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Abstract

Security is a crucial requirement in the applications based on information and communi-

cation technology, especially when an open network such as the Internet is used. To ensure

security in such applications several security protocols have been developed. However, the

design of complex security protocols is notoriously difficult and error-prone. Several flaws

have been found on protocols that are claimed secure. Hence, security protocols must be

verified before they are used. One approach to verify security protocols is the use of formal

methods. The use of formal methods has enabled the discovery of several flaws on security

protocols, as well as, the proof of some other protocols’ correctness. However, errors can

be introduced when the protocols are implemented. Another approach which can be

used to verify implementations individual executions is runtime verification. Runtime

verification mainly can help in the cases where verifying implementations formally is

complex and difficult.

In this thesis we contribute to security protocol verification with an emphasis on

formal verification and automation. Firstly, we study exam protocols. We propose

formal definitions for several authentication and privacy properties in the Applied π-

Calculus. We also provide an abstract definitions of verifiability properties. We analyze

all these properties automatically using ProVerif on multiple case studies, and identify

several flaws. Moreover, we propose several monitors to check exam requirements at

runtime. These monitors are validated by analyzing a real exam implementation using

MarQ tool. Secondly, we propose a formal framework to verify the security properties

of non-transferable electronic cash protocols. We define client privacy and forgery

related properties. Again, we illustrate our model by analyzing three case studies using

ProVerif, and we re-discover known attacks. Thirdly, we propose formal definitions for

authentication, privacy, and verifiability properties of electronic reputation protocols.

We discuss the proposed definitions, with the help of ProVerif, on a simple reputation

protocol. Finally, we obtain a reduction result to verify route validity of ad-hoc routing

protocols in presence of multiple independent attackers.

Keywords: Authentication, Privacy, Verifiability, Formal Verification, RunTime Verifica-

tion, Exams, Electronic Cash, Electronic Reputation, Route Validity, Applied π-Calculus,

ProVerif, QEA, MarQ.
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Résumé
La sécurité est une exigence cruciale dans les applications basées sur l’information et la

technologie de communication, surtout quand un réseau ouvert tel que l’Internet est utilisé.

Pour assurer la sécurité dans ces applications nombreux protocoles cryptographiques ont

été développé. Cependant, la conception de protocoles de sécurité est notoirement difficile

et source d’erreurs. Plusieurs failles ont été trouvées sur des protocoles prétendus sécurisé.

Par conséquent, les protocoles cryptographiques doivent être vérifiés avant d’être utilisés.

Une approche pour vérifier les protocoles cryptographiques est l’utilisation des méthodes

formelles. L’utilisation des méthodes formelles a permis la découverte de plusieurs failles

sur les protocoles de sécurité, ainsi que la preuve de la justesse de certains autres protocoles.

Toutefois, des erreurs peuvent être introduites lorsque les protocoles sont mis en œuvre.

Une autre approche qui peut être utilisée pour vérifier les implémentations exécutions

individuelles est la vérification de l’exécution. Vérification de l’exécution principalement

peut aider dans les cas où la vérification des implémentations formellement est complexe

et difficile.

Dans cette thèse, nous contribuons à la vérification des protocoles cryptographiques

avec un accent sur la vérification formelle et l’automatisation. Tout d’abord, nous étudions

les protocoles d’examen. Nous proposons des définitions formelles pour plusieurs proprié-

tés d’authentification et de confidentialité dans le π-calcul appliqué. Nous fournissons

également des définitions abstraites des propriétés de vérifiabilité. Nous analysons toutes

ces propriétés en utilisant automatiquement ProVerif sur plusieurs études de cas, et avons

identifié plusieurs failles. En outre, nous proposons plusieurs moniteurs pour vérifier les

exigences d’examen à l’exécution. Ces moniteurs sont validés par l’analyse d’un exécutions

d’examens réels en utilisant l’outil MarQ. Deuxièmement, nous proposons un cadre formel

pour vérifier les propriétés de sécurité des protocoles de monnaie électronique. Nous

définissons la notion de vie privée du client et les propriétés de la falsification. Encore une

fois, nous illustrons notre modèle en analysant trois études de cas à l’aide ProVerif, et

nous redécouvrons les attaques connues. Troisièmement, nous proposons des définitions

formelles des propriétés de l’authentification, la confidentialité et le vérifiabilité des pro-

tocoles de réputation électronique. Nous discutons les définitions proposées, avec l’aide

de ProVerif, sur un protocole simple de réputation. Enfin, nous obtenons un résultat de

réduction quand vous cherchez des attaques sur la route validité en présence de plusieurs

attaquants indépendants qui ne partagent pas leurs connaissances.

Mots-clés : Authentification, La confidentialité, La vérifiabilité, La vérification formelle,

La vérification de l’exécution, Examens, Argent électronique, La réputation électronique,

Route validité, Appliqué π-calcul, ProVerif, QEA, MarQ.

v





Acknowledgements
Firstly I would like to thank all the members of my jury, in particular my reviewers Dr.

Sébastien Gambs and Pr. Olivier Pereira, for accepting to report on this long manuscript.

I would also like to express my gratitude towards the examiners Dr. Steve Kremer and

Pr. Luca Viganò for their interest in my work. I am also very grateful to my supervisors

Pr. Yassine Lakhnech and Dr. Pascal Lafourcade for accepting me as a PhD student,

and supervising me. I have always enjoyed working with them, and without them this

work would not have been possible.

Then I would like to thank my collaborators, Jannik Dreier from Institute of Information

Security – ETH Zurich for his help on using ProVerif, and his collaboration on the formal

verification of exam and cash protocols; Rosario Giustolisi, Gabriele Lenzini, and Peter

Y. A. Ryan from SnT/University of Luxembourg for their collaboration on the formal

verification of exam protocols; and Yliès Falcone from “Université Grenoble Alpes” for his

help and collaboration on exam monitoring. I also would like to thank Stéphane Devismes

for his help and ideas on route validity for routing protocols; François Géronimi from

THEIA, Daniel Pagonis from TIMC-IMAG, and Olivier Palombi from LJK for providing

us with a description of e-exam software system at “Université Joseph Fourier”, and for

sharing with us the logs of some real french e-exams; Andrea Huszti and Attila Pethő for

the helpful discussions on our findings concerning their exam protocol; Claire Maiza for

her help on structuring and organizing this manuscript; and Giles Reger from University

of Manchester for answering my questions, and for providing me with help on using the

MarQ tool.

I also want to thank Sebastian Mödersheim from DTU Informatics - Denmark, and all

the colleges at VERIMAG in particular the director Nicolas Halbwachs, the secretaries

(Sandrine Magnin, Christine Saunier, Rosen Carbonero) for their help with the paperwork,

and the IT-Team (Philippe Genin, Patrick Fulconis, . . . ).

Finally I am very grateful to my family and friends for their constant support. Last

but not least my thanks go to all those I forgot here.

vii





“Essentially, all models are wrong, but some are useful.”
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Chapter 1
Introduction

With the development and spread of the technology more and more electronic applications

have emerged, and more and more services are offered over the Internet. For instance,

several universities and other educational organizations (e.g., Coursera1, CISCO2) offer

computer/Internet-based exams. Banking and electronic payment systems such as smart

cards or, e.g., PayPal3 allow electronic payments and the online transfer of the money

around the world. Several sites allow the customers to leave feedbacks which reflect their

satisfaction (e.g., Amazon4, eBay5, Yelp6). To implement such distributed applications

several protocols have been developed. These protocols use cryptography to ensure

security properties, such as secrecy and authentication. However, the design of complex

secure protocols is error-prone. Hence, it is necessary to verify these protocols before

implementing them. The main goal of this thesis is to propose formal models and

definitions to express security properties and verify cryptographic protocols.

In this chapter we motivate our work, and provide a general overview of related works.

Then, we present the structure of the thesis and our contributions. Finally, we list

previous publications concerning the results presented in this thesis.

Contents
1.1 Cryptographic Protocols . . . . . . . . . . . . . . . . . . . . . 2

1.2 Symbolic Verification of Cryptographic Protocols . . . . . . 3
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1.3 Runtime Verification . . . . . . . . . . . . . . . . . . . . . . . 9
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1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 www.coursera.org 2 www.cisco.com 3 www.paypal.com 4 www.amazon.com 5 www.ebay.com
6 www.yelp.com
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1.1 Cryptographic Protocols

Cryptographic protocols are distributed algorithms that make use of cryptography to

achieve some security properties over a public network, such as the Internet. Examples of

basic security properties that are required by most Cryptographic protocols are secrecy

and message authentication.

− Secrecy: The attacker cannot compute or obtain the value of a secret. A stronger

variant of this property (strong secrecy) states that an attacker cannot distinguish

when the value of the secret changes (going back to Goldwasser and Micali [GM82]).

It ensures that the attacker cannot obtain any information about the secret.

− Message authentication (or data origin authentication): This property ensures that a

message has not been modified while in transit (data integrity) and that the recipient

can verify the source of the message. To this end some protocols use primitives such

as digital signatures which provide an evidence that a message was not modified and

was sent by someone possessing the proper signing key. Properties such as message

authentication can be modeled as correspondence assertions [RSG+00,RS11]: “on

every execution trace an event e2 is preceded by an event e1”.

However, up-to-date protocols such as electronic exam, cash, and reputation protocols

require more complex properties like privacy properties, which include:

− Anonymity: The ISO/IEC standard 15408 [ISO12] defines anonymity as ensuring

that a user may use a service or resource without disclosing the user’s identity. This

definition is close to what is called anonymity in terms of unlinkability by Pfitzmann

et al. [PK00]. In this sense, anonymity hides the link between a user’s identity and

a service or a resource rather than hiding the identity itself. For instance, sender

anonymity says that the attacker cannot link a sender to a given message, and

student anonymity says that the attacker cannot link a student to a given answer.

− Untraceability: The attacker cannot tell whether two actions are made by the same

participant. For example, a bank cannot trace two payments to the same user, or

an attacker cannot link two sessions which involve the same RFID tag.

− Receipt-Freeness: A participant cannot prove to the attacker that he takes a certain

action. For example, a customer cannot prove (provide a receipt) to a coercer that

he provided a certain feedback.

Other interesting properties include verifiability, that is a user can check that a certain

information is correct. An example of verifiability properties is to verify the eligibility of

users attempting to use a service or a resource. This requires authenticating the users
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and verifying that they are authorized to use the service or the resource. Moreover, some

protocols require specific security properties. For instance, validity of the obtained route

is a crucial property that has to be ensured by a routing protocol. An important property

that is specific to electronic cash protocols is the ability to identify the client that spends

a coin twice.

There are two main classes of security properties: trace (reachability) and equivalence

(indistinguishability) properties. Trace properties are defined on every execution trace

of the protocol. Primary examples of trace properties are secrecy and authentication

properties. For instance, secrecy is expressed as a state where the secret is revealed

cannot be reached on every execution trace of the protocol. Verifiability properties can be

expressed using verification tests [DJL13,KRS10a]. A verification test is an algorithm or

a logical formula that has to satisfy certain conditions with respect to the related property.

Verifiability properties can be expressed as (un)reachability properties [DJL13,SRKK10].

Route validity can also be expressed as a reachability property [ACD10]. Equivalence

properties are defined as equivalences between protocol executions. Two executions

are equivalent if the attacker cannot distinguish between them. Equivalence properties

include strong secrecy and other privacy properties (e.g., anonymity, untraceability, and

receipt-freeness).

A natural question is: how we can prove that a cryptographic protocol ensures a given

security property?

The flaws (e.g., [MSS98,DKS10,ACC+08,HSD+05,CS11]) found over the recent 20

years show that designing security protocols is error-prone. Hence, provided that security

failures can have serious financial and privacy consequences, cryptographic protocols

verification is a necessity.

1.2 Symbolic Verification of Cryptographic Protocols

Due to the difficulty of designing secure protocols in general, as we argued before, several

flaws were discovered on cryptographic protocols, even without breaking the underlying

cryptography. For instance, the attack on Needham-Schroeder protocol works without

breaking any of the used cryptographic primitives. Instead, it requires two parallel

executions of the protocol with an attacker in the middle of two honest participants.

Hence, proving the security of cryptographic primitives is not sufficient, and verification

in needed to argue that a protocol is secure or correct.

An approach to verify cryptographic protocols is the use of formal methods. Formal

methods provide mathematically based techniques for modeling and verifying crypto-

graphic protocols. They allow to detect the shortcomings in protocols design, and give

evidence of security within a given model if no flaws are found. Moreover, in case where a
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flaw is found they might provide a counter-example which gives insight to fix the analyzed

protocol.

In formal verification, we can distinguish two main approaches: the symbolic and the

computational approaches. In symbolic approach, abstracted models such as constraint

systems [MS01], process algebra (e.g., [Hoa85,AF01]), and dedicated logics (e.g., [BAN90,

Bla01]) are used to represent a protocol and a security property. Then, the protocol

is checked whether it satisfies the property or not, for instance, by exploring the state

space searching if an invalid state can be reached. Whereas in computational approach,

probabilistic arguments are used to analyze the security of protocols. Typically, a security

property is defined as a game that involves an attacker. A game corresponds to an attack

scenario for which the advantage of the attacker can be computed. If the advantage of the

attacker is not negligible, he breaks the property. In this thesis, we adopt the symbolic

approach to verify security properties of exam, reputation, and cash protocols. Moreover,

we provide a reduction result for verifying route validity in wireless sensor networks. In

the following, we give an overview of symbolic models and tools, and the successful results

of their use in verification of cryptographic protocols.

In the symbolic model, messages are represented by terms, and cryptographic primitives

such as encryption, signature, hash, etc. are abstracted as black boxes and assumed to be

perfectly secure. Such a model was first proposed by Dolev and Yao [DY81,DY83] who

developed the idea of an attacker that has full control of the communication network and

unbounded computational power, but can apply only some specific predefined rules on the

messages in his knowledge. In addition to Dolev and Yao model the symbolic approach

encompasses a variety of techniques including: logics such as the BAN-logic [BAN90]

used to model authentication and Horn clauses [Bla01], process algebras such as the

Communicating Sequential Processes [Hoa85] and the Applied π-Calculus [AF01], and

typing methods such as F7 [BFG10,BBF+11] and F∗ [SCF+13] for verifying protocols

implementations.

Several flaws were found by using symbolic methods to verify security protocols. For

example, Mitchell et al. [MSS98] found anomalies in Secure Socket Layer (SSL) 3.0 using

finite-state analysis, Delaune et al. [DKS10] discovered several attacks on the PKCS

11 standard which defines an API to cryptographic tokens, Armando et al. [ACC+08]

found a server security flaw on Google’s Single Sign-On protocol, the attack allows a

dishonest service provider to impersonate a user at another service provider. Several

weaknesses have been identified by Cortier and Smyth [CS11] on Helios 2.0 voting

system [ADMPQ09], and Dreier et al. [DLL13] discovered several attacks on auction

protocols due to Brandt [Bra06] and Curtis et al. [CPS07]. Formal methods can also be

used to prove the absence of attacks in a formal model under certain assumptions. For

example, He et al. [HSD+05] carried out a modular proof of IEEE 802.11i and Transport
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Layer Security (TLS) using a Protocol Composition Logic (PCL). However, the main

challenges in protocols verification remain: (i) in the choice of the model to represent

the protocol and the security properties, (ii) the formalization of security properties

as informal definitions tend to contain imprecisions, (iii) and the development of tools

to automatically verify security protocols as human proofs tend to be error-prone as

complexity increase.

The main goal of this thesis is to propose formal models and definitions to express

security properties and verify security protocols. We propose models and definitions for

privacy, authentication and verifiability properties of electronic exam (e-exam) protocols

(also suitable for pencil-and-paper exams). Privacy can mean secrecy of the exam questions,

anonymity of a student that submits a given answer, or anonymity of an examiner that

attributes a given mark. Authentication includes authenticating the student that submits

an answer, and verifiability includes verifying that all answers are accepted from registered

candidates. Then, we study electronic cash (e-cash) and propose formal definitions for

client privacy (ensuring that the attacker can link neither a client to a coin he spend nor

two coins spent by the same client) and forgery related properties such as unforgability,

and double spending identification. We also propose a formal framework for security

analysis of electronic reputation (e-reputation) protocols. Again we consider privacy,

authentication and verifiability properties. We also discuss several case studies to validate

our models on existing security protocols. We re-discover some known flaws, and we

also discover several new flaws on the analyzed protocols. Moreover, we generalize the

reduction result for analyzing route validity presented in [CDD12] to the case of multiple

independent attackers, which do not share their knowledge.

1.2.1 Attacker Model

Flaws on the security of protocols highly depend on the capabilities of the attacker. For

instance, considering too restrictive attacker model can lead to missing some flaws. For

example, Needham-Schroeder protocol was proven secure using BAN logic for a single

protocol execution, while the flaw found by G. Lowe requires two parallel executions of

the protocol between the attacker and two participants. On the other hand, too powerful

attacker can lead to unrealistic attacks which are difficult to be applied in practice. For

example, when analyzing routing protocols of wireless sensor networks it is not realistic to

assume that the attacker controls all the communications. However he has to be located

somewhere in the network, and thus can control only a finite number of nodes [ACD10].

In the symbolic model the cryptography is assumed to be perfect, and the attacker

is usually assumed to has a full control of the (public) network, such as the Dolev-

Yao attacker [DY81,DY83]. The Dolev-Yao attacker can eavesdrop, remove, substitute,

duplicate and delay messages that the parties are sending one another, and insert messages
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of his choice on the public channels. However, he can manipulate messages, e.g., extract

data from messages or compose new messages from known data, only under the assumption

of perfect cryptography. For instance, the only way to decrypt an encryption enc(m, k)

of a message m with a key k is to know the corresponding inverse key inv(k), where

enc is an encryption function and inv is a key inverse function. Provided that dec is

the corresponding decryption function of enc, the latter feature can be expressed by the

equation dec(enc(m, k), inv(k)) which captures the notion that the encryption function

enc is perfect. In the case where the encryption function has some additional features,

e.g., if it is a homomorphic function, then it is important to have equations that capture

such features. Otherwise, some attacks might be missed. Note that, usually a set of

equations or a set of inference deduction rules is defined to captures all the capabilities of

the attacker.

In this thesis, we adopt a Dolev-Yao like attacker to analyze the security properties

of exam, cash and reputation protocols. Additionally we consider corrupted parties to

model e.g., bribing and coercion. Whereas for analyzing the security of routing protocols

in wireless sensor networks, we consider multiple independent local attackers that do not

share their knowledge. We assume that each attacker has Dolev-Yao like capabilities,

but compromises only one node and thus only controls the communications between this

node and its neighbors.

1.2.2 Automation

Protocol designers often manually prove the security of their protocols. However, manual

proofs are often cumbersome and tend to be error-prone. In order to overcome the

weaknesses of manual proofs an automated support is needed. To this end, several

tools [ABB+05,Bla01,Cre08a,Cre08b,SMCB12,MSCB13,CcCK12] have been developed

to support automated protocol verification in symbolic model. Note that, as protocol

verification problems are in general undecidable [EGS85, DLM04]–in particular with

unbounded message length and an unbounded number of parallel instances– these tools

employ techniques such as approximations, restrictions to bounded number of instances

and limited attacker capabilities, or they do not always terminate. In the following, we

summarize some of the existing symbolic automatic tools:

AVISPA [ABB+05] provides a common interface for four different back-ends which

implement different analysis techniques:

− On-the-fly Model-Checker (OFMC) [BMV05] performs protocol falsification and

bounded verification by exploring the transition system of the protocol (over a

bounded set of sessions) in a demand-driven way.
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− The Constraint-Logic-based Attack Searcher (CL-Atse) [Tur06] applies simplification

heuristics and redundancy elimination techniques to analyzes a bounded number of

sessions of the protocol using constraint solving. Note that, OFMC and CL-Atse

are open to extensions for handling algebraic properties.

− The SAT-based Model-Checker (SATMC) [ACC14] translates the possible finite

protocol runs into a propositional formula, which is then given to a SAT solver and

any model found is translated back into an attack.

− The Tree Automata based on Automatic Approximation for the Analysis of Security

Protocols (TA4SP) [BHKO04] approximates the attacker knowledge by using regular

tree languages and rewriting. TA4SP is the only back-end supporting an unbounded

number of sessions (for reachability properties) by over-approximation. However, no

attack trace is provided by the tool and only the secrecy (reachability) is considered

in presence of algebraic properties.

All the four tools take as input a common language called HLPSL (High Level Protocol

Specification Language) which is compiled automatically into an intermediate format

(named IF). AVISPA was extended in the AVANTSSAR [AAA+12] project, but still relies

on the same (although improved) back-ends.

ProVerif [Bla01] is an automatic verification tool based on Horn clauses. It supports

trace properties such as secrecy and authentication properties [Bla02], as well as, strong

secrecy [Bla04] and equivalences [BAF08] which allows the verification of privacy properties.

It can analyze protocols for unbounded number of sessions, and supports user-defined

equational theories [AB05a]. ProVerif uses some approximations. It is sound but not

complete, and sometimes does not terminate. However, it can reconstructs attack traces

if possible [AB05c].

Scyther [Cre08a,Cre08b] verifies protocol using a symbolic backwards search based on

ordered patterns. It supports bounded and unbounded number of sessions, however it

does not always conclude for the unbounded case. In such a situation however it still

gives a verdict for the bounded case. It supports authentication and secrecy properties.

It also handles multi-protocols analysis, but no user-definable algebraic functions.

Tamarin [SMCB12, MSCB13] is a security protocol prover supports an unbounded

number of sessions. The security properties are specified as multiset rewriting systems

with respect to a special subset of (temporal) first-order properties. It also supports

Diffie-Hellman exponentiation and a user-defined subterm-convergent rewriting theory.

AKISS [CcCK12] allows to prove trace equivalence properties for bounded processes,

featuring user-defined equational theories. It is based on KISS [cCDK12], a tool allowing

to prove static equivalence for complex equational theories.
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For a comparison of the performance of different tools (in particular Scyther, ProVerif

and the different AVISPA back-ends) see [CLN09,LTV09,PBP+10,DSHJ10]. We chose

ProVerif for many verification tasks throughout the thesis because of its performance,

its support for authentication and equivalence properties (to analyze different notions of

Privacy) and its support of user-defined equational theories (to model special cryptographic

operations as well as the properties of physical objects (see [DJL14])). Furthermore,

it supports the verification of a protocol modeled in a process calculus [AB05a] which

resembles the Applied π-Calculus. ProVerif has been used to verify many secrecy,

authentication and privacy properties, see e.g., [AB05b,ABF07,KR05,DKR09,BHM08,

DRS08,SRKK10,DLL12b,DJP12].

The tools mentioned so far only verify the specification of protocols but not their

implementations. Such verification does not tackle side-channel attacks and other imple-

mentation attacks, simply because they cannot be modeled without implementing the

protocol. Hence, it is necessary to prove security properties on protocols implementations

in order to capture the latter attacks. In this context, tools such as [PS10,PSD04,SPP01]

have been proposed to translate a model into an implementation using a suitable com-

piler. So that they can be used to translate a model of formally secure protocol into an

implementation, thus reducing the risk of introducing security flaws in the coding phase.

Another approach is to extract specification from an implementation in order to formally

analyze it. For example, FS2PV [BFGT08] translates a protocol implementation written

in a subset of F# into the input language of ProVerif. One can also analyze directly an

implementation of a protocol written in a standard programming language such as F#,

C or Java. Several tools were adopted and new tools were designed to analyze protocol

implementations. The tool CSur [GP05] analyzes protocols written in C by translating

them into Horn clauses that can given as an input to H1 prover [Gou05]. Similarly,

JavaSec [Jür06] translates Java programs into first-order logic formulas, which are then

given as input to first-order theorem prover e-SETHEO. The tools F7 [BFG10,BBF+11]

and F∗ [SCF+13] use a dependent type system in order to prove security properties

of protocols implemented in F#. ASPIER [CD09] uses software model-checking, with

predicate abstraction and counter-example guided abstraction refinement in order to

verify C implementations of protocols assuming the size of messages and the number of

sessions are bounded.

However, such techniques usually suffer from complexity and scalability limitations. For

instance, tools that depends on model checking such as ASPIER limits the size of systems

that can be verified as model checkers suffer from state explosion problem, and tools based

on theorem proving usually involves significant amount of manual effort that, effectively,

limits the size of the system that can be verified. Moreover, as formal tools operate on

models they may introduce additional proof obligations on the correctness of abstraction

or model creation. For example, tools that translate models into implementations require
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a proof for the correctness of the used compilers. Note that, the latter tools also suffer from

the fact that the protocol modeling language offers less flexibility in the implementation

of the protocol than a standard programming language. Furthermore, the problem of

finding all possible runtime errors in an arbitrary program is undecidable (going back to

Alonzo Church [Chu36] and Alan Turing [Tur 7]).

1.3 Runtime Verification

Another research area concerned with monitoring and analysis of implementations (and

systems) executions is runtime verification. It is mainly motivated by the scalability

limitations of exhaustive design formal verification. Runtime verification allows to

have automatic analysis, that does not require much abstraction, of traces extracted

from systems executions. Runtime verification can provide a weaker result than formal

verification. Whilst formal verification verifies correctness against all possible system

executions, runtime verification only considers traces observed on individual executions.

Although incomplete, in the latter sense, runtime verification has an advantage that

the actual behavior is analyzed. At the end, runtime verification is not a replacement

of formal verification since as famously stated by Edsger Dijkstra decades ago “testing

can only find bugs, not prove their absence”. However, a combination between formal

verification and runtime verification can provide an invaluable infrastructure for systems

verification which can significantly decrease the complexity of formal verification (for

examples see [CK10,CL07,KTAK07,CKK11]). In the thesis, we use runtime verification

to monitor executions of exam implementations. Particularly, we analyze real exam

executions carried out at Université Joseph Fourier.

Runtime verification is a computing analysis based on observing system executions

to check certain properties. It performs conventional testing by building monitors from

formal specifications. Runtime verification has emerged as a practical application of formal

verification. It is particularly useful, when exhaustive design verification is impractical

due to inherent complexity of the systems. However, the quality of runtime analysis

depends on test scenarios, which makes it less robust compared to formal analysis.

During the last decade, many important tools to monitor systems at runtime have been

developed and successfully employed [CR09,MJG+12,CPS09,BH11,RCR15]. To monitor a

property is to check whether it is satisfied by a trace, a finite sequence of events, extracted

from a system execution. In this context, we can distinguish between the propositional

and the parametric approaches. The propositional approach operates on events consisting

of simple names without data values. Several tools and techniques adopt the propositional

approach. For example, Lee et al. [LBaK+98, KVB+99] proposed a Monitoring and

Checking (MaC) framework which provides the means to monitor and checks running

systems against formally specified requirements. Later, the DMaC [ZSLL09] tool has
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been built on the MaC framework and declarative networking (see [LCH+05,LHSR05]) to

specify and verify distributed network protocols. Another tool that adopts propositional

approach is TemporalRover (TR) [Dru00], which is a commercial runtime verification tool

developed by Doron Drusinsky in 2000. TR can be used to verify implementations written

in C, C++, Java, Verilog and VHDL, using specifications written in Linear Temporal

Logic (LTL) [Pnu77] or Metric Temporal Logic (MTL) [Koy90,AH91]. In the other hand,

parametric approaches deal with events that are parameterized by data values. Recently,

researchers have focused on parametric monitoring. In parametric approach, we again

distinguish between the two following categories:

− Slicing : in slicing approach a trace is sliced into a set of propositional values. Slicing

technique can be used in combination with any propositional trace analysis by

applying the latter on each trace slice. Tools that adopt the slicing approach include:

JavaMOP [CR09,MJG+12], Larva [CPS09], and Tracematches [AAC+05,BHL+10].

Recently, Barringer et al. introduced Quantified Event Automaton [BFH+12,Reg14],

a slicing based formalism for concisely capturing expressive specifications with

parameters. They extended the trace slicing approach by allowing free variables,

and formalizing the notions of quantification and acceptance. Later, Reger et

al. [RCR15] developed MarQ, a monitoring Java based tool for QEA.

− Rule-based : in this approach a parametric rule system is defined by rules which

rewrite a set of facts about the monitored system. Examples of this approach are:

the EAGLE [BGHS04] tool, which is based on a restricted first order, fixed-point,

linear-time temporal logic with chop over finite traces; the RuleR [BRH10,BHRG09]

tool, which is developed as a practically useful and more efficiently executable

subset of EAGLE; and the TraceContract [BH11] tool, an API for trace analysis

(implemented in the SCALA programming language) which offers writing properties

in a notation that combines parameterized state machines with temporal logic.

We use QEA to formalize exam requirements, and we carry out an offline runtime

analysis using the MarQ tool. Our choice of using QEA mainly stems from two reasons.

First, QEAs is one of the most expressive specification formalism to express monitors.

The second reason stems to the fact that QEA is supported by MarQ tool, which came

top in the 1st international competition on Runtime Verification [BBF14], showing that

MarQ is one of the most efficient existing monitoring tools for both offline and online

monitoring 7. Moreover, QEAs turned out to be a specification language that is accepted

and understood by the engineers who were collaborating with us and responsible for the

development of the e-exam software.
7 http://rv2014.imag.fr/monitoring-competition/results
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1.4 Contributions and structure of the thesis

In Chapter 2, we first recall the Applied π-Calculus [AF01] which is used throughout

the thesis to formally model protocols and properties. Then, we briefly introduce

ProVerif [Bla01] tool which is used to carry automatic formal verification. Finally, we

provide a brief overview about QEA and MarQ tool which are used to perform runtime

verification.

In Chapter 3, we study security properties of exam protocols. Firstly, we propose

a formal model for authentication and privacy properties. We apply this model, using

ProVerif, to the e-exams due to Huszti & Pethő [HP10] and Giustolisi et al. [GLR14], and

pencil-and-paper exam at Université Grenoble Alpes8. Secondly, we propose an abstract

model for verifiability properties, and we discuss with the help of ProVerif the verifiability

of Giustolisi et al. [GLR14] exam, and Université Grenoble Alpes exam. Finally, we study

exam monitoring at runtime. We propose several monitors expressed as Quantified Event

Automata. We validate our monitors by verifying using MarQ real e-exams executions

conducted by Université Joseph Fourier at pharmacy faculty. Our approach allows to

report the individuals responsible of potential failures. Note that, our results shows

several flaws on the analyzed exams.

In Chapter 4, we propose a formal framework to define, analyze, and verify security

properties of e-cash protocols. We define two client privacy properties and three properties

to prevent forgery. Then, we apply our definitions and analyze using ProVerif the Chaum

protocol [Cha82], the DigiCash protocol9, and the Chaum et al. protocol [CFN88]. Our

analysis confirms several already known attacks, and reveal a flaw confirming the necessity

of synchronization in online cash protocols.

In Chapter 5, we model reputation protocols, and formally define several related

authentication and privacy properties. Then, we define two verifiability properties in an

abstract way. Finally, we validate our model by analyzing, using ProVerif, the security of

a simple reputation protocol presented in [PRT04].

In Chapter 6, we consider multiple independent attackers, and show that when analyz-

ing route validity property it is sufficient to verify only five topologies, each containing

four nodes, and to consider only three malicious (compromised) nodes. Particularly, we

generalize the result obtained in [CDD12] where attackers share their knowledge to the

case of attackers that do not share knowledge.

In Chapter 7, we sum up our results and discuss directions for future work.
8 www.univ-grenoble-alpes.fr 9 DigiCash Inc. was an electronic money corporation founded by
David Chaum in 1990. The protocol used by DigiCash has been presented by Berry Schoenmakers
in [Sch97].
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1.5 Publications

All the works presented in this thesis have already been published. The work on authen-

tication and privacy of exam protocols was presented at SECRYPT 2014 [DGK+14]. An

extended version was submitted to be published by Springer-Verlag in their “Lecture Notes”

(CCIS) series. Note that, this work was accomplished by collaboration with: Jannik Dreier

from Institute of Information Security, ETH Zurich; Rosario Giustolisi, Gabriele Lenzini,

and Peter Y. A. Ryan from SnT/University of Luxembourg; and Pascal Lafourcade from

“Université Grenoble Alpes”. The definition of exam verifiability was published at ISPEC

2015 [DGK+15] by collaboration with Jannik Dreier, Rosario Giustolisi, Gabriele Lenzini,

and Pascal Lafourcade. The work on runtime verification of e-exam was achieved by

collaboration with Yliès Falcone and Pascal Lafourcade from “Université Grenoble Alpes”,

and was accepted at RV 2015 [KFL15]. The work of Chapter 4 on cash protocols was

achieved by collaboration with Jannik Dreier and Pascal Lafourcade, and was presented
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Chapter 2
Preliminaries

In order to formally verify whether a protocol satisfies a certain property, we need first to

model them. In this chapter, we introduce the Applied π-Calculus [AF01] in Section 2.1.

Then, we present a general overview about ProVerif. Finally, we provide a brief description

of the Quantified Event Automata and the MarQ tool in Sections 2.2 and 2.4.

Contents
2.1 Applied π-Calculus . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 ProVerif Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Quantified Event Automata . . . . . . . . . . . . . . . . . . . 24

2.4 MarQ Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Applied π-Calculus

The Applied π-Calculus [AF01] is a process calculus designed for analyzing cryptographic

protocols. It is a variant of the π-Calculus [Mil99], a language for modeling and analyzing

concurrent systems. The Applied π-Calculus allows a wide variety of cryptographic

primitives to be defined using equational theories. Moreover, it is enriched by relations

to check equivalences between processes, which allows us to define and analysis privacy

properties. In the following, we recall its syntax, semantics and equivalence relations.

2.1.1 Syntax and Semantics

The Applied π-Calculus assumes an infinite set of names used to model channels and

other atomic data, an infinite set of variables, and a signature Σ which consists of a finite
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set of function symbols each with an arity. Function symbols capture primitives used

by cryptographic protocols, such as hash functions, digital signatures, encryption and

decryption schemes. A function symbol with arity 0 is a constant.

Example 2.1. (Signature). An example of a signature is Σsym = {enc, dec} which

captures symmetric encryption enc and decryption dec, each with arity 2. The encryption

of message m with key k is enc(m, k), and the decryption of the cipher c with the key k

is dec(c, k).

Terms are defined by names, variables, or function symbols applied to terms according

to the grammar shown in Figure 2.1. A term is ground when it does not contain variables.

We rely on a type (or sort) system for terms. It includes a set of base types such as

M,N ::= term of type t

n name of type t

x variable of type t

f(M1, . . . ,Ml) application of symbol f ∈ Σ : t1 × . . .× tl → t such

that l matches the arity of f and Mi is of type ti

Figure 2.1: Grammar for terms

Nonce, Key or simply a universal base type Data. Additionally, if ω is a type, then

Channel 〈ω〉 is a type (intuitively, the type of a channel transmitting terms of type ω).

Names and variables can have any type. Function symbols can only be applied to, and

return, terms of base type. Terms equality is modeled using an equational theory E, a

finite set of equations, which defines an equivalence relation =E that is closed under

substitutions of terms for variables. For simplicity, we may omit the subscript E when it

is clear from the context.

Example 2.2. (Equational Theory). The equation dec(enc(x, y), y) =E x, where x

and y are variables, says that dec, representing decryption, is the inverse function of enc,

representing encryption, and that they related in E as one expects in a correct symmetric

encryption scheme.

The grammar for processes (or plain processes) in the Applied π-Calculus is shown

in Figure 2.2. The null process 0 does nothing; P | Q is the parallel composition of

P and Q; and the replication !P executes infinitely many copies of P in parallel. The

name restriction νn.P generates a new private name n and then continues like P . The

conditional process “if M = N then P else Q” behaves as P if M =E N and as Q

otherwise. We may omit sub-term “else Q” when Q is 0. The process in(u, x).P inputs

a message on channel u of type Channel 〈ωx〉, assigns it to the variable x of type ωx,

14
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P,Q ::= plain processes

0 null process

P | Q parallel composition

!P replication

νn.P name restriction (new)

if M =E N then P else Q conditional

in(u, x).P message input

out(u,M).P message output

Figure 2.2: Grammar for plain processes

and then continues like P . Finally, out(u,M).P outputs a term M of type ωM on the

channel u of type Channel 〈ωM 〉, and then continues like P . The sub-term ‘.P ’ is usually

omitted when P is 0. Plain processes are extended with active substitutions and variable

A,B ::= extended processes

P plain process

A | B parallel composition

!P replication

νn.A name restriction

νx.A variable restriction

{M/x} active substitution

Figure 2.3: Grammar for extended processes

restriction. The grammar of extended processes is shown in Figure 2.3. The variable

restriction νx.A bounds the variable x in the process A. The active substitution {M/x}
replaces the variable x with a term M in any process that comes into parallel with it. We

use σ to denote a substitution, xσ to denote the image of x by σ, and Mσ to denote the

result of applying σ to the term M . Substitutions are well-sorted (i.e., x and σ(x) have

the same type), and cycle-free (i.e., dom(σ) = {x ∈ X | σ(x) 6= x}). Moreover, two active

substitutions are not allowed to define the same variable, and there is exactly one defining

each restricted variable. We abbreviate tuple of names or variables u1, . . . , ul, and tuple

of terms M1, . . . ,Ml to ũ and M̃ , respectively. Accordingly, we abbreviate νu1, . . . , νul.A

and {M1/x1 , . . . ,
Ml /xl} to νũ.A and {M̃/x̃}, respectively. As an additional notion, we

write Ak for A| · · · |A (k times) where k ∈ N, in particular A0 = 0 as 0 is the neutral

element of parallel composition. Also, following ProVerif, we write let x̃ = M̃ in P for
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νx̃.(P | {M̃/x̃}). Note that, names and variables have scopes. A name n is bound if it is

in the scope of a restriction νn. A variable x is bound if it is in the scope of a restriction

νx or of an input in(u, x). Names and variables are free if they are not bounded by

restrictions or by inputs. We respectively denote by fv(A), bv(A), fn(A) and bn(A)

the free variables, bound variables, free names and bound names of the process A. An

extended process is closed when all variables are either bound or defined by an active

substitution. Bound names and variables can be renamed without changing the semantics

of the process, this is called α-conversion.

Example 2.3. (α-conversion). Consider the following process, where a, d, m, n, s are

names, and x, y are variables, P0 = νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|out(d,m)|{s/y}).
Then, we have, fv(P0) = {y}, bv(P0) = {x}, fn(P0) = {d,m}, and bn(P0) = {a, n, s}.
An α-conversion that renames the bound names a, n, and s respectively to c, l, and k,

and the bound variable x to z can be applied to P0 to obtain the following process which

has the same semantics as P0: νc.νl.νk.(out(c, l)|in(c, z).out(d, z)|out(d,m)|{k/y}).

A frame φ is an extended process built up from 0 and active substitutions by parallel

composition and restriction. The domain dom(φ) of a frame φ is the set of the variables

x for which φ contains an active substitution {M/x} such that x is not under restriction.

Every extended process A can be mapped to a frame φ(A) by replacing every plain

process in A with 0. The domain dom(A) of A is the domain of φ(A) The frame φ(A)

can be seen as a representation of the static knowledge known about the process to its

exterior environment. A context C[ ] is an extended process with a hole. An evaluation

context C[ ] is a context whose hole is not in scope of replication, a conditional, an input

or an output. We say that a context C[ ] closes A when C[A] is closed.

Example 2.4. (Frame). Consider again the process P0 of Example 2.3.

P0 = νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|out(d,m)|{s/y})

Then, the frame φ(P0) = νa.νn.νs.(0|0|0|{s/y}), and dom(A) = dom(φ(A)) = {y}.

The operational semantics of processes in the Applied π-Calculus is defined by Struc-

tural Equivalence (see Figure 2.4), Internal Reduction (see Figure 2.5), and Labeled

External Transitions (see Figure 2.6). Two processes with different structure are struc-

turally equivalent if they model the same thing. A process can be structured to a

structurally equivalent process using the Structural Equivalence relation (≡), which
is the smallest equivalence relation on extended processes closed under application of

evaluation contexts and α-conversion on bound names and bound variables such that the

rules of Figure 2.4 hold. The rules for parallel composition and restriction are standard.

ALIAS enables the introduction of an arbitrary active substitution with restricted scope.
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PAR-0 A ≡ A | 0

PAR-A A | (B | C) ≡ (A | B) | C

PAR-C A | B ≡ B | A

REPL !P ≡ P | !P

NEW-0 νn.0 ≡ 0

NEW-C νu.νv.A ≡ νv.νu.A

NEW-PAR A | νu.B ≡ νu.(A | B) if u /∈ fn(A) ∪ fv(A)

ALIAS νx.{M/x} ≡ 0

REWRITE {M/x} ≡ {N/x} if M =E N

SUBST {M/x} | A ≡ {M/x} | A{M/x}

Figure 2.4: Semantics of Structural Equivalence

REWRITE allows to replace a term with an equal term modulo an equational theory.

SUBST describes the nature of the active substitution which can be applied to any process

that comes in parallel to it. Using structural equivalence, every closed extended process

A can be written as νñ.{M̃/x̃} | P , where P is a closed plain process. In particular, every

closed frame φ can be written as νñ.{M̃/x̃}.

Example 2.5. (Structural Equivalence). We can use Structural Equivalence to re-

structure our running process P0 as follows:

P0 = νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|out(d,m)|{s/y})
≡ νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|0|out(d,m)|{s/y}) PAR-0

≡ νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|
(
νx.{n/x}

)
|out(d,m)|{s/y}) ALIAS

≡ νa.νn.νs.(νx.
(
out(a, n)|in(a, x).out(d, x)|{n/x}

)
|out(d,m)|{s/y}) NEW-PAR

≡ νa.νn.νs.(νx.
(
{n/x}|out(a, n)|in(a, x).out(d, x)

)
|out(d,m)|{s/y}) PAR-C

≡ νa.νn.νs.(νx.
(
{n/x}|out(a, x)|in(a, x).out(d, x)

)
|out(d,m)|{s/y}) SUBSET

A process can be evolved internally without any contact with its environment (other

processes and the attacker) represented by a context. This can happen based on the

Internal Reduction (→), which is the smallest relation on extended processes closed

by Structural Equivalence and application of evaluation contexts such that the rules of

Figure 2.5 hold. Note that, we write P →∗ P ′ for P → . . .→ P ′. The rule COMM allows

the internal communication of a variable. This simplicity entails no loss of generality

because ALIAS and SUBST can introduce a variable to stand for a term (see Example 2.6).

The conditional rules (THEN and ELSE) say that a process takes the P branch if the

compared terms are equal under the equational theory E, and that it takes the branch Q

otherwise.
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COMM out(a, x).P | in(a, x).Q→ P | Q

THEN if M =E M then P else Q→ P

ELSE if M =E N then P else Q→ Q

for any ground terms M,N such that M 6=E N

Figure 2.5: Semantics of Internal Reduction

Example 2.6. (Internal Reduction). Consider our running example process P0 of

Example 2.3. Then, we can execute the following transition using Internal Reduction:

P0 = νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|out(d,m)|{s/y})
≡ νa.νn.νs.(νx.({n/x}|out(a, x)|in(a, x).out(d, x))|out(d,m)|{s/y}) Example 2.5

→ νa.νn.νs.(νx.({n/x}|out(d, x))|out(d,m)|{s/y}) COMM

≡ νa.νn.νs.(out(d, n))|out(d,m)|{s/y}) reverse of Example 2.5

An extended process can interacts with its environment based on the Labeled External

Transitions rules ( α→) described in Figure 2.6, where α can be an input or an output of a

channel name or variable of base type. According to IN, a term M may be input from

IN in(a, x).P
in(a,M)−−−−−→ P{M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Figure 2.6: Semantics of Labeled External Transitions

the external environment. OUT-ATOM allows to output only for free channel names and

for free variables of base type. To output restricted channel name, or a term the rule

OPEN-ATOM is needed. A term has to be assigned to a variable, which can then be

output. This can be done by rewriting out(a,M).P as νx.(out(a, x).P | {M/x}) using

the Structural Equivalence. Note that, the Labeled External Transitions are not closed

under evaluation contexts.
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Example 2.7. (Labeled External Transitions). Consider our running example pro-

cess P0 of Example 2.3. Then, we can execute the following external transition:

P0 = νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|out(d,m)|{s/y})
≡ νa.νn.νs.(out(a, x)|in(a, x).out(d, x)|νz.({m/z}|out(d, z))|{s/y})

similar to Example 2.5
νz.out(d,z))−−−−−−−→ νa.νn.νs.(out(a, n)|in(a, x).out(d, x)|{m/z}|{s/y})

by OUT-ATOM, PAR, and OPEN-ATOM

Additionally, we use the definitions introduced in [DKR09] for the bribed and coerced

parties, which are defined by the means of a processes P ch1 and P ch1,ch2 respectively.

The process P ch1 allows us to model parties which are willing to reveal their secret data

to the attacker (e.g., a coercer). It is a variant of P that reveals on channel ch1 (on which

the attacker is listening) all its inputs of base type and any freshly generated name of

base type. For instance, the process (νn.P )ch1 outputs on the channel ch1 the freshly

generated name n if it is of base type, then continues like P )ch1 . Similarly, the process

(in(u, x).P )ch1 outputs on ch1 the value it receives if this value is of base type, then

continues like P ch1 . However, P ch1 does not forward restricted channel names, as these

are used for modeling, e.g., physically secure channels or a public key infrastructure which

securely distributes keys. Note that in the latter example the keys are forwarded to the

attacker, but not the secret channel names on which the key are received.

Definition 2.1. (Process P ch1 [DKR09]). Let P be a plain process and ch1 be channel

name. The process P ch1 is defined follows:

− 0ch1 =̂ 0,

− (P |Q)ch1 =̂ P ch1 |Qch1,

− (!P )ch1 =̂ !P ch1,

− (νn.P )ch1 =̂ νn.out(ch1, n).P ch1 if n is a name of base type, or

(νn.P )ch1 =̂ νn.P ch1 otherwise,

− (if M =E N then P else Q)ch1 =̂ if M =E N then P ch1 else Qch1,

− (in(u, x).P )ch1 =̂ in(u, x).out(ch1, x).P ch1 if x is a variable of base type, or

(in(u, x).P )ch1 =̂ in(u, x).P ch1 otherwise,

− (out(u, x).P )ch1 =̂ out(u, x).P ch1 .

The application of the transformation is distributed on the parallel composition ‘|’ and
on the replication ‘!’ since in these two cases it is enough for each parallel process to

output its data that are required to reveal. In the case of the conditional process, the
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transformation is applied to the taken branch. Finally, 0ch1 =̂ 0 as the null process does

nothing, and (out(u, x).P )ch1 =̂ out(u, x).P ch1 as the output messages are not revealed.

Note that in the remainder, we assume that ch1 /∈ fn(P ) ∪ bn(P ) before applying the

transformation.

The second process P ch1,ch2 does not only reveal the secret data on channel ch1, but

also takes orders from an outsider (attacker) on the channel ch2 before sending a message

or branching. This models a completely corrupted party. For instance, the attacker can

control which branch to take in the case of the conditional process, and can provide a

message of his choice to output in the case the output process.

Definition 2.2. (Process P ch1,ch2 [DKR09]). Let P be a plain process and ch1, ch2

be two channel names. The process P ch1,ch2 is defined follows:

− 0ch1,ch2 =̂ 0;

− (P |Q)ch1,ch2 =̂ P ch1,ch2 |Qch1,ch2;

− (!P )ch1,ch2 =̂ !P ch1,ch2;

− (νn.P )ch1,ch2 =̂ νn.out(ch1, n).P ch1,ch2 if n is a name of base type, otherwise

(νn.P )ch1,ch2 =̂ νn.P ch1,ch2;

− (if M =E N then P else Q)ch1,ch2 =̂ in(ch2, x).if x = true then P ch1,ch2 else

Qch1,ch2, where x is a fresh variable and true is a constant;

− (in(u, x).P )ch1,ch2 =̂ in(u, x).out(ch1, x).P ch1,ch2 if x is a variable of base type,

otherwise (in(u, x).P )ch1,ch2 =̂ in(u, x).P ch1,ch2;

− (out(u, x).P )ch1,ch2 =̂ in(ch2, x).out(u, x).P ch1,ch2, where x is a fresh variable.

To hide the outputs of an extended process on a certain channel, we use the following

definition.

Definition 2.3. (Process A\out(ch,·) [DKR09]). Let A be an extended process and ch

be a channel name. We define the process A\out(ch,·) as νch.(A | !in(ch, x)).

The process A\out(ch,·) is as the process A, but hiding the outputs on the channel ch. We

also use the following two lemmas from [DKR09].

Lemma 2.1. (Process (P ch)\out(ch,·) [DKR09]). Let P be a closed plain process and

ch a channel name such that ch /∈ fn(P )∪bn(P ). Then, we have that (P ch)\out(ch,·) ≈l P .

Lemma 2.2. (Context Commutativity [DKR09]). Let C1 = νũ1.( |P1) and C2 =

νũ2.( |P2) be two evaluation contexts such that ũ1 ∩ (fv(P2) ∪ fn(P2)) = ∅, and ũ2 ∩
(fv(P1) ∪ fn(P1)) = ∅. Then, C1[C2[A]] ≡ C2[C1[A]] for any extended process A.
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2.1.2 Equivalences

Two processes are equivalent if an external observer cannot tell them apart. The Applied

π-Calculus has two relations to define equivalence between processes are Observational

Equivalence, and Labeled Bisimilarity. Two processes are observationally equivalent if for

every context each output or internal transition of the first process can be simulated by

the second process.

