
Contributions à l’Optimisation de Requêtes

Multidimensionnelles

Sofian Maabout

To cite this version:

Sofian Maabout. Contributions à l’Optimisation de Requêtes Multidimensionnelles. Databases
[cs.DB]. Université de Bordeaux, 2014. <tel-01274065>

HAL Id: tel-01274065

https://hal.archives-ouvertes.fr/tel-01274065

Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/tel-01274065

Habilitation à Diriger des Recherches

UNIVERSITÉ DE BORDEAUX

École doctorale de Mathématiques et Informatique de Bordeaux

DOMAINE DE RECHERCHE : Informatique

Présentée par

Sofian Maabout

Contributions à l’Optimisation de Requêtes
Multidimensionnelles

Soutenue le 12 Décembre 2014

Devant le jury composé de

Mme. Christine Collet Professeur à l’INP de Grenoble Rapporteur
M. Nicolas Hanusse Directeur de Recherche au CNRS Examinateur
M. Yves Métivier Professeur à Bordeaux INP Examinateur
M. Jean-Marc Petit Professeur à l’INSA de Lyon Rapporteur
M. Pascal Poncelet Professeur à l’Université Montpellier 2 Rapporteur
M. Philippe Pucheral Professeur à l’Université de Versailles Saint-Quentin Examinateur
M. David J. Sherman Directeur de Recherche à INRIA Bordeaux Sud-Ouest Examinateur
M. Jef Wijsen Professeur à l’Université de Mons Examinateur

Table des matières

1 Introduction Générale 1

2 Calcul Parallèle de Bordures et Applications 5
2.1 Introduction . 5
2.2 Basic Concepts Related to MFI’s . 6
2.3 Related Work w.r.t MFI’s Mining . 7
2.4 Basic Definitions . 9

2.4.1 Pure Depth Traversal . 10
2.5 MineWithRounds Algorithm . 11
2.6 Data Distribution . 15
2.7 MFI’s Mining Experiments . 16

2.7.1 OpenMP . 16
2.7.2 Machine . 16
2.7.3 Data sets. 16
2.7.4 Results Analysis . 18
2.7.5 MineWithRounds vs PADS . 20

2.8 Concluding Remarks on MFI’s Computation . 23
2.9 Parallel Mining of Dependencies . 23
2.10 Related Work w.r.t Mining Functional Dependencies 24
2.11 Basic Definition w.r.t Dependencies . 25

2.11.1 Functional dependencies . 25
2.11.2 Keys . 26
2.11.3 Conditional Functional Dependencies . 26
2.11.4 Problems statement . 27

2.12 Mining Minimal Keys . 27
2.13 Mining Functional Dependencies . 30

2.13.1 Distinct Values Approximation . 31
2.14 Mining Conditional Functional Dependencies . 32
2.15 Dependencies Mining Experiments . 33

2.15.1 Exact FDs . 33
2.15.2 Approximating FDs . 36

2.16 Conclusion . 38

i

Table des matières

3 Optimisation des requêtes dans les cubes de données 39
3.1 Preliminaries . 39

3.1.1 Problem Statement . 43
3.1.2 Related Work . 43

3.2 PickBorders . 44
3.3 Workload optimization . 46

3.3.1 View Selection as Minimal Weighted Vertex Cover 46
3.3.2 Exact Solution . 47
3.3.3 Approximate Solution . 47
3.3.4 Reducing the Search Graph . 48

3.4 Dynamic Maintenance . 49
3.4.1 Stability . 49

3.5 Some Connections with Functional Dependencies . 50
3.6 Experiments . 51

3.6.1 Cost and memory . 51
3.6.2 Performance factor . 52
3.6.3 Stability Analysis . 56

3.7 Conclusion and Future Work . 57

4 Optimisation des requêtes skyline 59
4.1 Introduction . 59
4.2 Preliminaries . 61
4.3 Partial Materialization of Skycubes . 62

4.3.1 Properties of Subspace Skylines . 63
4.3.2 The Interplay Between FDs and Skylines . 65
4.3.3 Analysis of the number of closed subspaces 66
4.3.4 Skyline size analysis . 67
4.3.5 Data Dynamics . 68
4.3.6 Computing the Closed Subspaces . 69

4.4 Query evaluation . 70
4.4.1 Full Materialization . 72

4.5 Related Work . 73
4.6 Experiments . 74

4.6.1 Full Skycube Materialization . 75
4.6.2 Storage Space Analysis . 78
4.6.3 Query Evaluation . 81

4.7 Conclusion and Future Work . 82

5 Conclusion générale 85

Références bibliographiques 87

ii

Chapitre 1

Introduction Générale

L’analyse mutidimensionnelle des données est un sujet vase qui va des statistiques avec des tech-
niques telles que l’analyse en composantes principales au calcul haute performance en passant par
l’extraction de connaissances via du clustering ou la classification, les bases de données, l’algorith-
mique et les techniques d’approximation.

Nos contributions à l’analyse multidimensionnelle suivent la même démarche, à savoir : Nous
considérons un type particulier d’analyse, dans la terminologie bases de données nous parlons de
requête multidimensionnelle, et nous proposons des solutions d’optimisation. En général, il s’agit de
minimiser le temps d’exécution de l’analyse. Mais pas seulement. En effet, certaines requêtes sont
gourmandes en mémoire. Ainsi, un deuxième critère que nous tentons d’optimiser est la consomma-
tion mémoire.

Notre démarche pour ce faire consiste à exploiter autant que faire se peut l’infrastructure ma-
térielle à disposition notamment par la disponibilité de plusieurs unités de calcul. En effet, même
les ordinateurs portables sont actuellement équipés de plusieurs processeurs. Ainsi, l’algorithmique
parallèle n’est plus un luxe réservé à quelques centres de calcul de grands organismes de recherche.
A titre d’exemple, en 2013 une machine avec 12 processeurs et une mémoire de 64 Go peut être
achetée à moins de 5KE.

Certains problèmes sont théoriquement prouvés qu’ils sont difficiles. N’empêche qu’en pratique,
la pire des situations est rarement atteinte et avec de bonnes heuristiques et des astuces de program-
mation, l’on arrive a résoudre des instances de grandes tailles. L’exemple notoire est le problème
SAT qui est en quelque sorte l’étalon des problèmes NP-Complets et qui malgré tout continue à
susciter des avancées, théoriques et pratiques, qui permettent actuellement d’envisager de résoudre
des instances à plusieurs millions de variables. Nos travaux tiennent compte de ce fait d’où le soucis
d’accompagner à chaque fois l’analyse théorique d’expérimentations permettant si ce n’est de valider
l’approche, du moins d’en donner un aperçu sur son potentiel.

Un troisième axe que nous considérons est celui ayant trait à l’algorithmique approché. En effet,
dans plusieurs applications pratiques, un résultat approché (avec cependant une marge d’erreur
maîtrisée) est largement suffisant du moment que ce dernier peut être obtenu avec une complexité
acceptable. Ceci est d’autant plus vrai quand il s’agit de traiter de grandes quantités de données et
où même un algorithme exact de complexité quadratique n’est pas viable.

Comme dit plus haut, nos derniers travaux ont porté sur quelques requêtes multidimensionnelles
bien précises auxquelles nous avons tenté de répondre en utilisant autant que possible les trois axes
d’optimisation.

Les requêtes que nous avons choisies de décrire dans ce manuscrit sont (i) le calcul des bordures,
(ii) les requêtes d’agrégation telles qu’on les rencontre dans les cubes de données et (iii) les requêtes
multidimensionnelles de préférence type Skyline.

– le concept de bordure a été introduit par Mannilla et Toivonen dans leur article fondateur de

1

1997 [70]. Ils ont montré la généricité de ce concept en le déclinant selon différentes applica-
tions. Pour en donner une intuition sans une définition précise, considérons le cas d’un parent
qui s’est fixé un certain budget pour acheter les cadeaux de Noël à ses enfants et qui dispose
d’un catalogue du prix des jouets proposés dans un magasin. Comme le parent veut faire
plaisir à ses enfants, il est intéressé par trouver les ensembles qui contiennent le maximum de
jouets et dont la somme des prix ne dépasse pas son budget. Ces ensembles de jouets forme
en quelque sorte une une frontière entre les ensembles qu’il peut acheter (le prix ne dépasse
pas le budget) et ceux qui sont trop chers. Bien que le problème d’extraction de bordures fût
montré NP-difficile, plusieurs algorithmes ont été proposés afin de le résoudre d’une manière
efficace. Celle-ci étant le plus souvent étayé par des expérimentations. Notre contribution dans
ce domaine est la proposition d’un algorithme parallèle imitant le meilleur algorithme séquen-
tiel, dans le sens où il effectue exactement les mêmes calculs tout en exploitant au maximum
la puissance de calcul disponible. Nous avons implémenté notre algorithme dans plusieurs
contextes et avons comparé ses performances avec les approches de l’état de l’art. Il s’avère
que plus le nombre de dimensions croît, plus notre approche devient performante vis à vis de
la concurrence.

– Dans les applications OLAP (On Line Analytical Processing), on utilise souvent un modèle
multidimensionnel pour appréhender les données. En effet, les décideurs fixe un sujet d’analyse.
Par exemple les ventes dans une chaîne de magasins. L’analyse du sujet choisi se fait à travers
des combinaisons de dimensions pouvant avoir un impact sur le sujet d’étude. Par exemple,
le lieu de la vente, le produit vendu et le client qui a acheté représentent trois dimensions.
L’organisation des données sous forme multidimensionnel et notamment le concept de cube
de données, a été essentiellement introduite et formalisée dans l’article de Jim Gray et al. [40].
L’idée est d’offrir à l’utilisateur une interface lui permettant de naviguer à travers les différentes
dimensions en sélectionnant à chaque fois celles qui l’intéressent. Chaque choix correspond en
réalité à une requête d’agrégation. Nous sommes donc en présence de 2d requêtes possibles si d
représente le nombre de dimensions. Les premiers travaux dans l’implémentation des cubes ont
essentiellement porté sur l’optimisation de sa matérialisation totale. Plus précisément, il s’agit
de précalculer le plus rapidement possible toutes les 2d requêtes et les stocker. Ainsi, lors de
l’exploration du cube par les décideurs, les réponses aux requêtes sont immédiates. Cependant,
on a rapidement pris conscience que le calcul d’un cube entier n’était pas faisable en pratique
pour deux raisons : le temps d’exécution et l’espace de stockage qui sont tous deux prohibitifs.
S’est alors posé le problème de la matérialisation partielle des cubes. Typiquement, les travaux
de la littérature considèrent des contraintes matérielles (par exemple un espace de stockage
fixé) et essayent de trouver lameilleure partie du cube à précalculer. Par “meilleure", on entend
généralement celle qui réduit le temps d’exécution des requêtes. Notre contribution sur ce sujet
consiste à poser le problème d’une manière différente : l’utilisateur fixe la performance avec
laquelle il veut que les requêtes soient évaluées et tout le problème consiste à minimiser les
ressources (exemple, espace mémoire) pour y parvenir. Nous pensons que voir l’optimisation
des requêtes sous cet angle est plus proche de la réalité actuelle notamment avec la vision
cloud computing : l’utilisateur est prêt à payer le prix quand les performances sont garanties.
Nous proposons plusieurs algorithmes (exactes et approchés) pour résoudre ce problème. Il
est remarquable néanmoins que la notion de bordure trouve aussi une application dans ce
contexte.

– Les requêtes de préférences sont étudiées depuis plusieurs années, que ce soit par la commu-
nauté bases de données ou bien les chercheurs en intelligence artificielle et recherche d’infor-
mation. Globalement, il s’agit d’offrir à l’utilisateur de définir un ordre permettant de trier
le résultat d’une requête standard. Cet ordre peut être obtenu par la combinaison des va-

2

Chapitre 1. Introduction Générale

leurs de plusieurs attributs. Ceci est d’autant plus important lorsque le résultat de la requête
contient un grand nombre de tuples. Il s’agit alors de faire en sorte que les tuples les plus
importants apparaissent en premier. C’est ce qui est par exemple étudié dans le cadre des
requêtes Top-K où il s’agit de ne retourner que les K meilleurs tuples. Cette façon de procéder
consiste essentiellement à associer à chaque tuple un poids, donc une valeur atomique, fruit
de la combinaison de plusieurs valeurs, qui permet de classer les tuples selon un ordre total.
Dans certains cas, il est difficile, voire impossible, d’avoir une composition d’attributs, qui ait
un sens pour l’utilisateur. On se retrouve donc à devoir comparer les tuples selon plusieurs
critères pris séparément. Ce problème a depuis longtemps été étudié en mathématiques et
informatique sous le nom de vecteurs maximaux (voir par exemple [56]. En 2001, Kossmann
et al dans [14] a introduit ce concept à la communauté “bases de données" sous le nom de
skyline. L’exemple le plus souvent utilisé pour expliquer le concept est celui d’une table re-
lationnelle qui contient une description de chambres d’hôtel par un attribut qui représente
son prix par nuitée et la distance de l’hôtel où se trouve la chambre vis à vis de la plage. Les
utilisateurs sont intéressés par réduire simultanément et le prix et la distance. Or, ces deux
caractéristiques sont généralement antagonistes. Ce que l’on peut faire dans ce cas, c’est de
retourner à l’utilisateur les chambres qui ne sont pas dominées par d’autres chambres, i.e.,
moins chères et plus proches de la plage. Notre contribution dans ce domaine consiste à consi-
dérer la situation où l’utilisateur dispose d’un ensemble de dimensions parmi lesquelles, il peut
choisir un sous-ensemble qui sera utilisé pour le calcul du skyline. Pour rester sur l’exemple
des chambres d’hôtel, un Emir ne va peut être pas chercher à minimiser le prix de la chambre
mais tiendra à maximiser sa superficie. A contrario, un étudiant tiendra plus particulièrement
à minimiser le prix. On se retrouve donc avec une structure de cube de données particulière,
appelée dans la littérature skycube. Nous proposons des solutions pour précalculer totalement
et/ou partiellement les skycubes en se basant sur la notion de dépendances fonctionnelles elles
même extraites via l’exploitation des bordures.

Organisation du manuscrit
Le présent manuscrit est composé, en plus de l’introduction et de la conclusion, de trois cha-

pitres décrivant nos travaux sur les trois thématiques décrites ci-haut. Il est à noter que l’ordre de
présentation ne respecte pas l’ordre chronologique avec lequel nous les avons abordés. En fait, c’est
le problème de l’optimisation des requêtes dans les cubes qui nous a amené à traiter les bordures. A
travers ces dernières, nous avons été amené à étudier entre autres, leur application pour l’extraction
des dépendances fonctionnelles. Ces dernières se sont avérées utiles pour l’optimisation dans les
skycubes. Les preuves des résultats sont omises afin d’alléger la lecture du présent document. Le
lecteur intéressé peut les trouver dans les articles scientifiques s’y rapportant.

3

4

Chapitre 2

Calcul Parallèle de Bordures et Applications

The border concept has been introduced by Mannila and Toivonen in their seminal paper [70].
This concept finds many applications, e.g maximal frequent itemsets, minimal functional depen-
dencies, emerging patterns between consecutive database instances and materialized view selection.
For large transactions and relational databases defined on n items or attributes, the running time
of any border computation is mainly dominated by the time T (for standard sequential algorithms)
required to test the interestingness of candidates sets.

In this chapter we propose a general parallel algorithm for computing borders whatever the
application is. We prove the efficiency of our algorithm by showing that : (i) it generates exactly
the same number of candidates as the standard sequential algorithm and, (ii) if the interestingness
test time of a candidate is bounded by ∆ then for a multi-processor shared memory machine with p
processing units, we prove that the total interestingness checking time Tp satisfies Tp < T/p+ 2∆n
where n designates the dimensionality of the treated problem (e.g., n is the number of items, the
number of attributes, . . .). We implemented our algorithm in various settings and our experiments
confirm our theoretical performance guarantee.

2.1 Introduction

Let us first recall the definition of borders as it has been introduced in [70]. Let O be a set of
objects, r be a database and q be a predicate evaluating the interestingness of O ⊆ O over r. In
other words, q(O,r) = True iff O is interesting. On the other hand, let v be a partial order between
the subsets of O. The border of O with respect to r, q and v is the set of subsets O ⊆ O such that
(i) q(O,r) = True and (ii) there is no O′ 6= O such that O v O′ and q(O′,r) = True. We illustrate
this notion by the following examples :

– Let O be a set of items and r = {O1, . . . ,Om} be a transactions database defined as a multi-set
with Oj ⊆ O for 1≤ j ≤m. The support of O ⊆ O is the number of transactions Oj ∈ r such
that O ⊆ Oj . Let σ be a support threshold. We define q(O,r) = True iff support(O,r) ≥ σ.
By considering v as the set inclusion relationship, the border of O in this context is actually
the set of maximal frequent itemsets. The problem of extracting maximal frequent itemsets
(MFI’s) has been studied for a long time (see e.g. [11, 16, 38, 39, 101]). The most efficient
implementations follow a depth first strategy which we will explain later in Section 2.4.1.

– Let r be relational table and let A be its set of attributes. Let A ∈A and O = A\{A}. A set
of attributes O⊆O is interesting (i.e q(O,r) = True)) iff r satisfies the functional dependency
O→A. Finding the minimal subsets O of O such that r |=O→A aims at finding the border
of O by considering O v O′ iff O ⊇ O′. Hence, finding the minimal non trivial functional
dependencies (FD’s) satisfied by a relation turns to be a border computation. Again, extracting
the exact or approximate FD’s has attracted a real interest either for query optimization or

5

2.2. Basic Concepts Related to MFI’s

database reorganization (see e.g [52, 66, 75, 94]. [94] is among the most efficient algorithms
designed for this purpose this why it has been adapted in [28] for mining conditional FD’s.
One should notice that this algorithm also follows a depth first strategy.

– Let O be a set of items. If I ∈O then I.price denotes the price of I. Let r be a table containing
the price of each item I. O⊆O is interesting (i.e q(O,r) = True)) iff

∑
I∈O I.price≤ σ where σ

is a budget threshold. If v denotes the set inclusion relationship, then the border with respect
to q,r and v is the maximal subsets of O whose prices (the sum of their elements prices) do
not exceed threshold. This problem has been studied in [83] in an e-commerce application
where a customer searches for a product by providing his/her budget. The system returns
not only the searched product but also suggests other related items while not exceeding the
customer’s budget.

Other recent applications of borders can be found e.g. in [74] where it is used to characterize the
emerging parts of a datacube between two consecutive states, in [46] for datacube partial materia-
lization and in [72] for extracting the most interesting attributes w.r.t. a query log. Without trying
to be exhaustive, we hope the reader is convinced that borders are found in several applications.

However, computing borders is a very time consuming task. Indeed, [41] shows that it is NP-Hard
with respect to the number of dimensions. Therefore, either we rely on heuristics to optimize the
computation (for example, the way we traverse the search space), try to approximate the result (for
example, by using probability arguments) or exploit parallelism (data and/or task parallelism). [70]
proposed a general level-wise algorithm for computing the borders when q is anti-monotone. Recall
that q is anti-monotone iff whenever q(O,r) = False then q(O′,r) = False for each O′ wO. In the
three examples above, one may easily check that q is anti-monotone. The main parts of any border
computations algorithms are the candidates management and the interestingness tests. Whatever
is the underlying data structure (tables, FP-trees, . . .), it turns out that for large datasets, the
interestingness test is the most consuming task. The algorithm of [70], akin to A priori [6], turns
to be inefficient in practice in that it tests much more candidates than the algorithms following a
depth first strategy (DFS). The reason is that DFS exploits the anti-monotone property upward and
downward to prune the candidates. In order to parallelize DFS algorithms, the immediate solution
would be to partition the data and each time we have to check the interestingness of a candidate, we
test it in parallel in every part then we combine the results, i.e., data parallelism. The problem here
is that we have no guarantee that doing so, the time required is not more than that of a sequential
algorithm, e.g. for MFI mining, prefix trees [44] are often used to summarize the data and it may
happen that each tree corresponding to a part has the same size as the global one. Therefore, the
performance of the parallel version is much worse than the sequential one. To sum up and to the best
of our knowledge, no existing parallel algorithm for computing borders does provide a theoretical
guarantee to run faster than a sequential execution.

In this chapter we propose a parallel algorithm, MineWithRounds, which guarantees a speed
up over the standard sequential depth first algorithm. To simplify its description we consider two
applications : mining maximal frequent itemsets and mining functional dependencies. This shows
that with very little adaptation, the same algorithm can be used in various settings.

This chapter contains two main parts : the first one is devoted to MFI’s mining and the second
one to dependencies extraction. We first start with MFI’s.

2.2 Basic Concepts Related to MFI’s

Let us first recall the basic concepts related to maximal frequent itemset (MFI) mining. Let
I = {I1, . . . , In} be a set of items and T = {T1, . . . ,Tm} be a transaction database where Tj ⊆ I for

6

Chapitre 2. Calcul Parallèle de Bordures et Applications

1≤ j ≤m. The support of I ⊆ I, noted support(I), is the number of transactions Tj ∈T such that
I ⊆ Tj . Let σ be a support threshold. Then I is frequent iff support(I)≥ σ and I is an MFI iff it is
frequent and there is no J ⊃ I such that J is frequent.

Example 1. Let I = {A,B,C,D,E}, σ = 2 and the transaction database T described below :

TId Transactions

1 ABC
2 AD
3 ABCD
4 ACDE
5 ABC

The itemset AB is frequent since support(AB) = 3≥ σ. However, it is not an MFI since, ABC is
also frequent and contains AB. The MFI’s are {ABC,ACD}.

The problem of extracting maximal frequent itemsets has been studied for a long time (see e.g.
[11, 16, 38, 39, 101]). The most efficient implementations follow a depth first strategy which we will
explain later in Section 2.4.1. Among the reasons of this interest, one can notice that the MFI’s is
a good summary of frequent itemsets. Indeed, due to the monotonicity of the support, all frequent
itemsets (FI’s) can be recovered from the maximal ones. Of course, this summary is lossy in that one
cannot recover the actual support of the FI’s. This is a problem when we are interested in mining
association rules. However, in many applications we just need the MFI’s. As an example, suppose
that items represent the relational attributes used in queries conditions. Hence, each transaction
is actually the set of attributes used in a query. Finding the maximal frequent attributes set is
sufficient to obtain a set of index candidates that may help queries optimization, see e.g., [15].

2.3 Related Work w.r.t MFI’s Mining

MFI mining is an NP-Hard problem [41, 97]. Hence, to speed up its computation, one should
either use heuristics, parallelism, approximation and/or clever traversal of the exponential search
space. For this last item, there are essentially two strategies that have been followed so far : (i) the
depth first strategy (DFS), e.g., Mafia [16], GenMax [38], DepthProject [4], FPmax* [39] and PADS
[101], and (ii) the level wise or breadth first strategy (BFS), e.g., Pincer search [64] and MaxMiner
[11]. DFS strategy provides better performance than BFS. This is essentially because the former
does not exploit downward pruning : if an itemset is frequent then its subsets cannot be maximal
so they can be pruned.

DFS algorithms organize the search space as a tree ; the so called lexicographic tree. Let us recall
this structure by considering I = {A,B,C,D,E} as the set of items. DFS algorithms traverse the
tree depicted in Figure 2.1.

In order to compare DFS and BFS, suppose that the unique MFI is {ABCDE}. DFS climbs
the left most branch of the tree until ABCDE and stops. Hence, it computes only n supports while
BFS computes the support of all subsets of ABCDE thus 2n supports.

Suppose now the MFI’s are {ABCD,E}. DFS will compute the support of A, AB, ABC,
ABCD and ABCDE (in this order) then all the supersets of E. Hence, for just 2 itemsets, DFS
may compute O(2n) supports where n is the number of items. For the same set of MFI’s, BFS
does not test all supersets of E but does test all subsets of ABCD. Finally, for this example, both
algorithms make the same number of tests. This case is the worst case for both DFS and BFS.

7

2.3. Related Work w.r.t MFI’s Mining

∅

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 2.1 – The lexicographic tree of {A,B,C,D,E}

These examples show (i) how the worst case complexity (O(2n)) can be attained by both DFS
and BFS and why DFS can be much more efficient than BFS.

Most algorithms make use of heuristics in order to maximize the pruning opportunities. For
example, the lexicographic order corresponds actually to items ordering with respect to their as-
cending support ordering. The rational behind this is that the maximal frequent itemsets with less
support should should the the roots of the largest subtrees. Since the MFI’s containing them should
rather be short (in terms of the number of items they contain), hence one may hope to maximize
upward pruning.

The most efficient implementations for MFI computation (FPMAX and PADS) use projection
(or conditional transactions) in order to speed up support computation. The principle is as follows :
when the support of A is computed, we keep track of those transactions that contain A. This set,
denoted TA, is the projection of the original data onto the itemset A. Then, if we need to compute
the support of AB, we just need to compute the support of B in TA. Doing so, we also obtain TAB.
During tree traversal, each TI is kept in memory until the subtree rooted at I is completely mined.
Even its effectiveness, this technique could be quite memory consuming when the projections are
large. Moreover, in a parallel algorithm, this could be unpractical because we could have to keep
too many projections.

Some algorithms use even dynamic ordering, e.g., in Figure 2.1, when A is found frequent, instead
of considering AB as the next candidate, the subtree rooted at A is reordered with regard to the
individual supports of B,. . . ,E in the projected transaction data base on A, i.e., the restriction of
transactions to those containing A. Furthermore, the FP-tree data structure [43] is an efficient way
to summarize the underlying data making the support computation fast.

Look ahead is another heuristics used by the algorithms. It consists simply to test each candidate
together with the maximal itemset belonging to its subtree, e.g., B is tested processed together with
BCDE. If the latter is frequent, then the whole subtree rooted at B can be pruned.

[72, 83] make use of an approximation technique based on randomization. The principle is as
follows : first choose randomly an item then traverse the search space bottom-up until reaching
an MFI. At each stage, the next candidate is also randomly selected. The process stops when all
previously mined MFI’s have been found twice. It is proven that the result does contain all MFI’s
with high probability. We note however that the worst case complexity of this technique is also

8

Chapitre 2. Calcul Parallèle de Bordures et Applications

exponential. Therefore, even if the authors found it efficient from a practical point of view, no
argument is provided for supporting this claim nor do they compare it with other solutions.

To the best of our knowledge, two parallel algorithms [21, 27] have been proposed so far. Both of
them use data parallelism. [21] partitions the data and parallelizes the support computation of each
candidate by using MaxMiner [11]. Due to its BFS strategy, MaxMiner does compute the support
of more candidates than DFS algorithms. [27] guesses a set of MFI’s candidates by considering all
branches of the prefix tree summarizing the data. If a branch is frequent then it is potentially an
MFI otherwise it is intersected with other non frequent candidates to generate new ones. Each node
in of the network executes this procedure in its local data then sends the result to the master node.
This later combines the partial results then it generates the next potential candidates which are to
be tested by the slaves nodes.

[61] proposed FP-arrays, a data structure for representing FP-trees in an array fashion so that
logically close nodes of the tree (parent-child) are effectively close to each other in the physical
memory. This data structure reduces drastically cache misses. The authors proposed a lock free
parallel algorithm for building this structure. However, the parallel mining process is again data
oriented as it has been proposed in [19]. We should note that this proposal is for computing all
frequent itemsets not only the maximal ones.

2.4 Basic Definitions

In this section we introduce the main definitions. I will denote the set of items present in the
transaction database. Capital letters I,J, . . . denote itemsets and lowercase letters i, j, . . . denote
items. We start by defining a total order among the items.

Definition 1 (Item Rank). Let / be a total order over the items of I. Then Rank(i) = r iff |{j | j /
i}|= r−1.

Example 2. Let I = {A,B,C,D} be the set of items. Suppose that / is the alphabetical order. Then
Rank(A) = 1,Rank(B) = 2, . . . ,Rank(D) = 4.

