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Abstract 

 

Electrogenerated chemiluminescence (ECL) is a powerful analytical technique 

exploited for clinical, industrial and research applications. The high sensitivity and good 

selectivity, makes ECL a tool-of-choice analytical method for a broad range of assays, most 

importantly for a large number of commercialized bead-based immunoassays. In the present 

thesis, we aimed to study the ECL phenomenon and its application in development of new 

analytical methods.   

In the first part of this work, we used an imaging technique to investigate the ECL 

mechanisms operating in bead-based assays. Spatial reactivity mapping at the level of a single 

functionalised bead provides a new strategy to test the co-reactant efficiency and shows 

associated optical focusing effects.  

In the second part, the design of a novel anti-transglutaminase ECL immunoassay for 

celiac disease diagnostic is shown using nanoelectrode ensembles as bioelectroanalytical 

platforms. We also studied the characteristics of ECL generated by arrays of boron-doped-

diamond nanoelectrodes (BDD NEAs) as a promising materials for bioapplications. The ECL 

efficiency of two co-reactants at BDD NEAs was investigated. 

Finally, bipolar electrochemistry is a ‘‘wireless’’ process that was exploited for the 

controlled motion of conductive objects exposed to an electric field in the absence of direct 

ohmic contact. In the third part of the thesis, we report ECL coupled to bipolar electrochemistry 

for tracking the autonomous trajectories of swimmers by light emission. We further expanded 

this concept for dynamic enzymatic sensing of glucose concentration gradient using ECL light 

emission as an analytical readout. 

 

Key-words: Electrogenerated chemiluminescence, imaging, immunoassays, 

nanoelectrode array, bipolar electrochemistry, analytical swimmers  

 

 

  



Résumé 

 

La chimiluminescence électrogénérée (ECL) est une technique analytique puissante 

exploitée pour la détection autant au niveau industriel que dans le domaine de la recherche 

scientifique ou du diagnostic clinique. La sensibilité élevée et la bonne sélectivité de cette 

technique font  de l'ECL une méthode analytique de choix pour un large éventail d'applications, 

dont la plus importante est son utilisation commerciale dans un grand nombre de tests 

immunologiques à base de billes fonctionnalisées. Dans cette thèse, nous avons cherché à 

étudier le phénomène ECL et son application pour le développement de nouvelles techniques 

analytiques. 

 

Dans la première partie de ce travail, nous utilisons les techniques d'imagerie pour 

étudier les mécanismes ECL se produisant sur les billes utilisées pour les tests immunologiques. 

La cartographie de la réactivité au niveau d'une seule microparticule fonctionnalisée avec un 

complexe de ruthénium fournit une nouvelle stratégie visant à tester l'efficacité du co-réactif et 

montre des effets optiques associés de focalisation. 

 

Dans la deuxième partie, la conception d'un test immunologique pour la détection de 

l'anti-transglutaminase pour le diagnostic de la maladie coeliaque est présentée en utilisant des 

ensembles de nanoélectrodes comme plates-formes bioélectroanalytiques. Nous avons 

également étudié les caractéristiques de l'ECL générée par des réseaux de nanoélectrodes 

dopées au bore-diamant en tant que matériaux prometteurs pour des applications biologiques 

ainsi que l'efficacité ECL de deux co-réactifs sur ces réseaux. 

 

L'électrochimie bipolaire est un processus sans contact que nous avons exploité pour 

contrôler le mouvement d'objets conducteurs exposés à un champ électrique en l'absence de 

contact ohmique direct. Dans la troisième partie de ma thèse, nous présentons l'ECL couplée à 

l'électrochimie bipolaire pour le suivi d’objets autonomes luminescents. Nous avons élargi ce 

concept à la détection enzymatique dynamique de glucose en utilisant l'émission de lumière 

ECL comme signal analytique. 

 

Mots-Clés: électrochimiluminescence, imagerie, immunodosage, réseaux de nanoélectrodes, 

électrochimie bipolaire, nageurs analytiques



1 
 

Table of Contents 

 

List of abbreviations                                                                                                                  4                                                                                                                                                                                                              

Symbols                                                                                                                                     6 

Preface                                                                                                                                       7 

CHAPTER 1: Fundamentals of electrogenerated chemiluminescence                                     9                                           
                         

1.1 Introduction                                                                                                            10    

1.2. Discovery of ECL and brief historical overview                                                   11 

1.3. Background                                                                                                            11 

1.3.1. Photoluminescence                                                                                12 

1.3.2. Chemiluminescence                                                                               13 

1.3.3. Electrogenerated chemiluminescence                                                    15 

1.4. ECL mechanisms                                                                                                    15 

1.4.1. Organic ion annihilation ECL                                                                16 

1.4.2. Inorganic annihilation ECL                                                                    19 

1.5. Co-reactant pathway                                                                                               20 

1.5.1. ECL co-reactants systems and their mechanisms                                  21 

1.5.1.1. Oxalate (Ru(bpy)3
2+/C2O4

2-) System, example of  

oxidative- reduction ECL                                                           22 

1.5.1.2. Peroxydisulfate (Ru(bpy)3
2+/S2O8

2-) System, example  

of reductive-oxidation ECL                                                        23 

1.5.1.3. Tri-n-propylamine / Ru(bpy)3
2+ System, the model     

 ECL system                                                                                24 

1.5.1.4.2-(dibutylamino)ethanol / Ru(bpy)3
2+ System                           27 

1.5.2.   ECL Luminophores                                                                               28 

          1.6. ECL applications                                                                                                      32 

1.6.1. Applications in assays and commercialised ECL systems                      33 

1.6.2. Application in CE, HPLC and FIA systems                                           36 

          1.7. Conclusions                                                                                                              38 

 References                                                                                                         39 

CHAPTER 2: Mechanistic insight into model systems used in electrogenerated    

chemiluminescence immunoassays via mapping the light distribution in space                      45                                                    



2 
 

2.1. Introduction                                                                                                            46 

2.2.Reported mechanisms of Ru(bpy)3
2+ / TPrA system                                               47 

2.3. Reported mechanisms of Ru(bpy)3
2+ / DBAE system                                            53    

2.4. Bead-based Sandwich ECL immunoassay                                                             55 

2.4.1. 2D ECL Imaging                                                                                   57 

2.4.2. 3D ECL Imaging                                                                                   59 

2.5. Conclusions                                                                                                            65 

        References                                                                                                       66 

CHAPTER 3: Mapping the ECL generation with nanoelectrode ensembles and arrays                                

for Immunosensing                                                                                                                   70 

               3.1. Introduction                                                                                                         71 

               3.2. Nano-Electrode Ensembles (NEEs) fabrication                                                  73 

3.3. Nano-Electrode Arrays (NEAs) fabrication                                                        75 

3.4. Electrochemistry at electrode ensembles and arrays                                           76 

3.5.Bioelectroanalysis and biosensors with NEEs/ NEAs                                         81 

3.6.Highly sensitive ECL Sensor for Celiac Disease Biomarkers                             84 

3.6.1. NEEs characterization                                                                     85 

3.6.2. Voltammetric and ECL characterization of the immunosensor      87 

3.6.3. Analytical performance study of the immunosensor                      90 

3.7.  Tuning of induced luminescence with arrays of nanoelectrodes, NEAs           93 

3.7.1. The MNEAPs were fabrication                                                       94 

3.7.2. Electrochemical characterization of the MNEAP                           96 

3.7.3. ECL measurements with the MNEAP                                            97 

3.8. Conclusion                                                                                                        104 

         References                                                                            105 

CHAPTER 4: Electrogenerated chemiluminescent swimmers driven by bipolar 

electrochemistry                                                                                                                      109 

4.1. Introduction                                                                                                       110 

4.2. Bipolar electrochemistry                                                                                   111 

        4.2.1. Definition of bipolar electrode                                                      111 

        4.2.2. Polarization of a conducting object in an open configuration       112 

        4.2.3. The case of closed bipolar electrochemistry                                 114 

               4.3. Applications of bipolar electrochemistry coupled to ECL                                115 



3 
 

               4.4. Bipolar electrochemistry for motion generation                                               119 

         4.4.1. Translation, rotation and levitation of motors by BE                  122 

                4.5. Lightening up bipolar swimmers                                                                     123 

                4.6. Light emitting swimmers for enzymatic glucose sensing                                135 

                4.7. Conclusions                                                                                                      141 

                               References                                                                                                142 

 

GENERAL CONCLUSION                                                                                                   147 

PERSPECTIVES                                                                                                                    152 

APPENDIX                                                                                                                             155 

 



4 
 

Abbreviations 

Abbreviations           Meaning 

AFP            alpha-fetoprotein  

AgCl           silver chloride 

AP            asymmetric particle 

ATP            adenosine triphosphate 

BDD            boron-doped diamond 

BE           bipolar electrochemistry 

BPE           bipolar electrode 

BSA            bovine serum albumin  

CCD            charge coupled device  

CE            capillary electrophoresis  

CL            chemiluminescence  

CRP            C-reactive protein  

CV            cyclic voltammetry  

DBAE            2-(dibutylamino)ethanol  

DC            direct current 

DMSO            dimethylsulfoxide 

DNA            deoxyribonucleic acid  

DPA            9,10-diphenylanthracene  

EBL            electron beam lithography 

ECL            electrogenerated chemiluminescence  

EF           electric field 
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HPLC            high performance liquid 
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Symbols 

Symbol Meaning Units 

C  concentration  M 
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diameter or length of a bipolar 
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D  diffusion coefficient  cm2s‐1 
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E  imposed electric field  V cm‐1 
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ibps by‐pass current  A 

l  length of a bipolar electrode  cm  

L  distance between the feeder 

electrodes  

cm 

n 

stoichiometric number of electrons 

involved in a redox reaction  none 
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σ conductivity  S cm‐1 
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Preface 

 

Electrogenerated chemiluminescence (ECL) is a process which emits luminescent signals by 

converting electrochemical energy into radiative energy. It offers very sensitive detection of 

sub-picomolar concentrations with an extremely large dynamic range, greater than six orders 

of magnitude and almost zero background signal. The direct optical readout can be performed 

just with a photomultiplier tube (PMT) or inexpensive CCD cameras and therefore, easily 

combined with other technologies such as microfluidics and capillary electrophoresis to obtain 

complete detection systems. ECL detection is widely used in commercialized systems with an 

increasing trend. The present thesis is aimed at studying the fundamental ECL process and at 

developing new ECL systems for original bioanalytical applications.  

Chapter one is dedicated to the general principles of ECL. Two different pathways to generate 

ECL, annihilation and co-reactant ECL, are explained in details. The most used ECL 

luminophores, based on ruthenium complexes, and co-reactants are also presented. In the last 

part of this chapter, the principal applications of ECL are briefly described. 

In the second chapter, the study of ECL mechanisms used in bead-based immunoassays and 

their influence on ECL emission were investigated. Spectroelectrochemistry and ECL imaging 

was combined to observe the ECL generation from a single micro-bead, functionalized with 

ruthenium complex with two efficient co-reactants, by mapping the ECL reactivity in space. 

This new imaging approach provides insights into the ECL mechanistic route operating in such 

a commercialized bead-based bioassays and its extremely high sensitivity. 

Chapter 3 addresses the electrochemical properties of nanoelectrode ensembles and arrays 

(NEEs / NEAs) with recent advances in bioelectroanalytical applications. The electrochemical 

characteristic that makes the NEEs and NEAs very useful in the development of chemical 

nanosensors is the dramatic lowering of capacitive currents (that are the largest component of 

the noise, or more properly the background signal of voltammetric measurements) allowing 

very sensitive detection of analytes of interest. Exploiting both gold NEEs as a sensor platform 

and generation of ECL at low oxidation potentials, a new sensitive and specific ECL 

immunosensor for diagnosis of celiac disease (CD) will be presented. Furthermore, ECL 

imaging was used for the characterization of ECL generation at boron-doped diamond (BDD) 

NEAs fabricated with different geometries of arrays. BDD electrodes have advantageous 



8 
 

properties including high reproducibility, stability, and robustness under extreme conditions 

with a wide potential window in aqueous solutions, without oxidation of the electrode itself. 

BDD NEAs with a very tiny background signal should be therefore applied in future 

developments of sensors with high sensitivity.   

In the last chapter, principles of bipolar electrochemistry (BE) will be presented. This concept 

has been recently used to control the motion of autonomous microswimmers, breaking the 

symmetry on the surface of this conductive objects in a wireless manner. The strategy to trigger 

the motion relies on the generation and release of bubbles and was used for translation, rotation 

and levitation and it will be described in details. We will present the integration of ECL light 

emission process into this mechanism. Furthermore, we expanded this concept to develop 

sensing swimmers using ECL as an analytical signal. This approach, in which ECL is coupled 

to BE, offers a unique analytical appraoch based on the design of smart dynamic systems for a 

straightforward visual readout. 
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Chapter 1: 

Fundamentals of Electrogenerated Chemiluminescence 
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1.1. Introduction  

 Electrogenerated chemiluminescence (ECL) is an electrochemical process, where light 

emission is initiated by an electron-transfer reaction occurring at an electrode surface1-4. ECL 

is by essence a chemiluminescence reaction (CL), triggered by electrochemical methods5. 

This technique represents a marriage between electrochemistry and spectroscopy. The smart 

combination of two analytical methods offers to ECL unique superiorities over other optical 

sensing methods. As it does not require a light source, it simplifies the detection apparatus and 

most importantly invalidates background signals from scattered light and luminescent 

impurities, thus providing improved sensitivity1,6,7. For instance, a 

tris(bipyridine)ruthenium(II), Ru(bpy)3
2+, can be detected at sub-picomolar concentrations 

with an extremely broad dynamic range, greater than six orders of magnitude3. Secondly, as 

the excited state of the luminophore can be regulated by alternating the applied potential, 

good selectivity is provided. This fact, coupled with the possibility to place the optical 

detectors very close to the electrode surface, allows accurate spatial and temporal control over 

the reaction. By controlling its initiation, light emission can be delayed until events such as 

immune or enzyme-catalyzed reactions have taken place.1 Finally, ECL allows simultaneous 

measurements of two experimental parameters, the light intensity and the Faradaic current, as 

function of the potential, which facilitates the investigation of light emission mechanism and 

enables the ECL and electrochemical detections, simultaneously. Due to these properties, 

ECL has become an important detection method in analytical chemistry. Commercial 

immunoassays and deoxyribonucleic acid (DNA) probe assays have been widely used in the 

areas of clinical diagnostic, food and water testing, environmental monitoring, biowarfare 

agent detection and scientific research1,2,6,8-14. ECL has also been exploited for the 

determination of numerous analytes when combined with high performance liquid 

chromatography (HPLC), flow injection analysis (FIA) and capillary electrophoresis (CE).15-

19 

Since the work performed in this thesis is based on investigation of ECL mechanisms and 

ECL detection, the first chapter will present the principles of ECL and its applications. 
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1.2. Discovery of ECL and brief historical overview  

ECL has been reported for the first time as the emission of light generated by relaxation of 

excited state molecules that are produced during an electrochemically-initiated reaction20. 

Pioneer work on light generation following electrochemical reactions date back to early 

1900’s.21,22 In 1960s the first detailed ECL studies started reporting the luminescence of 

aromatic hydrocarbons and organometallic compounds.23-25 The first experiments done by 

applying alternating currents lead to the suggestion of a mechanism and the first theory about 

electron transfer in ECL. ECL actually provided the first evidence of the Marcus inverted 

region, where generation of the excited state rather than the energetically more favored 

ground state was observed.26 In 1972, it has been reported that Ru(bpy)3
2+ species can also 

emit light under cycling of the potential on a Pt electrode with the maximum of emission at 

exactly the same wavelength as the maximum of emission observed upon photoexcitation.27 

Furthermore, organometallic compounds due to their ECL nature, have attracted continuous 

interest in development of ECL-emitting species. It was found in 1997, that characteristic 

emission occurs during the simultaneous oxidation of oxalate and some fluorophores such as 

rubrene, 9,10-diphenylanthracene and bipyridyl chelates of ruthenium(II) and osmium(II).28 

ECL generation by one direction scan of the potential in the presence of both luminophores 

and co-reactant species was a real breakthrough. Ten years later aliphatic amines especially 

tri-n-propylamine has been found to be one of the most efficient ECL co-reactants.5,29 

Applications in bioassays started from 1990s and played a large part in fueling interest in the 

technique, resulting in commercialized ECL instrumentation in 1994. Thanks to its high 

sensitivity and good selectivity, ECL is now exploited in more than 30000 instruments 

worldwide as a powerful analytical technique, easily adapted to a broad range of 

applications.1,2,6  

 

1.3. Background  

ECL is one of many forms of luminescence (light emission) and is triggered by the 

electrochemical reaction initiated on the electrode surface. To understand the principles of 

ECL emission and to differenciate it from other types of luminescence, the principles of 

photoluminescence (PL) and chemiluminescence (CL) are discussed.  

 

http://en.wikipedia.org/wiki/Luminescence


12 
 

1.3.1. Photoluminescence  

Photoluminescence is the light emission by a molecule when raised at an excited state after 

a photon absorption (electromagnetic radiation). Absorption of energy occurs between the 

closely spaced vibrational and rotational energy levels of the excited states in different 

molecular orbitals. Various energy states available to a molecule and the transitions between 

them are illustrated by the so-called Jablonski-energy level diagram (Figure 1). It shows 

electronic and vibrational states (rotational energy states are ignored).30 Once a molecule has 

absorbed energy in the form of electromagnetic radiation, there are numerous relaxation 

mechanisms by which it can return to ground state S0. The ground state of a large majority of 

molecules is a singlet state, meaning that the electrons are paired into a zero spin state. If the 

photon emission occurs between states of the same spin state (e.g. the first excited singlet 

state S1 —> S0), this is termed fluorescence. Another excited state at lower energy than the 

first excited singlet is the triplet state T1, with total spin of 1. In the case when the spin states 

of the initial and final energy levels are different (e.g. T1 —> S0), the emission is called 

phosphorescence. Transitions between singlet and triplet states are called intersystem crossing 

(ISC). The low probability of ISC arises from the fact that molecules must first undergo spin 

conversion to produce unpaired electrons, an kinetically unfavorable process. Here in contrast 

to fluorescence, molecules absorb light and form an excited state whose decay involves a spin 

flip, and is therefore “forbidden” by electric dipole transitions. As a result, the energy can 

become trapped in the triplet state with only "forbidden" T1—> S0 transitions available to 

return to the ground energy state. Correspondingly, the lifetimes of fluorescent states are very 

short (1 x 10-6 to 10-9 seconds) while phosphorescence ones are longer (1 x 10-3 seconds). 

 

 

 

 

 

 

Figure 1. Jablonski energy level diagram during the absorption and emission of radiation. 

http://en.wikipedia.org/wiki/Photons
https://en.wikipedia.org/wiki/Forbidden_mechanism
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Different fluorophores can absorb different spectra of lights, but each fluorophore absorbs 

light at a specific wavelength. This process is dominated by energy difference in between 

different energetic states of molecules and it can be seen in an excitation spectrum. 

Accordingly, they have a specific spectrum of light re-emission (usually called emission 

spectrum). Wavelengths of maximum excitation (~absorption) and emission (for example, 

absorption/emission = 485 nm/517 nm) are the terms used to refer to a given fluorophore. As 

electronic transitions are induced by electromagnetic irradiation, they are characterized by its 

frequency ν and a state of polarization. This provides the information about spatial direction 

of the electric field. When electrons diminish their energy from the excited state to the ground 

state, there is a loss of vibrational energy. The quantum of energy that the radiation field can 

exchange with matter is  

E = hν                                                   (1) 

usually expressed in kJ/mol, eV/molecule, where h is the Plank constant (6.626x10-34 J·s), ν is 

frequency (Hz). It is also common to use a quantity proportional to E, such as the wavelength 

of the light: 

𝜆 =
𝑐

𝑣
                                                    (2)      

where c is speed of light (2.99.108 m.s-1) and λ is wavelength of emission (m). In absorption 

and emission spectra, light intensity is plotted as a function of one of the characteristics that 

identify photon energy. The equation 1 provides a bridge from the position of the observed 

spectral peaks to the energy difference between the initial and final state involved in a 

spectroscopic transition.30 Obviously, the energy of emission is lower than energy of 

excitation and excitation wavelength is longer compared to the wavelength of absorption. The 

difference between the maximum excitation and maximum emission wavelengths is termed: 

the Stokes’ shift. For example, the complex [Ru(bpy)3]Cl2 exposed to the white light absorbs 

blue light (450 nm)31 which enables the excitation on an electron. For this reason the complex 

is orange-red colored (610 nm).4   

1.3.2. Chemiluminescence  

CL is an homogeneous process compared to ECL, in which the light emission is obtained by 

highly energetic electron-transfer reactions between two reacting species. The reaction occurs 

in the homogenous phase.32 Besides, many conventional CL reactions can be initiated by 
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electrochemical means. The most studied and exploited reaction has been that involving 

luminol (Figure 2). CL reaction of luminol is an oxidation reaction which is carried out either 

in aprotic solvents (dimethyl sulfoxide, DMSO; N,N-dimethylform- amide, DMF) or protic 

solvents (water, lower alcohols).27 Oxidation in aqueous media gives rise to blue light 

emission 424 nm,28 while in aprotic solvents this shifts to yellow-green. Luminol (LH2) can 

be considered as a diprotic acid. To obtain chemiluminescence from luminol in an aqueous 

solution, an oxidizing reagent, such as hydrogen peroxide, is needed. Under basic conditions 

(pH 11–13) the prevalent luminol anion (LH-) is oxidized to luminol radical anion (LH●). 

Others one-electron oxidants can catalyze this reaction (horseradish peroxidase, cobalt-

complexes , copper, manganese, iron, etc.). In a second oxidation step LH is further oxidized 

to either aminodiazaquinone (L) or directly (by superoxide anion) to hydroperoxide adduct 

(LO2H). From this adduct, an endoperoxide species can be formed, from which molecular 

nitrogen is expelled, generating excited state 3-aminophthalate dianion (AP).  

 

                             Figure 2. Mechanism of CL luminol oxidation.33  



15 
 

In comparison with ECL reactions, the way to achieve excited state is different but the 

relaxation process and mechanism of light emission is the same. The ECL mechanisms will be 

discussed in detail in Chapter 2. However, in CL reactions the emitting species is an excited 

chemical product, such that the original CL reagent cannot be regenerated. Molecules as are 

ruthenium complexes, which can be regenerated after having emitted their photons, appeared 

to be more appealing luminescent reagents and therefore the main competitors to luminol in 

the field of electroanalytical chemistry. Ru(bpy)3
2+ for example, is the stable species in 

solution and the reactive species, Ru(bpy)3
3+, can be generated from Ru(bpy)3

2+ by oxidation. 

Ru(bpy)3
3+ can react with analytes containing tertiary, secondary and primary alkyl amine 

groups to form the excited state Ru(bpy)3
2+∗, which will decay to the ground state emitting 

yellow-orange light.29 Thus, in ECL reactions, ruthenium complexes are regenerated after 

light emission, making ECL methodology reusable and highly interesting from an analytical 

point of view. 

1.3.3. Electrogenerated chemiluminescence 

ECL is a controllable form of chemiluminescence where light emission is initiated by an 

electron transfer-reaction occurring at an electrode surface. The most common system used 

for analytical purposes consists of the luminophore species Ru(bpy)3
2+, or one of its 

derivatives, with tri-n-propylamine as a co-reactant. ECL reaction can be controlled and 

manipulated, since ECL reagents are generated in situ at the electrode by sweeping the 

applied potential, generally in cyclic voltammetry or chronoamperometry. The activated 

species formed upon the oxidation of both luminophore and co-reactant, further react together 

to form the excited state Ru(bpy)3
2+∗ and thus the ECL emission. Actually, the intimate 

mechanism of presented ECL reaction is much more complex, and is still an active area of 

investigation.34-37 Proposed mechanisms in the litterature will be presented in details in 

paragraph 1.4. 

 

1.4. ECL mechanisms  

The annihilation and co-reactant pathways are the two main pathways through which ECL can 

be generated. Although the analytical usefulness of co-reactant based ECL has been 

recognized and exploited to great extent, the first ECL study reported in the literature was 

based on ion annihilation ECL.  



16 
 

1.4.1. Organic ion annihilation ECL  

High energy electron transfer reactions between electrochemically generated radical ions of 

aromatic hydrocarbons or their derivatives, produced by a potential step or sweep, are 

accompanied by the light emission due to the relaxation of excited species.1,2 Because of the 

solubility of aromatic hydrocarbons, these reactions are performed in organic solvents, in the 

presence of a supporting electrolyte such as tetrabutylammonium salt. The general mechanism 

is following:  

                         A   +   e-   →   A·- reduction                                                 (3) 

                         B   -   e-   →   B·+   oxidation                                        (4) 

followed by either  

                          A·-   +   B·+   →   1A*   +   B         Electron transfer                       (5) 

or                      

   A·-   +   B·+   →   3A*   +   B       Electron transfer                       (6) 

                       3A*   +   3A* →   1A*   +   A      Triplet-triplet annihilation                     (7) 

ending by                                                      

                         1A*   →   A   +   hν                     light emission                               (8) 

where A is an aromatic hydrocarbon and B is either the same or another aromatic 

hydrocarbon, 1A* is the singlet excited state and 3A* is the triplet excited state. If the potential 

of the working electrode is quickly changed between two different values, species A can be 

oxidized to A·+ (Eq. 3) and B reduced to B·- (Eq. 4) at the same electrode. These species react 

in the Nernst diffusion layer and form an excited state A* and thus produce the light emission 

(Eq. 8).2 Depending on the energy available in the annihilation reaction, the produced A* can 

be either in the lowest exited singlet state 1A* or in the triplet state 3A*. In systems with 

sufficient energy, the light emission process is defined as ‘‘S-route’’ (excited singlet 

formation (3) - (5)). Most ECL systems based on aromatic compounds follow this mechanism. 

From the redox potential in Eq. 3 and 4, the enthalpy which is directly related to the energy 

available in Eq. 5 can be calculated (Eq. 9)1 by: 

-ΔHann = ΔG + TΔS = Ep (A/ A·+) - Ep (A/ A·-) – 0.16                                           (9) 
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–ΔHann (in eV) is the enthalpy for ion annihilation, Ep is the peak potential for electrochemical 

oxidation or reduction. The value of 0.16 eV is the entropy approximation term (TΔS) 

estimated to be ~0.1 eV with an addition of 0.057 eV resulting from the difference between 

two reversible peak potentials of the redox reaction.1,38 If the enthalpy of annihilation is larger 

than the energy required to produce the lowest excited singlet state (Es), it is possible to 

directly generate 1A*, which is the case for ‘‘S-route’’.  

In contrast, in lower energy systems, the triple state energy 3A* will be first produced (Eq. 7). 

From subsequent annihilation of 3A* (triplet–triplet annihilation), 1A* will be generated, and 

this reaction is said to follow the ‘‘T-route’’. This means that –ΔHann is smaller than the 

energy of singlet excited state Es, but larger than the energy of triplet excited state (Et)
3. 

Emission from the triplet state is rarely seen because transition from triplet to the lower 

singlet energy state is quantum-mechanically ‘‘forbidden’’. 

One of the first ECL system reported represents a classic example of energy sufficient system 

(‘‘S-route’’) and it involves 9,10-diphenylanthracene (DPA) in dimethylformamide (DMF) by 

applying alternating potential.23 In the first experiments, the working electrodes were 

platinum coaxial helices or parallel pairs of gold foils. During potential changes DPA was 

oxidized and reduced. Formed DPA·+  and   DPA·-  react together, resulting in light emission.  

DPA   -   e-   →   DPA·+    Ep(DPA/ DPA·+) = +1.25 vs. SCE                  (10) 

DPA   +   e-   →   DPA·-  Ep(DPA/ DPA·-) = -1.95 vs. SCE                  (11) 

DPA·+   +   DPA·-   →   DPA   +   DPA*                       (12) 

DPA*      →   DPA   +   hν                       (13) 

The anodic and cathodic processes of DPA have been characterized by cyclic voltammetry 

showing the reduction peak at -1.95 V vs SCE and oxidation peak at +1.25 V vs. SCE. 

According to these results by applying equation (9), the enthalpy for the electron-transfer 

reaction can be calculated as 3.04 eV. When we compare this value with the energy of emitted 

light at 435 and 410 nm (2.85 and 3.02 eV), we can see that the emitting state is directly 

accessible.1 DPA* can be populated directly in the reaction so it follows S-route. 