Definition 2.4. (Observational Equivalence [AF01]). Observational Equivalence

(≈) is the largest symmetric relation R between closed extended processes with the same

domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a, where A ⇓ a means that the process A sends a message on the

channel a, i.e., when A→∗ C[out(a,M).P ] for some evaluation context C[ ] that

does not restrict a;

2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′;

3. C[A] R C[B] for all closing evaluation contexts C[ ].

Example 2.8. (Observational Equivalence). Let f be a unary function symbol with no

equations. Then, we have νs.out(a, s) ≈ νs.out(a, h(s)), although this is not easy to prove.

As an another example, we have that out(a, s1) 6≈ out(a, s2) where s1 and s2 are names.

We can prove that using the context C[ ] ≡ in(a, x). if x = s1 then out(a, s1)| , which

does not satisfies the clause 3 of Definition 2.4. Indeed, we have that C[out(a, s1)] →∗

out(a, s1) thus C[out(a, s1)] ⇓ a, but C[out(a, s2)] can never outputs on a.

It is difficult to prove Observational Equivalence due to the quantification over all

contexts. Therefore, Labeled Bisimilarity (≈l) is introduced, which is more suitable

for both manual and automatic reasoning. Labeled Bisimilarity relies on the notion of

Static Equivalence (≈s), which is based on the equivalence of two terms in a given frame.

Note that, the two relations ≈ and ≈l coincide [AF01,Liu11], that is, for any two closed

extended processes A and B we have A ≈ B, if and only if, A ≈l B.

Definition 2.5. (Equality in a Frame [AF01]). Two terms M and N are equal in

the frame φ, written (M = N)φ, if and only if, φ ≡ νñ.σ, Mσ = Nσ and {ñ}∩ (fn(M)∪
fn(N)) = ∅, for some names ñ and substitution σ.

Definition 2.6. (Statical Equivalence [AF01]). Two closed frames φ and ψ are

statically equivalent, written φ ≈s ψ, if dom(φ) = dom(ψ), and if for all terms M and

N , we have that (M = N)φ, if and only if, (M = N)ψ. Two extended processes A and

B are statically equivalent, written A ≈s B if their frames are statically equivalent.
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Two frames are statically equivalent if any test (M = N) that holds on one frame

should also hold on the other frame. Two processes are statically equivalent if all their

previous operations gave the same results, so that they cannot be distinguished from the

messages they previously exchanged with the environment. However, they may evolve in

different ways in future.

Example 2.9. (Statical Equivalence [CK14]). Let φ1 = νk.{k/x,enc(0,k) /y} and

φ2 = νk.{k/x,enc(1,k) /y}. Then, φ1 6≈s φ2 since we have that (enc(0, x) = y)φ1, but

(enc(0, x) 6= y)φ2. Adding some randomness to the encryption will result into statically

equivalent frames. For instance, νk.νr.{k/x,enc((0,r),k) /y} ≈s νk.νr.{k/x,enc((1,r),k) /y}.

The idea of Static Equivalence can be extended to labeled bisimilarity.

Definition 2.7. (Labeled Bisimilarity [AF01]). Labeled bisimilarity (≈l) is the

largest symmetric relation R on closed active processes, such that A R B implies:

1. A ≈s B

2. if A→∗ A′, then B →∗ B′ and A′RB′ for some B′

3. if A α→ A′, fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α→→∗ B′ and
A′ R B′ for some B′.

Example 2.10. (Labeled Bisimilarity [RS11]). For any closed process P , we have

νa.(out(a,m).P | in(a, x).Q) ≈l νa.(P | Q{m/x})

The equivalence holds because the only choice that the left-side process can take, and

which the right-side process cannot is the internal reduction over the private channel a by

COMM. This reduction results in the right-side process.

2.2 ProVerif Tool

Throughout the thesis, we use ProVerif to perform automatic verification tasks. ProVerif

is an automatic verification tool based on Horn clauses originally developed by Bruno

Blanchet [Bla01] to verify secrecy (reachability). It is then extended to support corre-

spondence properties between events to verify authentication properties [Bla02], strong

secrecy [Bla04], and equivalences [BAF08] which allows the verification of privacy proper-

ties. It also supports user-defined equational theories [AB05a], which allows the modeling

of a large class of cryptographic primitives, as well as, the properties of physical objects.

Furthermore, Küster and Truderung have shown how to reduce the derivation problem

for Horn theories with XOR (⊕) to the XOR-free case in [KT11]. Their reduction allows

one to carry out the analysis of the protocols that involve XOR operator using tools,
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such as ProVerif. The authors then adopted their approach to the case of Diffie-Hellman

exponentiation [KT09].

ProVerif takes a protocol and a property modeled in a process calculus [AB05a] which

resembles the Applied π-Calculus, and translates them into Horn clauses (Prolog rules).

ProVerif then determines whether the property is satisfied by the protocol or not. In case

of failure, ProVerif may provide a trace of the obtained attack [AB05c]. For more details

about modeling protocols in ProVerif and its output we refer to the manual [BSC15].

Note that, ProVerif assumes a Dolev-Yao like attacker that can intercept all messages,

compute new messages from the messages it has received, and send any message it can

build.

Secrecy of a term (can the attacker get the secret s?) is defined in ProVerif as the

attacker cannot obtain the term by communicating with the protocol and performing

computations. It is modeled as a predicate: query attacker(s). ProVerif determines

whether the term s can be inferred from the Prolog rules. Authentication is captured by

correspondence assertions of events “on every execution trace an event e2 is preceded by

an event e1”. Events are annotations that do not change the behavior of the processes,

but help to reason about authentication properties. A basic correspondence assertion

is a formula of the form: e2(N) =⇒ e1(M). That is, for each occurrence of the event

e2(N) there is a previous execution of event e1(M). One can also define some relations

(to be satisfied) between M and N . A more general correspondence can be defined by

replacing the event e1(M) by conjunctions and disjunctions of events. ProVerif can also

capture the one-to-one relationship between events using injective correspondence, that

is: for each occurrence of event e2(N) there is a distinct earlier execution of event e1(M).

Moreover, ProVerif supports nested correspondence, that is some of the events in the

right hand side of =⇒ are replaced with correspondences.

To capture strong secrecy and other privacy properties ProVerif provides the ability

to verify observational equivalences. Strong secrecy of a value x can be questioned

using noninterf x. Other privacy properties such as anonymity are questioned using an

equivalence between two processes that differ only in the choice of some terms. Such an

equivalence is written in ProVerif by a single biprocess that encodes the two processes

by using the construct choice[M,N ] to represent the terms that differ between the

two processes, where the first component of the choice M is used in the first process

while the second component N is used in the second process. ProVerif can also prove

equivalence P ≈ Q between two processes P and Q presented separately, using the

command equivalence P Q where P and Q are processes that do not contain choice.

ProVerif will in fact try to merge the processes P and Q into a biprocess and then prove

equivalence of this biprocess. Note that ProVerif is not always capable of merging two

processes into a biprocess: the structure of the two processes must be fairly similar.
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As we noted in the Chapter 1 ProVerif is sound but not complete. This means

that, if ProVerif claims that a property is true or false, then this claim is correct.

However, ProVerif may say that a property “cannot be proved”, which is a “do not know”

answer. Furthermore, ProVerif may not terminate. The incompleteness is due to some

approximations that are performed by the translation of protocol into Horn clauses. The

main abstractions are (more details can be found in [BSC15]):

− Actions can be repeated any number of times.

− Generation of a fresh name n is represented as functions of the inputs located above

νn. So the more the νn is moved downward in the process, the more arguments

they have, and in general the more precise (but more costly) the analysis is.

− Some approximations are made when dealing with private channels. Particularly,

when a is a private channel, the process P in out(a,M).P can only be executed

when some input listens on channel a; ProVerif does not take that into account and

considers that P can always be executed.

− Further approximations are made when proving observational equivalence. In order

to show that P and Q are observationally equivalent, ProVerif proves that at each

step P and Q reduce in the same way: the same branch of a test or destructor

application is taken, communications happen in both processes or in neither of

them. This property is sufficient for proving observational equivalence, but it is not

necessary. For instance, the biprocess out(a, choice[m,n]) | out(a, choice[n,m])

satisfies observational equivalence as the difference in the first output is compensated

by the second output, but ProVerif cannot show this. For ProVerif to prove

observational equivalence, we have to rewrite the biprocess into the structurally

equivalent one out(a, choice[m,m]) | out(a, choice[n, n]). It becomes more difficult

when a configuration similar to the one above happens in the middle of the execution

of the process. We faced such a problem when we analyze some of our case studies

with ProVerif. We tackle it by defining an additional process that takes the outputs

messages on private channels, shuffles them, and then outputs them on a public

channel. Note that, Ben Smyth et al. are working on an extension of ProVerif to

tackle such cases [DRS08].

2.3 Quantified Event Automata

In this section, we present the Quantified Event Automata, an expressive formalism to

represent parametric specifications. We refer to [BFH+12,Reg14] for full syntax and

definitions.
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A finite-state automaton is a mathematical model of the allowable operations used

to design, e.g., computer programs. It is conceived as an abstract machine that can

be in one of a finite number of states. It can change from one state to another when

initiated by a triggering event or condition; this is called a transition. An event automaton

(EA) is a non-deterministic finite-state automaton whose alphabet consists of parametric

events and whose transitions may be labeled with guards and assignments. We use the

notation [guard ]
assignment to write guards and assignments on transitions: (:=̂) for variable

declaration then assignment, (:=) for assignment, and (=) for equality test. A quantified

event automaton (QEA) is a generalization of event automaton where zero or more of

the EA variables are quantified. It formally defines a language (i.e., a set of accepted

traces) over instantiated parametric events. Acceptance is decided by replacing these

quantified variables by each value in their domain to generate a set of EA and then using

the quantifiers to determine which of these EA must accept the given trace. Unquantified

variables are left free, and they can be manipulated through assignments and updated

during the processing of the trace. Moreover, new free variables can be introduced while

processing the trace.

To illustrate Quantified Event Automata and their languages, we consider the following

example: “for any i: e2(i) is preceded by an event e1(i)” (see Figure 2.7). The associated

input alphabet contains only the events e1(i) and e2(i), so any other events in the trace

are ignored. The QEA of Figure 2.7 has two final (accepting) states (shaded in gray),

∀i

1 2
e1(i)

Figure 2.7: A QEA describing e2(i) is preceded by an event e1(i).

zero failure states (white color is used to represent failure states), one quantified variable

i, and zero free variables. The initial state has an arrow pointing to it. Square states are

closed to failure (next) states, i.e., if no transition can be taken, then there is a transition

to an implicit failure state. Whereas circular states are closed to self (skip) states, i.e., if

no transition can be taken, then there is an implicit self-looping transition. The empty

trace is accepted by the QEA since the initial state is accepting. State (1) is a square

state, so an event e2(i) that is not preceded by event e1(i) leads to a failure. An event

e1(i) in state (1) leads to state (2) which is a skipping state, so after event e1(i) any

sequence of events (for same i) is accepted. The quantification ∀i means that the property

must hold for all values that i takes in the trace, i.e., the values obtained when matching

the symbolic events in the specification with concrete events in the trace. For instance,

consider the following trace: e1(i1).e2(i2).e2(i1).e1(i2). To decide whether it is accepted
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or not, the trace is sliced based on the values that can match i, resulting in the two slices:

i 7→ i1: e1(i1).e2(i1), and i 7→ i2: e2(i2).e1(i2). Then, each slice is checked against the

event automaton instantiated with the appropriate value for i. The slice associated to i1
is accepted as it reaches the final state (2), while the slice associated to i2 does not reach

a final state since event e2(i2) leads from state (1) to an implicit failure state. Therefore,

the whole trace is not accepted by the QEA.

2.4 MarQ Tool

The MarQ [RCR15] tool is suitable for offline (on reduced system executions) and

online (on running system) monitoring of Java programs using AspectJ [KHH+01] for

instrumentation. It won the offline monitoring and online monitoring for Java tracks

in the 1st international Runtime Verification competition [BBF14]. Typically runtime

monitoring consists of three stages: firstly, a property denoting a set of valid traces

is specified in a formal language. Secondly, the system of interest is instrumented to

produce the required events recording information about the state of the system. Thirdly,

a monitor is generated from the specification, which processes the trace to produce a

verdict.

To specify QEA as input to the MarQ system, QEABuilder is used. A builder object

is used to add transitions and record information about quantification and states. These

are used to construct a QEA that is passed to the MonitorFactory. Figure 2.8 shows how

QEABuilder can be used to construct the QEA given in Figure 2.7.

QEABuilder q = new QEABuilder("Correspondence Assertion");

int E1 = 1; int E2 = 2;
int i=-1;

q.addQuantification(FORALL, i);

q.addTransition(1,E1, new int[]{i},2);

q.addFinalStates(1,2);
q.setSkipStates(2);

return q.make();

Figure 2.8: Using QEABuilder to construct the QEA of Figure 2.7.

A builder object q is first created. Then, event names and variables are declared.

Quantified variables are negative integers, whereas free variables are positive integers.
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After that, the universal quantifications are identified. In our example we have one

quantified variable i. Transitions are then added using addTransition. For each

transition, the start state, event name, parameters, guards, assignments, and end state

are specified. The builder object of Figure 2.7 has one transition from state (1) to state

(2) labeled with event E1 which has one parameters i. This single transition has neither

guards nor assignments. However, MarQ tool includes a library of guards and assignments

for dealing with equality, integer arithmetic, and sets. Moreover, it is possible for the user

to define a new guard or assignments by implementing a simple interface. The final step

of QEA building is to specify the accepting states, and skipping states. By default, states

are failure and next states. Once the QEA is constructed the monitor can be created by

a call to the MonitorFactory. This will inspect the structure of the QEA and produce

an optimized monitor. Two modes of monitoring are possible: offline monitoring and

online monitoring. In offline monitoring, a trace in CVS or XML format is given as a

log file and processed by a translator then by the monitor to produce a verdict. The

translator converts each event from “string” into the format used by the monitor. Whereas

in online monitoring, a program is instrumented to emit events which are feed to the

monitor. The monitor then produces a verdict on each event. Note that, in case of online

monitoring it is necessary to deliver each event to the monitor at the time it is generated

by the system. This can be done, for example, using AspectJ [KHH+01]. Details about

monitoring process and the algorithm used in MarQ can be found in [Reg14].

2.5 Summary

In this chapter, we recalled the Applied π-Calculus [AF01], the formal language we use

in the thesis to model protocols. Then, we provided an overview about ProVerif, the tool

we use to perform symbolic automatic verification tasks throughout the thesis. Finally,

we given a brief description of the Quantified Event Automata and the MarQ tool, as we

use them in Chapter 3 respectively to model exam requirements and to perform runtime

monitoring for real exam executions.
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Chapter 3
Exam Protocols

Exams are systems employed to assess the skills, or the knowledge of candidates. In

an exam process, candidates may cheat to get a higher mark, examiners may be bribed,

and exam authorities may manipulate the results. Thus, security is significant to ensure

fairness and correctness.

In this chapter, we propose a formal model for authentication and privacy properties

of exams. We analyze using ProVerif the exams due to Huszti & Pethő [HP10], Giustolisi

et al. [GLR14], and pencil-and-paper exam at Université Grenoble Alpes1 (in short,

Grenoble exam). Then, we propose an abstract model of verifiability, and discuss with the

help of ProVerif the verifiability of Giustolisi et al. [GLR14] exam, and Grenoble exam.

Finally, we study exam monitoring at runtime. We propose several monitors, expressed

as Quantified Event Automata, to monitor the main properties of e-exams. We validate

our monitors by verifying, using the Java tool MarQ, real e-exam executions conducted

by Université Joseph Fourier2 at pharmacy faculty. Our approach allows to report the

individuals responsible of potential failures.
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3.1 Introduction

Exams are assessment tools used to measure skills, or knowledge. Typically, candidates

sit for the exam, and submit some answers which are collected by an authority; examiners

evaluate the candidates’ answers and deliver marks; and finally marks are notified by an

authority to the candidates.

Traditionally, exams are taken pencil-and-paper at hand. In contrast, nowadays several

exams rely on information and communication technology. They are called electronic

exams, in short e-exams. For instance, universities such as MIT, Stanford, and Berkeley,

just to cite a few, have began to offer university courses remotely using the Massive Open

Online Course platforms (e.g., Coursera3 and edX4) which offer e-exams. Even in a less

ambitious and more traditional setting, universities start adopting e-exams to replace

traditional exams, especially in the case of multiple-choice questions and short open

answers. For example, pharmacy exams at Université Joseph Fourier (UJF) have been

organized electronically using tablet computers since 2014 [Fig15]. Other institutions,

such as ETS5, CISCO6, and Microsoft7, have for long already adopted their own platforms

to run, generally in qualified centers, electronic tests required to obtain their program

certificates.

To ensure fairness between candidates, it is important to prevent cheating, and

manipulation of answers and marks during the exam process. In general, candidates may

try to cheat in order to get a higher mark. Candidates’ cheating is the main concern

of exam authorities. Usually, authorities try to prevent the candidates from cheating

with invigilated tests, and by using student cards, or login/password to authenticate the

candidates. Even for remote exams where it is not possible to have human invigilators

(proctors), a software running on the student computer is used, e.g., ProctorU8, and

webcam or biometrics may be used for authentication. However, such measures are

insufficient, as the trustworthiness and the reliability of exams are today threatened not

only by candidates. Indeed, threats and errors may come from the use of information

technology, as well as, from bribed examiners and dishonest exam authorities which

are willing to tamper with exams as recent scandals have shown. For example, in the
3 www.coursera.org 4 www.edx.org 5 www.etsglobal.org 6 www.cisco.com
7 www.microsoft.com/learning/en-us/default.aspx 8 www.proctoru.com
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Atlanta scandal, school authorities colluded in changing student marks to improve their

institution’s rankings and get more public funds [Lar13]. All such diverse exam systems

must be verified for the presence/absence of threats and irregularities. However, properties

of exam protocols have to be clearly defined and formalized before. In this chapter, we

formalize and analyze the following security properties of exam protocols:

− Authentication: Exam authority concerned in Answer Origin Authentication

which ensures that only registered candidates take the exam, and that one exam-

form (copy) is collected from each candidate. For the candidate it is crucial to

preserve the associations between her identity, her answer, and her mark. We

define three properties for that purpose, each covers a certain exam phase: i)

Form Authorship ensures that the contents of every accepted (collected) exam-

form (identity, questions, and answers) are not modified after submission, ii) Form

Authenticity ensures that the content of every exam-form is not modified after the

collection and until after the form is marked by an examiner, iii) Mark Authenticity

ensures that every candidate receives the mark which was assigned by the examiner

to his exam-form.

− Privacy: During examination process the anonymity of critical parties has to be

ensured in order to prevent bribing, and guarantee fairness among the candidates

to avoid favoritism. For instance, in order to guarantee the main goal of the exam,

which is assessing the knowledge and skills, the exam questions should not be

disclosed until the examination phase begins, this is ensured by our first privacy

property Question Indistinguishability. To prevent favoritism between candidates

at marking, an exam protocol should also satisfies privacy notions like, Anonymous

Marking, which ensures that the examiner evaluates the exam-forms without being

aware of their authors, and Anonymous Examiner which prohibits a candidate from

knowing which examiner is going to grade his exam-form, this is to avoid bribing.

Finally, to preserve the particularity of each candidate some notions are needed

like Mark Privacy which ensures that a candidate’s mark remains secret, and Mark

Anonymity, a weaker variant, which ensures that the attacker is unable to associate

a mark to its corresponding candidate.

− Verifiability: A verifiable exam protocol should allow a candidate to verify that

her questions are valid, that her answers were not manipulated, and that her

mark is correct. It should also allow a generic observer (e.g., judge) to verify

that only registered candidates participated in the exam, that no answer were

manipulated, that all answers were marked correctly, and that all marks were

assigned for corresponding candidates.
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− Monitoring: The verifiability properties operate on abstract models of protocol

specification. However, some errors may introduced by the implementation. In

order to ensure that protocol executions are correct, we discuss exam monitoring.

We propose several monitors based on Quantified Event Automata, which allows

to verify actual exam executions at runtime. Namely, no unregistered candidate

try to participate in the exam by submitting an answer; answers are accepted only

from registered candidates; all accepted answers are submitted by candidates, and

for each question at most one answer is accepted per candidate; all candidates

answer the questions in the required order; answers are accepted only during the

examination time; another variant of the latter that offers flexibility in the beginning

and the duration of the exam; all answers are marked correctly; and the correct

mark is assigned to each candidate. Our formalization also allows us to detect the

cause of the potential failures and the responsible parties.

Note that, our definitions apply not only to educational assessments and skill tests, but

also to situations where the properties discussed above are desirable such as peer review

systems, project proposal, public tender, and benchmarks. For example in academic

peer reviews, we have authors which submit academic papers in analogs to candidates

which submit answers in educational assessments. The papers are then evaluated by some

reviewers (in analogue to examiners) after being collected by a certain authority. Note

that, properties such as Form Authorship, Form Authenticity, and Anonymous Marking

are highly desirable in peer review systems.

Contributions. In this chapter, we provide the following contributions:

− In the first part, we propose a formal framework in the Applied π-Calculus to

model and analyze the authentication and privacy properties of exam protocols.

We validate the proposed framework by analyzing using ProVerif three case studies:

the protocols by Huszti & Pethő [HP10], Giustolisi et al. [GLR14], and Grenoble

exam.

− In the second part, we propose abstract definitions of verifiability properties related

for exam protocols. We apply the proposed verifiability definitions to the protocol

by Giustolisi et al., and Grenoble exam, and again we use ProVerif to verify these

two protocols.

− In the final part, we define several QEAs which allow to monitor at runtime exam

requirements of exams. We also define for each property an alternative variant that

additionally collects and reports at the end some data in case of failure. Then, we

implement these QEAs using MarQ tool, and we perform offline monitoring, based

on the available data logs, for an e-exam organized by Université Joseph Fourier.
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Outline of the Chapter. In Section 3.2, we discuss the related work. We formally

model exam protocol in Applied π-Calculus to define authentication and privacy properties

in Section 3.3.1. Then, we define the authentication and privacy properties in Section 3.3.2.

In Section 3.3.3, we analysis the authentication and privacy properties of our three case

studies. In the second part (Section 3.4): we define an abstract model of exam protocols

and our verifiability properties. We split our properties into individual (Section 3.4.1)

and universal properties (Section 3.4.2). Then, we analysis the two related case studies in

Section 3.4.3. In the final part (Section 3.5): we introduce QEA syntax and present the

events we considered to define the monitors in Section 3.5.1. We defined our monitors as

QEAs in Section 3.5.2. Then, we perform an analyze of actual e-exam executions at UJF

in Section 3.5.3. We finally conclude in Section 3.6.

3.2 Related Work

In this section we discuss related work on exam protocols, and the link to other applications

such as auction and voting.

Exam Protocols. The majority of works on exam protocols argue the security of the

proposed protocols only informally. Castellà-Roca et al. [CHD06] proposed an e-exam

system, and claimed that it guarantees a number of authentication and privacy properties

in presence of a trusted exam manager. Huszti & Pethő [HP10] proposed an exam protocol

which relies on the reusable anonymous return channel [GJ03]. The proposed protocol

considers minimal trust requirements, but a trusted registry. Giustolisi et al. [GLB13]

listed some relevant requirements for exam protocols, yet only informally. Latter, an

extension for these requirements and an internet-based exam protocol, Remark! protocol,

have been presented in [GLB13]. The authors also provided some arguments to show that

their protocols meets the presented requirements. The majority of these requirements

are formalized herein in this thesis. Bella et al. [BGL14] presented an exam protocol

(WATA IV), which relies on visual cryptography [NS94]. It considers corrupted examiners,

but assumes a honest-but-curious anonymizer. WATA IV is the latest in a family of

protocols [BCR10,BCCR11,BGL14] with prototypes used to run exams at University of

Catania [BCCR11]. WATA IV was informally analyzed by its authors who claim that

WATA IV meets several authentication and privacy properties.

Few other works formally tackle exam protocols. Foley et al. [FJ95] proposed a

formalization for functionality and confidentiality requirements of Computer Supported

Collaborative Working (CSCW) applications. They illustrated their formalization using

an exam example as a case study. Arapinis et al. [ABR13] propose a cloud-based protocol

for conference management system that supports applications, evaluations, and decisions.

They identify a few privacy properties (secrecy and unlinkability) that should hold despite
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a malicious-but-cautious cloud, and they prove, using ProVerif, that their protocol satisfies

them. Recently in 2015, Bella et al. [BGLR15] presented an exam protocol that does

not require trusted third party (TTP). They also analyzed the proposed protocol using

Proverif. The considered six out of the nine authentication and privacy properties we

formalize in this thesis. All our exam privacy properties but Anonymous Examiner

are considered. Concerning authentication properties, they consider Answer Origin

Authentication and Form Authorship. They also proposed a new definition for Mark

Authenticity, which says that “an examiner correctly attributes the mark computed on a

given answer to the candidate that submitted this answer”. Whereas, our definition of

Mark Authenticity says that a candidate receives the mark attributed by an examiner to

the answer handed by the exam authority as it is accepted from this candidate. Note

that, our property Form Authenticity guarantees that the examiner computes the mark

on the answer accepted from the candidate (that is the correct answer is handed by the

authority to the examiner). So together our two properties Mark Authenticity and Form

Authenticity ensure that a candidate receives the mark computed on the answer accepted

from him. This is a bit stronger than their definition of Mark Authenticity which only

guarantees that a mark is attributed to a candidate, but not necessarily received by him.

Note also that, the authors of the paper [BGLR15] used a different meaning for the event

notified. That is, it emitted when an examiner attributes a given mark to a given

candidate. Whereas, in our definition notified is emitted when the candidate receives

the mark. Additionally, they defined the following four properties:

− Candidate Authorisation which says that only registered candidates can take the

exam. Note that, we consider a similar property (Candidate Registration) to monitor

exam executions. Our goal is to check if an unregistered candidate was trying to

spoof the system by submitting an answer. However, when one wants to check

protocol specification, we think what is important is to be sure that no answer will

be accepted from an unregistered candidate (which can submit answers). The latter

is ensured by our property Answer Origin Authentication.

− Notification Request Authentication which says that a mark can be associated

with the candidate only if she requests to learn her mark. The intuition behind

this unusual property is to allow a candidate to withdraw from the exam before

notification.

− Mark Verifiability which says that a candidate can verify that she has been assigned

with the mark attributed to her answer. This property is similar to our property

Correct Mark Reception. Additionally, we propose a property Mark Correctness

that allows a candidate to check that her mark was computed correctly. Moreover,

we propose several properties that allow a candidate, as well as, an external observer

to verify several steps during the examination process (see Section 3.4).
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− An accountability property, Testing Dispute Resolution, which allows to identify

the responsible party when a candidate fails to submit an answer or to receive

the corresponding mark. Note that, we do not tackle accountability in this thesis.

However, each of our verifiability properties covers a certain step in the examination

process which helps to identify the source of potential failures. Moreover, our

monitors for exam executions allow us to identify the responsible parties in case of

failure.

The analysis shows that the proposed protocol satisfies all the considered properties.

Link to the Other Applications. There are several works presenting the formalization

and verification of authentication and privacy properties in domains that seem related

to e-exams, namely e-voting [DLL11,DLL12b,DLL12a,BHM08,DKR09,DKR06] and

e-auction systems [DJP10,DLL13,DJL13]. Some of the security properties therein studied

remind those we are presenting for e-exams. For instance, Answer Origin Authentication

is analogous to voter and bidder authentication. Mark Privacy reminds ballot privacy

and losing bids privacy. Yet, there are fundamental differences. In e-exams, Answer

Authorship should be preserved even in the presence of colluding candidates. Conversely,

vote (bid) authorship is not a problem for e-voting (e-auction), in fact unlinkability

between a voter (bidder) and her vote (bid) is a desired property. Another important

property for e-exams is to keep exam questions secret until the exam starts. We do

not find such a property in e-voting where the candidates are previously known to the

voters, and in e-auction where the goods to bid for are previously known to the bidders.

Moreover, properties such as Anonymous Marking, meaning that an examiner can not

know whose copy they are grading, evaluates to a sort of fixed-term anonymity. This

property is meant to hold during the marking, but is trivially falsified when the marks

are assigned to the candidates.

Verifiability has been also studied in other domains than exams, specially in voting and

in auctions. In these domains formal models and definitions of security properties exist,

e.g., [DJL13,KTV10,KRS10b]. In voting, individual verifiability ensures that a voter can

verify her vote has been handled correctly, that is, cast as intended, recorded as cast,

and counted as recorded [BT94,HS00]. The concept of universal verifiability has been

introduced to express that voters and non-voters can verify the correctness of the tally

using only public information [CF85,BT94,Ben96]. Kremer et al. [KRS10b] formalize

both individual and universal verifiability in the Applied π-Calculus. They also consider

eligibility verifiability, a specific universal property assuring that any observer can verify

that the set of votes from which the result is determined originates only from eligible

voters, and that each eligible voter has cast at most one vote. Smyth et al. [SRKK10] use

ProVerif to check different verifiability notions that they express as reachability properties.

Verifiability for e-auction is studied by Dreier et al. [DJL13]. The manner in which they
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express sound and complete tests for their verifiability properties has been a source of

inspiration for what we present, concerning verifiability, in this thesis.

Notable notions related to verifiability are accountability and auditability. Generally

speaking, a protocol is verifiable when it allows anyone (or a specific party) to verify that

a certain goal is satisfied. In its turn accountability allows to identify which party is

responsible when the protocol fails to meet one of its goals. Verifiability allows a party

to detect that there is something wrong when the protocol fails. However, this may

not be sufficient as it should be possible to specify the party that is responsible of this

failure, and by this, resolve the dispute. In this sense, accountability is closely related

to verifiability. Küsters et al. have been proposed a formal definition for accountability

in [KTV10]. They also provided symbolic and computational definitions of verifiability,

which they interpreted as a restricted form of accountability. However, their framework

needs to be instantiated for each application by identifying relevant verifiability goals.

In another hand, auditability is the quality of a protocol that stores sufficient evidence

to convince an honest judge that specific properties are satisfied [GFN09]. Auditability

revisits the universal verifiability defined: anyone, even an outsider without knowledge

of the protocol execution, can verify the system relying only on the available pieces of

evidence.

Concerning monitoring, offline monitoring of user-provided specifications over logs

has been addressed in the context of several tools in the runtime verification com-

munity [BBF14]: Breach [Don10] for Signal Temporal Logic, RiTHM [NJW+13] for

(variant of) Linear Temporal Logic, LogFire [Hav15] for rule-based systems, and Java-

MOP [JMLR12] for various specification formalisms provided as plugins. Moreover,

offline monitoring was successfully applied to other industrial case studies, e.g., for

monitoring financial transactions with LARVA [CP12], and monitoring IT logs with

MonPoly [BCE+14].

3.3 Authentication and Privacy in Exams

We present our model of exam protocols in the Applied π-Calculus [AF01], and we propose

formal definitions for the authentication and privacy properties. Then, we discuss our

three case studies: the protocols by Huszti & Pethő [HP10], Giustolisi et al. [GLR14],

and Grenoble exam.

3.3.1 Modeling Exam Protocols in The Applied π-Calculus

An exam protocol specifies the processes executed by the exam parties. The processes

can exchange messages on public or private channels, create keys or fresh random values
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and perform tests and cryptographic operations, which are modeled as functions on terms

with respect to an equational theory describing their properties.

We distinguish the following parties: candidates who sit for the exam; the examiners

who mark the answers submitted by the candidates; the question committee, which

prepares the exam questions; the exam authorities, which conduct the exam, and include

registrars, invigilators, exam collectors, and a notification committee. In some protocols,

an authority can be responsible of two or more roles. Furthermore, we organize the exam

in four phases:

− Registration: the exam authority (the registrar) creates a new examination and

checks the eligibility of the candidate who attempts to register for it;

− Examination: the exam authority authenticates the candidate, and sends to her an

exam-form that contains the exam questions. The candidate fills the form with her

answer, and submits it to the exam collector;

− Marking: the authority distributes the form submitted by the candidate to an

examiner, who in his turn evaluates and marks it;

− Notification: once the form has been evaluated, the mark is notified to the candidate.

Note that, each candidate can pass through the exam phases independently from the

others.

Definition 3.1. (Exam Protocol). An exam protocol is a tuple (C,E,Q,A1, . . . , Al, ñp),

where C is the process executed by the candidates, E is the process executed by the exam-

iners, Q is the process executed by the question committee, Ai’s are the processes executed

by the authorities, and ñp is the set of private channel names.

All candidates execute the same process C, and all examiners execute the same process

E. However, different candidates and examiners are instantiated with different variable

values, e.g., keys, identities, and answers.

In our definitions, we reason about privacy using concrete instances of an exam protocol.

An instance is called an exam process. Only honest parties are modeled in an exam

process. Dishonest parties are under the control of the attacker. They are not modeled

in the exam process, but subsumed by the attacker. We assume a single attacker, i.e., all

attackers and all dishonest parties share information and trust each other. The attacker

forms the environment in which the exam process runs. He has complete control to the

network, except private channels (e.g., Dolev-Yao attacker [DY83]). For instance, he

can eavesdrop, remove, substitute, duplicate and delay messages that the parties are

sending one another, and insert messages of his choice on the public channels. He can

also manipulate data contained within his knowledge under the restriction of perfect
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cryptography, for instance the only way to decrypt a ciphertext is to know the inverse

key.

Definition 3.2. (Exam Process). An exam process of an exam protocol given by

the tuple (C,E,Q,A1, . . . , Al, ñp) is a closed process EP = νñ.(Cσidc1σa1 | . . . |Cσidcjσaj |
Eσide1σm1 | . . . |Eσidekσmk

|Qσq|A1σdist | . . . |Al′), where 1 ≤ l′ ≤ l, ñ is the set of all

restricted names, which includes some of the private channel names ñp; Cσidciσai are the

processes executed by the candidates, the substitutions σidci and σai respectively specify the

identity and the answers of the ith candidate; Eσideiσmi are the processes executed by the

examiners, the substitution σidei specifies the i
th examiner’s identity, and σmi specifies

for each possible question/answer pair the corresponding mark; Q is the process executed

by the question committee, the substitution σq specifies the exam questions; Ai are the

processes executed by the exam authorities that are required to be honest, the substitution

σdist determines which answers will be submitted to which examiners for grading. Without

loss of generality, we assume that A1 distributes the copies to the examiners.

Definition 3.2 equally handles examiners that are machines and those that are humans:

they are both entities that mark answers. Moreover, the definition does not specify how

the mark is computed. To ensure a fair marking we ought to assume the marking is

deterministic: given the same answer to the same question, the examiner will attribute

the same mark (at least during the same exam). This should be the case for a fair marking

system, and this assumption avoids unrealistic corner cases in the definitions later on. In

the real world, however, marking may not be necessarily deterministic, especially in tests

with open-answer questions where same mark may given to “similar” but not identical

answers. Note that, Q and A1 can coincide when there is only one authority A: in that

case, Qσq|A1σdist is simplified as Aσqσdist .

In addition to the attacker, threats may also come from corrupted parties, who

communicate with the attacker, share personal data (e.g., secret keys) with him, or

receive orders (e.g., how to answer a question) from him. For instance, the attacker may

control a legitimate user. Similarly to the approach used by Dreier in his thesis [Dre13],

we model a corrupted party as P ch1,ch2 (see Definition 2.2 in Section 2.1.1). If process P

is honest, then P ch1,ch2 is its corrupted version. This variant is exactly as P , but uses

channels ch1 and ch2 to communicate with the attacker. Through ch1, P ch1,ch2 sends

all its inputs and freshly generated names (but not other channel names). From ch2,

P ch1,ch2 receives messages that can influence its behavior. Given an exam process any

process P can be replaced by P ch1,ch2 . Corrupted parties, unlike dishonest parties, do

not reveal (give access to) the private channels to the attacker. The messages received

on private channels are revealed to the attacker but not the private channels themselves.

Moreover, using P ch1,ch2 the attacker can send and receive messages on private channels

the candidate has access to, if necessary. In contrast, for the attacker to play the role of
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the, e.g., candidate one would have to make certain private channels public (otherwise

the attacker cannot be a candidate), which makes the transformation more difficult to

write and may lead to false attacks depending on the protocol (but at the same time help

termination). Note that, this distinction between corrupted parties and the attacker also

makes corrupted parties explicit in the definition of the properties (see Section 3.3.2).

Note also that in practice, notably in ProVerif this distinction is not a limitation due to

the implicit replication9.

To improve the readability of our definitions, we introduce the notation of exam context.

An exam context EP I [ ] is the process EP without the processes of the parties included

in the set I; they are replaced by “holes”. We use this notation, for instance, to specify

exactly the processes for candidates c1 and c2 without repeating the entire exam process;

in that case we rewrite EP as EP{idc1,idc2}[Cσidc1σa1 |Cσidc2σa2 ].

Definition 3.3. (Exam Context). Let I be a set such that I ⊆ IC ∪ IE ∪ {idQ, idA1}
where IC is the set of all candidates, IE is the set of all examiners, idQ identifies the ques-

tion committee Q, and idA1 identifies the exam authority A1. Then, given an exam process

EP = νñ.(Cσidc1σa1 | . . . | Cσidcjσaj | Eσide1σm1 | . . . |Eσidekσmk
|Qσq|A1σdist | . . . |Al′), we

define the exam context EP I [ ] as follows:

EP I [ ] ≡ νñ.(|C
idci /∈I

σidciσai |E
idei /∈I

σideiσmi | |(Qσq)k1 |(A1σdist)
k2 |A2| . . . |Al′)

where k1 = 0 if idQ ∈ I and k1 = 1 otherwise, and k2 = 0 if idA1 ∈ I and k2 = 1

otherwise10.

In order to reason about reachability and authentication properties we consider events.

Events are annotations that do not change a process behavior, but are inserted at precise

locations to allow reasoning about the exam’s execution. Events allow us to verify

properties such as “event bad” is unreachable, or “on every trace event ε2 is preceded

by event ε1”. Following the technique used in [ABF07, SRKK10], events are outputs

out(ε, (M1, . . . ,Mn)) on a special channel ε different from the ordinary channels. In

accordance to ProVerif syntax, we write ε(M1, . . . ,Mn) instead of out(ε, (M1, . . . ,Mn)),

where ε is the name of the event (channel) and M1, . . . ,Mn are the event’s parameters.

In our model for exam protocols, we use the following events, where idc is the candidate

identity, ques the question(s), ans the answer(s), mark the mark, idform is an identifier

of the exam-form used during marking, and ide is the examiner’s identity:

− register(idc): is the event inserted into the registrar process at the location where

candidate idc has successfully registered for the exam.
9 In our case studies using ProVerif, we model the corrupted parties as dishonest ones that are subsumed
by the attacker. 10 Recall, (Qσq)

0 = 0, and (Qσq)
1 = Qσq.
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− submit(idc, ques, ans): is the event inserted into the process of candidate idc in the

examination phase, at the location where she sends her answer ans corresponding

to the question ques.

− accept(idc, ques, ans): is the event inserted into the exam collector’s process in

the examination phase, just after it received and accepted the exam-form (idc, ques,

ans) from candidate idc.

− distribute(idc, ques, ans, idform, ide): is the event inserted into the authority pro-

cess in the marking phase, when it assigns (distributes) the exam-form (idc, ques, ans)

from candidate idc to the examiner ide using the identifier idform.

− attribute(ques, ans,mark, idform, ide): is the event inserted into the process of

the examiner ide in the marking phase, at the location where he marked the

question/answer pair (ques, ans) identified by idform with the grade mark.

− notify(idc,mark): is the event inserted into the process of candidate idc in the

notification phase, just after she received and accepted the grade mark from the

responsible authority.

Note that, idform is only used to identify an exam-form during marking. This could be a

pseudonym to allow anonymous marking, or simply the candidate identity if the marking

is not anonymous.

3.3.2 Authentication and Privacy Properties

Usually in traditional exams, a central authority (trusted third party) authenticates

candidates and checks whether they are registered for the exam, before handing the exam

questions to them. Then, each candidate writes down his identity, which is often covered

for anonymous marking, and his answer in an exam paper, which is collected by the

authority at the end of the examination phase. Note that, each candidate also visibly

writes his pseudonym. When examination phase ends, the authority hands the answers to

an examiner without any modification. The examiner evaluates the answers, and assigns

a mark for each pseudonym without revealing his real identity. Then, the authority maps

the pseudonyms to the real identities, stores the pairs identities/marks, and publishes the

pairs pseudonyms/marks.

In absence of a trusted third party, we require some guarantees concerning the

correctness of the examination process, the integrity of the answers and the marks, and

the privacy of the candidates and the examiners. To this end, we define property Answer

Origin Authentication which ensures that only registered candidates can take the exam,

properties Form Authenticity and Form Authenticity which ensure answers integrity

and their link to the candidates until marking, and property Form Authenticity which
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ensures marks integrity and that they are notified to the correct candidates. Moreover,

we define five privacy properties: Question Indistinguishability ensures the secrecy of the

questions before the examination phase, Anonymous Marking and Anonymous Examiner

respectively ensure the anonymity of the candidates and examiners during marking, Mark

Privacy ensures the secrecy of the marks, and Mark Anonymity hides the link between a

candidate and his mark.

We model our authentication properties as correspondence properties among events, a

well-known approach [RSG+00,RS11]. The first authentication property is Answer Origin

Authentication which ensures that only exam-forms submitted by registered candidates

are actually accepted (collected), and that one exam-form from is accepted from each

candidate.

Definition 3.4. (Answer Origin Authentication). An exam protocol ensures Answer

Origin Authentication if for every exam process EP on every possible execution trace,

each occurrence of the event accept(idc, ques, ans) is preceded by a distinct occurrence

of the event register(idc).

At examination phase, each candidate submits her exam-form with an answer, and the

collector collects the forms. Form Authorship ensures that the content of each collected

exam-form (idc, ques, and ans) are not modified after submission.

Definition 3.5. (Form Authorship). An exam protocol ensures Form Authorship if

for every exam process EP on every possible execution trace, each occurrence of event

accept(idc, ques, ans) is preceded by a distinct occurrence of event submit(idc, ques, ans).

Similarly, Form Authenticity ensures that the content of each exam-form is not modified

after the collection and until after the form is marked by an examiner.

Definition 3.6. (Form Authenticity). An exam protocol ensures Form Authenticity

if for every exam process EP on every possible execution trace, each occurrence of the

event attribute(ques, ans,mark, idform, ide) is preceded by a distinct occurrence of the

events accept(idc, ques, ans) and distribute(idc, ques, ans, idform, ide).

At notification phase, the candidate should receive the mark which was assigned by the

examiner to her answer. We call this property Mark Authenticity.

Definition 3.7. (Mark Authenticity). An exam protocol ensures Mark Authen-

ticity if for every exam process EP on every possible execution trace, each occur-

rence of the event notify(idc,mark) is preceded by a distinct occurrence of the events

attribute(ques, ans,mark, idform, ide) and distribute(idc, ques, ans, idform, ide).

Note that Mark Authenticity ensures that the candidate is notified with the mark delivered

by the examiner on the answer distributed for him by the authority. This answer may
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be different from that submitted by the candidate. Only if also Form Authorship and

Form Authenticity hold then the candidate can be sure that the assigned and submitted

answers are identical. Moreover, Mark Authenticity does not guarantee that the mark is

computed correctly. However in Section 3.4.1, we define Marking Correctness individual

verifiability which allows a candidate to verify that his mark was computed correctly. We

also define Marking Correctness universal verifiability, in Section 3.4.2, which allows any

auditor to check the correctness of the delivered marks.

We model our privacy properties as observational equivalence, a standard choice for

such kind of properties [RS01,RS11]. We use the labeled bisimilarity (≈l) to express the

equivalence between two processes [AF01]. Informally, two processes are equivalent if an

observer has no way to tell them apart. In this section, we use the notation EP |ph which

denotes the process EP without the code that follows the phase ph. The first privacy

property Question Indistinguishability says that questions are kept secret until the exam

starts.

Definition 3.8. (Question Indistinguishability). An e-exam protocol ensures Ques-

tion Indistinguishability if for any e-exam process EP that ends with the registration

phase, any questions q1 and q2, we have that:

EP{idQ}[Qσq1 ]|reg ≈l EP{idQ}[Qσq2 ]|reg

Question Indistinguishability states that two processes with different questions have to

be observationally equivalent until the end of the registration phase. This prevents the

attacker from obtaining information about the exam questions before the examination

phase starts. This property requires the question committee to be honest; otherwise the

property is trivially violated since the committee reveals the questions to the attacker.

However, it is particularly interesting to consider corrupted candidates, as they might

be interested in obtaining the questions in advance. We can do this by replacing honest

candidates with corrupted ones. For example, if we assume that candidate idc1 is

corrupted, we obtain:

EP{idc1,idQ}[(Cσidc1σa1)ch1,ch2 |Qσq1 ]|reg ≈l EP{idc1,idQ}[(Cσidc1σa1)ch1,ch2 |Qσq2 ]|reg

The same technique can be employed to add more corrupted candidates. Note that,

this can also be applied to all the following privacy properties to add corrupted parties

if required. The next property ensures that the marking process is done anonymously,

i.e., that two instances where candidates swap their answers cannot be distinguished

until after the end of the marking phase. This may be desirable to ensure fairness of

the grading, and is a requirement in some exam settings (at some universities or for

competitive examinations).
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Definition 3.9. (Anonymous Marking). An e-exam protocol ensures Anonymous

Marking if for any e-exam process EP that ends with the marking phase, any two

candidates idc1 and idc2, and any two answers a1 and a2, we have that:

EP{idc1,idc2}[Cσidc1σa1 |Cσidc2σa2 ]|mark ≈l EP{idc1,idc2}[Cσidc1σa2 |Cσidc2σa1 ]|mark

Anonymous Marking ensures that the process where idc1 answers a1 and idc2 answers a2

is equivalent to the process where idc1 answers a2 and idc2 answers a1. This prevents

the attacker from obtaining the identity of the candidate who submitted a certain answer

before the marking phase ends. For this property, it is interesting to consider corrupted

examiners. It can be done using the same technique employed for corrupted candidates

above. We can also have some corrupted candidates, however the candidates idc1 and idc2

who are assigned the two different answers have to be honest – otherwise the property

can be trivially violated by one of them revealing her answer to the attacker. Note that

by controlling a candidate, the attacker could be able to compromise privacy by trying to

relate the corrupted candidate’s answer to the targeted candidate’s answer. To prevent

bribing or coercion of the examiners, it might be interesting to ensure their anonymity, so

that no candidate knows which examiner marked her copy. This is ensured by Anonymous

Examiner.

Definition 3.10. (Anonymous Examiner). An e-exam protocol ensures Anonymous

Examiner if for any e-exam process EP , any two candidates idc1, idc2, any two examiners

ide1, ide2, and any two marks m1, m2, we have that:

EP{idc1,idc2,ide1,ide2,idA1
}[Cσidc1σa1 |Cσidc2σa2 |Eσide1σm1 |Eσide2σm2 |A1σdist1 ]

≈l

EP{idc1,idc2,ide1,ide2,idA1
}[Cσidc1σa1 |Cσidc2σa2 |Eσide1σm2 |Eσide2σm1 |A1σdist2 ]

where σdist1 attributes the exam-form of candidate idc1 to examiner ide1 and the exam-

form of candidate idc2 to examiner ide2, and σdist2 attributes the exam-form of candidate

idc1 to examiner ide2 and the exam-form of candidate idc2 to examiner ide1.

Anonymous Examiner ensures that a process in which examiner ide1 grades the exam-form

of candidate idc1 and examiner ide2 grades that of candidate idc2 cannot be distinguished

from a process in which ide1 grades the exam-form of idc2 and ide2 grades that of idc1.

Note that to ensure that in both cases the candidates receive the same mark, we also

have to swap σm1 and σm2 between the examiners. Similar to Anonymous Marking, this

property prevents the attacker from obtaining the identity of the examiner who marked

a certain answer. Note that, Anonymous Examiner requires that the examiners ide1

and ide2 are honest, otherwise it will trivially violated by one of them revealing the
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mark he gave. We can again include corrupted candidates as they might be interested in

finding out which examiner marked their copies. Note also that, if all the exam-forms are

assigned to the same examiner to mark them (or simply if we have only one examiner),

then all the candidates may know whom is going to evaluate their exam-forms. To avoid

such cases, it is required to have properties that ensures the secrecy of the examiners’

number, and the number of exam-forms assigned for each examiner. However, in practice

a countermeasure for such issues is to have at least two examiners and to uniformly

distribute the exam-forms between them.

In some exams settings the marks have to remain private. This is ensured by Mark

Privacy. Mark Privacy guarantees that two processes where the examiner ide assigns for

the same answer (entailed by the same context EP) two different marks (specified by the

substitutions σm1 and σm2) cannot be distinguished from each other.