Without loss of generality, the order / is equivalent to the alphabetical order. We also consider
only ordered itemsets i.e., if I = i1i2 . . . ik is a k-itemset then j < l ⇔ ij / il for 1 ≤ j, l ≤ k. For
example, ACD is an ordered itemset while DAC is not. As usual, from the order / we can define
the lexicographic order between itemsets as follows : Let I = i1i2 . . . im and J = j1j2 . . . j` two ordered
itemsets. Then I ≺ J iff there exists p such that ik = jk for k < p and ip /jp. For example ABD≺B.
Moreover, we say that I is an ancestor of J iff I ⊇ J and I is a parent of J iff I is a J ′s ancestor
and |I|= |J |+ 1. For example, ABC is an ancestor of B and it is a parent of AB. With respect to
an itemset I and to the order ≺ we distinguish two kinds of ancestors (resp. parents) : those that
precede I, called left ancestors, and those that follow it, called right ancestors. For example, AB
and BC both are parents of B. Since AB ≺ B and B ≺ BC, then AB is a left parent of B while
BC is a right parent of B. A set of itemsets S covers I iff S contains an ancestor of I. We define the
position of an itemset I, denoted Pos(I), as the rank of I with respect to ≺ order. More precisely,

Definition 2. Let (2I,≺) be the ordered set of itemsets. Pos(I) = |{J |J ≺ I}|.

For example, if I= {A,B,C,D} then Pos(A) = 1 (A follows ∅), Pos(D) = 24−1 and Pos(AB) =
2. From these definitions, the structure of the lexicographic tree should be clear : T is the lexicogra-
phic tree of I iff for each itemset I ⊆ I all the right ancestors of I belong to the subtree of T rooted
at I. The tree in Figure 2.1 is the lexicographic tree of I = {A,B,C,D,E}.

9

2.4. Basic Definitions

Finally, let I = i1 . . . im be an ordered itemset. The successor of I, denoted Successor(I), is the
itemset J = i1 . . . imik such that rank(ik) = rank(im) + 1. Not all itemsets have a successor. For
example, if I = {A,B,C,D,E} then Successor(AC) = ACD while AE has no successor. Clearly,
the successor of I is its first parent with respect to ≺.

2.4.1 Pure Depth Traversal

We start with a simple algorithm for extracting MFI’s. This DFS algorithm traverses the lexi-
cographic tree. We assume that the itemsets are coded by a binary vector V (1 . . .n) where V [j] = 1
means that item ij is present and V [j] = 0 otherwise. We note the set of MFI’s as MFI where MFI
stands for Border. Parameters n and σ are respectively the total number of items and the support
threshold. Integer i is a position index in the vector V . The algorithm is called by initializing i to
1, MFI as empty and all positions of V set to 0.
Procedure DFS(integer i)
Input: integer i, s : MinSupport
Output: MFI

1 if i≤ n then
2 V [i]← 1;
3 if MFI covers V then
4 // V is not maximal
5 DFS(i+ 1);
6 else
7 if support(V)≥ s then
8 // V is potentially maximal
9 Add V to MFI;

10 Remove from MFI the subsets of V ;
11 DFS(i+ 1);

12 V [i]← 0;
13 DFS(i+ 1);

To illustrate this algorithm, let us assume that I = {A,B,C,D,E} and the maximal frequent
itemsets are {ABDE,BC}. Figure 2.2 shows the trace of DFS execution. Itemsets in a red area are
upward pruned and those in green are are downward pruned. The support computation is performed
for the rest of itemsets.

Despite the simplicity of this algorithm, most of the efficient solutions proposed so far use a
variation of it in order to optimize the two critical operations it performs namely, the covering test
(line 3) and the support test (line 7). The covering test may require the comparison of V to all
elements of MFI. Several techniques have been proposed in order to reduce or optimize this test.
For example, [38] maintains a local subset of MFI where the test is performed. Another variation
consists in using a tail structure associated to each candidate [16, 38]. These structures are used
when backtracking by avoiding to visit hopeless candidates, i.e., those that are surely covered. For
example, when considering candidate AB in the example above, its tail is first set to {C,D,E}. If
subsequently ABD is found frequent then D is removed from tail(AB) and when ABDE is tested,
E is also removed from tail(AB). Hence, when the execution backtracks to AB it will not visit ABE
since E is no more in tail(AB). The process backtracks immediately to AC. One should notice that
these techniques do not reduce the number of support computations.

From the discussion above, we may conclude that when mining MFI’s with DFS, we are facing
two bottlenecks : support and covering tests. When the number of MFI′s is much smaller than the
data, which is the case when data is very large, the support tests dominate the overall computation

10

Chapitre 2. Calcul Parallèle de Bordures et Applications

∅

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 2.2 – Execution trace of DFS

time. This is the reason why in this chapter we rather focus on parallelizing the supports computation
task.

2.5 MineWithRounds Algorithm

As we have seen in the previous section, DFS processes sequentially the set of itemsets following
the lexicographic order ≺. From time to time, it makes jumps that correspond to upward pruning.
In this section we propose a new algorithm which mimics DFS and whose rationale consists in
triggering the processing of an itemset as soon as possible while still respecting the ≺ order, i.e.,
we have no chance to obtain new information about the status of this itemset if we postpone its
treatment. More precisely, suppose that I has just been processed (its support has been checked)
and let J be an itemset such that I ≺ J . We want to start the processing of J whenever none of the
itemsets K lying between I and J , i.e., I ≺K ≺ J , is able to provide any insight about J .

For example, consider the itemsets AB and B from Figure 2.2. Once AB is processed, we can
start the processing of B. Indeed, either AB is frequent and in this case B is covered 1 or AB is not
frequent and in this case none of the itemsets whose position is between Pos(AB) and Pos(B) will
provide an information telling that B is frequent nor B is not frequent. Figure 2.3 illustrates this.
The shaded region contains the itemsets whose processing is useless for gaining any information
about itemset B once AB is processed.

The second principle of the proposed algorithm consists in processing several itemsets in parallel.
Roughly speaking, we partition the set of itemsets into rounds R1, . . . ,Rd such that an itemset is
processed during the ith iteration if it belongs to Ri. Let us first formalize our partitioning procedure.

Definition 3 (Depth First Partitions). Let (R)i≥1 be a partition of 2I. R is a Depth First Partition
(DFP) of 2I w.r.t. ≺ if and only if for each itemset I,

1. I ∈ Rk and I has a successor ⇔ Successor(I) ∈ R` where ` > k and

2. I ∈ Rk⇔∀ left parent I ′ of I, I ′ ∈ Rl where l < k.

1. Processing B in this situation means just discarding it as a candidate.

11

2.5. MineWithRounds Algorithm

∅

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Figure 2.3 – Useless itemsets for B once AB is processed.

Informally, the above conditions impose that (1) each itemset should be processed before its
successor and (2) each itemset should not be processed until all its left parents have been processed.
These two conditions together insure that the processing respect the order ≺ followed by DFS.
Clearly, there may be many DFP’s for the same I. As an example, the partition R = {R1, . . . ,R2n−1}
where I ∈ Rj ⇔ Pos(I) = j is a DFP partition.

Now we give a very naïve algorithm which, given a DFP, analyses its parts iteratively for finding
the MFI’s. This algorithm is very inefficient because it assumes that the DFP is statically given
which means that one should provide the 2n possible candidates beforehand. Still, it is interesting
because it shows the fundamental role of DFP’s regarding a depth first search strategy. Indeed, we
show that this algorithm performs exactly the same support tests as DFS.
Procedure Naïve(R)
Input: R = {R1, . . . ,Rm} : a DFP, s : MinSupport
Output: MFI

1 MFI = ∅;
2 for i= 1 . . .m do
3 foreach I ∈ Ri do
4 if I is not covered by MFI then
5 if Support(I)≥ s then
6 Remove from MFI the subsets of I;
7 Add I to MFI;
8 else
9 for j = i . . .m do

10 Remove from Rj the supersets of I;

11 Return MFI

Theorem 1. Let R be a DFP. Then Naïve and DFS perform exactly the same support tests.

From task parallelism point of view, not all DFP’s are interesting, e.g., the partition R =
{R1, . . . ,R2n−1} where we have as many parts as there are itemsets is not interesting since each
part contains only one candidate : thus we always have just one candidate to test.

Therefore, we seek the smallest partitions in terms of the number of parts, i.e., the ones that

12

Chapitre 2. Calcul Parallèle de Bordures et Applications

merge as many itemsets as possible in each Ri while respecting DFP conditions. We actually show
that there exists a unique minimal partition.

Definition 4. Let R and R′ be two DFP’s. Then, R is smaller than R′ iff |R| < |R′| where |R|
denotes the number of parts in R.

Example 3. Let I = {A,B,C}. One can easily check that R = {{A}, {AB}, {B}, {ABC}, {AC,
BC}, {C}} and R′ = {{A}, {AB}, {B}, {ABC}, {AC}, {BC}, {C}} are both DFP’s. R is smaller
than R′.

Definition 5 (Round of Itemsets). Let I = I1 . . . Ik be an itemset such that rank(Ik) = r. Then
Round(I) = 2r−k = i

Example 4. If I = {A,B,C,D,E} then Round(ABD) = rank(D)−3 = (2×4)−3 = 5.

Theorem 2. Let R̂ = {R1, . . . ,Rm} be a partition of 2I such that I ∈ Rj ⇔ Round(I) = j. Then R̂

is the smallest DFP partition.

From here on, Round(I) denotes the round where I belongs to. As a consequence of the above
theorem, we have the following property : the number of rounds (parts) |R̂| is 2n−1. The following
example illustrates the different notions we introduced.

Example 5. Let I = {A,B,C,D,E} be the set of items. Then, the round of each itemset is depicted
in Figure 2.4.

ABE

AD

A

ABCD

ABCDE

ABDEABCE ACDE BCDE

CDEBDEBCEADEACE

AE BE CE DE

ED

BD CD

BCDACDABD

AC BC

ABC

AB

B C1

2

3

4

5

6

7

8

9

Figure 2.4 – Rounds assignment

We now describe MineWithRounds which uses the partitioning defined before. Intuitively, it
uses a loop which considers at each iteration the itemsets of the corresponding round. We use the
following data structures : C is an array of sets of itemsets sets. C[i] is the set of candidates to be
processed during round i and MFI is the set of MFI’s found so far. The right children of ABC are
AC and BC (just do not consider its prefix). The right sibling of ABC is ABD (just replace the last
item, here C, by its successor, here D). Note that if Round(I) = i and J is the right sibling of I then
Round(J) = i+2. Intuitively, the algorithm proceeds as follows : If a candidate I ∈ C[k] is found
frequent, then its successor is a candidate for the next iteration k+1. If I is infrequent then (i) its
right children are potential candidates for the next iteration k+ 1 and (ii) its sibling is a potential
candidate for iteration k+ 2. To explain the covering tests, suppose AC and BC are candidates
tested during the same round. Suppose AC is frequent but not BC. Thus AC generates its parent
ACD as a future candidate and BC generates both C (its right child) and BD (its sibling). Note
that since C is covered by ACD, there is no need to consider it as a future candidate.

13

2.5. MineWithRounds Algorithm

Algorithm 1: MineWithRounds
1 C[1]←{I1};
2 k← 1;
3 while k ≤ 2n−1 and C[k] 6= ∅ do
4 foreach I ∈ C[k] do
5 // Loop executed in parallel
6 if support(I)≥ σ then
7 Add I to MFI;
8 Remove the left child I ′ of I from MFI;
9 Add the right parent I ′′ of I to C[k+ 1];

10 else
11 Add the right children of I to Children;
12 Add the right sibling of I to C[k+ 2];

13 foreach I ∈ C[k+ 1] do
14 // Loop executed in parallel
15 if I is covered by MFI then
16 Remove I from C[k+ 1];

17 foreach I ∈ Children do
18 // Loop executed in parallel
19 if I is not covered by MFI then
20 Add I to C[k+ 1];

21 k← k+ 1;

The reader should notice from the above algorithm description that the candidates are generated
dynamically. Actually, at each stage, C[k]⊆ Rk. Rk is upward and downward pruned with respect
to the previous computations.

In our implementation, the three Foreach loops in lines 4, 13 and 17 are executed in a parallel
fashion. The first one essentially tests the support, the second checks the coverage of the sibling
candidates that have been generated during iteration k− 1 and the last one tests the coverage of
the children that have been generated during iteration k. It is worthwhile to note that there are
barriers between these loops, i.e. the second loop cannot start before the first has finished.

The following theorem, which is our main result, compares the performance of the above algo-
rithm with DFS.

Theorem 3. DFS and MineWithRounds perform exactly the same number of support compu-
tations.

As a consequence, we can state the theoretical speed up with respect to the number of available
processing units.

Corollary 1. Let T and Tp be respectively the computations times of DFS and MinWithRounds
when p processors are available. Then

T

p
≤ Tp ≤

T

p
+ (2n−1)∆

Where n is the total number of items and ∆ is the maximal time needed for one support computation.

14

Chapitre 2. Calcul Parallèle de Bordures et Applications

Note that, since in general the number of candidates r is much larger than n, (2n−1)∗∆ can
be neglected with regard to T/p. Hence, the speed up of MineWithRounds is almost perfect. The
worst case is when ri mod p= 1, e.g. suppose p= 16 and ri = 33. Suppose that the 33rd test takes
2sec and the others take 1sec. Then, the sequential algorithm requires 34sec. With p cores, the first
32 candidates are processed within 2sec while the last candidate requires 2sec by itself so a total
of 4sec. Hence, the speed up is 34/4 = 8.5. Note that if we had 47 candidates and it is the 47th one
which requires 2sec then the parallel total time is again 4sec and the speed up is this time equal to
48/4 = 12.

The following example illustrates the MFI’s computation with our algorithm.

Example 6. Let I= {A,B,C,D,E} and suppose that the maximal frequent itemsets are {ABDE,BC}.
Figure 2.5 shows candidates generation. The arrows show candidates generation. For example, A
is found frequent in round 1, therefore its parent AB is generated as a candidate. ABC is found
infrequent during round 3, so its sibling ABD is generated together with its right children AC and
BC. Candidates colored in red are those that are first generated then removed because they turn to
be covered. For example, in round 4, AC is found infrequent so its right children C is generated as a
candidate to be tested during round 5. But meanwhile, BC is found frequent. Hence, BC is added to
the provisional set of MFI’s and its parent BCD is scheduled for round 5. Hence, when the execution
of round 5 starts, we find C covered by BC. The same remark holds for the sibling AD of AC which
is first generated for round 6 then removed because during round 5, ABD is found frequent. Note
that in this small example just two iterations contain more than one candidate, namely iterations
4 and 5. Thus, with 2 processors just these rounds will benefit from parallelism. However, realistic
data sets with much more items exhibit rounds with thousands of candidates.

A

ABDE

BCE

CECD

BCDABD

AC BC

ABC

AB

1

2

3

4

5

6

7

8

9C D E

BDAD

Figure 2.5 – Rounds assignment and MineWithRounds computation

2.6 Data Distribution

In this section we show how to adapt our algorithm to the case when data is distributed. An
obvious way to do so is to consider one distinguished node as the master and the others are slaves.
The master is responsible of the candidates and the border management while the slaves compute the
interestingness on their respective local data. At each iteration, (1) the master sends all candidates
to all slaves, (2) each slave computes the local support of all candidates, (3) each slave sends its
results to the master, (4) the master combines the partial results to find the global interesting
candidates, (5) it updates the border and (6) it generates new candidates
In the MFI setting, the communication complexity is the total size of messages. Let ri be the the
number of candidates processed during iteration i and p be the number of slaves. At each iteration i

15

2.7. MFI’s Mining Experiments

the master sends a message of size ri to the slaves and each slave notifies the master with a message
of length ri. Thus the total communication cost is 2p

∑2n−1
i=1 ri. Of course, other implementations are

possible, e.g., instead of computing the support of each candidate by every slave, we let the later to
make this computation only if the already computed support is not sufficient to make the candidate
frequent. This will reduce the overall computation time. As one can see, our proposal of candidates
partitioning is orthogonal to the way data is distributed. In fact, it leads itself easily to Map-Reduce
setting : it is essentially the same problem as computing the number of words occurrences.

2.7 MFI’s Mining Experiments

2.7.1 OpenMP

We implemented our algorithm using C++ and the STL library together with OpenMP [76] : a
multi-shared programming API. OpenMP makes it very easy to exploit new multi-core architecture
by just adding compilation directives. For example, the loop :

For (i=0; i<1000; i++)
a[i]=f(i);

can be executed in parallel by adding just one line of code as follows
#pragma omp parallel for num_threads(4) schedule(dynamic)
For (i=0; i<1000; i++)

a[i]=f(i);
The number of parallel threads that are launched in this case is fixed to 4. Moreover, OpenMP

enables the user to choose how threads should be scheduled. In the example above, we have chosen
a dynamic scheduling meaning that the fours parallel threads will execute respectively the instruc-
tion a[i]=f[i], for i=1..4 then the first among them which terminates, will execute the same
instruction by considering i=5, and so on. This type of scheduling is particularly interesting when
the execution time of function f is variable depending on the i value. Our purpose here is not to
explain the many facilities offered by OpenMP but rather to show how it is easy to parallelize source
codes when using it.

We have checked the correctness of our implementation by comparing its results with other
previous implementations (Mafia and PADS) as well as by considering the results reported in [31].

2.7.2 Machine

Our tests were conducted on a machine equipped with two quad-core Intel Xeon X5570 2.93GHz
processors running under Redhat Linux enterprise release version 5.4. Thanks to their multi-
threading ability, these processors can execute concurrently two threads per core. Therefore, we
were able to launch up to 16 threads. Figure 2.6 shows this internal structure. It shows for example
that in node 1, core 0 contains two logical processing units p#0 and p#8 meaning that multi-
threading is enabled.

2.7.3 Data sets.

We present the results we obtained with six well known datasets : Chess, Mushroom, T10I4D100K,
T40I10D100K, Kosarak and Webdocs. Their respective characteristics are described in Table 2.1.

Depending on the number of transactions, we categorized the samples into small, medium and
large data sets. With each dataset, we varied the minimal support threshold σ and with every such
value, we varied the number of parallel threads executed for every Foreach loop in the algorithm

16

Chapitre 2. Calcul Parallèle de Bordures et Applications

Figure 2.6 – The internal structure of the machine used for our experiments.

Dataset # trans. # Items Avg. transact. Size
length

Chess 3196 75 37 Small
Mushroom 8124 119 23 Small
T10I4D100K 105 103 10 Medium
T40I10D100K 105 103 40 Medium

Kosarak ∼ 106 40348 8 Large
Webdocs ∼ 1.7∗106 ∼ 5.3∗106 178 Large

Table 2.1 – Data description.

17

2.7. MFI’s Mining Experiments

(the same number of threads for the three loops). This number varies from 1 to 16 as a power of 2.
In order to gain load balancing, we used the dynamic scheduling of OpenMP.

2.7.4 Results Analysis

For each data set, we measured the time devoted to each of the three loops present in our
algorithm (cf. Algorithm 1). The first loop essentially computes the support of a set of candidates
while the two remaining loops make covering tests : One of them (line 17) tests the coverage of the
candidates that have been generated as children of non frequent itemsets and the other (line 13)
tests the candidates that have been generated as siblings. In our main theoretical result (Corollary
1), we claimed that when the time devoted to support computation is the dominating time, the
speedup of our algorithm is almost perfect. The experiments not only confirm this result but also
show that when this test is not very time consuming we still get interesting speed ups.

Figures 2.7, 2.8 and 2.9 show some of the obtained results. For each dataset, we consider two
support thresholds and for each, there is one subfigure showing the proportion of time devoted to
each of the three loops as well as the execution time of the sequential part of the algorithm. The
second subfigure shows the speedup of each loop as well as the total speedup. The X_axis of each
figure represents the minimal support value concatenated to the number of threads. For example, in
subfigure 2.7(a), 140K_T16 means that the minimal threshold is 140K and the number of threads
is fixed to 16.

Large data

With Webdocs dataset, more than 90% of the time is consumed by the support computation
(see Figures 2.7(a) and 2.7(b)). Hence, the speed up of the overall execution is almost equal to
the support computation speed up. Note that Figure 2.7(c) shows a total speedup of 30 while the
number of threads is just 16. Moreover, the number of physical processors is 8. This super-linear
speed-up is explained by data locality. Indeed, when two threads access the same data, the system
will first check the different levels of the cache before making an access to the memory. Recall
from our partitioning technique that all the candidates with the same last item and the same total
number of items are processed in parallel. For example, ACD, BCD and ABD. We use a prefix
tree with a header to summarize the underlying data in the very same way as FP-trees do. Hence,
for computing the support of ACD, we traverse the list of nodes associated to item D (the last one
of the itemset). Each time we check whether the path from the root of the tree to the node contains
ACD. It if is the case, the counter value of the node is added to the support of ACD. Note that the
same list is traversed for BCD and ABD. Hence, if we have three different threads processing each
of these three candidates, then we have good chances that one of them will bring the data (nodes of
the prefix tree) from main memory to the different levels of the cache then to the register but the
other threads could find it without accessing main memory making their computation much faster.
To favor this optimization, we sorted the candidates wrt their last item. Moreover, we used an array
structure to code the branches of the tree because dynamic node allocation does not guarantee space
locality between successive nodes. We have been inspired by the data structures first proposed in
[35] and further optimized in [61].

Even if the Kosarak data set is relatively large, we note that the proportion of time devoted to
support computation is comparable to the time spent in covering tests when the minimal support σ
is set to 1K (Figure 2.7(e)). This is not the case when σ= 2k. We note however that the speedup for
support computation is in both cases almost perfect(Figures 2.7(g) and 2.7(h)). Finally, we should
notice that the average size of transactions is quite short (8 items). Thus, the maximal frequent

18

Chapitre 2. Calcul Parallèle de Bordures et Applications

140kT1 140kT2 140kT4 140kT8 140kT16

0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(a) Webdocs : 140K-Execution time dis-
tribution

200kT1 200kT2 200kT4 200kT8 200kT16

0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(b) Webdocs : 200K-Execution time dis-
tribution

140kT2 140kT4 140kT8 140kT16

0

10

20

30

Sibling Children Support Total

(c) Webdocs : 140K-Speed up

200kT2 200kT4 200kT8 200kT16

0

5

10

15

20

25

Sibling Children Support Total

(d) Webdocs : 200K-Speed up

1kT1 1kT2 1kT4 1kT8 1kT16

0

20

40

60

80

100

120

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(e) Kosarak : 1K-Execution time distri-
bution

2kT1 2kT2 2kT4 2kT8 2kT16

0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(f) Kosarak : 2K-Execution time distribu-
tion

1kT2 1kT4 1kT8 1kT16

0

5

10

15

Sibling Children Support Total

(g) Kosarak : 1K-Speed up

2kT2 2kT4 2kT8 2kT16

0

5

10

15

Sibling Children Support Total

(h) Kosarak : 2K-Speed up

Figure 2.7 – Large Data : Webdocs and Kosarak
19

2.7. MFI’s Mining Experiments

itemsets tend to be short as well. This reduces the impact of downward pruning exploited by DFS
algorithms.

Medium Size Data

The dataset 40I10D100K of medium size is denser than T10I4D100K. Figures 2.8(a) and 2.8(b)
show that support computation time is important. Nevertheless, we do not reach the same speed
ups as those with Webdocs. We note however that the total execution time is always divided by
almost the number of threads.

The average length of the transactions in T10I4D100K data set is 10. Hence, maximal frequent
itemsets are rapidly reached when DFS is used (note that in Kosarak, this average length is even
lower). This makes support computation not very time consuming, even when the minimal support
is set to 20 thanks to the summarization capacity of the FP-trees.

Small Data

Both these Chess and Mushroom data sets are small. Thus, it is not surprising to find that
support computation is negligible w.r.t. candidates management (see Figure 2.9). With Chess, we
note a bad speed up when σ = 800. These last two experiments tend to confirm that our proposed
algorithm is rather tailored towards situations when support computation is the bottleneck of the
execution time. Moreover, we note for Chess data set that the number of MFI’s grows rapidly even
when the support threshold id high. For example, when σ = 800 (a minimal frequency of 25%) the
number of MFI’s is more than 26000 (more than six times the number of original transactions).
This makes coverage test harder than support computation. For Mushroom data set, we have to
lower the support threshold to around 100 (frequency ∼ 1%) to make the number of MFI’s larger
than the number of transactions. Nevertheless, it turns that coverage test takes much larger time
than support test. The explanation for this is the "non uniform" behavior of the MFI’s length. For
example, when σ is set to 10%, the longest MFI has 16 items while there is no MFI of length 13 or
14. This phenomenon has been noticed in [30].

2.7.5 MineWithRounds vs PADS

As a final experiment, we present the execution time of PADS [101] which is, to our best
knowledge, the most efficient implementation of a sequential MFI mining algorithm and compare it
with that of MineWithRounds. PADS is not a pure DFS implementation in that it uses several
heuristics to reduce computation time, e.g., each time a candidate is found frequent, all its right
parents are evaluated and reordered w.r.t their increasing support. Hence, the ≺ order is dynamically
and continuously modified. Figure 2.10 shows the execution times w.r.t. support thresholds. Both
implementations have been executed on the same machine as before. The time needed to load the
data and to construct the FP-trees is not taken into account. One should however notice that our
execution time is measured when 16 threads are executed in parallel. It took about 2 minutes for
both implementations to start the mining procedure. When the minimal support is less than or
equal to 140000 PADS had a segmentation fault. To be complete, we should mention that our
implementation is naive in that we used the C++ STL library which makes it very easy to program
prototypes but if we want to fine tune the optimizations, as in PADS, one should program his/her
own data structures 2.

2. Our source code contains about 600 lines.

20

Chapitre 2. Calcul Parallèle de Bordures et Applications

1kT1 1kT2 1kT4 1kT8 1kT16

0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(a) T40 : 1K-Execution time distribution

2kT1 2kT2 2kT4 2kT8 2kT16

0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(b) T40 : 2K-Execution time distribution

1kT2 1kT4 1kT8 1kT16

5

10

Sibling Children Support Total

(c) T40 : 1K-Speed up

2kT2 2kT4 2kT8 2kT16

0

5

10

15

Sibling Children Support Total

(d) T40 : 2K-Speed up

20T1 20T2 20T4 20T8 20T16
0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(e) T10 : 20-Execution time distribution

100T1 100T2 100T4 100T8 100T16
0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(f) T10 : 100-Execution time distribution

20T2 20T4 20T8 20T16

0

5

10

15

Sibling Children Support Total

(g) T10 : 20-Speed up

100T2 100T4 100T8 100T16

0

5

10

Sibling Children Support Total

(h) T10 : 100-Speed up

Figure 2.8 – Medium data sets : T40 and T10

21

2.7. MFI’s Mining Experiments

100T1 100T2 100T4 100T8 100T16
0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(a) Mushroom : 100-Execution time dis-
tribution

200T1 200T2 200T4 200T8 200T16
0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(b) Mushroom : 200-Execution time dis-
tribution

100T2 100T4 100T8 100T16

2

4

6

8

Sibling Children Support Total

(c) Mushroom : 100-Speed up

200T2 200T4 200T8 200T16

0

5

10

15

Sibling Children Support Total

(d) Mushroom : 200-Speed up

800T1 800T2 800T4 800T8 800T16
0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(e) Chess : 800-Execution time distribu-
tion

1000T1 1000T2 1000T4 1000T8 1000T16
0

20

40

60

80

100

%
of

to
ta
le

xe
cu
tio

n
tim

e

Sequential Support Children Siblings

(f) Chess : 1000-Execution time distribu-
tion

800T2 800T4 800T8 800T16
0

5

10

15

Sibling Children Support Total

(g) Chess : 800-Speed up

1000T2 1000T4 1000T8 1000T16

5

10

Sibling Children Support Total

(h) Chess : 1000-Speed up

Figure 2.9 – Small Data : Mushroom et Chess
22

Chapitre 2. Calcul Parallèle de Bordures et Applications

12 13 14 15 16 17 18 19 20
0

200

400

600

800

1,000

minsupport∗104
T
im

e
in

se
c.

MineWithRounds
PADS

Figure 2.10 – Execution times for PADS and MineWithRounds with Webdocs

2.8 Concluding Remarks on MFI’s Computation

We presented MineWithRounds, a parallel algorithm for computing maximal frequent item-
sets. It mimics DFS in that it tests the support of exactly the same candidates. The theoretically
proved speed up of our algorithm regarding the execution time devoted to supports computation is
confirmed by the extensive experiments we conducted. With large datasets, this speed up is even
better than what was expected thanks to cache management in modern machines.