A typical example of triplet–triplet annihilation (‘‘T-route’’) is the ECL of DPA/TMPD 

(TMPD = N,N,N0,N0-tetramethyl-p-phenylenediamine) system, generated from two different 
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precursors. ECL is achieved via a “cross-reaction” between the anion radical of DPA and the 

cation radical of N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) in DMF:39-41 

DPA   +   e-   →   DPA·-  Ep(DPA/ DPA·-) = -1.89 vs. SCE                   (14) 

TMPD   -   e-   →   TMPD·+    Ep(TMPD/ TMPD·+) = +0.24 vs. SCE                  (15) 

DPA·-   +   TMPD·+   →   DPA*   +   TMPD                       (16) 

DPA*      →   DPA   +   hν                        (17) 

The enthalpy for the electron-transfer reaction is 1.97 eV which is less than required to reach 

the emitting single state for DPA (3.02 eV). However, the emitted light generated via ECL is 

identical to DPA photoluminescence indicating that DPA* is the ultimate product of charge 

transfer.40 As a result, the singlet exited state is not accessible directly, but only via triplet-

triplet annihilation where the energy from two electron-transfer reaction is pooled to provide 

sufficient energy (Eq. 18).42 

DPA·-   +   TMPD·+   →   3DPA*   +   TMPD                                         (18) 

3DPA*   +   3DPA*   →   1DPA*   +   DPA                                           (19) 

If the enthalpy of the electron-transfer reaction is marginal compared to the energy of singlet 

excited state, the T-route can contribute to the formation of 1A* in addition to the S-route, so 

called ST-route. A common example is the rubrene anion-cation annihilation.43 

 

 

 

 

 

 

 

Figure 3. Energy level diagram for DPA-DPA and TMPD-DPA ECL systems.4  
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Despite being frequently used in light-emitting electrochemical cells (LECs) and the most 

studied case of ECL, regarding the mechanism and the nature of the excited state, annihilation 

ECL has not found significant application in direct analysis.3 Mostly, this is due to the fact 

that these reactions take place in organic solvents, such as acetonitrile, dimethyl-sulfoxide or 

methylene-chloride. While working in aprotic solvents, the potential window proceed the 

electrochemical reactions should be wide enough (from ~3.3 to 2 V) (eq. 9), so that water and 

dissolved oxygen must be rigorously excluded to prevent quenching of the ECL reaction. 

Thus, cells and electrodes have to be constructed to allow transfer of solvent and degassing on 

high-vacuum line or in inert-atmosphere (glove-boxes).2 Furthermore, generation of both 

radicals (anion and cation) at the electrode surface are required. For singlet systems, parent 

species in this type of reactions must undergo both oxidation and reduction within a potential 

range that is accessible in the employed solvent. Once formed, the radical ions must be 

sufficiently long-living to allow them to diffuse, encounter each others, and undergo electron 

transfer.  

1.4.2. Inorganic annihilation ECL 

The most studied and exploited inorganic ECL-generating compound to date is ruthenium(II) 

tris(2,2’-bipyridine), Ru(bpy)3
2+, although a broad range of inorganic complexes and clusters 

have been shown to generate ECL.44 The reason lies in fact that it can undergo ECL in 

aqueous buffered solutions at easily attainable potentials at room temperature with very high 

efficiency. The compound exhibit ECL following ‘‘S-route’’, analogous to that of aromatic 

hydrocarbons above, as follows: 

Ru(bpy)3
2+  + e-   →   Ru(bpy)3

+     Electro-reduction (20) 

Ru(bpy)3
2+   -  e-   →   Ru(bpy)3

3+     Electro-oxidation (21) 

Ru(bpy)3
3+    +   Ru(bpy)3

+   →    Ru(bpy)3
2+∗  +  Ru(bpy)3

2+ Electron transfer (22)  

Ru(bpy)3
2+∗   →    Ru(bpy)3

2+ +   hν     Light emission (23)  

But its analytical usefulness stems from the fact that compounds which can act as a chemical 

reductant and replace the electro-reduction step are potential analytes, producing ECL at a 

single anode.  
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1.5. Co-reactant pathway 

Co-reactant ECL technology is an essential part of all commercially available ECL analytical 

instrumentations. Finding new co-reactants with a high ECL efficiency for bioassays is a 

constant driving force in this area. The co-reactant route is an electrochemical (E) step 

followed by a chemical (C) one, which can be consider as an EC process. The co-reactant is a 

deliberately introduced species that, upon its oxidation or reduction, reacts with ECL 

luminophores to produce the excited state. Distinct from ion annihilation ECL, coreactant 

ECL is more comfortable for work not only in aqueous media but also in physiological 

conditions (pH ~ 7.4). Thus most of the applications of ECL are based on co-reactant ECL. 

The main advantage over annihilation ECL which demands generation of both oxidized, A·+ 

and reduced, B·-, is that the co-reactant pathway follows electron transfer between either A·+ 

or B·- and the co-reactant. As a result, ECL emission features a single, unidirectional potential 

step where reagents are only oxidized or reduced. Depending on the polarity of the applied 

potential, both luminophore and co-reactant can be first oxidized or reduced at the electrode 

leading to anodic and cathodic ECL emission, respectively. The intermediate-formed radicals 

then decompose and provide a powerful reducing or oxidising species. These species react 

with the oxidized or reduced luminophore to produce the excited state that emit light.1 Thus, 

ECL can be simply designed as “oxidative-reduction” for anodic ECL emission and 

“reductive-oxidation” for cathodic ECL emission (detailed in paragraph 1.5.1.1. and 1.5.1.2., 

respectively).  

Taking into account a one potential step generation, co-reactant ECL is more easily applicable 

than annihilation ECL. First of all, it facilitates the generation of ECL in aqueous solution, 

opening up a wide range of opportunities for the use of ECL in chemical analysis. There is no 

need for wide potential window so other solvents with a narrow potential window and 

aqueous solution can be also used. Secondly, the oxygen quenching effect does not influence 

strongly the ECL signal, so ECL analysis can be still effective without degassing. Finally, the 

use of co-reactant can makes ECL possible even for some fluorophores that have only a 

reversible electrochemical oxidation or reduction while annihilation ECL requires both of 

them. 
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1.5.1. ECL co-reactants-based systems and their mechanisms 

An ECL co-reactant is a reagent that after oxidation or reduction can decompose forming 

highly reactive oxidative or reductive species which can undergo energetic electron-transfer 

reaction with oxidised or reduced luminophore to generate ECL, as explained in the above 

paragraph. 

To find an efficient ECL co-reactant, a number of criteria need to be met which include 

solubility, stability, electrochemical properties, kinetics, quenching effect, ECL background 

etc.45 

Some typical ECL co-reactants are shown in Table 1. 

Table 1. Typical co-reactant ECL systems 

Type of co-reactant ECL Luminophore Co-reactant  

main co-reactant 

intermediate 

  Ru(bpy)3
2+ oxalate CO2

·- 

Oxidative reduction Ru(bpy)3
2+ pyruvate CH3CO· 

 

Ru(bpy)3
2+ tri-(n)-propylamine TPrA·+, TPrA· 

    

 

Ru(bpy)3
2+ hydrazine N2H2,  N2H3

· 

Reductive-oxidation  Ru(bpy)3
2+ persulfate SO4

·- 

 

aromatic 

hydrocarbons benzoyl peroxide PhCO2
· 

  Ru(bpy)3
2+ hydrogen peroxide OH· 

 

The first report that upon mixing Ru(bpy)3
3+ and aliphatic amines, the generation of light via 

CL reaction has been shown by Noffsinger and Danielson.24 The reaction was explained by 

oxidation of aliphatic amines by Ru(bpy)3
3+ leading to the formation of short lived radical 

cation which then loses a proton giving a free radical. This free radical can then reduce 

Ru(bpy)3
3+ to the excited state Ru(bpy)3

2+∗. Following this work and the idea that reactants in 

the presented reaction can be electrochemically generated, Leland and Powell reported a new 

ECL reaction based on TPrA and Ru(bpy)3
2+.5 The experiment was carried out on a gold 

electrode in a buffer solution of TPrA and Ru(bpy)3
2+ at physiological pH by recording the 

ECL curve and cyclic voltammograms, simultaneously. Further, a lot of work has been done 
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to correlate the co-reactant ECL efficiency with the amine structure. An important condition 

that should be met is that amine should have a hydrogen atom attached to the α-carbon so that 

upon oxidation newly formed radical can undergo reaction of deprotonation to form a strongly 

reducing free radical species. In general, it was found that ECL intensity increases following 

the order : primary < secondary < tertiary amines.5, 24,63,86  The efficiency of all other ECL 

systems are compared with the efficiency of Ru(bpy)3
2+/ TPrA system, thus it can be 

considered as an ECL standard.   

   

1.5.1.1. Oxalate (Ru(bpy)3
2+/ C2O4

2-) System, example of oxidative-reduction ECL 

Bard and co-workers discovered oxalate ion as the first ECL co-reactant.28,46-50 They 

demonstrated that silica nanoparticles (SiNPs) could achieve a higher ECL emission upon 

adding an excess of C2O4
2-. The first experiments were performed in acetonitrile and later in 

aqueous solutions.  

In an aqueous solution, Ru(bpy)3
2+ is first oxidised to Ru(bpy)3

2+ cation after applying the 

anodic potential, it is therefore an example of “oxidative-reduction” ECL. The cation is then 

capable to oxidize the oxalate (C2O4
2-) in the diffusion layer close to the electrode surface and 

to form an oxalate radical anion (C2O4
·-). C2O4

·- decomposes to form the highly reducing 

radical anion CO2
·- and carbon dioxide. In this reaction, the excited state is produced via 

direct reduction of Ru(bpy)3
3+  by the radical CO2

·-, but also, a second mechanism via 

annihilation may occur. The ECL mechanism of this system is presented as follow: 

Ru(bpy)3
2+    →    Ru(bpy)3

3+    +   e                  (24) 

Ru(bpy)3
3+    +   C2O4

2-   →    Ru(bpy)3
2+   +   C2O4

·-                (25) 

C2O4
·-   →   CO2

·-   +   CO2                    (26) 

Ru(bpy)3
3+   +   CO2

·-   →    Ru(bpy)3
2+∗   +   CO2                 (27) 

Ru(bpy)3
2+    +   CO2

·-   →    Ru(bpy)3
+  +   CO2                 (28) 

Ru(bpy)3
3+    +   Ru(bpy)3

+   →    Ru(bpy)3
2+∗   +   Ru(bpy)3

2+               (29)  

Ru(bpy)3
2+∗ →    Ru(bpy)3

2+   +   hν                  (30)  
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In the previous case, oxalate species was oxidized by a catalytic way. In acetonitrile oxalate 

may be oxidised directly on the electrode surface, thus the mechanism is more simple.28 The 

oxalate (C2O4
2-) is oxidised to oxalate radical anion (C2O4

·-) that decomposes to a reducing 

radical anion (CO2
·-) which then reacts with Ru(bpy)3

3+ to form the excited states. 

Ru(bpy)3
2+    -   e-   →    Ru(bpy)3

3+                                     (31) 

C2O4
2-   -   e-   →    C2O4

·-                           (32) 

C2O4
·-   →   CO2

·-   +   CO2                           (33)   

Ru(bpy)3
3+    +   CO2

·-   →    Ru(bpy)3
2+∗   +   CO2                        (34) 

 

1.5.1.2. Peroxydisulfate (Ru(bpy)3
2+/ S2O8

2-) System, example of reductive-oxidation 

ECL 

Persulfate is the first example of a so-called “reductive-oxidation” co-reactant ECL 

system produced by applying a cathodic potential.51 Since Ru(bpy)3
+ is unstable in aqueous 

solutions while (NH4)2S2O8 has a low solubility in acetonitrile and reduction reaction is 

accompanied with serious hydrogen evolution, the reaction was carried out in acetonitrile-

H2O mixed solution. Upon the application of cathodic potential S2O8
2- can be reduced directly 

at the electrode surface but also catalytically by Ru(bpy)3
+ forming S2O8

·3- , that decomposes 

to intermediate SO4
·- with a strongly oxidising capacity.45 The radical then oxidises Ru(bpy)3

+ 

to the excited state Ru(bpy)3
2+∗ or Ru(bpy)3

2+ to Ru(bpy)3
3+ that undergo annihilation giving 

Ru(bpy)3
2+∗. 

Ru(bpy)3
2+    +   e-   →    Ru(bpy)3

+             (35) 

S2O8
2-   +   e-   →    S2O8

·3-              (36) 

Ru(bpy)3
+   +   S2O8

2-   →  Ru(bpy)3
2+    + S2O8

·3-           (37) 

S2O8
·3-   →   SO4

2-   +   SO4
·-              (38) 

Ru(bpy)3
+   +   SO4

·-   →   Ru(bpy)3
2+∗    +   SO4

2-           (39) 

Ru(bpy)3
3+   +   SO4

·-   →   Ru(bpy)3
3+    +   SO4

2-           (40) 
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Ru(bpy)3
2+    +   Ru(bpy)3

+   →   Ru(bpy)3
2+∗    +   Ru(bpy)3

2+      (41) 

 

1.5.1.3. Tri-n-propylamine / Ru(bpy)3
2+ System, the model ECL system 

Among organic amines, TPrA is a model co-reactant for anodic ECL systems through 

‘‘oxidative-reduction’’ pathway. 5,29 The system composed of Ru(bpy)3
2+, or its derivatives, 

with TPrA as co-reactant exhibits high ECL efficiency and has become the commercial 

benchmark for ECL immunoassays and DNA analysis.1,6,45 Understanding the complex 

mechanism of ECL reaction is a dynamic area of research.5,29,34,35,37,52-54 According to the first 

report of the ECL emission from Ru(bpy)3
2+/ TPrA tandem by Leland and Powell and some 

later works, the proposed mechanism can be represented by the following reactions: 5,52,55  

Acid-base equilibrium:  

Pr3N
+H → NPr3 + H+                                                                          (42) 

Oxidation step: 

Ru(bpy)3
2+   -   e-   →   Ru(bpy)3

3+                  (43) 

NPr3   -    e
- →   Pr3N

·+                              (44) 

Ru(bpy)3
3+   +   NPr3   →   Pr3N

·+                  (45) 

Deprotonation:  

Pr3N
·+ → H+ + Pr2NC·HEt ↔ Pr2N

·=CHEt                                      (46) 

Excited state formation 1: 

Ru(bpy)3
3+ + Pr2N

·=CHEt → Ru(bpy)3
2+∗ + Pr2N

+=CHEt               (47) 

Light emission:  

Ru(bpy)3
2+∗→ Ru(bpy)3

2+ + hν                                                         (48)  

(Where Pr = CH3CH2CH2- and Et = CH3CH2-)              

The experiment was carried out on a gold electrode in a buffer solution of TPrA and 

Ru(bpy)3
2+.56 In aqueous Ru(bpy)3

2+ ECL analysis, the optimum pH value of the TPrA buffer 
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solution is usually about 7-8. In anodic part of the scan, both Ru(bpy)3
2+ and TPrA (NPr3) are 

oxidised (Eqs. 43-44). The oxidation of TPrA results in a broad wave due to preceding acid-

base equilibrium (Eq. 42) (pKa of ~10.4).54 Comparing the ECL curve and cyclic 

voltammogram recorded simultaneously, they concluded that ECL emission also tracks the 

current for the oxidation of TPrA. Upon oxidation, the short-lived TPrA radical cation 

(TPrA·+) is losing a proton from an α-carbon to form the strongly reducing intermediate TPrA· 

(Eq. 44), and then reduces Ru(bpy)3
3+ to the excited state Ru(bpy)3

2+∗ (Eq. 45). Despite it can 

be oxidised directly on the electrode surface (Eq. 44), oxidation via catalytic route involving 

homogeneous oxidation of TPrA with Ru(bpy)3
3+, can take place (Eq. 45). The relative 

contribution of both routes depends on relative concentration of Ru(bpy)3
2+ and TPrA and 

factors that affect the potential and rate of direct oxidation of TPrA at the electrode.52,46  

Further, highly reactive intermediate TPrA· can also reduce present Ru(bpy)3
2+ forming 

Ru(bpy)3
+ which can then react by annihilation pathway with Ru(bpy)3

3+ producing excited 

state Ru(bpy)3
2+∗, as discussed in paragraph 1.3.2. 

Excited state formation 2:  
 

Ru(bpy)3
2+   +   Pr2N

·=CHEt →  Ru(bpy)3
+    +   Pr2N

+=CHEt        (49) 

Ru(bpy)3
3+   +   Ru(bpy)3

+   →   Ru(bpy)3
2+∗   +   Ru(bpy)3

2+        (50)  

The contribution of this process to the overall ECL intensity depends upon the 

Ru(bpy)3
2+concentration and is not favored when Ru(bpy)3

2+ concentrations are low. It was 

found that in the case of low concentration of Ru(bpy)3
2+ (nM-µM) and high concentration of 

TPrA (10-100 mM) the ECL emission vs potential curves showed two waves.34 The second 

peak appears at the potential which corresponds to the oxidation of Ru(bpy)3
2+ but the first 

one could not be explained by mechanisms which consider only direct oxidation of 

Ru(bpy)3
2+ at the electrode surface.34,52 

Miao and Bard proposed a new mechanistic route considering the ECL emission at low 

oxidation potential.34 The process occurs with the direct oxidation of TPrA at the electrode to 

generate TPrA·+ and TPrA·. The subsequent reaction between TPrA· and Ru(bpy)3
2+ 

generates Ru(bpy)3
+, which then reacts with TPrA·+ to form the excited state Ru(bpy)3

2+∗. 

The initial ECL signal started at potential that is just positive enough to directly oxidize TPrA 

at the GC electrode while the second ECL signal occurs in the potential region of direct 
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oxidation of Ru(bpy)3
2+ at a GC electrode.34,52 It was found that dissolved O2 could influence 

the ECL intensity when low concentrations (< 20 mM) of TPrA are used which is particularly 

remarkable for the first ECL wave.52 This behavior can be readily explained on the basis of 

the ECL mechanisms described above. A large excess of intermediate reducing radicals, 

TPrA·
, was produced at high concentration of TPrA, and the dissolved O2 within the ECL 

reaction layer was completely reduced by these radicals and exerted no quenching effect on 

the emission. However, at low TPrA concentration, co-reactant oxidation generated a 

relatively small amount of reducing intermediates, and O2 acted as an quencher, destroying 

the intermediates before they participated in the ECL pathways, which led to the obvious 

reduction of the emission intensity.  

To summarise, the excited state of Ru(bpy)3
2+ can be produced via three different routes: 1) 

Ru(bpy)3
3+ reduction by TPrA·; 2) the Ru(bpy)3

3+ and Ru(bpy)3
+ annihilation reaction, and 

3) Ru(bpy)3
+ oxidation by TPrA·+ radical cation:  

 

1) Ru(bpy)3
3+    +   TPrA·    

2) Ru(bpy)3
3+    +   Ru(bpy)3

+                           Ru(bpy)3
2+∗ + products 

3) Ru(bpy)3
+    +   TPrA·+    

 

The ECL intensity of both waves depends on different experimental conditions. pH is a 

crucial parameter in the ECL mechanism. Indeed, ECL is known to be effective at pH > 5.5, 

with a maximum intensity at pH 7.5. Solution pH should be sufficiently high to promote 

deprotonation of TPrA·+ to TPrA·.1 However, pH value should not be higher than 9 because 

TPrA is insoluble and generated Ru(bpy)3
3+ on the electrode surface can react with hydroxide 

ions and to produce ECL background signal.45  

Direct oxidation of TPrA strongly depends on electrode material. On GC electrode, direct 

oxidation is evident while on Au and Pt electrodes, the formation of surface oxides can block 

it significantly.52 Therefore, the enhancement of the TPrA oxidation might lead to an increase 

in the ECL intensity. The electrode hydrophobicity has also effect on direct TPrA oxidation 

and ECL intensity. It was found that addition of some non-ionic surfactants such as Triton X-

100 can significantly increase ECL intensity on Pt and Au electrodes.57-60 The mechanism of 

the surfactant effect appears to involve the adsorption of surfactant on the electrode surface, 
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which can make the electrode surface more hydrophobic and thus facilitates the direct 

oxidation of TPrA. 

The ECL intensity of the first and second waves was found to be proportional to the 

concentration of both Ru(bpy)3
2+ and TPrA in a very large dynamic range 5,34,52-54 with 

detection limits of 0.5 pM for  Ru(bpy)3
2+  61 and 10 nM TPrA62,63 being reported. Such 

performances allow to this system to find numerous analytical applications. 

   

   1.5.1.4. 2-(dibutylamino)ethanol / Ru(bpy)3
2+  System 

As the Ru(bpy)3
2+/ TPrA system gives strong ECL response, most of the applications and 

commercial systems are base on it. Recently, a new co-reactant, 2-(dibutylamino)ethanol 

(DBAE), has been reported.64 The ECL intensity of the Ru(bpy)3
2+/DBAE system at Au and 

Pt electrode was found to be almost 10 and 100 times greater than with Ru(bpy)3
2+/ TPrA 

system, respectively. The very strong ECL efficiency was attributed to the catalytic effect of 

hydroxyethyl group toward the direct oxidation of DBAE at the electrode. Since DBAE is an 

aliphatic tertiary amine structurally similar to TPrA, it has been proposed to follow 

mechanisms analogous to TPrA with the formation of radical cation DBAE●+ and the 

reducing intermediate DBAE● by deprotonation.65  

Ru(bpy)3
2+-   e-   →   Ru(bpy)3

3+                        (51) 

DBAE  - e  →  DBAE●+                                               (52) 

DBAE●+  →  DBAE● + H+                                               (53) 

DBAE●+ + Ru(bpy)3
3+  →   Ru(bpy)3

2+∗    +   products                          (54) 

Ru(bpy)3
2+∗  →  Ru(bpy)3

2+ + hν                                              (55) 

DBAE is less toxic, more soluble and less volatile than TPrA and it could be promising co-

reactant for ECL immunoassays and DNA probe assays.66 The mechanism of Ru(bpy)3
2+/ 

DBAE system will be discussed in details in Chapter 2.37  
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1.5.2. ECL Luminophores 

In general, the luminophores that are used in ECL systems can be classified into three 

categories: 1) inorganic systems, which mainly contain organometallic complexes; 2) organic 

systems, which include polycyclic aromatic hydrocarbons (PAHs); and 3) semiconductor 

nanoparticle systems.  

As discussed in paragraph 1.4.2., Ru(bpy)3
2+ is the first inorganic complex that shows ECL. 

Because of its excellent chemical, electrochemical and photochemical properties, it is still the 

most used ECL luminophore. Ru(bpy)3
2+ is soluble in a variety of aqueous and non-aqueous 

solvents at room temperature. It has ability to undergo reversible one electron-transfer 

reactions at mid potentials.2 

Ru2+

N

N

N

N

N

N

2+

 

Figure 4. Structure formula of Ru(bpy)3
2+ 

To improve the light emission and the electron transfer performances, a lot of efforts were 

made to design or modify the ligands of the complex.67 As the work of this thesis is not 

focused on finding and improving the ECL luminophore efficiency, the different examples 

will not be discussed in details, but some basics in the field are presented.    

Ru(bpy)3
2+ is a yellow-orange coloured complex (λabs = 454 nm, λem = 607 nm).57 Ru2+ is a d6 

system with electron configuration [Kr] 4d6. In Ru(bpy)3
2+, it is surrounded with three 

bidentate polypyridine ligands that are usually colorless molecules possessing σ-donor 

orbitals localised on the nitrogen atoms and π-donor and π*-acceptor orbitals more or less 

delocalised on aromatic rings.58 Figure 5 shows a simplified representation of the electronic 

situation for a d6 complex (such as Ru(II)) in an octahedral microsymmetry (D3).  
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One electron excitation from a πM metal orbital to the π*L ligand orbitals gives rise to metal-

to-ligand charge transfer (MLCT) excited states, whereas promotion of an electron from πM to 

σM orbitals gives rise to metal centered (MC) excited states. Ligand centered (LC) excited 

states are obtained by promoting an electron from πL to π*L.58, 59 

 

 

 

 

 

 

 

Figure 5. Simplified molecular orbital diagram for Ru(LL)z+ complexes in octahedral 

symmetry showing the three types of electronic transitions occurring at low energies. 

 

The MC excited states of d6 octahedral complexes are strongly displaced with respect to the 

ground state geometry along metal-ligand vibration coordinates. When the lowest excited 

state is MC, it undergoes fast radiationless deactivation to the ground state and/or ligand 

dissociation reactions. As a consequence, at room temperature, the excited state lifetime is 

very short and no luminescence emission is observed.58 LC and MLCT excited states are 

usually not strongly displaced compared to the ground state geometry. Thus, when the lowest 

excited state is LC or MLCT, it does not undergo fast radiationless decay to the ground state 

and luminescence can usually be observed, except at high temperature when thermally 

activated radiationless deactivation via upper lying MC excited states can occur. The radiative 

deactivation rate constant is somewhat higher for 3MLCT than for 3LC because of the larger 

spin-orbit coupling effect (shift in an electron’s atomic energy levels due to electromagnetic 

interaction between the electron's spin and the magnetic field generated by the electron's orbit 

around the nucleus). For this reason, the 3LC excited states are longer living at low 

temperature in rigid matrix and the 3MLCT excited states are more likely to exhibit 

luminescence at room temperature in solution where the lifetime of 3LC and 3MLCT is 

http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Energy_level
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shortened by activated surface crossing to short lived MC excited states or by bimolecular 

quenching processes.58 

Ru(bpy)3
2+, as the most used luminophore, is involved in a wide range of applications and it 

is often immobilised on the electrode surface, but it can be applied in the solution also. The 

ECL detection with TPrA as co-reactant is especially important because it allows efficient 

ECL not only in aqueous media but also at physiological pH (~7.4).38, 60-64 By attaching 

suitable groups to bipyridine moieties, Ru(bpy)3
2+ can be linked to biologically interesting 

molecules such as antibodies where it serves as a label for analysis. Some examples usually 

exploited for ECL labelling in clinical diagnostic assays are presented on Figure 6.  

 

 

Ru2+

N

N

N

N

N

N

O

P

O

N

OH

2+

 

Figure 6. (Top) Ru(bpy)3
2+- NHS ester for ECL labelling of biological molecules, (bottom) 

Ru(bpy)3
2+- phosphoramidate linker for ECL for DNA and RNA.9 
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This ECL complex can directly detect different co-reactants such as amines, oxalate, 

pyruvate, peroxydisulfate, etc. but also for indirect detection of analytes that do not have co-

reactant properties.1,2,65 Some analytes are detected after enzymatic reaction which involves 

transformation of NAD+ to NADH acting also as a co-reactant.66-69 Ru(bpy)3
2+-based ECL 

systems find good applications in flow systems such as high performance liquid 

chromatography (HPLC)70, capillary electrophoresis (CE)14, 15, 17 and flow injection analysis 

(FIA).71 

Even if the majority of ECL applications are based on Ru(bpy)3
2+ or its derivates like a 

luminophore, other complexes can act as efficient ECL luminophores. Many metal complexes 

and clusters have electrochemical and spectroscopic qualities required for an ECL emitter. 

The ECL of complex or clusters containing Ag, Al, Au, Cd, Cr, Cu, Eu, Hg, Ir, Mo, W, Os, 

Pd, Pt, Re, Ru, Si, Tb, and Tl have been reported.2 

The first reported osmium complex used in ECL was Os(phen)3
2+. The ECL was obtained in 

DMF with S2O8
2- as co-reactant.68 The development of osmium based systems would be 

advantageous because osmium systems are more photostable and usually oxidise at less 

anodic potentials than analogues ruthenium systems. However, the ECL application of 

osmium systems has been limited because of shorter excited state lifetimes and weaker 

emission efficiencies.69 

Complexes of iridium are also able to emit ECL. Depending on the structure, some of them 

are extremely efficient such as (pq)2Ir(acac)/TPrA (pq: 2-phenylquinoline, acac: 

acetylacetonate) which shows 77 times higher ECL efficiencies with TPrA as co-reactant than 

Ru(bpy)3
2+ under the same conditions.70 But, ECL of Ir(ppy)3 that was reported using TPrA as 

co-reactant shows weaker ECL emission then of Ru(bpy)3
2+ under similar conditions. 

However, Ir(ppy)3 has green emission and its maximum compare to emission maximum of 

red/orange Ru(bpy)3
2+ is far enough so that it is possible to distinguish both signals in the 

single ECL experiment.71 Considerable attention has been focused on controlling the emission 

color, with the prospect of simultaneously detecting multiple, spectrally distinct 

electrochemiluminophores for multi-analyte quantification or internal standardization.72-76 

Moreover, an important issue remains synthesis of water soluble Ir complexes with high yield.  

Since ECL of silicon nanoparticles (NPs) was reported in 2002, miscellaneous 

nanomaterials with various sizes and shapes have been employed as ECL nanoemitters for 

bioanalysis. It was found that semiconductor NPs, (also known as quantum dots and 
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abbreviated QDs) can be involved in ECL reaction following both annihilation and co-

reactant ECL pathways.77,78 Semiconductor nanoparticles have excellent luminescent 

properties including high quantum yields, stability against photobleaching and size-controlled 

luminescence properties. Additionally, the biocompatibility and low cost make them an 

attractive material for these applications.6 The ECL study of NPs was first reported for Si 

nanoparticles. Later, it was found that many semiconducting particle,  such as CdS, CdSE and 

CdTe, can also produce ECL that can be electrochemically excitable in both nonaqueous79 

and aqueous media80. A common feature of ECL behavior obtained from NPs is their red-

shifted ECL maxima compare to their photoluminescence, suggesting that the emitting states 

are different.1 This was explained by the fact that photoluminescence response appears from 

electron transfer mainly from the interior of particles while the ECL occurs at the surface 

where the surface chemistry has greater influence. ECL of water soluble CdTe NPs has been 

recently reported where it was shown that the size of NPs has an influence on the ECL 

behaviour.81 As finding new luminophores with a high ECL efficiency for bioanalysis is the 

constant driving force of this area, the family of nanoemitters for ECL has been enlarged from 

exclusively QDs to other miscellaneous nanomaterials in recent years, with various 

compositions, sizes and shapes, including metallic nanoclusters,82 carbon nanodots,83 metallic 

oxide semiconductors,84 and even organic nanoaggregates.85,86 

 

1.6. ECL applications 

Because of very high sensitivity, good selectivity, insensitivity to matrix effects and high 

dynamic range ECL is a robust detection methodology.87 It is widely used in clinical 

diagnostics, environmental assay such as food and water testing and biowarfare agent 

detection. Due to high ECL efficiency, the majority of ECL detection systems involve the 

Ru(bpy)3
2+ luminophore or its derivatives and TPrA or other related amines as co-reactant.88  

The analytical application is based on the fact that ECL intensity is proportional to the 

concentration of the ECL luminophore or of concentration of co-reactant, depending on the 

case. If ECL experiments are carried out in the presence of high and constant concentration of 

co-rectant, ECL intensity will linearly depend on the concentration of ECL emitter in a wide 

dynamic range. Alternatively, if the experiments are running in the presence of constant 

Ru(bpy)3
2+ concentration, ECL signal will show dependence on the co-reactant concentration.  
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1.6.1. Applications in assays and commercialised ECL systems   

The most common and most important commercial applications of ECL are in diagnostic 

assays. Immunoassays based on ECL detection have several advantages over other 

immunoassay techniques. No radioactive isotopes are used, thus reducing the problems of 

sample storage, handling and disposal. The ECL labels are extremely stable, having shelf-

lives in excess of 1 year at room temperature. The detection levels are extremely low at sub-

picomole, since each label can emit several photons per measurement cycle, and the linear 

dynamic range extends over 6 or more orders of magnitude. Also, their small size allows 

multiple labelling of the same molecule without affecting the immunoreactivity or 

hybridisation of the probes. 

