classical coupled microstrip line is also given in Figure 2-15 (c). An 

interesting phenomenon is observed. As previously mentioned, both coupling coefficients 

(magnetic and electric) in C-µstrip solution are very close to each other and there is no simple 

way to control them separately. The difference between them is due to the inhomogeneous 

propagation medium. On the contrary, slow-wave coupled lines present very different and less 

related magnetic and electric coupling coefficients. This shows that the presence of the floating 

ribbons in slow-wave structures allows us to dissociate electric and magnetic coupling 

coefficients. This means a new degree of freedom in terms of design. In the next section, tunable 

coupled lines are presented using this effect, and some potential applications are derived. 

In Table 2-3, an overview is presented of the variation of the electrical parameters with 

the design parameters 𝑆 and 𝑊. These results are extracted from simulations in HFSS. For 

example to observe the effect of only 𝑆, 𝑊 is fixed to 5 µm. ℎ and 𝐺 are settled all the time to 

2 µm and 50 µm respectively. 

TABLE 2-3 ELECTRICAL CHARACTERISTICS VERSUS DIMENSIONS 

Parameter 𝑆 ↗ 𝑊 ↗ 

𝐿𝑚 ↘ ↘ 

𝐿0 ↗ ↓ 

𝑘𝐿 = 𝐿𝑚/𝐿0 ↘ ⟶ 

𝐶𝑒𝑣𝑒𝑛 = 𝐶𝑔𝐶𝑠/(𝐶𝑔 + 𝐶𝑠)   ⟶ ↗ 

𝐶𝑜𝑑𝑑 = 2𝐶𝑠𝑠 + 𝐶𝑠 ↗ ↗ 

|𝑘𝐶| ↘ ↗ 

*↗ or ↘ means moderate variation ↑ or ↓ means faster 

variation. ⟶ means no variation. 

The results are as expected. The variation of inductances is similar to the CPW case as 

predicted: When 𝑆 is increased, the magnetic flux between the strips decreases thus the mutual-

inductance decreases as well; however the proper-inductance (𝐿0) increases because each 

conductor is now less perturbed by the other strip. When 𝑊 increases both inductances 

decreases. 
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For the electric field, the most practical way to understand the results are by looking at 

the capacitances of each mode (𝐶𝑜𝑑𝑑 and 𝐶𝑒𝑣𝑒𝑛). Only the 𝐶𝑜𝑑𝑑 will be affected with 𝑆 because 

the interaction signal-signal is only taken into account in the odd-mode; and both capacitances 

increase with 𝑊. 

2.6. Cutting the floating shielding 

2.6.1. Concept 

The interesting idea developed to obtain the desired coupling consists in modifying the 

coupling coefficients 𝑘𝐶  and 𝑘𝐿, by cutting the shielding ribbons, either between the two coupled 

strips (cut in the center, CC), or between the coupled strips and the ground strips (cut on the 

sides, CS), as shown in Figure 2-16. 

 

(a) 

 

(b) 
Figure 2-16: CS-CPWs top view. (a) Floating shield ribbons cut in the center and (b) on the sides. 

Cutting the ribbons in the center will decrease the mutual capacitance while cutting the 

ribbons on sides will decrease the self-capacitance. Meanwhile the magnetic coupling coefficient 

will not change, because the magnetic field is almost unperturbed by the presence of the 

shielding ribbons. It is then possible to modify the electric coupling coefficient without 

modifying its magnetic counterpart. The modification of the latter is achieved by modifying the 

CPW topology as shown in the next sub-section. Therefore, coupling coefficients 𝑘𝐶  and 𝑘𝐿 can 

be tuned independently or at the same time, leading to high flexibility in the realization of high 

to weak couplings with high directivity by always maintaining these coefficients equal to each 

other. 

2.6.2. Cut in the Center (CC) 

When the floating shielding is cut between the two coupled CPW signal strips, the 

equivalent electrical circuit in Figure 2-5 (a) is replaced by that in Figure 2-17 (a). As explained 

before, the capacitances between the signal strip and the ground strip 𝐶𝑠𝑔 have been voluntarily 

omitted, since it is very weak compared to the ones brought by the shielding. 𝐶𝑠𝑠 is henceforth 

the only way to electrically control the coupling between the central strips. The cut in the center 

𝐶𝐶 (see Figure 2-16) is fixed to a few micrometers (the influence of the width of the cut is 
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explored further in this chapter). The even- and odd-mode circuits are depicted in Figure 2-17 

(b) and (c). 

  

(a) 

  

(b) 

  

(c) 
Figure 2-17: CS-CPW with floating shielding cut in the center. (a) Equivalent electrical circuit (b) 

even-mode and (c) odd-mode. 

Only the pattern of the floating shielding has been modified. The dimensions of the CPW 

and the shielding have not been changed, therefore self and mutual inductances stay the same as 

in the case without any cut. Consequently, the magnetic coupling 𝑘𝐿 keeps identical. On the 

contraryHowever, the values of the capacitances change. The equations are given in (2-26) and 

(2-27) for even- and odd-mode capacitances, respectively: 

𝐶𝑒𝑣𝑒𝑛 =
𝐶𝑔𝐶𝑠

𝐶𝑔 + 𝐶𝑠
 (2-26) 

𝐶𝑜𝑑𝑑 = 2𝐶𝑠𝑠 +
𝐶𝑠(𝐶𝑔 + 2𝐶𝑝)

𝐶𝑔 + 𝐶𝑠 + 2𝐶𝑝
 (2-27) 

These equations show that even-mode capacitance remains the same while the odd-

mode capacitance is reduced compared to the uncut case. The new value for 𝑘𝐶  is presented in 

(2-28). 
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𝑘𝐶 = |
𝐶𝑒𝑣𝑒𝑛 − 𝐶𝑜𝑑𝑑

𝐶𝑒𝑣𝑒𝑛 + 𝐶𝑜𝑑𝑑
| =

𝐶𝑠𝑠(𝐶𝑔 + 𝐶𝑠)(𝐶𝑔 + 𝐶𝑠 + 2𝐶𝑝) + 𝐶𝑝𝐶𝑠
2

𝐶𝑔𝐶𝑠
2 + 𝐶𝑠𝐶𝑔

2 + 2𝐶𝑝𝐶𝑔𝐶𝑠 + 𝐶𝑝𝐶𝑠
2 + 𝐶𝑠𝑠(𝐶𝑔 + 𝐶𝑠)(𝐶𝑔 + 𝐶𝑠 + 2𝐶𝑝)

 (2-28) 

Based on equation (2-28), the electric coupling coefficient when floating ribbons are cut 

in the center is expected to be much lower than the one for the case of uncut ribbons. For 

negligible values of 𝐶𝑠𝑠 and 𝐶𝑝, it is almost equal to zero. 

2.6.3. Cut on the sides (CS) 

The equivalent circuit corresponding to a floating shielding cut on the sides, along with 

the even- and odd-mode models, is presented in Figure 2-18. As for the center cut, the length of 

the cut, CS, is equal to a few micrometers. A parasitic capacitance 𝐶𝑝 (Figure 2-18 (a)) must be 

taken into account especially in the even-mode (Figure 2-18 (b)). This parasitic capacitance is 

not affecting the odd-mode (Figure 2-18 (c)). 

  

(a) 

 

(b) 

 

 

(c) 
Figure 2-18: CS-CPW with floating shielding cut on the sides (a) Equivalent electrical circuit (b) even-

mode and (c) odd-mode. 

The magnetic coupling coefficient 𝑘𝐿 is the same as in the uncut case in Figure 2-5 (a). On 

the contrary, the electric coupling coefficient 𝑘𝐶  has changed according to equations (2-29) and 

(2-30). 
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𝐶𝑒𝑣𝑒𝑛 =
𝐶𝑔𝐶𝑠𝐶𝑝

𝐶𝑝𝐶𝑔 + 𝐶𝑠𝐶𝑝 + 𝐶𝑔𝐶𝑠
 (2-29) 

𝐶𝑜𝑑𝑑 = 2𝐶𝑠𝑠 + 𝐶𝑠 (2-30) 

 

The resulting 𝑘𝐶: 

𝑘𝐶 = |
𝐶𝑒𝑣𝑒𝑛 − 𝐶𝑜𝑑𝑑

𝐶𝑒𝑣𝑒𝑛 + 𝐶𝑜𝑑𝑑
| =

2𝐶𝑠𝑠(𝐶𝑝𝐶𝑔 + 𝐶𝑝𝐶𝑠 + 𝐶𝑔𝐶𝑠) + 𝐶𝑠
2(𝐶𝑝 + 𝐶𝑔)

2𝐶𝑠𝑠(𝐶𝑝𝐶𝑔 + 𝐶𝑝𝐶𝑠 + 𝐶𝑔𝐶𝑠) + 𝐶𝑠
2(𝐶𝑝 + 𝐶𝑔) + 2𝐶𝑔𝐶𝑠𝐶𝑝

 (2-31) 

In that case, using Figure 2-18 (b) and equation (2-29), it is possible to verify that the 

equivalent capacitance in the even-mode is a series of three capacitances while in the uncut case 

it is a series of two capacitances; thus the capacitance in the even-mode for the CS-case is lower 

than in the uncut case. On the other hand, the odd-mode capacitance is similar to the uncut case, 

which is coherent with equation (2-30). As 𝐶𝑒𝑣𝑒𝑛 is reduced and 𝐶𝑜𝑑𝑑 remains the same for the 

CS-case, it is expected that 𝑘𝐶  reaches very high values. 

2.7.  Coupling coefficient vs dimensions variation 

The various parameters for cut or uncut topologies and the simulation method for 

coupled slow-wave coplanar waveguides have been explained. We will now show the way for 

controlling the behavior of this structure. At this point the designer needs to find the 

relationship between the geometrical dimensions and the electrical characteristics. The coupling 

coefficient is one of the most relevant parameters for couplers, because it allows the correct 

design of a pair of coupled lines. This is the reason why, for better understanding and simplicity 

in the explanations, we present in this section general trends for 𝑘𝐶  and 𝑘𝐿 only, in a given 

topology. Next section will focus on more general abacus concerning also 𝑍𝐶
𝑒𝑣𝑒𝑛 and 𝑍𝐶

𝑜𝑑𝑑 . 

2.7.1. Variation of coupling coefficients with 𝑾 and 𝑺  

The first case to consider is when the width W of the central strips and the distance S 

between them are changed. 𝑊𝑔, ℎ, and 𝐺 are fixed to 12 µm, 2.01 µm and 50 µm respectively (See 

Figure 2-3 for dimensions). The evolution of the electric and magnetic coupling coefficients is 

presented in Figure 2-19. 
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Figure 2-19: Coupling coefficients vs W for different S 

As expected, both coupling coefficients increase when the gap between central strips 

decreases. On the other hand, when the strips’ width increases, the equivalent capacitance also 

increases. Hence the electric coupling increases as well. In a first approach, both W and S will be 

considered to control the behavior of the CS-CPW. In sections 2.7.2 and 2.7.3 it is shown how to 

control one coupling coefficient without inducing any change on the other. 

2.7.2. Variation of magnetic coupling with G 

The distance between the ground and one of the central strips, G (See Figure 2-3), allows 

the control of the magnetic coupling coefficient without modifying the electric coupling 

coefficient. For this case 𝑊𝑔, ℎ, and 𝑊 are fixed to 12 µm, 2.01 µm and 10 µm respectively. 

  

Figure 2-20: Coupling coefficients vs G for different S 

The distance between the lateral ground and the central strip contributes to the 

magnetic flux, hence the equivalent inductance value. As long as 𝐺 stays much higher than the 

height ℎ, the electric field is mainly going through the floating shielding because the shielding is 
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very close to the CPW strips, thus the electric field is not modified with G. Therefore 𝑘𝐿 varies 

with G without inducing any change on 𝑘𝐶. This first parameter will give us one degree of 

freedom in the implementation of a CS-CPW.  

2.7.3. Cutting the floating ribbons for 𝒌𝑪  

An interesting case to consider is when the floating shielding is cut as explained in 

section 2.6, because it will only affect the electric coupling 𝑘𝐶. To observe this influence, two 

structures were simulated: in the first one all the floating ribbons were cut in the center and in 

the second one, the floating ribbons were cut on the sides. Both structures have the same 

dimensions (𝑊 = 20 µ𝑚, 𝐺 = 50 µ𝑚, 𝑆 = 5 µ𝑚 and ℎ = 2 µ𝑚, 𝑊𝑔 = 12 µ𝑚). In Table 2-4 the 

effects of the different cuts are showed. 

TABLE 2-4 COUPLING COEFFICIENTS WHEN CUTTING THE FLOATING RIBBONS 

Coupling 
coefficient 

Cut in 
center 

Without 
any cut 

Side 
Cut 

k
C
 0.31 0.5 0.77 

k
L
 0.64 0.64 0.65 

 

The results in Table 2-4 illustrate the concept of cutting the floating shielding. Only the 

electric coupling 𝑘𝐶  is being modified when the shielding is being cut. As explained before in 

sections 2.6.2 and 2.6.3, the cut in the center CC will reduce the mutual capacitance, which 

according to equation (2-15), it will reduce 𝑘𝐶 . The cut on the sides CS reduces the self-

capacitance, increasing 𝑘𝐶  according to equation (2-15) . In all of these cases the magnetic 

coupling 𝑘𝐿 is unmodified.  

Hence at this point, the designer has two more degrees of freedom in the implementation 

of a CS-CPW, CS or CC. 