Definition 3.11. (Mark Privacy). An e-exam protocol ensures Mark Privacy if for

any e-exam process EP , any examiner ide, any two substitutions σm1 and σm2 , we have

that:

EP{ide}[Eσideσm1 ] ≈l EP{ide}[Eσideσm2 ]

Note that, as σm1 and σm2 are different then at least one of the answers assigned to

the examiner ide is attributed with different marks. Depending on the exam policy this

can be an optional property since some exams system may publicly disclose the marks

of the candidates. However, the intuition here is that candidate’s performance should

not be known to any other candidate. Note that our formalization does not contradict

our hypothesis that the marking within one exam is deterministic, as we consider two

different instances of an exam (notably differing in the marking). Again, we can assume

that some candidates are corrupted and try to find out the marks of their colleagues,

or that an examiner tries to find out the mark achieved by a candidate. The candidate

who is assigned the two different marks has to be honest – otherwise the property is

violated by her revealing her mark to the attacker. Similarly the examiner assigning the

marks has to be honest, otherwise he can reveal the mark himself. Note that, considering

corrupted candidates allows us to capture attacks such as copying someone else’s answers.

For instance, the attacker may copy a honest candidate’s answer and order a corrupted

candidate to submit the same answer. Then, the attacker can compromise the privacy of

the honest candidate’s mark in case of deterministic marking11 (as both the corrupted

and honest candidates will get the same mark).

The previous definition of Mark Privacy ensures that the attacker cannot know the

mark of a candidate. A weaker variant of Mark Privacy is Mark Anonymity, i.e., the

attacker might know the list of all marks, but is unable to associate a mark to its
11 Similar to the attack found against 2.0 voting system by Cortier and Smyth [CS13].
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corresponding candidate. This is often the case in practice, where a list of pseudonyms

(e.g., student numbers) and marks is published.

Definition 3.12. (Mark Anonymity). An e-exam protocol ensures Mark Anonymity

if for any e-exam process EP , any candidates idc1, idc2, any examiner ide, any answers

a1, a2 and a distribution σdist that assigns the answers of both candidates to the examiner

ide, and two substitutions σmb
and σmc which are identical, except that σmb

attributes

the mark ma1 to the answer a1 and ma2 to a2, whereas σmc attributes ma2 to the answer

a1 and ma1 to a2, we have that:

EP{idc1,idc2,ide,idA1
}[Cσidc1σa1 |Cσidc2σa2 |Eσideσmb

|A1σdist]

≈l

EP{idc1,idc2,ide,idA1
}[Cσidc1σa1 |Cσidc2σa2 |Eσideσmc |A1σdist]

Mark Anonymity states that if an examiner ide, who is assigned the same answers a1 and

a2 to mark as σdist is unchanged, swaps the marks between these answers, then the two

situations cannot be distinguished by the attacker. This means that a list of marks can be

public, but the attacker must be unable to link the marks to the candidates. Again, we

can consider corrupted parties, but this definition requires the two concerned candidates

and the concerned examiner to be honest. Otherwise they can simply reveal the answer

and the associated mark, which allows to distinguish both cases. A protocol that ensures

Mark Privacy also ensures Mark Anonymity. In fact, σmb
and σmc are special cases of

σm1 and σm2 .

Theorem 3.1. If an exam protocol satisfies Mark Privacy, it also satisfies Mark Anonymity.

Proof. Suppose that Mark Privacy is satisfied, then for any exam context EP{ide}, any two

mark substitutions σm1 and σm2 , we have that: EP{ide}[Eσideσm1 ] ≈l EP{ide}[Eσideσm2 ].

Let EP ′[ ] ≡ EP{idc1,idc2,ide,idA1
}[Cσidc1σa1 |Cσidc2σa2 |A1σdist| ] be an exam context,

where EP{idc1,idc2,ide,idA1
}[ ] is any exam context, and σdist distribute the answers a1

and a2 to an examiner ide. Also let σmb
be a substitution that assigns a mark ma1 to a1

and a mark ma2 to a2, whereas σmc be a substitution that assigns a mark ma2 to a1 and

a mark ma1 to a2. Then, as Mark Privacy is satisfied, we have that: EP ′[Eσideσmb
] ≈l

EP ′[Eσideσmc ]. Hence

EP{idc1,idc2,ide,idA1
}[Cσidc1σa1 |Cσidc2σa2 |Eσideσmb

|A1σdist]

≈l

EP{idc1,idc2,ide,idA1
}[Cσidc1σa1 |Cσidc2σa2 |Eσideσmc |A1σdist]

Therefore, Mark Anonymity is satisfied.
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3.3.3 Case Studies

We analyze using ProVerif12 the authentication and privacy properties of three exam

protocols: the protocol by Huszti & Pethő [HP10], the protocol by Giustolisi et al. [GLR14],

and the protocol of Grenoble exam.

3.3.3.1 Protocol by Huszti & Pethő

We first analyze the protocol by Huszti & Pethő [HP10] (in short, H&P protocol). This

protocol aims to ensure authentication and privacy for e-exams in presence of corrupted

candidates, examiners, and exam authorities; the guarantees are argued only informally

in [HP10]. Notably from a point of view of the protocol paper [HP10], all arguments

supporting privacy rely on the reliability of a single component, the reusable anonymous

return channel, or RARC [GJ03]. The description of RARC channel is outlined below.

Reusable Anonymous Return Channel (RARC). A RARC implements anony-

mous two-way conversations. A sender posts a message to a recipient and the RARC

ensures its anonymity; in its turn, the recipient can reply to that message without knowing

nor learning the sender’s identity, sure that the RARC will dispatch it to actual sender.

RARC ensures the anonymity of the messages, and the entire conversation remains

untraceable to an external attacker, but it does not guarantee the secrecy of the mes-

sages [GJ03]. A RARC is implemented by a re-encryption mix networks, first proposed

by Chaum [Cha81]. The mix servers jointly generate and share an ElGamal [ElG85] key

pair (PKMIX , SKMIX ) and a pair of public/private signing keys (SPKMIX , SSKMIX ).

The sender A and the receiver B also hold ElGamal public/private key pairs, (PKA,

SKA) and (PKB , SKB) respectively. A and B are represented by IDA and IDB , identity

tags which can be for example A’s and B’s email addresses. To send the message m

to B, the sender A submits to the mix networks the tuple Mix (m,A,B) which denotes

({IDA,PKA}PKMIX , {m}PKMIX , {IDB , PKB}PKMIX )13 and proves knowledge of {IDA,PKA}
and of {IDB,PKB}. The proofs of knowledge are claimed to impede the attacker from

decrypting the triplets by using the mix networks as an oracle (we falsify this claim

below). The mix networks waits to collect more triplets and shuffles them. Then, it adds

a checksum to the triplets, which is supposed to vouch for integrity (again, we disprove

this claim below). The message m is then re-encrypted with the public key of B using a

switching encryption keys technique. The mix networks signs the encrypted public key

of A. Thus B receives (sign({IDA,PKA}PKMIX
,SKMIX ), {m}PKB

) where sign(x, sk) is

message x plus the signature with the secret key sk. Then B replies to A with a new

message m′ by sending to the mix networks(Mix (m′, B,A), sign({IDA,PKA}PKMIX
,SKMIX ))

12 All the verification code used in this thesis is available on line at the link
http://www-verimag.imag.fr/ plafourc/kassem-thesis-code.zip 13 {x}PK denotes the public-key encryp-
tion of x by the key PK.
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and proving only knowledge of {IDB,PKB}. The mix networks checks the proof and the

signature, and then processes the tuples like a normal message.

Protocol Description. A symbolic representation of the H&P protocol is depicted

in Figure 3.1. Note that all messages, except step 2, are sent via RARC. H&P protocol

relies upon different cryptographic building blocks. The ElGamal cryptosystem [ElG85]

is used to provide parties with public/private key pairs. A RARC implements anonymous

two-way communication. A network of servers (NET) provides a timed-release service.

The NET creates and revokes a candidate’s pseudonym. More precisely, the NET’s

contribution to the pseudonym is shared among the servers using the threshold Shamir

secret sharing system [Sha79]. At notification, a subset of the NET servers use their

shares to recover the secret and de-anonymize the candidate: the exam authority can

so associate the answer with the corresponding candidate. To avoid plagiarism, the

protocol assumes that no candidate reveals his private key to another candidate, and that

invigilators supervise candidates during the examination.

The original protocol has the following phases: setup, registration, exam (combines

examination and marking), and grading (notification). To match this structure with

our exam model, we merge the setup and registration but we split between candidate

registration and examiner registration for better readability. We also split between

examination and marking phases as they are considered one phase in the original paper,

called exam.

Examiner Registration: the exam authority (EA) publishes the public parameters (h, g)14,

which identify a new examination (step 1). The question committee (QC) then signs

and sends to EA the questions and the starting time of the examination phase time1

encrypted with the public key of the RARC mix networks PKMIX (step 2). The mix

networks forwards the message only when the examination begins. Thus, even the exam

authority cannot learn the questions. Then, a pseudonym of the examiner is jointly

created by the exam authority and the examiner (steps 3-4). Note that, gE is a part of

examiner’s public key, we have PKE = gSKE
E . The examiner (i.e., the verifier) verifies the

correctness of the pseudonym using an interactive zero-knowledge proof on the equality

of the discrete logarithms ZKPeq with the exam authority as the prover (steps 5-6). This

verification requires several exchanges of messages between the two parties, which is

denoted by (↔). Then, the examiner sends his pseudonym (t, q, q′) to the exam authority

(step 7), and proves the knowledge of his secret key using an interactive zero-knowledge

proof ZKPsec (step 9). Finally, exam authority stores examiner pseudonym, transcript

of ZKPsec, the identity of the examiner encrypted with the mix networks public key, and

the subject of the exam (step 10).
14 Note that, s ∈ ZQ and s ∈ GQ, where GQ denotes Z∗P ’s multiplicative subgroup of order Q such that
P and Q are large primes and Q|(P − 1).
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Candidate Registration: the registration of the candidate (C) slightly differs from the

registration of an examiner. The candidate pseudonym is jointly calculated by the exam

authority, the candidate, and also the NET to provide anonymity for the candidates. The

NET stores the secret values used for the pseudonym generation, which can be used to

de-anonymize the candidate after the examination has finished. The involvement of the

NET is needed to revoke the anonymity of the candidate at notification. The candidate

pseudonym is initially calculated by the exam authority (step 11), then anonymized

by the NET (steps 13), and finally computed by the candidate using his private key

(step 15). Again, the candidate finally verifies the correctness of his pseudonym using

ZKPeq (steps 16).

Examination: the candidate sends his pseudonym via the RARC to the exam authority

and proves the knowledge of his private key (steps 17-19). Then, the exam authority

checks whether the candidate is registered for the examination, and sends to him the

questions signed by the question committee (step 20). The candidate sends his answer,

again via the RARC (steps 21), thus the exam authority cannot learn the answer. The

exam authority replies with a receipt which consists of the hash (H) of all parameters

seen by the exam authority during the examination, the transcription transC of ZKPsec,

and the time when the answer was submitted time2 (step 22).

Marking : the exam authority chooses an examiner who is eligible for the examination,

and forwards him the answer via the RARC (step 23). Note that, IDEAP is a specially

generated identification exam tag, and that EA stores ({IDE ,PKE}PKMIX
). Then,

the examiner assigns a mark to the answer (step 24), and authenticates them with

the transcript verzkp of a non-interactive zero-knowledge proof of equality of discrete

logarithm of (H(mark, answer), [H(mark, answer)]SKE , q, q′) (step 25).

Notification: when all the answers are marked, the NET de-anonymizes the pseudonyms

linked to the answers (step 26-28). The exam authority publishes the marks (step 29).

Formal Analysis. The equational theory depicted in Figure 3.2 models the crypto-

graphic primitives used within the H&P protocol. It includes the well-known mod-

els for probabilistic encryption (functions pk, enc, dec) and digital signature (func-

tions sign, getmess, and checksign). We use the equation exp(exp(exp(g, x), y), z) =

exp(exp(exp(g, y), z), x) to model a commutative feature of the exponentiation function

exp. This feature is needed to captures the checks by EA in steps 8 and 18 of Figure 3.1.

Inspired by Backes et al. [BMU08], we model the ZKP of knowledge of a secret exponent

as two functions: zkp_proof for proof, and zkp_sec for verification. The function

zkp_proof(public; secret) takes as arguments a secret e′ and public parameters exp(g, e)

and exp(exp(g, e), e′). It can be constructed only by the prover who knows the secret pa-

rameter. The verification function zkp_sec(zkp_proof(public; secret), verinfo) takes
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Examiner Registration
1- EA publishes g and h = gs

2- QC → EA : {sign((question, time1),SSKQC)}PKMIX

3- EA checks E eligibility, and calculates q̃ = PKs
E

4- EA→ E : (q̃, gE)
5- E calculates q′ = q̃α, t = gαE , and q = tSKE , where α is randomly chosen.
E pseudonym is (t, q, q′)
6- EA↔ E : ZKPeq((q, q

′), (g, h))
7- E → EA : (t, q, q′, subject), where subject is exam name
8- EA checks qs = q′

9- E ↔ EA : ZKPsec(SKE)
10- EA stores (t, q, q′), ZKPsec data plus {IDE ,PKE}PKMIX

and subject

Candidate Registration
11- EA checks C eligibility, and calculates p̃ = PKs

C

12- EA→ NET : (p̃, gC)
13- NET calculates p′ = p̃Γ, and r = gΓ

C , where Γ is randomly chosen.
The NET then stores the time when gC can be revealed, p̃, gC ,
and yi which is its share applied for secret sharing [Sha79]
14- NET → C : (r, p′)
15- C calculates p = rSKC

16- EA↔ C : ZKPeq((p, p
′), (g, h))

Then C pseudonym is (r, p, p′)

Examination
17- C → EA : (r, p, p′, subject)
18- EA checks ps = p′

19- C ↔ EA : ZKPsec(SKC)
20- EA→ C : (sign(question,SSKQC), time1)
21- C → EA : (r, p, {answer}PKMIX

, time2)
22- EA→ C : H(r, p, p′, subject, transC , question, time1, time2, {answer}PKMIX

)

Marking
23- EA→ E : ({IDEAP ,PKEAP }PKMIX

, answer, {IDE ,PKE}PKMIX
)

24- E → EA : (mark,H(mark, answer), [H(mark, answer)]SKE , verzkp)
25- E ↔ EA : ZKPeq(H(mark, answer), [H(mark, answer)]SKE ), (t, q))

Notification
26- EA→ NET : p′

27- NET calculates p′ = p̃Γ

28- NET → EA : {(p′, p̃)}PKEA

29- EA publishes : (mark,H(mark, answer), [H(mark, answer)]SKE , verzkp)

Figure 3.1: A symbolic representation of the H&P protocol. All messages, except step
2, are sent via RARC.

as arguments the proof function and the verification parameters verinfo (i.e., exp(g, e)

and exp(exp(g, e), e′)). The verifier only accepts the proof if the relation between verinfo

and secret is satisfied. Similar to zkp_proof, the function xproof(public; secret) takes

a secret e and public parameters p, p′, g, exp(g, e). In its turn check_proof takes as
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arguments the xproof function and verinfo. Note that, in addition to the function

check_proof, we use tables to support the model for the ZKP of the equality of discrete

logarithms. This is due to the difficulties of ProVerif when dealing with associativity

of multiple exponents, which is used in the H&P protocol (see Figure 3.1). Particu-

larly, we use tables to allow the candidate to verify that p̃ and p′ have been correctly

generated respectively by the exam authority and the NET (see steps 11 and 13 in

Figure 3.1). This approach is mainly needed to let ProVerif terminate for Mark Privacy

and Mark Anonymity. It is sound because it limits the attacker capability to generate

fake ZKPs, as he cannot write and read ProVerif’s table. Nevertheless, ProVerif still finds

counterexamples that falsify these two properties, as shall we see later.

Note also that, we assume the same generator for the pseudonyms of both candidates

and examiners. This is sound because we distinguish the roles, and each principal is

identified by its public key. We replace the candidate identity with his corresponding

pseudonym inside the events to check authentication properties. This replacement is also

sound because the equational theory preserves the bijective mapping between the keys

that identify the candidate and his pseudonym.

dec(enc(m, pk(k), r), k) = m

getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

exp(exp(exp(g, x), y), z) = exp(exp(exp(g, y), z), x)

zkp_sec(zkp_proof(exp(g, e), exp(exp(g, e), e′), e′), exp(g, e), exp(exp(g, e), e′)) = true

check_proof(xproof(p, p′, g, exp(g, e), e), p, p′, g, exp(g, e)) = true

Figure 3.2: Equational theory for our model of H&P protocol.

Attack on RARC. First we analyze the RARC alone and show that there are attacks

on anonymity and privacy. ProVerif shows that the RARC fails to guarantee both secrecy

of messages and anonymity of sender and receiver identities, which is its main purpose

inside the H&P protocol. We refer the triplet (c1, c2, c3) as the encrypted messages that

A submits to the mix networks when she wants to send a message to B. From the

description of RARC given at the beginning of this section, we recall that c1 encrypts

the A’s public key, c2 encrypts the message to B, and c3 encrypts the B’s public key.

All ciphertexts are encrypted with the mix networks’s public key. The attacker uses

the RARC as a decryption oracle, letting the RARC reveal any of the plaintexts. The

attack works as follows. The attacker chooses one of the three ciphertexts (depending on

whether he wants to target the contents of the message, or the identities of the sender

and receiver) and submits this as a new message. For example, if the attacker targets

c1 = {IDA, PKA}PKMIX
, he resubmits c1 as a new encrypted message, which means that
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c′2 = c1 in the new triplet (see Figure 3.3). He can leave the encryption of the senders key

and the proof concerning the key unchanged, but replaces the encryption of the receiver’s

key with a public key PKI for which he knows the corresponding secret key SKI . In our

example this means c′3 = {IDI , PKI}PKMIX
. The attacker can also provide the necessary

proof of knowledge of plaintext, since he knows this plaintext. The RARC then mixes

the input messages, and sends the encryption of the message under the receiver’s public

key to the receiver. In our example the attacker receives d = {IDA, PKA}PK I
. Since the

attacker knows the secret key SKI he can obtain the original message. In our example he

gets IDA, the identity of the sender which should have remained anonymous. Since the

attacker can substitute any of the items in the triplet as the new message, the RARC does

neither ensure secrecy of the messages nor the anonymity of the sender or the receiver.

Note that, the checksum meant to guarantee the integrity of the triplet is only added

after the submission of the message and is only used inside the mix networks. Hence, the

checksum does not prevent the attacker from submitting a modified triplet. Even if it

were added before, it would not prevent the attack as the knowledge of the ciphertexts

is sufficient to compute the checksum. Note that, the RARC was originally designed to

withstand a passive attacker that however can statically corrupts parties [GJ03]. This is

not realistic in the e-exam setting where corrupted parties could actively try to cheat.

A Attacker I MIX

(c1, c2, c3)

(c1, c1, c
′
3)

(c1, s, d)

c1 = {IDA, PKA}PKMIX c2 = {m}PKMIX

c3 = {IDB , PKB}PKMIX c′3 = {IDI , PKI}PKMIX

s = sign(c1, SKMIX) d = {IDA, PKA}PK I

Figure 3.3: A symbolic representation for an attack on RARC.

All properties fail with such a RARC. However, even if we replace this RARC with an

ideal implementation – which, according to the RARC original requirements [GJ03],

ensures anonymity of senders and receivers but not message secrecy, implemented as an

anonymous channel in ProVerif – the H&P protocol does not satisfy any of our properties.
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The next paragraphs details the findings, and Table 3.1 summarizes the results found

using ProVerif.

Authentication properties. We verified the authentication properties without and

with an ideal RARC. All the following counterexamples remain valid in both cases.

ProVerif finds a counterexample for Answer Origin Authentication where the attacker

can create a fake pseudonym that allows him to take part in an exam for which he

did not register. This is possible because the exam authority does not check whether

the pseudonym has been actually created using the partial information provided by the

timed-release service. The attacker generates his own secret key SKA, and calculates an

associate pseudonym, which sends to the exam authority. The exam authority successfully

verifies the received data and that the attacker knows SKA, thus the exam authority

accepts the answer. Regarding Form Authorship, ProVerif shows the same attack trace

that falsifies Answer Origin Authentication. In fact, the exam authority may collect an

exam-form where the pseudonym is exchanged with one chosen by the attacker.

ProVerif also shows that the H&P protocol does not ensure Form Authenticity, because

there is no mechanism that allows the examiner to check whether the answers have been

forwarded by the exam authority. Even if the original RARC is used and the answer is

encrypted with the public key of the mix networks, this does not guarantee that the exam

authority actually sent the message. Regarding Mark Authenticity, ProVerif provides a

counterexample in which the attacker can forward any answer to any examiner, even if

the answer was not collected by the exam authority. Moreover, the attacker can notify

the candidate by himself with a mark of his choice.

Privacy properties. ProVerif finds an attack trace on Question Indistinguishability.

This is because the attack on the RARC exposes the message and the identities of the

sender and receiver. As the questions are sent through the RARC, the attacker can obtain

them. Since the candidate’s answer is also sent through the RARC, Anonymous Marking

does not hold: the answer can be linked to its corresponding sender. The protocol ensures

neither Mark Privacy nor Anonymous Examiner, as the marks are also sent through the

RARC. Hence, they can be decrypted and the examiner can be identified.

We checked the H&P protocol in ProVerif assuming ideal RARC. In this case, ProVerif

shows an attack for each property. Anonymous Examiner can be violated because the

attacker can track which examiner accepts the ZKP when receiving the partial pseudonym,

and then associate to the examiner the answer that the latter grades. Moreover, a similar

attack on Anonymous Marking remains: the attacker can check whether a candidate

accepts the ZKP to associate him with a pseudonym, and then identify his answer. Mark

Privacy fails because the examiner sends the mark to the exam authority via the RARC,

which does not ensure secrecy. Finally, ProVerif shows that the H&P protocol does
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not satisfy Mark Anonymity : the attacker can track which pseudonym is assigned to a

candidate and the mark is not secret, and link a candidate to the assigned mark.

Fixing Authentication. We believe that, in H&P protocol, authentication is compro-

mised due to inaccuracies in the protocol design, whereas most of attacks that invalid

privacy are due to compromising secrecy and anonymity over the RARC. Note that,

even when assuming an ideal RARC ensuring anonymity, we still have attacks on all

properties. Thus, we think that fixing the RARC is not sufficient to ensure privacy – the

protocol requires fundamental changes. However, we propose four simple modifications

to the H&P protocol in order to achieve a set of authentication properties. In particular,

we prove in ProVerif that the modified protocol achieves Answer Origin Authentication,

Form Authenticity, and Mark Authenticity. However, the protocol fails to satisfy Form

Authorship even after applying our fix. We found no easy solution for Form Author-

ship as the protocol sees no signatures for candidates, and RARC does not guarantee

authentication.

Concerning Candidate registration, we observe that EA and NET do not need to

communicate anonymously via RARC, as the original protocol prescribes. Conversely,

they both need to authenticate each other messages to avoid considering attacker mes-

sage injections. Thus, the first modification consists on the NET receiving the partial

pseudonyms generated by EA via a secure channel instead via a RARC. In doing so,

the attacker cannot use the NET to generate fake pseudonyms. As second modification

we let NET send via secure channel the eligible pseudonyms to the EA, who, in doing

so, can generate ZK proofs of equality of discrete logarithm to eligible pseudonyms only.

The EA can also store the eligible pseudonyms, which can be checked at examination

before accepting a test from a candidate. Concerning Marking, we note that the examiner

cannot verify whether a test has been sent by the EA. Since the anonymity requirement

is on the examiner but not on the EA, the latter can sign the test. Thus, the third

modification consists on EA signing the test prior to forward it to the chosen examiner,

who authenticates the signature. The last issue concerns the form identifier the EA affixes

to the test before forwarding it to the examiner. Since the candidate is unaware of such

identifier, the attacker can notify him any other examiner’s mark. The forth modification

sees the EA adding the form identifier to the candidate’s submission receipt, which is

also signed by the EA. Also the examiner adds the form identifier to the marking receipt,

so the candidate can verify whether he has been notified with the correct mark.

3.3.3.2 Protocol by Giustolisi et al.

In this section, we analyze the protocol by Giustolisi et al. [GLR14], also called Remark!

protocol. We first describe the protocol before presenting the results of our analysis.
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Property Result Time
Answer Origin Authentication × 26 s
Answer Origin Authentication∗ X (E,EA,C,NET) 3 s

Form Authorship × 3 s
Form Authenticity × 33 s
Form Authenticity∗ X (E,EA,C,NET) 3 s
Mark Authenticity × 52 s
Mark Authenticity∗ X (E,EA,C,NET) 4 s

Question Indistinguishability × < 1 s
Anonymous Marking × 1h 58 m 33 s
Anonymous Examiner × 6h 37 m 33 s

Mark Privacy × 23 m 59 s
Mark Anonymity × 49 m 5 s

Table 3.1: Results of our analysis on the formal model of the H&P protocol. The
parties which are assumed to be honest for the result to hold are in brackets. (×)
indicates that the property does not hold despite all parties being honest. (∗) is the
result after applying our fixes.

Protocol Description. The Remark! protocol mainly relies on several servers (NET)

that implement an exponentiation mix networks [HS11]. The specialty of exponentiation

mix networks is that each server blinds its entries by a common exponent value ri. That

is, given an input X to the mix networks, it outputs Xr where r =
∏
i ri is the product

of the secret exponent values of the servers. Note that only one of the mix networks

servers is required to be honest. Remark! protocol particularly uses the exponentiation

mix networks to create the pseudonyms for the candidates and examiners at registration

(see below). The mix networks is also used at notification to revoke the candidates

pseudonyms and retrieve their identities. Remark! protocol also uses a bulletin board15

to publish some data such as the pseudonyms, the test questions and the receipts of test

submissions.

Remark! protocol has the following parties: exam authority (EA, called manager in

the original paper), mix networks servers (NET), examiners (E), and candidates (C).

Each party is assumed to have a pair of public/private key with a common generator

g, i.e., the private key x and the public key y = gx. In the following, we present the

Remark! protocol within the four exam phases. A symbolic representation of Remark!

protocol is depicted in Figure 3.4.

Registration: at registration, the NET creates the pseudonyms for the candidates and

examiners without involving any of them. The list of eligible candidates’ public keys is

sent as a batch to the NET. For each candidate (C), the NET calculates the pseudonyms

PKC by raising the initial public key PKC = gSKC to a common secret value rc,

where SKC is the candidate’s secret key (Step 1). Then, along with the pseudonym
15 A public append-only memory.
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PKC = PKrc
C = (gSKC )rc , the NET publishes on the bulletin board (BB) the new

generator hc = grc (all signed by its secret key SKNET , Step 2). The candidates can

identify their own pseudonyms by raising h to their secret key x, i.e., PKC = hSKC
c

(Step 3). The pseudonym PKC eventually serve as public keys which corresponds to the

secret key SKC with the new generator hc (as PKC = hSKC
c ). This is to allow parties to

communicate anonymously. The NET creates the pseudonym of each examiner (E) in

the same way (Steps 4-6). Note that, two different batches are used for candidates and

examiners because only the identities of candidates are revealed at notification.

Examination: the exam authority signs and encrypts the test questions with the candi-

date’s pseudonym and publishes them on the bulletin board (Step 7). Each candidate

submits his answer, which is signed with the candidate’s private key (but using the

generator h instead of g) and encrypted with the public key of the exam authority PKEA

(Step 8). The exam authority collects the test answer, checks its signature using the

candidate’s pseudonym, re-signs it, and publishes its encryption with the corresponding

candidate’s pseudonym as receipt (Step 9).

Marking : the exam authority encrypts the signed test answer with an eligible examiner

pseudonym and publishes the encryption on the bulletin board (Step 10). The corre-

sponding examiner marks the test answer, and signs it with his private key (again using

the generator h instead of g). The examiner then encrypts it with the exam authority

public key, and submits its marks to the exam authority (Step 11).

Notification: when the exam authority receives all the candidate evaluations, it pub-

lishes the signed marks, each encrypted with the corresponding candidate’s pseudonym

(Step 12). Then, the NET de-anonymize the candidate’s pseudonyms by revealing its

secret exponent rc (Step 13). Hence the candidate anonymity is revoked, and the mark

can finally be registered. Note that, the examiner’s secret exponent is not revealed to

ensure his anonymity even after the exam concludes.
Formal Analysis. We analyze Remark! protocol with ProVerif, following similar

techniques as the one used in the analysis of the H&P protocol. Table 3.2 sums up the

results together with the time required for ProVerif to conclude on the same PC used for

H&P. We model the bulletin board as a public channel, and use the equational theory

depicted in Figure 3.5. The equations for encryption and signatures are standard, but we

also added the possibility of using the pseudonym keys to encrypt or sign. The public

pseudonym, which also serves as exam-form identifier, is obtained using the function

pseudo_pub on the public key and the random exponent. The function pseudo_priv

can be used to decrypt or sign messages, using the private key and the new generator gr

(modeled using the function exp) as parameters. The function checkpseudo allows us to

check if a pseudonym corresponds to a given secret key (or its pseudonym variant).
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Candidate Registration:
1- NET calculates rc =

∏k
i=1 rec , PKC = PKrc

C and hc = grc

2- NET publishes on the BB sign((PKC , hc),SKNET )
3- C checks if PKC = hSKC

c

Examiner Registration
4- NET calculates re =

∏k
i=1 rei , PKE = PKre

E and he = gre

5- NET publishes on the BB sign((PKE , he),SKNET )
6- E checks if PKE = hSKE

e

Examination:
7- EA publishes on BB {sign(question,SKEA)}PKC

8- C → EA : {Ca, sign(Ca, SKC , hc)}PKEA
, where Ca = {question, answer, PKC}

9- EA publishes on BB {Ca, sign(Ca, SKEA)}PKC

Marking:
10- EA publishes on BB {Ca, sign(Ca, SKEA)}PKE

11- E → EA : {sign(Ma, SKE , he)}PKEA
, where Ma = (sign(Ca, SKEA),mark)

Notification:
12- EA publishes on BB {Ma, sign(Ma, SKE , he)}PKC

13- NET → EA : {rc, sign(rc, SKNET )}PKEA

Figure 3.4: A symbolic representation of the Remark! protocol.

checkpseudo(pseudo_pub(pk(k), r), pseudo_priv(k, exp(r))) = true

decrypt(encrypt(m, pk(k), c), k) = m

decrypt(encrypt(m, pseudo_pub(pk(k), r), c), pseudo_priv(k, exp(r))) = m

getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

checksign(sign(m, pseudo_priv(k, exp(r))), pseudo_pub(pk(k), r)) = m

Figure 3.5: Equational theory for our model of Remark! protocol.

Authentication properties. Assuming an attacker in control of the network and all

parties to be honest, we can successfully verify all authentication properties in ProVerif.

To model properly authentication in ProVerif, where events need to refer to candidates

along the whole code, it was necessary to replace the candidate key (used to identify

the candidate) with the candidate’s pseudonym inside the events. This is sound because

there is a bijective mapping between keys and pseudonyms, and pseudonyms are always

available. We also verified the authentication properties considering corrupted parties.

In this case, all properties are guaranteed except Form Authenticity. The attack trace

shows that a corrupted candidate can pick the examiner of his choice by re-encrypting

the signed receipt received from the exam authority. It means that the candidate can

influence the choice of the examiner who will correct his exam. As the protocol description

envisages an access control for publishing into the bulletin board, a feature that we did
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Property Result Time
Answer Origin Authentication X (NET) < 1 s

Form Authorship X (C, EA, NET) < 1 s
Form Authenticity X (C, E, EA, NET) < 1 s
Form Authenticity∗ X (E, EA, NET) < 1 s
Mark Authenticity X (E, EA, NET) < 1 s

Question Indistinguishability X (E, EA, NET) < 1 s
Anonymous Marking X (C, NET) 1 s
Anonymous Examiner X (E, NET) < 1 s

Mark Privacy X (EA, NET) 3 m 39 s

Table 3.2: Results of our analysis on the formal model of the Remark! protocol. The
parties which are assumed to be honest for the result to hold are in brackets. NET is
the process that models the mix networks. (∗) after applying our fix.

not code in ProVerif, we cannot claim this to be an attack as the candidate may not be

allowed to post on the bulletin board. However, we demonstrate that with a simple fix

there is no need of access control policies for publishing into the bulletin board. The fix

consists in making the intended pseudonym of an examiner explicit within the signature

that designates the examiner as evaluator of an exam. In doing so, the exam authority’s

signature within the receipt cannot be used by a candidate to designate any examiner

because the receipt includes no examiner’s pseudonym. The exam authority will only

accept exam evaluations that contain its signature on examiner’s pseudonym. Considering

the fix, ProVerif confirms that Remark! guarantees Form Authenticity, even in presence

of corrupted candidates.

Privacy properties. All the privacy properties are satisfied. For Question Indistin-

guishability, we only assume the exam authority to be honest, and then conclude that

the property holds. For Mark Privacy, we assume only the concerned candidate and

examiner, as well as the exam authority, to be honest. All other candidates and examiners

are corrupted, and ProVerif still concludes successfully. Note that, this subsumes a case

with multiple honest candidates and examiners, since a dishonest party can behave like a

honest party. This also implies that the protocol ensures Mark Anonymity as noted above.

For Anonymous Examiner, we assume only the examiners and the NET to be honest.

If the NET publishes the pseudonyms in random order, ProVerif concludes successfully.

Similarly for Anonymous Marking, we assume only the candidates and the NET to be

honest. Again, if the NET publishes the pseudonyms in random order, ProVerif concludes

successfully.

3.3.3.3 Protocol of Université Grenoble Alpes

The third case study we analyze is Grenoble exam, which is paper-and-pencil procedure

used to evaluate undergraduate students at the Université Grenoble Alpes.

57



Chapter 3. Exam Protocols

Figure 3.6: Special exam paper used in Grenoble exam.

Protocol Description. The protocol involves candidates (C), an examiner (E), a

question committee (QC), and an exam authority (EA). It has four phases:

Registration: in Grenoble exam each student has an identity (student name + her birth-

day), and a pseudonym (student number) which is assigned to her by the exam authority

when she registered to the course. All the students of the course are automatically

enrolled as eligible candidates for the exam; they are informed about the exam’s date,

time and location. The QC, the course’s lecturer(s), prepares the questions and hands

them securely to EA.

Examination: after EA authenticates all candidates, EA lets them take a seat. There,

each C finds a special exam paper: the top-right corner is glued and can be folded. Each

C signs it, and writes down her name in such a way that the corner, when folded, hides

both the signature and the name. Figure 3.6 shows the special paper used in Grenoble

exam: a paper with open corner to the left, and a paper with folded corner to the right.

Each C also writes down visibly her pseudonym. EA checks that each C writes down

her correct name and pseudonym, then the glued part can be folded and sealed. After

that, EA distributes the questions and the exam begins. At the end, EA collects the

exam-forms, checks that all copies have been returned, that all corners are correctly glued,

and gives the exam-forms to E.

Marking: E evaluates the exam-forms: each pseudonym is given a mark. E returns them,

along with the marks, to EA.

Notification: for each exam-form, EA checks that the corner is still glued and maps the

pseudonym to the real identity without opening the glued part. Then, EA stores the pairs

identities/marks, and publishes the pairs pseudonyms/marks. After that, C can review

her exam-form in presence of E to check the integrity of her exam-form and verify the

mark. If, for instance, C denies that the exam-form containing her pseudonym belongs to

her, the glued part is opened.
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checksign(sign(m, k), pk(k)) = m

getmess(sign(m, k)) = m

unfold(fold(m, k), k) = m

authcheck(auth(m, s), generate(s)) = m

openauth(auth(m, s)) = m

seen(unseen(m, pk(k), r), k) = m

Figure 3.7: Equational theory for our model of Grenoble exam.

Formal Analysis. We analyze Grenoble exam with ProVerif, using the equational

theory depicted in Figure 3.7. The obtained results together with the time required for

ProVerif to conclude, on the same PC used for the previous case studies, are summarized

in Table 3.3. We made a few choices when modeling the Grenoble exam’s “visual

channels”. These are face-to-face channels that all the participants use to exchange data

(exam-sheets, student pseudonyms, marks). Intrinsically, all such communications are

mutually authenticated. To model visual channels in ProVerif, we could have used private

channels, but this would have made the channels too strong, preventing the attacker

even from knowing if a communication has happened at all. More appropriately, visual

channels are authenticated channels, where authentication is expressed by an equational

theory similar to the one commonly used for cryptographic signatures, but with the

assumption that the verification key is only known to the intended receiver, namely:

openauth(auth(m, s)) = m, and authcheck(auth(m, s), generate(s)) = m. Function

auth takes as input a message m and a secret s that only the sender knows, and outputs

an authenticated value. The verification key that corresponds to this secret, generate(s),

is possessed only by the receiver/verifier. Anyone can get the message, m, but only the

owner of generate(s) can verify its origin. The function fold, similar to symmetric

encryption, is used to hide candidate’s identity and signature. The key necessary to

reveal the hidden data using the function unfold is included inside the message, so that

anyone can unfold it. The function unseen, similar to asymmetric encryption, is used

to model that the attacker cannot see the content of some exchanged messages. For

instance when a candidate submits an answer, the others can see that she is submitting

an answer but cannot look into its content (this is prevented by the authority which is

controlling the exam room). The function seen is the inverse of unseen. We also use

the equational theory of digital signature (functions: sign, checksign and getmess) to

model candidate’s signature. Note that, we use private channel for the transmission of

the questions from QC to EA, as in reality this happen in a secure way (so nobody can

see this transmission). Similarly, the authority provides a pseudonym (student number)

to the candidate securely. We use a table to model this; EA inserts the identity of the

candidate together with her pseudonym in the table, then the candidate gets it. Note
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that, in ProVerif, tables cannot be accessed by the attacker. Finally, we assume that an

examiner cannot register as a candidate. This is normal since a candidate cannot be an

examiner at the same time.

Authentication properties: ProVerif verifies that all the authentication properties

are satisfied, if the parties that emits events (necessary for the considered property) are

honest. This is necessary for authentication properties, since otherwise the processes may

not emit some events when reached.

We make one assumption: the EA only accepts one exam-form per pseudonym. This is

realistic as the authority collects only one exam copy from each candidate, which then has

to leave the exam room. This assumption is necessary for Answer Origin Authentication

to hold. Otherwise, the attacker can simply re-submit the candidate’s exam-form, and

thus the EA will collect twice the same exam-form from the same candidate.

Privacy properties: ProVerif shows that Question Indistinguishability is satisfied by

Grenoble exam if QC and EA are honest. Otherwise, one of them could reveal the exam

questions, and thus break its secrecy. Anonymous Marking is satisfied if EA, E, and the

two candidates are honest. However, since it is desirable for Anonymous Marking to hold

even if the examiner is corrupted, we also consider the case where we have a corrupted E.

In that case we assume that the examiner still cannot open the glued part (which would

trivially break Anonymous Marking), as this would be detectable. Given this assumption,

ProVerif confirms that Anonymous Marking is satisfied by Grenoble exam even if E is

corrupted. Concerning Anonymous Examiner, ProVerif finds a counterexample even if all

parties are honest. The attacker can distinguish which “unseen” exam-form is accepted

by the examiner to mark (the one he can “seen” using his secret key). This is not a real

attack, since the examiner will only accept exam-forms from the exam authority, not

an attacker. If we assume a private channel between the EA and E, ProVerif confirms

that Anonymous Examiner is satisfied by Grenoble exam even with corrupted candidates.

ProVerif finds an attack against Mark Privacy (when all parties are honest), this was

expected as in Grenoble exam the marks are published in clear-text by the EA. However,

Mark Anonymity is satisfied in case where we have honest EA, E and two Cs.

3.4 Verifiability in Exams

The authentication properties discussed in the previous section ensure, when satisfied,

that only registered candidates can take the exam that no answer can be manipulated,

and that each candidate gets the mark attributed to her answers. However, they may

require some parties to be honest, e.g., a certain authority, and thus in practice have to

be trusted by the other parties, e.g., candidates. In this section we discuss Verifiability

properties, which allow parties to check after the end of the exam for the presence or
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Property Result Time
Answer Origin Authentication X(EA) < 1 s

Form Authorship X(C, EA) < 1 s
Form Authenticity X(E, EA) < 1 s
Mark Authenticity X(C, E, EA) < 1 s

Question Indistinguishability X(EA, QC) < 1 s
Anonymous Marking X(C, E, EA) < 1 s
Anonymous Marking∗ X(C, EA) < 1 s
Anonymous Examiner × < 1 s
Anonymous Examiner † X(E, EA) < 1 s

Mark Privacy × < 1 s
Mark Anonymity X(C, E, EA) 30 s

Table 3.3: Results of our analysis on the formal model of the Grenoble protocol. (∗) E
corrupted, but cannot open the glued part. (†) private channel between EA and E.

the absence of irregularities and provide evidence about the correctness of the marking

procedures. They should be welcome by authorities since exam verifiability is also about

to be transparent about an exam being compliant with regulations as well as being able

to inspire public trust.

We classify our properties into individual and universal verifiability properties. The

individual properties allow each candidate to verify herself after the end of the exam

that none of the answers she submitted were manipulated, that the mark she get was

correctly computed on her answers. In their turn verifiability properties allow a generic

observer to verify that only registered candidates participated in the exam, that all the

accepted (collected) answers were marked without any manipulation, and that all marks

were correctly computed and assigned to the corresponding candidates.

We define a new model of exam protocols, which is more general than the previous one.

It is inspired by the work of Jannik et al. [DJL13]. We propose eleven abstract verifiability

properties, then we instantiate them using Applied π-Calculus and we analyze two case

studies: the protocols by Giustolisi et al. [GLR14], and Grenoble exam. Note that, we

do not analyze the verifiability of H&P protocol as it does not provide any verifiability

means. We consider the same exam parties: candidates, examiners, question committee,

and exam authorities. We also consider the same four phases: Registration, Examination,

Marking, and Notification. Assuming such roles and such phases, our model of exam

consists of four sets — a set of candidates, a set of questions, a set of answers (questions

and answers together are called exam-forms) and a set of marks. Three relations link

candidates, exam-forms, and marks along the four phases: Accepted (corresponds to the

event accept), Marked (corresponds to the event attribute), and Assigned. They are

assumed to be recorded during the exam or build from data logs such as registers or

repositories. Note that, the set Assigned is different from the event notify previously
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seen. The former reflects the fact that the authority stores the mark in its database

or sends it to the corresponding candidate, while the latter reflects the fact that the

candidate receives the mark (in analogues to “submit” and “accept” an answer).

Definition 3.13. (Exam). An exam E is a tuple (I, Q, A, M, α) where I of type I is a set

of candidate identities, Q of type Q is a set of questions, A of type A is a set of answers,

M of type M is a set of marks, and α is the set of the following relations:

− Accepted ⊆ I× (Q× A): the candidates’ exam-forms accepted by the authority;

− Marked ⊆ I× (Q× A)× M: the marks delivered on the exam-forms;

− Assigned ⊆ I× M: the marks assigned (i.e., officially linked) to the candidates;

− Correct : (Q×A)→M: the function used to mark an exam-form;

Definition 3.13 is simple but expressive. It can model electronic as well as paper-and-pencil

exams, and exams executed honestly as well as exams with frauds. It is the goal of

verifiability to test for the absence of anomalies. For this aim we recognize two specific

subsets: (a) Ir ⊆ I as the set of candidates who registered for the exam (thus, I \ Ir are

the identities of the unregistered candidates who have taken the exam), and (b) Qg ⊆ Q as

the questions that the question committee has prepared (thus, Q\Qg are the additional and
illegitimate questions that appear in the exam). Note that, set Ir corresponds to event

register previously seen. The function Correct models any objective mapping that

assigns a mark to an answer. This works well for single-choice and with multiple-choice

questions. However, it is inappropriate for long open questions because marking an open

question is hardly objective: the ambiguities of natural language can lead to subjective

interpretations by the examiner. Thus, independently of the model, we cannot hope to

verify the marking in such a context. Since in our framework the function Correct is

used to verify the correctness of the marking, exams that do not allow a definition of

such a function cannot be checked for that property; however, all other properties can

still be checked.

To be verifiable with respect to specific properties, an exam protocol needs to provide

tests to verify these properties. A test t is a function from E → bool, where E is the set

of data used to run the test. Abstractly, a verifiable property has the format t(e)⇔ c,

where t is a test, e is the data used, and c is a predicate that expresses the property the

test is expected to check. Direction ⇒ says that the test’s success is a sufficient condition

for c to hold (soundness); direction ⇐ says that the test’s success is a necessary condition

for c to hold (completeness).

Definition 3.14. (Verifiable Exam). An exam for which it exists a test for a property

is testable for that property. An exam is verifiable for that property when it is testable

and when the test is sound and complete.
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To work, a test needs pieces of data from the exam’s execution. A verifier, which is the

entity who runs the test, may complementary use personal knowledge about the exam’s

run if he has any. We assume data to be taken after the exam has ended, that is, when

they are stable and not subject to further changes.

To be useful, tests have to be sound even in the presence of an attacker or of dishonest

participants: this ensures that when the test succeeds the property holds despite any

attempt by the attacker or the participants to falsify it. However, many sound tests

are not complete in such conditions: a misbehaving participant can submit incorrect

data and, in so doing, causing the test to fail although the property holds. Unless said

differently, we check for soundness in presence of some dishonest participants (indeed

we seek for the maximal set of dishonest participants that preserve the soundness of the

test), but we check for completeness only with honest participants.

A verifiability test can be run by the exam participants or by outsiders. This brings

to two distinct notions of verifiability properties: individual and universal. In exams,

individual verifiability means verifiability from the point of view of a candidate. She

can feed the test with the knowledge she has about the exam, namely her personal data

(identity, exam-form, mark) and the messages she exchanged with the other participants

during the exam. Universal verifiability means verifiability from the point of view of

an external observer. In practical applications this might be an auditor who has no

knowledge of the exam: he has no candidate ID, he has not seen the exam’s questions and

answered any of them, and he did not receive any mark. Besides, he has not interacted

with any of the exam participants. In short, he runs the test only using the exam’s public

pieces of data available to him.

In the next two sections, we respectively define seven individual and five universal

verifiability properties. These properties cover the verifiability of all phases of a typical

exam. We define one property about registration verifiability, one about the validity of

questions, two about the integrity of exam-test, two about the process of marking, and

one about the integrity of notification. More details are given in the remainder of the

section. Generally speaking, an exam is fully (individual or universal) verifiable when it

satisfies all the properties. Of course, on a particular exam each property can be verified

separately to clearly assess its strengths and weaknesses.

3.4.1 Individual Verifiability Properties

Here is the candidate that verifies the exam. She knows her identity i, her submitted

exam-form q and a, and her mark m. She also knows her perspective p of the exam

run, that is, the messages she has sent and received. Her data is a tuple (i, q, a,m, p).

Note that, the candidate’s perspective p is not necessary to define the properties, for this

reason it does not appear in the right-hand-side of the equivalent. However, it might
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be necessary to implement the test depending on the case study. There is no individual

verifiability (I.V.) property about registration as a candidate knows whether she has

registered, and she might even have a receipt of it. Instead, what a candidate does not

know, but wishes to verify, is whether she got the correct questions, and whether she got

her form correctly marked.

To verify the validity of her question, we propose the property Question Validity which,

when satisfied, allows the candidate to check whether the questions she received are

actually generated by the question committee. This is modeled by a test which returns

true, if and only if, the questions q received by the candidate belong to the set of the

valid questions Qg generated by the question committee.

Definition 3.15. (Question Validity I.V.). Given an exam E and a set of tests β,

then (E, β) is question validity verifiable if there is a test QVIV : E → bool in β s.t.:

QVIV(i, q, a,m, p)⇔ (q ∈ Qg)

The test QVIV could be implemented by e.g., checking a signature coming with q, but other

implementations are possible. For the candidate to verify that her mark is correct, we

propose the property Marking Correctness which allows the candidate to check whether

the mark she received is correctly computed on her exam-form.

Definition 3.16. (Marking Correctness I.V.). Let E be an exam and β be a set of

tests, then (E, β) is marking correctness verifiable if there is a test MCIV : E → bool in β

s.t.: MCIV(i, q, a,m, p)⇔ (Correct(q, a) = m)

Verifying Marking Correctness could e.g., be realized by giving access to the marking

algorithm, so that the candidate can compute again the mark that corresponds to her

exam-form and compare it to the mark she received. This is feasible with multiple-choice

questions or short open-questions, but rather difficult in other cases such as the case of

long and open questions.

In case that the implementation does not support the verification of Marking Correct-

ness, a candidate may wish to verify whether at least the mark she received is the one

attributed to her answers. This is ensured by Correct Mark Reception.

Definition 3.17. (Correct Mark Reception I.V.). Let E be an exam and β be a set

of tests, then (E, β) is correct mark reception verifiable if there is a test CMRIV : E → bool

in β s.t.: CMRIV(i, q, a,m, p)⇔ ((i, (q, a),m) ∈ Marked))

Correct Mark Reception is sufficient for the candidate to be convinced that she got the

correct mark, provided the examiner follows the marking algorithm correctly. Note that,

even if Marking Correctness is satisfied by an exam, Correct Mark Reception may helps

when MCIV fails to identify the source of error. For instance, when MCIV fails and CMRIV

succeeds, the candidate can be sure that the failure of MCIV is due to the fact that the
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examiner corrected her answer wrongly, and not related to the exam-form integrity before

marking or mark integrity after marking.

Again when Correct Mark Reception is not satisfied, or if CMRIV fails more properties

about candidate’s exam-form and mark can be verified in order to grantee some points

about them or to identify in which step of the exam the error happened. Precisely whether

the integrity of the candidate’s exam-form is preserved upon acceptance, whether the

accepted exam-form is the one that is marked, and whether the integrity of the candidate’s

mark is preserved from delivery through assignment until reception. Preserving the

integrity of the exam-form and that of the mark is sufficient for the candidate to be

convinced that she got the mark delivered on her exam-form. Each these properties covers

a different step from exam-form submission until mark reception. The next property

Exam-form Integrity ensures that the candidate’s exam-form is accepted as she submitted

it without any modification.