A large number of biomolecules such as proteins, DNAs and peptides have no co-reactant 

functionalities or they can give very poor ECL signal. Thus, their ECL detections are mainly 

carried out with solid phase ECL assay formats in which biomolecules linked with ECL 

labels, usually Ru(bpy)3
2+ or its derivates, are immobilised on a solid substrate and ECL is 

generated in the presence of a co-reactant, typically TPrA. A lot of works have been done and 

a lot of commercial systems have been developed for immunoassay and DNA detection. 

Sensitive and selective detection of DNA hybridisation has a great importance in genetic 

disease screening. An ultrasensitive DNA hybridisation detection method based on ECL using 

polystyrene microspheres/beads (PSB) as the carrier of the ECL label tris(2,2'-

bipyridyl)ruthenium(II) tetrakis (pentafluorophenyl)borate (Ru(bpy)3-[B(C6F5)4]2) has been 

reported.36 With this approach, the ECL intensity was found to be linearly proportional to the 

DNA concentration in a range of 1.0 fM to 10 nM under optimised conditions.  

The ECL system can also be used for protein detection. For example, anti-C-reactive protein 

(CRP), an acute-phase protein find in human serum, can be determined by a sandwich-type 

immunoassay which uses ECL as a readout mechanism. Biotinylated CRP species were 

attached to the surface of streptavidin-coated magnetic beads (MB) and avidin-coated 

polystyrene microspheres/beads (PSB) entrapping a large number of ECL labels (Ru(bpy)3-

[B(C6F5)4]2) to form anti-CRP↔MB and Ru(II)-PSB/avidin↔anti-CRP to form a sandwich-

type binding in the presence of analyte CRP.89 The ECL intensity was found to be 

proportional to the analyte CRP over the range of 0.010-10 μg/mL. 
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The sandwich format is widely used in immunoassays based on recognition properties and 

antibody/antigen binding. A bead-based platform that exploits ECL to detect three antigens 

simultaneously has been reported.11 The surface of the microspheres loaded into the wells of 

an electrode were modified with capture antibodies. Microspheres with different antibodies 

were encoded with different concentration of Eu3+ to enable surface mapping. The bead-based 

assays were performed by incubating the array first in a sample containing antigen and then in 

a solution of biotinylated detection antibody that was finally attached to streptavidin-modified 

Ru(bpy)3
2+ as an ECL label. The ECL response of the beads on the platform was recorded by 

a CCD camera. 

 

 

 

 

 

 

Figure 7. Scheme of a multiplexed bead-based immunoassay on a fiber optic bundle 

platform11 

 

The ECL imaging can be even developed for single cell analysis. Recently, it has been 

reported the development of a new transparent electrochemical cell for imaging sutable for 

single cell analysis.90 

ECL detection is also widely used in commercialized systems. ECL instrumentation has been 

commercially available since 1994 and has been rapidly adopted for clinical, industrial and 

research detection.87 The Origen-1 Analyser (IGEN International Inc.)87 was the first ECL 

analyser and has been described by Carter and Bard.91 Analysers are made for clinical 

immunoassay testing for small- to medium and for medium- to large-volume laboratories 

depending on the type.9 Completely automated instruments by Roche Diagnostics company, 

the ELECSYS 10100 and ELECSYS 20100, offer over 150 inexpensive immunoassay tests in 
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the area of cardiology, thyroid function, oncology, anaemia, fertility, infection diseases and 

osteoporosis. About 1 billion tests run per year are sold.  

 

Figure 8. Elecsys 2010 system commercialized by Roche Inc.9 

 

The ORIGEN Analyser is adapted to measure ECL labels present on the surface of 

magnetically responsive beads. The principle of operation is as follows. Small magnetic beads 

are supplied as coated with streptavidin to which biotin molecules are attached, which in turn 

are bound to a selected antibody or antigen specific for the analyte. The beads are combined 

with the analyte which binds to this immobilised group on the bead. An antibody labelled 

with a ruthenium bipyridyl complex is then introduced which also binds to the analyte. The 

assays are designed so that amount of label on the beads is indicative of the amount of analyte 

in a sample. The system is consist of a flow cell containing reusable platinum electrode for 

one side and photomultiplier tube for light detection on the other side of the flow cell. The 

specific binding and ECL labelling of analytes immobilised on the beads surface is carried out 

offline prior to introduction of analyte in the flow system. Then each individual sample is 

drowning into the cell and by application of external magnetic field paramagnetic beads are 

captured on the electrode surface. By this way, the analyte of interest is separated from the 

matrix which makes this method very convenient as no pre-treatment of sample is needed. On 

the other side, labels bounded to the beads are immobilized on the electrode surface which 

extremely increases the sensitivity of the system. Any unbounded label can be washed out 

from the cell which reduces background emission.   
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Figure 9. Commercial ECL imager from Meso Scale Discovery. The instrument use ultra-low 

noise CCD camera and it is suitable for single and multiplexed assay formats.8 

 

Another type of commercialised ECL system is provided by Meso Scale Discovery Inc.. ECL 

measurements in solid phase assays can be carried out on disposable electrodes. The first 

commercialised ECL instruments based on this concept are offered by Meso Scale Discovery 

(models Sector HTS Imager and Sector PR).8  Assays are carried out on the screen-printed 

carbon ink electrodes. Multi-Spot plates with patterned microarrays within each plate well are 

also available which can enable a multiplexed assay.  

1.6.2. Application in CE, HPLC and FIA systems 

An important feature of ECL detection method is its facility to combine with systems such as 

capillary electrophoresis (CE), high performance liquid chromatography (HPLC) and flow 

injection analysis (FIA). The analytes or its derivatives should behave like an ECL co-reactant 

which often means to have secondary or tertiary amine groups with an α-carbon hydrogen so 

that efficient ECL can be produced in the presence of Ru(bpy)3
2+.1 Because tertiary amines 

can produce sensitive ECL responses a lot of efforts have been made to introduce such a 

group to initially less or non-ECL sensitive analytes such as amino acids and fatty acids.92,93 

Amino acids such as proline, valine and leucine can be successfully detected in CE-ECL 

system with the detection limit in order μM - nM concentration.92   

It was found that many compounds are able to quench, inhibit or enhance ECL intensity. For 

example phenols, ferrocene, anilines and their derivatives can significantly quench the 

oxidative-reduction ECL by energy or electron transfer between Ru(bpy)3
2+∗  and the electro-
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oxidised species of the quencher.94-96 This strategy has been used in FIA-ECL for tetracycline 

in Chinese proprietary medicine and noradrenalin and dopamine in commercial 

pharmaceutical injection samples.97 

Thermodynamic and kinetic studies can also be realised using CE-ECL system. For example, 

drug-human serum albumin binding of paracetamol on prolidase activity in erythrocytes and 

in serum of diabetic patients have been reported.98-100 A number of advantages are offered by 

CE-ECL with respect to other commonly used separation –detection methods such as HPLC 

using UV-vis or fluorescent detection for this kind of study and include very powerful 

resolving ability, good selectivity, high sensitivity, easy sample preparation and fast data as 

generally no sample pre-treatment is needed.98,101 
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1.7. Conclusion 

ECL is a powerful detection method where the analytical signal is the light intensity. The 

method offers several advantages over other detection methods such as high sensitivity, good 

selectivity, insensitivity to matrix effects and high dynamic range. As the reaction is initiated 

and controlled by applying the adequate potential, the method offers the time and position 

control with a possibility of simultaneous measurements of both experimental parameters, 

light intensity and Faradaic current. Depending on the reaction mechanism, two ECL 

pathways may be distinguished: annihiliation and co-reactant ECL. Though the first 

experiments were mainly based on annihilation ECL, the applications were limited by the 

necessary experimental conditions such as wide potential window and non-aqueous media. 

The co-reactant ECL is mainly performed in aqueous media often in physiological conditions, 

thus it is more appropriate for different applications including bio-related systems. Due to its 

excellent electrochemical and spectroscopic properties, Ru(bpy)3
2+ species and its derivatives 

are the most used luminophores. It can be used in water or organic solutions or more likely 

immobilized on the electrode surface. There are several advantages to immobilize 

luminophores including higher sensitivity due to concentration of emitter centers in the 

detection region near the electrode surface and less consumption of chemicals, which has a 

special impact in flow systems. ECL may be coupled with CE, HPLC and FIA for different 

analysis in the environmental chemistry, for food and water testing and biowarfare agents 

detection. ECL is also used as a detection method in enzymatic biosensors, in immunoassay 

and DNA probe analysis where ECL label is attached to the biomolecule. ECL detection is 

applied in research as well as in commercialized detection systems. Different detection kits 

provided by Roche Diagnostic and Mesosale Discovery companies offer a large number of 

fast, reliable and inexpensive assays for clinical diagnostic. ECL applications reported so far 

indicate the significance of ECL as a general detection method. For this reason, many efforts 

are made to decipher the ECL phenomena operating in the bead-based assays and to improve 

and develop new ECL-based detection systems. This is the aim of the work presented in the 

following chapters.   
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Chapter 2:  

Mechanistic Insight into Model Systems Used                                  

in Electrogenerated Chemiluminescence Immunoassays                                                 

via Mapping the Light Distribution in Space   
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2.1. Introduction 

ECL’s main characteristics and advantages are its utility for a large variety of biological and 

medical applications and diagnostics1,2. ECL technology enables researchers to profile 

biomarkers such as cytokines and intracellular signaling proteins, which has a direct impact 

on drug discovery and improving human health3. In the appropriate chemical environment, 

ECL labels generate light upon electrochemical stimulation. Discovery of co-reactant ECL, 

which enables detection in aqueous medium, incorporated this reaction into bioassays4. The 

system consist of Ru(bpy)3
2+complex and tri-n-propylamine (TPrA) as a co-reactant, exhibits 

the highest ECL efficiency5. Also, 2-(dibutylamino)ethanol (DBAE) has been reported as 

more efficient, less toxic, more soluble and less volatile co-reactant than TPrA6. Still, the 

Ru(bpy)3
2+/TPrA tandem stays the model ECL pair and it is exploited in commercial devices 

for diagnostic applications such as immunoassays7-9 and DNA analyses7,10-13. More than 

30000 ORIGEN analysers by Roche Diagnostic, based on functionalised magnetic 

microbeads, are placed worldwide3.  

Whereas, there is still a lack of understanding the extremely high sensitivity of the bead-based 

ECL assays14-16, the number of instruments and assays using ECL as a readout method clearly 

indicates the need of deciphering the ECL mechanism. Since the first ECL reaction between 

Ru(bpy)3
2+ and TPrA has been reported5, different competitive mechanistic pathways have 

been proposed to explain the ECL emission for this model system2,17-21. They can be classified 

into two main groups depending on how Ru(bpy)3
2+ is oxidized: The first one requires 

explicitly the direct oxidation of ruthenium centres at the electrode surface to generate in fine 

the ECL emission. However, these mechanistic routes cannot account for the excellent 

sensitivity of the bead-based immunoassays;14,22 A second “revisited” route involving the 

mediated oxidation of Ru(bpy)3
2+ by the cation radical (TPrA●+) has been proposed by Miao 

et al23. In this path, only the co-reactant TPrA is oxidized at the electrode and the resulting 

radicals, TPrA●+ and TPrA●, play the central role in the ECL process. Besides, DBAE is an 

environmentally friendly co-reactant which could be expanded to bioassays as it shows better 

performance than TPrA in ECL operated with Ru(bpy)3
2+ solution (not immobilized as for 

bead-based assays)24-26. Therefore, this work aims at deciphering the ECL phenomena 

operating in bead-based ECL bioassays.                                                                                  

The first part of this chapter deals with already reported studies of reaction mechanism of 

Ru(bpy)3
2+/co-reactant system. In the second part, the mechanisms of Ru(bpy)3

2+co-reactant 
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systems at the single bead level, with either TPrA or DBAE, will be investigated by imaging 

the 3D distribution of ECL intensity27. 

 

2.2. Reported mechanisms of 𝐑𝐮(𝐛𝐩𝐲)𝟑
𝟐+/ TPrA system 

The ECL reaction mechanism of dissolved Ru(bpy)3
2+species with TPrA has mainly been 

investigated by the groups of Leland and of Bard5,11,13,18. According to these studies and other 

investigations that follow, the mechanistic routes have been established. In order to generate 

an ECL signal at high efficiency, oxidation of TPrA plays an important role in the ECL 

mechanism. ECL is produced upon concomitant electrooxidation of Ru(bpy)3
2+ and TPrA 

(Schemes 1 and 2)5,19. Upon oxidation, the short-lived TPrA radical cation (TPrA●+) loses a 

proton from the α-carbon to form a strong reducing species TPrA●28,29. This radical can then 

reduce Ru(bpy)3
3+  to form the excited state Ru(bpy)3

2+∗ (Scheme 1). Also, the highly 

reducing agent, TPrA● can reduce Ru(bpy)3
2+ to Ru(bpy)3

+, followed by the annihilation 

reaction between Ru(bpy)3
3+ and Ru(bpy)3

+ (Scheme 2)5,19. 

Scheme 1: 

 

Scheme 2: 
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The mechanisms were presented in more details in Chapter 1. 

It has been reported that TPrA can be oxidized directly at the electrode surface, but also via 

catalytic homogeneous reaction with Ru(bpy)3
3+  (Scheme 3)18,19: 

Scheme 3: 

 

It should be noted that, although TPrA can also be oxidized by Ru(bpy)3
3+, this oxidation 

reaction occurs only when Ru(bpy)3
2+ concentration is high enough. In other words, oxidation 

of TPrA by Ru(bpy)3
3+ is negligible when the concentration of Ru(bpy)3

2+ is low, as it is the 

case when ruthenium complex is immobilized in the bead-based assays. The role of direct co-

reactant oxidation on the glassy carbon (GC), gold (Au) and platinum (Pt) electrode have been 

investigated by Zu and Bard18. In the experiments performed on the GC electrode at the 

concentration of 1 μM Ru(bpy)3
2+, the ECL curve showed two waves. The electrochemical, 

chemical and spectroscopic behaviors of the second ECL wave at potential (+1.2 V vs. SCE) 

corresponding to the Ru(bpy)3
2+oxidation have already been detailed before18. Therefore, 

they emphasized on establishing possible mechanism for the first ECL wave which occurs at 

low-oxidation-potential (at potential less than +1.0 V vs. SCE), compare to the one required 

for the direct oxidation of Ru(bpy)3
2+at the electrode surface. The ECL emission of the first 

wave showed dependence on the electrode material and it was not recorded at Au and Pt 

electrodes. Due to the formation of surface oxides at Au and Pt electrodes, the direct oxidation 

of TPrA was significantly blocked. This led to conclusion that the first ECL wave aws 

strongly dependent on direct oxidation of TPrA18. Further, the ECL spectrum obtained at the 

potential of the first wave was corresponding to the light emission of Ru(bpy)3
2+∗.23 Because 

the direct oxidation of TPrA leads to the formation of reducing radicals TPrA● that could 

react with Ru(bpy)3
2+ to generate Ru(bpy)3

+, authors suggested that one possible way to 

produce Ru(bpy)3
2+∗ could be electron transfer from Ru(bpy)3

+ to some oxidative species18. 

Miao and Bard two years later reported the “revisited” route where ECL emission is 
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completely independent of direct oxidation of Ru(bpy)3
2+at the electrode surface and involves 

cation radical TPrA●+23. The mechanism is based on the assumption that TPrA●+ through a 

very reactive intermediate, has a life-time long enough to react itself before it undergoes 

deprotonation. Namely, the oxidation of deprotonated TPrA generates the cation radical 

TPrA●+ which loses one proton forming highly reducing agent TPrA●. This radical it then able 

to reduce Ru(bpy)3
2+to Ru(bpy)3

+. In the same time produced TPrA●+ behaves like strong 

oxidant and it oxidises Ru(bpy)3
+to Ru(bpy)3

2+∗ (Scheme 4). 

Scheme 4: 

 

 To verify this assumption, several experiments were performed. Scanning electrochemical 

microscopy SECM-ECL has been used to verify whether the light emission occurs without 

direct oxidation of Ru(bpy)3
2+ 23. Precisely, Ru(bpy)2[bpy(COOH)2]

2+, whose ECL behaviour 

is similar to Ru(bpy)3
2+, in the presence of TPrA, was covalently immobilised on an ITO 

electrode to serve as a substrate. To avoid the direct oxidation of Ru(bpy)2[bpy(COOH)2]
2+, 

during the course of SECM-ECL experiment, the modified ITO electrode was at an open 

circuit potential. The working electrode – tip was 1.5 mm diameter hemispherical Au. The tip 

was withdrawn from the ITO surface to a certain distance while current and ECL curves were 

monitored during voltammetric cycle between 0 and 1.0 V vs. Ag/AgCl/KCl. It was detected 

that upon oxidation of TPrA at ~0.80 V vs. Ag/AgCl/KCl the ECL signal appears and tracks 

the tip current during potential cycling. Furthermore, the ECL signal could be detected only 

within very short distance (~5-6 μm) from the electrode surface and it decreases almost 

exponentially with increasing the distance. This experiment clearly demonstrates that, by the 

simple oxidization of TPrA, the formed intermediates, TPrA●+ and TPrA●, are involved in the 

ECL generation of Ru(bpy)3
2+.  
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The maximum distance at which ECL emission was observed was ~ 5 μm and therefore it 

represents the distance of TPrA●+ diffusion before deprotonation. The half-life of the cation 

radical was estimated at ~ 0.2 ms taking the typical diffusion coefficient of 5×10-6 cm2/s. 

In the same article, the detection of TPrA●+ by using electron spin resonance (ESR) was 

reported.23 The investigation was based on the previous studies which have shown that 

trimethylamine radical cation has a similar lifetime as that estimated for TPrA●+. The ESR 

spectrum showed good correlation with simulated spectrum indicating the direct evidence for 

TPrA●+. 

The effect of the so-called “revisited” mechanism on the overall ECL signal was reported by 

Zanarini et al.30 In their work, they used silica nanoparticle with a mean size of 18 nm 

covalently doped with Ru(bpy)3
2+. Self-assembled monolayer (SAM) of covalently doped 

nanoparticles (DSNP) that can be considered as model systems for probe-target assays was 

prepared on a gold working electrode. The gold electrodes functionalized with thiol-

terminated DSNP SAM were characterized by cyclic voltammetry. The oxidation of 

Ru(bpy)3
2+ units was not visible and the voltammetric curve was governed by two different 

phenomena: stripping of the DSNP-SH SAM and formation and reduction of Au oxides on 

the substrate.  

 

 

 

 

 

 

Figure 1. First (a) and second (b) cycle light/current/potential curve of a gold substrate 

functionalized with DSNP-SH self-assembled layer immersed in a 0.1 M PB (pH 7.5) 

containing 3×10-2 M TPrA. Scan rate: 0.5 V/s. Potentials are measured vs. saturated Ag/AgCl 

electrode.30 

 

The ECL intensity curves obtained in the first two cycles were compared (Figure 1). The ECL 

profile showed two peaks located at +0.91 and +1.23 V vs. Ag/AgCl/KCl, compatible with 

known mechanism. Such peaks were observed in both cycles. However, while the intensity of 

 

a)                                                                                 b) 
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the peak at 1.23 V remained almost unchanged, the first peak decreased by factor of 10 after 

the first scan. It becomes almost negligible compared with the second one. These results were 

explained with respect to direct oxidation of TPrA. In the first scan, the Au electrode was 

covered with hydrophobic SAM which prevents the formation of surface oxides and allows 

direct oxidation of TPrA leading to the high concentration TPrA●+ production. These species 

can diffuse into the porous silica particles and generate excited state. In the following scans, 

detachment of the SAM occurs. Therefore, direct oxidation of TPrA becomes less efficient 

and the ECL profile shows dependence only on direct oxidation of Ru(bpy)3
2+ confined in nm 

scale from the electrode surface. The overall decrease of ECL intensity clearly indicates the 

importance of the ECL emission on the sensitivity of bead-based assays, when 

electrochemical oxidation of Ru(bpy)3
2+ does not take place. 

Still, the electro-oxidation of TPrA itself produce a weak ECL background signal even in the 

absence of luminophores limiting the sensitivity of ECL analytical methods.31 The nature of 

this reaction is not understood very clearly for many years. Recently, a very interesting and 

useful research32 has demonstrated that background ECL emission at 630 nm observed during 

the electrochemical oxidation of TPrA in the presence of dissolved O2 in solution can be 

attributed to the 1Δg state of O2. The formation of the excited state is based on the reaction 

between dissolved oxygen and two different products of TPrA oxidation: the TPrA● radical 

that reduces O2 to the superoxide ion and the TPrA●+ radical cation that oxidizes this species 

to singlet O2. No ECL emission was observed when the same solution was used in the absence 

of dissolved O2. These results suggest that the sensitivity of analytical applications of ECL 

could be improved by the rigorous exclusion of O2. 

The study of ECL mechanism and its influence on ECL emission at the single bead level is of 

great importance considering numerous bead-based analyses, as mentioned above. ORIGEN 

Analyser provided by IGEN International, Inc. (now Elecsys, product-line of Roche), is the 

first commercialized system based on ECL as detection method.3 The use of ECL detection 

has many advantages over other detection systems especially because of its remarkable 

sensitivity, negligible auto-luminescent background signal and simplicity in experimental 

design. The labels are not radioactive and they are stable compared with those of most other 

chemiluminescent systems. The detection limits for label are extremely low (200 fmol/L) with 

dynamic range of quantification over six orders of magnitude.7 The ORIGEN Analyser is 

adapted to measure ECL labels presented on the surface of magnetic beads. The instrument 
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consists of a flow cell containing a reusable platinum electrode and a PMT for light detection 

(Figure 2). 

 

Figure 2. Generic process for measuring magnetic bead–based ECL assays in flow cells. 1) 

Introduce magnetic beads with bound assay component; 2) Capture magnetic particles with 

magnetic field, introduce TPrA buffer; 3) Apply potential at electrode to induce ECL; 4) 

Wash out of the beads. 

 

The ECL labels are usually Ru(bpy)3
2+ derivatives which can bind to biomolecules. The 

binding of ECL label to the magnetic beads depends on assay format. In sandwich 

immunoassay, for example, antibody coated magnetic beads are used to bind the detection 

antigen and secondary ECL labeled antibody. The binding is usually running offline. Then, 

each individual sample is drawn into the flow cell, where the paramagnetic beads are 

magnetically captured on the electrode surface. In this way the labels attached to the beads are 

concentrated on the electrode surface increasing the sensitivity. A solution containing TPrA is 

then drawn through the flow cell to wash the beads and supply co-reactant for ECL, which is 

oxidized by applying potential between the working and counter electrodes. The emitted light 

is detected by PMT. The beads are then washed from the cell, and a cleaning solution is 

introduced into the cell lo leave the surfaces of the electrodes in a reproducible state, ready for 

the next measurement33.  

Now, there are several commercial systems that are based on ORIGEN technology. These 

instruments are designed for a variety of applications in life sciences, high-throughput drug 

screening, and food, water, and animal health testing. Roche Diagnostics and Mesoscale 

markets different assays for clinical immunoassay testing. These systems feature an expansive 

menu of immunoassay tests in the areas of cardiology, fertility, thyroid function, oncology, 

anemia, infectious disease, and osteoporosis3,34. 
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In the research field, bead-based ECL assays have been also described8,11,35-37. A very 

sensitive immunoassay based on the similar instrumentation as in commercial systems have 

been reported. The application of the system was presented on detection of α-fetoprotein 

(AFP).38 The magnetic beads coated with anti-AFP antibodies was used for binding of AFP in 

sandwich type immunoassay with Ru(bpy)3
2+-NHS labelled secondary anti-AFP antibodies. 

Employing ECL detection of beads confined to the electrode surface the detection reached 

sensitivity to the level of 5 pg/mL of the AFP with wide dynamic range.38  

 

2.3. Reported mechanisms of 𝐑𝐮(𝐛𝐩𝐲)𝟑
𝟐+ / DBAE system 

An extensive research has been focused on exploring effective co-reactants for the sensitive 

determination of Ru(bpy)3
2+, which has important bioanalytical applications for detection of 

numerous analytes such as oxalate,39,40 NADH,41 glucose,42,43 amines,5,17 and amino acids44. 

The classic co-reactant used is TPrA, but others have been investigated and found to lead to 

even higher ECL signals than TPrA. A prime example is DBAE for ECL generation with 

Ru(bpy)3
2+ available in solution. DBAE has found increasing use for ECL applications25,45,46. 

It is used as co-reactant, not only for Ru(bpy)3
2+ but also for its derivatives or QDs, partly 

applied in quenching techniques.25 The group of Guobao Xu reported an investigation of the 

ECL of a series of tertiary amines with various substituents whilst keeping the concentration 

of Ru(bpy)3
2+ lower than that of the amine.6 Generally, tertiary amines are more effective 

than secondary amines, primary amines, and other kinds of co-reactants.5,17 They reported that 

the ECL intensity for the Ru(bpy)3
2+/DBAE system is close to that of the Ru(bpy)3

2+/TPrA 

system when the concentration of Ru(bpy)3
2+ is 1 mM; still, the intensity of the DBAE system 

is about ten times that of the TPrA system if the concentration of Ru(bpy)3
2+ is 1 µm at Au 

and Pt working electrode. These results are consistent with findings that direct oxidation of 

the co-reactant plays an important role at low concentrations of Ru(bpy)3
2+ and that 

electrocatalytic oxidation of the co-reactant by Ru(bpy)3
2+ is dominant at high concentrations 

of Ru(bpy)3
2+. ECL of the Ru(bpy)3

2+/DBAE system at Pt and GC electrodes was also 

studied. The ECL of the Ru(bpy)3
2+/DBAE system at Pt electrodes is comparable to that at 

Au electrodes, and is about 100-times stronger than that of the Ru(bpy)3
2+/TPrA system at a 

Pt electrode. The striking difference in ECL intensity can be attributed to the different 

oxidation rate of DBAE and TPrA at platinum electrodes. An earlier report detailed in 

paragraph 2.2. by Zu and Bard showed that the ECL intensity of the Ru(bpy)3
2+/TPrA system 
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at Pt electrodes is only about 10% of that at Au electrodes because the growth of anodic oxide 

films at platinum electrodes significantly inhibited the direct oxidation of TPrA.18 In contrast, 

the direct oxidation of DBAE at Pt electrodes is much faster, indicating that hydroxyethyl also 

catalyzes the direct oxidation of amines at Pt electrodes, and thus dramatically enhance ECL 

intensity. The ECL of DBAE increases rapidly initially with increasing concentration up to 20 

mm, and then it decreases slowly upon further increasing its concentration. The decrease in 

ECL intensity at high concentrations of DBAE may be attributed to side reactions.6,24 In 

comparison, 20 mM DBAE is more effective than 100 mM N,N-diethylethanolamine and 

TPrA, despite increases in the ECL of N,N-diethylethanolamine and TPrA upon increasing 

their concentrations. At the glassy carbon electrode, the intensity of ECL increase with the 

concentration of DBAE up to just 3 mM and as a result of side reactions at higher 

concentrations is offset.6  

Recently, Tang et al. studied mechanism of the Ru(bpy)3
2+/DBAE ECL system by using 

quantum dots .25 It has been reported that Ru(bpy)3
2+/DBAE system is similar to the 

mechanism of the Ru(bpy)3
2+/TPrA system with regard to the earlier report by Bard and 

Miao. They showed that the ECL mechanism of the Ru(bpy)3
2+/TPrA system involve 

reduction of Ru(bpy)3
2+ by the intermediacy of TPrA cationic radicals to generate the excited 

state Ru(bpy)3
2+∗. The proposed mechanism of the Ru(bpy)3

2+/DBAE is based on the fact that 

DBAE is also an aliphatic tertiary amine and its molecular structure is similar to TPrA. In this 

way, DBAE is first oxidized at the electrode (∼0.60 V vs Ag/AgCl) to form a DBAE●+ 

cationic radical that further deprotonates to a DBAE● free radical.24 It is also known that 

Ru(bpy)3
2+ can be oxidized at 1.14 V (vs. Ag/AgCl) to Ru(bpy)3

3+. Due to its sufficient 

reducing ability, DBAE● free radicals reduce Ru(bpy)3
3+ to generate the excited-state 

Ru(bpy)3
2+∗ radicals that subsequently decay into Ru(bpy)3

2+ with light emission.4 Electron 

spin resonance (ESR) measurements confirm that oxidation of DBAE can generate the amine 

cationic radical DBAE●+ that subsequently deprotonates to DBAE● free radicals.25 When 

CdSe@ZnS QDs are added into Ru(bpy)3
2+/DBAE system, the solution containing DBAE● 

cation radicals, the ESR spectrum corresponding to DBAE●+ cationic radicals totally 

disappears. Generated DBAE●+ cationic radicals will prefer reacting with QDs - reducing 

holes of QDs, in competition with Ru(bpy)3
3+reduction. Such a competition is realistic, on the 

basis of band levels of QDs and redox potentials of DBAE and Ru(bpy)3
2+. Finally, ESR 

measurements have revealed that there is charge transfer occurring between QDs and the 

radical state of DBAE, leading to ECL quenching of Ru(bpy)3
2+/DBAE. 
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Besides, DBAE is an environmentally friendly co-reactant which could be expanded to 

bioassays as it shows better performance than TPrA in ECL operated with Ru(bpy)3
2+ 

solution (not immobilized as for bead-based assays). In order to simulate kinetic parameters, 

one should take in account that a series of consecutive reactions of short-lived radicals with 

different redox potentials is taking place within competing ECL mechanisms.47,48 Therefore, it 

is a real task to model the precise values for reactions in solution phase and even more 

difficult to assume in real practical cases.      