2.7.4. Effect of the cut width  

The idea proposed to vary the electric coupling implies a cut in the floating shielding. In 

this section the width of this cut is studied. The electric field for different widths of the cut is 

shown in Figure 2-21. 
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(a) 

 

 

(b) 

 

 

(c) 
Figure 2-21: Distribution of the electric field for different cut width (a) 2 µm (b) 5 µm and (c) 10 µm 

Simulations were carried out for CS-CPW with shielding cut on the side (CS), because it is 

for this specific case that the parasitic capacitance 𝐶𝑝 will have the greatest impact. The results 

in terms of coupling for different widths are synthetized in Table 2-5. For this simulation 𝑊𝑔 =

12 µ𝑚, ℎ = 2.01 µ𝑚, 𝑆 = 15 µ𝑚, 𝐺 = 50 µ𝑚 and 𝑊 = 10 µ𝑚. 

TABLE 2-5 COUPLING COEFFICENTS FOR DIFFERENT CUT 

Cut width 𝒌𝑪 𝒌𝑳 

2 µm 0.60 0.55 

5 µm 0.63 0.55 

10 µm 0.66 0.55 
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From the results, there is evidence that the width of the cut hardly changes the coupling 

parameters. This change in the coupling is due (as expected) to the parasitic capacitance 𝐶𝑝 

brought by the cut in the shielding.  

From Figure 2-18 (b) and equation (2-29) we can see that 𝐶𝑝 is in series with 𝐶𝑠 and 𝐶𝑔. 

When the cut width increases, 𝐶𝑒𝑣𝑒𝑛 decreases leading to a higher 𝑘𝐶 .  The cut width might seem 

as an interesting parameter to control the electric coupling. However, this width will be limited 

to few micrometers (2 – 5 µm) in order to prevent the possibility of electric field going into the 

lossy silicon substrate. 

2.7.5. Effect of strip spacing SS and strip length SL 

The dimensions of the shielding are briefly studied in this section. Previous works [18] 

and [19] have studied more deeply the shielding effect. Simulations corresponding to different 

sizes of the shielding are showed in Table 2-6. 

TABLE 2-6 COUPLING COEFFICENTS FOR DIFFERENT SS AND SL 

Dimensions 𝒌𝑪 𝒌𝑳 

SS = 0.5 µm SL = 0.5 µm 0.44 0.71 

SS = 0.16 µm SL = 0.64 µm 0.44 0.71 

 

From Table 2-6, it is possible to observe that the dimensions of the floating shielding are 

not modiying the coupling in the structure. In both cases, the electric field is being well confined 

between the floating ribbons and the CPW strips; meanwhile with these dimensions the 

magnetic field is not being perturbed and it is still free propagating through the floating 

shielding. 

2.8. Analytical model and abacus 

2.8.1. Analytical model 

Previous simulation results are in HFSS. In fact, the required time for these sorts of 

simulations is very long. The time can go from 1-2 hours to even days depending on the 

configuration. To avoid this inconvenient, an analytical model was created and then 

implemented on Matlab. In this way, the implemented tool takes then only a few seconds in 

terms of design. 

A parametric predictive electrical model of the CS-CPW is developed at IMEP-LAHC and 

the principle (for S-CPW) is presented in [20]. This model is realized considering a quasi-TEM 

mode, which allows the study of electric and magnetic fields separately.  
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The magnetic field is not perturbed by the presence of the floating shielding, which 

means that the equivalent inductance of slow-wave CPW is the same as in conventional CPW. 

The inductance was therefore calculated with the formulation developed in [21].  

 

(a) 
(b) 

 

(c) 
Figure 2-22: Representation of electric field distribution in microstrip in terms of (a) vector fields, 

(b) regions and (c) equivalent circuit of half-structure 

The study here is made mainly over the electric field. For its estimation, the distribution 

of the electric field is separated into four different regions (bottom plate, angle point charge, 

finger and upper plate) as shown in Figure 2-22 (a) and (b); leading to the equivalent 

capacitances in Figure 2-22 (c).  

Thanks to these approaches, capacitances and inductances are extracted separately for 

each even- and odd-mode for signal and ground. Finally to create the complete model for CS-

CPW, these parameters extracted from the analytical model are computed with equations from 

(2-10) to (2-16). 

2.8.2. Charts 

Charts were constructed, providing an easier and faster solution for designing and 

optimizing the circuits based on CS-CPW. The model uses the real dimensions and conductivities 

of the technology provided by ST Microelectronics (B55), but it also can be adapted to any other 

integrated technology. To show the use of this model, a chart is presented in Figure 2-23. The 

stack was chosen to present a strong slow-wave effect (increasing the equivalent capacitance 

while keeping good attenuation). For this reason the floating ribbons were placed in Metal 5 and 
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then signal and ground in Metal 8-7. Signal and ground strips will be in the thicker layers while 

the shielding in the thinner layer, which ensures a better quality factor. The resulting distance ℎ 

is around 2 µm leading to a high equivalent capacitance. The central frequency was chosen in 

order to test the circuit at very high frequency where other topologies cannot compete. 

 

Figure 2-23: Electric coupling and magnetic coefficient design data for CS-CPW. 

An example of the chart that can be made with the model is shown in Figure 2-23. 

Considering the practical case corresponding to 𝐺 ≫ ℎ, the capacitance 𝐶𝑠𝑔 was neglected in the 

model. The distance 𝐺 was fixed to 50 µm and 𝑊𝑔 to 12 µm for the example presented in Figure 

2-23. 

2.9. Technological issues 

2.9.1. Effect of dummies in CS-CPW 

As discussed in Chapter 1, the technology used during this thesis (BiCMOS 55nm by ST 

Microelectronics) presents 8 metallic layers. However, not all the metallic layers are used in the 

design of a CS-CPW. Having unused layers forces the addition of metallic “dummies” in the 

structure in order to validate the DRC1 requirement. Specifically the “Minimum Density” design 

rule forces the designer to add little tiny metals in the middle of the structure. We have 

categorized these dummies in three classes, as presented in Figure 2-24. 

                                                             
1 DRC : Design Rules Check 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 2-24: Front-view of CS-CPW (a) without any dummies, then divided into three categories. 
(b) Dummies under the shielding, (c) dummies between CPW ground and signal strips and (d) dummies 

between CPW signal strip and shielding. 

In Figure 2-24 (a) the already discussed CS-CPW structure is represented without the 

presence of any dummies. Figure 2-24 (b)-(d) present the different zones where dummies must 

be added. 

The first zone of interest is showed in Figure 2-24 (b): dummies are under the floating 

ribbons. In this case the electric field is not perturbed because it is already confined above the 

shielding. However, the magnetic field is going through the shielding, therefore eddy currents 

might be generated on the dummies as well as on the shielding; thus dummies under the 

shielding must be very small and aligned to the floating ribbons to avoid eddy currents. 

The second category is illustrated in Figure 2-24 (c): dummies are between the signal 

and the ground strips. The electric field could be perturbed by the dummies if they are close to 
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any of the coplanar strips. Therefore, dummies should be added at a distance around 5ℎ to 

prevent any impact on the electric field. And as for the first category, to avoid perturbation on 

the magnetic field and eddy currents, dummies must be aligned to the floating ribbons.  

Finally the third category is presented in Figure 2-24 (d): dummies are between the 

signal strip and the floating shielding. In this case the impact of dummies on the electric field is 

immediate. Capacitance 𝐶𝑆 is modified by the presence of dummies, consequently affecting the 

electric coupling with an observable increase of around 5%. To prevent this, two considerations 

must be made: 1) the minimum metal (and if possible, none at all) should be added under the 

signal and 2) this minimum must be previously considered in the design phase. 

2.9.2. Dimensions limitations 

All technologies present a limit in the width of the thick metals (normally placed in the 

top layers). In BiCMOS 55nm by ST Microelectronics, a thick metal with a width over 12 µm 

cannot be sent to fabrication. In this thesis, a simple solution to bypass this limitation is used. It 

is presented in Figure 2-25. 

 

(a) 

 

(b) 
Figure 2-25: Top view of half CS-CPW structure with (a) complete strip and (b) two parallel central 

strips connected every 50 µm 
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Instead of using one single strip as in Figure 2-25 (a), two parallel strips, leading to a 

width larger than 12 µm, are connected every 50 µm (Figure 2-25 (b)). This concept was 

simulated and the behavior of the structure was validated. In this way, high widths can be 

implemented in CMOS technology while respecting the fabrication rules. 

2.10. Conclusion 

In this chapter, a new concept of integrated coupled lines for mm-wave applications 

compatible with CMOS technology has been proposed. The concept is based on CS-CPW where 

the slow-wave effect leads to very interesting characteristics in terms of quality factor and 

longitudinal length reduction. Electrical models were derived in order to study the evolution of 

coupling coefficients when varying the geometrical dimensions. The extra degree of freedom 

offered by S-CPW leads to high-flexibility coupled lines. In particular, it was shown the 

possibility to control magnetic and electric coupling coefficients independently, contrarily to 

microstrip lines. Besides, the method described in section 2.5.2 and 2.5.3 was applied to fully 

describe the behavior of CS-CPW. Table 2-7 summarizes the simulation results for CS-CPW. The 

results in Table 2-7 are extracted from simulations in HFSS. As for Table 2-3, to observe the 

impact of one parameter, this was varying while the rest were fixed.  

TABLE 2-7 ELECTRICAL CHARACTERISTICS FOR CS-CPW VERSUS DIMENSIONS AND CUTS 

Parameter 𝑆 ↗ 𝑊 ↗ 𝐺 ↗ CS CC 

𝐿𝑚 ↘ ↘ ↑ ⟶ ⟶ 

𝐿0 ↗ ↓ ↗ ⟶ ⟶ 

𝑘𝐿 = 𝐿𝑚/𝐿0 ↘ ⟶ ↗ ⟶ ⟶ 

𝐶𝑒𝑣𝑒𝑛 = 𝐶𝑔𝐶𝑠/(𝐶𝑔 + 𝐶𝑠)   ⟶ ↗ ⟶ ↓ ⟶ 

𝐶𝑜𝑑𝑑 = 2𝐶𝑠𝑠 + 𝐶𝑠 ↗ ↗ ⟶ ⟶ ↓ 

|𝑘𝐶| ↘ ↗ ⟶ ↗ ↘ 

*↗ or ↘ means moderate variation ↑ or ↓ means faster variation. ⟶ means no 

variation. 

These results will be used to develop high-directivity couplers in the next chapter, with 

several couplings values, in particular high coupling values greater than 3 dB.  
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Chapter 3 
 

3. Millimeter-Waves CS-CPW High-
Directivity Directional Couplers 

 

3.1. Introduction 

As previously stated, coupled line directional couplers coupled lines are extremely 

important in many mm-wave applications. Currently, the only way available to develop coupled 

line couplers in CMOS technologies is based on microstrip lines. However, microstrip lines 

couplers suffer from many drawbacks: 

 Inhomogeneity of the medium, leading to lower directivity because of the difference of the 

phase velocity of each mode.  

 High coupling (i.e. above 3 dB) requires very narrow gaps between the coupled strips; which 

are incompatible with advanced CMOS/BiCMOS fabrication processes for edge-coupled 

structures. As explained in Chapter 1, this issue is overcome by arranging microstrip in 

broadside-coupled configuration [3]-[5]. 

 Longer length needed for microstrip lines, increasing prices in the design. 

 Many works were carried out at RF frequencies in PCB technology, in order to face the 

problem of inhomogeneous substrate. For instance, capacitances were added to artificially 

increase the electric coupling coefficient in order to equalize with the magnetic field [1]. 

Defected ground structures (DGS) were also used for the same purpose [7]; as well as the 



Chapter 3: Millimeter-waves CS-CPW high-directivity directional couplers  

78 

insertion of metallic cylinders [8] or the use of slot technique on planar microstrip [9]. However, 

these concepts cannot be implemented when dealing with CMOS technologies and mm-wave 

frequencies. In the same manner, the use of DGS would lead to a significant increase of the 

insertion loss due to low bulk resistivity (few Ω.cm). 

In Chapter 1, the current solutions and their tradeoff are presented. Also, a review of the 

classical theory about directional coupler is already made in Chapter 1. In this chapter an 

alternative approach for directional couplers in CMOS is proposed. First, the methodology to 

design couplers based on CS-CPW is presented as well as some examples developed with this 

concept. Next, a comparison of a coupler implemented with C-µstrip and with CS-CPW is 

showed. And finally a discussion about the deembedding challenge and the measurements is 

done. 

3.2.  Design method with CS-CPW 

Similarly to any integrated passive device, two types of transmission lines give the point 

to address high performance integrated couplers: coupled microstrip lines (C-µstrip) and 

coupled slow wave coplanar waveguides (CS-CPW). However, C-µstrip suffers from many 

drawbacks. This has already been discussed in detail in chapter 1.  

By reminding section 2.7.3 in chapter 2, CS-CPW theoretically offer the opportunity to 

vary the electric coupling from 0 to 1, without modifying the magnetic coupling. In this section, 

the design method developed during this thesis is presented. 

3.2.1. Principle 

 The designer of a coupler using CS-CPW has six parameters (G, S, W, L, cut at the center 

CC and cut on the sides CS) to obtain the desired coupling. Parameters are showed in Figure 3-1 

and Figure 3-2. 

 

Figure 3-1: CS-CPW structure with nomination of the dimensions. 
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 The maximum directivity is reached when 𝑘𝐿  =  𝑘𝐶 =  𝑘. Since the magnetic coupling is 

not affected when cutting the floating ribbons, the designer can first choose the dimensions of 𝐺, 

𝑊 and 𝑆, compatible with the technology, in order to reach the targeted 𝑘𝐿 which should be the 

same as the targeted 𝑘.  

The next step consists in setting 𝑘𝐶  at the same value as 𝑘𝐿. As discussed in Chapter 2, the 

electric coupling varies when the floating shielding is cut while the magnetic coupling stays 

unperturbed. It is shown by simulations in section 2.7.3 that a cut in the center (CC) reduces 𝑘𝐶 , 

while a cut on the sides (CS) increases 𝑘𝐶 . Consequently with a combination of floating ribbons 

(CC and CS) it is possible to choose any value for  𝑘𝐶 . This is achieved by choosing the number of 

center cut and sides cut ribbons, i.e. the number of CC- and CS-ribbons, as described in Figure 

3-2. 