With the generalization of multi-core CPU’s and their cache management, some proposals fine
tuned the previous techniques so that data caching and pre-fetching become effective [35]. An
efficient parallel algorithm for building the FP-trees has already been proposed by [61] but the
mining process has been made data parallel not task parallel. Hence, no guarantee that the parallel
process will be faster than the sequential version. With our present work, we make a step further in
exploiting modern multi-core architectures. Our experiments show that without necessarily using
very sophisticated optimization techniques, we are able to have execution times much better than
state of the art implementations.

Parallelizing algorithms that extract other kinds of patterns e.g. sequences, trees or graphs is a
natural extension of the present work, e.g. [96] use a canonical order for mining frequent graphs.
By defining the parent/children/sibling relationships as analogously as we did for itemsets, then for
extracting maximal frequent graphs, it suffices to use the fundamental idea behind our algorithm,
i.e., start the evaluation of a subgraph as soon as all its left parents have been evaluated. We leave
the development of this issue to future work.

Finally, we should mention that even if our implementation assumes a shared memory architec-
ture, we showed in Section 2.6 how it could be adapted to distributed data setting.

In the remaining part of this chapter, we shall turn our focus towards dependency mining.

2.9 Parallel Mining of Dependencies

The problem of extracting functional dependencies (FDs) from databases has a long history
dating back to the 90’s. Still, efficient solutions taking into account both material evolution and the
amount of data that are to be mined, are still needed. We propose a parallel algorithm which, upon
small modifications, extracts (i) the minimal keys, (ii) the minimal exact FDs, (iii) the minimal
approximate FDs and (iv) the Conditional functional dependencies (CFDs) holding in a relational
table. Under some natural conditions, we prove a theoretical speed up of our solution with respect

23

2.10. Related Work w.r.t Mining Functional Dependencies

to a baseline algorithm which follows a depth first search strategy. Since mining most of these
dependencies require a procedure for computing the number of distinct values (NDV) which is a
space consuming operation, we show how sketching techniques for estimating the exact value of
NDV can be used for reducing both memory consumption as well as communications overhead
when considering distributed data while guaranteeing a certain quality of the result. Our solution is
implemented and some experimental results are reported here showing the efficiency and scalability
of our proposal.

2.10 Related Work w.r.t Mining Functional Dependencies

Several algorithms have been proposed to find the minimal set of FDs from a relation. These
algorithms can be classified along three criteria : (i) the way they traverse the search space, i.e.,
breadth or depth first, (ii) pre-computation and (iii) incremental computation. TANE [52], FUN
[75] and FD_Mine [99] use a levelwise strategy to explore the candidates lattice. They start by
constructing a partition of the tuples for each attribute (two tuples belong to the same part with
respect to some attribute A iff they share the same value A’s value) then they build new partitions
from already constructed ones, i.e., they perform the partition product. If PX(T) denotes the
partition of relation T w.r.t. X then T satisfies X→A iff |PX(T)|= |PXA(T)| where |PX(T)|, resp.
|PXA(T)|, denotes the number of parts there are in PX(T), resp. PXA(T). For example, suppose that
PA(T),PB(T) and PC(T) are computed. Then verifying whether AB→ C consists in combining 3

PA(T) and PB(T) to get PAB(T) and then this result is combined with PC(T) to get PABC(T).
The main difference between these algorithms resides in the pruning strategies they use. The three
algorithms are incremental in the sense that the computation of the partitions at some level is made
from the computed partitions of the previous one. Clearly, when data and/or the left hand side of
the FDs are large, i.e., large number of candidates by level, the memory consumption becomes a
sever bottleneck. In our experiments, this actually happened, i.e., the memory was saturated, even
with moderate size data and not so excessive number of attributes (40). Dep-Miner [67] uses others
concepts. It first computes the agree sets for each pair of tuples, that is the set of attributes for
which they share the same values. Clearly, if ag(t1, t2) = X then T 6|= X → A for each A ∈ A \X.
After that, Dep-Miner computes maximal difference sets (i.e., complements of agree sets) to build
an hypergraph for each fixed target attribute and seeks their minimal transversals. Intuitively, this
turns to compute minimal exact FDs from maximal incorrect FDs. The authors show that this
method outperforms TANE. FastFD [94] uses the same technique as Dep-Miner but follows a depth
first strategy when traversing the search space. The principal drawback of Dep-Miner and FastFDs
is their pre-computation phase whose complexity is O(|T |2) which is prohibitive when T is large.

On another side, traversing the search space in breadth first reduces the pruning possibilities.
Indeed, when a functional X→A is discovered, there is no need to test the supersets of X, we know
a priori that they determine A, so they can be pruned. In the same time, if X→A doesn’t hold, then
no need to test the subsets of X since they cannot determine A, so they are pruned. Breadth first
traversal can utilize only one way pruning : upward or downward. One advantage however of BFS
is that it can be naturally parallelized : all candidates of the same level are processed in parallel.

Our aim is to combine the advantages of each approach, i.e., use DFS in order to prune
candidates both upward and downward, do not do any pre-computation and use parallelism. For
this purpose, we adapt MineWithRounds algorithm. In fact, that algorithm can directly be used
to mine the set of maximal FDs that "are not satisfied". The set of minimal FDs that are satisfied
is actually the dual of the former set. It can be obtained by applying algorithms devoted to the

3. Technically, we talk about partition product.

24

Chapitre 2. Calcul Parallèle de Bordures et Applications

minimal transversals (or hitting sets) of a hypergraph computation. Note that the exact computation
complexity of that problem is still open [26, 42]. The adaptation we make in the present work leads
however to a direct computation of the minimal FDs without relying to transversals computation.

While the set of minimal keys of a table can be derived from the functional dependencies
that are satisfied by a relation, thus one may use the result of the previous algorithms described
above, there have been specific algorithms for directly mining these keys because the problem
is actually easier than mining all FDs. For example, [1, 88] adopted levelwise traversal of the
search space and thus cannot completely benefit from the pruning power of DFS. A more recent
reference [51] proposes random walk strategy over the search space. The main idea consists in
launching in parallel several threads. Each of which will discover a key. The discovered keys are not
necessarily distinct nor minimal. From these discovered keys, minimal transversals are computed and
are considered as the starting point of the next parallel iteration. The minimal transversals represent
the potential maximal non keys that can be derived for the knowledge obtained so far. The process
stops when no new possible candidate can be generated, i.e., the potential maximal non keys are
the exact ones. This procedure is very similar to the one proposed in [41]. For accelerating the
computation, the authors make use of the partitions product technique. We should note that even
if the implementation they propose is built on Hadoop framework, they do not consider distributed
data since they consider that data are totally replicated in every node. As we will see, this simplifies
very much the parallel computation but cannot handle large data sets.

Conditional FDs (or CFDs) [13] are a generalization FDs in that they do hold only in a horizontal
portion of the underlying data. Actually, they are a solution for handling approximate FDs, e.g.,
if AB→ C does not hold in T , it may happen that σA=a(T) |=AB→ C. All algorithms for mining
CFDs proposed so far are essentially adaptations of those targeting FDs. In [28], the authors present
CFDMiner which finds only constant CFDs, i.e., all the attributes in the left hand side of the FDs
are constrained to be equal to some constants. They also propose CTANE and FastCFD for general
CFDs. The three algorithms are extensions of FD_Mine, TANE and FastFDs respectively. In [24],
CFUN, an extension of FUN is proposed for mining constant CFDs. All these extensions suffer
form the same drawbacks as their antecedents, i.e., BFS strategy, memory consumption and pre-
computation costs.

For a more detailed state of the art on dependency mining, we refer the reader to the recent
survey [65].

2.11 Basic Definition w.r.t Dependencies

2.11.1 Functional dependencies

Exact functional dependencies : let T (A1, . . . ,An) be a relation. A(T) denotes its set of
attributes, i.e., A(T) = {A1, . . . ,An}. We shall simply use A when T is understood from the context.
Let X,Y ⊆ A, then T satisfies the FD X → Y (noted T |= X → Y) iff for each t1, t2 ∈ T , t1[X] =
t2[X]⇒ t1[Y] = t2[Y]. Equivalently, let π denote the projection operation of the relational algebra,
then T |=X → Y iff |X|= |XY | where |X| denotes the cardinality of πX(T) 4.

Approximate functional dependencies. Functional dependencies can be extended to dif-
ferent definitions of approximations as follows. We define a directed bipartite dependency graph
GX,Y = (V,E,w). This graph maps πX(T) to πY (T) and the edges are weighted by a function
w : E→ N. More precisely :

– V = πX(T)∪πY (T) is the set the vertices ;

4. Note that set semantics is considered here, hence duplicates are automatically eliminated.

25

2.11. Basic Definition w.r.t Dependencies

– E = {(x,y)|∃t such that t[X] = x and t[Y] = y} is set of edges ;
– w(x,y) = |{t|t[X] = x and t[Y] = y}|, that is the number of occurences of value (x,y) in T . By
extension, w(x) =

∑
yw(x,y).

Several known measures M of approximate functional dependencies validity can be rewritten
using the dependency graph. M associates a real value between 0 and 1 to the dependency graph.
Informally, 1 stands for exact functional dependencies. The choice of M definition can be driven by
the context. For instance, one definition that has been used is that of strength S(GX,Y) = |πX(T)|

|E| ,
the confidence C(GX,Y) =

∑
x∈πX(T) maxy w(x,y)

w(x) . Likewise, the g1, g2 and g3 measures of [54] can
also be expressed wrt to GX,Y .

X→Y is a (M,α)-FD if and only ifM(GX,Y)≥α. In the following, we mainly focus on monotonic
measures. M is monotonic if and only for every X,X ′ and Y subsets of A, we have M(GX,Y) ≤
M(GX∪X′,Y). For example, the confidence is monotonic while the strength is not.

The monotony of exact FDs is a classical result of relational database theory (see [71]), i.e.,
T |=X→ Y and X ⊆ Z then T |= Z→ Y . Conversely, if T 6|= Z→ Y and X ⊆ Z then T 6|=X→ Y .
Moreover, ∀X,Y,Z ⊆ A, T satisfies X → Y and X → Z iff T satisfies X → Y Z where Y Z denotes
Y ∪Z. This second property shows that it is sufficient to consider the FDs with just one attribute
in their right hand side to recover all the FDs satisfied by T . So, from here on, we consider only
FDs with one attribute in the right hand side. Let F =X→A be satisfied by T , then F is minimal
iff ∀X ′ ⊂X, T 6|=X ′→A. F is trivially satisfied if X 3A. LHS(F) =X denotes the left hand side
of F while RHS(F) =A denotes the attribute in the right hand side.

2.11.2 Keys

X is a key of T iff ∀Ai ∈A, T |=X→Ai. X is a minimal key if it does not contain a key. Clearly,
X is a key of T iff |X| = |A|. Therefore, if T is a relation (without duplicates) then X is a key iff
|X| is equal to the number of tuples in T 5

2.11.3 Conditional Functional Dependencies

A CFD is a functional dependency that is satisfied by an horizontal part of T resulting from
the application of a selection operation whose condition is just a conjunction of equalities. More
formally, a CFD is a pair (F |P) where F is a functional dependency and P is a tuple 〈aj1 , . . . ,ajm〉
where ajk is either (i) a constant in the domain dom(Aj) of Aj provided that Aj ∈ LHS(F) or
(ii) an unnamed constant ′_′. For example, (ACE → D|a1,_,e2) is a CFD. Let φ = (F |P) be a
CFD, then Cond(φ) =

∧
Ajk=ajk

where ajk 6= _. For the example above, Cond(φ) is the condition
A= a1∧E = e2. A CFD φ is satisfied by T , noted T |= φ iff F is satisfied by σCond(φ)(T) where σ is
the selection operation of the relational algebra. Just like FDs, we define the minimality of CFDs.
Let φ = (F |P) and φ′ = (F ′|P ′) be two CFDs where RHS(φ) = RHS(φ′). Then φ is more general
than φ′ iff LHS(F) ⊆ LHS(F ′) and Cond(φ) ⊆ Cond(φ′) 6. Let T |= φ then φ is minimal iff there
exists no φ′ such that T |= φ′ and φ′ is more general than φ. In this case, we note φ′ @ φ.

The following example illustrates the different concepts introduced so far.

Example 7. Table T in Figure 2.11 will be used as our running example throughout the next
sections. φ1 = (D→ C) is satisfied by T because |D| = |CD| = 3. φ2 = (AD→ C) is also satisfied
but is not minimal. A is a minimal key of T since |A| = 4 = |ABCD|. ABCD is also a key but it

5. Some recent works use the term of uniques to designate sets of attributes that form a key, e.g., [50].
6. For notation convenience, we consider here that Cond(φ) is a set of atomic equalities.

26

Chapitre 2. Calcul Parallèle de Bordures et Applications

A B C D

a1 b1 c1 d1
a2 b1 c2 d2
a3 b2 c2 d2
a4 b2 c2 d3

Figure 2.11 – Table T .

is not minimal. θ1 = (D→ C|_) is a CFD satisfied by T . It is actually equivalent to φ1. T |= θ2 =
(AD→ C|a1,_) and θ1 is more general than θ2.

2.11.4 Problems statement

We address the following problems. Given a table T
1. find all the minimal keys of T ,
2. find all the minimal FDs satisfied by T (the canonical set of FD’s) and
3. find all the minimal CFDs satisfied by T .

In the rest of the chapter, we will show that with almost the same parallel algorithm, we can solve
each of the above problems. We start with the simplest one, i.e., minimal keys extraction.

2.12 Mining Minimal Keys

As we have seen before, X is a key iff |X|= |T |. This property is monotone in that |X| 6= |T | ⇒
|X ′| 6= |T |∀X ′ ⊂X. Hence, one can use a levelwise algorithm à la Apriori [6] in order to compute
all the minimal keys. The drawback with this method is that before discovering that X is a key,
we have to test all the subsets of X which may become a large number of candidates when ||X|| is
large (||X|| denotes the number of attributes of X). Hence, we shall consider a depth first search
algorithm (DFS) in order to avoid to check systematically all the subsets of X. Recall that the
search space is the lattice (2A,⊂) where 2A is the set of subsets of A. By considering some total
order / on the attributes, we may define a lexicographic order on sets of attributes. These ones are
assumed to be sorted following /. Hence, we define the search tree that is traversed by DFS.

Example 8. The search tree of our running example is given in Figure 2.12.

∅

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

Figure 2.12 – Search tree T of our running example.

27

2.12. Mining Minimal Keys

SeqKeys (cf. Procedure SeqKeys) is a sequential algorithm for mining keys respecting a depth
first strategy. Let’s assume that the candidates are encoded by a bit vector V (1 . . .n) where V [j] = 1
means that attribute Aj is present and V [j] = 0 otherwise. Γ+ and Γ− denote respectively the set of
smallest keys and the largest non keys found during DFS execution. Integer i is a position index in
the vector V . The algorithm is called by initializing i to 1, Γ+ and Γ− as empty and all positions of
V are set to 0. At the end of the execution, Γ+ contains all the minimal keys. The coverage test in
line 3 consists simply in verifying whether Γ− contains an element which is a superset of V . If it is
the case, the current candidate cannot be a key because it is included in a non key set of attributes.
The function SizeOf mentioned in line 7 consists in projecting T onto the attributes set encoded
by V and it returns the size (number of tuples) of this projection. If the candidate is a key (line 7),
it is added to Γ+ and all its supersets are removed from Γ+. Otherwise, the candidate is added to
Γ− and all its subsets are removed from Γ−. At the end (lines 16 & 17), the procedure will consider
the sibling of the current candidate. As one may notice, this procedure is almost the same as the
DFS procedure we used for MFI’s.

Procedure SeqKeys(integer i)
Input: integer i, |T |
Output: Γ+

1 if i≤ n then
2 V [i]← 1;
3 if Γ− covers V then
4 // V is not a key
5 SeqKeys(i+ 1);
6 else
7 if sizeOf(V) = |T | then
8 // V is a key (maybe not minimal)
9 Add V to Γ+;

10 Remove from Γ+ the supersets of V ;
11 else
12 // V is not a key
13 Add V to Γ−;
14 Remove from Γ− the subsets of V ;
15 SeqKeys(i+ 1);

16 V [i]← 0;
17 SeqKeys(i+ 1);

Example 9. Applying algorithm SeqKeys to our running example will start with A which is found
to be a key. Then the algorithm continues with B (not a key), then BC not a key then BCD which
is a key. At this stage, Γ+ = {A,BCD} and Γ− = {BC}. The algorithm will then test BD which is
a key, hence it is added to Γ+ and BCD is removed from there in order to guarantee the minimality
of the returned keys. The next candidate is C and is found covered by is Γ−) hence it is not tested
and CD is generated. This later is found not a key so added to Γ− . The final candidate is D which
is covered by Γ− thus no need to test it : it is not a key. The returned result is Γ+ = {A,BD}.

The following proposition states the correctness of SeqKeys.

28

Chapitre 2. Calcul Parallèle de Bordures et Applications

Proposition 1. At the end of the execution of SeqKeys, Γ+ contains all and only the minimal
keys of T .

Of course, it is possible to rewrite this algorithm in order to reduce the coverage tests. This
however won’t reduce the sizeOf calculations. We consider that this last operation is more expensive
than the former.

Inspired by MineWithRounds algorithm and the concept of depth first partitions, we provide
a parallel version of SeqKeys which is described in Algorithm 2. The only difference with Mi-
neWithRounds is that the dimensions we consider represent attributes instead of items and the
interestingness measure is the fact that the candidate is a key instead of the fact that the itemset
is frequent.

Algorithm 2: ParaKeys
Input: Table T

1 P1←A1;
2 r← 1 ;
3 while r ≤ 2n−1 do
4 foreach X ∈ Pr do
5 \∗ Loop in parallel ∗\;
6 if X is not covered by Γ− then
7 if X is a key then
8 Γ+← Γ+∪{X};
9 Γ+← Γ+ \{Y | Y ⊃X};

10 Pr+1← Pr+1∪RightP (X);
11 Pr+2← Pr+2∪Sibling(X);
12 else
13 Γ−← Γ−∪{X)};
14 Γ−← Γ− \{Y | Y ⊂X};
15 Pr+1← Rr+1∪Child(X);

16 r← r+ 1;
17 Return Γ+;

The following proposition shows that ParaKeys and SeqKeys check exactly the same candi-
dates. In other words, they perform the same number of costly operations.

Proposition 2. Given a table T . SeqKeys and ParaKeys perform the same number of keys
checks.

The above proposition not only shows the correctness of ParaKeys but also the speed-up w.r.t
SeqKeys we could expect from it. The following theorem formalizes this result.

Theorem 4. Let Ts = T cs +T os be the execution time of SeqKeys where T c denotes the time devoted
for keys checking and T o is the remaining execution time. Likewise, let Tp = T cp +T op be the execution
of ParaKeys. Let p be the number of available processors, k be the number of checked candidates
by either algorithms, t be the time for checking whether a single candidate is a key and n be the
number of attributes. Then ⌊

k

p

⌋
∗ t≤ T cp ≤

⌈
k

p

⌉
∗ t+ (2n−1)∗ t

29

2.13. Mining Functional Dependencies

Before going further, one should note that in many cases when the size of the mined table is
large, T os and T op are respectively negligible compared to Ts and Tp. Indeed, checking whether X is
a key becomes less expensive than checking the coverage of the candidate means that the number of
non dependencies is larger than the table size. Even if this case is possible in theory, we argue that
in practice, this situation is encountered quite rarely. Therefore, a guarantee on the speed up about
keys checking operation is in many practical cases a guarantee about the total execution time. We
will see that in the experiments section.

2.13 Mining Functional Dependencies

The parallel algorithm ParaDe we propose for this purpose follows the same lines as ParaKeys.
Indeed, it suffices to iterate over each attribute Ai by considering it as the current target attribute,
i.e., seek the minimal dependencies of the form X→Ai. The search space for Ai is 2A\{Ai}. Without
detailing further the process, we just give the algorithm and stress the fact that a small modification
of ParaKeys leads to an algorithm for mining all the minimal FDs. We also note that a small
reformulation of Theorem4 carries over to the present context. The following algorithm discovers
the minimal exact FDs as well as the approximate ones.

Algorithm 3: ParaDe
Input: Table T , target attribute Ai, Approximation measure M, threshold α
Output: Γ+= set of the minimal FDs X →Ai s.t M(X →Ai)≥ α

1 P1←A1;
2 r← 1 ;
3 while r ≤ 2(n−1)−1 do
4 foreach X ∈ Pr do
5 \∗ Loop in parallel ∗\;
6 if X is not covered by Γ− then
7 if T |= (X →Ai) then
8 Γ+← Γ+∪{X};
9 Γ+← Γ+ \{Y | Y ⊃X};

10 Pr+1← Pr+1∪RightP (X);
11 Pr+2← Pr+2∪Sibling(X);
12 else
13 Γ−← Γ−∪{X)};
14 Γ−← Γ− \{Y | Y ⊂X};
15 Pr+1← Pr+1∪Child(X);

16 r← r+ 1;
17 output Γ+;

As one may see, the only difference between ParaKeys and ParaDe resides in the interestin-
gness of the patterns (Lines 7 and 6 respectively) as well as the search space under consideration
(2A and 2A\Ai respectively).

Finally, the above algorithm can be used to mine all the FDs by iterating over the target
attributes Ai.

30

Chapitre 2. Calcul Parallèle de Bordures et Applications

2.13.1 Distinct Values Approximation

One way to proceed for mining exact keys as well as exact minimal FDs consists in counting the
number of distinct elements belonging to πX(T) (is X a key ?) and πXAi(T) (does X→Ai hold ?).
Counting distinct values can be done either by sorting or hashing. Unless using multiple copies of
table T which is very space consuming, sorting is incompatible with parallelism because we cannot
sort T with respect to X and in the same time with X ′ when X and X ′ are both candidates to be
examined in parallel. On the other hand, hashing uses O(|T |) and Θ(|X|) of memory space. When
T is large and the number of available processors is also large, the memory usage may become
a bottleneck. Hence, sketch techniques could be used in order to reduce this memory usage by
scarifying the correctness of the computation. One such technique is to use an (ε,δ)-approximation
estimator, which given any positive ε < 1 and δ < 1, returns an estimate X∗ of relative error less than
ε with probability at least 1−δ. For instance Hyperloglog [29] (HLL) needs only O(log |T |+ log log |T |

ε2)
bits of memory to compute an (ε,ε−2)-estimator. Another technique based on Bloom filters has been
proposed in [79].

Let us recall HLL main principles : take as input values of ε (the required error margin). HLL
first compute a value b w.r.t. ε (e.g., b = 10 when ε = 5%). From b, HLL constructs a vector of
integers M of size 2b. Intuitively, for estimating the value of |X| HLL works as follows :

1. every tuple t[X] is hashed to a number h(t[X]). We thus obtain a pseudo-random sequence of
0s and 1s.

2. The first b bits serve to find which M [i] concerns h(t[X]). M [i] contains the position of the
largest left most 1 in the binary code of all t[X]’s that when hashed, they have the same first
b bits.

3. Once all the tuples are read and hashed, a function f is applied toM and returns a cardinality
estimate.

The error guarantee of HLL is relative in that the returned value is in the interval [|X|∗(1−ε), |X|∗
(1 + ε)] with a high probability (typically, more than 95%). To make things more concrete, for
ε= 3%, the value b= 11. Hence, HLL needs a memory space of 211 for estimating quite accurately
a cardinality up to 109 within a 3% error margin and with a probability greater than 95% 7.

Let X→ Y be a candidate FD, ε be the accuracy of HLL, |̂X| and |̂XY | be the cardinality esti-
mations of respectively |X| and |XY |. Then it is easy to see that

(
1−ε
1+ε

)
∗ |X||XY | ≤

|̂X|
|̂XY |

≤
(

1+ε
1−ε

)
∗ |X||XY | .

If we consider the lower bound of the interval as the condition under which X → Y is considered
as valid, i.e., |̂X|

|̂XY |
≥ 1−ε

1+ε then at worst, |X|
|XY | = 1−ε

1+ε . Recall that
|X|
|XY | is an approximation mea-

sure of FDs which is called the strength. It has been proven (e.g., [77]) that strength(X → Y) ≤
Confidence(X → Y) ≤ 1. As long as 1−ε

1+ε is close to 1, we would accept, at worst, an FD which is
almost satisfied, i.e. its confidence is even closer to 1. For example, for ε= 3%, X → Y is accepted
if confidence(X → Y)≥ 94%.

One interesting property with HLL is that it is associative. More precisely, suppose that T is
partitioned into T1, . . . ,Tk parts. LetMk be the vector used by HLL to estimate the distinct values in
Tk. Then, to estimate the distinct values in T , it suffices to consider M where M [i] = maxkj=1Mj [i]
and apply f(M) to get the estimate. This is very appealing when data is distributed. In fact, this
property can be used in a MapReduce implementation. Indeed, suppose that C is a set of candidates
X for which we want to estimate |X| and let T be partitioned into T1, . . . ,Tk horizontal chunks each
of which is stored in a separate machine. The first step of the algorithm consists in mapping every

7. A very interesting and intuitive explanation of this method can be found at
http://research.neustar.biz/2012/10/25/

31

2.14. Mining Conditional Functional Dependencies

candidateX to a vectorM containing only 0’s. The (X,M) pairs are then broadcast to the k workers
machines. Every machine i will locally update the pairs and return (Mi,X). The reducer groups the
pairs sharing the same X and combine the Mi’s by computing the Max value for each position j,
i.e., M [j] = maxiMi[j]. Once M is obtained, the estimate of |X| is obtained by computing f(M).
The returned result is exactly the same as the one we would obtain of the data were centralized.
Note that doing so the total amount of data transfers for estimating |X| is the cost of broadcasting
(Mi,X) to every worker and every worker returning its local result (Mi,X). Comparatively to the
exact computation of |X| which needs to transfer all the Ti[X]’s, we may conclude that we have a
huge gain in data transfer cost when T is large.

2.14 Mining Conditional Functional Dependencies
This problem of extracting CFDs is harder than that of FDs essentially because the search space

is much larger. Indeed, if q = |dom(Ai)| then each X ∈ 2A gives rise to 2q elements in the new search
space. Therefore, parallelism is even more important for this case. We follow the same principles for
organizing this new search space as we did with the previous cases in that we shall use a partitioned
search tree. Given a target attribute Ai, the patterns we consider are of the form (X|P) where X
is an element of 2A\{Ai} and P is a conjunction of equality conditions over the attributes of X.
These patterns represent the CFDs (X → Ai|P). Let us denote the search space relative to Ai by
Ui. Instead of giving a long list of formal definitions, we rely on an intuitive explanation of how we
proceed.

For constructing the search tree, we proceed as follows. We first consider the search tree for
mining FDs relative to the target Ai. We replace each element X by (X|_ . . ._). The number of
_’s is equal to ||X||.

Example 10. For our running example and D as being the target attribute, the first version of the
search tree is depicted in Figure 2.13.

∅

(A|_) (B|_) (C|_)

(AB|_,_) (AC|_,_) (BC|_,_)

(ABC|_,_,_)

Figure 2.13 – First step.

The second step is described as follows : each node of the form (X|P) gives rise to elements
of the form (X|P ′) where P ′ corresponds to the conditions in P plus one condition. All these
elements are added to the first child of node (X|P). For example, (AB|_,_) gives rise to (AB|a,_)
and (AB|_, b). The pattern (AB|a,_) is a representative of all CFDs of this form by taking every
constant value a ∈ dom(A). If (X|P) is a leaf in the previous tree, then a new node is added and
becomes the child of (X|P). For example, (ABC|_,_,_) is a leaf node giving rise to (ABC|a,_,_),
(ABC|_, b,_) and (ABC|_,_, c). All these elements belong to the child of (ABC|_,_,_). Note
here that this child node will actually contain several elements.

Example 11. Continuing the previous example, the final tree is depicted in Figure 2.14.

32

Chapitre 2. Calcul Parallèle de Bordures et Applications

∅

(A|_) (B|_) (C|_)

(A|a) (AB|__) (AC|__) (B|b)(BC|__) (C|c)

(AB|a_)(AB|_b)
(ABC|___)

(AC|a_) (AC|_c) (BC|b_) (BC|_c)

(ABC|a__)(AB|ab)
(ABC|_b_) (ABC|__c)

(AC|ac) (BC|bc)

(ABC|ab_) (ABC|a_c) (ABC|_bc)

(ABC|abc)

Figure 2.14 – DFS tree TD

The intuitive idea behind this organization is that when we traverse this tree in a depth first
manner, either a dependency is valid then the subtree (a part of) is pruned or we have two ways to
be less general than the current candidate : (i) add an attribute or (ii) add a condition.