 

2.4. Bead-based Sandwich ECL immunoassay 

Since there are numerous examples of bead based assays, the study of ECL mechanism is of 

great importance for improving the system efficiency and developing new protocols. In the 

commercial Origen analyzer (see), the Ru(bpy)3
2+-tagged entities (antibodies) are 

immobilized on 2.8 µm diameter magnetic beads.3 We performed a sandwich ECL 

immunoassay exploiting 3-µm polystyrene (PS) beads of size comparable to the ones used in 

commercialized assays. PS beads were modified with a capture antibody (anti-IL-8) and 

exposed to a sample containing the antigen and biotinylated detection antibodies. Lastly the 

streptavidin-modified Ru(bpy)3
2+-label was attached (Figure 3a). The beads were deposited 

on a flat glassy carbon (GC) electrode by drop-casting and let to dry on the room temperature, 

protected from the light. ECL image was recorded with a microscope in a top-view 

configuration so that the electrode surface was orientated parallel to the microscope objective 

lens for observation (Scheme 5(A)). To obtain the position of the beads on the surface, the 

photoluminescent mode was used with excitation at 485 nm and emission at 605 nm. The 

ECL imaging was realized in the same focal plane without use of excitation light and a 

sufficient anodic potential of 1.1 V was applied to the modified GC electrode in a solution 

containing TPrA. A Pt wire and a Ag/AgCl/KCl-electrode were the counter and reference 

electrode, respectively. To avoid the background ECL from O2 quenching, buffer solution was 

deaerated by bubbling nitrogen gas for 30 minutes.32 From the Figure 3b one can see that a 

single functionalized bead is emitting ECL light.  

The ECL light emerges from the entire bead and not only from the region where the bead is in 

contact with the surface. Concerning the spherical geometry of the beads, only a small part of 

the bead is in contact with electrode. As the ruthenium label is attached to the bead only the 

co-reactant radicals resulting from the oxidation step at the electrode diffuse to react with the 
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label to generate the excited state. Moreover, ECL intensity is not homogeneously distributed 

over the bead; it appears more intense in the centre. However, such an image does not allow 

resolving sufficiently the distribution of the ECL intensity.   

 

 

 

 

 

 

 

Figure 3. (a) Sandwich immunoassay with PS beads. (b) ECL imaging of a single 3-µm bead 

using the top-view configuration. ECL images were acquired over a 6 s exposure-time at a 

potential of 1.1 V vs Ag/AgCl/KCl in a PBS solution containing 100 mM TPrA (pH = 7.4). 

 

Scheme 5: 

 

 

 

 

 

 

 

Schematic representation of both optical configurations used to image the functionalized 

bead: top-view (A) and side-view (B). 

 

To improve the spatial resolution of the luminescence phenomenon and to obtain well-

resolved ECL patterns, we used in further experiments 12-µm diameter PS beads. To 

demonstrate the concept, -NH2 functionalized beads were modified with the same ruthenium 



57 
 

label, Ru(bpy)3
2+-NHS ester (bis(2,2'-bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium 

N-succinimidyl ester bis(hexafluorophosphate)) whose ECL behaviour is very similar to that 

of Ru(bpy)3
2+), via an amide-type reaction (Scheme 6).   

 

Scheme 6. Functionalization of beads with 𝑎 Ru(bpy)3
2+ label via the peptide coupling. 

 

 2.4.1. 2D ECL Imaging 

The photoluminescence (PL) image shows the location of a labelled PS bead (Figure 4a). The 

PL intensity which reflects the immobilized ruthenium sites was homogeneously distributed 

over the bead. To study the dependence of the ECL emission on the electrode potential, a 

series of ECL images were recorded during a cyclic voltammetric scan. By increasing 

progressively the applied potential from 0.7 V, where no ECL is generated, to 1.2 V, ECL 

intensity increased progressively with a maximum value obtained at 1.1 V (Figure 4c).23 

Similarly, we observed with a good spatial resolution that the entire beads emit ECL light 

with a brighter spot in their centre. In fact, they act as an efficient lens focusing the light at 

their centre. Such a peculiar electromagnetic field distribution that emerges from a dielectric 

microsphere has been experimentally demonstrated.49,50 The light beam emerges from the 

microsphere with high intensity and low divergence. Such a focusing behaviour concentrates 

the analytical signal and contributes to the extremely good sensitivity of the bead-based ECL 

immunoassays. Since DBAE has been reported to produce stronger ECL signal in solution 

than TPrA (e.g. 6.5-fold higher ECL signal at 20 mM co-reactant concentration)6, we tested 

its performance in the bead-based format (Figure 4b and 5a). 
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Figure 4. (a-b) Top-view PL (left) and ECL (right) images of 12-µm PS beads functionalized 

with the ruthenium label. ECL images were recorded in PBS solutions containing (a) 100 mM 

TPrA or (b) 20 mM DBAE on GC electrodes. The dashed line materializes the position of the 

bead. Experiments have been performed on more than 50 single beads in each condition. 

Scale bar: 10 µm. (c) ECL intensity measured on a PS bead as a function of the potential 

applied to the GC electrode in a PBS solution containing 100 mM TPrA (pH = 7.4).  

 

In our conditions, maximum ECL intensity has been obtained at 1.2 V with a DBAE 

concentration of 20 mM. ECL emission was located just at the centre of the bead over a ~4-5 

µm diameter surface (Figures 4b and 5a,b). Unexpectedly, the ECL intensity was extremely 

low on GC and on Au electrodes: ECL signals recorded on the functionalized beads were 

surprisingly 7-fold lower than those collected with TPrA. This difference may be explained by 

the different experimental conditions since, in previous reports,6,24,51 Ru(bpy)3
2+ was freely 

diffusing in solution and could react homogenously with the DBAE radicals. In the bead-

based format, radicals resulting from DBAE oxidation have to diffuse away from the 

electrode and to react with the immobilized Ru(bpy)3
2+ to generate the excited state. Such 

behaviour highlights the difference in reactivity of both tested co-reactants which depends on 

the redox potentials and the lifetimes of their radicals. At first sight, both the weaker and 

lesser expansion of ECL suggest that the DBAE-derived radicals propagate less in solution 

and are likely less stable than the TPrA ones. Even if the top-view imaging of the bead 

highlights the non-uniform distribution of ECL intensity over it, it does not give precise 

localization of the ECL-emitting region on its surface. Indeed, the recorded ECL pattern 

reflects mainly the optical paths through the beads. 
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Figure 5. a) Top-view PL (left) and ECL (right) images of a 12-µm PS bead functionalized 

with the ruthenium label. ECL image was recorded over a 6 s exposure-time in a PBS (pH = 

7.4) solution containing 20 mM DBAE on Au electrode poised at 1.2 V vs Ag-AgCl. The 

dashed line materializes the position of the bead. Scale bar: 10 µm. b) ECL intensity profiles 

taken along the middle vertical axis of the beads and recorded in 100 mM TPrA on GC 

electrode (black line) or in 20 mM DBAE on GC (red line) and on Au (blue line) electrodes. 

 

To reconstruct the spatial location and the volumic extension of the ECL-emitting zone, a 3D 

cartography, as in scintigraphy, can be obtained by changing the angle of observation of the 

emitting object.  

2.4.2. 3D ECL Imaging 

Here, we used an orthogonal side-view configuration (position B in Scheme 5), where the 

working electrode with immobilized beads was orientated so that surface of the electrode was 

perpendicular toward the microscope objective. It supplements the top-view approach with a 

2D ECL mapping normal to the electrode surface. Figure 6 shows the PL image of the bead: 

the upper part of the image corresponds to the real bead and the lower part to its mirror image 

formed by the light reflection on the GC surface. PL image precisely defines position of the 

bead and also its interface with the electrode. As for the top-view images, the ECL 

experiments with TPrA, did not show light emission before applying sufficiently anodic 
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potentials (Figure 4).  At 1.1 V, an ECL-emitting region was observed at the interface 

between the GC surface and the bead (i.e. z = 0); this extends over a ~6 µm length knowing 

that this value integrates also the contribution of the light reflection. Interestingly, there is a 

second region from where ECL light emerged, located at the top of the PS bead.  

 

 

 

 

 

 

Figure 6. Side-view images of a 12-µm PS bead labelled with the ruthenium complex. The 

first image is obtained by PL and the following ones by ECL in a PBS solution containing 100 

mM TPrA (pH = 7.4). The dashed line materializes the position of the GC electrode surface 

(i.e. z= 0) and the hatched zone represents the PL reflection on the electrode surface. Same 

conditions as in Figure 1. Scale bar: 10 µm. 

 

As discussed previously, it corresponds to the focusing effect of the bead which acts as a lens 

and does not contain any real chemical information. The ECL-emitting region was confined 

very close to the electrode surface and extended only over 3-4 µm along z axis. With the side-

view configuration, we were not able to record any ECL emission with DBAE even for 

exposure time of the CCD camera up to 20 s (Figure 7). Again, with DBAE, the extension of 

the ECL-emitting region is probably too small at the bead/electrode interface and its intensity 

too low to be imaged in our conditions. 
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Figure 7. Side-view PL (left) and ECL (right) images of 12-µm PS beads functionalized with 

the ruthenium label. ECL image was recorded over a 20 s exposure-time at 1.2 V in a PBS 

(pH = 7.4) solution containing 20 mM DBAE on Au electrode. The dashed line materializes 

the position of the bead on the electrode surface (i.e. z = 0) delimited by the dotted line. The 

hatched zone represents the reflection of the PL on the electrode surface. Same experimental 

conditions as in Figure 1. Scale bar: 10 µm. 

The ECL mechanisms involving the direct oxidation of Ru(bpy)3
2+ may be operative only at 

nanometric distances (i.e. electron tunnelling distance ~1-2 nm) which are impossible to 

resolve with classic optics. The micrometric extension of the ECL region observed in our 

study with TPrA is consistent with the “revisited” route involving both TPrA radicals:23 

TPrAH+    TPrA + H+             (1) 

TPrA - e    TPrA●+                         (2) 

TPrA●+    TPrA● + H+             (3) 

TPrA● + Ru(bpy)3
2+    Im+ + Ru(bpy)3

+            (4) 

TPrA●+ + Ru(bpy)3
+    TPrA + Ru(bpy)3

2+∗       (5) 

Ru(bpy)3
2+∗    Ru(bpy)3

2+ + hν             (6) 

where Im+ is the iminium product.  

Ru(bpy)3
2+ is not oxidized directly at the electrode in this route. The oxidation of 

deprotonated TPrA generates the cation radical TPrA●+ (reaction 2); it deprotonates rapidly to 

form locally the free radical TPrA●,23 which is a strong reductant (reaction 3). This radical 

reduces Ru(bpy)3
2+ to Ru(bpy)3

+ (reaction 4). Then TPrA●+ oxidizes Ru(bpy)3
+ to generate 

the excited state Ru(bpy)3
2+∗ (reaction 5) which deactivates through the emission of a photon. 
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In this path, ECL generation requires the simultaneous presence of both radicals under 

sufficient fluxes to form the excited state. 

Since DBAE is an aliphatic tertiary amine structurally similar to TPrA, it has been proposed 

to follow mechanisms analogous to TPrA with the formation of radical cation DBAE●+ and 

the reducing intermediate DBAE● by deprotonation.51-53 Even if DBAE leads to stronger ECL 

intensity than TPrA when Ru(bpy)3
2+ is in solution,6 ECL emission recorded on the modified 

beads is very low and even undetectable in the side-view configuration. Such an unexpected 

behaviour might be attributed to the intervention of a much more unstable intermediate (i.e. at 

least 10 times faster deprotonation rate of DBAE●+) which limits drastically the ECL-emitting 

zone. Our results show the differential reactivity of both model co-reactants and the 

importance of inspecting the ECL mechanistic pathways with surface-confined species or 

read/write approaches. Taking into account the overall mechanistic scheme for TPrA, the 

concentration profiles of both co-reactant radicals diffusing from the electrode and around the 

bead were simulated (Figure 8).  

 

 

 

 

 

 

 

 

 

 

Figure 8. Concentration profiles of TPrA●+ (black curve), of TPrA● (blue curve) and of the 

resulting ECL intensity (red curve) with the ruthenium complex immobilized on the bead. The 

depicted concentration and ECL profiles are simulated with a value of 2920 s-1 for the TPrA●+ 

deprotonation rate constant. A value of 2920 s-1 is extracted from the ECL profile for the rate 

constant k3 of the TPrA●+ deprotonation (reaction 3). Assuming that this reaction is a first-

order process, the half-life time (τ1/2) is τ1/2 = ln 2 / k3. It gives a value of ~0.24 ms. The 

concentration profiles along the z axis in the solution, i.e. far from the bead r>50µm, are 

depicted by the symbols. 
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The simulations have been done in collaboration with Dr. Frédéric Kanoufi from Paris 

Diderot University (for the detail study see supporting information of reference 27). The 

spatial location and extension of this ECL-emitting region is also confined in the first 3-µm 

height of the bead next to the electrode, as evidenced by the simulation (Figure 9a). The ECL 

profile is constrained by the TPrA●+ and TPrA● concentration gradients at the bead surface. 

Indeed, ECL generation requires the sequential reactions of both reducing and oxidizing TPrA 

radicals at the same location. Under steady-state, ECL at small z values reflects the TPrA● 

concentration profile, while the tail of the ECL profile at large z values mimics the 

distribution of the most chemically unstable radical, here TPrA●+.  

 

 

 

 

 

 

 

Figure 9. (a) Side-view of the simulated distribution of the generated Ru(bpy)3
2+∗ excited 

state (i.e. ECL intensity) at the surface of a 12-µm bead. (b) Comparison of the experimental 

(black line) and simulated (red line) ECL intensity profiles at the level of a single bead. The 

experimental data correspond to the PS bead of Figure 3a recorded at 1.1 V. The ECL signals 

are simulated with a value of 2920 s-1 for the TPrA●+ deprotonation rate constant. The hatched 

zone represents the reflection of the ECL light on the electrode surface. 

 

The key kinetic parameter in this overall process is the rate constant for the deprotonation of 

the TPrA●+. The position of the maximum ECL intensity and the thickness of this ECL-

emitting region depend on the value of this rate constant. If this deprotonation step was slow, 

then the TPrA●+ may be formed further away from the electrode and it would result in an 

extended ECL zone. At the opposite, increasing this reaction rate would contract the ECL 

zone much closer to the electrode (Figure 10). In particular, the bead confines the different 

reactive species from hindrance of mass transfer54,55 allowing for an expansion of the 
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concentration profiles and of ECL-emitting region to greater domains (larger z values) than 

those expected from planar diffusion reaction layer conditions (Figure 11). 

 

 

 

 

 

 

 

 

Figure 10. Effect of the kinetic of TPrA●+ deprotonation on the normalized ECL intensity 

profile in the vicinity of a 12-µm diameter bead.  

 

 

 

 

 

 

 

Figure 11. Simulated concentration profiles of (a) TPrA● and (b) TPrA●+ in the vicinity of a 

12-µm diameter bead. The selected value for the TPrA●+ deprotonation rate constant was 

2920 s-1. 

Figure 9b (black line) shows a typical experimental ECL intensity profile taken along the 

vertical symmetry axis of a PS bead placed on the GC electrode. The ECL-emitting region is 

clearly visible and is surrounded by 2 bright zones related to optical effects: the mirror image 

for z < 0 and the light focused at the top of the bead (viz. z ~ 13 µm), as discussed previously. 

We just considered the zone of photon production which contains all information on the 

chemical reactivity. The projection of the simulated ECL profile along the same z symmetry 
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axis is shown on Figure 9b (red line) and the best fit with the experimental data was obtained 

for a value of 2920 s-1 for the rate constant of the TPrA●+ deprotonation (half-life time of 

~0.24 ms). It is in relative good agreement with the value of 3500 s-1 reported by Miao et al.23 

If the simulated ECL emission profiles fits well with the experimental ones for z > 0.6 µm, it 

deviates at the level of the electrode-bead contact (z < 0.6 µm). Indeed, the revisited route 

suggests no TPrA● radical at the electrode, then no generation of the luminophore excited 

state. Experimentally, even if a decrease of intensity was detected for z < 0.3 µm, the 

electrode-bead contact region was still illuminated. Eventually, lateral charge propagation 

between adjacent immobilized ruthenium centres (electron hopping)56 would extend the light 

emission toward the bead-electrode interface without affecting the higher z values (Figure 12). 

Indeed, for fast surface transformation process,57 the reactivity at the bead surface is limited 

by the 3D spatial distribution of the diffusing radical species. The signature of the TPrA●+ 

lifetime is then readily obtained from the tail of the ECL distribution.   

2.5. Conclusions 

In summary, ECL imaging resolved at the single bead level provides a general description of 

the ECL phenomena operating in bead-based ECL bioassays; it allows deciphering the 

mechanistic route, testing co-reactant efficiency and showing associated optical focusing 

effects. Reactivity mapping demonstrates the mechanistic route which leads to ECL emission. 

Maximum ECL intensity occurs in the micrometric region where concentrations of TPrA●+ 

and TPrA● radicals are locally the highest. Only the luminophores located in the 3-µm region 

next to the electrode contribute to the ECL signal and this finite reaction layer defines the 

optimal size of the functionalized beads for the bioassays. In comparison to bulk situation (i.e. 

freely diffusing Ru(bpy)3
2+ in solution), additional thermodynamic and kinetic criteria are 

required to select efficient co-reactants in the bead-based bioassays: adequate redox potentials 

and appropriate deprotonation rate constant to form concentrations gradients of both radicals 

extending simultaneously over sufficiently long distance in order to excite Ru(bpy)3
2+-labels 

located far from the electrode. We also showed the lens effects of the bead which concentrate 

the ECL emission and thus contribute to increase the collected analytical signal. Finally, the 

ECL reactivity imaging offers the opportunity to select new co-reactants with improved 

sensitivity and to develop new analytical strategies.  
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Chapter 3: 

Immunosensing and Mapping the ECL generation with 

nanoelectrodes ensembles and arrays 
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3.1. Introduction 

 

Since its discovery, ECL has been widely studied and applied, with a focus on development of 

new and sensitive analytical methods and devices.1 An important upturn for development of 

diagnostic biosensors, widening the area of application2-4, was the discovery of aqueous ECL 

systems using co-reactants and operating at physiological pH.2,5,6 In addition to the already-

mentioned benefits of the technique,7-9 deciphering the ECL mechanisms, in particular 

mechanistic route at low oxidation potentials, brought an essential advantage in development 

of new analytical strategies with improved sensitivity.10 Spatial reactivity mapping by ECL 

imaging resolved at the single bead level pictured how ruthenium centres located at 

micrometric distances from the electrode generate ECL by oxidation only of co-reactant.11 

Also, it highlights the importance of the contribution of the “revisited” route in overall ECL 

response (signal). On the other side, the booming trend in the use of nanosized devices can 

further enhance the merits of the technique.12,13 Advances in bioelectroanalytical applications 

of nanostructured electrodes, nanoelectrode ensembles (NEEs) and arrays (NEAs), can further 

improve the sensitivity of ECL methods due to its known properties, enhanced mass fluxes 

and dramatic enhancement of the signal-to-background current ratio.14-17 The group of Prof. 

Paolo Ugo developed immunosensors for determination of the cancer biomarker HER2 

(human epidermal growth factor receptor) and DNA hybridization, immobilizing the 

biorecognition layer in the vicinity of the nanoelectrodes, precisely on a non-conductive 

component of the electrodes (e.g. on the polycarbonate, PC of the NEE).18-20 In such 

arrangements, the enhanced mass transport typical of nanoelectrodes is fully exploited. 

Moreover, in contrast to the classical biosensor concept21-23, in ECL-based biosensors, 

immobilization of luminophore labeled biomolecule at a distance from the active surface of 

the nanoelectrodes, enables ECL generation at low oxidation potentials. Applying such lower 

potentials might avoid damages on sensitive proteins and oligonucleotides, interferences from 

side reactions particularly in real samples of complex matrix (e.g. blood) and oxide layer 

formation on Au and Pt electrodes resulting in poor analytical reproducibility6. Combining 

above specified properties of ECL technique and NEEs, herein, we propose design of a novel 

immunoassay for celiac disease diagnostic utilizing an original detection strategy. Although 

‘‘the gold standard’’ for definitive diagnosis of this gluten-dependent autoimmune disorder is 

still tissue biopsy based on histological changes in small intestinal mucosa, serological test for 

CD screening based on detection anti-transglutaminase (anti-tTG) type-2 antibodies are less 
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invasive24. Many trials have been made to develop variety of electrochemical methods3,22,23,25 

but, so far, no single confirmatory serological method has been adopted for practical use.  

Ordered arrays of nanoelectrodes have been used for diverse bioanalytical applications, 

although detailed electroanalytical characteristics have been described only very recently. For 

instance, detection of prostates specific antigen and fabrication of multiplex biosensors have 

been described26,27. Still, a very few studies dealt with the use of NEAs as electrochemical 

generator of ECL. To this aim, arrays of boron-doped-diamond (BDD) nanodisk and 

nanoband electrodes with different dimensions and inter-electrode distances were prepared by 

e-beam lithography28. BDD is a promising material particularly attractive for ECL studies 

thanks to its high chemical and electrochemical stability, satisfactory electrical conductivity 

owing to the doping, wide potential window accessible and applications for medical 

diagnostics.29  

Therefore, in the first part of this chapter, nanofabrication techniques, electrochemical 

behavior and specific advantages of NEEs and NEAs will be described. In the second part, a 

novel immunoassay for CD diagnostic will be presented. Finally, in the third part ECL 

imaging and tuning of luminescence with arrays of nanoelectrodes will be demonstrated. The 

work presented in the following chapter was done in collaboration with Prof. Paolo Ugo from 

the University Ca’ Foscari of Venice (Italy), Department of Molecular Science and 

Nanosystems.  
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3.2. Nano-Electrode Ensembles (NEEs) fabrication  

Nanoelectrodes may be defined as electrodes having at least one dimension (called critical 

dimension) in the nanometer range. This determines unique physico-chemical properties 

described below. The first template synthesis of NEEs for electrochemical use was described 

by Menon and Martin14 who deposited gold nanofibres with a diameter as small as 10 and 30 

nm within the pores of track-etched polycarbonate (PC) membranes by a chemical 

(electroless) deposition. The ensemble of metal nanodisc electrodes randomly distributed in 

the insulating polymer is presented in a schematic diagram of the NEE structure in Figure 1. 

In comparison, if the ensemble of nanoelectrodes is arranged in an ordered manner, owing to 

nanometric resolution-fabrication techniques, we can obtain well-ordered arrays in NEAs. 

Since all nanoelectrodes are interconnected in these systems, they all experience the same 

applied potential and behave usually as a sum of nanosized-electrochemical sensors.  

Membrane-templated synthesis is based on the idea that the pores of a host material can be 

used as a template to direct the growth of new conductive materials. In the template synthesis 

of nanoelectrodes, each pore of the membrane is filled with a metal nanowire or nanofibre. 

Growth of the metal fibres can be achieved by use of both electrochemical30 or 

electroless14,31,32 methods of deposition. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of a nanoelectrode ensemble in a template membrane. 
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In both methods of deposition, the pore density of the template determines the number of 

metal nanoelectrode elements on the NEE surface and, correspondingly, the average distance 

between them, whereas the diameter of the pores in the template determines the diameter of 

the individual nanoelectrodes. Track-etched membranes with pore diameters ranging from 10 

nm to 10 μm are commercially available. Electrochemical deposition inside the pores of a 

nanoporous membrane requires that one side of the membrane is conductive. Deposition can 

be performed under potentiostatic or galvanostatic conditions. In electrochemical template 

deposition, the coated film is placed in an electrochemical cell, and acts as the cathode 

whereas the counter electrode is the anode. Electrodeposition of metals has been used to 

obtain nanowires not only of gold, but also of other materials.  

Electroless deposition involves chemical reduction of a metal salt from solution to metal on a 

surface. The principles of electroless deposition on nanoporous membranes are exemplified 

by the Au deposition method developed in Charles Martin’s laboratory for template 

fabrication of gold nanowires, nanotubes, and other shaped gold materials14. The following 

procedure was used for NEEs exploited in our immunoassays described below.  

The process based on an electroless deposition of gold can be divided in four steps: 

1. “sensitization” of the membrane, during which Sn2+ ions are adsorbed by the substrate; 

2. deposition of Ag nanoparticles by reduction of an Ag+ solution by the adsorbed Sn2+ ions; 

3. galvanic displacement of the Ag particles by reduction of a Au(I) solution;  

4. catalytic reduction of more gold on the deposited Au nuclei, by addition of a reducing agent 

(formaldehyde). 

 

 

 

 

 

 

Figure 2. Schematic representation of electroless deposition. 
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NEEs ready to be used in an electrochemical experiment are shown in Figure 3. The surface 

of the ensemble exposed to the solution defines the geometric area of the NEE (Ageom, area of 

the nanodiscs plus the insulator area). 

 

 

 

 

Figure 3. Schematic representation of a NEE section, prepared by using a track-etched 

polycarbonate membrane as template: (a) track-etched membrane incorporating gold 

nanofibers or nanowires; (b) copper adhesive tape with conductive glue to connect to 

instrumentation; (c) aluminium adhesive foil with nonconductive glue; (d) insulating tape. 

Note: the dimensions of the pores (nanofibres) are only indicative and not to scale33. 

 

3.3. Nano-Electrode Arrays (NEAs) fabrication  

Techniques such as electron beam lithography (EBL)34, ion beam lithography12, 

nanoimprint34, enable one to achieve high resolution nanostructuring, i.e. precise positioning 

and sizing down to a scale of a few nanometres. This spatial resolution capability has been 

exploited to prepare ordered arrays of nanoelectrodes12,34,35. These techniques generally 

consist in three successive steps (Figure 4): 

- Coating a substrate with irradiation-sensitive polymer layer (resist); 

- Exposing the resist to light, electron or ion beams; 

- Developing the resist image with a suitable chemical.  

 

 

 

 

 

 

Figure 4. Representation of the main lithographic steps for NEA fabrication. 
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Exposures can be achieved either by scanning a focused beam, pixel by pixel from a designed 

pattern, or by exposing through a mask for parallel replication. The response of the resist to 

the exposure can be either positive or negative, depending on whether the exposed or 

unexposed portions will be removed from the substrate after development. In case of a so-

called “positive resist” the effect of the exposure is the cutting of polymeric chains in smaller 

molecular weight fragments that are then dissolved in an appropriate developer. In case of a 

“negative resist” the exposure causes instead the cross-linking of the polymer. Recent study 

demonstrated that PC, also, can be used as a high-resolution resist for e-beam lithography36. It 

is worth stressing that PC, in addition to its low cost, has the advantage of being suitable for 

easy chemical functionalization with biomolecules, by using well-known functionalization 

procedures, through amide linkage.20. In addition to the characteristics of the electron beam, 

the success of lithography depends also on the choice of the resist, the subsequent 

development and post-processing. 

3.4. Electrochemistry at nanoelectrode ensembles and arrays  

NEE/NEAs can be considered as an assembly of extremely small ultramicroelectrodes 

separated by an electrical insulator interposed between them37. An ultramicroelectrode is 

considered as an electrode with at least one dimension comparable or lower than the thickness 

of the diffusion layer (typically < 25 μm)38. At such small dimensions, edge effects from the 

electrode become relevant and diffusion from the bulk solution to the electrode surface is 

described in terms of radial geometry instead of the simpler linear geometry used for larger 

electrodes (> 100 μm), as illustrated in Figure 5. Linear diffusion at macroelectrodes is 

characterised by peak-shaped responses in voltammetry, with the peak current (Ip) being given 

(for a reversible system) by the Randles–Ševčík equation:  

𝐼p =2.69 x105 n3/2 Ageom 𝑣1/2 D1/2 𝑐𝑏                                        (1) 

where n is the number of electrons transferred, A is the geometric area of the electrode, cb is 

the bulk concentration, D is the diffusion coefficient and v is the voltage scan rate. F, R and T 

have their usual meanings38. 
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Figure 5. Schematic diagram of linear (a) and radial (b) diffusion geometries occurring at 

electrode arrays and corresponding current vs. potential (E/I) curves.39 

 

Under radial diffusion conditions the voltammograms’ shape is sigmoidal, and the limiting 

current (Ilim) of the plateau, is the crucial analytical parameter directly related to analyte 

concentration. In fact, due to the small size of the nanoelectrodes in NEE/NEA, a spherical 

diffusion field (three dimensional) is easily reached and produce steady-state voltammograms 

(i.e. sigmoidal shape). This voltammogram shape is independent of the nanoelectrode 

geometry39. 