 

(a) 

 

(b) 

 

(c) 
Figure 3-2: Top-view of CS-CPW structure with (a) only CC-ribbons, (b) Mix of CC- and CS-ribbons and 

(c) only CS-ribbons. 

The design procedure consists therefore in optimizing the density of CS-ribbons over the 

total number of ribbons (CS- and CC-). As an example, Figure 3-3 shows CS-CPW as a succession 

of N repetitive elementary cells with a density of CS-ribbons of 90 % (1 CC-ribbon for 9 CS-

ribbons).  
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Figure 3-3: Top-view of CS-CPW when 1 floating ribbon is cut in the center CC and 9 are cut at the 
sides CS. The elementary pattern is repeated N times. The density of SC-ribbon is 90%. 

The procedure presented above allows the design of a directional coupler with any 

desired coupling while keeping at the same time a very high directivity.  

3.2.2. Example 

In [13], the proposed method has been applied to design two directional couplers having 

weak coupling (𝑘 =  0.16, 𝐶 = 16 dB) and strong coupling (𝑘 = 0.7, 𝐶 = 3 dB), respectively, for a 

proof-of-concept, in BiCMOS 55 nm technology from STMicroelectronics. The CPW strips were 

stacked in the thick metallic layers from M8 to M7 and the floating shield ribbons lay in the 

thinner layer below M5. Figure 3-4 represents the magnetic and electric coupling coefficients as 

a function of the CS-ribbons density. In both cases the geometrical dimensions (𝑊, 𝐺, 𝑆, 𝑊𝑔, 𝑆𝑆 

and 𝑆𝐿) are fixed and only the density of CS-ribbons is changing. For Figure 3-4 (a): 𝑊 = 20 µm, 

𝐺 = 55 µm , 𝑆 = 5 µm , 𝑊𝑔 = 12µm  𝑆𝑆 = 𝑆𝐿 =  0.5 µm . For Figure 3-4 (b):𝑊 = 20 µm , 𝐺 =

20 µm, 𝑆 = 25 µm, 𝑊𝑔 = 12µm, 𝑆𝑆 = 𝑆𝐿 =  0.5 µm. 

1 CC-
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 (a)  (b) 
Figure 3-4: Coupling coefficients for two proof-of concept couplers. (a) 𝒌 = 𝟎. 𝟕, (b) 𝒌 = 𝟎. 𝟏𝟔. 

As shown in Figure 3-4, 𝑘𝐿 is not affected by the shielding ribbons, as predicted by the 

theory, and |𝑘𝐶| increases with the CS-ribbons density. A specific density enables to equalize 

𝑘 = 𝑘𝐿 = |𝑘𝐶| =  0.7 (Figure 3-4 (a)) and 𝑘 = 𝑘𝐿 = |𝑘𝐶| =  0.16 (Figure 3-4 (b)). Figure 3-4 

results give a validation of the design concept. At this point, this thesis offers a novel method to 

implement high directivity couplers at mm-waves. Figure 3-4  shows to the designer the 

possibility to reach any coupling coefficient when using CS-CPW. In the next section, mm-wave 

couplers are designed based on this concept. 

3.3. Practical couplers design 

In this section, the design as well as the practical issues of two different directional 

couplers are presented. The first coupler (3 dB coupling) is designed as a proof-of-concept; the 

idea is to validate the design procedure with CS-CPW at 50 GHz. The second coupler (18 dB 

coupling) is designed because it was required for a specific on-wafer measurement system at 

working at 150 GHz.  

3.3.1. 3 dB coupler at 50 GHz   

The central frequency of this coupler was basically chosen because it could be measured 

with the equipment in the laboratory. The goal was to show that a high coupling coupler could 

be implemented with the CS-CPW, being a solution to the struggle for integrating high coupling 

couplers at high frequency with the advanced CMOS/BiCMOS technologies. Due to the many 

applications demanding this kind of circuit, a 3 dB coupling was the target for this coupler. The 

procedure described in section 3.2 to design a coupler with CS-CPW was used. The results of the 
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simulated coupler as well as its layout are presented in Figure 3-5. The parameters for this 

structure are: 𝑊 = 20 µm, 𝐺 = 55 µm, 𝑆 = 5 µm, 𝑊𝑔 = 12µm 𝑆𝑆 = 𝑆𝐿 =  0.5 µm and the  entire 

floating shielding is cute on the sides CS. 

 

 

 

 

Figure 3-5: (a) S-Parameters and (b) photograph of the 3-dB coupler fabricated at 50 GHz. 

From Figure 3-5 (a), it can be seen that the coupler has 22 dB of directivity, a 3 dB 

coupling and a good matching over a wide bandwidth from 35 GHz to 65 GHz. The length of the 

coupler is 478 µm. The coupler being a 4-ports device, the de-embedding procedure is a bit 

tricky. It is described in section 3.5. 

3.3.2. 18 dB coupling at 150 GHz 

The major interest of studying new topologies for directional couplers concerns 

frequencies beyond 100 GHz. Hence it was important to demonstrate that the CS-CPW concept 

still works at such frequencies. The frequency of 150 GHz was fixed in order to address a specific 

project in the IMEP-LAHC laboratory, linked to the realization of an on-wafer measurement 

system around 150 GHz.  

3.3.2.1. Design 

The technical specifications for this coupler were: good matching, low coupling and very 

high directivity. Figure 3-6 presents the scattering parameters of the simulated coupler. The 

parameters for this structure are: 𝑊 = 10 µm, 𝐺 = 15 µm, 𝑆 = 25 µm, 𝑊𝑔 = 12µm, 𝑆𝑆 = 𝑆𝐿 =

 0.5 µm and all the floating shielding is cut in the center CC. 
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Figure 3-6: S-Parameters of the 18 dB coupler designed at 150 GHz. 

A directional coupler with very low coupling and high directivity, as the one required for 

the system at 150 GHz, implies that the isolation of the coupler should be even lower than 

coupling. This creates a trade-off between the isolation and the coupling, because very low 

isolation is difficult to reach in real cases due to fabrication process. For this reason, the coupler 

designed presents 18-dB coupling and a directivity of 12 dB. This was the best trade-off for the 

system’s requirements.  

3.3.2.2. Practical issues 

This coupler is designed at very high frequency (at 150 GHz). The dimensions are not an 

issue in the fabrication process. However, measurements of a four-port network at 150 GHz are 

not simple because of limitations due to the available measurement systems. Currently there are 

no four-ports VNA at 150 GHz; therefore a way for measuring the coupler at very high frequency 

with a 2-port VNA is proposed. The measurement protocol is presented in Figure 3-7. 

 

(a) 

 

(b) 

 

(c) 
Figure 3-7: Procedure proposed to measure the directional coupler parameters at 150 GHz. (a) Port 1 

and Port 2 of the coupler are connected to the VNA, Port 3 et Port 4 charged by 50 Ω, measurement of 
insertion losses and matching. (b) Port 1 and Port 3 of the coupler are connected to the VNA, Port 2 et Port 4 
charged by 50 Ω, measurement of the coupling. (c) Port 1 and Port 4 of the coupler are connected to the VNA, 

Port 2 et Port 3 charged by 50 Ω, measurement of the isolation. 
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As shown in Figure 3-7, two ports of the coupler are connected to the VNA while the 

remaining two are loaded by a 50  load. Three measurements are necessary to extract all the 

coupler’s S-parameters: return loss and insertion loss (Figure 3-7 (a)), coupling (Figure 3-7 (b)) 

and isolation (Figure 3-7 (d)). 

3.3.2.3. Active load 

As shown in the previous section, a 50- load is needed in order to measure all the S-

parameters of the directional coupler at 150 GHz. Since resistances available in the Front-End-

Of-Line are not consistent at 150 GHz, an active load was developed in ST Microelectronics for 

this purpose. The principle consists in using the 𝑅𝑂𝑁 resistance of a CMOS transistor. The value 

of the resistance will be then controlled by a DC voltage (Vdd). The schematic of the active load 

is presented in Figure 3-8. 

 

Figure 3-8: Schematic of the active load. 

In order to cancel the imaginary part, a stub ended by a short-circuit is implemented. The 

simulation of the return loss of the load is shown in Figure 3-9. 
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Figure 3-9: Return loss of the active load. 

From Figure 3-9 we can see that this solution presents a good matching through the 

entire frequency band.  

3.3.2.4. 2-port measurement setup: simulations 

The measurement method at 150 GHz has been explained in the previous sections. The 

measurement protocol mentioned in section 3.3.2.2 and illustrated in Figure 3-7 is simulated 

with the load introduced in section 3.3.2.3. Results are presented in Figure 3-10. 
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(c) 
Figure 3-10: Simulation results. (a) Return loss and insertion loss. (b) Coupling and (c) Isolation. 

Figure 3-10 presents the resulting S-parameters when two ports of the directional 

coupler are loaded with the active load. Return loss (Figure 3-10 (a)), insertion loss (Figure 3-10 

(a)), coupling (Figure 3-10 (b)) and isolation (Figure 3-10 (c)) are extracted. The limited 

bandwidth of the load is affecting mainly the isolation measurement (Figure 3-10 (c)) since it is 

the lowest-magnitude S-parameter. 

3.4.  Comparison of CS-CPW with C-µstrip directional couplers 

In [13], the performance of a coupler based on CS-CPW is compared to a coupler carried 

out with C-µstrip in the same BiCMOS 55 nm technology, see Table 2-1.  

TABLE 3-1 CS-CPW COUPLERS COMPARED TO C-USTRIP COUPLERS. RESULTS @60GHZ 

Parameter Weak coupling Strong coupling 

 
S CPW 

𝑘 =  0.16 
𝐶 = 16 𝑑𝐵 

µstrip 
𝑘 =  0.16 
𝐶 = 16 𝑑𝐵 

S CPW 
𝑘 =  0.7 
𝐶 = 3 𝑑𝐵 

µstrip 
𝑘𝑚𝑎𝑥 =  0.28 
𝐶𝑚𝑎𝑥 = 11 𝑑𝐵 

𝑆11 (𝑑𝐵) -20.7 -24.3 -29 -25.5 

𝑆21 (𝑑𝐵) -0.4 -0.8 -3.3 -1.05 

𝑆31 (𝑑𝐵) -17 -16.4 -3.5 -11.7 

𝑆41 (𝑑𝐵) -33.25 -28.9 -28.6 -33.6 

Dir. (dB) 16.25 12.5 25.1 21.9 

Length (µm) 540 710 388 753 

S (µm) 15 8.9 5 5 

W (µm) 20 8 25 6 

 

Layout rules (minimum gap between the coupled strips) limit the highest coupling 

achievable with the C-µstrip to 11 dB, whereas 3 dB coupling can be reached with CS-CPWs 

couplers. The directivity (see Table 2-1) is better for the CS-CPW. Finally, thanks to the slow-

wave effect, the length reduction of the CS-CPW couplers is at least 37 % compared to their 
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microstrip counterpart. Another interesting parameter already mentioned above is the highest 

directivity achieved with CS-CPW couplers, as shown in see Figure 3-11. 

 

(a) 

 

(b) 
Figure 3-11: S-Parameters for a directional coupler implemented with (a) CS-CPW and (b) C-µstrip 

A high directivity can be obtained over more than one octave, with isolation 

below -30 dB. This is not the case with the C-µstrip couplers, for which the directivity is much 

lower. 

3.5.  Multimode TRL de-embedding method 

To de-embed the 4-port directional coupler at high frequency, a Multimode TRL 

calibration technique was used. The de-embedding technique is presented in [14]. A 

comprehensive analytical derivation of the multimode thru-reflect-line (TRL) calibration 

algorithm is given. This technique is based on the new generalized reverse cascade matrix 

formulation, which is very practical because it can account for some symmetries in the 

measurement setup and reflect them in the symmetry of the derived relationships [14]. Besides, 

this technique presents interesting advantages: 

 It enables zero- and nonzero-length thru standards;  

 It can be extended for networks with higher number of modes; 

 It is very efficient by the use of symmetry in the error networks reducing the need of a 

reflect standard.  

The general formulation is fully detailed in [14], here only the equations needed for our case are 

presented. 

A measurement with a VNA is the result of the product of three matrices: 
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𝑀𝑥 = 𝐴𝑁𝑥𝐵 (3-1) 

where 𝑁𝑥  is the generalized cascade matrix of the measured device-under-test (DUT) and 𝐴 and 

𝐵 are nonsingular generalized cascade matrices that describe the networks used to realize the 

connection between the on-wafer reference plane and the VNA. Figure 3-12 illustrates the the 

measurement principle. 

 

 

Figure 3-12: Block diagram of the measurement of a DUT represented by matrix 𝑵𝒙with a VNA, and 

the embedding networks 𝑨 and 𝑩. 

From equation (3-1), 𝑁𝑥  can be derived: 

𝑁𝑥 = 𝐴−1𝑀𝑥𝐵
−1

 
(3-2) 

The principle of the method is thus to identify matrices 𝐴 and 𝐵 to finally being able to 

calculate 𝑁𝑥 . To do this, two extra measurements must be done. Thru- and Line-standard 

measurements are therefore required to obtain 𝐴 and 𝐵. The block diagram of the thru-

measurement is presented in Figure 3-13. 

 

Figure 3-13: Schematic of the thru measurement. 

Thru-standard measurement (Figure 3-13) is represented by matrix 𝑀1. It gives: 

𝑀1 = 𝐴𝑁1𝐵 (3-3) 

where 𝑁1 is the generalized cascade matrix of the thru-standard. The line-standard must be 

measured by the same manner (Figure 3-14). 