Definition 3.18. (Exam-form Integrity I.V.). Let E be an exam and β be a set of

tests. (E, β) is exam-form integrity verifiable if there is a test ETIIV : E → bool in β s.t.:

ETIIV(i, q, a,m, p)⇔
(
(i, (q, a)) ∈ Accepted

)
Another property that also concerns the integrity of the exam-form is Exam-form Marked-

ness which ensures that the exam-form accepted from the candidate is marked without

modification.

Definition 3.19. (Exam-form Markedness I.V.). Let E be an exam and β be a set of

tests, then (E, β) is exam-form markedness verifiable if there is a test ETMIV : E → bool in

β s.t.: ETMIV(i, q, a,m, p)⇔ (∃! (q′, a′) : (i, (q′, a′)) ∈ Accepted ∧ ∃! m′ : (i, (q′, a′),m′) ∈
Marked))

Running the Exam-form Markedness test after the end of the exam does not invalidate

the property since if an exam-form is lost or modified before being marked, it remains

modified also after the exam is over. But the event consisting of an exam-form that is first

changed before the marking, and then restored correctly after marking, is not captured

by Exam-form Markedness.

The remaining two properties ensure that the integrity of the mark attributed to a

candidate by the examiner is preserved until reception. The property Mark Integrity

ensures that the mark attributed to a candidate is assigned to that candidate by the

responsible authority without any modification.

Definition 3.20. (Mark Integrity I.V.). Let E be an exam and β be a set of tests,

then (E, β) is mark integrity verifiable if there is a test MIIV : E → bool in β s.t.:

MIIV(i, q, a,m, p)⇔ ∃! (q′, a′) :
(
(i, (q′, a′),m′) ∈ Marked ∧ ∃! m′ : (i,m′) ∈ Assigned

)
.

The last individual property Mark Notification Integrity ensures that the candidate

receives the mark assigned to her by the authority.
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Definition 3.21. (Mark Notification Integrity I.V.). Let E be an exam and β

be a set of tests, then (E, β) is mark notification integrity verifiable if there is a test

MNIIV : E → bool in β s.t.: MNIIV(i, q, a,m, p)⇔ (i,m) ∈ Assigned

Relations. If Correct Mark Reception is not satisfied, then probable Exam-form Marked-

ness and Mark Integrity are not satisfied to as this could related to the set Marked.

However, Exam-form Integrity and Mark Notification Integrity are independent and may

be satisfied. If it is the case, then MIIV and MNIIV guarantee when they succeed that

the candidate’s exam-form is accepted as submitted, and that the mark she received

is the one assigned to her. This allows the candidate to be sure that no problem was

encountered during neither answers collection nor mark notification. However, this pro-

vides no guarantees about whether the mark she received is actually the correct mark

corresponding to his answers, which generally is not satisfying for the candidate.

Now, assuming that all the five properties Correct Mark Reception, Exam-form Integrity,

Exam-form Markedness, Mark Integrity, Mark Notification Integrity are satisfied by an

exam. If CMRIV fails, ETIIV, ETMIV, MIIV, MNIIV allows to detect in which step of the exam

the error happened. For instance, if CMRIV fails but ETIIV and MNIIV succeeds, then the

candidate’s exam-form is accepted as submitted, and that the mark she received is the

one assigned to her. Thus, the candidate can be sure that an error was happened during

marking, that is either her exam-form is modified before marking (ETMIV fails), or she

assigned a mark different from the one attribute to her exam-form (MIIV fails).

Note that, the success of ETIIV, ETMIV means that the exam-form submitted by the

candidate is marked without any modification (Lemma 3.1), and the success of MIIV and

MNIIV means that the mark received by the candidate is the one attributed to her by the

examiner during marking (Lemma 3.2).

Lemma 3.1. Providing that Exam-form Integrity, and Exam-form Markedness are

satisfied by a given exam, then

ETIIV(i, q, a,m, p) ∧ ETMIV(i, q, a,m, p)⇒ ∃! m′ : (i, (q, a),m′) ∈ Marked

Proof. We have that, ETIIV(i, q, a,m, p)⇔ (i, (q, a)) ∈ Accepted. On the other hand, we

have that ETMIV(i, q, a,m, p)⇔ ∃! (q′, a′) : (i, (q′, a′)) ∈ Accepted∧∃!m′ : (i, (q′, a′),m′) ∈
Marked. Then, (q′, a′) = (q, a) since, ∃! (q′, a′) : (i, (q′, a′)) ∈ Accepted and (i, (q, a)) ∈
Accepted. Thus ∃! m′ : (i, (q, a),m′) ∈ Marked.

Lemma 3.2. Providing that Mark Integrity, Mark Notification Integrity are satisfied by

a given exam, then

MIIV(i, q, a,m, p) ∧ MNIIV(i, q, a,m, p)⇒ ∃! (q′, a′) : (i, (q′, a′),m) ∈ Marked
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Proof. We have that, MIIV(i, q, a,m, p) ⇔ ∃! (q′, a′) : (i, (q′, a′),m′) ∈ Marked ∧ ∃! m′ :

(i,m′) ∈ Assigned. On the other hand, we have that MNIIV(i, q, a,m, p) ⇔ (i,m) ∈
Assigned. Then, m = m′ since (i,m) ∈ Assigned and ∃! m′ : (i,m′) ∈ Assigned. Thus,

∃! (q′, a′) : (i, (q′, a′),m) ∈ Marked.

Theorem 3.2. Providing that Correct Mark Reception, Exam-form Integrity, Exam-form

Markedness, Mark Integrity, Mark Notification Integrity are satisfied by a given exam,

then

ETIIV(i, q, a,m, p) ∧ ETMIV(i, q, a,m, p) ∧ MIIV(i, q, a,m, p) ∧ MNIIV(i, q, a,m, p)
⇒ CMRIV(i, q, a,m, p)

Proof. By Lemma 3.1 we have that ∃! m′ : (i, (q, a),m′) ∈ Marked, and by Lemma 3.2 we

have that ∃! (q′, a′) : (i, (q′, a′),m) ∈ Marked. Then, we deduce that (q′, a′,m′) = (q, a,m).

Thus, (i, (q, a),m) ∈ Marked. Hence, CMRIV(i, q, a,m, p) succeeds, by Correct Mark

Reception.

3.4.2 Universal Verifiability Properties

The universal verifiability (U.V.) properties are designed from the viewpoint of a generic

observer. In contrast to the individual viewpoint, the observer does not have an identity

and does not know an exam-form or a mark, because he does not have an official exam

role. The observer runs the test on the public data available after a protocol run. Hence,

we simply have a general variable e containing the data.

In the universal perspective, properties such as Question Validity, Correct Mark

Reception, and Mark Notification Integrity are not relevant because the external observer

has no knowledge of the exam-forms submitted nor of the marks received by the candidates.

However, an observer may want to verify other properties revealing whether the exam

has been carried out correctly, or he may want to check that the exam authorities and

examiners have played by the rules. Precisely, an observer would be interested in verifying

that only registered candidates were participated in the exam, all accepted exam-forms

are marked without any modification, all exam-forms are marked correctly, and all marks

are assigned to the corresponding candidates.

The five universal verifiability properties cover all the exam steps. Thus, an exam

system is fully universally verifiable if it guarantees these five properties. However, again

each property can be checked independently from the others. The first universal property

is Registration, which allows to verify that all accepted exam-forms were submitted by

registered candidates.

Definition 3.22. (Registration U.V.). Let E be an exam and β be a set of tests, then

(E, β) is registration verifiable if there is a test RUV : E → bool in β s.t. RUV(e))⇔ {i :

(i, (q, a)) ∈ Accepted} ⊆ Ir.
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An observer may wish to test that all the marks attributed by the examiners to the

exam-forms are computed correctly. This property, Marking Correctness, raises the same

practical questions as the individual case and therefore the same discussion applies here.

However, even in case of open questions, to increase their trustworthiness, universities

should allow auditors to access their log for an inspection to the marking process.

Definition 3.23. (Marking Correctness U.V.). Let E be an exam and β be a

set of tests, then (E, β) is marking correctness universally verifiable if there is a test

MCUV : E → bool in β s.t. MCUV(e))⇔ (∀(i, (q, a),m) ∈ Marked, Correct(q, a) = m).

One may also want to check that no exam-form is modified, added, or deleted until the

end of the marking phase. The next property Exam-form Integrity allows an observer to

verify that all and only accepted exam-forms are marked without any modification.

Definition 3.24. (Exam-form Integrity U.V.). Let E be an exam and β be a set of

tests, then (E, β) is exam-form integrity universally verifiable if there is a test ETIUV :

E → bool in β s.t. ETIUV(e)⇔ Accepted = {(i, (q, a)) : (i, (q, a),m) ∈ Marked}.

Another property that could be useful when ETIUV fails is Exam-form Markedness, which

allows us to verify that all the accepted exam-forms are marked without modification.

Definition 3.25. (Exam-form Markedness U.V.). Let E be an exam and β be a set

of tests, then (E, β) is exam-form markedness universally verifiable if there exists a test

ETMUV : E → bool in β s.t. ETMUV(e))⇔ Accepted ⊂ {(i, (q, a)) : (i, (q, a),m) ∈ Marked}.

In case that ETIUV fails but ETMUV succeeds, then there is at least one extra marked

exam-form which is not accepted by the exam authority during the examination phase.

However, all the accepted exam-forms are marked.

Lemma 3.3. Providing that Mark Integrity, Mark Notification Integrity are satisfied by

a given exam, then ETIUV(e)⇒ ETMUV(e).

Proof. Suppose that ETIUV(e) succeeds then, by Exam-form Integrity U.V., we have

that Accepted = {(i, (q, a)) : (i, (q, a),m) ∈ Marked}. Thus, Accepted ⊂ {(i, (q, a)) :

(i, (q, a),m) ∈ Marked}. Hence, by Exam-form Markedness U.V., ETMUV(e) succeeds.

Finally, an observer may wish to check that all and only the marks assigned to exam-forms

are assigned to the corresponding candidates with no modifications. This is guaranteed

by Mark Integrity.

Definition 3.26. (Mark Integrity U.V.). Let E be an exam and β a set of tests, then

(E, β) is mark integrity universally verifiable if there exists a test MIUV : E → bool in β

s.t. MIUV(e)⇔ Assigned = {(i,m) : (i, (q, a),m) ∈ Marked}.

68



Chapter 3. Exam Protocols

3.4.3 Case Studies

We validate our framework and show its flexibility by analyzing using ProVerif the

verifiability properties of two exam protocols: the pencil-and-paper Grenoble exam, and

the electronic exam protocol by Giustolisi et al. [GLR14].

3.4.3.1 Protocol of Université Grenoble Alpes

The first exam that we analyze is the paper-and-pencil procedure used to evaluate

undergraduate students at the University of Grenoble. It involves candidates (C), an

examiner (E), a question committee (QC), and an exam authority (EA). It has four

phases already described in Section 3.3.3.3.

Formal Model. We use the same equational theory already presented in Figure 3.7 to

model physical features of Grenoble protocol. Additionally, each data set of Definition 3.13

is composed by a selection of messages taken from the data generated by the processes,

possibly manipulated by the attacker. For example, Q are all the messages that represent

a question. Qg, subset of Q, are all the messages representing a question that are generated

by the QC. The exam’s relations are also as in Definition 3.13. The set Accepted contains

all the messages (i, (q, a)) (i.e., identity and exam-form) that EA has collected. If the

EA is honest, it accepts only the exam-forms submitted by registered candidates. The

set Marked contains all the messages (i, (q, a),m) (i.e., identity, exam-form, and mark)

that the E has generated after having marked the exam-forms. If E is honest, he marks

only exam-forms authenticated by EA. The set Assigned contains all the messages (i,m)

originating from the EA when it assigns mark m to candidate i. If EA is honest, it

assigns a mark to C only if E notifies that it is the mark delivered on C’s exam-form. The

function Correct is a deterministic function that outputs a mark for a given exam-form.

Note that in ProVerif, we represent the data sets using events inside the process of the

parties. For example, an event accepted(i, q, a) is emitted once the element (i, (q, a)) is

added to the set Accepted. Moreover, the data are sent to the test process on private

channels in case of completeness, and on public channels in case of soundness.

Analysis of Individual Verifiability. We model individual verifiability tests as pro-

cesses in ProVerif. Each test emits two events: the event OK, when the test succeeds, and

the event KO, when the test fails. We use correspondence assertions, i.e., “if an event e is

executed the event e′ has been previously executed” [RSG+00], to prove soundness, and

resort to unreachability of KO to prove completeness. We also use unreachability to prove

soundness for Marking Correctness. A sound test receives its input via public channels.

This allows an attacker to mess with the test’s inputs. Participants can be dishonest too.

Thus, we check that the event OK is always preceded by the event emitted in the part of

the code where the predicate becomes satisfied. Below, we describe how this works for
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Property Sound Complete
Question Validity X(EA) X(all)

Marking Correctness X X(all)
Correct Mark Reception X(EA, E) X(all)
Exam-form Integrity X(EA) X(all)

Exam-form Markedness X(EA, E) X(all)
Mark Integrity X(EA, E) X(all)

Mark Notification Integrity X(EA) X(all)

Table 3.4: Results for I.V. properties of the Grenoble exam.

Question Validity. A complete test receives its input via private channels and by honest

participants. The attacker cannot change the test’s input this time. Then, we check that

the test does not fail, that is, the event KO is unreachable.

Table 3.4 reports the result of the analysis. All properties hold (X) despite the attacker,

but often they hold only assuming some roles to be honest, otherwise attacks exist. All

properties but Marking Correctness have sound tests (Table 3.4, middle column) only if

we assume at least the honesty of the exam authority (EA), or of the examiner (E), or

of both. This in addition to the honesty of candidate, who must be necessarily honest

because he is the verifier. The minimal assumptions for all the properties are reported in

brackets. All properties have complete tests (Table, right columns) but all roles except

the attacker have to be honest for them to hold. In the following we describe the tests

used to verify the individual properties of Grenoble exam.

Question Validity: Figure 3.8 presents the code for the Question Validity’s test. The

QV test inputs the verification value ver_AC, which is used to authenticate the exam

authority. On channel chTest, the test inputs the authenticated question auth_q, which

it checks for origin-authenticity. The test succeeds if the question is authenticated by the

EA, it fails otherwise. The test emits the event OK when it succeeds, otherwise emits the

event KO. In the proof for soundness, we modified the ProVerif code for EA in such way

let test(chTest, ver_AC) =
in(chTest, (auth_q));
let question = openauth(auth_q) in

if authcheck(auth_q, Ver_AC) = question then
event OK
else
event KO.

Figure 3.8: The Question Validity test for the Grenoble exam.

to emit an event valid just after the process receives the question from QC and checks

the authenticity of its origin, and just before EA sends the question to the C. ProVerif
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shows, in case of honest EA, that any OK is preceded by valid: the test outputs true only

if the question is generated by QC. Note that any tampering that QC can perform on the

questions (for example, generating dummy questions or by trashing them after having

generated them) does not violate question validity per se: according to this property the

questions that C received are still those generated, honestly or dishonestly, by the QC:

the origin of the question is not compromised. In the proof for completeness, ProVerif

shows that the event KO is unreachable when all participants are honest.

Marking Correctness: in Grenoble exam when the candidate examine her marked exam-

form in presence of the examiner, she can check with the examiner if the marking was

done correctly. Then, the Marking Correctness test for Grenoble exam simply takes the

exam-form submitted by the candidate and the mark she received, and then compare

if the mark obtained by running the marking algorithm on the submitted exam-form is

equal to the received mark. The Marking Correctness test is presented in Figure 3.9.

Using ProVerif we show that the Marking Correctness test is complete and sound even if

all participants are dishonest.

let test(chCand) =
in(chCand, (ques, ans, mark));

if mark = correction(ques, ans) then

event OK;
if mark <> correction(ques, ans) then event reject
else 0

else
event KO.

Figure 3.9: The Marking Correctness test for Grenoble exam.

Correct Mark Reception: the candidate can examine her exam-form after marking and

check whether it is marked. So, whether the submitted exam-form is equal to the marked

one, and whether the received mark is equal to the one attributed to the exam-form. We

show using ProVerif that Correct Mark Reception is complete and sound in case of honest

examiner for Grenoble exam.

Exam-form Integrity: the candidate can check the integrity of her exam-form by comparing

the the exam-form she submitted to the one marked by the examiner, as she can consult

the later after marking. If the exam-form is unmodified after marking, then it is supposed

that it is accepted correctly by the exam authority and not modified before marking. The

Exam-form Integrity test is presented in Figure 3.11. The test takes from the candidate,

on the channel chCand (private for completeness and public for soundness), the form she
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let test(chCand, chA, chM, ver_t) =
in(chCand, (hC, pseuC, ques, ans, hS, m));

in(chM, auth_fM);
let (=hC, =pseuC, quesX, ansX, hSX, mX) = openauth(auth_fM) in
if (hC, pseuC, quesX, ansX, hSX, mX) = authcheck(auth_fM, ver_t)
then

if ques = quesX && ans = ansX && m = mX then
event OK
else
event KO.

Figure 3.10: The Correct Mark Reception test for Grenoble exam.

submitted (hidden identity, pseudonym, question, answer and hidden signature). Then

it takes the form accepted by the exam authority auth_fA from that candidate, and

verifies that it is equal to the form submitted by the candidate i.e., the exam authority

recorded the submitted form without any modification. If its the case the test outputs

true (OK), and false (KO) otherwise. Note that, the test checks the authenticity of the

forms received from the exam authority with the verification value ver_t since in practice

the candidate takes the forms from them by hand. Also, in case of completeness the

channel chA which used to take the forms from the exam authority is a private channel,

while it is public (controlled by the attacker) in case of soundness. ProVerif proves that

the Exam-form Integrity test is complete and sound in case of honest examiner and

honest exam authority for Grenoble exam.

let test(chCand, chA, chM, ver_t) =
in(chCand, (hC, pseuC, ques, ans, hS));
in(chA, auth_fA);

let (=hC, =pseuC, quesX, ansX, hSX) = openauth( auth_fA) in
if (hC, pseuC, quesX, ansX, hSX) = authcheck( auth_fA, ver_t) then

if quesX = ques && ansX = ans then
event OK
else
event KO.

Figure 3.11: The Exam-form Integrity test for Grenoble exam.

Exam-form Markedness: similar to Exam-form Integrity, the candidate can examine her

exam-form after marking and check whether it is marked. So, the exam-form markedness

test for Grenoble exam is exactly similar to the exam-form integrity test except that for
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exam-form markedness the test additionally takes the form marked by the examiner on

channel chM. Thus, the test checks that if the accepted exam-form is equal to the marked

one. We show using ProVerif that Exam-form Markedness is complete and sound in case

of honest examiner for Grenoble exam.

let test(chCand, chA, chM, ver_t) =
in(chCand, (hC, pseuC, ques, ans, hS));
in(chA, auth_fA);

let (=hC, =pseuC, quesX, ansX, hSX) = openauth( auth_fA) in
if (hC, pseuC, quesX, ansX, hSX) = authcheck( auth_fA, ver_t) then

in(chM, auth_fM);
let (=hC, =pseuC, quesX’, ansX’, hSX’, m) = openauth(auth_fM) in
if (hC, pseuC, quesX’, ansX’, hSX’, m) = authcheck(auth_fM, ver_t)
then

if quesX’ = quesX && ansX’ = ansX then
event OK
else
event KO.

Figure 3.12: The Exam-form Markedness test for Grenoble exam.

Mark Integrity: as the candidate can examine her exam-form after marking, so she can

learn the mark attributed by the examiner for her. The candidate also can asks the exam

authority about the mark assigned for her. Thus, a simple test exists for Mark Integrity

that is comparing the two marks. The test is presented in Figure 3.13. ProVerif shows

that Grenoble exam ensures the completeness and soundness, in case of honest exam

authority and examiner, of the Mark Integrity test.

Mark Notification Integrity: the candidate can ask the exam authority about the mark

assigned to her and check if it is the same one she received. The Mark Notification

Integrity test is presented in Figure 3.14. ProVerif shows that the test is complete and

sound in case of honest exam authority.

Analysis of Universal Verifiability. Universal verifiable tests should use some public

data. However, since the Grenoble exam is a paper-and-pencil based exam, in general,

there is no publicly available data. Thus, originally Grenoble exam does not satisfy any

of the universal verifiability properties. To be universally testable, an auditor has to

be given access to the following data: (1) for Registration verifiability, he can read the

list of registered candidates and the set of accepted exam-forms. Thus, he can check

whether all accepted exam-forms are submitted by registered candidates; (2) for Exam-

form Markedness, in addition to the accepted exam-forms, he knows the set of marked
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let test(chCand, chA, chM, ver_t) =
in(chCand, (hC, pseuC, ques, ans, hS));

in(chM, auth_fM);
let (=hC, =pseuC, quesX, ansX, hSX, m) = openauth(auth_fM) in
if (hC, pseuC, ques, ans, hS, m) = authcheck(auth_fM, ver_t) then

in(chA, auth_mA);
let (=hC, =pseuC, mX) = openauth(auth_mA) in
if (hC, pseuC, mX) = authcheck(auth_mA, ver_t) then

if mX = m then
event OK
else
event KO.

Figure 3.13: The Mark Integrity test for Grenoble exam.

let test(chCand:channel, chA:channel, ver_t:public) =
in(chCand, (hC, pseuC, m));

in(chA, auth_mA);
let (=hC, =pseuC, mX) = openauth(auth_mA) in
if (hC, pseuC, mX) = authcheck(auth_mA, ver_t) then

if mX = m then
event OK
else
event KO.

Figure 3.14: The Mark Notification Integrity test for Grenoble exam.

exam-forms. Then, he can check whether all the accepted exam-forms are marked; (3) for

Exam-form Integrity, he knows the same data as in Exam-form Markedness. The auditor

has to check that all and only the accepted exam-forms are marked; (4) for Marking

Correctness, he knows the correction algorithm and the marked exam-forms together

with the delivered marks. The test is to run the correction algorithm again on each

exam-form and check if the obtained mark is the same as the delivered one; finally, for

(5) Mark Integrity, in addition to the delivered marks, he can access the assigned marks.

The auditor can check whether the assigned marks are exactly the ones delivered and

whether they are assigned to the correct candidates. Having access to such significant

data mentioned above could break candidate’s privacy (for instance identities, answers,

and marks can be disclosed to the auditor); that noticed, discussing the compatibility

between the universal verifiability and privacy is not in the scope of this thesis. Similar
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Property Sound Complete
Registration X(EA) X(all)

Exam-form Integrity X(EA, E) X(all)
Exam-form Markedness X(EA, E) X(all)
Marking Correctness X(E) X(all)

Mark Integrity X(EA, E) X(all)

Table 3.5: Results for U.V. properties of the Grenoble exam.

to what we did for the individual verifiability tests, we use correspondence assertions to

prove soundness and unreachability of a KO event to prove completeness.

Table 3.5 depicts the result of the analysis. We must note that in our testing universal

verifiability, we were not able to run for all tests a fully automatically analysis in the

general case requiring any number of participants. This is because ProVerif does not

support loops and to prove the general case we would have needed to iterate over e.g.,

all candidates. For these tests we ran ProVerif only for the base case, that where we

have only one accepted exam-form or one assigned mark; then we completed a manual

induction proof that generalizes this result to the general case with an arbitrary number

of candidates. In the following, we present the universal tests used for Grenoble exam,

together with the corresponding manual proofs.

Registration: the Registration test for Grenoble exam is presented in Figure 3.15. We

show, with ProVerif, that Registration test is complete and sound, with honest exam

authority, for the case where we have one accepted exam-form and any number of

registered candidates. Then, we generalize it to the case of any number of accepted

exam-forms, more precisely, we show that

RV(E) = true⇔ i : (i, (q, a)) ∈ Accepted ⊆ Ir

holds for any size n of the set Accepted and any number m of registered candidates.

Let RVk(·) denotes the Registration test that can be applied to an exam execution that

has k accepted exam-forms, and RVk(·) →∗ OK denotes that the test outputs OK (true)

after some steps given certain exam execution with k accepted exam-forms. Let E be an

exam execution that has m registered candidates and n accepted exam-forms, and let Ej
denotes a version of E where only the jth accepted exam-form is counted, and assume

that it is submitted by the candidate ij . We show with ProVerif that the test is complete

and sound for one accepted exam-form and any number of registered candidates, thus we

have for soundness

∀1 ≤ j ≤ n : RV1(Ej)→∗ OK⇒ ij ∈ Ir
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and for completeness

∀1 ≤ j ≤ n : ij ∈ Ir ⇒ RV1(Ej)→∗ OK.

The test RVn(E) checks if each of the accepted exam-forms received on the channels chA1,

. . . , chAn is submitted by one of the registered candidates given on the channels chR1,

. . . , chRn, and ∀1 ≤ j ≤ n : RV1(Ej) checks if the jth accepted exam-form received on the

channel chAj is submitted by the one of the registered candidates given on the channels

chR1, . . . , chRn. Thus, for soundness, we have

RVn(E)→∗ OK
⇓

∀1 ≤ j ≤ n : RV1(Ej)→∗ OK
⇓(using ProV erif)

∀1 ≤ j ≤ n : ij ∈ Ir
⇓

i : (i, (q, a)) ∈ Accepted ⊆ Ir

We can make a similar argument for completeness:

i : (i, (q, a)) ∈ Accepted ⊆ Ir
⇓

∀1 ≤ j ≤ n : ij ∈ Ir
⇓(using ProV erif)

∀1 ≤ j ≤ n : RV1(Ej)→∗ OK
⇓

RVn(E)→∗ OK

Exam-form Integrity: the Exam-form Integrity test checks whether all and only the

accepted exam-forms are marked. The Exam-form Integrity test for Grenoble exam

is presented in Figure 3.16. We show, with ProVerif, that Exam-form Integrity test

is complete and sound, with honest exam authority and examiner, for the case of one

accepted exam-form and one marked exam-form. Then, we generalize it to the case of

any number of accepted exam-forms, more precisely, we show that

ETI(E) = true⇔ Accepted = (i, (q, a)) : (i, (q, a), m) ∈ Marked

holds for any size of the sets Accepted and Marked. Without loss of generality, we

assume that the size of the set Accepted is equal to that of Marked, as the test can be

preceded by a simple check on the sizes of the two sets to see if they are equal or not.

If they have different sizes then this means that one of the accepted exam-form is not
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let testRV_n(chR1, ..., chRm, chA1, ..., chAn, ver_t) =
in(chR1, auth_c1); ... in(chRm, auth_cn);
let (pkC1, pseuC1) = openauth(auth_c1) in
...
let (pkCn, pseuCm) = openauth(auth_cm) in

if (pkC1, pseuC1) = authcheck(auth_c1, ver_t)
&& ... &&

(pkCn, pseuCm) = authcheck(auth_cm, ver_t)
then

in(chA1, auth_x1); ... in(chAn, auth_xn);
let (pkX1, pseuX1, ques1, ans1, hS1) = openauth(auth_x1) in
...
let (pkXn, pseuXn, quesn, ansn, hSn) = openauth(auth_xn) in

if (pkX1, pseuX1, ques1, ans1, hS1) = authcheck(auth_x1, ver_t)
&& ... &&

(pkXn, pseuXn, quesn, ansn, hSn) = authcheck(auth_xn, ver_t)
then

if (pkX1 = pkC1 && pseuX1 = pseuC1)
|| ... ||
(pkX1 = pkCm && pseuX1 = pseuCm)

&& ... &&

(pkXn = pkC1 && pseuXn = pseuC1)
|| ... ||
(pkXn = pkCm && pseuXn = pseuCm)

then
event OK
else
event KO.

Figure 3.15: The universal Registration test for Grenoble exam.

marked or the reverse, and in such a case the test can outputs false directly. Let ETIk(·)
denotes the Exam-form Integrity test that can be applied to an exam execution that has

k accepted exam-forms and k marked exam-form, and let ETIk(·) →∗ OK denotes that

the test outputs OK after some steps for a given exam execution with k accepted and k

marked exam-forms. Let E be an exam execution that has n accepted exam-forms and

n marked exam-forms, and let Ej denotes a version of E where only the jth accepted

exam-form (qj , aj), which is submitted by the candidate ij , and jth marked exam-form

(q′j , a
′
j), which is related to the candidate i′j , are counted. Note that we assume that the

exam-forms are marked in the same order as they were accepted. We show with ProVerif
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that the test is complete and sound for one exam-form, we have for soundness

∀1 ≤ j ≤ n : ETI1(Ej)→∗ OK⇒ (ij , (qj , aj)) = (i′j , (q
′
j , a
′
j))

and for completeness

∀1 ≤ j ≤ n : (ij , (qj , aj)) = (i′j , (q
′
j , a
′
j))⇒ ETI1(Ej)→∗ OK.

The ETIn(E) checks if all the accepted exam-forms received on the channels chA1, . . . ,

chAn are exactly the marked exam-forms received on channels chM1, . . . , chMn, and

∀1 ≤ j ≤ n : ETI1(Ej) checks if the jth accepted exam-form on the channel chAj is

exactly the exam-form marked on channel chMj. Thus, for soundness, we have

ETIn(E)→∗ OK
⇓

∀1 ≤ j ≤ n : ETI1(Ej)→∗ OK
⇓(using ProV erif)

∀1 ≤ j ≤ n : (ij , (qj , aj)) = (i′j , (q
′
j , a
′
j))

⇓
Accepted = (i, (q, a)) : (i, (q, a), m) ∈ Marked

We can make a similar argument for completeness:

Accepted = (i, (q, a)) : (i, (q, a), m) ∈ Marked

⇓
∀1 ≤ j ≤ n : (ij , (qj , aj)) = (i′j , (q

′
j , a
′
j))

⇓
∀1 ≤ j ≤ n : ETI1(Ej)→∗ OK

⇓
ETIn(E)→∗ OK

Exam-form Markedness: we assume that a third party can takes the marked exam-forms

from the examiner, so that he can checks whether all the accepted exam-forms (which

he can takes from exam authority) are marked. The Exam-form Markedness test for

Grenoble exam is presented in Figure 3.17. We show, with ProVerif, that Exam-form

Markedness test is complete and sound, with honest exam authority and examiner, for

the case where we have one accepted exam-form and any number of marked exam-forms.

Then, we generalize it to the case of any number of accepted exam-forms, more precisely,

we show that

ETM(E) = true⇔ Accepted ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked
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let testETI_n(chM1, ... , chMn, chA1, ... , chAn, ver_t) =
in(chA1, auth_fA1); ... in(chAn, auth_fAn);
let (hC1, pseuC1, ques1, ans1, hS1) = openauth(auth_fA1) in
...
let (hCn, pseuCn, quesn, ansn, hSn) = openauth(auth_fAn) in

if (hC1, pseuC1, ques1, ans1, hS1) = authcheck(auth_fA1, ver_t)
&& ... &&
(hCn, pseuCn, quesn, ansn, hSn) = authcheck(auth_fAn, ver_t)

then

in(chM1, auth_fM1); ... in(chMn, auth_fMn);
let (hX1, pseuX1, quesX1, ansX1, hSX1, m1) = openauth(auth_fM1) in
...
let (hXn, pseuXn, quesXn, ansXn, hSXn, mn) = openauth(auth_fMn) in

if (hX1, pseuX1, quesX1, ansX1, hSX1, m1) = authcheck(auth_fM1, ver_t)
&& ... &&
(hXn, pseuXn, quesXn, ansXn, hSXn, mn) = authcheck(auth_fMn, ver_t)

then

if (hX1=hC1 && pseuX1=pseuC1 && quesX1=ques1 && ansX1=ans1 && hSX1=hS1)
&& ... &&
(hXn=hCn && pseuXn=pseuCn && quesXn=quesn && ansXn=ansn && hSXn=hSn)

then
event OK
else
event KO.

Figure 3.16: The universal Exam-form Integrity test for Grenoble exam.

holds for any size n of the set Accepted and any number m of marked exam-forms. Let

ETMk(·) denotes the Exam-form Markedness test that can be applied to an exam execution

that has k accepted exam-forms, and ETMk(·) →∗ OK denotes that the test outputs OK

after some steps given certain exam execution with k accepted exam-forms. Let E be

an exam execution that has n accepted exam-forms and m marked exam-forms, and let

Ej denotes a version of E where only the jth accepted exam-form (qj , aj) is counted,

and assume that it is submitted by the candidate ij . As we show with ProVerif that

the test is complete and sound for one accepted exam-form and any number of marked

exam-forms, thus we have for soundness

∀1 ≤ j ≤ n : ETM1(Ej)→∗ OK⇒ (ij , (qj , aj)) ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked

and for completeness

∀1 ≤ j ≤ n : (ij , (qj , aj)) ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked⇒ ETM1(Ej)→∗ OK.

The test ETMn(E) checks if each of the accepted exam-forms received on the channels

chA1, . . . , chAn is one of the marked exam-forms received on the channels chM1, . . . ,

chMm, and ∀1 ≤ j ≤ n : ETM1(Ej) checks if the jth accepted exam-form received on the

channel chAj is one of the marked exam-forms received on the channels chM1, . . . , chMm.
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Thus, for soundness, we have

ETMn(E)→∗ OK
⇓

∀1 ≤ j ≤ n : ETM1(Ej)→∗ OK
⇓(using ProV erif)

∀1 ≤ j ≤ n : (ij , (qj , aj)) ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked

⇓
Accepted ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked

We can make a similar argument for completeness:

Accepted ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked

⇓
∀1 ≤ j ≤ n : (ij , (qj , aj)) ⊆ (i, (q, a)) : (i, (q, a), m) ∈ Marked

⇓(using ProV erif)

∀1 ≤ j ≤ n : ETM1(Ej)→∗ OK
⇓

ETMn(E)→∗ OK

Marking Correctness: we assume that anyone can access the correction algorithm, so

a third party can check whether the delivered marks are computed correctly provided

he given an access to the marked exam-forms also. The Marking Correctness test is

presented in Figure 3.18. Using ProVerif, we show that the Marking Correctness test

complete and sound, with honest examiner, in the case where we have only one marked

exam-form, i.e., size of Marked is 1. Then, we generalize it to the case of any number of

marked exam-forms, more precisely, we show that

MC(E) = true⇔∀(i, (q, a),m) ∈ Marked, Correct(q, a) = m

holds for any size n of the set Marked. Let MCk(·) denotes the Marking Correctness

test that can be applied to an exam execution that has k marked exam-forms, and

MCk(·)→∗ OK denotes that the test outputs OK after some steps for a given exam execution

with k marked exam-forms. Let E be an exam execution that has n marked exam-

forms, and let Ej denotes a version of E where only the jth marked exam-form (qj , aj)

is counted, which is submitted by the candidate ij and attributed the mark mj i.e.,

(ij , (qj , aj),mj) ∈ Marked. As we show with ProVerif that the test is complete and sound

for one marked exam-form, we have for soundness

∀1 ≤ j ≤ n : MC1(Ej)→∗ OK⇒ Correct(qj , aj) = mj
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let testETM_n(chM1, ..., chMm, chA1, ..., chAn, ver_t) =
in(chA1, auth_fA1); ... in(chAn, auth_fAn);
let (hC1, pseuC1, ques1, ans1, hS1) = openauth(auth_fA1) in
...
let (hCn, pseuCn, quesn, ansn, hSn) = openauth(auth_fAn) in

if (hC1, pseuC1, ques1, ans1, hS1) = authcheck(auth_fA1, ver_t)
&& ... &&
(hCn, pseuCn, quesn, ansn, hSn) = authcheck(auth_fAn, ver_t)

then

in(chM1, auth_fM1); ... in(chMm, auth_fMn);
let (pkX1, pseuX1, quesX1, ansX1, hSX1, mark1) = openauth(auth_fM1) in
...
let (pkXn, pseuXn, quesXn, ansXn, hSXm, markm) = openauth(auth_fMm) in

if (pkX1, pseuX1, quesX1, ansX1, hSX1, mark1) = authcheck(auth_x1, ver_t)
&& ... &&
(pkXn, pseuXn, quesXn, ansXn, hSXm, markm)= authcheck(auth_xn, ver_t)

then

if (pkC1 = pkX1 && pseuC1 = pseuX1 && ques1 = quesX1 && ans1 = ansX1)
|| ... ||
(pkC1 = pkXm && pseuC1 = pseuXm && ques1 = quesXm && ans1 = ansXm)

&& ... &&

(pkCn = pkX1 && pseuCn = pseuX1 && quesn = quesX1 && ansn = ansX1)
|| ... ||
(pkCn = pkXm && pseuCn = pseuXm && quesn = quesXm && ansn = ansXm)

then

event OK

else

event KO.

Figure 3.17: The universal Exam-form Markedness for Grenoble exam.

and for completeness

∀1 ≤ j ≤ n : Correct(qj , aj) = mj ⇒ MC1(Ej)→∗ OK.

The MCn(E) checks if all the marked exam-forms received on the channels chM1, . . . , chMn

are marked correctly, and ∀1 ≤ j ≤ n : MC1(Ej) checks if the jth marked exam-form

received on the channel chMj is marked correctly. Thus, we have for soundness,

MCn(E)→∗ OK
⇓

∀1 ≤ j ≤ n : MC1(Ej)→∗ OK
⇓(using ProV erif)

∀1 ≤ j ≤ n : Correct(qj , aj) = mj

⇓
∀(i, (q, a),m) ∈ Marked, Correct(q, a) = m
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let testMC_n(chM1, ..., chMn, ver_t) =
in(chM1, auth_fM1); ... in(chMn, auth_fMn);
let (hC1, pseuC1, ques1, ans1, hS1, m1) = openauth(auth_fM1) in
...
let (hCn, pseuCn, quesn, ansn, hSn, mn) = openauth(auth_fMn) in

if (hC1, pseuC1, ques1, ans1, hS1, m1) = authcheck(auth_fM1, ver_t)
&& ... &&
(hCn, pseuCn, quesn, ansn, hSn, mn) = authcheck(auth_fMn, ver_t)

then

if m1 = correction(ques1, ans1)
&&
...
&&
mn = correction(quesn, ansn)
then
event OK
else
event KO.

Figure 3.18: The universal Marking Correctness test for Grenoble exam.

We can make a similar argument for completeness:

∀(i, (q, a),m) ∈ Marked, Correct(q, a) = m

⇓
∀1 ≤ j ≤ n : Correct(qj , aj) = mj

⇓(using ProV erif)

∀1 ≤ j ≤ n : MC1(Ej)→∗ OK
⇓

MCn(E)→∗ OK

Mark Integrity: we assume that a third party can take the list of assigned mark with the

corresponding candidates from the exam authority. Thus, simply he can check whether

the assigned marks are exactly the delivered ones and that they assigned to the correct

candidates. The Mark Integrity test is presented in Figure 3.19. We show, with ProVerif,

that Mark Integrity test is complete and sound, with honest exam authority and examiner,

in the case where we have only one delivered mark and only one assigned mark. Then, we

generalize it to the case of any number of delivered and assigned marks, more precisely,

we show that

MI(E) = true⇔ Assigned = (i, m) : (i, (q, a), m) ∈ Marked
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let testMI_n(chM1, .. , chMn, chA1, ... , chAn, ver_t) =
in(chM1, auth_fM1); ... in(chMn, auth_fMn);
let (hC1, pseuC1, ques1, ans1, hS1, m1) = openauth(auth_fM1) in
...
let (hCn, pseuCn, quesn, ansn, hSn, mn) = openauth(auth_fMn) in

if (hC1, pseuC1, ques1, ans1, hS1, m1) = authcheck(auth_fM1, ver_t)
&& ... &&
(hCn, pseuCn, quesn, ansn, hSn, mn) = authcheck(auth_fMn, ver_t)

then

in(chA1, auth_A1); ... in(chAn, auth_An);
let (hX1, pseuX1, mX1) = openauth(auth_A1) in
...
let (hXn, pseuXn, mXn) = openauth(auth_An) in

if (hX1, pseuX1, mX1) = authcheck(auth_A1, ver_t)
&& ... &&
(hXn, pseuXn, mXn) = authcheck(auth_An, ver_t)

then

if (hX1 = hC1 && pseuX1 = pseuC1 && mX1 = m1)
&& ... &&

(hXn = hCn && pseuXn = pseuCn && mXn = mn)
then
event OK
else
event KO.

Figure 3.19: The universal Mark Integrity test for Grenoble exam.

holds for any size of the sets Marked and Assigned. Without loss of generality, we assume

that the size of the set Assigned is equal to that of Marked, as the test can be preceded

by a simple check to see whether the sizes of the two sets are equal or not. If they have

different sizes then this means that one of the delivered marks is not assigned to any of

the candidates or a candidate is assigned a mark which is not delivered, and in such a

case the test can output false directly. Let MIk(·) denotes the Mark Integrity test that

can be applied to an exam execution that has k delivered marks and k assigned marks,

and let MIk(·)→∗ OK denotes that the test outputs OK after some steps for a given exam

execution with k delivered and k assigned marks. Let E be an exam execution that has

n delivered marks and n assigned marks, and let Ej denotes a version of E where only

the jth mark mj delivered for ij , and the jth mark m′j assigned to j′j are counted. Note

that, we assume that the assigned marks are ordered in a table as they were delivered.

As we show with ProVerif that the test is complete and sound for one exam-form, we
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have for soundness

∀1 ≤ j ≤ n : MI1(Ej)→∗ OK⇒ (ij ,mj) = (i′j ,m
′
j)

and for completeness

∀1 ≤ j ≤ n : (ij ,mj) = (i′j ,m
′
j)⇒ MI1(Ej)→∗ OK.

The MIn(E) checks if all the delivered marks received on the channels chM1, . . . , chMn are

equal to the assigned marks received on the channels chA1, . . . , chAn and that they are

assigned to the correct candidates i.e., they are assigned correctly without modification,

and ∀1 ≤ j ≤ n : MI1(Ej) checks if the jth delivered mark received on the channel chMj

is equal to the assigned mark received on the channel chAj and that it is assigned to the

correct candidate. Thus, for soundness, we have

MIn(E)→∗ OK
⇓

∀1 ≤ j ≤ n : MI1(Ej)→∗ OK
⇓(using ProV erif)

∀1 ≤ j ≤ n : (ij ,mj) = (i′j ,m
′
j)

⇓
(i, m) : (i, (q, a), m) ∈ Marked = Assigned

We can make a similar argument for completeness:

(i, m) : (i, (q, a), m) ∈ Marked = Assigned

⇓
∀1 ≤ j ≤ n : (ij ,mj) = (i′j ,m

′
j)

⇓(using ProV erif)

∀1 ≤ j ≤ n : MI1(Ej)→∗ OK
⇓

MIn(E)→∗ OK

3.4.3.2 Protocol by Giustolisi et al.

The second exam protocol is Remark! [GLR14], we described in Section 3.3.3.2.

Formal Model We use the same equational theory presented in Figure 3.5. Data sets

I, Q, A and M are as in Definition 3.13. Set I contains the C’s pseudonyms rather than

their identities. This replacement is sound because any candidate is uniquely identified

by her pseudonym and the equational theory preserves this bijection. The sets Q, A,

and M are the messages that correspond to questions, answers, and marks generated
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during the protocol’s run. The relations are built from the posts that appear on the BB.

Precisely, the tuple (i, (q, a)) of Accepted is built from the receipts that EA publishes at

Examination. The tuples (i, (q, a),m) and (i,m) of Marked and Assigned consist of the

posts that EA publishes at Marking. Precisely, the tuple (i, (q, a),m) is built from the

marked exam-form signed by E, while the tuple (i,m) is built from the encryption of the

marked exam-form that EA generates. In fact, the encryption requires a pseudonym, and

officially links C with their identities. This replacement is sound because C is uniquely

identified by her key and the marked exam-form. Correct is the algorithm used to mark

the exam-forms and is modeled using a table.

Analysis of Individual Verifiability. Similarly to what we did in the analysis of

the Grenoble case, we modeled our individual verifiability tests in ProVerif. We used

assertions to prove soundness, and unreachability of an event KO to prove completeness.

In checking the soundness of a test we assumed, in addition to the honest NET, a honest

C (the verifier). The roles of E and co-candidate are dishonest for all tests. The input

of a test consists of the data sent via private channel from C, the data sent via public

channel from EA, and the evidences posted on BB. To check the completeness of a test,

we model all roles as honest. They all send their data via private channel to the test,

whose input also includes the evidences posted on BB.

Remark! protocol originally mandates only two individual verifiability properties:

Mark Notification Integrity and a weaker version of Exam-form Integrity. However, we

checked which assumptions Remark! protocol needs in order to ensure all our properties.

For each property, we describe how to build the corresponding test. Table 3.6 summarizes

the ProVerif results of our analysis.

Question Validity : the test (Figure 3.20) checks if the question given to the candidate is

correctly signed by the exam authority. Since the questions are generated by the Exam

Authority, it is modelled as an honest role. To check soundness in ProVerif, we check if

the test emits the event OK only if the Exam Authority actually generated the question,

i.e., any event OK is preceded by the event generated. ProVerif shows that Remark! is

question validity verifiable.

Marking Correctness: Remark! does not originally provide the marking algorithm used

to evaluate the answer. Consequently, there exists no test that candidate can run to

verify Marking Correctness. However, we prove in ProVerif that if the (honest) exam

authority publishes the table of evaluations after the exam concludes, the property holds

(both soundness and completeness). Given the exam-form submitted by the candidate

and the table of evaluations, the test (Figure 3.21) checks if the mark reported on table

that corresponds to the exam-form coincides with the mark notified to the candidate.
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let testQV(pkA, pch, bba)=
in(bba, eques);
in(pch, (ques, priv_C));

let (ques’, sques) = decrypt(eques, priv_C) in
let (ques’’, pseudoC) =checksign(sques, pkA) in

if ques’=ques && ques’’=ques’
then
event OK
else
event KO.

Figure 3.20: The Question Validity test for Remark! protocol.

let testMC (pkA, pch) =
in(pch, (ques: bitstring,ans: bitstring, mark: bitstring));

get correct_ans(=ques,=ans,mark’) in

if mark’=mark
then
event OK
else
event KO.

Figure 3.21: The Marking Correctness for Remark!.

Correct Mark Reception: the Correct Mark Reception test (Figure 3.24) checks if the exam-

form submitted and the mark received by the candidate (ques,ans), and the notification

(ema’) published on the bulletin board by the exam authority, contain the same questions,

answers, pseudonym, and mark. For soundness, we label the corresponding ProVerif test

code with two events (accepted and marked), which map the corresponding relations. In

particular, we consider a receipt part of the relation Accepted if it is signed by the exam

authority and encrypted under the pseudonym of the candidate. Similarly, we consider

a notification part of the relation Marked if it is signed by the examiner and encrypted

under the pseudonym of the candidate. ProVerif shows that the test for Correct Mark

Reception is sound and complete.

Exam-form Integrity : for Remark! protocol the Exam-form Integrity test (Figure 3.24)

checks if the exam-form submitted by the candidate (ques,ans), the corresponding

receipt (eca’), and the notification (ema’) published on the bulletin board by the exam

authority, contain the same questions, answers, and pseudonym. For soundness, we

86



Chapter 3. Exam Protocols

let testCMR (pkN, pkA, pch, bbn, bba)=
in(pch, (pseudo_C, ques,ans, mark, priv_C));
in(bbn, (pseudo_E, he, rolet: role, spseE));
in(bba, ema’);

let (((ques’, ans’, pseudo_C’),sca1, mark’), sma)
= decrypt(ema’, priv_C) in

let ((ques’’, ans’’, pseudo_C’’),sca1’, mark’’)
= checksign(sma, pseudo_E) in

if ques’=ques && ans’=ans && pseudo_C’=pseudo_C && mark’=mark &&
(ques’, ans’, pseudo_C’)=checksign(sca1,pkA) && ques’’=ques &&
ans’’=ans && pseudo_C’’=pseudo_C && mark’’=mark’ && sca1’=sca1

then
event OK
else
event KO.

Figure 3.22: The Correct Mark Reception test for Remark! protocol.

label the corresponding ProVerif test code with the event (accepted), which map the

corresponding relation. In particular, we consider a receipt part of the relation Accepted

if it is signed by the exam authority and encrypted under the pseudonym of the candidate.

Note that a corrupted exam authority can publish two different receipts for the same

exam-form on the bulletin board. However, since the bulletin board is append-only, the

candidate notices if the exam authority appends two different receipts for her submission

because only the candidate knows the private key. ProVerif shows that the test for

Exam-form Integrity is sound and complete.

Exam-form Markedness: the Exam-form Markedness test (Figure 3.24) checks if the

exam-form submitted by the candidate (ques,ans), the corresponding receipt (eca’), and

the notification (ema’) published on the bulletin board by the exam authority, contain

the same questions, answers, and pseudonym. For soundness, we label the corresponding

ProVerif test code with two events (accepted and marked), which map the corresponding

relations. In particular, we consider a receipt part of the relation Accepted if it is signed

by the exam authority and encrypted under the pseudonym of the candidate. Similarly,

we consider a notification part of the relation Marked it is signed by the examiner and

encrypted under the pseudonym of the candidate. ProVerif shows that the test for

Exam-form Markedness is sound and complete.

