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Cancer is caused by the accumulation of genetic alterations and consequent disruption of cell 

functions. Over the past decade, the introduction of fast and relatively inexpensive sequencing 

methods has provided unprecedented opportunity to characterize cancer genomic landscapes. 

A variety of bioinformatics tools are now available to discover genetic variations from high 

throughput sequencing of tumor DNA, such as GATK (DePristo et al., 2011), CRISP(Bansal, 

2010), LoFreq (Wilm et al., 2012), VarScan 2 (Koboldt et al., 2012), and SNVer (Z. Wei et al., 

2011), which have been recently evaluated (Pabinger et al., 2014) and (H. W. Huang et al., 

2015). Depending on cancer type, tumors harbor hundreds to tens of thousands of somatic 

mutations, most of which are located in the non-coding portion of the genome (Lawrence et 

al., 2013). However, not all somatic mutations have their contributions to cancer development, 

they are generally divided into two main classes: the „driver‟ and „passenger‟ mutations. The 

former is causally involved in the carcinogenesis, in which it confers selective growth 

advantage to cancer cells and is under positive selection in the cancer microenvironment. The 

latter is the somatic mutation which couldn‟t give growth superiority to cancer cells and 

hasn‟t been positively selected, therefore, it plays little role in cancer formation and 

progression. Driver mutation might not be necessary for the maintenance of the final cancer 

but has to be selected during the cancer-evolving process. Cells which carry driver mutations 

and functionally inert passenger mutations undergo clonal expansion, eventually, forming the 

final cancer (Stratton et al., 2009). Cancer driver genes are genes which carry these driver 

mutations and are critical to cancer formation. They are classified into three main categories: 

(1) genes whose non-synonymous mutation rate is significantly greater than a background 

mutation rate(Lawrence et al., 2013); (2) genes accumulate mutations with high functional 

impact (FM bias) (Gonzalez-Perez and Lopez-Bigas, 2012); (3) genes display a higher rate of 

high-scoring non-synonymous mutations than silent and intronic mutations(Hodis et al., 

2012) . 

A critical challenge in cancer genomics study is to distinguish “driver” mutations and cancer 

genes that are responsible for cancer development upon specific alterations from “passenger” 

mutations that are mere results of the cancerous process. A number of reviews provide 

guidelines for the discovery of cancer-causing variants (MacArthur et al., 2014; Moreau and 

Tranchevent, 2012). The most common strategy is first to prioritize non-synonymous variants 
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in protein-coding regions and then seek recurrently mutated genes in a cohort of cancer 

patients (Chapman et al., 2011; Ding et al., 2008; Gui et al., 2011; Wang et al., 2011; X. Wei 

et al., 2011). Diverse computational methods have been explored to prioritize non-

synonymous variants with respect to their disease-causing potential. Most are based on the 

assumption that coding mutations impacting functionally important residues, as inferred from 

evolutionary conservation and protein domain analysis, are more likely damaging (Vitkup et 

al., 2003). Other software, used in conjunction with these scoring systems, performs 

recurrence search in patient cohorts. Currently, 547 cancer genes are described in the 

COSMIC catalogue of somatic mutations in cancer (version 71) (Forbes et al., 2011a). 

The immense majority of the human genome (98%) is non-coding, and consequently most 

somatic mutations/alterations observed in tumors occur in this non-coding fraction. Because 

non-coding mutations are more difficult to interpret, these regions have been mostly 

discounted from the wider search for driver mutations. However, mutations in non-coding 

regions can have a profound impact on cell fate. Indeed, functional regions in the non-coding 

genome include mRNA splice sites, UTR regulation elements, promoters, transcription factor 

binding sites, enhancers and a wide variety of non-coding RNA (ncRNA) genes. Among 

ncRNA genes, one particular class is now receiving focused attention due to its vast extent: 

long non-coding RNA (lncRNA). According to the latest estimate (Iyer et al., 2015), over 

58,000 lncRNA genes are expressed in the human genome, which makes this class the biggest 

contributor to the “black matter” transcriptome. 

There is ample evidence for disease-related mutations in the non-coding genome. A large 

fraction of disease or trait-relevant single nucleotide polymorphisms (SNPs) detected by 

Genome-wide Association Studies (GWAS) (Beck et al., 2014) is located in the non-coding 

genome, preferentially within enhancers, exons and mRNA promoters (Andersson et al., 

2014). Inherited disease-causing variants are strongly enriched in non-coding regions under 

strong purifying selection, which comprise binding sites of transcription factors (TFs) and 

critical motifs from TF Families (Khurana et al., 2013). Further studies have shown that 

altered ncRNA functions initiated by genetic or regulatory changes play an important role in 

tumorigenesis (Chaluvally-Raghavan et al., 2014; Kwanhian et al., 2012; Ling et al., 2013; 

Ren et al., 2012; Tseng et al., 2014; Wegert et al., 2015). 
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In the absence of a clear and uniform functional code for these highly diverse non-coding 

elements, their variations are much more difficult to interpret than those of amino acid-coding 

regions. In this review we describe the methods and data available to interpret and prioritize 

non-coding genome mutations. As many basic principles in this field were laid for protein-

coding sequence analysis, we start by reviewing the methods developed for scoring protein-

coding variants. We then describe the specific non-coding elements that may be the subject 

cancer-driving mutations and we address the specific methods that were set up to characterize 

these variations. 

1.1 Prioritizing coding variants  

Prioritization of non-synonymous mutations for cancer study is a mature field built upon 

decades of experience in protein sequence and cancer pathway analysis. Table 1 provides a 

listing of the most commonly used tools. We distinguish below three classes of scoring 

systems, using either probabilistic, machine learning or hybrid approaches. 

1.1.1 Probabilistic models 

The pioneering SIFT (Sorting Intolerant From Tolerant) uses sequence homology to predict 

whether an amino acid substitution will affect protein function and hence, potentially alter 

phenotype (Ng and Henikoff, 2003). SIFT identifies conserved protein residues based on 

multiple sequence alignments of homologous proteins and calculates the likelihood that an 

amino acid at a position is tolerated, conditional on the most frequent amino acid being 

tolerated. Mutations in higher conserved coding regions intend to be predicted as more likely 

deleterious than those in lower conserved protein regions. 

The mCluster method (Yue et al., 2010) aggregates mutation data by mapping known disease-

related mutations to positions along conserved domains, and then mapping novel variants to 

those same conserved domains. The program identifies conserved mutation-enriched clusters, 

which are hotspots for cancer driving functional alterations, across multiple proteins. The 

mCluster score is the likelihood of a cluster of certain size occurring, given the number of 

positions in the domain and the mutation frequency. 

http://www.sciencedirect.com/science/article/pii/S0304383515006060#t0010
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MutationAssessor (Reva et al., 2011) implements a more elaborate conservation-based 

approach. It computes residue distribution entropy in multiple sequence alignments and 

estimates mutation impact by measuring the entropy difference caused by the mutation 

(conservation score). Moreover, the algorithm classifies protein alignment into distinct 

subfamilies with a clustering algorithm and quantifies the entropy difference initiated by a 

mutation in protein subfamilies (specificity score). The final “functional impact score” 

combines these two independent scores. 

1.1.2 Machine learning models 

PolyPhen2 (Adzhubei et al., 2010) integrates eight sequence and three structure-based 

attributes for the description of an amino acid substitution, and predicts the damaging effect of 

a coding mutation. Most PolyPhen2 features compare a property of the wild-type allele 

(ancestral, normal) and the corresponding property of the mutant allele (derived, disease-

causing) and characterizes how likely the two human alleles are to occupy the site given the 

pattern of amino-acid replacements in a multiple-sequence alignment. The probability of a 

deleterious allele replacement is predicted using a Naïve Bayes classifier trained on HumDiv 

and HumVar (Capriotti et al., 2006), two databases of damaging alleles. 

CHASM uses a random forest classifier to discriminate driver missense mutations from 

synthetically generated passenger mutations (Carter et al., 2009). It includes 49 predictive 

features ranging from exon conservation to UniProt annotation and frequency of the missense 

change type in the COSMIC database of cancer mutations (Forbes et al., 2011a). The program 

computes a classification score for each missense mutation. A mutation is determined to be 

driver or passenger by comparing its score to a null distribution made of scores from a filtered 

set of synthetic passengers that were held out from the Random Forest training. 

SNAP (Screening for Non-acceptable Polymorphisms) is a neural network-based tool that 

predicts the effect of a missense variant (Bromberg and Rost, 2007). It uses PMD (the Protein 

Mutant Database) (Sjöblom et al., 2006) and incorporates evolutionary constraints, transition 

frequencies for mutations, biophysical characteristics of the substitution, secondary structural 
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information, relative solvent accessibility, and SwissProt annotations information to build a 

neural network model, which is trained on known mutations from PMD. 

MutPred (Li et al., 2009) is another Random Forest classifier trained on five databases of 

human amino acid substitutions, CANCER (Sjöblom et al., 2006), KINASE (Greenman et al., 

2007), The Human Gene Mutation Database (HGMD)(Stenson et al., 2009), Swiss-

Prot (Boeckmann et al., 2003) and a broad array of attributes describing structure features 

(such as secondary structure, solvent accessibility), a variety of functional sites (such as 

DNA-binding or phosphorylation sites), evolutionary conservation and transition frequencies. 

The MutPred model then associates a given non-synonymous mutation to a probability of gain 

or loss of structural and functional features. 

1.1.3 Hybrid models 

The current trend for increasing the accuracy of impact measure is to integrate different 

methods. For example, CanPredict (Kaminker et al., 2007a) uses a random forest classifier to 

predict whether a change is likely to be cancer-associated, based on analyses of three scores: 

the SIFT score determining functional impact of change, the Pfam-based LogR.E-value 

metric (Clifford et al., 2004) and the Gene Ontology Similarity Score (GOSS), which 

measures how similar a given mutated gene is to known cancer-causing genes (Kaminker et 

al., 2007b). 

Condel (González-Pérez and López-Bigas, 2011) combines the output from PolyPhen2, SIFT, 

Mutation Assessor, Pfam-based LogR.E-values and MAPP (Stone and Sidow, 2005), which 

predicts deleterious mutations based on their disruption of physicochemical protein 

characteristics. Another hybrid tool, CoVEC (Consensus Variant Effect 

Classification) (Frousios et al., 2013) integrates prediction results from SIFT, PolyPhen2, 

Mutation Assessor and SNPs&GO (Calabrese et al., 2009), a scoring system based on 

functional protein features such as sequence conservation and GO-terms. Finally, Combined 

Annotation scoRing toOL (CAROL) combines the scores of PolyPhen-2 and SIFT to predict 

the effect of non-synonymous coding variants (Lopes et al., 2012). Expectedly, the authors of 

Condel, CoVEC and CAROL demonstrate that these tools outperform most individual 
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methods in classifying variants as damaging or neutral, highlighting the benefits of combined 

approaches (Frousios et al., 2013; González-Pérez and López-Bigas, 2011; Lopes et al., 2012). 

1.1.4 Comparing coding mutation scoring tools 

The authors of CoVEC (Frousios et al., 2013) assessed the classification performance of their 

tool and nine other prediction softwares: SIFT, PolyPhen2, SNPs&GO, PhD-SNP, 

PANTHER, Mutation Assessor, MutPred, Condel and CAROL. Based on the programs' 

ability to properly classify HGMD inherited disease-related variants (Stenson et al., 2009) and 

neutral SNPs, MutPred had the best performance in terms of true positive rate, followed by 

PolyPhen2. SNPs&GO showed most applicability in cases requiring minimal false positive 

rates. Most of the individual tools had similar overall (ROC curve-based) performances, 

however, combined tools such as CoVEC were shown to outperform the individual tools. In 

an independent benchmark, Thusberg et al (Thusberg et al., 2011) tested nine scoring tools for 

their ability to distinguish 40,000 pathogenic variants of the PhenCode database (Giardine et 

al., 2007) from neutral variants. Tested tools included MutPred, Panther, PhD-SNP, PolyPhen, 

PolyPhen2, SIFT, SNAP, SNPs&GO and nsSNPAnalyzer (Bao et al., 2005). Programs 

SNPs&GO and MutPred had best overall prediction accuracy. 
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Table 1. Summary of computational methods for predicting the effects of missense mutations 

in cancer. 

  

 Based on  Machine    

 learning  

Cancer-

specific  

Other tools 

used 

Web server, references 

SIFT 

 

Conservation 

   

Alignment  

scores  

No   http://sift.jcvi.org/(Ng and Henikoff, 2003) 

Polyphen 2 

 

Conservation  

Structure 

Training set 

Bayesian  

classification  

No   http://genetics.bwh.harvard.edu/pph2/)(Adzhubei et al., 2010) 

Mutation 

assessor 

Conservation  No  http://mutationassessor.org/(Reva et al., 2011) 

CHASM 

 

Conservation 

Structure 

Annotation 

Training set 

Random 

Forest  

Yes  http://wiki.chasmsoftware.org/index.php/MainPage(Carter et al., 2009) 

mCluster Training set  Yes  http://www.mcluster.org(Yue et al., 2010) 

SNAP 

 

Conservation 

Structure 

annotation 

Training set 

Neural 

network 

No Gene ontology http://rostlab.org/services/snap/(Bromberg and Rost, 2007) 

Canpredict   

 

Conservation 

Annotation 

Random 

forest 

Yes SIFT 

LogR.E 

GOSS 

http://research-public.gene.com/Research/genentech/canpredict/ 

(Kaminker et al., 2007a) 

MutPred 

 

Conservation 

Structure 

Annotation 

Training set 

Random 

forest 

No SIFT http://mutpred.mutdb.org/(Li et al., 2009) 

Condel Hybrid scoring system 

(weighted score) 

NA No PolyPhen2, 

SIFT, 

Mutation 

Assessor, 

Pfam-based 

LogR.E-values 

and MAPP 

http://bg.upf.edu/fannsdb/(González-Pérez and López-Bigas, 2011) 

CoVEC Hybrid scoring system SVM No SIFT, 

PolyPhen2, 

SNPs&GO, 

Mutation 

Assessor  

http://www.dcs.kcl.ac.uk/pg/frousiok/variants/index.html 

(Frousios et al., 2013) 

CAROL Hybrid scoring system No No SIFT, 

PolyPhen2 

http://www.sanger.ac.uk/resources/software/carol(Lopes et al., 2012) 

nsSNPAnalyzer structural and 

evolutionary 

information 

Random 

forest 

No  http://snpanalyzer.utmem.edu/(Bao et al., 2005) 

PANTHER 

 

Conservation 

 

Alignment  

scores  

No  http://www.pantherdb.org/tools/csnpScoreForm.jsp(Thomas et al., 2003) 

PhD-SNP 

 

Conservation 

Training set 

Support vector 

machine 

No  http://gpcr2.biocomp.unibo.it/cgi/predictors/PhD-SNP/PhD-SNP.cgi 

(Capriotti et al., 2006) 

SNPs&GO Conservation 

Swissprot features  

Support vector 

machine 

No  http://snps-and-go.biocomp.unibo.it/snps-and-go/(Calabrese et al., 2009) 

MAPP Physicochemical  

constraints 

NA No  http://mendel.stanford.edu/supplementarydata/stone_MAPP_2005/ 

 (Stone and Sidow, 2005) 

IntOGen-

mutations 

Hybrid scoring system NA Yes PolyPhen2, 

SIFT, 

Mutation 

Assessor 

http://www.intogen.org/web/mutations/v04/search 

(Gonzalez-Perez et al., 2013) 

http://www.dcs.kcl.ac.uk/pg/frousiok/variants/index.html
http://www.sanger.ac.uk/resources/software/carol/
http://www.pantherdb.org/tools/
http://gpcr2.biocomp.unibo.it/cgi/predictors/PhD-SNP/PhD-SNP.cgi%5b41%5d
http://snps-and-go.biocomp.unibo.it/snps-and-go/%5b47
http://mendel.stanford.edu/supplementarydata/stone_MAPP_2005/
http://www.intogen.org/web/mutations/v04/search
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1.2 Integrating recurrence for driver prediction 

Further to prioritizing individual mutations as shown above, a variety of approaches predict 

driver genes by combining mutation scores and recurrence patterns. The assumption 

underlying these methods is that genes critical to the development of a specific cancer type 

should be recurrently mutated in a cohort of cancer samples. Several programs are available to 

identify such genes (Chapman et al., 2011; Ding et al., 2008; Gui et al., 2011;Wang et al., 

2011;X. Wei et al., 2011). 

IntOGen-mutations is a web server aiming to identify cancer drivers across tumor types 

(Gonzalez-Perez et al., 2013). The system first determines the consequences of mutations 

using the Ensembl variant effect predictor tool which offers a comprehensive database of 

variations, their effects and context (Chen et al., 2010) and uses three of the above tools (SIFT, 

PolyPhen2 and MutationAssessor) to compute the functional impact score of a somatic 

mutation. These functional scores are then transformed into a uniform score which measures 

the damaging impact of somatic mutations with transFIC (González-Pérez and López-Bigas, 

2011). This pipeline also computes each mutation's frequency of occurrence within and across 

cancer projects and groups mutations occurring in the same gene (or pathway). Subsequently, 

OncodriveFM (Gonzalez-Perez and Lopez-Bigas, 2012) which detects genes accumulating 

mutations with high functional impact (FM bias) and OncodriveCLUST tools (Tamborero et 

al., 2013) which determine genes whose mutations cluster in particular regions of the protein 

sequence in comparison with synonymous mutations (CLUST bias) are used to identify 

positively selected genes, i.e. genes whose mutations are selected during tumor development 

and are therefore likely drivers. Finally, the pipeline computes the frequency of mutation of 

each gene (and pathway) within a cancer class (Figure1).  
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Figure1. Schematic display of the Oncodrive-fm driver detection tool (Gonzalez-Perez and Lopez-

Bigas, 2012). 

Oncodrive-fm is constructed based on the hypothesis that driver genes display the bias toward 

the enrichment of variants with high function impact (FI). (A) The first step of Oncodrive-fm 

is measurement of FI scores of coding variants detected in multiple cancer samples with SIFT, 

polyphen2 and MutationAssessor. (B) Secondly, Oncodrive-fm evaluates whether a gene 

possesses a shift toward the enrichment of variants with high FI, it compares the FI of 

observed variants to a null distribution and computes a P-value for each gene. RFM, 

Recurrent and FM biased; lRFM, Lowly Recurrent and FM biased; RnFM, Recurrent but not-
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FM biased. (C) Lastly, Oncodrive-fm can also detect gene modules or pathways that possess 

the FM bias. 

The MutSigCV method (Lawrence et al., 2013) assesses the background mutation rate for 

each gene–patient–category combination based on the observed silent mutations in the gene 

and non-coding mutations in the surrounding regions. It pools data from other genes with 

similar properties (for example replication time, expression level) to increase accuracy. 

Significance levels (P values) are determined by examining whether observed mutations in a 

gene significantly exceed the expected counts based on the background model (Figure2). 

Figure2. Overall concept of detection of recurrently mutated genes of MutSigCV in a cohort of 

cancer samples (Lawrence et al., 2013). 

MuSiC relies on the calculation of a background mutation rate (BMR) (Dees et al., 2012). The 

algorithm counts the number of bases with sufficient aligned read-depth based upon user-

defined coverage. Counts are determined for A, T, C and G as CpG dimers, and non-CpG C 

and G. Discovered mutations are categorized according to mutational mechanism, with 

separate categories for AT transitions, AT transversions, CpG transitions, CpG transversions, 

CG (non-CpG) transitions and transversions, and a seventh „indel‟ category. The BMR of 

each mutational mechanism category is calculated by dividing the number of mutations found 

in that category by the total number of bases available in which such a call could have been 
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made. Significantly mutated genes are generated by comparisons of mutation rates to BMR, 

using statistical tests. 

 

Figure 3. Identification of driver genes under positive selection with InVEx (Hodis et al., 2012) (A) 

Gene A possesses higher rate of nonsilent variants and silent/intronic variants in comparison with that 

of Gene B, indicating gene A is under positive selection of nonsilent variants in cancer.  (B) Schema 

of a random permutation-based approach to prioritize driver genes that possess positively selected 

nonsilent mutations with respect to a null distribution. 

InVEx is a random permutation-centered algorithm (Hodis et al., 2012) that relies on the 

assumption that a gene under positive selection for nonsilent mutations during cancer 

formation displays a higher rate of high-scoring non-synonymous mutations than silent and 

intronic mutations. A random permutation test is performed across each gene and a “mutation 

burden” score is calculated for each randomized instance, providing a null model of score 
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distribution. The actual mutation burden observed for a gene across all samples is then 

compared to this distribution and a P-value is computed, assessing whether the observed 

coding mutations and genes undergo positive selection (Figure3).  

Although genes that are mutated with high recurrence are easily recognized, some cancer 

drivers are mutated in a small fraction (e.g. <1%) of tumors (Wood et al., 2007). Thus, 

methods that can classify mutations as either drivers or passengers on the basis of data that is 

independent of mutation frequency clearly become important. There are many ways of 

combining mutation deleteriousness, recurrence and knowledge of mutational background. 

Computational options in this area are far from fully explored and we may thus expect 

improved driver predictors in the future. Furthermore, the application of these methods to the 

non-coding genome is a fascinating perspective, as so little is known about driver elements in 

these regions. This challenge may soon become accessible thanks to development of scoring 

systems for non-coding mutations, as explained in the next sections. 

1.3 Non-coding elements and cancer 

The list of non-coding elements involved in gene expression regulation has been steadily 

increasing over the years. Promoters, enhancers, splicing regulators and the expanding family 

of regulatory ncRNA (mainly miRNAs and lncRNAs) are central elements of the cell 

regulatory network. Their function in the control of gene expression is similar to that of many 

protein-coding cancer drivers, half of which are involved in transcriptional and 

posttranscriptional regulation. Therefore, it comes as no surprise that mutations within these 

non-coding elements are responsible for the initiation and progression of cancer, among other 

diseases (Andersson et al., 2014; F. W. Huang et al., 2013; Khurana et al., 2013; Killela et al., 

2013; Horn et al., 2013). 

The first non-coding cancer hotspots to be suspected were promoters and TF binding sites. 

Indeed, among 4,492 phenotype-associated SNPs from the GWAS Central Database (Beck et 

al., 2014), 12% are located in binding regions of transcription factors, which is significant as 

these loosely defined regions represent 8.1% of the genome (Sato et al., 2013). Genetic 

variations at TF binding sites, including single-nucleotide polymorphisms and larger 
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structural variants, are frequently associated with binding affinity (Kasowski et al., 2010; 

Mcdaniell et al., 2010; Zheng et al., 2010), gene expression (Sugimachi et al., 2014; French 

and Et Al, 2013) and cancer susceptibility, progression and outcome (Jiang et al., 2012; Lin et 

al., 2014; S.-P. Huang et al., 2013). A well-known such locus is the TERT promoter, whose 

mutations were established as drivers in melanomas and gliomas (Killela et al., 2013; F. W. 

Huang et al., 2013; Horn et al., 2013). 

Another important class of regulatory element is that of splicing regulators. Misregulation of 

RNA splicing initiated by genetic variants is a cause of human disease, including cancer. 

Alteration of 5'and 3' splicing sites and adjacent bases accounts for 10% of human inherited 

disease mutations (Sterne-Weiler and Sanford, 2014; Krawczak et al., 2007) and the number 

of tumor-relevant splicing variants detected by GWAS in cancers reaches 15,000 (He et al., 

2009; Venables et al., 2008; Shapiro et al., 2011). For example, a germline mutation in the 

splicing site of hSNF5 is causative of exon 7 skipping and subsequent frameshift, which, as a 

result, renders infants susceptible to develop malignant brain tumors (Taylor et al., 2000). 

Likewise, a mutation at the acceptor site of the APC gene intron 3–exon 4 junction causes the 

loss of exon 4, which accordingly terminates seven codons downstream of junction 4, a 

phenomenon closely associated to childhood hepatoblastoma (Kurahashi et al., 1995). 

Variation in non-coding RNA (ncRNA) sequence and expression is another potential 

component of cancer progression. The first important offenders in this class were miRNAs. 

Single nucleotide variations in miRNA sequences or in their mRNA target sites lead to 

alteration of binding specificity, thus affecting expression and/or translation of target 

mRNAs (Manikandan et al., 2012; Gopalakrishnan et al., 2014; Kamaraj et al., 2014; 

Manikandan and Munirajan, 2014; Vaishnavi et al., 2014). For instance, SNPs in mRNAs of 

the CEP family of cell division genes, alter mRNA/miRNA interactions, greatly affecting 

mRNA expression, disrupting the cell cycle and contributing to initiate cancer(Kamaraj et al., 

2014)  Overall, more than 236 miRNAs have been associated to 79 human cancers either as 

potential oncogenes or tumor suppressors (Xie et al., 2013). 