Multimode TRL de-embedding method 
 

89 

 

Figure 3-14: Schematic of the line measurement. 

Line-standard measurement is presented in matrix 𝑀2: 

𝑀2 = 𝐴𝑁2𝐵 (3-4) 

where 𝑁2 is the generalized cascade matrix of the line-standard. From these two measurements, 

matrix 𝑄 can be calculated: 

𝑄 = 𝑀2𝑀1
−1 (3-5) 

Then eigenvectors are derived from 𝑄:  

𝑌0𝛬 = 𝑄𝑌 (3-6) 

Eigenvectors 𝑌0 will be named as 𝐴0: 

𝐴0 = 𝑌0 (3-7) 

From which matrix 𝐵0 is computed: 

𝐵0 = 𝑌0
−1𝑀1𝑁1̃ (3-8) 

𝐴0 is a 4x4 elements matrix: 

𝐴0 = [

𝐴0 11 𝐴0 12

𝐴0 21 𝐴0 22

𝐴0 13 𝐴0 14

𝐴0 23 𝐴0 24

𝐴0 31 𝐴0 32

𝐴0 41 𝐴0 42

𝐴0 33 𝐴0 34

𝐴0 43 𝐴0 44

] (3-9) 

Matrices 𝐴0 and 𝐵0 can be written with sub-matrices: 

𝐴0 = [
𝐴0 11 𝐴0 12

𝐴0 21 𝐴0 22
] (3-10) 

 

𝐵0 = [
𝐵0 11 𝐵0 12

𝐵0 21 𝐵0 22
] (3-11) 

From sub-matrices 𝐴0 22 and 𝐵0 22, 𝐿 is calculated: 

𝐿 =  𝐴0 22
−1 𝐵0 22 (3-12) 

From which matrix 𝐾0 is then computed: 

𝐾0 = [
𝐼 0
0 𝐿

] (3-13) 
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With these terms, matrix 𝑁𝑥0 is extracted: 

𝑁𝑥0 = 𝐾0
−1𝐴0

−1𝑀𝑥𝐵0̃𝐾0 (3-14) 

Finally the matrix 𝑁𝑥0 is the de-embedded matrix of the DUT. Before being named as 𝑁𝑥, 

it should be de-normalized with the impedance of the line-standard and then re-normalized to 

50 . The resulting matrix of the re-normalization is the desired matrix 𝑁𝑥 . This is the method 

used in the case of the measurement of the CS-CPW. As the circuits that will be implemented to 

measure the CS-CPW will present symmetry, there is no need of a reflect-standard. 

3.6.  Measurement results 

The measurements of the directional couplers previously presented in section 4.4 are 

presented in this section. The first coupler (4-ports device at 50 GHz) will be measured in IMEP-

LAHC laboratory in November; the measurement results will be presented during the 

dissertation of this thesis. The second coupler (2-ports device at 150 GHz) was measured in 

IEMN laboratory and the results are presented below. 

3.6.1. 18-dB coupling at 150 GHz   

The coupler was implemented and measured in stand-alone in a VNA (ref=ZVA24 

ROHDE/SCHAWARZ) from 140 to 220 GHz. The RF probes used to measure were the Picopobre 

(ref 220-GSG-50-BT-W-M). Figure 3-15 shows a picture of the layout of the fabricated coupler 

for the measurement of the 𝑆11 and  𝑆21 parameters. 

 

Figure 3-15: Photograph of the coupler measured at 150GHz. 

Port 1 and port 2 of the coupler are connected to the VNA which will allow to measure 

the return loss and the insertion loss. The same manipulation was made to measure coupling 

and isolation. Measurement results are given in Figure 3-16. 
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Figure 3-16: Simulation vs Measurements results. (a) Return loss and insertion loss. (b) Coupling and 
(c) Isolation. 

The measurement results in Figure 3-16 were de-embedded so that they can be 

compared to the simulations. Return loss is better than 20 dB. Coupling is around 18 dB as 

simulated; it is almost flat through the entire bandwidth. 12-dB of directivity is reached at 

150 GHz. These overall results permit to validate the concept of CS-CPW in the studied 

frequency band (140 – 200 GHz) for directional couplers. 

3.7.  Discussion 

This chapter proposes a new concept of integrated coupled lines couplers for mm-wave 

applications. The concept is based on CS-CPW. The modification on the S-CPW shielding layer 

leads to great design flexibility. Cutting some floating ribbons can be used to modify coupling 

while maintaining equal magnetic and electric coupling coefficients. This solution overcomes all 

the C-µstrip couplers limitations, and offers the possibility to design compact directional 

couplers, with strong to weak couplings and high-directivity. Electrical models were derived in 

order to study the evolution of coupling coefficients when varying the geometrical dimensions in 

previous chapter. For a proof-of-concept, two couplers were designed with weak and strong 

coupling, at 150 GHz and 50 GHz working frequencies, respectively. They both exhibit good 

directivity when compared to microstrip counterpart couplers. Furthermore, the slow-wave 

behavior of the S-CPWs leads to more compact devices.  
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Chapter 4 
 

4. Millimeter-Waves Parallel-
Coupled Line Filters with CS-CPW 

 

4.1.  Introduction 

In the previous chapters, the study of coupled lines was mainly focused on the realization 

of directional couplers. Coupled lines can also be used to realize filters. As well as directional 

couplers, filters are fundamental elements in several applications at mm-wave. All microwave 

receivers, transmitters, mixers, multiplexers, satellite communications (SATCOM), mobile 

communications, radars [1], or test and measurement systems, require filters. 

Traditional filters are fabricated with lumped elements. This solution is very useful at 

low frequency. In the mm-wave range, lumped elements are not the most appropriated solution 

because of the high losses of these components, the numerous parasitics to consider and 

consequently many troubles whilst designing. Distributed elements as transmission lines are 

thus a good approach to implement filters at high frequency. Above say 80-100 GHz, distributed 

filters can show sizes comparable to their lumped counterparts. Besides, the electrical 

characteristics of the transmission lines can be fully predicted, which simplifies the design, 

leading to even lower-cost devices. For this reason, there is a high interest in finding new 

topologies of transmission lines to implement mm-wave filters. In this thesis the CS-CPW is 

proposed to improve the current performance of filters. 
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In this chapter filters implemented with parallel-coupled lines based on CS-CPW are 

studied. First, the classical theory for filters with parallel-coupled lines is presented. Then, charts 

of CS-CPW characteristic impedance versus geometrical parameters are developed. These are 

drawn with the help of the analytical model presented in Chapter 2. Next, resonators and filters 

are designed at 80 GHz. Finally measurement results are shown and results are compared to the 

state-of-the-art. 

4.2. Classical parallel coupled line filter theory 

This section is a brief review of a filter implementation with parallel-coupled lines.  

A filter is a two-port network used to control the frequency response by enabling 

transmission at chosen frequencies. Classical frequency responses for filters are: low-pass, high-

pass, band-pass, and band-reject. In this thesis, parallel-coupled line filter based on CS-CPW is 

analyzed as a solution for band-pass filtering at mm-wave. 

The parallel-coupled line filter equations were formulated in [2]. Until the 1990’s, other 

authors have modified those formulas depending on their proper application [3]-[9]. In [5], a 

procedure for microstrip tapped-line was introduced. In [7] a new design technique for parallel-

coupled line filters based on a line and a stub equivalent circuit was presented. Finally, in [9] a 

capacitive compensation technique was described for the design of parallel-coupled line filter 

with improved passband symmetry.  

Passband filters can be obtained by cascading coupled line sections of the form shown in 

Figure 4-1 [10]. 

 

Figure 4-1: Parallel-coupled line section. Microstrip line technology. 

A classical filter based on coupled lines consists of 𝑛 + 1 sections of the same electrical 

length (𝜆/4), leading to a structure composed by 𝑛 resonators of length  𝜆/2, as represented in 

Figure 4-2.  

    2 
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Figure 4-2: Top view of a parallel-coupled line resonator filter composed by two sections of 𝝀/𝟒 
length each. Microstrip line technology. 

Each pair of parallel-coupled lines is specified by the characteristic impedances of even- 

and odd-modes. Using the characteristic impedances values of each mode, the dimensions of the 

coupled lines can then be determined thanks to charts. 

On the basis of the equations given in [1], the design method is summarized below.  

The section of coupled line in Figure 4-1 is equivalent to the electrical circuit given in 

Figure 4-3. 

Figure 4-3: Equivalent circuit of the coupled line section consisting of an ideal impedance 
transformer inserted between two transmission lines of electrical length 𝜽. 

The ABCD matrix of the ideal impedance inverter in Figure 4-3 is equivalent to the ABCD 

matrix of a regular transmission line of length 𝜆 4⁄  and characteristic impedance 𝐾. Therefore, 

the total ABCD parameters of a single section filter (Figure 4-3) can be calculated from the 

multiplication of the ABCD matrices of the transmission lines with the ABCD matrix of the ideal 

impedance inverter: 

[
𝐴 𝐵
𝐶 𝐷

] = [

cos 𝜃 𝑗𝑍0 sin 𝜃
𝑗 sin 𝜃

𝑍0
cos 𝜃

] [
0 −𝑗𝐾

−𝑗/𝐾 0
] [

cos 𝜃 𝑗𝑍0 sin 𝜃
𝑗 sin 𝜃

𝑍0
cos 𝜃

] (4-1) 

Each section of coupled line must have an electrical length equivalent to 𝜆/4. For 𝑛 + 1 

sections, there are  𝑛 + 1  impedance inverters, namely  𝐾𝑗,𝑗+1 , 𝑗 = 0 to 𝑛 . The impedance 

inverter 𝐾𝑗,𝑗+1, equivalent to a 𝜆/4 section, is calculated according to equations (4-2) to (4-4), 

where 𝑍0  is the input impedance and 𝐹𝐵𝑊 is the fractional bandwidth of the filter [1]. The 

terms 𝑔𝑗 are polynomial coefficients of order 𝑛 (Chebishev or any other function, depending on 

the flatness or equal ripple to be reached). 
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𝑍0

𝐾01
= √

𝜋𝐹𝐵𝑊

2𝜔1𝑔0𝑔1
  (4-2) 

 

𝑍0

𝐾𝑗,𝑗+1
=

𝜋𝐹𝐵𝑊

2𝜔1√𝑔𝑗𝑔𝑗+1

, 𝑗 = 1 to 𝑛 − 1 (4-3) 

 

𝑍0

𝐾𝑛,𝑛+1
= √

𝜋𝐹𝐵𝑊

2𝜔1𝑔𝑛𝑔𝑛+1
 (4-4) 

Equations (4-5) and (4-6) specify the value of the characteristic impedances of the even- 

and odd-modes of each parallel section. They are expressed as a function of the previously 

computed inverters coefficients: 

(𝑍𝐶
𝑒𝑣𝑒𝑛)𝑗+1

𝑍0
= 1 +

𝑍0

𝐾𝑗,𝑗+1
+ (

𝑍0

𝐾𝑗,𝑗+1
)

2

 , 𝑗 = 0 to 𝑛 (4-5) 

 

(𝑍𝐶
𝑜𝑑𝑑)

𝑗+1

𝑍0
= 1 −

𝑍0

𝐾𝑗,𝑗+1
+ (

𝑍0

𝐾𝑗,𝑗+1
)

2

 , 𝑗 = 1 to  𝑛 
(4-6) 

Once the needed characteristic impedances to realize the filter are calculated from 

previous equations, the physical dimensions of the coupled lines can be found. In the next 

section the characteristic impedances of the CS-CPW and the relation with their dimensions are 

presented. 

4.3.  Odd and even-modes characteristic impedances  

The required dimensions for the coupled lines are going to vary according to the chosen 

topology (in this case we use CS-CPWs) and also according to the technology where these lines 

will be integrated. In the literature we can find similar charts for the microstrip topology [11]. 

To know the dimensions of the CS-CPWs that must be fabricated, a chart giving the odd- 

and even-modes characteristic impedances is presented in Figure 4-4.  
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Figure 4-4: Even-(𝒁𝒄
𝒆𝒗𝒆𝒏) and odd-(𝒁𝒄

𝒐𝒅𝒅) modes characteristic impedance for CS-CPW, as a function of 
𝑾 and 𝑺. 

The evolution of the characteristic impedances versus the ratios (𝑆/ℎ and 𝑊/ℎ) is 

represented. It permits the choice of the CS-CPW dimensions. Hence, from these charts, the 

designers can extract the information to implement resonators and filters for mm-wave 

applications. In Figure 4-4, the CS-CPW has been analyzed without any modification in the 

shielding under the CPW strips. In next sub-section, we will see that cutting the floating 

shielding may give a new degree of freedom to design filters.  

4.3.1. Characteristic impedances when cutting the floating ribbons 

Previously in Chapter 2, we have discussed about the effect in terms of coupling when 

the floating electromagnetic shielding is cut (either in the center CC or on the sides CS). It has 

been explained that the cut does not perturb the magnetic field. However, the electric field is 

being modified. Therefore the equivalent capacitances of the CS-CPW are being affected. In 

Chapter 2 and Chapter 3, the main concern was the coupling coefficient. However, the 

modification in the shielding also leads to a variation in the characteristic impedance of the 

coupled line. In this chapter, the main focus will be on the study of the even- and odd-mode 

characteristic impedances. 

When the floating shielding is cut, two cases are possible. Let consider the first case 

when the electromagnetic shielding is cut in the center (CC). The characteristic impedances of 

each mode with a CC of 2 µm are presented in Figure 4-5. 
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Figure 4-5: Even-(𝒁𝒄
𝒆𝒗𝒆𝒏) and odd-mode (𝒁𝒄

𝒐𝒅𝒅) characteristic impedance for CS-CPW as a function of 
𝑾 and 𝑺 when the shielding is cut in the center (CC = 2 µm). 

