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Ce chapitre résume, en Français,  le manuscrit  de thèse qui est écrit  en anglais.  Chaque chapitre est  
résumé de manière à faire ressortir les principaux résultats et conclusions importantes. Le choix d’effectuer la  
rédaction  du  manuscrit  entièrement  en  anglais  a  été  motivé  par  différentes  raisons.  Tout  d’abord,  certains 
chapitres de la thèse sont écrits sous forme d'articles et il a donc semblé cohérent d’écrire l’ensemble de la thèse 
en anglais pour assurer une continuité au manuscrit. Ensuite, ayant pour objectif de poursuivre ma carrière dans 
le milieu académique, il me paraissait important de favoriser la diffusion internationale de ce manuscrit. Enfin,  
un des rapporteurs du jury de thèse qui est un spécialiste dans le domaine provient d’un pays anglophone. 
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Introduction générale

Motivations 

Ces travaux de thèse portant sûr la diffraction des rayons X cohérents couvrent un spectre assez large  
qu'il convient de définir. Au sein du laboratoire SIMaP dans lequel ce travail de thèse a été mené à bien, un  
intérêt  tout  particulier  est  donné  à  la  relation  entre  microstructure  et  propriétés  physiques.  La  motivation 
principale de cette étude consiste à déterminer comment un rayonnement synchrotron et en particulier des rayons 
X cohérents peuvent nous aider à comprendre cette relation.
Notre étude s'intéresse en particulier à la relation entre microstructure et la réponse mécanique d'objets de taille 
micrométrique. Cette thématique est corrélée à l'étude des défauts cristallins et des propriétés structurelles aux 
petites échelles. Elle a été initiée par les travaux de Brenner dans les années 1950 (Brenner 1956), qui constata  
une  augmentation  de  la  résistance  mécanique  associée  à  une  diminution  de  la  taille  de  fils  de  cuivre 
monocristallins soumis à un essai de traction. Plus récemment, les 10 dernières années ont été marquées par un  
regain d’intérêt autour de cette thématique, notamment motivé par les travaux de Uchic et al. (2004) où sont mis 
en évidence une réponse mécanique aux petites échelles de longueur qui différe fortement de celle observée dans  
le matériau massif.
La tendance générale est donc une augmentation de la résistance mécanique avec une diminution de la taille de 
l'objet. Cependant, l'existence d'une loi d'échelle est sujette à débats. La compréhension détaillée de ces effets de  
taille peut-être uniquement obtenue si la microstructure initiale de l'échantillon est connue (Bei et al. 2008). En 
effet,  la  densité  initiale  de défauts  est  dépendante  du procédé d'élaboration de l'échantillon.   Elle  doit  être  
mesurée a priori et de manière non destructive comme elle contrôle la réponse mécanique de l'échantillon.
Pour répondre à ces différentes questions,  notre objectif  est  la caractérisation non destructive du champ de  
déformation 3D  dans des cristaux submicroniques (îlots  /  fils).  Ce champ de déformation est  associé à la 
présence  de  défauts  structuraux  qui  peuvent  être  classés  par  leur  dimensionnalité,  à  savoir  1D  (lignes  de 
dislocations) ou 2D (interfaces: fautes d'empilement, surface libres ….).
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La microscopie électronique en transmission (MET) est une technique particulièrement adaptée à l'étude de  
défauts  cristallins.  Elle  permet  d'obtenir  une  image  directe  de  la  structure  de  défauts  avec  une  résolution 
atomique, actuellement inaccessible avec des rayons X, et permet la détermination du champ de déplacement 
avec une précision de l'ordre du picomètre. Cependant, la technique est limitée par la profondeur de pénétration  
des électrons et ne permet pas l'étude d'objets dont l'épaisseur excède la centaine de nanomètres. Elle nécessite 
dans la grande majorité des cas la préparation de lames minces dont la préparation (généralement par faisceau 
focalisé d'ions) introduits des défauts additionnels et des conditions aux limites très spécifiques (les surfaces 
libres des lames minces). 
Les techniques de diffraction de rayons X sont très complémentaires du MET; elles permettent l'étude d'objets 
sans nécessiter aucune préparation au préalable du fait de la faible interaction des rayons X avec la matière. Elles 
laissent  donc entrevoir  la  possibilité  d'une  étude  d'objets  3D couplée avec de  la  caractérisation  in  situ.  La 
diffraction des rayons X est par nature très sensible aux déformations cristallines en géométrie de Bragg et des 
mesures très précises de la déformation peuvent être réalisées. Pour les techniques classiques de diffraction de 
rayons X, la résolution est contrôlée par la taille du faisceau, qui atteint quelques dizaines de nanomètres sur  
certaines lignes dédiées dans les synchrotrons de 3ème génération. Cette limite de résolution peut être améliorée 
par l'utilisation d'un faisceau de rayons X cohérents qui permet de retrouver numériquement l'information de  
phase encodée dans l'intensité diffractée. Cela permet la reconstruction en 3 dimensions d'objets submicroniques 
avec une résolution de l'ordre de la dizaine de nanomètres, et une précision sur le champ de déplacement de 
l'ordre du picomètre.  

Contexte de l'étude
 

Ces travaux de thèse a été réalisé dans le groupe Physique du Métal (PM) au sein du laboratoire SIMaP.  
Ses activités se concentrent sur les matériaux métalliques, avec un accent mis sur les transformations de phase,  
les propriétés mécaniques et les matériaux complexes. Les activités de recherche sont conduites en synergie avec 
l'élaboration, la caractérisation (en particulier avec des grands instruments) et des activités de modélisation. Ma 
bourse de thèse a été financée par l'agence nationale de la recherche (ANR) dans le cadre du projet MecaNIX  
dont l'objectif principal est la compréhension des propriétés mécaniques de nanostructures isolées et l'influence 
de la taille sûr les propriétés mécaniques. Ce projet a bénéficié de l'expertise des partenaires impliqués dans ce  
projet conjointement avec le SIMaP:

– la laboratoire IM2NP à Marseille. Dans le cadre du projet MecaNIX ils ont développé un AFM compact 
qui a été utilisé pour les expériences de nanoindentation  in situ  présentées dans le chapitre VI de ce 
manuscrit.

– L'institut  INAC  institut  du  CEA Grenoble,  en  charge  de  l'élaboration  et  de  la  caractérisation  des  
nanostructures de semiconducteurs (GaN et GaAs).

– La ligne de lumière ID01 de l'ESRF (European Synchrotron Radiation Facility), où une grande partie  
des expériences de Diffraction des rayons X cohérents ont été effectuées.

– L'institut Max Plank de  Stuttgart qui a fourni les nanofils métalliques utilisés pour plusieurs expériences  
de diffraction des rayons X cohérents (CXD).  

– Le LPS (laboratoire de Physique du Solide), pionnier dans l'étude de défauts cristallins par diffraction 
des rayons X cohérents.

Méthodes expérimentales et numériques

La majorité de la partie expérimentale de ces travaux de thèse a été réalisée dans des synchrotrons de 
3ème génération. Les expériences présentées dans ce manuscrit se divisent en 3 groupes principaux:

– La diffraction des rayons X cohérents pour l'étude de défauts cristallins et l'imagerie de champs de 
déplacement 3D.

3



Résumé étendu 

– L'holographie  de  Gabor  (Fourier  Transform  Holography:  FTH)  couplée  au  dichroïsme  magnétique 
circulaire dans la gamme des rayons X mous (XMCD), afin d'étudier la configuration magnétique et la  
dynamique de nanostructures à l'aide d'expériences résolues en temps.

– Des techniques complémentaires de diffraction de rayons X comme la micro-diffraction Laue ou des 
techniques  de  diffraction  de  surface  in  situ  sous  ultra  vide  pour  caractériser  plus  finement  les 
échantillons d'intérêt

Un grand nombre d'outils numériques ont été également utilisés pour mener à bien l'analyse des données 
expérimentales. La majorité de ces outils  ont été développé au sein du laboratoire,  comme la procédure de  
reconstruction  de  phase  des  donnés  expérimentales  (et  simulées),  ainsi  que  l'imagerie  de  nanostructures  
magnétiques par holographie magnétique. 
Des  échantillons  modèles  ont  été  élaboré  et  utilisés  dans  ces  travaux de  thèse.  Pour  l'étude  de  la  stabilité 
structurelle  et  les  propriétés  mécaniques,  deux  systèmes  ont  été  principalement  étudiés:  des  cristaux  3D 
submicroniques d'or et de cuivre. Ces cristaux sont mis en œuvre par la technique de démouillage en phase  
solide et ont une orientation spécifique vis à vis de leurs substrats respectifs: des monocristaux de Ta (0 0 1) et  
de  Al2O3 (saphir)  (0  0  0  1). Des  techniques  de  caractérisation  standard  comme  la  microscopie  optique, 
électronique  ou  à  force  atomique  ont  été  utilisées.  La  sollicitation  mécanique  locale  a  été  réalisée  par  
nanoindentation  aussi  bien  in  situ  que  ex  situ  au  laboratoire.  Les  échantillons  pour  l'étude  des  propriétés 
fonctionnelles, à savoir les nanofils de GaN et les éléments de permalloy (Fe-Ni) ont été élaborées par nos  
collaborateurs.
L'originalité  principale  de  ces  travaux de  thèse  réside  dans  le  fait  que  la  grande  majorité  des  expériences 
présentées dans ce manuscrit est supportée par une grande quantité de simulations numériques: des simulations  
atomistiques utilisant la statique et la dynamique moléculaire pour l'étude de défauts cristallins individuels et la  
reproduction du procédé d'indentation,  des calculs  ab initio  pour la détermination précise de la structure de 
surfaces et d'interfaces et enfin des méthodes d'éléments finis pour des calculs d'élasticité continue. En effet des  
calculs  systématiques  de  diffraction  de  rayons  X  pour  ces  simulations  dans  l'approximation  cinématique 
fournissent  des  données  de  diffraction  simulées  qui  permettent  une  meilleure  compréhension  des  données 
expérimentales dans l'espace réciproque, mais permettent également d’évaluer la robustesse des algorithmes de 
reconstruction de phase.

Présentation du manuscrit

Le manuscrit  de thèse est rédigé entièrement en Anglais,  et  certains chapitres important  de la thèse  
(Chapitre III, VII et VIII) sont écrits sous forme d'article. Il se divise en 4 grandes parties :

– Les  2  premiers  chapitres  présentent  les  concepts  théoriques  ainsi  que  les  méthodes  expérimentales 
utilisées dans ces travaux de thèse. Le premier chapitre présente les bases de la diffraction des rayons X 
cohérents  et  le  chapitre  II  présente  les  méthodes  et  techniques  expérimentales.  Les  configurations 
expérimentales utilisées pour réaliser les expériences de diffraction cohérente et de surface sont tout  
d'abord décrites puis les échantillons ainsi que leurs techniques de préparation et de caractérisation sont 
présentés.

– La deuxième partie se concentre sur l'étude de dislocations dans des micro/nanocristaux cubiques face 
centrés (f.c.c.) par diffraction des rayons X cohérents. Dans un premier temps le Chapitre III  présente 
un catalogue des signatures de dislocations individuelles dans l'espace réciproque. Par la suite, les effets 
dans l'espace réciproque d'une microstructure de défauts est évaluée, en s'intéressant en particulier au cas  
de l'indentation d'un film mince, chapitre IV. Le chapitre V présente des reconstructions numériques  
permettant l'étude dans l'espace réel de dislocations individuelles et d'une assemblée de dislocations.  
Pour finir, le Chapitre VI détaille des expériences d'indentation in situ  d'un microcristal d'or, aboutissant 
à l'observation et à la reconstruction de défauts germés couplé à un phénomène de recuit mécanique.
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– La troisième partie (Chapitres VII-IX) est dédiée à l'étude de l'influence de surfaces et d'interfaces sur  
les champs de déplacement au sein de cristallites de petite taille: elle débute dans le Chapitre VII par  
l'étude d'une  particule  d'or  maclée,  permettant  de  mettre  en évidence la  sensibilité  de la  CXD aux  
déformations  de  surface  induites  par  la  relaxation  des  surfaces  libres.  Les  Chapitres  VIII  et  IX se 
focalisent sur l'étude de l'interface bi-métallique Cu-Ta, obtenue par démouillage en phase solide. Dans 
un premier temps, le Chapitre VIII combine des expériences de diffraction de surface  in situ  et des 
calculs  ab initio  permettant la détermination de la structure de la couche de mouillage de Cu. Par la 
suite, la structure de l'interface au sein des cristallites est étudiée à l'aide de simulations de dynamique  
moléculaire. L'impact de la structure atomique sur cette interface et son influence sur la distribution du  
champ de déplacement obtenu par diffraction cohérente est discutée.

– La  dernière  partie  regroupe  les  résultats  liés  à  l'imagerie  de  défauts  concernant  les  propriétés  
fonctionnelles  et  se  focalise  en  particulier  à  nos  contributions  à  ces  expériences.  Le  Chapitre  X 
s'intéresse à l'imagerie de domaines d'inversion de polarité dans des nanofils de GaN semiconducteurs. 
Le  Chapitre  XI  présente  l'étude  de  configuration  magnétiques  et  leur  dynamique  au  sein  de 
nanostructures  de  permalloy  (Fe/Ni).  L'holographie  de  Gabor  est  utilisée  pour  caractériser  ces 
nanostructures, et leur dynamique de magnétisation est étudiée grâce à des expériences synchrotron en 
temps résolu.

Chapitre I: Concepts de base sur la diffraction des rayons X cohérents

Ce chapitre permet d'introduire les bases théoriques de la diffraction cohérente ainsi que certaines de ses 
utilisations. 
Dans une première partie le concept de cohérence est détaillé tout comme les propriétés caractéristiques d'un 
faisceau de rayons X cohérents. 
Dans  la  deuxième  partie  de  ce  chapitre,  la  sensibilité  des  faisceau  de  rayons  X  cohérents  aux  défauts  et  
déformations cristallines est expliquée. Les stratégies pouvant être mises en œuvre pour l'étude de systèmes très  
déformées ou présentant une structure de défaut complexe sont ensuite discutées, et des exemples numériques 
sur des systèmes présentant une structure de défauts très simple sont également présentées.
L'imagerie  par  diffraction  cohérente  (CDI)  qui  s'appuie  sur  des  algorithmes de  reconstruction de phase  est 
introduite dans la troisième partie. Le concept de sur-échantillonnage (Sayre 1952) est expliqué en détails et les  
récents  progrès  dans  les  algorithmes  de  reconstruction  phase  sont  également  présentés.  Des  exemples  de 
reconstruction focalisées sur le cas de défauts uniques permettent de conclure ce chapitre

Chapitre II: Méthodes expérimentales et échantillons

Ce chapitre présente les techniques expérimentales et les échantillons utilisés au cours de ces travaux de  
thèse.  Les  techniques  de  diffraction  des  rayons  X permettent  d'accéder  à  une  grande  variété  de  propriétés  
structurales dans des objets submicroniques. Plus particulièrement la diffraction des rayons X cohérents permet  
d'accéder  au  champ de  déplacement  3D,  tandis  que  les  techniques  de  diffraction  de  surface  permettent  la 
détermination de la structure atomique de surfaces ou d'interfaces. Ces techniques requièrent l'utilisation d'une 
source de rayons X de forte brillance et la partie expérimentale de ces travaux de thèse a donc été principalement  
effectuée dans des synchrotrons de 3ème génération.
Dans une première partie de ce chapitre sont présentés les montages synchrotron permettant de réaliser des  
expériences  de  diffraction cohérente  et  de surface.  Les  méthodes  d'acquisition des  données  sont  également 
discutées. 
Dans une deuxième partie, nous nous intéressons aux échantillons étudiés au cours de ces travaux de thèse. Sont 
décrites  aussi  bien  les  méthodes  d'élaboration  que  de  caractérisation.  Certaines  d'entre  elles  sont  très  
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conventionnelles (microscopie optique, électronique à balayage ou à force atomique) tandis que d'autres sont  
plus spécifiques à ces travaux de thèse (ex situ nanoindentation, diffraction  μ-Laue, diffraction des rayons X à 
balayage...). Le chapitre se conclut par un exemple de caractérisation complète d'un échantillon utilisé pour les  
expériences de diffraction cohérente.

Chapitre III : Signature de dislocations et de fautes d'empilement dans des 
nanocristaux cubiques face centrée étudiée par diffraction des rayons X cohérents: 

une étude numérique

Le but  de  ce  chapitre  est  d'établir  un  catalogue  des  signatures  dans  l'espace  réciproque  de  défauts 
cristallins typiques (dislocations, fautes d'empilement) dans des nanocristaux cubiques faces centrées (f.c.c.), et  
d'établir les meilleures conditions expérimentales (choix du vecteur de diffraction  g ) permettant de mettre en 
évidence  ces  défauts  cristallins.  Cette  approche  est  ensuite  illustrée  sur  un  cas  réaliste  de  germination  de  
dislocations au cours de la nanoindentation simulée d'une nanoparticule d'or. 
Les nanocristaux sont modélisés avec des potentiels interatomiques réalistes (Mishin et al.  1999, Mishin et al.  
2001, Grochola et al. 2005) à l'aide du code de simulation atomistique MERLIN (Rodney 2010) et relaxés après  
introduction d'un défaut unique. Le recours à des simulations à l'échelle atomique est requise pour tenir compte 
de tous les effets physiques qui entrent en jeu: la dissociation de la dislocation parfaite en dislocations partielles  
(dépendante de l'énergie de faute d'empilement du cristal), l'effet de la structure du cœur des dislocations et enfin 
l'influence des conditions aux limites (surfaces libres / facettes des nanocristaux en forme d'équilibre de Wulff  : 
Winterbottom 1967).  Les  figures  de  diffraction  sont  calculés  dans  l'approximation  cinématique   grâce  à  la 
librairie PyNX (Favre-Nicolin et al.  2010). Les calculs sont effectués au voisinage de différentes réflexions de 
Bragg, et l'influence des conditions de diffraction sûr les signatures des défauts dans l'espace réciproque est  
étudiée. 

Simulations sur un nanocristal cubique face centrée

Dans un premier temps, nous nous intéressons à des cas génériques de défauts, comme des dislocations  
vis, coins ou encore des boucles de dislocations prismatiques. La figure 1 présente un exemple des signatures 
obtenues pour une dislocation vis introduite au centre d'un nanocristal de cuivre de 30 nm (~1 million d'atomes), 
pour différents vecteurs du réseau réciproque g. Il est démontré qu'à chaque type de défaut cristallin correspond 
une signature dans l'espace réciproque et que cette signature dépend des conditions de diffraction (choix du g). 
Cette étude systématique permet d'identifier les conditions de diffraction les plus adaptés à l'étude de défauts 
uniques typiques.  Par exemple la dissociation d'une dislocation vis ou coin sera particulièrement bien mise en  
évidence  pour  un  vecteur  du  réseau  réciproque  satisfaisant  les  conditions  d'invisibilité  dans  le  cas  d'une 
dislocation parfaite (Volterra) : g.b = 0 (g = 2 2 4 par exemple).

Application à un cas plus réaliste: nanoindentation simulée d'une nanoparticule d'or

Les conditions d'invisibilité établies pour les défauts uniques dans la première partie du chapitre sont  
ensuite utilisées pour l'analyse d'un cas plus réaliste et complexe: la nanoindentation simulée d'une nanoparticule  
d'or  (collaboration avec Dan Mordehai  de l'institut  Technion d'Haifa).  Dans un premier  temps sont  mis  en 
évidence la variété des figures de diffraction obtenues pour différents arrangements de dislocations obtenus à  
différents stades de la simulation. Nous nous focalisons ensuite sur une étape particulière de la simulation, pour 
laquelle une seule dislocation mixte est présente dans la particule d'or. Quatre vecteurs du réseau réciproque de 
type 1 1 1 sont utilisés pour l'étude de cette configuration d’intérêt. La dislocation produite une signature claire 
et distincte pour deux d'entre eux, alors que la figure de diffraction est très similaire au cas -
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Fig.  1:  Dislocation vis dans un nanocristal de cuivre   de 30x30x30 nm3 modélisé dans sa forme d'équilibre de Wulff (a) et (c) 
L'échelle de couleur montre le composant  ux du champ de déplacement pour les configurations initiales et relaxées (b) et (d) 
Dislocation vis parfaite (Volterra) avec b = 1/2[1 1 0] et dissociation de cette dislocation en 2 jeux de dislocations partielles de 
Shockley dans les  plans (1 1 1) et (1 1 1). Sont uniquement représentés les atomes défectueux ou situés sur les coins et arêtes de la 
cristallite. Calcul des figures de diffraction cohérente pour g.b = 0 (g = 2 2 4)  pour une dislocation Volterra (e) et des dislocations 
dissociées (f). (g) Intensité selon la direction [1 1 1]  (échelle logarithmique). Figures de diffraction calculées pour g // b (g = 2 2 
0) pour une Volterra (h) et des dislocations partielles de Shockley (i). (j) Intensité selon [0 0 1]. Cas de la Volterra (k) des partielles 
de Shockley (l) et intensité selon [0 0 1] (m) pour g //  bp  (g = 2 4 2).  Cas de la Volterra (n), des partielles de Shockley (o) et 
intensité (p) selon [1 1 0] pour un g quelconque (g = 2 0 0) . Le volume de l'espace réciproque représenté est ici toujours le même  
c'est à dire  0.045x0.045x0.0675 (1/ Å)3
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- du cristal parfait pour les deux autres (Fig. 2). Ces deux vecteurs satisfont les conditions d'invisibilité g.b = 0, 
permettant de déterminer le vecteur de Burgers de la dislocation. Une analyse plus approfondie de la figure de  
diffraction (perturbations dans périodicité des franges d'interférence produites par les facettes du nanocristal …) 
et l'utilisation de vecteurs de diffraction supplémentaires permettent d'obtenir une bonne approximation de la 
largeur de dissociation ou de la position de la dislocation dans la cristallite.

Ce chapitre démontre donc l'utilité et la pertinence de l'analyse des figures de diffraction cohérente dans 
l'espace  réciproque.  Dans  des  cas  expérimentaux,  cette  méthode  requière  des  temps  de  comptage 
significativement plus faibles que les méthodes d'imagerie et s'avère donc très adaptée pour des expérience s ou 
les défauts cristallins sont germés in situ (nanoindentation in situ par exemple)

Chapitre IV: La diffraction des rayons X cohérents appliquée à des systèmes 
modérément complexes.  

Le Chapitre III démontre que la diffraction des rayons-X cohérents est particulièrement adaptée à l'étude  
de défauts individuels, cependant le cas des défauts multiples n'y est pas traité. 
Dans le chapitre IV présentant uniquement des études numériques, nous cherchons à démontrer que la diffraction  
des rayons X cohérents est également adaptée à l'étude d'un système modérément complexe ( i.e. un arrangement 
de quelques défauts cristallins). Dans une première partie nous utilisons la procédure décrite par Erhart  et al.  
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Fig.  2:  (a) Nanoparticule d'or après 650000 indentation pas de simulation. Une 
dislocation mixte présentant un vecteur de Burgers  b de type  ½ <1 1 0> peut-
être observée. (b) to (e) Calcul des figures de diffraction pour quatre vecteurs de 
diffraction de type <1 1 1>.  Le volume de l'espace réciproque représenté est ici  
toujours le même c'est à dire 0.08x0.08x0.12 (1/ Å)3
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(1982) et Larson & Young (1987) pour mettre en évidence la sensibilité de la CXD à la taille, mais également au  
caractère  lacunaire  ou  interstitiel  d'une  boucle  de  dislocation  individuelle.  Cette  méthodologie  est  ensuite 
étendue au cas des fautes d'empilement. Le cas d'une assemblée de défauts est illustré à travers deux systèmes: la  
nanoindentation d'un film mince de nickel, où des boucles de dislocation prismatique sont germées au sein de  
différents  systèmes de glissement,  et  le  démouillage en phase solide du démouillage en phase solide d'une 
particule de cuivre sur un substrat de tantale, induisant un réseau complexe de fautes d'empilement.

Cas d'un système modérément complexe: nanoindentation simulée d'un film mince de nickel

La figure 3.a permet d'illustrer la germination des boucles de dislocation prismatiques dans un système 
sollicité par indentation. Selon le mécanisme décrit décrit par Ashby dans les années 1960 (Ashby 1971), les  
boucles de dislocation prismatique sont germées dans trois systèmes de glissement équivalents (de type 1/2<1 1 
0>{1  1  1})  pour  accommoder  le  déplacement  dans  la  direction  d'indentation.  Ce  mécanisme  est  très  bien 
reproduit dans une simulation de nanoindentation sur un film mince de Nickel, réalisée avant ces travaux de 
thèse (Chang  et al.  2010). L'indentation du film dans la direction [1 1 1] conduit à la germination de quatre 
boucles  de  dislocations  prismatiques  présentant  trois  vecteurs  de  Burgers  distincts  correspondant  aux  trois 
systèmes de glissement (Fig.3.b). 
Comme dans  le  cas  d'un  défaut  unique,  la  signature  observée  dans  l'espace  réciproque  dépend de  g,  nous 
cherchons donc à déterminer si la méthode éprouvée dans le chapitre III (utilisation de plusieurs g de type 1 1 1) 
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Fig.  3:  (a)  Description  schématique  du  processus  de  germination  des  boucles  prismatiques  pendant 
l'indentation [1 1 1]. (b) Configuration atomistique à la fin de la nanoindentation simulée, seuls les atomes 
défectueux sont représentés. (c)(c) Figures de CXD calculées pour 4 vecteurs g de type 1 1 1. Le volume 
représenté de l'espace réciproque est égal à  0.09x0.09x0.09 (1/ Å)3 

(c)



Résumé étendu 

permet de déterminer les caractéristiques de toutes les dislocations présentes dans la structure. Pour g = 1 1 1, 
sensible aux trois variants de boucle prismatique présents dans la structure, une diffusion diffuse plus prononcée, 
ainsi qu'une diminution sensible de l'intensité maximale (par comparaison avec un cristal parfait comportant le 
même  nombre  d'atomes)  sont  observées.  Pour  les  autres  g  deux  variants  satisfont  systématiquement  les 
conditions d'invisibilité. Les perturbations observées sur la figure de diffraction dépendent donc principalement  
de la taille et de la position du seul variant de boucle prismatique visible.Cette méthodologie, efficace dans le cas  
de défauts uniques est cependant inadaptée à l'étude d'un système modérément complexe. Les interférences entre  
les différentes boucles conduisent à des figures de diffraction très complexes et une détermination fine de la  
microstructure (détermination du nombre de dislocations ainsi que leur vecteur de Burgers) est inenvisageable à 
partir de l'analyse seule de l'espace réciproque.
L'analyse directe de l'espace réciproque s'avère plus concluante dans le cas d'un réseau complexe de fautes  
d'empilement. L'intensité des franges d'interférence dans les directions perpendiculaires aux fautes d'empilement  
procure une bonne estimation de la densité de fautes d'empilement dans un plan de glissement donné. Dans le 
cas d'un faible nombre de fautes d'empilement il est également possible de déduire la distance entre deux fautes  
d'empilement successives. 

Particulièrement  adaptée  à  l'étude  de  défauts  uniques,  l'analyse  de  l'espace  réciproque  s'avère  plus 
délicate dans le cas d'une assemblée de défauts. Dans ce cas, d'autres méthodes comme la reconstruction de la 
structure de défauts dans l'espace réel peuvent être envisagés (Chapitres V à VII).

Chapitre V: L'imagerie de défauts individuels et d'une microstructure de défauts 
par diffraction des rayons X cohérents.

Dans le chapitre V nous cherchons à tester et valider la méthode de reconstruction des figures de CXD 
3D pour étudier  la microstructure de nanocristaux isolés.  Les cas du défaut  unique et  d'un arrangement  de  
défauts sont tous deux envisagés. A l'image du Chapitre III, la première section du chapitre se focalise sur des 
cas  simples  et  typiques  de  défauts  individuels.  L'utilisation  de  configurations  atomistiques  permet  la 
détermination et l'analyse du champ de déplacement au voisinage de lignes de dislocation (de type vis ou coin).  
Dans  une  seconde  partie  le  champ de  déplacement  est  reconstruit  pour  des  structures  de  dislocations  plus 
complexes: dislocations mixtes, boucles de différent type et un arrangement de dislocations germées au cours de 
la  nanoindentation  simulée  d'un  nanocristal  d'or  initialement  vierge  de  défaut.  Le  chapitre  se  conclut  par 
l'analyse de la microstructure d'un film mince de nickel au cours de sa nanoindentation simulée, permettant de  
confirmer  que  l'imagerie  par  diffraction  des  rayons  X  cohérents  (CDI)  peut-être  utilisée  sur  des  systèmes 
modérément complexes contenant un réseau de dislocation germées sur plusieurs systèmes de glissement.

Étude d'une dislocation mixte germée au cours d'une simulation de nanoindentation

Dans la dernière section du Chapitre III nous démontrons qu'il est possible de déterminer le vecteur de  
Burgers  et  plus  généralement  le  système  de  glissement  d'une  dislocation  mixte  générée  au  cours  de  la  
nanoindentation simulée d'une nanoparticule d'or à partir de quelques réflexions dans l'espace réciproque. 
Dans cette section, nous utilisons les algorithmes de reconstructions de phase pour reconstruire le champ de  
déplacement 3D dans la particule et obtenir une description plus précise de la microstructure. En bon accord  
avec les résultats du Chapitre III la dislocation est invisible pour les g qui satisfont la condition d'invisibilité g.b 

= 0 ( g = 1 1 1 et  g = 1 1 1, Fig 4.d et 9.e) alors qu'elle est clairement visible pour g.b ≠ 0  (g = 1 1 1 et  g  = 1 1 
1, Fig 4.b et 4.c). Pour ces dernières la présence de la dislocation mixte se traduit dans les deux cas par un saut 
de phase de π entre les deux portions du cristal de part et d'autre de la ligne de dislocation. En revanche, la  
localisation de cette discontinuité de phase dépend du vecteur du réseau réciproque considéré. Pour  g = 1 1 1 
elle est située au voisinage de la dislocation partielle de vecteur de Burgers  bp1 = 1/6[1 2 1] alors qu'elle est 
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localisée autour de la seconde dislocation partielle  (bp2 =  1/6[1 1 2]) pour la réflexion 1 1 1. Dans les deux cas 
seule la dislocation partielle dont le vecteur de Burgers est quasiment parallèle au g considéré est  donc visible.
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Fig.  4 Reconstruction  du  champ  de  déplacement  autour  d'une  
dislocation mixte pour différents  g (a)  Nanoparticule d'or  au cours 
d'une nanoindentation simulée vue depuis la direction  [1 1 1]. Seuls 
les atomes défectueux et les atomes de surface sont représentés. Les 
directions des vecteurs de Burgers sont indiqués respectivement par 
une flèche bleue (dislocation parfaite) et rouge et verte (dislocation 
partielle). (b) à (g) Champ de déplacement reconstruit dans le plan de 
glissement (1 1 1) de la dislocation pour différents g: 1 1 1 (b), 1 1 1 
(c), 1  1 1 (d), 1 1 1 (e), 0 2 2 (f) et 4  2 2 (g). La direction de g est 
indiquée par une flèche noire tandis que la direction de l'indentation 
est indiquée par une flèche violette.
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Pour  g = 0 2 2 parallèle à b les deux dislocations partielles sont en revanche visibles et induisent toutes les deux 
un saut de phase de  π. La phase reste relativement constante dans la faute d'empilement entre les deux partielles.
Si les chapitres III et IV démontrent que l'analyse de l'espace réciproque au voisinage de différents pics de Bragg
permet d'obtenir une quantité significative d'information sur un défaut unique (vecteur de Burgers, système de 
glissement,...) la reconstruction du champ de déplacement 3D permet donc d'obtenir une description plus précise 
de ce dernier. En particulier elle permet la détermination de sa forme et de son orientation (largeur de la faute  
d'empilement,  confirmation  du  caractère  mixte  d'une  dislocation).  A partir  de  la  seule  figure  de  l'espace 
réciproque, il s'avère également délicat de distinguer les contributions respectives des champs de déplacement au 
voisinage de l'indent et de la dislocation mixte. La reconstruction du champ de déplacement 3D dans la particule 
permet de quantifier ces deux contributions.

 Cas d'un système modérément complexe: nanoindentation simulée d'un film mince de nickel
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Fig. 5 Densité électronique diffractante dans le film mince de Nickel reconstruite pour 
différents  vecteurs  g. (a)  Configuration  atomistique  à  l'issue  de  la  simulation  de 
nanoindentation du film mince de Nickel. Seuls les atomes défectueux sont représentés. 
Des boucles prismatiques germées dans trois systèmes de glissement sont observées 
dans la structure. (b) à (f) Isosurface de la densité électronique diffractante reconstruite 
à 65% du maximum de densité pour différents g
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Le Chapitre  IV nous  a  démontré  qu'une  assemblée  de  boucles  prismatique  germée  au  cours  de  la  
nanoindentation  simulée  d'un  film  mince  de  nickel  produit  une  signature  très  complexe  et  difficilement 
interprétable sur une figure de diffraction cohérente. En plus d'être difficilement réalisable expérimentalement  
(mesure d'un grand nombre de réflexions de Bragg sur une particule unique) cette approche ne conduit pas à une 
détermination précise et complète de la microstructure.  Comme illustré sur les figures 5et 6 la reconstruction de 
la densité électronique diffractante et du champ de déplacement pour plusieurs réflexions de Bragg s'avère être  
une approche nettement plus pertinente pour de tels systèmes (présence de plusieurs boucles de dislocations 
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Fig. 6 Champ de déplacement reconstruit dans le plan (1 1 1) pour différents g (a) 
Configuration atomistique vue depuis la direction [1 1 1]. Sont visibles la position 
des dislocations dans la structure,  ainsi que la localisation du plan (1 1 1) qui 
intercepte les dislocations partielles et dans lequel le champ de déplacement est 
reconstruit. (b) à (f) Reconstruction du champ de déplacement pour quatre  g de 
type 1 1 1 : (b) g = 1 1 1, (c) g = 1 1 1, (d) g = 1 1 1 et g =  1 1 1 (e) et pour g = 0 
2 2
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prismatiques dans les trois systèmes de glissement).
La présence de défauts se traduit par des chutes dans la densité électronique diffractante qui peuvent être utilisés  
pour déterminer avec précision la position et le vecteur de Burgers des dislocations présentes dans la structure. 
Pour g = 1 1 1 par exemple, aucune des boucles prismatiques ne satisfait les conditions d'invisibilité. Les chutes 
de  densité  sont  donc  observées  au  voisinage  de  toutes  les  boucles  de  dislocation,  avec  une  parfaite  
correspondance avec la configuration atomique. Dans le cas des autres vecteurs 1 1 1 deux variants satisfont les  
conditions d'invisibilité, les chutes de densité électronique sont donc observées autour d'un seul variant de boucle 
prismatique. Enfin,  g  =  2 0  2 ne satisfait aucune des conditions d’invisibilité susmentionnées, les boucles de 
dislocations sont donc toutes visibles. De plus, ce vecteur de diffraction est parallèle au vecteur de Burgers d'une 
des boucles (b = 1/2[1 0 1]), et les variations de densité électronique sont donc observées au voisinage de toutes  
les  dislocations  partielles  de cette  boucle  (entourées  en rouge sur  la  Fig.  5.f),  permettant  de les  distinguer 
individuellement.
La  reconstruction  de  la  phase  permet  de  mettre  en  évidence  le  champ  de  déplacement  caractéristique  au  
voisinage d'une boucle prismatique. Sur la figure 6 il est représente dans un plan (1 1 1) qui intercepte les trois 
variants de boucles de dislocations prismatiques pour différents vecteurs du réseau réciproque. 
Pour g = 1 1 1, sensible à tous les variants de boucle prismatique, le profil du champ de déplacement consiste en 
trois paires de vortex de phase de chiralité opposée (correspondant aux trois boucles de dislocation). 
A l'image de nos observations pour la densité électronique diffractante, les trois autres vecteurs de type 1 1 1  
permettent d'observer ces vortex de phase uniquement au voisinage de la boucle de dislocation qui ne satisfait  
pas les conditions d'invisibilité. La localisation de la singularité de phase autour de l'une ou l'autre partielle de 
chacun des segments de dislocation qui forme la boucle dépend également du vecteur de diffraction considéré,  
tout comme dans le cas de la dislocation mixte.
Enfin pour g = 0 2 2  parallèle à b2 , les trois variants de boucles sont visibles. Comme g n'est ni parallèle b1 ni à 
b3  seule une des deux dislocations partielles est observée pour ces boucles (une seule paire de vortex de phase  
pour ces deux boucles). Pour le variant b2, les deux dislocations partielles du segment de dislocation interceptant 
le plan (1 1 1) dislocation sont toutes deux visibles, se traduisant par la présence de deux paires de vortex de 
phase de chiralité opposée.

Les différents cas présentés dans de chapitre permettent donc de démontrer que l'imagerie par diffraction 
des  rayons  X  cohérents  s'avère  être  une  méthode  parfaitement  adaptée  à  l'étude  de  systèmes  modérément  
complexes, contenant par exemple un arrangement de dislocation. La reconstruction de la densité électronique et  
de la phase permet de déterminer toutes les caractéristiques de chaque dislocation présente dans la structure  
(géométrie, position, vecteur de Burgers, système de glissement,...).  La pertinence de cette approche dans le cas  
d'une étude expérimentale est discutée dans le Chapitre VI.

Chapitre VI: Étude des propriétés mécaniques d'un nanocristal d'or par 
nanoindentation in situ et imagerie par diffraction des rayons X cohérents.

Dans  ce  chapitre  nous  appliquons  les  méthodes  décrites  dans  les  chapitres  III  à  V pour  analyser  
l'évolution  de  la  microstructure  d'une  cristallite  d'or  submicronique  indentée  in  situ.  A notre  connaissance, 
l'imagerie d'un défaut germé in-situ par sollicitation mécanique n'a pas été reportée dans la littérature. 
Ce chapitre débute par une description de la préparation et du choix de l’échantillon pour cette expérience. Les 
détails expérimentaux sont donnés dans la seconde partie de ce chapitre tandis que la troisième partie s'intéresse  
à l'influence de la présence de déformations interfaciales ou d'un contenu initial de défauts sur les figures de 
CXD  obtenues  expérimentalement.  Cette  section  permet  d'illustrer  les  difficultés  d'obtenir  un  échantillon 
présentant à la fois une faible déformation résiduelle et une faible densité de défauts dans son état initial. 
La présentation des résultats les plus marquants de cette expérience conclut ce chapitre. Dans un premier temps 
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nous utilisons la méthodologie d'analyse de l'espace réciproque présentée dans les chapitres III et IV, puis nous 
utilisons les méthodes de reconstruction de phase pour analyser l'évolution de la forme de la particule et pour  
visualiser  le  champ  de  déplacement  autour  d'une  boucle  prismatique  germée  au  cours  de  l'expérience  
d'indentation.  Pour finir l'évolution des champs de déplacement et de déformation au cours de l'expérience est  
discutée et interprétée dans la dernière section de ce chapitre.

Détails expérimentaux

L'expérience a été réalisée sur la ligne ID01 de l'ESRF. Un faisceau de rayons-X cohérents est utilisé  
pour illuminer les cristallites d'or.  Ces dernières sont obtenues par démouillage en phase solide sur un substrat 
de saphir (0 0 0 1). Des diamètres et hauteurs moyennes de 700 et 400 nm respectivement sont généralement  
obtenus. Pour collecter une figure de diffraction 3D au voisinage de la réflexion 1 1 1, l'échantillon est pivoté  
dans le faisceau par +/- 0.5°. Une des premières difficultés expérimentales est la sélection d'un bon candidat pour  
l'expérience d'indentation in situ.  La plupart des figures de diffraction mesurées indiquent une forte densité de 
défauts et/ou une large déformation interfaciale dans les cristallites. Le choix se porte sur une cristallite dont la 
figure de diffraction apparaît la plus parfaite possible (faible densité de défaut et faible déformation interfaciale). 
L'indentation in situ est réalisée à l'aide de l'AFM in situ SFINX (Zhe et al. 2014) développé dans le cadre du 
projet ANR Mecanix. L'enregistrement simultané de cartographies AFM et SXDM permet d'aligner la pointe de 
l'AFM avec les cristallites d'or et le faisceau focalisé de rayons X.  Le schéma de l'expérience est illustré sur la 
figure 7.a, après l'alignement de pointe de l'AFM sur la cristallite d’intérêt, l'indentation est réalisée en abaissant  
cette dernière à une vitesse de 2 nm/s. La pointe est rétractée à la même vitesse dès qu'un changement est détecté 
sur les figures de diffraction collectées pendant l'approche de la pointe.  Un total  de 6 itérations de charge-
décharge est réalisé et une figure de CXD 3D est collecté après chaque décharge. Pour finir une dernière figure  
de CXD est collectée après 24h d'illumination sous le faisceau. 