Long non-coding RNA is the most recent class of regulatory ncRNA to be associated to 

cancer. According to a recent study (Iyer et al., 2015), over 68% (58,648) of expressed genes 
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in human tumors are lncRNAs, 7942 of them lineage- or cancer-specific. Through gene 

regulation or other mechanisms, lncRNAs may act as proto-oncogenes, tumor suppressor 

genes or drivers of metastatic transformation. For instance, the HOTAIR lncRNA is highly 

expressed in primary breast tumors and metastases, as well as in gastric cancer, and its 

repression inhibits xenograft tumor growth and metastasis in mouse models (Gupta et al., 

2010; Okugawa et al., 2014). MALAT1 is another lncRNA whose expression is correlated 

with metastasis and survival in lung cancer (Ji et al., 2003). Knockout of MALAT1 greatly 

impairs the migration and formation of tumor nodules of MALAT1-deficient A549 cells in a 

mouse xenograft (Gutschner et al., 2013). Jin et al. (Jin et al., 2011) observed that among a set 

of 33 SNPs independently associated with elevated prostate cancer (PCa) risk, eight were 

located in lncRNAs. Moreover, lncRNA loci showed a five-fold enrichment of PCa risk-

related SNPs in comparison with the entire genome. SNPs in the lncRNA PRNCR1 were 

proposed to be related to colorectal cancer (CRC) risk (L. Li et al., 2013). 

In spite of these recent advances, the list of cancer-driving elements in the non-coding 

genome remains extremely short with respect to the size of the regions involved. A major 

avenue in identifying new potentially relevant loci involves exploring chromatin states. 

Indeed, regions where chromatin is open or active in a given cell type are the most likely to 

contain key regulatory elements. For instance, DNase I hypersensitive sites (DHSs),i.e. DNA 

regions sensitive to the DNase I enzyme, harbor many regulatory elements such as enhancers, 

promoters and silencers (Gross and Garrard, 1988; He et al., 2014). Moreover, DHSs are 

associated with elevated levels of nearby gene expression, at least in certain cells (He et al., 

2014). Other important functional hallmarks are provided by histone modifications such as 

acetylation and methylation, which control chromatin states and are thus important regulators 

of gene expression (Dawson and Kouzarides, 2012). Specific histone marks suggest different 

types of regulatory elements: H3K4me3 generally marks promoters and transcription start 

sites. Putative enhancers tend to be marked with H3K4me1 alone or in combination with 

H3K27ac or H3K27me3 (Rada-Iglesias et al., 2011; Zentner et al., 2011). Conversely, major 

repressive marks, such as H3K9me3 and H3K27me3, are associated with constitutive 

heterochromatin and repetitive elements, repressive domains and silent developmental 

genes (Rada-Iglesias et al., 2011) and are therefore less likely to harbor cancer drivers. 
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1.4 Prioritizing non-coding variants 

Although the number of cancer-associated non-coding mutations is increasing, finding cancer-

driving mutations in the non-coding genome remains a huge challenge. A major bottleneck 

lies in identifying functional domains while trying to explore the consequences of the 

variations. Functional interpretation of non-coding variations is now turning into a realistic 

goal through the completion of major high-throughput studies such as the Encyclopedia of 

DNA Elements (ENCODE) (Rosenbloom et al., 2013), the “29 Mammals” Project (Lowe and 

Haussler, 2012), the Health Roadmap Epigenomics project (Bernstein et al., 2010) and other 

large scale regulatory data collections (Rhee and Pugh, 2011; Yu et al., 2011; Zeller et al., 

2010)(Degner et al., 2012; Palii et al., 2011). Particularly, The ENCODE Project has provided 

researchers with genome-wide mapping of histone modification, Dnase I hypersensitive sites, 

FAIRE sites (formaldehyde-detected nucleosome-depleted elements), transcription factor 

binding sites, RNA-seq expression data and replication timing across multiple cell 

lines (Rosenbloom et al., 2013). These extensive data form a major stepping-stone toward the 

functional annotation of non-coding variants. More and more studies are taking advantage of 

these annotations to explore and prioritize non-coding variants implicated in cancer and other 

diseases. Table 2 presents seven systems that are currently available for scoring non-coding 

variants. We distinguish below two families of such methods, based either on empirical 

scoring systems or on machine learning. 

1.4.1 Empirical scoring systems 

The RegulomeDB database and software (Boyle et al., 2012) assigns functions to non-coding 

variants based on the principle that a variant impacting a regulatory element likely results in 

functional consequence. Non-coding variants are classified into different functional categories 

according to their overlap with functional elements such as transcription factor binding, 

histone modifications, DNase I hypersensitive sites, FAIRE sites and eQTLs (expression 

Quantitative Trait Loci, that is loci likely to affect expression of target genes). Application of 

this tool to the annotation of non-coding variants from 69 full sequenced genomes (Clarke et 

al., 2012) identified thousands of potential functional variants. 

http://www.sciencedirect.com/science/article/pii/S0304383515006060#t0015
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The FunSeq tool (Khurana et al., 2013) predicts non-coding drivers by scoring the deleterious 

potential of variants, based on two assumptions. First, somatic variants in non-coding 

elements containing a high fraction of rare variants (derived allele frequency < 0.5%) are 

considered as under negative selection and thus are most likely to be cancer drivers. Second, 

driver mutations should be recurrent in the same genomic element across multiple cancer 

samples. Application of this workflow to 90 cancer genomes yielded nearly a hundred non-

coding drivers candidates. An improved algorithm, FunSeq2 (Fu et al., 2014) exploits large-

scale genome data from 1000 Genomes and ENCODE into a scoring pipeline that combines 

functional features such as sequence conservation, transcription-factor binding sites, 

enhancer-gene linkages, network centrality and recurrence across samples. In this model, 

features are weighted by their probability of overlapping a natural polymorphism in the 1000 

Genome database, which is a negative indicator of selection strength. Application of FunSeq2 

to germline pathogenic regulatory variants successfully distinguished HGMD (Human Gene 

Mutation Database) and GWAS non-coding pathogenic variants from neutral ones. The 

method also effectively scored COSMIC recurrent variants higher than non-recurrent variants. 

1.4.2 Machine-learning models 

While the RegulomeDB and FunSeq systems prioritize functional genetic variations using 

empirical models, recent methods aim to integrate functionally predictive features 

automatically using machine learning (Kircher et al., 2014; Ritchie et al., 2014; Shihab et al., 

2015). One of these models, GWAVA (Ritchie et al., 2014) uses regulatory mutations 

annotated in the HGMD database as a training set for non-coding variants of medical 

importance. These variants are predicted using a random forest classifier based on a 

combination of regulatory features, genic context and genome-wide properties such as DNase 

I hypersensitivity sites, FAIRE sites, Transcription factor binding sites, Histone modifications, 

RNA polymerase binding sites, complex epigenetic states, CpG islands, sequence 

conservation, allele frequency of variants and gene annotation. The model was able to 

effectively discriminate a set of disease-relevant variations of the ClinVar (Landrum et al., 

2014) and GWAS Central databases from control variants. More importantly, recurrent cancer 

mutations from the COSMIC database were scored significantly higher than non-recurrent 
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mutations, suggesting that this approach might be useful in prioritizing cancer driver 

mutations. 

Another tool, FATHMM-MKL, implements multiple kernel learning to weight different 

ENCODE feature annotations based on their relevance. The program builds a Support Vector 

Machine classifier based on a positive training set of non-coding pathogenic variants 

annotated in HGMD and a negative set of common single-nucleotide variants with allele 

frequency above 1% within 1-Kb surrounding disease-causing variants. The model uses for 

prediction a kernel matrix of 10 annotation features, including transcription factor binding 

sites, evolutionary conservation, DNase I hypersensitive sites and histone 

modifications (Shihab et al., 2015). A possible limitation in GWAVA and FATHMM-MKL is 

the methods highly rely on a set of promoter proximal, pathogenic mutations that are well 

characterized and thus are subject to ascertainment bias. 

Instead of building a classifier using limited curated pathogenic variants, the CADD 

system (Kircher et al., 2014) contrasts the annotations of fixed derived alleles in humans with 

those of de novo simulated variants. Here fixed (or nearly fixed) alleles are used as models for 

deleterious variants. The CADD system is trained to recognize such variants using a support 

vector machine classifier based on a combination of 63 tracks of annotations, including 

conservation, regulatory information, transcript information, protein-level score produced by 

SIFT, Polyphen or Grantham (Grantham, 1974). CAAD successfully differentiated 14.7 

million high-frequency human-derived alleles (observed variants) from 14.7 million simulated 

variants (half simulated de novo mutations). 

To conclude this section, we mention SPANR (splicing-based analysis of variants) (Hs et al., 

2015), a program that combines a Bayesian machine learning algorithm and a regulatory 

model of gene splicing to detect and score disease-associated genetic variants. The RNA 

splicing model integrates regulatory elements and splicing levels generated from RNA-seq 

data of healthy human tissues. SPANR is capable of a precise classification of both intronic 

disease-related variants and deleterious disease mutations within exons, from common 

variants in the dbSNP database. Analyses using SPANR have generated a large body of 
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splice-disruptive mutations involved in Autism, familial colorectal cancer and spinal muscular 

atrophy, which are known for RNA-splicing deregulation. 

1.4.3 Comparing non-coding variant scoring tools 

To illustrate the divergence of predictions by different non-coding mutation scoring systems, 

we selected seven tools from the current literature (CAAD, FunSeq, FunSeq2, GWAVA, 

RegulomeDB, Fathmm-MKL and SPANR) and used them to score 874,325 non-coding 

variants (both substitutions and short indels) from the whole genome sequencing of 88 liver 

cancer samples (Lawrence et al., 2013). First, we should note that all tools are not applicable 

to the entire set of somatic mutation (Fig. 4A). GWAVA, RegulomeDB, and funSeq2 were 

able to score over 99% of variants, while SPANR provided scores for only 2.48% of variants 

due to its specificity for splicing regulation. Due to this different scope, we excluded SPANR 

from further comparison. We scored the 841,402 somatic mutations covered by the other 5 

tools and collected the 10,000 highest scoring variants from each tool. The Venn diagram 

in Fig. 4B shows the overlapping of predictions. Strikingly, even though there is a higher 

overlap of highest scoring variants among five tools as compared to 10000 randomly sampled 

ones (P value=0, a permutation test), only 13 variants are commonly predicted as high scoring 

by all five tools, illustrating the remarkable divergence of non-coding variant prioritization 

strategies. While a full benchmark of the different prediction algorithms is beyond the scope 

of this review, we may refer to two studies that assessed the performances of various non-

coding variant prioritization tools in classifying sets of known deleterious HGMD variants. 

Each study compared a specific program developed by the authors to leading “state-of-the-art” 

algorithms. Fu et al. (Fu et al., 2014) showed that FunSeq2 has a better average prediction 

power compared to GWAVA and CAAD, while Shihab et al. (Shihab et al., 2015) showed 

that FATHMM-MKL outperformed GWAVA and CAAD in terms of accuracy. Due to the 

substantial number of recently developed methods, a full scale and independent comparative 

study would be valuable to provide consistent results and objectively identify the strengths 

and weakness of each tool. 

  

http://www.sciencedirect.com/science/article/pii/S0304383515006060#f0010
http://www.sciencedirect.com/science/article/pii/S0304383515006060#f0010
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Figure 4. Comparison of six non-coding mutation scoring tools. A. Fraction of positions covered by 

each tool in a set of 874,325 non-coding variants. B. Overlap of the 10,000 top-scoring variants, using 

the 5 scoring tools with the larger prediction coverage (CADD, Fathmm-MKL, FunSeq2, GWAVA 

and RegulomeDB), from the 841,402 variants common to their prediction coverage. Five set of 10000 

variants were randomly sampled from the 841,402 variants covered by five tools, the overlap was 

calculated accordingly. The sampling process was repeated 1000 times, the significance of overlap of 

10000 high scoring variants was compared to the 1000 overlaps of random sampling variants.  
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Table 2. Summary of computational approaches for predicting the damaging effects of non- 

coding mutations  

 

 Based on  Machine    

 learning  

Cancer-

specific  

Web server, references 

Regulome

DB 

 

Overlap with functional 

elements 

Empirical 

Scoring 

systems 

No  http://www.regulomedb.org/(Boyl

e et al., 2012) 

Funseq 

 

Negative selection in 

general population 

recurrent cancer 

mutations 

Empirical 

Scoring 

systems 

Yes http://funseq.gersteinlab.org/ (Khu

rana et al., 2013)  

Funseq2 Negative selection in 

general population 

recurrence   in cancer 

mutations 

Empirical 

Scoring 

systems 

Yes http://funseq2.gersteinlab.org/ (Fu 

et al., 2014)  

GWAVA 

 

HGMD regulatory 

mutations, integrated 

genome annotation 

Random 

Forest  

No https://www.sanger.ac.uk/sanger/S

tatGen_Gwava(Ritchie et al., 

2014) 

CADD Deleteriousness,diverse 

genome annotation 

support 

vector 

machine 

No http://cadd.gs.washington.edu/ (Ki

rcher et al., 2014) 

SPANR RNA splicing model Bayesian 

machine 

learning 

No http://tools.genes.toronto.edu/(Hs 

et al., 2015) 

FATHMM

-MKL 

HGMD mutations, ten 

feature annotations (6 

from ENCODE) 

support 

vector 

machine 

No http://fathmm.biocompute.org.uk(

Shihab et al., 2015) 

 

 

1.5 Conclusion 

The search for cancer drivers requires a reliable functional annotation of variants and adapted 

tools for analyzing the recurrence of deleterious variants across patients. The former requisite 

is particularly challenging in the non-coding genome. An active research community is 

developing tools for non-coding variant annotation and prioritization using a variety of 

methods ranging from empirical scoring scheme to machine-learning and elaborate hybrid 

frameworks. Due to the heterogeneity and complexities of these scoring tools, objective 

comparisons based on proper benchmarks using different sets of validated or probable 

http://fathmm.biocompute.org.uk/
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disease-causing variants are strongly required. Among multiple sources of possible 

improvement, the success of hybrid methods for scoring coding variants, and the widely 

divergent predictions by the non-coding tools suggest that combining outputs from different 

tools will significantly increase scoring accuracy for non-coding variants. A further challenge 

is to jointly consider this “functional” score and the heterogeneity of cancer specific mutation 

constraints in different genome areas. These potential enhancements suggest we can expect 

important reliability gains in non-coding variant prioritization in the near future. 

 

As described above, there are a handful of computational tools used to evaluate the functional 

impact of non-coding mutations. However, certain limitations still exist for these prediction 

tools. For example, empirical scoring systems, such as RegulomeDB and funSeq2, cannot 

provide a precise measure of functional information for non-coding variants, while machine 

learning models, such as FATHMM-MKL and GWAVA, might be overfitted to a small set of 

HGMD disease mutations and show major ascertainment biases, and CADD doesn‟t take into 

account cancer mutation information in its scoring system. Moreover, although an increasing 

number of cancer-associated lncRNAs has been experimentally characterized, an efficient 

computational tool to prioritize cancer-driving lncRNAs is still missing, mainly owing to the 

sophisticated and diverse mechanisms by which lncRNAs act. Therefore, it becomes 

increasingly urgent and important to develop a scoring system that accurately measures the 

functional effect of non-coding cancer mutations and then injects this functional information 

into a computational program for the detection of non-coding drivers.   

In the following studies, we hypothesized that purifying selection as measured by the fraction 

of rare SNPs in general population and mutation density (number of mutations /Mb) 

constraint are two important measures of functional impact of cancer mutations in the non-

coding cancer genome. In order to functionally score non-coding mutations in cancer and 

eventually identify new cancer drivers, we took into account the dual selection forces acting 

on the tumor genome: (1) population and evolutionary constraints acting at germline level and 

(2) constraints resulting from the accelerated mutation background of the cancer tissue. To 

achieve this, we have developed two independent random forest models, referred to as SNP 

and SOM models. The SNP model predicts expected fraction of rare SNPs for any non-coding 
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region based on a combination of features, the SOM model computes the expected mutation 

density for each 1-Mb window with an array of feature types ranging from replication time, 

expression level, histone modifications to regulatory elements. The two models are capable of 

discriminating disease-associated variants from Clivariant and HGMD databases from a set of 

random control SNPs, strongly supporting our hypothesis. This study is the object of the 

following chapter.   
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Chapter 2 – Non-

coding driver 

mutations 
 

Results presented here are published in PLoS Computational Biology (Appendix 2) 

A dual model for prioritizing cancer mutations in the non-coding genome based on 

germline and somatic events 

. 

LI J, Poursat MA, Drubay D, Motz A, Saci Z, Morillon A, Michiels S, Gautheret D. PLoS 

Comput Biol. 2015. 11(11):e1004583. 
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2.1 Summary 

 

Cancer cells undergo a mutation/selection process that resembles that of any living cell. Most 

mutations in cancer cell DNA occur in the so-called "non-coding" regions that represent 98.5% 

of the genome length. Pinning down which of these mutations contribute to the fitness of 

cancer cells would be important for identifying new "cancer drivers", which may in turn lead 

to future treatments. Unfortunately, predicting the impact of a non-coding DNA alteration 

remains extremely difficult. In this study, we analyze millions of non-coding cancer mutations 

and show cancer-specific mutational patterns can be used to predict non-coding regions that 

are preserved from mutations and may thus be important for cancer cell survival. Combining 

this information with population data, we propose a new scoring system that should help 

prioritize important non-coding mutations in future studies.  
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2.2 Introduction 

Since the onset of cancer genomics, the search for cancer genes and cancer-causing mutations 

has largely focused on protein-coding genes and, more specifically, their coding exons, where 

the damaging effect of mutations is best understood. Among 572 human genes considered as 

cancer drivers (Futreal et al., 2004; D‟Antonio and Ciccarelli, 2013), nearly all are protein-

coding. However protein-coding regions only represent a tiny subset of the vast transcribed 

area composed of over 50,000 non-coding genes (Harrow et al., 2012; Iyer et al., 2015) and 

the introns and untranslated regions (UTRs) of mRNA genes. Even though a large part of the 

non-coding transcribed regions is probably non functional (Ulitsky and Bartel, 2013), 

analyses based on evolutionary conservation or allele frequencies in human populations 

(Ponting and Hardison, 2011; Ward and Kellis, 2012) estimate that 10 to 15% of the overall 

genome is under selection, that is 7-10 times larger than protein-coding regions.   

Non-coding mutations may cause damaging effects in many distinct ways. They may alter 

RNA structure (Corley et al., 2015) or binding sites for proteins or other RNAs, such as 

splicing sites (Jolly et al., 1994) and microRNA target sites in 3‟ UTRs, or impact regulatory 

sequences in gene promoters and enhancers. A recent population genomics study estimates 

that there are in average 15 highly deleterious mutations in the non-coding DNA of any 

healthy individual (Khurana et al., 2013). This large source of potentially damaging mutation 

remains mostly untouched by cancer genomics. In-depth analysis of the mutational load in the 

non-coding fraction of the genome is needed for the comprehensive understanding of cancer 

progression, as well as for the identification of new cancer drivers and therapeutic targets.  

Whole genome normal vs. tumor sequencing commonly reveals thousands to tens of 

thousands of somatic mutations (Alexandrov et al., 2013; Kandoth et al., 2013; Lawrence et 

al., 2013), scattered across all genomic areas. In coding regions the genetic code and 

aminoacid conservation rules provide a robust functional model for scoring mutational 

damage (Adzhubei et al., 2010; Ng and Henikoff, 2003). Similarly reliable tools are needed 

for non-coding regions in order to prioritize non-coding mutations and seek gene regions 

acquiring deleterious mutations at an unusual pace across a set of tumor samples. Several 

scoring systems for non-coding mutations already exist. The RegulomeDB system (Boyle et 

al., 2012) scores variants using an empirical metric based on their overlap with transcription 
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factor (TF) motifs, known TF binding site, chromatin marks or expression QTLs (eQTL) and 

thus is clearly centered on regulatory DNA variants. Other scoring models consider allele 

frequencies in human populations. Rare alleles are more often associated to reduced or lost 

gene activity than frequent alleles (Urban, 2005) and a high local ratio of rare to total SNP is 

indicative of purifying selection (Khurana et al., 2013; Chen and Rajewsky, 2006; Lomelin et 

al., 2010; Haerty and Ponting, 2013). Khurana et al. used SNP data from the 1000 Genome 

project (Clarke et al., 2012) to identify about 0,4% of the genome (12Mb) as sensitive to 

mutations and introduced an empirical scoring system (Funseq) to rate somatic mutations 

based on their presence in sensitive segments and overlap with known regulatory elements 

(Khurana et al., 2013; Fu et al., 2014). Likewise, the CADD system (Kircher et al., 2014) 

predicts the deleteriousness of non-coding mutations based on allele frequencies modeled 

using machine learning on a series of genome features. Recently, Ritchie et al. introduced a 

model for prioritizing non-coding variants based on databases of known disease-related 

mutations (Ritchie et al., 2014). The authors used machine learning to predict regions where 

disease-causing variants are most likely, using as explanatory variables functional features 

such as exon annotations, histone and other chromatin marks or transcription factor binding 

sites (TFBS). However useful, these models have limitations in that they are often directed 

towards the detection of regulatory elements (where 75% of disease variants have been 

located to date (Ritchie et al., 2014) and they only consider human mutations in the light of 

germline, evolutionary selection, meaning independently of a specific tissue or disease 

context. This latter point is especially important in cancer, where (1) most disease-inducing 

mutations occur somatically during the lifetime of an individual, and (2) these mutations may 

have different impacts when occurring in different tissues. 

The availability of multiple whole genome sequence (WGS) data from tumors and matched 

normal tissue has revealed the extensiveness and singularity of cancer somatic mutations 

(Alexandrov et al., 2013; Kandoth et al., 2013; Lawrence et al., 2013). Cancer cells divide 

under their own set of selective constraints by which large regions of the genome can sustain 

high mutation rates while others seem relatively protected. This accelerated mutation rate is 

an important factor that may cause recurrent mutations in genome areas that are not 

necessarily related to cancer. Methods for scoring putative driver mutations now take such 
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effect into account (Lawrence et al., 2013). 

Variation of the somatic mutation rates in different genome areas is by itself a rich source of 

functional information. Schuster-Böckler & Lehner (Schuster-Böckler and Lehner, 2012) 

related 45 functional features (mostly histone marks) to somatic mutation rates and observed 

that the major factor influencing mutation density was chromatin organization, marks of open 

chromatin being associated to a reduced SNV densities and marks of closed chromatin to 

higher densities. Cancer somatic mutations do not all cause cell death or tumor progression, 

but they may contribute to tumor heterogeneity which in turn facilitates the emergence of new 

clones capable of surviving micro-environmental changes and drug treatments (Podlaha et al., 

2012). In this sense, the somatic mutation landscape can be considered as a model of 

accelerated evolution in which most mutations are neutral and a handful is under selection as 

beneficial to tumor progression.  

A strong hypothesis guiding the present study is that, in order to prioritize non-coding 

mutations in cancer and eventually discover new cancer drivers, one should take into account 

these dual selection forces acting on the tumor genome: (1) population and evolutionary 

constraints acting at germline level and (2) constraints resulting from the accelerated mutation 

background of the cancer tissue. To this aim we developed two integrative models that use 

annotated genome features to predict germline or somatic mutation constraints at any genomic 

location. We compared the functional features that most influence each mutational regimen 

and analyzed the intersection of constrained regions predicted under each model. A new 

picture of the somatic mutational landscape emerges where regions under constraint in the 

germline may be subject to highly variable mutation rates in the tumor. We present evidence 

that low somatic mutation areas are functionally relevant and can be used as a powerful screen 

for prioritizing cancer-related non-coding mutations. 

 

2.3 Results 

We represent germline and somatic constraints acting on tumor genomes using two 

independent models, one for each mutational regimen, that we term the SNP model and the 

SOM model. For each model, we define a set of genome features, mainly from 
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UCSC/Ensembl genome annotation (Karolchik et al., 2014) and the ENCODE Project 

(Rosenbloom et al., 2013) and we use these features to predict the expected mutational 

constraint at any genome position. In the SNP model, the mutational constraint is expressed as 

a regional ratio of rare SNP, while in the SOM model it is expressed as a regional mutation 

density. We further describe each model below.  