Mark Integrity : similarly to Exam-form Integrity, we can show that Remark! is mark

integrity verifiable. Given the exam-form submitted by the candidate (ques,ans) and

the corresponding notification (ema’) published by the exam authority, the test (Figure
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let testETI (pkN, pkA, pch, bbn, bba)=
in(pch, (pseudo_C, ques,ans, priv_C));
in(bbn, (pseudo_E, he, rolet: role, spseE));
in(bba, eca’);
in(bba, ema’);

let (ca, sca’)=decrypt(eca’, priv_C) in
let (ques’, ans’, pseudo_C’)= checksign(sca’, pkA) in

if ques’=ques && ans’=ans && pseudo_C’=pseudo_C
then
event OK
else
event KO.

Figure 3.23: The Exam-form Integrity test for Remark! protocol.

Property Sound Complete
Question Validity X (EA) X(all)

Marking Correctness X (EA) X(all)
Correct Mark Reception X X(all)
Exam-form Integrity X X(all)

Exam-form Markedness X X(all)
Mark Integrity X X(all)

Mark Notification Integrity X X(all)

Table 3.6: Results for I.V. properties of the Remark! protocol.

3.25) checks if they contain the same questions, answers, and pseudonym and that the

examiner’s signature on the mark is correct. To check soundness in ProVerif, we label

the corresponding test code with two events (assigned and marked), which map the

corresponding relations with respect to the notification published on the bulletin board.

We consider the notification part of Assigned if it is signed by the exam authority and

encrypted under the pseudonym of the candidate. Similarly, we consider the notification

part of the relation Marked if it also includes the signature of the examiner.

Mark Notification Integrity : given the mark notified to the candidate and the corresponding

notification (ema’) published by the exam authority, the test (Figure 3.26) simply checks

if the marks coincide. Similarly to Mark Integrity, we consider the notification part of

Assigned if it is signed by the exam authority and encrypted under the pseudonym of the

candidate. ProVerif shows that the test for Exam-form Integrity is sound and complete.

Analysis of Universal verifiability. We check most of the universal verifiability tests

using a different approach compared to the individual ones. This is needed because C can
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let testETI (pkN, pkA, pch, bbn, bba)=
in(pch, (pseudo_C, ques,ans, priv_C));
in(bbn, (pseudo_E, he, rolet: role, spseE));
in(bba, eca’);
in(bba, ema’);

let (ca, sca’)=decrypt(eca’, priv_C) in
let (ques’, ans’, pseudo_C’)=checksign(sca’, pkA) in
let (((ques’’, ans’’, pseudo_C’’),sca1, mark), sma)

=decrypt(ema’, priv_C) in
let ((ques’’’, ans’’’, pseudo_C’’’),sca1’, mark’)

=checksign(sma, pseudo_E) in

if (ques’, ans’, pseudo_C’)=checksign(sca1,pkA) &&
pseudo_C’=pseudo_C && ques’’=ques’ && ans’’=ans’ &&
pseudo_C’’=pseudo_C && ques’’’=ques’ && ans’’’=ans’ &&
pseudo_C’’’=pseudo_C’ && sca1’=sca1

then
event OK
else
event KO.

Figure 3.24: The Exam-form Markedness test for Remark! protocol.

be dishonest, in contrast to the case of individual verifiability, thus no sufficient events

can be insert in any process to model correspondence assertions. In general, the idea of

this approach is that every time the test succeeds, which means that it emits the event

OK, we check if the decryption of the concerned ciphertext gives the expected plaintext. If

not, the event bad is emitted, and we check soundness of the tests using unreachability of

the event bad. However, we can still model soundness using correspondence assertions for

Registration, because the NET is honest and emits an event when registration concludes.

Since all the bulletin board posts are encrypted with C’s or E’s pseudonyms, no public

data can be used as it is. Moreover, the encryption algorithm has the probabilistic feature

of ElGamal encryption, thus the random value used to encrypt a message is usually

needed. However, an auditor can access some data posted by EA after the exam concludes.

Precisely, we assume that the auditor is given the following data:

1. For Registration, the EA reveals the signatures inside the receipts posted on BB

and the random values used to encrypt the receipts. By looking at the bulletin

board, the auditor can check that EA only accepted tests signed with pseudonyms

posted by the NET during registration.

2. For Exam-form Integrity, the EA reveals the marked exam-form and the random

values used to encrypt them, in addition to the data given for Registration. In so
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let testMI (pkN: pkey, pkA: pkey, pch, bbn, bba)=
in(pch, (pseudo_C, ques, ans, priv_C));
in(bbn, (pseudo_E, he, rolet:role, spseE));
in(bba, ema’);

let (((ques’, ans’, pseudo_C’),sca’, mark), sma)
= decrypt(ema’, priv_C) in

let ((ques’’, ans’’, pseudo_C’’: pkey),sca’’, mark’)
=checksign(sma, pseudo_E) in

if pseudo_C’=pseudo_C && pseudo_C’’=pseudo_C && mark=mark’ &&
(ques’, ans’, pseudo_C’)=checksign(sca’,pkA)

then
event OK
else
event KO.

Figure 3.25: The Mark Integrity test for Remark! protocol.

let testMNI (pkA, priv_ch, bba)=
in(priv_ch, (priv_C, mark, pseudo_C));
in(bba, ema’);

let (((ques, ans, pseudo_C’), sca, mark’), sma)
=decrypt(ema, priv_C) in

if (ques,ans,pseudo_C’)=checksign(sca, pkA)
&& pseudo_C’=pseudo_C && mark’=mark

then
event OK
else
event KO.

Figure 3.26: The Mark Notification Integrity test for Remark! protocol.

doing, the auditor can check if the pseudonyms, questions, and answers did not

change and got marked.

3. For Exam-form Markedness, the auditor accesses the same data outlined above for

Exam-form Integrity. However, since Remark! is exam-form integrity universally

verifiable, it is easy to show that the protocol is exam-form markedness universally

verifiable, too.

4. For Marking Correctness, the EA reveals the marked exam-form, the random values

used to encrypt the marked exam-form, and a table that maps a mark to each

answer, after the exam concludes.
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According our test codes outlined in Figures 3.27-3.28, the data needed to make Remark!

testable is received from channel ch. As already mentioned for the Grenoble exam,

ProVerif is unable to handle the general case for the universal verifiability properties.

We thus prove in ProVerif the case with one candidate and rely on the general manual

proofs seen in section 3.4.3.1 for the case with more candidates. Table 3.7 summarizes

the results of our analysis.

Registration: Remark! ensures Registration if the exam authority reveals to the third

party the signatures inside the receipts (posted on the bulletin board) and the random

values used to encrypt the receipts after the exam concludes. In doing so, the third party,

who run the test in Figure 3.27, can check by looking at the bulletin board that the

exam authority only accepted tests signed with pseudonyms posted by the NET during

registration.

Exam-form Integrity : we prove that Remark! is exam-form integrity universally verifiable if

the exam authority reveals the signatures inside the receipts and on the notification

posted on the bulletin board, and the random values used for the encryption under the

candidate pseudonyms. Then, the third party, can run the test in Figure 3.28 to check if

the pseudonyms, questions, and answers did not change and get marked. For simplicity,

we assume that only one examiner marks the exam-forms.

Exam-form Markedness : since Remark! is exam-form integrity universally verifiable, it is

easy to show that it is also exam-form markedness universally verifiable.

Marking Correctness : Remark! does not originally provide the marking algorithm used to

evaluate the answer. However, ProVerif shows that Remark! can be marking correctness

universally verifiable by a third party by running the test in Figure 3.29, provided that the

honest exam authority reveals 1) the tests and the marks encrypted on the notifications

(posted on the bulletin board), 2) the random values used for the encryption under the

candidate pseudonyms, and 3) the marking algorithm after the exam concludes. Similarly

to Exam-form Integrity, we assume that one examiner marks all the exam-forms for

simplicity.

Mark Integrity : regarding this property, we note that the input needed for this test (Figure

3.30) is the notification posted on the bulletin board by the exam authority. In fact, the

examiner should reveal the signature of the examiners on the notification posted on the

bulletin board, and the random values used to encrypt under the candidate pseudonyms.

In so doing the third party can verify that each mark notified to the candidate has a

correct signature.
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Property Sound Complete
Registration X X(all)

Exam-form Integrity X X(all)
Exam-form Markedness X X(all)
Marking Correctness X (EA) X(all)

Mark Integrity X X(all)

Table 3.7: Results for U.V. properties of the Remark! protocol.

let testR(pkN, pkA, ch1,...,chn, bbn1,...,bbnm, bba1,...,bban)=
in(bbn1, (pseudo_C1, hc, r, NET_sign1));
...
in(bbnm, (pseudo_Cm, hc, r, NET_signm));

in(bba1, receipt1);
...
in(bban, receiptn);

in(ch1, (rcoin1, EA_sign_rcpt1));
...
in(chn, (rcoinn, EA_sign_rcptn));

let (quest1, answ1, pseudo_C’1) = checksign(EA_sign_rcpt1, pkA) in
...
let (questn, answn, pseudo_C’n) = checksign(EA_sign_rcptn, pkA) in

if (pseudo_C1, hc, r)=checksign(NET_sign1, pkN) &&
r=C && pseudo_C1=pseudo_C’1
||...||

(pseudo_C1, hc, r)=checksign(NET_sign1, pkN) &&
r=C && pseudo_C1=pseudo_C’n

&&...&&

(pseudo_Cm, hc, r)=checksign(NET_signm, pkN) &&
r=C && pseudo_Cm=pseudo_C’1

||...||
(pseudo_Cm, hc, r)=checksign(NET_signm, pkN) &&
r=C && pseudo_Cm=pseudo_C’n

then
if receipt1=int_encrypt(((quest1, answ1, pseudo_C’1),

EA_sign_rcpt1), pseudo_C1, rcoin1)
&&...&&
receiptn=int_encrypt(((questn, answn, pseudo_C’n),

EA_sign_rcptn), pseudo_Cm, rcoinn)
then event OK
else event KO

else KO.

Figure 3.27: The universal Registration test for Remark! protocol.
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let testETI(pkN, pkA, bba1,..., bban, bbn, ch1,...,chn)=
in(bbn, (pseudo_E, he, re, spseE));

in(ch1,( (rcoin1, sca1, pseudo_C1), (rcoinA1, smaA1, pseudo_CA1)));
...
in(chn,( (rcoinn, scan, pseudo_Cn), (rcoinAn, smaAn, pseudo_CAn)));

in(bba1, (receipt1, notif1));
...
in(bban, (receiptn, notifn));

let (quest1, answ1, pseudo_C’1)=checksign(sca1, pkA) in
...
let (questn, answn, pseudo_C’n)=checksign(scan, pkA) in

let ((quest’1, answ’1, pseudo_C’’1),sca’1, mark1)
= checksign(smaA1, pseudo_E) in

...
let ((quest’n, answ’n, pseudo_C’’n),sca’n, markn)

= checksign(smaAn, pseudo_E) in

if (receipt1=int_encrypt(((quest1, answ1, pseudo_C’1), sca1),
pseudo_C1, rcoin1)&&
notif1=int_encrypt((((quest’1, answ’1, pseudo_C’’1), sca’1,
mark1), smaA1),pseudo_CA1, rcoinA1) && sca’1=sca1)
&&...&&

(receiptn=int_encrypt(((questn, answn, pseudo_C’n), scan),
pseudo_Cn, rcoinn)&&
notifn=int_encrypt((((quest’n, answ’n, pseudo_C’’n), sca’n,
markn), smaAn),pseudo_CAn, rcoinAn) && sca’n=scan)

then
if (pseudo_C1=pseudo_CA1 && pseudo_CA1=pseudo_C’1 &&

pseudo_C’1=pseudo_C’’1&& quest1=quest’1 && answ1=answ’1)
&&...&&
(pseudo_Cn=pseudo_CAn && pseudo_CAn=pseudo_C’n &&
pseudo_C’n=pseudo_C’’n&&questn=quest’n && answn=answ’n)

then
event OK
else KO

else KO.

Figure 3.28: The universal Exam-form Integrity test for Remark! protocol.
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let testMC (pkN, bbn, ch1,...,chn) =
in(bbn, (pseudo_E, he, r, spseE));

in(ch1, sma1);
...
in(chn, sman);

let ((ques1, ans1, pseudo_C1),sca1, mark1)
=checksign(sma1, pseudo_E) in

...
let ((quesn, ansn, pseudo_Cn),scan, markn)

=checksign(sman, pseudo_E) in

get correct_ans(ques’1,ans’1,=mark1) in
...
get correct_ans(ques’n,ans’n,=markn) in

if (pseudo_E, he, r) = checksign(spseE, pkN) && r = E
then

if (ques1=ques’1 && ans’1=ans1)
&&...&&
(quesn=ques’n && ans’n=ansn)

then event OK
else event KO

else KO.

Figure 3.29: The universal Marking Correctness test for Remark! protocol.

3.5 Monitoring Exams

In the previous section, we provided an abstract definition of exam verifiability. Although

it is useful to analyze exams as we have shown with our case studies, such approach is

limited to exam specifications and does not allow us to analyze real exam implementations.

Thus, it cannot deal with some flaws such that those results from the errors that may

have been introduced at implementation stage or during execution. Moreover, scalability

limitations may be faced when considering complex large systems and large number

of parties. In this section, propose several monitors that allow us to verify real exam

execution at runtime. Although, results of runtime monitoring are limited to the analyzed

exam runs, it has an advantage that the actual behavior is analyzed. We first formalize

several exam requirements as Quantified Event Automata (QEAs). Then, we perform

an offline monitoring, using MarQ tool [RCR15], of real e-exam executions organized

by Université Joseph Fourier (UJF). Namely, for each exam execution, we extract a

sequence of events (a trace). Then we feed the extracted trace to a monitor constructed
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let testMI (bbn, bba1,...,bban, ch1,...,chn) =
in(bbn, (pseudo_E, he, re, spseE));

in(bba1, notif1);
...
in(bban, notifn);

in(ch1, (rcoin1, sma1));
...
in(chn, (rcoinn, sman));

let ((quest1, answ1, pseudo_C1),sca’1, mark1)
=checksign(sma1, pseudo_E) in

...
let ((questn, answn, pseudo_Cn),sca’n, markn)

=checksign(sman, pseudo_E) in

if notif1=int_encrypt((((quest1, answ1, pseudo_C1), sca’1,
mark1), sma1),pseudo_C1, rcoin1)
&&...&&
notifn=int_encrypt((((questn, answn, pseudo_Cn), sca’n,
markn), sman),pseudo_Cn, rcoinn)

then
event OK
else
event KO.

Figure 3.30: The universal Mark Integrity test for Remark! protocol.

using MarQ tool, which processes the trace and produces a verdict based on the defined

requirements.

3.5.1 Exam Run and Events

We define an e-exam run (or e-exam execution) by a finite sequence of events, called

trace. Such event-based modelling of e-exam runs is appropriate for monitoring actual

events of the system. An exam run satisfies a property if the resulting trace is accepted

by the corresponding monitor. A correct exam run satisfies all the properties. In order

to formalize exam requirements, we consider the events register(i): i registered to

the exam; submit(i, q, a): i submitted (q, a); and accept(i, q, a): (q, a) accepted by the

authority from i, that are already defined in Section 3.3.1. However, from now on we

assume that the question q and the answer a respectively refer only to one question and

one answer. We also consider the following events:

− Event get(i, q) is emitted when candidate i gets question q.
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− Event change(i, q, a) is emitted when candidate i changes the answer field of question

q to a.

− Event corrAns(q, a) is emitted when the authority specifies a as a correct answer

to question q. Note that more than one answer can be correct for a given question.

− Event marked(i, q, a, b) is emitted when the answer a from candidate i to question q

is scored with b. We assume that the score b ranges over {0, 1} (1 for correct answer

and 0 for wrong answer). However, other ranges of scores can be considered. Note

that, event marked(i, q, a, b) is similar to event attribut(ques, ans,m, idform, ide)

already defined in Section 3.3.1. However, event attribut means that an (overall)

mark is attributed to an exam-form instead of one question/answer pair in case

of marked event. Moreover, marked specifies the identity of the candidate i while

attribut specifies the identity of the examiner.

− Event assign(i,m) is emitted when the mark m is assigned to the candidate

i. Note that, event assign(i,m) is different from event notify(i,m) defined in

Section 3.3.1. Instead it corresponds to the set Assigned defined in Section 3.4

as event assign signifies that an authority associates a mark m with candidate i,

while the notify signifies that the candidate i received the mark m.

− Event begin(i) is emitted when candidate i begins the examination phase.

− Event end(i) is emitted when candidate i ends the examination phase. The candidate

terminates the exam himself, e.g., after answering all questions before the end of

the exam duration.

In general, all events are time stamped, however we parameterize them with time only

when it is relevant for the considered property. Moreover, we may omit some parameters

from the events when they are not relevant to the property. For instance, we may use

submit(i) when candidate i submits an answer regardless of his answer. Note that, the

events here are assumed to be recorded during the exam or built from data logs.

3.5.2 E-exams Requirements

In this section, we define the following eight properties that aim at ensuring e-exams

correctness:

− Candidate Registration: no unregistered candidate tries to participate in the exam

by submitting an answer.

− Candidate Eligibility : answers are accepted only from registered candidates.

96



Chapter 3. Exam Protocols

− Answer Authentication: all accepted answers are actually submitted by candidates,

and for each question at most one answer is accepted per candidate.

− Questions Ordering : all candidates answer the questions in the required order.

− Exam Availability : answers are accepted only during the examination time.

− Exam Availability with Flexibility : a variant of Exam Availability that supports

both flexible starting time and duration of the exam.

− Marking Correctness: all answers are marked correctly.

− Mark Integrity : each candidate assigned his mark.

Each property is defined as a QEA according to the formalism introduced in Section 2.3.

Note that, we extend the initial definition of QEAs in [BFH+12] by i) allowing variable

declaration and initialization before reading the trace, and ii) introducing the notion of

global variable shared among all event automaton instances. Global variables are mainly

needed in QEAs to keep track and report data at the end of monitoring.

Note that, each property represents a different e-exam requirement and can be mon-

itored independently. An exam run may satisfy one property and fail on another one,

which narrows the possible source of potential failures and allows to deliver a detailed

report about the satisfied and unsatisfied properties. Note also that we assume that an

input trace contains events related to a single exam run. To reason about traces with

events from more than one exam run, the events have to be parameterized with an exam

run identifier, which has to be added to the set of quantified variables.

3.5.2.1 Properties for Error Detection:

Candidate Registration: states that only already registered candidates can submit answers

to the exam. An exam run satisfies Candidate Registration if, for every candidate i,

event submit(i) is preceded by event register(i). A violation of Candidate Registration

does not reveal a weakness in the exam system (as long as the answers submitted from

unregistered candidates are not accepted by the authority). However, it allows us to

detect if a candidate tries to fake the system, which is helpful to be aware of spoofing

attacks.

Definition 3.27. (Candidate Registration). Candidate Registration is defined by

the QEA depicted in Figure 3.31 with alphabet ΣCR = {register(i), submit(i)}.

The input alphabet ΣCR for Candidate Registration contains only events register(i)

and submit(i), so any other events in the trace are ignored for this property. The QEA

for Candidate Registration has two accepting states, and one quantified variable i. As the
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∀i

1 2
register(i)

Figure 3.31: A QEA for Candidate Registration.

initial state is an accepting state, then the empty trace is accepted by the QEA. State

(1) is a square state, so an event submit(i) that is not preceded by event register(i)

leads to a failure. An event register(i) in state (1) leads to state (2) which is a skipping

(circular) state. Henceforth, given a candidate i any trace starting with event register(i)

is accepted.

The quantification ∀i means that the property must hold for all values that i takes

in the trace, i.e., the values obtained when matching the symbolic events in the spec-

ification with concrete events in the trace. For instance, consider the following trace:

register(i1).submit(i2).submit(i1) .register(i2). To decide whether it is accepted or

not, the trace is sliced based on the values that can match i, resulting in two slices:

i 7→ i1: register(i1).submit(i1), and i 7→ i2: submit(i2).register(i2). Then, each slice

is checked against the event automaton instantiated with the appropriate value for i.

The slice associated to i1 is accepted as it reaches the final state (2), while the slice

associated to i2 does not reach a final state since event submit(i2) leads from state (1)

to an implicit failure state. Therefore, the whole trace is not accepted by the QEA. Note

that, we omit parameters q and a from event submit(i, q, a) since only the fact that a

candidate i submits an answer is significant for the property, regardless of the question

he is answering, and the answer he submitted.

∀i

1 2
register(i)

Figure 3.32: A QEA for Candidate Eligibility.

Candidate Eligibility : states that no answer is accepted from an unregistered candidate.

It is modeled by a QEA similar to that of Candidate Registration depicted in Figure 3.31,

except that event submit(i, q, a) has to be replaced by accept(i, q, a) in the related

alphabet.

Definition 3.28. (Candidate Eligibility). Candidate Eligibility is defined by the QEA

depicted in Figure 3.32 with alphabet ΣCE = {register(i), accept(i, q, a)}.

Trace register(i1).accept(i2, q0, a2).accept(i1, q0, a1).register(i2) is not accepted by

Candidate Eligibility as an answer is accepted from the candidate i2 before he registered.
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Answer Authentication: states that all accepted answers are submitted by candidates.

Moreover, for every question, exactly one answer is accepted from each candidate that

submitted at least one answer to that question.

Definition 3.29. (Answer Authentication). Answer Authentication is defined by the

QEA depicted in Figure 3.33 with alphabet ΣAA = {submit(i, q, a), accept(i, q, a)}.

The QEA of Answer Authentication fails if an unsubmitted answer is accepted. A

candidate can submit more than one answer to the same question, however exactly one

answer has to be accepted. Note that, any answer among the submitted answers can

be accepted. However, the QEA can be updated to allow only the acceptance of the

last submitted answer by replacing set A with a variable, which acts as a placeholder

for the last submitted answer. If no answer is accepted after at least one answer has

been submitted, the QEA ends in the failure state (2), while acceptance of an answer

leads to the accepting state (3). A candidate can submit after having accepted an answer

from him to that question. However, if more than one answer is accepted, an implicit

transition from state (3) to a failure state is fired. The QEA of Answer Authentication

accepts the trace submit(i1, q0, a1).submit(i1, q0, a2).accept(i1, q0, a2), where candidate

i1 submits two answers a1 and a2 to question q0, then only a2 is accepted. While it

rejects the traces accept(i1, q, a), where an unsubmitted answer is accepted from i1, and

submit(i1, q, a1). submit(i1, q, a2). accept(i1, q, a1).accept(i1, q, a2), where two answers

to the same question are accepted from same candidate. Answer Authentication can be

∀i,∀q

1 2 3
submit(i, q, a)

A:=̂{a}

submit(i, q, a)
A:=A∪{a}

accept(i, q, a) [a∈A]

submit(i, q, a)

Figure 3.33: A QEA for Answer Authentication.

further split into three different properties which allow us to precisely know whether, only

submitted answers are accepted (Answer Submission Authentication), for every question

an answer is accepted from a candidate that submitted at least one answer (Acceptance

Ensurance), and only one answer is accepted from the same candidate for the same

question (Answer Singularity).

Definition 3.30. (Answer Submission Authentication). Answer Submission Au-

thentication is defined by the QEA depicted in Figure 3.33 with alphabet ΣASA =

{submit(i, q, a), accept(i, q, a)}.
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∀i,∀q

1 2
submit(i, q, a)

A:=̂{a}

submit(i, q, a)
A:=A∪{a}

accept(i, q, a) [a∈A]

Figure 3.34: A QEA for Answer Submission Authentication.

The QEA presented in Figure 3.34 fails when an unsubmitted answer is accepted from a

certain candidate regardless of whether that candidate submitted a different answer or not.

Traces accept(i1, q1, a1) and submit(i1, q1, a1).accept(i1, q1, a2) are both unaccepted

traces by QEA of Figure 3.34. In the former an answer for the question q1 is accepted

from candidate i1, which did not submit any answer to question q1. In the latter the

candidate i1 submitted an answer a1 while a different answer a2 is accepted from him.

Note that, it is allowed that no answer is accepted from a candidate, or multiple answers

are accepted from the same candidate as long as they are all submitted by that candidate.

Definition 3.31. (Acceptance Ensurance). Acceptance Ensurance is defined by the

QEA depicted in Figure 3.35 with alphabet ΣAE = {submit(i, q, a), accept(i, q, a)}.

∀i,∀q

1 2 3
submit(i, q, a)

accept(i, q, a)

submit(i, q, a)

accept(i, q, a)

Figure 3.35: A QEA for Acceptance Ensurance.

The QEA presented in Figure 3.35 fails when no answer is accepted from a candidate that

submitted at least one answer. Note that, the QEA succeeds even if the accepted answer

is not one of the submitted answers. The latter case leads to failure of QEA presented in

Figure 3.34.

Definition 3.32. (Answer Singularity). Answer Singularity is defined by the QEA

depicted in Figure 3.35 with alphabet ΣAS = {submit(i, q, a), accept(i, q, a)}.

The QEA presented in Figure 3.36 fails if more than one answer is accepted from the same

candidate to the same question, even if all the accepted answers are submitted ones. Traces

accept(i1, q1, a1) and submit(i1, q1, a1).accept(i1, q1, a1) are accepted traces. While

trace submit(i1, q1, a1).accept (i1, q1, a1).submit(i1, q1, a2).accept(i1, q1, a2) is an unac-

cepted trace as two answers are accepted from the same candidate to the same question.
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∀i,∀q

1 2
accept(i, q, a)

submit(i, q, a)

Figure 3.36: A QEA for Answer Singularity.

Questions Ordering : states that a candidate should not get a question before validating

his answer to the previous question. Note that, the previous properties formalize the

main requirements that are usually needed concerning answer submission and acceptance.

However, Questions Ordering might be required as an additional requirement.

Definition 3.33. (Question Ordering). Let q1, . . . , qn be n questions such that the

order ord(qk) of qk is k. Questions Ordering is defined by the QEA depicted in Figure 3.37

with alphabet ΣQO = {get(i, q), accept(i, q)}.

∀i, Initially c : =̂1

1 2

get(i, q) [ord(q)<c]

get(i, q) [ord(q)=c]

get(i, q) [ord(q)≤c]
accept(i, q) [ord(q)=c]

c++

Figure 3.37: A QEA for Questions Ordering.

The QEA of Questions Ordering fails if a candidate gets or an answer is accepted from

him for a higher order question before his answer to the current question is accepted.

This is ensured by the guard [ord(q) = c] on the self loop transition on state (2). Note

that, Questions Ordering also allows only one accepted answer per question. Otherwise,

there is no meaning for the order as the candidate can re-submit answers latter when he

gets all the questions.

Exam Availability : states that questions are obtained, and answers are submitted and

accepted only during the examination time. Exam Availability is necessary to ensure that

all candidates have took the exam during the examination phase.

Definition 3.34. (Exam Availability). Let t0 and tf be the starting and ending time

instants of the exam, respectively. Exam Availability is defined by the QEA depicted in

Figure 3.38 with alphabet ΣEA = {get(i, t), change(i, t), submit(i, t), accept(i, t)}.

The QEA of Exam Availability checks that all the events in ΣEA are emitted between t0
and tf . Note that, any other event can be added to ΣEA if required.

Exam Availability with Flexibility : is a variant of Exam Availability that supports exams
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1

ΣEA(i, t)
[t0≤t≤tf ]

Figure 3.38: A QEA for Exam Availability.

∀i

1 2 3
begin(i, t) [t1≤t≤t2]

tb:=̂t

accept(i, t) [tb≤t≤t2∧t−tb≤duration(i)]

end(i)

Figure 3.39: A QEA for Exam Availability with Flexibility.

with flexible starting and duration time. Some exams offer flexibility to the candidates,

so that a candidate is free to choose the beginning time within a certain specified period.

To capture that, we define Exam Availability with Flexibility which states that no answer

can be accepted from a candidate before he begins the exam, after he terminates the

exam, after the end of his exam duration, or after the end of the specified period. The

beginning time of the exam may differ from one candidate to another, but in any case it

has to be within a certain specified period. The exam duration may also differ between

candidates. For example, an extended duration may be offered to certain candidates with

disabilities.

Definition 3.35. (Exam Availability With Flexibility). Let t1 and t2 respectively

be the starting and the ending time instants of the allowed period, and let duration(i) be

the exam duration for candidate i. Exam Availability with Flexibility is defined by the

QEA depicted in Figure 3.39 with alphabet ΣEAF = {begin(i, t), end(i), accept(i, t)}.

Exam Availability with Flexibility also requires that, for each candidate i, there is only one

event begin(i, t) per exam. Hence, it fails if event begin(i) is emitted more than once. A

candidate can begin his exam at any time tb such that t1 ≤ tb ≤ t2. Note that, no answer

can be accepted from a candidate after then ending time t2 of the period, if the duration

of the candidate is not finished yet. Assume that t1 = 0, t2 = 1, 000, and that the exam

duration of i1 and i2 respectively are duration(i1) = 90 and duration(i2) = 60. Then,

trace begin(i1, 0).accept(i1, 24).begin(i2, 26).accept (i2, 62).accept(i1, 90) is accepted.

While, trace accept(i1, 5).begin (i1, 20) and trace begin(i1, 0).accept(i1, 91) are not

accepted since in the first one an answer is accepted from candidate i1 before he begins

the exam, and in the second one an answer is accepted after the exam duration expires.

Event submit is not included in ΣEAF, thus an answer submission outside the exam
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time is not considered as an irregularity if the answer is not accepted by the authority.

However, again other events (e.g., get and submit) can be considered. In such a case,

the QEA in Figure 3.39 has to be edited by looping over state (2) with any added event.

∀q, A : =̂∅

1 2

corrAns(q, a)
A:=̂A∪{a}

marked(q, a, b) [(b=1⇔a∈A)]

marked(q, a, b) [b=1⇔a∈A]

Figure 3.40: A QEA for Marking Correctness.

Marking Correctness : states that all answers are marked correctly. In the QEA of Marking

Correctness, the correct answers for the considered question are collected in a set A (self

loop over state (1)).

Definition 3.36. (Marking Correctness). Property Marking Correctness is defined

by the QEA depicted in Figure 3.40 with alphabet ΣMC = {corrAns(q, a), marked(q, a, b)}.

Instate (1), once an answer to the considered question is marked correctly, a transition

to state (3) is fired, otherwise if an answer is marked in a wrong way a transition to an

implicit failure state occurs. In state (3), the property fails either if an answer is marked

in a wrong way, or if an event corrAns(q, a) is encountered as this means that certain

answers are marked before all the correct answers are set.

Mark Integrity : states that all the accepted answers are marked, and that exactly one

mark is assigned to each candidate, the one attributed to his answers. Mark Integrity

together with Marking Correctness, guarantees that each candidate participating in the

exam gets the correct mark corresponding to his answers.

Definition 3.37. (Mark Integrity). Property Mark Integrity is defined by the QEA de-

picted in Figure 3.41 with alphabet ΣMI = {accept(i, q, a), marked(q, a, b), assign(i,m)}.

The QEA of Mark Integrity collects, for each candidate, the answers that he submitted in

set A. For each accepted answer, the QEA accumulates the corresponding score b in the

sum s. If the accepted answers are not marked, the property fails (failure state (2)). If

the candidate is not assigned a mark or assigned a wrong mark the property fails (failure

state (3)). Once the correct mark is assigned to the candidate, if another mark is assigned

or any other answer is accepted from him, the property fails (square state (4)).
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∀i

1 2

34

marked(q, a, b)

accept(i, q, a)
A:=̂{(q,a)}

accept(i, q, a)
A:=A∪{(q,a)}

marked(q, a, b) [(q,a)/∈A]

marked(q, a, b) [(q,a)∈A]
A:=A\{(q,a)}; s:=̂b

marked(q, a, b) [(q,a)/∈A]

accept(i, q, a)
A:=A∪{(q,a)}

marked(q, a, b) [(q,a)∈A]
A:=A\{(q,a)}; s:=s+b

assign(i,m) [m=s∧A=∅]

marked(q, a, b)

Figure 3.41: A QEA for Mark Integrity.

3.5.2.2 Properties for Error Reporting

In the previous formalization, a property fails when its requirement is violated. However, it

does not identify the entities that violate the requirement. In the following, we propose for

each property an alternative that reports at the end all entities that violate the requirement

of the property. In general, an alternative property ensures the same requirement(s) of

the original regular property and has same input alphabet, but additionally reports some

data at the end. Whenever the requirements formalized by the following QEAs differ

from their counterparts in the previous subsection, we mention it.

Candidate Registration with Auditing : fails if an unregistered candidate submitted an

answer, and at the same time collects all such candidates in a set F.

Definition 3.38. (Candidate Registration with Auditing). Candidate Registration

with Auditing is defined by the QEA depicted in Figure 3.42 with alphabet ΣCRA =

{register(i), submit(i)}.

The QEA of Candidate Registration with Auditing has three free variables I, F, and i,

and no quantified variable. Instead of being instantiated for each candidate i, the QEA

of Candidate Registration with Auditing collects all the registered candidates in set I,

so that any occurrence of event submit(i) at state (1) with i /∈ I fires a transition to

the failure state (2). Such a transition results in the failure of the property since all

transitions from state (2) are self-looping transitions. Set F is used to collect all the
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Initially: I : =̂ ∅

1 2

register(i)
I:=I∪{i}

submit(i, q, a) [i/∈I]
F:=̂{(i,q,a)}

register(i)
I:=I∪{i}

submit(i, q, a) [i/∈I]
F:=F∪{(i,q,a)}

Figure 3.42: A QEA for Candidate Registration with Auditing.

unregistered candidates that submitted an answer, i.e., those that violate the requirement.

For example, trace register(i1).submit(i2, q, a2).submit(i1, q, a1) .register(i2) is not

accepted by Candidate Registration with Auditing , and results in the set F = {(i2, q, a2)}.

Candidate Eligibility with Auditing : fails when an answer is accepted from an unregistered

candidate, and reports all such candidates in a set F.

Definition 3.39. (Candidate Eligibility with Auditing). Candidate Eligibility

with Auditing is defined by the QEA depicted in Figure 3.43 with alphabet ΣCEA =

{register(i), accept(i, q, a)}.

Initially: I : =̂ ∅

1 2

register(i)
I:=I∪{i}

accept(i, q, a) [i/∈I]
F:=̂{(i,q,a)}

register(i)
I:=I∪{i}

accept(i, q, a) [i/∈I]
F:=F∪{(i,q,a)}

Figure 3.43: A QEA for Candidate Eligibility with Auditing.

Note that, the QEA of Candidate Eligibility with Auditing is similar to the QEA of

Candidate Registration with Auditing , except that the event submit(i, q, a) is replaced by

the event accept(i, q, a).

Answer Authentication with Auditing : fails when an unsubmitted answer is accepted, no

answer to a certain question is accepted from a candidate that submitted an answer for

that question, or more than one answer is accepted from the same candidate to the same

question. The QEA of Answer Authentication with Auditing collects in a set F1 all the

unsubmitted answers that are accepted together with the corresponding candidates and

questions. It also collects in a set F2 the further accepted answers to the same question

from the same candidate. Note that, when the first answer is accepted the free variable c

is set to 1. The sets F1 and F2 are globally defined, and thus they are shared between all
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the instances of the QEA which result from the instantiation of the QEA for different i

and q.

Definition 3.40. (Answer Authentication with Auditing). Answer Authentication

is defined by the QEA depicted in Figure 3.33 with alphabet ΣAAA = {submit(i, q, a),

accept(i, q, a)}.

Global: F1 : =̂∅ F2 : =̂∅, ∀i,∀q, A : =̂∅

1 2

34
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submit(i, q, a)
A:=A∪{a}
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a)

[a
/∈A

]

F1
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(i
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)};
c:=̂

0
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c
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e
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t
(i,q,a

)
[a∈

A
]

c:=̂
1

submit(i, q, a) A:=A∪{a}

accept(i, q, a) [a/∈A]
F1:=F1∪{(i,q,a)}

accept(i, q, a) [a∈A]
F2:=F2∪{(i,q,a)}

submit(i, q, a) A:=A∪{a}

accept(i, q, a) [a∈A∧c=0]
c:=1

accept(i, q, a) [a/∈A]
F1:=F1∪{(i,q,a)}

accept(i, q, a) [a∈A∧c=1]
F2:=F2∪{(i,q,a)}

Figure 3.44: A QEA for Answer Authentication with Auditing.

Questions Ordering with Auditing : states that all the candidates have to answer the

questions in the required order. Additionally, it collects in a set F all candidates that get

a higher order question before their answer to the current question is accepted. Also, a

candidate which an answer is accepted from him for a question different from the current

question is added to F. Note that, the set F is a global set.

Definition 3.41. (Questions Ordering with Auditing). Let q1, . . . , qn be n questions

such that the order ord(qk) of qk is k. Questions Ordering with Auditing is defined by

the QEA depicted in Figure 3.45 with alphabet ΣQOA = {get(i, q), accept(i, q)}.

Exam Availability with Auditing : checks that all the events in ΣEA are emitted between

t0 and tf . It also collects all the candidates that violate the requirements in a set F.
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Global: F : =̂∅, ∀i, c : =̂1

1 2 3

get(i, q) [ord(q)<c]

get(i, q) [ord(q)>c]
F:=F∪{i}

accept(i, q)
F:=F∪{i}

get(i, q) [ord(q)=c]

get(i, q) [ord(q)≤c]

accept(i, q) [ord(q)=c]
c++

accept(i, q) [ord(q) 6=c]
F:=F∪{i}

get(i, q) [ord(q)>c]
F:=F∪{i}

Figure 3.45: A QEA for Questions Ordering with Auditing.

1 2
ΣEA(i, t)

[t0>t∨t>tf ]
F:=̂{i}

ΣEA(i, t)
[t0>t∨t>tf ]
F:=F∪{i}

Figure 3.46: A QEA for Exam Availability with Auditing.

Definition 3.42. (Exam Availability with Auditing). Let t0 and tf resp. be the

starting and finishing time of the exam. Exam Availability with Auditing is defined by the

QEA depicted in Figure 3.46 with alphabet ΣEAA = {get(i, t), submit(i, t), accept(i, t)}.

Exam Availability with Flexibility Auditing : collects all the candidates that violate the

requirements of Exam Availability with Flexibility in a global set F.

Definition 3.43. (Exam Availability With Flexibility Auditing). Let t1 and t2
respectively be the starting and the finishing of the allowed period, and let duration(i) be

the exam duration of candidate i. Exam Availability with Flexibility Auditing is defined by

the QEA depicted in Figure 3.47 with alphabet ΣEAF = {begin(i, t), end(i), accept(i, t)}.

Marking Correctness with Auditing : collects all the answers that are marked in a wrong

way in a global set F. Note that, the fact that, for a question q, no event corrAns(q, a)

can be emitted after the marking of the first answer is marked is relaxed. Simply, an

answer that is not declared as an correct answer yet is considered a wrong answer.

Definition 3.44. (Marking Correctness with Auditing). Property Marking Cor-

rectness with Auditing is defined by the QEA depicted in Figure 3.48 with alphabet

ΣMC = {corrAns(q, a), marked(q, a, b)}.

Mark Integrity with Auditing : states that all the accepted answers are marked, and that

exactly one mark is assigned to each candidate, the one attributed to his answers. Note

that, a candidate that does not participated in the exam, i.e., no answer is accepted
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Global F : =̂∅, ∀i

1 2 3

4

begin(i, t) [t1≤t≤t2]
tb:=̂t

accept(i, t) [t≤t2∧t−tb≤duration(i)]

end(i, t)

begin(i, t) [t≤t1]
F:=F∪{i}

accept(i, t)
F:=F∪{i}

end(i, t)
F:=F∪{i}

ΣEAF F:=F∪{i}

begin(i, t)
F:=F∪{i}

accept(i, t) [t>t2∨t−tb>duration(i)]
F:=F∪{i}

Figure 3.47: A QEA for Exam Availability With Flexibility Auditing.

from him, is assigned no mark. While, a candidate that participated in the exam but

none of his answers is a correct answer is assigned the mark 0. Set F1 collects all the

candidates that their first assigned mark is wrong. While, set F2 collects all the further

marks assigned for the candidates regardless if they are correct or not.

Definition 3.45. (Mark Integrity with Auditing). Mark Integrity with Auditing

is defined by the QEA depicted in Figure 3.49 with alphabet ΣMI = {accept(i, q, a),

marked(q, a, b), assign(i,m)}.

3.5.3 Case Study: UJF E-exam

In June 2014, the pharmacy faculty at UJF organized a first e-exam, as a part of Epreuves

Classantes Nationales informatisées project which aims to realize all medicine exams

electronically by 2016. The project is lead by UJF and the e-exam software is developed

by the company THEIA specialized in e-formation platforms. This software is currently

used by 39 French universities.

A : =̂∅

1 2

corrAns(q, a)
A:=̂A∪{(q,a)}

marked(q, a, b) [(b=1<a∈A)]
F:=̂{(q,a)}

corrAns(q, a)
A:=̂A∪{(q,a)}

marked(q, a, b) [(b=1<a∈A)]
F:=F∪{(q,a)}

Figure 3.48: A QEA for Marking Correctness with Auditing.
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Global: F1 : =̂∅, F2 : =̂∅, ∀i

1 2

34

5

marked(q, a, b)

accept(i, q, a)
A:=̂{(q,a)}

accept(i, q, a)
A:=A∪{(q,a)}

marked(q, a, b) [(q,a)/∈A]
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e
d
(q,a

,b)
[(q
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)∈
A
]

A
:=

A\{
(q
,a

)}
;
s:=̂

b

marked(q, a, b) [(q,a)/∈A]

accept(i, q, a)
A:=A∪{(q,a)}

marked(q, a, b) [(q,a)∈A]
A:=A\{(q,a)}; s:=s+b

assign(i,m) [mc=s∧A=∅]
ic:=̂i, mc:=̂m

marked(q, a, b)

assign(i,m)
F1:=̂{(i,m)}

as
si
gn

(i,
m) F1:

=̂{(
i,m

)}

assign(i,m) [m 6=s∨A6=∅]accept(i, q, a)
F1:=̂{(ic,mc)}

assign(i,m)
F2:=̂{(i,m)}

assign(i,m)
F2:=̂{(i,m)}

Figure 3.49: A QEA for Mark Integrity with Auditing.

We validate our framework by verifying two real e-exam executions passed with this

system. All the logs received from the e-exam organizer are anonymized; nevertheless we

were not authorized to disclose them. We use MarQ16 [RCR15] (Monitoring At Runtime

with QEA) to model the QEAs and perform the verification. We provide a description

for this system that we call UJF e-exam, before presenting the results of our analysis.

Exam Description. The UJF exam consist of the following four phases.

Registration: the candidates have to register two weeks before the examination time.

Each candidate receives a username/password to authenticate at the examination.

Examination: the exam takes place in a supervised room. Each student handled a

previously-calibrated tablet to pass the exam. The internet access is controlled: only IP

addresses within an certain range are allowed to access the exam server. A candidate

starts by logging in using his username/password. Then, he chooses one of the available

exams by entering the exam code, which is provided at the examination time by the

invigilator supervising the room. Once the correct code is entered, the exam starts and the

first question is displayed. The pedagogical exam conditions mention that the candidates

have to answer the questions in a fixed order and cannot get to the next question before
16 https://github.com/selig/qea
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answering the current one. A candidate can change the answer as many times as he

wants before validating, but once he validates, then he cannot go back and change any

of the previously validated answers. Note that, all candidates have to answer the same

questions in the same order. A question might be a one-choice question, multiple-choice

question, open short-text question, or script-concordance question.

Marking : after the end of the examination phase, the grading process starts. For each

question, all the answers provided by the candidates are collected. Then, each answer

is evaluated anonymously by an examiner to a mark of 0 if it is wrong, 0 < s < 1 if

it is partially correct, or 1 if it is correct. An example of a partially-correct answer is

when a candidate provides only one of the two correct answers for a multiple-choice

question. The professor specifies the correct answer(s) and the scores to attribute to

correct and partially-correct answers, as well, as the potential penalty. After evaluating

all the provided answers for all questions, the total mark for each candidate is calculated

as the summation of all the scores attributed to his answers.

Notification: the marks are notified to the candidates. A candidate can consult his

submission, obtain the correct answer and his score for each question.

Analysis. We analyzed two exams: Exam 1 involves 233 candidates and contains 42

questions for a duration of 1h35. Exam 2 involves 90 candidates, contains 36 questions

for a duration of 5h20. The resulting traces for these exams are respectively of size

1.85 MB and 215 KB and contain 40,875 and 4,641 events. The result of our analysis

together with the time required for MarQ to analyze the whole trace on a standard PC

(AMD A10-5745M–Quad-Core 2.1 GHz, 8 GB RAM), are summed up in Table 3.8. (X)

means satisfied, (×) means not satisfied, and (−) indicates the number of candidates

that violate the requirements of the property. Note that, some required data are not

logged by UJF. Thus, we were not able to verify all our eight properties. Only four

of the eight general properties presented in Section 3.5.2.1 were compatible with UJF

E-exam. Concerning error reporting properties, MarQ tool did not support all of them.

In particular, current version of MarQ tool does not support global variables that are

needed of these properties. However, we considered five additional and specific properties

for the UJF exam which help us to identify the source of error for some properties, and

also to detect some candidates that violate the requirements (see below for details).

Property Candidate Registration was satisfied, that is, no unregistered candidate

submits an answer. Candidate Eligibility is also satisfied. We note that, in MarQ tool

the Candidate Eligibility monitor stops monitoring as soon as a transition to state (2)

is made since there is no path to success from state (2). Thus, only the first candidate

that violate the requirements is reported. In order to report all such candidates, we had

to add an artificial transition from state (2) to an accepting state that could never be

taken. Then, monitoring after reaching state (2) remains possible. Moreover, the current
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Global: F : =̂∅ ∀q

1 2 3
accept(i, q, a)

A:=̂{i}

accept(i, q, a) [i/∈A]
A:=A∪{i}

accept(i, q, a) [i∈A]
F:=̂{i}

accept(i, q, a) [i/∈A]
A:=A∪{i}

accept(i, q, a) [i∈A]
F=F∪{i}

Figure 3.50: A QEA for Answer Authentication Reporting.

implementation of MarQ does not support sets of tuples. Consequently, we could only

collect the identities i in a set F instead of the tuples (i, q, a).

Answer Authentication was violated only in Exam 1. We reported the violation to the

e-exam’s developers. The violation actually revealed a discrepancy between the initial

specification and the current features of the e-exam software: a candidate can submit the

same answer several times and this answer remains accepted. Consequently, an event

accept can appear twice but only with the same answer. To confirm that the failure of

Answer Authentication is only due to the acceptance of a same answer twice, we update

the property Answer Authentication and its QEA presented in Figure 3.33 by storing the

accepted answer in a variable av, and adding a self loop transition on state (3) labeled by

accept(i, q, a) [a=av ] . We refer to this new weaker property as Answer Authentication∗,

which differs from Answer Authentication by allowing the acceptance of the same answer

again; but it still forbids the acceptance of a different answer. We found out that Answer

Authentication∗ is satisfied, which confirms the claim about the possibility of accepting

the same answer twice. After diagnosing the source of failure, we defined property Answer

Authentication Reporting presented in Figure 3.50, which fails if more than one answer

(identical or not) is accepted from same candidate to same question. At the same time,

it collects all such candidates in a set F. Answer Authentication Reporting is defined

by the QEA depicted in Figure 3.50 with the input alphabet ΣAAR = {accept(i, q, a)}.
The analysis of Answer Authentication Reporting shows that, for Exam 1, there is only

one candidate such that more than one answer are accepted from him to the same

question. The multiple answers that are accepted for the same question are supposed to

be equal since Answer Authentication∗ is satisfied. Note that MarQ currently does not

support global variables, so for Answer Authentication Reporting , a set is required for

each question. Note that for Exam 1, Answer Authentication required less monitoring

time than Answer Authentication∗ and Answer Authentication Reporting as the monitor

for Answer Authentication stops monitoring as soon as it finds a violation.

Furthermore, UJF exam has a requirement stating that after acceptance the writing

field is “blocked” and the candidate cannot change it anymore. Actually, in UJF exam

when a candidate write a potential answer in the writing field the server stores it
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∀i, ∀q

1 2

change(i, q)

accept(i, q, av)

accept(i, q, a) [a=av ]

Figure 3.51: A QEA for Answer Integrity.

∀i

1 2 3

change(i, q) [ord(q)=1]

accept(i, q) [ord(q)=1]
c:=̂2

accept(i, q) [ord(q)=c]
c++

accept(i, q) [ord(q)<c]

change(i, q) [ord(q)<c]

change(i, q) [ord(q)=c]

change(i, q) [ord(q)≤c]

accept(i, q) [ord(q)<c]

accept(i, q) [ord(q)=c]
c++

Figure 3.52: A QEA for Questions Ordering∗.

directly, and once the candidate validates the question the last stored answer is accepted.

As Answer Authentication shows, several answers can still be accepted after the first

acceptance, then the ability of changing the answer in the writing field could result

in an acceptance of a different answer. For this purpose, we defined the property

Answer Integrity that states that a candidate cannot change the answer after acceptance.

Answer Integrity is defined by the QEA depicted in Figure 3.51 with the input alphabet

ΣAE = {change(i, q), accept(i, q, a)}. Note that, we allowed the acceptance of the same

answer to avoid the bug found by Answer Authentication. Our analysis showed that

Answer Integrity was violated in Exam 2: at least one student was able to change the

content of the writing field after having his answer accepted.

