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English. <NNT : 2015GREAT126>. <tel-01278177>

HAL Id: tel-01278177

https://tel.archives-ouvertes.fr/tel-01278177

Submitted on 23 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract: The amount of raw data produced by everything from our mobile phones, tablets,
computers to our smart watches brings novel challenges in data storage and analysis. Many
solutions have arisen in the industry to treat these large quantities of raw data, the most
popular being the MapReduce framework. However, while the deployment complexity of such
computing systems is steadily increasing, continuous availability and fast response times are
still the expected norm. Furthermore, with the advent of virtualization and cloud solutions,
the environments where these systems need to run is becoming more and more dynamic.
Therefore ensuring performance and dependability constraints of a MapReduce service still
poses significant challenges. In this thesis we address this problematic of guaranteeing the
performance and availability of MapReduce based cloud services, taking an approach based
on control theory. We develop the first dynamic models of a MapReduce service running a
concurrent workload. Furthermore, we develop several coarse-grained control laws to ensure
different quality of service objectives. First, classical feedback and feedforward controllers are
developed to guarantee service performance. To further adapt our controllers to the cloud,
such as minimizing the number of reconfigurations and costs, a novel event-based control
architecture is introduced for performance management. Finally we develop the optimal
control architecture MR-Ctrl, which is the first solution to provide guarantees in terms of
both performance and dependability for MapReduce systems, meanwhile keeping cost at a
minimum. All the modeling and control approaches are evaluated both in simulation and
with the use of MRBS, a comprehensive benchmark suite for evaluating the performance and
dependability of MapReduce systems. Validation experiments were run in a real 60 node
Hadoop MapReduce cluster, running a data intensive Business Intelligence workload. Our
experiments show that the proposed techniques can successfully guarantee performance and
dependability constraints.

Keywords: Modeling; Control; MapReduce; Performance; Dependability; Feedback;
Feedfoward; Optimal;
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Chapter 1

Introduction

1.1 General context

We are at the dawn of a data and computing revolution. The amount of raw data produced
by everything from our mobile phones, tablets, computers to our smart watches is increas-
ing exponentially. As a result companies face novel and growing challenges in data storage
and analysis. The sheer amount of data available is asking for a shift of perspective from
the traditional database approaches to platforms capable of handling petabytes of unstruc-
tured information available for tasks such personalized advertising, advanced data mining or
classification.

One of the most popular of such current platforms is the MapReduce framework which
is one of the currently most utilised programming paradigms in use for parallel, distributed
computations over large amounts of data. Nowadays MapReduce is backed by the largest
BigData industry leaders such as Google, Yahoo, Facebook and Amazon. For example, Google
has more than 100.000 MapReduce jobs executed every day [20] , Yahoo has more the 40.000
computers running MapReduce jobs, Linkedin evaluates around 120 billion relationships per
day [69] using MapReduce while, Facebooks largest Hadoop MapReduce contains more than
a 100 petabytes of data.

At the same time cloud computing, the next milestone of IT evolution, is becoming a
more and more attractive option for many companies. Its promise of "unlimited" storage
and processing capabilities together with its pay as you go approach is proving an enticing
solution. It allows easy access to a group of shared computing resources in the form of an
internet service. These computing resources can vary from hardware, platform, software to
storage. Therefore customers can start up with low cost computing profile and easily scale
up or down as necessary as their business evolves. Nevertheless, while current state of the
art commercial MapReduce services such as Amazon EMR [5] and Microsoft HDInsight [48]
offer solutions for quick and cost-effective data processing they don’t provide any guarantees
in terms of application performance and dependability. While elasticity mechanism are given,
they are not completely automatic and several important scaling decisions, such as selecting
the scaling thresholds, are left up to the service user.

Moreover, resource provisioning for deadline management in the cloud is further made
difficult because of the shared hardware resource architecture, where interference and concur-
rency issues may arise frequently and workloads fluctuate over time. Furthermore, as cloud

1



2 Chapter 1. Introduction

providers desire to maximise the resource utilisation, they have mechanisms for the dynamic
reallocation of unused resources which further adds to the variability of system performance.
So even with the same workload and resource amount, an application performance may vary
depending on how noisy neighbouring applications are. In the meantime, for most businesses
of course, missing deadlines, results in financial losses. In some cases the service unavailability
may costs up to 100.000$ per minute, as is the case of an on-line brokerage industry [23].

Meanwhile, ensuring performance and dependability of MapReduce systems is not trivial.
Although the framework hides the complexities of parallelism from the service users, deploy-
ing an efficient MapReduce implementation poses multiple challenges. MapReduce’s ad-hoc

configuration and provisioning require a high level of expertise to tune [81]. Furthermore

many factors have been identified that negatively influence the performance of MapReduce

jobs: CPU, input/output and network skews [73], hardware and software failures [64], node

homogeneity assumption not holding up [87], and bursty workloads [18].

As results lots of research is being done in the computing community on improving the

performance, availability of complex computing systems such as MapReduce. Extensive re-

search has been conducted already to improve dependability or performance of MapReduce

[12, 11, 88] by changing the behaviour and algorithms of the MapReduce framework itself.

Although these solutions improve upon how MapReduce works no guarantees are provided in

term of performance and availability. Although several solutions for performance modelling

[77, 74, 39] and control [15, 76] can be found in the literature, there are no works to pro-

vide concurrent guarantees in terms of both dependability and performance for a concurrent

workload. Furthermore, there are still many unanswered questions. Such as how to use the

classical techniques to guarantee performance to provide on-line assurances when the systems

are designed with only partial knowledge of their runtime environment? Because of the unpre-

dictability of the new environments, traditional adaptation approaches become increasingly

difficult to use. Therefore more and more attention is given to approaches used in different

fields for tackling complex systems.

The most prominent of these are the feedback control solutions coming from the field of

control theory [32, 54], which has been providing answers to these questions for physical sys-

tems for several decades now. The advantages of control theory are that it can provide a solid

mathematical basis for synthesizing feedback control loops, for handling safely complexity and

for having theoretically guaranteed results. However, applying control theory to computing

systems is not straight forward. Contrary to physical systems there are no physics governing

algorithms, software. How do we use the classical techniques to build models of MapReduce

cloud systems? What do we measure? How do we chose our actuators? How to manage the

trade-off between performance, dependability and cost? These are just a few of the questions

that are still not fully addressed [25].
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1.2 Thesis contributions

The principle contributions of the thesis are the modelling and control of the performance
and dependability of MapReduce cloud software systems. In the following a summary of these
results is presented.
The main theoretical results of the thesis are the following:

1. The first contribution of the thesis is the design, implementation and validation of the
first models that can capture the dynamic performance and availability of a MapReduce
cluster running a data intensive, concurrent workload.

2. The second contribution is the design, implementation and evaluation of multiple control
laws capable of ensuring the performance and the availability of a MapReduce cluster.
First, a control architecture is developed that can guarantee the MapReduce performance
through cluster scaling, based on a classical time based PI and feedforward controllers.
We further improve upon the previous time based control architecture by adapting it to
the cloud scenario through event-based control techniques. Finally, the optimal control
framework called MR-Ctrl is introduced, that can guarantee at the same time both
performance and availability of a MapReduce service, while explicitly minimising control
costs.

The main technical result of the thesis is the construction of experimental environ-
ment that allows for the easy development and testing of different modeling and control
strategies of a real MapReduce service, from any local computer running Matlab. This
involved the writing all of the low level actuator and sensor scripts, the communication
interface between Matlab and the remote MapReduce cluster. Moreover, an automatic experi-
ment deployment framework was implemented that allows for unsupervised experimental runs.

Publication list:

• International conference papers:

– “Application du contrôle pour garantir la performance des systèmes Big Data“ M.

Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, B. Robu. Conférence en

Parallélisme, Architecture et Système (ComPAS) 2014, Neuchâtel, Switzerland,

April 22-25, 2014

– “A Control Approach for Performance of Big Data Systems”.

M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand and B. Robu.

Proc. of the 19th World Congress of the International Federation of Automatic

Control, IFAC 2014, Cape-Town, South Africa, August 24-29, 2014. pp 152-157

• Journal papers:

– “Feedback Autonomic Provisioning for Guaranteeing Performance in MapReduce

Systems”.M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand and B. Robu.

IEEE Transactions on Cloud Computing (accepted)
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1.3 Thesis outline

This thesis is organised in six main parts. The first chapter presents the context and the
thesis contributions. The second chapter contains an introduction to the concepts utilised
in the manuscript. The third chapter is dedicated to establishing the context of our work
through a detailed analysis of the speciality literature. The fourth chapter details our
motivations and the objectives of the thesis are defined. The fifth chapter presents our
proposed dynamic models for the performance and/or availability of MapReduce systems.
The control architectures developed to ensure the performance and availability of MapReduce
systems are described in Chapter six. Chapter seven contains the experimental evaluation
of all the presented modelling and control solutions. Finally, Chapter eight draws the
conclusions and presents our ideas for future work.

In the following a short description of each chapter is provided.

Chapter 1 - Introduction presents the context of our work and the thesis contributions.

Chapter 2 - Background and Definitions contains the background of the control the-
oretical and computing concepts required for the understanding of the manuscript. First we
introduce the utilised computing technologies such as Cloud computing, MapReduce, Hadoop
and MRBS. To bridge the on-line adaptation methods traditionally used in computer science
and control engineering, a detailed comparison of the MAPE-k and feedback loop is pre-
sented. In addition, the control theoretical concepts used in this thesis are shortly presented
to facilitate the readability by those with a computer science background.

Chapter 3 - Related work. In this chapter we take a thorough look at the related
work to determine the current challenges and limitations in the modelling, performance and
dependability control of cloud systems, with a special focus on the MapReduce framework.
At first, a broader view of the issues regarding the performance control of cloud services is
presented. Then, we focus on the state of the art methods for the performance modelling
and control of MapReduce systems. We also take into account the large research effort in
improving the performance and dependability of MapReduce systems. In addition, a brief
overview of the existing MapReduce benchmarking and simulation approaches is presented
as well. We also consider the state of feedback control usage in case of computing systems.
Finally, the challenges and limitations of existing approaches is discussed and the open issues
are highlighted.

Chapter 4 - Motivation and Objectives. This chapter deals with the motivations of
our work. We provide a detailed analysis of current consumer concerns with cloud systems and
examine the effects of workload variations on the performance and availability of a MapReduce
cluster. Moreover, the effects of possible corrective control knobs, such as cluster scaling and
admission control, are experimentally evaluated as well. Finally, concluding on the context
and motivations part of the thesis, the objectives are defined.
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Chapter 5 - MapReduce Performance and Availability Modelling gathers the
steps taken to model the dynamic behaviour of a MapReduce cluster. In the beginning, we
introduce a methodology for assigning a measurable dynamics to such software systems and
we perform a preliminary analysis of MapReduce dynamics. Based on the previous analysis
we propose a general performance and dependability model structure for MapReduce systems.
Furthermore, we gradually explain the techniques used to identify the relationships between
each model input and output. First, a performance model that captures the connection be-
tween the cluster, workload sizes and the average runtime is developed. Second, the correlation
between availability and the max clients level is presented. The two previous models are com-
bined and the general multi-input, multi-output (MIMO) model of the MapReduce system
is proposed. Finally, we present the off-line and on-line methodologies used to identify the

parameters of the developed models.

Chapter 6 - Control of MapReduce Performance and Availability. In this chapter

the on-line control algorithms for ensuring a MapReduce clusters performance and dependabil-

ity are developed. First, a control architecture that ensures MapReduce performance through

cluster scaling, based on a classical, time based PI and feedforward controllers, is introduced.

Following this, we further adapt the previous time based control architecture to the cloud

environment through event-based techniques by elaborating an event-based PI and feedfor-

ward control architecture. Finally, the optimal control framework MR-Ctrl is presented, that

ensures at the same time both the performance and availability of a MapReduce service,

meanwhile explicitly minimising control costs.

Chapter 7 - Experimental Results. The MapReduce dynamic models developed in

Chapter 5 and on-line control algorithms elaborated in Chapter 6 are evaluated in this chapter.

First, a detailed presentation of the developed experimental setup, where all the validation

experiments have been run, is given. Second, using this testbed, we experimentally validate the

models developed in Chapter 5. Finally, we provide the numeric and experimental evaluation

of the control algorithms elaborated in Chapter 6.

Chapter 8 - Conclusions and perspectives. The chapter rounds up our work, by

drawing the conclusions and detailing the perspectives for mid-term and long-term future

works.





Chapter 2

Background and Definitions

Contents
2.1 Cloud computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Service Level Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 The MapReduce Benchmark Suite (MRBS) . . . . . . . . . . . . . . . 10

2.5 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 MAPE-k loop vs Feedback control loop . . . . . . . . . . . . . . . . . . 12

2.7 Background on control theory for application to computing systems 13

2.7.1 White-box vs Black-box modeling . . . . . . . . . . . . . . . . . . . . . . 13

2.7.2 Discrete time signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.3 Difference equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7.4 Z transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7.5 Discrete time transfer function . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.6 First order plus dead-time models - FOPDT . . . . . . . . . . . . . . . . . 17

2.7.7 Linear vs Non-linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.8 System stability, performance and robustness . . . . . . . . . . . . . . . . 18

This chapter presents the necessary background for the understanding of this manuscript.
First the utilised computing technologies, such as Cloud computing, MapReduce, Hadoop
and MRBS, are introduced. Then we perform a detailed comparison between the MAPE-
k and feedback loops, the on-line adaptation mechanism used in software engineering and
respectively control theoretic domains. Finally, a short introduction into the control theoretical
concepts used in the manuscript is given, to facilitate the understanding of the document by
those without a control theoretical background.

2.1 Cloud computing

Cloud Computing is the next milestone of IT evolution. It allows easy access to a group of
shared computing resources in the form of an internet service. These computing resources
can vary from hardware, platform, software to storage. The service comes with metering
capabilities and it is built upon the pay as you go model. Therefore customers can start up

7



8 Chapter 2. Background and Definitions

with a low cost computing profile and easily scale up or down when necessary, as their business
evolves. This rapid elasticity (scalability) is one of the key advantages of Cloud computing.

Cloud services can be classified into three categories based on the level of abstraction
offered:

1. Infrastructure as a service (IaaS) is the most wide spread service model at the moment and

it consists of the offer of computers (physical or virtual) as a service, for example Amazon

EC2, Google Compute Engine, Windows Azure Virtual Machines.

2. Platform as a service (PaaS) models offer a complete computing framework such as pro-

gramming models and languages, operating systems. The key advantage here being that

users of this platform don’t have to worry about buying, maintaining the necessary hard-

ware, software layers for these frameworks. Many companies already offer such services for

example the Google App Engine, Amazon Elastic Beanstalk.

3. Software as a service (SaaS) provides an environment for running end user applications in

the cloud, for example Google Apps, Microsoft Office 365.

2.2 Service Level Agreements

Service Level Agreements (SLAs) are also a relatively a fresh area of research in cloud systems,

see [16, 27, 66]. SLA is a contract negotiated between clients and their service provider [20],

where service performance is part of the agreement. The SLA can specify service level objec-

tives (SLOs) such as the maximum response time to be guaranteed by the provider. Although

current cloud solutions do not provide guarantees regarding service performance and depend-

ability, we believe that more and more customers will be interested on having such guarantees

and that those service level providers that can supply them, will gain a competitive advan-

tage. For more details about this issue see European projects such as the MyCloud European

project [58] or HARNESS [57], which propose PAAS services that provision themselves based

on SLA.

2.3 MapReduce

The main objectives of Big Data Clouds are to capture, store, analyse and manipulate large

and complex amounts of unstructured data. MapReduce is one of the currently most used pro-

gramming paradigms developed for parallel, distributed computations over large amounts of

data. The MapReduce programming paradigm was introduced by J. Dean and S. Ghemawat,

from Google, in 2004 for large scale unstructured data processing. It has a wide range of

applicability, ranging from log analysis, data mining, web search engines, scientific computing

to business intelligence.
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One of the most important paradigm shifts introduced by MapReduce is to take the com-
putation to the data, instead of transferring the data to the computing nodes. Its success
also lies in its simplicity, scalability and fault-tolerance. Fault tolerance was a highly impor-
tant factor in the design of MapReduce, as the cluster of computers on which MapReduce
is deployed is usually made up of cheap commodity computers, instead of dedicated servers.
Furthermore, the framework automatically takes care of data partitioning, consistency, repli-
cation, task distribution, scheduling and load balancing. Therefore when designing a new job,
the programmer’s focus can be on the task at hand and not on worrying about the messy
overhead associated with most of the other parallel processing algorithms. When designing a
MapReduce job, the developer has to implement only two functions: the Map function and
the Reduce function, which leaves much less room for programming errors as well.

As we can see in Figure 2.1 MapReduce’s initial implementation is based on a master-
slave architecture. The central controller is made up of the JobTracker and is in charge of
task scheduling, monitoring and resource management. The slaves in this architecture are
the TaskTrackers. They are in charge of starting and monitoring local mapper and reducer
processes and regularly reporting to the JobTracker. The input data is automatically parti-
tioned into smaller data chunks and each of these is processed in parallel by a Mapper. The
intermediate data produced by the mapping stage is grouped together and the final output to
the query is produced in reduce stage.

Master Node

JobTracker

NameNode

Slave Node

Map

Reduce

Data Blocks

TaskTracker

DataNode

Slave Node

Map

Reduce

Data Blocks

TaskTracker

DataNode

Slave Node

Map

Reduce

Data Blocks

TaskTracker

DataNode

Figure 2.1: MapReduce Architecture (Hadoop 1st version)

To get a better understanding of how MapReduce works a simple example is solved in detail
in Figure 2.2. Our task is to count the occurrence of each word in a file. First the framework



10 Chapter 2. Background and Definitions

splits up the file line by line and each line is sent to a different computing node called Mapper.

Each of these Mappers processes their line in parallel and for each word a <key,value> pair

is generated. In our case the key is the word itself and the value assigned is always 1. In the

shuffling phase the <key,value> pairs are grouped together at the reducers, based on their

respective keys. Namely, every occurrence of the word is transferred to a node that simply

sums up the values associated to the same keys. Which in fact gives us the occurrence number

of the word. The most used open source implementation of the MapReduce programming
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Figure 2.2: MapReduce word count example

model is Hadoop [31]. It is composed of the Hadoop kernel, the Hadoop Distributed Filesystem

(HDFS) and the MapReduce engine. Hadoop’s HDFS and MapReduce components originally

derived from Google’s MapReduce and Google’s File System [20]. HDFS provides the reliable

distributed data storage and the MapReduce engine provides the framework to efficiently

analyse this data [82].

2.4 The MapReduce Benchmark Suite (MRBS)

MRBS is a performance and dependability benchmark suite for MapReduce systems [64]. As

shown in Figure 2.3, MRBS can emulate several types of workloads and inject different fault

types into a MapReduce system. The workloads emulated by MRBS are designed to cover

five application domains: recommendation systems, business intelligence (BI), bioinformatics,

text processing and data mining. These workloads were selected to represent a range of loads,

from the compute-intensive (e.g. recommendation systems) to the data-intensive (e.g. business

intelligence - BI) workload. One of the strong suits of MRBS is to emulate client interactions

(CIs), which may consist of one or more MapReduce jobs. These jobs are the examples of

what may be a typical client interaction within a real deployment of a MapReduce system.

MRBS and Hadoop constitute a "partly-open" [65] interactive system. New clients can arrive
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at any time like in open systems. However, the system behaves as a closed system for the
clients that are already connected. Namely, clients send a job to the JobTracker and then wait
for the job to be finished, before submitting a new job. One job can contain multiple request.
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Figure 2.3: MRBS architecture

2.5 Definitions

Workload is defined as the number of clients (C) that are concurrently sending requests to
JobTracker.

Cluster size (N) is defined as the number of processing nodes available for the framework.

Admission control is a classical technique to prevent server thrashing. In the MapReduce
case it consists of limiting the maximum number of client request (MC), that are accepted
by the central controller. This limit is put in place to ensure that all the accepted request
have enough resources to run correctly.