2.3.1 Scoring mutations with the germline (SNP) model 

A high regional ratio of rare SNPs (i.e. SNPs with allele frequencies below 0.5 or 1%) is a 

hallmark of genome regions under negative / purifying selection (Chen and Rajewsky, 2006; 

Khurana et al., 2013; Haerty and Ponting, 2013). Figure 1A shows varying ratios of rare SNPs 

obtained from the 1000 Genome Project (Clarke et al., 2012) associated to known functional 

regions or "features"' (see Table S1 for each feature definition). Coding regions (CDS) clearly 

stand out as more constrained than non-coding regions in general. However, a number of non-

coding elements also depart from the average genome signal, reflecting prior analysis of the 

1000 Genome project data (Khurana et al., 2013). Regions under purifying selection (ie. with 

high rare SNP ratio) include evolutionary conserved regions, transcription factor binding sites, 

DNase I hypersensitive, early replicated and highly expressed regions. Inversely, we observed 

low ratios of rare SNPs in regions of strong GC-bias, high replication rate and evolutionary 

conserved RNA structures (ECS). Of note, this low ratio of rare SNP in ECS is in 

disagreement with the expected deleterious effect of mutations in functional RNA structures. 

We developed a Random Forest (RF) model to predict purifying selection at any genome 

position based on the features present at this position. To this aim we associated every non-

coding genome position to a vector of binary values describing the presence/absence of 

functional features at this location (see Table S1 and Methods). Following feature selection 

and cross-validation, we obtained a robust model associating any combination of 16 genomic 

variables to a predicted rare SNP ratio. A measure of importance of each feature's 

contribution to the RF model is shown in Fig.1B. Evolutionary conserved regions, promoters 

and conserved transcription factor binding sites are among the strongest contributors to rare 

SNP ratio, in line with previous studies (Clarke et al., 2012). Of note, the predictive value of a 

high recombination rate, which is associated to a low rare SNP ratio (Fig 5A), had not been 

reported before. 
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To evaluate how the SNP model alone can predict deleterious mutation in the non-coding 

genome, we compared the average scoring of one million random SNPs to that of non-coding 

variants from two distinct collections of disease-related mutations, the Clivariant (Landrum et 

al., 2014) and HGMD (Stenson et al., 2009) databases (Fig. 5C). Known clinical variants 

from either database have significantly higher scores by the SNP model than random variants 

(Wilcoxon P<2.2e-16 in both cases). Furthermore, scores in the SNP model are positively 

correlated to the density of disease-related SNPs (Fig 5D, r= 0.80 and 0.73, P=6.09e-08 and 

3.15e-06 for Clivariant and HGMD, respectively), which confirms the capacity of the SNP 

model to identify non-coding regions where mutations are more likely to be disease-related.  

 

Figure 5. Construction of the rare SNP model.  A. Fraction of rare SNPs (allele frequency <0.01) 
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according to different genome features (see Table S1 and Methods for feature details). Each box 

shows rare SNP fraction across all human chromosomes, except chr. Y.  CDS: coding sequence; 

cTFBS: conserved transcription factor binding site; CR: evolutionary conserved region; UTR: 

untranslated region; Sensitive: region with high rate of rare SNP defined in (Khurana et al., 2013), 

ER/LR: early and late replicated region; DNase: DNase I hypersensitive site; HE/LE: high and low 

expressed region; Intron L/Intron P: intron of lncRNA/of protein coding gene; ncExon: non coding 

exon; ECS: evolutionarily conserved structure; RR H/RR L/GC H/GC L: high recombination rate, low 

recombination rate, high GC content and low GC content regions. The red dotted line represents the 

average fraction of rare SNPs across the genome. B. Feature importance as measured by 

IncNodePurity. We only show here features that passed feature selection. C. Distribution of SNP 

scores for random SNPs and for clinical variants from the Clivariants and HGMD databases. Random 

SNPs here are a set of 1M random intergenic SNPs from the 1000 Genome project. D. Correlation of 

SNP scores with densities of disease-causing variants. Genome positions were sorted by SNP score 

and split into 20 Mb intervals. The plots show the average SNP score and density of disease-causing 

variants for each interval. The purple dotted line shows cutoff used for defining high SNP score 

thereafter.  

2.3.2 Scoring mutations with the somatic (SOM) model 

The tumor mutational landscape results from the combined action of multiple factors 

including mutagenic agents, accelerated cell division, impairment of DNA replication/repair 

pathways and resistance to treatment (Lawrence et al., 2013). The tumor genome is thus 

subject to a set of constraints that are quite distinct from those acting in the germline. To 

analyze these constraints, we collected somatic mutation data from whole genome sequencing 

of liver cancer (N=88 patients), chronic lymphocytic leukemia (CLL) (N=28), lung 

adenocarcinoma (N=24) (Alexandrov et al., 2013) and melanoma (N=25) (Berger et al., 2012). 

We analyzed mutation densities for the above genomic features and for tissue-specific 

features such as histone marks, early/late replicated regions and transcript abundance obtained 

from tissue-matched Encode cell lines  (Rosenbloom et al., 2013) (Table S2). Results are 

shown in Figure 6A, S1A, S2A, S3A. Protein-coding sequences (CDS) harbor relatively low 

somatic mutation densities compared to introns (intron.P) and intergenic regions in all four 

cancer types, consistent with higher functional constraints in CDS, as observed in the SNP 
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model. However, other features reveal a quite different pattern. Evolutionary conserved 

regions, cTFBS and UTRs that were all under strong selective constraints in the germline 

model present highly variable mutation densities in tumors, with densities ranging from low 

(CDS level) to high (intergenic level), and no consistent pattern from tumor to tumor (Fig 6A, 

S1A, S2A, S3A). Certain features, however, present marked and consistent mutational 

patterns across all four tumors. For instance, we observed an obvious trend for accelerated 

mutation rates (higher density) in regions of repressed chromatin marks (H3K9me3), late 

replication (PCgene.late, lncRNA.late), low transcript expression (PCgene.LE, lncRNA.LE) 

and low GC (GC L). Conversely, we observed consistently reduced mutation rates in regions 

of active chromatin marks (H3K4me1-2-3, H3K79me2, H4K20me1), early replication 

(PCgene.early, lncRNA.early), high transcript expression (PCgene.HE, lncRNA.HE) and high 

GC (GC H). The general trends in feature-wise mutation densities largely reflect prior 

findings based on smaller datasets. Schuster-Bockler and Lehner (Schuster-Böckler and 

Lehner, 2012) observed strong correlations between chromatin states and mutation densities 

in tumors, with repressive marks linked to higher mutation rates, possibly due to deficient 

DNA repair in these regions. Mutation density is also known to correlate positively with late 

replication (Hodgkinson et al., 2012; Lawrence et al., 2013; Woo and Li, 2012) and 

negatively with recombination rate (Schuster-Böckler and Lehner, 2012) and RNA expression 

level (Lawrence et al., 2013; Pleasance et al., 2010).  

To model the mutational constraints acting on the tumor genome, we developed a second RF 

model, referred to as the SOM model, which predicts somatic mutation densities (the response 

variable) at any genome position based on the presence of cell-specific and generic genome 

features. We built one SOM model for each of the four above cancer types. Due to the large 

number of features in the SOM model and limited number of somatic mutations in the training 

sets, we computed feature coverage or average values (see methods) on successive 1Mb 

regions and trained the RF model based on the resulting vectors. After feature selection and 

robustness testing by cross-validation, the SOM model enabled reliable prediction of somatic 

mutation density at any genome location for each cancer type (see Methods). Fig 6B, S1B, 

S2B, S3B show the importance of features in the SOM models.  

RNA expression levels turned out to be relatively weak predictors of mutation density, 
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whereas replication time and histone marks in general are the predominant features 

determining somatic mutation density in all cancer types. However we observe significant 

differences between cancers. For instance the H3K36Me3 mark is an important predictor of 

low mutation density in melanoma and lung cancer, not in CLL or liver cancer. Also, CTCF 

binding sites are strong predictors of low mutation density in CLL and not in other cancer. 

Altogether this indicates that each somatic model predicts a cancer-specific mutation profile 

with distinct regions of high and low mutation densities.  

Under a neutral evolutionary model, somatic mutations should freely accumulate in regions 

that do not impact tumor fitness, thus regions of elevated tumor densities (high SOM score) 

should be considered as generally irrelevant to fitness, while regions that are relatively 

preserved from somatic mutations (low SOM score) are potentially the most interesting as 

they could reveal purifying selection occurring at the tumor level. One way to test this 

hypothesis is to relate low mutation regions and the occurrence of known disease mutations. 

Fig 6C, S1C, S2C, S3C show that non-coding disease mutations from the Clivariant and 

HGMD databases have significantly lower SOM scores than evolutionarily neutral SNPs 

(Wilcoxon P<2.2e-16 in all cases). Furthermore, the SOM score of different genome regions 

is inversely correlated to the density of disease causing variants in these regions (Fig 6D, S1D, 

S2D, S3D) (r =-0.47 to -0.94, P= 0.01 to 8.61e-14) suggesting that genome regions spared 

from somatic mutations are functionally relevant to disease progression.  

To further assess the value of SOM score as an indicator of selection, we mapped the genome 

positions with lowest SOM scores onto the different genome features and measured the 

relative enrichment for low SOM score positions within each feature (Fig. S4A). Expectedly, 

features that were part of the SOM model are significantly enriched or depleted in low SOM 

scores. However, 5' and 3' splice sites, two features that were not part of the model, show a 

much higher coverage by low SOM score regions than intronic regions, which indicates 

functional non-coding elements tend to attract fewer somatic mutations, as expected under a 

negative selection model. This effect is also observed in lncRNA, consistent with the higher 

conservation of splice junctions in this class of genes (Nitsche A, Rose D, Fasold M, Reiche 

K, 2015). Conversely, features enriched in high SOM scores (Fig. S4B) predominantly 

correspond to silent regions (intergenic, centromeres and telomeres). In summary low SOM 



41 

 

score positions tend to colocalize with functional elements and correlate with disease-causing 

mutations, suggesting the SOM model could be a significant, independent source of 

functional information on non-coding regions.  

 

Figure 6. Construction of the Somatic Mutation (SOM) model for liver cancer. A. Relative density of 

somatic mutations from whole genome sequences of 88 liver tumors (Alexandrov et al., 2013), 

associated to different genome features (see Methods for feature details). Mutation density is 

normalized so that the whole genome average has a mutation density of 1. PC gene: protein coding 

gene; CDS: coding sequence; Exon.P, Intron.P, Exon.L,Intron.L are exon and intron of protein coding 

gene and lncRNA respectively; CR: conserved region; DNase: DNase I hypersensitive site; ECS: 

evolutionarily conserved structure;  ncExon: non-coding exon; PC gene.HE, LncRNA.HE, PC 
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gene.LE and LncRNA.LE are high expressed and low expressed protein coding gene and lncRNA; PC 

gene.early, LncRNA.early, PC gene.late and LncRNA.late are early and late replicated protein coding 

gene and lncRNA; cTFBS: conserved transcription factor binding site;RR H,RR L,GC H,GC 

L,DNA.met H and DNA.met L are 1-Kb windows with high recombination rate (> 4.0), low 

recombination rate (< 0.5), high GC content (GC % > 50%), low GC content (GC%<30%), high DNA 

methylation (average value > 0.7245) and low DNA methylation (average value < 0.4062) 

respectively; Blue and red dotted lines: base lines showing average values for CDS and intergenic 

regions, respectively; B: Feature importance as measured by IncNodePurity. We only show here 

features that passed feature selection. C. Distribution of SOM scores for neutral SNPs and for clinical 

variants from two disease-causing variants databases Clivariant and HGMD. Neutral SNPs here are 

SNPs from the 1000 Genome project with allele frequency higher than 0.01, SOM scores predicted by 

the random forest model were divided by the number of patients. D. Correlation of SOM score with 

densities of disease-causing variants. Genome positions were sorted by SOM score and split into 

100Mb intervals. The plots show the average SOM score and density of disease-causing variants for 

each interval. The purple dotted line shows cutoff used for defining low SOM score thereafter. 

2.3.3 Towards an integrated model for germline and somatic mutations 

Analysis of germline and somatic mutations suggests that each mutational regime carries 

valuable independent information about selective forces acting in a tumor. We thus 

questioned whether combining SNP and SOM information at each genome position may lead 

to improved mutation prioritization in cancer. 

To assess the benefits of the joint model for scoring disease mutations, we measured disease 

variant densities in different areas of each tumor spectrum using the above cutoffs (Table S3, 

Fig S6). If we intersect high-SNP and low-SOM regions, the resulting genome area shows a 

greater enrichment in disease variants than either region taken independently (P<2.2e-16 for 

all four cancers). Therefore we argue that integrating germline and somatic mutational models 

provide a better system for prioritizing damaging mutation than any model used 

independently. 
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Figure 7. Relationship between SNP and SOM scores in liver cancer. Contours show densities of 

positions with the corresponding SNP and SOM scores. Grey dots: 1 million random genome positions; 

cyan contour: HGMD disease-causing variant positions; red contour: Clivariant positions. The top and 

right curves show marginal distributions of SNP scores (top) and SOM scores (right) for random 

genome positions, HGMD and Clivariant disease-causing variant positions. Dotted lines define cutoff 

values for hypomutated/hypermutated regions. SNP score cutoff=0.63 (98.16Mb above cutoff), SOM 

score cutoffs = 3.10 variants/Mb, defining areas below cutoff of 55.67 Mb, in liver cancer. 

Hypomutated regions defined by both cutoff correspond to ~56Mb in liver cancer type.  

Hypomutated positions are significantly over-represented within splice junctions, UTRs and 

different classes of cancer genes. We mapped predicted hypomutated positions on different 

genome features and gene types (Fig 8). As expected, functional features of protein-coding 

genes such as intron junctions and UTRs are strongly enriched for hypomutated positions (Fig 

8A). Similar trends are observed in lncRNA genes. Both lncRNA introns and exons are 

generally depleted for hypomutated regions (Fig 8), in line with poor selective pressure in 

lncRNA overall. However, lncRNA splice sites are slightly, albeit significantly, enriched in 

hypomutated regions, consistent with previous studies showing increased purifying selection 
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at lncRNA splice sites (Nitsche A, Rose D, Fasold M, Reiche K, 2015).  

We then compared hypomutated position enrichment in cancer vs. non-cancer genes. Cancer- 

protein-coding genes and cancer-related miRNAs are enriched for hypomutated regions 

compared to their non-cancer counterparts (Fig 8B, Table S4). This result suggests an 

elevated protection from somatic and germline mutations in cancer miRNAs and in the introns 

and UTRs of known cancer genes (we remind our analysis only considers the non-coding part 

of genes). However, we did not observe a significant enrichment for hypomutated regions in 

our short list of cancer-related lncRNAs (N=25). Complete lists of protein-coding, lncRNA 

and miRNA genes with their fraction of hypomutated positions are provided as suppl. files. 

Notable cancer genes with high fractions of hypomutated positions include PIM1 and MED12, 

with respectively 34% and 32% of their non-coding length that is hypomutated. Among 

cancer miRNAs, miR-1 and miR-574 are both covered almost completely by hypomutated 

positions.  

Interestingly, genes with high fractions of hypermutated positions are more divergent between 

cancer types than genes with high fractions of hypomutated positions (Fig S7), suggesting 

areas of high mutation density are largely cancer-specific, while areas of low mutation density 

tend to locate in the same functional regions of the genome. GO-term biases in these gene sets 

are significant only for genes enriched for hypermutated positions in liver cancer and CLL, 

and involve transcription regulation functions (Table S5).  
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Figure 8. Enrichment for hypomutated positions within different genome features (A) and gene 

classes (B). Positive values indicate enrichment, negative values indicate depletion. Hypomutated 

(high SNP, low SOM) positions were mapped onto genome features (A) or genes from three different 

classes (Protein-coding, lncRNA, miRNA) (B). For each feature or gene class, enrichment for 

hypomutated positions was computed as explained in Methods. As hypomutated positions are cancer-

specific, different results are obtained for each cancer class (colored dots). Shaded grey areas show 

enrichment ranges obtained from 1000 random permutations (see Methods).  

 

2.4 Discussion 

We introduced novel computational models to assess mutational constraints in the non-coding 

genome based on the presence of functional features. We trained a model on germline SNP 

data to predict rare SNP ratio at any genome site, and we trained four cancer-specific models 

on tumor data to predict somatic mutation densities. These models thus provide two 

independent measures of mutational constraints that are both relevant to the analysis of non-
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coding regions in the cancer context. Furthermore, the feature-based model construction 

enabled us to analyze the contribution of each feature to the germline and tumor mutation 

landscape and to characterize the main differences between the two mutational regimens.  

A major point we want to highlight in this study is that combining germline and somatic data 

provide an improved definition of non-coding regions that are sensitive to mutation in cancer 

cells. To illustrate this point, we extracted genome areas combining a high rare SNP ratio and 

a low somatic mutation density and showed these combined criteria are a better predictor of 

disease causing mutation than rare SNP ratio or somatic mutation density considered 

independently.  

Distinctly from current models that consider somatic mutation only as a corrective mean to 

avoid overpredicting deleterious mutations in highly mutated regions (Khurana et al., 2013; 

Lawrence et al., 2013; Fu et al., 2014), our approach thus considers somatic mutations on a 

par with evolutionary mutations, that is as a criterion to tell apart genome positions that are 

neutral (highly mutated) or under purifying selection (lowly mutated) in the tumor genome. 

We remind that prevalent forces shaping the tumor mutation landscape are the combined 

actions of mutagens and the DNA repair machinery on differentially accessible genome 

regions (Guttman et al., 2011; Schuster-Böckler and Lehner, 2012; Watson et al., 2013). 

Therefore, if functional areas are relatively spared from mutation, this is mostly not as a result 

of purifying selection, but because they are under the closer watch of DNA repair systems. 

Hence the somatic model can be viewed primarily as a way to discard regions sustaining 

accelerated mutations. However, we showed that hypomutated regions were enriched in 

functional elements such as splice junctions, which suggests purifying selection may occur as 

well.  

We are aware of the limited accuracy of somatic models when these are trained over tumors 

with low mutation rates and/or few available whole genome datasets. Currently, there are far 

fewer mutations to learn from in the tumor dataset than in the human polymorphism dataset 

(aggregate mutation densities in the present cancer datasets ranged from 20 to 600 mutations 

per Mb, vs. >12,000 SNP per Mb in the 1000 Genome data). This limits our ability to observe 

small-scale variations in mutation density. We expect that the fast accumulation of whole 
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tumor sequences will improve model accuracy within each cancer type and provide 

independent validation of our approach on other tumor classes. Another potential limitation in 

SOM models is the use of expression and epigenetic features from cell lines as a proxy for 

cancer tissues. This should also improve in the future as such information is acquired from 

primary tumor tissues.  

A key outcome of our study is a new approach to prioritize non-coding variations for cancer 

driver search. Our models predict mutational constraints at a genome position based on 

generic features, that is, largely independently of the actual mutations observed at this specific 

location. Therefore, a locus may be predicted as hypomutated by the model and yet turn out to 

sustain recurrent mutations across patients. Such a locus should then be prioritized as a 

candidate driver. Such analyses will be natural extensions of the present study.  

Although cancer research now acknowledges the importance of non-coding drivers, the search 

for cancer-related mutations has focused on regulatory elements such as promoters and 

enhancers as the key non-coding elements (Khurana et al., 2013; Ritchie et al., 2014). The 

realization that nearly 60,000 lncRNAs are expressed, often specifically, in tumoral genomes, 

many of them harboring potential disease causing mutations (Iyer et al., 2015), combined to 

the regulatory roles played by many lncRNAs (Forbes et al., 2011a) indicate that cancer 

driver search should also encompass those larger transcribed regions. Even if only 10% of 

lncRNAs are functional by conservative estimates (Ulitsky and Bartel, 2013), this corresponds 

to a much larger genome area than known regulatory elements. Currently, the search for 

cancer genes in these non-coding RNAs is driven by expression signature analysis. We show 

here that the analysis of germline and somatic mutational regimen is an important alternative 

that may lead to the identification of cancer-driving elements in ncRNA genes, as well as in 

the non-coding fraction of mRNA genes.  

 

2.5 Materials and Methods  

2.5.1 Human polymorphism, mutation and disease data 

Human polymorphism data comprising 38,248,779 SNPs were downloaded from the 1000 

Genome project pilot 1 (Clarke et al., 2012) (http://www.1000genomes.org). The data set 
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contains SNP data from 2500 individuals from about 25 world populations. SNPs with allele 

frequency lower than 0.01 were defined as rare, other SNPs were considered neutral.  

Somatic variants were collected from whole genome sequencing of paired cancer and normal 

tissues, obtained from two studies: 2,011,261 variants from 25 melanoma patients (Berger et 

al., 2012), 1,845,976 from 24 lung adenocarcinoma patients, 881,136 from 88 liver cancer 

patients and 59,993 from 28 chronic lymphocytic leukemia (CLL) patients (Lawrence et al., 

2013). Variants described as "substitution" or "indel" were both collected and are referred to 

collectively as mutations in the text.  

Curated disease-related variants were obtained from the Clivariant (Version 2014/03/03, 

55,689 variants) (Landrum et al., 2014) and HGMD (Version 2014/04/14, 166,768 variants) 

databases (Stenson et al., 2009). After exclusion of coding positions we used 13,108 HGMD 

and 6045 Clivariant mutations. 

Lists of cancer genes for Fig. 8 were obtained as follows: protein-coding cancer genes are 

from the Cancer Gene census, available from COSMIC release V71 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/) (Forbes et al., 2011a); cancer-

related lncRNAs are 27 mammalian long non-coding transcripts identified from our literature 

search as experimentally associated with different cancer types (Table S6); cancer miRNAs 

are from the miRCancer database (Andersson et al., 2014).  

2.5.2 Uniform genome-wide features 

Uniform features used in all figures and models are summarized in Table S1. Human genome 

annotation (protein-coding and lncRNA genes, exons, introns, CDS, UTRs, non-coding Exons 

(ncExon) was obtained from Gencode V7 (Harrow et al., 2012). We defined as intergenic 

those regions covered by neither a protein-coding gene (including introns) nor an lncRNA. 

We defined as 5‟ and 3' splice sites intron regions spanning the first 10 nt on the 5' side and 

the last 50 nt on the 3' side. GC contents were computed directly from the HG19 human 

genome assembly.  We defined 1kb regions with > 50% GC as high GC and 1kb regions with 

< 30% GC as low GC. For the SOM model, GC contents were computed over 1Mb windows.  

Promoters, defined as regions of 2.5kb from transcription start site (TSS), are from the 
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Gerstein lab (http://funseq.gersteinlab.org/data) (Khurana et al., 2013). Enhancers are from 

the Atlas of active in vivo-transcribed enhancers, collected based on FANTOM5 CAGE data 

from multiple tissues and cell lines (Karolchik et al., 2014). TFBSs combine all transcription 

factor binding sites from more than 30 Encode cell lines (Rosenbloom et al., 2013). 

Conserved TFBS (cTFBS) are from the UCSC tfbsConsSite track established from 

human/mouse/rat alignment (Smith et al., 2013).  

"Sensitive regions" are defined in the Khurana et al. study of genome regions under purifying 

selection as the 0.4% genome fraction with highest enrichment in rare SNPs (Khurana et al., 

2013). Evolutionarily conserved regions (CR) are from the UCSC 46 mammalian genome 

alignment (Phastcons score >177) (Smith et al., 2013). Evolutionarily conserved structures 

(ECS) are RNA secondary structures predicted using comparative structure prediction 

algorithms based on multiple genome alignments (Altshuler et al., 2010). DNase I 

hypersensitive sites (DNase I) from 125 combined ENCODE cell lines were obtained directly 

from the UCSC web site (Rosenbloom et al., 2013).  

We defined early and late replication regions using the ENCODE „Repli-seq' track 

(http://genome.ucsc.edu/ENCODE) that provides signals for cell cycle fractions G1b, S1, S4, 

G2 in different cell types (Rosenbloom et al., 2013). For each protein-coding or lncRNA gene, 

we computed the early-to-late (E/L) ratio as (G1b+S1)/(S4+G2) averaged over the gene 

length. Early and late replicated genes denote genes or lncRNAs with an E/L ratio > 1 or < 1 

for all 10 cell lines respectively: Gm12878, Hela3, Hepg2, Mcf7, Imr90, K562, Bg02es, 

Huvec, Bj and SK-N-SH.  

Expression levels were calculated using number of reads per kilobase per million reads 

(RPKM). We defined as High Expression (HE) genes those with RPKM > 20 in any of the 27 

Encode cell lines (Rosenbloom et al., 2013), corresponding to the top 6% of protein coding 

genes for a single Encode cell line. 