The notions of right sibling, first child and right parents introduced previously are extended to
the present context. We won’t give further details in order to avoid a cumbersome list of definitions.

The universe Ui is also divided into parts respecting the depth first partitions. For the running
example with D as being the target attribute, the universe is partitioned as shown in Figure 2.15.
The description of ParaCoDe is given in Algorithm 4.

Example 12. Suppose that D is the target attribute and we seek conditional dependencies. Figure
2.16(a) shows considered candidates with in subscript the iteration in which they are dealt and in
superscript + denotes the fact that the CFD is valid and − denotes a not valid one. Table 2.16(b)
shows the evolution of Γ+ and Γ− by iteration.

2.15 Dependencies Mining Experiments
We implemented our solution in C++ together with OpenMP, a multi-shared memory program-

ming API. All tests were conducted on a machine equipped with two hexa-cores Intel Xeon X5680
3.33GHz processors running under Debian Linux version 3.2.32-1 and 96GB of RAM while the
caches are respectively L1 = 32KB, L2 = 256KB and L3 = 12MB.We used synthetic data generated
following three parameters : the number of tuples (NT), the number of attributes (NA) and a real
number CF (correlation factor) lying between 0 and 1, e.g. if NT=1000, NA=10 and CF=0.1 then
for each attribute, the number of distinct values is on average NT ∗CF = 100 values. Due to lack
of space, we do not report the obtained results for minimal keys nor for conditional FDs.

2.15.1 Exact FDs

In this section we analyze the performance of our algorithm for mining classical FDs. First
we show its efficiency w.r.t to pruning. Figure 2.17 shows the ratio between the number of tested
FDs and that of returned FDs. One can see that this ratio does not exceed 2 giving evidence of

33

2.15. Dependencies Mining Experiments

Figure 2.15 – Depth first partition of TD

Algorithm 4: ParaCoDe
Input: Table T , target attribute Ai

Output: Γ+

1 P1← (A1|_);
2 r← 1 ;
3 while Pr 6= ∅ or Pr+1 6= ∅ do
4 Children←∅;
5 foreach (X|P) ∈ Rr do
6 \∗ Loop in parallel ∗\;
7 if (X|P) is not covered by Γ− then
8 if T |= (X →Ai|P) then
9 Γ+← Γ+∪{(X|P)};

10 Γ+← Γ+ \{(Y |P ′) | (Y |P ′) A (X|P)};
11 Pr+1← Pr+1∪RightP (X|P);
12 Pr+2← Pr+2∪Sibling(X|P);
13 else
14 Γ−← Γ−∪{(X|P)};
15 Γ−← Γ− \{(Y |P ′) | (Y |P ′) @ (X|P)};
16 Children← Children∪Child(X|P);

17 foreach (X|P) ∈ Children do
18 if (X|P) is not covered by Γ+ then
19 Pr+1← Pr+1∪{(X|P)};

20 r← r+ 1;
21 Return Γ+;

34

Chapitre 2. Calcul Parallèle de Bordures et Applications

(A|_)+
1 (B|_)−3

(B|b1)−4 (B|b2)−4 (BC|__)−4 (C|c1)+
6

(BC|b1_)+
5 (BC|b2_)−5 (BC|_c1)+

5 (BC|_c2)−5

(BC|b2c2)−6
(a) Running example execution

1 Γ+ = {(A|_)}
Γ− = {}

2 Γ+ = {(A|_)}
Γ− = {(B|_)}

3 Γ+ = {(A|_)}
Γ− = {(B|b1),(B|b2),(BC|__)}

4 Γ+ = {(A|_),(BC|b1_),(BC|_c1}
Γ− = {(B|b1),(BC|b2_),(BC|_c2)}

5 Γ+ = {(A|_),(BC|b1_),(C|c1)}
Γ− = {(B|b1),(BC|b2c2)}

(b) Evolution of Γ+ and Γ−

Figure 2.16 – Execution example

the pruning power of DFS. Actually, the depth first strategy is very sensitive to the order by which
attributes are sorted. We used the following heuristics to sort the attributes which in practice turned
to provide an efficient pruning : Let An+1 be the target attribute. {A1, . . . ,An} are sorted in a way
such that Ai /Aj iff confidence(Ai→An+1)≥ confidence(Aj →An+1). Recall that the confidence
of an FD is the maximum fraction of tuples that can be kept in the table without violating this
FD. The overhead of this pre-computation is negligible with regard to execution time saving we
noticed in the experiments. The intuitive idea behind this ordering comes from the fact that the
confidence measure is monotone. Hence, when combined, attributes providing greater confidences
are more likely to functionally determine the target attribute and thus a large part of the search
tree is pruned. One may notice that this is the same strategy used for mining maximal frequent
itemsets where items are ordered in ascending order of their support, see e.g., [101].

We performed the same kind of experiments with FUN [75] and we got the same conclusion,
i.e., levelwise algorithms test in general more candidates. It is noticeable that FUN, which is to our
best of knowledge the most efficient implementations for discovering FDs was not able to mine a
table with 64 attributes and 106 tuples due to its excessive memory usage.

Figure 2.18 shows how NT, NA and CF parameters influence the execution time of our imple-
mentation as well as the speed up w.r.t. the available processing units. We repeat the same execution
by varying the number of threads launched in parallel. The overall speed up is almost linear. It lies
between 6.5 and 12 depending on the number of candidates processed during each iteration. From
Figure 2.19 we see that when CF increases, the average size of each round decreases which impacts
the parallel execution, i.e. the threads do not have enough work to make them busy. This is not
a real drawback because having a small number of candidates means that most FDs have a small
left hand side (number of attributes). This case represents the easiest situation to deal with, i.e.,
even the sequential algorithm will find the FDs efficiently. As an extreme example, suppose that
all attributes are keys. In this situation we will have the worst speed up since at each iteration we
have at most one FD to test. Besides the fact that the speed up increases when CF decreases, the
second lesson we learn form these experiments is that our solution tend to be more interesting when

35

2.15. Dependencies Mining Experiments

16 20 24 28 32
1.66
1.68
1.7

1.72
1.74
1.76
1.78

#Attr.

Ra
tio

(a) 100K5%

16 20 24 28 32
1.5

1.55

1.6

#Attr.

Ra
tio

(b) 100K15%

16 20 24 28 321.5
1.55
1.6

1.65
1.7

1.75

#Attr.

Ra
tio

(c) 1M5%

16 20 24 28 32
1.2

1.25
1.3

1.35
1.4

#Attr.

Ra
tio

(d) 1M15%

Figure 2.17 – Number of candidates/Number of minimal FDs

the number of attributes increases. Indeed, this has the same impact than when CF decreases, i.e.,
the number of candidates examined in parallel tends to increase when the number of attributes
gets larger. A third lesson we derive is that when the data size (the number of tuples) gets larger,
the speed up decreases a little bit. This is explained by the fact that at each parallel iteration, the
number of candidates is not an exact multiple of the processors number. Hence, at the end of the
iteration if for example only one candidate remains to be tested then one processor will be busy
and the remaining are just waiting. The impact of this situation gets more importance when one
test takes a long time and this happens when the data set gets larger.

We tested two implementations of our algorithm depending on whether all computations are
memorized for potential future reuse or not. For example, when testing AB→ C we compute |AB|
and this value could be reused if when considering the target D, we test AB→D. While memoriza-
tion has a real impact in total execution time saving, in terms of speed-up the memory less strategy
is in general better. The results reported here are those obtained when previous computations are
reused.

2.15.2 Approximating FDs

The HyperLogLog [29] approximation method allows to estimate cardinalities by using less
memory than with the exact method. So, since the validity of an FD is given by the equality test
of cardinalities, we must measure its rate of error. We have two kinds of errors : (i) non minimal
valid FDs and (ii) non valid FDs. For both cases we measure, respectively, a distance between non
minimal FDs and the minimal ones that they cover and the confidence of non valid FDs. Intuitively,
(i) by the distance, we aim to show that for non minimal FDs we need to remove a small number of
attributes to make them minimal and by the confidence, we want to show that inexact FDs need a
small number of tuples to be removed in order to make them valid, hence they are actually almost
valid. More precisely, let X ′ ⊇X be two sets of attributes and let d(X ′,X) = ||X′\X||

||X′|| where ||X||

36

Chapitre 2. Calcul Parallèle de Bordures et Applications

2 4 6 8 10 12
2
4
6
8

10
12

threads

Sp
ee

d
up

16 attr.
20 attr.
24 attr.
28 attr.
32 attr.

(a) 100K5%

2 4 6 8 10 12
2
4
6
8

10
12

threads

Sp
ee

d
up

16 attr.
20 attr.
24 attr.
28 attr.
32 attr.

(b) 100K15%

2 4 6 8 10 12
2
4
6
8

10
12

threads

Sp
ee

d
up

16 attr.
20 attr.
24 attr.
28 attr.
32 attr.

(c) 1M5%

2 4 6 8 10 12
2
4
6
8

10
12

threads

Sp
ee

d
up

16 attr.
20 attr.
24 attr.
28 attr.
32 attr.

(d) 1M15%

Figure 2.18 – Execution time speed up

denotes the number of attributes in X. For each target attribute Ai, let Γi and Γ′i be respectively the
exact and approximate (as returned by HLL) minimal sets of attributes determining Ai. Let σ′i ⊆ Γ′i
be the non minimal FDs in Γ′i. LetX ′ be LHS of σ′i. Then dist(X ′,Γi) = minX∈Γi{d(X ′,X)|X ⊆X ′}.
From dist, one can define the distance between Γi and Γ′i by, e.g., averaging or taking the maximal
value. We vary the accuracy factor of HLL from 0.01 for a relatively precise solution using vectors
of size 214, to 0.1 for a loose solution using a vector of size 27. For this experiment, the data set has
these parameters : NA= 32, NT = 106 and CF = 10%. Moreover, if |̂X| denotes the approximation
of |X|, then in the implementation, we consider X → Ai as valid iff |̂X| ≥ |̂XAi|. The results are
shown below :

HLL % of non valid Avg(conf.) Min(conf.) distance
accuracy FDs

1% 2.19% 0.9987 0.9985 0.2
5% 1.98% 0.9986 0.9975 0.23
10% 5.31% 0.9467 0.923 0.38

We note that the ratio of non valid FDs is quite small (around 3%). For those non valid FDs, the
confidence is close to 1 making them almost valid. For non minimal FDs (last column), it suffices
to remove about one attribute out of 5 to get a minimal FD. It is also important to note that since
HLL is associative, our experiments show that using this technique for data parallelism together
with task parallelism is possible when an approximate solution is sufficient. We plan to extend our
implementation to this last setting in order to mine FDs from distributed data stores when data
shipment is impossible either because of their size or for security reasons. Even in a centralized
setting, this could be helpful. Indeed, if during the execution we find that the number of candidates
is not sufficiently large for task parallelism, we could turn to data parallelism in order to get full
exploitation of the available processors.

37

2.16. Conclusion

16 20 24 28 32

100

200

300

#Attr.

Av
g|

ro
u
n

d
|

(a) 100K5%

16 20 24 28 32
20
40
60
80

100

#Attr.

Av
g|

ro
u
n

d
|

(b) 100K15%

16 20 24 28 32
20
40
60
80

100
120
140

#Attr.

Av
g|

ro
u
n

d
|

(c) 1M5%

16 20 24 28 32
20

40

60

80

#Attr.

Av
g|

ro
u
n

d
|

(d) 1M15%

Figure 2.19 – Average number of candidates per round

2.16 Conclusion
In this chapter we proposed parallel algorithms for mining functional dependencies as well as

some of their variations. We believe that in the near future, most of computers will be multipro-
cessors machines. However, it is not obvious to adapt sequential solutions to this new setting if
we want to maximize the benefit from this extra computation power. Our present proposals show
that simulating a depth first traversal of a search space in the special case we considered is not
that obvious. Furthermore, in addition to the algorithmic side, the implementation is more intricate
than in a sequential world. For example, one has to take into account cache management to avoid
multiple communications between threads just because they write concurrently in the same chunks
(cache line) of the memory. Data placement is also important. For our programs, the execution times
between our first implementation and the current one gained a factor of more than 100. This was
one of the main lessons we learned about parallel programming during the implementation phase.

Some extensions of the present work are immediate. For example, to deal with very large data
sets, one can sample the data. Since, FDs are monotone i.e., Ti 6|= X → Y then for each Tj ⊇ Ti,
Tj 6|= X → Y . Hence, we may execute our programs on small parts of the data in order to obtain
rapidly a set of FDs for which we are sure they do not hold in the whole data than we execute our
algorithms on the entire data while exploiting the previous knowledge about hopeless candidates. We
also intend to implement our solution in a distributed framework (Map-Reduce or MPI). This will
raise new problems due to communication costs. Hence, a more in depth analysis of our algorithms
is required. Finally, we envision to extend our algorithms to other data formats than relational
tables, e.g. XML or RDF [9, 89].

The work presented in this chapter appeared in [32, 45].

38

Chapitre 3

Optimisation des requêtes dans les cubes de
données

In On Line Analytical Processing applications the focus is to optimize query response time. To
do so, we often resort to pre-computing or, equivalently, materializing query results. However, due
to space or time limitations, we cannot store the result of all queries. So, one has to select the
best set of queries to materialize. In the multidimensional model, more precisely when considering
datacubes, relationships between the views can be used in order to define what is the best set of
views. A view selection algorithm in the context of datacubes takes as input a fact table and returns
a set of views to store in order to speed up queries. The performance of the view selection algorithms
is usually measured by three criteria : (1) the amount of memory to store the selected views, (2) the
query response time and (3) the time complexity of this algorithm. The two first measurements deal
with the output of the algorithm. Most of the works proposed in the literature consider the problem
of finding the best data to store in order to optimize query evaluation time while the memory space
needed by these data does not exceed a certain limit fixed by the user. There are some variants of
this problem depending on (1) the nature of data that can be stored, e.g only datacube views or
views and indexes, (2) the chosen cost model e.g minimize not only the query response time but
also the maintenance time for the stored views or (3) the set of possible queries e.g the user may
ask all possible queries or just a subset of them. In this last case, the problem may be refined by
taking into account the frequency of queries. To the best of our knowledge, none of the existing
solutions give good trade-off between memory amount and queries cost with a reasonable time
complexity. Generally, the performance is stated by experiments results without theoretical proof.
In this chapter, we propose algorithms whose output, the selected views to be stored, provide some
guarantees. The main criteria we consider to assess the quality of the output is the queries response
time with respect to the optimal solution.

3.1 Preliminaries
Let T (Dim1, . . . ,Dimn,M) be a fact table where attributes Dimi,1≤ i≤ n are dimensions and

M is a measure. The data cube (introduced by [40]) C obtained from T is the result of the query

SELECT Dim1, . . . ,Dimn,agg(M)
FROM T
CUBE BY Dim1, . . . ,Dimn

where agg(M) is an algebraic aggregate function, e.g., COUNT, MIN, MAX or SUM. The above query
is equivalent to the union of the set of all the 2n GROUP BY queries each of which uses a subset of
{Dim1, . . . ,Dimn}, i.e.,

39

3.1. Preliminaries

SELECT D,agg(M)
FROM T
CUBE BY D

where D ⊆ {Dim1, . . . ,Dimn}. Every such query defines a cuboid. Dim(Cube) denotes the set
{Dim1, . . . ,Dimn}. If Let c and c′ be two cuboids of C. We note c≺ c′ iff Dim(c)⊂Dim(c′). 〈C,≺〉
defines a lattice. For a cuboid c of C we define : (i) its set of ancestors Ac = {c′ ∈ C| ≺ ′}, (ii) its set of
descendants : Dc = {c′ ∈ C| ′ ≺ } and (iii) its set of parents : Pc = {c′ ∈Ac |Dim(c′)|= |Dim(c)|+1}
where |Dim(c)| denotes the cardinality of the set Dim(c).

Example 13. Consider the fact table Sales in Figure 3.1(a). The first tuple of Sales means that
customer C1 bought 50 units of product P1 and this product is manufactured by M1. Sales has three
dimension attributes : Product, Customer and Manufacturer, and one measure attribute nbSales.
Figure 3.1(b) represents its associated data cube. Each node represents a cuboid labeled by its di-
mensions (for readability, each dimension is designated by its first letter) and its size (number of
tuples).

(a) FactTable (b) Cube

Figure 3.1 – Running example

The top most cuboid, i.e., the one with all dimensions, is called the base cuboid and is noted
cb. It plays a special role as we’ll see latter.

The ≺ order defines not only the inclusion relation between dimensions but also a computability
relation. Indeed, since we are considering only algebraic aggregate functions, we have c1 ≺ c2 implies
that c1 can be computed from c2

1.

Example 13 (Continued). Suppose that the aggregate function is SUM, i.e., the query defining C is

SELECT P, C, M, SUM(nbSales) As S
FROM Sales
CUBE BY P, C, M

The content of cuboid CM is

C M S
C1 M1 80
C2 M1 40

Clearly, cuboid M can be computed from CM by the query

SELECT M, SUM(S) As S
FROM CM
GROUP BY M

1. As an example, the Median aggregation function is not algebraic.

40

Chapitre 3. Optimisation des requêtes dans les cubes de données

We consider the following scenario :
1. The user first submits a cubbing query (i.e., a CUBE BY), then
2. he/she will interact with (or navigate through) the cube by submitting specific queries.

The first step allows the user to specify the dimensions he/she is interested in (the analysis axis)
together with the measures. The second part represents the analysis process which is more or a less
a data mining task, i.e., the user explores the content of the cube by submitting a series of queries.

Suppose that the queries users may ask are only those of the form select * from c where c is
a cuboid from C or equivalently select * from T group by c 2. There are two extreme situations
that can be considered here :

– The first one is that where only the base cuboid cb is stored (materialized). In this case, every
query requires the use of this cuboid and hence has a time cost proportional to the size of cb.

– The other situation is that where all cuboids are materialized. In this latter case, the evaluation
of each query consists just in scanning the corresponding cuboid making its cost proportional
to the actual size of the cuboid. Of course, this last situation is quite unrealistic since in
practice, we often do not have enough memory (or time) to compute and store the whole data
cube.

What is often found in practice is rather a partial materialization of the data cube. Hence, the
main problem is how to chose the best part of the cube to be computed and stored. There are
different notions of what one considers as the best part of a data cube. We shall recall some of the
definitions that have been considered in the literature and introduce our own definition and argue
for its relevance. Before that, let us first introduce some notations.

Let S⊆ C be the set of materialized cuboids and v be a cuboid. Then, Sv = {w ∈ S|v �w} is the
set of materialized cuboids from which v can be computed. We define the cost of evaluating a query
v w.r.t a set S as follows : if S does not contain any ancestor of v then cost(v,S) =∞ otherwise
cost(v,S) = minw∈Sv size(w). That is, a query is evaluated by using one of its stored ancestors. The
chosen ancestor is the one with fewer tuples. This is the measure usually used to estimate the time
complexity (see e.g [49, 87, 91]). Note that when v ∈ Sv then cost(v,S) = size(v). This is the most
advantageous situation for v. We also define the cost of a set S as the cost of evaluating all queries
w.r.t S. More precisely, cost(S) =

∑
c∈C cost(c,S). When S = C i.e all cuboids are stored, we have

cost(S) =
∑
c∈C size(c). This is the minimal cost and will be denoted MinCost. If S = {cb} then

cost(S) = |C| ∗M where M is the size of cb. This is the maximal cost and will be denoted MaxCost.
Thus for every S, we have

∑
c∈C size(c) ≤ cost(S) ≤ |C| ∗M . Note that since the set of possible

queries includes cb then S should contain cb, otherwise cost(S) =∞. Indeed, the base cuboid can
be computed only from the fact table. Thus, in the definition of MaxCost we have considered only
the sets S that contain cb.

The usual performance measures of a view selection algorithm (an algorithm that selects a subset
of queries to materialize) A are :

– the memory : Mem(S) =
∑
c∈S size(c), the amount of memory required to store S ;

– the query cost or cost : cost(S) is proportional to the time to answer the 2D possible grou-
ping/aggregate queries ;

– the time complexity : of the view selection algorithm.
We introduce a new quality measure called the performance factor.

Definition 6 (Performance factor). Let S be the set of materialized cuboids and c be a cuboid
of C. The performance factor of S with respect to c is defined by f(c,S) = cost(c,S)

size(c) . The average

2. For notation convenience, we use AB to designate both the dimensions A, B and the name of the cuboid defined
by these dimensions.

41

3.1. Preliminaries

performance factor of S with respect to C′ ⊆ C is defined by f̃(C′,S) =
∑

c∈C′ f(c,S)
|C′|

Intuitively, the performance factor measures the query response time of a cuboid using a given
materialized sample S with respect to the query time whenever the whole datacube is stored. In
other words, for a query c, we know that the minimal cost to evaluate it corresponds size(c). This is
reached when c itself is materialized. When c is not materialized, it is evaluated by using one of its
ancestors present in S. Thus, the performance factor for c measures how far is the time to answer
c from the minimal time. The goal is to obtain the answer to a query with a time proportional to
the size of the answer.

2000

600 600 1000 600

100 300 180 60
250

30 40 100 40

10
30 2

20 30

1

AB

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DECECDBEBDBCAEADAC

A B C D E

Apex

250
15

50 40 150
50

300300 300
180

300

1000

Figure 3.2 – A datacube example

Example 14. Consider the graph of Figure 3.2. It represents the datacube lattice obtained from a
fact table T whose dimensions are A,B,C,D and E. The measure attribute(s) are omitted. Each
node is a cuboid and is labeled with its dimensions together with its size. There is an edge from c1
to c2 iff c2 is a parent of c1 so there is a path from c1 to c2 iff c2 is an ancestor of c1. Finally, c1
can be computed from c2 iff there is a path from c1 to c2.

The top most cuboid is the base cuboid and corresponds to the fact table. The minimal cost for
evaluating all queries corresponds to the case where each cuboid is pre-computed and stored. Thus,
MinCost=

∑25
i=1 size(ci) = 8928. In contrast, the maximal cost corresponds to the situation where

only the base cuboid is stored. In this case, every query is computed from ABCDE and thus has a
cost proportional to the base cuboid size. Hence MaxCost= 25 ∗size(ABCDE) = 2000∗32 = 64000.
Notice however that this is the minimal amount of memory we must use in order to be able to
answer all queries.

Assume now that S = {ABCDE,BE}. The performance measures of S are as follows : The
memory required to store S is Mem(S) = size(ABCDE)+size(BE) = 2000+100 = 2100. The cost
for evaluating all the 25 possible queries is calculated as follows. First, consider the stored cuboid BE.
It can be used to compute the queries BE, B, E and Apex 3. All these queries can be computed from
ABCDE too. However this second alternative will require more time than the first one. Thus, the
cost of S corresponds to the sum of costs of evaluating BE, B, E and Apex from the cuboid BE and
all other queries (i.e 25−4) from ABCDE. Hence, Cost(S) = 4∗size(BE)+28∗size(ABCDE) =
56400.

3. Apex is the cuboid with no dimensions.

42

Chapitre 3. Optimisation des requêtes dans les cubes de données

Let us now consider the cuboids BE and BC. Their respective performance factors w.r.t S are
f(BE,S) = cost(BE,S)

size(BE) = 100/100 = 1 and f(BC,S) = cost(BC,S)
size(BC) = size(ABCDE)/40 = 2000/40 = 50.

This means that by storing ABCDE and BE, the cost for evaluating the query BE is exactly the
minimal cost, but for evaluating the query BC the cost is 50 times the minimal one.

3.1.1 Problem Statement

We address the following problem :

Definition 7 (View Selection under Query Constraint (VSQC)). Given a real number f ≥ 1,
find a set of cuboids S of minimum size so that cost(S)≤ f ∗MinCost.

So we suppose that the user wants a set S of cuboids which when materialized, the evaluation
cost of queries does not exceed f times the minimal cost. Moreover S should be of minimal size.
Notice that the standard way in which the view selection problem is stated consists in fixing the
maximal available memory space and selecting a set S that respects this constraint and provides a
good performance.

Definition 8 (View Selection under Resource Constraint (VSRC)). Given a memory space
limit space, find a set of cuboids S whose size is less than space and which provides a minimal cost.

The obvious solution to our problem VSQC consists simply in considering all subsets S ∈ 2C,
compute their respective costs, keep those S satisfying Cost(S) ≤MinCost ∗ f and then return S

whose size is the smallest. Of course this algorithm is unpractical because of its complexity. In fact,
from a theoretical perspective, we cannot do better. Indeed, we have the following result stating the
hardness of VSQC.

Theorem 5. VSQC is NP-Hard.

So all what we can do is to propose some heuristics that, hopefully, will perform well in practice.
Before presenting our solution, we first recall some previous work in partial data cube materializa-
tion.

3.1.2 Related Work

Several solutions have been proposed in order to solve the VSRC problem (see Def. 8) which is
also proven to be NP-Hard. In [49], Ullman et al propose a greedy algorithm that returns a subset
of views with a guarantee about the gain of the solution. This notion is defined as follows :

Definition 9 (Gain). Let S⊂ C be a set of cuboids. The gain of S is defined by cost({cb})−cost(S).

Intuitively, the gain represents the difference between the cost of the worst situation, i.e., the
one where only the base cuboid cb is materialized (hence, MaxCost) and the cost of the solution.
[49] shows that finding the optimal S, i.e., the one which maximizes the gain and respects the space
constraint is an NP-hard problem. The greedy approximation algorithm they proposed 4 guarantees
that the gain of the returned solution cannot be less than 63% of that of the optimal solution S∗. In
other words, cost(cb)−cost(S)

cost(cb)−cost(S∗) ≥ 0.63. Notice that this notion of performance is obtained by comparing
the returned solution to the “worst" solution, while our performance factor is relative to the “best"
solution. This remark has already been done in [53] where it is shown that maximizing the gain does
not mean necessary optimizing query response time. Another weakness of [49] is its time complexity

4. We will call it HRU algorithm.

43

3.2. PickBorders

which is k ∗n2 where k is the number of iterations (corresponds to the number of selected views)
and n is the total number of cuboids. Since n = 2D, so this algorithm is of little help when D is
large 5. To overcome this problem, [87] proposed a simplification of the former algorithm and called
it PBS (Pick By Size). This algorithm simply picks the cuboids in size ascending order until there
is no enough memory left. They show empirically that even its simplicity and its small complexity
(linear), the solutions returned by PBS competes those of [49] in terms of gain. However, the query
cost of its solutions suffers from the same problem as that of [49] i.e., no performance guarantee.
[91] model the optimization problem as an integer linear problem (ILP). Hence, they succeed to
solve exactly moderate sized problems (few dimensions). In order to handle large cases, the authors
proposed some simplifications aiming to reduce the search space, thus the number of variable but
still they do not provide any theoretical guarantee about the result.

As a final remark, it is worthwhile to note that all these methods suppose a prior knowledge
of cuboids sizes. This information is considered as part of their input and it is either computed or
estimated. This represents a real limitation of these works since when the number of dimensions is
large, the number of cuboids growing exponentially, they become intractable. This is in contrast to
our proposal. Indeed, the algorithm PickBorders we propose does not need this knowledge even if
during its execution, it does compute the size of some cuboids. We also may cite [63] as another pro-
posal for selecting materialized views. They consider the situation where the number of dimensions
is so large, that none of the previous propositions can work. Their pragmatic proposition consists
simply in storing cuboids of just 3 or 4 dimensions. The other cuboids can be answered by using a
careful data storage technique. They justify their choice by the fact that usually people do not ask
queries requiring too many dimensions. However, no performance study has been conducted along
that work apart some experiments showing the feasibility of their method.

Dynamat [55] dealt with both data and workload dynamic. Its principle can be described as
follows : each time a query is submitted, first find the best plan to evaluate it then decide whether
its result could be kept among the already materialized views. In a sense, the system computes
a new workload each time a new query is evaluated. In another side, when batch updates arrive,
the system may have a time constraint in order to perform the propagation to the views. Hence,
it choses the most beneficial that it can update within the allowed window time interval. This is
constrained by the available memory and may trigger the removal of old views.