Comparaisons des figures de diffraction à différents stades du cycle d'indentation

L'analyse directe des figures de diffraction fournit plusieurs renseignements très utiles sur l'évolution de  
la forme et de la déformation résiduelle dans la particule. Tout d'abord, un changement dans l'orientation des  
franges associées aux facettes de la cristallite révèle une modification de la particule après 24h de vieillissement  
sous faisceau de rayons X. Il apparaît aussi assez clairement que la figure de diffraction est plus parfaite après  
quelques itérations dans le cycle de charge-décharge. Cette évolution suggère une relaxation de la déformation 
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Fig. 7 (a) Principe de l'expérience. La cristallite d'or est illuminée par un faisceau de rayons X cohérents tandis qu'elle  
est indentée par une pointe d'AFM Berkovitch. (b) Photographie de “SFINX” représentant (1) les deux empilements de  
piezo longue course (2) le scanner piezo xy (3) le scanner piezo-z (4) l'échantillon (5) la poutre AFM. 
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résiduelle selon le phénomène de recuit mécanique décrit par Matthews & Blakeslee (1974). Les boucles de  
dislocation susceptibles d'être germées étant de très petite taille par rapport au volume total de la cristallite, elles  
ne produisent pas de signature facilement identifiable sur les figures de diffraction. Seule la reconstruction de la 
densité  électronique  et  de  la  phase  peuvent  donc  confirmer  la  présence  de  boucles  de  dislocation  dans  la 
cristallite. 

Reconstruction de la densité électronique diffractante

Le champ de déplacement u1 1 1 est reconstruit à chaque itération du cycle de charge-décharge en utilisant 
les techniques classiques de reconstruction de phase. Les densités électroniques reconstruites sont moyennés sur 
les 10 meilleures reconstructions (sélectionnés à partir de l'erreur métrique et de l'homogénéité de la densité  
électronique diffractante). 

La cristallite reconstruite est fortement facettée, les facettes {1 0 0} et{1 1 1} étant connectées par des interfaces 
arrondies, en bon accord avec les observations de Sadan & Kaplan (2006), Malyi et al. (2012). 
Les  reconstructions  pour  les  six  premières  étapes  du  cycle  de  charge-décharge  sont  très  reproductibles  et  
semblables aux images en microscopie électronique à balayage réalisées avant l'expérience. 
En revanche après 24h d'illumination sous le faisceau, la forme de la particule évolue drastiquement (Fig.8). Sa  
hauteur reste constante, mais les surfaces respectives pour les facettes {1 1 1} et {1 0 0} sont complètement 
modifiées, notamment du fait d'un allongement de la particule dans la direction [0 1 1]. De plus une rotation de 
la cristallite d'environ 5-10° est clairement visible. Plusieurs mécanismes peuvent être envisagés pour expliquer  
cette évolution, ils impliquent tous de la diffusion de surface qui n'est pas négligeable à température ambiante sur 
une  période  de  24h.  L'hypothèse  la  plus  probable  est  une  rotation  induite  par  la  plasticité  cristalline:  un 
déplacement non compensé d à l'interface avec le substrat est induit au cours du régime de déformation plastique 
(dû à une activation majoritaire de certains systèmes de glissement). Ce déplacement après réorganisation de la 
structure atomique à l'interface induit une rotation de la cristallite. Ce réarrangement n'est pas immédiat car non 
observé pendant les différentes itérations du cycle charge-décharge,  mais après 24h de recuit  à température  
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Fig. 8: Reconstruction de la densité électronique diffractante représentée à 25% de la densité maximale pour  
chaque itération du cycle de charge-décharge. La densité est moyennée sur les 10 meilleures reconstruction 
après chacune des étapes du cycle. (a-g) Indentations itératives, (h) 24 h de vieillissement sous le faisceau à 
température ambiante.
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ambiante, les mécanismes de diffusion peuvent entraîner une modification de cette interface substrat/cristallite.

Imagerie d'une boucle de dislocation prismatique 

La modification la plus significative de la forme du pic de Bragg intervient après 3 itérations du cycle 
charge-décharge. La présence de défauts dans la cristallite est donc suspectée à cette itération du cycle. La figure 
9.a montre l'isosurface de la densité électronique diffractante reconstruite représentée à 25% du maximum de  
densité. Une chute de densité ayant la forme d'une boucle d'environ 50 nm de diamètre est clairement visible 
approximativement  100  nm  au  dessus  de  l'interface  particule-substrat.  Ces  perturbations  dans  la  densité  
électronique sont très similaires à celles observées au voisinage des dislocations dans nos simulations. 
La reconstruction du champ de déplacement u1 1 1 représenté ici dans les plans (y,z) (1 1 0) (Fig. 9.b), (x,z) (1 1 2) 
(Fig. 9.c) and (x,y) (1 1 1) (Fig. 9.d) qui interceptent la boucle en deux points, montre à chaque fois la présence 
de deux vortex de chiralité opposée. Ce profil du champ de déplacement, en tout point similaire à celui observé 
autour des boucles prismatiques, simulées permet de conserver la nature prismatique de la boucle germée au 
cours de l'indentation de la cristallite. 

La présence d'une unique boucle dans la structure peut s'expliquer par le fait  que les boucles régulièrement  
émises au cours de l'indentation depuis la région situé sous la pointe sont annihilées sur les surfaces libres de la  
cristallite.  Par  ailleurs  le  retrait  de  la  pointe  avant  l'acquisition  de la  figure de  diffraction  3D entraîne des 
évolutions supplémentaires dans la microstructure. La stabilisation d'une boucle dans la particule est donc un 
événement plutôt rare. Dans notre cas la présence d'une boucle prismatique n'est avérée qu'à une seule itération 
du cycle charge-décharge. En résumé, la germination d'une boucle de dislocation prismatique est avérée par la 
reconstruction de la densité électronique et du champ de déplacement u1 1 1. Son diamètre de 50 nm équivaut à un 
rayon de contact de 3nm, valeur correspondant à l'initiation de la déformation plastique.  
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Fig.  9 Reconstruction du champ de déplacement autour d'une boucle de dislocation  
prismatique après  quatre  itérations  dans  le  cycle  de  charge-décharge.  (a)  Densité 
électronique diffractante représentée à 15% du maximum de densité.  Les chutes de 
densité électronique indiquent la position des boucles. Champ de déplacement  u1 1 1  

reconstruit dans les plans (1 1 0 ) (b), (1 1 2) (c) et (1 1 1) (d)  interceptés par la boucle 
de  dislocation  en  2  points.  La  densité  électronique  diffractante  est  également 
représentée en transparence pour permettre une localisation précise de la boucle.
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Fig. 10: Reconstruction du champ de déformation  εz pour des itérations successives du cycle de charge-décharge (a) Reconstruction du 
champ de déformation εzz dans les plans (x,y), (x,z) and (y,z) correspondant respectivement aux plans (1 1 1), (1 1 2) et (1 1 0). (d), (g), 
(j) et (m) champ de déformation dans ces mêmes plans après 3, 4, 5 et 6 itérations (24 h vieillissement) dans le cycle de charge-
décharge.  Isosurface des déformations représentées pour  εzz  < 7.10-4 (bleu) et  εzz  > 7.10-4 (orange) dans l'état initial (b), après 3 
itérations (e),  après  4 itérations (h),  après  5 itérations (k)  et  après  6 itérations et  24 h vieillissement  (n).  Figures  de diffraction  
correspondantes dans les plans (qy,qz) dans l'état initial (c), après 3 itérations (f) après 4 itérations (l) et après 6 itérations et 24 heures  
de vieillissement (o)
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Évolution des champs de déformation et de déplacement au cours du cycle d'indentation

La reconstruction du champ de déplacement  u1  1  1  pour chaque itération du cycle de charge-décharge 
permet d'évaluer l'évolution de la déformation résiduelle dans la cristallite. Nous espérons ainsi confirmer le 
phénomène de recuit mécanique, dont l’occurrence est suggérée par l'analyse des figures de diffraction. Pour 
avoir une idée plus claire de l'évolution de la déformation résiduelle, la composant  ε zz  du tenseur de déformation 
est dérivé à partir du champ de déplacement. εzz est représenté à chaque étape du cycle dans les plans (1 1 0) 
(coupe y-z), (1 1 2) (coupe x-z) et (1 1 1) (coupe x-y). La distribution volumique de εzz est également représentée 
sur les figures (Fig. 10.b, 10.e …, 10.n) . Seules les régions soumises à une large compression (ε zz < -7.10-4) ou 
tension (εzz  >7.10-4) sont  représentées, respectivement par des isosurfaces bleues et oranges.
En résumé, trois différentes distributions de la déformation résiduelle sont observés au cours des itérations de 
charge, et une importante évolution à la fois de la forme mais aussi de la distribution de la déformation résiduelle  
est observée après 24h de vieillissement.
État initial de la déformation résiduelle:
La plus grande valeur de déformation résiduelle est observée lors de l'état initial. L'interface substrat/cristallite  
correspond à une région de compression quand le centre de la particule correspond à une zone de tension.
Présence de boucles dislocations prismatiques:
Après 3 itérations de charge, la déformation compressive à l'interface cristallite/substrat est affectée de manière 
marginale. En revanche, dans la région centrale la déformation résiduelle a quasiment complètement disparu et 
est désormais localisé au voisinage de la boucle de dislocation. 
Recuit mécanique
Pour  I=4 et  I=5,  la  déformation  compressive  à  l'interface  cristallite/substrat  est  toujours  présente  bien  que  
légèrement réduite en comparaison de l'état initial. En revanche la région de déformation en tension a presque 
complètement  disparue:  c'est  le  phénomène  de  recuit  mécanique  associé  à  la  germination  de  boucles  
prismatiques. 
24 h de vieillissement:
Une profonde modification de la distribution de la déformation résiduelle, associée à l'évolution de la forme de 
la particule est observée après 24h de vieillissement à température ambiante. En particulier,  au centre de la  
cristallite, des régions successives de déformation en tension et en compression sont observées.

En conclusion de ce chapitre, nous avons appliqué les méthodes décrites dans les chapitres III à V pour 
étudier l'évolution de la microstructure d'une cristallite d'or au cours d'une expérience d'indentation in situ. La 
germination  d'une  boucle  de  dislocation  prismatique  a  été  mise  en  évidence,  ce  qui  constitue  à  notre  
connaissance, la première identification d'une boucle de dislocation prismatique par CDI. La relaxation de la 
contrainte résiduelle par recuit mécanique a également été clairement démontrée.

Chapitre VII: Étude de la distribution tri-dimensionnelle de la déformation dans 
une particule d'or maclée de taille submicronique par diffraction des rayons X 

cohérents et simulations de statique moléculaire

Ce  chapitre  est  consacré  à  l'étude  du  champ  de  déformation  d'une  particule  d'or  submicronique 
présentant un joint de macle, par l'utilisation combinée de la diffraction des rayons X cohérents et de simulations  
atomistiques. Comme illustré dans les chapitres précédents, la CDI peut-être utilisée pour imager le champ de  
déplacement 3D autour d'un défaut unique ou d'un réseau de dislocations. Cependant, la technique étant sensible  
aux  déviations  par  rapport  au  cristal  parfait,  elle  n'est  pas  uniquement  sensible  à  la  présence  de  défauts  
cristallins,  mais  également  à  toutes  les  sources  de  déformation  résiduelle  dans  la  particule:  la  déformation 
interfaciale pour les particules en épitaxie, la déformation thermoélastique induite par le traitement thermique de  
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la particule mais également la déformation produite par la relaxation des surfaces libres.  Dans ce chapitre, la 
technique est utilisée pour étudier la distribution du champ de déplacement 3D dans la particule maclée qui  
dépend de toutes ces contributions.
Le procédé d'élaboration de la particule d'or et les détails expérimentaux sont présentés dans les deux premières  
parties de ce chapitre. Dans la dernière partie, des simulations de dynamique moléculaire sont utilisées pour 
analyser et comprendre la distribution 3D de la déformation résiduelle dans la particule. Les effets de taille et 
l'influence des conditions aux limites sur cette distribution sont notamment discutés. 

Détails expérimentaux

Les cristallites d'or sont mis en forme par la technique de démouillage en phase liquide sur un substrat de  
saphir (0 0 0 1) (axe-c). Le démouillage du film mince d'or polycristallin est réalisé par chauffage du film mince 
d'or pendant 10h à 1100°C. Ce procédé d'élaboration permet l'obtention de particules très facettées de diamètre  
compris entre 200 et 800 nm et séparées par une distance typique de 2 μm. Elles adoptent la forme d'équilibre de 
Winterbottom  (Winterbottom 1967) qui se caractérise par la présence de facettes {1 0 0} et {1 1 1} séparées par  
des régions rugueuses et arrondies (Heyraud & Métois 1982, Sadan & Kaplan 2006).
La mesure des cristallites d'or est réalisée sur la ligne I13-1 de la Diamond light source. Une faisceau de rayons-
X cohérents d'énergie 9.7 keV est focalisé sur l'échantillon grâce à des miroirs Kirkpatrick-Baez (KB) permettant 
d'obtenir une taille de faisceau d'approximativement 8 x 6  μm2 sur l'échantillon. En dépit de la large taille du 
faisceau,  il  est  possible  d'isoler  une  cristallite  d'orientation  hors  plan  (0  0  1)  dont  l’occurrence  est  moins  
fréquente que l'orientation (1 1 1).  La réflexion 0 0 2 de Bragg de cette cristallite est mesurée en géométrie  
spéculaire.  L'acquisition  d'une  cartographie  3D  de  la  réflexion  de  Bragg  est  effectué  par  une  mesure  en  
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Fig. 11 Particule d'or maclée mesurée expérimentalement (a) Isosurface de la 
densité électronique diffractante reconstruite représentée à 50% du maximum 
de densité  (b)  Modélisation de  la  particule  maclée.  La  région  entourée  en 
rouge correspond à celle mesurée expérimentalement (c) Coupe (1 1 0) de la 
figure de diffraction cohérente utilisée pour la reconstruction 
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bercement (rocking curve) sur +/- 0.5° par pas de 0.005°. 
La Fig. 11 montre une coupe perpendiculaire à l'axe (1 1 0) de la figure de CXD. La direction du vecteur g = 0 0 
2 est indiquée par une flèche rouge. Des franges d'interférences sont observées dans les directions normales aux 
facettes de la cristallite. D'autre part, une asymétrie est observée le long de la direction [0 0 1], où les franges au  
dessus de la positon de Bragg sont plus intenses que celles en dessous. Une figure de diffraction mesuré sur un 
cristal parfait (pas de déformation) apparaîtrait parfaitement centrosymétrique (Robinson et al. 2001). Huang et  
al.(2008) ont mis en évidence qu'une telle distribution de l'intensité diffractée est associée à des phénomènes de 
contraction de surface, la direction de l'asymétrie étant le long de la facette subissant la contraction maximale.).
A partir des données de diffraction, la densité électronique diffractante et le champ de déplacement u0 0 2 sont tous 
deux reconstruit, en utilisant les algorithmes classiques de restitution de phase: Error reduction (Gerchberg et 
Saxon 1972), Hybrid Input Output (Fienup 1982) et Shrink-Wrap (Marchesini 2003).
La Fig. 11.a montre la densité électronique diffractante. La région maclée ne satisfait pas les conditions de Bragg 
et est donc absente de la reconstruction. Le modèle atomistique présenté sur la Fig. 11.b illustre la proportion 
relative (estimée) entre les deux grains. En bon accord avec les observations en microscopie électronique à  
balayage, la particule obtenue est fortement facettée avec des régions rugueuses de petite taille entre les facettes 
{1 0 0} et {1 1 1}. La reconstruction du champ de déplacement  u0 0 2  révèle une distribution assez complexe 
vraisemblablement influencée par plusieurs sources de déformation.

Simulations de statique moléculaire

Afin  d'analyser  et  de  comprendre  la  distribution  de  la  déformation  résiduelle  dans  la  particule,  la 
cristallite maclée est modélisée grâce au code de simulation atomistique MERLIN (Rodney 2010). Un potentiel  
EAM (Embedded Atom Method, Grochola et al.  2005) est utilisé pour  décrire les forces entre les atomes. Ce 
dernier reproduit avec précision les énergies de surface et les propriétés élastiques de la cristallite. Les particules  
sont modifiés selon la forme d'équilibre de Wulff, et les aires des différents plans cristallographiques sont ensuite  
ajustées afin de reproduire le plus fidèlement possible la forme de la particule expérimentale.  Évidemment la 
taille de la particule expérimentale (360x270x270 nm3) n'est pas atteignable par des simulations atomistiques, 
aussi  l'effet  de  la  taille  sur  la  distribution  de  la  déformation  résiduelle  est  analysé  par  la  modélisation  de  
cristallites de taille comprises entre 25 et 170 nm (respectivement 15 fois et 2 fois plus petites que la cristallite  
expérimentale). Les cristallites sont relaxées dans leur forme d'équilibre de Wulff par minimisation d'énergie à 
0K. La cristallite relaxée est ensuite coupée selon le plan de macle (1 1 1)  pour reproduire la forme observée 
expérimentalement. L'analyse de la distribution de la déformation résiduelle est conduite à la fois dans l'espace 
réciproque (calcul des figures de diffraction associées aux cristallites relaxées avec la librairie PyNx : Favre-
Nicolin et al. 2010) et dans l'espace réel (reconstruction du champ de déplacement u002  à partir des données de 
diffraction simulées). 
Ces deux approches permettent d'établir que la distribution de la déformation résiduelle n'est que faiblement  
affectée par la taille de l'objet et dépend d'avantage de sa géométrie, même si de manière attendue, les effets de  
relaxation de surface sont plus prononcés pour les particules de petite taille. La modélisation de cristallites de  
taille modeste apparaît donc comme une approche valide pour analyser la distribution expérimentale du champ 
de déplacement 3D. Cependant l'accord avec les données expérimentales est loin d'être satisfaisant et suggère la  
présence  d'une  autre  source  de  déformation  probablement  liée  au  procédé  d'élaboration  de  la  particule.  La 
présence d'une déformation thermoélastique associée au refroidissement au refroidissement de la particule à  
température ambiante est suspectée. 

Pour déterminer l'influence du substrat et du joint de macle sur la distribution de la déformation résiduelle, des 
cristaux de 50 nm présentant des conditions aux limites variables sont modélisés et relaxés à 0K. Plusieurs cas  
sont  considérés:  (b)  particule  non  relaxée  (cas  du  cristal  parfait)   de  géométrie  similaire  à  la  particule  
expérimentale, (c) particule relaxée dans sa forme d'équilibre de Wulff puis coupée selon le plan de  macle, (d) 
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particule maclée relaxée (e) particule coupée selon le plan de macle puis relaxée → le plan de macle est donc 
une surface libre. (f) particule mise en contact avec un substrat dont le paramètre de maille est ajusté pour 
simuler une quantité définie de déformation interfaciale. 

Les figures de diffraction sont calculées pour ces différentes configurations au voisinage de la réflexion de Bragg 
0 0 2.  Plusieurs enseignements peuvent être déduits de l'étude de ces figures de diffraction: 

– la cristallite de Wulff tronquée (c) et la cristallite maclée (d) produisent des figures de diffraction très  
similaires. Cela suggère qu'aucune déformation résiduelle n'est générée au voisinage du joint de macle, 
un résultat finalement peu surprenant puisqu'un joint de macle est une interface cohérente.

– Si  le  joint  de  macle  est  considéré  comme  une  surface  libre  (f),  la  forme  du  pic  de  Bragg  est  
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Fig. 12 :  Influence des conditions aux limites sur les figures de diffraction cohérentes  
pour g = 0 0 2. Cristallite expérimentale (a) et cristallites modélisées (b-e). (b) Forme 
d'équilibre  de  Wulff,  avant  relaxation des  surfaces  libres.  (c)  Forme d'équilibre  de 
Wulff,  relaxation  des  surfaces  libres,  pas  de  déformation  interfaciale  (d)  Particule 
maclée, relaxation des surfaces libres, pas de déformation interfaciale. (e)  Particule 
maclée,  joint  de  macle  considéré  comme  une  surface  libre,  pas  de  déformation 
interfaciale. (f) Forme d'équilibre de Wulff, relaxation des surfaces libres et prise en 
compte de la déformation interfaciale. 
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profondément affectée.  La surface libre subit  en effet  une forte contraction qui  affecte fortement la  
distribution de la déformation résiduelle. Il est donc clair que la cristallite mesurée expérimentalement  
est une particule maclée et non un monocristal coupée le long de son plan (1 1 1).  

– le meilleur accord avec la figure de diffraction expérimentale est obtenu (et de loin) quand la particule  
est contrainte par un substrat.

La reconstruction du champ de déplacement permet d'établir des conclusions similaires à l'analyse des figures de 
l'espace  réciproque.  Un  bon  accord  avec  les  résultats  expérimentaux  est  obtenu  quand  l'influence  de  la  
déformation interfaciale est prise en compte dans les configurations atomistiques (Fig. 13)

Cette exemple de reconstruction expérimentale d'une particule d'or maclée démontrent que la diffraction 
cohérentes  est  sensible  aux différentes  sources  de  déformation résiduelle  dans  la  cristallite:  la  déformation  
interfaciale , la déformation thermoélastique induite par le traitement thermique de la particule mais également la  
déformation produite par la relaxation des surfaces libres. L'utilisation de simulations de dynamique moléculaire 
permet de quantifier l'influence de ces contributions et d'obtenir une distribution de la déformation résiduelle en 
bon accord avec les résultats expérimentaux.

Chapitre VIII : Étude d'une interface bi-métallique hétérogène (Cu-Ta) par 
diffraction de surface, calculs ab-initio et dynamique moléculaire
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Fig.  13 Comparaison  entre  la  reconstruction  des  données  expérimentales  et  simulées. Reconstruction  de  la  densité 
électronique  diffractante  (isosurface  50%  de  la  densité  maximale)  pour  la  particule  expérimentale  (a)  et  simulée  (c)  
indiquant la position des coupes pour lesquelles le champ de déplacement est reconstruit. Coupes (100), (010) et (001) du 
champ de déplacement pour la particule expérimentale (b) et simulée (d)
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Dans ce chapitre, l'interface hetero-épitaxiale formée par un film mince de cuivre déposé sur un substrat  
de Tantale est étudiée par diffraction de surface et calculs ab initio. Ces deux outils permettent de déterminer la 
structure atomique de la couche de mouillage sur la surface (0 0 1) du Tantale. 
L'évolution du signal de diffraction de surface (SXRD) est mesuré in situ pendant le dépôt et la démouillage de 
la  couche  de  Cu.  Ces  mesures  permettent  d'identifier  sans  ambiguïté  la  présence  de  deux  couches  de  Cu  
pseudomorphes (PM) sur la surface de Tantale. La distance inter planaire entre les plans de Cu et les plans de Ta 
de surface est également déterminée avec précision. Des calculs de théorie de la fonctionnelle de la densité  
(DFT) dans l'approximation locale sont ensuite utilisés pour calculer l'énergie d'interface d'excès d'un ensemble  
de configurations atomistiques, présentant un nombre variable de couches PM ainsi que des structures atomiques 
différentes. Ces deux approches conduisent à des résultats remarquablement similaires.

Expérience de diffraction de surface (SXRD)

Fig. 14 Comparaison entre le CTR 1 0 L (a) et le CTR 1 1 L (b) pour les deux campagnes expérimentales, réalisées avec des  
niveaux différents de contamination. Les barres d'erreur ne sont pas visibles pour faciliter la visualisation.

La diffraction de surface est un outil puissant pour sonder la structure de surfaces cristallines (Robinson  
& Tweet 1992). Des interfaces avec une terminaison nette donnent naissance à des tiges de troncature du cristal  
(CTR) dans l'espace réciproque (Andrews & Cowley, 1985). Ces CTR s'avèrent particulièrement efficace pour 
l'étude de couche de mouillage pseudomorphes (Ball et al. 2002). En effet, l'amplitude diffractée par les couches 
pseudomorphes  est  renforcée  par  phénomène  d'interférence  avec  l'amplitude  diffractée  par  le  substrat,  au 
voisinage des réflexions dans le plan de ce dernier. Ces interférences permettent une détermination quantitative  
du nombre de couches pseudomorphes et leur distance inter planaire. 
L'expérience a été réalisée sur la ligne BM32 de l'ESRF. Cette dernière contient une chambre à ultra vide (UHV) 
équipée pour la préparation d'échantillon et montée sur un diffractomètre. Le dépôt du cuivre et le démouillage  
peuvent  donc  être  réalisés  in  situ,  en  revanche  la  préparation  de  la  surface  (0  0  1)  du  Ta  requièrent  des 
température de recuit à des températures supérieures à 2000 K qui ne peuvent être atteinte dans la chambre. La  
préparation de la surface de Ta (0 0 1) est donc réalisée ex situ. 
Une couche de protection de cuivre de 5 nm est déposée pour couvrir la surface de Ta pendant le transfert sur la 
chambre de la ligne,  principalement réalisé sous vide primaire avec une très courte exposition à l'air.  Cette  
couche est ensuite retirée par évaporation à 1300 K, permettant d'obtenir  une surface de Ta très faiblement  
contaminée.
Quatre jeux de données (A, B, C et D par la suite) ont été collecté au cours de deux sessions expérimentales. Les  
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conditions  de préparation de la surface de Ta, de déposition et de démouillage de Cu diffèrent pour ces quatre  
jeux de données, cependant ils conduisent tous à l'obtention d'une surface de Ta propre dans l'état initiale. 
La contamination de l'interface intervient principalement lors de la mesure des CTR. L'ordre de mesure des CTR 
variant selon la session expérimentale, des mesures ont donc été réalisées avec des niveaux de contamination de 
surface variables. Par exemple, le CTR 1 1 L a été mesuré sur une surface ne présentant aucune contamination au 
carbone  et  une  contamination  d'oxygène  très  limitée  pour  les  jeux  de  données  C  et  D,  tandis  que  la  
contamination  de  surface  (oxygène  et  carbone)  est  prononcée  dans  le  cas  du  data  set   A.  Les  différences  
observées entre le jeu de données A d'une part et les jeux de données C et D d'autre part (Fig. 14) sont donc  
vraisemblablement liés à cette contamination de surface. Des constatations similaires peuvent être effectuées  
dans le cas du CTR 1 0 L. 

Calculs DFT

A partir des mesures des CTR, la détermination précise de la structure de l'interface est en principe 
obtenu par un fit des données expérimentales. Dans ces travaux de thèse, nous utilisons des calculs DFT afin 
d'établir  si  cette  méthode  permet  d'obtenir  une  description  de  l'interface  en  bon  accord  avec  les  résultats  
expérimentaux.
Afin de déterminer la structure et la stabilité d'un film mince de Cu sur la surface de Ta(0 0 1)  plusieurs  
systèmes d'interfaces contenant un nombre variables de couches PM (1 à 6) sont modélisées. L'influence de la  
structure  cristalline  sur  la  stabilité  du  film  mince  est  également  évaluée  à  travers  deux  configurations  
supplémentaires contenant une couche f.c.c. de Cu, déposée sur la surface de Ta dans un cas, et sur deux couches  
PM.  La  stabilité  thermodynamique  des  films  minces  de  Cu  est  déterminée  par  calcul  de  l'énergie  d'excès  
d'interface représentant la différence entre une configuration complètement relaxée et une configuration avec le  
même nombre d'atomes dans l'environnement du matériau massif. L'énergie d'excès d'interface est la somme de 
l'énergie de l'interface film/substrat  γi,  et  de l'énergie de surface libre du film mince  γ f   i.e. γ = γi  +  γf.  La 
contribution de l'énergie de déformation élastique est également implicitement contenue dans cette équation, sa 
contribution augmentant avec le nombre de couches de Cu et devenant rapidement prédominante à partir d'un 
faible nombre de couches de Cu. La stabilité et le mode de croissance d'un film mince sur un substrat peut-être 
évaluée à partir de la différence d'énergie entre une configuration contenant uniquement des surfaces libres et  
une configuration contenant des interfaces. Cela se traduit en équation par (Freund & Suresh 2003, Wuttig & Liu  
2004) :

δ = γ i+γ f −γ s           (1)

où γs est l'énergie de surface libre du substrat.   Le mode de croissance du substrat dépend du signe de δ. Pour δ < 
0 l'interface film/substrat est thermodynamiquement stable et la croissance s'effectue couche par couche (mode 
de croissance Frank-van-der-Merwe: Frank & Van der Merwe 1949, Van der Merwe 1963). A partir de δ = 0, une  
croissance de type Stranski-Krastanov correspondant à une croissance 3D sur le film mince. 
Les énergies d'interface calculées pour 1 à 6 PM sont modélisés dans le tableau  1. 

0 PM 
(dewetting)

1 PM 2 PM 3 PM 4 PM 5 PM 6 PM

γ (J/m2) 2.50 2.19 2.63 2.78 3.13 3.32

Tab. 1: Comparaison des énergies d'excès d'interfaces calculées pour 1 à 6 couches PM sur la surface de Ta (0 0 1)

Notre  énergie  de  surface  libre  calculée  est  égale  à  γs  is  3.18  J/m2 une  valeur  supérieure  aux  estimations 
expérimentales de 2.5 J/m2 (Tyson & Miller 1977), mais proche d'autres valeurs théoriques de 3.10 J/m2 (Vitos et  
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al. 1998) et de 3.14 J/m2, (Aqra & Ayyad 2011). L'énergie de surface libre du Ta(0 0 1) est supérieure à l'énergie 
d'excès d'interface (δ < 0) pour jusqu'à 5 couches PM. La configuration contenant deux couches PM est donc la  
plus stable alors que 1, 3, 4 et 5 couches de Cu PM sont métastables. Un mode de croissance de type Frank-van-
der-Merwe est ainsi attendu jusqu'à 5 couches PM avant de basculer dans un mode Stranski-Krastanov. Ces  
résultats sont en bon accord avec des données expérimentales reportant la présence d'une à deux couches de  
mouillage (Venugopal et al. 2009). 
Les  configurations  contenant  des  couches  de  Cu  f.c.c.  n'ont  en  revanche  pas  convergé  vers  des  structures  
«acceptables» avec une forte tendance à former des couches PM. Il a donc été impossible de déterminer l'énergie 
d'excès d'interface pour ces configurations.

Comparaison entre les calculs DFT et les données de diffraction de surface

La comparaison entre les calculs DFT et les calculs de diffraction de surface peut-être vérifié par le  
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Fig.  15 Comparaison des facteurs de structure calculés  1 0 L (a) et 1 1 L(b) avec les données expérimentales pour un  
nombre variable de couches pseudomorphes.

Fig. 16 Influence du nombre de plans de Ta relaxés sur les facteurs de structure  10L (a) et 11L(b) calculés. 

(a) (b)
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calcul des facteurs de structure pour les configurations relaxées. Ces calculs sont effectuées grâce au logiciel  
ROD (Vlieg 2000). La figure 15 présente plusieurs comparaisons entre des CTR mesurés sur des surfaces de Ta 
propres, et les CTR calculés pour 1,2 et 3 couches PM. Pour les CTR 1 1 L et 1 0 L, le meilleur accord est trouvé 
pour  2  couches  PM.  Cet  accord  est  renforcé  quand  la  surface  de  Ta(0  0  1)  est  vierge  de  contamination, 
confirmant l'importance des effets de contamination discutés dans la section précédente.
Afin de quantifier l'importance de la prise en compte des effets de relaxation de surface du Ta, les facteurs de  
structure sont calculés pour quatre configurations avec un nombre variable de plans de Ta pris en compte pour la  
relaxation. Comme illustré sur la figure 16 pour les deux CTR, un bon accord avec les résultats expérimentaux 
est uniquement obtenu à partir de 3 plans de Ta relaxés. Ces calculs confirment donc l'importance de la prise en  
compte des effets de relaxation de surface du Ta pour une description précise de l'interface Cu-Ta.
 Cette étude de l'interface Cu/Ta (0 0 1) combinant mesures de SXRD et calculs DFT démontre donc la 
présence  de  deux  couches  pseudomorphes  de  cuivre  après  démouillage  du  cuivre.  Les  deux  approches 
conduisent à des résultats remarquablement similaires, en particulier pour une faible contamination de surface.  
Les deux couches de cuivre ont une structure b.c.c. avec une distance inter planaire d1-2 = 1.035 Å qui permet de 
maintenir une distance avec le plus proche voisin équivalente à celle de la structure f.c.c. du matériau massif.  
Cette configuration minimise l'énergie élastique des liaisons Cu-Cu et est uniquement possible en l'absence d'une 
troisième couche de cuivre. 

Chapitre IX: Interface des cristallites de cuivre démouillés en phase solide sur une 
surface de Ta(0 0 1) étudiée par diffraction des rayons X cohérents et simulations 

de dynamique moléculaire.

Dans le chapitre VIII nous avons étudié la structure atomique de la couche de mouillage de Cu sur la 
surface (0 0 1) du Tantale. Les calculs DFT ont permis de prédire une interface en très bon accord avec les  
résultats expérimentaux. Du fait du très grand nombre d'atomes nécessaires pour modéliser l'interface Cu-Ta 
dans les cristallites de cuivre, il est malheureusement impossible de déterminer la structure de cette interface 
dans les cristallites par des calculs ab-initio.  Pour des systèmes de cette taille, le recours a des simulations de 
dynamique moléculaire utilisant des potentiels interatomiques constitue un outil puissant pour la prédiction de  
cette interface. 
Ce chapitre débite par la description de la préparation de l'échantillon, nous permettant de détailler la géométrie  
de la cristallite de cuivre et son influence sur l'importante déformation interfaciale induite par le procédé de  
démouillage en phase solide. La seconde partie de ce chapitre est consacrée à des simulations de dynamique  
moléculaire que nous allons détailler par la suite. Dans un premier temps, l'orientation et la forme d'équilibre des  
cristallites  est  discuté  et  comparé  avec  les  observations  expérimentales.  Les  interfaces  obtenues  avec  les 
conditions expérimentales simulées sont ensuite présentées et comparées avec des images de l'interface obtenues 
par microscopie électronique en transmission à haute résolution. Pour finir, l'influence de la structure atomique 
de l'interface sur la distribution du champ de déplacement dans la particule est discutée dans la dernière section 
de ce chapitre. 

Simulations de dynamique moléculaire de l'interface CuTa

Le potentiel utilisé pour les simulations de MD est un potentiel à dépendance d'angle (angular dependant 
potential : ADP) développé par Hashibon, Lozovoi et al. (2008). Dans le chapitre VIII il est démontré qu'en dépit 
de certaines limitations, ce potentiel parvient à prédire le nombre correct de couches PM à l'interface Cu-Ta.  
Dans un premier temps, nous vérifions si le potentiel parvient à reproduire l'orientation et la forme des particules 
observées expérimentalement.  Plusieurs simulations de démouillage en phase solide conduisent, -
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- indépendamment des conditions initiales (film mince, forme d'équilibre de Wulff tronquée, nombre variable de  
couches PM), et de manière reproductible, à une orientation similaire à celle établie expérimentalement, à savoir  
Cu  (0  0  1)[1  1  0]  //  Ta  (0  0  1)[1  0  0]  (Beutier  et  al.  2013a).  Dans  l'état  final,  une  forme d'équilibre  de 
Winterbottom (Winterbottom 1967) est systématiquement obtenue. Cette forme d'équilibre étant obtenue par une 
minimisation de l'énergie de surface par optimisation des surfaces des différents cristallographiques, il est clair 
que  le  potentiel  parvient  donc  à  prédire  des  énergies  de  surface  en  bon  accord  avec  les  observations 
expérimentales. 
Le  nombre  de  couches  de  mouillage  pseudomorphes  est  également  indépendant  des  conditions  initiales  et 
toujours égal à 2. La structure atomique de l'interface dépend en revanche en partie des conditions initiales de la  
simulation. L'évolution de cette interface quand la cristallite est soumise à des temps de recuit prolongés est  
illustrée à travers deux exemples présentés sur la figure 17. Une cristallite de petite taille issue du démouillage en 
phase solide d'un film mince f.c.c. de Cu, et une particule de plus grande taille, également issue du démouillage  
d'un film mince f.c.c. Dans le cas de la particule de petite taille, le film mince repose sur la surface libre du  
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Fig. 17: Effet de taille sur l'interface Cu-Ta. (a) Structure atomique de la 2ème couche de cuivre dans une particule de petite 
taille. (b) Vue en coupe de l'interface Cu-Ta, les dislocations initiés sur la première couche de cuivre sont prédominantes. (b)  
Structure atomique de la  2ème couche de cuivre dans une particule de plus grande taille.  (d) Vue en coupe de l'interface Cu-
Ta, les dislocations initiés sur la deuxième couche de cuivre sont prédominantes.
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Tantale dans les conditions initiales, alors que pour la particule de grande taille, une couche de mouillage PM de 
Cu est insérée entre le substrat de Tantale et le film mince de Cu. La figure 17 présente la structure atomique 
après des temps de recuit respectifs de 23 et 15 ns pour la petite et la grande cristallite.  Comme illustré sur la Fig. 
17.a, la structure atomique de la 2ème couche est assez fortement ordonnée. La structure peut-être décrite comme 
intermédiaire entre b.c.c. et f.c.c., mais cette dernière domine clairement la tendance. La plupart des dislocations  
d'interface débutent sur la première couche de Cu (en rouge sur la Fig. 17.b). Pour la particule de plus grande  
taille, la structure de la  2ème couche de Cu est encore une fois intermédiaire entre b.c.c. et f.c.c, mais c'est cette 
fois ci la structure b.c.c. qui prédomine. Associé à cette prédominance, la majorité des dislocations d'interface  
débutent à partir de la deuxième couche de Cu (en violet sur la Fig. 17.d). 

En résumé, les configurations atomistiques recuites en dessous de la température de fusion du cuivre 
conduisent à une interface Cu-Ta très reproductibles. Pour accommoder la grande différence de paramètre de 
maille, un réseau de dislocations orthogonales est toujours obtenu. L'intervalle entre ces dislocations est régulier  
(une dislocation tous les 4.5 plans de Cu). D'autre part, ni le nombre de couches PM (0,1 ou 2), ni les conditions 
aux limites (film mince ou cristallite) dans l'état initial ont une influence marquée sur la forme d'équilibre ou 
l'interface Cu-Ta obtenue après recuit. 

Observation de l'interface par microscopie électronique en transmission à haute résolution
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Fig. 18: Micrographie en microscopie électronique en transmission à haute résolution (HR-TEM)  
illustrant la structure atomique de l'interface Cu-Ta.
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En dessous de la température de fusion du cuivre, l'interface obtenue avec le potentiel Cu-Ta est très  
reproductible, ce qui ne signifie pas pour autant qu'elle est en bon accord avec les résultats expérimentaux.
Pour  l'étude d'interfaces  avec une résolution atomique,  la  microscopie électronique en transmission à haute  
résolution (HR-TEM) est une bonne alternative aux techniques de diffraction des rayons X. La figure 18 illustre  
la structure atomique détaillée de l'interface vue depuis la direction [0 1 0] du substrat (direction [1 1 0] de la 
cristallite).  Cette  micrographie  permet  de  confirmer  que  la  grande  différence  de  paramètres  de  maille  est  
accommodée par des dislocations de « misfit ». L'intervalle entre ces dislocations est en très bon accord avec les 
prédictions du potentiel ADP, avec une distribution des dislocations tous les 4 à 5 plans. En particulier, la région 
délimitée par le contour vert correspond à 45 plans de Cu sur 35 plans de Ta, correspond très exactement au ratio  
déterminé avec le potentiel pour minimiser la déformation dans le plan à 0 K.