Recombination rates (RR) are from the International HapMap Project (http://hapmap.ncbi.nlm. 

nih.gov/) (Breiman, 2001). As every genome position did not have an associated RR, we 

averaged HapMap RR values over 1kb windows. High replication rate (RRH) and low 

replication rate (RRL) regions were defined by an average replication rate above 4.0 or below 
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0.5, respectively.   

2.5.3 Tissue-specific features 

RNA expression levels, transcription factor binding sites (TFBS) and maps of histone 

modification marks were acquired from UCSC ENCODE tracks (Rosenbloom et al., 2013) for 

each cell type: Hepg2, A549, K562, Nhdfad (Table S2). Replication timings were acquired 

from UCSC ENCODE tracks for cell lines Hepg2, lmr90, K562, Bg02 (Table S2).  

To define high expression and low expression genes, expression levels were measured for a 

single randomly selected cell line from the same tissue for each independent protein coding 

gene and lncRNA. RPKM values above 20 and below 0.25 defined high (PCgene.HE, 

lncRNA.HE) and low expression genes (PCgene.LE, lncRNA.LE), respectively.  

Replication timings were defined for each protein-coding gene and lncRNA using the same 

E/L calculation as above. Genes with an E/L ratio > 1 were considered early replicated 

(lncRNA.early, PCgene.early), genes with an E/L ratio < 1 were considered late replicated 

(lncRNA.late, PCgene.late).   

DNA methylation data were obtained from TCGA database (http://cancergenome.nih.gov/) 

for cancer types liver hepatocelluar carcinoma, lung adenocarcinoma, acute myeloid leukemia 

and skin cutaneous melanoma. Average DNA methylation value was computed for each 

methylation site across multiple patients, undefined values were replaced with mean and then 

we averaged DNA methylation over non-overlapping 1Kb and 1Mb windows, 1Kb windows 

which have mean DNA methylation values greater than 0.7245 and less than 0.4062 were 

defined as high (DNA.met H) and low (DNA.met L) DNA methylation windows respectively.   

2.5.4 Rare SNP model 

A random forest (RF) is an ensemble of multiple decision trees computed from separate 

bootstrap samples of the training data and feature set (Breiman, 2001). We developed the 

germline RF model (SNP model) to predict the density of rare SNP at any genome location 

based on 14 distinct features (Table S1). The response variable was the local ratio of rare SNP 

(number of rare SNPs /total number of SNPs) obtained from the 1000 Genome Project.   

A matrix of 44130 rows was formed after removal of those combinations in coding regions, 
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each row representing one type of combination of features that can be observed throughout 

the non-coding genome. Feature selection was performed with the R VSURF package 

(Genuer et al., 2012), resulting in elimination of GC which is G or C base for each nucleotide 

and late replicated regions, 18656 combinations of the remaining 16 features. 2502 

combinations of 16 features containing 99.49% of SNPs and 99.50% of human genome were 

used to train the model after removal of the combinations of size smaller than 10Kb. The RF 

model was produced using the R randomForest package. The SNP score was predicted with 

the 16 selected features for each combination of feature in the non-coding genome. Model 

calibration and cross validation are presented in Supplementary methods. Variable importance 

was estimated using node purity, which measures the decrease in tree node purity that results 

from splits of a given variable.  

2.5.5 Somatic mutation model   

The somatic (SOM) RF model was built using as predictors the 16 uniform and 17 tissue-

specific features described in Table S1 and S2, and as response variable the local density of 

somatic mutation across all tumors in the cancer type under study. Due to the relatively sparse 

somatic mutation data, model fitting was performed using continuous variables measured for 

genome windows as explained below.  

Features ncExon, introns of lncRNAs and PC genes, CR, cTFBS, UTR, Promoter, GC 

contents and the various histone marks were expressed as the number of nucleotides covered 

by the feature within each successive 1Mb window. Features recombination rate, DNA 

methylation, replication time and expression level were computed for each successive 1Mb 

window as follows. To obtain expression levels for 1Mb windows, RNA-seq reads from each 

cell lines (3 samples/cell line) were counted, and the length of exons from Gencode 

annotation was calculated, then, average expression level was calculated as RPKM. 

Replication time in the SOM model was the average E/L ratio computed as above for each 

1Mb window. Recombination rate and DNA methylation were averaged over non-overlapping 

1-Mb windows across the genome.  

The SOM model used cancer mutation density as the response variable and the 33 genomic 

features (32 for lung cancer) as predictor variables. A matrix of 2846 rows was formed, of 
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which each row represents a 1-Mb window and columns contain values of genomic features 

and response variable. For model fitting, we discarded genome regions with poor annotation 

or biased mutation information. This included any 1Mb window overlapping a telomere, 

centromere, stalk, pericentromere, or with 100% undefined bases, and the entire Y 

chromosome due to ploidy bias (total: 224.3Mb). All predictor values were plus one and log 

scaled. 

The RF regression model was constructed with the R randomForest package as above. Feature 

selection was performed with the R VSURF package (Genuer et al., 2012). Model calibration, 

robustness testing/cross validation of the SOM models are presented in supplementary 

methods. For SOM score prediction, we used the same 1-Mb window strategy as in model 

building, however, the 1Mb-windows were slided across the human genome with a step size 

of 1Kb, in order to extrapolate to regions not used in model building. 1Mb windows with 

annotation or mutational biases were excluded as in model training, resulting in 2,832,687 

overlapping 1Mb window annotations. The SOM score was predicted using selected features 

for each 1Mb window and averaged on a 1 Kb window scale. 

2.5.6 Enrichment analysis 

Enrichment for hypomutated positions within different feature classes (Fig 8) was measured 

as the odds ratio: 

              
(
  

  
)

(
  

  
)
 

Where Hf = #hypomutated positions within feature, Sf = total size of feature, Hg = 

#hypomutated positions in whole genome, Sg = total size of genome. The significance of 

enrichment or depletion was evaluated using a permutation test as follows: a set of positions 

of same size as the hypomutated region (ie. 56Mb) was randomly sampled from the whole 

genome 1000 times, and in each random sample, enrichments were calculated for each feature 

class. The distribution of enrichment values from the 1000 random samples is shown as 

shaded areas in Figures. Only observed enrichments outside these areas are considered 

significant. Enrichment for other types of positions (hypermutated, low SOM score etc.) was 

evaluated similarly. 
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3.1 Introduction  

Cancer is the second leading cause of deaths in USA, about 1,658,370 new cancer incidences 

and 589,430 mortalities are estimated to occur in USA in 2015(Facts, 2015). Cancer is 

characterized by uncontrolled growth of malignant cells. Causes of cancer are complex and 

diverse, ranging from external factors such as mutagenic agents and infectious organisms to 

internal factors such as inherited mutations and immune deregulation (Gutschner and 

Diederichs, 2012).  In 2000, Hanahan and Weinberg proposed 6 critical capabilities that 

cancer cells possess to enable the malignant transformation, including sustaining proliferative 

signaling, evading growth suppressors, enabling replicative immortality, activating invasion 

and metastasis, inducing of angiogenesis and resisting cell death (Hanahan and Weinberg, 

2011).  Detection of driver genes critical to these events is a consistent goal in cancer 

genomics. Multiple bioinformatic tools have been developed to discriminate cancer-driving 

genes from background genes, such as MutSigCV (Lawrence et al., 2013) and MuSiC (Dees 

et al., 2012) which search for recurrently mutated genes across a cohort of cancer samples and 

Oncodrive-fm (Gonzalez-Perez and Lopez-Bigas, 2012) which determines driver genes 

accumulating mutations with high function effect. Up to now, 547 driver genes have been 

identified and annotated in COSMIC database (Forbes et al., 2011b). 

 

LncRNAs are a class of mRNA-like transcripts ranging from 200 bp to 100 kb, which lack 

significant open reading frames and are not translated into proteins. A recent compendium 

found 58648 lncRNAs in the human transcriptome (Iyer et al., 2015). LncRNAs are mostly 

two-exon transcripts and preferentially localized in chromatin and nucleus. They show lower 

expression and higher tissue specificity as compared to protein coding genes (Derrien et al., 

2012).  According to their genetic relation with protein coding genes, lncRNAs can be 

classified into five main categories: sense and antisense lncRNAs which are located in a 

transcript on the same or opposite strand, respectively, bidirectional lncRNAs whose 

expression and neighboring transcripts on the opposite strand are transcribed in close genomic 

proximity, intronic and intergenic lncRNAs which are derived from intronic and intergenic 

regions of transcripts respectively (Ponting et al., 2009).  
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LncRNAs were initially thought to be spurious transcriptional noise due to low RNA 

polymerase fidelity. In recent years, accumulating evidences have shown that lncRNAs are 

pervasively transcribed throughout eukaryotic genomes and involved in a wide range of 

physiological processes, such as imprinting (Jeon et al., 2012), epigenetic regulation (Mattick 

et al., 2009), apoptosis and cell cycle control (Wapinski and Chang, 2011), transcriptional 

(Orom et al., 2010) and translational regulation, splicing, cell development and differentiation 

(Clark and Mattick, 2011) and aging (Rando and Chang, 2012).  

 

Despite their lack of protein-coding capability, many lncRNAs are suspected to harbor 

biological functions. They might act through a variety of mechanisms, including chromatin 

modification, transcriptional and post-transcriptional regulation of gene expression, RNA 

splicing, and protein translation and turnover (Nie et al., 2012; Gutschner and Diederichs, 

2012) and interaction with protein and microRNAs (Ma et al., 2012) (Figure 9). As a 

consequence, deregulation of lncRNAs can play a significant role in carcinogenesis (Fang et 

al., 2014; Gupta et al., 2010; Garding et al., 2013). Here we list a number of cancer-associated 

lncRNAs, which are often aberrantly expressed and actively implicated in various tumoral 

processes in human cancer (Table 3).  
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Figure 9. Graphical display of mechanisms by which lncRNAs function in cells (Gutschner and 

Diederichs, 2012). LncRNAs can function in a variety of ways. Overall, lncRNAs are able to alter 

expression of target genes, affect protein localization and activity (D) and play an important role in the 

formation of cellular substructures (such as paraspeckles) and protein complexes (such as scaffold) 

(C;H) (Clemson et al., 2009).  (A) LncRNAs can be degraded into small endo-siRNAs, which are 

capable of silencing target gene expression. (B) LncRNAs function as “miRNA sponges”, which 

inactivate target miRNAs expression and alter the expression of downstream genes of these miRNAs 

(Wang et al., 2010). (D) LncRNAs may function via interaction with proteins, for instance, NRON 

(non-coding repressor of NFAT) can bind to the transcription factor NFAT (nuclear factor of activated 

T cells) and transport NFAT from nuclear to cytoplasm, which suppresses NFAT target gene 

expression (Willingham et al., 2005). (E) Moreover, lncRNA may either recruit or block transcription 

factors to bind to target gene promoters, which leads to activation or degradation of target gene 

transcription (Feng et al., 2006; Martianov et al., 2007). (F) LncRNAs can modulate alternative 

splicing of target mRNAs via formation of the spliceosome complex (Beltran et al., 2008). (G) 

LncRNAs may also participate in the epigenetic regulation, they can regulate chromatin status via 

interaction with chromatin remodeling complexes or histone modification (Rinn et al., 2007; Zhao et 

al., 2008).  

  

3.2 LncRNAs and proliferation 

One important feature that cancer possesses is unlimited growth without the stimulation of 

external factors. Normal cells are able to produce proliferation promoting or inhibiting factors 

which tightly control the number of cells and functions, however, malignant tumor cells are 

able to escape from proliferation signals and obtain uncontrolled growth through a wide range 

of ways, such as hypoxia, dysregulation of cell cycle genes such as the Rb pathway (INK4-

cyclin D-cdk4/6-Rb) and Cyclins D and E as well as activation of signaling pathways such as 

Wnt/β-catenin signaling, PI3K/Akt/mTOR signaling, Notch signaling and NF-κB signaling 

(Feitelson et al., 2015). In the past ten years, there was increasing evidence demonstrating 

lncRNAs affect the proliferation of cancer cells.  Sun et al. (Sun et al., 2015) used GRO-seq 

and RNA-seq to annotate lncRNAs in MCF-7 breast cancer cell line and found about 1900 

lncRNAs, more than 700 of which are newly identified lncRNAs. LncRNA152 and 

lncRNA67 were functionally characterized further in breast cancer, these two lncRNAs are 
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upregulated in breast tumors. Silencing their expression by siRNA-mediated deletion greatly 

inhibited cellular proliferation in MCF-7 and T47D breast cancer cell-lines. In contrast, 

enhanced expression of LncRNA152 and lncRNA67 in part rescued the growth inhibition by 

siRNA knockdown in MCF-7 cells. In addition, LncRNA152 and lncRNA67 are implicated in 

the regulation of cell cycle and estrogen receptor pathway. Knockdown of either lncRNA 

increased the number of cells in G1 phase and reduced the fraction of cells in S phase. Most 

importantly, lncRNA152 and lncRNA67 interacted with estrogen signaling pathway, which 

might in part account for their control of cell cycle.  Sun et al (Sun et al., 2015) found that 

estrogen affected the expression of lncRNA152 and lncRNA67, with lncRNA152 upregulated 

and lncRNA67 downregulated. Estrogen treatment in part reduced the inhibitory effect on 

cellular growth of MCF-7 by knockdown of lncRNA152; however, silencing of either 

lncRNA repressed the expression of many estrogen-regulated target genes. Another evidence 

of lncRNAs playing a role in cancer proliferation is PCAT-1 (prostate cancer associated 

transcript 1). PCAT-1 is overexpressed in high-grade and metastatic prostate cancer samples. 

Knockdown and enhanced expression of PACT-1 led to decreased proliferation rate and 

modest increase in cellular growth, respectively. In addition, downregulation of PCAT-1 by 

siRNA-mediated knockdown caused deregulation of 370 protein-coding genes, among which 

255 are upregulated and 115 downregulated. Gene ontology enrichment analyses found that 

upregulated genes were related to cell cycle and mitosis, suggesting that PCAT-1 might 

contribute to proliferation through transcriptional regulation of cell cycle and mitosis-

associated genes in prostate cancer (Prensner and Chinnaiyan, 2011). 

An alternative mechanism sustaining proliferation involves cancer cells that are able to escape 

proliferation suppression operated by tumor suppressor genes, such as TP53, PTEN and RB. 

External or internal stimuli, such as radiation and hypoxia activate these tumor suppressor 

genes, leading to cell cycle disruption or apoptosis.  Recent studies have shown that lncRNAs 

are involved in the inhibition of tumor suppressor genes in diverse ways.  H19, located on 

chromosome 11p15.5, is markedly increased in gastric cancer cell lines and cancer samples. 

Enhanced H19 expression decreases P53 activity and protein levels of the p53 target Bax, 

leading to promotion of cell proliferation and reduction of cell apoptosis (F. Yang et al., 2012). 

Expression of Alu-mediated p21 transcriptional regulator (APTR) is negatively correlated to 
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that of p21 in gliomas. APTR inhibits the transcription of CDKN1A/p21 via recruitment of 

the PRC2 complex to the promoter of CDKN1A/p21, leading to activation of cell 

proliferation in HCT116 and to G1-S arrest in MCF10A cancer cells. The localization of 

APTR to the p21 promoter is mediated by the Alu (c-Alu) element embedded in APTR. 

Expression of p21 is induced and expression of APTR is reduced irrespective of p53 activity 

in human glioma cells, in response to cell stresses, such as heat shock and doxorubicin. This 

body of evidence supports that APTR represses p21 epigenetically via recruiting PRC2 to the 

p21 promoter (Negishi et al., 2014). 

 

3.3 LncRNAs and invasion and metastasis 

Cancer cells are able to invade and metastasize to form secondary tumors, which makes 

treatment of cancer highly challenging and causes high mortality rate. In order to successfully 

invade into healthy tissues, cancer cells have to go through multiple processes, including 

morphological changes, transition through lymphatic system and blood vessels and formation 

of micrometastases, eventually formation of a secondary tumor (Gutschner and Diederichs, 

2012). Epithelial mesenchymal transition (EMT) is a developmental regulatory process which 

plays a great role in the regulation of cancer invasion and metastasis (Yilmaz and Christofori, 

2009; Polyak and Weinberg, 2009).  During EMT, epithelial cells that are non-mobile, 

polarized, embedded via cell-cell junctions are transformed into invasive mesenchymal cells 

that are individual, non-polarized and mobile. Several important factors are critical to the 

EMT process, such as E-cadherin (CDH1) and N-Cadherin (CDH2). As a critical cell-to-cell 

adhesion molecule, E-cadherin is frequently downregulated or inactivated in human cancers 

(Berx and van Roy, 2009; Cavallaro and Christofori, 2004).  Upregulation of E-cadherin 

therefore represses cancer invasion and metastasis, E-cadherin is under strict control by 

multiple factors, such as Snail1 (Snail), Snail2 (Slug), ZEB1 (δEF1), 

ZEB2 (Sip1), E47, and Twist which are transcriptional repressor of E-cadherin (Peinado et al., 

2007) and receptor tyrosine kinase or Src which mediates phosphorylation and degradation of 

E-cadherin (Beltran et al., 2008; Yilmaz and Christofori, 2009). N-Cadherin (CDH2), that is 

normally expressed in nervous tissues and mesenchymal cells, forms homophilic cell-cell 
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adhesion junctions. Its expression can be upregulated by collagen I, α2β1-integrin and Twist 

(Alexander et al., 2006; Shintani et al., 2008). 

 

An increasing number of evidences show lncRNAs are implicated in cancer invasion and 

metastasis in a variety of ways. The exemplary lncRNA MALAT1 (Metastasis-Associated 

Lung Adenocarcinoma Transcript 1, MALAT-1) shows abundant expression in diverse cell 

types and high conservation across various species (Gutschner et al., 2011; Tripathi et al., 

2010). MALAT1 is upregulated in several cancer types including lung cancer, uterine 

endometrial stromal sarcoma and hepatocellular carcinoma (Ji et al., 2003; Guo et al., 2010; 

Lin et al., 2007; Tano et al., 2010).  MALAT1 plays an active role in cancer metastatic 

process, for instance, it regulates motility-associated genes and enhances cellular motility of 

lung cancer cells, depletion of MALAT1 by siRNAs reduces the expression of CTHRC1, 

CCT4, HMMR or ROD1, which impairs cell motility in lung adenocarcinoma (Tano et al., 

2010). Nude mice with depletion of MALAT1 expression developed less number of lung 

tumor nodules and metastases (Schmidt et al., 2011; Gutschner et al., 2013).  Moreover, 

MALAT1 also promotes cellular proliferation and metastasis of cervical cancer cells, 

silencing MALAT1 expression results in deregulation of apoptosis pathway related genes, 

such as caspase-8, caspase-3, Bcl-2 and Bcl-xL in cervical cancer (Guo et al., 2010).  

MALAT1 is involved in the regulation of epithelial-mesenchymal transition (EMT) 

associated genes, Downregulation of  MALAT1 expression leads to downregulation of ZEB1, 

ZEB2 and Slug and upregulation of E-cadherin in bladder cancer, which induces epithelial-to-

mesenchymal transition and metastasis in bladder cancer (Ying et al., 2012).  

Another cancer metastasis-associated lncRNA is HOTAIR (HOX Antisense Intergenic RNA), 

HOTAIR expression is upregulated in primary and metastatic tumors of different cancer types, 

including breast cancer (Gupta et al., 2010), colorectal cancer (Kogo et al., 2011), pancreatic 

cancer (Kim et al., 2013), hepatocellular carcinoma (Geng et al., 2011), gastrointestinal 

stromal cancer (Niinuma et al., 2012) and oesophageal squamous cell carcinoma (X. Li et al., 

2013). HOTAIR expression is high in breast cancer that are predisposed to metastasize, and 

its inhibition blocks metastasis in mouse models (Gupta et al., 2010). HOTAIR plays an 

important role in epigenetic regulation, enhanced expression of HOTAIR interacts with PRC2 

(polycomb repressive complex 2) to alter H3K27 methylation , leading to changes of target 
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gene expression in epithelial breast cancer cell and increased cancer metastasis, in contrast,  

knockdown of HOTAIR suppresses cancer invasion and metastasis (Gupta et al., 2010). 

HOTAIR expression is upregulated in hepatocellular carcinoma compared to adjacent normal 

tissues, increased expression of HOTAIR indicates recurrent HCC and poor survival (Yang et 

al., 2011), furthermore, HOTAIR might serve as a potential indicator of lymph node 

metastasis in liver cancer; downregulation of HOTAIR expression greatly leads to decreased 

cellular metastasis and viability in liver cancer cells (Geng et al., 2011). 

The third metastasis-involved lncRNA is H19, upregulation of H19 expression is observed in 

hepatocellular carcinoma (Matouk et al., 2007), bladder cancer (Luo et al., 2013) and lung 

cancer (Matouk et al., 2014). H19 has been demonstrated to actively contribute to tumoral 

metastasis and invasion through multiple mechanisms. H19 directly affects the expression of 

the key players of EMT process, H19 expression is negatively correlated with E-cadherin and 

assists in binding of Ezh2, an epigenetic regulator, to the promoter of E-cadherin and 

indirectly activates Wnt-βcatenin, which leads to transcriptional repression of E-cadherin in 

bladder cancer (Luo et al., 2013).  Moreover, H19 suppresses E-cadherin expression through a 

positive feedback loop between Slug and H19/miR-675, in which H19 induces Slug 

expression through miR-675-implicated mechanism, and upregulation of Slug further 

activates H19 promoter and enhances H19 expression levels in lung cancer  (Matouk et al., 

2014).  H19 is also shown to regulate tumor metastasis via epigenetic activation of miR-200 

family in liver cancer, ectopic expression of H19 interacts with the HnRNPU/PCAF/RNA 

PolII complex and enables the binding of the complex to the promoter of miR-200 family, 

which activates miR-200 family via enhancing histone H3 acetylation, thus H19 can 

epigenetically activate the miR-200 pathway, leading to induction of mesenchymal-to-

epithelial transition and the inhibition of cancer metastasis (L. Zhang et al., 2013).  

 

3.4 LncRNAs and apoptosis 

Apoptosis plays an important role in a wide range of diseases, including cancer.  Cells initiate 

apoptotic processes in response to external stimuli, such as glucocorticoids, radiation, hypoxia 

and infection. Apoptotic processes are executed by two main mechanisms, including the 
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extrinsic death receptor pathway and the intrinsic mitochondrial apoptosis pathway. The 

extrinsic pathway mainly consists of three parts: the death ligands, such as tumor necrosis 

factor and Fas ligand, transmembrane receptors, such as the type I TNF receptor and Fas 

receptor as well as adaptor proteins, such as Fas-associated death domain and TNF receptor-

associated death domain. Death ligands bind to the extracellular domain of transmembrane 

receptors, and the death receptors interact with adaptor proteins, which leads to the formation 

of a death-inducing signaling complex (DISC) between Pro-caspase-8 and adaptor proteins 

and activation of Pro-caspase-8 (Khosravi-Far and Esposti, 2004). The mitochondrial 

apoptosis can be achieved in many ways. DNA damage initiates apoptosis through activating  

the tumor-suppressor protein p53, which consequentially upregulates the expression of pro-

apoptotic genes such as DR-5, BAX, BAK, NOXA, PUMA and downregulates the expression 

of anti-apoptotic genes such as Bcl-2 and survivin (Goldar et al., 2015). Moreover, 

intracellular stimuli can affect the permeability of mitochondrial membrane, initiate 

mitochondrial swelling via the BCL-2 family which includes 25 pro- and anti-apoptotic 

members (Chipuk et al., 2004). The imbalance among these pro-apoptotic and anti-apoptotic 

Bcl-2 family members increases the permeabilization of mitochondrial membranes and leads 

to leakage of cytochrome C and other mitochondrial proteins. For instance, the release of 

mitochondrial proteins such as SMACs (second mitochondria-derived activator of caspases) 

deactivates inhibitor of apoptosis proteins (IAPs) and indirectly promotes the activities of 

caspases; another apoptotic protein , cytochrome c, is released by mitochondria through the 

formation of the mitochondrial apoptosis-induced channel (MAC). Cytochrome C together 

with apoptotic protease activating factor-1 and ATP form a complex “apoptosome”, which 

transforms pro-caspase-9 into its active form of caspase-9, activates caspase-3 and eventually 

results in cell death (Zou et al., 1997; Jin et al., 2005).   