Service performance is defined as the average time (yrt) needed to process a re-
quest in certain time window. Low client response time is desirable as it reflects a reactive
system.
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yrt[s] = avg(yrt1 , yrt2 , ..., yrtN ) (2.1)

yrt is recalculated every 30 seconds, using a sliding window. For our experiments, the size of
this window (T ) is defined to be 15 minutes.

Service availability refers to the accessibility of the system to users per unit of time.
MapReduce is available if the user requests are accepted at the time of their submission.
Availability is instantaneous and concentrates on the fraction of time where the system is
operational in the sense of being accessible to the end user. Availability (yav) is measured as
the ratio of accepted MapReduce client requests to the total number of requests, during a
period of time.

yav[
%

T
] =

NSuccessfulJobs

NSuccessfulJobs +NRejectedJobs

∗ 100 (2.2)

T here is the previously defined sliding time window size, that is used to assign a measurable
dynamics to the system.

2.6 MAPE-k loop vs Feedback control loop

Adaptation is considered an essential capability of many computing systems. Dynamic adap-
tation techniques have been studied by many different communities. In computer science one
of the most used approach to dynamic adaptation is by means of a Monitor-Analyse-Plan-
Execute-Knowledge (MAPE-k) adaptation loop.

Managing system

Target system

Environment

Monitor

Analyze Plan

ExecuteKnowledge

Adaptive software

Figure 2.4: MAPE-k adaptation loop

Figure 2.4 shows the primary elements of an adaptive system following the MAPE-k structure.
The target system is the system that we wish to control. It interacts with the environment
and provides a service to the users. The monitoring component uses sensors to probe both
the target system and its environment. This is done in order to build and maintain a model of
the system in the knowledge. The analyze component decides whether adaptation is required
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or not. If it is necessary, the plan component provides a plan with adaptation actions that
the execute component will apply to the target system through the effectors.

Although this structure has been extensively studied in the literature, there are still several
unsolved challenges. One such important question is how to provide assurances for software
systems in uncertain environments, which is particularly challenging given the fact that sys-
tems have to be designed with partial knowledge and it is up to the runtime mechanisms to
provide assurances. Applying classic techniques for providing such assurances (e.g. model
checking) has proven difficult, therefore there is a clear need for new approaches to the engi-
neering of adaptive software systems. One the most promising of these being control theory,
which is a mature discipline that can provide a solid mathematical basis for synthesizing
feedback control loops.

Control

Input

Measured

output

Control

Error
Controller

Desired

Output

External

Disturbance

Computing

System

Figure 2.5: Feedback control loop

Figure 2.5 shows the primary elements of a feedback control system based on the principles
of control theory. In control theory the adaptation process described in the MAPE-k loop
case is called control, while adaptation refers to an adaptive controller. Namely, the feedback
mechanism itself is subject to adaptation. If we compare Figure 2.4 and Figure 2.5, we can
easily see that the target system in case of MAPE-k loop corresponds to the Computing
System, while the managing system to the Controller. The model of the managed system in
the MAPE-k loop is normally based on architectural concepts. In control-based adaptation
on the other hand we usually have a mathematical model of the system (e.g. a differential
equation). Furthermore, in feedback control, sensors are used to track the Measured Output,
which is then compared to the Desired Output, resulting in the Control Error. The error is
used by Controller to calculate the Control Input, that adapts the Computing System via
actuators (also called knobs). The goal of a Controller is to minimise the Control Error.

2.7 Background on control theory for application to computing

systems

2.7.1 White-box vs Black-box modeling

White-box models are based on the detailed modeling of the systems internal processes.
However, in case of software systems, where there are no physical laws behind algorithms,
such models are difficult to achieve and may become too complex for practical use.
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In black-box modeling no assumptions are made regarding the internal structure and
inner workings of the system. The model of the system is build by fitting a chosen model
structure to experimental data. The general steps of building a black-box model are the
following:

Step.1 Run exploratory experiments to form an initial idea about what the model structure
should be. For example, one can see if the system responds linearly or non-linearly to
input changes.

Step.2 Based on the experimental data, select the appropriate model structure and operating
point.

Step.3 Design experiments to collect the dataset for the model fitting. During these experi-
ments vary the inputs and measure the responses of the system. Care must be taken,
that this changes uniformly cover all the input space, to avoid estimation bias. More-
over, as a general rule, the input signal should vary both in terms of amplitude and in
terms of frequency.

Step.4 Collect the training data from the previous experiments, which consist of a set of
input-output measurements.

Step.5 Run a parametric estimation algorithm to determine the model parameters.

For more information on black-box modelling please see [9], [41].

2.7.2 Discrete time signal

A signal is a concise way to describe a system characteristic that changes its value over time.
In other words, a signal captures the evolution of a system variable over time. Signals can
be deterministic or stochastic. For computing systems we can define several such signals of
interest. For example response time, availability, throughput and cost.
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Figure 2.6: Fixed interval sampling of a continuous signal
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In classical control theory we generally deal with deterministic discrete time signals defined
as y[k ·T ] : Z→ Z. By discrete, we mean that the signal is not measured at each time instant.
Instead, as shown in Figure 2.6, the signal is sampled at every kth multiple of a selected fixed
sampling period (Ts). The end result of this sampling is a sequence of signal values ordered in
time. There are several algorithms that provide formulas to calculate the size of Ts in order
to accurately capture the information of the continuous signal [9].

2.7.3 Difference equations

While in case of continuous, physical systems the dynamics of the system is usually captured
through differential equations, discrete systems are best modelled through difference equations.
As there are no physical laws that govern how a software system is run, difference equations
are generally preferable to differential ones.

Difference equations capture the effects of the system inputs on the outputs at discrete
time intervals in time. Equation (2.3) presents a simple recursive difference equation that
models, for example, the response time y(k) dynamics of system. In this simple case the
predicted response time depends on the current client count u(k) and the previous response
time y(k − 1), client count u(k − 1) values:

y(k) = a · y(k − 1) + b1 · u(k − 1) + b2 · u(k) (2.3)

where k ∈ Z here represents the index of the sample and a, b1, b2 ∈ R are called the model
parameters.

2.7.4 Z transform

Z transform is a powerful mathematical tool to encode discrete time signals. It provides a
compact way to write difference equations summing up the relation of the current signal
value with past signal values. It is used to transform a discrete signal from the time do-
main into the frequency domain, where mathematical manipulation of the signals is simplified.

Instead of listing all the discrete signal values for each past k time instants, like given
below

< y(k −∞), y(k − 1), y(k) >

we capture the information in a more compact form. Namely, as a sum of these previous
values, using the following Z transform definition

y(z) =

∞∑

0

z−ky(k)

where y(z) is called the Z transform of y(k).
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To get a better intuition behind the method, let us consider z−1 a delay operator,
which denotes a delay of one sampling period of a signal. For example if we note the value
of a signal at time instance k as y(k), then y(k − d) = z−d · y(k) denotes the signal value d

sampling instances before.

Now let us consider the simple recursive difference equation given in Equation (2.3)
that describes the dynamics of system response time y(k). Using the delay operator z−1, the
Z transform of the model is:

y(z) = a · z−1 · y(z) + b1 · z
−1 · u(z) + b2 · u(z)

which is equivalent with

(1− a · z−1) · y(z) = (b1 · z
−1 + b2) · u(z)

Furthermore, if we multiply by z everywhere we get

(z − a) · y(z) = (b1 + b2 · z) · u(z)

and finally solving for y(z)

y(z) =
b2 · z + b1

z − a
· u(z) (2.4)

Although the recursive form in Equation (2.3) and this latter Z transform formula-
tions in Equation (2.4) are equivalent, the latter can be used to derive information concerning
stability, settling times and especially for controller design.

2.7.5 Discrete time transfer function

In control theory a transfer function is a compact mathematical form of describing the effects
of system inputs on its outputs. It captures how the output of the system is influenced
by previous output and input signals. A discrete time transfer function is a mathematical
representation of the system dynamics and is calculated by dividing the Z transforms of the
output Y (z) and the input signals U(z):

G(z) =
Y (z)

U(z)

If we take the previous example, given in Equation (2.4) and divide both side with u(z) we
arrive to the discrete time transfer function of the system presented in Equation (2.5):

y(z)

u(z)
=

b2 · z + b1

z − a
(2.5)

which captures how the effects of client changes u(z) affect the response time y(z) .
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2.7.6 First order plus dead-time models - FOPDT

FOPDT models are fist order models that are commonly used to model systems with a delay
in input actuation . The transfer function of such a model has the following structure:

G(z) = z−τ
b

(z + a)
(2.6)

This delay τ means that the a change in the input signal can be observed on the output
signal only after this actuation delay passes. In such a discrete form, τ is always defined as a
multiple of the sampling period T . Using the properties of Z transform, Equation (2.6) can
be transformed into the linear different equation form given in Equation (2.7):

y(k) = −a · y(k − 1) + b · u(k − τ) (2.7)

2.7.7 Linear vs Non-linear Systems

All the systems of which output changes linearly in response to a linearly changing input and
of which parameters do not change over time are called Linear Time Invariant (LTI) systems.
Taking a more formal look at it, a system with transfer function G is called LTI if it satisfies
the following two relations:

• The superposition principle: if we have two input signals u1, u2 and the transfer function
G, the following relationship always holds.

G(a1 · u1(k) + a2 · u2(k)) = a1 ·G(u1(k)) + a2 ·G(u2(k))

• Time invariance: the output of the system does not explicitly depend on time.

For example, it easy to check that Equation (2.3) is a LTI system. Its output does not
depend on time and its transfer function, given in Equation (2.4), satisfies the superposition
principle.

To give an example of a time varying system let us modify Equation (2.3) into the
following equation:

y(k) = a · k · y(k − 1) + b1 · u(k − 1) + b2 · u(k)

We can clearly see that in this case the output behaviour depends on the time instant k as
well, therefore it is not time invariant.

Systems that have a non-linear response to a linearly changing input are called non-
linear systems. As an example we can rewrite Equation (2.3) in order to have a non-linear
(second order) relation between the client count and the response time:

y(k) = y(k − 1) + u(k − 1)2 + u(k)

We can see that although, the system is time invariant, it does not uphold the superposition
principle.
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2.7.8 System stability, performance and robustness

System stability is the most important property of any control system. Intuitively, a system
is called stable if for any bounded input the output of the system also remains bounded. This
definition implies that if our input is between certain limits, then in case of stable systems,
our output will also be limited and not grow uncontrollably.

The advantage of the transfer function formulation, given in Equation (2.5), is that we
can infer system stability, by simply calculating the roots of the denominator polynomial
z − a. If the magnitude of all the roots is strictly less then 1, then the system is stable.

In control theory, when we speak of system performance, we think of how fast a system
can follow a reference output trajectory or suppress the effect of any disturbances. While,
robustness is the measure of how well the control system handles modeling uncertainties and
changes in the system dynamics or in the environment.



Chapter 3

Related Work

Contents

3.1 Guaranteeing Performance in the Cloud . . . . . . . . . . . . . . . . . 19

3.2 Mapreduce performance modelling . . . . . . . . . . . . . . . . . . . . . 20

3.3 Controlling MapReduce Performance . . . . . . . . . . . . . . . . . . . 22

3.4 Improving the MapReduce Framework . . . . . . . . . . . . . . . . . . 22

3.5 MapReduce Benchmarking and Simulation . . . . . . . . . . . . . . . . 24

3.6 Feedback Control of Computing Systems . . . . . . . . . . . . . . . . . 24

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

In this chapter we analyse the speciality literature to determine the current challenges
in modelling and controlling the performance and dependability of cloud systems, taking a
special look at our selected use case in the MapReduce framework. First in Section 3.1 we take
a general look at the current issues regarding the performance control of cloud services. Then,
a detailed overview of the state of the art methods for performance modeling, Section 3.2,
and control, Section 3.3, of MapReduce systems is given. In Section 3.4 we emphasise that
there is a large research effort in improving the performance and dependability of MapReduce
systems by refining how the framework and its algorithms work. Through this chapter we
desire to clearly differentiate our work from these, highlighting that in our case control means
the change of only the configuration of the system and not its governing mechanisms. An other
thing to note here although many solutions have been proposed to improve the dependability
of a MapReduce framework, guaranteeing application level dependability of a MapReduce
service has hardly been addressed in the speciality literature. Furthermore, we provide a brief
overview of the existing MapReduce benchmarking and simulation approaches in Section 3.5.
In addition, in Section 3.6 we take a general look at the state of feedback control usage in case
of computing systems. Finally, Section 3.7 discusses the limitations of existing approaches
and the open issues.

3.1 Guaranteeing Performance in the Cloud

The question of provisioning for performance guaranties has been addressed many times in the
HPC, Grid and Database communities. Our work differentiates itself in several aspects. First
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of all we present a novel method that enables the simplified, automatic modelling of complex
computing systems. We chose MapReduce systems as our test case because it is a highly
dynamic system in both data quantity, richness and in terms of its processing needs and it is
one of the most popular current architectures for distributed data processing. Furthermore,
we develop on-line control techniques that don’t require complex tuning and that contrary
to existing heuristic approaches, can provide mathematically proven guaranteed performance.
Moreover, our approach is non-intrusive as it does not modify the framework. In addition,
the developed techniques are sufficiently general to be applicable to a wide variety of cloud
systems.

Current approaches to ensure performance in cloud systems can be separated into 4 cate-
gories: static, reactive, predictive and hybrid approaches.

i. Static deployments [75] are the standard in the industry and usually tuned based on the
application peak demand and are generally make use of over-provisioning.

ii. Reactive approaches look at a certain output metrics, such as the current CPU utilisation,
request rate, response time and add/remove servers as necessary [49, 4]. Reactive tech-
niques are also offered by some public cloud providers, such as the Amazon Auto Scaler
[6]. This provides the basic mechanisms for reactive controllers based on CPU usage mea-
surements, but it is up to the user to define the static thresholds that trigger the scaling
operations. Because of the simplicity of this mechanism there are several issues that arise
in practice. First of all we think that for data intensive applications CPU is not a suit-
able metric for reconfiguration decisions. Moreover, we know that static shareholding is
not optimal for each application and can lead to oscillations. More advanced reactive
techniques can be observed at AutoScale [26], which uses queueing theoretical analytical
models to decide capacity requirements based on the workload size and advocates for
conservative downscaling to better manage server set-up costs.

iii. Predictive controllers that estimate the future load of a service based on past informations
are also a popular approach. Several such algorithms have been proposed recently and
are based on machine learning [47], Markov and fast Fourier transforms [28] or are using
wavelets to provide predictions [50].

iv. Hybrid techniques combine the advantages of prediction and reaction [3]. Our work falls
into the hybrid control category as we develop a control framework consisting of both
reactive and predictive controllers.

3.2 Mapreduce performance modelling

Many studies have been already performed on how to model the performance the MapReduce
framework. These can be grouped together into two large categories.

Analytical or first principle models are detailed MapReduce models that capture the inner
workings of the different phases of a classical Hadoop MapReduce job execution flow, see [33,
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40, 85]. Vianna et al. [78] propose a hierarchical model that combines a precedence graph with
a queueing network to model the intra-job synchronisation constraints. Some as Jockey [24]
use a simulator that captures the complex interdependencies of a job and makes use of previous
runtime statistics to predict job runtime.

On the opposite side there are the regression and black-box models. These are coarse
grained models that don’t try to capture the specificities of the MapReduce framework but
instead build upon job profiling, namely predicting the response time of future jobs based on
past experience or exploratory runs. In the latter case the model parameters are generally
found by running the job on smaller set of the input data and using regression techniques to
identify model parameters. The differences between these regressive approaches lies mostly in
the components used to set up the regressive model. Some authors develop statistical models
made of several performance invariants such as the average, maximum and minimum run times
of the different job cycles [77, 83].

Because as most MapReduce jobs are batch jobs that are run frequently, some propose
building a profile database [77] to predict job runtime. This consists of a MYSQL database
used to store past profiles of jobs and when the system has to execute a recurrent job the only
thing needed is to search for the job profile in the database. They also further extend upon
their initial invariants based model to include the effect of a single worker failure on the job
performance and define upper and lower bounds for MapReduce jobs which can then be used
for provisioning. Jin [36] suggests a stochastic performance model based on queuing theory to
determine the best and worst case performances of MapReduce jobs in the presence of faults
in the Map phase. Rizvandi [61] uses third order polynomials to predict the network load a
MapReduce job. Others employ a static linear model that captures the relationship between
job runtime, input data size and the resources allocated for the job [74].

Furthermore there are those who analyse long term traces to classify jobs into several run-
time categories, for example from a 10-months logs of Yahoo’s M45 supercomputing clusters
running MapReduce. They use two separate algorithms for the prediction of service com-
pletion times: a distance-weighted average algorithm and a locally-weighted linear regression
method. The linear regression based method proved to scale better for varying input sizes,
see Kavulya [37]. Primary Component Analysis has been also used to determine the MapRe-
duce/Hadoop components that have the biggest influence on performance of MapReduce jobs
[84]. This approach mixes the non-application specific Hadoop configuration parameters with
the statistical averages collected from the traces of previous job runs. They find, that as
different applications have varying CPU, network bandwidth, data storage requirements, the
use of clustering analysis is advised to group together jobs and build a separate model for
every group to achieve better model performances.

To summarise, the existing models are job level models and therefore cannot capture the
effects of workload variations in a MapReduce cluster. Furthermore these models are static
and don’t capture the dynamics of a MapReduce system. Namely, they capture only steady
state of the system and not what happens during a workload change until the system reaches
its new steady state.
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3.3 Controlling MapReduce Performance

By controlling MapReduce performance we think of the on-line adaptation of frameworks
resources or any of its parameters to achieve the required job deadlines.

SteamEngine [15] introduces an on-line performance and energy optimization algorithm
for MapReduce applications running on virtualised clusters, such as Amazon EC2. It makes
use of both off-line and on-line job profiling to predict the finish time of jobs. The performance
optimization is done by regularly predicting the job finish time and using a simple heuristics
to control the amount of resources available for tasks. Namely, if the predicted finish time, at
any time during the jobs life-cycle is more than the expected finish time, then the algorithm
increases the amount of resources (adds more nodes) through cluster scaling. The cluster
scaling optimization is done only in the map phase, and the earlier it’s done, the better the
improvement will be.

Verma [76] proposes ARIA an automatic resource inference and allocation engine for
MapReduce. ARIA can, at run time, allocate the appropriate resources (slots) to a job so
that the jobs meets its time constraints.

Jockey [24] monitors job performance and dynamically adjusts its resources to maximise
economic utility, while minimising its impact on the rest of the cluster.

While all the previous approaches propose fine grained job level performance control at
a scheduler level, we propose to add course grained control by controlling the average per-
formance of a group of jobs in the cluster. Moreover, while the existing techniques require
modifying the schedulers and algorithms deployed by the MapReduce cluster, our control ar-
chitecture is non-invasive and can be used in parallel with any of the previous listed algorithms.
Furthermore, our algorithm can be easily automated to be used by an average user, without
an in depth knowledge of the inner workings of the MapReduce framework. Meanwhile, the
focus of fine grained scheduling techniques is to optimise the resources currently available, our
course grained technique modifies the amount of resources, in order to handle workload spikes
and fluctuations.

3.4 Improving the MapReduce Framework

There exist many attempts to improve upon MapReduce performance, either through frame-
work modifications or by optimizing the framework parameters.

MROrchestrator [68] is an on-line resource management framework that can dynamically
identify and resolve resource bottlenecks by using on demand reallocation of the distributed
resources. The framework makes local estimates of the resource needs of different tasks,
and through a central controller detects bottlenecks and controls resources accordingly. The
controller uses a simple heuristic to control CPU and Memory allocations at node level. In their
benchmarking application MROrchestrator leads to an average of 20% (max 38%) reduction of
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job completion times and an average of 15% (max 25%) of increase in resource utilization. The
authors compare their system to the two main contenders for improving resource scheduling
and management, Mesos and Next Generation Mapreduce, and conclude that their approach
has improved results, by more than 8%, in comparison.