Des  simulations  de  grande  taille  utilisant  un  potentiel  Cu-Ta  à  dépendance  angulaire  se  sont  donc 
avérées être un outil efficace pour prédire la structure atomique de l'interface entre une surface de Ta (0 0 1)  
b.c.c. et une cristallite de cuivre (0 0 1) f.c.c. Aussi bien la structure de l'interface que la forme d'équilibre de la  
particule  sont  très  reproductibles  en  dessous  de  la  température  de  fusion  du  cuivre,  indépendamment  des 
conditions initiales de la simulation, et sont en très bon accord avec les observations expérimentales. 

Chapitre X: Étude de la distribution tri-dimensionnelle de domaines d'inversion de 
polarité dans des fils de GaN

Ce court chapitre permet d'illustrer la capacité de l'imagerie par diffraction des rayons X cohérents (CDI) 
à mettre en évidentce des domaines d'inversion de polarité (IDB, Northrup et al. 1996) dans des fils de nitrure de 
Gallium  (GaN).  Ces  domaines  d'inversion  peuvent  être  décrits  comme  des  défauts  planaires  (d'interface)  
localisés  dans  des  plans  (0  1  1 0),  parallèles  à  la  direction  de  croissance  [0  0  0  1]  (axe-c).  Localement,  
l'occupation des sites de Ga et de N est inversée, résultant en une inversion de la polarité du GaN, définie par la  
liaison Ga-N, de part et d'autre de l'interface.
Si ces IDB peuvent être imagés par microscopie électronique à balayage après attaque chimique du fil, l'imagerie 
par  diffraction des rayons X cohérents (CDI) permet de les caractériser de manière non destructive. (pour des 
diamètres  compris  entre  100  nm  et  1  µm)  et  de  révéler  l'arrangement  spatial  des  IDB.  La  technique  est 
particulièrement  adaptée  à  l'étude  de  ces  défauts  planaires,  ces  derniers  pouvant  être  décrits  comme  des 
interfaces cohérentes, de basse énergie et donc exemptes de déformation interfaciale.
L'absence  d'une  déformation  interfaciale  inhomogène  pouvant  altérer  la  distribution  de  la  phase  permet  de 
mesurer très précisément le saut de phase entre les domaines d'inversion permettant d'accéder au déplacement  
relatif entre les deux domaines avec une précision de l'ordre du picomètre. Comme démontré par Labat  et al.  
(2015), l'utilisation de plusieurs réflexions de Bragg non coplanaires permet d'extraire les déplacements dans les 
directions longitudinales et transverses du fil de GaN. La polarité absolue des IDB est ainsi déterminée sans 
ambiguïté. Cette étude se limite néanmoins à 2 dimensions, et les éventuels variations de l'arrangement spatial 
des IDB le long de l'axe-c n'est pas étudié. La reconstruction 3D du champ de déplacement peut-être utilisée 
pour analyser cette évolution. 

Expérience de CXD

L'expérience est réalisé sur la ligne ID01 de l'ESRF. Les fils de GaN dans cette étude sont élaborés par la 
technique d'épitaxie  en phase vapeur  aux organométalliques  (MOVPE)  sur  un substrat  de saphir  (0  0 0 1) 
(orienté selon l'axe-c). Les fils obtenus ont un diamètre typique de 600 nm et une hauteur comprise entre 3 et 5 
μm.  Sur  le  fil  d’intérêt  de  diamètre  400  nm et  de  hauteur  5  μm,  l'acquisition  des  données  de  diffraction 
cohérentes est effectué au voisinage de la réflexion 0 0 4 de Bragg avec un faisceau cohérent focalisé à une taille  
de 0,8x0,4 μm2. Les mesures sont réalisées pour trois positions distinctes le long de l'axe de croissance du fil : 
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proche de sa base, au centre et proche du sommet. Ces positions sont séparées d'approximativement 1,5 μm et 
des figures de diffraction 3D sont collectées pour chacune d'entre par une mesure en bercement (rockin-curve)  
sur 1.28° par pas de 0.05°.  
Dans un premier temps des cartes d'intensité (diffractée) 2D sont extraites des données 3D pour reconstruire une 
image 2D de l'échantillon aux différentes positions le long de l'axe de croissance du fil (axe-c). Ces dernières 
correspondent à une projection du volume mesuré sur l'axe-c.  Si un saut de phase constant de 2.8 radians est  
observé pour les trois positions, il apparaît en revanche que la distribution spatiale des IDB évolue légèrement  
d'une position à l'autre. La structure interne du fil n'est donc pas totalement invariante le long de l'axe-c. Les 
reconstructions 3D pour les 3 hauteurs permettent donc d'établir si cette invariance est visible à l'échelle du 
volume illuminé par le faisceau (0,4 μm de hauteur). Les Fig. 19.d-f révèlent cependant que la distribution pour 
spatiale des IDB est quasiment constante sur la hauteur du volume illuminé, le saut de phase restant constant et 
égal  à  2.8  radians  comme déterminé  précédemment.  Le  recours  à  des   reconstructions  3D n'est  donc  pas 
véritablement nécessaires pour comprendre la microstructure, et les projections 2D s'avèrent donc suffisantes une 
analyse fine de la microstructure. 

Chapitre XI: Étude de la structure magnétique et de la dynamique d’éléments 
magnétiques submicroniques par holographie par transformée de Fourier

Ce chapitre est consacré à la présentation de la technique d'holographie de Gabor (Fourier-transform 
holography:  FTH) et  ses  applications  pour  l'imagerie  de structures  magnétiques.  En effet,  si  les  précédents  
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Fig.  19 Évolution de la proportion relative et de la position de l'interface 
entre deux domaines d'inversion de polarité (IDB) (a) Distribution 3D de la 
phase révélant la présence de deux IDB (c) Coupe y-z montrant l'absence de 
variation dans les proportions relatives des deux domaines. (c) Évolution de 
l'interface pour une hauteur variable.
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chapitres ont permis de démontrer l'intérêt des techniques de diffraction des rayons-X et en particulier de la  
diffraction  des  rayons-X  cohérents  pour  l'étude  des  propriétés  structurelles  d'objets  submicroniques,  ces 
techniques sont également pertinentes pour l'analyse des propriétés fonctionnelles. Parmi elles on trouve les 
propriétés magnétiques également sensibles aux effets de taille.

L'Holographie de Gabor (Fourier Transform Holography)

Dans le régime des X mous, l'holographie de Gabor (FTH) a été utilisée pour la première fois par Mc  
Nulty  et al.  (1992). Sa haute résolution spatiale couplée à son indépendance des aberrations optiques (pas de  
lentille) sont très propices à l'imagerie de matériaux nanostructurés. En exploitant le dichroïsme circulaire de la 
diffraction résonante magnétique des X mous (SXRMS), Eisebitt  et al.  (2004) ont démontré l'application de la 
technique  aux  matériaux magnétiques.  L'holographie  magnétique  combine  donc  les  avantages  de  la  FTH 
conventionnelle (résolution spatiale de quelques nanomètres,  reconstruction aisée de l'image,  sensibilité aux 
couches enterrées)  et  du dichroïsme circulaire magnétique des rayons X :  XMCD (contraste  magnétique et  
chimique).
Dans une première partie de ce chapitre nous présentons tout d'abord les bases de la FTH et ses applications dans  
l'imagerie de structures magnétiques. Dans la section suivante, nous détaillons les spécificités des configurations  
expérimentale utilisée pour réaliser  les expériences d'holographie magnétique.  Pour imager la magnétisation  
dans le plan, nous employons une technique d'imagerie holographique basée sur l'utilisation d'une référence  
étendue : HERALDO (Guizar-Sicairos & Fienup 2007). La pertinence de l'utilisation d'une référence étendue et 
ses avantages est exposée brièvement dans la 3ème section. La deuxième partie est consacré à la présentation des 
expériences  réalisées  au  cours  de  ces  travaux  de  thèse.  Dans  la  première  section  de  cette  seconde  partie  
HERALDO est employée pour étudier la structure magnétique dans le plan d'un élément de Py (Fe/Ni).  Les 
sections suivantes sont consacrées à l'étude des dynamiques de magnétisation de ces nanostructures, notamment 
par l'intermédiaire d'expériences résolues en temps.

Étude de la magnétisation dans le plan de nanostructures magnétiques

Dans ces travaux de thèse, la FTH fût principalement utilisée pour l'étude de la magnétisation dans le plan de  
films minces de permalloy (Fe/Ni). La préparation des échantillons est décrite en détails par Duckworth et al.  
(2011), et est illustré sur la figure 20. Les dimensions typiques de l'élément de Py sont de l'ordre de 600x600x50  
nm3.
Les mesures sur l'élément de Py ont été réalisées sur plusieurs lignes synchrotron parmi lesquel la ligne I06 de la  
Diamond light source.  Comme illustré sur les Fig. 20.c et 20.d, la magnétisation dans le plan est uniquement 
accessible par rotation par rapport à la normale de l'échantillon par un angle compris entre 30 et 45° par rapport à  
la direction de propagation du faisceau de rayons X (Tieg et al.  2010). L'énergie des photons est sélectionnée 
pour correspondre au seuil de l'absorption du Fer (~708 eV).
Les hologrammes sont collectés en utilisant les deux hélicités des rayons X polarisés circulairement. Un grand 
nombre d'hologramme est collecté pour chaque polarisation pour améliorer le rapport signal/bruit. L'image finale 
est obtenue par soustraction des hologrammes accumulées pour les deux polarisations. Cela permet de supprimer 
la contribution de la diffusion de charge et de conserver uniquement la contribution magnétique.
La  sensibilité  de  la  technique  à  la  magnétisation  dans  le  plan  est  illustrée  par  la  figure  21.  Du  fait  de 
l'augmentation de la projection de la magnétisation dans le plan le long de la direction du faisceau, le meilleur  
contraste est obtenu pour une inclinaison assez large de l'échantillon (de l'ordre de 45°). La reconstruction révèle 
la présence de domaines de Landau qui sont typiquement observés pour des éléments de Py de cette taille. Dans 
un élément de forme carré, il prennent la forme de quatre domaines triangulaires. A l'intersection de ces quatre  
domaines se trouve un vortex de 30 nm de diamètre présentant une magnétisation hors plan. La position du cœur 
de vortex est susceptible d'être modifiée par l'application d'un champ magnétique externe. 
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Imagerie en temps résolu des dynamiques de magnétisation du vortex

Si dans un premier temps les éléments de Py ont été employé comme des objets modèles pour démontrer 
la capacité de la FTH couplé avec le XMCD pour l'étude de structures magnétiques dans le plan, il s'avère  
également que ces éléments possèdent également un grand intérêt technologique. L'étude de leur dynamique de 
magnétisation est donc de première importance. L'holographie magnétique est donc utilisée dans cette section en  
temps résolu permettant l'analyse de la précession du cœur vortex induite par de courts pulses magnétiques. 
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Fig.  21:  Organisation des  domaines magnétiques (domaines  
de  Landau)  dans  un  élément  de  Py  à  la  rémanence  
magnétique.  Obtenue par des  simulations micromagnétiques  
(gauche) tel qu'observée expérimentalement dans un élément  
de 2x2 μm2   

Fig.  20 Imagerie de la magnétisation dans le plan d'un élément de Py (a) Image 
MEB d'un élément de Py de 400 nm. La région circulaire et sombre est l'ouverture  
du masque d'or  qui  permet  aux rayons  X de  traverser  l'échantillon.  La  fente  de 
référence est localisé à 5 μm de l'échantillon. (b) Schéma de l'échantillon (c) Design 
de l'échantillon, la face avant de la membrane de SiN est couverte par un masque 
d'or qui bloque les rayons-X excepté dans la région de l'ouverture circulaire et de la 
fente de référence. (d) Géométrie de l'expérience, l'échantillon est  tourné dans le 
faisceau pour imager la magnétisation dans le plan.
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L'expérience est conduite sur la ligne ID32 de l'ESRF sur un élément de Py de 2 x 2 μm2 . Pour fournir le champ 
haute fréquence (RF), des guides d'onde coplanaires (CPW) sont intégrés sur la membrane de Si 3N4 en utilisant 
des  procédures  lithographiques  (Fig.  22.c).  L'échantillon  est  également  incliné  à  45° dans le  faisceau  pour 
accéder à la magnétisation dans le plan (Fig. 22.d). 
Pour  l'analyse  des  dynamiques  de  magnétisation  des  vortex,  les  mesures  sont  réalisées  dans  un  mode 
stroboscopique utilisant une excitation pulsée haute fréquence (RF). Les pulses de rayons X sont fournis par le  
mode 16 bunch,  dont  les paquets d'électrons sont  séparés par 176 ns (Fig.  22.a).  Les pulses de champ RF  
induisent la précession du vortex (pompe) quand les pulses de rayons X (sonde) permettent d'imager une phase  
particulière de la précession (Fig. 22.b) et servent de déclencheur  pour les pulses de champ RF (Fig. 22.a).
Au total,  le vortex est imagée pour 7 positions avec des temps de retard compris entre 0 et 8 ns. Ce retard 
correspond à l'intervalle de temps entre le front montant du pulse de champ RF et (pompe) et le pulse de rayons-
X (sonde). 

La Fig.  23 illustre l'évolution de la position du cœur du vortex pour différents retards.  Le déplacement est  
quantifié précisément en traçant des profiles verticaux et horizontaux à travers le cœur du vortex (Fig. 23.d). La  
précession  du  cœur  est  clairement  visible  (Fig.  23.c)  en  bon  accord  avec  les  prédictions  des  simulations 
micromagnétiques (Fig. 23.b). L’asymétrie de la giration et sa faible amplitude ne peuvent pas être expliqués de  
manière satisfaisante à l'heure actuelle. Ces effets peuvent être liés à la structure du pulse ou encore à des effets  
de couplage induit par le réseau de vortex.
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Fig. 22: Schéma de l'expérience en temps résolu . (a) Imagerie stroboscopique par excitation pulsée 
en mode 16 bunch. Le pulse magnétique est déclenché par le paquet de rayons X et retardé de dt. (b) 
Simulations  micromagnétiques  de  la  précession  du  coeur  du  vortex  dans  un  élément  de  Py  de 
500x500 nm2, pour 3 différentes étapes de la précession (c) Élément de Py et guide d'onde coplanaire 
situé de l'autre côté de la membrane, derrière l'ouverture circulaire. (d) Orientation de l'échantillon par 
rapport au faisceau de rayons X.
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En résumé  ce  chapitre  démontre  donc  que  la  FTH appliquée  à  des  systèmes  magnétiques  est  une 
technique  très  puissante  pour  l'étude  de  structures  magnétiques  et  de  leurs  dynamiques.  L'utilisation  d'une  
référence étendue permet d'améliorer la résolution des données reconstruites et d'imager à la fois les dynamiques 
de magnétisation dans les éléments du Py constitue un résultat important et novateur.

Conclusions et perspectives

La  perspective  choisie  pour  ces  travaux  de  thèse  s'inscrit  dans  une  approche  physique  du  métal  / 
métallurgie et est basée sûr l'étude de la relation entre la microstructure cristalline (présence de défauts), les  
propriétés  physiques  et  l'élaboration.  Dans  ce  cadre  nous  avons  utilisé  un  outil  expérimental,  la  radiation 
synchrotron,  et  plus  spécifiquement  les  techniques  de  diffraction  des  rayons  X cohérents,  pour  répondre  à 
plusieurs questions fondamentales

Défauts structuraux et effets de taille sur les propriétés mécaniques

La réponse mécanique d'un objet cristallin dépend de la nature, de la densité et du comportement des  

35

Fig.  23:  Position du cœur du vortex pour différentes  étapes de sa précession.  (a)  et  (b)  profiles 
montrant l'évolution des positions horizontales et  verticales du cœur du vortex. Ces profiles sont  
tracés pour les positions indiquées sur la figure (d). (c) Position du cœur du vortex pour différentes 
valeurs du décalage temporel.
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défauts qu'il contient. Les échantillons submicroniques ont une réponse différente du matériau massif à cause  
d'une modification des mécanismes prédominants de déformation à ces échelles de longueur. 
La sélection du mécanisme de déformation est contrôlé par l'état de contrainte interne du système (la quantité 
d'énergie élastique stockée étant la force motrice), et la capacité du système à nucléer un type spécifique de  
dislocation (cinétique de la déformation). 

• Le niveau de contrainte résiduelle dans des structures de petite taille est très différent de celui observé  
dans le  matériau massif:  d'une part  la  proximité  des  conditions  aux limites  tend à  augmenter  cette  
dernière (rôle des surfaces libres, étendue et relaxation de la déformation interfaciale), d'autre part le  
chemin d'élaboration de l'objet va également conduire à une contrainte résiduelle plus ou moins relaxée 
pour une géométrie donnée. L'un des principaux challenge expérimental est de mesurer ce niveau de 
contrainte  résiduelle  interne  et  d'être  capable  d'identifier  les  paramètres  la  contrôlant  (la  densité  de 
défauts ou la relaxation de l'interface par exemple). 

• La  seconde  question  fondamentale  concerne  le  mécanisme  de  nucléation  des  défauts:  quel  
type/arrangement  de  dislocation  est  capable  de  relaxer  (et  dans  quelle  proportion)  une  contrainte 
mécanique extérieure imposée sur une quantité initiale de déformation. Ces considérations contrôlent le  
niveau de contrainte mécanique pour lequel un objet entre dans un régime de déformation irréversible.  

. 
Ces travaux de thèse permettent de répondre à certaines de ces questions:

Identification quantitative et imagerie des défauts

• Nous avons développé dans les chapitres III et IV des méthodes et outils numériques pour identifier la 
plupart des caractéristiques (vecteur de Burgers, système de glissement, caractère parfait ou dissocié de 
la dislocation) d'un défaut unique (dislocation, faute d'empilement) à partir de la signature qu'il produit  
dans l'espace réciproque. Les condition de diffraction optimales (choix du vecteur du réseau réciproque 
g) sont déterminés et discutés pour chaque type de défaut. 

• L'imagerie par reconstruction de la phase et de la densité électronique s'avère être une technique très  
puissante pour l'identification et l'analyse d'une microstructure de défauts.  Utilisant la reconstruction 
nous  avons  pu  établir,  pour  la  première  fois  sur  une  liste  exhaustive  de  défauts  cristallins,  une 
méthodologie qui permet l'identification quantitative de la nature physique et géométrique du défaut:
◦ la  densité  électronique  diffractante  locale  permet  de  déterminer  la  localisation  de  la  ligne  de 

dislocation
◦ les variations de phase et leur chiralité permettent l'identification sans ambiguïté de la nature du  

défaut.
• L'extrême  sensibilité  de  la  CXD  aux  imperfections  cristallines  et  un  outil  puissant  pour  évaluer  

rapidement  la  qualité  d'un  cristal.  Nous  démontrons  que  des  variations  assez  large  dans  la  qualité 
cristalline pour des structures de forme équivalente (observée par MEB ou AFM) sont obtenues par le 
procédé de démouillage. Le caractère non destructif de la CXD permet de s'assurer que la caractérisation 
mécanique est effectuée sur des objets équivalents dans leur état initial,  un pré-requis essentiel pour  
caractériser les effets de taille sur la réponse mécanique. 

• Une expérience originale de déformation in-situ par indentation d'une particule d'or quasiment vierge de 
défauts dans son état initiale a été réalisée. L'utilisation des méthodologies décrites dans les chapitres III-
V a permis de déterminer avec succès la stade de germination d'une dislocation prismatique. En utilisant 
des reconstructions à différents étapes de la sollicitation mécanique:

• une boucle de dislocation prismatique est clairement identifiée.  
• Nous démontrons l'interaction entre les défauts germées et la déformation interfaciale conduisant 

à un 'recuit mécanique'
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Les interfaces et conditions aux limites ont été également étudiées avec succès sur différents systèmes:

• Dans une cristallite d'or maclée, la sensibilité de la reconstruction de phase à la relaxation des surfaces  
libres a été mise en évidence.  L'absence de déformations longue distance aux voisinage du joint de 
macle a été également confirmée.

• Un cas plus complexe d'interface d'un système bi-métallique Cu-Ta a été revisité. Des expériences  in 
situ de diffraction de surface ont permis la mesure quantitative de deux couches pseudomorphes de Cu 
sur  le  substrat  de  Ta.  Des  calculs  ab-initio  montrent  un  excellent  accord  avec  ces  mesures 
expérimentales. L'influence de la structure de l'interface Cu (f.c.c.) et Ta (b.c.c.) dans les cristallites de  
Cu présentant une forte déformation interfaciale est également évaluée à l'aide de simulations de statique  
et de dynamique moléculaire.

• La CDI est enfin utilisée avec succès pour reconstruire en 3 dimensions des domaines d'inversion de 
polarité le long de fils de GaN.

La  possibilité  de  mesurer  quantitativement   à  la  fois  la  microstructure  de  défauts  et  le  champ de 
déplacement interne, possiblement in situ mais également dans des structures enterrées, fait de la diffraction des 
rayons X cohérents un outil unique pour résoudre des problèmes mécaniques fondamentaux. La CXD peut ainsi 
permettre  de  répondre  à  des  questions  de  longue  date  concernant  par  exemple  la  compréhension  de  la  
déformation plastique par des mécanismes de maclage ou encore des problèmes de fracture/relaxation plastique.  
Enfin, la technique pourrait être utilisée pour des études de transformation de phase dans des systèmes de petite 
taille.

Configurations magnétiques et dynamiques de magnétisation en temps résolu

• Dans  un  élément  de  Permalloy  (Fe-Ni)  de  taille  micrométrique,  l'holographie  de  Gabor  (Fourier 
Transform Holography) permet de démontrer avec succès l'effet de taille sur l'organisation des domaines 
magnétiques  est  démontré  avec  succès.  Dans  un  second  temps,  des  mesures  en  temps  résolu  à  la 
nanoseconde permettent l'étude des dynamiques de magnétisation dans ce système. Ces mesures ouvrent 
la perspective de l'étude d'effets de couplage dans des systèmes de petite taille, en particulier concernant  
le couplage ferroélectrique-ferromagnétique dans des multicouches. 

Les perspectives scientifiques présentées dans cette conclusion devraient bénéficier des améliorations  
constantes des sources de rayons-X cohérents. L'augmentation de la brillance des sources permet d'accéder à une  
plus large portion de l'espace réciproque, permettant une amélioration de la résolution des reconstructions. Les  
mises à jour des sources de synchrotron de 3ème génération devraient permettre une augmentation d'un facteur 
x10 de  la  brillance.  Encore  plus  impressionnant,  les  lasers  à  électrons  libres  de  rayons-X permettent   une 
augmentation  de  la  brillance  d'environ  9  ordres  de  grandeur,  permettant  d'envisager  une  large  gamme 
d'expériences en temps résolue, comme déjà démontré à travers des expériences d'holographie magnétique par 
von  Korff  Schmising  et  al.  (2014)  ou  par  l'imagerie  d'ondes  acoustique  dans  des  cristallites  de  taille 
micrométrique Clark et al. (2013).
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Introduction

Motivations 

This work entitled  “Coherent X-ray diffraction applied to metal physics” covers a large scope  which 

needs to be defined. In the approach of the Metal Physics  group of SIMaP lab., in which this PhD work is 

undertaken, a special interest is given to the relationship between the microstructure and  the physical properties. 

The basic motivation of this study  consists in asking what can we learn in the light of synchrotron radiation, 

particularly with coherent X-rays, regarding this relationship. 

Indeed,  accompanying  the  technological  driving  force  towards  length  scale  reduction of  devices,  several 

fundamental questions arise. In general, modifications of physical properties from bulk behaviour appear when 

the size of the system is of the same order of magnitude  as the characteristic length scale associated with the 

underlying physical mechanism being probed (e.g.  mean free path of dislocations in the case of mechanical 

strength of ductile crystalline materials, or the size of magnetic domains in ferromagnetism, etc.).

Our study focuses particularly on the relationship between the structural stability / mechanical response  

of  sub-micron size crystals. This topic is linked to the understanding of crystal defects and structural properties  

at small scale.  Initiated by the seminal work of Brenner in the late  1950's  (Brenner 1956) who measured an 

increase in strength of single crystal metals with decreasing size (mm to a few µm), the interest in small scale 

materials  emerged with  the  thin  film  technology,  industrially  mature  in  the  late  1960's.  Understanding  the 

structural stability and mode of growth of thin films is for example well understood through the modelling of 

defects nucleation (dislocations) and propagation as a function of the layer thickness, in the classical problem of 

hetero-epitaxial growth of a layer on a substrate with small lattice misfit (Frank & Van der Merwe 1949). More 

recently, there has been in the last 10 years a  renewal of  interest in this topic, since it has been evidenced by  

dedicated mechanical tests and sample preparation that sub-micron size crystals exhibit a different mechanical  

behaviour as compared to their bulk counterparts (typical length scale between a few µm down to 100 nm, Uchic  

et al. (2004)). The general trend is that reducing the characteristic length scale leads to an increased strength (so 

called 'smaller is harder'), but a general scaling law is still under debate. In fact, a complete understanding of the 

scaling law of mechanical stability/resistance can only be obtained if the initial microstructure of the sample is 

well known, as recalled and well demonstrated by Bei  et al. (2008).  Indeed the initial density and nature of 

defects in the samples (microstructure) is dependent on the processing route of the sample. It requires to be 

measured  a  priori and  in  a  non  destructive way,  since  it  controls  the  mechanical  response  and  plastic 

deformation under a given loading. 

To  address these questions, we aim at characterizing non destructively the 3D strain field in sub-micron size 

crystallites (islands / wire shapes), with the ability to identify structural defects and their nucleation in complex 

mechanical  loading.  Structural  defects  will  be  considered  here  classically  following  their  characteristic 

dimension, namely of 1D type (dislocation lines) and 2D (interface such as stacking fault planes, free surface 

(crystallite - vacuum),  heterophase interface (crystallite - substrate) ).

Similarly to structural properties, functional properties also exhibit some size dependence. Among them 

we focus on 2D defects, more precisely the presence and structure of polarity inversion domain boundary in the  

case  of  nitride  semiconductor  and  ferromagnetic  domain  microstructure  and  dynamics  in  the  case  of  

ferromagnetic materials.

For  many  years,   Transmission  Electron  Microscopy  (TEM) remained  almost  unchallenged  for 

investigating defects in crystals.  Electronic lenses provide direct imaging of the defect structure with a sub-

Angstrom resolution which is currently out-of-reach with X-rays and give access to the displacement field with a 

picometre resolution. However, transmission electron techniques are limited by the weak penetration depth of  

electrons in the matter which makes difficult the study of objects thicker than 100 nm or buried / embedded in a 

functional  device.  The  preparation  of  the  required  thin  sections  is somehow destructive and can  introduce 

additional unwanted features,  such as  specific  boundary conditions  (free  surfaces  of  the foils)  and damage 

(especially with the use of Focus Ion Beam milling). Additionally, 3D analysis is difficult to carry out, and the 
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quantitative analysis of the data can be complicated by dynamical effects. 

X-ray diffraction techniques are very complementary to TEM techniques; they allow to study objects without 

any preparation due to the weak interaction of X-rays with matter, foreseeing the  possibility to study 3D objects 

and coupled in situ characterization. X-ray diffraction is by nature very sensitive to lattice deformations in Bragg 

geometry, and very precise strain measurements can be achieved. In X-ray scanning microscopy, the resolution 

in the direct space is controlled by the size of the beam: In third-generation synchrotron facilities, focused beams 

of the order of  a few tens of  nm can be obtained. On the other hand, classical X-ray imaging techniques lack 

resolution in the real space. The limited resolution of X-ray techniques in the real space can be overcome by the 

use of Coherent X-ray Diffraction (CXD) which allows to retrieve numerically the lost phase information of the 

diffracted intensity. This allows to reconstruct 3D sub-micron objects with a spatial resolution of the order of 10 

nanometres. In Bragg geometry, the technique is not only sensitive to the electron density of the object but also  

to the inner displacement field of the object which corresponds to the phase of the complex electron density.  

From the perspective of solving mechanical equilibrium problems, it gives access to the complete solution of the 

differential equations of mechanical equilibrium, namely the displacement field. This is enriched by identifying 

the microstructure of defects which inherently generate phase field discontinuities in the regular crystal lattice. 

Experiments and methods

Most of the experimental part of this work was carried out in third-generation synchrotron sources. The  

experiments can be divided in three main groups:  

• Coherent X-ray diffraction for the study of crystal defects and the imaging of 3D displacement fields,

• Fourier Transform Holography coupled with X-ray Magnetic Circular Dichroism in the soft X-ray range 

to study the magnetic configuration and its dynamics in nanostructures with time resolved experiments.

• Complementary advanced diffraction techniques to characterize the samples like Laue micro-diffraction 

and in situ UHV surface diffraction techniques. 

A large  number  of  numerical  tools  have  been  used  to  carry  out  the  analysis  of  the  experimental  data.  A  

significant part of them were home-made such as the phase retrieval procedure for the reconstruction of the  

experimental  data  or  the  procedure  for  the  imaging  of  the  magnetic  nanostructures  by  Fourier  Transform 

Holography. Alternatively, some softwares available to the users community such as Rod for the analysis of 

surface diffraction, LaueTools for Laue micro-diffraction were used.

Model samples have been processed and used in this work. For the study of structural stability and 

mechanical properties, two systems are mainly investigated: 3D sub-micron crystallites of Cu and Au. They are 

obtained by controlled solid state dewetting technique, and have specific crystalline orientation relationship with 

their respective substrates, single crystal Ta (0 0 1) and   Al2O3 (sapphire)  (0 0 0 1). Standard characterization 

techniques have been used such as optical, electron and atomic force microscopies. Local mechanical loading is 

achieved by contact mechanics (nanoindentation) either in situ or ex situ at the laboratory. Samples for the study 

of functional properties, namely GaN nanowires on Si and permalloy (Fe-Ni) nanostructures are processed by 

our collaborators.

The originality  of  this  work also lies  in  the fact  that  almost  all  the  experiments  are  supported and 

somehow  transposed  numerically  by  a  large  amount  of  numerical  simulations:  atomic  simulations  using 

molecular statics and dynamics (MD) for the study of individual crystal defects and reproducing nucleation in  

the indentation process,  ab initio calculations  for  the precise  atomic structure  determination of  surfaces  or 

interfaces and finite element method for continuum elasticity calculations. Indeed systematic calculations of X-

ray scattering from these simulations in the kinematic approximation provides  simulated diffraction data to 

design experiments and better  understand the experimental  data in reciprocal  space but  also to evaluate the  

robustness of phase retrieval algorithms.
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Context

 
This PhD work was carried out in the Metal Physics (PM) group of the laboratory SIMaP. Its activities 

are focused on metallic materials, dealing mainly with phase transformation, mechanical properties and complex 

structure materials. Research activities are carried out in synergy with processing, characterization  (especially 

with large scale instruments) and modelling activities. My PhD grant was founded by the Agence Nationale de la 

Recherche  (ANR) in  the  framework of  the  MecaNIX project  which  aims  at  understanding  the  mechanical 

properties of single isolated nanostructures and the influence of size on mechanical properties. It benefits from 

the partners involved in this project with the SIMaP: 

– the laboratory IM2NP in Marseille. Relevant to this work, they developed a portable AFM which was 

used for the in situ nanoindentation experiments described in the Chapter VI of this manuscript,

– the INAC institute of the CEA in Grenoble, in charge of the processing and characterization of the 

semiconductor nanostructures (GaN, GaAs). 

– Beamline ID01 of the European Synchrotron Radiation Facility, where most of the CXD experiments 

were performed,

– the Max Plank Institute (Stuttgart) which provided metallic nanowires for several CXD experiments, 

– the LPS (Laboratoire de Physique du Solide), which pioneered the study of crystal defects by CXD.

Outline of the manuscript 

This manuscript is divided in four parts: 

• The first  two chapters present the theoretical concepts and experimental methods.   The first  chapter 

introduces the basics of Coherent X-ray Diffraction, with a focus on Coherent Diffraction Imaging (CDI) 

technique to reconstruct 3D displacement fields of isolated samples in Bragg geometry. In the Chapter 

II,  the experimental  methods and techniques  are presented.  Typical  experimental  set-ups to perform 

CXD experiments and surface diffraction experiments  are described. The samples are  then  presented 

along with their processing and characterization techniques. 

• The second part deals with a study of dislocations in face-centred cubic crystals using CXD (Chapter III 

to  VI).  At  first  a  complete  survey  of  signatures  of  individual  dislocations  in  reciprocal  space  are  

established in Chapter III. Then the effect of microstructures of dislocations are evaluated in reciprocal 

space,  specifically  in  the  case  of  indentation  of  a  crystallite,  Chapter  IV.  In  Chapter  V numerical 

reconstruction  for  real  space  evaluation  of  individual  and  collective  dislocations  are  presented  and 

discussed. Chapter VI details experiments of in situ indentation of a gold crystallite, with the observation 

and reconstruction of defect nucleation and 'mechanical annealing'.

• The third part  (Chapter  VII-IX) is  dedicated to  the induced effect  of  surface and interfaces  on the  

displacements field in small particles: it starts in Chapter VII by a detailed study of a twinned gold  

particle,  where  the  sensitivity  of  CXD to  the  surface  strain  induced  by  free  surfaces  relaxation  is 

discussed.  Chapter  VIII  and  IX  concern  a  detailed  study  of  the  specific  hetero-epitaxial  interface  

(f.c.c./b.c.c.) of the Cu/Ta system obtained by dewetting. Epitaxial Cu crystallites on Ta were previously 

studied by CXD in the lab. (Beutier et al. 2013a) and exhibit very large residual stress associated with 

the interfacial strain. At first, Chapter VIII gathers experiments of in situ surface diffraction experiments 

and ab initio calculations to determine the structure of the Cu wetting layer in this Stransky-Krastanov 

system. Then the structure of the interface within the crystallites is investigated by MD simulations and 

the impact of the atomic structure of this interface on the distribution of the displacement field obtained 

by CXD is discussed.

• The last part gathers the results related to defect imaging for functional properties and focuses on our 

contribution  to these  experiments.  Chapter  X  concerns  the  imaging  of  polarity  inversion  domain 

boundary  in  GaN semiconductor  nanowires,  and  essentially  consists  in  a  3D reconstruction  of  the 

domain structure along the wire. Chapter XI deals with magnetic configuration and dynamics in in-plane 
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magnetized permalloy (Fe/Ni) nanostructures, which are investigated by Fourier Transform Holography. 

In a first part of this Chapter, the technique is briefly presented and the detailed magnetic configuration  

of the permalloy layer is presented. Then the magnetization dynamics of the system are studied by time-

resolved synchrotron experiments.
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Chapter I: Basics of Coherent X-ray Diffraction

Introduction

Coherent X-ray Diffraction (CXD) is the central technique used in most of the experiments presented in 
this manuscript. The main concept of CXD are exposed in this chapter. In a first part, the concept of coherence is  
discussed, and the detailed characteristics of a coherent X-ray beam are presented. In the following section, the  
sensitivity of coherent X-ray beams to crystal defects and strain is explained. The best strategies to compute the  
diffraction from highly strained and defective crystals are discussed. Numerical examples of systems containing  
simple defects are given.
The technique of Coherent Diffraction Imaging which relies on phase retrieval algorithms is presented in section  
I.3. The concept of oversampling is explained in extensive details, and conventional phase retrieval algorithms as 
well as recent improvements with the technique are given. Numerical examples  of reconstructions focused on 
the case of single defects conclude this chapter.

I.1 Coherence

Simply speaking, coherence is the ability of a wave packet to produce interference. It requires that the 
different waves in the packet have a finite phase relationship. To take two extreme cases, the light from a bulb is  
highly  incoherent  while  that  of  a  laser  beam is  highly  coherent.  The  emission  process  is  at  the  origin  of  
coherence. In the X-ray range, we can find also two extreme cases: the X-ray tube and the Free-Electron Laser.
Electromagnetic beams are in the general case neither fully incoherent nor fully coherent: there is always some 
degree of coherence. This is for instance the case of X-ray tubes, otherwise crystallographic diffraction would  
not be possible at all.
The coherence of a beam is by nature anisotropic in space: the propagation direction of the beam has coherence  
properties differing from those of the transverse directions. Moreover, the coherence can also be anisotropic in  
the plane transverse to the propagation direction, if the emission process is anisotropic (such is the case for  
undulators).

I.1.1 Mutual coherence

A general way to quantify the coherence of the beam is the mutual coherence function (Born & Wolff, 1980):

Γ(ρ1 ,ρ2 , τ)=〈 E (ρ1 , t ) E*(ρ2 , t+τ)〉       (I.1)

where E(ρ,t) is the electromagnetic field at position ρ and instant t. The brackets denote the time-averaging (or 
expectation value if we consider a quantum description of the electromagnetic field). The mutual coherence is  
thus the autocorrelation in time and space of the electromagnetic field. Γ(ρ, ρ , τ) is the auto-correlation in time of 
the field at position ρ; if the delay τ is set to zero, Γ(ρ, ρ, 0) is simply the intensity I(ρ).
The  normalized  version  of  the  mutual  coherence  function  (MCF),  also  known  as  the  complex  degree  of  
coherence, can be defined as:
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γ(ρ1 ,ρ2 , τ) =
Γ(ρ1 ,ρ2 , τ)

√〈 I (ρ1 , t )〉〈 I (ρ2 , t)〉
                   (I.2)

where ⟨ I (ρ , t)⟩  is the expectation value of the intensity at the position ρ  of the field. The complex degree of 
coherence γ(ρ1, ρ2, τ) has values between zero and one. If it is equal to zero, the points ρ1 and ρ2 are mutually 
incoherent (no interference at all) while full coherence is achieved when it is equal to one. In practice, when the  
electromagnetic field is generated by a single stable source (which can be extended), one considers that the  
degree of coherence is homogeneous in space and time, i.e. γ(ρ, ρ+δ, τ) = γ(0, δ, 0) for any ρ and τ (note that it 
does not apply to Γ, otherwise the beam would be infinite).
The 2D mutual coherence can be measured in experiments of the type of Young's double slit experiment. The 
visibility of the interference fringes is proportional to the complex-degree of coherence. Such measurement is 
well suited to undulator radiation (Takayama et al, 1998). A more refine way to perform this measurement by 
scanning a large range of separation δ in a single measurement is to use a uniformly redundant array (Lin et al, 
2003).
There are alternative ways to characterize the coherence of the beam, for instance by measuring the diffraction 
from a pinhole (Beutier et al, 2007) or the speckle pattern from random scatterers (Livet, 2007).

I.1.2 Coherence lengths

The complex degree of coherence provides a comprehensive measurement of the coherence, but it is a 7-
dimensional quantity according to Eq. (I.2) (2x3 space coordinates and 1 time coordinate). It is convenient to  
refer to simpler scalar quantities, and it is actually possible to define such quantities when dealing with a 'nice'  
beam (a Gaussian beam for instance, which is not a bad approximation for undulator radiation). In such case, one 
can consider that the complex degree of coherence γ(ρ, ρ+δ, τ) is homogeneous and decreasing in the 3 space 
directions (x,y,z), which are decoupled. Then it is possible to define coherence lengths, for instance as the half  
width at half maximum (Lin  et al, 2003). Alternatively to such interferometric measurements, the coherence 
lengths can be estimated (and even defined) in the framework of geometrical optics, as presented below.
The coherence along the propagation direction is called the longitudinal (or temporal) coherence length. In the 
case  of  synchrotron  radiation,  the  anisotropy  of  the  source  requires  separating  the  horizontal  and  vertical  
coherence lengths.

The longitudinal coherence of the beam is related to the monochromaticity of the X-ray beam. If two waves with 
a wavelength differing by Δλ are in phase at a given position, the phase-shift between them gradually increases 
with the distance, eventually reaching a distance where they are in phase opposition (Fig. I.1.a). It is usual to 
define this distance as the longitudinal coherence length ξl, if Δλ if the spread of the wave packet:

ξ l = λ2

2 Δ λ
= 1

2
λ

Δλ λ        (I.3)

It can be understood in the following way: if all the amplitudes (assumed with equal magnitude) within the  
spread Δλ are summed, the total amplitude vanishes at 2ξl and the phase is undefined.
According to Eq. (I.3), the better the monochromaticity, the larger the longitudinal coherence. Similarly, the  
larger the wavelength, the larger the longitudinal coherence: it is advantageous to use softer X-rays if possible. In 
a typical synchrotron experiment at mid energy (λ~1 Å), with a Si(111) double crystal of bandwidth Δλ/λ ~ 10-4, 
the longitudinal coherence length is ξl ~ 0.5 µm. It can be increased by using monochromators with narrower 
bandwidth such a Si(311), but at the price of flux.