Generally, the nanoelectrode critical parameter (i.e. radius of the disc) is extracted by 

applying a suitable model for the steady-state current. Figure 6 illustrates the possible 

diffusion modes and the corresponding steady-state current (limiting current) equations for 

hemisphere, inlaid disc and recessed disc electrodes geometries12.  

By decreasing the electrode size from micrometer to nanometer scale, the study of faster 

electrochemical and chemical reactions is possible. This is because at very high rates of mass 

transport, the electron transfer process is less limited by the mass transport of reactant to the 

electrode surface40,41. Furthermore, steady-state responses can be reached, which decreases 

dramatically charging-capacitive currents. The main disadvantage of using individual 

nanoscale electrodes is the extremely small current that can be achieved with them. For this 

reason, the development of ensemble of nanoelectrodes operating in parallel has attract a great 
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deal of interest. Even better performances are available when this ensemble is arranged in an 

ordered manner with a controlled inter-electrode spacing, more precisely with arrays. 

 

 

 

 

 

 

 

 

Figure 6. Three main nanoelectrode geometries: hemispherical electrode, inlaid disc electrode 

and recessed disc electrode; schematic diffusion geometries and the equations for the 

corresponding steady-state limiting currents: r is the electrode radius and L is the recession 

depth of the electrode12. 

Moreover, NEE/NEA can exhibit different diffusion regimes. According to the model 

proposed by Guo and Lindner42, diffusion regimes occurring at an array of 

ultramicroelectrodes can be divided into five categories (Figure 7) depending on the scan rate 

or the reciprocal distance among the nanoelectrodes: 

(I) planar diffusion toward each microelectrode; 

(II) mixed diffusion over each microelectrode (transition between planar and 

hemispherical/radial diffusion); 

(III) diffusion toward each hemispherical microelectrode; 

(IV) diffusion mixed with onset of overlap of diffusion layers; 

(V) planar diffusion over the entire array (total overlap diffusion). 
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Figure 7. Simulated concentration profiles, with isoconcentration contour lines, over an 

ultramicroelectrode array representing the five main categories of diffusion modes (forms I to 

V). In the scale bar next to the figure, the red color represents the bulk concentration and the 

blue colour represents zero concentration. The second scale bar represents a relative 

concentration scale for the contour lines. Typical cyclic voltammograms obtained for each 

diffusion profile are shown at the right proposed by Guo and Linder42. 

For ultramicroelectrodes, the thickness, δ(t), of the diffusion layer around the electrode is 

given by Eq. 2: 

1 𝛿(𝑡)⁄ = [1 (𝜋𝐷𝑡)1 2⁄⁄ ] + 1 𝑟⁄                                                                    (2) 

t is the time of the experiment, and r is the radius of the electrode. As the electrode decreases 

in size, the diffusion layer thickness approaches the electrode dimensions. The steady-state 

diffusion-controlled limiting current, I (t→∞), is inversely proportional to the diffusion layer 

thickness, in accordance with Eq. (3): 

𝐼(t → ∞) = nFA𝑐𝑏 𝛿(t → ∞)⁄                                                                    (3) 

where A is the electrode surface area. Dividing Eq. (3) by A reveals that smaller electrodes 

will exhibit higher current densities as a consequence of this enhanced mass transport.  

As mentioned before, the characteristic of the time-dependent diffusion profile of 

NEEs/NEAs depends primarily on the relative inter-electrode spacing, d/r (where d is the 
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centre-to-centre distance between nanoelectrodes and r is their mean radius), as well as the 

scan rate, which determines the time-constant of the experiment.  

In the case of widely spaced electrodes (with a large d/r ratio) or at high scan rates, diffusion 

of the electroactive species to each individual electrode remains independent of all others and 

linear diffusion predominates at each nanoelectrode (case I, peak-shaped voltammograms)34. 

This is the regime that gives the higher Faradic current, therefore this is the regime of choice 

for obtaining the maximum improvement of detection limits when there are no constraints in 

increasing the distance between the nanoelectrodes. 

When the radial diffusion-boundary layers totally overlap, i.e. when the diffusion hemisphere 

is larger than the mean hemidistance among the nanoelectrodes, NEEs/NEAs behave as a 

whole macroelectrode with regard to the Faradic current (total overlap, peak shape 

voltammograms, case V, but with peak currents much bigger than case I). Therefore, the 

diffusion-controlled current will be proportional to the geometric area, Ageom of the ensemble 

or array (i.e. active electrode surface as well as inter-electrode insulation, Eq. 4.). The 

background or charging current instead is proportional only to the active area of the electrode 

elements, Aactive, in contrast to the conventional electrodes (CE) (Eq. 6)39,43. 

Faradaic current at CE/NEE : Ip = 2.69 x105 n3/2 Ageom v1/2 D1/2 Cb                (4) 

Background (charging) current at NEE : Ic = Aactive v Cd                                              (5) 

Background (charging) current at CE : Ic = Ageom v Cd                                                   (6) 

By combining Eq. (4)–(6), we can obtain the ratio: 

(Ip/Ic)NEE = (Ip/Ic)conv x (Ageom/Aactive) = (Ip/Ic)conv / (Aactive/Ageom)                    (7) 

𝑓 =
𝐀𝐚𝐜𝐭𝐢𝐯𝐞

𝐀𝐠𝐞𝐨𝐦
                                                                                                                                   (8)       

Where Cd is the double layer capacitance and 𝑓 is the reciprocal of the fractional electrode 

area. This means that an effective enhancement of the signal (diffusion-controlled current) to 

noise (background or charging current) ratio is obtained. This represents an important 

advantage to the analytical use of NEAs and NEEs because the lowering of the background 

noise (related to the capacitive current) in an electrochemical measurement improves not only 

the detection limit but also the precision of the measurement44.  
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In the case where the diffusion hemisphere becomes shorter or the hemidistance among 

nanodiscs is larger (higher scan rates compare to case V, but lower than in case I), the 

voltammetric response is dominated by radial diffusion conditions at each element (pure 

radial conditions, sigmoidal-shap voltammograms, case III). Obviously, intermediate 

situations can be observed (cases IV and II). 

3.5. Bioelectroanalysis and biosensors with NEEs/ NEAs 

The improved signal-to-noise ratio typical of NEEs, as detailed is Paragraph 3.3, with 

detection limits improved 2–3 order of magnitudes with respect to conventional 

microelectrodes,15,43 makes them extremely suitable for detection of electroactive species at 

low concentrations. Moreover, with the electrodes typically prepared by electroless deposition 

of gold within the pores of a nanoporous polycarbonate (PC) membrane14,15,17, the pore 

diameter and pore density of the template determines the number and surface density of Au-

nanoelectrodes. NEEs prepared with commercially available template membranes have high 

nanoelectrode densities, in excess of 108 pores cm-2. As a consequence, these NEEs operate in 

the total-overlap response regime where the products of the electrochemical process are 

homogenously diffusing away from the electrodes. Recently, the properties of NEEs were 

exploited to develop electrochemical biosensors in which high amounts of biorecognition 

layer is immobilized directly on the PC of the NEE15. In such a design, a useful 

electroanalytical signal is assured by the presence in the electrolyte solution of a substrate 

and/or redox mediator which, diffusing all over the geometric area of the NEE, can shuttle 

electrons to the redox labels bound onto the biorecogniton layer13. Exploiting this idea, Pozzi 

et al. developed an immunosensor for determination of the human epidermal growth factor 

receptor HER2 in which a specific capture agent is bound to the templating PC of a NEE20.  In 

breast cancers, HER2 is over expressed, and causes cancer cells to reproduce uncontrollably. 

The mechanism for detection of this protein is presented in Figure 8. First, the monoclonal 

anti-HER2 antibody trastuzumab (commercially Herceptin) is immobilized on the 

polycarbonate of a NEE. The functionalized NEE is then incubated with the sample to capture 

the target protein HER2. Finally, the captured protein is reacted with a primary antibody 

(monoclonal CB-11) and a secondary antibody, labelled with horseradish peroxidase (HRP).  
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Figure 8. Schematic illustration of the HER2 detection mechanism. A specific antibody is first 

attached to the polycarbonate to capture the target protein (blue square). A primary antibody 

binds to the protein and, subsequently, a secondary antibody tethered with the enzyme label 

(EL)20. 

 

The biosensor is then dipped into phosphate buffer, used as an electrolyte, and containing the 

HRP substrate (i.e. H2O2) and the redox mediator methylene blue, which shuttles electrons 

from the nanoelectrodes to the active site of HRP. A similar approach has also been applied to 

the electrochemical detection of DNA sequences for virus genotyping18,19 and ligand proteins 

of interest for cultural heritage diagnostics45. In the present work, we capitalized on the listed 

advantages of both ECL and NEEs properties to develop highly sensitive sensor for detection 

of celiac disease biomarkers.  

 

Recently, the group of Paolo Ugo reported electrochemical biosensors for medical diagnostics 

based on BDD NEAs28. Electrodes of BDD offer advantageous properties over conventional 

electrodes such as high reproducibility, stability, and robustness under extreme conditions. 

Also, they have shown an extremely wide potential window in aqueous solutions without 

oxidation of the electrode itself. BDD based NEAs were prepared by electron beam 

lithography in a thin film of PC. This approach leads to the formation of recessed 

nanoelectrodes working in pure radial diffusion conditions. When using PC as a novel 

electron beam resist, this allows the creation of structures of dimensions less than 100 nm; in 

addition, its chemical stability favors a long-term use for electrochemical detection and the 

possibility of its functionalization with biological molecules (DNA and proteins). PC surface 

of NEAs was successfully functionalized with small ss-DNA sequence, confirming the 

possibility of exploiting these systems as diagnostic biosensors.  
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E-beam writing of nanodot arrays on PC is briefly presented in Figure 9 and SEM image of 

prepared NEAs are shown in Figure 10.   

 

 

 

 

 

 

 

 

 

 

Figure 9. Schematic representation of the steps of E-beam writing of BDD nanodot arrays in a 

PC substrate. 

 

 

 

 

 

 

 

 

 

 

Figure 10. SEM images of a BDD-NEA prepared by e-beam writing; dots-nanoelectrodes are 

of 140 nm mean-radius and the interspacing distance is 3 µm28. 

. 

 

Carboxylic groups present on the surface of PC were further exploited for the immobilization 

of single-stranded DNA modified with fluorescein (using a carbodiimide/succinimide 

strategy). Before proceeding with the immobilization of the oligonucleotide probes, the 

carboxylic groups were activated enabling the reaction of –COOH groups with the amino 

group of the ss-DNA. A micoscopy image in fluorescence of a functionalized array is shown 

in Figure 11. 
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The fluorescence signal that can be observed around the nanoelectrodes indicates the 

successful immobilization of the oligonucleotidic probes in proximity of the nanoelectrodes. 

 

 

 

 

 

 

 

 

 

Figure 11. Fluorescence imaging of a NEA28 functionalized by the single-stranded DNA 

modified with fluorescein 

 

3.6. Highly sensitive ECL Sensor for Celiac Disease Biomarkers 

Celiac disease is an autoimmune-mediated disorder that affects the gastrointestinal 

tract. It is characterized by inflammation of the small intestine upon ingestion of gluten, a 

protein made up of gliadins and glutenins24. CD has a prevalence of 1% in the general 

population46 whit an increasing trend over time with aging47. Certain patients can be 

asymptomatic for years, while clinical conditions of CD vary from mild to severe. Classical 

symptoms include gastrointestinal complaints (malabsorption, diarrhea) but the extra-

intestinal symptoms represent the large majority of the clinical features such as osteoporosis48, 

dermatitis herpetiformis49, psychiatric and neurological disorders50, arthritis51, cardiac52 and 

obstetric disorders53. Early diagnosis and treatment with gluten-free diet, reduces the 

prevalence of CD-associated disorders, as well as mortality. Given the high prevalence of the 

CD and the implications of detecting it late, several simple, cheaper and rapid immunoassays 

were developed as a first step towards speeding up CD diagnosis in the physician’s office54,55. 

Tissue transglutaminase (tTG) is the main autoantigen that triggers antibodies production and 

the determination of the serum concentration of the anti-tTG antibodies, both immunoglobulin 

IgA and IgG, providing a powerful tool to screen the general population and to identify the 

individuals56. Up-to-now, no single confirmatory serological method has been adopted for 

practical use, although many trials have been made to develop variety of analytical methods, 
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including electrochemical ones3,22,23,25,57. Based on its successful use for many serological 

assays (see Chapters 1 and 2), ECL could be a powerful analytical method for future CD 

screening58. 

The principle of using ECL as the detection method of the target analyte anti-tTG 

combined with nanoelectrode ensembles properties is presented in Figure 12. First, the 

capturing agent tTG is adsorbed onto the PC surface of a NEE so that, when incubated with 

the sample, it will react with the target analyte anti-tTG, if present. The biorecognition chain 

is continued by the reaction of a biotinylated secondary antibody (sec-Ab-Bt) with the 

captured anti-tTG. Finally, a streptavidin-Ru(bpy)3
2+ derivative (SA-Ru(bpy)3

2+), used as 

ECL label, will bind to the sensor in case of positive analytical response. The ECL emission is 

triggered by addition of a co-reactant, TPrA (see chapter 2). Due to the customized 

architecture of the biosensor, oxidized TPrA acts both as a co-reactant and a redox mediator. 

The oxidized radicals generated at the electrodes, TPrA●+ and TPrA●, diffuse toward the PC 

area of the NEE, to provide in fine an ECL signal by reaction with the non-diffusing 

ruthenium centers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Schematic illustration of the anti-tTG detection mechanism. A capturing agent tTG 

is first attached to the polycarbonate surface to capture the target analyte anti-tTG (blue 

antibody). A biotinylated secondary antibody (sec-Ab-Bt, violet antibody) binds to the analyte 

and, subsequently a streptavidinated Ru(bpy)3
2+ derivative (SA-Ru(bpy)3

2+), the ECL label.  
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3.6.1. NEEs characterization 

 

Prior to immunosensor construction, NEEs have been characterized. The FE-SEM 

images of a NEE prepared by electroless deposition of gold in the pores of track-etched PC 

filter membrane as a template are shown in Figure 13.31,44-46 NEEs were fabricated by H. 

Habtamu abd M. Ongaro from the University Ca’ Foscari of Venice as described in the 

paragraph 3.2. The pores of the template are filled by Au-nanowires whose upper ends 

emerge on the surface of the template with the shape of nanodisks of approximately 50 nm 

diameter.   
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Figure 13. A) Field emission scanning electron microscopy (FE-SEM) images of a NEE at 

different magnifications. B) A plot of a NEE’s surface elemental analysis using scanning 

electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). 

 

The distance between the nanoelectrodes is rather variable, between 100 and 400 nm. The 

density of nanoelectrodes measured from different images is 5 x108 electrodes.cm-2. 

Furthermore, from the Figure 13B is clear that there is no impurities on the surface of the 

NEEs. All these morphological data substantially match with previous reports16.  

 

The cyclic voltammetry characterization of the NEEs in 0.1 mM (ferrocenylmethyl) 

trimethylammonium hexafluorophosphate (FA+, PF6
-), used as a test redox probe, matches 
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with the theoretical expectations for NEEs; meaning that with the determined morphological 

characteristics, NEE operate under total overlap-diffusion condition31 (Figure 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Experimental (solid line) and simulated (dashed line) cyclic voltammograms at a 

NEE recorded in 100 µM FA+PF6
-, 0.05 M phosphate buffer saline pH 6.8 at 50mV/s, Ageom is 

0.07 cm2. Additional parameters used for the digital simulation: E° = 0.44 V, k° = 0.007 and 

D = 4 x 10-6 cm2 sec-1 where E° is the formal potential, k° and kapp are the standard and 

apparent heterogeneous electron transfer rate constants, respectively, and D is the diffusion 

coefficient.  

 

3.6.2. Voltammetric and ECL characterization of the immunosensor  

 

The functioning scheme of the sensor was summarized in Figure 12. At first, the tTG antigen 

is immobilized on the PC component of NEEs via formation of an amide bond between the 

protein and the carboxylic groups present on the PC surface18,20,45. The tTG-NEE is 

subsequently blocked with 1% bovine serum albumin (BSA) to avoid non-specific binding on 

free binding sites of the PC and Au surfaces. The blocked tTG-NEE is then incubated with 

sample solutions eventually containing the anti-tTG. After a thorough washing step with PBS- 

Tween, the captured primary antibody is coupled with biotinylated goat anti-mouse (or 

antihuman) secondary antibody. Finally, the reporter Ru(bpy) complex is incorporated via 

biotin-streptavidin affinity binding for the detection and quantification of the analyte. After 

addition of TPrA to the electrolyte solution, the ECL response is obtained by scanning the 

potential between 0 and 1.6 V vs Ag/AgCl (scan rate of 100mV/s). Cyclic voltammogram and 

ECL curves for anti-tTG are presented in Figure 15.  
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Figure 15. A) Cyclic voltammogram (blue) at scan rate of 100mV/s and the corresponding 

ECL signal (red) of the anti-tTG immunosensor in solution of 0.1M PBS pH 7.4 containing 

0.1M TPrA; B) ECL plots of bare NEE (black), negative control –without anti-tTG (blue) and 

immunosensor (red) in solution as in A. 

 

The ECL curve in Figure15A reveals the presence of one intense ECL peak, detected at a 

potential of +0.87 V vs Ag/AgCl during the course of the anodic scan. This ECL signal is 

emitted at the reported-oxidation potential of TPrA, but well ahead of the oxidation potential 

of Ru(bpy)3
2+ 59. This matches with a well-defined oxidation peak at 0.9 V on the CV curve. 

Furthermore, a broad sequential peak appears at 1.17 V, which is at about the usual potential 

for ruthenium oxidation. In the absence of an ECL emission at the potential of the second 

peak, results indicate that only the oxidation of co-reactant contributes to the ECL response. 

Dealing with gold NEEs one can assign this peak at more positive anodic current potential to 

the well-known Au-oxides formation17,60. To confirm the ECL signal at the potential for 

oxidation of TPrA and to distinguish the second peak appearance either from non-specific 

binding of ruthenium label, or from Au-oxide generation, differential pulse voltammetry 

experiments have been performed. A set of experiments have been done with a bare NEEs 

only in TPrA or Ru(bpy)3
2+solution at different concentrations.  
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Figure 16. Differential pulse voltammograms recorded at bare NEEs in 0.1M PBS pH 7.4 

containing different concentrations of A) TPrA or B) Ru(bpy)3
2+. 

 

 

Differential pulse voltammetry (DPV) was preferred to cyclic voltammetry in order to 

maximize separation between possibly-overlapping peaks corresponding to the oxidation of 

ruthenium moiety and gold. The peak in the differential pulse voltammogram for the direct 

oxidation of TPrA is detected with bare NEEs in TPrA solution. Figure 16A shows that wave 

peaking at 0.9 V vs. Ag/AgCl/KC increases progressively with the TPrA concentration as 

expected, e.g. in the 1-50 mM range. The current curves for differential pulse 

voltammograms, running in the presence of different concentrations of Ru(bpy)3
2+dissolved 

in solution with no TPrA added, confirm also that the ruthenium61 complex is not oxidized at 

this potential value (Figure 16B). The increase in anodic current at potential > 0.9 V, detected 

at the bare NEE in pure electrolyte (black curve), is therefore related to the formation of gold 

oxides. All results confirm that the current peak detected at 0.9 V in Figure 15A is related to 

the direct electrochemical oxidation of TPrA.  

 

The absence of measurable ECL at potential greater than +1.0 V on repetitive scanning 

indicates that direct oxidation of Ru(bpy)3
2+ at the surface of the nanodisks is not taking place.  

All these data lead to the conclusion that electrochemical oxidation of TPrA onto the 

nanoelectrodes provide a flux of oxidation products, namely TPrA●+ radical cations, diffusing 

from the electrode surfaces. As total overlap-diffusion conditions hold, both the in and out 

fluxes of reagent and product, respectively, will cover the overall geometric surface of the 

NEE. While diffusing away from the nanoelectrodes, TPrA●+ is deprotonated forming TPrA● 

radical species. Both radical species are involved in the ECL generation, following the 

‘‘revisited’’ route operating at low operating potential (LOP) 10,11,62. Finally, the ECL signal is 
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thus obtained by mediated oxidation of the Ru(bpy)3 
2+ centers bound to the biorecognition 

chain by oxidized TPrA products.   

 

To show the effect of concentration of luminophore on ECL response, we performed 

experiments with ruthenium complex in immobilized form and free diffusive form in the 

electrolyte solution.  The increase in concentration of the luminophore in immobilized state 

resulted in a corresponding increase in the intensity of the LOP wave unlike the increase in 

the concentration of the luminophore in the solution enhanced the intensity of the second 

wave diminishing the intensity of the ECL peak at LOP (Figure 17). 

 

   

 

 

 

 

 

 

 

Figure 17. Effect of concentration and immobilization of luminophore on ECL intensity and 

potential of emission respectively, in 0.1M PBS pH 7.4 containing 0.1M TPrA; a-c) at bare 

NEE after adding a) 0.5, b) 1.0, and c) 10µM Ru(bpy)3
2+ in the solution; d-f) at the 

immunosensor constructed of d) 0.5, e) 1, and f) 10 µg/mL anti-tTG. Scan rate 100mV/s.  

 

3.6.3. Analytical performances of the immunosensor 

 

As standard human anti-tTG is unavailable on the market, the performances of the developed 

ECL based immunosensor were initially evaluated using serial dilutions of standard mouse 

anti-tTG IgG antibody. The ECL spectra for concentrations ranging from 1ng/mL to 5µg/mL 

are shown in Figure 18A. The ECL peak intensity was observed to increase progressively 

with the concentration of anti-tTG. The standard calibration curve in Figure 18B was plotted 
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using mean ECL values of triplicate measurements of different solutions at each 

concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. A) ECL response as function of Anti-tTG concentration (0.00, 0.001, 0.01, 0.05, 

0.1, 0.5, 1 and 10 µM); B) Calibration curve developed from the average net ECL-peak 

amplitude (n=3). Experimental conditions are same as in Figure 15. 

 

The logarithm of net ECL amplitude was directly proportional to the logarithm of 

concentration of anti-tTG within a wide range (i.e. 1 ng/mL to 10 µg/mL) . The plot is linear 

in a log-log representation following the equation of Log(ECL) = 0.379LogC + 1.679 (unit of 

C is g/mL) with a correlation coefficient of 0.9959 and a limit of detection below 1ng/mL. In 

most of the ECL measurements using the immunosensor, stable ECL was obtained starting 

from the third scan.  
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The above results have shown the efficiency of the proposed immunosensor and 

correspondingly of its architecture, based on the biosensing protocol on the PC surface and on 

the ECL inititation at the nanoelectrodes. However, one may expect at least a weak ECL from 

the luminophores found in close proximity (within electron tunneling distance) from the 

surface of nanodisks. This may be attributed to one or more of the following reasons: (1) the 

protein layer formed may be thicker than the electron tunneling distance, (2) the nature of the 

PC close to the pores may be altered (low opening, deep recess) during industrial 

manufacturing processes so that biomolecules cannot be attached to the nanodisks, and 

electrons tunneling doesn’t occur. On the other hand, absence of any ECL at the oxidation 

potential of Ru(bpy)3
2+ confirms that the nonspecific binding on the gold nanodisks is 

marginal. It further indicates the stability of the platform upon repetitive scans because 

occurrence of any sort of leaking of the sensor ladder into the electrolyte solution should 

allow the ruthenium tag to be directly oxidized at the surface of gold, with a resulting ECL 

emission at potentials > 1.0 V. Also, it supports studies concerning the sufficient stability of 

TPrA cation radical to react itself before its deprotonation supported in “revisited route’’. It is 

found that TPrA●+ can diffuse up to 3µm from the site of formation with half-life time of 0.2 

ms10,11. In our immunosensor platform, the maximum distance of the luminophore 

corresponds to the vector sum of the distance that the tTG is bound from the Au surface and 

the contribution from the protein layer formed in the immunosensor construction steps. As the 

average edge-to-edge distance between the nadodisks is about 170 nm, a biomolecule located 

exactly at mid-way between two Au nanodisks i.e. 85 nm is the farthest point in platform. Due 

to the optimum distance of the luminophore from the nanodisks’ surface and the excessive 

production of the radical cation at the interface, sufficient quantity of the two radicals seem to 

be available at the site of emission. As displayed in Figure 15B, the fact that a bare NEE 

immersed in PBS buffer containing 0.1M TPrA didn’t show any ECL, indicates that neither 

TPrA alone nor components of the buffer system used are not implicated for the ECL 

emission. Also, absence of ECL at the negative control (an immunosensor constructed in the 

absence of the analyte anti-tTG) implies lack of non-specific binding both on the 

polycarbonate and nanodisks’ surfaces. It also confirms the effectiveness of our blocking step 

with 1% BSA solution and thorough rinsing with 0.05% Tween 20 surfactant before 

incubation with the biotinylated secondary antibody.  

 

Reduction of the conventional ECL detection-oxidative potential of the Ru(bpy)3
2+/TPrA 

system by about 300mV offers the following analytical benefits. First, it significantly reduces 
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possible interferences from side reactions while dealing with samples of complex matrix like 

blood. The interferences could provide either background emission or quenching. Second, it 

reduces the ECL background arising from the reaction between Ru(bpy)3
3+and hydroxide in 

aqueous systems63. Third, in the development and use of biosensors, it minimizes electrical 

damage on susceptible biomolecules and oligonucleotide sequences, and lastly, it reduces the 

formation of an oxide layer on metal electrode surfaces particularly on Au and Pt, which 

eventually causes analytical reproducibility problems. Utilization of the nonconductive 

polymer of the NEEs as a biosensor platform provides other advantages besides maintaining 

the high signal-to-noise ratio of the electrode. Finally, this approach doesn’t need the lengthy 

surface modification of metal electrode surface to load biorecognition elements.  

 

3.7. Tuning of induced luminescence with arrays of nanoelectrodes (NEAs) 

 

Different types of NEAs with precisely controlled geometries, have been reported for 

electroanalytical applications28. As introduced above, NEAs offer significant advantages over 

larger electrodes, such as enhanced mass transport, improved faradic/capacitive currents ratio 

(i.e. extremely low detection limits), high miniaturization, possibility to be functionalized 

with various strategies36. Despite such attractive features, no experimental study has ever been 

reported concerning the use of NEAs with controlled geometry as ECL generators. These 

observations prompted us to undertake the present study devoted to examine the 

characteristics of ECL generated by arrays of nanoelectrodes fabricated with a variety, but 

well-controlled range of geometries. To this aim, arrays of nanodisk and nanoband electrodes, 

with different dimensions and inter-electrode distances, were prepared by e-beam lithography 

on a polycarbonate layer deposited on boron-doped-diamond substrates. BDD consists of sp3 

hybridized carbon in a diamond lattice structure, where approximately one carbon atom in a 

thousand is replaced by an atom of boron. This imparts electrical conductivity to the material, 

BDD being one of the most attractive carbon substrates for electroanalysis due to the large 

potential window (up to 3V in aqueous electrolyte solutions), low background current, 

mechanical durability and resistance to surface fouling64-66. NEAs with 16 different 

geometries were fabricated on the same BDD sample-substrate (Figure 19) by Dr. Francesca 

Virgilio and Alessandra Zanut from the University of Trieste. This approach provides a 

platform of multiple arrays of nanoelectrodes (Multiple Nanoelectrode Array Platform, 

MNEAP) suitable to capture simultaneously in a single image the ECL emission from the 

different NEAs. ECL emission was induced using Ru(bpy)3
2+ as the ECL luminophore and 
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TPrA or dibutylaminoethanol (DBAE) as the co-reactant. Each MNEAP consisted in 16 small 

arrays of disks and bands. Each line of the sample includes a series of four arrays in which the 

centre-to-centre distance (for dots) or pitch (for bands) is kept constant, while the radius of 

disks or bands width is increased. Note that all the arrays are electrically connected by the 

BDD under-layer. This type of sample was fabricated in order to follow changes in the ECL 

reaction layer  as a function of shape and inter-electrode distance. 

                                          

                                     a                                                                                  b 

   

 

 

 

 

        

 

 

 

 

 

 

 

 

Figure 19. a) Schematic drawing of NEA fabricated for preliminary ECL experiments: r is the 

individual disk radius, d is centre-to-centre distance between them; D represents the pitch 

between bands and w is the width of eahc band; b) Identification key of the NEAs in the 

platform. 

 

 

3.7.1. MNEAPs fabrication 

 

The samples were fabricated by the following procedure: 

- First, markers were created in order to easily locate the arrays with the microscope. 

Poly (methilmethacrylate)-coined PMMA 671.05 was spin-coated at 5000 rpm for 1 

minute on a BDD substrate and subsequently annealed at 170 ⁰C for 15 minutes. The 

EBL exposure of marker pattern was done using parameters summarized in Table 1.  
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Table 1. Summary of the conditions used for markers exposure. 