Tarazu [2] proposes several additions to the MapReduce framework that affect the creation
and scheduling of tasks. Namely, communication aware load balancing of the map stage,
communication aware scheduling of remote map tasks and predictive load balancing in the
reduce phase. They use 11 different benchmarks to test Tarazu, which achieves on average a
speed-up of 40% over the original Hadoop implementation.

ADAPT [35] presents a novel data placement strategy for MapReduce. It builds upon the
idea of distributing the data based on the availability of each node. This leads to improved data
locality and reduced network congestion. For this they developed a stochastic model based
on queuing theory to predict the performance of a task under interruptions. The algorithm
outputs a hash table that is used to weigh the amount of data distributed to each node in the
network. Experimental results show an average speed up of 30%.

Quiane-Ruiz [59] propose RAFTing MapReduce, namely improved fault recovery algo-
rithms for MapReduce systems using check-pointing based techniques utilised in databases.
They also implement a new scheduler that can take advantages of these check-points. Exper-
imental results show RAFT outperforms Hadoop by an average 23% in the presence of task
and node failures.

Hadoop’s Ad-Hoc configuration also poses a great challenge for users and currently works
mostly using some rules of thumbs given by Hadoop experts, still a large number of tuning
parameters have to be chosen. Herodotu [34] introduces a dynamic algorithm to find the
optimal Hadoop configuration for a given job. To achieve this, a profiler is proposed, that
can collect statistical data automatically without modification to the MapReduce programs.
Using the profile obtained, a simulator called What-if Engine is developed, that can simulate
running jobs with different data, cluster sizes and Hadoop configurations. This fast simulator
is called multiple times and uses subspace search techniques, such as Gridding (equispaced or
random), Recursive Random Search, to automatically find the best Hadoop configuration to
run the job in.

Sailfish [60] is a new MapReduce framework that, by aggregating the intermediate data,
improves performance by batching disk I/O.

Hadoop++ [21] improves job performance for analytical queries using a new non-invasive
indexing technique.

Recently, Facebook published a report in which is said that they reached the limits of the
traditional MapReduce implementation. They identified several problems with the current
implementations. One such problem was that at peak load performance cluster utilization
drops due to scheduling overhead (max 70%). This is due to the fact that the heartbeat delay
in scheduling is a problem in case of small jobs, when the slot based resource management
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granularity is not small enough. An other issue found was, that software upgrades to the
JobTracker implies whole cluster downtime. Facebook is not the only company suggesting
that the traditional MapReduce implementations need improvement. Hadoop also proposes
YARN, unofficially called MapReduce 2.0, as the new approach to solve the problems with
the traditional implementation. In both of the approaches they separated the JobTracker’s
functionalities into two distinct entities: the Resource Manager and the Application Master.
The Resource Manager is not job dependent and continuously optimizes cluster usage. A new
Application Master is created for every new job and its tasks are job scheduling and monitoring.
In addition, Facebook removed the heartbeat based monitoring model and introduced push
based scheduling techniques. The advantages of the new system are better cluster utilization
(95% for Facebook), lower job latency, no downtime necessary for upgrades, better resource
management and scheduling fairness.

Furthermore, with the advent of cloud solution, there are many projects on improving
MapReduce performance in the cloud. Spark [88] generalises the MapReduce model and
can deal with new workload such as streaming, iterative algorithms and interactive queries.
Although it is not yet as mature as Hadoop, it has been shown to outperform Hadoop by a
couple of orders of magnitude in many cases. AsterixDB [12] is a new Big Data Management
System that stores, indexes and manges semi-structured data. Because of its knowledge of data
partitioning and indexing, it can avoid to always scan data to process queries. Stratosphere
[11] further extends the MapReduce model, allowing for more operators then just map and
reduce, and does much better on iterative algorithms then traditional Hadoop.

However none of these frameworks provide any control mechanism than can guarantee
performance in face of a varying workload and uncertain environmental conditions. Moreover,
due the generality of the algorithms developed in this thesis, they can be easily adapted to
run with any of the previously listed frameworks to guarantee performance requirements.

3.5 MapReduce Benchmarking and Simulation

As there isn’t a generally accepted framework to test and compare MapReduce behaviour
with different cluster, input data sizes and fault conditions, we can find few benchmarking
and simulation approaches in the literature. For example MRPerf [80] is phase-level simulator
for MapReduce. In their test cases MRPerf is able to predict the performance of the map
phase with an average 5.22% and for the reduce 12.83% error rate. MRBS [64] is a powerful
benchmark suite, for the evaluation of dependability in MapReduce systems. It allows for
injecting different fault schemes and contrary to previous popular benchmarking systems,
such as HiBench, it supports concurrent job tests.

3.6 Feedback Control of Computing Systems

Many authors have argued for the potential of control-based adaptation of software systems.
Hellerstein et al. [32] and Abdelhazer [1] advocated for applying control theory for computing
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system adaptations more then a decade ago. They both highlight the promise of control theory
in providing a mathematical basis for ensuring performance.

The increasing number of recent publications in the field of control of computing systems
show the emergence of this new field for automatic control. For instance, continuous time
control was used to control database servers [44] using Lyapunov theory and web service
systems [55], HTTP servers [32], groupware servers [53] using a "black-box" approach. There
have also been a few attempts to use continuous control as a method for dynamic resource
provisioning of virtualised resources [52] or HDFS storage nodes [38].

Furthermore, several recent survey papers have emerged on the application of control
theory to computing systems. Patikirikorala et al. provide a global view of the existing
literature in this area [54]. Villegas et al. look at evaluation metrics for performance of
software adaptations [79]. Guitart et al. conduct a survey on mechanisms for performance
management of internet services [30]. Yfoulis et al. take an overview of resource provisioning
approaches specific for the cloud [86]. In [25] a consortium of software engineers and control
theorists underpin the major obstacles faced when applying control theory to software systems,
such as finding mathematical models that can capture software dynamics in a form suitable
for control synthesis and the lack of focus from software engineers on controllability when
designing software systems. Finally, a growing interest is also emerging in the field of discrete
event systems [63].

3.7 Discussion

From our analysis of the related work several open issues were identified.

• Current state of the art model based approaches to analyse and control the performance
of cloud, respectively MapReduce systems, are based on static models. Meanwhile, the
decades of experience in control theory in building control systems for physical systems
has shown, that a model that can capture the dynamics of the system is crucial to decide
when and how to control.

• Existing MapReduce models are fine grained job level models, hence they do not capture
the effects of workload variability on the MapReduce cluster performance and depend-
ability.

• Although lots of research is being done on improving how the MapReduce framework
itself works still, none of the existing MapReduce cloud solutions give any guarantees
in terms of performance and dependability. The reason for this is that, using classical
software engineering techniques to provide assurances for systems designed with only a
partial knowledge of the environment, is highly challenging.

• Poor end user experience, because of performance unpredictability, is still one of the
major concerns with cloud service. Therefore, there is a clear need for application level,



26 Chapter 3. Related Work

multi objective controllers, that can be used as off the shelf add-ons to different cloud

systems.

• More and more attention is given to dynamic adaptation techniques coming from other

domains. The most prominent of these is control theory. Although dynamic adaptation

using control theory has been gaining lots of attention in recent years [25], it has not

been considered for use in adaptation of complex data parallel cloud service, such as

MapReduce. As a result, there are also many unanswered questions from a control

researchers perspective as well. How do we use the classical techniques to build a model

of MapReduce systems? What do we measure? How do we chose our actuators? How

do we manage the trade-off between performance, dependability and cost?
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In this chapter we first motivate our work by analysing current consumer concerns with
cloud systems and examining the effects of workload variations on the performance and avail-

ability of a MapReduce cluster. The impact of possible corrective control knobs, such as

cluster scaling and admission control, is presented as well. Finally, the objectives of the thesis

are defined.

4.1 Motivations

A 2012 survey from Compuware [19] that asked 468 CIOs and senior IT professionals from the

biggest companies in the Americas, Europe and Asia showed what are their biggest concerns

regarding cloud service management. Their responses are summarised in Figure 4.1.

79% of them are concerned about the invisible costs of cloud computing. The biggest of

these concerns (60%>) was the poor end user experience due to performance bottlenecks and

heavy traffic, which in turn might lead to reduced consumer loyalty and loss in revenues. The

reason for these concerns is that, while the scalability and provisioning mechanisms are there,

the existing availability guarantees are in no means translatable to performance guarantees.

Currently, the only guarantee given is that the servers are running and accessible. There are

no guarantees in terms of application level performance and availability, which are seriously

influenced by neighbouring applications, workload variability, and are the metrics that define

the true end user experience. There is clear need for control mechanisms that can ensure these

high level objectives, such as application response times and availability, and dispel consumer

fears.

27
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44% Loss of revenue due to avalability and performance, or troubleshooting

51% Impact of poor performance on consumer loyalty

64% Poor end user experience due to performance bottlenecks

What are your biggest concerns about managing Cloud services?

Figure 4.1: Cloud service management concerns by CIOs

At the same time, as the MapReduce framework is being deployed more and more for
time critical data processing applications, providing performance and dependability guaran-
tees is becoming increasingly important as well. As it is the case with other cloud services,
current MapReduce commercial solutions don’t offer assurances either in terms of latency or
availability. One of the reasoning behind this is that the most used MapReduce schedulers
use fair scheduling policies, which were created to ensure high throughput and resource us-
age. Hence, while commercial MapReduce services, such as Amazon EMR [5] and Microsoft
HDInsight [48], offer solutions for quick and cost-effective data processing, they don’t provide
any guarantees in terms of job runtimes. Although elasticity mechanisms are given, they are
not completely automatic and it is up to the user to define the scale up/down thresholds.
Therefore several not trivial questions are left up to the service user, such as:

• How many resources does my application initially need?

• How to handle the effects of workload variations on performance and dependability?

• How to ensure certain response times and continuous service availability ?

To be able to answer such questions, first we take a look at what are the effects of work-
load variations, cluster scaling and admission control on the performance, throughput and
availability of MapReduce systems.

4.1.1 Impact of workload variations

As defined in Section 2.5 workload is defined as the number of clients (C) that are concurrently
sending requests to the MapReduce service. Figure 4.2 shows what happens when this work-
load is varied, while keeping all other metrics unchanged. The cluster size is fixed to 20 and
the number of clients is increased gradually from 5 clients to 40. Every 10 minutes 5 clients are
added (Figure 4.2c). The jobs during the experiment are represented by multiple horizontal
lines. The beginning of a line is where a job starts and the end of each line is when the job
ends. The jobs are grouped together vertically based on their runtime and chronologically on
the horizontal axis.
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If we take a look at Figure 4.2a and Figure 4.2c we can see that as the clients are increasing
linearly, the average service is increasing exponentially. Figure 4.2b shows that the throughput
increases linearly until it gets saturated, after all the cluster resources have been occupied.

4.1.2 Impact of cluster size variations

The experiment in Figure 4.3 presents the results when the cluster size is varied from 4 to 36.
The number of concurrent clients is fixed to 10 during the whole experiment. 4 new nodes
are added every 10 minutes (Figure 4.3b). As in the previous figure, the multiple horizontal
lines in Figure 4.3a constitute the runtime of the different client interactions. It can be seen
that the overall behaviour of MapReduce is non-linear, since the proportional increase in the
number of nodes is not proportional to the reduction in response time and the increase in
throughput. It is also interesting to notice that, although the throughput gets saturated in
this case as well (Figure 4.3b), it is not for the same reasons as in the previous case, when it
was because of lack of resources. In contrast, here the throughput is saturated when we have
more resources then required by the current workload.

4.1.3 Impact of admission control

For implementing admission control a proxy based approach is taken. The proxy allows
no more then a selected #MC number of concurrent requests to the JobTracker. Any client
request above this level is rejected, which maintains performance, but in turn negatively affects
availability. If we take a look at Figure 4.4 for example, we can see that as the MC level is
increasing, more and more clients are allowed to connect to the cluster and both the response
time and availability are increasing, until the MC level reaches the number of concurrent
clients C. After this point, MC level has no influence on our output metric of performance
and availability, since we are allowing for more requests then needed at the time.

4.2 Objectives

From the previous analysis of the impact of different metrics on performance and availability
of a MapReduce service, we can clearly see that both cluster size and admission control have
a strong impact on the quality of service of MapReduce systems. In the case of admission
control the trade-off between performance and availability must be taken into consideration.
Meanwhile, a similar compromise must be made between cost (cluster size) and performance.
Workload variations are uncontrollable and can be considered a disturbance to the system,
having adverse effects on both performance and availability.

Taking all this into consideration, in the following we define the objectives of the thesis.
We choose as tunable control parameters the cluster size (N) and the max clients level (MC),
while the number of clients will be treated as a measurable disturbance to the system.
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Our first task is to build a test-bed where one can easily develop and test multiple different

modeling and control strategies of a real MapReduce service. To facilitate further research by

control scientists into such computing systems, a control interface is required between Matlab,

the standard development environment in automatics, and the MapReduce cluster. In the

following, a short list of these technical objectives is presented:

• Construct the actuators to control on-line the cluster size and the max clients level of a

MapReduce cluster.

• Build sensors that can measure on-line output metrics, such as response time, availability

and workload size.

• Devise an interface between a local Matlab controller and the remote sensors and actu-

ators of the MapReduce cluster.

• Create an autonomous control framework that can control on-line the cluster perfor-

mance and availability, from any local computer running Matlab.

For a detailed view of our experimental setup that implements these objectives take a look at

Section 7.1.

Furthermore, taking into account the open issues found during the overview of the special-

ity literature and highlighted in Section 3.7, the scientific objectives of the thesis are defined

as the following:

• Design a model that can capture the dynamic performance and availability of a MapRe-

duce cluster, running a data intensive concurrent workload. The dynamic model must

be compatible with control theoretic techniques (Chapter 5).

• Design control laws capable of guaranteeing quality of service objectives for a MapReduce

application in term of performance, availability and cost (Chapter 6).

• Evaluate the proposed models and controllers experimentally on a real MapReduce clus-

ter (Chapter 7).

4.3 Summary

In this chapter we further motivate the need for on-line application level control of the per-

formance and availability of cloud services. Furthermore, the negative effects of workload

variability are highlighted with concrete experimental results. We show that control knobs,

such as cluster scaling and admission control, are suitable for the performance and depend-

ability management of a MapReduce system. Finally, the technical and scientific objectives

of the thesis are defined.
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As described in the related work section, multiple models for MapReduce systems exist in
the speciality literature, however most of them focus on capturing the steady state behaviour
of cloud systems. Meanwhile, the decades of experience in building control systems for physical
systems has shown that capturing the dynamics of the system is crucial, to determine when
and how to efficiently control. Therefore, our first objective is to find a dynamic model
of a MapReduce system. First, in Section 5.1 we introduce our chosen methodology for
assigning a measurable dynamics to software systems and we perform a preliminary analysis of
MapReduce dynamics. Second, the general MIMO model structure for MapReduce systems is
presented in Section 5.2.2 and then we gradually identify the correlations between each input
and the outputs. A performance model, that captures the connection between the cluster,
workload sizes and the average runtime is presented in Section 5.3. The relation between
availability and the max clients level is developed in Section 5.4. The two previous models
are combined and the general MIMO model of the MapReduce system is described in detail
in Section 5.5. Finally, the off-line and on-line parametric identification methodologies are
presented in Section 5.6.
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5.1 Capturing dynamic behaviour of software systems

5.1.1 Challenges

Although control theory has been already applied for modelling of computing systems since
the beginning of the 2000’s, we believe that there is still large reticence from both control
theoretical and computing communities in applying such techniques in practice. Mathematical
modelling of cloud software systems poses several specific challenges. These difficulties range
from the simpler ones, such as language difficulties (for example the notion of ’control’ means
something different for both communities), to more complex ones, such as the difficulties in
modelling software applications due to lack of physics behind algorithms and services.

Still, finding models that capture software dynamics with sufficient accuracy is at the same
time critical and unusual for both communities. From a control perspective the challenges are
the following:

• One of the most critical questions for software systems is the choice of Input/Outputs.
While most physical system are build to be controllable, most computing systems are
not designed with on-line control in mind. Therefore, the choice of tuning parameters
and performance measures is not straightforward any-more. Furthermore, contrary to
physical systems there are numerous possible tuning variables and as a results it is
difficult to decide between them.

• Building models is unusual. Because there is no physics behind applications finding a
first principle model, based on traditional laws of physics, is very difficult. Nonetheless,
for most computing systems we have an in depth knowledge of how the system works,
therefore, in theory one could build an almost perfect mathematical model of the system.
However, in most cases such a precise model would be too complex for practical usage.

• During their life-cycle, software applications are always changing due to frequent up-
dates, thus evolve rapidly. Therefore, in order for any model to be relevant, special care
has to be taken to remain implementation agnostic and include only high level metrics
that will not disappear during future updates.

5.1.2 Assigning measurable dynamics to software

Our control objective is selected as keeping the average response time below a given threshold,
while keeping availability above a predefined limit and costs to the minimum. To achieve this,
one has to assign a measurable dynamics, that is to say the construction of a discrete-time
signal as it is presented in Section 2.7.2, to the output metrics.

The key point of a signal is that it considers the evolution of the system over time. Finding
such a signal could be done by defining a fixed sampling time Ts and measure the value of
response time or availability at periodic instants. The issue with such an approach is that
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we should have well defined, measurable values of these metrics at exactly those periodic
sampling instants, which is not the case in practice. A more practical approach is to calculate
a statistical aggregate over a fixed time period in the past at each Ts time instant. This
technique is called a sliding window over time.

The chosen aggregate function can be anything from a mean, median (50th percentile)
to the 98th percentile. The choice of this function is not straightforward. For example, the
mean function is found to be highly sensitive to the presence of outliers in the data, while in
comparison percentile measurements are very robust to this. However, when we don’t have
outliers in the data the mean value usually provides a more accurate measure of the central
tendency. Mean measurements, can also be utilised in case of skewed data, but only with
additional pre-processing of the measurement data that eliminates any outliers, for example
those that fall outside a given standard deviation value. Nevertheless, in this case caution has
to be taken, that if measurements do not follow a bell curve, standard deviation calculations
can result in erroneous tendency approximations. To summarise, percentile measurements are
more suitable when we have a data set that has a skewed, long tailed distribution. Moreover, it
can provide the advantage of focusing on certain desired signal areas. For example, a controller
that wants to improve the general performance can focus on 90th% measurements, while one
that has as objectives the elimination of outliers can use 98th% measurements.

One other challenging question when working with time windows is choosing the size of
the window. The bigger the window is, the more we loose system dynamics, while the smaller
it is, the larger the noise will be in the measurements. In our case the window size is tuned
off-line. To choose the windows size we start with a small value and increase it gradually until
we reach the desired signal variance and the curves smoothen out. Below this size the output
measurement may be influenced by the noise that arises from the natural variance of the jobs.
From a control perspective, if the window is bigger than this size, then the controller reacts
slower and if it is smaller it will react to noise.

5.2 Building the MapReduce dynamic model

5.2.1 Assumptions

Before we start the modelling we define our key assumptions about the MapReduce system in
question:

• Our system is a "partly-open" [65] interactive system. Namely, new users can arrive
at any time like in the case of open systems. However, the system behaves as a closed
system for the clients that are already connected. This means that the clients send a
job to the JobTracker and then wait for the job to be finished, before submitting a new
request.

• Although in the general, the jobs runtime in case of MapReduce systems can range
from the minutes to the hours magnitude, we assume that the variance in the mean
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response is smaller then 25%. This assumption is necessary because of our use of mean
as measurement aggregator. In practice, this can be done through using simple cluster-
ing algorithms based on past history job run-times. Moreover, this assumption is not
necessary if one uses a percentile based aggregator. The advantages/disadvantages of
both methods have been discussed in detail in Section 5.1.