The transverse coherence lengths can be defined from the diffraction limit: a linear source of size S scatters in 
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the far field a cone of emission of opening λ/S, which has size λL/S at a distance L (Fig. I.1.b). A common 
definition of the transverse coherence length is thus:

ξ t = λ L

S
      (I.4)

This definition can be extended to the case of a two-dimensional source by considering two distinct coherence  
lengths. Eq. (I.4) shows that the coherence length:

• increases with the distance, which is a motivation for building long beamlines, 
• decreases with the source size, which is a motivation for reducing the horizontal spread of electron  

bunches in storage rings
• increases with the wavelength, which is again in favour of softer X-rays.

If we  consider a source size of 100(H)x10(V) µm² (it is the order of magnitude for sources in 3 rd generation 
storage rings), at λ=1Å and 100 m from the source, we have coherence lengths of 100 µm (H) and 1 mm (V). In  
practice, these are optimistic estimates.
In order to better control the transverse coherence, it is common to define a secondary source by inserting slits  
(Robinson 2008).
Moreover,  when  focusing  optics  are  used,  the  transverse  coherence  lengths  are  reduced  by  the  same 
demagnification factor as the size of the beam (Schroer et al. 2008). 

In this manuscript we will thereafter call incoherent a beam which is much larger than its transverse coherence 
lengths, and coherent a beam with coherence lengths at least of the same order as its size. The case of partial  
coherence is  not  considered here,  although it  is  relevant  for  applications such as  X-ray Photon Correlation 
Spectroscopy,  because  the  best  compromise  between  flux  and  coherence  is  usually  far  from  the  optimal  
coherence. In the case of Coherent Diffraction Imaging, it has been shown that the effect of partial coherence can  
be corrected (Clark et al, 2012), in particular in the more particular case of ptychography (Burdet et al, 2015). 
The best compromise between flux and coherence is much debated and depends on the sample, in particular  
when it is sensitive to radiation damage or if the stability of the set-up becomes a limiting factor. In the work  
presented here, we always used a very coherent beam, because the reduced flux was not a problem and the  
measurements could be done in a reasonable amount of time.
Synchrotron radiation is a poorly coherent source: while individual electrons emit coherent radiation at each pole 
of the undulator, there is little coherence between the waves emitted by the different electrons in a bunch, and  
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none  between different  bunches.  This  is  the  big  difference  with  a  Free-Electron  Laser,  in  which  the  Self-
Amplified Stimulated Emission (SASE) ensures a good coherence between the electrons of a bunch, providing 
an increase of several orders of magnitude of the brilliance (Pellegrini & Stöhr, 2003). All the work reported in 
this manuscript was performed at 3rd generation synchrotron facilities, and it was therefore necessary to extract a 
coherent X-ray beam out a very poorly coherent beam. This is done by inserting slits whose gaps match the 
transverse coherence lengths. Since the transverse coherence lengths is reduced by focusing, the slits are usually 
inserted before the microfocusing optics (Mastropietro et al, 2011).

1.2 Scattering of a coherent X-ray beam

1.2.1 General case

One can define a coherence volume according to the three coherence lengths. Roughly speaking, when a 
sample  scatters  an  incoherent  beam,  one  can  consider  that  a  large  number  N of  'domains'  defined  by  the 
coherence  volume scatter  incoherently:  the  waves  Ai(q)  scattered  by  the  different  domains  are  summed in 
intensity, not in amplitudes (Fig. I.2.a):

I (q) = ∑
i

N

∣Ai (q)∣2        (I.5)

Such measurement provides statistical information on the measured property (the lattice spacing in the case of  
diffraction), such as its mean value and its standard deviation, but the properties of individual domains are lost.

Conversely, using a coherent beam is equivalent to selecting a single coherence volume, hence (Fig. I.2.b):

I (q) = ∣A(q )∣2       (I.6)

such that the property of the selected volume is measured. In principle, the inhomogeneity of this property is  
encoded in the scattering pattern, and we discuss later in this chapter how to retrieve it. Because of the absence  
of averaging effect, the pattern displays sharp intensity fluctuations: if the sample consists of an assembly of  
random scatterers, the scattering pattern is an isotropic 'speckle' pattern (Sutton et al, 1991). When the sample is 
smaller than the coherent beam, fringes related to the shape of the object can also be observed. 

In the kinematic approximation of scattering, which is justified in our case because we study small crystals (<1 
µm) with a distorted lattice, the scattered amplitude is the Fourier transform of the atomic scattering factor f and 
the intensity is its square modulus:

I (q) = ∣A(q)∣2 = ∣FT { f (r)}∣2= ∣∫ f (r)e
2i π q .r

dr∣
2

      (I.7)

where the integration is performed on the illuminated volume. Refraction and absorption effects are left aside of  
this discussion.
Note the convention for the sign and the 2π factor in the complex exponential of Eq. I.7: this convention is used 
throughout the manuscript. The numerical values of q given in this document follow this convention, i.e. the 2π 
factor is not included. It should be noted that the sign is opposite to that used in the definition of the Fourier  
transform in  most  computational  packages  (Matlab,  numpy  for  python...)  and  this  difference  is  taken  into  
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account in the results presented in this document (i.

Coherent X-rays can be used in various geometries, depending on the problem to investigate.
In the small angle regime, the speckle pattern usually reveals inhomogeneities of the electronic density, such as  
the case of particles embedded in a matrix (Mainville  et al, 1997). However, it is also possible to observe the 
inhomogeneity of magnetisation in a ferromagnetic material by tuning the energy of the beam to an appropriate 
absorption edge (Eisebitt et al, 2003). This combination of coherence and resonance is exploited in Chapter XI 
to image magnetic vortices in nanostructures.
The reflection geometry is well suited to the study of surfaces (Pierce et al, 2009, Livet et al, 2011). Again, it can 
be used at a resonant edge to study magnetic nanostructures (Chesnel  et  al, 2002, Beutier  et al,  2009). The 
Grazing incidence geometry (GISAXS) can also be exploited for nanoparticles on a surface (Streit et al, 2007).
Finally, in Bragg geometry, coherence is useful to study the inhomogeneity of crystalline order, such as chemical  
order (Brauer et al, 1995), strain (Robinson & Harder, 2009), polarity (Labat  et al, 2015) and magnetic order 
(Yakhou et al, 2001).

I.2.2 Exploiting Coherent X-ray Diffraction

Coherent X-ray scattering methods were first developed for the study of speckle dynamics, in technique 
called  X-ray  Photon  Correlation  Spectroscopy  (XPCS):  based  on  an  assumption  of  bijection  between  the  
scattering function and its Fourier transform, the dynamics in real space can be inferred from the dynamics  
measured in reciprocal space (Sutton, 2008). This technique is well suited to the study of slow dynamics, since it  
is measured in the time domain, hence bounded by the time scale of the measurements. It is complementary to  
inelastic scattering techniques, which access faster dynamics by measuring in the energy domain. In practice, the  
bijection is not true if the incident beam is not perfectly coherent, which is common in XPCS because it is more  
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efficient to increase the flux at the price of coherence. The partial coherence is nevertheless accounted for in the 
data analysis.
There is also an interest in studying static systems, because the CXD pattern reveals the inhomogeneity of the  
scattering function: in simple cases, defects can be identified directly from their reciprocal space signature (Le 
Bolloc'h  et al, 2005). This is the subject of Chapters III & IV, in which we provide an extensive study of the  
signature of typical crystal defects.
A third way to exploit CXD is to retrieve the phase of the scattered amplitude in order to turn it into an imaging 
technique. This can be done essentially in two different manners: either by encoding the phase by interference  
with a reference wave (holographic method, Eisebitt  et al,  2004, Chamard  et al,  2010b), or by using phase 
retrieval  algorithms  in  combination  with  a  sufficiently  oversampled  diffraction  pattern  (Miao  et  al,  1999, 
Williams et al, 2003). The holographic case is discussed in details in Chapter XI, where it is applied to image  
magnetic systems. The algorithmic method, known as Coherent Diffraction Imaging (CDI), is presented in this  
chapter and used throughout this manuscript.
Finally, X-ray Free-Electron Lasers now allow the combination of real space imaging using CDI with dynamical 
measurements, so far only in pump-probe mode (Clark et al, 2013).

I.2.3 Coherent X-ray Diffraction in Bragg geometry

The Bragg geometry probes the crystalline order. Coherent X-rays can be shined in Bragg geometry to 
investigate the deviation of the sample to a perfect crystal order. 
If the crystal is not perfect, we define r0 the positions of a perfect lattice that approximates the crystal and u(r) 
the displacement of the atoms from this perfect  lattice,  such that  r =  r0 +  u(r).  Now we consider a Bragg 
reflection with a diffraction vector g (defined on the perfect lattice which approximates the crystal) and we focus 
on the region of reciprocal space in the vicinity of g. We can decompose the phase factor in the exponential of 
Eq. I.7:

q .r=q .r
0
+g .u(r)+(q−g) .u(r)             (I.8)

The third term of Eq. I.8 can be neglected in the exponential of Eq. I.7 if  ∣(q−g ) .u(r)∣ ≪ 1 (Takagi's 
approximation), which is equivalent to assuming small distortions of the lattice and a restricted extent of the  
reciprocal space. This approximation is discussed later in this Chapter. Following Takagi (1969), Eq. I.7 can now 
be approximated by:

I (q) = ∣A(q)∣2 = ∣∫ f̃ (r
0
)e

2i π q. r0 dr
0
∣
2

= ∣FT { f̃ (r
0
)}∣2       (I.9)

with the modified scattering factor:

f̃ (r)=f (r)e2i πg .u (r)         (I.10)

in  the  work  presented  here,  the  Bragg  case  is  used  only  in  non-resonant  scattering,  such  that  the  atomic  
scattering factor is essentially the electronic density ρ(r), which is a real scalar, and the modified scattering factor 
is referred as the complex electronic density  ρ̃(r) : its modulus is the real electronic density and its phase 
encodes the projection of the displacement field u(r) onto the diffraction vector g.
The phase term can be understood simply by considering a block of material which is displaced from the rest of  
the lattice by a vector  u(r) (Fig. I.3). The phase of the X-ray wave scattered by this block of atoms is shifted 
relative to the rest of the reference crystal by an amount φ/2π = kf.u - ki.u = g.u. Provided that a complex image 
of the sample is obtained (for instance by Coherent Diffraction Imaging, as described later on), the phase shift  
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appears in the final image as a region of complex density with the same magnitude as the rest of the crystal  
(same electronic density) but a different phase.

The effect of the displacement field and of the corresponding phase on the CXD pattern can be understood as 
follows. For an ideal crystal which can be described by a perfect lattice, the intensity distribution is a periodic  
function of the reciprocal space: the intensity distribution is identical around every Bragg peak. Moreover, if the  
atomic scattering factor is real (to a constant phase), which is the case in non-resonant conditions, the diffraction 
pattern is symmetrical about the origin of the reciprocal space, therefore also about each node of the reciprocal  
lattice.  These  local  inversion  symmetries  are  lost  (except  around  the  origin)  with  the  introduction  of  an 
inhomogeneous displacement field, which can be mathematically understood from the inhomogeneous phase of  
the complex electronic density. When non-symmetric diffraction patterns are observed around a Bragg reflection 
g,  it  can be decomposed into symmetric and antisymmetric parts.  The symmetric part can be considered to  
originate from the average electron density  ρ(r) while the antisymmetric part is associated with the real space 
phase, equal to the displacement field projected onto the reciprocal lattice vector  g  of the local Bragg peak 
(Vartanyans  &  Robinson  2001).  The  asymmetry  of  the  Bragg  peak  induced  by  the  displacement  field  is  
illustrated in Chapter III and IV of this manuscript.

Since the phase depends on the projection of the displacement field onto the Bragg reflection, non-coplanar 
Bragg reflections give access to distinct components of the displacement field. In the 3D case, 3 non-coplanar 
reflections are needed to perform a full vectorial analysis of the displacement field.

For  a  Bragg  peak symmetric  to  the  crystal  surface  (specular  reflection),  the  diffraction  peak  will  only  be 
sensitive to the uz (x,y,z) component of the displacement field (z is the direction normal to the substrate surface). 
This geometry is employed in most of the experimental studies presented in this manuscript (Chapter VI and 
VII). 

For a (1 1 1) out-of-plane orientation (case of the gold islands on the sapphire substrate, Chapter VII), the (1 1 1) 
planes are parallel to the surface of the sample, it gives :

g . u = g111 . u
z
( x , y , z)                   (I.11)

11
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The intensity measured at the vicinity of the 1 1 1 Bragg reflection is thus given by:

I (q) ≃ ∣FT {ρ(r )e
i

2π
d111

u z (x , y , z)

}∣2         (I.12)

where d1 1 1 is the distance between two successive (1 1 1) planes.

The  only  assumption  on  the  displacement  field  made  so  far  is  that  it  fulfils  Takagi's  approximation:
∣(q−g ) .u(r)∣ ≪ 1 ,  but  there  is  no  restriction  on  its  nature  and  origin:  it  concerns  continuous 

displacement fields such as elastic strain as well as discontinuous fields such as stacking faults, dislocation cores  
and chemical inversion domains.
In the case of a crystal with many defects, the interference between the waves scattered by each perfect domain  
of the crystal produces a complex speckle pattern such as that shown in Fig I.2.b. In crystals containing a low 
density of defects, only few domains of the particle are phase shifted with respect to each other. The diffraction  
pattern is  far  less  complex and the complete identification of  the defect  becomes possible by analysing its  
fingerprint on the diffraction pattern. This is object of Chapter III and IV.

I.3 Modelling Coherent X-ray Diffraction from micro- and nanoscale crystals

Modelling of CXD from a micro- or nanoscale crystal consists mainly in two separate tasks:
1) Modelling the crystal, including its shape, strain and defects. This task is explained in more details in 
Chapter III.
2) Modelling the diffraction itself, i.e. computing Eq. I.7. This is the point that we address here.

Eq. I.7 relies on the Fourier transform and implies a continuous integration in the illuminated volume. It  is  
necessary for computation to adopt a discrete description of the crystal. While the atomic description is the most 
natural choice, the size of the system to describe is at the limit of what modern personal computers can handle.  
This is nevertheless the method that has been used in most of the calculations of this work. As we show below, a  
crystal of a few tens of nanometres in size (~10  atoms) can be handled by modern Graphical Processing Units⁶  
(parallel computing cores). In that case, Eq. I.7 is computed directly using the discrete expression of the Fourier  
transform:

I (q) = ∣A(q)∣2 = ∣FT { f (r)}∣2= ∣∑
j

f
j
e

2i πq . r j∣
2

    (I.13)

where the index j runs over the atoms of the crystal.

Note that  for larger systems,  the scale of discrete description of the crystal  must  be larger than the atomic 
distance. In that case it is necessary to model the crystal on a larger periodic grid and to use Eq. I.9 (Takagi's  
approximation) with the help of a Fast Fourier Transform (FFT):

I (q) = ∣A(q)∣2 = ∣FFT { f̃
j
}∣2 = ∣∑

j

f̃
j
e

2i πq . r j∣
2

    (I.14)

Here the description on a grid of larger period than the crystallographic cell implies a redefinition of the complex  
scattering factor:
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f̃
j
= ∑

a∈supercell
j

f
a
e

2i πg .ua ≈ N
j
S

j
(g)e2i π g.u j        (I.15)

where  Nj is  the  number  of  crystallographic  cells  in  the  supercell  j,  Sj(g)  is  the  structure  factor  of  the 
crystallographic cell et uj is the average displacement of the supercell. The second part of Eq. (I.15) assumes that  
the displacement field is  locally constant  and that  the crystal  structure is  locally homogeneous.  In fact,  the  
structure factor is often independent of the supercell and can be factorised out of the sum in Eq. (I.14). In that  
case Nj is also independent of the cell j.
In the case of f.c.c. crystals reported here, S(g=(h,k,l)) vanishes if h, k and l are not all of the same parity.

I.3.3 Advantages of the atomic description 

The calculation speed of  FFT is  optimal  for  the calculation of  the scattering from large crystalline  
structures. For N points in the real space, N points in the reciprocal space are calculated with a cost proportional 
to  N.log(N)  instead of  N2  for the direct  computation of the kinematic sum. As discussed above,  the Takagi  
approximation is limited to a very small extent of the reciprocal space for highly strained crystals. 
It  is thus interesting to consider the direct computation of Eq. (I.13) since it allows the computation of any  
assembly of points in the reciprocal space, and of any structural model (no matter how severely strained or  
disordered they are). 
The direct calculation of the kinematic sum can be achieved in a reasonable amount of time using a Graphical 
Processing  Unit  (GPU)  for  the  computation  (Favre-Nicolin  et  al.  2011).  In  a  few words,  it  is  possible  to 
considerably increase the calculation speed of any calculation provided that it is highly parallel (same formula  
applied  to  large  amount  of  data),  the  number  of  memory  transfers  is  much  smaller  than  the  number  of  
mathematical operations. It is clear that Eq. I.13 fulfils all the requirement for a GPU implementation, provided  
that both the number of atoms and reciprocal space points are large (>> 1000). A significant part of the scattering 
simulations presented within this work has been performed using the software PyNX (Favre-Nicolin et al. 2011), 
based on this GPU implementation. 

The speed achieved with the GPU calculation is shown in Fig. I.4. A strong dependency of the speed of the GPU 
calculations with the number of reflections and the number of atoms per-second is observed. The maximum 
calculation  speed is  reached for  a  number  larger  than 104  for  both quantities.  Depending on  the  GPU,  the 
calculation speed is between 2 and 3 orders of magnitude faster than a calculation performed using a single CPU. 
The calculation speed increases linearly with the number of cores for the GPU.

Most of the calculations presented in this work were performed using two different GPU's: 
– a Geforce GTX 580, slightly more powerful than the GTX 295 which was employed for Fig. I.4
– a Quadro 2000M, a GPU from a relatively powerful laptop. 

The Quadro 2000M has 192 cores while the GTX 580 has 512 cores. A maximum calculation speed of 5.2x1010 

reflections.atoms.s-1 is achieved by the latter, while the calculation speed is “only” 1.9x1010 reflections.atoms.s-1 

for the Quadro 2000M. This confirms the linear increase of the calculation speed with the number of GPU cores.
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A typical configuration used in this work (Chapter III) contains approximately 106 atoms, and the scattering from 
such structure  is  calculated on an extent  of  100x100x100 reciprocal  space points.  This  corresponds to 1012 

atoms.reflections. The calculation is achieved for this configuration in 25 seconds with the GTX 580 and 60 
seconds with the Quadro 2000M. These values are in good agreement with the calculation speeds given above. 
Even for large systems, Eq. (I.13) can thus be computed in a very reasonable amount of time, including with a  
laptop equipped with a suitable GPU. 

However, for very large systems, the FFT calculation is still significantly faster. It is thus important to determine 
if the direct computation of the kinematic sum is necessary to obtain a precise computation of the scattering.
It is clear that the scattering from highly disordered systems can only be obtained by the computation of Eq. 
(I.13).  However,  such systems are not  addressed in this manuscript.  The case of highly strained systems is  
presented in Chapter VIII and IX which are dedicated to the Cu-Ta system. 
For this highly strained system, the criterion |(q – g).u(r)| << 1 is not valid for some combinations of q and r for 
this system. .Nevertherless, the computation of Eq. (1.9) with a FFT gives a result in reasonably good agreement  
with the direct computation of Eq. (I.7) as shown by Beutier (2013a). 
Most of the configurations considered in this manuscript exhibit a residual strain significantly smaller than the  
Cu-Ta system, and it is a reasonable assumption to consider that the FFT calculation is adapted to such weakly  
strained systems.
A significant part of this manuscript (Chapter III to VII) is dedicated to the study of typical crystal defects using 
coherent X-ray diffraction. An atomistic description of the matter is provided, relying on the use of interatomic 
potentials combined with molecular dynamics calculations. An important question to address is to determine the 
best and most efficient computation method for the study of such defects.
It is clear that large strain fields are induced at the vicinity of crystal defects. However, this does not necessarily  
prevent the use of Eq. (I.14) to compute the scattering. If the analytical expression of the displacement field of  
the defect is already known, this method can be in fact very efficient. This will be discussed in the next section.
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Fig. I.4 Comparison of the computing speed for a single CPU and a 

GPU depending on the number of atoms and reflections (from Favre-

Nicolin, 2011)



Chapter I: Basics of Coherent X-ray Diffraction

However, in most of the cases presented in the next chapter, the displacement field is obtained from the positions  
of the atoms, after the relaxation of the atomic configurations. In this case, the analytical expression of the  
displacement field is unknown. 
In order to compute the scattering using Eq. (I.14)., the displacement field would need to be interpolated on a  
regular grid. Given the number of atoms in the simulations (up to 107) , this grid would not be fine enough to 
resolve  the  atomic  positions.  Additionally,  given  the  large  strain  fields  involved  in  the  vicinity  of  the  
dislocations, the calculation method would be probably less precise than the direct computation of the kinematic  
sum given in Eq. (I.13). Given the short calculation times achieved thanks to the GPU implementation of the  
computation of Eq. (I.13), the interpolation procedure itself would take more time than the direct calculation of  
the scattering using the kinematic sum. In the case of an atomistic model is used in the simulations, the direct  
computation of the kinematic should be obviously preferred. The only case where the use of the FFT method 
could become more adapted would be for very large systems (more than 10 7 atoms), when the computation of 
Eq. (I.13) becomes time consuming, even using modern GPU's. 

I.3.4 Fast Fourier Transform vs direct computation of the kinematic sum for the study of 
crystal defects

In this sub-section, the scattering from systems containing simple crystal defects, whose displacement 
field can be calculated analytically, are computed using Eq. (I.14)  (FFT calculation). The results are compared  
to the scattering obtained from the computation of Eq. (I.13).
We consider a model 2D crystal of square shape with x and y axes corresponding to the [1 1 0] and [1 1 1] f.c.c. 
crystallographic directions respectively. The crystal is described by a 256 x 256 grid with a period corresponding 
to the crystallographic unit cell. An infinite z direction parallel to [1 1 2] is implicitly considered.
A perfect edge dislocation is introduced at the centre of the crystal, with a Burgers vector b = ½[1 1 0] parallel to 
x and the dislocation line t runs along the infinite direction z. We use the analytical formula of the displacement 
field given by Hirth and Lothe (1968) in the hypothesis of an isotropic and semi-infinite volume. Here the latter 
hypothesis is not fulfilled but it is not important for the question addressed here.  The analytical displacement 
field is constant along the dislocation line: uz = 0 and  depends only on two components:

ux = u∥b=
b

2π [tan−1 y

x
+

1

2(1−ν)
xy

( x2+ y
2)]                  (I.16)

uy = u∥(b×t )=−
b

8 π(1−ν) [(1−2ν)ln (x2+ y
2)+

(x 2− y
2)

(x
2

+ y
2

) ]                  (I.17)

where ν is the Poisson ratio. 
The phase φ202 = g202.u corresponding to the projection of the displacement field onto the 2 0 2 Bragg reflection is 
shown in the (x,y) plane (Fig. I.5.a). 
As  seen  in  Fig.  I.5.a,  the  phase  is  continuous  everywhere,  except  for  a  singularity  in  the  vicinity  of  the  
dislocation line. A phase vortex is thus observed around the dislocation line. 
The phase shift between the two parts on each side of the singularity is equal to  π. This phase discontinuity 
induces large perturbations in the CXD pattern calculated with Eq. (I.14).
At the theoretical position of the Bragg peak, the intensity is equal to zero. This is the characteristic signature  
induced by a π phase defect which has been reported by Jacques et al. (2011). The detailed calculations to 
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explain this peculiar distribution of the diffracted intensity can be found elsewhere (Jacques 2009).
As illlustrated in Fig. I.5.a, and contrary to the case of a screw dislocation, the angular phase distribution is  
anisotropic. This difference between the two type of defects can be used to identify them, as illustrated later in  
this manuscript (Chapter V).
Here, the phase variations are concentrated in the region between the two white dashed lines, parallel to the [1 1 
0] direction, i.e. the direction of the Burgers vector of the dislocation. Conversely, the phase is almost constant in 
the  two  regions  circled  in  black  which  are  connected  by  a  black  arrow along  the  [1  1  1]  direction.  This 
anisotropy of the phase variations is reflected in the shape of the Bragg peak. It is slightly elongated along the 
same [1 1 1] direction which connects the two largest phase shifted volumes. 
g202 is perpendicular to y and is thus insensitive to the uy  component of the displacement field. Since uz=0, it is 
only sensitive to ux which probably explains why the phase variations are concentrated along the direction of the 
Burgers vector. Alternatively, the anisotropy in the displacement field can be understood from Eq. (I.16). ux is the 
sum of two terms, one increasing uniformily with the azimuthal angle θ = tan-1(y/x) and an additional periodic 
modulation which depends on the Poisson ratio The two terms of the ux component of the displacement field are 
shown in Fig. I.5.c & d. 
The selected pixel size in the real space δl determines the extent of the reciprocal space pattern Δq. Conversely 
the total size of the computing box in the real space L can be arbitrary extended with zeros (zero-padding) to 
enhance the resolution of the reciprocal space pattern δq. 

δq =
2 π
L

& δ l =
2 π
Δ q

 or δq =
1
L

& δ l =
1

Δ q
                 (I.18)
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Fig. I.5:  Computation of the scattering from an edge dislocation using a FFT.  (a) 
Angular  distribution of  φ202 in  the plane perpendicular  to  a  single straight  edge 
dislocation with b = ½[1 1 0] . (b) Corresponding CXD pattern in the (1 1 2) plane 
of the reciprocal space for g = 2 0 2.
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depending on the convention used for the Fourier Transform. For the chosen convention in this manuscript the 
term, i.e. the 2π factor is not included in q (crystallographic convention)  the pixel size in the real space is given 

by δ l = 1
Δ q

(and the resolution of the reciprocal space by δq = 1
L

). 

Note that this consideration is only valid for the FFT computation (Eq. 1.17) and obviously does not apply for  
the direct computation of the kinematic sum which compute the scattering from the atomic positions. (Eq. I.13)

Fig. I.6 shows the effect of zero-padding to compute the diffraction pattern. An enhancement of the resolution in  
the reciprocal space is observed. The diffraction pattern is calculated in the vicinity of  g  =  1  1 1. When the 
resolution  of  the  reciprocal  space  is  good enough,  a  splitting  of  the  Bragg peak is  also  observed for  this  
reflection. It correspond to the π phase jump induced by the phase singularity in the vicinity of the dislocation 
line. 

The 1 1 1 reflection allows to illustrate the effect of the uy component of the displacement field on the scattering 
pattern. While the Bragg peak was purely elongated along the [1 1 1] direction for g = 2 0 2, corresponding to 
the fact that the reflection is only sensitive to the ux component of the displacement field, it is slightly distorted 
here and the split of the Bragg peak is not oriented along a specific direction. This comes to the fact that g = 1 1 
1 is sensitive to both component of the displacement field (parallel and perpendicular to the Burgers vector of the 
dislocation). The bending of the lattice along z induced by the extra-half plane forming the dislocation induces 
supplementary perturbations in the CXD pattern. 
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Fig. I.6 Enhancement of the resolution in the resolution of the reciprocal space by  

padding the computing cell in the real space with zeros
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These  two examples  provide a  first  insight  in  the variety of  signature  induced by  a  single  crystal  defects, 
depending on the Miller index of the Bragg reflection. This topic is addressed in extensive details in Chapter III 
of this manuscript.  

In order to test the accuracy of the calculation using the FFT, it has been tested against the computation 
of the kinematic sum for the same type of defect. 

A perfect edge dislocation with its corresponding displacement field (Eq. I.16 & I.17, hypothesis of an isotropic 
and semi-infinite volume) is introduced at the centre of a 20x20x20 nm3 copper crystal, modelled with realistic 
inter-atomic potentials (Mishin  et al.  2001), using the home-made atomistic simulation code MERLIN. More 
details about these simulations are found in Chapter III. The dislocation has the same Burgers vector equal to 
½[1 1 0].  A cubic shape, with the x,y and z axis corresponding to the [1 1 0], [1 1 2]  and [1 1 1]  directions is 
considered. The cubic shaped crystal is equivalent to the 2D crystal presented at the beginning of this section  
except for the number of atoms.
The effect of the shape of the particle is also evaluated in this calculation by considering a particle in the Wulff  
shape (Winterbottom 1967) corresponding to an equilibrium crystal shape (ECS). For both cubic and Wulff 
crystal (Chapter II, III & VII for more details). The scattering is computed with Eq. (I.13), using the software  
PyNx (Favre-Nicolin  et al.  2011) presented above. The results are compared with the scattering from the 2D 
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Fig. I.7 Scattering from an edge dislocation with b = 1/2[1 1 0]  and g = 2 0 2 

obtained by two distinct methods of computation. (a) FFT calculation (Eq. I.14) 
(b) Direct  calculation of the kinematic sum (Eq. I.13).  (c) Calculation of the 
kinematic  sum  for  an  object  with  different  boundary  conditions  (Wulff 
equilibrium shape). (d) Angular distribution of the phase φ202 for the particle in a 
Wulff geometry).
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crystal computed with Eq. (I.14).
As illustrated in Fig. I.7.a & Fig. I.7.b, the computation from Eq. (I.13) and Eq. (I.14) gives the exact same  
result.  One  can conclude that  the  strain field  at  the  vicinity  of  the  dislocation  line  is  not  large  enough to 
invalidate the use of a Fast Fourier Transform for computing the scattering from a simple defect structure. When 
the displacement field from the defect is known analytically this method of computation is straightforward. As 
discussed previously, when the displacement field is obtained for relaxed atomic positions, there is in principle 
no reason that the displacement field surrounding the defect dramatically increases upon relaxation (see Chapter 
III and VI). It is also possible to compute the displacement field from Eq. (I.14) by interpolating the relaxed 
atomic positions on a regular grid. However given the very short computation times needed to compute Eq.  
(I.13) with PyNx, there is no interest in using such method of calculation.
The  influence  of  the  boundary  conditions  of  the  simulation  i.e.  the  shape  of  the  particle  are  discussed  in 
extensive details in Chapter III. Here it is clear that the signature of the edge dislocation in the cubic and in the 
Wulff particle only slightly differs. The elongation along the [1 1 1] direction is found for both particles, so is the 
general shape of the Bragg peak. Obviously, the fringes induced by the finite size of the particle differ between  
the two geometries, but this does not induce large modifications of the shape of the Bragg peak.

I.4 Coherent Diffraction Imaging

I.4.1 The phase problem

The phase problem has been a widely studied subject since the middle of the last century. It is the name 
given to the problem of loss of information concerning the  phase of an electromagnetic wave  that can occur 
when making a physical measurement.
Several successful attempts have been made for extracting phases from diffraction intensities such as holography 
(Gabor 1948, Gabor 1949) using electrons (Mulvey 1952) or photons at the visible or X-ray spectral range. This 
ability to extract the phase has revolutionized the imaging science.
Coherent X-ray Diffraction Imaging (CDI) is a lensless imaging technique that has opened up a new way of  
accessing  the  phase  information  by  using  iterative  algorithms  (see  section  I.4.3)  based  on  the  Sayre's 
oversampling principle (Sayre 1952): it states that the loss of the phase information can be compensated by a  
measurement of the intensities with a spatial frequency at least twice the Nyquist frequency. Algorithms can then 
be used to recover  the phase of  the measured electromagnetic  wave.  In practice,  the difficulty is  to find a  
combination of experimental conditions and algorithms that actually provides a successful reconstruction. The 
most common implementation of Sayre's principle is a measurement in the far field of the exit wave from a  
sample of finite extent, with the phase retrieval performed by algorithms that iterate between real space and  
reciprocal space with appropriate constraints applied in both spaces.
The technique has been used successfully in the last decade to image the 3D strain-field and defect structure in a  
variety of systems. The most significant achievements of CDI are presented in the introduction of Chapter III.
The principle of the technique is rather simple. When a crystal is fully illuminated by a coherent X-ray beam, the  
scattered waves from all  parts  of  the sample interfere in  the diffraction pattern.  Provided that  the intensity  
scattered by the sample is measured in the far-field (Fraunhofer) regime, a real-space image (in general complex)  
of the sample may be reconstructed from the diffraction data using phase retrieval algorithms. 
In diffraction geometry and non-resonant conditions, the real-space image corresponds to a complex density 
function (Eq. I.10). 
The amplitude of the complex-valued density corresponds to the electron density of the sample. It gives access 
to the shape and density of the object, and can provide a precise location of the defective part of the crystal. A  
void in the electron density is indeed observed for the parts of the crystal which do not perfectly satisfy the  
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Bragg conditions  (Williams  et  al,  2003).  As a  consequence,  twin domains  are  for  instance invisible  in  the 
reconstructed electron density, while voids of density are commonly observed in the vicinity of crystal defects,  
such as dislocations, where the crystal lattice is highly distorted. This voids or dips in the electron density can be 
exploited to determine the nature of the defect as shown in Chapter V & VI.
The phase of the complex electron density is related to the displacement field u via φ = 2π.g.u.  The image of the 
reconstructed phase displays the encoded displacement field of the crystal. 

I.4.2 Holography

In the following sections is presented the most conventional method to address the phase problem. It  
relies  on the use of phase retrieval  algorithms to retrieve numerically  the phase of  oversampled diffraction 
patterns.  However, phase retrieval methods are not the only option to access the phase information. Provided 
that a reference wavefield from a suitable scatterer interferes at the detector plane with the wave scattered by the 
object, the phase information can be sufficiently preserved such that an image of the object can be reconstructed 
from the measured intensity pattern. Using this method, the phase of the object wavefield is encoded by the  
reference wave-field in the far-field scattered intensity collected by an area detector. Both amplitude and phase 
of the complex image are simply obtained using a single inverse Fourier transform. This method is illustrated in 
Chapter XI, to image the magnetic structure and dynamics of sub-micron magnetic elements an won't be further  
detailed in this section.

I.4.3 Coherent Diffraction Imaging with phase retrieval algorithms

I.4.3.1 Oversampling

The phase retrieval technique is based on the central notion of oversampling of the diffraction data.  
“Oversampling” is defined by the Nyquist-Shannon theorem (Shannon 1949). It states that in order to retrieve 
the signal  correctly from a set  of sample points,  the sampling frequency has to be higher than the Nyquist 
sampling frequency.
In the case of a rectangular function (typically a slit), whose Fourier transform is the 'sinc' function, the Nyquist  
(Shannon) sampling frequency corresponds to at least one point per fringe. Below this sampling frequency, the 
fringes of the sinc function is not resolved, which leads to the loss information on the scattering object.  
When only the modulus of the Fourier transform of the signal is available (as in the case of diffraction), half of  
the information on the object is lost. 
Sayre proposed a criterion for the retrieval of the signal based on the Nyquist frequency: the signal can be  
retrieved only if the intensity of the Fourier transform of the signal is sampled at least at twice the Nyquist  
frequency. If the objects have N unknown values, the number of measurement points on the amplitude of the 
Fourier transform of the object needs to be at least 2N to reconstruct the signal. For the simple example of a  
rectangular  function  (Fig.  I.8.a),  the  diffracted  intensity  is  a  squared  'sinc'  function.  To  retrieve  all  the 
information, the signal has to be sampled by at least two points per fringe.
This criterion can be extended to 2D or 3D systems. In this case, a condition σ of oversampling has been defined 
by Miao et al. (1998). It corresponds to the ratio between the total number of points of measurements, and the 
number of unknown values. It was concluded that the oversampling condition σ>2 is the same for 1D, 2D and 
3D systems and that the requirement of phase retrieval by oversampling the magnitude of a Fourier transform by 
4 for 2 D reconstruction and by 8 for 3 D (by a factor 2 in each direction) reconstruction is unnecessary. The  
requirement of σ>2 corresponds to > 21/2 in each dimension for a 2D square object and > 21/3 in each dimension 
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for a 3 square object but it was evidenced that slightly higher values are needed in order to ensure the phase can  
be perfectly retrieved. 
Regarding experimental matters, the criterion of two pixels per fringe defined for the rectangular function can be  
applied to the diffracted intensity from an isolated crystal. The finite size of the crystal induces fringes normal to  
the crystallographic directions of its facets, with periodicity equal to the inverse of the distance between two  
parallel facets (Fig. I.8.b). If the diffracted intensity is sampled with at least two points per fringe, both the  
density and phase of the crystal can be retrieved (Williams et al. 2003). As discussed above, this criterion is even 
too strong since an oversampling of 2 along each direction of the space is not needed for 2D or 3D system.

I.4.3.2 General formalism of phase-retrieval algorithms

Provided  that  the  diffraction  data  is  oversampled, and  that  the  sample  is  isolated  (finite  support 
constraint),  the  phase can in  principle  be retrieved.  The  first  iterative  algorithm,  error-reduction  (ER),  was  
proposed by Gerchberg & Saxton (1972) (Fig. I.9) and was initially successfully used in Electron Microscopy to  
obtain the missing phase information in both direct and reciprocal space. It relies on the fact, that the amplitude  
and phase of the complex-valued scattering function  f(r) in real and reciprocal space are linked by direct or 
invert Fourier transform (Fig. I.9). In the case of electron microscopy, both the amplitudes in the reciprocal space  
(electron diffraction) and in the real space (image of the sample) are accessible experimentally. 
The basic phase retrieval process begins with a guess of the diffracted phase of the object. A first estimate of the  
complex object is obtained by applying an inverse Fourier transform. This first estimate does not necessarily  
correspond to the shape of  the object.  At  this  stage,  the amplitude of  the object  is  corrected to  match the  
experimental data. This new iterate with a “corrected shape” is in turn Fourier transformed to yield a new guess  
for the diffracted wavefield. The consistency with the reciprocal space constraint, i.e. the diffracted amplitude is 
then enforced while retaining the current phase. This process known as phase-retrieval algorithm is then repeated 
until both the amplitude (density) and phase of the object are reconstructed. 
We call gk the object guess at th k-th iteration, Gk its Fourier transform, G'k a modification of Gk according to 
the reciprocal space constraints, and g'k its inverse Fourier transform. The next iteration of the guess, g(k+1), is  
obtained by applying the real space constraints to g'k. Most iterative algorithms used for phase-retrieval are just  
different strategies to apply the real space and reciprocal space constraints to g'k and Gk respectively.
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Fig. I.8 Illustration of the oversampling criterion.  (a) Sayre oversampling of a 1D 'sinc' function, Fourier transform of a 
rectangular function. The oversampling condition is fulfilled for the sampling of at least two points per oscillation fringe. (b)  
Illustration of an oversampled diffraction pattern from a Wulff crystal. The two pixels per fringe ensure that the oversampling  
conditions are largely satisfied (2x2 oversampling)
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I.4.3.3 Finite support constraint and Error-Reduction (ER algorithm)

To deal  with the cases when only the amplitude in the reciprocal  space (the diffracted intensity)  is  
available, and there is no information on the real space object. Fienup introduced the notion of finite-support in 
the  Error-reduction  (ER)  algorithm (Fienup 1978).  The  support  corresponds  to  a  shape  when the object  is  
included. The density of the object is thus equal to zero outside the support. Following the formalism introduced  
in Fig. I.9, this condition can be written as following:

{gk +1(r ) = gk

' (r ) if r is ∈ Support

gk +1(r) = 0 if r is ∉ Support
    (I.19)

In the reciprocal space (Fourier space), the condition on the reconstructed amplitude (the modulus constraint) is  
given in Fig. I.9 :

∣G ' k (q)∣ = √ I exp(q)     (I.20)

The agreement between the retrieved amplitude and the measured amplitude is evaluated by the mean squared  
error between the two amplitudes:

E r

2 =
∑ (∣Gk (q)−√I exp(q)∣)2

∑ I exp(q)
    (I.21)
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Fig. I.9 General architecture of phase retrieval algorithms 
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This parameter is a good indicator of the quality of the reconstruction. It is used to monitor the convergence of 
the algorithm. In practice, a slow convergence of the ER algorithm is often observed. The error-metric does not  
evolve and the algorithm is sort of stuck in a local minimum. 