 

Dose 400 µC/cm2 

Aperture 300 μm (mag 220)  

Bake 170 ⁰C for 15 

minutes 

Current 310 pA 

Developer IBMK:IPA=3:1 

Temperature RT 

                

               

After development, samples were modified by CVD with 30 nm of chromium followed by lift 

off in hot (CH3)2CO in order to obtain BDD substrate with metallic markers. Then, the sample 

was treated with O2 plasma for 15 seconds and a layer of PC was deposited on it by spin 

coating. Structures reported in Figure 19a were exposed by EBL. Process parameters are 

reported in Table 2. 

 

 

Table 2. Conditions used for NEA fabrication described in figure 19a exposure. 

 

Resist PC 3% 

Spin Speed 2000 rpm  

Bake 180 ⁰C for 30 

minutes 

Dose  8000 µC/cm2 

Developer 5M NaOH  

Temperature 35 ⁰C 
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Figure 20. Schematic representation of samples for ECL experiments. Visible Cr marks were 

made by EBL, metal deposition and lift off. After that, arrays’ structures were obtained by 

lithography on polycarbonate film, inside the field delimited by the marks. 

 

3.7.2. Electrochemical characterization of the MNEAP  

 

For the electrochemical experiments, nanoelectrode arrays assembled as shown in Figure 20 

were used as working electrode, while a Pt wire and Ag/AgCl/KCl were the counter and 

reference electrode, respectively. Figure 21 shows the cyclic voltammetry recorded at the 

MNEAP in supporting electrolyte in the absence (black line) and presence (blue line) of 1 

mM Ru(bpy)3
2+ .  

 

 

 

 

 

 

 

 

 

 

Figure 21. Cyclic voltammogram of the NEAs in in 100 mM phosphate buffer (pH=7.4) 

(black), added with 1mM Ru(bpy)3
2+ (blue); scan rate is 10 mV/s. 
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Note that in all presented measurements, NEAs in the platform are all connected together and 

all experience the same applied potential. The cyclic voltammograms recorded in the buffer-

supporting electrolyte show a very small double layer charging current producing an I vs. E 

plot with negligible slope up to +1.2. V, as expected for a polarized electrode under negligible 

ohmic drop effects. The background current starts to increase slowly for E > 1.2 V, but 

keeping a low profile, at least up to 1.35 V; this can be attributed to the oxidation of chloride 

anions The current curve in Figure 21 shows the oxidative response of 1 mM Ru(bpy)3
2+ with 

the appearance of apeak at 1.15 V, associated with a small return-reduction peak at 1.010 V 

during the reverse scan. These data agree with the occurrence of the one-electron oxidation of 

Ru(bpy)3
2+. It can be noted that the shape of the cyclic voltammogram is midway between a 

peak and sigmoidally shaped voltammogram. Explanation lies in the fact that we are 

recording the signal gathered simultaneously by 16 different NEAs with different geometries. 

For instance, on the basis of their geometrical features, NEAs in the first line (1.1 – 1.4) are 

expected to operate under pure radial control conditions while those in the 4th line (4.1- 4.4) 

should operate under total overlap diffusion. Since all the NEAs are connected together, it is 

not possible to deconvolute the signal of an individual NEA from the described overall cyclic 

voltammogram pattern. As a whole, these data demonstrate that: the NEAs are electroactive; 

no residual PC (which can cause electrical resistance effects) is present on the surface of the 

nanoelectrodes, the MNEAPs work over a potential window suitable for performing the 

electrochemical oxidation of Ru(bpy)3
2+.   

 

3.7.3. ECL measurements with the MNEAP 

A modified epifluorescence microscope (BX-30, Olympus) was used for bright field (BF) and 

ECL imaging. BF and ECL emission were collected by a 50X microscope objective and 

detected by an Electron Multiplying Charge Coupled Device (EM-CCD) Camera (Figure 22). 

Experiments were done in the direct view of the NEAs. The ECL intensities and ECL profiles 

were analysed with Image J software. 
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Figure 22. Microscopic bright field imaging (false color), of the MNEA; magnification = 

50X, scale bar 12µm. 

 

Figure 23 reports the ECL images recorded with the MNEAP at +1.2.V in 1 mM Ru(bpy)3
2+ 

in phosphate buffer after adding increasing TPrA concentrations, from 1 mM to 85 mM. 

Emitted ECL patterns are indeed clearly detected, with varying intensities for each TPrA 

concentration. Focusing the attention for instance on the image taken at 10 mM TPrA, it can 

be noted that the emission patterns are particularly bright and well resolved for the NEAs in 

the 3rd and 4th columns in the platform matrix, allowing one to clearly recognize the 

morphological features typical for these arrays. The intensity of emitted ECL increases by 

enlarging the dimensions of the nanoelectrodes in the array. As shown in particular for the 

NEAs in column 1 and 2, emission from nanobands is more intense than emission from arrays 

of nanodisks. Important information are obtained by comparing the ECL in the different 

boxes. The increase in co-reactant concentration generates a higher ECL intensity, at the same 

time a shrinking of the radius/width of the bright spots, which corresponds to the shrinking of 

ECL emitting region.  
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Figure 23. ECL on the MNEA obtained with increasing concentration of TPrA (indicated in 

top-left corner of each box), during chronoamperometry at 1.2 V vs. Ag/AgCl/KCl; images 

were acquired with 50X objective at 2 sec. exposure time in normal CCD mode. 

 

 

Another observed effect is that, by increasing TPrA concentration, the light emission dots or 

lines are more separated around each electrode element. By comparing carefully the boxes 

relative to 30 or 85 mM TPrA, one can note that the ECL intensity increases along the lines, 

i.e. with increasing radius, or band width), and it decreases along column (with increasing 

space among elements). Note that an increase of the dimension of the elements in NEAs in the 

same line corresponds also to a decrease of the inter-electrode distance. On the other hand, for 

NEAs with the same disk radius (lines 1 and 2 in the same column) or band width (lines 3 and 

4 in the same column), an increase of the ECL intensity is observed as a consequence of the 

decrease in spacing between the elements. This can be observed by comparing the emission 

intensities between NEAs 1.4 vs. 2.4 or 3.4 vs. 4.4. All results suggest that the intensity of 

emitted chemiluminescence increases for NEAs where the ECL reaction layers between 

adjacent nanoelectrodes overlap.  
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Figure 24.  ECL profiles relative to different TPrA concentration for disks (a) and bands (b) in 

lines 2 and 4 of the MNEAP. 

 

More quantitative information can be obtained by plotting the changes of the ECLintensity 

profiles with the co-reactant concentration, as shown by the plots reported in Figure 24 for the 

typical case of NEAs on lines 2 and 4 of the platform. The plots evidence that the peaks are 
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more defined and well separated at higher co-reactant concentration. Further, it indicates that 

the ECL-emitting region is more confined. This effect is illustrated by data in Figure 25, 

where the half-peak widths (HWHM) for the indicated NEAs are plotted as a function of 

TPrA concentration. It is evident that the width of the luminescence emitting zone at each 

nanoelectrode scales oppositely with respect to the co-reactant concentration.  

 

Figure 25. HWHM of ECl profiles for NEAS with period 4 µm at different TPrA 

concentration. 

 

The trends observed for the arrays of nano-disks agree with the trends expected on the basis 

of simplified models which correlate the thickness of the ECL emission layer at hemispherical 

ultramicroelectrodes with the electrode radius and co-reactant concentration according to the 

following equation : 

 

𝜇 = [
1

𝑟𝑎𝑣
+ (

[𝑇𝑟𝑃𝐴]2𝑘3 

𝐷
)
1
2⁄

]

−1

                                                               (9) 
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where rav is the average apparent radius of a single electroactive dot of the array, k3 is the 

reaction apparent rate constant and D is the diffusion coefficient of Ru(bpy)3
2+/3+. D is 5.9  

10-6 cm2 s-1. The variation of k3 with pH is related to the acid-base behaviour of TPrA and it is 

given by k3 = k/(1 + 10-pH+pKa), where k is the intrinsic value of the rate constant. The values 

of k and pKa are respectively 1.3  107 M-1 s-1 and 10.4. At pH = 7.5, k3 is estimated to be 1.6 

 104 M-1 s-1.1 It is worth stressing that this equation holds for arrays where the nanoelectrodes 

in the same array do not interact, or crosstalk between them, that is when the distance between 

the nanoelectrodes is much larger than the diameter of the reaction layer. Application of the 

above equation to ECL from NEAs under reaction-layer overlapping conditions must be taken 

with caution.  

Reaction layers calculated for disks with radius from 100 to 1000 nm and increasing 

concentration of TPrA are reported in table 3. Data are also plotted for a better visualization in 

Figure 26. 

[TPrA] 

 

 mol/L 

Reaction Layer (µm) 

r=100 

nm  

r=300 

nm 

r=600 

nm 

r=1000 

nm 

0,001 0,0977 0,280 0,527 0,812 

0,003 0,0961 0,268 0,484 0,714 

0,005 0,0951 0,260 0,458 0,659 

0,01 0,0932 0,246 0,417 0,578 

0,03 0,0888 0,217 0,341 0,441 

0,085 0,0824 0,183 0,263 0,319 

 

Table 1. Reaction layers calculated for different TPrA concentration and different disk radius. 

 

 

 

 

 

 

 

 

Figure 26. Reaction layers reported as function of TPrA concentrations. 
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Under such conditions, for small radius disks, the reaction layers do not significantly change 

by increasing the concentration of TPrA, while the effect is much more pronounced with 

greater electrode radius, in agreement with our experimental observations.  

 

Similar imaging experiments were performed using another co-reactant, DBAE. As can be 

seen in Figure 27, comparable concentration of DBAE and TPrA generate higher ECL 

intensity for the former. The dependence of the emission with DBAE follows the same trend 

as with TPrA, that is ECL intensity increases by increasing dots radius or band width (along 

lines), and by decreasing spacing between the elements in the same NEA (along column). 

 

Figure 27. Comparison between ECL images at the MNEA using TPrA and DBAE as co-

reactants, during chronoamperometry with potential application at 1.2 V vs. Ag/AgCl/KCl, 

images acquired with 50X objective and recorded in normal CCD mode with a 2 seconds 

exposure time,. 

 

This result indicates that DBAE could be an optimal co-reactant in the perspective of coupled 

NEA/ECL biosensor future development. A more environmentally-friendly co-reactant, 

DBEA is much less toxic and less volatile than TPrA, and more effective at lower 

concentration than TPrA. It is also more convenient to prepare DBAE solutions because it has 

better solubility in aqueous solutions. Due to the higher ECL intensity with respect to TPrA, 

DBAE could probably allow reaching lower detection limits. 
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3.8. Conclusion  

 

In the present chapter, we developed a new sensitive and specific anti-tTG ECL 

immunosensor for diagnosis of celiac disease-CD with limit of detection below 1 ng/mL, 

using a novel analytical strategy. We exploited the revisited ECL route with TPrA as co-

reactant, which enables ECL generation at micrometric distances from the electrode surface at 

LOP. Using this approach, location of the initial electrochemical step (i.e. oxidation of TPrA) 

is separated from the biosensing chain and ECL-label, which are immobilized on the non-

conductive surface of the NEEs. It therefore minimizes electrical damage on very sensitive 

biomolecules and oligonucleotide sequences. Also, operating at low oxidation potential 

allows to reduce possible interferences from side reactions dealing with samples of complex 

matrix like blood; making this method extremely suitable for serological screening. 

Furthermore, we studied the characteristics of ECL generated by arrays of boron-doped-

diamond nanoelectrodes as a promising materials for biosensing. The arrays of nanodisk and 

nanoband electrodes were fabricated with different dimensions and inter-electrode distances. 

The ECL intensity increases with increasing the dimensions of the nanoelectrodes in the 

array, being more intense at nanobands than at nanodisks. The increase in co-reactant 

concentration generates a higher ECL intensity, at the same time confining the ECL emitting 

region around the nanoband and nanodisk arrays. Lastly, ECL emissions based on two 

different co-reactants, DBAE and TPrA, were compared. The results have shown that DBEA 

is a more favorable co-reactant in our condition, exhibiting the higher ECL emission at lower 

concentration in comparison to TPrA. 

By using advantages of the electron beam lithography for future analytical platform 

development, more detailed information on ECL generation should be obtained by writing an 

ultramicroelectrode on the same PC platform of the NEAs. In such an arrangement ECL 

reaction layers in different diffusion regimes might be compared at the same time in a single 

image. Furthermore, PC surface of BDD NEAs was successfully functionalized with small ss-

DNA sequence, confirming the possibility of exploiting these systems as diagnostic 

biosensors. Developing an ECL sensor for biological molecules (DNA and proteins) can 

possibly reach extremely low detection limits. 
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Chapter 4:  

Electrogenerated chemiluminescent swimmers driven                   

by bipolar electrochemistry 
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4.1. Introduction 

The design and study of objects that can move in a controlled way and perform tasks at small 

scales is of crucial importance for many potential applications ranging from micromotors to 

nanomedicine1. Micromotors are microscale devices designed to perform selected mechanical 

movements (e.g., rotation, rolling, shuttling, delivery) in response to specific stimuli1. 

Intensive studies have been performed in order to imitate biomotors2 by developing molecular 

motors3 and also synthetic micro- and nano-motors4,5. Generally, there are three methods to 

induce the motion of these objects according to the type of energy input that they use: (1) 

Biochemical fueling which is based on the object functionalization with catalytically active 

enzymes, converting natural fuel into kinetic energy6,7; (2) The most developed, chemical 

fueling, for objects of different design usually with the catalytic site for the decomposition of 

hydrogen peroxide to water and oxygen gas8; (3) Physical fueling which implies applying an 

external electric9 or magnetic field10.  

Bipolar electrochemistry (BE), as a driving force for the object’s motion is a complementary 

approach to physical fueling11. It triggers electrochemical reactions on a conducting object 

placed in an electric field (EF), named bipolar electrode (BPE), at its extremities (poles) in the 

absence of a direct ohmic contact12. More specifically, when a sufficient EF is applied in an 

electrolyte solution in which a BPE is immersed, the potential difference between the BPE 

and the solution drives oxidation and reduction reactions concomitantly13. This wireless 

concept enables mobile electrodes, dubbed microswimmers, to move freely in solution by 

generating an asymmetric reactivity on its surface. Kuhn and co-workers used BE for the 

translation, rotation, and levitation of swimmers14-17. Still, the observation of such swimmers 

is generally a challenge and usually requires an efficient microscopy set up18 or swimmers 

tagged with fluorescent molecules19,20 to monitor their motion. In this context, it would be 

helpful if the swimmer could also act as an autonomous light source, with the photon 

emission being intrinsically coupled to the motion. As a widely used electrochemical process 

that has the advantage of not requiring an excitation light source, ECL can be coupled to 

BPE21-23. The combination of ECL and BE has already been used for analytical purposes12. 

Manz and co-workers exploited ECL generation at the anodic pole of a BPE for the detection 

of amines24. Crooks and co-workers25-27 have developed it for many analytical purposes.  

Herein, we propose an original approach, a first example of a propulsion mechanism for a 

swimmer, with simultaneous light emission, based on the synergetic action of BE28. Another 
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ECL swimmer based on luminol as a luminophore, allows to tune the wavelength of light 

emission29. Furthermore, we expanded the swimmer concept by developing ECL-emitting 

bioswimmers for enzymatic glucose sensing28. The concomitant oxidation of the luminophore 

and of the enzymatically-produced reduced form of nicotinamide adenine dinucleotide 

(NADH) leads to ECL emission via the classic co-reactant pathway with a direct glucose-

dependant light intensity30,31. Due to the dependence of ECL intensity on glucose 

concentration, this approach is also suitable to monitor the spatial distribution of variations in 

glucose concentration.  

The first part of this chapter deals with principles of BE and motion generation of motors 

triggered by BE. In the second part, a light-emitting electrochemical swimmer approach will 

be presented. Finally, in the third part, the design of dynamic systems driven by BE used for 

the first time to perform an analytical task will be described to monitor the glucose 

concentration. 

  

4.2. Bipolar electrochemistry 

4.2.1. Definition of bipolar electrode  

Although the phenomenon of BE has been known for a long time, since the 1960s, it has been 

exploited for a few industrial applications32. The most relevant industrial application exploited 

BPEs under the name of fluidized bed electrodes for designing industrial reactors for 

applications such as electrosynthesis, water splitting, and also for increasing fuel cell 

performances33-35. In the present decade, BE reveals attractive features for applications in the 

field of materials science and analysis in general, especially for surface modification at the 

submicron scale and sensing in microfluidic systems36. By using BPEs, analyte separation and 

detection becomes possible based on miniaturized systems12. The term “bipolar electrode” is 

employed for any object exhibiting at the same time oxidation and reduction reactions. In 

other words, a BPE is acting as an anode and a cathode at the same time11,13 in contrast to 

conventional electrochemical experiments, where cathodes and anodes are physically 

separated. BPEs can be conducting objects exhibiting a chemical anisotropy designed in order 

to promote oxidation and reduction reactions at the same time when exposed to an external 

EF37.  
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4.2.2. Polarization of a conducting object in an open configuration 

 

To present the basic concept behind BE, we will consider the situation depicted in Figure 1, 

where a conducting object is immersed in a homogeneous electrolytic solution exposed to an 

external EF, applied between the feeder electrodes (i.e. anode and cathode)11. The current 

flowing through the solution, Itot, is divided into two fractions in the vicinity of the BPE. A 

fraction of the current, Ibps, called by-pass current will flow through the solution via the 

migration of charged species, whereas the current fraction, Ibe, will flow through the BPE via 

electronic conduction and it represents faradaic current. Consequently, we can write the 

following equation: 

Ibe = Itot – Ibps                                                                                               (1) 

It follows that the ratio Ibe/Ibps is correlated with the respective resistance of the object Rbe and 

the solution Rs
12

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of a spherical BPE placed in solution in an EF. Ea is the potential of the 

anode, Ec the potential of the cathode. Itot is the current passing through the solution before 

and after reaching the BPE, Ibps is the current passing through the solution around the BPE - 

by-passing current, and Ibe is the current passing through the BPE – faradaic current. 

 

Therefore, working with a highly resistive solution and with a highly conductive object will 

result in minimizing Ibps. Thus, almost all the current passing through the system will flow 

through the conducting object. With Ea and Ec being the potentials of the “feeder electrodes,” 

the value of the imposed electric fieldE , can be calculated as: 

 

E  =
𝐸𝑎 −𝐸𝑐

𝐿
                                                                                                                                               (2)   
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with L being the distance between the feeder electrodes. The imposed polarization potential 

𝐸 = (𝐸𝑎  − 𝐸𝑐), given by the difference of the solution potential value with respect to the 

conducing object arises and drops linearly through the electrolytic solution. It means that the 

two feeder electrodes have the same geometry and that EF distortions due to the reactions at 

the feeder electrodes are neglected. In Figure 2, the solution potential distributions in the cell 

for two object morphologies, one linear and one spherical respectively, is shown.  

Considering a constant EF, the value of E varies along the object/solution interface and can be 

calculated at a position x as: ²  

E  = 𝐸𝑥                                                                                                                                                (3) 

in the case of a linear object (Figure 2a) and: 

E  = 𝐸
𝑑

2
 cos 𝛩                                                                                                                               (4) 

for the spherical object, with d being the object diameter.  

 

 

 

 

Figure 2. Scheme for the polarization of a linear (a), and spherical (b) conductive objects 

localized between two feeder electrodes within the electric field. L is the distance between the 

feeder electrodes, d characteristic object dimensions, xₒ middle of the BPE, δ
- 

and δ
+

, cathodic 

pole and anodic pole of the BPE, respectively.   

 

It follows that polarization potential difference ΔV occurs between the extremities of the 

object and the solution, increasing from the xₒ location towards both ends of the object 

reaching its maximum at the extremities of the BPE, as shown in Figure 2a and b. The 

maximum polarization potential difference ΔV is given by the following equation:  

 

ΔV= E  d                                                                                             (5)  
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If the maximum polarization ΔV is important enough, oxidation reactions can happen at the 

anodic pole of the conducting object coupled with reduction reactions at the cathodic pole in 

order to respect the electroneutrality within the object:   

 

red 1 → ox 1 + n1 e‐                                                                         (6) 

ox 2 + n2 e‐ → red 2                                                                         (7) 

 

n1 and n2 being the number of electrons involved for each electrochemical reactions and the 

two redox couples red 1/ox 1 and red 2/ox 2 with a standard potential 𝐸1
0 and 𝐸2

0, respectively.  

Therefore, the resulting asymmetric reactivity at the object’s surface explains its name as 

BPE. ΔV quantifies the driving force for the reactions at the extremities of the object. It is 

clear that a minimum potential value is needed in order that oxidation and reduction reactions 

take place at both sides of the polarized poles. The theoretical threshold value is equal to the 

difference of standard potentials of the involved redox couples, |𝐸1
0 − 𝐸2

0|.  Therefore, a fine 

control of the localization of the electrochemical reactions along a BPE surface is enabled by 

tuning the EF as an easily controllable parameter. 

 

4.2.3. The case of closed bipolar electrochemistry 

The BPE can be any kind of conductive material with any characteristic dimensions and 

geometry. Still it is important to notice that a smaller object will require a higher external EF 

to be polarized enough in order to induce redox reactions (Eq. 5.).  Also, it should be pointed 

out that the described system refers to the so called ‘‘open’’ BE configuration, where current 

can flow through both the electrolytic solution and the BPE. However, several reports 

describe the use of “closed” BE configuration, where the solutions contacting the BPE are 

divided into two independent compartments, physically separating anode and cathode32. The 

only current path between both compartments is in this latter case through the BPE.  
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Figure 3. Scheme of the bipolar nanoelectrode in the closed bipolar configuration.38  

In Figure 3 is presented an example of a closed BPE demonstrated by Zhang and co-

workers38. They showed that certain types of carbon microfiber electrodes, which are 

commonly used in several fields of bioelectrochemistry, as well as metal microelectrodes 

obtained by encapsulating a wire in a glass capillary39, actually work as closed BPEs. In this 

case, the electrochemical current would pass through the BPEs and can be directly measured 

due to the absence of the ionic current path, providing information on the rates of the faradaic 

processes39.  

4.3. Applications of bipolar electrochemistry coupled to ECL 

ECL has been widely used as an analytical technique due to its high specificity, sensitivity 

and low signal-to-noise ratio23. The direct optical readout can be obtained using just a CCD 

camera making this technique a tool-of-choice for collecting information on processes 

occurring at BPEs. ECL/BE coupling has been applied for EF mapping40, microfluidic 

integrated circuits41, and analytics27,42,43. A decade ago, Manz et al. were the first to report an 

ECL detection system coupled to BE24. They have used micro-fabricated U-shaped platinum 

BPE in a separation channel of a glass chip. On a Pt cathodic leg the reduction of O2 or H2O 

occurred, while a Pt anodic leg was used for the detection of ruthenium complexes in µM 

range following electrophoretic separation. More importantly, separation and detection of 

three amino acids, acting as ECL co-reactants, from a mixture have been reported by using 

this technique. Similar approach has been reported by Wu et al. for sensitive cell analysis 

using an indium tin oxide (ITO) BPE as a platform for detection of folate receptors (FR) on a 

cell membrane44. FR is a tumor marker for tumor diagnosis, expressed on tumor cells with 
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high level which mediates folic acid into cells. Sensor is based on its high affinity to folic acid 

and the inhibition of the ECL signal at the anodic part of BPE leads to a decrease in ECL 

intensity. The same authors reported also an ultra sensitive ECL biosensor for the detection of 

a nucleic acid target at femtomolar concentration in tumor cells44.  

Juskovà  et al. presented ECL generation from 50 µM gold platelets suspension in fused silica 

capillary45. The ECL signal of freely moving and thus disposable BPEs, has been recorded 

with a photomultiplier tube as shown in Figure 4.  

 

  

 

 

 

 

 

 

Figure 4. Schematic illustration of a detection system. The particle, 50 µM gold plate, was 

positioned inside the transparent capillary filled with the ECL reactants. The application of 

electrical voltage across the capillary resulted in the ECL reaction accompanied by light 

emission collected by the PMT45. 

 

In all above described ECL/BE systems, detection reaction and ECL signal readout take place 

at the same pole of BPEs, making the accessible analytes in that way limited to species that 

participate or compete with the ECL-producing reaction. Crooks and co-workers 

demonstrated that electroactive analytes could be detected by exploiting the fact that the same 

current passes at the anodic and cathodic poles of BPE. The analyte of interest is reduced at 

the cathodic pole of a single or arrays of BPEs located in microfluidic devices42. As a 

consequence, faradaic reaction at the cathodic pole triggers light emission at the anodic pole 

by the corresponding oxidation of ECL reagents. Indeed, in this indirect detection scheme, 

there is a direct correlation between the number of electrons involved in the reduction and the 

http://europepmc.org.sci-hub.org/abstract/med/22612343/?whatizit_url=http://europepmc.org.sci-hub.org/search/?page=1&query=%22tumor%22
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ECL photon flux. In the first study considering this method, benzyl viologen has been 

detected42. By changing the length and the geometry of the BPE, authors demonstrated the 

influence on sensitivity enhancement of the method achieving limits of detection up to nM 

range.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Indirect ECL detection. a) Image of a 1000 Au BPE array with corresponding b) 

ECL emission46. c) Scheme of a bipolar DNA sensing platform27.  

 

Furthermore, the same group enhanced the ECL emission from a BPE array46. In this case 

ECL was generated simultaneously at the anodic poles of 1000 BPEs, as shown in Figure 5a 

and b. A DNA sensing platform, based on a 1 mm long gold microband covered with a 

specific oligonucleotide, was designed using indirect an approach27. The hybridization with 

the Pt NP‐labelled complementary oligonucleotide led to O2 reduction at the cathodic pole of 

the BPE and simultaneous ECL emission at the opposite side (Figure 5c). Under the same 

experimental conditions, no ECL emission was observed without hybridization. A theoretical 
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framework for further understanding ECL generation at a BPE has been reported by Mavré et 

al47.  

Chang et al. designed a two-channel sensor that enables communication between separated 

sensing and reporting microchannels via one or more BPEs (Figure 6a)48. The sensing channel 

was filled with conventional electroactive species, such as Fe(CN)6
3-, while the reporting 

channel with an ECL mixture, and the intensity of ECL was found to be increased with 

Fe(CN)6
3- concentration (Figure 6b and c) with a detection limit of 0.32 mM. This type of 

sensor allows detecting glycated hemoglobin and reporting its presence by ECL. The key 

advantage of this configuration is the physical separation of the ECL reporting mixture and 

the solution containing the target, thus preventing chemical interference between the two 

channels.  

 

 

 

 

 

 

Figure 6. Image of an interchannel BPE spanning a two-channel configuration, the dashed 

white lines outline the two microchannels, and the orange line emphasizes the location of the 

BPE. The sensing microchannel was filled with the target molecule Fe(CN)6
3- and the 

reporting microchannel was filled with the ECL mixture. ECL images obtained with (b) 0.1 

mM and (c) 5 mM Fe(CN)6
3- present in the reporting channel48.  

 

Wang’s team reported a novel style of dual-channel ECL based bipolar configuration by using 

two-direction driving electrodes (only one kind of driving electrode such as driving anode or 

driving cathode was inserted into both ends of an individual channel as shown in Figure 7)49. 

The BPE is positioned between two channels, and thus a high current efficiency approaching 

100% in theory was achieved. More importantly, the background signal from the integrated 

driving electrodes was completely eliminated, when this unique design was used to construct 
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an ECL sensing platform. The mechanism, ECL behavior and potential distribution of this 

design have been investigated in details. 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic illustration of the fundamental principle of the dual-channel bipolar ECL 

sensor49. 

 

The applicability of the device was demonstrated by detecting TPrA, dopamine, H2O2 and 

Fe(CN)6
3-, with a detection limit of 0.1 μM, 0.2 nM, 2.5 μM and 0.04 mM, respectively49. The 

proposed sensing platform holds promising potential for designing electrochemical or ECL 

devices with high integration, high automation and high throughput.  

4.4. Bipolar electrochemistry for motion generation  

The spatial selectivity that BE provides has been recently applied to analytical chemistry,12,36 

materials science,50-54 and also to propel “swimmers”55. Advantages of this technique 

regarding motors are the motion control provided by the field strength/direction and its 

versatility, because any kind of conducting object can theoretically act as a swimmer37. 

Designing such objects, which can mimic the propulsion of biological systems2,56-58 in 

artificial and biological environments has moved to the forefront of science over the last 

decade59-61. The spontaneous hydrolysis of adenosine triphosphate (ATP), which supplies 

biomolecular motors with energy in natural systems, has been mimicked in most of the 

strategies developed to generate motion with micro-objects62. The concept is based on the use 
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of a chemical fuel to generate self-electrophoresis or bubble propulsion18,62-64. The most 

commonly used chemical fuel is H2O2. In Figure 8 is presented autonomous motion of 

platinum-loaded polymer ‘‘stomatocytes’’62. The catalytic decomposition of the fuel from the 

entrapped Pt-NPs discharges a fast moving jet of gases through an outlet, which in turn 

generates thrust by jet propulsion.   

 

Figure 8. Autonomous movement of artificial stomatocytes (blue) is made possible by 

entrapping catalytic nanoparticles (grey, here Pt-NPs) through control of the opening and 

adding the appropriate fuel (here H2O2). Left panel, side view of the system; middle panel, 

analogy with a miniature propellant; right panel, view of the opening of the stomatocyte62. 