There is a large body work in selecting views to materialize in larger settings than the data
cubes. We refer to the book of Chirkova and Yan [20] and the references there for a comprehensive
survey.

3.2 PickBorders
In this section, we present an algorithm that reduces the size of the solution returned by the

first algorithm while guaranteeing the fact that the cost still be below MinCost ∗ f . Let us first
recall some properties of the cuboids sizes.

Lemma 1. Let c1 and c2 be two cuboids such that c2 is an ancestor of c1. Then Size(c2)≥ Size(c1).

This lemma simply says that cuboids size is a monotone property. This means that given a size
threshold s, we can define a border of a data cube. More precisely,

Definition 10. Let s≥ 1 be a natural number and C be a data cube. Then Border(C,s) is the set
of cuboids c ∈ C such that :

5. Note that HRU is polynomial w.r.t the total number of cuboids by opposition to the naive algorithm which is
exponential.

44

Chapitre 3. Optimisation des requêtes dans les cubes de données

– Size(c)≤ s and
– there is no c′ ancestor of c such that Size(c′)≤ s

In other words, Border(C,s) is the set of maximal cuboids (in terms of dimensions set inclusion)
whose respective sizes are less than s.

The main idea behind our algorithm PickBorders consists in just repeating the computation of
borders by considering different values of s obtained by dividing the size of the base cuboid cb by
successive powers of the prescribed performance factor f , i.e., f0,f1,f2, . . . ,fk until reaching k such
that Size(cb)/fk ≤ 1. The union of the so obtained borders forms a partial data cube that will be
materialized. Concretely, the algorithm proceeds as follows :

S = ∅
for(i= 1; i≤ blogf (M)c; i+ +)do

S = S∪Border(C,Size(cb)/f i)
endfor
S = S∪{cb}
Return S

As one may notice, computing the different borders can be performed by a slight modification
of the algorithm MineWithRounds presented in the previous chapter.

Example 15. To illustrate our proposition, let us continue with Figure 3.3. The curves represent
the borders relative to different powers of the factor f when f = 10. The filled circles represent
elements of at least one border. These cuboids are the only ones to be stored. The total size of the
datacube is 8928 which also represents the minimal cost for computing all cuboids. The maximal
cost is 32*2000=64000. By keeping only the elements of the borders, this will occupy a memory
whose size is 2607 and the total cost is 27554. One should notice here that even if we have fixed
f = 10, the cost ratio between the cost of PickBorders solution and MinCost is 27554

8927 = 3.09. This
means that in average, query response time w.r.t S is 3 times the minimal cost. If we execute the
HRU algorithm of [49] with a criterion of maximal available space fixed to 2607, then ABCDE and
BCDE are the only cuboids that are returned. Note that with this solution, the total cost is 41600.
Thus, the cost ratio is 41600

8927 = 4.67. This is worse than the performance of PickBorders. In another
hand, if we execute PBS of [87] again with maximal available space fixed to 2607, 16 cuboids will be
stored (the sixteen first cuboids ordered by their respective size). In this case, the total cost is 34518.
The cost ratio now is 34518

8927 = 3.87.

The solution returned by PickBorders guarantees the fact that the cost of every query is bounded
by its minimal cost times the factor f fixed by the user. As a consequence, the total cost is also
bounded. More formally,

Theorem 6. Let f ≥ 1 and S = PickBorders(C,f). Then
1. For all c ∈ C, cost(c,S)≤ size(c)∗f .
2. cost(S)≤MinCost∗f

The previous theorem doesn’t say any thing about the memory occupied by S. In fact we also
have a guarantee with this respect. Let us first define what is an optimal solution w.r.t some memory
constraint.

Definition 11 (Optimal solution). Let Mem denote a storage space amount. Let S ⊆ C. S is a
possible partial datacube iff (1) size(S) ≤Mem and (2) cost(S) 6=∞. The set of possible partial
datacubes w.r.t Mem is denoted Pos(Mem). S∗ is optimal w.r.t Mem iff (1) S∗ ∈ Pos(Mem) and
(2) cost(S∗) =minS∈Pos(Mem)cost(S).

45

3.3. Workload optimization

2000

600 600 1000
1000

600

300 300
300 100 300 180 60

300
180

250

250
15

30
50

40 40 100 40 50
150

10
30

20 30

1

AB

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DECECDBEBDBCAEADAC

A B C D E

Apex

2

f=10

f=1

f=100

f=1000

1

0

2

3

Figure 3.3 – PickBorders : the borders w.r.t f = 10

Proposition 3. Let f > 1. Let S be the solution of PickBorders algorithm. Let Mem= size(S). Let
S∗ be the optimal partial datacube w.r.t Mem. Then cost(S)≤ f ∗ cost(S∗).

In other words, this says that if we consider among the sets of cuboids whose total size is less
than the size of S, then the cost provided by S cannot be larger than f times the cost of the optimal
solution which respect the memory constraint Size(S).

3.3 Workload optimization

In the previous section we provided a solution aiming at optimizing all possible queries. In
this section we consider a situation where a subset of queries is consider as important regarding
some criteria (e.g., the most frequent queries). For this new setting, we propose both exact and
approximate solution depending on the search space as well as the algorithm we consider.

The problem we want to solve is formalized as follows : given (i) a real number f ≥ 1 and (ii) a
set of queries Q, find a set of cuboids S such that(1) for each q ∈ Q, pf(q,S)≤ f and (2) size(S) is
minimal. We denote this problem VSPF (View Selection under Performance Factor constraint). In-
tuitively, we want to find the smallest (in terms of storage space) set S that guarantees a performance
factor for each target query q ∈ Q.

3.3.1 View Selection as Minimal Weighted Vertex Cover

Theorem 7. The VSPF problem is NP-Hard.

Hence, an approximate solution is more viable. For this purpose, we show that our solution
is actually the solution of a Minimal Weighted Vertex Cover (MWVC) instance. We first give
some definitions. For each q ∈ Q we denote by Af (q) the set of cuboids c such that (1) q � c and
(2) size(c) ≤ f ∗ size(cq). We call this set the f_ancestors of q. Af (Q) =

⋃
q∈QAf (q). Clearly, the

solution of our problem belongs to Af (Q).

Definition 12 (Search Graph). Let G(f,Q) = (V,E,w) be the graph defined as follows : V =Af (Q),
(v1,v2) ∈E iff (i) v2 ∈ Q and (ii) v1 ∈Af (v2). w is a weight function defined as w(v) = size(v). We
denote by VQ the nodes of G that correspond to an element of Q.

46

Chapitre 3. Optimisation des requêtes dans les cubes de données

The set of out-neighbors of a vertex v in G is noted Γ(v) = {v′ ∈ Q|(v,v′) ∈G} and the weight
of a set of nodes S⊆ V , denoted w(S), is equal to

∑
v∈Sw(v). A set S covers VQ iff

⋃
v∈SΓ(v)⊇ VQ.

So the solution to our problem consists in finding a subset S⊆ V such that S covers VQ and S is of
minimal weight. This is an instance of the MWVC which is known to be NP-Hard.

3.3.2 Exact Solution

In this section, we propose an ILP program to solve our problem. Let us first give some notations :
For each ci ∈ Af (Q), the constant si designates the size of ci, for each ci ∈ Af (Q), the variable
xi ∈ {1,0} means respectively that ci belongs to the solution or not, yij ∈ {1,0} means that the
query qi ∈ Q uses cuboid cj ∈Af (qi) or not. The linear program is :

min
∑

j:cj∈Af (Q)
xj ∗sj (3.1)

∀i : qi ∈ Q
∑

j:cj∈Af (qi)
yij = 1 (3.2)

∀i : qi ∈ Q, ∀j : cj ∈Af (qi) yij ≤ xj (3.3)
∀j : cj ∈Af (Q) xj ∈ {0,1} (3.4)

∀i : ci ∈ Q, ∀j : cj ∈Af (qi) yij ∈ {0,1} (3.5)

The program above is denoted ILP (G(f,Q)). The objective function is the minimization of the
solution’s size. Constraint (2) imposes that qi uses exactly one materialized cuboid and constraint
(3) means that the query qi cannot use cj whenever cj is not materialized. Constraints (4) and (5)
say that the variables are binary. The following is a straightforward result characterizing the exact
solution of our problem.

Proposition 4. Let G = G(f,Q) be a search graph. Let Sol be a solution of ILP (G), i.e. Sol is
assignment function of x′is and y′ijs variables of ILP (G). Let S∗ = {ci ∈Af (Q)|Sol(xi) = 1}. Then
S∗ is an optimal solution.

For notation convenience, we consider S∗ = ILP (G(f,Q)). It is an optimal solution. The solution
to our problem is the set of cj ∈Af (Q) such that xj = 1. Current solvers cannot handle these linear
programs when the number of variables is too large (this number grows exponentially w.r.t. f and
|Q|) rapidly reach thousands). This motivates a different approach that is more efficient in terms of
execution time but returns an approximate solution.

3.3.3 Approximate Solution

In this section, we borrow the greedy algorithm of [22] to solve our problem. We first define the
load of a vertex v ∈ V , noted `(v), as w(v)

|Γ(v)| .

47

3.3. Workload optimization

Function PickFromfAncestors(G(f,Q))
V = nodes of G(f,Q)
S = ∅
While VQ 6= ∅
c∗ = arg minc∈V `(c)
S = S∪{c∗}
V = V \

(
Γ(c∗)∪{c∗}

)
End While
Return S

End.

The algorithm choses at each iteration the vertex with minimal load and adds it to the solution.
The following theorem is a direct consequence of [22] result.

Theorem 8. Let f ≥ 1, S =PickFromfAncestors(G(f,Q) and S∗ = ILP (G). Then :
– For each q ∈ Q, pf(q,S)≤ f ;
– size(S)≤ (1 + ln∆)∗size(S∗) where ∆ is the maximal out-degree of G ;

Even if the complexity of this algorithm is polynomial in the size of G(f,Q), the size itself may be
exponential depending on f and the cardinality of Q. Thus, reducing the search space is important
in both cases (ILP and PickFromfAncestors). The first obvious simplification consists in removing
all candidates cj such that size(cj)> size(Γ(cj)). This simplification, which has also been suggested
in [91], does not change the solutions of both techniques. Still, there may be too many remaining
candidates. In the next section, we propose an additional reduction of the search space.

3.3.4 Reducing the Search Graph

Intuitively, the simplification we consider here consists in keeping for each query q among its
f_ancestors, only those that are maximal. More precisely, Bf (q) ⊆ Af (q) denotes the maximal
elements of Af (q), i.e if c′ ∈Bf (q) then for each c ∈Af (q), either size(c)> size(c′) or c′ 6� c. Bf (q)
is the f_border of q and Bf (Q) is the union of the f_borders. The intuition behind this heuristic
is that keeping maximal f_ancestors tends to keep the ancestors that cover the maximal number
of queries (this of course is not always true). The partial search graph is now defined as follows.

Definition 13 (Partial Search Graph). Let Gp(f,Q) be the graph (Vp,Ep,w) where Vp = Bf (Q)∪
Q,(v1,v2) ∈ Ep iff v2 ∈ Q and v1 ∈Bf (v2) and w : Vp→ N defined as w(c) = size(c).

Example 16. Figure 3.4 shows the search graph G(f,Q) where f = 10 and Q = {select∗fromB,
select∗fromC, select∗ fromD}. The dimensions of the underlying datacube are A,B,C and D.
All the nodes do not belong to G(f,Q). They are present just for a sake of clarity. Dashed arrows
are not present in the partial graph.

If we considerGp as the search space then both solutions of ILP (Gp) and of PickFromfAncestors(Gp)
guarantee (1) a performance factor less than f and (2) an approximation factor of the solution’s
size. Indeed,

Theorem 9. Let S∗= ILP (G) be the optimal solution. Let S1 = ILP (Gp) and S2 = PickFromfAncestors(Gp).
Then (1) size(S1)≤ f ∗size(S∗) and (2) size(S2)≤ f ∗ (1+ln∆)∗size(S∗) where ∆ is the maximal
out degree of G. Recall that |∆| ≤ |Q|.

48

Chapitre 3. Optimisation des requêtes dans les cubes de données

ABCD

ABC ABD ACD BCD

CDBDBCADACAB

APEX

A B C D

600

300 300 100 60

250 15 30 40 40 40

10
30 2

20

Figure 3.4 – Global and partial search graphs.

3.4 Dynamic Maintenance

In our solutions, we assume that the running time of the view selection algorithms is not a
problem. However, whenever some updates on the fact table or the dimensions are performed, not
only we should propagate them but may be we have to compute a new set of views in order to
guarantee a performance factor below f for target request. We first analyze the stability of our
solution. Intuitively, this property tells that the query performance factor of a solution computed
at time t remains almost unchanged at time t+1 after some updates. Thus, the set of materialized
views S can remain unchanged (one only have to maintain it). At the end of this section, we show
how to handle this property in order to refresh and to maintain dynamically the views selection
with a light cost of computation and materialization.

3.4.1 Stability

Let us consider a query q belonging to Q and its smallest ancestor c∈ S in term of size. We know
that pf(q,{c})≤ f . We aim at computing the number of tuples to insert into (or to delete from) c
so that pf(q,{c}) becomes greater than f +1. We first start with easy lemmas in order to prove in
Theorem 10 some sufficient conditions ensuring the stability of our solutions.

Definition 14 (Stability). Let T and T ′ be two successive instances of a fact table. T ′ is obtained
from T by performing some insertions and/or deletions. Let Q and S such that ∀q ∈ Q, pf(q,S)≤ f .
S is stable between T and T ′ if and only if ∀q ∈ Q, pf(q,S)≤ f + 1 wrt T ′.

The insertion of n tuples in c implies the insertion of m tuples in cq with 0≤m≤ n. The worst
case, from query performance perspective, is when m= 0. Indeed, in this case, the size of c increases
and that of cq remains unchanged. The following lemma gives the minimal number of tuples to
insert into c to break the stability of c.

Lemma 2. Let c be a cuboid and q be a query such that pf(q,{s}) ≤ f . The insertion of at least
size(cq) tuples into c is required in order to get pf(q,{c})≥ f + 1.

Using the same argument as before, we can easily see that the deletion of n tuples from c may
trigger the deletion of m tuples from cq with 0≤m≤ n. From the performance factor point of view,
the worst situation corresponds to the case m= n.

Lemma 3. Let c be a cuboid and q be a query such that pf(q,{c}) ≤ f . The deletion of at least
size(cq)

f tuples from c is required in order to get pf(q,{c})≥ f + 1.

49

3.5. Some Connections with Functional Dependencies

In our experiments, it turns out that, for the majority of the target queries, the solution is stable
after a very large number of updates. This phenomenon can also be explained theoretically by the
following result. Let us first give some definitions. Let Dom(c) denotes the domain of a cuboid c and
m(c) = |Dom(c)| denotes its cardinality. Clearly, size(c)≤m(c). c is saturated iff size(c) =m(c). c is
a small cuboid wrt a parameter f iff size(c)< |T |

2f ln4f . Under some assumption of data distribution
and given T :

– There exists a threshold β1 such that for any small cuboid q ∈ Q of size larger than β1, any
insertion of tuples does not break the stability property of the solution S ;

– There exists a threshold β2 such that if |T | ≥ β2, then for any q ∈ Q if cq is a small cuboid
then the solution S is stable whatever the number of tuples we insert.

More precisely, without any attempt of optimization of the constant factor β, we have :

Theorem 10. Let {Domi}i∈[1,D] be a multi-set. Set β = 64f2. Let T be a fact table in which tuples
are chosen uniformly at random within the Cartesian product ΠD

i=1omi. Let Q be a set of queries
and S a set of cuboids such that ∀q ∈ Q, pf(q,S) ≤ f and cq is a small cuboid. After any sequence
of insertions into T and with probability 1−2/|Q| :

– If ∀q ∈ Q, size(cq)> β ln |Q|, then S is stable.
– If |T |> βf ln |Q|(lnβ+ lnln |Q|), then S is stable.
– If we have less than |T |

2f ln4f insertions of tuples in T , then S is stable.

3.5 Some Connections with Functional Dependencies
In this section we give some hints on the interplay between the functional dependencies that

may hold in the fact table and the view selection from the data cubes. As a first result we show that
the set of closed sets of attributes corresponds exactly to the minimal solution for the view selection
problem when the performance factor f is set to 1. Let us first recall the definition of closed sets of
attributes.

Definition 15. Given a fact table T . Let X ⊂D. X is closed iff there is no attribute/dimension
A 6∈X such that T satisfies the dependency X →A.

Theorem 11. Let T be a fact table, C be its corresponding data cube ans S be the set of closed attri-
butes sets of T . The minimal set of cuboids in C to materialize in order to guarantee a performance
factore f = 1 for every query on C is equal to S.

The above theorem shows that storing the whole data cube or just the cuboids corresponding
the the closed attributes sets will provide exactly the same performance. In some situations, this
can save much useless storage space without sacrificing query execution time.

Now one may wonder how to extend the previous result to arbitrary values of f . The extension
is not direct. Let us first define the strength of approximate functional dependencies.

Definition 16 (Strength). Let T be some fact table. The strength of X→ Y is given by |X|/|XY |
where |X| is the size of πX(T).

Clearly, 0 < Strenth(X → Y) ≤ 1 and X → Y is valid (or exact) iff its strength is equal to 1.
Otherwise, the dependency is approximate. Intuitively, Strenth(X→Y) =αmeans that, on average,
every value of X is associated to 1

α distinct values of Y . We may note that Strength(X→ Y)≥ α iff
XY is an 1

α_ancestor of X. By analogy with closed attributes sets, one can be tempted to extend
this notions to approximate dependencies in order to characterize the minimal sets of cuboids to
materialize while respecting f . Unfortunately, we show a less general result.

50

Chapitre 3. Optimisation des requêtes dans les cubes de données

Definition 17 (f_closed X). Let X be a set of attributes and f ≥ 1 be a real number. X is f_closed
iff there is no A 6∈X such that strength(X →A)≥ 1

f

Theorem 12. Given T and f . S1 and Sf denote respectively the set of closed and f_closed attri-
butes/dimensions of T . Let S∗ be a minimal solution of the view selection problem under f constraint.
Then there exists some set of cuboids S′ satisfying the f constraint such that Sf ⊆ S′ ⊆ S1 and
Size(S′) = Size(S∗).

Intuitively, the above theorem shows that, even if Sf doesn’t characterize exactly the solution of
our problem, it may help in that it is included in some optimal solution which itself is included in
S1. From a computational point of view, this can reduce drastically the search space and simplify
the computation.

In our works, we identified other connections between some summarization techniques of data
cubes (see e.g., [57, 92]) and a special case of FD’s, namely the conditional FD’s. Simply said, these
techniques try to select the tuples of the data cube to be stored instead of whole cuboids. We do
not report on this work in the present manuscript and refer to [34] for an extensive study.

3.6 Experiments
An experimental validation is given in this section. We consider the following data sets :
– USData10 : contains data with 2.5 millions of tuples with 10 attributes corresponding to
the eleven first attributes (excluding the first one representing a rowid) of USData set. This
dataset is US Census 1990 data available from http://kdd.ics.uci.edu/

– USData13 : it is the same dataset as USData10 but with 13 attributes (adding the next three
attributes to USData10).

– Objects : contains data with (only) 8000 tuples with 12 attributes dealing with objects found
in archaeological mining. This example represents a case for which the number of attributes
is relatively large with respect to the size of the dataset.

– Zipf10 : this dataset is synthetic. It contains 106 rows and 10 dimensions. Many observations
showed that the attributes values of real datasets do not follow - in general - a uniform
distribution but often a power law distribution. That is, if we sort the values of a given
attribute in the decreasing order, then the frequency of the value of rank i is proportional
to 1

iα , α > 0. α belongs mostly to the range [2,3]. In our experiments, we have considered a
power law of parameter α= 2.

Table 3.1 summarizes some characteristics of these data sets. It sums up MinCost (whenever the
whole datacube is stored) and MaxCost (whenever only the base cuboid is stored).

Dataset MinCost MaxCost
USdata10 4.37∗106 5.35∗107

USdata13 1.05∗108 1.19∗109

Objects 1.72∗107 3.05∗107

ZIPF10 4∗107 3.93∗108

Table 3.1 – MinCost and MaxCost of Datasets

3.6.1 Cost and memory

In our experiments, since we make no assumption on the way the views are physically stored, the
amount of memory is expressed as the number of rows of the materialized views set. For PickBorders,

51

3.6. Experiments

we run the algorithm taking f = 1.5,f2 = 2.25,f3 = 3.38, . . . for all datasets. Each execution leads to
a pair Memory/Cost. We then used this Memory value as the space limit parameter for both HRU
and PBS. Again, each time we obtain a pair Memory/Cost. This experiments results are depicted
respectively in Figures 3.5, 3.6, 3.7 and 3.8. For instance, for USData10, when f = 1.5, PickBorders
needs 2160000 units of memory for a cost of 4750000 whereas for f = 3.38, PickBorders takes 828000
units of memory and has a cost of 7100000.

In all experiments, PBS has the worst performance in terms of cost and memory. In general,
HRU has the best performance but PickBorders is a very good challenger. We can also remark
that PickBorders is very competitive whenever the amount of available memory is not too low (for
M > 105 in USData10, for M > 106 in Objects and for M > 15.106 in ZIPF10).

Due to time required to run HRU, we stopped computation before adding all cuboids to S as
soon as the cost function is close to MinCost.

Figure 3.5 – Cost/Memory : US-
Data10.

Figure 3.6 – Cost/Memory : US-
Data13.

Figure 3.7 – Cost/Memory : ZIPF10. Figure 3.8 – Cost/Memory : Objects.

3.6.2 Performance factor

Now we compare our approach to HRU and PBS with respect to their query evaluation per-
formances in order to assess the quality of the returned solution. For this experiment, we executed
PickBorders by varying the value of f . For each so obtained solution S we run both HRU and

52

Chapitre 3. Optimisation des requêtes dans les cubes de données

PBS with Size(S) as their hard input constraint. We then compare the performance by which each
solution can optimize the queries by reporting the respective performance factors. For example,
Figure 3.9 shows that PickBorders has a better average performance factor than PBS and HRU for
USData10 (for f = 3.38 and f = 11.39).

Figure 3.9 – Performance factor with f = 3.38 and f = 11.39.

A more careful look at the distribution of the performance factors in Figures 3.10 and 3.11
explains this fact by showing that some views should be computed from materialized views whose size
is very large. For instance, running HRU with 830000 units of memory, there are 7 (not materialized)
cuboids whose smallest materialized ancestor is of size at least 100 times larger. We ran PBS and
HRU with 309000 and 830000 units of memory limit corresponding respectively to the amount of
memory used by PickBorders with f = 3.38 and f = 11.39. The first category represents the set of
cuboids with performance factor 1 (materialized views and views whose least materialized ancestor
have the same size). Second category counts the cuboids with a performance factor in]1,2]. The
third category counts the cuboids with a performance factor in]2,3.5] and so on. Note that the spirit
of each algorithm is sketched by the first category : PBS stores many small cuboids, HRU tends to
materialize few large cuboids and PickBorders chooses a combination of cuboids of different sizes.

We terminate this section by noting that the experiments we have presented in this paper aimed
to show the quality of the solutions returned by PickBorders compared to other algorithms. We do
not report the execution times of the three algorithms. In fact, while PickBorders and PBS often
took few seconds to obtain a solution, HRU required hours.

We used the US Census 1990 data. Here after, the time parameter represents the accumulated
time for constructing the search graph and the resolution time for obtaining a solution S. The dif-
ferent performance measures of a solution S depend heavily on the target queries Q. We studied
three random generation methods of Q. Each of which corresponds to special properties : (i) Uni-
form generation (UNIF) : All possible queries q ∈ C have the same probability to belong to
Q ; (ii) Queries generated between level 1 and level dmax (DMAX) : We fix the maximal
number of dimensions then we iterate over the levels 1 and dmax each time we pick uniformly a
query from level i and (iii) DESC : We use the same principle as DMAX but here, each time we
pick a query q from level i, we add to Q the 2i queries {qj}j∈[1,2i] where q is an ancestor of qj . In
order to check the effectiveness of the approximate algorithms, we compared their results to the
exact solutions in terms of computation time and storage space. We generated Q using UNIF and
compared the space memory required for storing Q with the memory needed by the exact and that
of PickFromfAncestors(G(f,Q)) with f = 10. Figure 3.12 shows that PickFromfAncestors (solution
S) behaves very well w.r.t the optimal solution (S∗) in terms of memory gain while being much

53

3.6. Experiments

Figure 3.10 – Performance factor distribution with f = 3.38.

Figure 3.11 – Performance factor distribution with f = 11.39.

54

Chapitre 3. Optimisation des requêtes dans les cubes de données

Figure 3.12 – Storage space of the query targets (Q), the approximate (S) and the exact (S∗)
solutions.

faster : it took 2 seconds to find S and more than an hour for S∗ using the CPlex software. We
should mention that this experiment was performed with only 10 dimensions. With more than 10,
the computation time of S∗ prohibitive. The base cuboid has 500K rows and 20 dimensions. For

(a) UNIF (b) DMAX(10) (c) DESC(8) (d) UNIF

(e) DMAX(10) (f) DESC(8)

Figure 3.13 – Execution time and memory gain

each query generation method, we varied |Q| and f . For each combination of the three preceding
parameters, we computed a solution with both G and Gp.

The execution times (expressed in seconds) are illustrated in Figure 3.13(a) to 3.13(c). The
partial search graph offers an interesting compromise in terms of computation time and the memory
gain. Indeed, the execution time is about 4 times less than that of G while keeping the memory
gains comparable. We encountered however one exception (cf. Figures 3.13(f) and 3.13(c)). In that
case, the partial search graph does not summarize well the set Q because it finds a solution with
too much cuboids. Since the computation time is in O(∆|V (G)| · |S|), it depends on the number of
returned cuboids. This explains why, in this case, the computation time of Gp is larger than that of

55

3.6. Experiments

G. It also gives a hint about the importance of the way the workload is built. The results depicted
in Figures 3.13(d) to 3.13(f) concern the same experiments as previously. First, it is clear that with
G, the storage space is always more reduced. We also note that in most cases (the first three), the
reduction ratios obtained with G or Gp are comparable. The last experience exhibits a different
behavior (Figure 3.13(f)) since we have a drastic difference. Recall that this case is also the one
where the execution time with G is better than that with Gp (see 3.13(c)).

3.6.3 Stability Analysis

In order to analyze the stability of our solutions, we conducted some experiments whose principle
can be described as follows : We fix the factor f , the number of target queries and the generation
method. We execute the approximation algorithm PickFromfAncestors(G(f,Q)) on different data
sets file1, . . . ,filen such that file1 ⊂ ·· · ⊂ filen. For each 1< i≤ n, we obtain a solution Si and for
each q ∈ Q, we compute pf(q,Si−1). This allows us to verify in what extent the performance of our
solutions worsen from filei to filei+1. The retained criteria of comparison are (1) the number of
target queries of Q whose performance factor become beyond f (2) and for these queries, we measure
the difference between the new pf and the fixed f . This represents the amount of overtaking.
We present the obtained results when |Q| = 512. The queries are generated using UNIF and the
performance threshold takes two values f = 4 and f = 8. Figure 3.14(a) shows the number of

(a) Queries whose performance factor is
beyond the threshold.

(b) Deviations from the fixed performance
factor threshold.

(c) Percentage of common views.

Figure 3.14 – Stability analysis.

queries whose performance factor becomes larger than the threshold f . We note that this number is
decreasing while the size of the base cuboid increases. Figure 3.14(b) illustrates the deviations from
the fixed threshold, it shows the maximal and the average deviations, i.e., average and maximal
values of pf(q,S) for those target queries q whose pf is greater than the fixed f . Again, we note
that these parameters (max and average) decrease while the size of filei increases. Figure 3.14(c)
shows the proportion of views that are kept in the next solution. We measured |Si ∩Si+1|/|Si+1|.
Around 80% of the views selected in the previous solution belong to the next one. This shows that
even when we have to recompute a new solution, only few views will be calculated from scratch ;
the majority will need at worst to be refreshed.