I.4.3.4 Hybrid-Input-Output (HIO) algorithm

To overcome the problem of stagnation in local minima of the ER algorithm, an enhanced algorithm was  
introduced by Fienup (Fienup 1982), the Hybrid-Input-Output algorithm (HIO). It differs in the application of 
the real space constraints. Contrary to the ER algorithm, the retrieved informations outside the support are kept  
and subtracted during the next iteration after having been multiplied by a feedback parameter β:

{gk +1(r ) = gk

' (r ) if r is ∈ Support

gk +1(r ) = g k (r )−β g k

' (r) if r is ∉ Support
     (I.22)

β  is generally selected between 0 and 1 with typical value of 0.5 to 0.9. In some particular cases, it can be  
selected to be bigger than 1 (Kohl & Baumbach 2012). 
In practice, this adaptation is efficient and significantly enhances the convergence speed. It can be seen as a little  
perturbation that allows to leave a local minimum. However, the HIO algorithm still fails sometimes, and this  
explains why the ER and HIO algorithms are generally used in combination.

On top of the conventional support constraint, additional real-space constraints can be added to the algorithm. 
A good illustration of the application of these additional  real-space constraints is  the Phase-Constraint  HIO 
(PCHIO) algorithm that  was proposed by Harder  et  al  (2010).  In  this  algorithm,  the real-space phases  are 
constrained to be within a range with minimum and maximum phase values. Typical values are ±π/2. 
In the case of limited phase variations it can significantly improve the data convergence : 

 {gk +1(r ) = gk

' (r ) if r is ∈ Support ∩ Φmin < Φ < Φmax

gk +1(r ) = g k (r )−β g k

' (r) if r is ∉ Support ∩ Φmin < Φ < Φmax

    (I.23)

An extensive comparison of the modern algorithms has been realized by Marchesini (2007), and in particular  
their ability to avoid stagnation in local minima has been evaluated. It was concluded that the combination ER + 
HIO is particularly robust. This combination is used in most of the reconstruction presented in this work.

I.4.3.5 Support determination, Shrink wrap algorithm

There are several techniques to estimate the support. In some cases, the shape and dimensions of the  
object have been already determined by other techniques (such as SEM or AFM for instance), and a support can  
be built from this knowledge. When the shape of the object is unknown, a rough estimate of the support can be 
obtained from the diffraction signal using the autocorrelation function (Marchesini 2003). It is based on the 
Patterson function which can be defined as the invert Fourier transform of the diffracted intensity. This function  
can be expressed as the convolution of the complex electron density :
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Patterson(r ) = TF
−1 {I (q )}

= TF
−1 {A(q) A

*(q)}

= TF
−1 {TF (ρ(r ))TF (ρ(−r ))}

= ρ(r ) ⊗ ρ(−r )

     (I.24)

It comes from Eq. (I.22) that the Patterson function contains a strong signature of the shape of the object, unless  
the strain is so high that the characteristic features of the shape disappear from the diffraction signal (Beutier et  

al. 2013a). The size of the crystal is overestimated by the Patterson function, since it provides its autocorrelation. 
In practice, a non uniform density leads to a non-trivial shape of the autocorrelation. The function needs to be  
threshold  to  start  with  a  reasonable  approximation.  In  most  of  the  reconstructions  in  this  manuscript,  the 
threshold was set to 2% of the maximum of the Patterson function.
As discussed by Vaxelaire (2011), the method is not adapted to highly strained objects. For such objects, the 
Patterson function can be written as:

Patterson(r ) = ρ(r )e
i q .u(r )ρ(−r )e

−i q .u(−r)
     (I.25)

It is clear from Eq. (I.23) that the inhomogeneity of the displacement field plays an important role in the shape of  
the autocorrelation function. For large strain, the diffraction pattern has a large extent in the reciprocal space  
(Beutier et al. 2013a). As a consequence, the Patterson function underestimates the size of the object, preventing 
any chance of success in  the phase-retrieval  procedure.  In  summary,  if  the shape and size  of the object  is  
unknown, it is not recommended to use the autocorrelation function as a first estimate of the support in the case 
of an highly strained system.

In combination of the ER and HIO algorithms, a third algorithm is routinely used for CDI. It is known as the  
shrink wrap (SW) algorithm and allows to update the support during the reconstruction. It was first introduced 
by Marchesini (2003) and has proven to greatly improve the convergence of the procedure. In practice, the 
estimate  is  smoothed  by  convolution  with  a  Gaussian.  After  convolution,  a  thresholding  is  applied  to  the 
smoothed image to a typical value of 10% of the maximum value of the amplitude. Values above the threshold 
are set to 1 and values below are set to 0. The threshold is generally set to such low values to avoid to suppress  
too large parts of the support. Nevertheless, the convolution step allows to recover from a support that has been  
reduced too much.

I.4.3.6 Recent improvements on the phase retrieval procedure

The combined use of ER, HIO and SW has proven to reach data convergence, especially in the case of 
weakly-strained crystallites, which are studied within this work (Pfeifer  et al.  2006, Robinson & Harder 2009, 
Watari  et al.  20111). However, there is no combination of the existing algorithms that guarantees a successful  
reconstruction.  This  is  especially  true  in  the  case  of  highly  strained  objects  where  conventional  iterative 
algorithms often fail when phasing the diffraction pattern of such objects. Some improvements in the phase-
retrieval procedure have been recently proposed in order to improve the convergence of the results.

Guided phase retrieval method 

The guided phase retrieval method (Chen et al. 2007) is particularly effective, and its successful use has 
been reported in several recent publications (Clark et al. 2015, Ulvestad et al., 2015). It is described in extensive 
details elsewhere (Clark et al. 2015). In short the procedure works by generating several initial random guesses 
to start the iterative procedure. Each initial guess is then transmitted to a phase retrieval algorithm, and after a  
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predefined number of iterations, a set of potential solutions is obtained. The algorithm then selects the best  
solution according to specific criteria such as the metric-error for instance, to guide the next round of iterations. 
After several rounds/generation, the solutions usually converges regardless of the initial random starts.

Sharp metric error

As already discussed in section I.4.3.5 the diffraction patterns from strained crystals has a large spatial extent.  
This results in a narrow autocorrelation which underestimates the size of the object. Even if the initial support is  
selected to be sufficiently large, the choice of the best solution according to the conventional metric-error (mean-
squared error between the measured and retrieved amplitude) does not guarantee a successful reconstruction. 
It is well known that the width of the diffraction peak of a crystal depends on the size of the crystal and of the  
level of strain (Williamson & Hall 1953, see Chapter II). A given width of the Bragg peak can be obtained either 
by a large strained crystal or by a smaller unstrained crystal. There is the possibility during the phase retrieval  
procedure of stagnation in a local minimum with largely underestimated dimensions of the crystal. To promote  
the reconstructions with a larger spatial extent, Clark et al. 2015 proposed to select the best values according to a 
different form of metric error, namely the sharp metric error which is given by:

E s=∑
l=1

L

∣ρ(l)∣4
    (I.26)

where l is the pixel index, so that the metric-error selects estimates which have a more uniform distribution of 
amplitude values, corresponding to a larger spatial extent of |ρ|. It was shown that in a highly strained systems, 
the choice of the best solution according to the conventional metric-error usually fails to reconstruct the original  
sample, while the selection based on the sharp metric-error systematically yields successful reconstructions. 

Low-to-high resolution phasing implantation

Another  suggestion of  improvement  was the use of  a  Low-to-High resolution  phasing implantation 
(McCallum & Bates 1989). This consists in first phasing a low resolution data set by limiting the extent of the  
reciprocal space pattern before using it to seed the phasing of progressively higher resolution data. This results in  
smoother and less pronounced phase features than the original object and greatly facilitates the reconstruction.

Partial coherence effects

Finally, the reconstruction of the experimental data can be improved by taking partial coherence effect  
into account (Clark et al. 2012). In the Schell model, the effect of partial coherence is to convolve the diffracted  
intensity with a function γ(q) which is the Fourier transform of the normalized mutual coherence function given 
by Eq. (I.5).During the iterative routine the estimate of the diffracted intensity : |G(q)|2 is replaced with :

∣G(q)∣' 2 = ∣G(q)∣2⊗γ(q )     (I.27)

I.4.4 Correction for artefacts related to experimental conditions

The phase  of  the  retrieved complex-valued  electron density  often presents  some variations  that  are 
related to the experimental conditions rather than to the crystal structure (Diaz et al. 2009, Harder et al. 2007). 
These artefacts can complicate the analysis of the reconstructed data. Here we briefly describe some of these  
artefacts. Among them are the reciprocal space offsets, refraction effects and curved illumination wavefront. The 
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effect of these artefacts on the reconstructed data is illustrated through several examples in Chapter VI and 
Chapter VII.

I.4.4.1 Reciprocal space offsets

A slight mis-centring of the diffraction data before phase retrieval results in a linear phase ramp in the  
real space reconstruction. This is a consequence of the Fourier shift theorem. This phase ramp is particularly  
problematic because it is equivalent to an uniform expansion/contraction of the crystal lattice. 
In order to remove any real space phase ramp in f(r)' its Fourier transform F(q) needs to be re-centred.  This can 
be done through the use of the centre of mass of |F(q)| but as discussed by Clark et al. (2015) this choice might 
not be appropriated for complex-objects with a non-negligible phase. An alternative consists in centring  F(q) 
based on the centre of mass of |F(q)|4. The sub-pixel shift is achieved by multiplying  f(r) by the appropriate 
phase ramp determined from the centre of mass. This procedure has been used in this work for the reconstruction 
of both experimental and simulated data and has proven to be very efficient.

I.4.4.2 Refraction effects

Although the real part of the refractive index, 1-δ, is close to unity, refraction effects may become non-
negligible because the wave propagation distance is much larger than the wavelength λ. Refraction causes the 
waves travelling inside the crystal to have a different wavelength from those travelling in the vacuum outside. 
The real part of the refractive index n corresponds to the ratio between these two wavelengths. Over a distance d 

which corresponds to the diameter of the sample, the wave field propagating into the sample is experiencing a 
phase shift with regards to the wave field propagating in the absence of matter, for both incident and scattered 
waves. This phase shift is given by :

Δϕ0 ref = 2π k δd     (I.28)

Where k is the wave vector corresponding to the vacuum wavelength.
Harder et al. (2007) evidenced that in a large (d = 750 nm) and weakly strained Pb crystal, the phase variations 
induced by the strain and the phase shift accounting for refraction effects is of the same order of magnitude. The  
latter needs to be taken in account in order to provide a precise description of the distribution of the displacement 
field. They model the phase shift due to refraction in a spherical Pb crystal. It relies on the fact that the refraction  
phase shift simply accumulates along the path of the incident wave-vector ki, and that the contributions from all 
points r within the crystal are detected along the exit wave direction kf  after experiencing a phase shift due to 
refraction along its exit path. This model is in the Born approximation and thus supposes only one scattering 
event. It is thus possible to assign a phase shift to every point r in the crystal providing the knowledge of ki and 
kf. For a sphere, the phase shift at a point ρ = r/r0 where r0 is the radius of the crystal is given by:

Δϕ ref =
Δ ϕ0 ref

2
∑
j=i , f

( k̂ j .ρ−√1−∣k̂ j .ρ∣2−∣ρ∣2)     (I.29)

where k's are unit vectors pointing toward the centre of the sphere in the direction of the incident and diffracted 
beams. This model is used in Chapter IV to correct the refraction effect in a weakly strained gold crystal. We will  
also see in Chapter VI that for defective crystals experiencing larger amount of strain, the phase-shift accounting 
for refraction effects become negligible in regard to other variations.

I.4.4.3 The wavefront problem
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Both the curvature and the inhomogeneities in the wavefront are critical issues when using CDI for the  
imaging of strain field within crystallites. These modifications in the wavefront profile are mainly introduced by  
the optics used to improve the focusing of the beam at the sample position (Fresnel-zone plates, K-B mirrors...).  
They are thus especially critical for sub-micron beam sizes. Polishing imperfections are also a common issue and 
occur frequently with channel-cut monochromators (the geometry of the double crystal, etched in a single block,  
does not allow a high-quality surface polishing).
The wavefront profile can be described as a complex-valued function P(r). The magnitude of the illumination is 
usually described by a Gaussian profile, while the phase depends on the nature of the focusing elements. For 
instance the phase of the wave front is supposed to be flat in the focus with a Fresnel Zone Plate (Schroer et al. 

2008, subssection II.1.1.3).
As a consequence, the scattered wavefield in the Fraunhofer region is the Fourier transform of the exit wavefield  
given by the product P(r)f(r) and the retrieved phase at the sample is a mixture of the phase of the illumination 
wave-front and of the phase complex electron density. This mixing of the phase is particularly well illustrated in 
the Chapter VII of this manuscript. 
To disentangle the contributions from the illumination wavefront  and from the sample itself,  the wavefront  
illumination needs to be finely characterized. The difficulty is largely increased by the small size of the beam at  
the focus and the need to characterize it at the same length scale (a few nanometers) as the sample. This can be  
done either  using dedicated optics such as  a  Hartmann wavefront  sensor  (Mercère  et  al.  2003) (so far  not 
available for  hard X-rays),  or  using a  lensless approach:  a  common method is  to  apply CDI methods to  a 
measurement  of  the  direct  beam  in  the  far  field  of  the  focus  (Quiney,  Nature  Phys  2006);  alternatively,  
ptychography can be used to reconstruct the probe and this difficult approach can be eased by using a known 
sample (Kewish, Ultramicroscopy 2010).

I.4.5. Numerical study, case of defective samples

I.4.5.1 Comparisons between reconstructions for several Bragg reflections 

The ability of phase retrieval algorithms to handle systems containing sharp and possibly large phase 
jumps is  evaluated here  on simulated data.  In  this  introduction,  we focus the study on the case of  perfect  
dislocations whose displacement field can be calculated analytically as discussed in sub-section I.3.4. This short  
subsection can be seen as an introduction of Chapter V where  reconstruction of the displacement field for more 
complex defect structures (relaxed defects, assembly of defects) are presented.
Similarly to the example in sub-section I.3.4, copper crystallites are modelled using the atomistic simulation  
MERLIN. They are all in a Wulff geometry which is the equilibrium shape of the particle (Chapter II-VII) and 
measure  30x30x30  nm3  which  corresponds  to  slightly  more  than  106  atoms.  A perfect  edge  dislocation  is 
introduced at the centre of the particles, with a Burgers vector equal to b = ½[1 1 0].
The diffraction patterns are calculated by computing Eq. (I.13) with PyNx, and the displacement field for various  
Bragg reflections is reconstructed from these calculated diffraction patterns. In the first set of simulations, the  
extent of the reciprocal space is selected to achieve a high resolution (of the order of the nanometer), while  
ensuring that Sayre's oversampling conditions are satisfied. 
The  scattering  is  computed  on  128x128x128  reciprocal  space  points  corresponding  to  an  extent  Δq of 
0.14x0.14x0.14 Å-3

. The voxel size in the real space is thus equal to δl = 1/Δq = 0.7 nm. In the case of simulated 
data, the pixel size roughly gives the resolution. It is thus clear that the resolution for these simulations is of 
course  not  achievable  experimentally.  Here  it  is  needed  to  perform  quantitative  comparisons  with  the  
displacements calculated from the atomic position. 
Over a first phase we aim at ensuring the accuracy of the reconstruction of the displacement field. To do so, the  
reconstructed  displacement  field  is  compared  to  the  atomic  displacement  field  directly  calculated  from the  
relaxed configurations in the atomistic configurations. The atomic displacements are calculated from a perfect  
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crystal with the same number of atoms. The displacement field surrounding the defect is reconstructed for g ( 1 
1 1, for which the phase jump induced by the dislocation is equal to π (sub-section I.3.4), and the profile of the 
displacement field is expected to be rather simple. This Bragg reflection is sensitive to both components of the  
displacement  field but  is  almost  parallel  to  the Burgers  vector  of  the dislocation so that  the  uy component 
produces only little perturbations on the CXD pattern as illustrated in Fig. I.10.

The reconstruction of the diffracted data is carried-out using the standard phase retrieval algorithms described in  
the previous section, namely the ER, HIO and SW algorithms. 
The sample complex density is constrained in a support which is given by the Patterson function (autocorrelation 
of the intensity). Since the sample is strain-free, except at the vicinity of the dislocation where large strain fields 
can be found, this gives a reasonably good approximation of the shape of the particle. To ensure that the initial  
support  is  sufficiently large,  the threshold for the Patterson function is  set  to a very low value (2% of the  
maximum of the function), as discussed in subsection I.4.3.5. The dynamical range in the diffraction pattern is  
limited to 4.5 decades of intensity, which is the typical dynamical range of our experimental data sets obtained 
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Fig. I.10 Phase retrieval from samples containing individual defects (a) (qy,qz) slice of a CXD pattern from a 
30x30x30 nm3  Wulff crystal. A single edge dislocation with  b = 1/2[1  1 0] is introduced at the centre of the 
crystal, and the calculation is performed at the vicinity of the 1 1 1 reciprocal lattice point. (b) Reconstructed 
phase  φ1  1 1 with the support  obtained from the SW algorithm (c) Final  support  obtained by averaging the 
reconstructed  electron  density  over  10  reconstructions.  The  pixels  with  ρ <  0.35  ρmax are  set  to  zero.  (d) 
Reconstructed phase constrained to the support defined in (c).

a) qxqz slice

b) Average electron density for threshold 

c) yz slice before threshold

d) yz slice after threshold

[1 1 1]

[1 1 2]

[1 1 0]
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on our  gold particles with a 1s exposure time.
The procedure itself consists of an alternation of 50 HIO and 100 ER repeated 15 times, with an update of the  
support  using SW at  the end of every series of (50 HIO + 100 ER).  The feedback parameter for the HIO  
algorithm β is set to 0.9 while the threshold for the SW algorithm is equal to 10% of the maximum of the  
electron density. These are typical values as discussed previously. To characterize its convergence, the procedure  
is used over 20 random starts. For all 20 random starts the convergence is rapidly achieved and a minimum is  
reached after only 3 series of (50 HIO + 100 ER). The reproducibly of the solutions can be evaluated through  
their error-metric. Here the error-metric is remarkably reproducible and all 20 reconstructions lead to the same  
metric error with an average value of 1.634x10-2 and a standard deviation of the order of 10-4.
In Chapter VI & VII, we will see that the reconstructed images are generally averaged over a rather large number  
of  reconstructions  which  correspond  to  the  best  solutions,  as  evaluated  from  their  metric  error  and  the 
homogeneity of the retrieved electronic density. This allows to obtain smoother representations, and reduce the 
noise inherent to experimental measurements. 
For simulated data, there is thus no need for such averaging. As already discussed, the final support shape which 
contains all the complex electron density is obtained using the SW algorithm. It is known that crystal defects  
induce voids in the electron density (Takahashi et al. 2013, Labat et al. 2015). In order to insure that the support 
is not set to zero in regions that correspond to parts of the crystal, the threshold for the SW algorithm is set to a 
low value: 10% of the maximum of the electron density. As a consequence, the support obtained by SW is  
significantly larger than the actual size of the crystal. At the end of the reconstructions, the support is adjusted by  
averaging the electron densities obtained from the best reconstructions. This procedure allows to obtain a support 
very consistent  with the atomistic simulations,  after  removing the voxels of  the support  below 35% of the 
maximum value of the electron density. As illustrated in Fig. I.10.d, all the complex electron density values are  
contained in this support, which allows to obtain a very clean representation.
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Fig.  I.11 Comparison  between  the  calculated  and  reconstructed 
displacements around a perfect edge dislocation introduced at the centre of 
the reference copper nanocrystal  for  g  =  1  1 1 (a) to (c) Calculated  u111  

displacement in the (1 1 2) (a), (1 1 0) (b) and (1 1 1) planes (c). (d) to (f) 
Reconstructed u111  displacement in the (1 1  2) (a), (1  1 0) (b) and (1 1 1) 
planes (c).
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From  this  first  series  of  simulations,  all  the  reconstructions  have  converged  to  the  same  minimum.  The  
remaining question is to determine whether this minimum corresponds to the actual phase field in the particle, or  
to a local minimum. 
Fig. I.11 shows the phase reconstructed from the simulated data with  g = 1  1 1 (Fig. I.11.a) compared to the 
phase calculated from the atomic positions. As illustrated in Fig I.10.a, the total amplitude of displacements in 
the (1 1 2) plane perpendicular to the dislocation line is exactly equal to the spacing between two successive (1 1 
1) planes and corresponds to a phase variation of  2π (Fig. I.10.a). For all the crystallographic planes which  
contain the dislocation line, including the (1  1 0) and (1 1 1) planes (Fig I.10.b and I.10.c), a π phase jump 
occurs at the dislocation line position. The reconstructed displacement field (Fig I.10.d to I.10.f) is very similar 
to the calculated one. Both the 2π vortex in the plane perpendicular to the dislocation line, and the π phase jumps  
in the (1 1 0) and the (1 1 1) planes are well reproduced. Our phase retrieval procedure systematically converges 
towards the good solution, with a success rate of 100%. 

Fig. I.12.b shows the case of the 2-2 0 reflection, which is parallel to b for the same atomic configuration. In this 
case (g // b), the displacements around the dislocation line vary linearly as a function of the azimuthal angle θ. 
Similarly to the 2 0  2 reflection, which is only sensitive to the  ux component of the displacement field, rapid 
phase variations are observed in the regions directly on the right and the left of the dislocation line which are  
both along the  x  = [1  1 0] direction. Conversely, the phase remains relatively constant on the top and on the  
bottom of the dislocation line which are connected by the y = [1 1 1] direction (Fig. I.12.a). This results in the 
anisotropy of the diffracted intensity which is elongated along the [1 1 1] direction. The phase distribution is not  
affected by uy since g has no projection on this part of the displacement field.
For g = 2 2 0, a phase variation of 2π corresponds to half the lattice spacing between two (1 1 0) planes, i.e. the 
magnitude of the Burgers vector. As seen in Fig. I.12a which shows φ220 = g220.b  in the (1 1 2) plane perpendicular 
to the dislocation line, the minimum and maximum displacements along [1  1 0] with respect to the atomic 
positions in the perfect crystal are respectively -1.28 Å and 1.28 Å. The displacement amplitude is thus exactly  
equal to one lattice spacing between two (1 1 0) planes and corresponds to an overall phase variation of 4π. 
This implies that the phase difference between the two parts of the crystal on each side of the dislocation line is  
equal to 2π (Fig. I.12.b): the dislocation line does not induce any phase jump. Only the atoms on the dislocation 
itself are phase-shifted by π with respect to the surrounding atoms. Due to the absence of phase jump, the  
calculated intensity is not equal to zero at the Bragg position (Fig. I.12a). The reconstruction of the displacement 
field is performed using the same procedure as for g = 1 1 1. However, contrary to the latter, the phase retrieval 
procedure does not systematically lead to the same solution. Two families of solution are obtained. For about 1/3  
of  the  reconstructions  (6  out  of  20),  the  phase  retrieval  converges  to  a  solution  very  close  to  the  true  
displacement field. 
For the other 14 reconstructions, a completely different solution is obtained. The reconstructed phase consists of  
two regions phase shifted by π. Inside these regions, the phase is homogeneous. Since the atomic displacement 
field is known, it is clear that the second set of solutions does not correspond to the actual phase distribution in 
the sample. However, an important question is to find out if the correct set of solution can be determined without 
the prior knowledge of the atomic displacement field. 
A good criterion to evaluate the success or the failure is to rely on the metric error. As illustrated in Fig. I.13, the  
two sets of solutions correspond to two different values for the metric error. The solutions which correspond to 
the true displacement field have an average metric error of 1.65.10 -2  with a standard deviation of 2.10-4. The 
second set of values gives an average metric error of 2.27.10-2 with a standard deviation of 3.5.10-4. As expected, 
a lower error-metric is obtained for the set of values which correspond to the good solution. Also interesting, the 
values of the errors-metrics are very reproducible for the two sets of solutions. On experimental data, a larger  
dispersion of error-metrics is generally observed for the solutions which correspond to local minima (Labat  et  

al.2015).  
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An additional criterion was proposed by Labat et al. (2015) to discriminate between the solutions of the phase 
retrieval. It is based on the homogeneity of the reconstructed electron density. For the set of solutions with the  
largest metric error, large variations in the electron density are observed between the two phase shifted regions.  
The associated density in the small green region is approximately four times larger than the density in the purple 
region (not shown here). The variations in the electron density are much smaller in the set of solutions with the 
lowest metric error, confirming that this criterion is also reliable to discriminate between different solutions. The  
reconstruction of the displacement field for g = 2 2 0 is thus a good illustration of the risk of stagnation of phase 
retrieval algorithms in local minima. Here it should be noted that the number of iterations for the HIO algorithm  
are only half the number of iterations for the ER algorithm. A larger number of HIO iterations might help to  
prevent  this  phenomena,  but  this  has  not  been  tested.  In  any case,  the  success  rate  of  the  phase  retrieval  
procedure drops from 100% for g = 1 1 1 to only 30% for g = 2 2 0. This is an indication that large values of 
sharp phase jumps (Δφ > 2π) seem to be difficult to handle by conventional phase retrieval algorithms.  It is well  
known that  the convergence of  standard  phase  retrieval  algorithms is  difficult  in  systems with large  phase 
variations (>> 2π, Diaz et al. 2010). However, the difficulties of convergence in the presence of large and sharp 
phase jump have not been reported to our knowledge. We will see in Chapter VI and VII that they are not  very  
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Fig. I.12 Case of sharp and large phase jumps ( >2π) (a) (qx,qz) slice of a CXD pattern from a 30x30x30 nm3 

Wulff crystal. A single edge dislocation with  b = 1/2[1  1 0] is introduced at the centre of the crystal, and the 
calculation is performed in the vicinity of the 1 1 1 reciprocal lattice point. (b) Phase φ2  2 0 calculated from the 
atomic position shown in the (1 1 2) plane. (c) Successful reconstruction of the φ2 2 0 phase shown in the same (1 
1 2) plane. (d) Failed reconstruction of the φ2 2 0 phase shown in the (1 1 2) plane. 
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common in our experimental systems, where the dislocations are often dissociated into partials (Chapter III).  
When the dislocation is dissociated, the overall  phase jump is kept to the same value, but spatially divided 
between the two partials, so that it is generally below 2π unless Bragg reflections with high (h,k,l) indexes are 
used. 

I.4.5.2 Extent of the reciprocal space pattern, resolution and oversampling conditions

The resolution in real space is inversely proportional to the extent of the reciprocal space; the latter can 
be adjusted in order to improve the resolution. In the following we try to evaluate to which extent the resolution 
can be increased, for a given particle size. 
Coherent  Diffraction  Imaging  is  a  reciprocal-space  based  imaging  technique  as  compared  to  most  of  its 
counterpart imaging method. The maximum attainable resolution is not limited by the optics and depends on the  
maximum extent of the Brillouin zone measurable with a sufficient signal-to-noise ratio. With a typical coherent 
flux of the order of 10¹  photons/s at 3⁰ rd generation synchrotron sources, CDI experiments require long exposure 
times to improve the spatial resolution. There is thus a trade-off between the best achievable resolution and  
measurement time. With the help of nanofocusing the coherent flux on the sample can be efficiently increased,  
reducing considerably the exposure time needed to reach high spatial resolution. Schroer et al. (2008) reported a 
resolution of 5 nm in a reconstructed gold nanoparticle using a nanofocused beam. 
On simulated data, the photon flux is not a problem, and the resolution is theoretically unlimited. It is actually  
limited by the limit  of  size  of  the computational  arrays  used for  the phase retrieval  which depends on the  
computational power. We have seen in sub-section I.4.3.1 that the diffraction data needs to be oversampled to  
allow the retrieval of the complex density. A commonly reported criterion for the case of nanocrystals is the  
number of pixel per fringe in the reciprocal space pattern. 2 pixels per fringe ensure that the CXD pattern is 
oversampled (Williams et al. 2003). This criterion is even too strong since an oversampling of a factor 2 along 
each direction of the space is not needed for 2 D and 3 D systems (Miao et al.  1998). For a given number of 
points in the computational array, the extent of the Brillouin zone that can be selected and the corresponding 
resolution in the real space depends on the size of the simulated particle. The smaller is the particle, the larger is  
the period of the corresponding fringes, and the easier it is to fulfil the oversampling conditions.
Here the diffraction patterns are calculated from the same 30x30x30 nm3 copper particle using Eq. (I.13) around 
the  1  1 1  reciprocal  lattice  point.  This  Bragg reflection is  chosen because  of  its  high success  rate  for  the  
inversions. Four different ranges are selected for the extent of the reciprocal space patterns, which all consist of 
128x128x128 points. 
The smallest extent is 0.07 nm-1,, giving a pixel size of 1.4 nm in every direction of the space, while the largest is 
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Fig. I.13 Shape of the Error-metric for a failed and successful reconstruction 
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0.35 nm-1 giving a pixel size of 0.28 nm. In between, two intermediate ranges are selected : 0.14 nm -1 (pixel size 
of 0.7nm) and 0.28 nm-1 (pixel size of 0.35 nm-1). For each spatial extent, the phase retrieval is carried out using 
the  procedure  described  previously  using  only  5  random  starts.  For  the  two  smallest  spatial  extents,  the  
reconstructions are successful for all five random starts. For Δq = 0.28 nm-1, the success rate drops to 60% (3 out 
of 5), while the reconstructions systematically fail for the largest spatial extent.
Since it was shown in the previous section that a 100% success rate for the phase retrieval for g = 1 1 1 if the 
oversampling  conditions  are  fulfilled,  the  success  or  failure  of  the  phase  retrieval  is  here  related  to  the 
oversampling conditions.  Independently of the extent of the reciprocal space extent, the computational array for 
the  complex  sample  density  is  equal  to  the  number  of  reciprocal  space  points  (i.e. 128x128x128  points). 
Following the definition of the oversampling ratio, the number of points in the finite sample which contains all  
the unknown values of the complex-electron density can be used to calculate the oversampling ratio. The initial 
support is estimated by the Patterson function, and the final support has a shape which is close to the  crystal 
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Fig. I.14 Enhancement of the resolution in the real space reconstruction by increasing the spatial extent in 

the reciprocal space. The σ values denote the oversampling ratio. (a) Δq = 0.07 nm-1 corresponding to δl = 
1.4 nm. (b) Δq = 0.14 nm-1 corresponding to δl = 0.7 nm. (c) Δq = 0.28 nm-1 corresponding to δl = 0.35 nm.
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equilibrium shape. For the sake of simplicity, a cubic support is considered for the calculation of σ.
For the smallest spatial extent,  all  the complex densities values are contained in a support which consist of  
28x28x27 points. This gives the following values for the oversampling ratio in the three directions of the space: 
σx = σy = 4.57 and σz= 4.74 and an overall oversampling ratio σ = σx σy σz = 99! The oversampling conditions are 
thus largely fulfilled.

The values for the other spatial extents are presented in Tab. I.1 :

σx σy σz σ

 Δq = 0.07 nm-1, δl = 1.4 nm 4.57 4.57 4.74 99

 Δq = 0.14 nm-1, δl = 0.7 nm 2.37 2.56 2.72 16.5

 Δq = 0.28 nm-1, δl = 0.35 nm 1.25 1.29 1.45 2.34

 Δq = 0.35 nm-1, δl = 0.28 nm 1.05 1.08 1.11 1.26

Tab. I.1 Oversampling ratio obtained for different spatial extent in the reciprocal space

Note that σ is calculated for a cubic sample, the oversampling ratios are thus underestimated. 
For the intermediate spatial extent (Δq = 0.14 nm-1), the overall oversampling ratio is still largely fulfilled as well 
as along the three directions of space. This explains the 100% success rate for the two largest ratios. 
For  Δq = 0.28 nm-1  both the overall oversampling ratio and the oversampling ratios along each direction are 
satisfied (σi > 21/3), but only by a very slight margin. σ is even below the empirical limit value of 2.57 that was 
given by Miao et al. (1998). As discussed above, the number of unknown values is overestimated and σ is in fact 
probably very close to this value. 
For the larger value of the spatial extent, the oversampling conditions are not satisfied, explaining the systematic 
failure of the reconstructions.
We conclude that the value of 0.28 nm-1 corresponds to the upper limit of the spatial extent for this particle size 
and this number of reciprocal space points. Provided that the diameter of the particle is increased and that the 
reciprocal space sampling is increased, it is likely that a reciprocal space extent which cover the full Brillouin  
zone is reachable.
The increase of the spatial extent and the corresponding improvement of the resolution is illustrated in Fig. I.14.  
It is shown that the resolution can be improved by a factor 2 in each direction of space as compared to the  
previous reconstructions presented in this manuscript (Fig. I.11 and Fig. I.12). As illustrated in Fig. I.14e-f, the 
oversampling criterion defined by Williams  et al.  2003 (2 pixels per fringe) is overestimated. This is another 
evidence that the oversampling conditions are relaxed for 3D systems.

We stated in the introduction of this section that the resolution corresponds to the pixel size for the case of  
simulated data. This can be attributed to the fact that the retrieved phases are extremely reproducible. This is a 
different story for experimental  data,  where the noise inherent  to experimental measurement and the partial  
coherence  effects  induce  a  resolution  significantly  larger  than  the  pixel  size.  For  experimental  data,  the 
resolution  of  the  final  reconstruction  can  be  estimated  using  the  phase  retrieval  transfer  function  (PRTF)  
(Chapman et al. 2006). This function can be used to assess the reproducibility of the retrieved phase and hence 
the resolution at which features are reliably reproduced. It is defined as :

PRTF (q ) =
∣〈 F (q)〉∣'

√ I (q )
    (I.30)

where I(q) is the measured intensity for the diffraction pattern and ∣〈 F (q )〉∣' is the amplitude of the Fourier
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transform of the average of the complex-sample densities retrieved  ∣〈 f ( r)〉∣ ,  after  convolution with the 
normalized MCF, which gives the complex degree of coherence. It is equal to 1 for simulated data. 
The function is plotted as a function of the real space resolution for two distinct spatial extents corresponding to  
pixel sizes of 1.4 nm and 0.7 nm. Here ∣〈 f ( r)〉∣ is averaged over only 5 estimates for both resolution values. 
The resolution is indicated by the drop of the PRTF at a particular value. A conservative estimate is a value of  
0.5 (Chapman et  al.  2006). This gives a resolution of 3 nm for the small spatial extent and 1.5 nm for the  
intermediate one. These values are slightly larger than the pixel size, but only by a slight margin.
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Fig.  I.15 Resolution of  the  reconstruction  given  by  the  phase  retrieval  transfer  function  (PRTF)(a)  –  (c) 
Calculated CXD pattern from a perfect edge dislocation introduced at the centre of a copper Wulff crystallite. 
This diffractions pattern are used for the reconstruction of the displacement field for two spatial extents (a) Δq = 
0.07  nm-1 (c)  Δq  = 0.14  nm-1 (b)  and  (d)  Corresponding  phase  retrieval  transfer  function  which  gives  the 
resolution. 
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Conclusion 

In this chapter, basics of Cohenrent X-ray diffraction are introduced, along with the requirements for  
Coherent  X-ray  imaging.  In  particular,  we focus on  reviewing the  different  algorithm for  reconstruction:  a 
special attention is given to the ability to handle large local phase jump associated with crystal discontinuities,  
and the choices we make in our approach. The discussion is extended to the range of reciprocal space to be  
measured and the resulting resolution.
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Introduction

X-ray  diffraction  (XRD)  methods  are  very  efficient  to  characterize  the  strain  or  defect  content  of  
crystals.  We used several XRD techniques to access a large range of structural properties in sub-micrometer  
crystals.  Among them,  coherent  X-ray  diffraction  (CXD) gives  access  to  the  3D displacement  field,  while  
surface diffraction techniques enable the determination of the atomic structure of surfaces and interfaces. These  
techniques usually require the use of a high brilliance X-ray source and the experimental part of this work was 
mostly carried out in 3rd generation synchrotron facilities. 
In a first section of this chapter, we present the experimental set-up required to perform synchrotron CXD and 
Surface X-Ray Diffraction (SXRD) experiments. For the case of CXD, the preparation of the beam is a critical  
issue. The coherence set-up needed to obtain a beam with good coherence properties is thus presented in details  
in  section  II.1.2.  For  CXD experiments  or  even  for  conventional  XRD experiments,  the  collection  of  3D 
Reciprocal Space Maps is also essential to measure structural properties such as the strain. This requires the use 
area detectors which are presented in section II.1.3. The methods to collect these 3D maps, using six-circles  
diffractometers and to represent them in the orthogonal reference laboratory frame are described in the last two  
sections of this first part.
In a second part of this Chapter, the emphasize is put on the samples that were used during this work. Both 
processing and characterization methods are described. Some of them are very usual (SEM and AFM) while 
others are more specific to this work (ex situ  nanoindentation,  μ-Laue diffraction, scanning X-ray diffraction 
microscopy …). The chapter is concluded by an example of a complete characterization of a sample used for  
CXD experiments.

II.1. Synchrotron Sources

The diffraction experiments presented in this manuscript have been carried-out on several synchrotron  
beamlines in three different 3rd generation synchrotron facilities.  In this section, we present the set-up of two 
beamlines where CXD experiments can be performed: the ID01 beamline at  the ESRF (Grenoble) and the  
CRISTAL beamline of the French synchrotron SOLEIL.
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Fig. II.1: Layout of the experimental set-up on the ID01 beamline
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Fig.  II.1  shows the  general  layout  of  the  ID01  beamline.  The  set-up  has  some particularities  that  will  be 
discussed later in this section. Note that the ID01 beamline was upgraded in 2014 and that CXD experiments 
were carried out before and after the upgrade in this beamline. 
Here we only describe the upgraded set-up that consists of three main parts. The undulator located in the storage  
ring which is the source of the beam, the optics hutch where the beam is monochromatized and the experimental  
hutch  where  the  CXD  experiment  itself  is  carried-out.  The  constituting  elements  of  these  three  parts  are 
described in the following.
Although in principle a coherent X-ray beam can be obtained from a bending magnet source, the high brilliance 
needed for the experiments reported here requires using undulator sources. Indeed, all beamlines which have  
developed a CXD set-up are built on an undulator.
The CRISTAL and ID01 beamlines differ in the properties of the source,  i.e.  its size and divergence, which 
essentially depends on the electron beam in the undulator. For the ID01 beamline the source size and divergence 
are respectively equal to 0.134 (H) x0.024 (V) mm2 (FWHM) and 0.140 (H) x0.009 (V) mrad2 (FWHM). For the 
CRISTAL beamline, values of 0.84 (H) x 0.019 (V) mm2  (FWHM) and 0.047 (H) x 0.031 (V) mrad2 (FWHM) 
are obtained for the source size and divergence respectively. 
At 30 metres from the source, which corresponds roughly to the exit of the primary slits, beam sizes of 1.7 (H) x 
0.85 (V) mm2 and 8.7 (H) x 0.55 (V) mm2 are obtained for CRISTAL and ID01 respectively. 
The two X-ray sources can be compared in terms of brilliance Β. This quantity takes into account the number of 
photons produced per second, the angular divergence of the photons and the cross-sectional area of the beam and  
is thus given by:

Β = photons

s.mrad
2
.mm

2
.0.1% BW

       (II.1)

where the term 0.1% BW means that only the photons within a bandwidth of 0.1% of the central wavelength are 
counted. In third-generation synchrotron  facilities,  undulators typically provide a brilliance of 1020  (ph.s-1.mm-

2.mrad-2).
At the energy considered in this work (> 8 keV), the ESRF is already providing a larger brilliance than SOLEIL,  
and the brilliance of the source will be further improved (by approximately one order of magnitude) with the 
2015-2019 upgrade of the facility. 
For both beamlines the monochromatization of the beam is ensured by a channel-cut double crystal Si (1 1 1)  
monochromator. At 8 keV the monochromaticity of the beam Δλ/λ is of the order of 10 -4. For the CRISTAL 
beamline, a second double crystal Si(3 1 1) monochromator is also available. It can be used for the larger energy 
ranges (up to 60 keV).
In term of flux, a value of 5x1013 photons.s-1 flux is measured for the ID01 beamline, with primary slits closed to 
2.0 (H) x 0.5 (V) mm2 (FWHM). It should be noted that the large value for the horizontal divergence implies a 
large horizontal beam size in the optic hutch (approximately 5.5 mm). A significant part of the beam is thus lost 
before which results in a decrease of the total photon flux.
The horizontal divergence is less pronounced for the CRISTAL beamline, and a beam-size of 2.0 mm (H) x 1.2 
mm (V) is measured 40 m downstream the source, when the primary slits are fully opened. The corresponding 
photon-flux is slightly smaller with a value of 2.3x1013 photons.s-1. 