A number of lncRNAs has been observed to affect cancer apoptosis pathways, such as 

PCGEM1, CUDR and PANDAR. PCGEM1 is overexpressed and shows anti-apoptotic effect 

in prostate cancer (Srikantan et al., 2000). Overexpression of PCGEM1 led to expression 

delay of p53 and p21 and remarkably decreased cleaved caspase 7 and PARP expression in 

doxorubicin-treated LNCaP cells.The apoptotic inhibition is highly androgen-dependent, as 

mutations of androgen could diminish this effect (Liebert and Gene, 2006). Another anti-

https://en.wikipedia.org/wiki/Caspase
https://en.wikipedia.org/wiki/Cytochrome_c
https://en.wikipedia.org/wiki/Mitochondrial_apoptosis-induced_channel
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apoptotic lncRNA is CUDR (cancer upregulated drug resistant) displaying inhibitory effect on 

drug-induced apoptosis, such as doxorubicin and etoposide in squamous carcinoma cells 

A431. Enhanced expression of CUDR downregulates the effector caspase 3, which might 

account for this inhibitory function of apoptosis (Jin et al., 2005; Khosravi-Far and Esposti, 

2004). 

However, many lncRNAs play a pro-apoptotic role in cancer, such as PANDAR (Han et al., 

2015), INXS (DeOcesano-Pereira et al., 2014) and GAS5 (Kino et al., 2010). PANDAR is 

lowly expressed in non-small cell lung carcinoma (NSCLC), and downregulation of 

PANDAR expression correlates negatively with great tumor size and late tumor stage. 

Enhanced expression of PANDAR could greatly increase the apoptosis rate of lung cancer 

cell lines, A549 and SPC-A1, the apoptosis-inducing effect is in part rescued by upregulation 

of P53. Overexpression of PANDAR could induce the expression of pro-apoptotic proteins 

(Bax and Bad) and inhibit anti-apoptotic protein (Bcl-2), which leads to the activation of 

caspase-3 and induction of apoptosis in NSCLC cells (Han et al., 2015). 
 

INXS is a 1903 nts pro-apoptotic lncRNA that is transcribed from the opposite strand of the 

BCL-X genomic locus, INXS is significantly less abundant in kidney cancer in comparison 

with adjacent normal tissues. Treatment of apoptosis-inducing agents, UV-C light exposure 

and anti-cancer agent sulforaphane (SFN), led to increased expression of INXS and activation 

of caspases 3, 7 and 9 in 786-O kidney tumor cells, siRNA-mediated deletion of INXS could 

greatly diminish such an effect. Overexpression of INXS resulted in a pronounced 

accumulation of pro-apoptotic BCL-XS and activated activation of caspases 3, 7 and 9 as well 

as a decrease of anti-apoptotic BCL-XL abundance, thus inducing apoptosis in 786-O cells. 

Furthermore, tumor weight was reduced by increased BCL-XS expression after injection of 

INXS-expressing plasmid in mouse xenograft model. All these evidences support that INXS 

is an apoptosis-inducer in kidney cancer (DeOcesano-Pereira et al., 2014). 

GAS5 (Growth Arrest-Specific 5), firstly identified in mouse NIH3T3 fibroblasts, is 

downregulated in various cancer types, such as leukemia and breast cancer (Coccia et al., 

1992; Schneider et al., 1988). GAS5 interacts with DNA binding domain of the glucocorticoid 

receptors and blocks the DNA glucocorticoid response elements to bind these receptors, 

which inhibits the glucocorticoid-mediated transcription of anti-apoptotic genes like cellular 
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inhibitor of apoptosis 2 (cIAP2) and leads to cellular apoptosis (Kino et al., 2010). 

 

3.5 LncRNAs and cell cycle 

The cell division cycle consists of quiescent/senescent (G0) phase, Interphase (G1, S and G2 

phase) and Cell division (M) phase. The G0 phase is a resting phase in which cells have 

finished division. Interphase is the stage where cells prepare for mitosis, including the G1 

phase which supplies proteins and increases the number of organelles. The S phase is that for 

DNA synthesis, and the G2 phase is that for cell growth. Lastly, cell growth stops and cells 

are divided into two daughter cells in the M phase. The cell cycle is under strict regulation of 

cyclin-dependent kinases (CDKs) and their related pathways in mammalian cells. The CDKs 

bind to cyclins, including cyclins A, B, D, and E, and form CDK-cyclin complexes which 

phosphorylate and activate their target genes, enabling cell cycle progression (Morgan, 1995).  

For instance, in response to extracellular signals, such as growth factors, Cyclin D binds to 

CDK4 and forms the cyclin D-CDK4 complex which in turn phosphorylates the 

retinoblastoma susceptibility protein (Rb) and its family members, p107 and p130 and 

activates E2F transcription in the late G1 phase. The activation of E2F leads to activation of 

multiple growth-promoting genes such as cyclin E, DNA polymerase (Weinberg, 1995; 

Kitagawa et al., 1996). Cyclin E-CDK2 phosphorylates pRB as well as several proteins 

involved in DNA replication to push the cell from G1 to S phase (Hwang and Clurman, 2005). 

Moreover, the cell cycle is negatively regulated by CDK inhibitors, such as p15, p16, p18, 

p21, p27, and p57 which inhibit the activities of cyclin–CDK complexes through specific 

binding to their targets (Sherr and Roberts, 1999; Vidal and Koff, 2000). 

A number of lncRNAs plays important roles in the progression of the cancer cell cycle 

through regulation of expression of critical cell cycle genes, such as Purα, CDKs and cyclins 

(Bida et al., 2015; Liu et al., 2012; Tripathi et al., 2013). MA-linc1 (Mitosis-Associated Long 

Intergenic Non-Coding RNA 1) locates on the chromosome 5 and consists of three exons,  it 

functions as a transcriptional target gene of E2F1. Knockdown of MA-linc1 alters cell cycle 

distribution of the human osteosarcoma cell line U2OS, characterized by a reduction of G1 

phase cells and an increase in cancer cells at G2/M and S phase. Moreover, silencing 

expression of MA-linc1 led to decreased mitosis exit in M phase-arrested cells. The 

https://en.wikipedia.org/wiki/Interphase
https://en.wikipedia.org/wiki/Cell_division
https://en.wikipedia.org/wiki/Interphase
https://en.wikipedia.org/wiki/Mitosis
https://en.wikipedia.org/wiki/Cyclin-dependent_kinase_4
https://en.wikipedia.org/wiki/Retinoblastoma
https://en.wikipedia.org/wiki/Retinoblastoma_protein
https://en.wikipedia.org/wiki/Cyclin_E
https://en.wikipedia.org/wiki/DNA_polymerase
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mechanism underlying the cell cycle regulation of MA-linc1 can be partly mediated by cis 

repression of the expression of its neighboring gene Purα (DeOcesano-Pereira et al., 2014), 

which is often deleted in cancers and whose aberrant expression arrests cell cycle progression 

(Bida et al., 2015; Gallia et al., 2000). In support of the above findings, knockdown of MA-

linc1 induces cellular apoptosis initiated by the antimitotic drug, Paclitaxel and deletion of 

Purα could rescue such an enhancement of apoptosis (Bida et al., 2015). 

The gadd7 (growth-arrested DNA damage-inducible gene 7) lncRNA (DeOcesano-Pereira et 

al., 2014) is another important lncRNA that controls cell-cycle progression. It was firstly 

identified from Chinese hamster ovary (CHO) cells owing to its abundant expression after UV 

irradiation (Hollander et al., 1996). Depletion of gadd7 leads to an increase of cellular 

proliferation and cell cycle redistribution, with a remarkable reduction of G1 phase cells and 

an accumulation of G2/M and S phase cells in response to DNA damage caused by UV 

radiation, suggesting that gadd7 may affect G1/S transition. Following UV radiation, gadd7 

expression is induced and it directly binds to TAR DNA-binding protein (TDP-43) and 

dissociates TDP-43 from cyclin-dependent kinase 6 (Cdk6) mRNA, which leads to Cdk6 

mRNA decay and the regulation of G1/S checkpoint (Liu et al., 2012). 

P53, as a tight regulator of the cell cycle, is able to control both G1 and G2/M checkpoints 

(Schwartz and Rotter, 1998).  Many lncRNAs function as cell cycle regulators via P53-

mediated cell cycle control (Léveillé et al., 2015;Sánchez et al., 2014) , such as PR-lncRNA-1, 

PR-lncRNA-10 and RoR. PR-lncRNA-1 and PR-lncRNA-10, localized in the nucleus of cells, 

are two transcriptional targets of P53. Gene expression analysis revealed that PR-lncRNA-

1and PR-lncRNA-10 depletion led to dysregulation of several genes associated to cell cycle 

control and apoptosis, which are p53 downstream target genes. Moreover, PR-lncRNA-1 and 

PR-lncRNA-10 are essential to the binding of p53 to p53 target genes, such as SERPINB5, 

CDKN1A, BCL2L1and BBC3 genes. Silencing the expression of PR-lncRNA-1and PR-

lncRNA-10 caused a significant increase of cell proliferation, and decrease of cell apoptosis. 

Deletion of PR-lncRNA-1 and PR-lncRNA-10 increased the number of cells in S-phase of 

cell cycle in HCT116 cells. Overall, these findings support that PR-lncRNA-1 and PR-

lncRNA-10 contribute to an induction of apoptosis and cell cycle arrest via the p53 signaling 

pathway (Ji et al., 2003; Guo et al., 2010; Lin et al., 2007; Tano et al., 2010; Sánchez et al., 
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2014).  Another lncRNA named RoR interacts with the heterogeneous nuclear 

ribonucleoprotein I (hnRNP I) through binding of hnRNP I to a 28-base RoR motifs, which 

enables to suppress the expression of p53 in response to ultraviolet C (UVC). As a result, RoR 

reduced the p53-mediated apoptosis in MCF-7 cells and G2/M arrest in HCT-116 WT cells 

(A. Zhang et al., 2013). 

 

Table 3. A list of experimentally characterized cancer-related lncRNAs  

 LncRNA Expression Cancer type Function Reference 

Proliferation LncRNA152  

lncRNA67 

Up-regulated breast cancer growth-promoting (Sun et al., 2015) 

PACT-1 Up-regulated Prostate cancer growth-promoting (Prensner et al., 

2011) 

APTR  Colon cancer, glioblastoma growth-promoting (Negishi et al., 

2014) 

H19 Up-regulated  Hepatocellular, bladder, lung 

cancer, breast and gastric 

cancer 

growth-promoting, metatasis 

inducer 

(Matouk et al., 2007; 

Barsyte-Lovejoy, 
2006; Berteaux et 

al., 2005; F. Yang et 

al., 2012; Luo et al., 
2013; Matouk et al., 

2014)   

Sox2ot  Up-regulated Lung squamous cell 

carcinomas (SCCs) 

growth-promoting  (Hou et al., 2014) 

GAS5 Down-regulated  Leukemia,non-small-cell lung 

cancer,bladder cancer 

growth-inhibiting, apoptosis 

inducer 

(Braconi et al., 

2010; Coccia et al., 

1992; Shi et al., 
2013; Z. Liu et al., 

2013) 

HULC Up-regulated  Liver,gastric cancer miR-372 sponge, growth-

promoting, metasasis inducer 

and apoptosis inhibitor 

(Wang et al., 2010; 
Zhao et al., 2014) 

PCNA-AS1 Up-regulated Hepatocellular carcinoma 

 

growth-promoting 
(Yuan et al.,2014) 

PRNCR1 Up-regulated Prostate cancer growth-promoting (Chung et al., 2011) 

ANRIL Up-regulated Prostate cancer, acute 

lymphoblastic leukemia, 

glioma, melanoma 

growth-promoting (Yap et al., 

2010;Cunnington et 

al., 2010; Iacobucci 

et al., 2011) 

T-UCR uc.338 Up-regulated  Liver cancer  growth-promoting (Braconi et al., 

2010) 

SPRY4-IT1 Up-regulated  Melanoma growth-promoting, apoptosis 

inhibitor 

(Khaitan et al., 

2011) 

PlncRNA-1  Up-regulated Esophageal squamous 

carcinoma 

growth-promoting (Wang et al., 2014) 

HNF1A-AS1 Up-regulated Oesophageal adenocarcinoma growth-promoting ,metasasis 

inducer 

(X. Yang et al., 

2014) 
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ncRAN Up-regulated Bladder cancer growth-promoting ,metasasis 

inducer 

(Zhu et al., 2011) 

GHET1  Up-regulated  Gastric and bladder cancer growth-promoting (F. Yang et al., 

2014; Li et al., 2014) 

LOC285194  

BC040587 

Down-regulated Osteosarcoma,colon cancer growth-inhibiting (Q. Liu et al., 2013; 
Pasic et al., 2010) 

PTENP1  PTENP1 locus is selectively 

lost in human cancer 

growth-inhibiting (Poliseno et al., 

2010) 

MEG3 Down-regulated  Brain cancer, non-small cell 

lung cancer 

growth-inhibiting (Zhang et al., 
2003;Lu et al., 2013) 

HOTTIP Up-regulated Pancreatic cancer growth-promoting, metasasis 

inducer, apoptosis inhibitor 

(Cheng et al., 2015) 

PCAN-R1  

PCAN-R2 

Up-regulated Prostate cancer growth-promoting (Du et al., 2013) 

 ARLTS1 Down-regulated Lung cancer growth-inhibiting (Yendamuri et al., 

2007) 

Metastasis  MALAT1 Up-regulated  lung cancer, uterine 

endometrial stromal sarcoma, 

cervical cancer and 

hepatocellular carcinoma 

Metatasis inducer (Ji et al., 2003; Guo 

et al., 2010; Lin et 

al., 2007; Tano et 

al., 2010).  

 HOTAIR  Up-regulated  Breast cancer,liver cancer 

  

Metastasis inducer (Gupta et al., 2010; 
Geng et al., 2011) 

 BANCR Up-regulated  Melanoma Metatasis inducer (Flockhart et al., 

2012) 

 UCA1 Up-regulated Tongue squamous cell 

carcinoma 

Metasasis inducer  (Fang et al., 2014) 

 lncRNA-EBIC Up-regulated Cervical cancer Metasasis inducer  (N. Sun et al., 2014) 

 AOC4P Down-regulated Hepatocellular carcinoma Metasasis inhibitor (Wang et al., 2015) 

 ZEB1-AS1 Up-regulated  Hepatocellular carcinoma Metasasis inducer (Li et al., 2015) 

 lnc-ATB Up-regulated Breast cancer Metasasis inducer (Shi et al., 2015) 

 HNF1A-AS1 Up-regulated  Lung cancer Metasasis inducer (Wu et al., 2015) 

 DRAIC/PCAT29 Down-regulated Prostate cancer Metasasis inhibitor (Sakurai et al., 2015) 

 HOTTIP and 

HOXA13 

Up-regulated Hepatocellular carcinoma Metasasis inducer (Quagliata et al., 

2014) 

 treRNA Up-regulated Breast cancer Metasasis inducer (Gumireddy et al., 
2013) 

 ESCCAL-1 Up-regulated Esophageal squamous cell 

carcinoma (ESCC) 

Metasasis inducer, apoptosis 

inhibitor 

(Hao et al., 2015) 

 NKILA Down-regulated Breast cancer Metasasis inhibitor (Liu et al., 2015) 

Apoptosis  PCGEM1 Up-regulated Prostate cancer Apoptosis inhibitor, growth-

promoting 

(Petrovics et al., 

2004) 

CUDR Up-regulated Human squamous cancer Apoptosis inhibitor 

(Jin et al., 

2005;Khosravi-Far 
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and Esposti, 2004). 

 PANDAR Down-regulated non-small cell lung carcinoma 

(NSCLC) 

Apoptosis inducer 
(Han et al., 2015) 

INXS Down-regulated Kidney cancer Apoptosis inducer 
(DeOcesano-Pereira 

et al., 2014) 

TUG1 Up-regulated Hepatocellular carcinoma 

(HCC) 

Apoptosis inducer, growth-

promoting 

(M. Huang et al., 

2015) 

uc.73a Up-regulated Leukemia, colorectal cancer Apoptosis inducer (Calin et al., 2007) 

uc002mbe.2  Liver cancer Apoptosis inducer (H. Yang et al., 

2013) 

LincRNA-p21  Lung cancer, sarcoma, 

lymphoma 

Apoptosis inducer (Huarte et al., 2010)( 

 AK126698 Down-regulated  Non-small-cell lung cancer Apoptosis inducer (Y. Yang et al., 

2013) 

Cell cycle MA-linc1   osteosarcoma Cell cycle G1 phase arrest, 

apoptosis inducer 

((Bida et al., 2015) 

 gadd7  CHO-K1 cells (Hamster 

Chinese ovary) 

G1/S checkpoint, growth-

inhibiting 

(Liu et al., 2012) 

 PR-lncRNA-1 and 

PR-lncRNA-10 

Down-regulated Colorectal cancer Cell cycle G1 phase arrest, 

apoptosis inducer, growth-

inhibiting  

(Sánchez et al., 

2014) 

 lincRNA-RoR 

(RoR) 

 Breast cancer, colon cancer   Inhibition of G2/M arrest, 

apoptosis inhibitor, 

(A. Zhang et al., 
2013) 

 Linc00152 Up-regulated Gastric cancer Cell cycle G1 phase arrest, 

growth-promoting , apoptosis 

inhibitor 

(Zhao et al., 2015) 

 lncRNA-HEIH Up-regulated Hepatocellular carcinoma 

(HCC) 

G0/G1cell cycle arrest (Yang et al., 2011) 

Others DD3(PCA3) Up-regulated Prostate canccer A diagnostic marker (Kok et al., 2002) 

 XIST Lost in 

female breast, 

ovarian, and 

cervical cancer 

cell lines 

Breast, ovarian, and cervical 

cancer 

X chromosome silencing (McHugh et al., 

2015) 

 

3.6 Development of computational tools for functional lncRNA prediction 

Through gene regulation or other mechanisms, lncRNAs are emerging as important players in 

the cancer paradigm, acting as proto-oncogenes, tumor suppressor genes and drivers of 

metastatic transformation. Even though an increasing number of lncRNAs have been 

functionally characterized, the biological functions of the majority of lncRNAs remain 

unknown. Therefore, bioinformatics tools are urgently needed to prioritize cancer-related 

lncRNAs. Currently, more and more studies are being developed to explore methods to 

identify either cancer or disease-related lncRNAs. Table4 summarizes the computational 
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approaches used to predict functional lncRNAs. 

3.6.1  Recurrent Somatic Copy-number Alteration-based Approach  

Du et al. selected lncRNAs in recurrent somatic copy-number alterations (SCNAs) (gain) 

regions as candidate drivers, such as PCAN-R1 or PCAN-R2 which are the two most 

significantly differentially expressed lncRNAs between tumor and normal prostate tissues. 

Knockdown of them resulted in substantial decrease in both cell growth and colony formation 

in the androgen-dependent prostate cancer cell line LNCaP, suggesting they have tumor-

promoting functions in prostate cancer (Du et al., 2013).  

3.6.2  Coexpression with Coding Genes Approach 

Guttman et al. have developed a coexpression based method to functionally characterize 

lncRNAs. They ranked protein coding genes according to their correlation coefficients of 

expression levels with each lncRNA, and then performed a Gene Set Enrichment Analysis 

(GSEA) on high ranking genes to identify function enrichment for each lncRNA. Application 

of this coexpression method to 1,600 lncRNAs found that lncRNAs are actively implicated in 

a wide range of functional processes, including cell proliferation, development and embryonic 

stem cell pluripotency(Guttman et al., 2009).  

Liao et al constructed a coding–non-coding gene co-expression (CNC) network which 

employs two different strategies to predict functions of lncRNAs, including the network hub-

based method and network modules. The hub-based method determines lncRNA functions 

based on gene ontology (GO) enrichment analysis of surrounding protein coding genes. The 

authors use a Markov cluster algorithm (MCL) to search for coexpressed functional modules 

composing either non-coding or coding genes in the CNC network, and then assign functions 

to lncRNAs based on module functions. Application of the CNC method to 340 mouse 

lncRNAs found these lncRNAs have functions involving organ or tissue development, 

cellular transport, and metabolic processes (Liao et al., 2011). Liu et al developed a 

computational framework to prioritize disease-associated lncRNAs based on lncRNA, gene 

expression profile and gene-disease association data. They obtained expression profiles of 

21626 lincRNAs generated by RNA-sequencing of 22 human tissues or cell types (Karolchik, 

2004), 17080 genes from RNA sequencing of 73 human tissue or cell types (Su et al., 2004) 

and gene-disease associations from the DisGeNET database (Bauer-Mehren, 2010). They first 
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associated lncRNAs to tissue-specific diseases by combining high tissue specificity scores and 

high expression levels of lncRNAs in that tissue. Secondly, for non-tissue-specific lncRNAs, 

Spearman rank correlation coefficients were calculated between protein coding genes and 

each lncRNA to obtain a set of co-expressed genes. The hypergeometric distribution test for 

the set of genes co-expressed with each lncRNA was then used to predict potential lncRNA-

associated diseases (Liu et al., 2014). Implementation of this computational framework 

enabled identification of 2272 potential lincRNA-associated diseases and novel lncRNAs for 

human diseases. 

3.6.3  Network-based systems 

Long non-coding RNA global function predictor („lnc-GFP‟) integrates gene expression and 

protein interaction data to functionally annotate lncRNAs. The authors use a bi-colored 

network in which vertices represent protein-coding genes and lncRNAs, and edges stand for 

co-expression and protein interaction. lnc-GFP uses a global propagation algorithm in which 

„function flow‟ from known function annotations for genes propagates on the network 

iteratively.  The association score measuring how likely an unknown lncRNA can be 

functionally annotated combines the iterative propagation of the „function flow‟ on the 

network and the previous knowledge score calculated between an unknown lncRNA and a 

given functional category (Guo et al., 2013). The authors claimed lnc-GFP is able to 

functionally characterize 94.9% of lncRNAs in their bi-colored network. 

3.6.4  Interaction with Proteins and miRNAs Approach 

Interaction of lncRNAs with proteins and miRNAs is a major path towards understanding the 

function of lncRNAs. Several methods have been developed to explore interactive properties 

of lncRNAs with proteins and miRNAs and indirectly predict their functions. Bellucci  et al 

have developed catRAPID to assess the interaction propensities of lncRNAs with proteins 

using their physicochemical properties, including secondary structure, hydrogen bonding and 

van der Waals. The catRAPID method was trained on 592 protein-RNA pairs from the Protein 

Data Bank (Bellucci et al., 2011). catRAPID has a prediction accuracy of 0.89, which is 

validated with experimentally supported protein associations annotated in the NPInter dataset 

(Wu, 2006). Jeggari et al have developed the program miRcode which aims to predict putative 

target sites of microRNAs in 10,419  lncRNAs. The miRcode program is constructed mainly 

based on two criteria, complementarity to seed regions, the 2rd-8th bases from the 5′-end of 

http://bioinformatics.oxfordjournals.org.gate1.inist.fr/search?author1=Ashwini+Jeggari&sortspec=date&submit=Submit
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the microRNA, and evolutionary conservation, as assessed from 46 vertebrate genome 

alignments (Jeggari et al., 2012). 
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Table 4. Summary of computational approaches for predicting disease or cancer related 

functional lncRNAs  

 

Even though much has been done to predict functional lncRNAs based on different algorithms, 

the computational prediction of lncRNA function is still in its infancy. Current methods 

mainly rely on the coexpression or interactive relation of lncRNAs with other molecules, such 

as protein coding genes, miRNAs, and proteins. However, they do not take into account the 

importance of cancer mutations to the formation of lncRNA functions.  