 

To mimic biomotors, Mallouk, Sen et al. were the first to use self-powered nanorods as nano-

motors65 and Schmidt et al. bipolar micro-motors66. Wang’s group further improved 

efficiencies of bimetallic BPEs as nano-motors achieving speeds of 150 µm.s-1 67. The classic 

strategies are based on using chemically powered motors60 and magnetically driven motors 

having a catalytic or a magnetic extremity, respectively68. A fuel induces motion, by reacting 

at a precise area on the motor composed of an efficient catalyst, e.g. platinum, nickel or metal 

pairs and alloys69. Wang’s group also reported detection of Ag+ in a H2O2 solution using Au-

Pt nano-motors extending the use of motors for sensing70. Different applications of such 

motors have been also reported: isolation of biologically relevant species (e.g. cancer cells, 

DNA, and RNA)71-73 or pollution remediation74. In these cases, bipolar behavior of motors 

originates from its hybrid composition. BE through electrodeposition offers an attractive 

approach for the synthesis of highly asymmetric structures appealing for a use as synthetic 

motors such as “Janus” and ‘‘patchy’’ particles (JPs)75. 
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 A motion of a carbon microtubes with an electrochemically generated Pt tip on one side 

moving in H2O2 solution has been reported by Fattah, Kuhn et al. (see Figure 9a)76. The 

motion was induced by the generation and release of O2 bubbles, due to the catalytic 

decomposition of H2O2 at the Pt surface. The same group reported also the synthesis of JPs 

containing a ferromagnetic part enabling magnetically driven motion77. Carbon microtubes 

modified at one extremity with a Ni particle were rotated using an external magnetic field, as 

shown in Figure 9b. In all presented examples, the motion of the objects differs in various 

characteristics, while keeping asymmetry as a common parameter (in shape or composition).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Series of optical micrographs showing (a) rotation of a carbon microtube, modified 

at one extremity with platinum, in a H2O2 solution.76 (b) Rotation of a carbon microtube, 

modified at one extremity with nickel, under the influence of an external magnetic field.77 

In the following paragraph, motion of objects which exhibit asymmetric electroactivity 

induced by BE will be presented. 
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4.4.1. Translation, rotation and levitation of motors by BE 

Due to the versatility of BE, any kind of conducting object can be propelled, there is no 

topological limitation in terms of size and shape36. Since it provides a direct electrochemical 

break of symmetry, it is an appealing alternative to other existing propulsion mechanisms. 

 

Image 10. a) Translational motion of a metal bead propelled by the production of H2 bubbles. 

b) Scheme of a vertical rotor powered by the reduction of protons coupled to hydroquinone, 

together with the corresponding real-time optical micrographs c), scale bar 0.5 cm14.  

 

Kuhn and co-workers used the strategy for asymmetric bubble production based on water 

electrolysis at the opposite poles of a spherical metallic BPE14. The BPE can move because 

the formation of H2 bubbles is twice as high as the amount of O2. To accelerate the BPEs, the 

O2 evolution need to be suppressed and this is possible by addition of molecules which are 

easier to oxidize than water. This was accomplished by adding hydroquinone to the solution 

achieving translational motion of 1 mm and 275 µm spheres in polydimethylsiloxane (PDMS) 

microchannels (Figure 10a and 10b). Using the same principle, rotational motion was 

demonstrated using an alternative motor design based on a carbon-doped polycarbonate cross 

covered with an insulating polymer everywhere except at its ends. Generation of gas bubbles 

at the active ends enabled horizontal and vertical motion, although the vertical one was more 

efficient due to the buoyancy of the exerted gas (Figure 10c). 
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The same authors reported the levitation of particles in capillaries16. To generate the levitation 

of a conducting bead, the external feeder electrodes are polarized at the capillary entrances in 

such a way that the H2 bubbles are generated underneath the bead. As a consequence, motion 

is generated in the direction opposite of the bubble release. The BPE bead was used as a lifter 

for a small cargo. Interestingly, using a conically shaped capillary the periodic bubble 

accumulation and release implied a yo-yo alternating motion (repeating levitation-fall cycle of 

the bead) instead of a continuous motion. 

   

 

 

 

 

 

 

 

 

Figure 11. a) Series of optical micrographs showing cargo lifting of a polymer capsule by a 

glassy carbon bipolar electrode during the levitation.16 b) Schematic illustration of the 3-step 

mechanism leading to the motion of the valve together with the corresponding real-time 

optical micrographs c).15  

Bouffier and Kuhn showed also that BPEs can operate as a wireless electrochemical valve, 

where electrogenerated H2 bubbles cause the valve to lift and open (Figure 11b and c)15. One 

can imagine interesting applications of this motors for example by using of cargo lifting 

concept in miniaturized detection systems and lab on a chip devices. 

4.5. Lightening up bipolar swimmers 

The intrinsic redox asymmetry provided by BE makes this phenomenon very suitable for the 

generation of bubble-induced motion of electrically conducting particles. Still, tracking such 

moving objects in real time is a challenge and therefore tremendous effort has been made to 

design particles with specific optical, in many cases fluorescent, properties78. Here, we will 
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present an original approach of autonomous motion of the moving object monitored with light 

emission produced by ECL. In this case, BE is not only the asymmetric driving force for the 

particle propulsion but is also responsible for the light emission, combining in a synergetic 

way both redox reactions on the same object28.  

As in previous cases, the motion is here induced by the release and evolution of H2 bubbles 

due to the reduction of water at the cathodic pole of the bipolar swimmer14,16, which proceeds 

according to the following equation: 

2H+
(l) + 2e- → H2(g)                                             (8) 

Because of charge neutrality during BE, water or a sacrificial molecule such as hydroquinone 

must be oxidized simultaneously at the anodic pole, generating oxidation products such as O2 

or benzoquinone. These anodic reactions are not useful in the context of propulsion and can 

therefore be replaced by electrochemical reactions, leading to ECL emission. As discussed in 

Chapter 1, ECL is an electrochemical process which produces light and that can be triggered 

at an anodic potential. The ECL mechanism of the model TPrA/Ru(bpy)3
2+ system depends 

on several experimental parameters like the surface hydrophobicity,79 the electrode material, 

the concentration ratio, the pH or the presence of surfactant80. In brief, it is based on the two 

following reactions: 

TPrA→TPrA●+ + e-                       (9) 

Ru(bpy)3
2+→ Ru(bpy)3

3++ e-        (10) 

The formed reactive radical cation TPrA●+ fastly undergoes reaction of deprotonation forming 

a highly reducing agent TPrA●  (tri-propylamine radical). Both TPrA●+ and TPrA●  react with 

ruthenium complexes to populate the excited state thus, producing light81. As depicted in 

Figure 12, the synergetic reduction of H2O at the cathodic pole and simplified oxidative ECL 

mechanism at the anodic pole can induce the simultaneous motion and light emission on a 

bipolar swimmer. 

To estimate the minimum ΔV which is required to generate simultaneously the gas bubbles 

and ECL, the corresponding redox reactions have been first characterized by cyclic 

voltammetry. The three-electrode system consisted in a home-made glassy carbon (GC) 

electrode as working electrode, composed of the same material as the swimmer, a 

Ag/AgCl/KCl 3 M saturated reference electrode and a platinum wire counter-electrode. GC 
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has been chosen as the swimmer material because of its low density (1.4 g cm‐3) compared to 

many other conducting materials, like metals. This decreases the force needed to overcome 

gravity for an object with a given volume. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Light emitting electrochemical swimmer. The synergetic reduction of H2O at the 

cathodic pole (bottom of the bead) and oxidative ECL mechanism at the anodic pole (top of 

the bead) induce the simultaneous motion and light emission28.  

 

This electrochemical measurement has been combined with a simultaneous monitoring of the 

ECL intensity by using a photomultiplier tube. Typical voltammetric and ECL responses of 

0.5 mM  tris(2.2’‐bipyridyl)dichlororuthenium(II) hexahydrate in the presence of 100 mM 

TPrA with 100 mM phosphate buffer (PBS, pH=7.4) are presented in Figure 13. 

From these curves, the potential values for which the different redox reactions are occurring at 

the swimmer surface can be easily extracted. Water reduction (reaction 8) takes place at ‐ 1.1 

V vs. Ag/AgCl and ECL emission occurs at 1 V vs Ag/AgCl. Based on these experimentally 

determined values, one can conclude that the coupling of water reduction and ECL emission 
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at the reactive poles of a BPE is possible only if the polarization potential ΔV between both 

extremities of the BPE is at least equal to ΔVmin = 2.1 V. Equation (5) thus states that for a 

BPE having a diameter d of about 1 mm, the electric field E has to be, in a first order 

approximation, at least equal to 21 V cm‐1. 

Figure 13. Cyclic voltammogram (blue) and ECL signal (red) of 0.5 mM Ru(bpy)3
2+ in the 

presence of 100 mM TPrA with 100 mM phosphate buffer (pH=7.4) on a home-made glassy 

carbon electrode at a scan rate of 100 mV/s.28   

The bipolar experiments for levitation were achieved in glass U-shaped capillaries (Figure 

14a), that were made by manual shaping of Pasteur pipettes with a Bunsen burner. A few 

drops of surfactant were carefully added into the cell to prevent the formation of large gas 

bubbles. The cell was maintained with its arms in a vertical position and the GC bead with a 

diameter d ≈1 was then inserted into one arm of the cell. Due to the slightly conical shape of 

the capillary, the bead dropped until it was stopped by the surrounding capillary walls. The 

feeder electrodes (Pt wires) were inserted into the top part of the cell and were polarized in 

such a way that the H2 flow is generated underneath the bead, as illustrated in Figure 12 and 

Figure 14b. The ECL was recorded using a digital camera (Sony, Cyber‐shot). The length of 

the U-cell being 9.8 cm between the two electrode positions and the applied voltage was equal 

to 250 V, corresponding to a global electric field of E = 25.5 V cm-1. This electric field value 
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is superior to the theoretical threshold value of 21 V cm-1 previously calculated and therefore 

leads to the synergetic levitation/ECL emission of the GC bead under these conditions, as 

demonstrated by Figure 14b. 

 
Figure 14. a) Scheme of the set-up used for static and levitation experiments. b) Levitation of 

a light-emitting glassy carbon bead. Series of optical micrographs showing the levitation of a 

GC bead in a U-cell filled with PBS (100 mM) containing 0.5 mM Ru(bpy)3
2+, 100 mM 

TPrA and few drops of surfactant under the influence of a 25.5 V cm-1 external electric field. 

The left micrograph presents the bead position under white light and others micrographs 

where taken in the dark. Inset: Plot showing the height evolution h as a function of time t.28   

 

The left picture of Figure 14b, obtained under ambient light, shows the GC bead in the 

capillary. The bead is totally spherical but appears slightly stretched along its equatorial axis 

due to an optical effect, generated by the cylindrical shape of the capillary. The light was then 

turned off and the appropriate EF imposed. The ECL generated at the anodic pole of the BE is 

bright and could be instantaneously observed with the naked eye (Figure 14b). The initial time 

t = 0 s is defined as the time when the camera focused on the ECL signal, allowing its 

visualization properly. After 6 s the levitation starts due to H2 bubble production underneath 

the bead, a phenomenon that could be clearly observed when the ambient light was turned on 

during the bead motion. The surfactant that was added to the solution promotes a 
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homogeneous formation of the H2 bubbles and facilitates their continuous release from the 

bead surface, generating a more uniform motion82.  

The inset of Figure 14b shows the height evolution h of the bead during the time t. Height h 

was defined as the distance between the equatorial axis of the immobilized bead on the left 

picture and the center of the ECL emitting area during the motion. This curve can be divided 

into three distinct parts, from which the speed can be extracted based on the slope. In the first 

part of the curve, the bead did not move. This part corresponds to the period of bubble 

accumulation underneath the bead for the generation of a sufficiently high buoyancy to 

overcome gravity. After this initial phase, the change in height was linear for seven seconds at 

a speed v1 = 2 mm s-1 or approximately two body-lengths per second. Finally, because the 

shape of the cell arm is slightly conical (see left picture of Figure 14b), the space between the 

bead and the glass walls became larger as the bead rise, thus allowing the bubbles to escape 

partially from below the bead, which lead to a decrease of the speed during the third phase (v2 

= 0.6 mm s-1). The levitation was stopped by switching off the EF. This caused the bead to 

drop and a new rise could be triggered by reapplying the EF. The height and speed of 

levitation is comparable to the ones described in paragraph 4.4.1 without ECL16, showing that 

the ECL mechanism does not affect the bead propulsion. According to Figure 14b, the ECL 

profile should follow the shape of the anodic pole, leading to a lightened hemisphere at the 

top of the bead. This was the case at certain moments of the experiment, but during the run a 

more ring-like ECL shape was also observed. To understand these changes, we further 

investigated parameters affecting the ECL profile at GC beads in more details.  

 

pH is a crucial parameter for the ECL mechanism to occur. Indeed, ECL is known to be 

effective at pH > 5.5, with a maximum intensity at pH 7.5 (see paragraph 1.4.1.3). TPrA is 

insoluble at higher pH and is protonated at lower pH (as well as TPrA●+) which inhibits the 

ECL mechanism83. This is the reason for using PBS buffer in the reported experiments, 

ensuring a constant pH value of 7.4 under normal conditions. But, depending on the applied 

potential, water may also be oxidized at the anodic hemisphere of the bead following the 

reaction:  

 

H2O(l) → ½O2(g) + 2H+
(l) + 2e-              (11) 

The oxidation wave corresponding to this reaction can be observed on Figure 13. It starts at a 

more anodic potential than the ECL reactions, around 1.5 V vs. Ag/AgCl. The theoretical 
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polarization voltage required for achieving simultaneously water reduction (reaction 8) at the 

cathodic pole and ECL emission and water oxidation (reaction 11) at the anodic pole 

corresponds then to 1.5 + 1.1 = 2.6 V. This value fits with the value of ΔV applied for Figure 

14b. This suggests that water oxidation occurs at the very top of the bead where the 

polarization potential is the highest, inducing therefore a local pH decrease.  

 

  

Figure 15. pH control of the ECL shape. a) Mechanism responsible for the shape of the 

ECL‐emitting region on the bead. b) Optical micrograph of a GC bead in the U-cell filled with 

100 mM PBS containing 0.5 mM Ru(bpy)3
2+, 100 mM TPrA and a universal pH indicator 

under the influence of a 25.5 V cm-1 external electric field.28  

 

To check such a pH variation, experiments were performed in the presence of a pH indicator. 

A GC bead was submitted to the same electric field than previously. The medium was also 

identical except that no surfactant was added and a few drops of a universal pH indicator were 

added to the solution. Figure 15b shows clearly that, during these experiments, pH variations 

are occurring at the reactive poles of the BE. Indeed, one can observe that water reduction 

which produces the H2 gas bubble also induces an expected pH increase (reaction 8) up to a 

value about 9. It is worth noting that in this particular case, the absence of surfactant caused 

the H2 accumulation, producing the bubble that can be seen at the bottom of the bead. At the 

top of the bead, the pH reaches a value of 4, confirming that water oxidation (reaction 11) also 

takes place at the anodic pole. This experiment confirmed that ECL reactions are in 

competition with water oxidation at the anodic pole of the bead. As depicted in Figure 15a, 

this reaction directly influences the ECL process since it induces locally a pH decrease, 

leading to TPrA protonation, which finally causes the ECL quenching at the top part of the 

bead, thus creating an ECL ring instead of the hemispherical shape. 
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To precisely capture the ECL profile around the GC bead during BE, additional experiments 

were performed with the BPE placed in front of a microscope (objective x5) equipped with a 

CCD camera. To avoid bead motion, which is useless for these experiments, they were carried 

out in the absence of surfactant. We investigated the influence of parameters such as applied 

voltage and buffer capacity which directly affect the pH gradient around the bead and thus the 

ECL profile. Surprisingly, ECL has been observed at global EFs as low as 6.2 V cm‐1. This is 

due to the fact that, in this particular case, the bead is touching the capillary walls, leaving 

only a very thin layer of liquid between the bead and the walls. The configuration present here 

is intermediate between the classical cases of open and closed BEs, presented in paragraph 

4.2.2. and 4.2.3. The electrical resistance of the liquid thin layer is much higher than the 

resistance of the solution in the rest of the capillary, leading to a locally increased potential 

drop that can drive the two redox reactions.  

 

During these experiments, the desired voltage was applied, directly generating the initial ECL 

shape. As shown in Figure 16, the ECL‐emitting region does not expand into the solution 

surrounding the bead. It is confined to the bead surface by the high TPrA concentration which 

limits the thickness of the ECL reaction layer. This initial shape changes rapidly to a transient 

state (typically after a few seconds). Two representative times are now considered, as they 

correspond to the two characteristic ECL shapes. The first one is the initial time t0 which 

corresponds to the first ECL shape obtained once the desired voltage is reached. The second, 

tt, corresponds to the transient shape. The images obtained at t0 and tt for two buffer 

concentrations for applied voltages of 60 V, 75 V and 100 V are shown on Figure 16. As 

expected, the direct consequence of the increase of the potential applied between the feeder 

electrodes is a shift of the ECL boundary towards the equatorial axis of the bead. Indeed, the 

region where the potential is anodic enough to generate ECL expands towards the middle of 

the bead. As shown by Figure 16a, c, g and i, hemispherical ECL shapes are generated at the 

initial stage t0 with experimental conditions such as 100 mM PBS and  E = 60 V or 75 V. 

With 60 V, this shape remains roughly the same during the whole experiment but with 75 V, 

it changes quickly to an ECL ring that is shown in Figure 16d. Such a behavior can be 

rationalized by means of the mechanism previously discussed and illustrated in Figure 16a. At 

60 V, the driving force is not sufficient to generate a pH change at the top of the bead, so the 

ECL shape remains hemispherical. On the contrary, an external voltage of 75 V is high 

enough to induce proton formation at a sufficient rate to decrease the pH after a given time (tt) 
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at the anodic pole when using a 100 mM PBS solution. Therefore the formation of an 

electrogenerated pH gradient limits the ECL region to a ring shape. 

 

Figure 16. CCD images showing the ECL intensity profiles on a GC bead in a U‐cell filled 

with PBS containing 0.5 mM Ru(bpy)3
2+ and 100 mM TPrA, at t = t0 applying 60 V, 75 V 

and 100 V between the feeder electrodes. The six top pictures were obtained using a PBS 

concentration of 100 mM and the six bottom ones with a PBS concentration of 200 mM.28 

 
 

This general trend is confirmed by Figure 16e which shows that, when applying 100 V, the 

ring is instantaneously generated at t0. The influence of the buffer capacity on these 

experiments was also investigated. At higher buffer capacity (200 mM PBS), the ECL shape 
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remains hemispherical up to a voltage of 75 V even after a few seconds (Figure 16j). Under 

these conditions, no ECL ring was observed because the buffer capacity is strong enough to 

avoid TPrA protonation, promoting ECL emission all over the anodic pole. Also at this buffer 

concentration, the initial ECL (at t0) shape using 100 V is hemispherical (Figure 16k), which 

was not the case at 100 mM PBS (Figure 16e), confirming once again a pH based mechanism. 

 

These experiments demonstrate clearly that the control of the ECL shape on a BPE in these 

static experiments can be fine‐tuned using easily controllable parameters such as EF value or 

buffer concentration. In this case, the ECL ring corresponds ideally to the area of the anodic 

pole where the polarization potential is strong enough to generate ECL emission, but where 

the water oxidation rate is not efficient enough to protonate TPrA or its radicals. In the case of 

swimmer motion the situation becomes more complicated, because proton diffusion, 

convection due to bubbles formation and motion of the bipolar swimmer have a strong impact 

on the concentration gradients of the involved species and thus on the final ECL shape. 

Nevertheless, the mechanism inducing the ECL profile changes from hemispherical to ring 

shapes can be rationalized in terms of local pH variations, which occur in the vicinity of the 

swimmer during its motion.  

 

This work presents the first synergetic action of BE in terms of simultaneous propulsion and 

ECL generation, leading in fine to the first example of a swimmer which is intrinsically 

coupled with a chemical light source. In the reported experiments, ECL provides a direct 

monitoring of the object motion, which is very useful when dealing with autonomous 

swimmers.  

 

The versatility of BE coupled to ECL allows imagining other types of swimmers based on the 

same principle. The following work showed that this methodology can be generalized with 

another ECL system based on luminol (5-Amino-2,3-dihydro-1,4-phthalazine-dione or 3-

aminopthalhydrazide), allowing tuning the wavelength of light emission29. Luminol and its 

derivatives84 are widely used in biochemical and clinical analysis such as enzymatic assays 

and immunoassays85,86. Blue ECL emission is achieved in alkaline solution in the presence of 

H2O2. Moreover, the previously described bipolar swimmer was reported in neutral solutions 

with cathodic bubbles generation (H2 evolution).  In contrast, this first example in an alkaline 

solution proceeds through a mechanism based on H2O2 consumption as presented in Figure 
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17a. H2O2 oxidation allows the light emission at the same BPE pole (anode) than the bubble 

production as following:  

H2O2(l) → O2(g) + 2H+
(aq) + 2e−                                                                               (12) 

Luminol 
OH−
→   3-aminophthalate + N2+ hν                                                              (13)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Blue bipolar emitting swimmer a) Scheme showing the electrochemical reactions 

occurring for the motion of the blue ECL swimmer. b) Corresponding series of optical 

micrographs showing the levitation of a 1 mm GC bead in a capillary filled with sodium 

hydroxide (0.1 M ) containing 1% H2O2 and 0.01 M luminol under the influence of a 25 V cm-

1 external electric field.29 

 

These oxidation reactions are compensated with the reduction of hydrogen peroxide at the 

cathodic pole: 

 

H2O2(l) + 2H+
(aq) + 2e− → 2H2O(l)                                                                                        (14)  

 

The corresponding redox reactions have been first characterized by cyclic voltammetry 

simultaneously with ECL recording using the three-electrode system consisted in a home-

made GC electrode as working electrode, like for the ruthenium emitting swimmer. Hydrogen 

peroxide is essentially electro-oxidized to oxygen at ~ + 0.5 V and reduced to hydroxide 

anions at ~ - 1.25 V vs. Ag/AgCl (Figure 18 a). Both processes are irreversible and involve 
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two electrons. A cyclic voltammogram recorded with a 10-2 M luminol solution in NaOH (0.1 

M) with H2O2 exhibits the irreversible oxidation of luminol centered at +0.3 V vs. Ag/AgCl 

(Figure 18 b). As expected, the oxidation step is responsible for the ECL process starting right 

at the foot of the anodic wave and with a maximum intensity observed at + 0.5 V vs. 

Ag/AgCl.  

Figure 18. Cyclic voltammograms recorded in 0.1 M sodium hydroxide with and without 1% 

H2O2 (a) and with 0.01 M luminol combined with ECL detection (b). Scan rate 0.1 V/s. 

 

 

The generation of oxygen bubbles arises from H2O2 oxidation but, in addition the 

decomposition of luminol produces also N2 bubbles (reaction 13) which can contribute to the 

propulsion of the BPE. It is noteworthy that the connection of the feeder electrodes to the 

power supply is opposite to the previous report based on the ECL of Ru(bpy)3
2+. The reason 

is obvious because the first ECL system was exploiting hydrogen evolution (i.e. proton 

reduction) located on the cathodic pole of the BE facing the feeder anode.  For the levitation 

experiments, a typical voltage of 250 V over a distance of 10 cm was applied (electric field of 

25 V/cm-1). After switching off the light, the vertical motion of the bead could be easily 

followed due to luminol ECL (Figure 17b). As a general trend the swimmer progressively 

slows down during the course of vertical motion due to the slightly conical shape of the 

bipolar cell, which favors the escape of bubbles from underneath the carbon bead after 

reaching a certain height in the capillary. An average speed of about 0.1 mm s-1 has been 

observed. This finding opens the door to the possible design in the near future of functional 

systems combining multi-wavelength light emission.  
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4.6.Light emitting swimmers for enzymatic glucose sensing 

 

BE offers the possibility to design such swimmers in a very straightforward way as the simple 

application of an EF across the solution promotes localized oxygen or hydrogen evolution, 

leading in fine to a motion driven by gas bubble production14-17. The asymmetric redox 

activity induced on the BPE is also used to activate other functions such as the above 

presented ECL emission. Since, ECL is a very sensitive analytical method that benefits from 

various advantages including a remarkable signal-to-noise ratio22, monitoring ECL intensity 

during the swimmer run can be exploited as a useful analytical signal. In model Ru(bpy)3
2+ / 

TPrA system, only the ECL luminophore is regenerated during the process, whereas the co-

reactant is consumed by the electrochemical reactions28. Nevertheless, ECL provides high 

sensitivity and selectivity detection with wide linear dynamic range for numerous co-

reactants. Milutinovic and co-workers reported a sensing approach based on an 

electrodeposited ECL exhibiting redox hydrogel using glucose dehydrogenase as a model 

system87. They have shown that the intensity of the ECL of reduced NADH produced by the 

enzymatic activity varies with the enzyme substrate concentration. In dehydrogenase-type 

enzyme-catalyzed reactions, the addition of β-nicotinamide adenine dinucleotide (NAD+) is 

required as a co-factor for the enzymatic reaction88,89. Under substrate oxidation, NAD+ is 

simultaneously reduced to NADH, the reduced form of the co-factor, acting in this way as an 

ECL co-reactant. Numerous examples of dehydrogenase-based ECL detection have been 

reported with such systems based on alcohol dehydrogenase90-92 and glucose 

dehydrogenase88,93. ECL light emission is a valuable analytical signal because the NAD+ does 

not promote ECL in contrast to its reduced form NADH, in the case of a simultaneous 

presence of the enzyme and its substrate. It is noteworthy that using NADH as the co-reactant, 

the ECL-active form of the co-reactant is regenerated by the enzymatic reaction. Herein we 

present an ECL-emitting bioswimmer for glucose sensing via concomitant oxidation of 

Ru(bpy)3
2+ and of the enzymatically-produced NADH for the first time94. 

 

In Figure 19, the principle of the swimmer which generates ECL emission only in the 

presence of glucose is presented. The set-up for the BE experiments were achieved using a 

similar protocol like for the levitation of ruthenium or luminol ECL swimmers (Figure 14a). 
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Figure 19. Schematic illustration of enzyme-driven ECL observed on a bipolar swimmer. 

Glucose is oxidized by glucose dehydrogenase (GDH) with NAD+ as a co-factor. The 

enzymatically-produced NADH behaves as an in situ co-reactant for the ECL generation.94 

 

A GC bead with a diameter d ≈1 mm was inserted into one arm of the U-capillary. The 

propulsion mechanism is based on the cathodic H2 bubbles evolution (reaction 8). In the 

absence of glucose, the only reactions occurring at the anodic pole of the swimmer are the 

oxidation of the ruthenium complex as well as of water according to the reactions 10 and 11, 

respectively. Thus, the oxidation of Ru(bpy)3
2+ does not generate any ECL since the 

enzymatic co-factor remains in the ECL-inactive NAD+ form. Accordingly, ECL emission 

occurs when the enzymatic system is turned on in the presence of glucose substrate. Indeed, 

GDH oxidizes glucose to gluconolactone with the concomitant conversion of NAD+ to 

NADH (Figure 18). In that case, the electron transfer (ET) reactions occurring on the anodic 

BPE pole are the mono-electronic oxidation of Ru(bpy)3
2+ (reaction 10) and of NADH to the 

corresponding cation radical (reaction 15), which can promote the whole sequence of 

reactions leading to ECL emission: 

 

NADH → NADH●+ + e−                                                    (15) 

NADH●+ → NAD● + H+                                                    (16) 

Ru(bpy)3
3+ + NAD● → [Ru(bpy)3

2+]* + NAD+                                                 (17) 

Ru(bpy)3
2+∗→ Ru(bpy)3

2+ + hν                                                   (18) 
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Since NAD+ is regenerated at the end of the ECL mechanism, it is thus available to react 

again with the enzyme and the process is catalytic. Therefore, a difference in glucose 

concentration should be easy to distinguish by measuring the ECL intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Cyclic voltammograms (blue lines) and ECL signals (red lines) of 1.5 mM 

Ru(bpy)3
2+ in the presence of 10 U.mL-1 GDH, 10 mM NAD+ and various glucose 

concentrations (5 mM, dotted lines; 10 mM, dashed lines and 40 mM, solid lines) in 100 mM 

PBS solution (pH 7.4). A GC electrode (same material as the swimmer) was used to record 

both current and ECL. Scan rate 0.05 V s-1.94  

 

Figure 20 gathers the cyclic voltammograms (blue lines) and the corresponding ECL intensity 

(red lines) of a series of solutions containing various amounts of glucose. These data were 

recorded 30 minutes after mixing GDH, NAD+ and glucose in 100 mM PBS solution (pH 

7.4). NADH oxidation occurs first and the ET is irreversible with an anodic peak centered at ~ 

1.2 V vs. Ag/AgCl. The oxidation of Ru(bpy)3
2+ takes place at slightly more anodic potential 

(~ 1.55 V vs. Ag/AgCl). A careful examination of the ECL signal recorded during the cyclic 

voltammogram shows that the emission perfectly matches with the potential region where 

Ru(bpy)3
2+ is oxidized. The ECL mechanism clearly involves a reaction between both 

intermediate species formed by the oxidation of NADH and Ru(bpy)3
2+. Increasing the 

glucose concentration from 5 to 40 mM results in raising the level of NADH in solution. This 
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increase can be monitored by measuring the ECL intensity with a photomultiplier tube. 