Concerning Questions Ordering the developers did not log anything related to the event

get(i, q). However, we defined Questions Ordering∗ which fails if a candidate changes the

writing field of a future question before an answer for the current question is accepted.

Questions Ordering∗ is defined by the QEA depicted in Figure 3.52 with the input

alphabet ΣQO′ = {change(i, q), accept(i, q)}. The idea is that if a candidate changes the

answer field of a question, he must have received the question previously. Moreover, we

allow submitting the same answer twice, and also changing the previous accepted answers

to avoid the two bugs previously found. Note that, UJF exam requires the candidate

to validate the question even if he left it blank, thus we also allow acceptance for the

current question before changing its field (self loop above state (2)). The analysis showed

that Questions Ordering∗ was violated in both exams. Note that, the manual check

of Questions Ordering∗ showed that the candidates were able to skip certain questions
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∀i, c : =̂1

1

accept(i, q) [ord(q)≥c]
c:=ord(q)

Figure 3.53: A QEA for Acceptance Order.

Exam 1 Exam 2
Property Result Time (ms) Result Time (ms)

Candidate Registration X 538 X 230
Candidate Eligibility X 517 X 214

Answer Authentication × 310 X 275
Answer Authentication∗ X 742 X 223

Answer Authentication Reporting ×(1) 654 X 265
Answer Integrity X 641 × 218

Questions Ordering∗ × 757 × 389
Acceptance Order X 697 X 294
Exam Availability X 518 ×(1) 237

Table 3.8: Results of the off-line monitoring of two UJF exam runs.

(after writing an answer) without validating them, and then validating the following

questions. As we found a violation for Questions Ordering∗, we defined Acceptance Order

that checks, for each candidate, whether all the accepted answers are accepted in order,

i.e., there should be no answer accepted for a question that is followed by an accepted

answer for a lower order question. Acceptance Order is defined by the QEA depicted in

Figure 3.53 with the input alphabet ΣAO = {accept(i, q, a)}.

Exam Availability is also violated in Exam 2. A candidate was able to change and

submit an answer, which is accepted, after the end of the exam duration. We could

not analyze Exam Availability with Flexibility , since it is not supported by the exam.

We also did not consider Marking Correctness, and Mark Integrity properties since the

developers did not log anything concerning the marking and the notification phase is

done by each universities and we were not able to get the logs related to this phase. This

shows that usually universities only looks for cheating candidates, and do not look for

internal problems or insider attacks. We expect the developers of the e-exam software

to include logging features for every phase. Note that, we implemented all properties in

MarQ and validated them on toy traces as we expect to obtain the actual traces of the

marking phase in the near future.
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3.6 Conclusion

In this chapter we studied exam protocols. We identify and define several desirable

authentication, privacy, verifiability, and monitoring properties. We defined authentication

and privacy properties in the Applied π-Calculus, and automatically analyzed using

ProVerif the protocols due to Huszti & Pethő [HP10], Giustolisi et al. [GLR14], and

Université Grenoble Alpes. Our analysis shows that Huszti & Pethő protocol indeed

satisfies none of the nine authentication and privacy properties. Authentication is

compromised because of inaccuracies in the protocol design, whereas most of attacks

invalidating privacy exploit attacks on the RARC. These attacks compromise secrecy

and anonymity of the messages, and exploit the absence of a proof of knowledge of the

submitted message to the RARC, which allows its use as a decryption oracle. Such a

proof is not explicitly required in the original specification of the RARC, and is certainly

missing in the H&P protocol: the “exam authority” is required to forward questions

and answers without knowing them, and thus cannot prove knowledge of them when

submitting them to the RARC. Even when assuming a perfect RARC ensuring anonymity,

we still have attacks on all properties. Thus, we think that fixing the RARC is not

sufficient – the protocol requires fundamental changes. Remark! protocol presents a

weakness concerning Form Authenticity. We propose a fix and formally verify that the

(fixed) protocol satisfies all the properties herein considered. Université Grenoble Alpes

exam fails to satisfy Anonymous Examiner and Mark Privacy.

In the second part of the chapter, we proposed general abstract definitions of exam

Verifiability properties. For each property, we define the soundness and completeness

conditions for the related verification test. Then, we instantiated our properties and

analyzed with the help of ProVerif the protocols due to Giustolisi et al. [GLR14], and

Université Grenoble Alpes. The analysis of Giustolisi et al. shows that all properties but

three are satisfied without assuming that the exam’s roles are honest. However, Marking

Correctness holds only assuming an honest exam authority. In fact, a student can check

her mark by using the exam table, but this is posted on the bulletin board by the exam

authority who can nullify the verification of correctness by tampering with the table.

Whereas the analysis of Université Grenoble Alpes exam shows that it satisfies all the

verifiability properties under the assumption that authorities and examiner are honest.

This seems to be peculiar to paper-and-pencil exams, where log-books and registers are

managed by the authorities that can tamper with them. Only Marking Correctness holds

even in presence of dishonest authorities and examiner: here, a candidate can consult

her exam-test after marking, thus verifying herself whether her mark has been computed

correctly.

In the final part, we defined monitors that allow us to check the exam requirements

at runtime. Then, we implemented these monitors and analyzed an e-exam organized
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by Université Joseph Fourier using MarQ tool. The analysis reveals both fraudulent

students and discrepancies between the specification and the implementation. Note that,

due to the lack of logs about the marking and notification phases, we were not able

to analyze all properties. The UJF E-exam case study clearly demonstrates that the

developers do not think to log these two phases where there is less interaction with the

candidates. However, we believe that monitoring the marking phase is essential since a

successful attempt from a bribed examiner or a cheating student can be very effective.

As a future work, it would be interesting to model the full Huszti & Pethő protocol

with RARC as we analyzed RARC alone due to ProVerif termination problem. Also,

it would be great to automatize the manual proofs used to prove the general case of

universal verifiability properties. Another line of research is to study novel properties

such as accountability, which allows them to identify which party is responsible when the

verification fails. Few works go in this direction: Küsters et al. [KTV10] have studied

accountability, however, their framework needs to be instantiated for each application

by identifying relevant verifiability goals. As we identified several verifiability properties

relevant for exam protocols, one may study how their accountability framework can be

applied to case of exam protocols. Bella et al. [BGLR15] have proposed an accountability

property, which allows to identify the responsible party when a candidate fails to submit

an answer or to receive the corresponding mark. They have analyzed their protocol

and have shown that it satisfies this property. However, more accountability properties

need to be defined to identify the responsible parties when the verifiability properties

we propose in this thesis fails. With respect to runtime verification, one direction is

to perform the verification of marking related properties, as well as, to perform online

verification with our monitors during live e-exams, and to study to what extent runtime

enforcement can be applied during a live e-exam run. Online verification requires to

deliver events to the monitor at the time they are generated by the system in order to

check them and take a verdict. This introduces additional overheads and may cause

scalability problems depending on the size of the system and number of events generated

per second. Another direction is to study more expressive and quantitative properties

that might detect possible collusions between students through similar answer patterns.
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Chapter 4
e-Cash Protocols

Electronic cash (e-cash) aims at achieving client privacy during payment, similar to real

cash. Due to digital nature of electronic coins security against abuse of individuals is also

a main concern to prevent generating fake coins, or spending the same coin twice. In this

chapter, we propose a formal framework to define, and verify security properties of e-cash

protocols. We define two client privacy properties and three properties to prevent forgery.

Then, we apply our definitions and analyze using ProVerif the Chaum protocol [Cha82],

the DigiCash protocol1, and the Chaum et al. protocol [CFN88].
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4.1 Introduction

Although current banking and electronic payment systems such as credit cards or, e.g.,

PayPal allow clients to transfer money around the world in a fraction of a second, they
1 DigiCash Inc. was an electronic money corporation founded by David Chaum in 1990. The protocol
used by DigiCash has been presented by Berry Schoenmakers in [Sch97].
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do not fully ensure the clients’ privacy. In such systems, no transaction can be made in a

completely anonymous way, since the bank or the payment provider knows the details of

the clients’ transactions. By analyzing a client payments for, e.g., transportations, hotels,

restaurants, movies, clothes, and so on, the payment provider can typically deduce the

client’s whereabouts, and much information about his lifestyle.

Physical cash provides better privacy: the payments are difficult to trace as there is no

central authority that monitors all transactions, in contrast to most electronic payment

systems. This property is the inspiration for “untraceable” e-cash systems. The first such

e-cash system preserving the client’s anonymity was presented by David Chaum [Cha82].

A client can withdraw a coin anonymously from his bank and spend it with a seller. The

seller can then deposit the coin at the bank, who will credit his account. In this protocol

coins are non-transferable, i.e., the seller cannot spend a received coin again, but has to

deposit it at the bank. If he wants to spend a coin in another shop, he has to withdraw a

new coin from his account, similar to the usual payment using cheques. In contrast, there

are protocols where coins are also transferable, i.e., coins do not need to be deposited

directly after each spend, but can be used again, e.g., [OO89,CGT08].

To be secure, an e-cash protocol should not only ensure the client’s privacy, but must

also ensure that a client cannot forge coins which were not issued by the bank. Moreover,

it must protect against double spending – otherwise a client may use the same coin

multiple times. This can be achieved by using online payments, i.e., a seller has to contact

the bank at payment before accepting the coin, however it is an expensive solution. An

alternative solution, which is usually used to support offline payments (i.e., a seller can

accept the payment without contacting the bank), is to reveal the client’s identity if he

spends a coin twice. Note that to avoid double spending, systems like Bitcoin [Nak08]

uses a decentralized approach, where a consensus among users substitutes the bank. So,

when a transaction is made it exposure to double spending with less and less risk as it

gains confirmations. Finally, exculpability ensures that an attacker cannot forge a double

spend, and hence incorrectly blame an honest client for double spending.

Contributions. We provide in this chapter the following contributions:

− We propose a formal framework to verify security properties of non-transferable

e-cash protocols. We model e-cash systems in the Applied π-Calculus [AF01]. Then,

we define two client privacy properties and three properties to prevent forgery.

− We illustrate our model by analyzing using ProVerif [Bla01] three case studies:

the Chaum protocol [Cha82], the DigiCash protocol, and the Chaum et al. proto-

col [CFN88].

Outline of the Chapter. In Section 4.2, we discuss the related work. We formally

model e-cash protocol in Applied π-Calculus in Section 4.3. Then, we define the forgery
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related properties in Section 4.4.1 and the privacy properties in Section 4.4.2. In Sec-

tions 4.5.1, 4.5.2, and 4.5.3, we respectively analyze the protocols due to Chaum [Cha82],

DigiCash [Sch97], and Chaum et al. [CFN88]. Finally, we conclude in Section 4.6.

4.2 Related Work

In the literature, several e-cash protocols have been proposed [Cha82,CFN88,Dam88,

DC94,Cre94,Bra93,AF96,KO02,FHY13]. For example, Chaum [Cha82] has proposed an

online e-cash protocol based on blind signature. Latter, Chaum et al. [CFN88] presented

an offline variant of this protocol. Berry Schoenmakers has described a real e-cash

protocol that is implemented by DigiCash based on online Chaum protocol [Cha82]. Abe

et al. [AF96] have introduced a scheme based on partial blind signature, which allows the

signer (the bank) to include certain information in the blind signature of the coin, for

example the expiration date or the value of the coin. Kim et al. [KO02] have proposed an

e-cash system that supports coin refund and assigns them a value, based again on partial

blind signature.

At the same time, several attacks have been found against various existing e-cash

protocols: for example Pfitzmann et al. [PW91,PSW95] break the anonymity of [Dam88,

DC94,Cre94]. Cheng et al. [CYS05] show that Brand’s protocol [Bra93] allows a client

to spend a coin more than once without being identified. Aboud and Agoun [AA14]

show that [FHY13] cannot ensure the anonymity and unlinkability properties that were

claimed. These numerous attacks triggered some first work on formal analysis of e-cash

protocols in the computational [CG08] and symbolic world [LCPD07,SK14]. Canard and

Gouget [CG08] provide formal definitions for various privacy and unforgeability properties

in the computational world, but only with manual proofs as their framework is difficult

to automate. In contrast, Luo et al. [LCPD07] and Thandar et al. [SK14] both rely on

automatic tools (ProVerif [Bla01], and AVISPA [ABB+05] respectively). Yet, they only

consider a fraction of the essential security properties, and for some properties Luo et al.

only perform a manual analysis. Moreover, much of their reasoning is targeted on their

respective case studies, and cannot easily be transferred to other protocols.

4.3 Modeling E-cash Protocols

In this section, we model e-cash protocol in the Applied π-Calculus. An e-cash system

involves the following parties: the client C who has an account at the bank, the seller S

who accepts electronic coins, and the bank B, which certifies the electronic coins. E-cash

protocols typically run in three phases:
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1. Withdrawal: the client withdraws an electronic coin from the bank, which debits

the client’s account.

2. Payment: the client spends the coin by executing a transaction with a seller.

3. Deposit: the seller deposits the transaction at the bank, which credits the seller’s

account.

In addition to these three main phases, some systems allow the clients:

(a) to return coins directly to the bank without using them in a payment, for instance

in case of expiration, or to re-distribute the coins denominations, and

(b) to restore coins that have been lost, for instance due to a hard disk crash.

As these functionalities are not implemented by all protocols, our model does not require

them. Moreover, we assume that the coins are neither transferable nor divisible. We

define an e-cash protocol as a tuple of processes each representing the role of a certain

party.

Definition 4.1. (E-cash Protocol). An e-cash protocol is a tuple (B,S,C, ñp), where

B is the process executed by the bank, S is the process executed by the sellers, C is the

process executed by the clients, and ñp is the set of the private channel names used by the

protocol.

To reason about privacy properties, we use concrete instances of an e-cash protocol, called

e-cash processes.

Definition 4.2. (E-cash Process). Given an e-cash protocol, an e-cash process is a

closed plain process:

CP ≡ νñ.(B|Sσids1 | . . . |Sσidsl |

(Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 )|
...

|(Cσidckσck1σidsk1 | . . . |Cσidckσckpkσidskpk ))

where ñ is the set of all restricted names which includes some of the protocol’s private

channels ñp; B is the process executed by the bank; Sσidsi is the process executed by the

seller whose identity is specified by the substitution σidsi; Cσidciσcijσidsij is the process

executed by the client whose identity is specified by the substitution σidci , and which spends

the coin identified by the substitution σcij to pay the seller with the identity specified by

the substitution σidsij . Note that idci can spend pi coins.
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Similar to previous chapter, we introduce the notation of e-cash context in order to

improve the readability of our definitions. An e-cash context CPI [ ] is an e-cash

process CP with “holes” for all processes executed by the parties whose identities

are included in a set I. For example, to enumerate all the sessions executed by

the Client idc1 without repeating the entire e-cash instance, we can rewrite CP as

CP{idc1}[Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 ].

Definition 4.3. (E-cash Context). Let I be a set such that I ⊆ IS ∪ IC ∪{idB} where
IS is the set of all sellers, IC is the set of all clients, idB identifies the bank B. Then,

given an e-cash process

CP ≡ νñ.(B|Sσids1 | . . . |Sσidsl |

(Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 )|
...

|(Cσidckσck1σidsk1 | . . . |Cσidckσckpkσidskpk ))

we define e-cash context CPI [ ] as follows:

CPI [ ] ≡ νñ.
(

(B)k|Sσidsi
idsi /∈I

| |(Cσidci
idci /∈I

σci1σidsi1 | . . . |Cσidciσcipiσidsipi )
)

where k = 0 if idB ∈ I, and k = 1 otherwise.

We also use the notation Cw to denote a client that withdraws a coin, but does not spend

it in a payment: Cw is a variant of the process C that halts at the end of withdrawal

phase, i.e., where the code corresponding to the payment phase is removed. Note, only

honest parties are modeled in an e-cash process. Honest parties are those that follow the

protocol’s specification, and particularly neither reveal their secret data (e.g., account

numbers, keys etc.) to the attacker, nor take malicious actions such as double spending a

coin or generating fake transactions. In addition to the attacker, we consider corrupted

parties, who communicate with the attacker, share personal data with him, or receive

orders from him. Again as in exams, we model a corrupted party as P ch1,ch2 which is

introduced in the Definition 2.2 in Section 2.1.1.

To define forgery related properties, we use the following events, sets, and function:

− withdraw(c): is an event emitted when the coin c is withdrawn. This event is

placed inside the bank process just after the bank outputs the coin’s certificate

(e.g., a signature on the coin).

− spend(c): is an event emitted when the coin c is spent. This event is placed inside

the seller process just after he receives and accepts the coin.
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− TR: is the set of all possible transactions.

− ID: is the set of all client identities.

− D: is a special data set that includes the data known to the bank after the protocol

execution, e.g., the data presents in the bank’s database.

− transId: is a function that takes a transaction tr ∈ TR and returns a pair (s, c),

where s identifies tr and c is the coin involved in tr. Such a pair can usually be

computed from a transaction.

4.4 Security Properties

We first define three forgery related properties: Unforgeability, Double Spending Identifi-

cation, and Exculpability, before defining two privacy properties: Weak Anonymity and

Strong Anonymity.

4.4.1 Forgery-Related Properties

In an e-cash protocol a client must not be able to create a coin without involving the

bank, resulting in a fake coin, or to double spend a valid coin he withdrew from the bank.

This is ensured by Unforgeability, which says that the clients cannot spend more coins

than they withdrew.

Definition 4.4. (Unforgeability). An e-cash protocol ensures Unforgeability if for

every e-cash process CP on every possible execution trace, each occurrence of the event

spend(c) is preceded by a distinct occurrence of the event withdraw(c).

If a fake coin is successfully spent, the event spend will be emitted without any matching

event withdraw, violating the property. Similarly, in the case of a successful double

spending the event spend will be emitted twice, but these events are preceded by only one

occurrence of the event withdraw. In the rest of this chapter, we illustrate all our notions

with the “real cash” system (mainly coins and banknotes) as a running example. We

hope that it helps the reader to understand the properties but also to feel the difference

between real cash and e-cash systems.

Example 4.1. (Unforgeability in Real Cash). In real cash, unforgeability is ensured

by physical measures that make forging or copying coins and banknotes difficult, for

example by adding serial numbers, using ultraviolet ink, holograms and so on.

Since a malicious client might be interested to create fake coins or double spend a coin,

it is particularly interesting to study Unforgeability with an honest bank and corrupted

clients. A partially corrupted seller, which e.g., gives some information to the attacker
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but still emits the event spend correctly, could also be considered. This allows us to

check if a seller colluding with the client and the attacker can result in a coin forging.

Note that, if the seller is totally corrupted then Unforgeability can be trivially violated,

since a corrupted seller can simply emit the event spend for a forged coin, although there

was no transaction.

In case of double spending, the bank should be able to identify the responsible client.

This is ensured by Double Spending Identification (DSI), which says that a client cannot

double spend a coin without revealing his identity. To deposit a coin at the bank the seller

has to present a transaction which contains, in addition to the coin, some information

certifying that he received the coin in a payment. A valid transaction is a transaction

which could be accepted by the bank, i.e., it contains a correct proof that the coin is

received in a correct payment. The bank accepts a valid transaction if it does not contain

a coin that is already deposited using the same or a different transaction.

Definition 4.5. (Double Spending Identification). An e-cash protocol ensures Dou-

ble Spending Identification if there exists a test TDSI : TR× TR× D 7→ ID ∪ {⊥} satisfying:
for any two valid transactions tr1 and tr2 that are different but involve the same coin (i.e.,

transId(tr1) = (s1, c), and transId(tr2) = (s2, c) for some coin c with s1 6= s2), there

exists p ∈ D such that TDSI(tr1, tr2, p) outputs (idc, e) ∈ ID × D, where e is an evidence

that idc withdrew the coin c.

Double Spending Identification allows the bank to identify the double spender by running

a test TDSI on two different transactions that involve the same coin. For example, consider

a protocol where after a successful transaction the seller gets x = m.id+ r where id is

the identity of the client (e.g., his secret key), r is a random value (identifies the coin)

chosen by the client at withdrawal, and m is the challenge of the seller. So, if the client

double spends the same coin then the bank can compute id and r using the two equations:

x1 = m1.id+ r and x2 = m2.id+ r. The data p could be some information necessary to

identify the double spender or to construct the evidence e. This data is usually presented

to the bank at withdrawal or at deposit. The required evidence depends on the protocol.

Note that e is an evidence from the point of view of the bank, and not necessarily a

proof for an outer judge. Thus, the goal of Double Spending Identification is to preserve

the security of the bank so that he can detect and identify the responsible of double

spending when this event occurs. Note that, if a client withdraws a coin and gives it to

an attacker which double spends it, then the test returns the identity of the client and

not the attacker’s identity.

Example 4.2. (DSI in Real cash). In real cash, double spending is prevented by

ensuring that notes cannot be copied. However, Double Spending Identification is not

ensured: even if a central bank is able to identify copied banknotes using, e.g., their
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serial numbers, this does not allow it to identify the person responsible for creating the

counterfeit notes.

Double Spending Identification gives rise to a potential problem: what if the client is

honest and spends the coin only once, but the attacker (e.g., a corrupted seller) is able to

forge a second spend, or what if a corrupted bank is able to simulate a coin withdrawal

and payment i.e., to forge a coin withdrawal and payment that seems to be made by

a certain client. For instance, in the example mentioned above, the two equations are

enough evidence for the bank. However, if the bank knows id he can generate the two

equations himself and blame the client for double spending. So, to convince a judge, an

additional evidence is needed, e.g., the client’s signature. If any of the two situations

mentioned above is possible, then a honest client could be falsely blamed for double

spending, and also it gives raise to a corrupted client which is responsible of double

spending to deny it. To solve this problem we define Exculpability, which says that the

attacker, even when colluding with the bank and the seller, cannot forge a double spend

by a honest client in order to blame him. More precisely, provided a transaction executed

by a client idc, the attacker cannot provide two different valid transactions which involves

the same coin, and the data p necessary for the test TDSI to output the identity idc with

an evidence. Note that Exculpability is only relevant if Double Spending Identification

holds: otherwise a client cannot be blamed regardless of the ability to forge a second

spend or to simulate a coin withdrawal and payment, as his identity cannot be revealed.

Definition 4.6. (Exculpability). Assume that we have a test TDSI as specified in

Definition 4.5, i.e., Double Spending Identification holds, and that the bank is corrupted.

Let idc be a honest client (in particular he does not double spend a coin), and ids be a

corrupted seller. Then, Exculpability is ensured if, after observing a transaction made

by idc with ids, the attacker cannot provide two valid transactions tr1, tr2 ∈ TR that are

different but involve the same coin c, and some data p such that TDSI(tr1, tr2, p) outputs

(idc, e) where e is an evidence that idc withdrew the coin c.

The intuition is: if the attacker can provide two transactions tr1, tr2 such that TDSI(tr1, tr2)

returns a client’s identity (that is, two different valid transactions involve the same coin),

then it was able to forge (at least) one transaction since the honest client performs (at

most) one transaction per coin. If after observing a transaction executed by a client idc,

the attacker can provide a different valid transaction which involves the same coin, and

the required data p, then the test returns the identity idc with the necessary evidence,

thus the property will be violated. Similarly, in the case where the attacker can forge a

coin withdrawal and payment seems to be made by a client idc, then the attacker can

obtain two transactions satisfying the required conditions, together with the necessary

data p, so that the test returns the identity idc with an evidence. Note that, Double
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Spending Identification and Exculpability are only relevant in case of offline e-cash systems

where double spending is possible.

4.4.2 Privacy Properties

We express our privacy properties as observational equivalence. We use the labeled

bisimilarity (≈l) to express the equivalence between two processes [AF01]. To ensure the

privacy of the client, the following two notions have been introduced by cryptographers

and are standard in the literature e.g., [CG08,Fer93,Sch97].

1. Weak Anonymity : the attacker cannot link a client to a spend, i.e., he cannot

distinguish which client makes the payment.

2. Strong Anonymity : additionally to weak anonymity, the attacker should not be able

to decide if two spends were done by the same client, or not.

Canard and Gouget [CG08] define Weak Anonymity as the following. Two honest clients

each withdraw a coin from the bank. Then one of them (randomly chosen) spends his

coin to the adversary. The adversary already knows the identities of these two clients,

and also the secret key of the bank. It wins the game if it guesses correctly which client

spends the coin. Inspired by this definition, we define Weak Anonymity as follows.

Definition 4.7. (Weak Anonymity). An e-cash protocol ensures Weak Anonymity if

for any e-cash process CP , any corrupted Seller ids, and any two honest Clients idc1 and

idc2, we have that:

CPI [Cσidc1σc1σids|Cwσidc2σc2 |(Sσids)ch1,ch2 |Bch1,ch2 ]

≈l
CPI [Cwσidc1σc1 |Cσidc2σc2σids|(Sσids)ch1,ch2 |Bch1,ch2 ]

where c1, c2 are any two coins (not previously known to the attacker) withdrawn by idc1

and idc2 respectively, I = {idc1, idc2, ids, idB}, idB is the bank’s identity, and Cw is a

variant of C that halts at the end of the withdrawal phase.

Weak anonymity ensures that a process in which the client idc1 spends the coin c1 to

the corrupted seller ids1, is equivalent to a process in which the client idc2 spends the

coin c2 to the corrupted seller ids1. We assume a corrupted bank represented by Bch1,ch2 .

Note that the client that does not spend his coin still withdraws it. This is necessary

since otherwise the attacker could likely distinguish both sides during the withdrawal

phase, as the bank is corrupted and typically the client reveals his identity to the bank

at withdrawal. We also note that we do not necessarily consider other corrupted clients,

however this can easily be done by replacing some honest clients from the context CPI
(i.e., other than idc1 and idc2) with corrupted ones.
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Example 4.3. (Weak anonymity in Real cash). Real coins ensure weak anonymity as

two coins (assuming the same value and production year) are indistinguishable. However,

banknotes do not ensure weak anonymity according to our definition, as they include serial

numbers. Since the two clients withdraw a note each, the notes hence have different serial

numbers which the bank can identify. In reality this is used by central banks to trace notes

and detect suspicious activities that, e.g., could hint at money laundering. Note however

that banknotes ensure a weaker form of anonymity: if two different clients use the same

note, one cannot distinguish them.

A stronger privacy property is Strong Anonymity, which is defined in [CG08] using

a similar game as Weak Anonymity with the difference that the adversary may have

previously seen some coins being spent by the two honest clients explicitly mentioned in

the definition. Such definition of anonymity resembles untraceability. In symbolic model,

we define Strong Anonymity as follows:

Definition 4.8. (Strong Anonymity). An e-cash protocol ensures Strong Anonymity

if for any e-cash process CP , any corrupted seller ids, and any two honest clients idc1

and idc2, we have that:

CPI [ | Cσidc1
0≤i≤m1

σci1
σids | Cσidc2

0≤i≤m2

σci2
σids|Cσidc1σc1σids|Cwσidc2σc2 |(Sσids)ch1,ch2 |Bch1,ch2 ]

≈l

CPI [ | Cσidc1
0≤i≤m1

σci1
σids | Cσidc2

0≤i≤m2

σci2
σids|Cwσidc1σc1 |Cσidc2σc2σids|(Sσids)ch1,ch2 |Bch1,ch2 ]

where c1 and c1
1 . . . c

m1
1 are any coins withdrawn by idc1, c2 and c1

2 . . . c
m2
2 are any coins

withdrawn by idc2, I = {idc1, idc2, ids, idB}, idB is the bank’s identity, and Cw is a

variant of C that halts at the end of the withdrawal phase.

Strong Anonymity ensures that the process in which the client idc1 spends m1 + 1 coins,

while idc2 spends m2 coins and additionally withdraws another coin without spending it,

is equivalent to the process in which the client idc1 spends m1 coins and withdraws an

additional coin, while idc2 spends m2 + 1 coins. The definition assumes that the bank

is corrupted, and that the seller receiving the coins from the two clients idc1 and idc2

is also corrupted. Note that, we consider Cw to avoid distinguishing from the number

of withdrawals by each client. Again, we can replace some honest clients from CPI by

corrupted ones.

Example 4.4. (Strong Anonymity in Real cash). Again, real coins ensure strong

anonymity as, assuming the same value and production year, two coins are indistinguish-

able. Yet, for the same reason as in weak anonymity, banknotes do not ensure strong

anonymity according to our definition: the serial numbers allow an attacker to identify

the different clients.
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We note that any protocol satisfying Strong Anonymity also satisfies Weak Anonymity,

as Weak Anonymity is a special case of Strong Anonymity for m1 = m2 = 0, i.e. when

the two honest clients do not make any previous spends.

4.5 Case Studies

David Chaum proposed an online e-cash system in [Cha82] based on blind signature.

An offline variant of this protocol is proposed by Chaum et al. in [CFN88]. A real

implementation based on Chaum protocol (in its two variants), which allows to make

purchases over open networks such as the Internet, put in service by the DigiCash Inc.

which was founded by David Chaum in 1990. The corporation declared bankruptcy

later in 1998, and was sold to Blucora2 (formerly Infospace Inc.). The online protocol

implemented by DigiCash is presented by Berry Schoenmakers in [Sch97]. In this section,

we describe and analyze both the Chaum (online) protocol [Cha82] and the Chaum et al.

(offline) protocol [CFN88], as well as, the online protocol implemented by DigiCash [Sch97]

(DigiCash protocol). For this we use ProVerif an automatic tool that verifies cryptographic

protocols. Note that, all the verification presents in this section are carried out on a

standard PC (Intel(R) Pentium(R) D CPU 3.00GHz RAM 2GB).

4.5.1 Chaum Protocol

The Chaum Protocol is proposed in [Cha82] and summarized in [CFN88]. It allows a

client to withdraw a coin blindly from the bank, and then spend it later in a payment

without being traced even by the bank. We start by given a description of the protocol,

then we show how we model it in ProVerif and discuss the obtained results.

Description. The Chaum Protocol is an online protocol in the sense that the seller

does not accept the payment before contacting the bank to verify that the coin is not

deposited before, this is to prevent double spending. The Chaum Protocol is composed

of the following phases:

Withdrawal Phase. To obtain an electronic coin, the client communicates with the bank

using the following protocol:

1. The client randomly chooses a value x, and a coefficient r, the client before sending

to the bank his identity u and the value b = blind(x, r), where blind is a blinding

function.

2. The bank signs the blinded value b using a signing function sign and his secret key

skB, before sending the signature bs = sign(b, skB) to the client. The bank also

debits the amount of the coin from the client’s account.
2 http://www.blucora.com/
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3. The client verifies the signature and removes the blinding to obtain the bank’s

signature s = sign(x, skB) on x. The coin consists of the pair (x, sign(x, skB)).

Payment (and deposit) Phases. To spend a coin the following steps are taken:

1. The client sends the pair (x, sign(x, skB)) to the seller.

2. After checking the bank’s signature, the seller sends the coin (x, sign(x, skB)) to

the bank to verify that it is not deposited before.

3. The bank verifies the signature, and that the coin is not in the list of deposited

coins. If these checks succeed the bank credits the seller’s account with the amount

of the coin and informs him of acceptance. Otherwise, the payment is rejected.

Modeling in ProVerif. We use ProVerif to perform the automatic protocol verification.

We model privacy properties as equivalence properties, and we use events to verify the

other properties. The equational theory depicted in Figure 4.1 models the cryptographic

primitives used within Chaum protocol. It includes well-known model for digital signature

(functions sign, getmess, and checksign). The functions blind/unblind are used

to blind/unblind a message using a random value. We also include the possibility of

unblinding a signed blinded message, so that we obtain the signature of the message –

the key feature of blind signatures.

getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), k), r) = sign(m, k)

Figure 4.1: Equational theory for our model of Chaum protocol.

Analysis. The result of the analysis is summarized in Table 4.1. We model Unforgeability

as an injective correspondence between the two events withdraw and spend, they are

placed in their appropriate position, according to the Definition 4.4, inside the bank and

seller processes respectively. We consider a honest bank and a honest seller but corrupted

clients. We assume that the bank sends an authenticated message through private channel

to inform the seller about a coin acceptance. Otherwise, the attacker can forge a message

which results in an acceptence of already deposited coin. However, ProVerif still found

an attack against Unforgeability that is when two copies of the same coin spent at the

same time. In this case the bank makes two parallel database lookup to check if the coin

is deposited before. Each lookup confirms that the coin is not deposited before if the

parallel lookup not finished yet and thus the coin is not yet inserted in the database.
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Property Result Time
Unforgeability × < 1s

Weak Anonymity X < 1s

Strong Anonymity X < 1s

Table 4.1: Results of our analysis on the formal model of the Chaum protocol. (X)
indicates that the property holds. (×) indicates that it fails (ProVerif shows an attack).

This results in an acceptance of two spends of the same coin. The latter attack may be

avoided with some synchronization like locking the table when a coin deposit is initiated

and then unlock it when the operation is finished. However, such a locking mechanism

may create deadlocks in practice. ProVerif does not support such an feature. Protocols

that rely on databases can be analyzed using the Tamarin Prover [MSCB13] thanks to

the SAPIC3 [KK14] tool. Note that, corrupted client cannot create a fake coin as the

correspondence holds without injectivity. In case of online protocols, Double Spending

Identification and Exculpability are not relevant as online protocols tackle double spending

by calling of the bank at payment. Thus, they do not have any kind of test to identify

double spender.

For privacy properties, we assume corrupted bank and corrupted seller, but honest

client. ProVerif confirms that the privacy of the client is preserved, as both Weak

Anonymity, and Strong Anonymity are satisfied. This due to the fact that the coin is

signed blindly during the withdrawal phase, and thus cannot be traced later by the

attacker even when colludes with the bank and the seller. Note that, we have to perform

some “shuffling” of the coins at payment in order to verify privacy properties using

ProVerif4. Note also that, for Strong Anonymity we consider unbounded number of

spends by each client with one spend that is made by either the first client or by the

second one.

4.5.2 DigiCash Protocol

Chaum protocol is implemented by DigiCash Inc. We analyze the specification the

implemented protocol as presented by Berry Schoenmakers in [Sch97]. In the following,

we give the description of the protocol, our modeling in Proverif, and the result of our

analysis.

Description. The DigiCash protocol has the same withdrawal phase as Chaum protocol,

except that the client sends an authenticated coin to the bank in order to sign it. However,

the paper [Sch97] does not specify the way of authentication. We ignore this authentication

as its purpose is to ensure that the bank debits the correct client account. Hence, we

believe that it does not effect the privacy and unforgeability properties (analysis confirms
3 http://sapic.gforge.inria.fr/ 4 Similar, for using out(a, choice[m,n]) | out(a, choice[n,m]) instead
of out(a, choice[m,m]) | out(a, choice[n, n]) to prove observational equivalence.
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Property Result Time
Unforgeability × < 1s

Weak Anonymity X < 1s

Strong Anonymity X < 1s

Table 4.2: Results of our analysis on the formal model of the DigiCash protocol. (X)
indicates that the property holds. (×) indicates that it fails (ProVerif shows an attack).

that as we can see in Table 4.1). The payment and deposit phases are different from

those of Chaum protocol. They are summarized by the following steps:

1. The client sends to the seller pay = enc((ids, h(pay-spec), x, sign(x, skB)), pkB)

which is the encryption, using the public key of the bank pkB , of the seller’s identity

ids, hash of the payment specification pay-spec (specification of the sold object,

price etc), and the coin (x, sign(x, skB)).

2. The seller signs (h(pay-spec), pay) and sends it with his identity ids to the bank.

3. The bank verifies the signature, decrypts pay then verifies the value of h(pay-spec)

and that the coin is valid and not deposited before. If so it informs the seller to

accept the coin, and to reject it otherwise.

Modeling in ProVerif. Additionally to the equational theory of the Chaum protocol

(Table 4.1), the equational theory of DigiCash protocol includes well-known model of the

public key encryption represented by the following equation: dec(enc(m, pk(k)), k) = m,

where pk(k) represents the public key corresponding to the key k.

Analysis. The result of analysis of DigiCash protocol using ProVerif is summarized

in Table 4.2. ProVerif shows the same result obtained for Chaum protocol. Namely, it

shows that Weak Anonymity, and Strong Anonymity are satisfied, and it outputs the

same attack presented in Section 4.5.1 against Unforgeability. Again Double Spending

Identification and Exculpability are not relevant. Note that, obtaining the same result for

the two protocols, even that they have different payment and deposit phases, confirms

that the blind signature used during the withdrawal phase plays the key role in preserving

the privacy of the client, as claimed by David Chaum when he introduced it.

4.5.3 Chaum et al. Protocol

An offline variant of the Chaum protocol is proposed in [CFN88], called Chaum et al.

protocol. The Chaum et al. protocol removes the requirement that the seller must contact

the bank during every payment. This introduces the risk of double spending a coin by a

client.
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Description. The three phases of Chaum et al. protocol are described as follows.

Withdrawal Phase. To obtain an electronic coin, the client randomly chooses a,

c and d, and calculates the pair H = (h(a, c), h(a ⊕ u, d)), where u is the client

identity, h is a hash function, and ⊕ is XOR operator. The client then proceed as

in the Chaum protocol but with x (the potential coin) replaced with the pair H.

Namely, the client blinds the pair H and sends it to the bank. Then the bank signs

and returns it to the client. The main difference from the Chaum online protocol is

that the coin has to be of the following form

(h(a, c), h(a⊕ u, d))

where the client identity is masked inside it. This allows the bank to reveal the

identity of a double spender. In order for the bank to be sure that the client provides

a message of the appropriate form, Chaum et al. used in [CFN88] the well known

“cut-and-choose” technique. Precisely, the client computes n such a pair H where n

is the system security parameter. The bank then selects half of them and asks the

client to reveal their corresponding parameters (a, b, c and r). If n is large enough

the client can cheats with a low probability.

At the end of this phase the client holds the electronic coin composed of the pair

H, and the bank’s signature S = sign(H, skB). The client also has to keep the

random values a, c, d which are used later to spend the coin.

Payment Phase. The payment is made offline according to the following steps:

1. To make the payment, the client presents the pair H and the bank’s signature

S to the seller. The seller checks the signature, if it is correct then he chooses

and sends a random binary bit y, a challenge, to the client. The client returns

to the seller:

– The values a and c if y is 0.

– The values a⊕ u and d if y is 1.

2. The seller checks the compliance of the values sent with the pair H. If

everything (the signature and the values) is correct, the payment is accepted.

At the end of the payment phase, the seller holds the pair H, the signature S, the

values of either (a, c) or (a ⊕ u, d), and the challenge y. All these data together

compose the transaction the seller has to present to the bank at deposit.

Note that, in case where n pairs are used for the coin, the challenge y will be a n

bits string and for each bit either the corresponding values of (a, c) or (a⊕ u, d) are

revealed to the seller.
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Deposit Phase. To deposit a coin:

1. The seller provides to the bank the transaction (H, S, y, (a, c)) or (H, S, y,

(a⊕ u, d)).

2. The bank checks the signature and also whether the values (a, c) or (a⊕ u, d)

correspond to their hash value in H. If any of these values is incorrect, the

fault is on the seller’s part, as he was able to independently check the regularity

of the coin at payment. If the coin is correct, the bank checks its database

to see whether the same coin had been used before. If it has not, the bank

credits the seller’s account with the appropriate amount. Otherwise, the bank

rejects the transaction.

Note that, Chaum et al. protocol does not prevent double spending, however it preserve

client’s anonymity only if he spends a coin once. However, a double spender can be

identified when the coin has the form (h(a, c), h(a⊕u, d)). However, the bank can simulate

the coin withdrawal and payment (as the bank knows the identities of all the clients),

thus the bank can blame a honest client for double spending. As a countermeasure,

the authors propose to concatenate two values z and z′ with u inside the pair H to

have (h(a, c), h(a⊕ (u, z, z′), d)) and provide to the bank, at withdrawal, additionally the

client’s signature on h(z, z′).

Modeling in ProVerif. To model the Chaum et al. protocol in ProVerif, in addition

to the equational theory used for the Chaum protocol (Table 4.1), we use the function

xor to represent the exclusive or (⊕) of two values. Given the first value, the second

value can be obtained using the function unxor. Such an – admittedly limited – modeling

for ⊕ operator is sufficient to catch the functional properties of the scheme required

by Chaum et al. protocol, but does not catch all algebraic properties of this operator.

However, there are currently no tools that support observational equivalence – which

we need for the anonymity properties – and all algebraic properties of ⊕. Küsters et

al. [KT11] proposed a way to extend ProVerif with ⊕. Their tool translates a model

of the protocol to a ProVerif input where all ⊕ are ground terms to enable automated

reasoning. However, this tool can only deal with secrecy and authentication properties,

and does not support equivalence properties. The xor function is only used to hide the

client’s identity u using a random value a (i.e., a⊕ u), which we model as xor(a, u). The

bank then uses a to reveal the client’s identity u if he double spends a coin. This is

modeled by the following two equations

unxor(xor(a, u), a) = u

unxor(a, xor(a, u)) = u
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which represents the various ways: ((a⊕ u)⊕ a) = u, or (a⊕ (a⊕ u)) = u. We always

assume that identity is the second value, and this is how we model it inside honest

processes.

Analysis. As expected ProVerif confirms that Unforgeability is not satisfied, a corrupted

client can double spend a coin. In fact the seller cannot know whether a certain coin

is already spent or not, he accepts any coin that is certified by the bank. However, a

collusion between a client and the attacker cannot lead to forging a coin.

In case of double spending, the bank may receive two transactions of the form tr1 =

(h, hx, sign((h, hx), skB), 0, a, c) and tr1 = (h, hx, sign((h, hx), skB), 1, xor(a, u), d). The

bank can apply a test to obtain the identity u. This is done using the unxor function

as unxor(xor(a, u), a) = u. The evidence here is showing that the identity of the client

is masked inside the coin. This can be done thanks to the values of (a, c, xor(a, u), d)

which are initially known only to the client. Spending the coin only once reveals either

(a, c) or (xor(a, u), d) which does not allow to obtain the identity u. Note that, if the two

sellers provide the same challenge the two transactions are exactly equal. In this case

no double spending is detected and the second transaction will be rejected by the bank.

Actually, the bank cannot know whether a client double spends the same coin (with same

challenge provided in the two spends), or the seller deposits again another copy of the

same transaction. In practice this can be avoided with high probability if n pairs coin

(“cut-and-choose” technique) is used and thus n bits challenge. However, considering only

one pair there is a probability of one to half (at most) for the bank to identify a double

spender (cases where same challenge is provided in both spends are eliminated).

In ProVerif, we model the output of an identity and an evidence of the test TDSI by

an emission of the event OK, and event KO otherwise. To say that Double Spending

Identification is satisfied we should have that the test TDSI does not emit the event KO

for every two valid transactions tr1, tr2 that are different but involves the same coin, i.e.,

it always emits event OK for such transactions. Note that, our test TDSI does not capture

the case explained above where the two transactions have the same challenge since same

coin and same challenge results in same transaction. Regardless of that, ProVerif shows

that the test can emit the event KO for certain two transactions satisfying the required

conditions. Actually, a corrupted client can withdraw a coin that does not have the

appropriate form (e.g., client’s identity is not masked inside it), thus the bank cannot

obtain the identity in case of double spending. Note that, if the bank only certifies coins

with the appropriate form at withdrawal (i.e., of the form (h(a, c), h(a ⊕ u, d))), then

the property holds, ProVerif confirms that. Again, in practice applying the “cut-and-

choose" technique can guarantee with high probability that the coin is in the appropriate

form. However, applying this technique using Proverif does not make any difference

since ProVerif works under symbolic model which deals with possibilities and not with
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Property Result Time
Unforgeability × <1s

Double Spending Identif. × <2s
Double Spending Identif.∗ X <2s

Exculpability∗ × < 6s
Exculpability† X < 6s

Weak Anonymity X <1s
Strong Anonymity X <1s

Table 4.3: Results of our analysis on the formal model of the Chaum et al. protocol.
(X) indicates that the property holds. (×) indicates that it fails (ProVerif shows an
attack). (∗) Only coins with the appropriate form are considered. (†) After applying
the countermeasure.

probabilities. For instance, the attacker still can guess the pairs that the bank requests

to reveal and construct them in the appropriate form but cheats with the others which

composes the coin.

We analyze Exculpability in the case where only coins of appropriate form are considered

i.e., the case where Double Spending Identification holds. ProVerif confirms that a

corrupted bank can blame a honest client. The bank can simulate the withdrawal and the

payment since the bank knows the identity of the client. Thus obtaining two transactions

satisfying the required conditions. This is due to the fact that the evidence obtained

by the test, which is showing that the client’s identity is masked inside the coin, is not

strong enough to act as a proof. However, the attacker cannot re-spend a coin withdrawn

and spent by a honest client. After applying the countermeasure that is including some

terms z and z′ so that the client signs h(z, z′). ProVerif confirms that Exculpability

holds. Applying the countermeasure results in a new test which takes, in addition to

the two transactions, the client’s signature on h(z, z′). The test shows, in case of double

spending, that the identity u and the preimage (z, z′) of the hash signed by the client are

masked inside the coin. This represents a stronger evidence which acts as a proof that

the client withdrew the coin since the bank cannot forge the client’s signature (under

perfect cryptographic assumption).

We note that, Ogiela et al. [OS14] show an attack on Chaum et al. protocol: when

a client double spends a coin, the sellers can forge additional transactions involve the

same coin, so that the bank cannot know how many transactions are actually result

from spends made by the client and how many are forged by the sellers. In such a case

according to our definition Unforgeability does not hold since the client have at least to

spends the coin twice. But, corrupted sellers can blame a corrupted client who double

spends a coin for further spends. Moreover the bank can still identify the client and

punish him as the bank can be sure that he at least spent the coin twice.

Concerning privacy properties, ProVerif shows that Chaum et al. protocol still satisfies
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both Weak Anonymity and Strong Anonymity. Note that (for honest client), we fix the

value of the challenge. Otherwise, since ProVerif internally repeats actions, the attacker

can use all possible challenges, and thus leads to double spending a coin by the (honest)

client which reveals his identity at payment.

To sum up, ProVerif confirms the claim about preserving client’s anonymity. ProVerif

also was able to show that a client can double spend a withdrawn coin but cannot forge a

coin, and that the bank can identify the double spender if the coin is in the appropriate

form. ProVerif also shows, in case where the coins are in the appropriate form, that

the bank can simulate a withdrawal and payment, and thus can blame him for double

spending. After applying the countermeasure no attack against Exculpability is found.

4.6 Conclusion

E-cash protocols can offer anonymous electronic payment services. Numerous protocols

have been proposed in the literature, and multiple flaws were discovered. To avoid further

bad surprises, formal verification can be used to improve confidence in e-cash protocols.

In this chapter, we developed a formal framework to automatically verify e-cash protocols

with respect to multiple essential privacy and forgery properties. Our framework relies

on the Applied π-Calculus and uses ProVerif as the verification tool.

As case studies, we analyzed using ProVerif three e-cash protocols: the Chaum

protocol [Cha82], the DigiCash protocol, and the Chaum et al. protocol [CFN88]. Our

results confirm some claims and already known weaknesses. We also identified that some

synchronization is necessary in case of online protocols to prevent double spending.

As future work, we would like to investigate further case studies and to extend our

model to cover transferable protocols with divisible coins. Also we would like to use the

tool SAPIC based on Tamarin, in order to see how it can help to analyze e-cash protocols.

Furthermore, as we did not model the details of “cut-and-choose" technique of the Chaum

et al. protocol, one could perform an analysis in the computational world in order to take

this into account.
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Chapter 5
e-Reputation Protocols

Reputation protocols are tools to quantify the trustworthiness of users (or entities) based

on their past behavior. In such protocols, for each user a reputation score, which reflects

the trust of the others on him, is computed based on the opinions of other users. Thus,

for reputation protocols to serve the purpose expected from them users must provide

feedbacks that reflect their opinions. Moreover, reputation scores must be correctly

computed from these feedbacks. In order for users to provide honest feedbacks without a

fear from a potential revenge their privacy must be preserved, and to trust reputation

scores they must be verified. In this chapter, we model reputation protocols in Applied

π-Calculus, and formally define several related authentication and privacy properties.

Then, we define two verifiability properties in an abstract way. Finally, we validate our

model by analyzing, using ProVerif, the security of a simple reputation protocol presented

in [PRT04].
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5.1 Introduction

A reputation protocol computes and publishes reputation scores for a set of entities (e.g.,

service providers, goods) within a community, based on a collection of opinions that the

users provide about these entities. In a typical reputation protocol, a user interacts with

a certain entity, and then provides a rate that reflects his satisfaction on this entity. The

reputation score of that entity is then computed from all the rates provided about it.

In this sense, reputation is a quantity derived from the underlying network, and which

is globally visible to all members of the network [Fre78]. An example of a reputation

protocol is the one used by eBay: after a buyer buys a good from a seller, both the buyer

and the seller may provide a rate (+1, 0, or -1). The reputation score of a user is simply

the sum of all the rates he received. For most transactions, the buyer can additionally

provide a detailed rate reflecting his satisfaction about good description, communication,

shipping time and charges.