56

Chapitre 3. Optimisation des requêtes dans les cubes de données

3.7 Conclusion and Future Work
We presented a new formalization of the materialized view selection problem in the context of

data cubes. Some extensions of the present work are straightforward, e.g. integrating dimensions
hierarchies is made easy because hierarchies are themselves lattices. Furthermore, it is not required
to have a unique f for all queries. It suffices to consider Afi(qi) so that, without changing the
algorithms, the obtained solutions guarantee pf(qi,S) ≤ fi where fi reflects the importance of the
query (lower is fi more important is qi). As future research, we plan to analyze the stability property
more in depth depending on data distributions. A prior knowledge of data distribution and/or
dimension dependencies could be helpful in this case [23]. [8, 12] provided a solution to the selection
of binary join indexes to optimize star join queries under storage space constraint. We believe our
solution can easily be adapted in order to select instead of cuboids, the join indexes to materialize.
The work presented in this chapter appeared in [33, 34, 47, 48].

57

3.7. Conclusion and Future Work

58

Chapitre 4

Optimisation des requêtes skyline

Given a table T (Id,D1, . . . ,Dd), the skycube of T is the set of skylines wrt to every subsets of
dimensions (subspace) {D1, . . . ,Dd}. In order to optimize these skyline queries, the solutions pro-
posed so far in the literature either (i) precompute all the skylines or (ii) they propose compression
techniques so as the derivation of every skyline is performed with little effort. Clearly, solutions
(i) do not scale when d is large because of their exponential number of skylines. Solutions (ii) are
appealing in terms of skyline derivation but they too suffer from a high computation complexity
making them unfeasible in practice. In this paper, we propose a new formalization of the optimi-
zation problem : find a minimal set of skylines sufficient to answer every remaining skyline queries
while avoiding to use of the, possibly large, underlying data. Our solution can be seen as a trade
off between valuation, computational cost for finding what to materialize and the memory space
usage. To solve this problem, we need to know if the skyline wrt some dimension set X is included
into that wrt Y provided X is included into Y . Because of the non-monotonic nature of skylines, it
is hard to establish this relationship. By exploiting the classical concept of functional dependencies,
we identify cases where the inclusion holds. Equipped with this information, we show how to find
the smallest set of skylines to materialize. We conduct a thorough experimental study showing that
with the help of a small number of materialized skylines, we drastically reduce the execution time of
the remaining skyline queries. We also propose an algorithm for the full materialization of skycubes
and compare it to state of the art solutions. We show that our proposal outperforms previous work
both on real and synthetic data especially with large dimensionality and/or data size. Finally, we
compare our proposal to the closed skycube technique and we show empirically that in general our
solution uses less storage space and more importantly, it is orders of magnitude faster to obtain
when the number of dimensions increases.

4.1 Introduction

Multidimensional database analysis has been a hot research topic during the last decade. Pre-
computation is a common solution to optimize multidimensional queries. An early proposal of such
approach is the so-called data cube [40] which, intuitively, represents a set of aggregation queries
with all potential subsets of the attributes. After an initial series of works concentrating on efficient
ways to fully materialize a data cube, see e.g., [5], [102], it was rapidly recognized that this solution
was unfeasible in practice due to the large amount of memory space as well as the processing
time needed since the number of queries is exponential with respect to the number of dimensions.
Therefore, the question that raised was how to materialize just a subset of queries while satisfying
some prescribed user requirements. This problem has been largely studied in the literature and
different solutions have been proposed depending on the objectives and the constraints that are
considered, see e.g. [49], [7], [62], [46].

59

4.1. Introduction

Besides, skyline queries [14] have been proposed to express multidimensional data ranking. In
order to rank the data with respect to all possible combinations of the attributes, the skycube
structure has been independently proposed in [80], [100]. This laid to several proposals of efficient
algorithms aiming at fully materializing the skycube, see e.g., [81], [59]. Little work has been pro-
posed for partially materializing skycubes. For example, [82] proposed to materialize the closed
skycubes which identifies equivalent skylines in order to save memory space by storing just one copy
of the same query result. Another summarization technique of skycubes is the compressed skycube
(csc) structure proposed in [95] which tries to reduce the number of materialized copies of each
skyline point while closed skycubes reason on the skylines level by trying to reduce the number
of stored copies of the same set of skyline query result. These techniques will be described more
precisely in the related work section. What we can note however is that our experiments show that
their computation time is prohibitive when the number of attributes is large.

In the past, functional dependencies (FDs) have been successfully used in order to detect re-
dundant information, e.g., [69], [71], [2]. They also have been used in semantic query optimization,
e.g., [17], [36]. Inspired by [33] where FDs have been proven useful for defining data cube partial
materialization, in the present paper we propose to use them as a way to select the minimal set of
skyline queries to be materialized in order to answer efficiently every skyline query of the skycube
without using the underlying data. This appears counter-intuitive and surprising because FDs do
not carry any information about any ordering among the attributes values, whereas skyline queries
are based on tuples ranking.

Our objective is to provide a solution that in practice can be computed in a reasonable time
while guaranteeing a reasonable execution time for every skyline query.

An important motivation for proposing a skycube structure is to provide the user with a set-
based representation that can help him/her choose dimensions that lead to a convenient set of non
dominated objects. Among the criteria that define the convenience of the returned set, its size is
in general required. For example, suppose that a website of a car dealer proposes to use skyline
queries to rank the vehicles using a subset combination of three parameters : price, mileage and
fuel consumption. Suppose that price and mileage are first chosen by a user and it turns that the
number of vehicles in the skyline is too large. There is no evidence that adding fuel consumption or
removing mileage will reduce the number of returned objects. Hence, providing the user with the
inclusion information will help him/her to navigate through this multidimensional space. As another
case where the inclusion information is useful, suppose that we know that the skyline w.r.t. price
is included in the skyline w.r.t. mileage and price, then once the later is computed, thus cached, if
the user drills down to the skyline w.r.t. price, there is no need to use the entire data set, it suffices
to use the previously cached result.

Contributions : In this paper we make several contributions towards multidimensional skyline
queries optimization. More precisely,

– identifying, with the help of FDs, cases where the inclusion relationship between two skylines
holds. This makes the study of partial materialization of skycubes feasible and well founded.

– Moreover, this identification turns out to be useful when full materialization of the skycube
is envisioned by defining an order following which skylines can be computed efficiently.

– To provide a complete solution to the skyline query problem, we had to come up with an
efficient algorithm for finding closed sets of attributes from a table. Even though this concept
is classical in the theory of FDs, we found no algorithm for computing this set.

– Since our solution relies on FD’s that hold, it appears that the less distinct values per di-
mension we have, the less FD’s that are satisfied and thus the more, in theory, skylines to be
materialized. However, we show that in this case, the size of skylines tends to decrease giving

60

Chapitre 4. Optimisation des requêtes skyline

new optimization opportunities.
– Our solutions are implemented and compared to state of the art algorithms. We show that (i)
it outperforms state of the art algorithms aiming at fully materializing skycubes. Moreover, (ii)
we compare our solution wrt to the most recent technique for skycubes summarization, namely
closed skycubes and show that our proposal consumes less storage space, can be computed
much faster and doesn’t sacrifice too much query response time. This gives evidence that our
proposal is a good trade-off between space usage and query optimization. Finally, (iii) we
show that the superiority of our approach is clearer when either the number of dimensions or
the data size get larger.

Chapter organization : The next section gives the main definitions and notations used through
out the paper. Next we formalize the skycube partial materialization problem and provide our
solution. Then we show how skyline queries are answered efficiently from the materialized part
of the skycube. We compare our proposal with some related works and terminate by a series of
experiments showing the efficiency of our solution. We conclude with directions for future work.

4.2 Preliminaries

Let T be a relational table whose set of attributes Att(T) is divided into two subsets D and
Att(T)\D. D is the subset of attributes (dimensions) that can be used for ranking the tuples. In the
skyline literature D is called a space. If X ⊆D, then X is a subspace. t[X] denotes the projection of
tuple t on X. We denote by d the number of dimensions. For each Di ∈D we assume a total order <
between the elements of the domain of Di. We say that t′ dominates t w.r.t. X, or t′ X-dominates
t, noted t′ ≺X t, iff for every Xi ∈ X we have t′[Xi] ≤ t[Xi] and there exists Xj ∈ X such that
t′[Xj]< t[Xj]. The skyline of T with respect to X ⊆D is defined as Sky(T,X) = {t∈ T |@t′ ∈ T such
that t′ ≺X t}. To simplify the notation and when T is understood from the context, we sometimes
omit T and use Sky(X) notation instead. The skycube of T , noted S(T) or simply S is the set of
all Sky(T,X) where X ⊆ D and X 6= ∅. Formally, S(T) = {Sky(T,X) |X ⊆ D and X 6= ∅}. Each
Sky(T,X) is called a skycuboid. d= |D| is the dimensionality of S(T). There are 2d−1 skycuboids
in S(T). S is a subskycube of the skycube S if it is a subset of S. Table 4.1 summarizes the different
notations used throughout the paper.

Example 17. We borrow the toy table T from [82] and use it as our running example.

RiD A B C D
t1 1 3 6 8
t2 1 3 5 8
t3 2 4 5 7
t4 4 4 4 6
t5 3 9 9 7
t6 5 8 7 7

Att(T) = {Rid,A,B,C,D}. Let D = ABCD and let X = ABCD, then t2 ≺X t1. Indeed, t2[Xi] ≤
t1[Xi] for every Xi ∈ {A,B,C,D} and t2[C] < t1[C]. In this example d = 4. The skylines w.r.t.
each subspace of D, the set of all skycuboids, are depicted in Table 4.2. This example shows that
the skyline results are not monotonic, i.e., neither X ⊂ X ′ ⇒ Sky(X) ⊆ Sky(X ′) nor X ⊂ X ′ ⇒
Sky(X)⊇ Sky(X ′) are true. For example, Sky(ABD) 6⊆ Sky(T,ABCD) and Sky(D) 6⊇ Sky(AD).
This makes partial materialization of skycubes harder than classical data cubes.

61

4.3. Partial Materialization of Skycubes

Notation Definition
T Relation instance
D Attributes/Dimensions used for skylines
d |D| number of dimensions

n,m number of tuples
X,Y . . . subset of dimensions/subspace
XY X ∪Y
t[X] projection of tuple t on X

t1 ≺X t2
t1[X] dominates t2[X] or
t1 X-dominates t2

Sky(T,X) or the skyline of T w.r.t Xsimply Sky(X)
πX(T) projection of T on X with set semantics
|X| the cardinality of πX(T)
||X|| number of attributes of X

t1 ≡X t2 t1[X] = t2[X]
S(T) or skycube of Tsimply S

S a subskycube of S

Table 4.1 – Notations

4.3 Partial Materialization of Skycubes

The main objective of our present work is to devise a solution to the partial materialization
of skycubes under some constraints. The first and most important one is that the partial skycube
should be as small as possible in order to minimize both its storage space and its computation time.

Before stating formally the problem we address, we exhibit some properties holding between the
subspace skylines of a skycube.

Subspace Skyline Subspace Skyline

ABCD {t2, t3, t4} ABC {t2, t4}
ABD {t1, t2, t3, t4} ACD {t2, t3, t4}
BCD {t2, t4} AB {t1, t2}
AC {t2, t4} AD {t1, t2, t3, t4}
BC {t2, t4} BD {t1, t2, t4}
CD {t4} A {t1, t2}
B {t1, t2} C {t4}
D {t4}

Table 4.2 – The set of all skylines

62

Chapitre 4. Optimisation des requêtes skyline

4.3.1 Properties of Subspace Skylines

Even if the skyline query is not monotonic, we can exhibit a monotonic property between the
set of tuples belonging to the skyline over some subspace X and that over Y whenever X ⊆ Y . More
precisely,

Proposition 5. Let X ⊆ Y and let πX(Sky(X)) be the projection 1 on X of the tuples belonging to
Sky(X). Then, πX(Sky(X))⊆ πX(Sky(Y)).

Example 18. Sky(A) = {t1, t2} and Sky(AC) = {t2, t4}. Although Sky(A) 6⊆ Sky(AC), we have
πA(Sky(A)) ⊆ πA(Sky(AC)). Indeed, the projection πA(Sky(A))={〈1〉} and πA(Sky(AC))={〈1〉;
〈4〉}.

The above result has been identified by previous work, see eg. [81]. As a consequence we obtain
a relationship between the tuples belonging to Sky(T,X) and those in Sky(T,Y) whenever X ⊆ Y .
More precisely,

Proposition 6. Let X ⊆ Y . Then t∈ Sky(T,X) iff ∃t′ ∈ Sky(Sky(T,Y),X) such that t′[X] = t[X].

The proposition above shows that the skyline points of every subspace skyline form a lattice.
Indeed, it suffices to project every skyline on the dimensions defining its subspace then fill all missing
dimensions with the special symbol ∗. These generalized tuples define the skylines patterns.

Example 19. Take the subspace B. Sky(B) contains two tuples t1 and t2. The unique pattern
defining the tuples in Sky(B) is the generalized tuple 〈∗,3,∗,∗〉. Figure 4.1 shows the patterns of the
skycube of the running example.

Figure 4.1 – Lattice of the skycube patterns

This proposition shows that when X ⊆ Y , the computation of Sky(X) can benefit from the fact
that Sky(Y) is already materialized as described in Algorithm 5. It has two main steps :

1. We consider the set semantics of projection.

63

4.3. Partial Materialization of Skycubes

1. compute SXY = Sky(Sky(Y),X) which represents a subset of Sky(X). Then
2. retrieve from T those tuples t that are X-joinable with some t′ ∈ SXY , i.e., t[X] = t′[X]. The

retrieved tuples form Sky(X).

Algorithm 5: Sky_X_from_Sky_Y
Input: Table T , Sky(Y)
Output: Sky(X)

1 if X ⊂ Y then
2 Let S1 = πX(Sky(Y));
3 Let S2 = Sky(S1,X);
4 Return T on S2;
5 else
6 Return Sky(T,X) ;

Example 20. Suppose that Sky(ABC) = {t2, t4} is already materialized and we want to get Sky(AB).
First, we compute SABABC = Sky(Sky(ABC),AB). This contains only one tuple which is t2 (t2 ≺AB
t4). Then, we retrieve from T those t′ s.t t′[AB] = t2[AB] = 〈1,3〉. There is one such tuple, apart t2
itself, which is t1. Hence, Sky(AB) = {t1, t2}.

The second step of the above procedure is not very costly. Indeed, it is actually a join operation
between Sky(Sky(Y),X) and T . It can be performed in O(|T |+ |Sky(Sky(Y),X)| with a hash-join
algorithm : traverse Sky(Sky(Y),X) and insert each t[X] in a hash-table H, then traverse T , hash
every t′[X] and check in O(1) whether the value belongs to H. If it is the case, then return t′.
An even more efficient procedure would be to use a bitmap index of T by considering the values
appearing in Sky(D). Doing so, recovering the tuples in T that match those in S2 can be done
efficiently if the size of the bitmap index is not too large, i.e., too many distinct values to consider
[60], [93]. Nonetheless, it is still interesting to know a priori whether this second step is necessary.
In the next section we give a sufficient condition for identifying cases where the join operation can
be avoided. Before giving the formalization of the addressed problem, we first give some definitions.
We start with the information-completeness property of partial skycubes.

Definition 18 (Information complete subskycube). Let S be subskycube of S. S is an Information-
Complete Subskycube (ICS) iff for every subspace X, there exists a subspace Y ∈ 2D such that
X ⊆ Y , Sky(Y) ∈ S and Sky(X)⊆ Sky(Y).

Intuitively, S is an ISC iff it contains a sufficient set of skycuboids that is able to answer every
Skyline query without resorting to the underlying data T .

Example 21. One can easily verify that the subskycubes S1 = {Sky(ABCD), Sky(ABD)} and
S2 = {Sky(ABCD), Sky(ABD),Sky(AC)} are both ICS’s. Note that S3 = {Sky(ABCD)} is not
an ICS because, e.g., there is no superset of ABD whose skyline is a superset of that of ABD. If
for example, S1 is materialized, then Sky(A) could be evaluated from Sky(ABD), whose size is 4,
instead of using table T with 6 tuples.

From the storage space usage perspective, it is natural to try to identify smallest ICS’s.

Definition 19 (Minimal Information Completeness). S is a minimal ICS (MICS) iff there exists
no other ICS S′ such that S′ ⊂ S.

64

Chapitre 4. Optimisation des requêtes skyline

Example 22. S1 = {Sky(ABCD),Sky(ABD)} is smaller than S2 = {Sky(ABCD),Sky(ABD),Sky(AC)}.
One can easily verify that S1 is the unique MICS of T .

Now we are ready to formalize the problem of partial materialization of skycubes as we address it.

Problem Statement : Given a table T and its set of dimensions D, find an MICS of T that will
be materialized in order to answer all the skyline queries over subsets of D.

The following proposition shows that actually, every table T admits a unique MICS.

Proposition 7. Given T , there is a unique MICS of T .

Identifying the unique MICS is easy when the full skycube is available. However this is inefficient
from a practical point of view.

In the rest of this section we devise a method leveraging the functional dependencies concept
in order to avoid the full materialization. Indeed, we show that the presence of some functional
dependencies implies the inclusion of skylines. Hence, we can avoid to compute some of them.

4.3.2 The Interplay Between FDs and Skylines

Recall that the functional dependency X → Y holds iff for every pair of tuples t1, t2, if t1[X] =
t2[X] then t1[Y] = t2[Y]. The following theorem represents our main result in this paper. It shows
how functional dependencies can be used in order to identify inclusion cases between related skylines.

Theorem 13. Let X → Y be an FD satisfied by T . Then Sky(T,X)⊆ Sky(T,XY).

Example 23. Turning back to the running example, the set of minimal functional dependencies
satisfied by T are

A→B A→D BD→A CD→B
BC→A BC→D CD→A

From these FDs, we derive, among others, the following inclusions Sky(T,A) ⊆ Sky(T,AB) ⊆
Sky(ABD). The inclusion relationships between the different skycuboids of Skycube(T) are depicted
in Figure 4.2. Each node X represents Sky(T,X). An edge from X to Y represents an inclusion.
Paths also represent inclusions. The red nodes represent skycuboids without outgoing edges. One
should notice that these are only the inclusions we can deduce from the FDs satisfied by T . For
example, Sky(C) = {t4} ⊆ Sky(BC) = {t2, t4}, but this inclusion is not captured by the FDs.

Figure 4.2 – Inclusions between skycuboids

The following proposition shows how the FDs can be used to derive an ICS.

65

4.3. Partial Materialization of Skycubes

Proposition 8. Let I be the set of skylines inclusions derived from the FDs satisfied by T and
let GI(V,E) be the oriented graph where V = 2D and E ⊆ V ×V such that (X,Y) ∈ E iff Sky(X) ⊂
Sky(Y) ∈ I. Let Γ = {X ∈ V |X has no outgoing edge}. Then Γ is an ICS.

As a consequence of the previous proposition, we can conclude that having Γ is sufficient to
infer the MICS. Indeed, it is sufficient to check the inclusion relationship between the skylines of its
elements and those whose skyline is not included into any skyline of their ancestors are elements to
find the MICS. For example, the red nodes in Figure 4.2 form Γ. We see that only Sky(ABD) and
Sky(ABCD) are not included in any superset. As we have seen, they form the MICS.

Now, we provide some properties of the elements of Γ that allow to identify them efficiently.
By Theorem 13, we conclude that a subspace X belongs to Γ iff there is no subspace Y such that
X ∩ Y = ∅ and the FD X → Y is satisfied by T . In the functional dependency literature, these
subspaces are classically called closed sets of attributes. We recall briefly the definition and suggest,
e.g., references [69], [71] for more details.

Definition 20 (Closed Subspace). Let F be a cover set of the FDs satisfied by T and X be a
subspace of T . The closure of X w.r.t. F , noted X+

F or simply X+, is the largest subspace Y such
that F `X → Y where ` represents the implication between FDs. X is closed iff X+ =X.

The elements of Γ are the closed subspaces. Hence, having the FDs satisfied by T , it becomes
easy to find its MICS. It is important to note that the functional dependencies we consider are those
that hold in the instance T . These are not supposed to be known beforehand. So we distinguish
between those FDs that act as constraints which are always satisfied by the instances of T and
those that are just satisfied by the present instance. Therefore, we need an efficient algorithm to
mine the FDs satisfied by the instance T from which we can derive the closed subspaces. This will
be discussed next.

Before that, we make some remarks about the importance of Theorem 13. We point out that it
allows to derive some previous results that were hard to prove without resorting to FDs. Perhaps
the most used property from which many optimization techniques were derived is that related to
the distinct value condition hypothesis.

Theorem 14. [81] If ∀Di ∈D and ∀t1, t2 ∈ T , t1[Di] 6= t2[Di] then for every subspaces X and Y ,
X ⊆ Y ⇒ Sky(X)⊆ Sky(Y).

The above result is a consequence of Theorem 13. Indeed, under the distinct value hypothesis,
every single attribute determines, in the FDs sens, all other attributes. In particular, ∀X,Y : X→ Y .
Therefore Sky(X)⊆ Sky(XY).

4.3.3 Analysis of the number of closed subspaces

Let ||X|| denote the number of attributes in X, for example ||ABC|| = 3, and let k be the
number of distinct values of every dimension and m be the number of distinct tuples in table T .
X is a key of T iff |X| = m. Clearly, if X is a key then every Y such that Y ⊇X, Y is not closed
(apart the special case where Y is the set of all dimensions).

Under a uniform distribution, if ||X|| ≥ logk(m) then X is a key [49]. As a particular case, if
k = m then logk(m) = 1 meaning that every single attribute is a key by itself. As an example, if
d= 20, m= 107 and k = 100 then most subspaces X with ||X|| ≥ 4 are keys, hence not closed. Even
if the hypothesis of uniform distribution as well as the the fact that all dimensions have the same
number of distinct values k are rarely met in real data, it however gives an intuition about the
relationship that exists between the active domain sizes of every attribute and the size, in terms of

66

Chapitre 4. Optimisation des requêtes skyline

Figure 4.3 – Size of projections wrt dimensionality ||X||

Figure 4.4 – Closed subspaces in the subspaces lattice

number of attributes, of the keys : the larger k, the smaller ||X|| the larger the number of supersets
of X and the fewer the closed subspaces. Figure 4.3 shows the evolution of projection sizes wrt the
number of dimensions we consider : when this number reaches logk(m) the projections reach the
same number of distinction tuples in T meaning that these are keys. The more we have keys, the
less closed subspaces there are as it is illustrated in Figure 4.4.

4.3.4 Skyline size analysis

When the cardinality k of dimensions decreases, the number of closed subspaces increases and
maybe reaching 2d− 1. From partial materialization point of view, this is a bad situation : all
skylines are materialized. In fact and by contrast to the number of closed subspaces, the size of
skylines is proportional to k. This indicates that when k is small, we do not need to materialize
other skycuboids than that of the topmost subspace, i.e., Sky(D). This latter is sufficient to answer
all skyline queries efficiently using Algorithm 5. The following theorem formalizes this result.

Claim 1. Let T (d,n,k) denote the set of tables with d independent dimensions, n tuples and k
distinct values per dimension uniformly distributed. Let Tk ∈ T (d,n,k) and Tk′ ∈ T (d,n,k′) where

67

4.3. Partial Materialization of Skycubes

Figure 4.5 – Skyline size evolution wrt cardinality k

k′ ≥ k. Let S(Tk) or STk denote the size of the skyline of Tk over the d dimensions. Let Sk denote
the average size of S(Tk). The tuples are distinct (n < kd). We have the following

k ≤ k′⇒ Sk ≤ Sk′

In other words, the above theorem states that for fixed n and d, the size of the skyline tends to
increase when the number of distinct values per dimension grows.

Figure 4.5 illustrates how both the number of closed subspaces and skyline size evolve with
respect to the number of distinct values k when n > kd.

4.3.5 Data Dynamics

In this section we analyze the skycube evolution when data are inserted or deleted. Our main
concern is to study how the partial skycube should be maintained. The first result established an
inclusion relationship between closed subspaces when data are inserted or removed.

Proposition 9. Let T ⊆ T ′, Closed(T) be the closed subspaces in T and Closed(T ′) be those closed
in T and T ′. Then, Closed(T)⊆ Closed(T ′).

A consequence of the previous proposition is that when tuples are deleted, it suffices to maintain
the already materialized skycuboids to answer all skyline queries. More precisely,

Corollary 1. Let T ⊆ T ′ and S be the set of skycuboids Sky(T,X) such that X ∈Closed(T ′). Then
S is an ICS.

If the removed tuples do not belong to Sky(T ′,X) then Sky(T ′,X) = Sky(T,X). This shows
that in this case, no re-computation is needed.

Let us consider the insertion case and suppose that τ = T ′ \T be the inserted tuples. Consider
some subspace X. What is the new content of Sky(T ′,X) regarding its previous value Sky(T,X) ?
The first remark we can notice is that all previously dominated tuples, i.e., those in T \Sky(T,X),
are still dominated in T ′. Therefore, we can conclude that Sky(T ′,X) ⊆ Sky(T,X)∪ τ . This re-
mark suggests a first solution for handling insertions which consists in keeping exactly the same

68

Chapitre 4. Optimisation des requêtes skyline

closed subspaces as those in Closed(T). When some query Sky(T ′,X) is submitted, we evaluate
Sky(Sky(T,X+)∪τ,X) where X+ is the closure of X w.r.t. T . Even if this solution doesn’t require
any special maintenance of the skycube and even if the query evaluation performance is already
better than evaluating skylines from T ′, there are some properties that may reduce query evaluation
time by reducing the input data size. Again, we make use of FDs.

Proposition 10. Let X+
T denote the closure of X w.r.t. T . Suppose that Sky(T,X+

T)∪ τ satisfies
the FD X → (X+

T \X). Then Sky(T ′,X)⊆ Sky(T ′,X+
T).

The proposition simply states when the inserted tuples do not violate the previously valid FDs
then skyline inclusion still holds. Note that FDs violation is not tested over the whole T ′ table but
just on Sky(T,X+

T)∪ τ .
We do not develop much more the partial skycube maintenance and let this for future work.

4.3.6 Computing the Closed Subspaces

We start with some lemmas letting us to characterize the closed subspaces. We use the following
notations :

– DetAi is the set of minimal sets of attributes X such that T |=X →Ai.
– Di = D\Ai.

DetAi represents in fact a frontier separating the elements of 2Di which determine Ai from those
which do not.

Lemma 4. For each X ∈ 2Di, if there exists X ′ ∈DetAi s.t X ′ ⊆X then X is not closed.

Example 24. From the running example, we have DetA = {BD,CD,BC}. BCD ∈ 2DA is not
closed because, e.g., BCD ⊃BD.

The converse of the previous lemma doesn’t hold. Indeed, even if when some X ∈ 2Di does not
include any element of DetAi then X 6→Ai, this does not imply necessarily that X is closed. Indeed,
it is possible that there exists Aj 6= Ai such that X ∈ 2Dj and T |= X → Aj making X not closed.
In fact, we have the following necessary and sufficient condition for X being closed.

Proposition 11. Let C−i be the set of non closed subspaces derived from Lemma 4 and C− =
⋃
iC
−
i .

Then X is closed iff
– X = D (all the attributes) or
– X ∈ 2D \C−.

Example 25. For the running example we have DetA = {BD, BC, CD}, DetB = {A,CD}, DetC =
∅ and DetD = {A,BC}. From these sets, we derive C−A =DetA∪{BCD}, C−B =DetB∪{AC,AD,ACD},
C−C = DetC ∪∅ and C−D = DetD ∪{AC,ABC}. Notice for example that ABD /∈ C−A even if it is a
superset of BD. Recall that for C−A we consider only elements from 2DA and ABD does not belong
to this set. Figures 4.6(a) and 4.6(b) show a part of the non closed subspaces that we infer from the
sets of attributes determining, respectively, A and B.

Procedure ClosedSubspaces (c.f. Algorithm 7) takes as input the table T and returns the closed
subspaces. As one may see, the most critical part of this algorithm is the statement in Line 2 which
consists in computing a set of violated functional dependencies.