II.1.1. Description of the coherence set-up

II.1.1.1 Slits and focusing optics

In a synchrotron experiment, the source sample distance is generally of the order of 50 m. However, for 

42



Chapter II: Experimental methods and samples

the  three beamlines  we used for CXD experiments,  this  distance greatly varies,  ranging from 36 m on the 
CRISTAL beamline, to 220 m in the I 13-1 coherence beamline at the Diamond Light Source. 
At the upgraded ID01 beamline, this distance is intermediate, with a value of 117 m (Fig. II.1). Using Eq. (I.4),  
this gives respective horizontal and vertical transverse coherence lengths at 8keV of ξth= 135 μm and ξtv  = 755 
μm. These values suppose that  there are no optics inserted in the path of the X-ray beam. In practice,  the  
imperfections in the focusing optics (errors in the slope of the mirrors of the order of the micro-radian) tend to  
reduce the transverse coherence length. In order to clean the beam from the imperfections as well as reducing the 
source size  seen  from the sample, slits are inserted just after the optics to select an homogeneous part of the 
beam (Fig. II.1). In this document we call them primary slits. They are generally opened to values between 100 
to 200 μm. To control the beam size and coherence properties of the beam, an additional set of slits is put close 
to the sample (Fig. II.1). The aperture of the slits needs to be carefully chosen, a too large sample slit is likely to 
affect  the  coherence  properties  of  the  beam  resulting  in  reduced  fringe  visibility  of  the  diffraction  data.  
Conversely, decreasing the slits aperture ensures to extract the coherent part of the beam at the expense of the 
flux. It should be also noted that the scattering from the slits will tend to increase the size of the beam if the slits  
are closed to a too small value. In set-ups without microfocusing optics, the slits aperture was adjusted to obtain 
good  coherence  properties  and  to  adjust  the  beam size.  Current  synchrotron  beamlines  are  equipped  with  
focusing optics (see next section) which allow to obtain sub-micrometer beam size at the focal spot. The only 
requirement for the sample slits is now to find a compromise between the flux and good coherence properties.  
Both the transverse dimensions of the focal spot and the focal depth are strongly influenced by the aperture of 
the sample slits. The smaller is the opening, the larger are these two quantities (Mastropietro et al. 2011). Typical 
values of (20x60 μm2, HxV) were chosen on the ID01 beamline before the upgrade. After the upgrade, due to the 
increase in the transverse coherence length, the slits are now open to larger values of 60x300 μm2 (HxV) in order 
to maximize the flux. 
Also important, it is clear that for the sub-microns objects studied in this work, a vertical transverse coherence-
length of 300 μm is not needed. When the beam is focused, the flux density is increased in the same proportion 
as ξtv is decreased (Livet 2007). For the study of small objects a reduced beam size is thus desirable in order to 
maximize the flux as discussed in section II.1.1.4 of this chapter. To obtain sub-micrometer beam sizes, high  
quality focusing elements have been developed, such as Kirkpatrick-Baez (KB) mirrors and Fresnel-zone plates 
(FZP).

II.1.1.2 Kirkpatrick-Baez (KB) mirrors
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The system proposed by Kirkpatrick & Baez (1948) consist of two total reflection elliptical mirrors  
having two focal points; one at the light source and the other at the focal point. One mirror is used for vertical 
focusing and the other for horizontal focusing. A KB system is achromatic, and due to the high reflectivity of the  
mirrors, X-ray can be focused efficiently over a large energy range. KB-mirrors systems have a high efficiency 
and use the grazing incidence of the horizontal and vertical mirrors to focus, using the small refractive index of  
X-rays.

II.1.1.3 Fresnel zone plates (FZP)

Fresnel zone plates (FZP) are diffractive lenses. They consist of circular diffraction gratings made of a 
set of concentric rings, which alternate between opaque (or phase-shifting) and transparent material. The zones 
are spaced so that the X-rays constructively interfere at the desired focal length. The diameter of the focal spot is  
proportional to the width of the outer ring. With current FZP, diameters as small as a few nanometres can be  
obtained. However, since they are diffractive optics, FZP have chromatic aberrations, and their focal distance has 
a λ-1 dependence. 
A Fresnel-zone plate has  m diffraction orders (m being an odd integer) that lead to multiple focusing point at 
distances f/m with respect to the optical element (f being the focal length). Since the FZP is used as a focusing 
lens, only the first diffraction order is exploited and all the other orders are blocked by a beam-stop for the zeroth  
order and a pinhole, called order sorting aperture (OSA), for the higher ones (m>1). Both KB mirrors and FZP 
curve  the  wavefront  of  an  incident  plane-wave  illumination.  The  degree  of  curvature  of  the  wavefront  is  
inversely proportional to the distance from the focusing optics. However, if the sample is small enough,  the  
wavefront can be locally considered as a plane wave (Schroer et al. 2008, Mastropietro et al  2011). 
The two types of focusing optics are fundamentally different in overall efficiency and aberration effects. The 
overall efficiency of a typical Fresnel-zone plate is rather low compared to that of KB mirrors. Their initial  
efficiency of the order of 10% (Yun et al., 1999) can be raised by a suitable use of material (David et al. 2001). 
Complex multilevel zone plates can reach 50% efficiency (Fabrizio et al. 1999).
On the other hand, due to the extremely small focal spot produced by a FZP, the X-ray flux density at the focal  
spot is relatively higher (Schroer et al.  2008). That being said, a focal spot as small as few nanometres can be 
obtained  with  some  sophisticatedly  designed  KB mirrors  (Mimura  et  al.  2010).  Additionally,  as  reflective 
focusing optics, they have much less optical aberrations than the FZP. 
Both types of focusing optics have thus advantages and drawbacks, and their use depends on the requirements 
for the experiment.
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Fig. II.3 Focusing of the X-ray beam with a Fresnel-Zone-Plate
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II.1.1.4 Coherence set-up, photon flux and degree of coherence 

The  FZP,  OSA combination  has  been  used  for  focusing  of  the  beam spot  for  almost  all  the  CXD 
experiment carried out during this work. KB mirrors have been used in only one CXD experiment on the I13-1  
beamline. The coherence set-up on the CRISTAL beamline (coherence slits + FZP + OSA) allows to obtain a 
typical beam size of 2x0.5 (HxV) μm2 (FWHM) at the sample. On the ID01 upgraded beamline, the coherence 
set-up allows to focus the beam on the sample to a smaller values of 0.150 (H)x0.100 (V) μm2 (FWHM) (Fig. 
II.4). Given the size of the samples considered in this work (between 0.3 and 1 μm for the lateral dimensions),  
this beam size is too small if a reconstruction of the 3D displacement field by classical Coherent  Diffraction 
Imaging (CDI) is intended. The full illumination of the sample, and thus the finite support constraint is not 
satisfied. For CXD experiments on the ID01 beamline, the FZP was generally translated to move the sample out-
of the focal spot. This way, typical values of 0.8x0.5 (VxH) μm2 (FWHM), ensuring the full illumination of the 
sample. Out of focus, the phase of the wave-front is in principle relatively constant. 

The total number of photons available in the coherence volume is connected to the average source brill iance В 
(Livet 2007, Schroer et al. 2008):

Dc = F cT = Β( λ2 )
2

( Δλλ )T (II.2)

where Fc is the coherent flux, В is the brilliance of the source, T the total exposure time and (Δλ/λ) is the degree 
of monochromaticity which impacts the longitudinal coherence length. 
At 8 keV a brilliance of ~ 1020 is obtained with an undulator from a third generation synchrotron and using a Si  
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Fig. II.4 Coherence set-up on the ID01 beamline
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(1 1 1) crystal monochromator, typical  values of 10 -4  are achieved for the energy bandwidth.  This gives an 
expected value of 1011 photons.s-1 for the coherent flux. The total coherent flux also depends on the aperture of 
the coherence slits which generally match the transverse coherence of the beam. Given the larger size of the  
source  and  the  smaller  distance  of  the  sample  from  the  source  at  CRISTAL,  the  transverse  coherence  is 
approximately one order of magnitude smaller than that of the upgraded ID01 beamline. Hence, the coherence 
slits are closed to a much smaller value than at ID01. Typically the whole set-up gives a coherent flux of about 1 
to 5 109 ph.s-1 in the 6-12 keV energy range used for CXD experiments.
On the upgraded ID01 beamline, a value of 6.2.1011 ph.s-1 is obtained for slits closed at 0.4x0.4 μm2. This value 
does not correspond to the coherent flux on the sample, but it is clear that its value is currently at least one order  
of magnitude larger on the ID01 beamline than that of CRISTAL.
It should be noted that the photon-flux on the sample was generally not an issue in this work. The relatively large  
size of the samples and the strong scattering power of gold (and to a less extent of copper) insured a strong  
diffraction signal (typical dynamical range of 4 to 5 decades of intensity for the 1 1 1 Bragg reflection of 1 μm 
gold  islands at  8  keV).  However,  a  high  photon-flux  is  desirable  for  CDI,  unless  the  sample suffers  from 
radiation damage.
As  discussed  in  Chapter  I,  the  resolution  of  the  reconstructed  image  depends  on  the  spatial  extent  of  the 
diffraction data. A strong decay of the diffracted intensity is indeed observed with increasing scattering vector q. 
The diffraction intensity decays with a power law q-α with α equal to 4 for a generic object.
It is thus clear that the coherent dose on the sample needs to be maximized on the sample. From Eq. (II.2), it  
comes that the number of photons in the coherence volume increases linearly with the exposure time, however, 
and as stated by Schroer  et al.  (2008), longer exposure time only provide a small gain in resolution as the 
exposure time grows with the fourth power of the resolution.
Much more can be gained by efficiently focusing the coherent flux onto the sample. With increasing gain g on 
the focusing set-up, the diffraction density is increased linearly, improving the spatial resolution as g1/ α (Schroer 
et al.  2008). It is thus clear that the focusing optics (FZP, KB mirrors) play an important role in the expected 
spatial resolution, and explain why a particular effort is put in the focusing of the X-ray beams in recent coherent 
set-ups.

Another very important consideration for CXD experiments is the degree of coherence of the X-ray beam. As 
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Fig. II.5 Schematic of typical CXD experiments with focusing optics
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discussed in Chapter I,  it  can be evaluated by the normalized mutual  coherence function.  Alternatively,  the 
degree of coherence can also be simply expressed as the ratio between the coherent part of the X-ray beam ξ t and 
the size of the beam σ at a certain distance of the optics (the origin  x = 0 is the last optical element of the 
beamline before the sample) :

β( x) =
ξ(x)
σ(x)

     (II.3)

From Eq. (II.3) it comes that after the last optical element, the degree of coherence is kept independently of the 
distance x, and is characteristic of the X-ray beam.
Livet  (2007)  evidenced that  the quality  of  the  coherence  set-up  can be estimated  by  the calculation  of  an 
experimental degree of coherence which depends on the optics of the beamline.
Let us consider a beam between two sets of square slits of respective apertures  Ф1  and Ф2 and separated by a 
distance  D.  The  degree  of  coherence  can  be  calculated  by  a  series  of  expansion  in  the  variable  

z = πΦ1Φ2 / λD

β(z ) = {∑
n=0

∞

(−1)n 22n+2
z

2n/[(2n+1)(2n+2)2(2n+1)!]}
2

     (II.4)

For the CXD experiments presented in this manuscript,  Φ1 is the aperture of the primary slits which acts as a 
secondary  source  (Fig. II.5).  Φ2  is  the  aperture  of  the  coherence  slits.  This  allows  to  define

z1 = πΦ1Φ2 / λD1 and the degree of coherence β(z1) between the source and the coherence slits/FZP 
where Φ2 also corresponds to the illuminated fraction of the FZP. If the aperture is not square but rectangular, the 
square in Eq. (II.4) is replaced by the product of 2 equivalent expressions with appropriate values.
Similarly,  the  degree  of  coherence  between  the  FZP  and  the  sample  is  given  by  β(z2)  with 

z2 = πΦ2 d / λ D2 where d the size of the diffracting sample defines the sample aperture. 
Finally, a third term β(z3) allows to measure the detection contrast where z2 = πδ l d / λ D3 where δl is 
the pixel size of the detector which defines the detector aperture. A very good approximation for the overall 
value of degree of coherence is  given by the product  of  the contrast  of  the beam  β(z1) with the diffraction 
contrast β(z2) and the detector contrast β(z3).
For the CXD experiments presented in this work, it was ensured that a degree of coherence of at least 0.75 was  
obtained with the coherence set-up with values generally superior to 0.9 (0 being an incoherent beam and 1 a  
fully coherent beam). It is a safe assumption to state that the X-ray beam illuminating the sample is not perfectly  
coherent,  but  we will  see in the next  chapters that  successful  reconstruction were possible  for a  variety of  
samples in this work. It  should be noted that it  is possible to take into account partial coherence effects to  
improve  the  convergence  of  the  reconstructions  (Clark  et  al.  2012),  but  this  was  not  implemented  in  our 
reconstruction procedure.

II.1.2. Detectors 

For X-ray imaging of the scattered intensities and for slow processes with low counting statistics, 2D 
area detectors are currently used. Three main type of detectors can be used for hard X-ray experiments. For most 
of the CXD experiments carried out during this work a pixel detector is used.
The “indirect” CCD detectors use a scintillator to convert the X-rays into visible light which can be detected by  
the CCD. The main advantage of these cameras relies in their ability to work at high energies (>20 keV range) 
and their reasonably good dynamical range (which is however significantly lower than that of pixel detectors).  
On the other hand,  the requirement to convert  the incident  photon has  some disadvantages:  the conversion  
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process is inefficient, and since the photon is not directly detected, there is no ability to correlate the number of  
electrons to the incident energies. Another problematic issue is the CCD read-out noise. This kind of detector has  
not been used during this PhD.
In the case of a direct illumination CCDs (DI-CCD) the photons are directly collected on the CCD chip. They 
provide a good detection quantum efficiency in the 0.1-12 keV energy range. The DI-CCD are divided in two 
types: the front-illuminated 'deep-depletion' CCD (DD-CCD) and the back-illuminated CCD (BI-CCD).
In DD-CCD, the photons are detected close to the integrated circuit surface, at the vicinity of the CCD cell. For 
the detection of hard X-rays, the weak absorption by the silicon chip is overcome by increasing its thickness,  
hence the 'deep-depletion' appellation. 
For the BI-CCD, the Si wafer is thinned down to about 50 μm and X-rays are absorbed on the opposite side and 
detected at the surface. It is possible to work with a very small pixel size (13.5 μm for the 2048x2048 chip of the 
CCD presented in Chapter X) which is interesting for high resolution measurements. However, the dynamical  
range of the CCD is very poor. A CCD cell saturates at about 200000 electrons, i.e. 100 photons.pixel-1 at 8 keV 
(Livet 2007). It  is necessary to read the CCD frequently in order to avoid saturation. The chip is also very  
fragile, and it is quite easy to damage pixels if attenuators are not used. The other major issue with the DI-CCD  
detector  is  the  slow  readout.  It  is  thus  clear  that  both  CCD detectors  have  some  potentially  problematic 
drawbacks: the readout noise for the indirect CCD detectors, and the potentially limited lifetime of the sensors  
and the slow read-out of DI-CCD. 
A need therefore existed for detectors with faster readout and higher dynamical range yet providing noise-free 
detection and high spatial resolution. Fortunately, the pixel detectors can meet both this requirements. For these  
detectors, each pixel has its own sensor and amplifier, providing very fast readout times. This fast readout time  
and large dynamical range come at the price of the pixel size which is significantly larger than in the case of DD-
CCD detectors (55 μm vs. 13 μm). Examples of these detectors are the Maxipix / Medipix (Ponchut et al. 2007), 
the XPAD (Bérar et al. 2002) and the Pilatus. Next generation single-photon counting detector are currently in 
development, such as the EIGER (Johnson et al. 2014) and XCALIBUR.
A typical chip size for these detectors is 256x256 pixels. The MAXIPIX detector is an assembly of 2x2 Medipix 
chips for a total of 516x516 pixels (there are 4 dead lines between two adjacent chips). It is the detector used for  
all the CXD measurements reported in this document, although other detectors have been used for measurements  
not reported here.

II.1.2.1 Correction of the defects for 2D detectors 

The 2D detectors are never perfect and there are always some imperfections in the collected data. In the 
case of CCD cameras, the electronic noise and potentially defective pixels needs to be corrected.
For pixel detectors, the electronic noise is suppressed by an appropriate calibration, but the presence of “hot  
pixels” on the detector, i.e. pixels reading high values while no photons are collected is a common issue. If they 
are limited in number, they can simply be removed manually by setting their value to zero. Alternatively, a more 
efficient and reliable strategy is to record a dark image,  i.e.  the image collected by the detector when it is not 
exposed to any photon. An acquisition time similar to the acquisition time used for the measurement of the data 
is generally selected. In any case, this acquisition time needs to be large enough to provide good statistics. Each 
diffraction pattern collected is then corrected by the subtraction of this dark image.
For the diffraction data used for reconstruction (see Chapter VI and VII), a threshold is applied to the data set, 
i.e. all the pixels in the detector with less than a specific number of photons (for instance 2) are set to zero. This 
correction is critical when a flight tube is not used (i.e. a tube between the sample and detector which is under 
primary vacuum), due to the large amount of air scattering. This procedure is very efficient to reduce the noise 
on the reconstructed data. 
Several algorithms have also been developed for the data correction, among them is the droplet algorithm (Livet  
2000) which is able to perform several corrections simultaneously, among them are the removal of the cosmic X-
rays subtraction of the background noise dark and the correction of the dispersion of photons on several pixels (a 
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common issue with DI-CCD cameras). 

II.1.3 Diffractometers and sample stage

The diffractometers at ID01, CRISTAL and I13-1 use different geometries. They can all be described in 
the framework of the '4S+2D' geometry proposed by You (1999, Fig. II.6.c): there are 2 perpendicular detector 
axes ν (horizontal) and δ (vertical) and 4 perpendicular sample axes (μ, η, χ and φ). 
ID01's diffractometer (Fig. II.6.b) is very similar to You's '4S+2D' diffractometer, except that there is no χ axis. 
However, the hexapod mounted on the diffractometer can act as such, on a small angular range (±5°).
CRISTAL's diffractometer (Fig.  II.6.a) has a slightly different  geometry:  the traditional χ axis is replaced by a 
so-called κ axis, which is at 50° to the η axis: this geometry gives more free space for the sample environment . 
Angles calculations directly encoded in the control software allow to use it in the traditional Euler geometry.
The case of I13-1 (not shown here) is also different,  since there is no proper diffractometer: the detector is  
mounted on an articulated robot arm, such as those used in the car industry, such that there are no physical ν and 
δ axes; moreover the η and χ axis are provided by tilted stages with range only ±15° and there is no φ axis above 
the tilt stages.

The precision of a diffractometer is characterized by its 'sphere of confusion', which is a sphere inside which all 
rotation axes intersect. It should be as small as possible, and ideally smaller than the beam size or the sample.  
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Fig. II.6 Six circle diffractometers (a) Six-circles diffractometer on the CRISTAL beamline (SOLEIL). (b) 2+4 circles  
diffractometer on the ID01 beamline (ESRF). (c) Schematic of a '4S+2D' diffractometer (from You, 1999).

(a)

(b)

(c)
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This requirement is not met for our typical measurements, which are performed with beams and crystals of the 
order of the micron. For the 6C diffractometer on the CRISTAL beamline, the sphere of confusion is equal to 53 
μm and 64  μm for  the horizontal  and  vertical  plane respectively.  No data  is  available  for  the  ID01 2+4C 
diffractometer, but a value larger than 20 μm can be estimated. These values are much larger than the ideal (~1 
µm) but nevertheless good enough for our typical measurements, which consist mostly in a rocking curve (~1°) 
on  a  single  reflection,  if  the  beam and  the  crystal  are  carefully  aligned  at the  centre  of  rotation.  Several 
reflections from the same microcrystal can be measured after manual alignment of the crystal at each reflection.
The alignment of the sample in the beam is thus a critical step, and is performed with piezo-translation stages.
For the ID01 beamline for instance,  the alignment is  achieved thanks to a  compact  hexapod sitting on the  
diffractometer and a stack of three piezo-motors. The hexapod is typically used to align the substrate (tilts and 
height) as well as for the coarse in plane alignment of the microcrystal, while the piezo-motors are used for the  
fine alignment.

II.1.4 Measurements in the reciprocal-space using diffractometers - Isolation of a single island 

Experimentally, a given Bragg reflection (h,k,l) is measured by aligning the scattering vector q with the 
reciprocal lattice point ghkl, using the diffractometer axes.
The reflection is said 'specular' when q is parallel to the normal of the crystal surface (the normal to the surface 
is the bisecting direction between ki  and kf). This is the case of the 0 0 2 reflection in  Fig. II.7.  All the other 
reflections are said 'off-specular'. The 1 1 1 reflection shown in Fig. II.7 is a particular case of such reflection, 
for which the surface normal is in the scattering plane.
Specular reflections are usually easier to measure than off-specular ones: they require the use of mostly two axes  
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Fig. II.7 Real space lattice (yellow) and reciprocal space lattice (blue) of a f.c.c. crystal, in the [1 1 

0] zone axis: direction of the incident, diffracted wave vectors and of the scattering vector for a 

specular and an off-specular reflection.
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of the diffractometer, namely ω = θ and δ = 2θ (in vertical scattering geometry), where θ is the Bragg angle  
determined with the Bragg law, and small adjustments of the other axes if the sample surface is not exactly  
parallel to the reference surface of the sample stage.
The measurement of an off-specular reflections is not always straightforward, and the measurement procedure 
depends on the geometry of the diffractometer. For a six-circles diffractometer putting an off-specular reflection 
into a diffracting position implies the combined rotation of several axes of the diffractometer, It is thus necessary 
to determine the combination of sample and detector angles which bring the scattering vector q in coincidence 
with the chosen Bragg vector ghkl.  The determination of the angles is achieved thanks to the orientation matrix 
UB which describes the sample orientation with respect to the diffractometer angles. The matrix B transforms 
the given (h,k,l) into an orthonormal coordinate system fixed in the crystal while the matrix U rotates the crystal 
reference Cartesian frame into the laboratory frame of reference. In other words it corrects the misalignment  
between the Cartesian axes of the reciprocal space and those of the laboratory frame of reference. Details on the  
angle calculations for the  '4S+2D' diffractometer are given by You (1999).  The orientation matrix is obtained 
experimentally by the determination of the diffractometer angles for two non parallel Bragg reflections. 

II.1.5 Collection of 3D reciprocal space maps from isolated objects
 

The CXD experiments presented in this manuscript  are focused on sub-micron crystals exhibiting a  
certain  amount  of  strain  and  defects.  Owing  to  the  the  small  size  and  the  possible  heterogeneous  strain  
distribution, a sub-micron structure is expected to exhibit an extended three-dimensional diffraction pattern. Area  
detectors can be used to efficiently record the diffracted intensity, however, the two-dimensional XRD images  
represent only one specific cut through reciprocal space. A classical method to obtain three-dimensional intensity 
distributions  consists  in  performing  rocking-curves  through  the  selected  Bragg  peak,  while  simultaneously 
recording 2D diffraction patterns at each step of the scan (Fewster  et al. 1997). As illustrated in Fig.  II.8, a 
variation of the scattering angle θ corresponds to a translation of the detector plane in the reciprocal space. The  
detector plane intercepts the 3D Bragg peak at discrete positions, and all the recorded 2D diffraction patterns can 
be aggregated together to form a single 3D diffraction pattern.  This method is reliable and reasonably fast,  
however, it is not well adapted in some particular situations. As discussed previously, the sphere of confusion of 
the 6C diffractometers is particularly large (a few tens of micrometers). When both the beam and sample size are  
almost two orders of magnitude smaller than the sphere of confusion, as in the case of nanostructures imaged  
with a nanofocused beam, this large sphere of confusion might become problematic. Even with a rocking-curve 
range of 1°, the investigated nanostructure might move out of the beam. Additionally, when CDI is performed, 
small movements of the sample can be an issue since different parts of the beam, having different wavefronts are 
diffracted.  As  discussed  in  Chapter  I  and  Chapter  VI,  variations  in  the  wavefront  may  complicate  the 
reconstruction of the image of the sample. 
In the CXD studies presented in this manuscript, the typical sample and beam sizes are respectively around 500 
nm and 1x1 μm2. The 3D CXD pattern are systematically collected by rotating the crystal through its rocking-
curve and it is shown for instance in Chapter VI that this method of collection is generally not an impediment for  
the reconstruction of the complex electron density. More problematic is a complex sample environment for in  

situ XRD measurements since it may demand a limitation of sample movement to reduce or avoid any vibrations  
induced  by  the  diffractometer  movement.  A typical  example  are  the  in  situ  nanoindentation  experiments 
presented in the Chapter VI. If the tip of the AFM or of the nanoindentor is in contact with the nanostructure  
under investigation, any movement or vibration must be avoided, to prevent the sample surface or the tip itself  
from being damaged during the rocking curve.
To overcome such potential issues, an alternative method of collection of the 3D-reciprocal space maps has been  
proposed by Cornelius et al. (2011). The main advantage of this method is that it does not require any movement 
of the sample. It consists in tuning the energy of the X-rays, typically on a range of ± 100 eV with steps of 1 eV 
for an energy of 10 keV . Since the undulator gap needs to be adjusted while scanning the energy to keep the  
incident intensity constant, this method is significantly slower than a conventional rocking-curve. Despite this 
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issue, the obtained 3D-RSM maps are consistent with the ones obtained by the conventional method and avoid 
any noise/motion on the sample.

II.1.6 Reconstruction of the 3D diffraction pattern in the sample orthonormal basis

As discussed above, the acquisition of 2D CXD patterns around a given Bragg reflection with an area 
detector allows to measure a slice through the 3D Bragg peak. However, this data is not directly usable, and the  
obtaining of the 3D data is not straightforward. Rather than simply stacking the 2D slices together, it is necessary 
to affect to each pixel of the collected data a value of q = (qx,qy,qz). In other words, a coordinate change has to 
be  performed  in  order  to  depict  the  3D  -RSM  in  the  orthogonal  reference  laboratory  frame.  The  latter 
corresponds to the frame of the sample where all the diffractometer circles are set to zero. 
The mathematical formalism won't be described in details in this manuscript. In short, it can be divided in two 
steps:  convert  the  pixels  positions  of  the  detector  into  angles,  and  convert  the  diffractometer  angles  into 
reciprocal space coordinates. The coordinate transformation uses the formalism introduced by You (1999) for the 
angle calculations in a '4S+2D' diffractometer.
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Fig. II.8 Measurement of 3D reciprocal-space maps.  (a) Collection of a 3D Bragg peak by rotating the sample along its 
rocking-curve. (b) Collection of the 3D Bragg peak by scanning the energy of the incident X-ray beam. (c) 2D slices of the  
reciprocal space intercepted by the detector plane during a rocking-curve. (d) 2D slices of the reciprocal space intercepted  
by the detector plane during an energy scan. (from Cornelius et al, 2011)
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Several  approximations  are  used  for  the coordinate  change.  As  illustrated in  Fig.  II.9.a,  the  detector  plane 
corresponds to a portion of the Ewald sphere. In our formalism, the curvature of the Ewald sphere is not taken 
into  account.  Considering  the  angular  opening  of  the  detector  (which  depends  on  the  sample  to  detector  
distance), and the energy ranges considered for most of the CXD experiments presented in this manuscript, this  
approximation  is  perfectly  acceptable.  For  experiments  in  the  soft  X-ray  range  (<  1  keV),  it  might  worth  
considering a correction for the curvature of the Ewald sphere.
As shown in the previous section, the acquisition of a 3D RSM is carried out by rotating the sample along its  
rocking-curve.  The  latter  corresponds  to  a  translation  in  the  reciprocal  space  along  the  qy  direction. 
Experimentally,  this  translation  is  slightly  curved.  This  curvature  is  here  not  taken  into  account  and  the  
translation is  described with a linear approximation.  Fig.  II.9.b shows the orientation of the detector in the 
orthogonal  laboratory frame of reference.  It  is  slightly  misoriented with respect  to the (qx,qz)  plane.  The  qx 

direction corresponds to one of the two directions of the detector plane, but the qy and qz positions need to be 
interpolated on a regular grid. In our case, a linear interpolation is used. Using this method we obtain 3D-RSM 
that can be used for the reconstruction of the experimental data.

Chapters I and II are mostly dedicated to the introduction of the coherent X-ray diffraction technique 
which is employed in many experimental and numerical studies presented in this manuscript. It gives access to 
the 3D displacement field of isolated objects and is thus well adapted to the investigation of the crystal plasticity 
in such objects. It does not provide any information on the detailed atomic structures of surfaces or interfaces,  
but reflects the strain they may induce. The heteroepitaxial of f.c.c. Cu(0 0 1) on b.c.c. Ta(0 0 1) system studied 
in this work exhibits a large amount of residual strain (around 0.6 % , Beutier et al. 2013a), induced at the Cu 
crystallite – substrate interface. The growth of islands of Cu on Ta follows the so-called Stransky-Krastanov  
mode (Rodriguez & Goodman 1991) characterized by a wetting layer of a few atomic Cu planes between the 3D 
f.c.c.  strained  crystallites.  The  detailed  atomic  structure  of  this  wetting  layer  and  at  the  interface  in  the 
crystallites is not known but accommodates the large misfit strain (around 31% total lattice misfit) to produce  
nearly defect  free  but  strained Cu crystallites.  The atomic structure of  this wetting layer  is  only accessible  
through surface X-ray diffraction techniques which are presented in the next section.
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Fig. II.9 Detector plane in the reciprocal space (a) Representation of the detector plane on the Ewald 
sphere (b) Representation of the translation of the detector plane in the orthogonal laboratory frame of 
reference during a rocking curve. The qy  and qz  coordinates are obtained by a linear interpolation on a 
regular grid
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II.2. Surface diffraction 

II.2.1 Crystal truncation rods

In the classical derivation of the diffraction pattern of a crystal lattice, it is frequently assumed that the 
crystal is infinite in-extent; the diffraction patterns are then perfect  δ functions. When finite size effects are 
included, the peaks are found to be broadened by an amount inversely related to the dimensions of the diffracting  
region of the crystal. For crystal with sharp boundaries, a significant amount of the intensity is always scattered  
far away from the Bragg peaks and spreads across the Brillouin zone. The order of magnitude of this intensity is  
similar to that arising from a single layer of atoms. X-ray experiments with monolayers (ML) sensitivity are thus  
able to detect it. 
Let us consider a block shaped crystal. The periodic repetition of the unit-cell us defined by three vectors, a1, a2 

and a3 which correspond to the crystal axes. The bulk unit cell structure factor Fu (q) can be defined as : 

F u(q )= ∑
j

unit cell

f j (q)e
−B j q

2

16π
2

e
i q. r j       (II.5)

where q is the scattering vector (momentum transfer), rj position of the atom j and fj(q) is the atomic form factor 
(defined as the Fourier transform of the electron density of atom j). Here a damping term parameter Bj has been 
added. This is the temperature dependent Debye parameter proportional to the mean square displacements from 
the equilibrium atomic position.
The scattering amplitude A(q) is obtained by a summation over the Bravais lattice:
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This sum can be easily calculating yielding the following expression for the scattering intensity:
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If The scattering vector is now written in the basis of the reciprocal vector : 

q=hb
1
+k b

2
+l b

3      (II.8) 

Replacing  in  (II.7)  it  comes  that  the  three  terms  of  the  product  have  a  maximum for  integer  h,  k  and  l  
respectively. This is equivalent to the Laue conditions which define the reciprocal lattice.

Let us now consider an X-ray beam impinging on the surface of a semi-infinite single crystal which corresponds  
to the (a1 , a2) plane. For integer h and k values, and in the limit of large N3 we obtain from Eq. (II.8) :

54



Chapter II: Experimental methods and samples
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     (II.9)

Remembering that q a
3
= l b

3
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3
= 2π l it can be rewritten as 
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     (II.10)

where l takes non-integer values.
Eq.  (II.9)  and Eq. (II.10) show a characteristic variation of the scattered intensity from a crystal surface as  
function of the scattering vector perpendicular to the surface. It demonstrates that the diffraction intensity of  
finite-sized crystals has diffuse streaks connecting all the Bragg points. These diffuse streaks of intensity are 
called the Crystal Truncation Rods (CTR). 
An alternative way to understand the scattering vector dependency of Eq. (II.10) is to use the Fourier transform 
(FT) properties. A semi-infinite crystal can be seen as the product of an infinite lattice and a step function. The 
scattering amplitude is thus the convolution of the reciprocal lattice with the FT of a step function. The latter has  
a 1/q dependence and decreases slowly with q resulting in a detectable intensity along the CTR. 
It is quite obvious that any surface roughness has a strong effect on the CTRs inducing a reduced intensity in 
between the Bragg peaks (Robinson 1986). A commonly used approximation proposed by Robinson 1986 (so-
called the β model) describes the surface roughness with an occupancy distribution βn for the layer n and above 
the last fully occupied one, resulting in pyramidal islands. The attenuation of the CTR intensity is given by:

Rβ =
(1−β)2

(1−β)2+4βsin2 π(l−l Bragg)
M

layers

   (II.11)

where lBragg is the l value of the nearest Bragg peak and Mlayers is the number of layers in the unit cell. From Eq.
(II.11), one can understand that the relatively large value of the intensity measured in-between the Bragg peak 
along the CTRs is predominantly due to the fact that the surface is almost atomically flat and not due to the fact  
that the crystal has a finite-size.
Robinson (1986) evaluated the expected intensity from a CTR by considering a semi-infinite crystal measured 
with an incident and diffracting beams passing through its surface (Bragg geometry). In this case, five out six of  
the parallelepiped crystal becomes indistinct. Four because of the soft edges of the beam and the fifth because of  
its limited penetration in the sample. The strength of a truncation rod can be evaluated by including the X-ray  
coherence length, m (measured in unit cells) in Eq. (II.12). 
It comes that the Bragg points have an intensity of N1N2N3m

3 while the diffuse intensity is given by N1N2m
2 . 

With a penetration depth taken to be 1 μm corresponding to ~ 103  unit cells for N3  and m = 100 unit cells, this 
gives a relative intensity of:

I (Bragg point )
I (CTR)

= N 3 m ≃ 105     (II.12)

Intensities of this order of magnitude were confirmed experimentally. It implies that synchrotron radiation is 
generally mandatory for measuring such low intensities. However, it should be noted that experiments involving  
heavy atomic elements were performed using rotating anode X-ray generators (Meyerheim et al. 1998).
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II.2.2 X-ray diffraction from the surface region

The X-ray scattering amplitude from a film deposited onto a substrate can be simply written as the sum of the 
scattering from the substrate and from the atoms close to the surface:

A(q) = Abulk (q ) + Asurf (q)    (II.13)

where the first term contains all substrate atoms in bulk positions and the second term contains the deposited 
atoms and the substrate atoms close to the surface with displaced positions with respect to the bulk. In the 
relatively simple case of pseudomorphic epitaxy, the sum on the Bravais lattice gives delta-like functions, the 
scattering is thus observed at integer h and k value. This case is illustrated in Chapter VIII by the study of the 
Cu-Ta interface. 
Perpendicular to the surface, an intensity distribution is observed. It can be described through a generalized  
structure factor F which is the coherent sum of both bulk and surface contributions : 

F (h , k , l) = F Bulk+ ∑
j

surface unit cell

f jθ j e

−B j q
2

16π2

e
2πi (h x j+k y j+l z j )     (II.14)

where (xyz)j is the position of atom j in fractional coordinates. An occupancy parameter θ is included because in 
the surface unit cell not all the positions need to be fully occupied. 
Fbulk describes the bulk-unit-cell structure factors Fu summed from the top layer to -∞. Because of the attenuation 
factor α, only a finite amount of unit cells contributes to Fbulk and it can be expressed as follows:

F bulk =
F

u

1−e
−2 π i l

e
−α    (II.15)

Not that in this formalism, the bulk and surface contributions can only be added coherently (Vlieg et al. 1989). 
The coordinates of the surface and bulk atoms are expressed with respect to a common origin. 

II.2.3 Surface X-ray diffraction experimental set-up

The  surface  X-Ray  Diffraction  (SXRD)  experiment  discussed  in  the  chapter  VIII  of  this  manuscript  was 
performed  at  the  SUV-BM32 (CRG-IF)  beamline  at  ESRF.  Fig.  II.10.a  shows  the  experimental  station.  It 
consists  of  a  ultrahigh  vacuum  chamber,  fully  equipped  for  sample  preparation,  mounted  on  a  Z-axis 
diffractometer.  A complete  description of  the set  up has  been done by Baudoing-Savois  et  al.  (1999).  The 
diffractometer axes are sketched in Fig. II.10.b. The sample is in vertical position, α is the angle of incidence of 
the X-ray beam. The base table also called α support two rotary tables ω and δ with their axis parallel to the z 
axis. ω is the azimuthal angle while δ is the in-plane scattering angle. The detector arm supports a movable 
system which allows for the emergence of the out – of plane scattering angle γ. The γ angle is achieved by the  
combination of two motions: a translation along the detector arm is synchronized with a rotation. This induces a  
change in the sample-detector distance during a γ scan: the angular acceptance of the detector slits decreases  
with an increasing angle. Finally two further axis χ1 and χ2 “the cradle axis” allows the alignment to the surface 
normal n̂  parallel to z.

The angular settings of the diffractometer allows to measure the intensity at a well defined scattering q = kf - ki 

vector as shown by the Ewald construction in Fig. II.11. 
The  q  vector  is  expressed  in  a  Cartesian  coordinate  frame  attached  to  the  reciprocal  lattice.  To  find  the 
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corresponding settings for the diffractometer, it is necessary to express the incoming and scattering wave vector  
and outgoing wave vector in the same frame of axis. This is done by performing a coordinate transformation 
from the laboratory frame (x,y,z) to the (Xω,Yω,Zω) frame attached to the circle ω. Details on the calculation of the 
coordinate transformations are available elsewhere (Lohmeier & Vlieg 1993).
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Fig. II.11 Ewald construction which summarizes the geometry of the experiment (courtesy to M. De Santis)

Fig. II.10 (a) SXRD dedicated experimental set-up at BM32 (b) Schematic of the z-axis diffractometer

(a) (b)
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II.2.4 Measurement of the rod intensities

A detector placed on the diffractometer arm integrates the scattering cross section over the solid angle 
dΩ which is given by the pixels included in the region of interest in 2D CCD detectors (as in the case of the  
experiment  presented  in  Chapter  VIII).  The  scattering  cross  section  derived  from the  classical  formula  of  
Thompson scattering.

d σ=
∣A(q)∣2e

4

m
2
c

4 sin2θdΩ  (II.16)

where m is the mass of the particle, c the speed of light and θ defines the angle between the electric field of the 
incoming photon and the scattering direction.
The atomic structure of thin films and of 2D surface layers is generally solved through a fit of the experimental 
structure factor amplitudes |F(h,k,l)| with the expression given by Eq. (II.14). In Chapter VIII the determination 
of the surface structure through the fit of the experimental data is tested against first-principle and Molecular 
Dynamics calculations. To get the correct amplitudes several geometric correction factors need to be applied to  
the measured intensities. In the following we summarize them quickly but extensive details on the application of 
the correction factors can be found elsewhere (Vlieg 1997).
Among  the  correction  factors  are  the  correction  of  the  polarisation  factor  which  is  the  classical  angular  
dependence in the dipole scattering (sin2θ in Eq.  (II.16));  the Lorentz factor which can be described as the 
geometrical correction in the integration volume. The rod correction which aims at determining precisely the  
range of l values that are accepted by the detector. In other words, this correction factor depends on the way the  
rod cylinder intersect the lines that define the detector aperture.
Additional correction include the linear γ table correction which takes into account the fact that the rotation γ is 
composed of a translation and a rotation yielding an increasing sample-detector distance when increasing angle 
and  a  subsequent  decrease  of  the  acceptance  angle  of  the  detector.  The  area  correction  depends  on  the  
illuminated area on the sample which is defined by the opening of the vertical slits of the incoming beam. 
Finally,  a  detector  corrections  need  to  be  applied  when  he  diffraction  peak  is  too  wide  and the  complete  
integrated intensity is not measured. This occurs in particular when the coherence between the substrate and the 
surface is partially lost.