Indeed, the ECL intensity is dependent on the initial glucose content. 

Figure 21. Cyclic voltammogram (blue) and ECL signal (red) of 100 mM PBS solution 

(pH=7.4) containing 10 U.mL-1 GDH, 1.5 mM Ru(bpy)3
2+, 10 mM NAD+, 10 mM glucose 

and a few drops of surfactant recorded on a home-made GC electrode at a scan rate of 0.05 

Vs–1. 

The minimum ΔV for which the different redox reactions are occurring at the swimmer 

surface is calculated using equation 5 and extracted from simultaneous recording of cyclic 

voltammogram and ECL emission on a home-made GC electrode, as for other ECL swimmers 

(Figure 21). Water reduction takes place at – 0.75 V vs. Ag/AgCl/KCl whereas ECL emission 

occurs at 1.55 V vs. Ag/AgCl/KCl. The electric field E   has to be, in a first order 

approximation, at least 21.7 V.cm–1 as the calculated polarization potential ΔVmin is 2.3 V for 

the bead with the diameter of 1 mm. 
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Figure 22.  ECL sensing and reporting of glucose concentration during the swimmer motion. 

Series of optical micrographs showing a GC bead emitting ECL at different times during its 

motion. The GC bead is positioned in a U-shaped cell, filled with 100 mM PBS solution (pH 

7.4) containing 10 U.mL-1  GDH, 1.5 mM Ru(bpy)3
2+, 10 mM NAD+, 40 mM glucose and a 

few drops of surfactant under the  electric field of 23 V cm−1. The left image is recorded under 

white light whereas the others images were taken in the dark. Inset: Plot showing the 

dependence of the ECL signal on the glucose concentration. 

 

Figure 22 shows the BE-induced levitation of an ECL bioswimmer. The application of a 

sufficient EF drives the asymmetric electrochemical reactions on both poles of the bead. On 

the anodic pole, ECL is generated. The ECL emission is clearly visible by the naked eye in 

the presence of glucose and the position of the bead could be recorded by using a commercial 

camera during the rise of the swimmer. A negative control experiment recorded without any 

glucose in solution does not produce any measurable light emission. Such an approach, also 

called photoscopy is becoming increasingly popular as it is easy and cheap to perform85,95. 

The ECL intensity monitored at the top of the bead is proportional to the glucose 

concentration as reported in the Figure 20. One can note that the shape of the ECL emission 

evolves with time as detailed above. Nevertheless, the overall intensity was analysed (Image J 

software) and this reveals a direct relationship between glucose concentration and the relative 
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luminescence signal. Indeed, the ECL intensity reflects the local NADH concentration which 

is directly related to the enzymatic activity and thus to the concentration of the substrate. 

Therefore, in the present case, the ECL swimmer is a dynamic reporter of the local 

concentration of glucose. Due to the dependence of ECL intensity on glucose concentration, 

this approach is also suitable to monitor the spatial distribution of variations in glucose 

concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Images illustrating the switching-on of ECL during the swimmer motion in a 

vertical glucose concentration gradient. The U-shaped cell is filled with 100 mM PBS 

solution (pH 7.4) containing 2.5 mM Ru(bpy)3
2+, 10 U.mL-1 GDH and 10 mM NAD+. The 

same solution but containing in addition 40 mM glucose was introduced at the top of the 

capillary. The established vertical concentration gradient is revealed by ECL. The left image 

(a) is recorded under ambient light before applying the electric field. The other images (b-e) 

were taken after the application of the electric field (23 V cm−1) under low external white 

light illumination in order to image the bead motion during the ECL sensing of glucose.94  

 

In other words, if the swimmer moves in inhomogeneous media, then ECL will only be 

activated at locations where the analyte is present. To demonstrate this ability to switch on the 

ECL, the GC bead was positioned in a capillary filled with a PBS solution containing the ECL 

reporter, the enzyme and the co-factor. Another solution containing glucose in addition was 

introduced dropwise at the very top of the capillary (arrow on Figure 23c). This generates a 

vertical concentration gradient where the higher amount of glucose and thus of NADH is 
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localized at the top part. As previously, the GC bead is initially positioned at the bottom of the 

capillary as observed under white light (Figure 23a). As soon as a sufficient EF is turned on, 

proton reduction is promoted underneath the BPE. This is clearly visible in Figure 23c where 

a train of bubbles can be seen below the bead which is moving up. As soon as the GC bead 

reaches the location where glucose is present in solution, ECL is switched on, thus 

demonstrating the possibility of dynamic glucose detection (Figure 23d). As the swimmer is 

moving towards a region of higher glucose concentration (top of the capillary), its ECL 

intensity increases (Figure 23e). This experiment demonstrates the combined local enzymatic 

sensing and ECL reporting of an analyte in space and time.  

 

4.7. Conclusion 

 

In conclusion, we have demonstrated the first example of a propulsion mechanism for a 

swimmer that is coupled with a chemical light source due to the synergetic action of BE in 

terms of simultaneous ECL generation and H2 bubble production from water splitting. By 

closely controlling the applied voltage, surfactant concentration, and capacity of the buffer to 

maintain a certain pH, we were able to avoid oxidation of water at the anodic pole and control 

and maximize the ECL intensity generated from a ruthenium complex. Also, luminol based 

ECL swimmer in the presence of H2O2 is demonstrated, tuning the wavelength of emission 

with also a redox-driven motion resulting from O2 bubbles evolution. Furthermore, the design 

of dynamic systems driven by BE for sensing of glucose in a concentration gradient explored 

by the ECL swimmer is described for the first time. This contribution demonstrates that the 

development of such ECL swimmers could lead to bioanalytical applications, allowing the 

study of locally inhomogeneous samples. In that context, combining BE and ECL offers a 

unique analytical platform based on the design of smart dynamic systems for a 

straightforward visual readout. Finally, such ECL swimmers resemble biological systems and 

may be considered as an artificial analogue of bioluminescent fishes or marine creatures.   
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GENERAL CONCLUSIONS  

 

In the frame of the present doctoral thesis, my work was focused on the study of ECL 

and its application in the development of new analytical techniques and objects. Fundamentals 

of ECL have been introduced in the first chapter. ECL technology is a highly innovative 

detection technology for heterogeneous bead-based immunoassays. Since the launch of the 

first ECL analyzer in 1996, ECL technology has continued to set the standard in 

immunochemistry. Generally, the first steps in the development of new ECL assays and in the 

selection of new efficient co-reactants are the understanding of ECL mechanisms operating in 

such bead-based assays.  

In the second part of the thesis, we presented a new approach to investigate the 

competitive ECL mechanistic routes by imaging the distribution of the ECL intensity at the 

level of single beads. The reaction mechanisms between the Ru(bpy)3
2+ luminophore with 

two model co-reactants (tri-n-propylamine, TPrA, and 2-(dibutylamino)ethanol, DBAE) were 

investigated. A sandwich immunoassay is performed by exposing the 3-µm beads to a 

detection antibody conjugated with a Ru(bpy)3
2+ complex to simulate the labelled beads 

which are used in bioassays. The spatial resolution of the luminescence phenomenon was 

improved using in further experiments 12-µm diameter polystyrene (PS) beads to obtain well-

resolved ECL patterns, functionalized with the same ruthenium label via a peptidic bond. Two 

optical configurations were used to image the functionalized beads from different angles. 

Investigating the 3D ECL patterns recorded on such beads provides a global description of the 

ECL phenomenon. Mapping the ECL reactivity on one bead demonstrates the generation of 

the excited state at micrometric distance from the electrode by reaction of surface-confined 

Ru(bpy)3
2+ with diffusing TPrA radicals. The signature of the TPrA●+ cation radical lifetime 

is obtained from the ECL profile. Unlike with Ru(bpy)3
2+ solution, DBAE generates very low 

ECL intensity in the bead-based format suggesting more instable radical intermediates. The 

lens effect of the bead which concentrates the ECL emission and thus contributes to increase 

the collected analytical signal was also shown. The 3D imaging approach offers the 

opportunity to select new co-reactants with improved sensitivity and to develop new 

analytical strategies.  

Third part of the thesis discussed the excellent electrochemical properties of 

nanoelectrode ensembles and arrays for bioanalytical applications. We developed an ECL 
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immunosensor for coeliac disease (CD) diagnosis via immobilization of bio-recognition 

elements on the polycarbonate (PC) surface of membrane templated nanoelectrode ensembles. 

CD is an auto-immune disorder where the blood anti-tissue transglutaminase (anti-tTg) 

antibodies level is abnormally high. Since ECL could be generated at micrometric distances 

from the electrode surface at low-oxidation potentials with TPrA as co-reactant, we were able 

to separate the location of the initial electrochemical step (i.e. oxidation of TPrA) from the 

ECL-emitting region where the luminophore used as a label is immobilized on the non-

conductive surface. To this aim, the immunosensor platform was established by immobilizing 

the capturing agent tTG on PC component of a NEE so that, when incubated with the sample, 

it reacts with the target protein anti-tTG. Thus it allows the immobilization of a streptavidin-

modified ruthenium-based ECL label via reaction with a suitable biotinylated secondary 

antibody. Upon addition of TPrA, ECL emission was initiated solely via its direct 

electrochemical oxidation. The sensor allows the ECL determination of anti-tTG with a 

detection limit lower than 1ng/mL. Furthermore, ECL imaging was used for the 

characterization of ECL generation at boron-doped diamond NEAs. This approach provides a 

platform of multiple arrays of nanoelectrodes suitable to study changes in reaction layers of 

the system Ru(bpy)3
2+/TPrA as a function of the geometry and of the spacing of arrays 

elements.  

Finally, in the last part of the thesis, the wireless characteristics of bipolar 

electrochemistry (BE) were exploited as driving force for controlled motion of swimmers. We 

presented the synergetic action of bipolar electrochemistry in terms of simultaneous bubble 

production and ECL generation, leading to the first example of a propulsion mechanism for a 

swimmer that is coupled with a chemical light source. Bipolar swimmers were driven by 

either H2 or O2 evolution with emission from ruthenium complex or luminol luminophores. 

We moved forward the application of BE swimmers in analytical science by using ECL light 

as an analytical signal. The swimmers concept for enzymatic glucose sensing was then 

demonstrated. The concomitant oxidation of the luminophore and of the enzymatically 

produced NADH led to the ECL emission with a direct glucose-dependent light intensity. The 

local sensing and reporting of glucose in a concentration gradient was explored by the ECL 

swimmer. Such a dynamic sensing approach combines in a synergetic way the wireless 

propulsion with the enzymatic selectivity using ECL as a readout method at the level of 

moving objects. 
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Résumé 

Dans le cadre de ma thèse, mon travail a été axé sur l'étude de l'ECL et son application 

dans le développement de nouvelles techniques d'analyse. Les notions de base de l’ECL ont 

été introduites, notamment les aspects théoriques, dans le premier chapitre. La technologie 

ECL est une technologie très innovante de détection pour les immunoessais hétérogènes à 

base de billes fonctionnalisées. Depuis le lancement du premier analyseur ECL en 1996, cette 

technologie a continué à établir la norme en immunochimie. En général, la première étape 

dans le développement de nouveaux immunoessais ECL et la sélection de nouveaux co-

réactifs est la compréhension des mécanismes ECL qui se produisent dans de tels dosages 

utilisant les billes comme support. 

Dans la deuxième partie de ma thèse, une nouvelle approche est présentée pour étudier 

les voies mécanistiques en compétition pour aboutir à l’émission ECL. Elle est basée sur 

l’imagerie de la distribution de l'intensité ECL au niveau d’une bille individuelle. Les 

mécanismes réactionnels entre le luminophore Ru(bpy)3
2+ et deux co-réactifs modèles (tri-n-

propylamine, TPrA, and 2-(dibutylamino)ethanol, DBAE) ont été étudiés. Un dosage 

immunologique de type sandwich est réalisé, en exposant les particules de 3 µm de diamètre à 

un anticorps de détection conjugué à un complexe de Ru(bpy)3
2+, afin de simuler les billes 

marquées qui sont utilisés dans des essais biologiques. La résolution spatiale du phénomène 

de luminescence a été améliorée en utilisant par la suite des billes de polystyrène (PS) de 12 

µm de diamètre, fonctionnalisées avec le même marqueur par une liaison peptidique, pour 

obtenir des motifs ECL bien résolus. Deux configurations optiques ont été utilisées pour 

réaliser l'imagerie des billes fonctionnalisées sous des angles différents. Les images 

enregistrés sur ces billes fournissent une description globale du phénomène ECL. La 

cartographie de la réactivité ECL sur une telle particule démontre la génération de l'état excité 

à une distance micrométrique de l'électrode, par la réaction du Ru(bpy)3
2+  confiné à la 

surface avec les radicaux issus de l’oxydation de la TPrA qui diffusent. La signature de la 

durée de vie du cation radical TPrA●+ est obtenue à partir du profil ECL. Par contre, la DBAE 

génère une très faible intensité ECL à la base de la bille, ce qui suggère l’existence 

d’intermédiaires radicalaires nettement plus instables. Les effets de lentille de la bille, qui 

concentrent l'émission ECL et contribuent ainsi à augmenter le signal analytique ont 

également été montrés. Cette approche d'imagerie offre la possibilité de sélectionner de 
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nouveaux co-réactifs donnant une meilleure sensibilité et de développer de nouvelles 

stratégies d'analyse. 

La troisième partie de la thèse discute des propriétés électrochimiques remarquables 

des ensembles de nanoélectrodes (NEE) pour les applications bioanalytiques. Nous avons 

développé un immunocapteur ECL pour le diagnostic de la maladie coeliaque (coeliac 

disease, CD) via l'immobilisation des éléments de bio-reconnaissance sur le polycarbonate 

(PC) d’un ensemble de nanoélectrodes. La CD est une maladie auto-immune où le niveau 

d’anticorps anti-transglutaminase tissulaire (anti -tTg) dans le sang est anormalement élevé. 

L’ECL pouvant être générée à des distances micrométriques de la surface de l'électrode, à des 

potentiels d’oxydation bas avec la TPrA comme co-réactif, nous avons été en mesure de 

séparer l'emplacement de l'étape électrochimique initiale (à savoir l'oxydation de TPrA) de la 

région luminescente où le luminophore est immobilisé sur la surface non-conductrice. Dans ce 

but, la plate-forme de l’immunocapteur a été réalisée en immobilisant l'agent de capture tTG 

sur la composante PC du NEE de sorte que, lorsqu’incubée avec l'échantillon, il réagit avec la 

protéine cible anti-tTG marquée avec un anticorps secondaire portant le 

luminophoreRu(bpy)3
2+. Lors de l'addition de TPrA, l’émission ECL a été initiée uniquement 

par son oxydation électrochimique directe. Le capteur permet la détermination de l'anticorps 

anti-tTG avec une limite de détection inférieure à 1 ng/mL. En outre, l'imagerie ECL a été 

utilisée pour la caractérisation de la génération ECL au niveau de réseaux de nanoélectrodes 

de diamant dopé. Cette approche fournit une plate-forme de multiples matrices de 

nanoélectrodes adaptées pour étudier les changements dans les couches réactionnelles du 

système Ru(bpy)3
2+/TPrA en fonction de la géométrie et de l'espacement des éléments de 

l’ensemble. 

Enfin, dans la dernière partie de la thèse, l’adressage électrochimique sans contact 

direct qui est une des caractéristiques remarquables de l'électrochimie bipolaire a été exploité 

comme force motrice pour induire le mouvement contrôlé de nageurs. De plus, elle permet 

simultanément la production de bulles et la génération d’ECL, menant au premier exemple 

d'un mécanisme de propulsion pour un nageur qui est couplé avec une source luminescente. 

Les nageurs bipolaires sont mus soit par la production d’H2 ou d’O2 couplée respectivement 

avec l'émission ECL d’un complexe de ruthénium ou du luminol. Nous avons étendu les 

propriétés de ce type de nageurs en utilisant l’ECL comme signal analytique. Le concept des 

nageurs analytiques pour la détection enzymatique de glucose a également été démontré. 

L'oxydation concomitante du luminophore et du NADH produit par voie enzymatique conduit 
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à une émission ECL avec une intensité lumineuse directement dépendante du glucose. La 

détection locale du glucose dans un gradient de concentration a été réalisée par ce type de 

nageurs ECL. Une telle approche de détection dynamique combine la propulsion sans contact 

avec la sélectivité enzymatique, en utilisant l’ECL comme méthode de lecture au niveau des 

objets en mouvement. 
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PERSPECTIVES  

ECL can be easily combined with other technologies since the direct optical readout can be 

performed just with a PMT or costumer mobile cameras. A wide variety of possibilities can 

be considered coupling ECL with bipolar electrochemistry. It should be noted that even 

though the phenomenon of BE is known for a very longtime, its applications started to be very 

popular in the last decade. It has regained considerable attention, especially in the field of 

micro‐ and nanoscience. Therefore, in this upstream research field there is a place for 

innovations, especially linked to ECL. The ECL-swimmer concept described in the Chapter 4, 

is already expanded for analytical monitoring of a glucose concentration. A glass capillary has 

been used as a bipolar electrochemical cell for a single moving swimmer. Versatility of BE 

allows as to imagine and construct very different types of cells and accordingly to use a 

various materials different in size and shape as a BPE.  

  A)                     

 

 

 

 

 

                                                     B)      

 

 

 

 

 

Figure 1. A) Scheme of bipolar cell. B) Capillary filled with ECL reagents and reservoir 

chambers with supporting electrolyte connected with the capillary. 
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In Figure 1A schematic illustration for possible cell construction is presented. Length of the 

capillary as well as diameter are optional, depending on the experiment set-up. A reservoir 

chambers are connected with capillary and feeder electrodes are placed within them. Filling 

only the capillary with ECL reagents a background signal from the feeder electrode is avoided 

(Figure 1B). By increasing the size of the bipolar cell one can imagine more than one BPE 

electrode placed within the capillary to experience the ECL signal. Reducing the size of the 

BPEs and going to micro and nano-scale, a big amount of conducting objects can emit ECL at 

same time in a wireless manner (Figure 2). Correspondingly, reducing the size of BPEs will 

increase the needed electric filed and the resistance, operating in this case in an open bipolar 

configuration (in agreement with Eqn 3 and 4 in the Chapter 4). Filling the reservoir 

compartments with agarose gel in supporting electrolyte can decrease the resulting ohmic 

heating and therefore to prolong the reaction time.  For the same reason a different co-

reactants can be exploited. For example lower concentrations of DBAE are required with 

DBEA diffusing in solution than with TPrA to obtain the same ECL intensities. Never less, it 

is oxidized at lower potential than TPrA.  

Figure 2. Schematic illustration of ECL generation from the CNTs. The CNTs are polarized 

by the electric field generated between the feeder electrodes and redox reactions are triggered 

at the opposite sides of the object: reduction of oxygen at the cathodic pole (left) and 

oxidation of the ECL reagents at the anodic pole (right) leading to light emission. 
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If the whole capillary is filled with the BPEs, microbeads or nanotubes, and each BPE 

generates the ECL signal at the same time it can lead to ‘‘3D ECL’’ emission. Since the 

concept of bio-swimmers for the enzymatic glucose sensing is demonstrated, this set-up can 

open the door for a whole range of new applications of ECL such as high-sensitivity analysis 

or optical tracking of nanomotors.   
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APPENDIX 

Materials. All chemicals were of analytical reagent grade and were used as received. Solutions 

were prepared using Milli-Q water (resistivity = 18 MΩ cm). Tri-n-propylamine ≥ 98%, tris(2,2’-

bipyridyl) dichlororuthenium(II) hexahydrate, luminol (3-aminophthalhydrazide, 97%), bis(2,2'-

bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-

bis(hexafluorophosphate), sodium phosphate dibasic heptahydrate, sodium phosphate  

monobasic monohydrate, glucose dehydrogenase, universal indicator solution pH 3-10, 

(EC1.1.1.47, from Thermoplasma acidophilum), β- nicotinamide adenine dinucleotide hydrate 

(NAD+), β-nicotinamide adenine dinucleotide  reduced dipotassium salt (NADH), streptavidin 

from Streptomyces avidinii, Tween 20, bovine serum albumin, and biotinylated goat anti-

human secondary antibody were purchased  from Sigma. D-(+)-Glucose anhydrous and 

hydrogen peroxide solution (30%) were from Fluka. Sodium hydroxide (purum) was 

purchased from Acros. Capture antibody specific for interleukin 8 (IL-8), the complementary 

biotinylated detection antibody and IL-8 recombinant protein were obtained from R&D 

Systems, Inc. (Minneapolis, MN). Polystyrene (PS) beads were purchased from Kisker 

Biotech GmbH & Co. Surfactant Gojo NXT was used. Glassy carbon beads (spherical powder 

630–1000 mm, type 2) were purchased from Alfa Aesar. Gold electroless plating solution 

(Oromerse Part B, Technic Inc.) and hydrophilic track-etched PC filter membranes (47 mm 

diameter, 6 µm thickness) with a nominal pore diameter of 30 nm, pore density 6×108 

pores/cm2 were used for manufacturing NEEs. 

Apparatus. All electrochemical and ECL experiments were performed with a μ-Autolab  

Type III and PGSTAT30 electrochemical stations. ECL intensity was measured using 

Hamamatsu photomultiplier tube R4632. Imaging instrumentation was an epifluorescence 

microscope Olympus BXFM-ILHSPU equipped with an Electron Multiplying Charge 

Coupled Device (EM-CCD) Camera (Hamamatsu, 9100-13). The motion of the beads was 

recorded using a consumer digital cameras (Sony, Cyber-shot and Canon60 D). The electric 

field was applied with two high power suppliers: Electrometer 6517B from Keithley and 

Microcomputer electrophoresis direct current DC power supply E862 from Consort. 
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Chapter 2.  

2.1. Immunoassay with 3-µm diameter PS beads 

Antigen storage aliquots were prepared in PBS 1x/BSA 0.1% and detection antibody 

storage aliquots were prepared in tris-buffered saline (TBS StartingBlock). Each washing step 

was done in 100 µL of TBS with 1% Tween 20. The assay was performed by incubating for 2 

hours the microbeads functionalized with a capture antibody (anti-IL-8) first in a sample 

containing antigen (dilute to the appropriate concentration with PBS StartingBlock) and 

washed. Then they were incubated for 30 min. in 50 µL of the detection antibodies solution 

(3µg/mL of antibody in PBS StartingBlock) and washed. Beads were then incubated in a 

solution of biotinylated detection antibodyand washed again. Finally, the ECL label was 

attached to formed immunocomplex by exposing the beads to a solution containing a 

streptavidin-modified Ru(bpy)3
2+ complex. The streptavidin-modified ruthenium complex 

used as a label was synthesized according to the procedure described by Deiss et al.1 Beads 

were then washed for the last time and immobilized on the electrode surface for ECL 

imaging. 

2.2. Functionalization of the 12-µm diameter beads with the ruthenium label 

The surface of the PS beads with -NH2 groups allows further functionalization with 

the ruthenium label. 10 μL of beads suspension (2.5%) was washed with PBS, pH=7.4 and re-

suspended in 1 mL of PBS. In the same time, 1 mg of Ru(bpy)3
2+-NHS ester (bis(2,2'-

bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-

bis(hexafluorophosphate) was dissolved in 100 μL of dimethyl sulfoxide and this solution was 

added to the beads suspension. This mixture was incubated on +4°C for 3 hours with 

continuous stirring. After the incubation the beads were washed from reaction solution with 

PBS 10-15 times by the centrifugation for 10 min at 10000 rpm to separate the beads from the 

solution. Finally, beads were suspended in 1 mL PBS and kept at 4°C. 

            2.3. PL and ECL imaging  

The PL and ECL imaging were performed using horizontal epifluorescence 

microscope. Figure 1 presents scheme of the epifluorescence microscope that was used.  
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Figure 1. Scheme of epifluorescence microscope 

The microscope was equipped with mercury lamp. Specific set of filters was used to select the 

excitation and emission wavelength of Ru(bpy)3
2+-fluorophore. Only the light that correspond 

to the excitation of luminophore passes through and is reflected by dichroic mirror toward the 

sample. A dichroic mirror (dichroic beam splitter) reflects shorter wavelengths of light and 

allows longer wavelengths to pass. A dichroic mirror is required because the objective acts as 

both a condenser lens (excitation light) and objective lens (emission light) therefore the beam 

splitter isolates the emitted light from the excitation wavelength. The wavelength at which a 

beam splitter allows the longer wavelengths to pass must be set between the excitation and 

emission wavelengths so that excitation light is reflected and emission light is allowed to pass 

through it (Figure 3). In all experiments the set of filters which correspond to ruthenium 

complex as luminophore was used. The components of the set and the transmission spectra of 

the filters are presented in Table 1 and Figure 2 respectively. 

 

 

 

Table 1. Set of filters for ruthenium complex PL imaging 
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Figure 2. Transmission spectra of the set of filters for ruthenium complex fluorophore  

(from www.omegafilters.com). 

The microscope was equipped with 5x, 10x, 20x, 50x and 100x (Olympus) from which last 

three were long working distance objectives. The detection was provided by Electron 

Multiplying CCD (Hamamatsu EM-CCD digital camera).  

 

The PL imaging was often performed just before ECL imaging (to allow the comparison of 

the two images) thus the experimental set-up was the same. The three-electrode home-made 

cell with transparent widow was placed in front of microscope objective. TPrA was dissolved 

in PBS by addition of H3PO4 (to adjust the pH to 7.4) and deaerated with Ar for 30 min.2 The 

electrodes were connected to potentiostat. For PL imaging no potential was applied. In 

contrast, for ECL imaging there is no need of excitation light source but the application of the 

potential is required. The ECL reaction was generated by applying constant potential at 1.2 V 

vs. Ag/AgCl/KCl and the emitted light was detected by the EM–CCD. No filter was used to 

diminish the loss of emitted light. For ECL imaging, the whole set-up including microscope 

and camera was placed in dark box to avoid surround light which intensity may be higher than 

ECL to reach the detector. Also, images with no application of potential were recorded to 

check that there is no background light. 

 

 

http://www.omegafilters.com/
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Chapter 3. 

            3.1. Labeling Streptavidin with Ru(bpy)3Cl2 (SA-Ru)  

The modification was done as was reported by Deiss et al.1 with some modifications. 

Briefly: A 1 mg Streptavidin was dissolved in 1mL of Milli-Q water. 100 µL of this solution 

was added in to 810 µL of water and 90 µL of 1x PBS pH 7.4 and mixed with 1 mg of 

Bis(2,2′-bipyridine)-4′-methyl-4-carboxybipyridine-ruthenium N-succinimidyl 

esterbis(hexafluorophosphate), which was dissolved in 100 µL of dried DMSO. The mixture 

was kept at 4 °C on continuous stirring for 4h. Then it was purified by dialysis in PBS (1x) 

using Slide-A-Lyzer Dialysis Cassettes 10k molecular weight cut off from Thermo Scientific 

for about 16h. The Ru-SA complex was stored at +4 °C until used.  

3.2. Fabrication of the NEEs 

The Au NEEs were prepared by electroless deposition of gold in the pores of track-

etched PC filter membrane as a template. In this particular work, a membrane with average 

pores density of 6x108 per cm2 and average pore diameter 30 nm was used. During the 

electroless deposition of gold from a solution, each pore of the PC membrane was filled with 

a metal nanowire whose head is exposed to the electrolyte solution so that the surface of the 

NEE is composed of millions of randomly spaced gold nanodisks. The membrane bearing the 

nanodisks was assembled in to electrodes of suitable geometry and size.  

  3.3. Preparation of the immunosensor and analytical protocol 

A 10µL 10µg/mL tTG solution was droped on the NEE and incubated for 2 h at 25oC. 

The tTG-NEE was subsequently blocked with 1% BSA for 30 min followed by incubation 

with 10µL standard solution of anti-tTG in 1x PBS pH 7.4 for 60 min. After washing with  

PBS (1x) pH 7.4 containing 0.05% Tween 20, the captured primary antibody was coupled 

with biotynilated Goat anti-mouse (or antihuman) secondary antibody for 60 min. It was 

further incubated for 30 min at +4 °C with ruthenium complex tagged streptavidin solution. In 

all the procedures, wet filter paper was put in the incubation container and sealed to avoid 

evaporation of the solution, incubations were made at 25°C except the last step and all 

incubations were followed by thorough rinsing with buffer solution.  Finally, the biosensor 

was dipped in a three-electrode electrochemical cell containing 0.1 M TPrA in 0.1 M PBS pH 

7.4 previously deaerated with nitrogen for 20 minutes.2 ECL and cyclic voltammetry were 

recorded concurrently at scan rate of 100mV/s.   
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3.3. PL and ECL Imaging  

PL and ECL imaging was realized by the same epifluorescence microscope like the 

one described in the paragraph above. The setup was similar like for the top view ECL 

imaging of the beads. The three-electrode homemade cell with transparent window was 

placed in front of the microscope objective (Figure 3) using a three-axis submicron 

manipulator (MDT616, Thorlabs) for the alignment. The ECL images of the samples were 

recorded in PBS solution (pH 7.4) containing 1 mM  Ru(bpy)3
2+ in the presence of different 

concentrations of co-reactants. In particular TPrA and DBAE were used. The ECL reaction 

was generated by applying a constant potential at 1.2 V vs. Ag/AgCl/KCl using 

chronoamperometry and the emitted light was detected by the EM–CCD.   

 

 

 

 

 

 

 

Figure 3.  Assembled array and empty cell used for the measurements; Cell is positioned in 

front of the microscope objective for imaging. 
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