 

Recently, Gonzalez-Perez‟ et al developed a novel approach, Oncodrive-fm, to identify cancer 

driver candidates. The rationale of Oncodrive-fm is cancer drivers tend to accumulate somatic 

mutations with high functional impact and any bias towards enrichment of variants with high 

functional impact indicates positive selection for the driver genes in the tumor. Oncodrive-fm 

(Gonzalez-Perez and Lopez-Bigas, 2012) applies SIFT, Polyphen2 and MutationAssessor to 

score the functional impact (FI) of each coding mutation, and calculates the average FI scores 

for the variants observed in each gene across all cancer samples. Cancer drivers display a shift 

toward accumulation of highly deleterious somatic mutations, therefore, they tend to have a 

high average FI score. For each gene and scoring system, Oncodrive-fm employs a 

Name Based on Cancer-
specific  

References 

Recurrent SCNAs -based Approach Recurrent somatic copy-number alterations (SCNAs) and 
differential expression of lncRNAs 

Yes 

(Du et al., 2013) 

Guttman et al ‘s coexpression based 
method 

Coexpression with coding genes and Gene Set Enrichment 
Analysis (GSEA) 

No 

(Guttman et 

al.,2009) 

a CNC network Coexpression with coding genes, gene ontology (GO) 
enrichment analysis and  

No 

(Liao et al., 2011)⁠ 

Liu et al‘s coexpression based method Coexpression with coding genes and  gene-disease associations No 

(Liu et al., 2014) 

Zhao et al ‘s co-expression network Coding-noncoding gene co-expression network Yes (Zhao,2014) 

Hao et al ‘s co-expression network Coding-noncoding gene co-expression network and differential 
expression 

Yes (Hao et al., 2015;. 
Hao,2015) 

lnc-GFP Gene expression and protein interaction and a global 
propagation algorithm 

No (Guo,2013) 

catRAPID RNA and protein interaction No (Bellucci,2011) 

miRcode Complementarity to seed regions and evolutionary conservation No (Jeggari,2012) 

 

http://www.ncbi.nlm.nih.gov.gate1.inist.fr/pubmed/?term=Hao%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=25885227
http://www.ncbi.nlm.nih.gov.gate1.inist.fr/pubmed/?term=Hao%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=25885227
http://www.nature.com.gate1.inist.fr/nmeth/journal/v8/n6/full/nmeth.1611.html#auth-1
http://bioinformatics.oxfordjournals.org.gate1.inist.fr/search?author1=Ashwini+Jeggari&sortspec=date&submit=Submit
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permutation test which randomly samples the same number of observed variants within the 

gene 1 million times and computes the average FI score for each sample, three P values are 

generated by comparing the average FI scores with a null distribution consisting of the 

1million average FI scores. Application of Oncodrive-fm to 135 glioblastoma multiforme 

samples identified that most of recurrently mutated genes such as TP53, PTEN, NF1, PIK3R1, 

ERBB2, EGFR, RB1, PIK3CA, also show a high ranking function impact bias.  
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4.1 Introduction 

In the light of the pioneering study by Gonzalez-Perez (Gonzalez-Perez and Lopez-Bigas, 

2012), we hypothesized that cancer-associated lncRNAs would also display such a bias 

towards variants with functional impact. We implemented five different scoring systems to 

measure the function effect of non-coding variants: CADD, funSeq2, GWAVA, our SNP and 

SOM scores (Chapter 2). We applied a permutation- based model to prioritize cancer-

associated lncRNAs. For each lncRNA, the permutation-based model randomly takes the 

same number of observed variants and calculates the average functional scores 1 million times 

to form a null distribution and produces a P value via comparing the observed functional score 

to the null distribution. To further validate our hypothesis and the permutation model, we 

implemented the permutation model on 61 cancer-related lncRNAs and 547 cancer genes 

using cancer mutation data of liver cancer, lung cancer, CLL and melanoma. We observed 

experimentally validated cancer driver genes showed significantly higher positive selection 

and FI bias than non-cancer genes. Applying our permutation test to lncRNAs using five 

different scoring systems enabled us to prioritize hundreds of cancer-related lncRNA 

candidates for further experimental validation. We found our candidates show enrichment for 

evolutionary conserved regions and disease-causing variants. Furthermore, overall our 

approach opens the way to the detection of cancer-driving lncRNAs and non-coding elements 

of genes on a genome wide scale.  

  

4.2 Results 

4.2.1 Validation of the permutation-based model on cancer genes and lncRNAs 

We applied five different scoring systems to measure the function effect of non-coding 

variants: CADD, funSeq2, GWAVA, our SNP and SOM scores (Chapter 2). For each 

lncRNA and scoring system, the  permutation-based model randomly takes the same number 

of observed variants and calculates the average functional scores 1 million times to form a 

null distribution, a raw P value was generated via comparing the observed functional score to 

the null distribution. The raw P values from five independent permutation tests were adjusted 

using False Discovery Rate (FDR) (Yekutieli and Benjamini, 1999). Finally, we use z 

transform (Whitlock, 2005) to combine five different P values to form an uniform P value.  In 

http://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values/
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order to validate our permutation-based model, we applied it to 547 cancer-related protein-

coding genes annotated in the COSMIC database and 61 cancer-related lncRNAs manually 

curated from recent publications (Table S20). Cancer-related protein-coding genes have 

significantly lower adjusted positive selection P values than total genes (P value < 0.05 in all 

cases, Wilcoxon rank sum test, Figure 10A, Figure S8A , S9A, S10A, Table S7). Similarly, 

the adjusted P values of cancer-related lncRNAs are significantly lower than those of total 

lncRNAs (P value <0.05 in all cases except for the CADD model in CLL, Wilcoxon rank sum 

test, Figure 10B, Figure S8B , S9B, S10B, Table S7).  

We obtained the top 10 recurrently mutated genes (RMGs) for hepatocellular carcinoma, lung 

adenocarcinoma, Chronic lymphocytic leukaemia-small lymphocytic lymphoma and 

Malignant melanoma from the COSMIC database and analyzed their adjusted P values  

(Table 5, Table S8, S9, S10). If we consider for instance lung cancer, 40%, 100%, 60%, 80%, 

80% and 100% of RMGs show statistically significant results (adjusted P value < 0.05) using 

the CADD, funSeq2 , GWAVA, SNP, SOM and combined model respectively. SETBP1 was 

positively selected by all six models with significant statistical evidence (adjusted P value < 

0.05). EGFR, TP53, STK11, NF1, ZNF521 and GRIN2A had adjusted P values below 0.05 

by any five models (Table 5). Next, we ranked the adjusted P values computed by each model 

and found 10%, 80%, 10%, 50%, 50% and 80% of RMGs have the first ranking in CADD, 

funSeq2 , GWAVA, SNP, SOM and combined models respectively. The P values of ZNF521 

were ranked first by all but the SOM model. Three adjusted P values of funSeq2, SNP, SOM 

and combined models were ranked first for STK11, SETBP1, NF1 and SMARCA4. These 

results support the hypothesis that cancer-associated genes and lncRNAs display a bias 

towards accumulation of non-coding variants with high functional impact.  
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Figure 10. Distribution of adjusted P values for different gene classes. A. The comparison of 

adjusted P values computed by all permutation models between cancer-related genes and all genes; B. 

The comparison of adjusted P values computed by all permutation models between cancer-related 

lncRNAs and all lncRNAs. 

  



77 

 

Table 5. Adjusted P values and P value rankings of top 10 recurrently mutated genes in lung 

cancer 

RMG          CADD     FunSeq2               GWAVA           SNP          SOM Combined 

 Adjusted Pvalue (Ranking of P value) 

EGFR 0,6691(3569) 0,0000(1) 0,0003(16) 0,0024(567) 0(1) 0(1) 

TP53 0,0058(63) 0,0000(3) 0,7783(2741) 0,0095(1468) 0,0000(6) 0,0000(13) 

KRAS 0,4988(2318) 0,0067(1018) 0,1030(1326) 0,1159(3819) 0,0577(3379) 0,0000(1351) 

STK11 0,4653(2124) 0,0000(1) 0,0257(781) 0,0000(1) 0(1) 0(1) 

SETBP1 0,0043(49) 0,0000(1) 0,0001(5) 0,0000(1) 0(1) 0(1) 

SMARCA4 0,6627(3521) 0,0000(1) 0,5659(2400) 0,0000(1) 0(1) 0(1) 

NF1 0,0225(183) 0,0000(1) 0,6368(2514) 0,0000(1) 0(1) 0(1) 

CDKN2A 0,4503(2025) 0,0000(1) 0,0000(2) 1,0000(7507) 0,0017(824) 0(1) 

ZNF521 0,0000(1) 0,0000(1) 0,0000(1) 0,0000(1) 0,4097(4769) 0(1)  

GRIN2A 0,5151(2439) 0,0000(1) 0,0001(6) 0,0086(1383) 0,0024(994) 0(1) 

Number of 

unique P 

values 6123 7508 3168 7507 5175           
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4.2.2 General characteristics of driver candidates 

We ran the permutation-based method to prioritize cancer-related PC genes and lncRNAs, 

using 1,613,031 non-coding variants from the same lung cancer data as in Chapter 2. We 

define driver candidates as PC genes and lncRNAs whose adjusted P values are less than 0.05. 

Overall, 180 to 10403 lncRNAs and 595 to 12797 PC genes meet the selection criteria, 

depending on the scoring system used (Table 6, Table S11, S12, S13). Overall, the CADD 

model detected fewer driver candidates and their size was longer compared to driver 

candidates identified by other models. In contrast, the SOM model determined the highest 

number of candidates with the smallest length (Table 6, Table S11, S12, S13). Lastly, We 

found 122 gene and 14 lncRNA driver candidates common to five models in lung cancer, 103 

gene and 12 lncRNA driver candidates in liver cancer, 1 gene and 0 lncRNA driver candidates 

in CLL and 305 gene and 18 lncRNA driver candidates in melanoma (Figure11, Figure S11, 

S12, S13 and Table S14, S15, S16). There was higher overlap among candidates from the 5 

models as compared to random sampled ones (P=0 except lncRNA driver candidates for CLL, 

Table S17).  
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Table 6. General characteristics of PC gene and lncRNA driver candidates positively selected 

by each model in lung cancer 

Tool Adjusted P values < 0.05  

Number of genes (Mb) 

Average length (bp) 

 PCgene LncRNA PCgene LncRNA 

CADD 595(167) 180(17) 281945 96180 

funSeq2 6779(679) 918(34) 100302 37671 

GWAVA 2144(228) 1482(46) 103931 31476 

SNP 7674(914) 976(52) 119191 54252 

SOM 12797(1018) 10403(249) 79601 24001 

Combined 11417(887) 5716(162) 77693 28443 

Total Genes 20300(1266) 38263(456) 62412 11917 

 

Figure 11. Comparison of driver candidates detected by five independent permutation models.  A. 

Overlap of the driver gene candidates predicted by the 5 permutation models (CADD, FunSeq2, 

GWAVA, SNP and SOM); B. Overlap of lncRNA driver candidates predicted by the 5 permutation 

models (CADD, FunSeq2, GWAVA, SNP and SOM). 

4.2.3 LncRNA driver candidates harboring enriched conserved elements 
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The evolutionary conservation of lncRNAs has been an ongoing subject of research, with 

several studies showing that lncRNAs are modestly conserved (Derrien, 2012, Necsulea, 2014, 

Guttman, 2010). We obtained evolutionarily conserved regions from the UCSC 46 

mammalian genome alignment (Phastcons score >177) and mapped them onto lncRNA driver 

candidates. We performed a permutation test that randomly sampled regions with the same 

size as lncRNA drivers 1000 times from the whole lncRNAs set and computed the enrichment 

of conserved regions for each case. A P-value was produced by comparing observed 

enrichment of conserved elements with those of 1000 simulated samples.  

 

 

Figure 12. Enrichment for evolutionarily conserved regions within different lncRNA driver candidates 

in the four cancer types. For each feature, enrichment is computed as an odds ratio as explained in 

Methods. Values for each cancer are represented by a dot of distinct color. The blue dashed line 

denotes the baseline of enrichment of conserved regions in lncRNAs  
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Overall, the lncRNA predicted as positively selected by all models except SOM harbored 

higher enrichment for conserved regions than the random samples (P value <0.05 in all cases, 

Figure 12, Table S18). Owing to the large number of lncRNAs prioritized by the SOM model, 

these candidates showed similar level of enrichment for conserved regions as random samples 

(P value > 0.05 in three cases, a permutation test, Figure12, Table S18). For instance TTN-

AS1 and HOXA-AS2, two lncRNAs which are positively selected by all models in lung 

cancer and show 41.05% and 42.54% of coverage of conserved regions respectively. In 

addition, these two lncRNAs are intensively overlapping with non-coding functional features, 

such as Dnase I hypersensitive clusters, H3K27ac, suggesting their function importance in 

lung cancer (Figure 13 - 14).  

 

Figure 13. Graphical display of functional features in lncRNA TTN-AS1 from Genome browser  

Mammal cons: conserved regions, Dnase Clusters: Dnase I hypersensitive clusters, Layered H3K27ac: 

H3K27ac 
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Figure 14. Graphical display of functional features in lncRNA HOXA-A2 from Genome browser 

(same legend as in Fig 13).  

 

4.2.4 LncRNA driver candidates enriched for disease-associated variants 

In order to further assess the functional importance of our lncRNA driver candidates, we 

analyzed their enrichment for HGMD and Clivariant disease-associated non-coding variants 

with the same permutation test as we did for the conservation analysis. Overall, we found 

11/24 cases showing significantly increased enrichment for HGMD disease mutations 

compared to the random samples (P value <0.05, a permutation test, Figure15A, Table S19).  

Moreover, significant enrichment for Clivariant disease-associated variants was observed for 

17/24 lncRNA driver candidates (P value <0.05, a permutation test, Figure15B, Table S19). 

These results suggest that, to a large extent, our lncRNA driver candidates are enriched for 

non-coding disease-causing variants and further support their functional importance in the 

non-coding cancer genome. 
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 Figure 15. Enrichment for HGMD (A) and Clivariant (B) disease-causing variants within different 

lncRNA driver candidates in the four cancer types. For each feature, enrichment is computed as an 

odds ratio as explained in Methods. Values for each cancer are represented by a dot of distinct color. 

The blue dashed line denotes the baseline of enrichment of disease-causing variants in lncRNAs. The 

asterisks represent lncRNA driver candidates don‟t have HGMD and Clivariant disease-causing 

variants, their enrichment values are calculated as log10 (0.4202) and log10 (0.9524) respectively.  

 

4.2.5 Expression analysis of lncRNAs in lung cancer 

To further reduce the scope of screened cancer lncRNAs, we obtained RNA-seq data of 

normal lung and 85 cancer samples from Ju et al. (2012). 2208 lncRNAs were determined by 

DESeq2 Release (3.0) (Love et al., 2014) as differentially expressed between tumor and 

normal lung tissues with cutoffs of false discovery rate (FDR) ≤10e-4 and absolute fold 

change ≥2 (Figure 16, see methods). Among differentially expressed lncRNAs, 5 CADD, 45 

funSeq2, 93 GWAVA, 54 SNP, 605 SOM and 335 combining drivers are differentially 

expressed between cancer and normal lung tissues. This list of lncRNAs will be potential 

driver candidates for experimental validation in lung cancer cells.   

 

https://www.google.com.hk/search?safe=strict&biw=1301&bih=612&q=asterisk&spell=1&sa=X&ved=0CBcQBSgAahUKEwjO87XI-sbIAhUL1RoKHQTbD5c
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Figure 16. Heatmap showing normalized abundance of 2208 lncRNAs differentially expressed 

between lung cancer and normal lung tissues.  
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4.3 Discussion 

The prioritization of cancer-associated lncRNAs is always a challenging and difficult task, as  

the mechanisms by which lncRNAs function are diverse and complex, ranging from gene  

transcription regulation, interaction with microRNAs or proteins to alternative splicing   

(Gutschner,2012). Over the past decade, researchers preferentially focused on lncRNAs which  

showed strong expression correlation with surrounding protein coding genes or interactions   

with proteins or miRNAs. A handful of computational tools have been developed to clarify  

lncRNA functions. However, little attention has been paid to the functional impact of non- 

coding mutations within lncRNAs and their importance to interpret cancer-associated  

lncRNAs. In this study, we tried to resolve this problem based on a permutation-based model  

which screens potential cancer-associated lncRNAs displaying a shift towards accumulation  

of non-coding variants with high functional impact. We applied the model to both cancer  

genes and lncRNAs using their non-coding somatic mutations in 4 cancer types, the results  

obtained showed that both cancer genes and lncRNAs have significantly lower adjusted P  

values than generic protein coding genes and lncRNAs in all cases, strongly supporting the  

validity of our model. As demonstrated in the Gonzalez-Perez et al 's study, the coding  

regions of cancer drivers preferentially accumulate mutations with high functional impact, an  

important concept that we carry out further in this study by showing this functional bias is  

absolutely applicable to non-coding regions such as UTRs or introns. Most importantly,   

despite their lack of coding potential, cancer lncRNAs exhibit the same trend. 

 

In addition, we carried out a permutation model on the whole lncRNA dataset and obtained   

hundreds of cancer-related lncRNA candidates. Further characterization of these lncRNAs  

showed they are a subset of lncRNAs enriched for evolutionary conserved regions and  

disease-associated variants, highlighting their functional importance. We listed a handful of   

lncRNA candidates, such as TTN-AS1, HOXB-AS3 and HOXA-AS2. Not only do these  

lncRNAs contain high coverage of evolutionarily conserved regions, but also they are  

intensively overlapping with non-coding functional features, such as Dnase I hypersensitive   

clusters and open histone marks. The lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2),  

located between the HOXA3 and HOXA4 genes, has been functionally characterized in  
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leukemia (Zhao et al., 2013) and gastric cancer (Xie et al., 2015). The knockdown of its   

expression reduced cell viability and induced cell apoptosis in NB4 promyelocytic leukemia  

cells possibly through TNF-related apoptosis-inducing ligand (TRAIL) pathway (Zhao et al.,  

2013). Moreover, HOXA-AS2 is aberrantly expressed and plays an oncogene role in gastric  

cancer, knockdown of HOXA-AS2 markedly suppressed gastric cells growth by initiating G1  

arrest and enhancing apoptosis in part through inhibiting P21, PLK3, and DDIT3 expression   

(Xie et al., 2015). However, further experimental validation is still needed for other cancer  

lncRNA candidates to characterize their functional roles in cancer. 

There still a lack of efficient bioinformatics tools to prioritize cancer-related lncRNAs on a 

whole genome scale. A contribution of this work is that it might greatly reduce the scope of 

screening cancer lncRNAs for oncology researchers, simply based on the mutation pattern and 

function information of non-coding mutations within lncRNAs. However, many concerns still 

exist, for example, the SOM scores are computed on a 1-Kb scale, the other 4 scoring systems  

have a nucleotide-level scoring precision, which leads to a large number of positively selected 

lncRNAs by SOM model and greatly increases false positive rate, therefore an improvement 

is still needed with respect to increasing the prediction accuracy of the SOM model and 

reducing the number of false positively selected lncRNAs. Alternatively, we could find a way 

to combine the SNP and SOM scores to form an uniform score and then use it in the 

permutation test. These will be our objectives in the future. 

 

4.4 Methods and materials 

4.4.1 Cancer mutation, disease-causing variants, lncRNAs and cancer gene and lncRNA 

data 

Somatic variants were collected from whole genome sequencing of paired cancer and normal 

tissues, obtained from two studies: 2,011,261 variants from 25 melanoma patients (Berger et 

al., 2012), 1,845,976 from 24 lung adenocarcinoma patients, 881,136 from 88 liver cancer 

patients and 59,993 from 28 chronic lymphocytic leukemia (CLL) patients (Lawrence et al., 

2013). Variants described as "substitution" or "indel" were both collected and are referred to 

collectively as mutations in the text.   

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23649634
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xie%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26384350
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhao%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23649634
http://www.ncbi.nlm.nih.gov/pubmed/?term=Xie%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26384350
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Curated disease-related variants were obtained from the Clivariant (Version 2014/03/03,  

55,689 variants) (Landrum et al., 2014) and HGMD (Version 2014/04/14, 166,768 variants)  

databases (Stenson et al., 2009). After exclusion of coding positions we used 13,108 HGMD  

and 6045 Clivariant mutations. 

LncRNA annotation mainly comes from three different sources, Gencode v7 (Harrow J, 2012), 

Human Body Map lincRNAs (large intergenic non coding RNAs) and TUCPs (transcripts of 

uncertain coding potential) generated from 4 billion RNA-Seq reads across 24 tissues and cell 

types (Pj et al., 2012) as well as Refseq annotation (Pruitt et al., 2007). In total, there are 

38263 lncRNA annotations (456.01 Mb) collected from these three different databases. Lists 

of cancer genes were obtained as follows: cancer-related lncRNAs are 61 mammalian long 

non-coding transcripts identified from our literature search as experimentally associated with 

different cancer types (Table S20); protein-coding cancer genes are from the Cancer Gene 

census, available from COSMIC release V71 (http://cancer.sanger.ac.uk/cancergenome/ 

projects/census/) (Forbes et al., 2011a).  

4.4.2 Scoring non-coding variants 

In total, non-coding variants were scored using CADD (http://cadd.gs.washington.edu/), 

FunSeq2 (http://funseq2.gersteinlab.org/), GWAVA 

(https://www.sanger.ac.uk/sanger/StatGen_ Gwava) , SNP model and SOM models 

respectively for each cancer type, all the parameters were set to default. Of note, we used the 

“region” classifier of GWAVA which is trained using regulatory variants of HGMD and a 

random selection of SNVs from across the genome to measure function effect of non-coding 

variants. 

4.4.3 The permutation-based model 

The permutation-based model relies on the hypothesis that cancer-related lncRNAs display a 

bias toward accumulation of non-coding variants with high function impact. Take lncRNA A 

and lncRNA B as examples (Figure S14A): lncRNA A is more enriched with non-coding 

variants with high function impact as compared to lncRNA B, therefore, lncRNA A is more 

likely to be non_coding driver in cancer. The permutation-based model consists of two main 

steps. First, all non-coding variants are scored with CADD, FunSeq2, GWAVA, SNP model 

http://cancer.sanger.ac.uk/cancergenome/
http://funseq2.gersteinlab.org/
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and SOM model of lung cancer respectively, then the average scores are computed for each 

lncRNA based on the observed variants in that specific lncRNA; the second step is a 

permutation test to examine which lncRNAs exhibit a function impact bias. As for each 

lncRNA and scoring system, it randomly takes the same number of observed variants with 

replacement from all the non-coding variants found in all sequenced samples and computes 

the corresponding average score, this random sampling is repeated 1,000,000 times, 

generating a null distribution of average scores for each lncRNA and scoring system (Figure 

S14B). Empirical Pvalues represent the fraction of sampling average scores greater than the 

observed ones, however, as for the SOM score, P values refer to the fraction of sampling 

average scores less than the observed ones. The P values from five independent permutation 

tests are adjusted using False Discovery Rate (FDR) (Yekutieli and Benjamini, 1999). In 

addition, we also run the permutation-based model on PCgenes using their non-coding 

somatic mutations. Driver candidates are defined as PCgenes and lncRNAs whose adjusted P 

values are less than 0.05. Finally, we use a z transform (Whitlock, 2005) to combine five 

different P values of each PCgene and lncRNA to form an uniform P value.  

4.4.4 RNA-seq data processing and expression analyses of lncRNAs 

161 RNA-seq data including 76 normal lung samples and 85 cancer samples were obtained 

from Ju et al‟s study (Ju et al., 2012). Reads were mapped to the  hg19 genome using Star 

aligner (Dobin et al., 2013). Read counts were computed with bedtools v2.22.1 for each 

lncRNA (Quinlan and Hall, 2010); DESeq2 Release (3.0) (Love et al., 2014) was used to 

identify differentially expressed transcripts between tumor and normal pairs with cutoffs of 

false discovery rate (FDR)(Yekutieli and Benjamini, 1999) ≤10e-4 and absolute fold change 

≥2. 

4.4.5 Enrichment analysis 

Enrichment for conserved regions or HGMD and Clivariant disease-associated variants within 

different driver candidate classes (Fig 12 and 15) was measured as the odds ratio: 

               
(
  

  
)

(
  

  
)
 

Where Hf = size of conserved regions or the number of HGMD and Clivariant disease-

http://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values/


88 

 

associated variants within driver candidate, Sf = total size of driver candidate, Hg = size of 

conserved regions or the number of HGMD and Clivariant disease-associated variants in 

whole lncRNAs, Sg = total size of lncRNAs. The significance of enrichment or depletion was 

evaluated using a permutation test as follows: a set of positions of same size as the driver 

candidate (ie. 17.31 Mb) was randomly sampled from the whole lncRNAs set 1000 times, and 

in each random sample, enrichments were calculated for each driver candidate class. 

Enrichment for HGMD and Clivariant disease-associated variants was evaluated similarly. 

4.4.6 Statistical analyses 

Data were presented as mean, differences between different groups were drawn with the 

Fisher exact test and Wilcoxon rank sum test in R, P < 0.05 was regarded statistically 

significant and the null hypothesis was rejected.  
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5.1 General conclusion 

Functional annotation of cancer mutations have been a consistent focus of cancer genomics 

studies. In the past, researchers preferentially focused on mutations in the coding fraction of 

human genome. Ample bioinformatics tools have been developed to distinguish cancer-driver 

mutations from neutral ones, such as SIFT, polyphen2 and MutationAssessor. As descried in 

detail in the introduction, these tools can be classified as three main groups, empirical, 

machine learning and hybrid approaches. The rationales of these programs lie in a variety of 

properties ranging from evolutionary conservation, physicochemical constraints, protein 

structures and curation of disease-associated mutations. Based on function information of 

coding mutations, the downstream work is searching for cancer driver genes that are critical to 

cancer formation and progression. The most common approach (ie MutSigCV and MuSiC) 

detects recurrently mutated genes as cancer-driving. However, as cancer drivers can also 

occur at a low frequency, new programs independent of cancer mutation frequency have been 

developed (ie Oncodrive-fm, OncodriveCLUST and InVEx).  