• No failures are present at the time of modeling. Although MapReduce runs on top of
cheap commodity computers in general and can handle multiple types of failures which
impact system performance, we are interested in modeling the failure free dynamic
behaviour MapReduce. Even though we don’t explicitly model these kinds of failures,
our control architecture can correct their effects on the system performance, failures
being treated as unmodeled disturbances.

• We assume that the workload buffer is not empty at steady state. If all the clients leave,
new dynamics might be observable while the buffer fills up or empties and the model is
no longer valid.

5.2.2 Model structure

The choice of control inputs out of Hadoop’s many parameters (more than 170) is also not
straightforward. As we set out for our model to be implementation agnostic, we take into
consideration only those parameters that have a high influence regardless of the MapReduce
version used. Two such factors, that have been identified having among the highest influence,
are the number of Mappers and the number of Reducers available to the system [84]. Since the
number of Mappers and Reducers are fixed per node level in MapReduce systems, we chose
the cluster size (N) as our first control input. Our second control input is the max clients
level (MC) which is a tunable parameter that controls the number of concurrent requests sent
to the JobTracker. The number of concurrent client requests is treated as an uncontrollable
(exogenous) input.

MapReduce performance and availability are chosen as our output metrics. By perfor-
mance we think of response time, defined as the average time (yrt) needed to process a request
in certain time window. While availability is measured as the ratio of accepted MapReduce
client requests to the total number of requests. See Section 2.5 for the formal definition of
these metrics.

Based on these observations, the following model that captures the dynamics of MapReduce
systems in terms of performance and availability is proposed. The general structure of our
model can be seen in Figure. 5.1.
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Figure 5.1: System model with specified inputs/outputs

5.2.3 Analysing MapReduce dynamic behaviour

Before deciding on a model structure, exploratory experiments need to be run to see the effects
of the different inputs on the outputs. This kind of exploratory experiments allow a control
scientist to decide upon the order of the polynomials to use when defining the model structure.

In the first experiment shown in Figure 5.2, we analyse the performance and availability
of the MapReduce system in case of a varying workload. The cluster size is fixed to 20 nodes
and the max clients level is set to 10. As seen in Figure 5.2a the workload size is varied by
adding 2 clients every 30 minutes from 2 clients to 20. The second experiment in Figure 5.3
presents the results when the cluster size is varied, by increasing the number of nodes from 5
to 20, adding 5 more nodes at every 30 minutes. Here, the workload size is set to 10 and the
max clients level is fixed to 5 during the whole experiment. The third experiment presents
the effect of max client level variations on performance and dependability of a MapReduce
cluster, meanwhile fixing the cluster size to 20 and workload size to 10.

If we analyse the system behaviour depicted in Figures 5.2 to 5.4, it is clear to see that
the system is nonlinear in the considered range of input variations. Furthermore, a quick look
at Figure 5.3c combined with the analysis of Figures 5.2c and 5.4c, makes us notice that the
availability yav is influenced only by the number of clients C and the max clients level MC,
but not by the number of nodes N that the system has. Moreover, we can see that the control
input MC has no effect on the availability if MC > C. The system becomes linear only if
C > MC.
In the following sections we detail how the relation of each output with our inputs is identified.

5.3 MapReduce Performance model

In order to build a performance model for a MapReduce system, first we have to analyse the
correlations between our performance metric response time and the system inputs, cluster and
workload sizes. Concerning the response time (yrt - the first output), we had already seen in
the exploratory experiments presented in Figure 4.3 (p. 30) in the motivations section, that
the system is non-linear with respect to cluster size changes.
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Figure 5.2: Effects of workload variation, #MC=10, #Nodes=20
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Figure 5.3: Effects of cluster size variation, #MC=5, #Clients=10
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Figure 5.4: Effects of MC variation,#Nodes=20, #Clients=10
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While, when it comes to the workload size changes in Figure 4.2 (p. 29), we observe three
specific response time behaviours:

1. Initially the system resources are underutilised and therefore every request gets all the
required resources for optimal performance.

2. The second phase starts when all the free resources have been occupied and the clients
start sharing the existing ones. Starting from this point, response time starts increasing
linearly as the number of clients increase.

3. When too many clients are added we enter the third phase, when the response time will
start to increase exponentially as more clients arrive.

If we desire to model the dynamics of such a non-linear system, a control theoretician
has two possibilities. Either try and capture all the system non-linearities into a general, but
complex model or linearise around a desired operating point and get a less general but more
practical model. Linearisation is generally preferred when possible, because if we have a linear
model, one can take advantage of all the well know classical techniques for control design,
developed over these past decades. Taking the latter reasoning into consideration we suggest
to build a linear model, that is a linear approximation of the non-linear model in the desired
operating region. The natural question that arises is, how do we find this region in case of a
cloud service.

A typical system design time question that might arise is that, given an expected number
of clients, what is the minimal amount of resources the system needs, so that all the requests
have their necessary resources and therefore run as fast as possible? Based on our experiences
with modelling MapReduce systems, we propose the following general algorithm, that answers
the previous question, and which can be used to find the linearisation point for cloud software
systems in general:

1. Select the initially expected average workload amount to be served based on financial
constraints.

2. Increase the cluster size until system throughput starts to saturate.

3. Set this point of saturation defined by (#resources,#clients) as your set point for
linearisation. Here the system is fully utilised. Adding more clients would decrease
performance, adding more resources would not improve performance.

To better understand the reasoning behind the previous algorithm, let us perform a simple
thought experiments. First, let us suppose we select the initial average workload amount
we desire to serve, based on financial constraints, at 10 clients for example. Now we start
increasing the number of nodes until the point when the throughput starts to saturate (at
20 nodes for example). At this point we have the exact number of nodes with which we
can optimally serve the current amount of clients, while having maximum utilisation of the
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resources. Adding more resources would not improve upon performance, it would just lower
utilization. In the following we analyse what are the advantages/disadvantages of choosing
the linearisation point in this manner.

Advantages:

• The main advantage is that we will have a model of our system at the edge of full
utilisation, which is where we normally want our steady state of the system to be, to
minimise costs.

• The model can predict what happens when more clients arrive at full utilisation and can
help a controller decide upon the number of resources to add to reach once again full
utilisation and keep the desired performance levels.

• These type of models are intuitively simple and therefore easy to understand for system
engineers without a control theoretical background.

Disadvantages:

• The model is valid only around the operating point. As a consequence, if we model our
system using 10 clients and 20 nodes and then test our system with 100 clients and 200
nodes the model might loose validity, depending on system linearity.

However, this disadvantage can be easily addressed either by re-triggering the identifi-
cation procedure when we leave the operating region and/or by on-line adaptation of
our model parameters. For more details concerning the identification procedures see
Section 5.6.

Taking all this into consideration the structure of proposed dynamic model that predicts
MapReduce cluster performance based on the cluster and workload sizes can be seen in Fig-
ure 5.5. Our control input N(k) is the cluster size, while the changes in clients C(k) is
considered as a measurable disturbance. Our output yrt(k) is the average response time of a
job in the kth time interval.

We recall here that our objective is to mathematically quantify the effects of cluster size
and workload changes on our output (response time). Since the sum, shown in Figure 5.5,
is linear around the linearisation point previously computed, we identify them separately in
order to get the mathematical relations between each input and the output. Through the
sum of their effects we get a multiple input, single output (MISO) model. This technique is
based on the superposition property of linear time invariant systems, defined in more details
in Section 2.7.7, which allows for the identification of the input effects independently from
each other. This is how we arrive to Equation (5.1).

Yrt(z) = YC(z) · C + YN (z) ·N (5.1)

where YN (z) and YC(z) are discrete time transfer functions. A transfer function is a compact
form of describing the effects of system inputs on its outputs, see Section 2.7.5 for more
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Figure 5.5: MapReduce performance model

details. In our case YN (z) and YC(z) capture respectively the effect of cluster size variation on
response time and the relation between response time and the workload size. These functions
can have any structure at this point. The methodology for choosing their structure is given
in Section 5.6.

The observed linearity in the operating regions, the lack of overshoot and exponential decay
all indicate that the response could be modelled, at least in a first approach, with a first-order
linear difference model with deadtime (FOPDT). An introductions to FOPDT models can
be found in Section 2.7.6. Moreover, these kind of models are widely used in the control
community for a wide variety of systems and have been proved to provide a sufficiently good
system fit even if the real system dynamics has a higher order dynamics [29]. Substituting YN
and YC transfer functions in Equation (5.1), with a FOPDT structure we get Equation (5.2),
presented below:

Yrt(z) = z−τrtc
bc

(z + ac)
· C + z−τrtn

bn

(z + an)
·N (5.2)

In this equation the coefficients ac, bc, an and bn along with the potential delays (τrtc
and τrtn) are to be found by the identification algorithm detailed below in Section 5.6. One
crucial part of these models are the actuation delays which are an important, and a somewhat
overlooked issue in the speciality literature, when designing controllers for the clouds.

These delays can have multiple sources in cloud scenarios, ranging from boot up times
(process, node) to delays caused by the data processing processes. A good example for these
is when we add a new node to the MapReduce cluster. Its effect on the response time is not
instantaneous, as new jobs have to finish that made use of the new resources, before we can
measure the effect of the node on our output. In addition, the JobTracker has to copy/replicate
the data to the new nodes before assigning it tasks. In our opinion, it is highly important to
consider these delays in our models, otherwise the controller will keep on adding unnecessary
nodes until it can see their effect on the measurements which will lead to an oscillating control
profile.
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Moreover, the model presented in Equation (5.2) can be further generalised by not fixing
the model order to a be first order transfer function. To provide such a model, we transform
Equation (5.2) using the Z transform properties and propose the following linear difference
equation as a general performance model:

yrt(k) = −
∑

i

ai · yrt(k − i) +
∑

j

bj · C(k − τrtc − j) +
∑

l

cl ·N(k − τrtn − l) (5.3)

where model parameters such as:

• ai capture the effect of past outputs on current outputs

• bj capture the correlation between current outputs and past workload sizes

• cl capture the correlation between current outputs and past cluster sizes

Equation (5.3) is given in difference equation form, as it is simpler to understand than the
transfer function formulation shown in Equation (5.2), for people without a control theoretical
background. Therefore this formulation is preferable whenever we have multiple communities
working together.

What Equation (5.3) captures, is that at any time instant k the dynamics of response time
is defined by a weighted sum of past response times, cluster and workload sizes. The delays
in the actuation are represented by τrtc for workload size C and τrtn for cluster size N . These
delays in discrete form are always calculated as a multiplicative of the sampling period T . In
the form presented above, if τrtc = 5 for example, then C(k − τrtc) refers to the cluster size 5
sampling periods ago.

5.4 MapReduce Availability model

The structure of proposed dynamic model that predicts MapReduce cluster availability based
on the max clients level MC(k) and workload size C(k) can be seen in Figure 5.6. Our output
yrt(k) is the average availability of a job in the kth time interval. As in the case of service
availability, the effect of clients rejections are almost instantaneous on the availability value
and therefore, in this case, we don’t need to consider delays in the actuation. Consequently,
we suggest a first order relation between availability (yAv) and our inputs clients (C) and max
clients (MC) in form of the following input discrete time transfer function:

Yav(z) = YMC(z) · sat
∞

0 (C −MC) (5.4)

where the saturation is defined as:

satba(x) =







b if x > b

x if x ∈ a, b

a if x <= a
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As we can see, although YMC(z) is linear in this case, we do have an input non-linearity
to consider, namely input saturation. The intuition behind this saturation, utilised in Equa-
tion (5.4), is the following. The dynamics of availability depends upon the number of clients C
that are above the max clientsMC limit. When the client number C is belowMC, availability
is not influenced by the workload size. Hence, when (C −MC) the difference is negative the
availability remains unchanged.

Although it is important to consider saturations when modeling, in general saturations are
difficult to treat when designing our control laws. Therefore, we remove the saturation from
our model by making the following control design choice:

The controller controls the MC level in such that: ∀k ∈ Z|C > MC > 0

Taking this into account our availability model, Equation 5.4, becomes the following linear
discrete time transfer function:

Yav(z) = YMC(z) · (C −MC) (5.5)

Finally, utilising the Z transform properties, a general availability model can also be given
in form of a time invariant, linear difference equation in Equation (5.6):

yav(k) = −
∑

m

dm · yav(k −m) +
∑

n

en(·C(k − n)−MC(k − n)) (5.6)

where the coefficients ai, bj are to be found by the identification algorithm detailed below
in Section 5.6. Similarly to the performance model, availability dynamic depends on past
availability and past clients values that exceeded the max clients MC limit.

5.5 MapReduce Performance and Dependability model

In this section, contrary to the previous sections where we had Single Input - Single Output
(SISO) models, in this section we are searching for a Multi Input - Multi Output (MIMO)
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model. This means that we desire to quantify at the same time the effects of all the inputs

on all the outputs. Following an in-depth analysis of Figures 5.2, 5.3 and 5.4, we can combine

Equation (5.1) and Equation (5.4) to reach the general performance and availability MIMO

structure of the MapReduce system, given in Figure 5.1:

Yrt(z) = YC(z) · sat
MC
0 (C) + YN (z) ·N

Yav(z) = YMC(z) · sat
∞

0 (C −MC)
(5.7)

One thing to notice in Equation (5.7) is that when we combine the two models we need to add

an input saturation to the cluster size C input for the performance model, since performance

is only influenced by the number of clients that are below or equal to the max clients level.

While, contrary to the previous, availability is influenced by only the number of clients that

are above this level. Using the same reasoning as in the case of the availability model, if we

take the control design decision to always keep C > MC > 0, we can remove both of the

input saturations from the model and we can transform Equation (5.7) into a linear one in

Equation (5.8), that contains only discrete time linear models.

Yrt(z) = YC(z) ·MC + YN (z) ·N

Yav(z) = YMC(z) · (C −MC)
(5.8)

Without making any assumptions on the orders of YC , YN , YMC discrete time transfer func-

tions, we can use inverse Z transform properties to convert Equation (5.8) into a more general

linear difference equation, as presented in Equation (5.9).

yrt(k) = −
∑

m

dm · yrt(k −m) +
∑

n

MC(k − τrtmc − n) +
∑

o

fo · gp ·N(k − τrtn − o)

yav(k) = −
∑

i

ai · yav(k − i) +
∑

j

bj(·C(k − j)−MC(k − j))
(5.9)

As we can see in Equation (5.9) when it comes to MIMO systems, having multiple

transfer functions that describe systems dynamic becomes difficult to deal with at control

design time. Therefore, control theoreticians prefer the general state space formulation to

treat MIMO systems.

The general equation of a general discrete linear system in state space form is given in

Equation (5.10):

xk+1 = Ad · xk +Bd · uk

yk = Cd · xk
(5.10)

where yk =

(
yrt
yav

)

is a vector containing the system outputs, uk =





N

C

MC



 is vector containing

the system inputs and xk =







x1
x2
· · ·

xn






is a vector that contains n number of system states.
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Figure 5.7: General MIMO state space model structure

The structure of the general model in state space form is presented in Figure 5.7.
The advantages of such a model formulation are its generality and scalability. Regardless of
the number of inputs-outputs a system model may have, any linear system can be described
in form given in Equation (5.10). Therefore, it provides us a general approach to treat any
system in a unified manner, as using this notation SISO and MIMO can be formally treated
equally.

The dynamics of the system in this case is contained in the matrices Ad, Bd, Cd:

• Ad is an n× n matrix that captures the dynamics of how the system states evolve over
time. n is the number of states in the model.

• Bd is an n×3 matrix and provides the influence of the inputs C,N,MC on the evolution
of the system states.

• Cd is an 2 × n matrix that gives the relationship between the system states and the
system outputs.

Let us take Equation (5.8) for example and rewrite it into the following matrix:

(
yrt
yav

)

︸ ︷︷ ︸

y(k)

=

(
ZC(z) ZN (z) 0

0 −ZMC(z) ZMC(z)

)

︸ ︷︷ ︸

H(z)

·





N

C

MC





︸ ︷︷ ︸

u(k)

(5.11)

If we note by H(z) the matricial form of the transfer functions, the connection between
Equation (5.8) and Equation (5.10), namely between the transfer functions ZC , ZN , ZMC and
the matrices Ad, Bd, Cd, can be made using the following control theoretical formula:

H(z) = Cd(zI −Ad)
−1Bd (5.12)

where I is the identity matrix of the same size as Ad. Finding these system matrices for a
particular system can be done in multiple ways. There are many identification techniques
that calculate them directly from the identification data. Moreover, in case of linear systems
there are multiple automated tools (see Matlab’s ’tf2ss’ function) that can convert between
the transfer function formulation in Equation (5.8) and the state space formulation of Equa-
tion (5.10).
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In our case, after performing the conversion to state space, the matrices Ad, Bd, Cd have
the following structure:

Ad =







a11 a12 0 0

0 0 0 0

0 0 a33 0

0 0 0 a44






, Bd =







b11 0 0

b21 0 0

0 b32 0

0 b42 b43






, Cd =

(
c11 0 c13 0

0 0 0 c24

)

As we can see in Equation (5.10), the particularity of state space models compared with
transfer functions is that, system outputs are not described only in function of the input
variables uk but also in terms of other, intermediary variables called state variables xk. While
for physical system these variables can be related most of the time to basic physical processes
properties such as energy, mass. For software systems it is difficult to make this connections,

because of lack of physics behind them. Nonetheless, arriving to such form is indispensable to

be able to use the vast array of advance control theoretical algorithms developed for MIMO

systems.

5.6 Model identification

5.6.1 Off-line identification of the model parameters

Identifying the parameters of a mathematical model from observed data is a very well known

technique in control theory. One can check for example [42] for a detailed review of different

methods and identification algorithms. From our point of view it can be briefly summarized

by Figure 5.8.

Figure 5.8: General identification procedure

The parameters of the mathematical model are found by giving the excitation signal and

the system’s output measurements as inputs to identification function, and the function auto-

matically returns the parameters. We can see that these are simple steps to follow, therefore

the whole parameter identification procedure can be easily automated.

In cases when we have a MIMO model, all that needs to be done is to identify a separate

model from each input to each output. Namely the inputs are varied one by one, while keeping

the others fixed, and the outputs of the system are measured. After getting the (input,output)

training data an existing linear regression function (e.g the Matlab function ’procest’ ) is used
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to obtain the model parameters. The desired order for the model can be specified in advance
or chosen automatically and the function returns the model parameters accordingly. The
validity of the identified parameters depends upon the linearity of the system. In practice,
if we detect that we leave the linear region and the model accuracy decreases under a given
limit, then the automatic identification procedure is repeated or on-line parameter adaptation
is performed.

In case of linear systems, an identified model of high order it is not compulsory for a
good estimation from a control point of view [9]. If the order is too high the corresponding
coefficients can have a negligibly small value (eq. 10−5). Meanwhile, the higher the chosen

model order the more complicated the control design can become. Therefore, and without

any lose of generality, the infinite summations in equations (5.6) and (5.3) can be replaced

by first or second order functions. The order of the functions can be easily inferred from

systems response to the excitation input signal. Furthermore, the equations given in the

following sections can be easily applied to other systems, with only the re-identification of the

equation parameters. Moreover, if the user wants, it can impose higher order polynomials for

approximation and the algorithm will work the same way in finding all the coefficients.

There are many different identification algorithms developed in the speciality litera-

ture [41]. We chose the prediction error method as our identification algorithm [70]. This

method has been shown to provide optimal results (minimal covariance matrix) in the case

when the chosen model order fits well the true system [41].

In order to run the identification algorithm, all we need is to collect is the training ex-

perimental data. This training data consist of an input excitation for the MapReduce system

and the measurements of system’s response to this excitation. The most simple excitation has

the shape of a step: namely during the course of the experiment the input signal has a single

sudden change (increase or decrease) and then it remains constant for the remaining time.

In the following, the formal formulation of the identification problem is presented:

• The system’s response {ym(1) · · · ym(n)} to the input set {u(1) · · ·u(n)} is collected.

• Based on the shape of the output data the desired model structure is selected, for

example:

y(k + 1) = −
n∑

i=1

ai · y(k + 1− i) +
m∑

i=0

biu(k − τ − i) (5.13)

• We run the identification algorithm to find the parameters, ai and bi, with which our

model best approximates the system behaviour.