Reputation systems have been implemented in e-commerce systems, such as e-Bay,

and have been contributed to the success of these systems [RKZF00]. Without reputation

mechanisms, opportunistic behavior of some users can lead to peer mistrust and eventual

system failure [Ake70]. For example, Resnick and Zeckhauser have analyzed the e-

Bay reputation system and have concluded that the system does seem to encourage

transactions [RZ02]. Moreover, several researches have found that sellers reputation has

significant influences on auction prices [HW06]. An important issue with reputation

systems is that the users hesitate to submit negative feedbacks when these feedbacks are

public [RZ02]. A main reason behind such behavior is that the users have the fear of

future revenge. Having honest feedbacks, reputation based-systems help users to decide

who to trust, encourage trustworthy behavior, and detect dishonest users. In order to

incentivize the users to provide honest rates, a reputation protocol has to preserve their

anonymity.

Further privacy and security properties are also significant for reputation protocols as

they can be affected by several adversarial behaviors. For instance, a user may provide

himself very positive feedback. Assuming that a user is not eligible to give himself a

feedback, property Rate Origin Authentication, which states that only eligible users can

give rates (at most one each), fails if a user rates himself or if Moreover, property User

Eligibility Verification allows one to verify that only eligible users gave rates. Another

interesting scenario is when two users exchange positive rates. We can limit such a scenario

by preserving the anonymity of the rates and ensuring recipient-freeness, which are capable

of prohibiting a user from proving to the another that he rates him positively. Note that

for a reputation protocol, only users that interacts with, e.g., a service providers should
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be eligible to rate him. This prevents users from collude, for instance, to advertise the

reputation a certain user more than its real value, known as ballot-stuffing attack [Del00].

Note that, our properties cannot detect attacks such as bad-mothing and ballot-

stuffing attacks, but properties such as: User Eligibility Verification, Receipt-Freeness,

and Coercion-Resistance can minimize them. As User Eligibility Verification imposes

some constraints on the users in order to provide a rate (e.g., accomplish a successful

interaction); Receipt-Freeness can limit the bribing and positive rate exchange between

users as they cannot provide a proof that they provided a certain rate; similarly does

Coercion-Resistance even when interacting with a coercer.

Contributions. Toward security analysis of reputation protocols we provide, in this

chapter, the following contributions:

− We model reputation protocols in the Applied π-Calculus [AF01]. Then, we propose

formal definitions of eight authentication and privacy properties of reputation

protocols.

− We define two verifiability properties that allow us to verify users eligibility and

reputation scores correctness.

− We discus our definitions by analyzing using ProVerif the simple protocol proposed

in [PRT04].

Outline of the Chapter. We discuss the related work in Section 5.2. We formally

model reputation protocol in Applied π-Calculus, and define eight authentication and

privacy properties in Section 5.3. Then in Section 5.4, we give high-level definitions of

two verifiability properties related to e-reputation protocols. In Section 5.5, we analysis

the protocol by Pavlov et al. [PRT04]. Finally, we conclude in Section 5.6.

5.2 Related Work

Reputation Protocols. Marsh [Mar94] has provided one of the first formal treatment

of trust. However, the proposed model emphasis on users’ own experiences rather than

allowing them to collectively build the trustworthiness in each other. Moreover, it is

complex to be implemented in today’s systems. Latter, Rahman and Hailes [AH00] have

simplified and adopted the Marsh’s model to be implemented in peer-to-peer networks.

However, the developed approach suffers from scalability problems, and requires every user

to keep a knowledge about the whole network. Aberer and Despotovic have proposed an

approach that adresses reputation-based trust management in the context of peer-to-peer

systems [AD01]. The proposed approach allows to assess trust by computing a user

reputation from his previous interactions with other users.
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In the other hand, several (claimed) secure reputation protocols have been proposed.

Androulaki et al. [ACBM08] have proposed a reputation protocol that relies on trusted

central authority to demonstrate the validity of rates. Pavlov et al. [PRT04] have

proposed a decentralized reputation protocol to preserve users privacy. Others have

tried to have privacy preserving protocols [AGLM+13a, Ste06, Ste08] by dealing with

untraceability that is to ensure that an attacker cannot distinguish whether the same

user is involved in two interactions or not. Bethencourt et al. [BSS10] have formally

defined the anonymity of both the users and the target, and propose a protocol argued

informally to satisfy those definitions. Anceaume et al. [AGLM+13b] have extended

their work to handle non-monotonic ratings and mention additional security properties

concerned in reputation scores correctness. However, to best of our knowledge no

general formal framework that allows the verification of the security properties in e-

reputation protocols have been given. In some related domains, there are numerous papers

presenting the formalization and verification of the security properties, for instance in

e-voting [DLL11,DLL12b,BHM08,DKR09], in e-auction systems [DJP10,DLL13,DJL13].

Link to Voting Systems. Some of the security properties we present herein for

reputation protocols seem to relate with those studied in other applications such as voting.

For instance, user eligibility is analogous to voter eligibility, and rate privacy reminds vote

privacy. However, still there are fundamental differences between the two applications. A

main difference between the two applications is that in voting normally each voter can

cast only one vote, while in reputation each user can rates several users. This affects

the adversary model. For instance, in voting a collusion between two candidates by

exchanging votes provides no gain for any of them as each of them loses his vote in this

process. While in reputation exchanging positive rates benefits both users. Moreover

as each user can give several rates, properties such as untraceability are interesting in

reputation protocols, but we do not find such a property in voting as each votes can cast

at most one vote. Note also, in reputation each user can play at the same time both roles

a (normal) user and a target.

Furthermore, in voting the candidates and the voters (and thus the maximum possible

number of votes) are already known, and after voting process the total number of votes

and that taken by each candidate will be publicly available. Thus, there is a certain

leakage of information. For example, if a candidate does not receive any vote, the attacker

can exclude this previously possible option. While in reputation all users can rate each

others playing two rules at the same time (rate provider and target). Also, the number

of provided rates is not (necessarily) publicly known. Thus, having a reputation score

does not give us any information about the number of the rates provided by the users.

Note that, in reputation protocols that support both negative and positive rates, a score

zero does not necessarily means zero rates. Even in case of only positive rates, a score
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zero might be due to the fact that this user did not make any interaction with the others

yet, not necessarily means that users provide their rates to other targets like in voting.

Actually, in reputation a user do not have to choose between different targets as he can

provides rates for all users he interacted with. Note also that, providing a rate for a

certain user is not always good like when you vote for a certain candidate in voting, as

the rate could be a bad one.

5.3 Authentication and Privacy in Reputation

In this section, we model reputation protocols in the Applied π-Calculus, then we propose

formal definitions for two authentication and six privacy properties.

5.3.1 Modeling Reputation Protocols in the Applied π-Calculus

A reputation protocol may involves users who interact and provide rates about each other,

and authorities who often handles the rates, and calculates and publishes the reputation

scores. Without loss of generality, we distinguish the user that provides the service, the

target, from the user that provides a feedback on the target or the service, the normal

user (in short the user). A reputation protocol specifies the processes executed by users,

targets, and authorities.

Definition 5.1. (Reputation Protocol in the Applied π-Calculus). A reputation

protocol is defined by a tuple (U, T,A1, . . . , Al, ñp), where U is the process executed by

the users, T is the process executed by the targets, Ai’s are the processes executed by the

authorities, and ñp is the set of the private channels used in the protocol.

The process U is instantiated for each user with different, e.g., keys, identity, and rates.

Similarly, the process T is instantiated for each target. Note that, if the target is an

object (e.g., service, or good) or does nothing then T is simply the null process. A

protocol can have several authorities, for example a registrar, a collector, a publisher

or has no authority at all. In the latter case, again we have that Ai is equal to null

process. Note also that, even decentralized protocols may require an agent that initiates

a reputation score calculation for a certain target. Such an agent is considered as an

authority. To reason about privacy properties, we define a reputation process as an

instance of a reputation protocol.
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Definition 5.2. (Reputation Process). Let (U, T,A1, . . . , Al, ñp) be a reputation

protocol, then we define a reputation process as the following closed plain process:

νñ.(A1 | . . . | Al′ | Tσidt1 | . . . | Tσidtm |

(Uσidu1σr11σidt11 | . . . | Uσidu1σr1p1σidt1p1 ) |
...

| (Uσidukσrk1σidtk1 | . . . | Uσidukσrkpkσidtkpk ))

where ñ is the set of all restricted names, which includes some of the protocol’s private

channels ñp; A1, . . . , Al′ (l′ 6 l) are the processes executed by the honest authorities;

Tσidti is the process executed by the target idti; Uσiduiσrijσidtij is the process executed by

the user idui, which rates the target idtij with the rate rij. Note that, idui can provide pi
rates on different targets.

A party can play both roles of user and target in a reputation process as both processes U

and T can be instantiated with the same identity. Note that, in some protocols a certain

property may hold even if some of the authorities are dishonest, while other protocols may

require all the authorities to be honest. During the analysis, we choose which authorities

A1, . . . , Al′ are honest by including them in the reputation process. Only honest parties

are modeled in a reputation process. Dishonest parties are left to the attacker. The

attacker has complete control to the network, except private channels (e.g., Dolev-Yao

attacker [DY83]).

To capture threats due to bribing and coercion, we consider corrupted parties P ch1

and P ch1,ch2 from [DKR09], which we respectively recalled by the Definitions 2.1 and 2.2

in Section 2.1.1. The process P ch1 is a variant of P which shares with the attacker

channel ch1. Through ch1, P ch1 sends all its inputs and freshly generated names (but not

restricted channel names). The process P ch1,ch2 does not only reveal the secret data on

channel ch1, but also takes orders from the attacker on the channel ch2 before sending

a message or branching. Given a reputation process any process P can be replaced by

either P ch1 or P ch1,ch2 . Note that, in particular we use P ch1 and P ch1,ch2 to respectively

define Receipt-Freeness and Coercion-Resistance. For the sake of simplicity in notations,

we define a reputation context which we use inside our the definitions of our properties.

Definition 5.3. (Reputation Context). Given a reputation process, a subset of users

IU , and a subset of targets IT , we define the reputation context RPI [ ], where I = IU∪IT ,
as follows:

RPI [ ] ≡ νñ.(A1 | . . . | Al′ | Tσidti
idti /∈I2

| | (Uσidui
idui /∈I1

σri1σidti1 | . . . | Uσiduiσripiσidtipi ))
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A reputation context RPI [ ] is the process RP without all the processes of the par-

ties included in the set I; they are replaced by “holes”. We use this notation, for

instance, to enumerate all the sessions executed by the user idu1 without repeating

the entire reputation instance; in this case, we can rewrite the reputation instance as

RP{idu1}[Uσidu1σr11σidt11 | . . . Uσidu1σr1p1σidt1p1 ].

To define authentication properties, we use the following events:

− Event sent(idu, idt, r) emitted when the user idu sends a rate r (or sum of rates)

for the authority (or responsible party) to evaluate the target idt. This event is

emitted just before sending the message containing the rate.

− Event record(idu, idt, r) emitted when the rate r (or sum of rates) from the user

idu provided about the target idt is received by the authority (or the intended

party). This event is placed after receiving the rate and performs the required

checks before accepting it, if any.

− Event eligible(idu, idt) emitted when the user idu is certified as an eligible user to

provide a rate about the target idt. It is placed just before providing the credential

by the responsible party.

5.3.2 Authentication Properties

We define two authentication properties Rate Integrity and Rate Origin Authentication.

After placing the events inside the reputation processes, the authentication properties

can then be defined as follows.

Rate Integrity ensures that the rate is not altered and received by the responsible party

as provided by the user.

Definition 5.4. (Rate Integrity). A reputation protocol ensures Rate Integrity if

for any reputation process RP on every possible execution trace, each occurrence of the

event record(idu, idt, r) is preceded by a distinct occurrence of the corresponding event

sent(idu, idt, r).

Rate Origin Authentication ensures that only the users that have a certain credential

can provide a rate. The credential can be a certificate from an authority, an entry in a

database, or a proof which indicates that he has been interacted with the target.

Definition 5.5. (Rate Origin Authentication). A reputation protocol ensures Rate

Origin Authentication, if for any reputation process RP on every possible execution trace,

each occurrence of the event record(idu, idt, r) is preceded by a distinct occurrence of the

corresponding event eligible(idu, idt).
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5.3.3 Privacy Properties

We define six privacy properties: User Privacy, Rate Privacy, Rate Anonymity, Untrace-

ability, Receipt-Freeness, and Coercion-Resistance.

Definition 5.6. (User Privacy). A reputation protocol ensures User Privacy if for any

reputation process RP , any two users idu1, idu2, any target idt, and any rate r, we have

that: RP{idu1,idu2,idt}[Uσidu1σrσidt|Tσidt] ≈l RP{idu1,idu2,idt}[Uσidu2σrσidt|Tσidt].

The intuition is that if an attacker cannot detect if a rate is provided by a honest user

idu1 or by idu2, then he cannot know anything about the users idu1 and idu2. Note that

this definition is robust even in situations where only two users (idu1 or idu2) provide

rates, i.e., the context RP{idu1,idu2,idt}[ ] contains no honest user.

As already noted, in some protocols the User Privacy may hold even if the authorities

are dishonest, while other protocols may require the authorities to be honest. When

proving privacy, we choose which authorities we want to model as honest, by including

them inside the context RP{idu1,idu2,idt}[ ]. It is also particularly interesting for User

Privacy to consider a corrupted target t. This results in a similar definition but with a

process (Tσidt)
ch1,ch2 instead of Tσidt. We can also consider corrupted users other than

idu1 and idu2, as well as, other corrupted targets than t.

Note that, User Privacy is a strong property to be satisfied by a protocol since user’s

identities may be revealed for an authority, and the target may knows the identity of all

the users interacted with him, and thus a set includes all those that rate him. A similar

property is Rate Privacy, which says that an attacker cannot know the rate provided by

a certain user.

Definition 5.7. (Rate Privacy). A reputation protocol ensures Rate Privacy if for

any reputation process RP , any user idu, any target idt, and any two rates r, r′, we have

that: RP{idu,idt}[Uσiduσrσidt|Tσidt] ≈l RP{idu,idt}[Uσiduσr′σidt|Tσidt].

Rate Privacy states that two processes with different rates have to be observationally

equivalent. Again, we can consider corrupted targets and corrupted users other than idu.

Note that like User Privacy, Rate Privacy is also strong. Consider for instance the case

where there is only one rate, then as the reputation score is published the rate provided

by the honest user can be obtained. A weaker property is Rate Anonymity which says

that an attacker cannot associate a certain rate to its corresponding user. Note that, an

attacker might know all users’ identities and all rates, but he cannot link between a user

and his rate.

Definition 5.8. (Rate Anonymity). A reputation protocol ensures Rate Anonymity,

if for any reputation process RP , any users idu1, idu2, any target idt, and any rates r1,

r2, we have that:
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RP{idu1,idu2,idt}[Uσidu1σr1σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu1σr2σidt|Uσidu2σr1σidt|Tσidt]

Rate Anonymity states that the process where user idu1 provides a rate r1 and user idu2

provides a rate r2 is equivalent to the process where idu1 provides a rate r2 and idu2

provides a rate r1. This prevents the attacker from obtaining the identity of the user who

provides a certain rate. Note that, a protocol that ensures User Privacy also ensures Rate

Anonymity. Similarly, a protocol that ensures Rate Privacy also ensures Rate Anonymity.

Theorem 5.1. A reputation protocol that satisfies User Privacy, also satisfies Rate

Anonymity.

Proof. Suppose that a reputation process satisfies User Privacy, then we have that

RP{idu1,idu2,idt}[Uσidu1σrσidt|Tσidt] ≈l RP{idu1,idu2,idt}[Uσidu2σrσidt|Tσidt]

Let RP ′{idu1,idu2,idt}[ ] ≡ RP{idu1,idu2,idt}[ |Uσidu2σr2σidt|Tσidt] be an reputation con-

text where RP{idu1,idu2,idt}[ ] is any reputation context, idu1 and idu2 are any two users,

r is any rate, and t is any target. Then, by User Privacy, we have that:

RP ′{idu1,idu2,idt}[Uσidu1σr1σidt] ≈l RP ′{idu1,idu2,idt}[Uσidu2σr1σidt]

Thus, by substituting RP ′{idu1,idu2,idt}[ ] with its value we get:

RP{idu1,idu2,idt}[Uσidu1σr1σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu2σr1σidt|Uσidu2σr2σidt|Tσidt]

Similarly, we have that

RP{idu1,idu2,idt}[Uσidu2σr1σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu2σr1σidt|Uσidu1σr2σidt|Tσidt]

Hence, we can deduce that

RP{idu1,idu2,idt}[Uσidu1σr1σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu2σr1σidt|Uσidu1σr2σidt|Tσidt]

Therefore, Rate Anonymity is satisfied by the reputation process.
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Theorem 5.2. A reputation protocol that satisfies Rate Privacy, also satisfies Rate

Anonymity.

Proof. Suppose that a reputation process satisfies Rate Privacy, then we have that

RP{idu,idt}[Uσiduσrσidt|Tσidt] ≈l RP{idu,idt}[Uσiduσr′σidt|Tσidt]

Let RP ′{idu1,idu2,idt}[ ] ≡ RP{idu1,idu2,idt}[ |Uσidu2σr2σidt|Tσidt] be an reputation con-

text where RP{idu1,idu2,idt}[ ] is any reputation context, idu1 and idu2 are any two users,

r is any rate, and t is any target. Then, by Rate Privacy, we have that:

RP ′{idu1,idu2,idt}[Uσidu1σr1σidt] ≈l RP
′
{idu1,idu2,idt}[Uσidu1σr2σidt]

Thus, by substituting RP ′{idu1,idu2,idt}[ ] with its value we get:

RP{idu1,idu2,idt}[Uσidu1σr1σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu1σr2σidt|Uσidu2σr2σidt|Tσidt]

Note that, only the rate provided by the user idu1 is changed from r1 in the left side to

r2 in the right one. The processes of idu2 and t are the same on both sides. Similarly, we

have that

RP{idu1,idu2,idt}[Uσidu1σr2σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu1σr2σidt|Uσidu2σr1σidt|Tσidt]

Hence, we can deduce that

RP{idu1,idu2,idt}[Uσidu1σr1σidt|Uσidu2σr2σidt|Tσidt]
≈l

RP{idu1,idu2,idt}[Uσidu1σr2σidt|Uσidu2σr1σidt|Tσidt]

Therefore, Rate Anonymity is satisfied by the reputation process.

The next property is Untraceability which states that an attacker cannot decide whether

or not two rates have been produced by the same user.

Definition 5.9. (Untraceability). A reputation protocol ensures Untraceability if for

any reputation process RP , any two users idu1, idu2, any targets idt, idt11, . . . , idt1m1,
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idt21, . . . , idt2m2, and any rates r, r11, . . . , r1m1, r21, . . . , r2m2 , we have that:

RP{idu1,idu2,idt}[ | Uσidu1
0≤i≤m1

σr1iσidt1i | Tσidt1i
0≤i≤m1

| Uσidu2
0≤i≤m2

σr2iσidt2i | Tσidt2i
0≤i≤m2

| Uσidu1σrσidt]

≈l

RP{idu1,idu2,idt}[ | Uσidu1
0≤i≤m1

σr1iσidt1i | Tσidt1i
0≤i≤m1

| Uσidu2
0≤i≤m2

σr2iσidt2i | Tσidt2i
0≤i≤m2

| Uσidu2σrσidt]

Untraceability ensures that the process in which the user idu1 provides m1 + 1 rates,

while idu2 provides m2 rates, is equivalent to the process in which the user idu1 provides

m1 rates, while idu2 provides m2 + 1 rates. The intuition is that an attacker cannot

distinguish whether idu1 or idu2 provides a rate r even if both users previously provided

some rates. Note that, a protocol that satisfies Untraceability also satisfies User Privacy,

as User Privacy is a special case of Untraceability for m1 = m2 = 0, i.e., when the two

honest users do not provide any previous rates.

For Receipt-Freeness and Coercion-Resistance we follow the definitions introduced

in [DKR09]. A protocol is receipt-free, if an attacker cannot distinguish between a

situation where a user idu1 provides a rate rc according to the attacker’s wishes and

reveals his data on a channel ch, and a situation where idu1 actually provides a rate r1

of his choice and pretends to reveal his secret data (this is modeled by process U ′). The

process U ′ is a process in which user idu1 provides a rate r1, but communicates with the

attacker (coercer) to trick him by saying that his desired rate rc is provided. This can

be done by providing the attacker a fake receipt, e.g., using a trapdoor to generate a

different opening key.

Definition 5.10. (Receipt-Freeness). A reputation protocol ensures Receipt-Freeness

if for any reputation process RP , any users idu1, idu2, any target idt, and any rates r1,

rc, there exists a closed plain process U ′ such that:

− U ′\out(ch,.) ≈l Uσidu1σr1σidt, and

− RP{idu1,idu2,idt}[(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt]

≈l RP{idu1,idu2,idt}[U ′|Uσidu2σrcσidt|Tσidt].

The user idu2 is needed to provide a counterbalancing rate. Note that, Receipt-Freeness

is stronger than Rate Anonymity.

Theorem 5.3. A reputation protocol that satisfies Receipt-Freeness, also satisfies Rate

Anonymity.

Proof. Suppose that a reputation process satisfies Receipt-Freeness then, by Defini-

tion 5.10, there exists a closed plain process U ′ such that:

− U ′\out(ch,.) ≈l Uσidu1σr1σidt, and (1)
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− RP{idu1,idu2,idt}[(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt]

≈l RP{idu1,idu2,idt}[U ′|Uσidu2σrcσidt|Tσidt]. (2)

Thus, by applying the evaluation context C ≡ νch.( | !in(ch, x)) on both sides of (2), we

get1:

RP{idu1,idu2,idt}[(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt]\out(ch,·)

≈l
RP{idu1,idu2,idt}[U

′|Uσidu2σrcσidt|Tσidt]\out(ch,·)

In the other hand, we have, by Lemma 2.2, that

C[RP{idu1,idu2,idt}[(Uσidu1σrcσidt)ch|Uσidu2σr1σidt|Tσidt]]
≡

RP{idu1,idu2,idt}[C[(Uσidu1σrcσidt)ch|Uσidu2σr1σidt|Tσidt]]

Thus,

RP{idu1,idu2,idt}[(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt]\out(ch,·)

≡
RP{idu1,idu2,idt}[((Uσidu1σrcσidt)

ch)\out(ch,·)|Uσidu2σr1σidt|Tσidt]

Similarly, we get:

RP{idu1,idu2,idt}[U
′|Uσidu2σrcσidt|Tσidt]\out(ch,·)

≡
RP{idu1,idu2,idt}[(U

′)\out(ch,·)|Uσidu2σrcσidt|Tσidt]

Hence, by comparison on (≡), we have that:

RP{idu1,idu2,idt}[((Uσidu1σrcσidt)
ch)\out(ch,·)|Uσidu2σr1σidt|Tσidt]
≡

RP{idu1,idu2,idt}[(U
′)\out(ch,·)|Uσidu2σrcσidt|Tσidt]

Lastly, since U ′\out(ch,.) ≈l Uσidu1σr1σidt by (1), and (P ch)\out(ch,·) ≈l P for any closed

plain process P such that ch /∈ fn(P ) ∪ bn(P ) by Lemma 2.1, we get:

RP{idu1,idu2,idt}[Uσidu1σrcσidt|Uσidu2σr1σidt|Tσidt]
≡

RP{idu1,idu2,idt}[Uσidu1σr1σidt|Uσidu2σrcσidt|Tσidt]

Therefore, Rate Anonymity is satisfied by the protocol.
1 Note that, we have A\out(ch,·) ≡ νch.(A | !in(ch, x)) by Definition 2.3
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A property stronger than Receipt-Freeness is Coercion-Resistance which preserves rate

anonymity in the case where the attacker cannot only ask for a receipt, but is also allowed

to interact with the user during the rating process and to provide the messages the user

should send.

Definition 5.11. (Coercion-Resistance). A reputation protocol ensures Coercion-

Resistance if for any reputation process RP , and any rates r1, rc there exists a closed

plain process U ′ such that for any σr, a plain process P , and context C = νch1.νch2.( |P )

satisfying ñ ∩ fn(C) = ∅ and
RPI [C[(Uσidu1σrσidt)ch1,ch2 ]|Uσidu2σr1σidt|Tσidt]

≈l
RPI [(Uσidu1σrcσidt)

ch|Uσidu2σr1σidt|Tσidt]

where I = {idu1, idu2, idt}, we have that:

− C[U ′]\out(ch,.) ≈l Uσidu1σr1σidt, and

− RPI [C[(Uσidu1σrσidt)ch1,ch2 ]|Uσidu2σr1σidt|Tσidt] ≈l RPI [C[U ′]|Uσidu2σrcσidt|Tσidt].

The context C models the attacker’s behaviors which tries to force the user to provide

a rate rc. Note that, no matter what rate the user idu1 intends to provide (σr), the

attacker will force him to provide the rate rc. U ′ is a process that provides a rate r1 of

user’s choice and at the same time fakes the attacker. Coercion-Resistance is satisfied

when the attacker cannot distinguishes between process U ′ and a really coerced voter.

Again a counterbalancing rate is required.

Theorem 5.4. A reputation protocol that satisfies Coercion-Resistance, also satisfies

Receipt-Freeness.

Proof. Suppose that a reputation process satisfies Coercion-Resistance, and let C =

νch1.νch2.( |P ) be an evaluation context from some plain process P such that

RPI [C[(Uσidu1σrσidt)ch1,ch2 ]|Uσidu2σr1σidt|Tσidt]
≈l

RPI [(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt] (1)

where I = {idu1, idu2, idt}. Then, by Definition 5.11, we have that:

− C[U ′]\out(ch,.) ≈l Uσidu1σr1σidt, and

− RPI [C[(Uσidu1σrσidt)ch1,ch2 ]|Uσidu2σr1σidt|Tσidt] ≈l RPI [C[U ′]|Uσidu2σrcσidt|Tσidt]

Thus, by (1) and transitivity on (≈l) we get:

− C[U ′]\out(ch,.) ≈l Uσidu1σr1σidt, and
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UntraceabilityCoercion-Resistance

User PrivacyReceipt-Freeness Rate Anonymity

Rate Privacy

Figure 5.1: Relations between privacy properties of reputation protocols.

− RPI [(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt] ≈l RPI [C[U ′]|Uσidu2σrcσidt|Tσidt]

Now, let U ′′ = C[U ′], hence:

− (U ′′)\out(ch,.) ≈l Uσidu1σr1σidt, and

− RPI [(Uσidu1σrcσidt)
ch|Uσidu2σr1σidt|Tσidt] ≈l RPI [U ′′|Uσidu2σrcσidt|Tσidt]

Therefore, Receipt-Freeness is satisfied by the protocol.

Figure 5.1 shows all the relations we have shown between our privacy properties for

reputation protocols.

5.4 Verifiability in Reputation

In this section, first we define an abstract model of reputation protocols, which defines

the data involved in a reputation instance (e.g., list of provided rates), as well as, some

black box functions to perform some computations or checks on these data. Then, we

define at high level two verifiability properties which allow a party to check the eligibility

of users that provide rates and the correctness of reputation scores.

Definition 5.12. (Reputation Protocol). A reputation protocol is a tuple (U, T, A, L,

isEligible, compRep, rs) where

− U is the set of users.

− T is the target.

− A is the authority.

− L : List(Rate) is a list of rates provided by the users in U about the target T;

− isEligible : Rate 7→ {true, false} is a function which takes a rate and outputs

true if the rate was provided by an eligible user, and false otherwise.
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− compRep is a function that computes the reputation score given a list of rates L.

− rs is a variable referring to the reputation score assigned to the target, i.e., the

published score;

The function compRep may simply compute the summation of all the rates, but it may

also perform more complex operations to determine the value of the reputation score. An

eligible user, e.g., is a user that has successfully finished an interaction with the target T.

Note that, our definition of reputation protocol does not specify how the users and the

targets interacts before the rating procedure starts. For example, the user may purchase

some goods from the target.

We define the verification properties using tests. A test is an algorithm that takes as

input the data visible to a participate of the reputation protocol and returns a boolean

value (true or false). The first verifiability property is User Eligibility Verification which

allows any party to check if every counted was provided by an eligible user.

Definition 5.13. (User Eligibility Verification). A reputation protocol ensures User

Eligibility Verification if there exists a test UEV respecting the following conditions:

− Soundness: UEV = true⇒ ∀r ∈ L, isEligible(r) = true;

− Completeness: if all participants follow the protocol correctly, then

∀r ∈ L, isEligible(r) = true⇒ UEV = true.

The second verifiability property is Reputation Score Verification which allows any party

to verify the correctness of the target’s reputation score.

Definition 5.14. (Reputation Score Verification). A reputation protocol ensures

Reputation Score Verification if there exists a test RSV respecting the following conditions:

− Soundness: RSV = true⇒ rs = compRep(L);

− Completeness: if all participants follow the protocol correctly, then

rs = compRep(L)⇒ RSV = true.

5.5 Case Study: Protocol by Pavlov et al. [PRT04]

In this section, we applied our definitions using ProVerif on (the first) reputation protocol

proposed by Pavlov et al. in [PRT04]. This protocol was designed to provide privacy

of the rates in decentralized additive reputation systems if all users follow the protocol

correctly, i.e., all users are honest. It also assumes that all users provide honest rating

about the target (i.e., rating that correctly reflects their satisfaction), as the protocol

cannot prevent the users from providing an unfair rating to increase (resp. decrease) the

reputation score of the target more (resp. less) than its real value.
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Description. The basic idea behind the protocol is to consider the rate provided by

each user to be his secret information. The rates are cumulatively added to each other,

without revealing them, to obtain a sum that represents the reputation score of the target.

The protocol is initiated by a querying agent Aq looking to know the reputation score of

the target, and proceeded as follows.

1. Initialization Step: the querying agent Aq orders the users in a ring: Aq → U1 →
, . . . ,→ Un → Aq, and sends to each user Ui the identity of his successor in the

ring, i.e., for i ∈ {1, . . . , n − 1} it sends the identity of Ui+1 to Ui, and for Un it

sends its identity.

2. Aq chooses a random number rq 6= 0 and sends it to U1.

3. Upon reception of rp from his predecessor in the ring, each user Ui for i ∈ {1, . . . , n}
calculates rp + ri and sends the obtained value to his successor in the ring, where

ri is the reputation rate of the user Ui about the target.

4. Upon reception of the feedback from Un, Aq subtracts rq from it in order to obtain

the reputation score of the target represented by the sum of all rates.

To ensure secrecy and authentication, the designers of the protocol assume an authenti-

cated secure channel between every two users.

Formal Model. Generally, it is difficult to model arithmetic operations in formal

protocol provers such as ProVerif. However, we build a simple equational theory, depicted

in Figure 5.2, which handles the required arithmetics to verify the Pavlov et al. protocol

for the case where we have two users U1 and U2 in addition to the querying agent. Note

that, we use the same model to verify authentication and privacy properties, as well as,

verifiability properties.

We model the protocol in ProVerif using a well-known equational theory for symmetric

encryption (functions senc and sdec), senc(m, k) represents the symmetric encryption

of the message m with the key k and sdec represents the decryption function; and an

equational theory for arithmetic addition and subtraction (functions sum and sub). The

function sum takes two values x and y and return their sum sum(x, y). Having x or y we

can obtain the other one from sum(x, y) using the function sub. Similarly, we can obtain

sum(y, z) and sum(x, z) from sum(sum(x, y), z) having x and y respectively. Note that

with our equational theory, having x or y, one cannot obtain sum(z, y) or sum(z, x) from

sum(z, sum(x, y)). Solving this requires two additional equations similar to the last two

equations shown in Figure 5.2. One could ask why we do not model sum as a commutative

function, i.e., sum(x, y) = sum(y, x), which solves this problem and moreover allows us

to represent the subtraction using only two equations instead of four. This is due to a
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ProVerif limitation as this solution causes non termination. Note that in our model, we

provide the value rp received by the user process Ui as the first argument to the function

sum, and his rate ri as the second argument. Thus, such a term sum(z, sum(x, y)) does

not appear between the messages involved in our model of the protocol.

sdec(senc(m, k), k) = m

sub(sum(x, y), x) = y

sub(sum(x, y), y) = x

sub(sum(sum(x, y), z), x) = sum(y, z)

sub(sum(sum(x, y), z), y) = sum(x, z)

Figure 5.2: Equational theory for our model of Pavlov et al. protocol.

An alternative equational theory could model the sum of two values x and y as their

exclusive-or (XOR), i.e., xor(x, y) instead of sum(x, y). In this case the subtraction will

be represented by another XOR application, i.e., xor(xor(x, y), y) = x. However, there

are currently no tools that support the algebraic properties of XOR operator and at

the same time support observational equivalence – needed for the privacy properties.

Küsters et al. [KT11] have shown how to reduce the derivation problem for Horn theories

with XOR to the XOR-free case. Their reduction allows one to carry out the analysis of

the protocols that involve XOR operator using tools, such as ProVerif. However, their

result is valid only with secrecy and authentication properties, but not with equivalence

properties.

We assume that all the parties (querying agent and users) are honest. To model the

authenticated secure channel, we assume that all messages are exchanged encrypted with

a shared symmetric key, which ensures the secrecy of the messages. Moreover, we assume

that the unique identities of the sender and the receiver are included in the message. This

allows the receiver to authenticate the sender, and also ensures that the message will

considered only by the intended receiver as all users are honest.

Analysis. The results of our analysis is detailed below. A summery for the results is

shown in Table 5.1.

User Privacy: ProVerif shows that User Privacy is not satisfied, simply since the set of

all users’ identities that provides rates on the target is public (at least known by the

querying agent).

Rate Privacy: in case where we have only one user, it is clear that we do not have

Rate Privacy as the reputation score will be equal to the rate of this user, and thus the

querying agent can knows this rate. We show, using ProVerif, that the protocol ensures

Rate Privacy in the case of two users (other than the querying agent). As we already
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Property Result Time
User Privacy × < 1 s
Rate Privacy X < 1 s

Rate Anonymity X < 1 s
Untraceability × -

Receipt-Freeness × -
Coercion-Resistance × -

Rate Origin Authentication X < 1 s
Rate Integrity∗ X < 1 s

User Eligibility Verification × < 1 s
Reputation Score Verification X < 1 s

Table 5.1: Results of our analysis on the formal model of the Pavlov et al. protocol.
(∗) means that without injectivity. (-) indicates that the property is not verified using
ProVerif.

mentioned, to model the authenticated channel we add the identities to the messages.

Note that, if the identity of the receiver is removed from the messages, the attacker can

re-direct the message sent by the first user, which contains sum(rq, r1), to the querying

agent instead of the second user, and thus the rate of the first user will be enclosed to

the querying agent even if he acts honestly. A similar attack will enclose the rate of the

last user (herein user two) if the attacker re-direct the first message by querying agent,

which contains rq to the last user. To make the attack on the intermediate users (in

case of more than two users) the attacker needs two sessions to be initiated by the same

querying agent. Note that, in all these attacks the rate will only enclosed to the querying

agent and not to the attacker unless that the obtained reputation score is published by

the querying agent.

Rate Anonymity: ProVerif shows that the protocol ensures Rate Anonymity in the case

of two users (other than the querying agent).

Untraceability: since User Privacy is not satisfied Untraceability is also not satisfied.

Receipt-Freeness: the protocol does not ensure Receipt-Freeness since the shared key k

can be used as a receipt which allows the attacker to enclose the value of the message

received by the victim user and that sent by him, then subtract them from each other to

check whether the difference is equal to the rate rc he wants, or not. Note that, the user

cannot lie about the key by giving the attacker an different key k′ unless he can obtain a

key k′ 6= k such that rc = sub(sdec(senc(sum(rp, ri), k), k′), sdec(senc(rp, k), k′)) where

ri is the user’s rate, and rp is the sum he received from his predecessor.

Coercion-Resistance: as Receipt-Freeness does not hold, then Coercion-Resistance also

does not hold since by the Theorem 5.4 if a protocol ensures Coercion-Resistance then it
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also ensures Receipt-Freeness.

Rate Origin Authentication: we show with ProVerif that Rate Origin Authentication is

ensured by the protocol. We assume that the users included in the ring are eligible as

they are registered in a certain database. Thus, the event eligible is emitted when the

querying agent chooses the user as a node in the ring. The event record emitted when

the rate is received by his successor in the ring (actually the summation of all previous

rates is received).

Rate Integrity: we check the integrity of the messages exchanged between the parties

(querying agent and users). Thus events are placed in both querying agent and user

processes. ProVerif shows that the integrity of the messages is preserved if the correspon-

dence is modeled without injectivity, and terms types (sorts) are respected. Note that,

the injectivity does not hold since the attacker can re-play the message several times, and

thus we will have several emissions of the event record preceded by only one emission of

event sent. Note also that a flaw exists if we ignore the types of the terms: for example,

the first message sent by the querying agent to the first user to inform him about the

identity of his successor might be received by this user as a rate rq, which has a different

type. Thus, the event record will be emitted but not the event sent.

User Eligibility Verification: users do not provide any proof (e.g., certificate) which

could allow one to verify their eligibility (i.e., they have been interacted with the target).

Actually, the protocol assumes a set of eligible users each with a certain rate. Note that,

as user eligibility is ensured, according to the definition of User Eligibility Verification

the test that always gives true is sound and complete. However, this test is dummy as it

does not provide any information for the verifier to be sure about user’s eligibility.

Reputation Score Verification: the users can only get the reputation score, however they

have no means to check if this score is calculated correctly from the users rates. However,

if the rates are published encrypted, with a certain key whose public part is known, in a

Bulletin Board then we can design a test that allows the users to verify the reputation

score. The test takes users’ rates and the reputation score of the target, and simply

checks if the summation of all rates is equal to the score. Note that, verifiability could

destroys the privacy of the rates. We show using ProVerif that such a test is sound and

complete.

5.6 Conclusion

We set the first research step on the formal understanding of e-reputation systems, and

establishes a framework for the analysis of their security requirements. In particular, we

show how to model reputation protocols in the Applied π-Calculus, and how security
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properties such as privacy, authentication, and verifiability properties can be expressed.

We validate our model and definitions by analyzing, using ProVerif, the security of an

e-reputation protocol, the protocol by Pavlov et al. [PRT04]. It has been informally

argued to preserve rate privacy. Our analysis shows that it satisfies five properties,

namely Rate Privacy, Rate Anonymity, and Rate Origin Authentication, Rate Integrity

(without injectivity), and Reputation Score Verification (if users can have an access to

the set of rates). While it fails to satisfy the other five: User Privacy, Untraceability,

Receipt-Freeness, Coercion-Resistance, and User Eligibility Verification.

As a future work it would be interesting to analyze more e-reputation protocols. Several

e-reputation protocols are highly depends on algebraic properties such as arithmetic

operations and homomorphic encryptions, e.g. [PRT04,HBBS13,AGLM+13b,BSS10].

Developing automatic tools that can deal with these properties is still a real challenge for

the community. However, researches goes some way in the direction of finding solutions

for such a problem, for instance the result obtained by Küsters et al. [KT11] allows us

to analyze secrecy and authentication properties for protocols with XOR operator using

ProVerif.
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Chapter 6
Analyzing Routing Protocols in Presence
of Multiple Independent Attackers

Several cryptographic routing protocols aim at ensuring the route validity in a network,

i.e., ensuring that the established route is an existing path in the network. However,

flaws have been found in some protocols that are claimed secure. Cortier et al. [CDD12]

show that when looking for attacks on properties such as route validity, it is sufficient

to consider only five typologies with four nodes each. The authors assume cooperative

attackers, i.e., several attackers (compromised nodes) that share their knowledge using

out-of-band resources or hidden channel. In this chapter, we extend their result to the

case of non-cooperative attackers where several independent attackers that do not share

their knowledge are considered. Such non-cooperative model is more realistic, particularly

in the case of wireless sensor networks where nodes have low communication powers.
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6.1 Introduction

Wireless ad-hoc networks have no existing infrastructure. This enables them to play a more

and more important role in extending the coverage of traditional wireless infrastructure

(e.g., cellular networks, wireless LAN, etc.). These networks have no central administration

control, and thus the presence of dynamic and adaptive routing protocol is necessary for

them to work properly. Routing protocols aim to establish a route between distant nodes,

enabling wireless nodes to communicate with the nodes that are outside their transmission

range. As an example of routing protocols, we describe the Secure Routing Protocol

SRP [PH02] applied on the Dynamic Source Routing protocol DSR [JMB01]. SRP is

actually not a routing protocol by itself. However, it can be applied to an on-demand

source routing protocol, such as DSR, in order to obtain a secure variant of this protocol.

DSR is a protocol which is used when the source node (S) wants to communicate with

another non-neighbor node, the destination node (D). DSR consists of two phases: the

request phase, and the reply phase. After applying SRP, the two phases are as follows

(assuming that each node already knows its neighbors).

− Request phase: The source node S broadcasts to its neighbors the request message:

〈req, S,D, Id, [S], hmac(〈req, S,D, Id〉,KSD)〉, where req is an identifier indicating

the request phase, [S] is the initial route list, hmac is a message authentication

code (MAC) function, and KSD is a symmetric key shared between S and D. Then,

each intermediate node that receives the request, locally checks the route list: if the

last (added) node in the list is one of its neighbors, then it broadcasts the request

after appending its name (identifier) to the list, and drops the request message

otherwise.

− Reply phase: Once the request reaches the destination D, it checks that the last

node in the route is one of its neighbors, and that the MAC is correct. Then,

D constructs a route reply, in particular it computes a new hmac over the route

accumulated in the request message and sends the following message back over the

network: 〈rep,D, S, Id, l, hmac(〈rep,D, S, Id, l〉,KSD)〉, where rep is an identifier

indicating the reply phase, l is the obtained route list. Then, each intermediate

node checks if its name appears in the route list between two of its neighbors, if so

it forwards the message to the next node. Once the source S receives a message

containing a route to D. Before accepting, it checks that the MAC is correct, that
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the route does not contain loops, and that its neighbor in the route is indeed one of

its neighbor in the network.

Security of routing protocols is a crucial for wireless ad-hoc networks since attacking

routing protocol may disable the whole network operation. For example, forcing two

nodes to believe in an invalid route (i.e., a route that does not represent a real path in

the network) will prevent them from communicating with each other. Several routing

protocols [PH02,HPJ05,SDL+02] have been proposed to provide more guarantees on the

resulting route in ad-hoc networks. However, they may still be subject to attacks. For

example, a flaw has been discovered on SRP when applied to DSR allowing an attacker

to modify the route [BV04], thus forcing the source node to believe in an invalid route.

Another attack has also been found on the Ariadne protocol [HPJ05] in the same paper.

This shows that, like other cryptographic protocols, designing routing protocols is a

difficult and error-prone task. Thus, they have to be formally verified before they are

used. However, decision procedures (e.g., [Bla01,RT01]) that are applied on standard

protocols such as confidentiality and secrecy, and tools such as AVISPA, ProVerif, and

Scyther are not well-adapted to the case of routing protocols. A main reason for this is

that, in contrast to standard security protocols where the attacker is assumed to control

all the communications, an attacker for routing protocols has to be localized somewhere

in the network. Thus, it can only control a finite number of nodes, and only listen to the

messages sent by the nodes that are neighbors to the compromised nodes.

In 2010, Arnaud et al. [ACD10] proposed an NP decision procedure for analyzing

routing protocols looking for attacks on route validity. However, in case of routing

protocols the existence of an attack strongly depends on the network topology, i.e., how

nodes are connected and where malicious (compromised) nodes are located. This results

in an infinite number of network topologies to verify, which is not tractable. Later in

2012, Cortier et al. [CDD12] proposed a reduction proof when looking for route validity

property in presence of cooperative attackers that share their knowledge using out-of-band

resources. The applied reduction technique results in only five topologies with four nodes

each. However, it is not always realistic to consider cooperative attackers as this may

results in an unpractical attacks. As an example, consider the case of ad-hoc sensors

that are thrown from a plane into the enemy field during a battle. Indeed, due to their

minimal configuration and quick deployment ad-hoc networks are suitable for emergency

situations like natural disasters or military conflicts where no infrastructure is available.

Thus, usually it is difficult to have out-of-band resources between malicious nodes. Note

that, using hidden channels (e.g., running other instances of routing protocol and using

the obtained route) is unfeasible in some cases where nodes have low power capabilities

(e.g., sensor networks).
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6.1.1 Contributions

In this chapter, we consider route validity property in presence of multiple independent

(non-cooperative) attackers, i.e., attackers that can not share their knowledge between

each other. Then, we show that the reduction result obtained by Cortier et al. in [CDD12]

in presence of cooperative attackers is also applicable to the case of the independent

attackers. As the original paper the reduction proof consists of two steps: firstly, we

show that if there is an attack on a routing protocol in a certain topology, then there

is an attack on this protocol in a smaller topology obtained from the original topology

by a simple reduction. Secondly, we show that applying the reduction procedure to

any topology leads to (at most) five small topologies. We use the process calculus and

the transition rules (after updating them to handle the behavior of the non-cooperative

malicious nodes instead of the cooperative ones) presented in [CDD12], which are adapted

to model routing protocols. Finally, we prove that a protocol satisfies the route validity

property in presence of cooperative attackers in every network topology, if and only if,

it satisfies the route validity in presence of non-cooperative attackers in every network

topology.

6.1.2 Related work

Multiple attackers that do not share their knowledge are already considered in [ACRT11]

to analyze the web-service applications looking for attacks that exploit XML format.

Verifying protocols (for properties such as route validity) in presence of multiple inde-

pendent attacker is equivalent to satisfiability of general constraints where knowledge

monotonicity does not hold. The satisfiability of such kind of constraints has been proven

to be NP-complete [Maz05,ACRT11]. However, in the case of routing protocols an infinite

number of topologies have to be considered.

Some case studies and formal techniques dedicated for analyzing routing protocols

have been proposed. For example, Ács et al. [ÁBV06] have developed a framework for

analyzing on-demand source routing protocols. Benetti et al. [BMV10] have analyzed

the ARAN [SLD+05] and endairA [ÁBV06] protocols with the AVISPA tool, and have

discovered three attacks on ARAN protocol. Nanz and Hankin [NH06a] have proposed

a formal framework for analyzing routing protocols of mobile wireless networks, and

have shown how to automatically analyze a finite number of attack scenarios. Arnaud et

al. [ACD10] have proposed an NP decision procedure for analyzing routing protocols for

a finite number of sessions.

Few other works have presented reduction results in context of routing protocols. The

first such approach was proposed by Andel et al. [ABY11]. They have shown how to

reduce the number of network topologies one has to consider, taking advantage of the

symmetries. However, the total number of networks is still large even when considering a
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bounded number of nodes. Recently, Cortier et al. [CDD12] have shown that only five

topologies (four nodes each) need to be considered when looking for attacks on route

validity in presence of attackers that share their knowledge. We show that the reduction

proof presented in [CDD12] can be extended to the case of multiple independent attackers

that do not share their knowledge. Note that, none of the previously mentioned work on

routing protocols consider independent attackers.

6.1.3 Outline

In Section 6.2, we recall the syntax of the process calculus we use, and show how a routing

protocol can be modeled using this calculus. We define route validity property and the

corresponding attack in Section 6.3. Then in Section 6.4, we present a reduction proof

and show that only five topologies are sufficient. Next in Section 6.5, we show that, for

every network, a protocol satisfies route validity in presence of cooperative attackers, if

and only if, it satisfies route validity in presence of non-cooperative attackers. Finally, we

conclude in Section 6.6.

6.2 Modelling Routing Protocols

The Applied π-Calculus we used in previous chapters to model standard cryptographic

protocols, and other calculi that have been proposed for the same purpose (e.g., [AG97,

MPW92]) are not well-adapted for routing protocols. For instance, in routing protocols

the nodes have to perform some specific checks (e.g., checking that a route is loop free, or

that two nodes are neighbors) that cannot be easily modeled in such calculi. Moreover,

network topology and broadcast communications have to be taken into account. A

process calculus that is adapted to model routing protocol (and which follows the Applied

π-Calculus) is presented in [CDD12] 1. In this section, we recall the syntax of this calculus,

then we adapt the related execution model to the case of multiple independent attackers

(instead of attackers that share their knowledge).

6.2.1 Syntax

Similar to Applied π-Calculus, terms and function symbols are respectively used to

represent messages and cryptographic primitives. Terms are names, variables, or function

symbols applied to names and variables. An infinite set of names N and an infinite set of

variables X are considered. A term is ground if it does not contain any variable. Each

function symbol has a certain arity, and can only applied to terms of specific types (sorts).
1 Note that, this calculus generalize the calculus give in [ACD10], which is is inspired by CBS# [NH06b],
by allowing processes to perform any operation on the terms they receive and considering an arbitrary
signature of function symbols.
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Two special types are assumed: the type Agent that only contains agent’s names and

variables, and the type Term that subsumes all other types so that any term is of the

type Term.

Example 6.1. (Signature [CDD12]). A typical signature for representing the prim-

itives used in SRP protocol is the signature ΣSRP = {hmac(·, ·), 〈·, ·〉, · :: ·, [], req, rep},
where req and rep are unitary constants identify the request and response phases respec-

tively, [] represents an empty list and other symbols are defined as follows:

〈·, ·〉 : Term× Term→ Term · :: · : Agent× List→ List

hmac(·, ·) : Term× Term→ Term

The symbol hmac(·, ·) takes two terms and computes the message authentication code of

the first term with the second one as a key. The operator 〈·, ·〉 produces a concatenation

of two terms, and the operator · :: · is the list constructor. We write 〈t1, t2, t3〉 for the

term 〈〈t1, t2〉, t3〉 , and [t1, t2, t3] for (([] :: t1) :: t2) :: t3.