In recent years, as an increasing number of variants have been identified as disease-associated 

in the non-coding genome, interpreting non-coding cancer mutations has become an urgent 

task in cancer genomics studies. The completion of large projects, such as ENCODE, has 

made functional interpretation of cancer variants achievable. Multiple programs have been 

built based on this functional information. As described in the introduction part, these tools 

can be divided into empirical approach such as RegulomeDB, funSeq2 and machine learning 

model such as CAAD and GWAVA.  In Chapter 2 of this study, in order to functionally 

interpret non-coding mutations in cancer and eventually identify new cancer drivers, we took 

into account the dual selection forces acting on the tumor genome: (1) population and 

evolutionary constraints acting at germline level and (2) constraints resulting from the 

accelerated mutation background of the cancer tissue. To achieve this, we have developed two 

independent models, refered to as SNP and SOM models. Given a combination of features, 

the SNP model was constructed to predict expected fraction of rare SNPs using random forest 

model, the second SOM model was built to compute the expected mutation density for each 

1-Mb window with an array of feature types ranging from replication time, expression level, 

histone modifications to regulatory elements. We applied our two models to score these 
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disease-associated variants and a set of random control SNPs. Our results showed that the 

SNP and SOM models are capable of distinguishing Clinvariant and HGMD disease-causing 

mutations from neutral ones. In addition, we intersected high SNP scoring and low SOM 

scoring regions and obtained 56 Mb functionally important regions (referred to as 

hypomutated regions). This small portion of the human genome shows highest enrichment of 

disease-causing variants among intergenic, low SOM scoring, high SNP scoring and 

hypomutated regions, further supporting low somatic mutation areas and high ratio of rare 

SNPs regions are functionally relevant and can be used as a screen for prioritizing cancer-

related non-coding mutations. This study demonstrated that purifying selection as measured 

by fraction of rare SNPs and mutation density constraints are informative for the evaluation of 

functional impact of cancer mutations in the non-coding genome. Moreover, combination of 

the SNP and SOM models would fasciliate the prediction of disease mutations in the non-

coding genome. 

 

Another important part in my thesis (Chapter 4) was the application of the scoring tools 

CADD, funSeq2, GWAVA and our SNP and SOM scoring systems to prioritize cancer-

associated lncRNAs with a permutation-based algorithm. We hypothesized that accumulation 

of non-coding mutations with high function impact indicates a positive selection in cancer 

genome and cancer-related lncRNAs show a bias toward enrichment of high functional non-

coding variants. We implemented the permutation model on 61 cancer-related lncRNAs and 

452 cancer genes using cancer mutation data of liver cancer, lung cancer, CLL and melanoma. 

We observed that both cancer lncRNAs and genes had lower average adjusted P values than 

total lncRNAs and genes. These results suggest that cancer-related lncRNAs and genes are 

enriched for non-coding variants with high functional impact. Applying the permutation test 

to lncRNAs with five different scoring systems enabled us to prioritize hundreds to thousands 

cancer-related lncRNA candidates. We would recommend to combine the adjusted P value 

and ranking of the P value to prioritize potential cancer-related lncRNA candidates. 

Furthermore, if we focus on those lncRNA candidates which are positively selected by all five 

scoring systems, the number of cancer-related lncRNAs candidates could be reduced to 11 in 

lung cancer, 11 in liver cancer, 0 in CLL and 18 in melanoma. These lncRNA candidates can 

be used for experimental validation. For example, we could study their function role in cancer 
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cells via over-expression or silencing.  

Taken together, we have successfully developed two models, SNP and SOM, to measure the 

functional impact of non-coding variants in the cancer genome. Injecting these scoring 

systems to a permutation-based model enables us to prioritize cancer-associated lncRNAs on 

a genome scale. The completion of our project paves the way for further characterization of 

unknown cancer mutations and lncRNAs in the non-coding cancer genome.  

 

5.2 Perspectives 

5.2.1 Refinement of the SOM and SNP models 

Due to the sparse number of cancer mutations, the SOM model was built based on a 1-Mb 

window and the SOM scores were computed and averaged on a 1-Kb scale.  As more and 

more whole genome sequencing studies are ongoing, there will be an explosive increase in the 

number of publically available cancer mutations, which should enable us to construct the 

SOM model with 1-Kb window and should remarkably improves the prediction accuracy. In 

addition, an increased prediction accuracy of the SOM score will greatly reduce the number of 

cancer-related lncRNA candidates positively selected by the SOM model and diminish the 

false positive rate. Lastly, as an accumulating number of new functional features are produced, 

adding these features to the SNP and SOM models and retraining the two models will further 

refine their prediction capability. 

 

5.2.2 Integrating SNP and SOM scores to form a combined score  

As shown above, there exists a remarkable difference between the SNP and SOM scoring 

systems with respect to score range and the importance of predicting disease-causing variants. 

As we did not find a satisfying way to integrate the two scores, an important work for us will 

be to come up with a way to combine scores and apply the combined score to the 

permutation-based model, which should reduce the number of cancer-related lncRNA 

candidates prioritized by the SOM model and its negative impact on the combined P value in 

the future. 

5.2.3 Functional analysis of cancer lncRNA candidates  



93 

 

We have identified a list of cancer-specific lncRNAs as prioritized by our permutation-based 

model. There is plenty of future work on this basis, such as analyzing where these lncRNAs 

are expressed, what expression levels they have in cancers and what relations they have with 

surrounding genes. Most importantly, in order to clarify the functional potential of the 

positively selected lncRNAs, experimental validation is needed. Ectopic expression using 

lentiviral vector and siRNA-mediated knockdown should be conducted in cancer cells. Their 

effect on cellular proliferation, apoptosis and metastasis should be examined through MTT, 

flow cytometry, transwell and wound-healing assays, respectively. This work will be 

performed with our collaborators in Institut Curie.  

5.2.4 Setting up an user-friendly website  

The objective of our project was to develop a scoring system for measuring the function 

impact of non-coding variants and provide a program to screen the ncRNA transcriptome for 

potential cancer-associated lncRNAs based on somatic mutations. These goals have been in 

part achieved, but an important future work will be to construct a user-friendly interface, to 

enable submission of somatic mutation data and obtain their SNP and SOM scores. Moreover, 

users may also upload mutation data generated by whole genome sequencing of a cohort of 

cancer samples and obtain a list of potential cancer-related lncRNAs for further experimental 

characterization.  

  



94 

 

 

 

 

 

 

 

Chapter 6 - 

Appendix 

  



95 

 

6.1 Supplementary Figures 

 

 

Figure S1.  Construction of the Somatic Mutation (SOM) model for lung cancer.  A. Relative density 

of somatic mutations from whole genome sequences of 24 lung cancer, associated to different genome 

features (see Methods for feature details). Mutation density is normalized so that the whole genome 

average has a mutation density of 1. PCgene: protein coding gene; CDS: coding sequence;  Exon.P , 

Intron.P, Exon.L,Intron.L are exon and intron of protein coding gene and lncRNA respectively; CR: 

conserved region; DNase: DNase I hypersensitive site; ECS: evolutionarily conserved structure;  

ncExon: non-coding exon; PCgene.HE, LncRNA.HE, PCgene.LE and LncRNA.LE are high expressed 

and low expressed protein coding gene and lncRNA; PCgene.early, LncRNA.early, PCgene.late and 

LncRNA.late are early and late replicated protein coding gene and lncRNA; cTFBS: conserved 



96 

 

transcription factor binding site; RR H,RR L,GC H,GC L,DNA.met H and DNA.met L are 1-Kb 

windows with high recombination rate (> 4.0), low recombination rate (< 0.5), high GC content 

(GC % > 50%), low GC content (GC%<30%), high DNA methylation (average value > 0.7245) and 

low DNA methylation (average value < 0.4062) respectively; Red and blue dotted lines: base lines 

from CDS and intergenic regions; B: Feature importance as measured by IncNodePurity. We only 

show here features that passed feature selection. C. Distribution of SOM scores for neutral SNPs and 

for clinical variants from two disease-causing variants databases Clivariant and HGMD. Neutral SNPs 

here are the SNPs with allele frequency higher than 0.01 from the 1000 Genome project, SOM scores 

were predicted by the random forest model and divided by the number of patients. D. Correlation of 

SOM score with densities of disease-causing variants. The purple dotted line shows cutoff used for 

defining low SOM score in lung cancer. 
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Figure S2. Construction of the Somatic Mutation (SOM) model for CLL. See Fig S1 for legend.  

 

 

Figure S3. Construction of the Somatic Mutation (SOM) model for melanoma. See Fig S1 for legend. 
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Figure S4. Enrichment for low SOM score (A) or high SOM score (B) positions within genome 

features in the four cancer types. Low (high) SOM score regions are defined as the 300M positions of 

the genome with lowest (highest) SOM score. For each feature, enrichment is computed as an odds 

ratio as explained in Methods. Shaded grey areas show enrichment ranges obtained from 1000 random 

permutations of the 300M positions (see Methods). Values for each cancer are represented by a dot of 

distinct color. The asterisks represent genome feature (Cent & Tel regions) doesn‟t overlap with low 

SOM regions, their enrichment values are calculated as log10 (0.2).  

https://www.google.com.hk/search?safe=strict&biw=1301&bih=612&q=asterisk&spell=1&sa=X&ved=0CBcQBSgAahUKEwjO87XI-sbIAhUL1RoKHQTbD5c
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Figure S5. Relationship between SNP and SOM scores in lung cancer (A), CLL (B) and melanoma 

(C). Grey dots: 1 million random genome positions; cyan contour: HGMD disease-causing variant 

positions; red contour: Clivariant positions. The top and right curves show marginal distributions of 

SNP scores (top) and SOM scores (right) for random genome positions, HGMD and Clivariant 

disease-causing variants. SNP score cutoff=0.63 (100Mb above cutoff), SOM score cutoffs = 20.63, 

0.59 and 25.76 variants/Mb, defining areas below cutoff of  1186.45 Mb, 1236.51Mb and 1170.98Mb 

in lung cancer, CLL and melanoma, respectively. Hypomutated regions (bottom, right area) defined by 
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both cutoffs correspond to ~56Mb in each cancer type. 

 

Figure S6.  Effect of combining high SNP scores and low SOM scores in 4 cancer types (A: liver 

cancer, B: lung cancer, C: CLL, D: melanoma). For each chromosome, the size of intergenic, high 

SNP, low SOM and high SNP + low SOM regions, was calculated and numbers of disease-associated 

variants either from HGMD or Clivariant were counted. The boxplot shows densities of disease-
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associated variants in each type of region, chromosome by chromosome. Cutoffs for defining high 

SNP and low SOM are the same as in Fig 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. Venn diagrams showing the distribution of genes covered by hypomutated (A) or 

hypermutated (B) positions, across the 4 cancer types. In each cancer type the 100 genes with the 

highest coverage by hyper/hypomutated regions is shown.  
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Figure S8. Distribution of adjusted P values for different gene classes in liver cancer. A. The 

comparison of adjusted P values computed by all permutation models between cancer-related genes 

and all genes; B. The comparison of adjusted P values computed by all permutation models between 

cancer-related lncRNAs and all lncRNAs. 
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Figure S9. Distribution of adjusted P values for different gene classes in CLL. See S8 for legend. 
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Figure S10. Distribution of adjusted P values for different gene classes in melanoma. See S8 for 

legend.  
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Figure S11. The comparison of driver candidates positively selected by five scoring tools in liver 

canccer. A. The overlap of the driver gene candidates predicted by the 5 permutation models (CADD, 

FunSeq2, GWAVA, SNP and SOM). B. The overlap of the lncRNA driver candidates predicted by the 

5 permutation models (CADD, FunSeq2, GWAVA, SNP and SOM) 

Figure S12. The comparison of driver candidates positively selected by five permutation models in 

CLL. See S11  for legend. 
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Figure S13. The comparison of driver candidates positively selected by five permutation models in 

melanoma. See S11 for legend. 
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Figure S14. Detection of lncRNAs under positive selection in cancer 

A. LncRNA A shows a higher enrichment of non-coding mutations with high function impact as 

compared to LncRNA B, indicating LncRNA A is under positive selection in cancer 

B. The graphical display of permutation-based model for identifying lncRNAs harboring non-coding 

mutations with high function impact. 
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6.2 Supplemental Tables 

 

Table S1. Uniform genomic features used in figures and SNP or SOM models.  

Name Description 
Extent 

(Mb) 
Reference Model 

UTR mRNA untranslated region 47.23 

Gencode 

v7(Harrow et al., 
2012) 

SNP+SOM 

CDS Coding sequence 35.34 Gencode SOM 

Exon.P Exon of protein coding gene 91.15 Gencode - 

Intron.P Intron of protein coding gene 1236.20 Gencode SNP+SOM 

PCgene Protein coding gene 1266.97 Gencode SOM 

lncRNA Long non-coding RNA 337.12 Gencode SOM 

Exon.L Exon of lncRNA 16.44 Gencode - 

Intron.L Intron of lncRNA 324.18 Gencode SNP+SOM 

ncExon Non coding exon 30.61 Gencode SNP+SOM 

Intergenic Intergenic region 1568.79 Gencode SOM 

5‟SS 5‟splicing site (10bp from the splicing site) 2.95 Gencode - 

3‟SS 3‟splicing site (50bp from the splicing site) 13.03 Gencode - 

GC content Fraction of G or C nucleotide per 1Mb window - 
UCSC (Karolchik 

et al., 2014) 
SOM 

GC H 1-kb windows with high GC content (GC% > 50) 308.86 UCSC - 

GC L 1-kb windows with low GC content (GC% < 30) 104.89 UCSC - 

Promoter Promoter 84.91 Gencode SNP+SOM 

Enhancer Enhancer 12.03 
FANTOM5(Ander

sson et al., 2014) 
SNP 

TFBS Transcription factor binding site 947 
ENCODE(Rosenbl
oom et al., 2013) 

SNP 

cTFBS Conserved transcription factor binding site 59.23 UCSC SNP+SOM 

Sensitive Khurana et al.'s region of high rate of rare SNP 9.21 
(Khurana et al., 

2013) 
SOM 

CR Conserved region (PhastCons 46 way)  150.98 UCSC SNP+SOM 

ECS Evolutionarily conserved RNA structure  199.68 
(Smith et al., 

2013) 
SNP+SOM 

DNase I DNase I hypersensitive site (any cell type) 388.42 ENCODE SNP+SOM 

HE Highly expressed gene/RNA (RPKM>20) in either cell line 635.78 ENCODE SNP 

LE Low expressed gene/RNA (RPKM<0.25) in either cell line 1002.47 ENCODE SNP 

ER Early replicated gene/RNA (EL ratio >1) in all cell lines  418.68 ENCODE SNP 

Recombination rate Recombination rate averaged per 1Mb window - 

HAPMAP 

(Altshuler et al., 
2010) 

SOM 

RR H 1-kb windows with high recombination rate (> 4.0) 117.55 HAPMAP SNP 

RR L 1-kb windows with low recombination rate (< 0.5) 1034.26 HAPMAP SNP 

GC G or C base for each nucleotide - UCSC SNP 
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Table S2. Cell-specific genomic features used in figures and SOM models. 

 

  Extent (Mb) of feature 

Name Description 
Hepg2 

(liver) 

A549 

(lung) 

K562 

(CLL) 

Nhdfad 

(melanoma) 

H3k4me1 H3k4me1 384.12 420.25 325.92 378.14 

H3k4me2 H3k4m2 174.18 203.29 135.32 228.49 

H3k4me3 H3k4me3 106.66 152.19 147.31 192.53 

H3k9ac H3k9ac 158.06 157.44 185.10 251.10 

H3k9me3 H3k9me3 559.11 942.29 924.53 834.50 

H3k27ac H3k27ac 130.21 174.38 146.05 353.92 

H3k27me3 H3k27me3 767.11 861.39 641.29 695.29 

H3k36me3 H3k36me3 511.89 705.49 499.00 611.44 

H3k79me2 H3k79me2 314.30 430.61 269.26 354.03 

H3K20me1 H3K20me1 605.41 753.80 772.78 499.01 

H2az H2az 886.95 503.30 341.67 454.64 

CTCF CTCF 77.77 118.31 127.48 98.23 

Ezh2 Ezh2 698.22 - 871.32 435.09 

TFBS 
Transcription factor 
binding site 

286.38 164.61 348.46 65.69 

Expression level 
RPKM per 1Mb 

window 
- - - - 

PCgene.HE 
Highly expressed 
protein coding gene 

(RPKM >20) 

93.08 72.36 101.08 79.21 

PCgene.LE 

 

Low expressed 
protein coding gene 

(RPKM <0.25) 

422.35 222.52 457.92 311.64 

LncRNA.HE 
Highly expressed 
lncRNA (RPKM >20) 

21.34 23.70 22.49 22.08 

LncRNA.LE 

Low expressed 

lncRNA (RPKM 

<0.25) 

165.66 91.92 176.40 125.67 

  Hepg2 Imr90 K562 Bg02 

Replication time 
Replication timing 
ratio per 1Mb window  

- - - - 

LncRNA.early 

Early replicated 

lncRNA (E/L 
ratio >1) 

818.79 733.59 758.60 790.78 

LncRNA.late 

Late replicated 

lncRNA (E/L ratio 
<1) 

441.3 520.16 497.73 471.30 

PCgene.late 

Late replicated 

protein coding gene 

(E/L ratio >1) 

140.59 142.04 132.01 125.22 

PCgene.early 

Early replicated 

protein coding gene 

(E/L ratio <1) 

182.39 175.87 188.71 198.26 
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Liver hepatocelluar 

carcinoma 

Lung 

adenocarcinoma 

Acute myeloid 

leukemia 

Skin cutaneous 

melanoma 

DNA.met H 

Average DNA 

methylation value < 
0.4062 

58.22 63.96 99.81 68.14 

DNA.met L 

Average DNA 

methylation value > 

0.7245 

58.22 57.26 51.85 52.38 

 

Table S3. Significance of disease mutation enrichment in high-SNP+low SOM regions, for 4 

cancer types.   

 
Cancer type Region Region size (nt) HGMD Clivariant P value (1) 

- Intergenic 1568807082 913 213  

- High SNP 98163148 6784 1767  

Liver Low SOM 1255672000 9719 4572  

 Low SOM+ high 

SNP 

56198409 5079 1393 <2.2e-16 

Lung Low SOM 1186445000 9714 4596  

 Low SOM+ high 

SNP 

56160584 5012 1391 <2.2e-16 

CLL Low SOM 1236512000 9580 4660  

 Low SOM+ high 

SNP 

56267795 4773 1332 <2.2e-16 

Melanoma Low SOM 1170977000 9265 4384  

 Low SOM+ high 

SNP 

56148149 4892 1322 <2.2e-16 

 

(1) P values are computed as follows: disease-associated variants from the HGMD or 

Clivariant database are counted in high SNP or low SOM vs. Low SOM+high SNP regions, 

along with region sizes, forming a 2x2 matrix for Chi-square test in each cancer type. P values 

here are statistical significance for both HGMD and Clivariant databases. 

 

Table S4. Significance of over-enrichment for hypomutated regions within cancer vs non-

cancer genes. Enrichment for hypomutated regions was computed as explained in Methods for 

each independent gene. Then for each gene class (protein-coding, lncRNA, miRNA), a 

Wilcoxon rank sum test was performed to compare enrichment factors in cancer genes (see 
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Methods for gene lists) and in all genes in the class.  

 

Gene type Cancer type P-value 

Protein-

coding 

(non-coding 

parts) Liver  1.44E-12 

 Lung  5.05E-14 

 CLL 5.22E-15 

 Melanoma <2.20E-16 

lncRNA Liver  0.838 

 Lung  0.158 

 CLL 0.705 

 Melanoma 0.903 

miRNA Liver  0.007 

 Lung  0.003 

 CLL 0.011 

 Melanoma 0.004 

 

Table S5: Biological process GO-term biases (1) in the 100 protein coding genes with highest 

coverage by hypermutated (high SNP-high SOM) positions (liver cancer and CLL). 

 

GO biological process complete # # expected Fold 

Enrichment 

+/-  P value (2) 

Liver cancer 

Unclassified 4272 17 18.88 .90 - 0.00E00 

transcription from RNA polymerase II promoter 781 19 3.45 > 5 + 1.04E-05 

gene expression 3825 41 16.91 2.43 + 5.55E-05 

cellular nitrogen compound metabolic process 5112 48 22.60 2.12 + 9.12E-05 

nucleobase-containing compound metabolic 

process 

4372 43 19.32 2.23 + 2.58E-04 

RNA metabolic process 3373 37 14.91 2.48 + 2.61E-04 



112 

 

nucleic acid metabolic process 3874 40 17.12 2.34 + 2.85E-04 

cellular nitrogen compound biosynthetic process 3407 37 15.06 2.46 + 3.42E-04 

nucleobase-containing compound biosynthetic 

process 

2962 34 13.09 2.60 + 4.21E-04 

RNA biosynthetic process 2680 32 11.85 2.70 + 5.01E-04 

transcription, DNA-templated 2560 31 11.32 2.74 + 6.41E-04 

nucleic acid-templated transcription 2561 31 11.32 2.74 + 6.47E-04 

heterocycle biosynthetic process 3043 34 13.45 2.53 + 8.19E-04 

aromatic compound biosynthetic process 3044 34 13.45 2.53 + 8.25E-04 

nitrogen compound metabolic process 5475 48 24.20 1.98 + 9.12E-04 

Chronic lymphocytic leukemia (CLL) 

positive regulation of transcription from RNA 

polymerase II promoter 

987 17 4.46 3.81 + 1.52E-02 

 

Table S6. Mammalian long non-coding RNAs experimentally shown to be associated with 

different cancer types from a literature search.   

 

Chromosome Start End LncRNA Size(bp) Reference 

chr9 21994789 22029563 ANRIL 503 (Kotake et al., 2011) 

chr1 173833038 173837125 GAS5 632 (M. Sun et al., 2014) 

chr12 54356095 54362515 HOTAIR 2337 (Gupta et al., 2010) 

chr7 27135712 27139585 HOTAIRM1 483 (X. Zhang et al., 2014) 

chr6 8652441 8654459 HULC 500 (Panzitt et al., 2007) 

chr3 116428634 116435887 LOC285194 2105 (Qian Liu et al., 2013) 

chr3 50137035 50138421 LUST 1386 (Rintala-Maki and 

Sutherland, 2009) 

chr6 136265388 136282959 NTT 17572 (Delgado André and De 

Lucca, 2008) 

chr9 79379353 79402465 PCA3 3735 (Gezer et al., 2015) 

chr8 128025398 128033259 PCAT1 1992 (Prensner et al., 2011) 

chr2 193614570 193641625 PCGEM1 1590 (L. Yang et al., 2013) 

chr9 33673501 33677418 PTENP1 3932 (C.-L. Chen et al., 2015) 
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chr3 181417385 181433076 Sox2ot 2970 (Askarian-Amiri et al., 

2014) 

chr5 139929652 139937678 SRA 1965 (Leygue et al., 1999) 

chr22 31365633 31375381 TUG1 7105 (E. Zhang et al., 2014) 

chr19 15939756 15946230 UCA1 1413 (C. Yang et al., 2012) 

chrX 73040494 73072588 XIST 19271 (McHugh et al., 2015) 

chr8 128092118 128104845 PRNCR1 12756 (L. Yang et al., 2013) 

chr14 101292444 101327363 MEG3 1855 (Benetatos et al., 2011) 

chr11 2016405 2019065 H19 2308 (Fellig et al., 2005) 

chr11 65265232 65273940 MALAT1 8708 (Ji et al., 2003) 

chr14 61283510 61285560 HIF1A-AS2 2050 (W. Chen et al., 2015) 

chr17 23111183 23134213 Anti-NOS2A 23 (Korneev et al., 2008) 

chr7 148315552 148317449 GHET1 1898 (F. Yang et al., 2014) 

chr20 5048232 5048615 PCNA-AS1 384 (Yuan et al., 2014) 

 

Table S7. Significance of adjusted CADD, combined, funSeq2, GWAVA, SNP and SOM P 

values between cancer genes and protein coding genes, cancer lncRNAs and lncRNAs for 4 

cancer types.   