Let us now formally define the identification algorithm. Using the vectorial notations θ =

[a1, a2, · · · , an, b1, b2, · · · , bm] and φ(k) = [−y(k), · · ·−y(k+1−n), u(k−τ), · · · , u(k−τ −m)]

Equation (5.13) can be easily reformulated to Equation (5.14)

y(k + 1) = θT · φ (5.14)
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where the unknown system parameters are encapsulated into the θ vector.

Therefore the objective at hand is how to identify the θ parameter vector. In case of
the PEM algorithm the question is posed as a cost function minimisation and is solved using
numeric optimisation techniques, such as the Quasi-Newton method. A simplified form of the
optimization criteria is given in Equation (5.15)

J = min
θ

N∑

k=1

ǫ2(k) (5.15)

where ǫ = ym(k) − y(k) = ym(k) − θT · φ(k − 1) is the prediction error, that is to say
the difference between the predicted ym(k) and measured outputs y(k), and N is size of the
identification data. In case of linear systems, an analytical solution for the minimisation
criteria defined above can be easily calculated, giving us the searched θ parameter vector.

5.6.2 On-line adaptation of the model parameters

One of the limitations of the model previously defined is that, it is the most accurate only
around a certain operating point. As a result of the linearisation the model accuracy gradually
decreases as we get further away from this point, the magnitude of the accuracy decrease being
proportional to the non-linearity of the system. However, we can improve the model accuracy
through on-line model adaptation techniques. The idea behind these techniques is to keep the
previously found model structure, but identify its parameters (θ) on-line.

One of the most used such techniques in practice, due to its fast convergence property, is
the Recursive Least Square Estimator [10]. The intuition behind the algorithm of finding the
model parameters on-line can be summarised like this:

• First the model structure is determined based on off-line identification techniques, de-
scribed in the previous section.

• Keeping the previously determined structure fixed, with each new measurement we up-
date the model parameters, using a recursive least square estimator for example. The
objective of the adaptation algorithm is to periodically minimise the error between our
modelled dynamics and the real system response. Although the model accuracy might be
poor initially, it improves over time with each new measurement and converges quickly
to the real system.

In our case, as our system model is linear, a least square recursive estimator is sufficient for
parameter adaptation. The steps of updating the parameters of a linear model using this
technique are the following:

Step.1 Initialize the model parameters θ, the estimator gain K and the covariance matrix P .
K tells how much the new measurements affect the model parameters. While P is the
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inverse of the measurement noise covariance, assigning more weight to measurements
with low variance.

Step.2 Update the model parameters, based on the difference of the new measurement ym(k)
from the previous prediction, using the following formula:

θ(k) = θ(k − 1) +K(k)
(
ym(k)− φT (k)θ(k − 1)

)
(5.16)

Step.3 Recalculate the estimator gain K that gives the relative importance of the current

measurement, with respect to prior parameter estimates:

K(k) = P (k − 1)φ(k)
(
λ+ φT (k)P (k − 1)φ(k)

)
−1

(5.17)

K is a proportional gain that indicates how much correction should be taken based on

the new error measurement, taking into consideration the measurement noise encap-

sulated in P . λ is an exponential forgetting factor, assigning exponentially less weight

to older measurements.

Step.4 Update the covariance matrix P . If P is large, it means that the parameters are

estimated to change significantly, as a result the estimator gain K needs to be large. If

P is small, it means that the model parameters don’t vary much any more, therefore

the gain K becomes smaller to minimise the changes caused by new measurements.

P (k) = λ−1
(
I −K(k)φT (k)

)
P (k − 1) (5.18)

Step.5 Return to Step.2.

It has been mathematically proven that as k increases over time, meaning more and more

measurements are available, the difference between the measurements and the model prediction

is reduced and the algorithm converges to the real values of system parameters. One of the

big advantage of this method is that it identifies the model parameters at runtime, without

the need for previous experimental data.

For a more detailed description of how to use on-line adaptation techniques for a MapRe-

duce system in practice, please see the Master Thesis of Sophie Cerf [17]. For more information

regarding the state of the art on-line adaptation techniques, such as the one presented above,

please see [10].

5.7 Summary

In this chapter, first a general methodology of assigning a measurable dynamics to software

systems is presented. Then the input-output variables of the general MapReduce dynamic

model are defined. The modelling of the relationships between each input and output are

analysed in detail. Combining the results of these examinations, the structure of the general

MIMO MapReduce model is proposed. Finally the techniques of finding the model parameters
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are discussed in detail. In the following Chapter 6 these models are used to design and
analyse several feedback control laws for ensuring MapReduce performance and availability.
The experimental evaluation of the presented models is given in Section 7.2.
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In this chapter the on-line control algorithms for ensuring the performance and depend-
ability of a MapReduce cluster are developed. First, in Section 6.1 we introduce a control
architecture that ensures MapReduce performance through cluster scaling, based on a clas-
sical time based PI and feedforward controllers. In the second part we further adapt the
previous time based control architecture to the cloud environment through event-based tech-
niques. These novel event-based proportional-integral and feedforward controllers are pre-
sented in Section 6.2. Finally, in Section 6.3 the unified optimal control framework, named
MR-Ctrl, is developed. It can ensure at the same time both the performance and availability
of a MapReduce service, meanwhile explicitly minimising costs.
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6.1 Classical control

6.1.1 Control architecture

In this first control instance, our objective is to control the performance of the MapReduce
system. We have as control input the cluster size N(k) and as exogenous, disturbance input
C(k) the workload size. Our output is the average response time yrt(k).

The complete schema of our control architecture for MapReduce performance control, is
presented in Figure 6.1. The variables used are defined in Table 6.1 below the figure.

+ + -

PI controller

Feed-forward controller

MapReduce System

Response me#nodes

#clients

Reference
response me

-

Figure 6.1: Classical control architecture

yref Reference average response time set in the SLA.
yrt System output - average response time of client interactions.
N Control input - cluster size.
ufb PI component of the control input.
uff Feedforward component of the control input.
e Difference between the reference and measured response times.
C Disturbance input - workload size.
UPI Discrete time transfer function of the PI feedback controller.
UFF Discrete time transfer function of the feedforward controller.

Table 6.1: Definition of control variables.

As we can see in Figure 6.1, our cluster size control input is made up of the sum of two
controllers, a feedback and a feedforward one. The role of the PI feedback controller is to
ensure good disturbance rejection and the robustness of the control loop to any modeling
and environmental uncertainties. Moreover, as we can accurately measure the workload size
on-line, we design a feedforward controller that can use this information in order to assure a
faster controller response. It can do this by counteracting the disturbance before its effects
can be measured on the output. This type of control architectures have well proven their
efficiency in the different domains, from the early 1900’s, and in the following we demonstrate
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that they can be successfully applied to this type of systems as well. The next sections discuss
these different control strategies in detail.

6.1.2 Feedback control

Feedback control is everywhere from the automotive, robotic, energetic industries to the mi-
croelectronics one. Still, with a few exceptions, it is far from a mainstream tool utilised in the
design of software systems. Nevertheless, reactive control algorithms, which can be considered
a different approach to feedback control, have been extensively used for adaptation in soft-

ware engineering. These dynamic adaptation techniques are generally based on the MAPE-k

loop. For a detailed comparison between feedback control and MAPE-k the reader can further

check Section 2.6. Based on this comparison we infer that feedback control architecture does

provide several advantages to the traditional MAPE-k approach. These advantages are briefly

detailed below:

• The feedback control decisions are based on a dynamic model of the system in comparison

to the static model of the MAPE-k. The multiple decades of experience in controlling

physical systems showed that an in-depth knowledge of the system behaviour over time

is essential to decide on when and how to control.

• While formal proofs are difficult in case of the MAPE-k loop, feedback control can

provide easily provable assurances in term of control stability, efficiency and robustness.

• The formal, mathematically rigorous approach of feedback control improves upon the

generality of the control solutions which, as a result, can be easily duplicated from one

system to an other.

• There are multiple feedback control architectures that have already proved their use-

fulness and robustness in case of many physical systems. This means that using this

formalism we benefit of a multitude of control approaches that have already been exten-

sively tested in a large variety of industrial scenarios.

One of the most used control techniques in industrial practice is the PID (Proportional-

Integral-Derivative) controller. In fact, this type of control loops are used in almost 90% of

industrial processes. The reason why it is one of the most utilised controllers is that, even

with a relative simple structure, it can still satisfy most control objectives in practice, with a

high degree of reliability. The intuition behind this control structure is the following:

• The proportional term means that the controller reacts proportionally to the error,

namely the size of the current difference between the expected output and the measured

one. It is a well know property of proportional control that it cannot ensure complete

convergence to the reference output value, even after the system stabilises to a steady

state. This is because if this error becomes very small, the controller will not react to

it anymore. As a result, in most of the cases in practice it is utilised together with the

integral term that can compensate for this.
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• The integral component calculates the control based on error evolution over time, by
calculating the integral of all past errors. It adds a very robust steady state tracking
property to the P control. It overcomes the previously described shortcoming and ensures
0 steady state control error.

• The derivative term looks at the slope of the error change, therefore it calculates the
control based on a prediction of the future error. It adds an extra tuning option for
the control and can improve on control convergence times. However, since this term is
very sensitive to high frequency noise in error measurements, it is frequently omitted in
practice if we have a noisy error measurement.

As we have noisy error measurement, for our system a PI controller is chosen. It is well
proven that for such a system (i.e. a first order system with deadtime - see Equation (5.2))
a PI controller is sufficient even if the system is complex, with eventually higher order

dynamics [29]. Furthermore, a feedback controller with integral action offers several well

known advantages. It compensates for the errors that arise from model imperfections and

has well-proven disturbance rejection properties for even unmeasured and un-modelled

disturbances.

The discrete time transfer function of a general PI controller is given in Equation (6.1):

UPI(z) = Kp +
Ki · z

z − 1
(6.1)

where the proportional gain (Kp ) and the integral gain (Ki) are control tuning parameters.

Applying the invers Z-transform to Equation (6.1), we can calculate the discrete difference

equation form of the controller, shown equation (6.2):

ufb(k) = ufb(k − 1) + (Kp +Ki) · e(k)−Kp · e(k − 1) (6.2)

where k ∈ N is the sampling instance.

There are numerous theoretical and practical tools developed for finding the controller

tuning variables (Kp,Ki). For a detailed description the reader should check [29].

We opted for a technique called loop shaping, which implies the shaping of the form of

the open loop transfer function for closed loop stability, performance and robustness. In fact

robustness and performance are inversely proportional. The larger the bandwidth of the loop

is, the better the performance (quicker tracking and disturbance rejection). However, as we

increase the bandwidth we decrease the system phase and gain margins, therefore decrease

the control robustness to modelling errors or changes in the system dynamics. The trade-

off between the two is usually decided by first ensuring performance requirements, such as

response time, overshoot, while maximising robustness. Matlab, for example, provides simple

to use visual tools such as "pidtool" [46] which allows for choosing the performance and

robustness levels using a couple of simple sliders.

In our case the control tuning parameters (Kp,Ki) are determined by first ensuring closed

loop stability and no overshoot in both system output and in control input. As in practice we
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would like to avoid a highly aggressive controller, the controllers response to the disturbance
is somewhat slow. The reason why the lack of overshoot in control as well is desirable is that,
we wish to minimize the number of cluster reconfigurations, therefore adding and removing
nodes over a short period of time is not suitable.

6.1.3 Feedforward control

Feedforward control in automatics is about modelling the effects of disturbances on the system
and using this knowledge to cancel their impact on the system. This is done by initiating the
inverse effect on the system through the control inputs. It can only be used in cases when
the disturbances can be measured on-line. The feedforward controllers purpose is to create a
control signal that passes through the system at the same time as the disturbance and cancels
out its effect, thus keeping the system outputs stable. Feedforward control can considerably
improve control responsiveness. Moreover, in case of large delays in the disturbance effect, the
benefits of a fast feed forward controller become even more visible, as this delay will propagate
to the output measurements. Which implies that a feedback controller that is based on output
measurements will react to any changes later as well. Meanwhile, a feedforward controller can
react at the instant the disturbance arrives and pro-actively reject the effect of the disturbance
changes, before their effect can be even measured on the output.

Nevertheless, the effectiveness of the feed forward controller depends entirely on the ac-
curacy of the identified model. Therefore, to improve robustness it is generally used together
with feedback control that can correct for modelling errors. Of course, if the model is very
accurate the net effect on the response time should be zero, but because of the inherent model
uncertainties this is rarely the case in practice.

Furthermore, although feedforward control can be considered a predictive control it must
not be confused with the demand prediction algorithms used in computing system [50]. The
feedforward model does not predict how the demand varies over time. Instead, it predicts
what the dynamic effect of a change in the demand size is on the respective system.

In our case, let us first recall the performance model given in Figure 5.5 (p. 45). Our
system output is influenced by the cluster size (N) and the workload size (C). The workload
size (C) can be treated as a measurable disturbance to the system. Since we can measure
on-line the number of clients in the system, we can design a feedforward controller to reject
the effects of workload size variations upon response time.

Our feedforward controller is determined using the standard feedforward formula given in
Equation (6.3):

Uff (z) = −YN (z)
−1 · YC(z) (6.3)

where Uff (z) is the discrete time controller and YN (z), YC(z) are the discrete time transfer
functions given in Equation (5.1) (p. 44).

If we consider YN (z) and YC(z) to have a first order plus deadtime (FOPTD) structure,
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then Equation (6.3) can be rewritten as Equation (6.4):

Uff (z) = z(τrtn−τrtc )
bc · (z + an)

bn · (z + ac)
(6.4)

One thing we can notice from Equation (6.4) is that, a feedforward controller is not always
realisable in practice. For example, if the workload size dynamics YC(z) is faster than the
cluster size dynamics YN (z), the feedforward action will always be late. Therefore, it cannot
counter the disturbance effects while it is happening. To better understand this, let us consider
that the delay in cluster size variation τrtn is larger than that of the disturbance τrtc . In
this case the equation becomes acausal, meaning that if we transform the equation into the
difference equation form, then our model will have future values in the output dynamics
calculation. One solution in such cases is to use a lead-lag feedforward control structure,
where we have a large lead component to give an initial jolt to control input, to catch up to
the disturbance effect [62].

Furthermore, if we consider the traditional control profile of a feedforward controller in
response to a workload increase, its general behaviour is to initially add a larger number
of nodes and than to logarithmically decrease to the new stabilizing level. Although this
approach compensate exactly for the changes in the system, such a behaviour is not always
desirable in case of cloud systems as there is cost penalty to pay if you remove nodes shortly
after their addition. Nevertheless, if performance is prioritized over cost, as is the case of a
strict performance control SLO, then this behaviour is acceptable.

Nevertheless, if we have relaxed performance constraints, with minimal resource usage
being a top priority, then this behaviour is not desirable. Therefore we have modified the
traditional feedforward response to act as a feedforward gain and add directly the nodes
required after the absorption of the initial shock. Although the performance of the feedforward
controller is decreased, we have considerable gains in control cost. The feedfoward control
is calculated in this case based only on the gains of the disturbance and system models.
Consequently, if we remove the control dynamics from Equation (6.4) we are left with a static
control gain calculated from the division of the gain of the disturbance model with the process
one.

UFF = −
bC

bN
(6.5)

The intuition for this last control technique can be approached, from the software engineering
point of view, by answering the following question a system engineer might pose:
If we have x clients that arrive/leave how many nodes should I add/remove to compensate
for their steady state effect on system performance?

The answer to this question being − bC
bN
· x.
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6.2 Event-based control

6.2.1 Control architecture

The event-based control architecture presented in this section was developed to overcome the
following shortcomings of the classical control presented in the previous section:

• Control profile:

When building classical control algorithms we are traditionally interested mostly only
at the form of the output signal and put only magnitude limitations on the control
one. The control profile is mostly of interest in cases when there is a desire to improve
the lifetime of physical actuators. Somewhat analogously to the latter, in the case of
cloud elasticity, the form of the control signal can be just as or more important then the
output signal. The reason for this being, that the service cost is a function of the control
profile. Namely the addition and removal of resources has energetic and financial costs.
Furthermore, one would like to minimise the number of changes in the control signal
or in other words the number of cluster reconfigurations. This allows the system to be
more predictable and also for the different optimization algorithms (schedulers) that are
running besides our control to converge.

• Control reactivity:

A somewhat unusual requirement from the point of view of traditional control systems
is that, in cloud scenarios there are cases when one would like to reduce controller
reactivity, by introducing a deadband. In fact, there is need for the possibility to define
certain limits between which the controller would not react at all. For example, there
are practical scenarios when one would like the controller to react only if the output
differs from the reference with a significant amount. Or in the case of a feedforward
controller one would like if the feedforward component reacted only if the workload
change is sufficiently large.

Therefore, the question arises: how can we introduce such thresholds together with the
dynamic control techniques described in the previous section and address the previously listed
shortcomings?

Before providing an answer to this question, let us introduce a novel controller type called
event-based controllers. These controllers have emerged recently as a viable alternative to
periodic, time based controllers when it comes to handling constraints on the number of actu-
ations, limited communication or computation bandwidth, constraints on power consumption,
etc [45, 67].

The basic idea behind event-based control theory is that, it is not mandatory to calcu-
late and update the control signal with every new measurement but instead, the control is
recalculated only when the error, between the system output and reference value, crosses a
certain threshold since the last actuation. This concept is illustrated in Figure 6.2, where a
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simple example is shown to clarify the difference between the control instants of time-based

and event-based controllers. For a more detailed view of event-based control theory see [8,

45, 67].
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Figure 6.2: Difference between time-based and event-based control instants

Figure 6.2 shows that while the control instants of time-based control follow a fixed time

period ti+1−ti, for the event-based case the control is calculated only when the system output

changes more than a fixed threshold value ǫ. The Y axis in this simple case can be any feedback

signal used for control purposes. A simple analogy to the event-based train of thought is the

case of a server process that needs to collect the data from its child process. Instead of polling

the child processes at fixed periodic instant, an event is generated in the parent process when

one or more of its parameters of the child process are outside predefined limits.

For an other example, let us look at the case of power consumption reduction in embedded

control systems. This decrease in energy usage is achieved by putting the system into a low

energy state when the changes from the set-point are within certain limits. While, in the case

of cloud systems, this energy consumption caused by the control calculations is negligible, we

will show that the event-based formulation can be very useful to improve upon the drawbacks

concerning the control profile and reactivity of the time based control version.

Now, to answer the question posed at the beginning of this section, we have developed

an event-based control framework adapted to the MapReduce cloud scenario. Through it, we

improve upon the control profile and reactivity of the control architecture presented in the

previous section, by switching from time-based to an event-based control strategy.

The complete schema of the event-based control architecture is presented in Figure 6.3.

The input/output variables used in the figure are the same as in the previous section and are
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defined in Table 6.1 (p. 56). Similarly to Figure 6.1, we have two inputs: the control input
N(k), which is the number of nodes in the cluster and the exogenous input C(k), which is the
workload size, and one output, that is the response time yrt(k).

+ + -

PI controller

Feed-forward controller

MapReduce System

Response me#nodes

#clients
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-

Figure 6.3: Event-based control architecture

These improvements are done with the use of the extra tuning parameters introduced by
the event-based controller. namely the event functions: ǫfb, ǫff . These two function can
be used to design a dynamic version of the static thresholding based (if-then) approaches,
currently utilised for automatic cloud elasticity solutions. Furthermore, using these functions
one can define a dynamic band around the operating point, where control is not calculated at
all. The dynamic nature of our control approach comes from the fact that, the detection levels
of the event functions are defined not in terms of a certain value, magnitude of the output
signal. Instead, they are defined on the change magnitude of the signal, which in most cases
is an error signal.

Traditionally the biggest challenges in event-based control techniques is the definition of
the detection levels used in the event functions. An analogous problem for computer scientists
is finding the static thresholds that ensure the desired system performance. Nevertheless, we
will show that in the case of computing system, we can make use of several common statistical
metrics to define these detection levels.