69

4.4. Query evaluation

(a) Non closed sets w.r.t.
A

(b) Non closed sets w.r.t.
B

Figure 4.6 – Pruned sets w.r.t. attributes A and B

Extracting Maximal Violated Dependencies

As we have seen previously, all subsets of the left hand side of violated functional dependencies
are potentially closed sets of attributes. So, given an attribute Ai the first part of our procedure
consists to extract the maximal X’s such that X→Ai is not satisfied. There are several algorithms
for computing minimal functional dependencies in the literature, e.g. [98], [66], [52], [75]. Inferring
from these sets the maximal violated dependencies can be performed by computing the minimal
hypergraphs transversals, also called minimal hitting sets [25]. Since the minimal transversals com-
putation is in general hard, its precise complexity is still an open problem and no known polynomial
algorithm for the general case has been proposed so far, we use instead MaxNFD (for Maximal left
hand side of Non Functional Dependencies). It is an adaptation of the parallel algorithm MineWi-
thRounds proposed in [45] for mining borders of theories [70]. The main principles of MaxNFD
are presented in Algorithm 6. It can be described as follows : let X be a candidate for which we
want to test whether T 6|=X→Ai. If (i) X passes the test then it is possibly a maximal not deter-
mining set. Hence it is added to Max and its parent is generated as a candidate for next iteration.
The parent of X is simply the successor superset of X in the lexicographic order. For example, the
parent of BDF is BDFG. If (ii) X does not pass the test, i.e., T |= X → Ai, then (a) its children
are candidates for the next iteration and (b) its sibling is a candidate for the iteration after the next
one. For example, the children of BDF are BF and DF , i.e., all subsets of BDF containing one
attribute less but the prefix (BD is not a child of BDF). The sibling of BDF is BDG, i.e., F is
replaced by its successor G. If |D|= d, it is shown in [45] that at most 2d−1 iterations are needed
for each attribute Ai to find the maximal X’s that do not determine Ai. This explains the While
loop in Line 3 of Algorithm 6. The correctness of the algorithm is already proven in [45].

Inferring Closed subspaces

The subsets returned by the previous procedure are potentially closed. Indeed, X is closed iff X
does not determine any Ai ∈X. It is not sufficient to make the intersection of these sets because,
e.g., no such set X relative to Ai does contain Ai, still there may exist closed sets containing Ai.
ClosedSubspaces exploits the previous results to infer the closed subspaces.

These algorithms have been implemented and turned to be very efficient to find rapidly the
closed subspace as this is shown in Section 4.6 where we relate our experiments results.

4.4 Query evaluation
As a first solution to the partial materialization of skycubes, we propose to select all and only

those skycuboids Sky(T,X) such that X+ =X, i.e., X is a closed subspace. We denote this set of
skycuboids by SkycubeC(T).

70

Chapitre 4. Optimisation des requêtes skyline

Algorithm 6: MaxNFD
Input: Table T , Target attribute Ai
Output: Maximal X s.t T 6|=X →Ai

1 Candidates[1]←{A1};
2 k← 1;
3 while k ≤ (2d−1) do
4 foreach X ∈ Candidates[k] do
5 if @Y ∈Max st Y ⊇X then
6 if T 6|=X →Ai then
7 Add X to Max;
8 Remove the subsets of X from Max;
9 Add the parent of X to Candidates[k+ 1];

10 else
11 Candidates[k+ 1]]RightChildren(X);
12 Candidates[k+ 2]]RightSibling(X);

13 k← k+ 1;
14 Return Max;

Now, when a query Sky(T,X) is submitted, we first compute the closure X+ to find the materia-
lized ancestor skycuboid from which the query is to be evaluated. For example, the query Sky(T,A)
is computed from Sky(T,A+) = Sky(T,ABD). As a matter of fact, Sky(T,ABD) = {t1, t2, t3, t4}.
Hence, instead of computing Sky(T,A) form T , thus using 6 tuples, we rely on Sky(T,ABD) contai-
ning only 4 tuples. The closure of every X can either be hard coded or it can be computed on the
fly by using the available set of FDs that have already been mined.

For the running example, Figure 4.7 represents the materialized part of the skycube (in red) as
well as the closure relationships.

Let us analyze in more depth the query evaluation complexity. First, we recall that all algorithms
proposed so far for evaluating a skyline query from a data set with n tuples have a worst case time
complexity in O(n2) which reflects the number of comparisons. So we expect that by partially

Algorithm 7: ClosedSubspaces
Input: Table T
Output: Closed subspaces

1 for i= 1 to n do
2 L− = MaxNFD(T,Ai);
3 L− = SubsetsOf(L−,Ai);
4 if i= 1 then
5 Closed= L−;
6 else
7 Closedi = {X ∈ Closed |X 3Ai};
8 Closed= (Closed∩L−)

⋃
Closedi;

9 Return Closed;

71

4.4. Query evaluation

Figure 4.7 – The Partial Skycube

materializing a skycube, the cost of evaluating skyline queries should be less than O(n2). Suppose
that the query is Sky(X) and Sky(X+) is materialized. Therefore, evaluating Sky(X) is performed
with an O(|Sky(X+)|2) time complexity. Is it possible that |Sky(X+)| be equal to n, which means
that we get no gain in computing Sky(X) from Sky(X+) rather than computing it from T ? We
show that, unless X+ = D, the cost is strictly smaller than O(n2) even if the size of Sky(X+) is
equal to n.

4.4.1 Full Materialization

A special case of query evaluation is when we want to compute all skyline queries. This is equi-
valent to the full materialization of skycubes. To deal with this case and to avoid the naïve solution
which consists in evaluating every skyline from T , previous works exhibit derivation properties and
cases where computation sharing among skylines is possible so as to speed up this process.

Since this materialization turns to evaluate every possible skyline query, the previous properties
we identified can easily be exploited in this context. Hence, we propose FMC (for Full Materialization
with Closed subspaces) as a procedure for solving this problem. It is described in Algorithm 8.

Algorithm 8: FMC algorithm
Input: Table T
Output: Skycube of T

1 Closed = ClosedSubspaces(T);
2 foreach X ∈ Closed do
3 Compute Sky(T,X) ;
4 foreach subspace X do
5 Compute Sky(Sky(X+),X);
6 Return

⋃
X∈2D Sky(X);

FMC proceeds in three main steps : (i) it first finds the closed subspaces, then (ii) it computes
their respective skylines from T , and finally, (iii) for every non closed subspace X, it computes
Sky(Sky(X+),X).

The first advantage of FMC is that the input data used for every skyline over a non closed
subspace is a subset of T . The second one is that it is easily amenable to a parallel execution.
Indeed, both foreach loops in the algorithm (lines 2 and 4) as well as algorithm ClosedSubspaces
(Line 1) can be executed in parallel to benefit from multi-processor machines that are the standard
nowadays. Finally, FMC doesn’t need to keep the whole skycube into RAM memory to achieve the
computation since, by opposition to related work (see Section 4.5), no data structure sharing is
required. Despite its simplicity, FMC turns to be very efficient in practice and outperforms state of
the art algorithms as this is shown in Section 4.6.1.

72

Chapitre 4. Optimisation des requêtes skyline

4.5 Related Work

Several algorithms for computing skylines have been proposed in the literature. The complexity
of most of them is analyzed in RAM cost setting, e.g., [37], [10], [58]. Some algorithms have been
specifically tailored to the case where dimensions have low cardinalities, see e.g., [73]. All these
algorithms have worst case complexity in O(n2) where n is the size (number of tuples) of the
underlying table T . The pioneering work of [14] considered external memory cost and showed the
inadequacy of SQL to evaluate efficiently skyline queries. However, the algorithms proposed there
do suffer from the polynomial time complexity. Recently, [86] proposed an I/O aware algorithm
guaranteeing, in the worst case, a polylog number of disk accesses. [84] proposed a randomized
algorithm requiring O(log(n)) passes over the data to find an approximation of the the skyline with
high probability. Other works make use of some pre-processing like multidimensional indexes. For
example, [78] proposed R-trees as a convenient data structure to optimize a skyline points retrieval
in a progressive way.

All progresses that can be made in single skyline query evaluation can benefit to multidimen-
sional skyline queries. Our present work is then independent of any specific skyline algorithm.

When one is interested by multidimensional skylines, most of the previous works tackled the
problem by considering the full materialization of skycubes [59], [58], [80], [100]. In order to avoid the
naïve solution consisting in computing every skyline from the underlying table, they try to amortize
some computations by using either (i) shared structures facilitating the propagation/elimination of
skyline points of Sky(X) to/from Sky(Y) when Y ⊆X or (ii) shared computation. More precisely,
the idea here consists in devising some derivation rules that help in finding Sky(X) by using some
parts of Sky(Y)′s. For example, if Y ⊂ X then a tuple ti cannot belong to Sky(Y) if it doesn’t
match some tj in Sky(X), i.e., tj [Y] = ti[Y]. In order to take advantage of this property, one must
keep Sky(X) into memory which can become a real bottleneck when data are large. Note that
several skylines must be kept in that way. In the next section, we compare experimentally FMC
implementation and these state of the art algorithms and show that they do not scale with large
dimensions and/or large data.

Due to the exponential number of skylines, some works tried to devise compression techniques
[95],[82], thereby to reduce the storage space occupied by the entire skycube.

[82] proposed the closed skycube concept as a way to summarize skycubes. Roughly speaking,
this method partitions the 2d−1 skycuboids into equivalent classes. Two skycuboids are equivalent
if their respective skylines are equal. Hence, the number of materialized skylines is equal to the
number of equivalent classes. Once the equivalent classes are identified and materialized, query
evaluation is immediate : for each query Sky(T,X), return the skyline associated to the equivalence
class of X. Given T , the size of MICS or even SkycubeC(T) and that of the closed skycube T
of are incomparable in general. For instance, SkycubeC(T) of the running example requires the
storage of 11 tuples while the closed skycube, illustrated in Figure 4.8, requires 12. Moreover, the
experiments we conduct show that in practice MICS and SkycubeC(T) are in general computed
much faster than the closed skycube as it is shown in Section 4.6.2. This shows that our proposal
is a reasonable trade-off between skyline query optimization, storage space and the speed by which
the solution is computed.

[95] proposed the Compressed SkyCube (CSC) structure. CSC can be described as follows. Let t
be a tuple belonging to Sky(X). Then t is in the minimum skyline of Sky(X) iff there is no Y ⊂X
such that t∈ Sky(Y). min_sky(X) denotes the minimal skyline tuples of Sky(X). The compressed
skycube consists simply in storing with every X the set min_sky(X). The authors show that this
structure is losseless in that Sky(T,X) can be recovered from the content of min_sky(Y) such that
Y ⊆X. More precisely, t∈ Sky(T,X) iff ∃Y ⊆X such that t belongs to Sky(min_sky(Y),X). Here

73

4.6. Experiments

Figure 4.8 – The partition of the closed Skycube

again, the two solutions are incomparable in terms of space usage. For instance, the compressed
skycube of the running example stores {B〈t1, t2〉; D〈t4〉; AD〈t3〉; A〈t1, t2〉;C〈t4〉}, hence 7 tuples.
This is not always true. For example, take a table T with just one tuple t1 = 〈A : 1,B : 1,C : 1,D : 1〉.
t1 belong to the min_sky of A, B, C and D. It is then stored four times. Our solution stores
Sky(ABCD) = {t1}, hence t1 is stored once.

Several works have been proposed in order to estimate the skyline size. [37] considers the same
data distribution as the one we used (independence of dimensions) while [85] focuses on anti-
correlated data. [18] doesn’t consider any data distribution hypothesis but the estimator is not a
closed formula. It is noticeable that all these works consider distinct value hypothesis, the cardinality
of columns is equal to the number of rows. So these estimators cannot be used in situations where
this hypothesis doesn’t hold which is often the case in many practical situations.

4.6 Experiments

We conduct a series of experiments aiming to illustrate the strengths and the weaknesses of our
approach. For this purpose, we consider 3 directions : (i) We compare our solution to the previous
works targeting the skycube full materialization. In this scope, we analyze the scalability w.r.t.
both dimensionality and data size growth. It turns that our solution outperforms state of the art
algorithms for full materialization when both data and dimensions get large ; (ii) we investigate
the summarization power of our technique by taking into account the number of distinct values
appearing in every attribute. As we shall see, this parameter has a great impact in the size of the
returned summaries. From this perspective, we compare our solution to the closed skycube proposal
of [82]. On real data, our solution appears to be both less space consuming than closed skycubes
and it is obtained much faster ; (iii) finally, we analyze the impact of materialization in query cost
reduction.

All experiments were conducted on a machine whose characteristics are : 24Gb of RAM, two 3.3
GHz hexacores processors, and a disk of 1Tb under Redhat Entreprise Linux OS. We implemented
our solutions using C++ language together with OpenMP API to benefit from parallelism.

We use both synthetic and publicly available real data sets. For synthetic data, we used the data
generator software available at pubzone.org which follows the indications of [14]. It takes as input
the values of n and d as well as a data distribution (correlated, independent or anticorrelated) and
returns n tuples of d dimensions respecting the prescribed data distribution. The attributes values
are real numbers normalized into [0,1] interval.

The values of d we consider in these experiments do not exceed 20 not because we cannot handle
larger dimensions but this value was sufficient to show the scalability of our solutions. Note that

74

Chapitre 4. Optimisation des requêtes skyline

O
rio

nT

B
U
S

T
D
S

Q
G
S

Q
G
L

10
20
30
40
50

Sp
ee
du

pd= 10
d= 12
d= 14
d= 16

(a) Correlated

O
rio

nT

B
U
S

T
D
S

Q
G
S

Q
G
L

10
20
30
40
50

Sp
ee
du

p

(b) Independent

O
rio

nT

B
U
S

T
D
S

Q
G
S

Q
G
L

10
20
30
40
50

Sp
ee
du

p

(c) Anticorrelated

Figure 4.9 – Speedup w.r.t dimensionality d (n= 100K)

the number of dimensions reported in related works experiments rarely exceeds 10.

4.6.1 Full Skycube Materialization

In this section, we compare the execution time of FMC to state of the art algorithms, namely BUS
and TDSG [81], OrionTail [82], as well as the most recent proposals QSkycubeGS and QSkyCubeGL
reported in [59]. We used the authors implementations without any change 2. All these algorithms
take as input a table and return its respective skycube. They all are implemented in C++. For
FMC, we make use of the BSkyTree implementation for computing skylines and presented in [58].
For every execution, we fixed the number of threads to 12 (number of available cores). Since all
previous algorithms are sequential, and to make the comparison meaningful, we report the speedup
of FMC over its competitors instead of their execution times. More precisely,

Speedup= (execution timeof algorithmi)
(execution timeof FMC)

If the speedup is greater than 12, we can safely conclude that FMC outperforms its competitor since
its sequential execution cannot be twelve times slower than its parallel execution.

Scalability w.r.t Dimensionality

To analyze the effect of dimensionality growth, we fix n to 100K tuples (a relatively small value
of n) and vary d from 10 to 16. We consider the three kinds of data correlations. The results are
reported in Figures 4.9(a)-4.9(c). For example, 4.9(a) shows that FMC execution is only about 7
times faster than OrionTail when d= 10. A general remark is that while for the correlated data, the
speedup increases uniformly with d, this is not the case for the other distributions. When d = 16,
whatever is the data distribution (correlated, independent or anti-correlated), the speedup is greater
than 12 for every implementation. This gives an evidence that FMC becomes more interesting when
d increases.

Scalability w.r.t. Data Size

Here we fix d to 16 and vary the value of n by considering 200K, 500K and 1M tuples. The
results are reported in Figure 4.10. The experiments show that FMC outperforms all algorithms in
all cases. Even though, it is interesting to note that QSkyCubeGL is the most scalable algorithm
since the speedup of FMC over it does not exceed 13 in all cases.

2. We are grateful to the authors of these references who made available their software packages.

75

4.6. Experiments

O
rio

nT

B
U
S

T
D
S

Q
G
S

Q
G
L

101
102

Sp
ee
du

p
in

lo
gs
ca
le

n= 200K
n= 500K
n= 1M

(a) Correlated

O
rio

nT

B
U
S

T
D
S

Q
G
S

Q
G
L

10
20
30
40
50

Sp
ee
du

p

(b) Independent

O
rio

nT

B
U
S

T
D
S

Q
G
S

Q
G
L

10
20
30
40
50

Sp
ee
du

p

(c) Anticorrelated

Figure 4.10 – Speedup w.r.t data size n (d= 16)

10 12 14 16 18 20

100

101

102

103

104

dimensions d

Ex
ec

ut
io

n
T

im
e

(s
ec

.)

FMC
QGL
QGS

(a) Skycube Full Materializa-
tion

10 12 14 16

100

200

300

400

500

600

dimensions d

T
im

e(
A

lg
o_

X
)/

T
im

e(
FM

C
)

QGL
QGS

(b) SpeedUp

Figure 4.11 – Real data set USCensus (n= 2458285)

10 12 14 16 18 20

10−1

100

101

102

103

dimensions d

Ex
ec

ut
io

n
T

im
e

(s
ec

.)

FMC
QGL
QGS

(a) Skycube Full Materialization

10 12 14 16

50

100

200

300

dimensions d

T
im

e(
A

lg
o_

X
)/

T
im

e(
FM

C
)

QGL
QGS

(b) SpeedUp

Figure 4.12 – Real data set Householders (n= 2628433)

NBA (d= 17,n= 20493) IPUMS (d= 10,n= 75836) Baseball (d= 18,n= 92797)
FMC QGL QGS FMC QGL QGS FMC QGL QGS
0.22 8.15 4.57 0.45 2.27 10.24 4.5 63.85 267.1
Min Speed Up : 20.78 Min Speed Up : 5.04 Min Speed Up : 14.19

Figure 4.13 – Execution times for small real datasets

76

Chapitre 4. Optimisation des requêtes skyline

Some Remarks on Synthetic Data Generation In the course of our experiments, we found
that the synthetic data sets tend to satisfy the distinct values property, i.e., every dimension has
almost n distinct values. This case tends to reduce the set of closed subspaces to just one, namely
D. Therefore, during the execution of FMC most of the skylines are evaluated from Sky(D). In the
case of correlated data, this is beneficial because the size of Sky(D) is small compared to that of
T . This is not the case with anti-correlated data. Nevertheless, as the previous experiments have
shown, FMC is still competitive in that case, thanks to its parallel execution style.

Real Data Analysis

In order to avoid the biases introduced by the way synthetic data are generated, we performed
the same kinds of experiments as before by using three real datasets, (i) the well known US Census
data set used in machine learning (n ∼ 2.5 ∗ 106 and d = 65). All attributes are positive integer
valued and even if not all of them have a meaningful ranking, still, the data set is interesting
because of its real data distribution. We picked 20 columns at random for our experiments. (ii)
The second data set is publicly available from the french INSEE institute website (statistics and
economic institute) and describes householders in south-west region in France. It has more than
2.5∗106 tuples described by 67 variables. Here too, we picked 20 attributes but these columns have
a meaningful ranking semantics (e.g., number of persons living in the house, number of rooms, etc
. . .). Although both data sets have almost the same number of tuples and the same dimensionality,
their respective data distributions are radically different : while with USCensus data all subspaces
are closed (there are no FD’s), with householders the proportion of closed subspaces is very small
(less than 2%) when d≥ 10. (iii) We also used three relatively small data sets that we find regularly
in skyline literature, namely the NBA data set with about 20K tuples and 17 dimensions, the IPUMS
set with around 100K tuples and 10 dimensions and the Baseball set with around 75K tuples and
18 dimensions. These sets give another insight about the performance of our proposal.

US Census data set Figure 4.11(a) shows the execution times needed by FMC, QSkyCubeGS
and QSkyCubeGL to fully materialize the skycube by varying d from 10 to 20. We consider only
these two competitors because the others took too much time. Nevertheless, we note that starting
from d= 16 both QSkyCubeGS and QSkyCubeGL saturated the total 24 Gb of available memory and
started to swap with disk during the computation. This why we stopped their execution otherwise
it would have taken too much time. This shows the limit of data structure sharing of skycube full
materialization techniques. We should mention that we took care to modify the original source codes
of those algorithms so that as soon as a skycuboid is computed, its content is cleared. So memory
saturation is not due to the size of the skycube but rather to the shared data structure, namely the
StreeCube.

Figure 4.11(b) shows the speed up of FMC over its competitors. We note the rapid growth of
the speed up when d increases reaching 3 orders of magnitude when d= 16 with QSkyCubeGL and
almost 600 with QSkyCubeGS.

A specificity of this data set is that its dimensions have a very small number of distinct values :
about 10 distinct values per each. This make functional dependencies hard to be satisfied while the
number of tuples is quite large. In fact this data set doesn’t satisfy any FD. Therefore all subspaces
are closed. However, the topmost skyline, i.e., Sky(D) contains only 3873 tuples. Moreover, these
tuples have exactly the same values in every dimension ; Sky(D) is of Type I. This makes the
computation of any skyline very easy. This empirically confirms the relationship between the number
of distinct values per dimension, the number of FD’s and the size of the topmost skyline.

77

4.6. Experiments

Householders data set The results are reported in Figure 4.12(a). Here again, both QSkyCubeGS
and QSkyCubeGL were unable to handle the cases where d ≥ 16. A noticeable difference however
between this data set and the previous one is that the number of closed subspaces is quite small :
2880 out of the 220− 1 subspaces. The number of distinct values per dimension varies from 2 to
4248. This shows the effectiveness of using the skylines of the closed subspaces to compute the rest
of the skylines. Indeed, even if the speed ups we obtain are less impressive than those with the
previous data set (see Figure 4.12(b)), FMC is still 50 times faster than QSkyCubeGL and even more
comparatively to QSkyCubeGS.

Small real datasets With these quite small data sets (see Fig. 4.13), FMC is always faster than
its competitors. Note however that when the number of dimensions is small which is the case with
IPUMS dataset, the speed up is rather weak (only 5.04). Recall that we used 12 threads with FMC.
This tends to show that our solution is rather more appropriate when the number of dimensions
becomes large. Interestingly, we executed the naïve algorithm with IPUMS : for every subspace X,
compute Sky(T,X). This loop was executed using 12 threads too. The algorithm terminates after
0.68 seconds providing a speed up of 3.8 over QskycubeGL. So the question of when using shared
data structures and/or computations is really worthwhile remains open.

Extending FMC

As the previous experiments have shown, the cost of first mining the closed sets in order to use
their respective skylines for materializing the full skycube is amortized in general. Indeed, we found
out that doing so, we are at least as efficient as state of the art algorithms and for some cases,
FMC is orders of magnitude faster. Note that FMC does not use any optimization related to the
sharing computation principle. Indeed, all skylines are computed independently from each others.
This reduces memory consumption which is a severe bottleneck of previous proposals when data get
large. For relatively small data, FMC can be optimized in the following way. Let Cover(Y) denote
the subspaces X such that X+ = Y . Then instead of computing each Sky(X) from Sky(X+), we
reverse the loop by iterating over the closed subspaces as suggested in Algorithm 9.

Algorithm 9: FMC+ algorithm
Input: Table T
Output: Skycube of T

1 Closed = Closed sets of attributes in T ;
2 foreach X ∈ Closed do
3 Compute Sky(X) from T ;
4 foreach closed subspace Y do
5 Compute the skylines of Cover(Y);
6 Return

⋃
X∈2D Sky(X);

Since for every Y1,Y2 ∈Cover(Y) we have Y1 ⊆ Y2⇒ Sky(Y1)⊆ Sky(Y2), we can use for example
a levelwise procedure in order to avoid unnecessary computations. Another solution consists in
adapting the previous works that do use sharing computations.

4.6.2 Storage Space Analysis

In the second part of the experiments, we generated a set of synthetic data by fixing the follo-
wing parameters : d is the number of attributes, n is the number of tuples, c is the average number

78

Chapitre 4. Optimisation des requêtes skyline

10 12 14 16 18 20
10−2

10−1

100

101

102

Varying d

(#
cl
os
ed

/#
to
ta
l)*

10
0

100K_10K
100K_1K
100K_100

(a) Percentage of materialized skycuboids

10 12 14 16 18 20
10−3

10−2

10−1

100

101

102

Varying d

10
0*

Sp
ac
e(
cl
os
ed

)/
Sp

ac
e(
to
ta
l)

100K_10K
100K_1K
100K_100

(b) Ratio of consumed storage space

10 12 14 16 18 20

101

102

103

Varying d

Ex
ec
ut
io
n
tim

e
in

Se
c. 100K_10K

100K_1K
100K_100

(c) Running time for finding closed subspaces and
materializing their respective skylines

Figure 4.14 – Quantitative Analysis of the Closed Subspaces

79

4.6. Experiments

of distinct values taken by each attribute. The importance of this last parameter has already been
identified, e.g., [73] by noting that dimensions with small number of distinct values deserve spe-
cialized skyline algorithms. For example, 100K_10K designates a data set where n = 100K and
the number c of distinct values per dimension is 10K. Since the data generator returns floats in
[0,1] interval, it suffices to keep the first f decimal digits to get a data set where every dimension
has on average c = 10f distinct values. For example, 0.0123 is replaced by 12 if c = 103. Doing so,
the correlation between the different columns is preserved. Since all the conclusions we derived are
the same whatever is the kind of correlation, we report here only the results obtained with the
independent data sets.

We firstly investigate the number of closed subspaces comparatively to the total number in
the skycube. The results are reported in Figure 4.14(a). Some conclusions can be derived at this
stage : (i) the proportion of closed subspaces decreases when the number of attributes increases.
For example, consider the data set 100K_10K when d= 10. There are about 7% of the subspaces
out of the total 210− 1 that are closed. This proportion falls to 0.035% when d = 20. The second
lesson we may draw from this experiment is that (ii) the number of closed subspaces grows when the
number of distinct values taken by each attribute increases. For example, when d= 10, only 7% of
the subspaces are closed with 100K_10K while there are 84.5% closed subspaces with 100K_100.
This second case could indicate that the memory saving when storing only the skycuboids associated
to closed subspaces is marginal. The second experiment (see Figure 4.14(b)) shows that this is not
systematic. Here, we compute ratio between the total numbers of tuples that should be stored when
only the closed subspaces are materialized over the the total number of skycube tuples. We see that
in all cases, the memory space needed to materialize the skylines wrt the closed subpaces never
exceed 10% of the whole skycube size. For example, even if we materialize 84.5% of the skylines
of the skycube related to 100K_100 data set when d = 10, this storage space represents less than
10% of the related skycube size. This would indicate that either our proposal tends to avoid the
materialization of heavy skycuboids, i.e., or the size of skylines tend to decrease when the number of
closed subspaces increase. We empirically show that it is rather because of the second explanation
(see Figure 4.15).

Finally, Figure 4.14(c) shows the execution times for the data sets we considered so far. We
stress the fact that these times represent (i) the extraction of the closed subspaces and (ii) their
respective skylines.

We conducted a second series of experiments aiming to show the evolution the the skyline size
when both the cardinality c and the dimensionality d vary while the size of data n is kept fixed.
The results are shown in Figure 4.15. We observe that the size of the skyline increases uniformly
regarding c whatever is d. This gives a clear explanation of the behavior noticed in Figure 4.14(b),
i.e., when c decreases, the number of closed subspaces increases while their respective sizes decrease.

Therefore, the main lesson we retain from the above experiments is that when the number of
closed subspaces increases, the size of the skylines decreases. So, even if our solution stores more
skylines, this doesn’t mean necessarily that it uses more storage space. The second lesson we derive
is that when c is small, every skycuboid tends to be small. Therefore, from a pragmatic point of
view, materializing just the topmost skyline is sufficient to efficiently answer every skyline query by
using Algorithm 5. This confirms the analytic study developed in Sections 4.3.3 and 4.3.4.

MICS vs Closed Skycubes : We compare our solution to the Closed Skycubes [82] in terms
of (i) storage space usage and (ii) the speed for materializing the sub-skycube. We consider the
three real data sets used in that reference : NBA (n = 20493,d = 17), IPUMS (n = 75836,d = 10)
and MBL (n = 92797,d = 18). We compare the number of equivalence classes, i.e., the number of
effectively stored skylines in the closed skycube and the number of skylines we store in the MICS.

80

Chapitre 4. Optimisation des requêtes skyline

Figure 4.15 – Skyline size evolution wrt c and d with n= 106

NBA IPUMS MBL
MICS 5304 (12.8 sec.) 11 (2.1 sec.) 29155 (172 sec.)
Closed 5304 (9 sec.) 738 (322 sec.) 43075 (11069 sec.)