In Figure 4-5 the evolution of the characteristic impedances versus the ratios (𝑆/ℎ and 

𝑊/ℎ) is showed for CC = 2 µm. In that case, the odd capacitance 𝐶𝑜𝑑𝑑 is affected. 𝐶𝑜𝑑𝑑 decreases 

when the shielding is cut in the center, leading to an increase up to 20 % of the odd-mode 

characteristic impedance 𝑍𝐶
𝑜𝑑𝑑; while the 𝑍𝐶

𝑒𝑣𝑒𝑛 is not perturbed by the cut in the center.  

Now, let consider the second case when the shielding is cut on the sides (CS). The 𝐶𝑆 is 

placed just underneath the middle of the gap 𝐺. Similarly, the characteristic impedances of the 

modes are presented in Figure 4-6.  
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Figure 4-6: Even-(𝒁𝒄
𝒆𝒗𝒆𝒏) and odd-mode (𝒁𝒄

𝒐𝒅𝒅) characteristic impedance for CS-CPW as a function of 
W and S when the shielding is cut on the sides (CS). 

In Figure 4-6 the evolution of the characteristic impedances versus the ratios (𝑆/ℎ and 

𝑊/ℎ) is showed for CS = 2 µm. The even capacitance 𝐶𝑒𝑣𝑒𝑛 is affected when cut on the sides. 

𝐶𝑒𝑣𝑒𝑛 decreases when the shielding is cut on the sides, therefore 𝑍𝐶
𝑒𝑣𝑒𝑛 increases up to 30 %; 

meanwhile 𝑍𝐶
𝑜𝑑𝑑 remains unperturbed.  

Table 2-3 summarizes the effect of cutting the electromagnetic shielding over the 

capacitances and the characteristic impedances. The equivalent inductances are not mentioned 

because cutting the floating shielding does not affect the magnetic field. 

TABLE 4-1 EQUIVALENT CAPACITANCES AND IMPEDANCES VERSUS CUT 

Parameter CS CC 

𝐶𝑒𝑣𝑒𝑛 ↓ ⟶ 

𝑍𝐶
𝑒𝑣𝑒𝑛 ↑ ⟶ 

𝐶𝑜𝑑𝑑 ⟶ ↓ 

𝑍𝐶
𝑜𝑑𝑑 ⟶ ↑ 

   

Cutting the electromagnetic shielding gives the filter designer a new degree of freedom. 

Characteristic impedances (even- and odd-modes) can be controlled independently thanks to 

this concept.  
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In general, the even-mode characteristic impedance is high for the CS-CPW with regular 

shielding (without any cut). High even-mode characteristic impedance is appropriated for the 

design of filters; therefore, there is no interest in CS in that case. On the other hand, the odd-

mode characteristic impedance is in general very low for CS-CPW. This is due to odd-mode 

capacitance (𝐶𝑜𝑑𝑑) which is high for the CS-CPW. However, in the filter design, high odd-mode 

characteristic impedances are required. This is why the cut in the center CC is very interesting. 

CC will allow the designer to increase the odd-mode characteristic impedance. 

The three charts presented in this section are a result of the analytical model developed 

for CS-CPW in the laboratory. The theoretical basis of this model has been discussed in Chapter 

2, section 2.8, and published in [43]. The dimensions have been chosen according to the design 

kit of the technology BiCMOS 55 nm by ST Microelectronics. The stack enables a strong slow-

wave effect thanks to floating ribbons placed in Metal 5 and signal and ground strips in Metal 8-

7, respectively. The resulting height ℎ is around 2 µm, leading to a high equivalent capacitance. 

In order to maintain good attenuation, signal and ground strips are in the thicker layers while 

shielding is designed in the thinner layer. This stack is the best compromise to ensure a quality 

factor better than 30.  

4.4. Design 

In this section, the opportunities offered by the cutting of the shielding are used to 

implement two bandpass filters centered at 80 GHz. First a single resonator (i.e two identical CS-

CPW sections) is designed. Second, the work focuses on a 3-pole filter where three resonators 

(i.e. four CS-CPW sections) are cascaded in order to increase selectivity. Implementing a single 

resonator is mandatory since it is the fundamental element of the final targeted filter. It provides 

useful information in order to understand the behavior of the third-order filter. The single 

resonator measurement also gives information concerning the quality factor of the transmission 

lines. Also, high quality factor in the resonator is the sine qua non condition to ensure a good 

quality factor of the third-order filter. 

4.4.1. Parallel-coupled lines resonator 

Equations (4-1) to (4-6) are used for the resonator design. However these equations 

result in any pair of characteristic impedances for each mode.  At the meantime, it is observed 

that maximum 𝑍𝐶
𝑜𝑑𝑑 for CS-CPW with the BiCMOS 55 nm technology from ST Microelectronics is 

around 60 Ω. This value limits the design solutions regardless the function used for the filter 

design (Chebyshev, Butterworth, Bessel, etc). For this reason, an optimization of the filter was 

carried out with ADS, which takes into account the CS-CPW limits in terms of characteristic 

impedances. As a result of the optimization, each section of coupled lines presents a 
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characteristic impedance 𝑍𝐶
𝑒𝑣𝑒𝑛 = 95 Ω and 𝑍𝐶

𝑜𝑑𝑑 = 51 Ω . Figure 4-7 shows the layout of this 

resonator. 

 

Figure 4-7: Layout of the fabricated parallel-coupled lines resonator implemented with a CS-CPW 
topology.  

The resonator in Figure 4-7 is composed of two identical sections of CS-CPWs. Each 

section has the following dimensions: 𝑊 = 5 µm, 𝑊𝑔 = 12 µm, 𝐺 = 85 µm, and 𝑆 = 60 µm. As 

already mentioned the floating ribbons are placed in metal M5 and signal and ground strips are 

stacked from metal M8 to M7. The resonator results with ideal coupled lines from ADS and CS-

CPWs simulated in HFSS are plotted in Figure 4-8. 

 

Figure 4-8: Simulation results of the parallel-coupled lines resonator implemented with a CS-CPW 
topology.  

The resonator in Figure 4-8 presents a relative bandwidth equal to 21.9 %. The insertion 

loss at center frequency is 1.3 dB. At 80 GHz, the performance of the resonator is very promising. 
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The design of this single resonator at 80 GHz allows the design of a more complex circuit, i.e. the 

filter presented in next section. 

4.4.2. Parallel-coupled lines third-order filter 

According to the theory presented in section 1.3, a third-order filter was implemented by 

using four sections of CS-CPW, as shown in Figure 4-9 . Section 1 is identical to section 4; these 

are referred as the external sections. Besides, section 2 is identical to section 3; these are 

referred as the central sections. 

 Due to the maximum values of  𝑍𝐶
𝑜𝑑𝑑, design formulas could not be used, therefore an 

ADS optimization was needed as well. The external CS-CPWs (section 1 and section 4 in Figure 

4-9) have the same characteristic impedance as the single resonator (𝑍𝐶
𝑒𝑣𝑒𝑛 = 95 Ω and 𝑍𝐶

𝑜𝑑𝑑 =

51 Ω) designed in the previous section. The central CS-CPWs (section 2 and section 3 in Figure 

4-9) were built with 𝑍𝐶
𝑒𝑣𝑒𝑛 = 63 Ω and 𝑍𝐶

𝑜𝑑𝑑 = 48 Ω. Figure 4-9 shows the final layout of this 

filter. 

 

Figure 4-9: Layout of the parallel-coupled lines filter implemented with three cascaded resonators based on a 
CS-CPW topology. 

The dimensions of the CS-CPWs used for the filter design are given in Table 4-2. 

TABLE 4-2 SUMMARY OF THE FILTER DIMENSIONS 

Dimension Section 1 Section 2 Section 3 Section 4 

𝑊 5 µm 5 µm 5 µm 5 µm 

𝑆 60 µm 40 µm 40 µm 60 µm 

𝐺 85 µm 10 µm 10 µm 85 µm 

𝑊𝑔 12 µm 12 µm 12 µm 12 µm 

Cut No Only CC Only CC No 
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The simulation results of the filter are shown in Figure 4-10. 

 

Figure 4-10: Simulation results of the parallel-coupled transmission lines filter implemented with 
three series resonators based on a CS-CPW topology. 

The response of the filter simulated with the CS-CPWs electrical model is compared to 

the response of a filter implemented with ideal coupled lines. The CS-CPW filter in Figure 4-10 

has a fractional bandwidth of 11.1 %. The insertion loss of 4 dB, although it quite high, 

correspond to the state-of-the-art for filters integrated in CMOS/BiCMOS technology at mm-

wave. In section 4.5 the performance of this filter is compared to the state-of-the-art. Besides, 

these results are a way to evaluate the performance of the proposed CS-CPW technology. In the 

next section, a discussion is carried out concerning the practical implementation (layout) issues 

for these devices. 

4.4.3. Practical issues 

Up to now, all the previous designs considered sections that can be easily interconnected. 

In this part the layout issues, leading to parasitic effects, are discussed. The layout proposed in 

Figure 4-2 can be easily applied to a coupled microstrip topology. However, this distribution 

could present some complications (red circles in Figure 4-11) when using a CS-CPW topology. 

 

Figure 4-11: Top-view of first proposition to implement a resonator with CS-CPW. 
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From Figure 4-11 we can see that ground strips connections must be optimized in order 

to minimize parasitic couplings between ground and signal strips. In the layout, the ground 

strips can almost touch the signal strips. Particularly GOUT is close to S1IN and GIN to S1OUT (see 

Figure 4-11) which might results into strong parasitic couplings.  The solution in practical terms 

for this issue is proposed in Figure 4-12. 

 

Figure 4-12: Top-view of the second solution to implement a CS-CPW based resonator. 

Ground strips are aligned. Then, and most important, the transition between the two 

sections of coupled lines is considered. It consists of a very short microstrip line with no ground 

reference but floating ribbons to prevent the electric field from flowing through the lossy 

substrate, as illustrated in Figure 4-12. In this way, a small phase will have to be previously 

compensated during the design of each pair of coupled lines. The presented performances in this 

chapter are the results of electromagnetic simulations with HFSS [17]. The transition with 

microstrip lines was not yet considered. 

4.5.  Comparison of CS-CPW with state-of-the-art  

The circuits designed in section 4.4 will be fabricated in a BiCMOS 55 nm technology by 

ST Microelectronics. The targeted tape-out is December, 2015. In order to better predict 

measurement results, simulations of the topology considering practical issues were carried out. 

Simulation results are presented and compared to the state-of-the-art in the next subsections 

below. 

4.5.1. Simulation with HFSS of the CS-CPW based resonator 

It has been shown that a transition between the two CS-CPWs was needed. Even if 

compensated by a modification of the coupled lines, the transition electrical length must be as 

small as possible so that it can be compensated without scarifying the filter performance. 50 µm 

long transition were used, as shown in Figure 4-13. 
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Figure 4-13: Layout of the fabricated parallel-coupled transmission lines resonator implemented 
with a CS-CPW topology.  

This 50 µm transition is equivalent to an electrical length of 5° at the center frequency 

(80 GHz). The choice of 50 µm results from a compromise between parasitic coupling between 

opposite strips and electrical length. The simulation results of the resonator after optimization 

with the transition are presented in Figure 4-14. 

 

Figure 4-14: Simulation results of the parallel-coupled transmission lines resonator implemented 
with a CS-CPW topology considering the transition. 

The simulation results are compared to those obtained for a lossless resonator 

implemented with ideal coupled lines. The resonator in Figure 4-14 presents a relative 

bandwidth equal to 22 %. The insertion loss at center frequency is 1.5 dB. We can observe in 

Figure 4-14 that the filter response is not that much modified, thanks to an efficient optimization 

of the filter taking into account the transition.  
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4.5.2. Comparison with the state-of-the-art 

In order to understand the electrical performance or the space occupied by these filters, 

a summary of the filter listed in Table 1-1 is presented in Figure 4-15. A 70 GHz compact folded 

loop dual-mode filter is showed in [13].  The filter consists in a planar ring resonator structure 

with two transmission zeros. The ring resonator is interesting in terms of high selectivity and 

size. The filter in Figure 4-15 (a) is composed of a ring resonator, two feeding lines and a 

perturbation section. A similar technique is used in [14], planar dual-mode ring resonators are 

considered to design the filter illustrated in (Figure 4-15 (b)).  The ultra-compact size occupied 

by filter in [15] is because of the grounded pedestal stepped-impedance technique (Figure 4-15 

(c)). The grounded-pedestal introduces the slow-wafe effect which reduces the size of the filter. 

Finally the slow-wave effect is also used in [16], where a bandpass filter is made with S-CPW 

open stubs (Figure 4-15 (d)). 

 

[13] 

(a) 

(b) 

 

(c) 
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(d) 

Figure 4-15: Mm-wave filters integrated in advanced CMOS technologies. (a) Folded loop dual-mode 
filter [13], (b) square loop dual-mode filter [14], (c) filter using grounded pedestal stepped-impedance stubs 

[15] and (d) filter with T-junctions and open stubs using S-CPWs [16]. 