 

Comparison Cancer type CADD Combined FunSeq2 GWAVA SNP SOM 

Cancer 

gene VS 

PCgene 

Liver cancer 1,77E-039 4,91E-034 1,70E-089 3,69E-030 2,61E-029 1,05E-012 

Lung cancer 2,23E-044 1,43E-027 4,97E-094 2,60E-035 1,50E-022 6,98E-011 

   CLL 
3,17E-015 3,46E-016 9,09E-034 6,14E-021 1,21E-008 5,46E-005 

Melanoma 
4,62E-044 3,48E-032 7,73E-092 6,70E-032 7,16E-025 2,95E-013 

Cancer 

lncRNA 

VS 

lncRNA 

Liver cancer 1,07E-004 1,97E-008 4,74E-037 1,84E-019 2,21E-042 2,13E-003 

Lung cancer 1,91E-004 8,84E-006 2,17E-019 3,66E-013 1,20E-007 4,83E-004 

   CLL 
1,34E-001 3,34E-004 3,05E-049 1,72E-016 1,37E-030 4,69E-004 

Melanoma 
4,40E-002 5,09E-004 5,39E-004 1,29E-003 2,38E-019 2,30E-002 

P values are computed as follows: adjusted CADD, combined, funSeq2, GWAVA, SNP and 

SOM P values were compared with Wilcoxon rank sum test between cancer gene and protein 

coding genes, cancer lncRNAs and lncRNAs successively for each cancer type. 
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Table S8. Adjusted P values and P value rankings of top 10 recurrently mutated genes in liver 

cancer 

RMG CADD FunSeq2 GWAVA SNP SOM Combined 

 Adjusted P value (Ranking of P value) 

TP53 0,0000(1) 0,0000(1) 1,0000(2007) 0,0013(257) 0,0000(1) 0,0000(1) 

CTNNB1 0,6944(2748) 0,0000(1) 0,1135(857) 0,0001(10) 0,0001(40) 0,0000(1) 

TERT 1,0000(4953) 0,0786(2714) 1,0000(2007) 0,7601(6498) 0,0000(1) 0,0000(1) 

ARID1A 0,0644(229) 0,0000(1) 0,0000(1) 0,0000(1) 0,0000(1) 0,0000(1) 

HNF1A 0,6144(2150) 0,0070(884) 0,6690(1635) 0,2201(4272) 0,0000(3) 0,0000(1) 

AXIN1 0,3937(1106) 0,0435(2140) 1,0000(2007) 0,0144(1497) 0,0001(24) 0,0031(1866) 

ARID2 0,6259(2239) 0,1830(3668) 0,0000(1) 0,0000(1) 0,0000(1) 0,0000(1) 

IL6ST 0,7880(3435) 0,0000(2) 0,0520(637) 0,0097(1178) 0,0000(8) 0,0000(1) 

CDKN2A 0,6653(2543) 0,0001(13) 0,0778(739) 0,4164(5333) 0,3600(4717) 0,0005(1) 

ATM 0,3417(940) 0,0000(1) 0,0005(15) 0,0006(123) 0,0001(27) 0,0000(1) 

Number of 

unique P 

values 4953 6632 2007 7300 5406 7496 
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Table S9. Adjusted P values and P value rankings of top 10 recurrently mutated genes in CLL 

RMG CADD FunSeq2 GWAVA SNP SOM Combined 

 Adjusted Pvalue (Ranking of P value) 

MED12 0,9064(466) 0,2413(553) 0,3710(73) 0,0489(138) 0,0784(1038) 0,0049(457) 

POT1 0,7223(180) 0,1020(308) 1,0000(190) 0,3209(667) 0,5267(1825) 0,2263(1343) 

BCL11B 0,6437(112) 0,1570(421) 0,1986(37) 0,1191(313) 0,0927(1133) 0,0004(220) 

EGFR 0,8260(335) 0,0023(26) 0,8373(155) 0,4373(837) 0,0265(551) 0,0033(400) 

BCOR 0,7224(181) 0,2678(584) 0,8505(157) 0,0702(198) 0,1142(1231) 0,0100(558) 

ROS1 0,7468(207) 0,2714(591) 1,0000(190) 0,5062(923) 0,1796(1468) 0,2328(1358) 

Number of 

unique P 

values 627 1118 190 1279 2003 1974 

 

Table S10. Adjusted P values and P value rankings of top 10 recurrently mutated genes in 

melanoma 

RMG CADD FunSeq2 GWAVA SNP SOM Combined 

 Adjusted Pvalue (Ranking of P value) 

BRAF 0,0539(641) 0,0000(1) 0,0055(286) 0,0000(1) 0,0000(1) 0,0000(1) 

TP53 0,2796(2179) 0,0001(25) 0,3713(1756) 0,0022(584) 0,0000(1) 0,0000(1) 

ARID2 0,2101(1635) 0,0805(3337) 0,0003(17) 0,0000(1) 0,0000(1) 0,0000(1) 

ARID1A 0,0281(415) 0,0000(1) 0,0001(3) 0,0000(1) 0,0000(1) 0,0000(1) 

MAP2K1 0,5142(4061) 0,0000(1) 0,7810(2301) 0,0000(1) 0,0000(1) 0,0000(1) 

FGFR3 0,3749(2864) 0,0000(2) 1,0000(2575) 1,0000(7616) 0,0001(30) 0,0038(3224) 

BCL9 0,2414(1862) 0,1017(3587) 0,4900(1925) 0,0000(1) 0,0001(23) 0,0000(1) 

NCOA1 0,3326(2568) 0,0000(1) 0,0006(34) 0,0000(1) 0,0000(1) 0,0000(1) 

PAX3 0,0216(348) 0,0000(1) 1,0000(2575) 0,0038(846) 0,0049(1288) 0,0000(1) 

TPM3 0,1027(986) 0,0000(1) 0,0012(82) 0,0000(1) 0,0000(1) 0,0000(1) 

Number of 

unique P 

values 7752 7409 2575 7616 6482 7218 
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Table S11.the driver candidates of PCgenes and lncRNAs positively selected by each model 

in liver cancer 

Tool Adjusted P values < 0.05  

Number of genes (Mb) 

Average length (bp) 

 PCgene LncRNA PCgene LncRNA 

CADD 366(103) 234(19) 283679 83942 

funSeq2 5237(589) 395(21) 112575 55171 

GWAVA 1903(214) 401(23) 112642 58917 

SNP 6133(780) 237(22) 127337 95182 

SOM 10958(880) 6605(187) 80390 28412 

Combined 9739(867) 2821(113) 89113 40170 

Total Genes 20300(1266) 38263(456) 62412 11917 

 

Table S12.the driver candidates of PCgenes and lncRNAs positively selected by each model 

in CLL 

Tool Adjusted P values < 0.05  

Number of genes (Mb) 

Average length (bp) 

 PCgene LncRNA PCgene LncRNA 

CADD 5(1) 3(0.54) 210741 180329 

funSeq2 312(130) 24(1) 416712 47786 

GWAVA 12(4) 2(0.14) 337753 69675 

SNP 268(115) 3(0.33) 432029 109058 

SOM 1418(330) 148(22) 232755 154102 

Combined 1144(307) 94(113) 268402 106835 

Total Genes 20300(1266) 38263(456) 62412 11917 
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Table S13.the driver candidates of PCgenes and lncRNAs positively selected by each model 

in melanoma 

Tool Adjusted P values < 0.05  

Number of genes (Mb) 

Average length (bp) 

 PCgene LncRNA PCgene LncRNA 

CADD 1173(238) 501(34) 202996 69450 

funSeq2 7539(701) 984(35) 93109 35929 

GWAVA 2491(282) 2137(59) 96088 27912 

SNP 8404(942) 1000(52) 112206 52286 

SOM 11451(883) 9057(195) 77119 21606 

Combined 11322(852) 5066(129) 75323 25611 

Total Genes 20300(1266) 38263(456) 62412 11917 

Table S14.LncRNA driver candidates common to five permutation models in lung cancer  

Chrom

osome 

Start End LncRNA CADD FunSe

q2 

GWA

VA 

SNP SOM Combi

ned 

chr17 46667781 46683774 HOXB-AS3 0,0325 0,0001 0,0072 0,0093 0,0001 0,0000 

chr1 245003940 245018799 HNRNPU-AS1 0,0412 0,0012 0,0000 0,0000 0,0006 0,0000 

chr11 57479994 57586652 TMX2-CTNND1 0,0279 0,0000 0,0004 0,0000 0,0000 0,0000 

chr2 179385910 179639402 TTN-AS1 0,0000 0,0000 0,0000 0,0069 0,0000 0,0000 

chr2 144433734 144498863 RP11-434H14.1 0,0000 0,0000 0,0000 0,0000 0,0109 0,0000 

chr7 27147396 27173921 HOXA-AS2 0,0103 0,0000 0,0068 0,0120 0,0000 0,0000 

chr12 54747474 54860814 LOC102724050 0,0144 0,0000 0,0000 0,0006 0,0000 0,0000 

chr12 54747576 54860769 RP11-753H16.5 0,0144 0,0000 0,0000 0,0006 0,0000 0,0000 
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chr2 179246804 179541009 MIR548N 0,0000 0,0000 0,0000 0,0036 0,0000 0,0000 

chr2 144052990 144238358 AC096558.1 0,0000 0,0000 0,0000 0,0000 0,0060 0,0000 

chr2 144053155 144329674 RP11-570L15.2 0,0000 0,0000 0,0000 0,0000 0,0002 0,0000 

 

Table S15.LncRNA driver candidates common to five permutation models in liver cancer  

Chromo

some 

Start End LncRNA CADD FunSeq2 GWAVA SNP SOM Combin

ed 

chr17 37558046 37562486 CTB-131K11.1 0,0361 0,0208 0,0281 0,0335 0,0099 0,0000 

chr1 155996957 156132001 MIR7851 0,0099 0,0000 0,0058 0,0010 0,0000 0,0000 

chr11 57479994 57586652 TMX2-CTNND1 0,0160 0,0125 0,0111 0,0310 0,0000 0,0000 

chr20 39726969 39766643 RP1-1J6.2 0,0442 0,0000 0,0000 0,0000 0,0000 0,0000 

chr20 39726633 39766640 PLCG1-AS1 0,0442 0,0000 0,0000 0,0000 0,0000 0,0000 

chr3 114172440 114238979 RP11-197K3.1 0,0017 0,0000 0,0000 0,0002 0,0056 0,0000 

chr3 114172439 114238979 LOC101929754 0,0017 0,0000 0,0000 0,0002 0,0056 0,0000 

chr3 99273152 99717059 MIR548G 0,0043 0,0008 0,0000 0,0000 0,0000 0,0000 

chr12 11944823 12079107 RNU6-19P 0,0256 0,0060 0,0014 0,0002 0,0000 0,0000 

chr2 179246804 179541009 MIR548N 0,0000 0,0000 0,0000 0,0459 0,0000 0,0000 

chr15 60771377 60922836 RP11-219B17.1 0,0014 0,0000 0,0000 0,0004 0,0000 0,0000 
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Table S16.LncRNA driver candidates common to five permutation models in melanoma 

Chromo

some 

Start End LncRNA CADD FunSeq2 GWA

VA 

SNP SOM Combined 

chr17 56402811 56493127 BZRAP1-AS1 0,0049 0,0000 0,0000 0,0002 0,0000 0,0000 

chr12 54656399 54672847 RP11-968A15.2 0,0181 0,0001 0,0019 0,0073 0,0177 0,0000 

chr7 27147396 27173921 HOXA-AS2 0,0000 0,0000 0,0000 0,0005 0,0000 0,0000 

chr20 39726969 39766643 RP1-1J6.2 0,0486 0,0000 0,0083 0,0000 0,0002 0,0000 

chr20 39726633 39766640 PLCG1-AS1 0,0486 0,0000 0,0083 0,0000 0,0002 0,0000 

chr15 72571208 72644135 RP11-106M3.3 0,0438 0,0117 0,0101 0,0463 0,0000 0,0000 

chr12 54670415 54738867 RP11-968A15.8 0,0124 0,0000 0,0000 0,0000 0,0000 0,0000 

chr1 243866159 243904123 RP11-370K11.1 0,0057 0,0000 0,0009 0,0001 0,0000 0,0000 

chr1 33452676 33498070 RP1-117O3.2 0,0289 0,0005 0,0312 0,0000 0,0000 0,0000 

chr17 41622153 41687706 RP11-392O1.4 0,0248 0,0000 0,0017 0,0000 0,0000 0,0000 

chr12 54747474 54860814 LOC102724050 0,0000 0,0000 0,0002 0,0032 0,0000 0,0000 

chr12 54747576 54860769 RP11-753H16.5 0,0000 0,0000 0,0002 0,0032 0,0000 0,0000 

chr2 144052990 144238358 AC096558.1 0,0000 0,0000 0,0026 0,0001 0,0000 0,0000 

chr1 23346640 23414551 RP1-184J9.2 0,0005 0,0000 0,0000 0,0000 0,0000 0,0000 

chr14 30637040 30766245 TCONS_00022407 0,0000 0,0009 0,0088 0,0167 0,0000 0,0000 

chr2 179385910 179639402 TTN-AS1 0,0440 0,0000 0,0006 0,0271 0,0010 0,0000 

chr15 60771377 60922836 RP11-219B17.1 0,0000 0,0000 0,0000 0,0046 0,0072 0,0000 

chr3 99273152 99717059 MIR548G 0,0020 0,0000 0,0000 0,0000 0,0000 0,0000 
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Table S17. Significance of overlap of CAAD, funSeq2, GWAVA, SNP and SOM driver 

candidates in 4 cancer types.   

Gene Liver cancer Lung cancer CLL Melanoma 

PC gene 0 0 0 0 

LncRNA 0 0 1 0 

The significance of overlap was computed for CAAD, funSeq2, GWAVA, SNP and SOM 

driver candidates in 4 cancer types using a permutation test as follows: the same number of 

protein coding genes or lncRNAs with the driver candidates was randomly sampled from the 

whole lncRNAs set 1000 times, the overlap was calculated for five random sampling genes or 

lncRNAs. Then a P value was generated via comparing the observed overlap of driver 

candidates with 1000 sampling ones. 

 

Table S18. Significance of enrichment of conserved regions for CAAD, combined, funSeq2, 

GWAVA, SNP and SOM lncRNA driver candidates in 4 cancer types.   

 

Cancer type CADD Combined FunSeq2 GWAVA SNP SOM 

Liver cancer 0 0 0 0 0 0.911 

Lung cancer 0 0 0 0 0 0.057 

   CLL 0,07 0 0.003 0.446 0.009 0.08 

Melanoma 0 0 0 0 0 0.028 

The enrichment of conserved regions was calculated as described in the method. The 

significance of enrichment of conserved regions was computed using a permutation test as 

follows: a set of positions of same size as the driver candidate (ie. 17.31 Mb) was randomly 

sampled from the whole lncRNAs set 1000 times, and in each random sample, enrichment 

was calculated for each driver candidate class. Then a P value was generated via comparing 

the observed enrichment of conserved regions with 1000 sampling ones. 
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Table S19. Significance of enrichment of HGMD and Clivariant disease-causing variants for 

CADD, combined, funSeq2, GWAVA, SNP and SOM lncRNA driver candidates in 4 cancer 

types.   

 

Disease 

mutation 

Cancer type CADD Combined FunSeq2 GWAVA SNP SOM 

HGMD Liver cancer 0 0 0 0 0 0 

Lung cancer 0.434 0 0.011 0.483 0.035 0.201 

   CLL 0.14 1 0.062 0.114 0.26 0.154 

Melanoma 0.565 0.002 0 0.235 0.108 0.11 

Clivariant Liver cancer 0 0 0 0 0 0 

Lung cancer 0.032 0.025 0.007 0.023 0.014 0.338 

   CLL 0.211 0.151 0.418 0.016 0.148 0.962 

Melanoma 0.115 0.007 0 0.009 0.016 0 

The enrichment of HGMD and Clivariant disease-causing variants was calculated as 

described in the method, the significance of enrichment of disease variants was computed 

using the same permutation test as S11 (See S19 for method). 

 

Table S20. 61 Mammalian long non-coding RNAs experimentally shown to be associated 

with different cancer types from a literature search. 

Chromosome Start End LncRNA Length(bp) 

chr14 101292444 101327363 MEG3 34919 

chr11 2016405 2019065 H19 2660 

chr11 65265232 65273940 MALAT1 8708 

chr14 61283510 61285560 HIF1A-AS2 2050 

chr17 23111183 23134213 NOS2A 23030 
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chr7 148315552 148317449 GHET1 1897 

chr9 21994789 22029563 ANRIL 34774 

chr1 173833038 173837125 GAS5 4087 

chr12 54356095 54362515 HOTAIR 6420 

chr7 27135712 27139585 HOTAIRM1 3873 

chr6 8652441 8654459 HULC 2018 

chr3 50137035 50138421 LUST 1386 

chr6 136265388 136282959 NTT 17571 

chr2 192749845 192776899 PCGEM1 27054 

chr5 139929652 139937678 SRA 8026 

chr22 31365633 31375381 TUG1 9748 

chrX 73040494 73072588 XIST 32094 

chr15 69463026 69571440 RP11-279F6.1 108414 

chr8 126847055 127021014 PCAT1 173959 

chr7 77657660 77697345 APTR 39685 

chr3 180989770 181836880 SOX2-OT 847110 

chr20 5119586 5119969 PCNA-AS1 383 

chr8 127079874 127092595 PRNCR1 12721 

chr21 36131767 36175815 PlncRNA-1 44048 

chr17 76557764 76565348 ncRAN 7584 

chr3 116921431 116932238 BC040587 10807 

chr9 33673504 33677499 PTENP1 3995 

chr7 27198575 27207259 HOTTIP 8684 

chr1 202810954 202812156 PCAN-R1 1202 

chr9 94555069 94568127 PCAN-R2 13058 

chr9 69296681 69307056 BANCR 10375 

chr19 15828947 15836321 UCA1 7374 

chr16 74701404 74702604 lncRNA-EBIC 1200 

chr17 42865922 42874369 AOC4P 8447 
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chr10 31206278 31320447 ZEB1-AS1 114169 

chr14 19858667 19941024 lnc-ATB 82357 

chr12 120941728 120980965 HNF1A-AS1 39237 

chr15 69463026 69571440 DRAIC 108414 

chr15 69592129 69695750 PCAT29 103621 

chr7 27193503 27200106 HOXA13 6603 

chr20 50040707 50041629 treRNA 922 

chr8 75223404 75278461 ESCCAL-1 55057 

chr20 56285239 56287836 NKILA 2597 

chr19 15828947 15836321 CUDR 7374 

chr6 36673621 36675126 PANDAR 1505 

chr20 30309310 30311212 INXS 1902 

chr10 4769152 4772545 uc002mbe.2 3393 

chr1 168873143 169056243 AK126698 183100 

chr18 57054559 57072119 lincRNA-RoR 17560 

chr3 116921431 116932238 BC040587 10807 

chr9 33673504 33677499 PTENP1 3995 

chr7 27198575 27207259 HOTTIP 8684 

chr1 202810954 202812156 PCAN-R1 1202 

chr9 94555069 94568127 PCAN-R2 13058 

chr9 69296681 69307056 BANCR 10375 

chr19 15828947 15836321 UCA1 7374 

chr16 74701404 74702604 lncRNA-EBIC 1200 

chr17 42865922 42874369 AOC4P 8447 

chr10 31206278 31320447 ZEB1-AS1 114169 

chr14 19858667 19941024 lnc-ATB 82357 

chr12 120941728 120980965 HNF1A-AS1 39237 

chr15 69463026 69571440 DRAIC 108414 

chr15 69592129 69695750 PCAT29 103621 
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6.3 Supplemental Methods 

 

Random Forest Models 

The random forests (RF) approach involves producing multiple regression trees, which are 

then combined to make a single consensus prediction for a given observation (Breiman L, 

2001). We generated the SNP RF model and the SOM RF model using the randomForest R 

package. The RF model is composed of an aggregate collection of regression trees, each 

created from boostrapped training samples: each branch is selected from a random subset of a 

given number (denoted be mtry) of the input variables (data columns). The two main 

parameters are mtry and ntree, the number of trees in the forest.  We used the mean squared 

error (abbreviated MSE) as a measure of the prediction accuracy of the RF model. Two MSE 

error estimates are used in the validation procedure: the OOB error and the cross-validation 

error. An important feature of RFs is its use of out-of-bag (OOB) samples. An OOB sample is 

the set of observations which are not used for building the current tree, and can be used to 

estimate the MSE error; it can be shown that an OOB error estimate is almost identical to that 

obtained by K-fold cross-validation.  

RF models have the advantage of giving a summary of the importance of each variable based 

on the randomized variable selection process used to grow the RF. An estimation of variable 

importance is provided by IncNodePurity, which measures the decrease in tree node purity 

that results from all splits of a given variable over all trees. This measure can be used to rank 

variables by the strength of their relation to the response variable, for interpretation purposes.  

Model Calibration 

We first tuned the two parameters mtry and ntree of the RF method. Figure S15 shows the 

OOB error progression on 500 trees for random forests using different parameters mtry. MSE 

errors stabilize at about 400 trees, so we see that ntree=500 (default value) was sufficient to 

give good performance for the SNP model and for the SOM model.  

In a regression framework, the default value of mtry is [p/3] where p is the number of 

variables. The case mtry=p corresponds to bagging (or bootstrap aggregation), a general 

purpose procedure for reducing the variance of a statistical learning method. For the SNP data 
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we have p=18 and the default value of mtry is 5. Note that a larger mtry is best suited to the 

SNP and SOM data, according to the MSE error (Figure S15 and Figure S18). We considered 

the gain in MSE error was small enough for mtry greater than 7 for the SNP model and 10 for 

the liver cancer SOM model.   

Assessment of variable importance is performed using IncNodePurity, with larger values 

indicating more important variables. We examined the RF variable importances behavior for 

different values of ntree and mtry. In Figure S16 and Figure S19, a graphical representation of 

the variable importances is shown using 3 values of mtry (5 the default, 7 and 14 for SNP 

model, 10, 20 and 30 for SOM model of liver cancer) and two values of ntree (the 500 default 

and 1000). The magnitude of the variable importances is increased with larger values of mtry, 

but we get nearly the same order for all variables in every run of the procedure and with every 

value of mtry. Moreover, using a small value of mtry is preferred in the presence of correlated 

predictors. We chose mtry=7 for the SNP model and mtry=10 for the SOM models of liver 

cancer, lung cancer, CLL and melanoma, respectively, based on lower MSE errors and 

smaller mtry values (Figure S15 and Figure S18). 

Feature selection 

We used the R VSURF package to perform variable selection. The selection procedure is 

based on a ranking of the explanatory variables using the random forests score of importance 

and a stepwise ascending strategy (Genuer, 2010). The first step eliminates the noisy variables 

and the second step selects the variables leading to the smallest OOB error. One advantage in 

using the VSURF procedure lies in its robustness with respect to the choice of mtry and ntree.  

Model Validation 

RFs were grown with ntree=500 for all models. We used mtry=7 for the SNP model and 

mtry=10 for the SOM models. The SNP RF model was trained using 16 explanatory variables. 

The SOM RF models were estimated using 21, 22, 29 and 23 explanatory variables selected 

by VSURF for liver cancer, lung cancer, CLL and melanoma respectively. The validation of 

the two models is given in terms of MSE. We used 10-fold cross-validation to compute the 

prediction error. We compared the prediction error of the RF model to the prediction error 

obtained training a multiple regression linear model with the same input variables involved. 
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We see that RFs outperform a linear model for the SNP and cancer mutation data (Figure 

S17A and Figure S20A). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S15. MSE sensitivity to ntree and mtry (SNP model) 
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Figure S16. variable importance (lncNodePurity) sensitivity to ntree and mtry (red line: absolute 

value of minimum importance among all features in the SNP RF model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S17. Validation of the SNP model. A. MSE for linear regression model (Lrm) and Random 

forest (RF) with 10-fold cross validation (SNP model); B. observed and predicted fraction of rare 

SNPs (AF < 0.01) with 10-fold cross validation; C. the number of variables remained in the RF model 

minimizes the OOB error; D. the default number of trees in the RF model minimizes the OOB error. 
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Figure S18. MSE sensitivity to ntree and mtry (SOM liver cancer model) 

 

 

Figure S19. variable importance (lncNodePurity) sensitivity to ntree and mtry (red line: the absolute 

value of minimum importance  among  all features in the SOM model of liver cancer) 
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Figure S20. Validation of the liver cancer SOM model. A.MSE for linear regression model (Lrm) 

and Random forest (RF) with 10-fold cross validation (SOM model); B. observed and predicted 

somatic mutation density divided by 88 patients with 10-fold cross validation; C. the number of 

variables remained in the RF model minimizes the OOB error; D. the number of trees in the RF model 

minimizing the OOB error. 
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