6.2.2 Event-based feedback control

Whereas a classical PI controller was presented in Section 6.1.2, an event-based version is
developed here. The considered closed-loop system is represented in Figure 6.3. The proposed
approach is based on an original event-based PI controller, which setup was suggested for the
first time in [7] and then improved in [22].

By an event-based feedback controller we think of a set of two functions:

• an event function ǫfb, that indicates if one needs (when ǫfb ≤ 0) or not (when ǫfb > 0)
to recompute the control law.
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• a feedback control law υfb and, more particularly in the present case, a PI feedback
strategy υfb(t) = UPI(z) · e(t) where e(t) is the error defined as e(t) = yref − y(t).

The event function is time-triggered with the sampling period h̄ (that is the same as for
the corresponding conventional time-triggered PI). On the other hand, the control signal is
constant between two successive events

ufb(t) = υfb(ti) ∀t ∈ [ti, ti+1] (6.6)

where ti is a sampling instant (called a feedback’s event) and, therefore, the length of the
sampling intervals hfb := ti − ti−1 is not equidistant in time anymore.

In our case an event is enforced when the relative error (the absolute value of the difference
between the error of the last sampling and that of the current time instant) crosses a given
detection level ēfb, this defines the event function as

ǫfb(t) := ēfb −
∣
∣e(t)− e(ti)

∣
∣ (6.7)

Several event-based PI strategies were suggested in [22]. The algorithm with exponential forget-
ting factor of the sampling interval is applied here to reduce the impact of the sampling interval
increase (which can become huge since there is no boundary in the event-based scheme). The
approach is somehow similar to the anti-windup mechanism used in control theory, where the
error induced by the saturation has to be compensated. Furthermore, the Tustin bilinear
approximation is preferred here (whereas the backward difference approximation was initially
used in [22]). The resulting expression (in the z-domain) is

ZPI(z, hfb) = Kp +Ki · δ(hfb)
1 + z−1

1− z−1

δ(hfb) = hfb · e
α(h̄−hfb)

(6.8)

where hfb is the varying sampling interval (the time between two successive events) and δ(hfb)

is the exponentially decreasing sampling interval, α is a degree of freedom to increase/decrease
this exponential sampling interval and Kp and Ki are the feedback control parameters. One
can refer to [22] for further details.

To define the detection level ēfb, we propose a technique based on the consideration of
the natural variance of the system. This builds upon the fact that in the case of computing
systems, because of the nature of the aggregating output functions (mean) and because of many
possible points of contention that might arise, our output is never stable, but instead will have
small oscillations around the steady state. If we use a time-based controller, the controller
might react to these small oscillations, that would lead to frequent cluster configurations,
something which is not desirable in practice as it would rack up the control costs.

In practice the calculation of this detection level can be done in several ways, the simplest
one being to take the maximum value of the output signal in steady state and subtract the
mean. Nevertheless, this method should be avoided because it can be skewed by the presence
of outliers in the data. We propose the following methodology of determining the detection
level ēfb, based on out the output measurement data set (yi, i = 1 : n):
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Step.1 First the data needs to filtered to eliminate any outliers. This can be done easily
by calculating the median of the sample and eliminating all values above 2 standard
deviations from this median.

Step.2 The sampled mean (Equation (6.9)) is calculated:

µn =
1

n− 1

n∑

i=1

yi (6.9)

Step.3 Using this mean the sampled standard deviation is computed (Equation (6.10)):

σe =

√
√
√
√

1

n− 1

n∑

i=1

(yi − µn)2 (6.10)

Step.4 This standard deviation value can be considered a way of measuring how far the average
data values lies from the mean. Therefore, we can consider this value or a multiple of
it as our detection limit ēfb = σe. By this we can ensure that the feedback controller
doesn’t react to the natural variation of the system, which considerably reduces the
number of cluster reconfigurations. This standard deviation calculation can be done
off-line or on-line in recursive manner.

6.2.3 Event-based feed-forward control

In order to pro-actively reject the effect of a change in the workload size C, before it can impact
our system output yrt, a fast, feedforward controller UFF (z) is also designed (see Figure 6.3).
By analogy with the event-based feedback scheme, an event-based feedforward control is also
proposed here. The closed-loop system is depicted in Figure 6.3.
By event-based feedforward control we mean a set of two functions:

• an event function ǫff (see the definition above);

• a feedforward control law υff that is, in the present case, in the form
υff (t) = UFF (z) · C(t), where C(t) is the disturbance (the workload size).

As before, the event function is time-triggered with the sampling period h̄ while the control
signal is constant between two successive events

uff (t) = υff (tj) ∀t ∈ [tj , tj+1] (6.11)

where tj denotes a feedforward’s event and hff := tj − tj−1 is the length of the (varying)
sampling intervals.

The control strategy is determined using the standard feedforward formula

UFF (z, h̄) = −UN (z, h̄)
−1 · UC(z, h̄) (6.12)
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However, if we consider the traditional version of a feedforward controller, its general behaviour
is to initially add a larger number of nodes to counteract the shock on the system and then
to slowly decrease to the new steady state level. Although this approach compensate exactly
for the dynamic changes in the system, such a behaviour is not desirable in the case of cloud
systems as there is cost penalty to pay if you remove nodes shortly after their addition.
Therefore we’ve chosen a modified feedforward response that acts as a feedforward gain and
adds directly the nodes required after the absorption of the initial shock. Although the
performance of the feedforward controller is decreased, we have significant gains in control
cost. The feedfoward gain, as given in Equation (6.13), is calculated based on the division of
the disturbance model gain with that of the process one.

UFF (z) = −
bC

bN
(6.13)

Note also that, whereas the feedback controller (UPI) is not required in the ideal case, here
it is compulsory to keep it to ensure robustness of the closed-loop system. In the feedforward
controllers case an event is enforced when the relative disturbance crosses a given detection
level ēff , namely the change in the workload is significant enough. This event function is
defined as:

ǫff (t) := ēff −
∣
∣C(t)− C(tj)

∣
∣ (6.14)

where tj is the last sampling instant. For finding the detection level ēff we can use an
analogous approach as for the definition of the feedback detection limit ēfb and look at the
standard variation of the workload size to calculate the detection level ēff = σC .

6.3 Constrained optimal control: MR-Ctrl

6.3.1 Control architecture

In this chapter we design MR-Ctrl, an optimal controller, able to deal with multiple, con-
tradictory objectives. As our MapReduce model has two outputs, MR-Ctrl will assure at
the same time both the response time and the availability limits specified in the SLA, while
explicitly minimizing resource utilization and hence costs.

The complete schema of the control architecture is presented in Figure 6.4. All the variables
used in the figure are defined in Table 6.2. For more details regarding the implementation of
the control framework one can check [13]. As defined in the general model structure given
in Section 5.2.2 (p. 38), we consider the MapReduce system having two inputs (concatenated
in the two dimensional vector u), one exogenous uncontrollable disturbance input C and two
outputs (concatenated in the two dimensional vector y). Vector u is made up of control inputs
cluster size N and max clients number MC, while the vector y contains the response time yrt
and availability yav output metrics.
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Figure 6.4: MR-Ctrl : Optimal control architecture

yref =

(
yrtref
yavref

)

Reference - response time and availability set in the SLA.

y =

(
yrt
yav

)

Measured system output - response time and availability.

u =

(
N

MC

)

System control input - cluster size and the maximum number of clients.

C Disturbance - Number of clients trying to connect to the system.
x̂ State estimate- reconstructed internal behavior of MapReduce.

Table 6.2: Definition of control variables.

6.3.2 MR-Ctrl- Optimal control with constraints

In this section we detail the general theoretical framework that is the basis of MR-Ctrl.
Let us first consider the general discrete linear system (with sampling period Ts):

xk+1 = A · xk +B · uk

yk = C · xk
(6.15)

and some prediction horizon Tp, which is a multiple of the sampling period Tp = n · Ts.
At each time instant t = k · Ts, MR-Ctrl recomputes the control Uk that minimises the
following criterion:

J = min
Uk

{(Yk − Yref )
T ·Q · (Yk − Yref ) + UT

k ·R · Uk} (6.16)

subject to contraints 0 < MC ≤ C and N < Nmax, where the superscript T stands for the
transposed vector or matrix.

Uk =








uk
uk+1
...

uk+n








, Yk =








yk+1

yk+2
...

yk+n+1








, Yref =








yref
yref
...

yref
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Q and R are weighting matrices that can be used to give more importance to the control
action or to the outputs. For example Q can be used to give preference to Av or Rt in case
both objectives cannot be met due to input or cost limitations. R can be used to give a cost
penalty on cluster size variations. This allows the controller to prioritize between different
control options, to minimise cost.

This optimization problem can be solved by any quadratic programming algorithm and
the optimal solution is obtained after a finite number of optimization steps. In our case we use
quadprog, the quadratic routine in the optimization toolbox of MATLAB [72], which can handle
multiple types of control constraints. The quadprog routine is very easy to use. First we need
to define our optimization criteria, for example in the standard form given in Equation (6.16),
and choose our control variables. In order to optimise our criteria function along the control
variables u, in case of quadprog, the optimization criterion needs to be reformulated to have
the following form:

J = min
u
{uT ·H · u+ 2 · fT · u} (6.17)

where H and f are constant matrices.

The user has the full freedom in choosing the optimization criterion, the only constraint
being that the minimisation criteria to be given in the form shown in Equation (6.17). There-
fore, to be able to use the advantages of the well proven optimisation function we need to
convert Equation (6.16) into the latter form. To achieve this first, we need to write our sys-
tem model in a state space form, like given in Equation (5.10) (p. 48). Once we have our state
space system model, the transformation of the optimization criterion given by Equation (6.16)
can be calculated straight forward in the following manner:

yk+1 = C · xk+1 = C ·A · xk + C ·B · uk

yk+2 = C · xk+2 = C ·A · xk+1 + C ·B · uk+1

= C ·A2 · xk + C ·A ·B · uk + C ·B · uk+1

...

yk+n+1 = C ·An+1 · xk + C ·An ·B · uk + C ·An−1 ·B · uk+1+

+ · · ·+ C ·B · uk+n

(6.18)

First we write the equations, that are just a prediction of our system outputs Yk =








yk+1

yk+2
...

yk+n+1







,

for n steps ahead (where n is the prediction horizon), based on the current state measurement
xk, current inputs uk and our system model. The reason we write it in this vectorial form
is, because we desire to optimise the control profile for n steps ahead in time. This optimal
control profile will ensure that our outputs Yk will follow a desired trajectory defined with our
optimization criteria. However, not all these control inputs uk+1, uk+2, · · · , uk+n are applied
to the system, because we might have unknown disturbances that affect our system during
this n future steps. Therefore, in order to be robust to unknown disturbances, at each step
k we apply just the first calculated control uk+1 , then we update our state estimation xk
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with real system measurements and rerun the optimization algorithm. In this way the control
trajectory is continuously optimised at each step and disturbances can be taken into account
on-line.

For traditional physical systems , the drawbacks of this type of control are the long control
calculation times and the energy usage of the calculations. In case of cloud solutions, not only
the energy usage of the control calculation is negligible, but because of the large system time
constants even control calculation times, in the order of a few seconds, it become insignificant.

Furthermore, in order to arrive to the form required by the optimization function 6.17, the
previous equations in Equation (6.18) needs to be rewritten into a more compact, matricial
form given in Equation (6.19):

Yk = Γ ·Xk +∆ · Uk (6.19)

Xk =








xk
xk
...
xk







,Γ =








CA 0 · · · 0

0 CA2 · · · 0
...

... · · ·
...

0 0 · · · CAn+1








and ∆ =







CB 0 · · · 0

CAB CB · · · 0

· · ·

CAnB CAn−1B · · · CB







After replacing Yk from Equation (6.19) into (6.16) we get:

(Γ · xk +∆ · Uk − Yref )
T ·Q · (Γ · xk +∆ · Uk − Yref ) + UT

k ·R · Uk =

(xTk · Γ
T + UT

k ·∆
T − Y T

ref )
T ·Q · (Γ · xk +∆ · Uk − Yref ) + UT

k ·R · Uk =

(
✭

✭
✭

✭
✭

✭
✭

✭✭

xTk · Γ
T ·Q · Γ · xk + xTk · Γ

T ·Q ·∆ · Uk −
✭
✭

✭
✭
✭

✭
✭

✭✭

xTk · Γ
T ·Q · Yref+

UT
k ·∆

T ·Q · Γ · xk + UT
k ·∆

T ·Q ·∆ · Uk − UT
k ·∆

T ·Q · Yref−

✘
✘

✘
✘

✘
✘

✘✘

Y T
ref ·Q · Γ · xk − Y T

ref ·Q ·∆ · Uk +
✘

✘
✘
✘

✘
✘
✘

Y T
ref ·Q · Yref + UT

k ·R · Uk =

UT
k ·∆

T ·Q ·∆ · Uk + 2 · UT
k ·∆

T ·Q · Γ · xk − 2 · UT
k ·∆

T ·Q · Yref+

2 · xTk · Γ
T ·Q ·∆ · Uk − 2 · Y T

ref ·Q ·∆ · Uk + UT
k ·R · Uk =

UT
k · (∆

T ·Q ·∆+R) · Uk + 4 · (xTk · Γ
T ·Q ·∆− Y T

ref ·Q ·∆) · Uk =

1

2
· UT

k · (∆
T ·Q ·∆+R) · Uk + 2 · (xTk · Γ

T ·Q ·∆− Y T
ref ·Q ·∆) · Uk

(6.20)

The crossed-out parts don’t contain the optimization parameter Uk, therefore they can not be
optimized here and are irrelevant for the optimization criteria.

Finally, by noting H = ∆T ·Q ·∆ and fT = 2 · (XT
k · Γ

T ·Q ·∆− Y T
ref ·Q ·∆), we arrive

to the shape needed by quadprog, and recalled in Equation (6.17). The of formulation our
control problem in the manner presented here has several advantages:

1. There are a vast number of possibilities to define the quadratic optimisation functions,
which makes the method widely applicable.

2. The optimal solution is obtained after a finite number of optimization steps.

3. The optimisation procedure works the same, independent of the number of inputs-outputs
our target system has and can ensure multiple objectives at the same time.
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4. We can implicitly define static and dynamic state and control constraints. Such a static
control constraint in our case for example is that the number of nodes N must be smaller
then a given maximum number of nodes Nmax. A dynamic constraint is the fact that our
max clients control input MC has no effect on the system if MC > C. Therefore, to avoid
this behaviour, we define the dynamic input constraint MC ≤ C.

5. Input delays can be implicitly introduced into the formulation of the criteria function.

6. Using weighting matrices Q,R the trade-off between contradictory objectives can be easily
quantified.

7. Cost minimisation objectives, control profile and reactivity, for example minimising the
number of actuations, as well as minimising resource usage, can be explicitly introduced
into the optimisation criteria.

6.3.3 Improving control robustness through integral action

One of the issues with the standard constraint optimal control approach presented so far is
that, since it is based on a model of the system, it is susceptible to modelling errors and
constant disturbances that can lead to steady state error.

To make our control approach more robust, we add an integral action into the feedback.
To add the integral action to our previously developed control loop, we augment the state

vector xk to get the new state vector ξk =
(
xk
vk

)

, where vk contains the new integral states.

Using this new state Equation (5.10) can be rewritten to Equation (6.21):

ξk+1 =

(
Ad 0

Cd I

)

︸ ︷︷ ︸

Ād

·ξk +

(
Bd

0

)

︸ ︷︷ ︸

B̄d

·ūk

yk =
(
Cd 0

)

︸ ︷︷ ︸

C̄d

·ξk

(6.21)

where ūk =
(
uk ui

)
is the original control extended with the error inputs ui, which are an

integral of the error over time. Using the control formulation above we can ensure that our
system output converges to reference values set in the SLA even in face of small modelling
errors and unmodeled disturbances.

6.3.4 Compensating for actuation delays

One of the crucial issues when designing feedback controllers for cloud software systems are
the large actuation delays. When these delays are not taken into consideration our controller
may lead to a oscillatory output behaviour, if the actuation delay is larger than the control
calculation period.
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For example, if at time instant k the controller reacts to a new measurement saying that
response time increased and takes a corrective action, scaling up the cluster. At the next
time instant k+ 1, we have a new system measurement showing once again that we still have
increased response time. If we have a large delay in the actuation then, our previous actuation
didn’t have time to affect the system output. Now, if delay is not considered in the loop, the
controller will react again at each new sampling period instant with a new scale up action.
This will be done repeatedly until the actuation delay is passed at time instant k+ d. But at
this time we have already scaled up too much, so now the controller will start scaling down.
But, because of the unconsidered actuation delays, we will have the same behaviour as when
scaling up, leading to an oscillatory output behaviour.

One of the advantages of the previously presented control mechanism is that, the delay
compensation can be explicitly formulated in the formulation of the optimisation criteria. To
do these we can reformulate Equation (5.10) into Equation (6.23) to introduce the input delay
of τ sampling periods into cluster size input N :

xk+1 = Ad · xk +B1
d ·Nk−τ +B2

d ·MCk

yk = Cd · xk
(6.22)

Notice, that because of the Nk−τ term, in order to be able to arrive at the form required by
the optimization function, we need to somehow give the function the previous control inputs
Nk−τ , . . . , Nk−1 for it to be able to calculate the prediction for n steps ahead. Therefore,
through a variable change, we augment the states of the previous model with these values.
Let this new state variable be η. Then, Equation (6.23) can be transformed like this:

αk+1 = Aα · αk +Bα · uk

yk = Cα · αk

(6.23)

αk =








xk
Nk−τ

...
Nk−1







, Aα =













Ad Bd 0 0 . . . 0

0 0 I 0 . . . 0

0 0 0 I . . . 0
...

...
...

...
...

...
0 0 0 0 . . . I

0 0 0 0 . . . 0













, Bα =













0

0

0

0
...
I













, Cα =
(

C 0 0 0
... 0

)

6.3.5 MR-Ctrl- observer

Having found the matrices H and f obtained above in Equation (6.20), the optimum control
law can be computed. At a closer look though, we see that the matrix f contains the internal
state of the model xk, concatenated together in the vector Xk. Since the states xk are not
directly measurable, predictions are obtained from a state estimator. The estimates are com-
puted from the measured output yk and the applied input uk with the use of a Luenberger
observer [43]:

x̂k+1 = Ad · x̂k +Bd · uk + L · (yk − ŷk)

ŷk = Cd · x̂k (6.24)
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where the variables of the observer are commonly denoted by x̂(k) and ŷ(k) to distinguish
them from the variables of the physical system from Equation (6.15).

Due to the separation principle, we know that we can define the observer gain L indepen-
dently from the control, without damaging the overall stability of the system. The poles of
the observer A − L · C are usually chosen to converge 10 times faster than the poles of the
system. In our case we use the pole placement technique [51] in order to assure this and thus
find the L matrix.

6.4 Summary

In this chapter three separate on-line control architectures, for ensuring a MapReduce clusters
performance and/or availability, are developed. First, a control architecture based on classical
time-based PI and feedforward controllers is developed, to ensure MapReduce performance
through cluster scaling. After the careful analysis of this classical control theoretical frame-
work, a novel event-based control framework is introduced, that improves upon the control
profile by further minimising the number of cluster reconfigurations and cost, and provides
more options in designing the control reactivity. Furthermore a modified feedforward approach
is presented that benefits of predictive behaviour of traditional feedforward control, but min-
imises control cost by reducing the control dynamics. Finally, we develop the optimal control
framework MR-Ctrl, that ensures at the same time both the performance and availability of
a MapReduce service, while explicitly minimising the control cost. Moreover, whenever both
objectives can not be met due to cost or resource limitations, MR-Ctrl can successfully handle
the trade-off between performance and availability according to predefined priorities. The fol-
lowing Chapter 7 provides the experimental evaluation of the modeling and control solutions
developed until this point. The experimental evaluation of the control algorithms is given in
Section 7.3.
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In this chapter we validate the developed MapReduce dynamic models together with our
on-line performance and availability control algorithms. First the experimental setup that
we have built, introduced in Section 4.2, is presented in detail in Section 7.1. Second, using
this setup in Section 7.2, we experimentally validate the models developed in Chapter 5.
Finally, the different control algorithms elaborated in Chapter 6 are evaluated numerically
and experimentally in Section 7.3.
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7.1 Experimental MapReduce Environment

7.1.1 Overview of experimental setup

All the experiments in this paper were conducted on-line, in Grid5000, on a single cluster of 60
nodes, located in Nancy, France. The 60 nodes infrastructure was chosen for practical reasons,
as we don’t yet have access to a larger cluster size. However, all algorithms presented scale
well, and can be applied to any cluster size, with only the re-identification of the equation
parameters as described in Section 5.6.