The performance of four filters in a 0.18 µm CMOS and a 0.13 µm technology are 

compared in Table 1-1 to the one developed in this work. All these filters work around the 60 - 

80 GHz frequency range. 

TABLE 4-3 STATE-OF-THE-ART OF FILTER AROUND 80 GHZ IN CMOS TECHNOLOGIES 

Technology Surface Freq. 𝐹𝐵𝑊 IL (dB) 𝑄𝑢 Order References 

CMOS 0.18 µm 
0.44 mm2 70 GHz 26 % -3.6 15.8 2 [13] 

1.71 mm2 64 GHz 20 % -4.9 15.1 2 [14] 

CMOS 0.13 µm 

0.08 mm2 76 GHz 25 % -4 14.8 2 [15] 

0.29 mm2 60 GHz 17 % -4.1 21.3 2 [16] 

BiCMOS 55 nm 
0.13 mm2 80 GHz 22 % -1.3 32 1 This work 

0.34 mm2 80 GHz 11.2 % -4.1 24.6 3 This work 

        

The unload quality factor 𝑄𝑢 allows the comparison between filters. This parameter is 

calculated with equation [17] when the design process explained at the beginning of this chapter 

can be followed: 

𝑄𝑢 = 4.343
∑ 𝑔𝑖

𝑛
𝑖=1

𝐹𝐵𝑊 (𝐼𝐿)
  (4-7) 

This equation cannot be used in our precise case and equation (4-8) is then used. 
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𝑄𝑢 =
1

𝐹𝐵𝑊 (1 − 10
𝐼𝐿
20)

 (4-8) 

considering that the insertion loss can be expressed as: 

𝑆21 = 𝐼𝐿 = 20 log (1 −
𝑄𝐿

𝑄𝑢
) (4-9) 

where 𝑄𝐿 is calculated from: 

𝑄𝐿 =
1

𝐹𝐵𝑊
 (4-10) 

The unload quality factor of our 3rd order filter is multiplied almost by two as compared 

to the references thanks to the slow-wave effect. In [15] they are using microstrip technology, 

the overall size of the filter is smaller than the filter in this thesis. This is because of the folding; 

however, the physical propagation length reminds a classical one leading to more conductive 

losses. This can also be observed with the IL and the bandwidth. For the same value of IL, the 

designed filter presents more selectivity than the other filters on the literature. Finally it is 

important to emphasize that the single resonator filter needed very small area. These results 

prove the interest of CS-CPWs in mm-wave systems. 

4.6.  Conclusion 

In this chapter, the new topology for coupled lines presented in this thesis has been used 

to implement mm-wave passband filters. First, the study was focused on the characteristic 

impedances of the CS-CPWs, in order to draw charts necessary for the filter design. It was 

demonstrated that cutting the floating strips could lead to new degrees of freedom. When 

cutting the floating strips of the shielding on the sides, the even-mode characteristic impedance 

is increased from 102 Ω to 135 Ω. On the other hand, when cutting them in the center, the odd-

mode characteristic impedance is increased from 50 Ω to 60 Ω. These new improvements 

permitted to design an efficient third-order filter working at 80 GHz. Its overall electrical 

performance is very interesting, with predicted state-of-the-art “low” insertion loss, and a 

wideband rejection band. These circuits will be fabricated in a BiCMOS 55 nm technology by ST 

Microelectronics. 
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Chapter 5 
 

5. Applications of the 
CS-CPW Directional Couplers 

 

5.1.  Introduction 

In the previous chapters CS-CPW based directional couplers have been validated by 

simulations and measurements up to 150 GHz. Directional couplers are fundamental parts of 

several mm-wave systems. Because of the promising characteristics of CS-CPW couplers, good 

performance is expected for these systems.  

In this chapter some applications of the directional couplers are presented. These 

applications were developed in our laboratory by several researchers. The first exploitation of 

CS-CPW is the design of a Reflection Type Phase Shifter (RTPS) at 47 GHz. Next an isolator is 

integrated with CS-CPWs at 77 GHz. Finally, an 80 GHz balun with CS-CPW couplers is presented. 

5.2.  Reflection-Type Phase Shifter (RTPS) with CS-CPW  

The first RTPS was proposed in 1960 [1]. RTPS theory and applications have been 

discussed in a previous PhD thesis by François Burdin [2], and is currently studied by the IMEP-

LaHC PhD student Zyad Iskandar, [3]and [4]. The RTPS is a two-port network allowing the phase 

shift of a signal, while assuming low insertion loss and return loss at both input and output 

ports. Figure 5-1 shows the block diagram of a conventional RTPS.  
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Figure 5-1: Schematic of the conventional reflection-type phase shifter (RTPS). 

Conventional RTPS consists of a 3-dB 90° hybrid coupler and a pair of reflective 

terminating circuits [5]. The signal at the input port gets divided equally except the quadrature 

phase at coupled and through ports. These signals reflect from the terminating circuits and 

combine in phase at the output port. The advantage of this device is that matching at input and 

output ports is preserved for any phase shifting. This is not the case for tunable transmission 

lines based phase shifters. One disadvantage of conventional RTPS is their oversize due to 

bulkiness of hybrid couplers. More compact couplers have thus to be considered. 

Figure 5-2 presents an antenna phased array system where phase shifters are needed for 

beam steering [6]; especially structures based on RTPS are much appreciated [7]. 

 

Figure 5-2: Antenna network and architecture of the RTPS with CS-CPW. 
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More precisely, the block diagram in Figure 5-2 corresponds to a 47 GHz transceiver 

front-end that will be integrated in a 55 nm SiGe technology. Phase shift is varied from 0 to 60° 

thanks to a series reflective load. It is worth mentioning that the hybrid coupler in Figure 5-1 has 

been replaced by a CS-CPW coupler. This solution combines low insertion loss as well as small 

footprint [8]. In this section the principle of this RTPS implemented with a CS-CPW is first 

presented, later coupler and RTPS performances are presented. 

5.2.1. State-of-the-art of mm-wave phase shifters 

This section reviews some designs of phase shifter used at mm-wave. It includes active 

and passive circuits. At the end, a table comparing the performance of the phase shifters is given. 

A varactor-based passive phase shifter was presented in [9]. It was implemented in the 

IBM 0.13-µm SiGe BiCMOS technology. A 𝜋-type C-C load was used to achieve 180° continuous 

phase tuning in the RTPS. The schematic is presented in Figure 5-3. 

 

Figure 5-3: Schematic of RTPS with 𝝅-type C-L-C load [10]. 

It achieves the desired 180° phase variation with loss varying from 4.2 dB to 7.8 dB while 

the active interpolator provides 360° phase variation across the 57 GHz-64 GHz band while 

providing >10 dB gain control. In fact, the low quality factor of the silicon varactors increases the 

losses of the RTPS.  

Insertion loss can be improved thanks to the use of MEMS switches, which exhibit much 

higher figure of merit than varactor diodes. A V-band 2-bit switched-line phase shifter using dc-

contact single-pole four-throw (SP4T) RF-MEMS switches for 60-GHz applications was 

presented in [10]. The layout of the switch is presented in Figure 5-4. 
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Figure 5-4: Layout of the SP4T RF-MEMS switch [11]. 

The circuit in Figure 5-4 is a broadband (up to 74 GHz) dc-contact SP4T RF-MEMS 

switch. In measurement, it presents insertion loss less than 1 dB and return loss better than 

16 dB in the 55-65 GHz band. Using the switch in Figure 5-4 a phase shifter was fabricated. It has 

a phase error less than 1° and an average insertion loss of 2.5 dB at the center frequency. A 

similar idea was used in [11], where a 4-bit switch type phase shifter with low group delay and 

low loss flatness was presented. Nevertheless, switched-path type phase shifter are digital, 

which means that it could become bulky if a large number of phase states is desired. Usually 

phase shifters require high resolution in phase control, leading to a large and lossy digital phase 

shift system. 

An “classical” solution is to periodically load a high-impedance transmission line with 

MEMS capacitors. In [12] low-loss digital distributed phase shifters were developed using 

micromachined capacitive shunt switches for V-band applications. In order to minimize the loss 

at V-band, high-Q metal-air-metal (MAM) capacitors in series with the MEMS capacitors were 

used for the shunt capacitive switch. The diagram of the MEMS-based phase shifter is shown in 

Figure 5-5. The insertion are quite low, i.e. 3.6 dB for a 337° phase shift, leading to a high figure 

of merit (FOM), defined as the maximum phase shift divided by the maximum insertion loss,  

equal to more than 90°/dB. 



Reflection-Type Phase Shifter (RTPS) with CS-CPW 

117 

 

Figure 5-5: Diagram of the V-band 2-b MEMS-based phase shifter [12]. 

A similar idea was presented in [13] where a transmission line is loaded with MOS 

varactors. A differential varactor-loaded transmission line phase shifter was used (Figure 5-6). 

 

 

Figure 5-6: Schematic of a phase shifter where seven 𝝅-type sections are cascaded to realize a phase 
control range of 157.5° [13]. 

The phase shift of the loaded line can be controlled by varying the capacitance of each 

section (or set of sections).  

The issue with this solution is the high loss brought by the varactors, i.e. 12.5 dB for a 

156° phase shift, leading to a FOM limited to 12°/dB. Table 1-1 summarizes more in detail the 

state-of-the-art for the phase shifters described above.  
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TABLE 5-1 STATE-OF-THE-ART OF PHASE SHIFTER IN MM-WAVE 

Ref./ 

Technology 

Freq. 

(GHz) 

 

Topology 

Phase 

Shift 

(°) 

IL 

(dB) 

IL 

Variation 

(dB) 

Return 

Loss 

(dB) 

FoM 

(°/dB) 

Area 

(mm2) 

[9]/130nm 

SiGe 
60 

RT Varactor 

MOS 
180 5.85 +1.65 N/A 24 0.18 

[10]/quartz 

substrate 
60 SL MEMS 269.2 2.5 +0.5 -13 89.7 4 

[11]/90nm 

CMOS 
60 

SL without 

small-size 

capacitor 

360 12.5 +2 <-10 24.8 0.28 

[12]/quartz 

substrate 
65 

CPW loaded 

MEMs 
337 2.8 +0.8 -10 93.6 9.45 

[13]/65nm 

CMOS 
60 

Differential 

TL loaded 

MOS 

156 9.25 +3.25 -13 12.5 0.2 

         

According to Table 1-1 MEMS solutions are very interesting because it presents the best 

FoM. The maximum FoM of the phase shifters presented is around 90°/dB, [10] and [12]. The 

issue with these options is the surface occupied by these circuits. The area of these two devices 

is 4 and 9.45 mm2 respectively. Besides, both solutions are fabricated on quartz substrate, which 

is not compatible with integrated technologies. For these reasons MEMS solutions are not the 

fittest for most of the applications. Among the moderate areas, the FoM dramatically decreases 

down to around 25°/dB for a maximal phase shift of 180° for RTPS and 360° for switched-

network approach. 

5.2.2. Principle of the RTPS with CS-CPW 

The RTPS is composed of a 3-dB coupler realized with CS-CPWs, and a reflective load 

realized with a microstrip line and a MOS varactor. The signals reflected from the reflective load 

add in phase at the RTPS output, i.e. the isolated port of the directional coupler. The phase shift 

∆𝜑 and the insertion loss of the RTPS are computed with:  

∆𝜑 = −2 arctan (
ℑ(ZIN)

𝑍0
) (5-1) 

|𝑆21|𝑑𝐵 = |𝑃𝑐|𝑑𝐵 + |Γ|𝑑𝐵  (5-2) 

where |𝑃𝑐|𝑑𝐵 represents the insertion loss of the coupler.  

The coupler design theory has been already developed in Chapter 3. 
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5.2.3. Results of the CS-CPW directional coupler for the RTPS 

For the RTPS system working at 47 GHz, a coupler with the following specifications is 

designed: 

 𝑘 = 0.7 (𝐶 = 3 𝑑𝐵) 

 𝑍0 = 43 Ω (𝑍𝐶
𝑒𝑣𝑒𝑛 = 102 Ω, 𝑍𝐶

𝑜𝑑𝑑 = 18 Ω) 

 𝜃 = 90° 

 High directivity and good return loss 

The CPWs are placed in metal M8 to M7 and the floating ribbons are placed in metal M5 

in the B55 nm technology from ST Microelectronics, leading to ℎ = 2.1 µ𝑚. This configuration 

allows obtaining a good tradeoff between insertion loss and compactness. 

After setting 𝑆𝑆 = 𝑆𝐿 =0.5µm, 𝑊 =20 µm, 𝑊𝑔 =12 µm, 𝑆 =5 µm; 𝐺 =50 µm, with all the 

ribbons cut on sides, the even- and odd-modes analysis of the CS-CPW structure was carried out 

in HFSS. The layout of the CS-CPW coupler implemented in the RTPS is given in Figure 5-7 (a) 

while simulation results are given in Figure 5-7 (b). 

 

(a) 

 

(b) 
Figure 5-7: (a) Layout and (b) S-parameters of the CS-CPW directional coupler for RTPS application. 
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The simulations results at 47 GHz show that the coupler achieves the targeted 3 dB 

coupling with insertion loss of 0.2 dB on its transmission path and 0.5 dB on its coupled path. 

For the frequency band between 40 GHz and 60 GHz, the return loss is better than 17 dB. Also it 

has a high directivity, greater to 14 dB in the entire bandwidth. At the center frequency of 

47 GHz, the coupler reaches a high directivity of 30 dB, as expected. This coupler is used in the 

next section for the design of the RTPS. 

5.2.4. Results of the RTPS using the 3-dB CS-CPW directional coupler 

Simulations were realized for the RTPS implemented at 47 GHz. The simulation results 

include the effect of the CS-CPW directional coupler previously showed in section 5.2.3. The 

voltage 𝑉𝑡𝑢𝑛𝑒 over the varactor is varied from 0 V to 2.5 V. The results in Figure 5-8 are for 

several values of  𝑉𝑡𝑢𝑛𝑒.  

 

(a) 

 

(b) 
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(c) 
Figure 5-8: Simulation results of the designed RTPS with a CS-CPW directional coupler for different 

values of 𝑽𝒕𝒖𝒏𝒆. (a) 𝑺𝟐𝟏. (b) 𝑺𝟏𝟏. (c) Relative phase shift at 47 GHz. 