All the aforementioned correction allow to obtain a total correction factor. It is applied at the integrated intensity  
measured by rocking the sample azimuth to obtain the structure factor given by:

∣F (h , k , l)∣2∝
∫ I h ,k (ω)dω

L×C rod×C pol×Carea×C table×C Det

 (II.17)

Provided a careful acquisition of the experimental data, this allows to obtain a precise measure of the structure 
factor amplitudes which can be used for the determination of the atomic structure of the surface.

II.3. Samples 

To investigate the structural and mechanical properties of sub-micron crystals,  several  samples have 
been  studied  during  this  work.  They  can  be  divided  in  two  main  groups:  the  particles  (islands)  and  the 
nanowires.
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II.3.1. Islands

The particles were obtained by the solid state dewetting technique. This technique has the advantage to 
produce a series of similar objects in term of size, geometry and orientation, which is particularly convenient for 
X-ray diffraction studies. The choice of gold and copper is justified by the fact that the plasticity mechanism in 
bulk f.c.c. metals is well known. 

II.3.1.1 Solid-state dewetting

For both Cu an Au particles, the dewetting occurs from a continuous thin film. The deposition method 
and structure of the two thin films varies slightly between the two systems. The gold thin film is deposited using  
Electron Beam physical vapor deposition (EBPVD) on a sapphire (0 0 0 1) substrate in a high vacuum chamber.  
A polycrystalline thin film of typically 20 nm with a pronounced {1 1 1} texture is obtained. The Cu thin film is 
deposited using Molecular Beam Epitaxy on an atomically flat Ta (0 0 1) substrate. The thin film is in hetero-
epitaxy with the substrate, and a 5 nm thick thin single-thin film with a (0 0 1) out of plane orientation is  
obtained.  In  both  cases,  the  deposition  is  carried-out  at  room  temperature.  More  details  on  the  sample 
preparation can be found in Chapters VI and VII (gold islands) and Chapters VIII and IX (copper islands). 
As shown on Fig.  II.12, the process of formation of the islands is similar for the two systems. Due to large 
surface energy difference between the film and its substrate (either the refractory metal Ta or the oxide sapphire),  
the metallic thin film breaks up upon heating well below the melting temperature, and agglomerate into regularly 
distributed sub-micron islands with a well defined orientation with respect to the underlying substrate. 

An important question to address is to determine what triggers the particles formation?
Thin films are  generally  formed under  conditions  for  which  atomic motion  is  limited and non-equilibrium 
structures are obtained. This is particularly true for films formed through vapour deposition, for which atoms  
arriving at the surface of a substrate or growing film can often move over distances limited to a nanometre or  
less (as in the case of formation of amorphous films). As a result, most films are unstable, or at best metastable,  
and spontaneously dewet to form islands when heated to temperatures at which the mobility of the constituent  
atoms is sufficiently high. 
The driving force for dewetting is minimization of the total energy of the free surfaces of the film and substrate,  
and of the film-substrate interface. This force increases with decreasing film thickness resulting in an increasing 
dewetting rate. As a consequence, the temperature at which dewetting occurs decreases with film thickness. 
Dewetting  generally  progresses  through  at  least  three  distinct  stages:  hole  formation,  hole  growth  and  
impingement, and ligament breakup (Thompson 2012). 
The dewetting either occurs at pre-existing holes or at film edges or requires the formation of new holes. These  
holes then grow to form dewetted regions that eventually overlap so that the entire film is dewetted. 
In polycrystalline films, grain boundaries and grain boundary triple junctions play an important role in the hole 
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Fig. II. 12 Schematics of the solid-state dewetting process.
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formation. For single-crystal film, the dewetting of a continuous thin film also seem to require pre-existing holes 
or defect that promote local thinning and hole formation (Freund & Suresh 2003, Chapter IX), however no clear 
mechanism of  formation that  leads  to  dewetting has  been clearly identified.  Candidate  possibilities  include 
pinholes in the initial films, localized impurities on the substrate or film surface that react locally to make the 
film discontinuous or defects such as dislocations that cause local pit formation (Thompson 2012) or even local  
fluctuations of thickness for very thin film.
Once a hole of critical size has formed, capillary energies will drive the retraction of its edges and the hole will  
grow. As illustrated on Fig.  II.13,  the growth of the hole is  driven by two main distinct  processes that  are 
initiated in the same way. If we consider a hole at a sharp corner, material will be transported from the corner to  
reduce its curvature. However, since the curvature of the edge of the thin film is always higher than that of the  
film surrounding the hole, there will be a continuing net flux of material from the edge over the rim of the hole,  
and into the flat area surrounding the hole. This flux leads to retraction of the edge and to corresponding hole  
growth. As the edge-retracts, the rim thickens, and the valley ahead of the rims deepens (Fig. II.13.b and II.13.d). 
At some point, the valley makes contact with the substrate, leading to the creation of two sharp edges (Fig.  
II.13.d). A wire (or strand) is then formed from the isolated rim. This process called pinch-off can repeat, leading 
to the creation of new wires (Thompson 2012)
Alternatively, in some cases a retracting edge undergoes a so-called fingering instability,  i.e. the breaking up of 
the thin film into fingers upon retraction of the edge. These fingers are also unstable and break up into islands at  
later stages of the dewetting process. The fingering instability is commonly observed in single crystal thin films 
(Fan et al. 2008, McCarthy et al. 2009), and is illustrated in Fig. II.13.a which shows the dewetting of the copper 
islands from a 5nm single-crystal thin film. At late stages of dewetting, the break-up of the rim leads to wire-like  
strands (Fig.  II.13.a). These strands have radii that scales with the film thickness. They are subject to the so  
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Fig.  II.13 Schematic  of  the  growth  mechanism  of  holes.  (a)  Optical 
microscope image of a Cu thin film undergoing solid-state dewetting. (a) 
Cross-sectional  view  of  a  retracting  edge-film.  (c)-(d)  Illustration  of  the 
pinch-off mechanism – (c) – (e) Illustration of the fingering instability (Fig. 
12. (b) to 12.(e) are taken from Thompson (2012))
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called Rayleigh-Plateau-like instability: free standing cylinders of radius  rR are  unstable with respect to radial 
perturbations of wavelength greater than 2πrR and tend to break up into spheres at spacings 2√2π rR. The radii of 
the resulting particles scale with rR. 

II.3.1.2 Equilibrium shape of the particles 

At the end of the dewetting process, the shape of a particle equilibrated on a substrate reflects the anisotropy of  
the surface energy of a particle and the influence of the substrate.
The example of the liquid droplet in a contact with a substrate provides an illustration of the manner in which the  
substrate-droplet binding can influence the shape.
Once the thermodynamic equilibrium is achieved, and provided that the interface remains flat and coplanar with  
the substrate, the contact angle (θ) can be used via Young's equation as a measure of the substrate vapour (γSV), 
liquid vapour (γLV) and substrate liquid interfacial energies (γSL) of the droplet:

γSV = γSL + γLV cosθ    (II.18)

Through Eq.(II.18), it can be seen that the shape of a droplet can be related to the binding between the liquid and 
the surface, characterized by γSV, and the surface tension of both the liquid and the substrate.
Similarly to a liquid droplet, the shape of solid particle on a substrate must reflect the influence of these surface 
quantities. The solution to the problem of determining the equilibrium shape of a free-standing particle has been  
available  since  the  beginning  of  the  20th  century  (Wulff  1901).  Wulff  proposed  a  graphical  manner  of 
determining a crystal shape from a free-energy plot also known as a γ plot. 50 years later, Herring (Herring 
1953) proved that Wulff's construction led to an absolute minimum for all possible energy plots. 
For a free particle, the Wulff solution requires that the equilibrium shape of the particle be such that:

γhkl = λhhkl  (II.19)

i.e. the perpendicular distance hhkl of a (hkl) surface from the centre of the body (referred as the Wulff point) is 
directly proportional to the surface tension  γhkl  of that surface. This agrees with the fact that crystallographic 
planes with lower surface energies are closer to the origin of the crystal and thus give larger facets (see Chapter 
VII). 
The result in Eq. (II.19) can expressed graphically by means of the Wulff plot shown of Fig. II.14. This plot 
begins with a radial plot of the surface tension of the crystal (in green on Fig. II.7). Planes (or lines in the 2D 
case) are drawn through each point on the surface, perpendicular to the line connecting that surface point and the  
Wulff point O that define the centre of the crystal. The equilibrium shape (in red) is given by the area internal to  
all planes. It comes that low energy orientations will have large flat facets while higher energy orientations will  
only exist in planes that are tangent to the shape at a single point or will be missing entirely from the boundary 
of the crystal planes. Closed packed planes tend to have a low energy (the (1 1 1) and (1 0 0) planes for a f.c.c.  
structure) because the atoms on the surface have the most neighbours and fewest broken bonds. This topic is  
extensively discussed in the Chapter VII of this manuscript.
To  take  into  account  the  presence  of  a  solid-solid  interface,  i.e.  the  presence  of  an  underlying  substrate. 
Winterbottom (1967) developed the concept  of  general  surface tension. If  P corresponds to a single crystal 
particle, S to the substrate and V to the vapor phase surrounding the particle, this general surface tension is  
defined by γ* = γ

PV for all orientations corresponding to the free surfaces (particle - vapour surface), and 
γ* = γ

SP
−γ

SV for the particle-substrate interface in common with the substrate. 
For  a  planar  substrate-particle  interface,  it  is  thus  possible  to  determine  the  equilibrium  shape  of  the  
Winterbottom particle by considering an equivalent free particle with a surface tension γ*. 
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The shape of the particle can be determined from the  γ* plot construction which is a generalization of  γ plot 
described above. The only difference lies in the fact that negative values of γ* are possible. For positive values, 
the equilibrium shape is still given by the inner envelope developed of the Wulff construction while for negative  
values of γ* the Wulff point no longer fall within the inner envelope of the construction (Fig. II.15)
The binding or degree of wetting between the particle and the substrate can be measured from the value of 
γSP−γSV . Winterbottom considered four possible cases ranging from the non-wetting of the particle to a 

complete wetting. The latter is still characterized by a zero contact angle (θ) as defined by Young's equation, 
while for a non-wetting, the equilibrium shape corresponds exactly to that of a free particle. 
In between, these two extrema, a partial wetting of the particle is observed. In this case, two configurations are  
possible.  If  γ

PV
> γ

SP
−γ

SV
> 0 ,  the  equilibrium  shape  differs  from  that  of  a  free-particle  and  the 

construction plane for γ* = γ
SP
−γ

SV
represents the substrate surface and the base of the equilibrium shape. 

As illustrated in Fig. II.15.b, the Wulff point lies within the equilibrium shape, and can be precisely determined 
from the geometry of the particle. 
It  is also possible to determine the substrate-particle interface energy by measuring the distances  R1  and  R2  

corresponding respectively to the substrate-to-Wulff point and the Wulff point-to-top facet distances

R1

R2

=
γ

SP
−γ

SV

γ
PV

    (II.20)
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Fig. II.14 Wulff plot of the equilibrium shape  (γ-plot).  
The  free-energy  is  plotted  as  a  function  of  the 
orientation in green. The equilibrium shape (in red) is 
given  by  the  volume  (area)  internal  to  all 
crystallographic planes (in black)
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The contact angle θ used to define the wetting behaviour of a liquid droplet is not as significant in the case of a  
single-crystal particle since γ is not isotropic.
When γSP−γSV becomes negative, the Wulff point no longer lies within the equilibrium shape of the particle. 
It is generally not possible to determine the equilibrium shape of the free particle from the geometry of the 
particle on the substrate, unless the value of γSP−γSV is known.
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Fig. II.15 γ* and corresponding equilibrium shape for different wetting behaviours. (a) non-wetting (b) partial wetting with 
γSP - γSV > 0. (c) partial wetting with γSP - γSV < 0. (d) Total wetting

Fig. II.16 Secondary Electron Microscopy image of the dewetted islands. (a) Copper islands dewetted on 
top of a Ta (0 0 1) surface. (b) Gold islands dewetted on top of a Al2O3 (0 0 0 1) surface
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Fig. II.16 shows SEM pictures of the typical size, geometry and distribution of the solid-state dewetted copper 
(Fig. II.16.a) and gold (Fig. II.16.b) islands. A partial wetting is observed for both systems, for the gold particles 
the Wulff point is located inside the particle, meaning that > γSP−γSV > 0 . It is thus possible to calculate the 
substrate-particle interface energy, provided that both the substrate and the particle orientation are known (Sadan 
& Kaplan 2006). For the copper particles, a partial wetting is also observed, but the particle is largely truncated 
indicating the location of the Wulff point outside the equilibrium shape. This suggests a lower value of interface 
energy and a stronger connection with the substrate as compared to the gold particle as well  a lower interface 
energy. In both cases the distribution of the island is relatively regular with a typical spacing of 2 μm between  
the islands. Both the in-plane and out-of plane orientations are well defined with respect to the substrate. The 
particles are highly faceted with a shape close to the Equilibrium Crystal Shape (ECS, see next sub-section)).  
Note that all the flat facets correspond to low energy orientations, i.e. (1 1 1) and (1 0 0) facets where the surface 
atoms are densely-packed. 
We should point out that the equilibrium shape discussed so far is a minimization of the surface energies for a  
given relaxed volume. At equilibrium, the volume energy of the particle has to be taken into account, including  
its elastic strain energy (due to for example to the interface that accommodates the particle/substrate lattice):  
deviations to the Winterbottom shape are expected and can be calculated. If ro designate the aspect ratio of the 
equilibrium shape (ro = h/l, where l is the lateral size of the crystal and h its height), the surface stress of the facet 
in contact with the substrate (sA) contributes to the aspect ratio so that:

r = r 0 +
2 (s

A
−γ

PV
)m

γ
PV

    (II.21)

where m is the misfit between particle and substrate.
Hence, the general trend is that wetting tends to flattens the equilibrium shape whereas epitaxial strain acts  
against flattening and thus “blows up” the equilibrium shape (Muller & Kern 1998). All these considerations are  
discussed in extensive details in Chapters VI and VII (gold islands) and Chapter IX (copper islands). 

II.3.2 Nanowires

Copper and gold islands are theoretically model objects for the investigation of the first stages of plastic  
deformation (nucleation) in small objects by Coherent X-ray diffraction. They are in the sub-micron range, well 
oriented with respect to the substrate, exhibit a reproducible size and geometry, and are in principle sufficiently  
well  isolated to allow the imaging of their  3D displacement field by CDI.  Additionally,  their  flat  top facet  
parallel to the substrate are ideal for potential ex situ or in situ nanoindentation experiments. The only potential 
drawback with these objects lies in their strong binding with the substrate, which is prone to generate a large  
amount of strain, as for example thermoelastic strain due to cooling from the dewetting temperature (Beutier et  

al. 2013a). We have seen in Chapter I that even small values of strain can induce strong perturbations on CXD  
pattern which can make difficult the identification of crystal defects. Moreover, it is well known that large strain  
fields are difficult to handle for phase retrieval algorithms, even if some additional constraints in the phase 
retrieval algorithms can facilitate their convergence (Diaz et al. 2010, Minkevitch et al. 2008). The influence of 
the residual strain and his relationship with the binding between the particle and the substrate is further discussed 
in Chapter VI.
To limit the amount of residual strain the first strategy employed in this work was to grow islands with a weaker 
bounding to the substrate.  This can be done by dewetting the particles above the melting temperature.  The 
processing of such particles is presented in Chapter VII of this manuscript.
The other type of “strain-free” objects that are considered are single crystalline gold nanowires (NW). These 
objects are grown by physical vapour deposition on carbon-coated tungsten substrates under ultra-high vacuum 
and at high temperature. The method of growth of these nanowires (also referred as nanowhiskers) is described 
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elsewhere (Richter et al., 2009). Presence of atomically smooth and faceted surfaces (Fig. II.17.a) as well as the 
absence of dislocations is confirmed using transmission electron microscopy investigation (Richter et al. 2009). 
Similarly to the islands, the nanowires only exhibit {1 1 1} and {1 0 0} low energy facets (Fig. II.17.a), and are 
elongated along the [0 1 1] which corresponds to the growth direction.
For the CXD experiments the nanowires were mechanically transferred (scrubbing) on a silicon substrate, the in-
plane orientation of the substrate is thus completely random while the out-of-plane orientation depends on the  
orientation on the facet in contact with the substrate. The four {1 1 1} lateral facets having the lower free-surface 
energy, they are larger than the 2 {1 0 0 } facets. {1 1 1} specular facets parallel to the substrate surface (Fig.  
II.17.d) are thus more frequently encountered than {1 0 0} facets (Fig. II.17.c), as confirmed by electron back-
scattered measurements (EBSD, Fig. II.17.e & II.17.f). Similarly to the gold islands, the flat and reasonably large 
top facet (either {1 1 1} and {1 0 0}) facet is particularly convenient for the nucleation of dislocations by  
nanoindentation.
The typical dimensions for the nanowires are 0.15x0.15x10  μm3. The extent in the third dimension (typically 
between 5 and 20 μm) is hence significantly larger than the typical beam-sizes used for CXD experiment. At the 
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Fig. II.17 Morphology of gold nanowires (NW). (a) NW shape model based on the Wulff plot. 
Only {1 1 1} and {1 0 0} surface planes can be found.  (b)  Ideal  whisker  shape,  as  shown 
projected in the [0 1 1] direction. (c) and (d) SEM images of two nanowires with a (0 0 1) (c) 
and a (1 1 1) (d) out-of-plane orientation. (e) and (f) Electron-back scattered diffraction from 
the same nanowires, revealing the (0 0 1) (e) and (1 1 1) (f) out-of plane orientation
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expense  of  the  flux,  a  full  illumination  of  the  sample  would  be  certainly  possible,  but  it  is  clear  that  the  
resolution of the 3D reconstruction would be rather low. 
To image the 3D displacement field an alternative and far more efficient strategy is to use the scanning version  
of  CDI,  namely  the 3D Bragg ptychography.  In Bragg geometry,  it  has  been demonstrated that  the  Bragg 
Projection Ptychography (BPP) technique can be used to  image lattice strains in semiconductors thin films  
(Hruszkewycz et al. 2012), and can even generate maps of lattice strain and lattice tilt independently (Holt et al.  

2014). Although impressive, this technique is limited to 2D dimensions. 
To our knowledge,  the experimental demonstration of 3D Bragg ptychography has been only reported once 
(Godard, Carbone et al. 2011). The ptychographic algorithms that can be used for the reconstruction of the data 
are well known (Faulkner et al. 2004, Thibaut et al. 2009, Maiden & Rodenburg 2009) and provided that a good 
data set is collected, the ptychographic approach is in principle more robust than conventional CDI especially in 

- the case of highly strained systems (Godard, Allain  et al.  2011). The rather limited use of this technique is 
mostly related to the experimental difficulties to collect a 3D dataset suitable for reconstruction. The technique 
requires to perform 2D scans at  each position of the rocking-curve,  hence a rather long measurement time  
(typically 8 hours depending on the angular step size for the rocking curve). Unless a very good stability of the  
set-up is ensured, the experimental data is unusable. We will see in the following that our attempts to perform 3D 
ptychography were not successful.

II.4. Sample characterization 

II.4.1 Ex situ indentation

Nanoindentation tests have been widely used to study plasticity mechanisms at the nanometre scale since  
the mid-1990. It has been demonstrated both experimentally and in molecular dynamics simulations that for  
small size crystallites, in the presence of free surfaces crystal plasticity mechanisms are controlled by nucleation  
of dislocations at edges of faceted samples (Mordehai et al. 2011). In this manuscript, the detailed mechanisms 
of the nucleation of dislocations is detailed in Chapter IV.
A central objective of the ANR MECANIX and of this work is the in situ investigation of the first plastic events, 
i.e. nucleate crystal defects in situ while illuminating the object with a coherent X-ray beam (Fig. II.19. a). Such 
experiments have been carried-out at late stages of this PhD work and are presented in Chapter VI. The in situ 

nanoindentation experiment was carried-out with a compact atomic force atomic force microscope that has been 
developed by our collaborators from Marseille (SFINX). This set-up compatible with various synchrotron end  
stations allows both in situ  imaging and some in-situ  mechanical loading (Fig.  II.19.c). Further details on this 
set-up can be found elsewhere (Zhe et al. 2014). 
It should be noted that a in situ nanoindentation set-up is also under development in our group (Fig. II.19.d). It is 
a compact nanoindentor that is also compatible with synchrotron end-stations and is integrated into a Scanning 
Electron Microscope to combine in situ mechanical testing and real space imaging. Coherent X-ray diffraction 
experiments have not been performed with this set-up so-far, but it has been already used in combination with a  
micro-diffraction technique  which  allows  the high  resolution  monitoring  of  crystal  deformation  with X-ray 
multiple scattering (Nisbet  et al.  2015).  'Nanoindentation'  performed with an AFM is rather distinct from a 
compact nanoindentor: in AFM, only the force applied to the sample is controlled (deflection of a calibrated 
cantilever),  the  displacement  of  the  sample  is  not  independently  measured  (only  the  total  displacement 
tip+sample is controlled, not the tip depth within the sample). So AFM nanoindentation is very similar to classic 
indentation in metallurgy: a force is applied and if visible/created, the residual imprint can be imaged to derive  
the so called hardness (pressure of flow corresponding to the applied force divided by the projected imprint  
area). The term 'nanoindentation' usually refers to experiments carried out with a nanoindenter, basically a very 
stiff  one  axis  instrumented  column,  to  measure  quantitatively  and  continuously  the  force  and  the  tip 
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displacement within the sample. The advantage of instrumentation of Force and Displacement in nanoindentor is 
that the mechanical parameters are quantitatively and continuously measured (access to contact area through 
some  equations)  and  allows  to  follow at  least  elastic  (contact  indentation  modulus)  and  plastic  properties 
(hardness)  at  any  depth.  The  drawback is  fine  positioning  of  the  diamond nanoindentor  tip  on  a  location:  
although nanoindentor equipped with a 2D XY sample translators can reproduce AFM-contact imaging mode as 
developed in our  lab.,  this  process  is  much slower and can be destructive.  In situ SEM nanoindentation is 
therefore used for such characterization, but is only recently available in our lab. At a synchrotron, micro -focus 
beam can allow precise positioning of nanoindentor tips on a sample (using shadowing of Bragg reflection for  
example), but this is rather cumbersome with a diamond tip. 
The in situ nano-indentation experiments were only possible at a late stage of this work. Hence, the nucleation of 
crystal defects by nano-indentation was primarily performed ex situ in good vibration controlled environment at 
the lab., using an AFM Dimension 3100 (Veeco) and a specific metrologically calibrated cantilever on which a  
diamond Berkovitch tip is attached. 
The objective was to introduce a  controlled amount  of defects  into the sample,  and to use coherent  X-ray  
diffraction or ptychography to characterize the nucleated defects, and the corresponding modifications in the 3D  
strain field. For a precise characterization of the evolution of the defect content, several sub-micron crystallites  
or nanowires in various loading states were generally prepared  ex situ in the lab. The complete preparation 
procedure is described in the following. 
After a pre-selection of the potential candidates by SEM, the AFM is used to image (with very weak mechanical 
interaction, in dynamic mode-tapping) the object which is to be indented. Fine AFM tapping scans are performed  
to enable a precise positioning of the AFM tip for indentation on top of a facet (width between 50 to 200 nm in 
general).
Once the location of the indent site is selected, the nano-indentation is performed by moving the cantilever  
downwards in the z-direction (force-approach curve, Fig. II.18). It corresponds to a classic force-approach curve 
in AFM, but to larger depth to induce defects in the sample. During the indentation process, the changes in the  
deflection of the tip are monitored and plotted against the downward (z) displacement of the cantilever. The 
measurement of the deflection of the tip is achieved through the well known beam deflection method (Meyer & 
Amer 1988). A laser light from a solid-state diode is reflected off the back of the cantilever and collected by a  
position  sensitive  photodetector  composed  of  four  photodiodes.  An  angular  displacement  of  the  cantilever 
(elastic  deflection of  the  cantilever)produces  on a  position  sensitive photodiode  quadrant  can output  signal  
proportional to the vertical deflection of the cantilever. The deflection is measured in volts on the photodiode and 
is converted to nanometres through the deflection contact sensitivity calibration. This calibration is achieved at  
each location since it depends on the optical path arrangement between cantilever and photodiode. Basically is  
consist  in  measuring the slope of  force-approach curve on a  non deforming sample,  typically  our  sapphire 
substrate.  Then  with  the  nanoindentation  probe  used  in  this  work,  we  use  its  metrological  calibration 
(nanobalance set-up), to calculate the force F between the tip and the sample using Eq.(II.22). The slope k of our 
nanoindentation probe is measured at 264 N/m (+/- 0.5) 

F = k δ    (II.22)

where δ is the deflection of the cantilever. 
The general shape of the force displacement curve depends on the mechanical behaviour of the material. 
During the approach from O to A, the tip goes into the sample of a depth δ, causing a deformation. During the 
retraction, the tip goes back from A to O. If the sample is purely elastic, it regains step by step its own shape,  
exerting on the tip the same force. Hence loading and unloading curve, i.e. the approach and retraction of the tip 
completely overlap (Fig.  II.18.a).  Conversely,  if  the  sample is  purely plastic,  it  undergoes a deformation a 
deformation during the loading curve, and when the tip is withdrawn, the sample does not regain its own shape  
and the load decreases whereas the penetration depth stay the same (Fig. II.18.b).
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As illustrated in Fig. II.18.c, in practice, most samples exhibit a mixed elasto-plastic behaviour: the deformation 
is initially elastic, but the first stages of plasticity initiate suddenly and are easily identified on the loading curve 
by discontinuities a so-called “pop-in” event in nanoindentation (Fig. II.18.c, region circled in red). They appear 
as sudden drops in the loading curve. They mark the transition between the initial elastic behaviour to an elasto-
plastic behaviour (Tromas et al., 1999, Gaillard et al. 2003). The phenomenon is observed in a large variety of 
materials and is associated with dislocation activity (Gerberich  et al.  1995, Michalske & Houston 2003). The 
initiation of the load drops in the indentation curves correlates abrupt surface displacements with dislocation  
nucleation events. As shown on Fig. II.18.c, the difference between the difference of penetration depth between 
the loading and unloading curves roughly gives the depth of the indent. Here, a deflection of 45 nm is observed,  
knowing that k = 264.5 N.m-1 for the diamond tip, the force applied to the particle is equal to 1.2 x 10 -5 N. This 
value, for the tip geometry we used (sharpBerkovich diamond) is sufficient to enter the plastic regime and the  
corresponding depth of the indent is approximately 15 nm, as determined from the Force-approach curve. 
Upon indentation by a sharp indenter, the first dislocations nucleate just below the indenter (Mordehai  et al.  

2011, Chang  et al.  2010). Hence, the location of the indent has to be carefully selected. Indeed, dislocation  
nucleated  upon  indentation  are  glissile  dislocations  and  might  propagate  in  their  slip  plane  until  they  are 
annihilated at the particle surface and interface (Mordehai et al.2011). The main objective of the CXD study 
being  the  investigation  of  the  influence  of  crystal  defects  on  the  distribution  of  the  3D strain-field  in  the  
particles, it is only achievable if the nucleated dislocations are kept in mechanical equilibrium in the particle. 
It  is  well-known that  a  dislocation is  a thermodynamically  non-equilibrium crystal  defect.  However,  in  the 
absence  of  external  loading,  they  might  stay  in  the  small  particle  if  the  resolved  shear  stress  due  to  both  
boundary condition and internal stress that apply on the dislocation are insufficient to overcome at least the -
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Fig. II.18 Force-displacement curves for different mechanical  

behaviours.  (a)  Purely  elastic  material.  (b)  Purely  plastic 
material. (c) Force-approach curve of a gold particle revealing 
an elasto-discrete plastic behaviour
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-  lattice friction (minimum shear threshold for which a dislocation can glide on its slip system). This represents 
a lower bound since some dislocation-dislocations intersection can form a lock due to reaction and form sessile  
segments (Hirth &Lothe 1968).
Gryaznov et al.  1989 propose an estimate for a critical size for a free standing particle below which the rough 
estimate of image force that applies on the particle of size 2A:  αGb/2A, systematically overcomes the lattice 
friction on the dislocation (determined by the Peierls barrier  σp  (Hirth & Lothe 1968)). The free particle thus 
becomes free from dislocations when it reaches the characteristic length:

l ∝ αGb
σ

p
   (II.23)

where α is a numerical coefficient which depends on the geometry of a dislocation line and its position in the SP,  
G, b the shear modulus and Burgers vector of the dislocation respectively. This critical size is of the order of 100  
nm for f.c.c. metals, which is well below the typical 500 nm size of the gold particles considered in this work.  
Additionally, it has been shown that a a glissile dislocation loop is usually unstable in a free-standing small  
particle (Grayznov et al. 1989), while dislocation loops which are localized near the centre of a crystallite that is  
coherently bounded with a stiff substrate are generally stable. Indeed, the correct calculation of the complete  
boundary conditions (free surface + particle/substrate interface) have to be carried out numerically: for example,  
the image force of vacuum is attractive whereas is it repulsive for the interface with a stiffer substrate (Sapphire).  

69

Fig. II.19 Experimental set-ups to carry out the  in situ nanoindentation experiments.  (a) 
Schematics of the in situ nanoindentation experiment while illuminating the particle with a 
coherent  X-ray  beam.  (Fig.  From  Mordehai  et  al.  2011)  (b)  Snapshot  of  atomic 
configuration  during  a  pop-in  event  in  the  course  of  a  [1  1  1]  indentation.  Prismatic 
dislocation loops are nucleated. Are shown only the atoms that do not have a local f.c.c. 
environments. (Fig. from Chang  et al.  2010) (c) Compact AFM “SPHINX” developed by 
the  IM2NP  in  the  ANR  MECANIX  framework.  (d)  Compact  nanoindentor  under 
development in our group (SIMaP). Both set-ups are designed to be adapted at a variety of 
synchrotron end-stations.
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By indenting the gold particle at the centre of the flat {1 1 1} top surface, there is thus larger chance to nucleate 
dislocation loops that may remain stable in the particle in the unloaded state.
Fig.  II.20  illustrates  the  effect  of  a  gentle  indentation  on  a  gold  solid-state  dewetted  particle  close  to  its 
equilibrium shape. Both particles were measured on the CRISTAL beamline of the French synchrotron SOLEIL. 
The measurement was carried-out at the 2 2 2 Bragg reflection of gold using a 8.5 keV beam that was focused to 
2 (H) x 0.5 (V) μm2  with a FZP. The two island have a similar size and geometry, close to the Winterbottom 
equilibrium shape (Fig. II.20.a and II.20.b). Particle (b) was gently indented (~ 3 nm) prior to the experiment. 
As illustrated in Fig. II.20.a, a large broadening of the Bragg peak is already visible in the pristine particle. The 
elongation is mainly along the {1 1 1} directions not perpendicular to the top (1 1 1) facet. The broadening of the  
Bragg peak is attributed to the presence of residual strain and is discussed in Chapter VI. 
The indentation induces some clear effects on the CXD pattern. The most visible effect is the drop of intensity 
around q = 0. It was already present for the pristine particle but is clearly more pronounced after the nucleation  
of  some defects  into  the  structure  (Fig.  II.20.d  and  II.20.f).  Conversely,  the  elongation  along the  {1  1  1} 
directions seems to decrease after indentation. This might suggest a partial relaxation of the residual strain by the 
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Fig.  II.20:  Comparison  between  a  CXD pattern  obtained  from a  pristine  

particle,  and from a particle where few dislocations have been nucleated.  

The 2 2 2 Bragg reflection is measured. (a) – (b) SEM pictures of the pristine 
and indented particles. (c) – (d) and (e) -(f) (qx,qy) and (qx,qz) slices through 
the peak for the pristine (c and e) and indented (d and f) islands. 
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Pristine particle Indent ~ 3 nm
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- well known mechanical annealing process (Matthews & Blakeslee 1974).
Note the presence of high frequency oscillation fringes for the indented particles which suggest interferences 
with a neighbouring particles (a rather large beam-size was used for the experiment). 

The selection of the nucleation sites for the nanowires is driven by other considerations. Given 1D long length  
size  of  the wires,  it  is  perfectly  conceivable  to  nucleate  defects  in  some defined part  while  others  are  left  
untouched. The reconstruction of the 3D displacement field using 3D Bragg displacement field should allow a 
comparison between these defective and pristine regions. 
The sample considered for nano-indentation is a 7.5(L)x0.3(W)x0.04(H) μm3 ribbon shaped NW, with a (1 1 1) 
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Fig.  II.21 Nanoindentation  of  a  gold nanowire.  (a)  SEM picture  of  a  gold nanowire  that  was  selected  for 
nanoindentation. The regions circled in red indicate the position of the indents. The region circled in blue is left 
untouched. The red arrow denotes the direction of the scan during the synchrotron experiment. (b) Integrated 
intensity along the NW. Drops of intensity are clearly visible at the position of the indent. (c) AFM image of the  
NW in the region of indent (4), the depth of 5 nm is measured. (d) Force-displacement curve for indent (4). (e)  
2D CXD patterns at several positions along the NW. (1), (2) and (4) correspond to indentation sites while (3)  
was collected in a pristine region.
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out-of-plane orientation. 
Following the procedure described above,  dislocations were nucleated in three different  regions of the NW 
separated by approximately 3 μm, which ensured that no interactions between the dislocations nucleated from 
distinct indentation sites would be observed. A gradient of increasing forces was applied from the left to the right  
of the NW, with values of 5.5 μN, 11 μN and 16.5 μN in (1), (2) and (4) respectively (Fig. II.21.a). The transition 
from the elastic to plastic regime is initiated for the three nucleation sites, with the presence of pop-in in the  
three-loading curves. From the difference in the penetration depth for the loading and unloading curves, it was 
possible to estimate indentation depths of 4 nm (1), 6 nm (2) an 11 nm (4, Fig. II.20.d).
The region around the indents was systematically imaged with the AFM tip after the indentation event. It was 
found that the depth of the indent is systematically lower than the value estimated from the load-displacement 
curve. For instance, the depth of indent (4, F = 16.5 μN) which was estimated to be 11 nm is actually only 5 nm 
deep. It is thus clear that a significant amount of recovery occurs after the withdrawal of the tip.
The reconstruction of  the 3D displacement  field by 3D Bragg ptychography was attempted in  two distinct  
synchrotron experiments carried out on the CRISTAL beamline and on the I13-1 beamline (Diamond Light  
Source). These attempts failed for various reasons. 
In a few words, for the CRISTAL experiment, an unexpectedly large amount of defects was found in the pristine  
nanowires (Fig.  II.23), and no sufficient stability of the set-up was achieved. For the I13-1 experiment, the 
primarily issue was the weak coherence of the beam.
The NW presented in Fig.  II.21 was measured during the I 13-1 experiment, with a partially coherent X-ray 
beam. Fig. II.21.d shows the integrated intensity along the NW, the direction of the scan is indicated by the red-
arrow in Fig. II.21.a. It is clear that the drops of intensity perfectly match with the position of the indent. This  
indicates the large concentration of defects in the region below the indent, as well as the presence of significant 
lattice distortions. Fig. II.21.e shows 2D CXD patterns taken at different locations along the NW. (1), (2) and (4) 
correspond to the indent positions while (3) was left untouched. It is obvious that CXD patterns are affected by 
the presence of a localized arrangement of defects. 
A speckle pattern is observed at each position, which indicate a large concentration of defects before nucleation  
of additional dislocations. Since these NW are supposed to be almost defect-free (Richter et al. 2009), this high 
initial concentration of defect might be related to our transfer procedure on the silicon substrate. 
Additionally if the focusing set-up used during this experiment (FZP) gave a beam-size that was estimated to be  
in  the  sub-micron  range  (FWHM)  the  measurement  was  carried-out  at  the  1  1  1  Bragg  reflection  which  
correspond to an incident angle of less than 16° at 9.8 keV. Along the direction of the beam, which roughly  
corresponds to the orientation of the NW, the footprint of the beam is thus much larger (as much as 3.6 μm for a  
1 μm beam). The untouched region of the NW (3) is only 1.5 μm away from the closest indentation sites, which 
means that crystal defects are probably illuminated from this position. That being said, the largest perturbations  
on the CXD pattern, and the minimum of the integrated intensity are found around the indent (4), where the  
largest mechanical solicitation was applied. 

II.4.2. Synchrotron characterization 

II.4.2.1 Laue microdiffraction

While  monochromatic  diffraction  gives  access  to  individual  Bragg reflections  with  high  resolution, 
methods based on polychromatic beams allow for measuring many diffraction peaks at the same time without  
any a priori knowledge about the crystallographic unit-cell orientation of the sample under investigation. Since 
the crystalline sample is illuminated with a white beam, a large number of atomic plane satisfies the Bragg law,  
and several Bragg reflections can be intercepted on a diffraction pattern by placing a 2D area detector close to  
the sample (typical distance of 10 centimetres).
Micro-Laue diffraction combines the oldest X-ray diffraction method – Laue diffraction – with modern X-ray  
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sources and detector. The technique can provide much insight on the defect and strain content of single particles. 
As discussed in Chapter I, local elastic strain (or stress) can be determined from the unstrained cell parameters of 
a single crystal volume. Methods for determining the unit-cell parameters on single-crystal have been derived by 
Busing & Levy (1967). It was shown that 3 linearly independent reflections determine the 3 parameters required 
for crystallographic orientation and the 6 parameters for the unit cell  (a,  b, c,  α,  β,  γ).  Following a similar 
formalism Chung & Ice (1999) evidenced that 4 Laue reflections determine the 3 crystallographic orientation 
parameters and the unit cell shape: a/c, b/c, α, β, γ. The strain tensor can thus be determined at each point of the 
crystal can be determined by spatially resolved micro-Laue diffraction. 
The components of the second-rank elastic strain tensor ε ij can be determined from the transformation matrix that 
maps unstrained to strained vectors:

ϵij = (T ij+T ji)/2−I ij   (II.24)

Similarly  to  the  case  of  CXD, the  presence of  elastic  strain distorts  the  angle  between reflections.  With  a 
constant strain tensor throughout the sampled volume, the shape of the Bragg peak is unchanged. However, in 
the  presence  of  strain  gradients  (changes  in  the  elastic  strain  tensor  within  the  volume  probed),  angular  
distortions are not uniform and cause a blurring and streaking of the Bragg peaks. 
In many materials, streaks observed around the Laue spots can also originate from the presence of geometry  
necessary (GND) dislocations which dominates over the influence of elastic strain gradients. Dislocations indeed  
interrupt the periodicity of the crystal lattice and introduce long-range rotations between sections of the crystal  
lattice. The character of Laue pattern streaking changes with dislocation type. Since the commonly activated  
dislocation systems are known for most materials, it is in principle possible, to fit Laue patterns to evaluate the  
most likely slip systems in a local volume. Informations about the total dislocation density can theoretically be  
derived by observing the extent of the streaking of the Bragg spot (Ice et al. 2005, Ice et al. 2007, Barabash et al.  

2003). The determination of these informations is however very challenging experimentally. Among other 
perturbations that can be observed on Laue micro-diffraction patterns are the the splitting of the Bragg spots in
two or more parts. The splitting of the Laue spots can be induced by low angle grain boundaries (Barabash et al.  