Table 4.3 – Number of materialized skycuboids

For every technique, we also report the total computation time. The results are presented in Table
4.3.

In general, the MICS requires less skycuboids than closed skycubes. For NBA the solutions
are identical. For IPUMS, we store 73 382 tuples, corresponding to 11 skycuboids, and the closed
skycube requires 530 080. For MBL, we store 118 640 340 versus 133 759 420. The storage space
ratio is not that large. However, our solution is often faster than its competitor. More precisely,
the speedup ratio seems increasing with data size n. In addition to these data sets, we tried to test
OrionClos with larger data sets but it was unable to terminate in a reasonable time. For example,
after 36 hours, the correlated data set with 100K tuples and 20 attributes was not processed yet.
Our implementation finds the closed subspaces and their respective skylines after 20 seconds. This is
due to the fact that synthetic data generators tend to return distinct values making the computation
of equivalence classes required by OrionClos harder.

For each data set, we count the number of skycuboids of Type 1 3. Note that computing a skyline
from a skycuboid of Type 1 does not require any computation. For NBA all the 5304 are of Type
1, for IPMUS 4 out of 11, and for MBL 22960 out of 29155.

4.6.3 Query Evaluation

In this part, we analyze the efficiency of our proposal in terms of query evaluation time after the
partial materialization of the skycube, i.e., once the skylines of the closed subspaces are computed.
We use the Householder data set, vary d from 16 to 20, and vary n from 500K to 2M . We generate
1000 distinct skyline queries among the 2d− 1 possible queries as follows : the 2d− 1 subspaces
are listed and sorted w.r.t. a lexicographic order in a vector Q. We pick randomly and uniformly
an integer number i lying between 1 and 2d− 1. Sky(Q[i]) is part of the workload if it does not

3. A skyline is of Type 1 iff all its elements are identical [82].

81

4.7. Conclusion and Future Work

n\d 16 18 20

500K 0.024/18.9 0.026/22.54 0.027/25.78
(1.19%) (0.55%) (0.13%)

1M 0.034/36.78 0.036/44.41 0.047/49.68
(2.197%) (1.098%) (0.274%)

2M 0.041/73.74 0.044/87.92 0.049/99.92
(2.22%) (1.45%) (0.31%)

Table 4.4 – Query execution times in seconds : optimized/not optimized and (Proportion of
materialized skycuboids)

correspond to a closed subspace. We repeat this process until the total number of distinct skyline
queries reaches 1000. The obtained workload contains distinct queries of different dimensions. Each
time we pick a value of i, the probability that it corresponds to a query with δ dimensions is (dδ)

2d−1 .
The results are presented in Table 4.4. For every combination (n,d) we report three important
information : (i) the total execution time when materialized skycuboids are used, (ii) the total
execution time when skylines are evaluated from T and (iii) the proportion of skycuboids that are
materialized. For example, when n= 2M and d= 20, 0.049 seconds are sufficient to evaluate 1000
queries from the materialized skycuboids while it takes 99.92 seconds when T is used. The execution
time is therefore divided by more that 2000. This performance is obtained by materializing only
0.31% out of the 220−1 skycuboids. What is remarkable is that in all cases, with a very small effort
of materialization, the skyline queries are evaluated orders of magnitude faster from the materialized
skycuboids than from T . We finally should mention that the overall partial skycube calculation takes
only few seconds.

4.7 Conclusion and Future Work

In this paper we provided a solution for the partial materialization of skycubes. We showed
how the classical concept of FDs may be used successfully to identify a computability relationship
between skycuboids and then characterize those that should be materialized. This appears quite
surprising because FDs are independent of the order used between the attributes values. In contrast,
skyline queries are based on these orders. This shows the robustness of FDs. Our proposal represents
akind of trade off between the size of storage memory space (we try to store as least as possible),
the query execution time (we avoid using the whole data set) and the rapidity with which we obtain
the partial skycube. Besides the theoretical results, we did our best to compare experimentally
our proposal to state of the art implementations of related work when these were available. The
conclusion is that our solutions scales better with data and dimensions growth. On real data sets, it
turns that with a small portion of the skycube, we were able to gain orders of magnitude on query
evaluation time.

We intend to investigate the incremental maintenance of the materialized skycuboids. When
the insertions violate the FDs, the set of closed subspaces is updated. It is then interesting to
come up with incremental solutions to discover the new closed subspaces and compute their content
efficiently.

New directions for future work can be pursued thanks to the foundations we provide. For
example, distributed skycubes have not been addressed so far. To extend our work to that setting,
it is not clear whether we need global or local FDs. In the present work we identify the minimal

82

Chapitre 4. Optimisation des requêtes skyline

set of skycuboids to be materialized (MICS). To reduce further the skyline queries evaluation, it is
tempting to materialize additional skycuboids. Investigating how given a storage space constraint,
which is necessarily a multiple of the MICS size, we can find the best set of skycuboids satisfying the
space budget constraint and minimizing query cost is one of our future research directions, or as we
did with data cube, given a performance factor, provide a minimal set of skycuboids to materialize.

By contrast to FDs, the recently proposed class of order dependencies [90] do carry information
about order. It is then tempting to investigate the usefulness of these dependencies for skycubes
computation.

The results presented in this chapter appear in [68].

83

4.7. Conclusion and Future Work

84

Chapitre 5

Conclusion générale

Dans ce manuscrit, nous avons présenté l’essentiel de nos contributions pour l’optimisation des
requêtes d’analyse multidimensionnelles. La plupart des problèmes que nous avons abordés ont des
complexités théoriques exponentielles en fonction du nombre de dimensions. Par exemple, extraire
les dépendances valides à partir d’une table de 102 attributs et 103 tuples est beaucoup plus difficile
que traiter le même problème à partir d’une table de 1010 tuples et 10 attributs. Or on entend
souvent parler du problème du traitement des big data en terme de tailles mémoire mais moins en
terme de dimensions. Ceci, à notre avis, peut parfois prêter à confusion surtout si des techniques
d’échantillonnage éprouvées d’un point de vue statistique peuvent être appliquées pour réduire la
taille. Ainsi, big data 6⇒ big problem.

Aussi, nous assistons ces dernières années à un foisonnement de systèmes spécialement conçus
pour la manipulation de données volumineuses 1. L’utilisateur néophyte a non seulement du mal à
choisir lequel est le plus approprié pour son application mais a aussi tendance à croire que le système
va résoudre, grâce a une certaine intelligence, son problème. Un cas typique de cette situation est ce
que l’on rencontre avec un système tel que Hadoop implémentant le paradigme Map-Reduce. En effet,
tel qu’il est généralement présenté, le système est capable à lui tout seul de distribuer les données,
à synchroniser les traitement et à tenir compte des pannes éventuelles du système distribué. La
seule chose que l’utilisateur doit fournir, ce sont les opérations de map et reduce et le système va se
débrouiller avec. En réalité, les choses ne sont pas si simples que ça. Il suffit de voir par exemple
les récents travaux d’Ullman et al (ex : [3]) sur l’analyse de la complexité, qui prend en compte le
coût des communications, pour avoir une idée sur les limites de l’approche et de la nécessité de bien
concevoir algorithmiquement les tâches successives des traitements. Un exemple simple que nous
avons rencontré dans nos travaux est le test de validité d’un ensemble de dépendances fonctionnelles
sur une table qui est distribuée horizontalement sur plusieurs nœuds. A priori, on pourrait penser
que le fait de tester en parallèle sur des parties de la table pourrait être plus rapide que de faire le
test en séquentiel sur la table entière. En réalité, ceci n’est pas toujours le cas à cause notamment
des coûts de communication. Ainsi, faire du parallélisme rien que sur les données ne permet pas
forcément d’avoir des garanties vis à vis de l’accélération du temps de traitement ; il faut que cela
soit combiné avec du parallélisme de traitements.

Pour nos travaux futurs, nous comptons poursuivre nos investigations sur le traitement de
données distribuées en considérant à chaque fois un type particulier de requêtes et voir dans quelle
mesure celle-ci peut être optimisée. Par exemple, peu de travaux ont été élaborés pour le traitement
des requêtes skyline à partir de données verticalement distribuées. Par exemple, un site qui décrit
les chambres d’hôtel selon le prix et la proximité de la plage et un autre site qui les décrit selon
la superficie et la disponibilité de wifi. Comment évaluer efficacement la requête qui cherche les
meilleures chambres selon le prix et la superficie ?

1. Notamment avec l’émergence des systèmes dits NoSQL.

85

Un autre axe que nous n’avons pas abordé dans nos précédents est l’investigation des algorithmes
dits progressifs. Il s’agit là d’algorithmes capables de retourner rapidement quelques premiers résul-
tats mais qui au final peuvent être plus longs quant au résultat global. Dans certaines situations,
l’utilisateur peut être intéressé par juste une partie du résultat surtout quand il débute l’exploration
des données. En effet, un premier aperçu, même partiel, peut donner une indication sur l’orientation
à prendre, choix des dimensions par exemple, pour poursuivre l’interaction avec les données.

Enfin, les données que nous avons considérées jusqu’à présent sont représentées sous forme
tabulaire. Quand on veut intégrer des données à partir de différentes sources, une façon de les
modéliser consiste à les voir comme des graphes étiquetés. Étendre nos travaux à des données du
type graphe, notamment les données RDF, est une direction que nous comptons poursuivre dans
nos travaux futurs.

86

Références bibliographiques

[1] Ziawasch Abedjan and Felix Naumann. Advancing the discovery of unique column combina-
tions. In Proc. of CIKM conf., 2011. 25

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. 60

[3] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper and lower
bounds on the cost of a map-reduce computation. PVLDB, 6(4) :277–288, 2013. 85

[4] R. Agarwal, C. Aggarwal, and V. Prasad. Depth first generation of long patterns. In SIGKDD
Conf., 2000. 7

[5] Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F. Naughton,
Raghu Ramakrishnan, and Sunita Sarawagi. On the computation of multidimensional aggre-
gates. In proc. of VLDB conf., 1996. 59

[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94,
Proceedings of 20th International Conference on Very Large Data Bases, September 12-15,
1994, Santiago de Chile, Chile. Morgan Kaufmann, 1994. 6, 27

[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of mate-
rialized views and indexes in SQL databases. In proc. of VLDB conf., 2000. 59

[8] K. Aouiche, J. Darmont, O. Boussaid, and F. Bentayeb. Automatic selection of bitmap join
indexes in data warehouses. In Proceedings of DaWaK, 2005. 57

[9] Marcelo Arenas, Jonny Daenen, Frank Neven, Jan Van den Bussche, Martin Ugarte, and Stijn
Vansummeren. Discovering xsd keys from xml data. In SIGMOD, 2013. 38

[10] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based skyline evaluation.
ACM Trans. Database Syst., 33(4), 2008. 73

[11] R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD Conf., 1998. 5, 7,
9

[12] L. Bellatreche and K. Boukhalfa. Yet another algorithms for selecting bitmap join indexes.
In Proceedings of DaWak, 2010. 57

87

Références bibliographiques

[13] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Condi-
tional functional dependencies for data cleaning. In Proceedings of ICDE conference, pages
746–755. IEEE, 2007. 25

[14] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator. In Proc.
of ICDE conf., 2001. 3, 60, 73, 74

[15] Nicolas Bruno. Automated Physical Database Design and Tuning. CRC Press inc, 2011. 7

[16] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA : A maximal frequent itemset algorithm
for transactional databases. In ICDE Conf., 2001. 5, 7, 10

[17] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to semantic query
optimization. ACM Trans. Database Syst., 15(2) :162–207, 1990. 60

[18] Surajit Chaudhuri, Nilesh N. Dalvi, and Raghav Kaushik. Robust cardinality and cost esti-
mation for skyline operator. In ICDE, 2006. 74

[19] Dehao Chen, Chunrong Lai, Wei Hu, Wenguang Chen, Yimin Zhang, and Weimin Zheng. Tree
partition based parallel frequent pattern mining on shared memory systems. In Proceedings
of IPDPS, 2006. 9

[20] Rada Chirkova and Jun Yang. Materialized views, volume 4 of Foundations and trends in
databases. Now publishing, 2012. 44

[21] Soon M. Chung and Congnan Luo. Efficient mining of maximal frequent itemsets from data-
bases on a cluster of workstations. Knowl. Inf. Syst., 16(3) :359–391, 2008. 9

[22] V. Chvàtal. A greedy heuristic for the set covering problem. Mathematics of operation research,
4(3) :233–235, 1979. 47, 48

[23] Paolo Ciaccia, Matteo Golfarelli, and Stefano Rizzi. On estimating the cardinality of aggregate
views. In DMDW, 2001. 57

[24] Thierno Diallo, Noel Novelli, and Jean Marc Petit. Discovering (frequent) constant conditional
functional dependencies. International Journal of Data Mining, Modelling and Management,
4(3) :205–223, 2012. 25

[25] Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput., 24(6) :1278–1304, 1995. 70

[26] Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone dualization
and generating hypergraph transversals. SIAM J. Comput., 32(2) :514–537, 2003. 25

[27] M. El-Hajj and O. Zaïane. Parallel leap : Large-scale maximal pattern mining in a distributed
environment. In ICPADS Conf., 2006. 9

[28] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional functional
dependencies. IEEE Transactions on Knowledge and Data Engineering, 23(5) :683–698, 2011.
6, 25

[29] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog : the
analysis of a near-optimal cardinality estimation algorithm. In Proceedings of AofA conference,
pages 127–146. DMTCS, 2007. 31, 36

88

Références bibliographiques

[30] F. Flouvat, F. De Marchi, and J.M. Petit. A thorough experimental study of datasets for
frequent itemsets. In ICDM Conf., 2005. 20

[31] Frédéric Flouvat, Fabien De Marchi, and Jean-Marc Petit. A new classification of datasets
for frequent itemsets. Journal of Intelligent Information Systems, 34(1) :1–19, 2010. 16

[32] Eve Garnaud, Nicolas Hanusse, Sofian Maabout, and Noël Novelli. Parallel mining of depen-
dencies. In Proceedings of HPCS conference. IEEE, 2014. 38

[33] Eve Garnaud, Sofian Maabout, and Mohamed Mosbah. Using functional dependencies for
reducing the size of a data cube. In Proceedings of FoIKS conference, pages 144–163. Springer,
2012. 57, 60

[34] Eve Garnaud, Sofian Maabout, and Mohamed Mosbah. Functional dependencies are helpful
for partial materialization of data cubes. Annals of Mathematics and Artificial Intelligence,
pages 1–30, 2014. 51, 57

[35] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun Kim, Anthony D.
Nguyen, Yen-Kuang Chen, and Pradeep Dubey. Cache-conscious frequent pattern mining
on modern and emerging processors. VLDB J., 16(1) :77–96, 2007. 18, 23

[36] Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. Exploiting constraint-like data characteri-
zations in query optimization. In SIGMOD Conference, 2001. 60

[37] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Algorithms and analyses for maximal vector
computation. VLDB Journal, 16(1), 2007. 73, 74

[38] K. Gouda and M. Zaki. GenMax : An efficient algorithm for mining maximal frequent itemsets.
DMKD Journal, 11(3), 2005. 5, 7, 10

[39] G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using FP-Trees. IEEE
TKDE journal, 17(10), 2005. 5, 7

[40] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Ven-
katrao, Frank Pellow, and Hamid Pirahesh. Data cube : A relational aggregation operator
generalizing group-by, cross-tab, and sub totals. Data Mining and Knowledge Discovery,
1(1) :29–53, 1997. 2, 39, 59

[41] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R.S. Sharm. Discovering
all most specific sentences. ACM TODS journal, 28(2), 2003. 6, 7, 25

[42] Matthias Hagen. Lower bounds for three algorithms for transversal hypergraph generation.
Discrete Applied Mathematics, 157(7) :1460–1469, 2009. 25

[43] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
SIGMOD Conf., 2000. 8

[44] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without can-
didate generation : A frequent pattern tree approach. DMKD, 8(1) :53–87, 2004. 6

[45] N. Hanusse and S. Maabout. A parallel algorithm for computing borders. In Proceedings of
CIKM’11 conference. ACM, 2011. 38, 70

89

Références bibliographiques

[46] N. Hanusse, S. Maabout, and R. Tofan. A view selection algorithm with performance gua-
rantee. In EDBT Conf., 2009. 6, 59

[47] Nicolas Hanusse, Sofian Maabout, and Radu Tofan. Algorithmes pour la sélection de vues à
matérialiser avec garantie de performance. In 5èmes journées francophones sur les Entrepôts
de Données et l’Analyse en ligne (EDA 2009), Montpellier, volume B-5 of RNTI, pages 107–
122, Toulouse, Juin 2009. Cépaduès. 57

[48] Nicolas Hanusse, Sofian Maabout, and Radu Tofan. Revisiting the partial data cube mate-
rialization. In ADBIS conf., 2011. 57

[49] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data cubes
efficiently. In SIGMOD ’96 : Proceedings of the 1996 ACM SIGMOD international conference
on Management of data, pages 205–216, New York, NY, USA, 1996. ACM. 41, 43, 44, 45, 59,
66

[50] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, and Anja Jentzsch anFed lix
Naumann. Scalable discovery of unique column combinations. In Proc. of VLDB conference,
2014. 26

[51] Arvid Heise, Jorge-Arnulfo Quiane-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and Felix Nau-
mann. Scalable discovery of unique column combinations. PVLDB, 7(4) :301–312, 2013.
25

[52] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane : An efficient
algorithm for discovering functional and approximate dependencies. Computer Journal,
42(2) :100–111, 1999. 6, 24, 70

[53] Howard Karloff and Milena Mihail. On the complexity of the view-selection problem. In
PODS ’99 : Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 167–173, New York, NY, USA, 1999. ACM. 43

[54] Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependencies from
relations. Theoretical Computer Science, 149(1) :129–149, 1995. 26

[55] Yannis Kotidis and Nick Roussopoulos. A case for dynamic view management. ACM TODS,
26 :2001, 2001. 44

[56] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.
Journal of ACM, 22(4) :469–476, October 1975. 3

[57] Laks V. S. Lakshmanan, Jian Pei, and Jiawei Han. Quotient cube : How to summarize the
semantics of a data cube. In VLDB, pages 778–789, 2002. 51

[58] Jongwuk Lee and Seung won Hwang. BSkyTree : scalable skyline computation using a balan-
ced pivot selection. In Proc. of EDBT conf., 2010. 73, 75

[59] Jongwuk Lee and Seung won Hwang. Toward efficient multidimensional subspace skyline
computation. VLDB Journal, 23(1) :129–145, 2014. 60, 73, 75

[60] Daniel Lemire, Owen Kaser, and Eduardo Gutarra. Reordering rows for better compression :
Beyond the lexicographic order. ACM Trans. Database Syst., 37(3), 2012. 64

90

Références bibliographiques

[61] Eric Li and Li Liu. Optimization of frequent itemset mining on multiple-core processor. In
VLDB, pages 1275–1285, 2007. 9, 18, 23

[62] Jingni Li, Zohreh Asgharzadeh Talebi, Rada Chirkova, and Yahya Fathi. A formal model for
the problem of view selection for aggregate queries. In ADBIS, pages 125–138, 2005. 59

[63] Xiaolei Li, Jiawei Han, and Hector Gonzalez. High-dimensional olap : A minimal cubing
approach. In VLDB, pages 528–539, 2004. 44

[64] D. Lin and Z. Kedem. Pincer search : A new algorithm for discovering the maximum frequent
set. In EDBT Conf., 1998. 7

[65] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from data -
a review. IEEE Trans. Knowl. Data Eng., 24(2) :251–264, 2012. 25

[66] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional depen-
dencies and armstrong relations. In EDBT Conf., 2000. 6, 70

[67] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional depen-
dencies and armstrong relations. In Proceedings of EDBT conference, pages 350–364. Springer,
2000. 24

[68] Sofian Maabout, Carlos Ordonez, Nicolas Hanusse, and Patrick Kamnang Wanko. Les dépen-
dances fonctionnelles pour l’optimisation des requêtes skyline multi-dimensionnelles. In Actes
de la conférence BDA, 2014. 83

[69] David Maier. The Theory of Relational Databases. Computer Science Press, 1983. 60, 66

[70] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery.
Data Mininig and Knowledge Discovery, 1(3) :241–258, 1997. 2, 5, 6, 70

[71] Heikki Mannila and Kari-Jouko Räihä. Design of Relational Databases. Addison-Wesley, 1992.
26, 60, 66

[72] Muhammed Miah, Gautam Das, Vagelis Hristidis, and Heikki Mannila. Standing out in a
crowd : Selecting attributes for maximum visibility. In ICDE Conf., 2008. 6, 8

[73] Michael D. Morse, Jignesh M. Patel, and H. V. Jagadish. Efficient skyline computation over
low-cardinality domains. In Proceedings of VLDB conf., 2007. 73, 80

[74] S. Nedjar, A. Casali, R. Cicchetti, and L. Lakhal. Emerging cubes : Borders, size estimations
and lossless reductions. Information Systems, 34(6), 2009. 6

[75] Noel Novelli and Rosine Cicchetti. Fun : An efficient algorithm for mining functional and
embedded dependencies. In Proceedings of ICDT conference, volume 1973 of LNCS, pages
189–203. Springer, 2001. 6, 24, 35, 70

[76] OpenMP. www.openmp.org. 16

[77] Wim Le Page. Mining Patterns in Relational Databases. PhD thesis, University of Antwerp,
2009. 31

[78] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database
systems. ACM Trans. Database Syst., 30(1), 2005. 73

91

Références bibliographiques

[79] Odysseas Papapetrou, Wolf Siberski, andWolfgang Nejdl. Cardinality estimation and dynamic
length adaptation for bloom filters. Distributed and Parallel Databases, 28(2-3), 2010. 31

[80] Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. Catching the best views of skyline : A
semantic approach based on decisive subspaces. In Proc. of VLDB conf., 2005. 60, 73

[81] Jian Pei, Yidong Yuan, Xuemin Lin, Wen Jin, Martin Ester, Qing Liu, Wei Wang, Yufei Tao,
Jeffrey Xu Yu, and Qing Zhang. Towards multidimensional subspace skyline analysis. ACM
TODS, 31(4) :1335–1381, 2006. 60, 63, 66, 75

[82] Chedy Raïssi, Jian Pei, and Thomas Kister. Computing closed skycubes. Proc. of VLDB
conf., 2010. 60, 61, 73, 74, 75, 80, 81

[83] Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and Cong Yu. Construc-
ting and exploring composite items. In SIGMOD Conf., 2010. 6, 8

[84] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Jun Xu. Randomized multi-pass
streaming skyline algorithms. In Proceeding of VLDB, 2009. 73

[85] Haichuan Shang and Masaru Kitsuregawa. Skyline operator on anti-correlated distributions.
PVLDB, 6(9), 2013. 74

[86] Cheng Sheng and Yufei Tao. Worst-case i/o-efficient skyline algorithms. ACM Trans. Database
Syst., 37(4), 2012. 73

[87] Amit Shukla, Prasad Deshpande, and Jeffrey Naughton. Materialized view selection for multi-
dimensional datasets. In Proceedings of VLDB conference, pages 488–499. Morgan Kaufmann,
1998. 41, 44, 45

[88] Yannis Sismanis, Paul Brown, Peter J. Haas, and Berthold Reinwald. GORDIAN : Efficient
and scalable discovery of composite keys. In Proc. of VLDB conf., pages 691–702, 2006. 25

[89] Dezhao Song and Jeff Heflin. Domain-independent entity coreference for linking ontology
instances. J. Data and Information Quality, 4(2), 2013. 38

[90] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. Fundamentals of order dependencies. Proc.
of VLDB conf, 2012. 83

[91] Zohreh Asgharzadeh Talebi, Rada Chirkova, Yahya Fathi, and Matthias Stallmann. Exact
and inexact methods for selecting views and indexes for olap performance improvement. In
EDBT, pages 311–322, 2008. 41, 44, 48

[92] W. Wang, J. Feng, H. Lu, and J.X. Yu. Condensed cube : An effective approach to reducing
data cube size. In Proceedings of ICDE conference, pages 155–165. IEEE, 2002. 51

[93] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap indices with efficient
compression. ACM Trans. Database Syst., 31(1), 2006. 64

[94] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. Fastfds : A heuristic-driven,
depth-first algorithm for mining functional dependencies from relation instances. In DaWaK
Conf., 2001. 6, 24

[95] Tian Xia, Donghui Zhang, Zheng Fang, Cindy X. Chen, and Jie Wang. Online subspace
skyline query processing using the compressed skycube. ACM TODS, 37(2), 2012. 60, 73

92

Références bibliographiques

[96] X. Yan and J. Han. gSpan : Graph-based substructure pattern mining. In ICDM Conf., 2002.
23

[97] G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent patterns.
In SIGKDD Conf., 2004. 7

[98] H. Yao and H.J. Hamilton. Mining functional dependencies from data. Data Mining and
Knowledge Discovery, 16(2) :197–219, 2008. 70

[99] Hong Yao and Howard J. Hamilton. Mining functional dependencies from data. Data Min.
Knowl. Discov., 16(2) :197–219, 2008. 24

[100] Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and Qing Zhang. Efficient
computation of the skyline cube. In Proc. of VLDB conf., 2005. 60, 73

[101] X. Zeng, J. Pei, K. Wang, and J. Li. PADS : a simple yet effective pattern-aware dynamic
search method for fast maximal frequent pattern. KAIS Journal, 20(3), 2009. 5, 7, 20, 35

[102] Yihong Zhao, Prasad Deshpande, and Jeffrey F. Naughton. An array-based algorithm for
simultaneous multidimensional aggregates. In Proceedings of SIGMOD conference, pages 159–
170. ACM Press, 1997. 59

93

	1 Introduction Générale
	2 Calcul Parallèle de Bordures et Applications
	2.1 Introduction
	2.2 Basic Concepts Related to MFI's
	2.3 Related Work w.r.t MFI's Mining
	2.4 Basic Definitions
	2.4.1 Pure Depth Traversal

	2.5 MineWithRounds Algorithm
	2.6 Data Distribution
	2.7 MFI's Mining Experiments
	2.7.1 OpenMP
	2.7.2 Machine
	2.7.3 Data sets.
	2.7.4 Results Analysis
	2.7.5 MineWithRounds vs PADS

	2.8 Concluding Remarks on MFI's Computation
	2.9 Parallel Mining of Dependencies
	2.10 Related Work w.r.t Mining Functional Dependencies
	2.11 Basic Definition w.r.t Dependencies
	2.11.1 Functional dependencies
	2.11.2 Keys
	2.11.3 Conditional Functional Dependencies
	2.11.4 Problems statement

	2.12 Mining Minimal Keys
	2.13 Mining Functional Dependencies
	2.13.1 Distinct Values Approximation

	2.14 Mining Conditional Functional Dependencies
	2.15 Dependencies Mining Experiments
	2.15.1 Exact FDs
	2.15.2 Approximating FDs

	2.16 Conclusion

	3 Optimisation des requêtes dans les cubes de données
	3.1 Preliminaries
	3.1.1 Problem Statement
	3.1.2 Related Work

	3.2 PickBorders
	3.3 Workload optimization
	3.3.1 View Selection as Minimal Weighted Vertex Cover
	3.3.2 Exact Solution
	3.3.3 Approximate Solution
	3.3.4 Reducing the Search Graph

	3.4 Dynamic Maintenance
	3.4.1 Stability

	3.5 Some Connections with Functional Dependencies
	3.6 Experiments
	3.6.1 Cost and memory
	3.6.2 Performance factor
	3.6.3 Stability Analysis

	3.7 Conclusion and Future Work

	4 Optimisation des requêtes skyline
	4.1 Introduction
	4.2 Preliminaries
	4.3 Partial Materialization of Skycubes
	4.3.1 Properties of Subspace Skylines
	4.3.2 The Interplay Between FDs and Skylines
	4.3.3 Analysis of the number of closed subspaces
	4.3.4 Skyline size analysis
	4.3.5 Data Dynamics
	4.3.6 Computing the Closed Subspaces

	4.4 Query evaluation
	4.4.1 Full Materialization

	4.5 Related Work
	4.6 Experiments
	4.6.1 Full Skycube Materialization
	4.6.2 Storage Space Analysis
	4.6.3 Query Evaluation

	4.7 Conclusion and Future Work

	5 Conclusion générale
	Références bibliographiques