Substitutions (σ) are well-sorted, and cycle-free. A substitution σ is extended to a

homomorphism on functions, processes and terms as expected. Two terms t and s are

unifiable if there exists a substitution θ, called unifier, such that θ(t) = θ(s). The most

general unifier (for short mgu) of two terms t and s is a unifier, denoted mgu(t, s), such

that for any unifier θ of t and s there exists a substitution σ with θ = σ ◦ mgu(t, s)

where ◦ is a composition of two mappings. We write mgu(t, s) =⊥ when t and s are not

unifiable.

The calculus is parameterized by a set P of predicates to represent the checks performed

by the agents, and a set F of functions over terms to represent the computations

performed by the agents. The set of functions F contains functions that are more

complex than basic cryptographic primitives represented by Σ, for example a function

f : (x, y, z) 7→ hmac(〈x, y〉, z) which takes three terms, concatenates the first two and

then computes the MAC over them with the third term. They can also be used to model

operations on lists, for example we can define a function that takes a list [A1, . . . , An]

and returns its reverse [An, . . . , A1].

The intended behavior of each node in the network can be modeled by a process

defined using the grammar given in Figure 6.1. The process out(f(t1, . . . , tn)).P computes

the term t = f(t1, . . . , tn), emits t, and then behaves like P . The reception process

in(t).P expects a message m matching the pattern t and then behaves like σ(P ) where

σ = mgu(m, t). The process “if Φ then P ” behaves like P if Φ is true. Two processes P

and Q running in parallel represented by the process P |Q. The replication process !P

denotes an infinite number of copies of P , all running in parallel. The process new m.P

creates a fresh name m and then behaves like P . Sometimes, for the sake of clarity we

omit the null process. A ground process P is a process that have no free variables (we
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P,Q ::= Processes

0 null process.

out(f(t1, . . . , tn)).P emission

in(t).P reception

if Φ then P conditional

P |Q parallel composition.

!P replication

new m.P fresh name generation

where t, t1, . . . , tn are terms, m is a name, f ∈ F , and

Φ is a formula:

Φ,Φ1,Φ2 ::= Formula

p(t′1, . . . , t
′
n) p ∈ P, t′1, . . . , t′n are terms

Φ1 ∧ Φ2 conjunction

Figure 6.1: Processes grammar

denote free variables of P by fv(P )), and a parameterized process P (x1, . . . , xn) is a

process that has n variables x1, . . . , xn of type Agent, and such that fv(P ) ⊆ {x1, . . . , xn}.
A routing role is a parameterized process that does not contain any name of type Agent.

A routing protocol is then simply a set of routing roles.

The predicates p ∈ P are given together with their semantics that may depend on the

underlying graph G that models the topology of the network. Such a graph G = (E, V ) is

given by a set of vertices V ⊆ {A ∈ N | A of type Agent}, and a set of edges E ⊆ V × V
where E is a reflexive and symmetric relation. There are two kinds of predicates: a set

PI of predicates whose semantics is independent of the graph and a set PD of predicates

whose semantics is dependent on the graph. For a graph dependent formula Φ and a

graph G, JΦKG = true (resp. false) denotes that Φ is true (resp. false) in G.

Example 6.2. (Predicates [CDD12]). For example, one can use the predicates

PSRP = PI ∪ PD for SRP, with PI = {checksrc, checkdest} and PD = {check, checkl}.
The purpose of the PI predicates is to model some checks that are performed by the source

when it receives the route. The semantics of these predicates is defined as follows:

− checksrc(S, l) = true, if and only if, l is of type List and its first element is S,

− checkdest(D, l) = true, if and only if, l is of type List and its last element is D (i.e.,

l = l1 :: D where l1 is of type List).
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The predicates checksrc(S, l) and checkdest(D, l) are used by the source process to verify

that the first and last nodes of the established route are the source and destination of

the route discovery respectively. While, the purpose of the PD predicates is to model

neighborhood checks. Given a graph G = (V,E), their semantics is defined as follows:

− Jcheck(A,B)KG = true, if and only if, (A,B) ∈ E or (B,A) ∈ E,

− Jcheckl(C, l)KG = true, if and only if, C appears in l, and for any l′ subterm of l

we have (A,C) ∈ E if l′ = l1 :: A :: C and (C,B) ∈ E if l′ = l1 :: C :: B.

The aim of the predicate Jcheck(A,B)KG is to check if A and B are neighbors in G, while

the aim of the predicate Jcheckl(C, l)KG is to check if the node C appears in l between two

neighbors in G. We assume that each node knows its neighbors in the network, this can

be achieved by running a certain neighbor discovery protocol in advance.

The secure routing protocol SRP applied on DSR has been modeled in [CDD12]. Here

we give only the source process as an example.

Example 6.3. (SRP Source Process [CDD12]). Considering the signature ΣSRP

and the predicates PSRP introduced before, and the set FSRP of functions over terms that

only contains the identity function (omitted for sake of clarity), the process played by the

source xS initiating the search of a route towards a destination xD is given as follows:

Psrc(xS , xD) = new id.out(u1).in(u2).if ΦS then 0

where id is a constant that identifies the request, xS and xD are variables of type Agent,

xL is a variable of type List, and u1, u2 and ΦS are defined as follows:

u1 = 〈req, xS , xD, id, [] :: xS , hmac(〈req, xS , xD, id〉, kxSxD)〉

u2 = 〈req, xD, xS , id, xL, hmac(〈req, xD, xS , id, xL〉, kxSxD)〉

ΦS = checkl(xS , xL) ∧ checksrc(xS , xL) ∧ checkdest(xD, xL)

6.2.2 Attacker Capabilities

We consider multiple independent attackers that do not have the ability to share knowledge

between each other using any out-of-band-resources or hidden channels. Each attacker

compromises a node in the network, and thus can only listen and send messages to its

neighbors. We assume that the capabilities of each attacker are modeled by a deduction

relation `. The relation I ` t means that the term t is deducible from the set of terms I.

Such a deduction relation can be defined through an inference system, i.e., a finite set

of rules of the form
t1 · · · tn

t
, where t, t1, . . . , tn are of type Term. It follows that I ` t if
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there exists a proof tree with a root labeled by t and leaves labeled by t′ ∈ I and every

intermediate node is an instance of one of the rules of the inference system.

Example 6.4. (Inference System [CDD12]). One can associate to the SRP signature

ΣSRP , the following inference system:

t ∈ I

I ` t

I ` t1 I ` t2

I ` 〈t1, t2〉

I ` 〈t1, t2〉

I ` ti
i ∈ {1, 2}

I ` l1 I ` l2

I ` l1 :: l2

l1 :: l2

li
i ∈ {1, 2}

I ` t1 I ` t2

I ` hmac(t1, t2)

where I is the knowledge of the attacker, t, t1 and t2 are variables of type Term, l1
is a variable of type List, and l2 is a variable of type Agent. The system gives the attacker

an ability to concatenate terms, build lists, as well as to retrieve their components. The

first rule is an axiom, and the last rule models the fact that the attacker can also compute

a MAC provided he knows the corresponding key.

6.2.3 Configuration and Topology

Each process is located at a specified node of the network. Unlike the classical Dolev-Yao

model, the attackers does not control the entire network but can only interact each with

its neighbors. More specifically, we assume that the topology of the network is represented

by a tuple T = (G,M, S,D) where:

− G = (V,E) is an undirected graph with V ⊆ {A ∈ N | A of type Agent}, where an

edge in the graph models the fact that two agents are neighbors. We only consider

graphs such that {(A,A)|A ∈ V } ⊆ E which means that an agent can always

receive a message sent by himself;

− M = {Mi}i=ki=1 is a set of nodes that are controlled by k attackers we have in the

network, where each attacker controls only one node. Note thatM ⊆ V . These

nodes that are inM are called malicious whereas nodes not inM are called honest;

− S and D are two honest nodes that represent respectively the source and the

destination for which we analyze the security of the routing protocol.

Note that malicious nodes cannot communicate using out-of-band resources or hidden

channels.

Example 6.5. (Topology). A possible topology T0 = (G0,M0, S,D) is depicted in Fig-

ure 6.2, where S ( ) is the source, D ( ) is the destination, A is a honest

node (colored in white), and M1 and M2 are two malicious nodes (colored in black), i.e.,

M0 = {M1,M2}.
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S

M1

AM2

D

Figure 6.2: Topology T0

A configuration of a network is a pair specifying the process to be executed by each node,

and the initial knowledge of each attacker (malicious node).

Definition 6.1. (Configuration [CDD12]). A configuration of a network is a pair

(P, I) where:

− P is a multiset of expressions of the form bP cA that represents the process P

executed by the agent A ∈ V . We write bP cA ∪ P instead of {bP cA} ∪ P;

− I = {Ii}i=ki=1 is a set of sets of ground terms, where the set Ii represents the messages

seen by the malicious node Mi ∈M as well as its initial knowledge.

Example 6.6. (Configuration [CDD12]). A typical initial configuration for the SRP

protocol is: K = (bPsrc(S,D)cS | bPreq(A)cA | bPrep(A)cA | bPdest(D)cD; I).

6.2.4 Execution Model

The communication system is formally defined by the rules of Figure 6.3. These rules are

parameterized by the underlying topology T = (G,M, S,D) with G = (V,E). They are

similar to the ones used in [ACD10,CDD12] with the differences that we use a separate

set of knowledge for each attacker, and we assume that the message sent by a certain

malicious node can be captured by its malicious neighbors due to broadcast nature of the

communications in wireless add-hoc networks (rule IN). The COMM rule allows nodes to

communicate provided that they are directly connected in the underlying graph. The

exchanged message is added to the knowledge Ii of the malicious node Mi if the agent

emitting the message is a direct neighbor of Mi, this reflects the fact that a malicious

node can listen to the communications of its neighbors. The IN rule allows a malicious

node Mi to send any message it can deduce from its knowledge Ii to any of its neighbors,

and like in COMM rule this message can be captured by neighbor malicious nodes. The

rule IF-THEN states that a node A executes the process P only if the formula Φ is

true. PAR rule says that parallel processes are equivalent to parallel nodes running these

processes. The replication process !P is expanded using the rule REPL. The last rule

NEW says that nodes can use fresh names of their choice when required. The relation

→∗T is the reflexive and transitive closure of →T .
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COMM ({bin(t′j).PjcAj | mgu(t, t′j) 6= ⊥, (A,Aj) ∈ E} ∪ bout(f(t1, . . . , tn).P cA
∪P; I)→T (bPjσjcAj ∪ bP cA ∪ P; I ′)

where σj = mgu(t, t′j) with t = f(t1, . . . , tn), and for i ∈ {1, . . . , k}, if (A,Mi) ∈ E

then I ′i = Ii ∪ {t} else I ′i = Ii.

IN (bin(t′).P cA ∪ P; I)→T (bPσcA ∪ P; I ′) if (A,Mj) ∈ E, Ij ` t and Mj ∈M

where σ = mgu(t, t′), and if (Mj ,Mi) ∈ E then I ′i = Ii ∪ {t} else I ′i = Ii.

IF-THEN (bif Φ then P cA ∪ P; I)→T (bP cA ∪ P; I) if JΦKG = true.

PAR (bP1|P2cA ∪ P; I)→T (bP1cA ∪ bP2cA ∪ P; I)

REPL (b!P cA ∪ P; I)→T (bP cA ∪ b!P cA ∪ P; I)

NEW (bnew m.P cA ∪ P; I)→T (bP{m 7→ m′cA} ∪ P; I)

where m′ is a fresh name.

Figure 6.3: Transition system.

6.3 Route Validity Property

A routing protocol satisfies route validity property if it results in a valid route. In this

section, we define the valid route and the attack on a routing protocol. Note that, we do

not consider the case of wormhole attack, so a route that contains where two successive

non-neighboring malicious nodes is considered a valid route.

Definition 6.2. (Valid route [CDD12]). Let T = (G,M, S,D) be a topology with

G = (V,E), we say that a list l = [A1, . . . , An] of agent names is a valid route in T , if
and only if, for any i ∈ {1, . . . , n− 1}, we have that (Ai, Ai+1) ∈ E or Ai, Ai+1 ∈M.

After successfully executing a routing protocol, the source node stores the resulting

received route. We assume that processes representing instances of routing protocols

contain a process that has a special action of the form out(end(l)). The list l represents

the established route so that we can check whether it is valid or not. Checking whether

a routing protocol ensures route validity property can be defined as a reachability

property [CDD12]. The attack on the configuration of a routing protocol is defined as

follows.

Definition 6.3. (Attack on a configuration [CDD12]). Let T = (G,M, S,D)

be a topology and K be a configuration. We say that K admits an attack in T if
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K →∗T (bout(end(l)).P cA ∪ P; I) for some A, P , P, I, and some term l that is not a

valid route in T .

For a given routing protocol Prouting, we only consider configurations that are made up

using a routing role P0 and roles of the protocol, such that P0 is the only process that

contains a special action out(end(l)). Moreover, we check whether the security property

holds when the source and the destination are honest. Note that, we consider the case

where an honest source initiates a session with a malicious node (Psrc(S,M) for M ∈M
can occur in the configuration).

Definition 6.4. (Configuration valid for Prouting and P0 [CDD12]). Let T =

(G,M, S,D) be a topology with G = (V,E), and I be a set of sets representing the initial

knowledge of the attackers. A configuration K = (P, I) is valid for the routing protocol

Prouting and the routing role P0 with respect to T if

− P = bP0(S,D)cS
⊎
P ′ and for every bP ′cA1 ∈ P ′ there exist P (x1, . . . , xn) ∈

Prouting, and A2, . . . , An ∈ V such that P ′ = P (A1, . . . , An).

− the only process containing a special action of the form out(end(l)) is P0(S,D)

witnessing the storage of a route by the source node S.

The attack on a routing protocol Prouting and a routing role P0 with respect a topology

T is defined as follows.

Definition 6.5. (Attack on Prouting and P0 [CDD12]). We say that there is an

attack on the routing protocol Prouting and the routing role P0 given an initial knowledge I
if there exist a topology T = (G,M, S,D) and a configuration K that is valid for Prouting
and P0 with respect to T , such that K admits an attack in T .

6.4 Reduction Procedure

In this section, we present a reduction procedure, and we show that if there is an attack

on route validity in a given topology then there is an attack in a smaller topology obtained

by applying the reduction procedure to the initial one. Hence, applying the reduction

to a certain topology allows us to verify a protocol in a smaller topology. We show

that applying the reduction procedure on any topology results in one of five topologies,

each consists of only four nodes. Then, we show that considering only five topologies is

sufficient when looking for attacks on route validity. Following [CDD12], our reduction

procedure consists of two main steps:

1. Adding edges to the graph yielding a quasi-complete topology.

2. Merging nodes that have the same nature (honest or malicious) and same neighbors.
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6.4.1 From an Arbitrary Topology to a Quasi-Complete One

In order to merge nodes while preserving the attack, they must have the same nature

and same neighbors. To ensure that most of the nodes have the same neighbors we first

add edges to the graph. Actually, we add all edges except one. We show that the attack

is preserved when we add these edges.

Definition 6.6. (Quasi-completion [CDD12]). Let T = (G,M, S,D) be a topology

with G = (V,E), and let A, B be two nodes in V that are not both malicious and

such that (A,B) /∈ E. The quasi-completion of T with respect to (A,B) is a topology

T + = (G+,M, S,D) such that G+ = (V,E+) with E+ = V × V r {(A,B), (B,A)}.

Example 6.7. (Quasi-completion). A possible quasi-completion T +
0 of the topology

T0 shown in Figure 6.2 is the one with respect to the pair (S,D) given below. As we see

the graph is almost highly connected, the only missing edge is (S,D).

S

M1

AM2

D

Note that, predicates have to be completion-friendly so that their values are preserved

when adding some edges to the graph.

Definition 6.7. (Completion-friendly [CDD12]). A predicate p is completion-

friendly if Jp(t1, . . . , tn)KG = true implies that Jp(t1, . . . , tn)KG+ = true for any ground

terms t1, . . . , tn and any quasi-completion T + = (G+,M, S,D) of T = (G,M, S,D). We

say that a routing protocol (resp. a configuration) is completion-friendly if the predicates

PD, i.e., the predicates that are dependent of the graph are completion-friendly.

Lemma 6.1. (Quasi-completion). Let T be a topology, K0 be a configuration that is

completion-friendly. If there is an attack on K0 in T , then we can find two non-neighboring

nodes B,C ∈ V that are not both malicious and a topology T + quasi-completion of T
with respect to (B,C), such that there exists an attack on K0 in T +.

Proof. Let T = (G,M, S,D) be a topology with G = (V,E) and K0 be a configuration

that is completion-friendly. Assume that there is an attack on K0 in T . Then, by

the definition of the attack, there exist A, P , P, I and l0 = [A1, . . . , An], such that

K0 →∗T (bout(end(l0)).P cA ∪ P; I) = K and l0 is not a valid route in T , i.e., there
exists 1 ≤ a ≤ n such that (Aa, Aa+1) /∈ E and (Aa /∈ M or Aa+1 /∈ M). Let

T + = (G+,M, S,D) be a quasi-completion of T with respect to (Aa, Aa+1). Then, we

have that G+ = (V,E+) with E+ = V × V r {(Aa, Aa+1), (Aa+1, Aa)}. We show by
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induction on the length r of a derivation K0 →r
T Kr

2 that Kr is completion-friendly and

that K0 →r
T + Kr. This will allow us to obtain that K0 →∗T + (bout(end(l0)).P cA ∪ P ; I),

and as by definition of T +, l0 is not a valid route in T + we conclude that K0 admits an

attack in T +.

For r = 0, since K0 is completion-friendly, we can easily conclude. Now, assume that

K0 →r−1
T Kr−1 then, by induction hypothesis, we have that Kr−1 is completion-friendly

and K0 →r−1
T + Kr−1. Suppose that, Kr−1 →T Kr. Since Kr−1 is completion-friendly,

then Kr is Completion-friendly as there is no rule that introduce new predicates or

functions. We show that Kr−1 →T + Kr by case analysis on the rule involved in the step

Kr−1 →T Kr:

Case of the rule IF-THEN: we have that Kr−1 = (bif Φ then P cA ∪ P; I), Kr =

(bP cA ∪P ; I) and JΦKG = true. Since Kr−1 is completion-friendly and JΦKG = true then

JΦKG+ = true, it follows that we can apply the rule IF-THEN on Kr−1 in T +, and thus

we get that Kr−1 →T + Kr.

Case of the rule IN: in such a case, we have that Kr−1 = (bin(t′).P cA ∪ P; I),

Kr = (bPσcA ∪ P; I ′) where σ = mgu(t, t′), (A,Mj) ∈ E for some Mj ∈ M, Ij ` t and
for i ∈ {1, . . . , k}, if (Mj ,Mi) ∈ E then I ′i = Ii ∪ {t}, else I ′i = Ii. We have that E ⊆ E+,

then (A,Mj) ∈ E+ and if (Mj ,Mi) ∈ E then (Mj ,Mi) ∈ E+. Thus, we can conclude

that Kr−1 →T + Kr.

Rule COMM: we have that: Kr−1 = ({bin(t′j).PjcAj | mgu(t, t′j) 6= ⊥, (A,Aj) ∈ E} ∪
bout(f(t1, . . . , tn).P cA∪P ; I) and Kr = (bPjσjcAj ∪bP cA∪P ; I ′) where t = f(t1, . . . , tn),

σj = mgu(t, t′j), and for i ∈ {1, . . . , k}, if (A,Mi) ∈ E then I ′i = Ii ∪ {t}, else I ′i = Ii.

As E ⊆ E+, then (A,Aj) ∈ E implies that (A,Aj) ∈ E+, and (A,Mi) ∈ E implies that

(A,Mi) ∈ E+. Thus, we have that Kr−1 →T + Kr.

Case of the rules PAR, REPL, and NEW: these rules do not depend on the

underlying graph. This allows us to easily conclude.

6.4.2 Reducing the Size of the Topology

In this step, we merge nodes that have the same nature and same neighbors. The initial

knowledge of malicious nodes are joined when they are merged. In fact, sometimes one

malicious node could do the job of several malicious nodes if we give it the required initial

knowledge, for instance the case where we have a chain of malicious nodes. Also, in some

cases existence or absence of some malicious nodes has no effect. We show that if there

exists an attack in a given topology T then there exists an attack in a reduced topology

ρ(T ) (some times written T ρ) where ρ is a node renaming mapping.
2 K0 →r

T Kr means that Kr is obtained from K0 in r steps
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Let T = (G,M, S,D) be a topology with G = (V,E) and E a reflexive and symmetric

relation, and let ρ be a renaming on the agent names (not necessarily a one-to-one

mapping). We say that the renaming ρ : V 7→ V

− preserves honesty of T if A, ρ(A) ∈M or A, ρ(A) /∈M for every A ∈ V .

− preserves neighborhood of T if ρ(A) = ρ(B) implies that {A′ ∈ V | (A,A′) ∈ E} =

{B′ ∈ V | (B,B′) ∈ E}. Note that, we use the notation NG(A) to denote the set

of all neighbors of A in G.

Given a term t, we denote by tρ the term obtained by applying the renaming ρ on

t. This notation is extended to set of terms, configurations, graphs, and topologies.

In particular, given a graph G = (V,E), we denote Gρ the graph (V ρ,E′) such that

E′ = {(ρ(A), ρ(B))|(A,B) ∈ E}. Note that when we apply a renaming ρ to a configuration

K = (P, I) then the knowledge Ii ∈ I of Mi ∈ M is joined with the knowledge Ii′ of

Miρ = Mi′ and the Ii is removed from I.

Example 6.8. (Renaming Mapping) Consider the quasi-completion T +
0 we have seen

in Example 6.7, a possible renaming ρ0 that preserves neighborhood and honesty and that

allows us to reduce the size of the graph is defined by: ρ0(S) = S, ρ0(A) = A, ρ0(M1) =

ρ0(M2) = M1, ρ0(D) = D. The resulting topology T +
0 ρ0 is as follows:

S

M1

A

D

Here, the two malicious nodes M1 and M2 are merged in M1 then the knowledge I2

corresponding to M2 should be pooled with I1 (the knowledge of M1). For instance,

assume that we have initially I1 = {M1, S,D}, I2 = {M2, S,A} and I = {I1, I2} then
after merging we have that I1ρ0 = {M1, S,D,A} and Iρ0 = {I1ρ0}. Note that, ρ0 does

not preserve neighborhood of the topology T0 shown in Figure 6.2, which emphasizes the

importance of the completion step in order to make a safe merging.

Definition 6.8. (Projection-friendly [CDD12]). A predicate p is projection-friendly

if Jp(t1, . . . , tn)KG = true implies Jp(t1ρ, . . . , tnρ)KGρ = true for any ground terms

t1, . . . , tn and any renaming ρ that preserves neighborhood and honesty. A function

f over terms is projection-friendly if f(t1ρ, . . . , tnρ)) = f(t1, . . . , tn)ρ for any ground

terms t1, . . . , tn and any renaming ρ that preserves neighborhood and honesty. We say that

a routing protocol (resp. a configuration) is projection-friendly if the predicates PI ∪PD

and the functions in F are projection-friendly.
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Lemma 6.2. (Reducing). Let T be a topology, K0 be a configuration that is projection-

friendly, and ρ be a renaming that preserves neighborhood and honesty in T . If there

is an attack on K0 in T , then there exists an attack on K ′0 in T ′ where K ′0 and T ′ are
obtained by applying ρ on K0 and T respectively.

Proof. Let T = (G,M, S,D) be a topology with G = (V,E) and K0 be a configuration

that is projection-friendly. Assume that there is an attack on K0 in T . Then, by

the definition of the attack, there exist A, P , P, I and l0 = [A1, . . . , An], such that

K0 →∗T K = (bout(end(l0)).P cA ∪ P; I) and l0 is not a valid route in T . Let K ′0 = K0ρ

and T ′ = T ρ = (Gρ,Mρ, Sρ,Dρ) where Gρ = (V ρ,Eρ). We show by induction on the

length r of a derivation K0 →r
T Kr that Kr is projection-friendly and K ′0 →r

T ′ K
′
r with

K ′r = Krρ. This will allow us to obtain that K ′0 →∗T ′ K ′ with K ′ = Kρ.

For r = 0, since K ′0 = K0ρ and K0 is projection-friendly, we can easily conclude.

Assume that K0 →r−1
T Kr−1, then, by induction hypothesis, we have that Kr−1 is

projection-friendly and K ′0 →
r−1
T ′ K ′r−1 with K ′r−1 = Kr−1ρ. Suppose that, Kr−1 →T Kr.

Since Kr−1 is projection-friendly, then Kr is projection-friendly as there is no rule that

introduce new predicates or functions. We show that K ′r−1 →T ′ K ′r with K ′r = Krρ by

case analysis on the rule involved in the step Kr−1 →T Kr:

Case of the rule IF-THEN: we have that Kr−1 = (bif Φ then P cA ∪ P; I), Kr =

(bP cA ∪P ; I) and JΦKG = true. Since Kr−1 is projection-friendly and JΦKG = true, then

JΦρKGρ = true, it follows that we can apply the rule IF-THEN on K ′r−1 = Kr−1ρ =

(bif Φρ then PρcAρ ∪ Pρ; Iρ), and thus we get that K ′r−1 →T ′ K ′r with K ′r = (bPρcAρ ∪
Pρ; Iρ) = Krρ.

Case of the rule IN: in such a case, we have that Kr−1 = (bin(t′).P cA ∪ P; I),

Kr = (bPσcA ∪ P; I ′) where σ = mgu(t, t′), (A,Mj) ∈ E for some Mj ∈M, Ij ` t, and
for i ∈ {1, . . . , k}, if (Mj ,Mi) ∈ E then I ′i = Ii ∪ {t}, else I ′i = Ii. Furthermore, we have

that K ′r−1 = Kr−1ρ = (bin(t′ρ).PρcAρ ∪ Pρ; Iρ), (Aρ,Mjρ) ∈ Eρ since (A,Mj) ∈ E,
Mjρ ∈Mρ since Mj ∈M and ρ preserve honesty, Iiρ ` tρ, and if (Mj ,Mi) ∈ E for some

Mi ∈ M, then (Mjρ,Miρ) ∈ Eρ and Miρ ∈ Mρ since ρ preserves neighborhood and

honesty. Thus, K ′r−1 →T ′ (b(Pρ)σ′cAρ ∪ Pρ; I ′ρ) = K ′r, where σ′ = mgu(tρ, t′ρ). Note

that, (Pρ)σ′ = (Pσ)ρ, and thus K ′r = (b(Pσ)ρcAρ ∪ Pρ; I ′ρ) = Krρ.

Case of the rule COMM: in this case Kr−1 = ({bin(t′j).PjcAj | mgu(t, t′j) 6= ⊥, and
(A,Aj) ∈ E} ∪ bout(f(t1, . . . , tn).P cA ∪P ; I) and Kr = (bPjσjcAj ∪ bP cA ∪P ; I ′) where

t = f(t1, . . . , tn), σj = mgu(t, t′j), and for i ∈ {1, . . . , k}, if (A,Mi) ∈ E then I ′i = Ii∪{t},
else I ′i = Ii. We have that, K ′r−1 = Kr−1ρ = ({bin(t′jρ).PjρcAjρ | mgu(tρ, t′jρ) 6=
⊥, (Aρ,Ajρ) ∈ E′}∪bout(f(t1, . . . , tn)ρ).PρcAρ∪Pρ; Iρ), f(t1, . . . , tn)ρ = f(t1ρ, . . . , tnρ)

since f is projection-friendly, and (Aρ,Miρ) ∈ E′ if (A,Mi) ∈ E, then K ′r−1 →T ′
(b(Pjρ)σ′jcAjρ ∪ bPρcAρ ∪ Pρ; I ′ρ) = K ′r, where σ′j = mgu(tρ, t′jρ). Thus, as (Pjρ)σ

′
j =
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(Pjσj)ρ, K ′r = (b(Pjσj)ρcAjρ ∪ bPρcAρ ∪ Pρ; I ′ρ) = Krρ.

Case of the rules PAR, REPL, and NEW: these rules do not depend on the

underlying graph. This allows us to easily conclude.

Hence, K ′0 = K0ρ→∗T ′ (bout(end(l0ρ)).PρcAρ ∪ Pρ; Iρ) = K ′ = Kρ. In order to con-

clude that there is an attack on K ′0 in T ′, it remains to show that l0ρ = [A1ρ, . . . , Anρ] =

[A′1, . . . , A
′
n] is not a valid route in T ′. First, we note that: (i) If B /∈M then Bρ /∈Mρ.

Assume that, B /∈ M and Bρ ∈ Mρ. Then there exists C ∈ M such that Bρ = Cρ.

Thus, as ρ preserve honesty we have that B and C are both malicious or both hon-

est, which leads to a contradiction. (ii) If (B1, B2) /∈ E then (B1ρ,B2ρ) /∈ Eρ. Let

B1, B2 ∈ V , ρ(B1) = D1 and ρ(B2) = D2 such that(B1, B2) /∈ E. Suppose that

(D1, D2) = (B1ρ,B2ρ) ∈ Eρ, then by definition of Eρ there exist two nodes C1, C2 ∈ V
such that ρ(C1) = D1, ρ(C2) = D2 and (C1, C2) ∈ E. Since ρ(B1) = ρ(C1) = D1

and ρ preserves neighborhood, we get that NG(B1) = NG(C1). It follows that B1 and

C2 are neighbors in G since C1 and C2 are neighbors in G. Similarly, we have that

NG(B2) = NG(C2). Thus B1 and B2 are also neighbors in G, i.e., (B1, B2) ∈ E which

leads to a contradiction. Hence, (B1ρ,B2ρ) /∈ Eρ.

Now, as l0 is not a valid route in T , there exists 1 ≤ a ≤ n such that (Aa, Aa+1) /∈ E and

(Aa /∈ M or Aa+1 /∈ M). Then, (Aaρ,Aa+1ρ) /∈ Eρ and (Aaρ /∈ Mρ or Aa+1ρ /∈ Mρ).

Hence, l0ρ is not a valid route in T ′ and we can conclude.

6.4.3 Five Topologies are Sufficient

We show that for a routing protocol Prouting there is an attack on an arbitrary topology

if and only if there is an attack on one of five particular topologies. Our result holds for

an unbounded number of sessions since we consider arbitrarily many instances of the

roles occurring in Prouting.

Theorem 6.1. (Five topologies). Let Prouting be a routing protocol and P0 be a routing

role which are both completion-friendly and projection-friendly and I be a set of knowledge.

There is an attack on Prouting and P0 given the knowledge I for some T , if and only if,

there is an attack on Prouting and P0 given the knowledge I for one of five particular

topologies T1, T2, T3, T4 and T5 (see below).

Proof. If there is an attack on Prouting and P0 given I for one of the five particular

topologies, we easily conclude that there is an attack on Prouting and P0 given I for some

topology T . We consider now the other implication. Let T = (G,M, S,D) be a topology

with G = (V,E), I be a set of knowledge and K = (P, I) be a valid configuration for

Prouting and P0 with respect to T , such that there is an attack on K in T . Without lost

of generality, we assume that V contains at least three distinct honest nodes and two

distinct malicious nodes.
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We have that K is completion-friendly as Prouting and P0 are both completion-friendly.

Moreover, we can deduce, by Lemma 6.1, that there exist two non-neighboring nodes

B,C ∈ V that are not both malicious and a topology T + = (G+,M, S,D), a quasi-

completion of T with respect to (B,C), such that there is an attack on K in T +. As

T + is a quasi-completion of T with respect to a pair (B,C), then NG+(B) = V r {C},
NG+(C) = V r{B}, and NG+(W ) = V for any W ∈ V r{B,C}. Since we have assumed

that V contains at least three distinct nodes that are not inM and two distinct nodes

in M, we deduce that V r {B,C} contains at least an honest node let us say A and

a malicious one let us say M . Let ρ be a renaming on the agent names such that for

any W ∈ V r {B,C}, ρ(W ) = A if W /∈M and ρ(W ) = M otherwise. We have that ρ

preserves honesty and neighborhood. Then, by Lemma 6.2, we deduce that there is an

attack on K ′ = Kρ in T ′ = (G+ρ,Mρ, Sρ,Dρ) = T +ρ. The topology T ′ has four nodes:
one honest, one malicious and two nodes B,C. We distinguish cases depending in the

nature of the nodes B and C, which are not both malicious:

1. B honest and C malicious (the reverse is the same due to symmetry). In this

case T ′ has two honest nodes, thus according to the position of the source and

destination we have the following four possibilities:

T1 T2 T3 T4

Note that the topology T4 can obtained only if the source and destination are the

same in the original topology.

2. Both are honest. So T ′ has three honest nodes in this case. Depending on the

position of the source and destination we have nine possibilities, but due to symmetry

four of them can be eliminated. This results in only five topologies:

T ′1 T ′2 T ′3

T ′4 T5
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The topologies T ′1 , T ′2 , T ′3 and T ′4 are respectively subsumed by T1, T2, T3 and T4

since if there is an attack in T ′i for i ∈ {1, 2, 3, 4}, then this attack can be mounted

in Ti where an honest node is now malicious.

So T ′ is one of the five topologies T1, T2, T3, T4 and T5. Finally, since Prouting and P0

do not contain any names, Definition 6.4 is satisfied and thus K ′ = (Pρ, Iρ) is a valid

configuration with respect to T ′. Hence, we can conclude.

6.5 Equivalence Result

In this section we show that a given protocol satisfies route validity for every topology in

presence of cooperative attackers, if and only if, it satisfies route validity for every topology

in presence of non-cooperative (independent) attackers. We note that, Theorem 6.2 allow

us to dispense of Theorem 6.1 since, as a consequence of the former, one could use the

result of Cortier et al. [CDD12] when looking to verify a protocol for every topology. Still

Theorem 6.1 shows that one will obtain one of the five presented topologies when apply

the reduction procedure to a certain topology.

Lemma 6.3. (Preservation of the attack). LetK0 be a configuration that is completion-

friendly. If there exists a topology T such that K0 admits an attack in T in presence of

cooperative attackers, then there exists a topology T ′ that can be obtained from T such

that K0 admits an attack in T ′ in presence of non-cooperative attackers.

Proof. Let T = (G,M, S,D) be a topology with G = (V,E) and K0 be a configuration

that is completion-friendly. Suppose that there is an attack on K0 in T then, by

the definition of the attack, there exist A, P , P, I and l0 = [A1, . . . , An] such that

K →∗T (bout(end(l0)).P cA ∪ P; I) and l0 is an invalid route in T , i.e., there exists

1 ≤ a ≤ n such that (Aa, Aa+1) /∈ E and (Aa /∈M or Aa+1 /∈M). Let T ′ = (G′,M, S,D)

be a topology such that G′ = (V,E′) with E′ = E∪(M×M). According to the definition

of l0, since it is invalid in T , it is also invalid in T ′. To deduce that there is an attack

on K0 in T ′ we show that K0 →∗T ′ (bout(end(l0)).P cA ∪ P; I). Note that, we assume

the same initial knowledge for all attackers, if its not the case we can reach this state by

applying successively the COMM rule a certain number of times as all malicious nodes

are connected in T ′. With maintaining the same knowledge for all the attackers, we

simulate the cooperative case in an indirect way.

We show by induction on the length r of a derivation K0 →r
T Kr that Kr is completion-

friendly and K0 →∗T ′ Kr. This will allow us to deduce that K0 →∗T ′ (bout(end(l0)).P cA ∪
P; I). For r = 0, as Kr = K0, K0 is completion-friendly, E ⊆ E′, and (Aa /∈ M or

Aa+1 /∈M), then we can easily conclude. Assume that K0 →r−1
T ′ Kr−1 then, by induction

hypothesis, we have that Kr−1 is completion-friendly and K0 →∗T ′ Kr−1. Suppose that,
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Kr−1 →T Kr. Since Kr−1 is completion-friendly, then Kr is completion-friendly as there

is no rule that introduce new predicates or functions. We show that, by case analysis on

the rule involved in the step Kr−1 →T Kr with cooperative attackers, the equivalence rule

or rules that can be applied in T ′ with non-cooperative attackers to get Kr−1 →∗T ′ Kr:

− Case of the rule IF-THEN: since K is completion friendly then any formula φ

that is true for T , its true also for T ′. Thus, the rule IF-THEN can also be applied

in T ′ in this case.

− Case of the rule IN: since E ⊆ E′ the same rule can be applied and as all

malicious nodes are connected in T ′ the sent message is received by all attackers so

the knowledge remains equal.

− Case of the COMM: since E ⊆ E′ we can apply the rule COMM. However, in

case where we have a malicious node M that is neighbor to the node that plays the

role of the sender, the COMM rule should be followed by a certain number (equal

to the number of other malicious nodes) of rule IN applications between M and

each of the other malicious nodes. The last step is to share in an indirect way the

message received by one of the malicious nodes as it is a neighbor of the sender.

− Case of the rules PAR, REPL, and NEW: these rules do not depend on the

underlying graph. So same rules can be applied in T ′.

Theorem 6.2 (Equivalence). Let Prouting be a routing protocol and P0 be a routing role.

Then, Prouting and P0 are secure for every topology in presence of cooperative attackers

with a knowledge I, if and only if, Prouting and P0 are secure for every topology in presence

of non-cooperative attackers, each with the same knowledge I.

Proof. First direction: the non-cooperative attackers have weaker abilities than the

cooperative ones. So, if there is no attack on Prouting and P0 given I in presence of

cooperative attackers then there is no attack on Prouting and P0 in presence of non-

cooperative attackers.

Second direction: Suppose that there is no attack on Prouting and P0 given I for any

topology with non-cooperative attackers. Assume that there exists a topology T such

that there is an attack on Prouting and P0 given I in T with cooperative attackers. Then,

by the definition of the attack 6.5, there is a configuration K that is valid for Prouting
and P0, such that there is an attack on K in T with cooperative attackers. Thus, by

Lemma 6.3, there is a topology T ′ that can be obtained from T such that there is an

attack in it on the configuration K with non-cooperative attackers. Hence, there is an

attack on Prouting and P0 given I in T ′ which leads to a contradiction.

176



Chapter 6. Routing Protocols

Note that, by considering one fixed topology T this equivalence does not hold anymore

as we can find an attack on a protocol in T in presence of cooperative attackers, while

this protocol is secure in T in presence of non-cooperative attackers. This due to the fact

that with cooperative attackers, we give the malicious nodes a powerful capability (i.e.,

sharing of knowledge) that is difficult to exist in reality, which may result into attacks

that can not be mounted in practice. Having a fixed known topology one could choose

in presence of which kind of the attacker to verify the used protocol, depending on the

application and the level of the security required.

6.6 Conclusion

We consider multiple independent attackers (compromised nodes) that do not have the

ability to share their knowledge with each other. We extend the reduction proof proposed

in [CDD12] to the case of multiple independent attackers. That is when looking for

attacks on route validity, it is sufficient to verify only five topologies with four nodes each.

This entails updating the transition execution rules to handle the case of independent

attackers, and revisiting the proofs. We also show that a protocol is secure in any topology

with cooperative attackers, if and only if, it is secure for any topology with independent

(non-cooperative) attackers.

For future work, we would like to conduct some case studies for analyzing route validity

in presence of independent attackers. It could be interesting to develop an automatic

tool that is able to analyze route validity in presence of multiple independent attackers.

Another research direction is to study route validity in wireless sensor networks with

attackers that only have a limited power for communications (a battery).
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Chapter 7
Conclusion

In this document we provide symbolic definitions of security properties for exam, e-

cash, and e-reputation protocols. Particularly, we studied authentication, privacy and

verifiability properties of these protocols. Moreover, we develop a reduction result for

verification of route validity in presence of multiple independent attackers. We also

provide a case study concerning runtime verification of e-exams. In this chapter, we

summarize our results, and we discuss the limitations of our work and directions for

future research.

7.1 Summary

In Chapter 1, we introduced the context and motivated our work. We recalled the syntax

and semantics of the Applied π-Calculus in Chapter 2. We also provided a brief overview

of ProVerif tool, QEA syntax, and MarQ tool.

We then studied the security of exam protocols in Chapter 3. We formalize nine

authentication and privacy properties in the Applied π-Calculus, and automatically

analyzed using ProVerif three case studies: the protocols due to Huszti & Pethő [HP10],

Giustolisi et al. [GLR14], and Université Grenoble Alpes1 exam (Grenoble exam). Our

analysis shows that Huszti & Pethő protocol satisfies none of the nine properties. Au-

thentication is compromised because of inaccuracies in the protocol design, whereas most

of attacks invalidating privacy exploit a vulnerability in a component that the protocol

uses, namely the RARC. The attacks compromise secrecy and anonymity of the messages

taking advantage of the absence of a proof of knowledge of the submitted message to the

RARC, a vulnerability that allows the attacker to use the RARC as a decryption oracle.

We proposed a few modifications on the H&P protocol in order to guarantee a subset

of the authentication properties. ProVerif confirms that the modified protocol ensures

these properties. However, even when assuming a perfect RARC ensuring anonymity,
1 www.univ-grenoble-alpes.fr
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we still have attacks on privacy properties. Thus, we think that fixing the RARC is not

sufficient, and that the protocol requires fundamental changes. Remark! protocol presents

a weakness that violates Form Authenticity when a corrupted candidate is considered. We

propose a fix and formally verify that the fixed protocol satisfies all the properties herein

considered. Grenoble exam satisfies seven properties (all but Anonymous Examiner and

Mark Privacy). ProVerif finds a counterexample against Anonymous Examiner that is

difficult to mount in practice. The attacker can distinguish which “unseen”2 exam-form

the examiner accepts for marking (the one he can “seen” using his secret key). This is not

a real attack, since the examiner will only accept exam-form from the exam authority, not

an attacker. Assuming a private channel between the exam authority and the examiner,

ProVerif confirms that Anonymous Examiner is satisfied by Grenoble exam. Concerning

Mark Privacy, ProVerif finds an attack (when all parties are honest), this was expected

as in Grenoble exam the marks are published in clear-text by the exam authority.

In the second part of the Chapter 3, we abstractly defined exam Verifiability. We

identified eleven verifiability properties. For each property, we define the soundness and

completeness conditions for the related verification test. Then, we analyzed with the

help of ProVerif two exam protocols: the protocol due to Giustolisi et al. [GLR14], and

Grenoble exam. The analysis of Giustolisi et al. shows that all properties but three are

satisfied without assuming that the exam’s roles are honest. But Marking Correctness

holds only assuming an honest exam authority. In fact, a student can check her mark

by using the exam table, but this is posted on the bulletin board by the exam authority

who can nullify the verification of correctness by tampering with the table. Whereas the

analysis of Grenoble exam shows that it satisfies all the verifiability properties under

the assumption that authorities and examiner are honest. This seems to be peculiar to

paper-and-pencil exams, where log-books and registers are managed by the authorities

that can tamper with them. Only Marking Correctness holds even in presence of dishonest

authorities and examiner: here, a candidate can consult her exam-test after marking,

thus verifying herself whether her mark has been computed correctly.

In the final part of the Chapter 3, we defined monitors that allows to check exam

requirements at runtime. Then, we implemented these monitors and analyzed logs

extracted from real e-exam organized by Université Joseph Fourier (UJF) using MarQ

tool. The analysis reveals some students that violate the requirements, and also some

discrepancies between the specification and the implementation. Due to the lack of logs

about the marking and notification phases, we were not able to analyze all properties.

The UJF exam case study clearly demonstrates that the developers do not think to log

these two phases where there is less interaction with the candidates. However, we believe

that monitoring the marking phase is essential since a successful attempt from a bribed

examiner or a cheating student can be very effective.
2 unseen function is similar to an asymmetric encryption.

180



Chapter 1. Conclusion

Next in Chapter 4, we define security properties of e-cash protocols We proposed

two client privacy properties and three properties to prevent forgery. Then, we applied

our definitions using ProVerif to analyze the Chaum protocol [Cha82], the DigiCash

protocol presented in [Sch97], and the Chaum et al. protocol [CFN88]. Our analysis

confirms several already known attacks, and reveals a flaw that confirms the necessity of

synchronization in online cash protocols.

In Chapter 5, we established a formal framework for the security analysis of e-reputation

protocols. In particular, we show how to model reputation protocols in the Applied

π-Calculus, and defined eight privacy, authentication, and verifiability properties. We

validate our definitions by analyzing, using ProVerif, the security of a simple e-reputation

protocol, the protocol by Pavlov et al. [PRT04]. It has been informally argued to preserve

rate privacy. Our analysis shows that it satisfies five properties, namely Rate Privacy,

Rate Anonymity, and User Eligibility, Rate Integrity (without injectivity), and Reputation

Score Verification (if users can have an access to the set of rates). While it fails to satisfy

the other five: User Privacy, Untraceability, Receipt-Freeness, Coercion-Resistance, and

User Eligibility Verification.

Finally in Chapter 6, we considered the non-cooperative attacker model where there

are multiple attackers working independently, so that no one shares any of its knowledge

with the others. We then extended the reduction proof proposed in [CDD12] to the case

of multiple independent attackers. That is when looking for attacks on route validity, it

is sufficient to verify only five topologies with four nodes each. This entails updating the

transition execution rules to handle the case of independent attackers, and revisiting the

required proofs. We also showed that a protocol is secure in any topology with cooperative

attackers, if and only if, it is secure for any topology with independent attackers.

7.2 Limitations and Directions for Future Works

Concerning the work on exam protocols several avenues for future works are open. The

current model of the protocol by Huszti & Pethő used for privacy an authentication

properties is a simplification, and we did not model the full protocol with RARC due to

ProVerif termination problem (instead we analyzed RARC alone). It would be interesting

to extend this to a more precise model. The main obstacles are too complex equational

theories. A step in this direction was undertaken by Smyth et al. [SAR13]. They propose

to replace the complex equational theory with a simpler, but equivalent one which can

then be treated by ProVerif. Moreover, KISS [cCDK12] and AKISS [CcCK12] can deal

with more complex equational theories.

Concerning verifiability, we use ProVerif to verify universal verifiability properties,

we were unable to prove the general case directly and had to provide a manual proof to
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show that the result holds for any number of candidates. It would be great to automatize

these proofs. Note that, an extension of ProVerif with loops could permit to obtain

the general proof directly. Another line of research is to study novel properties such

as accountability, which allows them to identify which party is responsible when the

verification fails. Few works go in this direction: Küsters et al. [KTV10] have studied

accountability, however, their framework needs to be instantiated for each application

by identifying relevant verifiability goals. As we identified several verifiability properties

relevant for exam protocols, one may study how their accountability framework can be

applied to case of exam protocols. Bella et al. [BGLR15] have proposed an accountability

property, which allows to identify the responsible party when a candidate fails to submit

an answer or to receive the corresponding mark. They have analyzed their protocol

and have shown that it satisfies this property. However, more accountability properties

need to be defined to identify the responsible parties when the verifiability properties we

propose in this thesis fails.

With respect to runtime verification, one direction is to perform the verification of

marking related properties, as well as, to perform online verification with our monitors

during live e-exams, and to study to what extent runtime enforcement can be applied

during a live e-exam run. Online verification requires to deliver events to the monitor

at the time they are generated by the system in order to check them and take a verdict.

This introduces additional overheads and may cause scalability problems depending on

the size of the system and number of events generated per second. Another direction is

to study more expressive and quantitative properties that might detect possible collusion

between students through similar answer patterns.

For e-cash protocols, an interesting line of research is to extend our model to cover

transferable protocols with divisible coins. A limitation in our analysis of Chaum et al.

protocol is that we did not model the details of “cut-and-choose" at withdrawal phase. A

computational variant of our definition would be able to take this into account. Actually

in symbolic model we did not consider probabilities. So even if there is a low probability

for the attacker to guess the parameters the bank requests, then such possibility is

considered. With respect to the flaw we found on online cash protocols is due to lack of

synchronization at deposit. We did not verify a fixed version that make synchronization.

This is due to a limitation of ProVerif when dealing with tables. To confirm our argument

concerning the need for synchronization, one could use the tool SAPIC based on Tamarin.

SAPIC is suitable to the protocols that entail database lookups. It offers the ability to

lock a table then to unlock it after the end of operations, a feature that can be used to

model synchronization.

For reputation protocols, one direction is to develop a tool that can deal with algebraic

properties such as arithmetic operations and homomorphic encryptions as e-reputation
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protocols are highly depends on such algebraic properties. Note that, developing such a

tool is still a real challenge for the community. However, researches try to find solutions

for such a problem. For instance the result obtained by Küsters et al. [KT11] allows

us to analyze protocols with XOR operator for trace based properties using ProVerif.

Extending this result to handle equivalence properties could help in analyzing protocols

with arithmetic operations, which is the case of many e-reputation protocols, if XOR

operator is used to model summation and subtraction. With respect to privacy properties,

we discussed the Receipt-Freeness and Coercion-Resistance only informally on our case

study. It would be great to construct a formal proofs for them. Other interesting research

works include the study of the relation between our security properties as well as the

definition of novel properties such as correctness of the reputation score, preventing

double rating, accountability, reliability (e.g., to prevent Sybil attacks), and addressing

fake rates.

Research directions for wireless sensor networks include performing some case studies

for analyzing route validity in presence of independent attackers. It could be interesting

to develop an automatic tool that is able to analyze route validity in presence of multiple

independent attackers Another research direction is to study route validity in wireless

sensor networks with attackers (compromised nodes) that only have a limited power for

communications (a battery).
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