Grid5000 is a French nation-wide cluster infrastructure made up of a 5000 CPUs, devel-
oped to aid parallel computing research. It provides a scientific tool for running large scale
distributed experiments [14]. Each node from the cluster, used for our experiments, has a
quad-core Intel CPU of 2.53GHz, an internal RAM memory of 15GB, 298GB disk space and
the connection between the nodes is assured with an Infiniband 20G network.

For our experiments we use the open source MapReduce implementation framework
Apache Hadoop v1.1.2 [31] and the high level MRBS benchmarking suite. A simplified version
of our experimental setup is sketched in Figure 7.1. We measure from the cluster the response
time, availability and the workload size. We use the cluster size and the max clients level to
ensure the performance and availability objectives, regardless of the workload variations.

Response time (s)

AvAA ailability (%)

#Clients

#Cluster size

#Max clients

Figure 7.1: Intuitive view of the experimental setup

All the controllers were developed and implemented in Matlab. Our choice for Matlab as
control environment has two main motivations. On one hand, it provides significant tools for
the fast implementation and testing of different control architectures. One the other hand, it
is the high level programming environment with which most control scientist are accustomed
to. Therefore a control interface between Matlab and the MapReduce cluster would facilitate
further research into the modeling and control of MapReduce systems, without the need
for detailed low level knowledge of how the MapReduce system itself is implemented. As a
result, we have built the low level scripts that allow for the control and measurement cluster
performance and availability through simple Matlab function calls.
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Furthermore, although Matlab already provides an array of general controllers, all the
controllers presented here were implemented from scratch, and were specifically designed for
our set-up. We exploited Matlab’s powerful tools in the following instances:

• All the simulations of the control architecture were run in Matlab Simulink, a high level
graphical block programming tool for the modeling and simulation of dynamic systems.
Running simulations is important for testing validity of the control architecture and can
be very useful for control parameter tuning. This was important especially in our case,
where the average runtime of a single experiment was around 2 hours.

• For the identification of the model parameters we used Matlab’s System Identification
toolbox. See Section 5.6 for more details on this.

• For the optimal control calculation we made use of the optimization function ’quadprog’
contained in Matlab’s Optimisation toolbox.(Section 6.3).

For a more detailed version of our experimental setup one can check Figure 7.2. The flow of
data between the local controller and the remote site is assured by encrypted tunnels created
using the secure shell protocol (SSH). Most of our actuators and sensors are implemented in
Linux Bash scripts.
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Figure 7.2: Detailed view of the experimental setup
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The Secure Shell protocol (SSH) is a UNIX-based protocol, developed for the secure trans-
mission of data over a network, between two computers. Its most frequent use is to remotely
configure Web servers. SSH commands are both encrypted and secured. RSA public key
cryptography is used to encrypt the data, while security is ensured by the fact that both ends
of the communication channel are authenticated using a digital certificate.

A SSH tunnel is a bidirectional encrypted tunnel that uses the SSH data transfer pro-
tocol. Such a tunnel can be used to transfer unencrypted traffic between computers, over
an encrypted channel. Therefore, it can be used to transfer files securely, even if the files
themselves are not locally encrypted on either side.

All the experiments configuration is done locally, directly in a Matlab configuration file.
Furthermore, the experiment is started fromMatlab and runs completely autonomously. More-
over, the experiment data is received on-line from the remote cluster and plotted. A simplified
flow of an automatic experiment run is the following:

Step 1. At the beginning of the experiment, an SSH tunnel is created from the local computer
to the remote node that runs the MRBS benchmark tool. This tunnel is then used to
start up the experiment using the parameters of the local configuration file (parameters
such as experiment runtime, initial cluster and workload sizes). The workload size
variation over time for the duration of the experiment is specified at this time and
given as an input the experiment.

Step 2. As soon as the experiments starts up and the JobTracker is running, a second SSH
tunnel is created to the Hadoop Master node.

Step 3. The local and remote sensor scripts, that periodically retrieve the performance and
availability metrics from the MRBS runtime logs, are started.

Step 4. The on-line local plotting of the performance and availability metrics, together with
the control inputs is stared.

Step 5. The on-line control loop is run for the duration of the experiment.

Step 6. When the experiment finishes the data is saved.

7.1.2 Sensors and Actuators

Our sensors and actuators are written in Unix Bash scripts. Bash scripts are shell scripts
which are widely used in the UNIX world. They are excellent for speeding up repetitive tasks
and simplifying complex execution logic. They can be as simple as the grouping of a set of
commands, or they can perform complex tasks.

The sensor scripts run alongside the MRBS server and periodically process the Hadoop
log files. This period is the sampling period Ts of the control loop. Therefore, at each time
instant k (k · Ts) the scripts process all the log data from the last time window (k − T ) to
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get the performance and dependability metrics. The sensor scripts are in fact a combination
of bash programming and powerful Unix text processing languages such as AWK and SED.
AWK is typically used as a data extraction and reporting tool, while SED (stream editor) is
a compact programming language used to parse and transforms texts.

Two actuator scripts were written, one for each control input:

• One controls the cluster size N and takes as input the number nodes to add or remove to
the cluster. In case of node addition, BASH scripts are written to start up the slave node
services, such as the task tracker and datanode processes, for each new node that we
want to add. After the processes have started up, the list of slave nodes at the master
is updated with the hostnames of the new nodes. In case of node removal Hadoops
command line exclude mechanism is used that safely (without any data loss) removes
the nodes from the cluster.

• The other is a Java client application that connects to a RMI server, run by MRBS, to
control the max clients level MC.

7.1.3 Workload mix

For our experiment we have selected the data intensive business intelligence benchmark of
MRBS, consisting of a decision support system for a wholesale supplier. Requests are typical
business queries and concurrent data modifications over a large amount of data (10GB). The
workload used by MRBS has been taken from the decision support benchmark provided by
the Transaction Processing Council (TPC). The TPC is a non-profit corporation founded to
define transaction processing and database benchmarks, that deliver trusted results for the
industry.

To generate the client interactions Apache Hive is deployed on top of Hadoop. Hive
provides a mechanism to project structure onto our data and query the data using a SQL-like
language called HiveQL. Basically, Hive converts the traditional SQL like queries into a series
of MapReduce jobs.



78 Chapter 7. Experimental Evaluation

7.2 Model experimental validation

7.2.1 Performance model validation

The identification procedure from Section 5.6 is used to find the model of the MapReduce
System, noted Yrt(z). As given in Equation (5.1) (p. 44), Yrt is composed of sum of two
discrete transfer functions, YN (z) and YC(z). In the following, the identification results for
finding the parameters of these two functions, using the prediction error estimation algorithm,
are presented. Each identification experiment is run at least 3 times and the results are merged
together to decrease the measurement noise.

7.2.1.1 Identifying the disturbance free performance model

The fit of the identified model for cluster size variations can be seen in Figure 7.3.
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Figure 7.3: Identification of the undisturbed system. It predicts the effects of cluster size
reconfigurations on performance

A step in the number of nodes is used to identify the model between the response time
and the number of nodes. As it can be seen, the model found by the algorithm captures well
the system dynamics with a fit level of 86.53%.

The identified form of the discrete transfer function YN (z) is given in Equation (7.1).
To better highlight the effect of each model component, the equivalent difference equation is
given in Equation (7.2). This is calculated using the Z transformation properties, given in
(Section 2.7.4). Using this form, we can easily see that the predicted output is calculated
based on the previous output yN (k − 1) value and the previous changes in the cluster size,
taking into consideration the actuation delay τrtn = 5.
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YN (z) = z−5
−0.17951(z + 1)

z − 0.919
(7.1)

yN (k) = 0.919 · yN (k − 1)− 0.179 ·N(k − 5)− 0.179 ·N(k − 6) (7.2)

7.2.1.2 Identifying the disturbance model
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Figure 7.4: Identification of the disturbance model. It captures the effect of workload size
variations on performance

Figure 7.4 shows the step responses for the identified and measured systems, in the case of
changes in the number of clients. As we can see, the identified model also follows closely the
measurements taken from the real system, presenting a 87.94% fit. Similarly to the previous
case, the identified form of discrete time transfer function YC(z) is given in Equation (7.4)
and the difference equation form in Equation (7.4):

YC(z) = z−8
1.0716(z + 1)

z − 0.7915
(7.3)

yC(k) = 0.7915 · yC(k − 1) + 1.0716 · C(k − 8) + 1.0716 · C(k − 9) (7.4)

One thing to notice is that for this model, the deadtime is different than the previous one,
here τrtc = 8.

7.2.1.3 MapReduce Performance model

If we combine Equation (7.1) and Equation (7.3), we can write the identified MapReduce
dynamic performance model, defined in Equation (5.2) (p. 45) in the modelling section:

Yrt(z) = z−8
1.0716(z + 1)

z − 0.7915
· C − z−5

0.17951(z + 1)

z − 0.919
·N (7.5)
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Equation (7.5) shows that both of identified discrete time transfer functions are stable, first-
order systems with their poles inside the unit circle. Therefore the open loop system is
inherently stable. For more information regarding system stability see Section 2.7.8.

7.2.1.4 On-line parameter adaptation

To address the non-linearities in response to cluster scaling, that appear when the system
leaves the operating region, the model parameters can be adapted on-line. The experiment
in Figure 7.5 shows the accuracy of the adaptive model in capturing the system response to
workload and cluster changes. We can see the model estimations follow closely the measure-
ments taken from the real system. The parameter adaptation technique used in this case is
the recursive least square estimator described in Section 5.6.2. For more details one can check
the master thesis of Sophie Cerf [17].

0 50 100 150 200 250

5

10

15

20

25

30

35

Time (min)

#
N
o
d
e
s

0 50 100 150 200 250

5

10

15

20

#
C
li
e
n
ts

Nodes

Clients

(a) Inputs - workload and cluster sizes

0 50 100 150 200 250
120

140

160

180

200

220

240

260

280

300

Time (min)

R
e
s
p
o
n
s
e
ti
m
e
(s
)

Measured

Estimated

(b) Performance

Figure 7.5: Performance model validation [17]. It predicts the effects of cluster and workload
size variation on performance
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7.2.2 Availability model validation

The fit of the identified model for max clients level variations can be seen in Figure 7.6.
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Figure 7.6: Availability model validation with N = 20, C = 10. It predicts the effects of max
client level variations on availability

The figure shows responses for the identified and measured systems, in response to MC

variation. The identified model follows closely the measurements taken from the real system.
The identified form of Yav(z) is given as a discrete time transfer function in Equation (7.6)
and in a difference equation form in Equation (7.7):

Yav(z) = −
0.1548

z − 0.946
· (C −MC) (7.6)

yav(k) = 0.946 · yav(k − 1)− 0.1548 · C(k) + 0.1548 ·MC(k) (7.7)

The identified difference equation shows that the effect of MC variations can be calculated
based on the previous output yav(k − 1) value and the current MC and C values.

7.2.3 Performance and availability model validation

To validate the accuracy of the MIMO performance and availability model, proposed in Sec-
tion 5.5, two type of validation experiments are presented. These were designed to evaluate
the model’s ability to capture the effect of cluster size and workload variation on the system
performance and availability.
In the first case we fix MC = 5, N = 20 and the workload size is varied between 2 and 10
clients, see Figure 7.7. The upper two graphs show the evolution over time of the performance
and availability for both the real system (dashed) and the modelled one (solid line). The
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results show that the model accurately reflects the behaviour of the real system. For instance
we can observe that any changes that are under the MC = 5have an effect upon the response
time but not on availability. Meanwhile, when the number of clients exceeds MC, availability
is affected and response time remains unchanged.

0 50 100 150 200 250
0

2

4

6

8

10

12
#C

lie
nt

s

Time (min)

(a) Clients

0 50 100 150 200 250
0

50

100

150

Time (min)

R
es

po
ns

e 
tim

e 
(s

)

Real system

Modelled system

(b) Performance

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

110

Time (min)

A
va

ila
bi

lit
y 

(%
)

Real system

Modelled system

(c) Availability

Figure 7.7: MIMO model validation for workload variation, #MC=5, #Nodes=20
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Figure 7.8: MIMO model validation for cluster size variation, #MC=5, #Clients=10

In the second round of experiments we fix C = 10 and MC = 5 and we vary the cluster
size from 10 to 30 nodes, see Figure 7.8. Although the model captures well the effect of these
nodes changes, we can see small differences coming from the fact that some non-linearities
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arise when adding (removing) a large number of nodes at the same time. However as we will
show further on, the model accuracy is sufficient for our control algorithm, since the feedback
optimal controller can compensate for such small non-linearities. The effects of MC variation
has been already plotted in the previous section in Figure 7.6. Here, we just want to note that
it’s model has the highest accuracy out of the three inputs.

To conclude, the model validation experiments prove that our models can successfully
captures the dynamics of the real system.
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7.3 Control experimental validation

7.3.1 Control validation scenarios

In this section we validate our control architectures developed in Section 6.1 based on
different use case scenarios that are relevant for cloud systems. The primary focus of these
scenarios is to test the control response to the practical, real demands of any cloud controller
architecture.

First, for the case when we are interested in controlling only the performance of MapReduce
systems, we identified two large industrial use cases:

1. First, we have the relaxed performance - minimal resources case where the service provider
needs to keep the system response time below the reference threshold defined in the SLA,
but also wants to minimize the number of resources it utilizes (in this case the number of
system nodes), to reduce cost. Therefore, if this is specified in the SLA, the client accepts
that for a small amount of time the response time could exceed the reference threshold.

2. The second case is the strict performance one, when the service provider has a very strict
demand from the client in keeping the response time below the reference, defined in the
SLA, all the time. This can be the case for online brokerage industry where the service
unavailability costs about 6.48 million dollars per hour [23]. Since the number of clients
trying to use the service is unpredictable, the service provider is accepting a considerable
increase in the number of the system nodes (therefore an increase in the utilization cost)
in order to respect the SLA and face the client increase.

Second, in the event that the controllers have multiple concurrent objectives, such as per-
formance and availability in our case, two scenarios were designed in order to highlight the
situations when the trade-off between the two objectives needs to be addressed by the con-
troller. Of course, when we have no limitations on resources and the outputs are achievable,
the controller will keep both availability and performance objectives. However, in case of strict
input or output constraints, the controller needs to enforce one of the outputs at the expense
of the other one.
To highlight how our control architecture tackles the latter conflicting objectives we developed
the following two control use cases:

1. Performance guardian guarantees response time, while maximising availability and min-
imising cost.

2. Availability guardian ensures availability, while minimising response time and cost.

In the following, these scenarios are examined in both simulations and experiments with the
real MapReduce cluster described in Section 7.1.
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7.3.2 Relaxed performance - minimal resource control

In this section the classical and event-based feedfoward control architectures, designed for the
Relaxed performance - minimal resource control use case, are experimentally evaluated.

7.3.2.1 Classical feedback control

First, we consider a simplified version of the control architecture from Figure 6.1 (p. 56),
where Uff (z) = 0, ∀z. Therefore, the behaviour of the classical PI feedback controller UPI(z),
developed in Section 6.1.2, is examined.

The equation of the sampled time PI controller utilised has been given in Equation (6.2)
(p. 58). The parameters of the controller are determined through loop shaping, to assure
closed loop stability and no control overshoot. In control theory we talk of output overshoot
when the system output exceeds the reference value before stabilizing on it. However, in
the case of cluster scaling the control profile can be just as or even more important then the
output. Therefore, as we would like to avoid a highly aggressive controller, that adds and then
removes nodes in short amount of time, the controllers response to the disturbance is designed
to be slow. By doing this, we minimise the number of the cluster reconfiguration instances
through decreasing the control reactivity, which in turn decreases the control overshoot. Still,
one important thing to keep in mind is that the more we decrease control reactivity the larger
the overshot will be in the output because of the slow control response.

Taking all these requirements into account, we computed the value of Kp = 0.0012372

and Ki = 0.25584 for our controller. The results are given in Figure 7.9, which shows our
controllers response to a 50% change in the number of clients (Figure 7.9a). We can see that,
as the controller is determined to have a slow settling time, the SLA threshold is breached for
a short amount of time. Nevertheless, the controller takes the response time to the reference
value, by steadily increasing the number of nodes until response time recovers (Figure 7.9d).
The cluster size required to keep the SLA is recomputed at each new sampling interval (Fig-
ure 7.9c). Therefore, care must be taken to avoid a reactive control configuration and to
minimise measurement noise levels, otherwise we can have frequent cluster resizing.

Notice, that in this case the reference value is not set exactly to the SLO reference thresh-
old. The reasoning behind this is that, in traditional control theory the control objective is
to reach an exact reference value. Traditional cloud SLO objectives such as keeping a signal
value below a certain threshold can not be directly formulated, in this setup. Therefore, in
case of feedback control, to give time for the controller to react this reference value it should
always be a value close to, but below the SLO threshold.

The main advantage of this type of control is its simplicity and high robustness to modeling
errors as well as unknown disturbances. This is a key factor for any cloud controller as there
are many points of contention that can arise in such complex system as MapReduce.
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Figure 7.9: Classical PI feedback control - experimental evaluation

7.3.2.2 Event-based feedback control

To highlight the benefits of even-based feedback control, developed in Section 6.2.2, in com-
parison to the previous classical one, we use the same controller configuration parameters,
Kp = 0.0012372 and Ki = 0.25584, and same control scenario as in Section 7.3.2.1.

Figure 7.10 shows that the event-based PI controller, with detection level ēfb = 5, also
manages to recover the response time and keep it below the threshold in the presence of per-
turbations. One can also see that, when comparing Figure 7.9c with Figure 7.10c, the control
to be applied is computed much less frequently. Furthermore, if we compare Figure 7.9d with
Figure 7.10d, we can see that the number of cluster reconfigurations is drastically diminished
as well. In fact the number of cluster reconfigurations is decreased by half (4 changes with
the event-based controller compared to 8, without). Although the performance is somewhat
worse, we do have significant gains in terms of a smoother control profile and less control
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reactivity. Which in turn brings less energetic cost for the cloud provider and less financial
cost for the user.
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Figure 7.10: Event-based PI feedback control - experimental evaluation

7.3.3 Strict performance - Feedforward Control

In this section the classical and event-based feedforward control architectures, designed for
the strict performance use case, are presented.

7.3.3.1 Classical feedforward control

The effect of adding the feedforward controller Uff (z) , given in Equation (6.3) (p. 59), to the
previous PI feedback control, can be seen in Figure 7.11. The implemented difference equation
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form of the computed feedforward controller is given in Equation (7.8):

uff (k) = 0.791 · uff (k−1) + 5.9698 · C(k−2) − 5.486 · C(k−3) (7.8)
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Figure 7.11: Classical feedfoward control - experimental evaluation

One can also observe that, although so far we have tested our controllers with a jump
of 50% more clients, here we test our control with a disturbance twice as worse. We have a
jump of 100% more clients, to highlight the effectiveness of feedforward control in comparison
to just feedback control. While the feedback control shortly breached the SLO even with a
50% increase, by adding the feedforward component we can see that the controller response is
increased and manages to keep the response time below the SLA threshold at all time, even
if we double the current workload. This comes though with an increase in control cost, due
to the larger cluster size and the control profile utilized. Being a time based controller, the
number of nodes to be added is recomputed at each sampling interval and therefore it is not
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plotted again. Furthermore, the feedback term compensates for all the model uncertainties
that were not considered when calculating the feedforward and assures that the steady state
error converges to 0.