In the extreme case (𝑉𝑡𝑢𝑛𝑒 = 0𝑉), insertion loss reaches 1.9 dB with a return loss of 

13 dB, Figure 5-8 (a) and (b) respectively. The corresponding relative phase shift (in Figure 5-8 

(c)) for this condition is around 67°. This case also corresponds to the extreme case in terms of 

insertion loss variation (around 0.5 dB). Therefore the figure of merit reaches 41°/dB. At 

47 GHz, the minimum insertion loss is 1.2 dB and maximum insertion loss is 1.6 dB, leading to a 

variation of 0.4 dB. 

To conclude this section, promising performance is achieved for the RTPS implemented 

with CS-CPWs.  

In the next section, the second application of the CS-CPW directional coupler is 

presented. 

5.3.  Isolator  

The second application of the CS-CPW directional coupler presented herein is an isolator. 

The latter has been studied by the MSc student Vishaka Dang during her master thesis in 2015 

[14].  

An isolator is a two-port network allowing to transmit signal in one direction only whilst 

isolating the return signal, as shown in Figure 5-9. 
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Figure 5-9: Principle of an isolator. 

The scattering matrix for an ideal isolator has the following form: 

[S]  =  [
0 1
0 0

] (5-3) 

[𝑆] matrix (5-3) shows that both ports are matched, and that transmission occurs only in 

the direction from port 2 to port 1. Since the scattering matrix is not unitary, the isolator must be 

lossy. An isolator is a non–reciprocal component; therefore the [𝑆] matrix is not symmetric. 

Magnetic ferrites is the most popular material for making passive isolators in microwave 

systems since the isolator with ferrite has the merits of high power handling, no DC power 

consumption, and high isolation [15]. However, due to the physical nature of ferrite, these 

isolators require a magnetic bias, usually provided by a permanent magnet. The size and weight 

of this magnet represents great difficulties in terms of miniaturization and integration. Active 

isolators, on the other hand, can be integrated with other RF/microwave circuits to realize a 

system–on–chip solution without sacrificing performance [16]-[17]. Important figures-of-merit 

for active isolators include insertion loss, isolation and return loss. Generally speaking, these 

three figures-of-merit are a direct trade off with bandwidth: the more bandwidth is desired, the 

more degraded set of specs will be attained. 

5.3.1. State-of-the-art for mm-wave isolators 

This part reviews the major designs of active and passive isolators used at mm-wave. At 

the end, a table comparing the performance of the phase shifters is presented. 

A configuration of isolator was proposed in [15]. It consists of a directional coupler and a 

non–reciprocal phase shifter in feedback, as shown in Figure 5-10. 

Isolator 

Port1 Port2 
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Figure 5-10: Schematic of an isolator based on a non-reciprocal travelling-wave resonator. 

The configuration in Figure 5-10 results in a low insertion loss of 1 dB, a high isolation of 

18 dB and a narrow bandwidth at a frequency of 50.61 GHz. However, the use of magnetized 

ferrite pillbox to realize the non-reciprocal travelling wave resonator limits its integration 

capability with advanced CMOS technologies.  

In [16] an active isolator was designed using a parallel combination of common-gate 

(CG) and common-drain (CD) transistor configurations as shown in Figure 5-11. 

 

Figure 5-11: Isolator designed using parallel CG and CD transistor configuration for 5-6 GHz. 

The isolator in Figure 5-11 presents insertion loss of 2 dB and high isolation greater than 

30 dB in the 5-6 GHz frequency band. Nevertheless, high insertion loss at low frequency limits 

the use of this circuit for higher frequencies.  

In [17] was described the creation of movement of magnetic field using a microstrip line 

and two rows of periodic resonators on both sides of the microstrip line. These are placed on a 

dielectric substrate as shown in Figure 5-12. 
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Figure 5-12: Isolator at 3 GHz designed using metamaterials. 

This configuration leads to insertion loss of 7.5 dB and isolation greater than 30 dB at 

3 GHz. The disadvantage of this structure is clearly the high insertion loss. 

A GaAs MMIC active isolator was presented in [18]. It was designed using low-noise 

amplifier and a Tee attenuator. The center frequency is 1.4 GHz and the bandwidth is 200 MHz. 

The configuration shown in Figure 5-13 lessens the output of a low-noise amplifier with a 50 Ω 

Tee attenuator. 

 

 

 

Figure 5-13: Schematic of the MMIC active isolator. 

The configuration in Figure 5-13 has 2.5 dB of insertion loss, input and output return loss 

better than 12 dB, and finally a reverse isolation of 31 dB. The limitation of the topology is linked 

to non linearities that would appear since the signal is flowing through the transistor. 
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In our opinion, the best tradeoff between insertion loss, return loss, isolation and non 

linearities was presented in [19]. The isolator uses TSMC 0.18µm CMOS technology and was 

designed at 24 GHz. The proposed topology uses a directional coupler and a non-reciprocal 

amplifier in feedback, as shown in Figure 5-14. 

 

Figure 5-14: Block diagram of the proposed isolator [19]. 

This isolator achieved 36 dB of isolation with 1.8 dB of insertion loss. The DC power 

consumption is only 3.6 mW. This configuration gives attractive results at a high frequency. This 

configuration is used in this section to design an active isolator at 77 GHz. Table 5-2 summarizes 

in detail the state-of-the-art for the isolators presented above. 

TABLE 5-2 STATE-OF-THE-ART OF MICROWAVE ISOLATORS 

Ref 
Freq. 

(GHz) 

 

Topology 

IL  

(dB) 

Isolation 

(dB) 

Return 

Loss 

(dB) 

PDC 

(mW) 

Area 

(mm2) 

[15] 50.61 

Non-reciprocal 

travelling wave 

ferrite resonator 

1 18 N/A 0 N/A 

[16] 5-6 
SiGe HBT Active 

isolator 
2 >30 >12 5.4 0.28 

[17] 3 Metamaterials 7.5 >30 >13 112 0.36 

[18][17] 1.4 

MMIC active 

isolator with 

attenuator 

2.5 31 >12 4.5 0.65 

[19] 24 

MMIC active 

isolator with CS 

amplifier 

1.8 36 >17 3.6 0.29 
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5.3.2. Principle of the isolator with CS-CPW 

The block diagram of the proposed isolator is presented in Figure 5-15 (a). Its schematic 

is shown in Figure 5-15 (b). The isolator is composed of a matched common-source amplifier 

and a CS-CPW directional coupler. The transmission lines in Figure 5-15 (b) are used for phase 

adjustment. 

 

 

 

(a) 

 

(b) 

 
Figure 5-15: (a) Diagram block for the isolator implemented with CS-CPW and (b) electrical circuit 

for the isolator, inspired from [19]. 

Figure 5-15 (b) shows the circuit of the isolator designed at 77 GHz by Vishaka Dang and 

inspired by the 24 GHz active isolator proposed in [19]. Theoretical principle, design and 

dimensions are fully detailed in [14]. Theoretical principle can be found as well in [19]. Any 

signal coming from the output port either gets coupled and flows through the feedback loop, or 

goes directly to the input port. The part of the signal going through the feedback loop gets 

coupled again from port 4 to port 2. It reaches the input port with a phase difference of 180˚ with 

respect to the part of the signal going directly from output port 1 to input port 2. Hence, the two 

signals cancel each other and results in no signal flow from output port to input port. 

Any signal entering at input port either gets coupled from port 2 to port 4 and goes 

through the feedback loop, or flows directly to the output port. The part of the signal in the 

feedback loop gets absorbed by the amplifier, thanks to the perfect matching of the amplifier. 

Therefore the circuit shown in Figure 5-15 allows signal to flow in only one direction. 

𝜃1 

𝑍1 

𝜃2 

𝑍2 

Common-source 
amplifier 

CS-CPW Directional 
Coupler 

Port1 
Output 
 

Port2 
Input 

Port3 Port4 

Port 1 
Output 

Port 2 
Input 
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5.3.3. Results of the CS-CPW directional coupler for the isolator 

For the isolator system working at 77 GHz, a coupler with the following specifications 

was desirable: 

 𝑘 =  0.42 (𝑖𝑒. 𝐶 = 7.5 dB) 

 𝑍𝑐  =  50Ω (𝑍𝐶
𝑒𝑣𝑒𝑛 = 78Ω, 𝑍𝐶

𝑜𝑑𝑑 = 32Ω) 

 𝜃 = 90° 

 High directivity and good return loss 

High directivity ensures that no signal reaches the isolated port. Signal at the isolated 

port would flow through the loop to be coupled back to the input port, which is undesirable. 

From the design perspective, it is very difficult to get 𝑘𝐿 equal to 𝑘𝑐, both equal to 0.42, 

along with the desired values of 𝑍𝑐
𝑒𝑣𝑒𝑛 and 𝑍𝑐

𝑜𝑑𝑑, i.e. 𝑍𝑐 = 50Ω. So a trade-off was adopted 

between the coupling coefficient and characteristic impedance, in order to meet the 

specifications. For this reason it was better to choose the CS-CPW as a solution, because it 

presents flexibility in terms of design, allowing decreasing the complexity of the study.  

A CS-CPW structure was designed to be included in the isolator system. The signals and 

grounds strips are stacked from metal M8 to metal M7 and floating ribbons are placed in Metal 

M5, leading to ℎ = 2.1 µm. After setting 𝑆𝑆 = 𝑆𝐿 =500 nm, 𝑊 =15 µm, 𝑊𝑔 =12 µm, 𝑆 =18 µm, 

𝐺 =20 µm, and a combination of the shielding cut in the center and on the sides CC-CS, the even- 

and odd -modes analysis of the CS-CPW structure was carried out in HFSS. The resulting 

structure is presented in Figure 5-16 (a). S-parameters of the coupler with the above mentioned 

dimensions are shown in Figure 5-16 (b).  

 

Figure 5-16: S-parameters of CS-CPW directional coupler designed for isolator application. 
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Figure 5-16 shows -30 dB on the isolated port with good return loss of -26 dB, Ɵ =90˚, 

𝑘 =0.41 (i.e. 7.7 dB) and 𝑍𝑐 =48Ω. In the next section, the behavior of the isolator with the CS-

CPW is described. 

5.3.4. Results of the isolator using the 7.5-dB, CS-CPW directional coupler 

The S-parameter results of the final isolator circuit are shown in Figure 5-17. 

 

(a) 

 

(b) 
Figure 5-17: (a) Layout and (b) s-parameters of the isolator with a CS-CPW directional coupler. 

The isolator circuit designed at 77 GHz using a BiCMOS 55 nm technology achieves 1 dB 

of insertion loss, 23 dB of isolation and a return loss better than 20 dB on both ports in a 2 GHz 

band. Design analysis and results show that the isolator is very sensitive to gain/loss of the 

amplifier and electrical length of the transmission lines.  

5.4.  Baluns  

The third application of the CS-CPW directional couplers developed in the laboratory is a 

balun. The study was performed by the PhD student Ayssar Serhan [20]. A balun is a three-port 

network allowing the transition between a common-mode signal into a differential-mode signal. 

Figure 5-18 illustrates the block diagram of a balun. 

 

Figure 5-18: Block diagram of a balun. 
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As shown in Figure 5-18, the balun must transform a single signal into two with the same 

amplitude and an out-of-phase difference of 180°. Since the balun is a passive reversible device, 

it could also transform a differential signal into a single one.  

5.4.1. State-of-the-art for mm-wave baluns 

A Marchand balun was presented in [23].  As shown in Figure 5-19 (a) and (b), a floating 

bar was placed under the coupled strips in order to have an extra parameter to control the 

coupling. 

 

(a) 

 

 

(b) 
Figure 5-19: (a) Schematic of the modified Marchand Balun and (b) Lateral view of the strips coupled 

with the floating  bar. 

The coupled lines in Figure 5-19 (a) and (b) present a broadside coupling, which increase 

the coupling and also reduces the balun footprint. The bandwidth of this circuit is 57-67 GHz. It 

presents a phase error of 1° and an amplitude error of 0.5 dB. Insertion loss in is 1.5 dB and it 

has 18 dB of return loss. 

An optimization technique called CLC (Capacitive Loading Compensation) was presented 

in [24]. As expected from the name: capacitances are added to the entry and to the output ports 

as illustrated in Figure 5-20. 

 

Figure 5-20: Schematic of the balun with the capacitive compensation [24]. 
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The capacitances are used to improve the matching of the ports, as well as to reduce the 

length of the transmission lines. The balun exhibits a bandwidth between 40 GHz and 60 GHz. It 

presents an amplitude error of 0.2 dB and a phase error of 2.7°. 

An alternative optimization technique was showed in [25]. This technique allows to 

compensate the phase error and amplitude error through the compensation of the phase 

velocity of each mode. This was achieved thanks to the introduction of a transmission line 

between the coupled lines. Also, the coupled lines in this case were folded (or spiral) thus less 

space was used to implement the balun (Figure 5-21). 

 

Figure 5-21: Layout of the spiral balun [25].  

The circuit presents a bandwidth from 40 GHz to 80 GHz. The compensation technique 

presented in [25] was also used in the design of the CS-CPW-based balun.  

Another solution for a balun was proposed in [26]. The technology used in this circuit 

allows the implementation of a full ground plane over the substrate. This principle shown in 

Figure 5-22 (a) and the corresponding layout in Figure 5-22 (b). 

 

 

 

(a) 

 

(b) 
Figure 5-22: (a) Schematic and (b) layout of the balun in SIP technology [26] . 
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The ground plane prevents from any loss due to the substrate. This circuit needs 

nevertheless, a certain ratio of even- and odd-mode characteristic impedances that are not 

possible to reach with CMOS technologies. 

A brief summary of the performance of each reference previously introduced is done in 

Table 5-3. 

TABLE 5-3 STATE-OF-THE-ART OF BALUN IN MM-WAVE 

Ref 
Area 

(mm2) 

Freq. 

(GHz) 

IL  

(dB) 

Phase and 

amplitude error 

∆𝜶𝒎𝒂𝒙
/∆𝝋𝒎𝒂𝒙

 

[23] 0.01 57-67 1.5 <0.5 dB/1° 

[24] 0.036 40-60 1.9 <0.2 dB/2.7° 

[25] 0.2397 40-80 2 - 

[26] 0.135 57-66 0.6 <0.35 dB/8° 

     

5.4.2. Principle of the balun with CS-CPW 

The balun developed during Ayssar’s thesis is a Marchand balun type [21]. This kind of 

balun is composed of coupled lines, which are CS-CPWs in our design. The schematic of the 

Marchand balun is shown in Figure 5-23. 

 

Figure 5-23: Conventional Marchand balun. 

For the ideal case, the coupled lines in the Marchand balun must have the same phase 

velocity for both even- and odd-modes (𝜃𝑒 = 𝜃𝑜 = 90°). The S-parameters of the Marchand 

balun when loaded by 𝑍0 on port 1 and by 𝑍𝑙  on  ports 2 and 3, were developed in [22]: 
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[S]balun  =  

[
 
 
 
 
 
 
 
 
 
 
 
 1 − 𝑘2 (

2𝑍𝑙
𝑍0

+ 1)

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)
𝑗

2𝑘√1 − 𝑘√
𝑍𝑙
𝑍0

  

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)
−𝑗

2𝑘√1 − 𝑘2√
𝑍𝑙
𝑍0

  

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)

𝑗
2𝑘√1 − 𝑘2√

𝑍𝑙
𝑍0

  

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)

1 − 𝑘2

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)

2𝑘2√
𝑍𝑙
𝑍0

  

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)

−𝑗
2𝑘√1 − 𝑘2√

𝑍𝑙
𝑍0

  

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)

2𝑘2√
𝑍𝑙
𝑍0

  

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)

1 − 𝑘2

1 + 𝑘2 (
2𝑍𝑙
𝑍0

− 1)
]
 
 
 
 
 
 
 
 
 
 
 
 

 (5-4) 

where 𝑘 is the total coupling coefficient resulting from 𝑘 = √𝑘𝐿𝑘𝐶 which only makes 

sense when 𝑘𝐿 = 𝑘𝐶 . 

In order to equally divide input power while maintaining a phase shift of 180° between 

ports 2 and 3, the initial condition applied to [𝑆]𝑏𝑎𝑙𝑢𝑛 is: 

|𝑆21| = |−𝑆31| =
1

√2
 (5-5) 

This condition allows to obtain the coupling coefficient 𝑘 as a function of the ratio 𝑍𝑙/𝑍0. 

This ratio is known as the impedance transformation ratio (ITR) of the balun. 

𝑘 =
1

√
2𝑍𝑙

𝑍0
+ 1 

 (5-6) 

Finally the targeted even- and odd-modes characteristic impedances of the coupled lines 

can be calculated from the equations: 

𝑍𝑜𝑑𝑑 = 𝑍0√
1 − 𝑘

1 + 𝑘
 

(5-7) 

𝑍𝑒𝑣𝑒𝑛 = 𝑍0√
1 + 𝑘

1 − 𝑘
 

(5-8) 

Equations (5-7) and (5-8) are correct as long as even- and odd-modes have the same the 

phase velocity (which is equivalent of having 𝑘𝐿 = 𝑘𝐶 = 𝑘 as seen in Chapter 2). With these 

design rules, a balun centered at 80 GHz was implemented. In the next section, the performance 

of the CS-CPW directional coupler used in this balun are shown. 
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5.4.3. Results of the CS-CPW directional coupler for the balun 

The signal and ground strips were stacked from metal M8 to metal M7 and floating 

ribbons were placed in Metal M5, leading to ℎ = 2.1 µm .  𝑆𝑆 = 0.64 µm , 𝑆𝐿 = 0.16 µm , 

𝑊𝑔 = 12 µm, 𝑆 = 5 µm, 𝐺 = 25 µm, 𝑊 = 25 µm with all fingers cut on the side CS. These 

parameters are chosen in order to present a 3-dB coupler. Figure 5-24 (a) and (b) show the 

resulting layout of the balun and the S-parameters of the coupler to be used in the balun, 

respectively. 

 

(a) 

 

 

 

 

(b) 

Figure 5-24: (a) Layout of the balun and (b) S-parameters of the CS-CPW directional coupler.  

The simulation results of the coupler based on CS-CPW presented in Figure 5-24 show a 

directivity of 15 dB at the center frequency.As it is desired, 3-dB coupling is obtained. Good 

return loss is also reached.  

5.4.4. Results of the balun using the 80 GHz, 3-dB, 50 Ω, CS-CPW directional 

coupler 

Thanks to the theory presented in previous sections, a Marchand balun was integrated at 

80 GHz. The central frequency was chosen in order to work in E-band. The simulation results of 

the balun are shown in Figure 5-25. 
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Figure 5-25: (a) S Parameters of the balun with CS-CPW and (b) phase difference between port 2 and 
port 3. 

As expected the balun is well matched around its central frequency (83 GHz) with a 

parameter 𝑆11 of -33 dB (Figure 5-25 (a)). Also at ports 2 and 3, output signals have almost the 

same magnitude (Figure 5-25 (a)). Besides, the difference in phase between ports 2 and 3 is as 

desired 180° (Figure 5-25 (b)). The overall surface is 0.13 mm2. 

The simulation results show that baluns based on CS-CPWs are an interesting solution 

for high frequency baluns.  

5.5. Conclusion 

In Chapter 2, the basis for CS-CPW has been presented. Besides, in Chapter 3, the method 

to design a directional coupler with CS-CPW has been described. In this chapter we have 

discussed about the applications of such CS-CPW directional couplers.  

Three applications that are being currently developed in our laboratory were developed. 

In first place a Reflection-Type Phase Shifter (RTPS) was presented with a 47-GHz working 

frequency. It was implemented with a CS-CPW coupler instead of a hybrid one. The RTPS 

presents insertion loss less than 1.9 GHz and a FoM of 41°/dB. Next, an isolator composed of a 

common-source amplifier and a CS-CPW coupler was designed. This isolator is centered at 

77 GHz, it exhibits 1 dB of insertion loss and 23 dB of isolation. Finally a Marchan balun with CS-

CPW coupler was described at 80 GHz, it presents a return loss of 33 dB and minimum phase 

and amplitude error.  

All these applications present encouraging results, proving the interest of CS-CPW 

structures. Besides, each application is centered at a different frequency, proving the interest of 

CS-CPW lines at various frequencies. The three circuits have been already sent to fabrication in a 

BiCMOS 55 nm technology by ST Microelectronics.  
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General Conclusions 

 

The work in this thesis concerned the development of Coupled-Slow-wave CoPlanar 

Waveguide (CS-CPW) on CMOS advanced technology for mm-wave frequencies. Compared to 

traditional CPW or microstrip lines, this structure exhibits a high quality factor, miniaturization 

characteristic and the most important: a flexible choice in the coupling level. Thanks to the slow-

wave effect the electric field is being dissociated from magnetic field, leaving to two main 

advantages: (i) increase of the capacitance, leading to miniaturized circuits, and (ii) extra degree 

of freedom thus electric and magnetic coupling coefficients can be determined independently. 

Based on this novel structure, integrated mm-wave passive devices were then designed: 

directional couplers, filters, baluns, RTPS phase shifter, and isolator. 

First, in chapter 2, an electrical model based on even- and odd-modes was proposed for 

the coupled S-CPWs. The latter was validated through 3D EM simulations and an analytical 

model developed in the laboratory. In addition, an extraction method of the electrical 

parameters from EM simulations was introduced. Based on this extraction, the evolution of the 

main parameters of the CS-CPWs was plotted as a function of the dimensions. Next, a 

comparison with microstrip lines’ solution was carried out. After that the concept of modifying 

the electric coupling coefficient by cutting the shielding was presented. A study of the coupling 

variation, versus the dimensions and the cuts of the shielding, was achieved. Practical issues as 

the effect of dummies or the dimensions limitations for CS-CPWs were also discussed.  

Next, in chapter 2, a design method to implement CS-CPW-based directional couplers 

was fully detailed. Thanks to the extra degree of freedom in the design due to the slow-wave 

effect, any desired coupling can be achieved while always keeping a high directivity. This is how 

two directional couplers were designed with CS-CPWs, i.e. a 3-dB (at 50 GHz) and an 18-dB (at 

150 GHz), respectively. Experimental results carried out on the 18-dB coupler presented a 

coupling coefficient of 18 dB, 20 dB return loss and 12 dB of directivity. Hence the agreement 

between simulation and measurement results was very good, with overall state-of-the-art 

performances for a first prototype at 150 GHz.  

It is worth to mention that because of the VNA limitations, an alternative method was 

proposed in order to measure a 4-port device at 150 GHz. Instead of a 4-ports measurement, 

three 2-ports measurements were carried out; at every time the remaining ports not connected 

to the VNA were loaded by an active load developed by ST Microelectronics for this purpose. 
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Moreover, a multimode TRL method was implemented in order to de-embed the measurement 

of the directional coupler when doing a full 4-port measurement. 

Then, in chapter 4, the CS-CPWs were used to implement pass band filters. The classical 

theory of parallel coupled-line filter was briefly presented. Filters theory is based on the 

characteristic impedance of even- and odd-modes of the coupled-lines; for this reason, 

previously discussed analytical model charts were used in order to have a starting point for the 

design. After optimization with circuits’ tools, two filters were realized with a working frequency 

equal to 80 GHz. The first one is a resonator presenting 22% of relative bandwidth and 1.3 dB of 

insertion loss. The second one is a third-order filter with 11% of relative bandwidth and 4.1 dB 

of insertion loss, leading to an unloaded quality factor equal to 24.6. 

Finally, in chapter 5, several prospects were drawn. Directional couplers being a 

fundamental element in numerous systems in the mm-wave field, the interesting outputs of this 

work, i.e. the development of miniaturized coupled-lines with equal electric and magnetic 

coupling coefficients, leaded to the development of new circuits. These circuits are part of two 

theses and an internship works. They are being currently developed by two laboratories (IMEP-

LAHC and IEMN) and one company (ST Microelectronics). The first circuit is a new topology of 

reflection-type phase shifter (RTPS). The RTPS presents insertion loss less than 1.9 dB and a 

FoM of 41°/dB. The second circuit is an isolator composed of a common-source amplifier and a 

CS-CPW coupler. This isolator is centered at 77 GHz, it exhibits 1 dB of insertion loss and 23 dB 

of isolation. Finally a Marchand balun with CS-CPW coupler was designed at 80 GHz, it presents 

a return loss of 33 dB and minimum phase and amplitude error. All circuits are in the fabrication 

stage now.  

Furthermore, the de-embedding method implemented in this work can be used not only 

for CS-CPWs measurements but for all kinds of 4-ports devices. Currently, this method is also 

used in the measurement of SIW-based directional couplers. Finally, the 18-dB coupler at 

150 GHz previously discussed was optimized and shifted to 180 GHz. This circuit was sent to 

fabrication as an essential part of a system addressed to do on-wafer measurements. 
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Résumé 

L’objectif de ce travail de thèse était le développement en technologie intégrée standard 

d’une structure de lignes de transmission couplée, optimisée en termes de pertes, 

d’encombrement, de facteur de qualité et surtout du choix du niveau de couplage aux fréquences 

millimétriques. Cette structure a été nommée CS-CPW (Coupled Slow-wave CoPlanar 

Waveguide). Dans un premier temps, la théorie ainsi que les modèles électriques des CS-CPW 

ont été présentés. Grâce aux modèles et aux simulations électromagnétiques, des coupleurs 

directionnels avec plusieurs valeurs de couplage (3 dB, 10 dB, 18 dB) ont été conçus en 

technologie BiCMOS 55 nm, puis mesurés à l’aide d’un analyseur de réseau. Ils présentent tous 

une très bonne directivité, toujours supérieure à 15 dB. Un premier prototype de coupleur a été 

mesuré à 150 GHz. Dans un deuxième temps, des filtres passe bande à base de lignes couplées 

ont été développés en utilisant des lignes CS-CPW, avec une fréquence de fonctionnement égale 

à 80 GHz. Les de simulation laissent entrevoir des résultats concurrentiels avec l’état de l’art : 

11% de bande passante relative et un facteur de qualité à vide égal à 24.6 . Finalement, trois 

projets utilisant les lignes couplées développées ont débuté, dans le cadre de deux thèses et un 

stage  au sein du laboratoire : déphaseur de type RTPS à 47 GHz, isolateur à 75 GHz, et balun à 

80 GHz. 

Mots-clés: Lignes couplées, ondes lentes, coupleurs, filtres, circuits CMOS en bande 

millimétrique, technologie BiCMOS avancée 55 nm. 

 

Abstract 

This work focuses on high-performances CS-CPW (Coupled Slow-wave CoPlanar 

Waveguide) transmission lines in classical CMOS integrated technologies for the millimiter-wave 

frequency band. First, the theory as well as the electrical models of the CS-CPW are presented. 

Thanks to the models and electromagnetic simulations, directional couplers with different 

coupling levels (3 dB, 10 dB, 18 dB) were designed in BiCMOS 55 nm technology. They have a 

good directivity, always better than 15 dB. A first prototype of a coupler was measured at 

150 GHz presenting good agreement with the simulations. Next, coupled-line base filters were 

developed at 80 GHz using the CS-CPWs. Simulation present competitive results with the state-

of-art: 11% of fractional bandwidth and a unload quality factor of 24.6. Finally, three projects 

started based on the CS-CPWs. The projects are currently used in two theses and one internship: 

a RTPS at 47 GHz, an isolator at 75 GHz and a balun at 80 GHz. 

Key words: Coupled lines, slow-wave, couplers, filters, CMOS circuits in mm-wave, 

BiCMOS 55nmm technology. 