The reason why feed-forward control does so much better then just feedback control is the
large delays in response to a disturbance and to an actuation, that we have in such systems.
For example in our case we have an 8 sampling period delay (240 second) from the time
the disturbance appears (clients arrive), until their effect can be measured on the output.

Furthermore we have a 5 sampling period delay (150 second) in the actuation, namely the

time it takes for the effect cluster scaling to be measurable on the output. Meanwhile, in

cases such as ours, we can measure immediately when the new clients arrive and we can use

this information straight away to intervene, instead of waiting for seeing the effects of the

disturbance on the output, as it is in the feedback control case. This is where the strength

of feedforward control comes into play. We can instantly counteract through cluster scaling

(Figure 7.11c), the effect of the workload variations (Figure 7.11a) at the same time as they are

affecting the system and practically nullify the disturbance effect on the output (Figure 7.11b).

7.3.3.2 Event-based feedforward control

In this section we evaluate the event-based feedforward control architecture introduced in

Section 6.2.3.

For the first validation experiment we design an event function to reduce the number of

cluster reconfigurations. The chosen event signal, shown in Equation (7.9) is a virtual one,

which is the predicted output of the disturbance model, given in Equation (7.4), in response

to the measured workload variation C.

ǫff (t) := ēff − Uff ·
∣
∣(C(t)− C(tj)

∣
∣ (7.9)

where the event detection level is ēff = 10 and Uff is given in Equation (7.8). Figure 7.12

shows the effect of adding the event-based feedforward controller on performance. Similarly

to the event-based feedback controller, we can see the number of cluster reconfigurations is

reduced by half compared to the classical case presented in Figure 7.11, meanwhile we still

benefit of a good disturbance rejection, keeping the response time stable.

Additionally, as we can see the event function can be used to minimise the node removal

frequency, introducing a sort of a delay between node removals. This delay in taking control

actions is important because, we have to remember that in case of such systems as MapReduce

we can have the multiple other optimisation functions (schedulers), besides our controller,

that optimise the cluster continuously, therefore a succession of quick reconfigurations is not

desirable in practice.

Note also that, whereas the feedback controller UPI is not required in the ideal case,

here it is compulsory to ensure the stability and robustness of the closed-loop system. See

Section 2.7.8 for the intuitive definitions of system stability and robustness.
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Figure 7.12: Event-based feedforward control - experimental evaluation

Nevertheless, if we take a look at the feedforward controller in Figure 7.12 we can see that,
its behaviour is to initially add a larger number of nodes and than to slowly decrease down to
the new stabilizing level. This behaviour comes from the dynamics of the disturbance effect.
Its purpose is to enact through cluster scaling the inverse effect that nullifies the disturbance
influence on performance. While, this approach compensate exactly for the changes in the
system, such a behaviour should be used only when we have strict-performance requirements,
when keeping performance is much more important than the control cost. In cases when both
cost and performance are important concerns, the natural question arises: how could we use
the benefits of the feedforward controller, without the previously described control profile?

We have provided the answer to this question in Equation (6.13) (p. 66), which is a mod-
ified version of the traditional feedforward controller, that doesn’t make use of the complete
disturbance dynamic. Instead it uses only the feedforward gain, basically transforming the
feedforwad controller into a simple proportional controller. The gain of this proportional
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controller is calculated through the division of the disturbance model gain with the process
gain (Equation (6.13)). The event signal in this case is directly the workload size variation C

and the event function defined in Equation (6.14). By defining the event function directly on
the workload lets us to better combine the strengths of the feedback and feedforward control
architectures. On the one hand, a slow event-based PI feedback controller is designed that is
in charge of responding any small variations around the operating point caused by unknown
disturbances, such as bottlenecks and small workload variations, meanwhile ensuring all round
system robustness. On the other hand a fast but low cost event-based feedforward controller
is added to handle large workload variations that are above the natural workload variance
limit.
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Figure 7.13: Modified event-based feedforward control - experimental evaluation

The results of such a control setup is presented in Figure 7.13. Notice that the initial small
client variation, from 10 clients to 13 and then to 11, is handled by the feedback PI controller.
Meanwhile, the large workload change, from the 11 to 17 is handled by the feedforward



7.3. Control experimental validation 93

controller. If we further compare the modified control response given in Figure 7.13c with the
traditional one given in Figure 7.12c we can see that in the modified case the controller adds
directly the nodes required after the absorption of the initial shock. We can also5 see that
although we loose a bit in terms of performance during the initial shock (Figure 7.13b), we
gain a smooth control profile and drastically reduced costs (Figure 7.13c).
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Figure 7.14: Event-based feedback and modified feedforward control - evaluation in simulation

In Figure 7.13 we can see that the control profile is much improved compared to the
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classical case. To highlight even better the benefits of the modified feedforward controller let
us look at the following simulation of a more complex, highly varying workload (Figure 7.14a)
in Figure 7.14, where we compare the classical and event-based control performances.

When comparing the two control profiles of Figure 7.14c it is clear to see that the event-
based controller drastically decreases the cluster reconfiguration count, having up to 30 times
less reconfigurations at te end of the experience in the event-based case. Meanwhile the
performance responses of the two controllers are similar (Figure 7.14b).

7.3.4 Constrained optimal control: MR-control

In this section we present the twofold evaluation of the control law MR-Ctrl, proposed in-
Section 6.3. The evaluation scenario was chosen, so that we could highlight the two control
scenarios, defined in Section 7.3.1. Therefore, we limit the maximum cluster size to be 40
nodes and increase the workload size sufficiently, so that the controller can’t ensure both

outputs objectives simultaneously.

We start of withN = 20,MC = 9 and C = 10. The duration of the evaluation experiments

is 130 minutes. During the experiment we vary the workload twice: we have 4 new clients

that arrive at 30 minutes and then 5 clients leave at 70 minutes, see Figure 7.15a.

The control objectives, for all the evaluation experiments, are fixed as Av > 90% and

Rt < 125s.

First we validate the control strategy in simulation. These simulations help in fast and

inexpensive testing, tuning of the controller in different scenarios. The closed loop response

of the MapReduce system with both controllers can be seen in Figure 7.15.

In the case of the Performance guardian, the controller optimally counter effects the work-

load changes and keeps a stable response time, while maximising availability and minimising

resource usage. If we take a closer look at the controller responses, such as the cluster size

(Figure 7.15d) and MC (Figure 7.15e) variation, we can see that when the controller reaches

the upper nodes limit of 40, it decreases the MC to keep the reference response time. This in

turn leads to a decrease in system availability, see Figure 7.15c.

In the second case of the Availability guardian, ensuring availability is preferred to per-

formance. Therefore the controller first ensures the desired availability levels, while at the

same time minimises response time and resource usage. If we compare the control inputs to

the previous case, Figures 7.15d and 7.15e, we can see that in this case the controller keeps

MC levels stable to guarantee availability and uses the maximum amount of nodes available

to minimise response time.

Now we test our control algorithm using the MRBS benchmark tool and a Hadoop MapRe-

duce system running in Grid5000. We use the same workload scenario as in the simulations.



7.3. Control experimental validation 95

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

#
C

lie
n

ts

Time (min)

(a) Clients

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

Time (min)

R
e

sp
o

n
se

 t
im

e
 (

s)

Performance guardian

Availability guardian

(b) Performance

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

110

Time (min)

A
va

ila
b

ili
ty

 (
%

)

Performance guardian

Availability guardian

(c) Availabilty

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

Time (min)

#
N

o
d

e
s

Performance guardian

Availability guardian

(d) Cluster size

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

Time (min)

#
M

C

Performance guardian

Availability guardian

(e) MC

Figure 7.15: Performance guardian and Availability guardian control scenarios - evaluation in
simulation

Because the real system has a natural output variance of around 5%, we add a safety band
of 5%, around our performance and availability objectives, where no control is calculated.
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Furthermore, as in real life scenarios one would want to avoid the continuous cluster size
reconfigurations, using the weighting factor R, see Equation (6.16) p. 67, we put a penalty on
cluster scaling operations.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

#
C

lie
n
ts

Time (min)

(a) Clients

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

Time (min)

R
e
sp

o
n
se

 t
im

e
 (

s)
Performance

Reference performance

(b) Performance

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Time (min)

A
va

ila
b
ilt

y 
(%

)

Availability

Reference availability

(c) Availability

0 20 40 60 80 100 120
0

10

20

30

40

50

#
N

o
d
e
s

Time (min)

(d) Cluster size

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

#
M

C

Time (min)

(e) MC

Figure 7.16: Availability guardian control scenario - experimental evaluation
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To prove the effectiveness of the control algorithms on the real system an experiment is

shown using the Availability guardian configuration. Figures 7.16a and 7.16b show the re-

sponse time and availability variations of the real system. We can see that at the beginning

of the experiment the controller manages to keep the availability objectives, sacrificing per-

formance to do it. After the second workload change, when the number of clients decreases,

both availability and performance objectives are met. We can also observe small overshoots

in terms of response time and availability, which may come from some unmodeled external

disturbance factors that influence real MapReduce deployments. In Figure 7.16d we can follow

the effect of the penalty on node changes. There are much less cluster size reconfigurations,

than in the simulations presented before, where we didn’t have this penalty. Moreover, MC

level is varied more freely since there is no cost associated to changes in MC, Figure 7.16e.

7.4 Summary

In this chapter we present the successful experimental validation of the developed models and

on-line control algorithms. First, in Section 7.1 we present the experimental setup that makes

it possible to test different on-line control algorithms on a real MapReduce cluster, directly

from the comfort of the Matlab programming environment. Second, in Section 7.2 we show

that the models developed in Chapter 5 can successfully capture the performance and de-

pendability of a MapReduce cluster. Finally, in Section 7.3 the efficacy of the different control

algorithms elaborated in Chapter 6 is highlighted, both numerically and experimentally, in

varied cloud scenarios.





Chapter 8

Conclusions and Perspectives

8.1 Conclusions

The research subjects addressed in this thesis are situated at the crossroads of two commu-
nities: informatics and control. The main contributions of the thesis are the modelling and
control of the performance and dependability of MapReduce cloud software systems. MapRe-
duce is one of the currently most popular parallel processing algorithms. It is a complex
framework that offers a rich setting, in data and workload sizes and types, for the develop-

ment of modelling and control techniques of highly data intensive applications, specific to our

BigData age. In the following paragraphs the thesis contributions are summarised:

I. We have implemented an autonomous on-line control framework, that allows to measure

and control the performance and availability of a MapReduce cluster from any local

computer running Matlab. The control framework developed can be easily adapted

to any other software system. The choice of Matlab, as the controller development

environment, was made in order to facilitate further research into such software systems

by the control community.

II. We propose the first algorithm for the dynamic modelling of the performance and avail-

ability of a MapReduce cluster, running a concurrent data intensive workload. Using

this algorithm, several black-box performance and dependability models are proposed.

All the presented models have been successfully validated on a real 60 node MapReduce

cluster, in Grid5000, running a data intensive Business Intelligence workload.

The models were found to capture the dynamic behaviour of a MapReduce system with

high accuracy. Nevertheless, to improve upon model robustness and address possible sys-

tem non-linearities, on-line adaptation techniques for calculating the model parameters

are described as well.

III. A control architecture based on classical time-based feedback and feedfoward controllers

is developed to ensure MapReduce performance through cluster scaling. The controllers

were found to be successful in ensuring performance constraints. The advantages of this

control approach, compared to existing solutions, are the mathematically ensured control

loop stability and the robustness to modelling and environmental uncertainties.

Still, the control profile and reactivity were found in need for further improvement and

adaptation to the cloud scenario.
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IV. To improve the control profile and provide more options in designing the control reactiv-
ity, an event-based feedback and feedforward control framework is developed. Moreover,
a novel modified event-based feedforward approach is introduced, that retains most the
benefits of the predictive behaviour of a classical feedforward control, but minimises
control cost by reducing the control dynamics.

The event-based method, by reducing control reactivity, has effectively cut by half the

number of cluster reconfigurations compared to the classical feedback approach, thus

diminishing considerably costs. Meanwhile, the decrease in performance is negligible.

Moreover, the control profile is greatly improved by minimising undesired control be-

haviours, such as oscillations in the control inputs.

Still, this approach can ensure only one control objective at a time and the optimality

of the control profile is not implicit.

V. Finally, the optimal control framework MR-Ctrl, that can optimally ensure multiple

output objectives simultaneously is developed. In our case it can optimally control at

the same time both the performance and availability of a MapReduce service, meanwhile

explicitly minimising the control cost as well. Moreover, whenever both objectives can

not be met due to cost or resource limitations, MR-Ctrl can successfully handle the

trade-off between performance and availability according to predefined priorities.

The biggest advantage of the method consists in its wide applicability, as most control

problems for software systems can be reduced to an optimisation problem. Furthermore,

the control framework works the same regardless of the number of input-output variables

and the optimal solution is found after a finite number of optimization steps. Moreover,

the framework can implicitly handle actuation delays and even dynamic input limitations.

One of the limitations of this approach is that it is based on a linear system model.

However, in practice having a linear model is sufficient for most systems, especially if the

model parameters are adapted on-line.

Furthermore, taking our experiences in modelling and control MapReduce system we high-

light some general conclusions regarding our experience with the use of control theory for

the modelling and control of such cloud software systems:

• One of the most important steps, before applying control theory to any software system

is defining the correct output signal, one that varies over time and based upon which

the control decisions need to be taken. We know that we have a good output metric if

the measured output signal is stable when our inputs are not changing and if it keeps its

directionality in response to input changes. All in all, selecting suitable output signals

is highly important because it conditions the complexity of the control algorithms.

• When it comes to modelling, there are two main approaches to take. Either one tries to

build a detailed model of the system or use more general, black-box technique that make

no assumption about the inner workings of the system, but instead fits a model to the

experimental data. We found that the later approach is much more suitable for software

systems because, as there are no physics governing software, a detailed dynamic model



8.1. Conclusions 101

is difficult to achieve. Not to mention that any of the frequent software updates can
instantly change the inner workings of the system.

Moreover, due to the large environmental uncertainties where such software run, like the
cloud, static modelling is not sufficient. In our experience, even when using the same
cluster and workload sizes, we sometimes had significant offsets in terms of performance.
Therefore, on-line parameter adaptation techniques that periodically update our model
parameters, continuous adaptation of our models to the current environmental conditions
is advisable.

• Maybe somewhat counter intuitively, in control theory building simple models, that
capture the general behavioural tendencies of system is preferred to complex ones, that
capture all the small non-linearities of the real system. The reason for this is that the
more complex the model is, the more difficult it is to build the control laws and the
less general the approach becomes. Therefore, the focus is on keeping the models of the
system as simple as possible and making the control law sufficiently robust to handle
the modelling uncertainties and non-linearities.

• One other important issue we encountered, when modelling cloud software systems, is
the large input/output delays. The understanding of how these delays affect the system
and their incorporation in the modelling and control solutions is crucial. Delays can have
a huge impact on the stability of the feedback control loop and their mismanagement
can lead to oscillations in practice.

Finally, let us summarise the conclusions on the practical applicability of the different
control approaches developed in this thesis. Out of the control solutions that we have
developed in this thesis, the event-based architecture and the optimal control framework MR-
Ctrl proved to be the most promising.

• The advantage of the event-based PI and feedforward framework is its simplicity in im-
plementation . Furthermore, through the event functions, one can customise the control
reactivity and profile according to the requirements and it also has an intuitive con-
nection to the existing threshold based control solution. Moreover, there are numerous
practical solutions in the speciality literature for the automatic tuning of such feedback
controllers. Nevertheless, this method can be applied only for cases when we have single
output objective to guarantee.

• The ability to control multiple objectives at the same time is a big advantage ofMR-Ctrl.
This is a general, optimal control approach, providing a unified treatment of systems,
regardless of the number of input-outputs. Not to mention, that most control problems,
in case of software systems, can be formulated as an optimisation problem. However, the
implementation and tuning of the framework requires a higher level of control theoretical
expertise.
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8.2 Perspectives

This dissertation is the first step towards the dynamic modelling and control of cloud software
solutions, taking the popular MapReduce framework as our use case. In the following we list
a few interesting research directions we envision to complement and to extend upon the work
presented in this thesis.

• In this thesis we use response time, as performance and respectively availability, as
dependability metrics. In some cases other quality of service metrics should also be
taking into consideration, such as throughput and reliability.

• Extending the time-based and event-based control frameworks with adaptive modelling
and control techniques. This subject is described in more details in the Master thesis of
Sophie Cerf [17].

• Investigating the viability of non-linear modelling and control solutions.

• Investigating the use of optimal control as a general reaction strategy in case of systems
of systems, see the European Project AMADEOS [56].

• The use of these feedback control techniques for the adaptation of the algorithms and
the internal behaviour of software systems. For more on this subject, see our systematic
literature review on the subject [71].

• The testing of the proposed control solutions under different cloud environments, such
as the Amazon, Google and Microsoft cloud platforms.

The proposed solutions are general enough to be applicable to a number of cloud software
systems. Nevertheless, cloud systems provide highly variable environments for software ser-
vices, therefore more research needs to be done toward the on-line adaptation of the parameters
of both the model and the controller.

The ultimate goal is to provide a package of "off the self" modelling and control solutions
for cloud performance and dependability management, which can be used by any system
engineer, without the need for high level expertise in the control domain.



Appendix A

Grid5000 basics

1. Grid5000 login.

In order to login to Grid5000 you first need to generate a SSH key pair. Using Linux
you can generate the SSH key using the following command:

ssh-keygen -t rsa -P ""

This command will generate two files into /home/userame/.ssh/ directory. id_rsa is
the private key and id_rsa.pub is the public key.

The content of the public key needs to be added to your grid5000 account.
https://api.grid5000.fr/sid/users/_admin/index.html

After you’ve added the public key you can connect to grid5000 from your computer
using the following command:

ssh grid5000username@access.grid5000.fr

2. Reserving a cluster

You log in, with SSH, to the site where you want to run the experiments (Grenoble for
example). From there you run a command such as this:

oarsub -I -t allow_classic_ssh -l nodes=8,walltime=1:00:00 -p "cluster=’genepi’"

oarsub -I creates an interactive reservation, where you can run multiple jobs. The
default reservation is 8 nodes. The command returns a numeric unique ID that identifies
your submission. The -I option automatically connects you to the job’s first node.

Current submission can be viewed at
https://www.grid5000.fr/mediawiki/index.php/Status#Monika.

For example, to check the submissions state of the cluster at Grenoble go to:
https://intranet.grid5000.fr/oar/Grenoble/monika.cgi

or, by using Ganglia , to:
https://intranet.grid5000.fr/ganglia/?r=day&s=descending&c= .

3. oarstat - Lists current job submissions.

4. oarnodes - Lists cluster properties.

5. oarprint - A tool for printing the current job resources.
oarstat -j OAR_JOB_ID -p | oarprint core -P host,cpuset,memcore -F "%[%] (%)" -f - | sort
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Using the MapReduce Benchmark
Suite

The basic steps of launching an MRBS experiments are:

Step.1 Download MRBS from:
http://sardes.inrialpes.fr/research/mrbs/

Step.2 Copy the downloaded MRBS folder into to the main cluster node folder from where
you desire to run the experiments.

Step.3 Go into your mrb/properties directory and configure the following files:
mrbs.properties, mrbs.faultload, mrbs.workload.

Step.4 Execute the following command to run an MRBS experiment:
java -cp mrbs.jar:./hadoop/hadoop-0.20.2-core.jar:$(echo lib/*.jar | tr ’ ’ ’:’)

mrb.benchmark.server.MRBServer mrbs.output properties/mrbs.properties_interactive

properties/mrbs.faultload-nofaults properties/mrbs.workload

Remember to copy your private key to the /home/username/.ssh directory of your
local cluster so that MRBS won’t ask for password while connecting to the nodes.
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