2002). The latter generally results in the accumulation of so-called tilt-dislocation walls (Barabash et al. 2002) in 
geometrically necessary boundaries (GNB).
In this work we did not intend to perform a detailed analysis of the Laue micro-diffraction patterns, for instance, 
we did not try to determine the strain tensor or the slip systems of the dislocations nucleated in the particle. The  
technique has been used as a preparation technique to select the best candidates for CXD experiments, and to  
evaluate the amount of strain that was generated by the ex situ indentation of particles. 
As discussed above the amount of elastic strain and defects can be deduced from the shape of the Laue spots. For  
CXD experiments and in particular for CDI a large amount of elastic strain and a high defect concentration is not 
desirable, at least for a proper study of defect nucleation. In this case, the direct analysis of CXD patterns is 
indeed very delicate (see Chapter IV) due to the interplay between a large and heterogeneous elastic strain and 
the  multiple  crystal  defect.  Regarding  CDI,  to  our  knowledge,  there  is  no  experimental  evidence  of  the  
reconstruction of systems exhibiting such a high density of defects.
The particles or NW with large distortions of the Laue spots were systematically discarded,  while particles  
exhibiting a reasonably low amount of strain were selected for CXD experiments. 
In practice, only one Laue micro-diffraction experiment has been carried-out during this work, so that only few  
samples are evaluated using this technique. For most of the CXD experiments in this PHD, the initial level of  
deformation and defect density in the particles or NW is generally unknown prior to the CXD experiment. 
Alternatively, Laue patterns are also collected for objects which had been measured previously by CXD in order  
to quantify the agreement between the two techniques. 
Fig. II.22 and Fig. II.23 show Laue micro-diffraction pattern from a NW and a particle exhibiting different levels
of strain. The measurements are carried-out on the BM 32 beamline at the ESRF. The sub-micron size of the  
polychromatic beam allows to scan the samples to measure local deformations with a good spatial resolution. 
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This is particularly useful when the sample is extended in one direction as in the case of the NWs. For the latter,  
2D scans were performed, with a step size of 250 nm in both x and y directions of the NW. A 2D Laue micro-
diffraction pattern is recorded at each scan position. For the particles, l D scan with a finer step size of 50 μm 
are performed.
As illustrated from the SEM picture (Fig.  II.22.a),  a dark line which extends over all the particle surface is 
clearly visible. This dark-line probably corresponds to a low-energy twin-boundary or to a micro-twin. 
As a reminder, twin domains occur when two crystals share some of the same crystal lattice point and are related  
by symmetry operations. The twin crystal planes are rotated with respect to the parent crystal planes, and do not 
diffract at the same positions in the reciprocal space. Since twin-boundaries are coherent interfaces, no or very  
few lattice distortions are found at the vicinity the twin boundary. In presence of a single twin-boundary in the 
structure, two sets of isotropic Laue spots corresponding to the two crystals are expected. 
A micro-twin is encountered when two twin-boundaries with a small spatial separation are found in the crystal.  
The two crystal volumes on both side of the twin share the same orientation and the twinned part is rotated with  
respect to the parent crystal. Since only a very small volume of the crystal is rotated, it should not be visible on  
the Laue micro-diffraction pattern. Fig. II.23.b show the 2D Laue pattern collected at the centre of the island top 
facet. A large number of Laue reflections are measured, coming from both the diffraction of gold island and of  
the underlying silicon substrate . Using the software Lauetools (Micha & Robach 2014), it is possible to index 
each Laue reflection originating from the gold particle. An excellent agreement is found between the simulated  
position of the Laue spot and the experimental data (Fig. II.22.c). From the analysis of the position of the Laue 
spot,  it  is  clear that  a single grain is  diffracting. Hence, the dark line does not  correspond to a single twin  
boundary. On the other hand, and as illustrated on Fig.  II.22.c to  II.22.e, a zoom around some of the Laue 
reflections reveal a splitting of the Laue spot. Such splitting is an indication of the presence of a low angle grain 
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Fig. II. 22 2D Laue micro-diffraction from a gold particle with a twin-boundary. (a) SEM picture of a 800x800x400 nm3 . A 
micro-twin or possibly a twin boundary can be identified. (c) Indexation of the Laue spots with the software Laue tools. (d)-
(f) Zoom around some Laue reflections revealing a splitting of the Laue spots. 
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boundary. It is however unclear if the dark-line visible on the SEM picture correspond to this low angle grain 
boundary or if it is a twin-boundary which is invisible with Laue micro-diffraction. The measurement of the  
particle with a Coherent X-ray beam should help to answer this question. 
Fig. II.23.a show a Laue micro-diffraction pattern of an ex situ indented NW measured close to its centre. The 
NW measured previously on the CRISTAL beamline was found to be extremely defective and as a result  is 
impossible to reconstruct by ptychographic means. The defective character of the NW is confirmed by the Laue 
measurements. A limited number of Laue reflections is visible and the indexation of the Laue spot is thus not  
possible.  The  Laue  spots  that  can  be  identified  are  very  diffuse,  indicating  the  presence  of  large  lattice  
distortions. 
The NW was indented at several locations circled in red in Fig. II.23.c. The force applied for the indentation was 
rather weak in order to limit the amount of plastic deformation and the corresponding number of nucleated  
dislocations. As illustrated in Fig. II.23.e and II.23.f, the remaining indent depth is less than 2 nm. The analysis 
of the Laue spots in various regions of the NW reveals that it is very defective other its entire length and the  
supplementary  amount  of  local  plastic  deformation  brought  by  the  nano-indentation  is  thus  difficult  to  
distinguish. It is however clear that the shape of the Laue spots is not constant over the NW length. In region (g)  
close to the central indent, the streaking of the Laue spot (indicating either the presence of heterogeneous strain 
or of GND) is clearly visible.
The streak direction of the Laue spot depends on the dislocation tensor and the effective strain gradient. In the 
case of single slip the streak direction depends on the dislocation slip system orientation. It is thus probable that  
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Fig. II.23 2D Laue micro-diffraction from a gold nanowire with a twin-boundary. (a) Laue diffraction pattern 
taken close to the NW centre. (b) SEM picture of a 6.6 (L) x 0.4 (W) x 0.05 (T)  μm3 Au NW that was 
indented at three positions with a gradient of increasing forces. (d) Scan of the NW with a white micro-beam. 
The location of the indents are indicated with a red circle. (e) and (d) AFM picture of the indent, showing a 2 
nm deep indent. (f) and (g) zoom on specific regions of the NW, where large distorsions of the Laue spots 
indicate a large amount of micro-strain
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that a single slip system is largely predominant in this region of the crystal. Conversely, both a splitting and a 
streaking  of  the  Laue spot  are  observed in  region (f),  this  indicates  an  even more complex  microstructure 
probably composed of both GNB and individual GND as suggested by Barabash et al. (2002). 

II.4.2.2 Finding the sample of interest: 2D fast-mapping of the sample 

The solid state dewetting technique produces a large number of sample with relatively similar  size, 
geometry and out-of-plane orientation. Since the particles of interest are characterized before and/or after the  
synchrotron experiment, it is critical to be able to locate them easily. To locate the areas of interest, different  
methods can be employed. The most simple and basic one consist in drawing a network of perpendicular lines on 
the sample surface, using tweezers. As illustrated in Fig.  II.24.a, the areas that have been scratched with the 
tweezers are depleted from gold particles. The regions at the intersection of two perpendicular lines are very easy 
to locate, and the potential candidates for CXD experiments are generally selected close to intersections, in order  
to retrieve them easily. Although very basic, this method proved to be efficient. A more precise and elegant  
method consist in patterning the gold thin film prior to dewetting, using a mask that is glued to the substrate 
before the gold deposition. This approach was used by a master student in our group, using a copper mask  
containing hexagonally arranged holes (6 µm pitch). 
For the NW, the approach is noticeably different, since only a few of them are deposited on the silicon substrate.  
The most efficient way to locate them consist in marking the substrate with a network of indent at the vicinity of  
the NWs. Since all the synchrotron end-stations that we used are equipped with an optical microscope, both the 
indent and the trenches can be easily located.
For a synchrotron experiment, the procedure to find and measure the sample of interest can be divided in two 
main steps. The first step which is not necessarily the easiest one consists in locating the precise position of the  
beam. As discussed in section II.1.3, the alignment of the sample in the beam is a very critical step. Once the  
sample is in Bragg condition, the position of the beam on the sample must coincide with the centre of rotation of  
diffractometer. Although 6C diffractometers have a rather large sphere of confusion, this will ensure that the  
beam stay on the sample while acquiring a rocking-curve. For the measurement of a single sample, it is also very
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Fig. II.24:Macroscopic markers on the sample, to locate the crystals of interest.  (a) Gold islands on a sapphire substrate. The 
tracking of the islands of interest is carried out in regions at the intersection between two trenches depleted from islands. The 
yellow rectangle indicates the extent of the region represented in Fig.25. (b) Gold nanowires on a silicon substrate. The regions  
of interest are marked with a network of indents. The small wire inside the yellow circle is one of the nanowires.

200 μm200 μm

(a) (b)
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important  that  the  beam does not  move too much while  rotating the  diffractometer.  Of  course,  due  to  the 
aforementioned  large  sphere  of  confusion,  the  precise  alignment  of  the  sample  in  the  beam  needs  to  be  
performed each time the Bragg angle is changed.

The gold on sapphire system is very convenient for the location of the beam. Indeed, the incident X-ray beam 
excite the fluorescence of the sapphire in the visible light so that the beam is always visible. It is thus particularly  
easy to move the X-ray beam to the region of interest. 
Once the beam is roughly in the region of interest, the sample needs to be aligned precisely in the X-ray beam.  
To do so,  we use the scanning X-ray diffraction microscopy technique (SXDM) which offers  a  real  space 
mapping of  the sample.  A 2D scan at  the vicinity  of the sample of interest,  and the diffracted intensity is  
measured at each position of the scan. All the particles obtained by solid state dewetting technique have the same 
out-of plane orientation, and thus satisfy the Bragg conditions for the same angle. Once the sample is rotated to 
Bragg conditions, a high integrated intensity is thus collected when an island is illuminated while a much lower 
intensity is obtained in the region in between two islands. 
The resolution of the real space map depends on the step size of the scan and is limited by the beam size (see  
next sub-section for more details). As discussed in Chapter I, for CDI experiments, it is essential that the beam is  
larger than the sample, but small enough to illuminate only one island at a time. The compromise can be difficult
to find, but a beam size slightly below 1x1 μm2 is generally ideal. This matter is discussed in more details chapter 
VI. 

In  any case,  the beam size is  smaller  than the typical  spacing between two neighbouring islands and their  
position are clearly resolved on SXDM maps. A typical map consist of 50x50 points and could be in principle be 
performed using the scanning options offered by the beamline control software (for instance SPEC for the ESRF 
or GDA for the Diamond light source). The weak point of this scanning mode is the dead time required for 
positioning hardware and software triggering (data transfer, connection between program, motors and detectors).  
This imply measurement times that are generally not compatible with a synchrotron experiment (11 hours for  
200x200 points scans!). On the ID01 beamline, the standard controlling software have thus been replaced by a 
hardware control system, eliminating the positioning time and greatly reducing the scanning time. In this mode,  
the diffracted intensity is indeed collected while continuously moving the sample. 
In our case the sample of interest can be rapidly found by performing a large scan on a spatial extent of 100 x  
100 μm with a 1 μm step size which is generally sufficient to distinguish the islands. The collection of such scan 
is  a matter  of  minutes. Since the areas of interests are generally located at  the vicinity of the trenches,  the  
obtained SXDM map (Fig. II.25.a) can be compared with SEM / HiRes optical images collected before the  
experiment (Fig. 25.b). Note that the extent of the map shown on Fig. II.25.a and II.25.b correspond to the small  
yellow rectangle in Fig. II.24. 
Once the localization of the island is roughly estimated with this coarse scan, a finer 2D map with a reduced step 
size is collected at the immediate vicinity of the sample. As illustrated on Fig. II.25.c and II.25.d, very good  
agreement is generally obtained with the SEM images, which allows to identify the exact location of all the  
islands of interest. 
The crystallites used for the experiment presented in chapter VI are dewetted from a patterned gold thin film so  
that a single island is found at the centre of a 50x50 μm2 square. Once the beam position is roughly established, 
the location of the island is in this case straightforward. 
It is also important to mention that we initiated the implementation of a similar “fast-scan” procedure on the  
CRISTAL beamline and on the B-16 beamline (Diamond light-source).
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II.4.2.3 Mapping the sample strain and tilt: Scanning-X-ray Diffraction Microscopy (SXDM)

We have seen in the previous sections that X-rays are a powerful tool to access the strain of various  
materials. CXD can provide a reconstruction of the 3 dimensional strain field with a very good resolution, while 
Laue  micro-diffraction  is  a  powerful  method  for  mapping  the  full  strain  tensor  of  single-crystal  and 
polycrystalline materials with sub-micrometer spatial resolution. 
An alternative technique for the strain characterization with a good spatial resolution is X-ray nanodiffraction. It  
has emerged in the past few-years, taking advantage of the modern X-ray diffractive and refractive optics which 
allow to obtain a beam size of a few tens of nanometres are (Vila-Comamala et al.  2011, Schroer et al.  2005). 
The technique  has opened the possibility of measuring the lattice parameter of single nanostructures with a  
resolution down to 100 nm and a sensitivity to relative lattice parameters of around 10 -4 (Chrastina et al. 2012). 
As compared to Laue micro-diffraction, the use of a monochromatic radiation enables to achieve a higher lateral  
resolution, and the technique also avoids the complicated analysis of Laue diffraction patterns. 
The main issue of the technique lies in the need to perform point by point measurement of the strain which is  
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Fig. II.25 Illustration of the SXDM technique to localize the islands of interest  (a) 
Coarse scan of a 80x80 μm2  area with a 1 μm step size. (b) SEM picture of the same 
area allowing the detection of the island of interests. (c) Fine 10x10 μm2  scan with a 
0.250 μm step size. (d) A perfect coincidence is obtained with the SEM picture of the 
same region.
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often time consuming and impede the investigation of large areas. 
Additionally, in the micro XRD measurements the determination of the Bragg peak position and shape in the  
reciprocal space is essential for retrieving all the information related to the strain and/or tilt in the structure. This  
information  can  only  be  accessed  by  recording  a  3D reciprocal  space  map  (3D RSM)  of  the  investigated  
structure. In this way, all the the component of the scattering vector q can be determined. Two parameters can be 
extracted and represented as a function of their spatial distribution. The length of the scattering vector | q| and its 
angular deviation from an orientation defined as 'normal orientation'. This allows to separate between lattice  
strain and the lattice rotation (lattice tilt).
The obtaining of these parameters supposes the collection of 2D maps at each point of the rocking curve, while a  
2D diffraction pattern is collected at  each point of  the 2D maps. In other words,  a 5D dataset needs to be  
collected with 2 dimensions corresponding to the real space positions, x and y, one for the incidence angle ω and 
two for the detector scattering angles  δ and ν (which corresponds to  γ in the description of the diffractometer 
given in section II.1.3). The collection of such huge dataset in a reasonable amount of time, compatible with a  
synchrotron experiment can be only achieved through the continuous mapping method of the sample described 
in the previous section.
The 3D RSM are obtained by converting the pixel positions of the detector into detector angles and to the 
corresponding reciprocal-space coordinates following a procedure similar to that presented in section II.1.6. The  
pixel position corresponding to the reciprocal space origin as well as the definition of the grid (the detector  
pixels per degree) are determined by the XSOCS package (Chahine et al. 2014). A 3D RSM is generated for each 
position on the sample. Both the strain and tilt are determined from the position of the Bragg peak with respect  
to a reference position calculated from the unstrained lattice.

The mapping of the average strain with a good spatial resolution is highly desirable for the case of solid 
state dewetting, since a rather large size distribution as well as different shapes . 
For the Au/Al2O3  system, the gold particles can be divided in three categories. The first  one corresponds to 
equiaxed particles with a shape close to the Winterbottom equilibrium shape (circled in red in Fig.  II.26.a). A 
second category of particles is elongated along one of the <1 1 0> direction, with an height generally lower than  
that of the equiaxed Winterbottom particles (circled in green in Fig. II.26.b). The origin of this elongation, and 
the evolution of the particle shape for longer annealing times are discussed in more details in Chapter VI.
Finally, a third type of particles which are generally significantly larger and very flat (less than half the height of  
the Winterbottom particles, Fig. II.26.c) can be observed. It is unclear if these particles have well defined {1 1 
1} and {1 0 0} facets corresponding to ECS. The three types of particles and their corresponding height are  
shown in Fig.  II.26.  It  should be noted that the aspect  ratio of the equiaxed Winterbottom particles is  very 
reproducible while the height does not depend on the lateral size for the two other types. 
Does the size and geometry of the particle influence the residual strain, and how reproducible is it ? 
The question can be answered by generating a 2D map of the strain, with a large statistics. The measurement was 
carried-out at the 1 1 1 Bragg reflection using a monochromatic 8 keV beam. The latter is focused by a 300 μm 
(FZP). The zero order beam is removed by a beam stop while the higher diffraction orders are eliminated by the  
order sorting aperture (OSA) mounted downstream. A typical 150x100 nm2, (FWHM) focal spot size is obtained 
with this set-up, but the latter was not checked. The 80x60 μm2 area was scanned with a step size of 500 nm in 
both directions, corresponding to 160x120 points for each 2D map. Maps were collected at 15 angular positions 
within a scan range of 0.3°. A step size of 0.05° was used for the outer points of the rocking curve, while finer  
steps of 0.01° were used at the vicinity of the Bragg peak. Note that the measurement was not carried-out with a  
coherent X-ray beam.
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Fig. II.27 show the 80x60 μm2 region of the sample where the 2D strain map was measured. Note that this area 
was selected at the vicinity of a trench in order to be easily retrieved for post-characterization (Fig. II.27.a). 
The region was imaged by AFM after the synchrotron measurement in order to correlate the calculated strain  
with the size and shape of the particles (Fig.  II.27.b).  A perfect coincidence is obtained with the integrated 
intensity map (maximum of the Bragg peak),  which allows an easy identification of all the islands. The color 
coding for the islands is the same that that the one used in Fig. II.27. It is difficult from Fig. II.27.b to determine 
if one the geometry is more frequent, although it is quite clear that the Winterbottom shape which corresponds  
to the equilibrium shape of the crystal is the less frequent. Note that 3D CXD patterns were also collected for  
most of the Winterbottom particles present in this region. 
The map of the integrated intensity shown in Fig. II.27.c was measured at θ = 19.49°, which corresponds to the 
maximum of the Bragg peak as illustrated in Fig. II.28. It provides a limited amount of information on the  
particles. For a given particle, the integrated intensity is proportional to the diffracting volume, and it is quite  
straightforward to understand that the larger is the particle, the higher is the integrated intensity. Also interesting, 
a drop of intensity is clearly visible for some of the indented particles (particles 64 and 66 for instance). Note  
that  the  force  applied  for  the  indentation  of  these  particles  was  rather  large  (much larger  than  the  values 
described in section II.4.1), resulting in a deep indentation and a high content of defects nucleated in the particle.
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 Fig. II.26: Catalogue of the distribution of sizes and geometries of the particles obtained by solid-state 

dewetting. (a) SEM pictures illustrated the three families of islands. The colour of the circles surrounding the 
particles depends on their geometry (see text for more details). (b) Typical distribution of particle heights. (c) 
AFM picture of the region where the particle heights have been measured. 
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A traditional approach to characterize the strain in a particle using a large parallel incoherent X-ray beam are the  
integral breadth (IB) methods (Klug & Alexander, 1974). As a reminder, the integral breadth β simply designate 
the ratio between the integral of a Bragg line and its maximum. The IB methods provide a quick-estimation of  
the so-called 'size-strain' line broadening effect of the Bragg peak. The broadening is caused by the average size  
of the crystallites and by lattice strains :  i.e.  lattice strains and distortions induced by the presence of lattice 
defects. The Scherrer formula (Scherrer 1918) describe the influence of a crystallite size on the broadening of a  
Bragg line. It simply states that the integral breadth β is inversely proportional to the size of the crystallite L. 
In practice, the line broadening is rarely entirely caused by size effects, and an additional factor of broadening 
are the inhomogeneities of the internal strain. Simple models have been proposed to evaluate the of the internal  
strain, also called micro-strain ε*. The Williamson-Hall (WH) model (Williamson & Hall 1953) states that the 
line broadening that can be attributed to the crystallite size is independent of q . The increasing of the integral 
breadth with q only depends on the internal state of deformation:

β(q) = β
s
+ β

d
= 1/ L + 2ϵ*

q    (II.25)
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Fig. II.27 Determination of the out-of-plane strain of a population of islands by SXDM. The colour coding similar to Fig.26 
defines the particle geometry (a) SEM picture of the region where the SXDM microscopy measurements have been carried-
out. (b) AFM image of the same region. (c) Integrated intensity map at  θ = 19.49° corresponding to the Au 1 1 1 Bragg 
peak.
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where β(q) is the total integral breadth, and βs and βd are respectively the component size for the size and strain. 
The plot of β(q) versus q called the Williamson plot provides an estimate of both the size of the crystallite (the y-
intercept)  and  of  the  micro-strain  ε*  (the  slope  of  the  WH  plot).  Obviously,  this  method  supposes  the 
measurement of several Bragg reflections.

For  the  present  experiment,  it  is  clear  that  these  approaches  are  not  applicable  since  the  beam  size  σ is 
significantly smaller than the particles. The broadening of the peak has thus a 1/σ dependency that is stronger 
than the size dependency, and that is likely to be stronger than the strain dependency, unless the particles are  
very defective. The analysis of the broadening of the Bragg peak or of the rocking curve is not likely to reveal  
any interesting information on the strain content in the particles. 
As  a  quick  check,  we  plotted  the rocking curve for  several  particles.  The  intensity  at  each  position being 
obtained from the integrated intensity maps. From Fig. II.28, it is clear that the beam size is the main factor of 
the peak broadening since the FWHM of the peaks are relatively constant, independently of the particle size or  
geometry. It is also clear from Fig.  II.26 and II.27 that the size distribution of the particles is relatively large. 
Even if the micro-strain is assumed to be similar for all particles, which is probably not true, the size component  
of the integral breadth would induce large variations in the FWHM of the peaks if the beam was larger than the  
particles. It should be noted that for very defective particles (particle 64 and 106) the particle is so defective that 
the broadening that can be attributed to the micro-strain becomes larger than the broadening associated to the 
beam size. 
The micro-strain, i.e. the lattice distortions caused by the presence of lattice defects is thus not accessible with  
this experiment. Using the methodology described above, it is on the other hand possible to determine the strain 
in  the direction of  the scattering vector at  each position of the scan.  Here we used the specular  1 1 1 Au  
reflection and if  qx,  qy and  qz are the reciprocal space coordinates of the 3D Bragg peak calculated for each 
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Fig.  II.28 Rocking-curve  for  several  particles  determined  from  the  

integrated intensities at various angular positions 
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position of the scan, it is clear that the displacements of the Bragg peak will be limited to the z direction. 
The computation of the strain maps has unfortunately not been carried-out yet at the time of the writing of this  
manuscript, but will be achieved in a very near future.

II.4.3 Multi-characterization of a sample

Obtaining an ideal sample for the imaging of the strain field and defects by CDI is a delicate task that requires a 
great deal of preparation and characterization. 
The selection of a sample of interest is done in several steps that can be summarized as follows: 

– 1) Put macroscopic markers on the sample, (i.e. visible with a conventional optical microscope). A basic 
and simplistic way is to draw lines on the sample surface using tweezers. A more elegant and elaborated  
method is to pattern the metallic thin film, hence limiting the dewetting to specific regions of the sample  
that are easy to localize.

– 2)  Pre-selection of samples of interest  by imaging the regions of  interests  with SEM. For  the gold 
particles, the best candidates are equiaxed Winterbottom which are close to the ECS.

– 3)  Imaging of  the  samples  of  interest  with  AFM in  order  to  measure  their  precise  dimensions  (in  
particular their height). Nucleation of a limited amount of defects in some of them by nano-indentation.  
For the particles, the indent needs to be done at the centre of the top facet, to maximize the chance of  
nucleating  metastable  defects  in  the  particle.  It  is  also  interesting  to  induce  difference  states  of  
deformations in the particles that range from the first bursts of plastic deformation (nucleation of first  
dislocations) to deeply indented. For the NW, the general strategy was to apply a gradient of increasing 
forces along the NW length.

– 4) If possible, characterization of the indented and pristine islands by Laue microdiffraction. This allows 
to check on the amount of defect nucleated in the indented particles. Very defective particles are not 
desired for CXD experiments since it won't be possible to reconstruct their displacement field. This is  
also important to check the amount of micro-strain in the pristine particles as they need to be as perfect  
as possible. We will see in Chapter VI that a relaxation of the micro-strain can occur in the particle upon 
indentation, by the well known phenomenon of mechanical annealing (Matthews & Blakeslee 1974) 

– 5)  Proper  CXD  experiment:  imaging  of  the  particles  were  a  controlled  Comparison  with  the  
displacement field obtained for pristine particles. If possible, in situ indentation of the particles during 
the indentation experiments.

In practice steps it was only possible to include the step (4) of the procedure only once in this work. The latter is 
yet very useful and prevent for unpleasant surprises for the CXD experiments, as for instance during the 
CRISTAL experiment described in II.4.1 where all the pre-indented NW turned out to be very defective and thus 
unusable for the reconstruction of the 3D displacement field by Bragg ptychography.
Fig.  II.28 show a particle that went through all the steps of the preparation process : characterization by SEM 
and AFM, ex situ indentation, μ-Laue diffraction and acquisition of the 3D CXD pattern. 
The particle which exhibits a defect visible in the SEM picture (Fig. II.29.a) was already shown in the μ-Laue 
subsection. 
The SEM and AFM characterization allow to determine the precise dimensions of the particle: 920x800x600 nm3 

which is a typical size for the equiaxed Winterbottom particle (Fig. II.29.a & II.29.b).
To nucleate a limited amount of dislocations, a force as low as 4.2 μN was applied, resulting in an indentation 
depth of ~ 3 nm (Fig. II.29.c). 
The  Laue micro-diffraction pattern reveal a splitting of several Laue reflections which could originate from a 
low-angle grain boundary. 
The complexity of the CXD pattern measured at the 2 2 2 Bragg reflection reveals that the defect structure is not  
trivial. The most interesting feature is the splitting of the Bragg peak in two spots of equal intensity (Fig. II.28.i). 
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Fig. II.29: Example of a multi-characterization of a gold particle. (a) and (b) SEM and AFM pictures. (c) Force 
displacement curve recorded during the ex situ nanoindentation of the particle. (c) μ-Laue diffraction patterns 
for g = 1 5 3 and g = 7 3 1. The five Laue spots for each reflection correspond to five positions on the island. (g-
i) CXD pattern measured at the 2 2 2 Bragg reflection: (g) (qy,qz) slice through the Bragg peak (h) (qx,qz) slice 
(I) (qx,qy) slice.
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This splitting could be induced by the micro-twin, however we will see in Chapter III that if a Stacking Fault or  
Twins can induce a splitting of the Bragg peak, the value of the phase jump does not lead to a splitting of the  
Bragg peak in two spots of equal intensity. Alternatively, the micro-twin could be invisible, and the splitting  
could be induced by a dislocation, nucleated upon indentation of the particle.
We did not manage to reconstruct the displacement field for this particle, and unfortunately, this question can not 
be answered with certainty.
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Abstract

Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that  
are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic 
nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a 
few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects  
such as pure screw or edge dislocations, or Frank and prismatic loops. Diffraction patterns calculated in the kinematic  
approximation reveal various signatures of the defects depending on the Miller indices.  They are strongly modified by the  
dissociation of the dislocations. We provide selection rules on the Miller indices to observe the maximum effect of given 
crystal defects, in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as 
stacking fault energy, crystal shape and defect positions are discussed. The method is illustrated on a complex structure 
resulting from the simulated nanoindentation of a gold nanocrystal.

III.1. Introduction

               The microstructure of materials plays a large role in their physical properties (Hull & Bacon 2001,  
Hirth & Lothe 1968). Even in a small crystallite, elastic strain and crystal defects are of primary importance, in 
particular in small scale structures: for instance, electron transport properties and superconductivity (Ying et al.  
2013) are strongly affected by dislocations; the mechanical response of crystals is driven by dislocation motion, 
such that the presence of a few dislocations and their nature strongly impact mechanical properties of sub-
micron crystals  (Bei  et  al.  2008).  Tailoring  and monitoring  the  microstructure  of  materials  is  therefore  of 
primary importance in order to guarantee the best performance of nanodevices.
A variety of experimental techniques are available for evidencing and identifying crystal defects. Among them, 
Transmission Electron Microscopy (TEM) is routinely used to produce various imaging contrasts of dislocations 
in real space by selecting pertinent diffraction vectors, according to well known invisibility criteria (Williams & 
Carter 1996). It has atomic resolution and thus can evidence individual crystal defects. However, the use of TEM 
is hindered by strong experimental constraints on the sample environment and thickness. These restrictions are 
relaxed for X-rays, which thus have a great potential for the study of defects in crystals. 
Elastic diffuse scattering of X-rays (Krivoglaz 1969), neutrons (Moisy-Maurice & De Novion 1981) or electrons 
(Zhou  et al.  2005) has been used since the 70's to study crystals containing defects with displacement fields.  
Near  Bragg  positions  (Huang  diffuse  scattering),  it  provides  valuable  information  on  long  range  lattice  
distortions, far away from defects. Further away from Bragg peaks, Asymptotic Diffuse Scattering (also known  
as  Stokes-Wilson  scattering)  can  in  some  cases  provide  information  on  shorter  range  lattice  distortions 
(Dederichs 1971). However, the signature of defect cores, so-called Laue scattering (Larson & Schmatz 1980) or 
structural Diffuse scattering (Ehrhart  et al.  1982), whose extent is limited in the real space, is very diffuse in 
reciprocal space (Krivoglaz 1969, Fultz & Howe 2007) and orders of magnitude weaker than the Huang diffuse  
scattering. Despite this limitation, it has been used successfully on a large number of systems. In the early 70's  
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X-ray scattering from single and clusters of point defects has been investigated theoretically (Dederichs 1973,  
Trinkaus 1972). Few years later, Huang Diffuse Scattering from dislocation loops has been considered, both 
experimentally ( Larson & Schmatz 1980, Larson & Young 1987) or numerically (Ehrhart  et al.  1982). More 
recently, the calculated and measured X-Ray diffuse scattering from threading dislocations in epitaxial GaN  
layers provided a precise estimation of the dislocation density and their relative proportion (edge or screw type) 
in good agreement with already existing destructive methods (Barchuk et al. 2010). Since neutrons and X-rays 
probe  large  volumes  of  materials  containing  many  defects  of  various  types,  the  interpretation  of  diffuse  
scattering usually assumes a model for the dominant defects and a rather large density of them. In the case of  
dislocation loops or stacking faults, diffuse scattering has to be averaged over all possible loop orientations.  
Interpreting correctly the shape and symmetry of the elastic diffuse scattering requires the use of single crystals  
and careful averaging procedures. The smaller probe size (~50 nm) achievable with electron beams has allowed 
the measurement of electron diffuse scattering from single defects and individual dislocation loops (Kirk et al.  
2005, Kirk et al.  2006). Similar studies with X-rays are now being developed thanks to the progress of X-ray 
focusing optics. 
In the past decade, the availability of intense coherent X-ray beams from third generation synchrotron facilities 
has allowed the emergence of a very attractive technique to probe the microstructure of crystals: Coherent X-ray  
Diffraction (CXD) (Livet 2007, Sutton 2008). In Bragg geometry, it probes the deviation from the perfect crystal 
lattice and has been successfully used to characterize elastic strain in isolated crystals (Beutier et al. 2012) or to 
evidence the presence of crystal defects such as stacking faults (Chamard et al. 2008, Favre-Nicolin et al. 2010) 
and dislocation loops (Jacques  et al. 2011). Recently, the same principles have been applied to electrons, and 
first measurements of coherent electron diffraction have been reported (Huang et al. 2008).
Following Sayre's principle (Sayre 1952), CXD has been turned into an imaging technique known as Coherent 
Diffraction Imaging (CDI) (Miao  et al.  1999): by oversampling the diffraction pattern and with the help of 
iterative phase retrieval algorithms, the scattering function which encodes the crystal density and, in the Bragg  
case, a projection of the displacement field (Robinson & Harder 2009, Pfeifer et al. 2006), can be recovered. In 
the latter case, the tridimensional (3D) measurement of the reciprocal space in the vicinity of a Bragg reflection 
yields a 3D image of the strained crystal ( Pfeifer et al. 2006) with a typical resolution of a few nanometers and a 
strain sensitivity better than 10-3 (Newton et al. 2010). Several Bragg reflections can be combined to recover all 
the components of the displacement field (Newton et al.  2010). While this method of characterization is now 
well established for weakly strained systems, its application to highly strained systems has so far been successful  
only for a limited number of cases due to the strong inhomogeneity of the phase to be recovered (Minkevich et  
al.  2008,  Diaz  et al.  2010, Vaxelaire  et al.  2010).  In its original version, CDI was restricted to finite objects, 
because phase retrieval algorithms need a real-space constraint (such as a finite support constraint) in order to  
converge. In recent years, this limitation has been lifted by the introduction of ptychography, a scanning version  
of CDI: with scanning steps smaller than the beam size, sufficient redundancy is obtained in the data to allow the  
reconstruction of extended objects with the help of dedicated algorithms (Rodenburg & Faulkner 2004).  In 
Bragg conditions it has been used to reconstruct the strain field of extended objects (Hruszkewycz et al. 2012, 
Godard et al. 2011) and to reconstruct a single dislocation and its associated strain field (Takahashi et al. 2013), 
however the case of multiple defects is still out of reach. 
CDI and ptychography often fail to provide quickly a real space reconstruction, while a rapid evaluation of data  
might be needed during experiments. This is particularly true in the case of Bragg ptychography which requires a 
considerable amount of data. Moreover, for both CDI and ptychography the definition of a good input for the  
initialization  of  the  inversion  cycles  is  of  primary  importance.  There  is  thus  an  interest  in  understanding 
qualitatively diffraction patterns and interpreting them directly in the reciprocal space. In particular, during  in 
situ mechanical loading of a sample (Beutier  et al.  2013, Zhe et al.  2014), one would like to witness the first 
plastic events by measuring a CXD pattern and interpreting it on the fly. Here we use this direct approach, which 
consists in first modelling the object in the real space and second computing the corresponding reciprocal space 
pattern and try to identify characteristic signatures of defects that can be observed in experimental CXD data.  
While obtaining the displacement field of the sample in the real space provides a more comprehensive picture,  

91



Chapter III: Signature of individual defects in CXD patterns: a numerical study

all the information is present in the reciprocal space and it should in principle be possible to extract valuable  
information on the defect nature within the sample, without the difficulty of reverting to the real space.
So far only few studies were carried out on individual defects with CXD: misfit dislocations in an epitaxial SiGe 
thin film (Robinson et al. 2005), Frank dislocation loops in silicon (Jacques et al. 2011), a single dislocation in 
silicon (Takahashi et al. 2013), stacking faults in semiconductor nanowires (Chamard et al. 2008, Favre-Nicolin 
et al. 2010) and dislocations in charge and spin density waves (Le Bolloc'h et al. 2005, Jacques et al. 2009). In 
the present paper, focused on common face-centred cubic (fcc) metals, we demonstrate that CXD can be used to 
identify single defects directly from their signature in the diffraction pattern, provided the Bragg reflection is  
well chosen. Similarly to TEM  (Williams & Carter 1996),  we establish that the careful choice of diffraction 
conditions is essential when it comes to highlight specific defects.
We consider first the cases of single defects: a single defect can induce strong modifications of the diffraction  
pattern and therefore a good understanding of these elementary cases is necessary before investigating crystals  
with multiple defects. There is a large variety of crystal defects. We focus here on the most common ones for fcc 
crystals. After introducing the tools and methods used for this study in section III.2, we start with the screw and 
edge dislocations (subsections  III.3.1 and III.3.2 respectively), then the stacking fault (subsection III.3.3), and 
finally the Frank and prismatic dislocation loops (subsections III.3.4 and III.3.5 respectively), crystalline defects 
commonly  introduced  in  metals  by  irradiation  (Stoller  et  al.  1992),  rapid  thermal  treatments  (quench)  or 
mechanical loading (indentation). In subsection III.3.6 we investigate the effect of the size and shape of the 
crystal, and in subsection  III.3.7 we discuss the effect of the position of the defect in the crystal. Finally, we 
apply our methodology in section III.4 to the analysis of a more complex structure resulting from the simulated 
nanoindentation of a gold nanocrystal .

III.2. Tools and methods

A common method to  analyse  CXD measurements  is  to  model  the  diffracting object  with a  Finite 
Element Method (FEM) and to calculate the CXD pattern by Fourier transforming a modified electronic density  
(Diaz et al. 2010, Beutier et al. 2013a). FEM uses a continuous description of matter and thus has the advantage 
to allow modelling large crystals. However, this continuous description is not able to deal with plasticity, despite 
a possible correction of the elastic strain by taking into account the plastic relaxation (Proudhin et al. 2010). It is 
therefore not well suited to the study of faulted crystals.  Alternatively, analytical models have been used to  
explain the effect  of  'perfect'  crystal defects in CXD patterns. While such simple model gives a reasonable  
description of defects in electronic crystals (Le Bolloc'h et al.  2005, Jacques et al.  2009), it does not take into 
account the dissociation of dislocations into partials, which can have a strong effect on the CXD patterns. In this 
study we use an atomistic description of matter, in order to accurately model crystal defects. This comes at the 
price of the size of the studied objects, but progresses of atomic-scale modelling and of x-ray focusing optics has 
allowed a convergence of the scales of individual objects that these techniques can study (Schroer et al. 2008). 
With an electron beam it is possible to deal with even smaller scales, and using coherent electron diffraction  
beams Huang et al. were able to extract valuable information on the surface relaxation of gold nanocrystals with 
less than 5 nm in diameter (Huang et al. 2008). Here we deal with crystals of typical size of the order of a few 
tens of nanometres. 
Molecular statics is used to simulate nanocrystals of common fcc transition metals (aluminium, copper, silver, 
gold and nickel) modelled with embedded atom method (EAM) potentials (Mishin  et al.  1999, Mishin  et al.  
2001, Williams et al. 2006, Grochola et al. 2005) that reproduce accurately elastic properties as well as surface 
and  stacking  fault  energies.  The  geometry  considered  here  consists  in  a  free-standing  equilibrium-shaped 
crystallite,  which minimizes the surface energy through a Wulff construction (Winterbottom 1967) (see Fig.  
III.1.a). Due to the low surface energy of its {1 1 1} and {1 0 0} facets, this geometry exhibits a remarkable  
stability and is commonly observed experimentally (Mordehai  et al.  2011a, Sadan & Kaplan 2006). Since we 
want to highlight the effect of defects we do not consider here the case of pre-strained particles, for instance  
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when a crystallite is in epitaxial relationship with a substrate. The reference crystallite considered throughout this 
study contains 106 atoms and measures approximately 30x30x30 nm3. The defects are introduced with defined 
characters: edge or screw dislocations, Frank and prismatic dislocation loops and stacking faults. The system is  
relaxed by energy minimization at 0 K . The large difference between the Stacking Fault Energies (SFE) of the 
selected materials, is expected to strongly influence the characteristics of the crystalline defects (Rodney et al.  
2005,  Groves  & Kelly  1963,  Smallman & Green 1964).  Understanding  the influence of  this  parameter  on 
relaxation and its corresponding effect on diffraction patterns is one of the goals of the present study. We also  
focus on the ability of CXD to determine the parameters which define a dislocation, its Burgers vector, line 
direction and slip and dissociation planes.  The 3D CXD patterns are calculated by summing the amplitudes 
scattered by each atom with its phase factor, following a kinematic approximation:

I (q) = ∣∑
j
exp(2i π q .r

j
)∣

2

   (III.1)

where q is the scattering vector and rj the position of atom j. Here we discarded the atomic scattering factor as 
we are dealing with mono-element materials. The kinematic approximation is justified by the relatively small 
size of the crystals studied here and the large perturbation of the perfect lattice caused by the defects in such  
small volumes. Eq. (III.1) assumes a plane wave illumination, which is a reasonable approximation for most  
experimental conditions on such small objects at synchrotron radiation facilities, even with microfocusing optics  
(Mastropietro et al.  2011). Eq. (III.1) also assumes fully coherent scattering. Absorption and refraction effects 
are not considered in this study.
For objects of size L and lattice parameter a, the reciprocal space must be probed with a step no larger than a/2L 
in reciprocal lattice unit (r.l.u.) in order to resolve the smallest possible features in the reciprocal space. In the 
case of 30 nm crystals of common fcc transition metals, a/2L ~ 0.02 r.l.u. (0.006 Å-1 in the case of a 30nm copper 
nanocrystal), but we typically sample the diffraction pattern with a step size of 0.0015 r.l.u. (0.00045 Å-1  ) to 
obtain smoother representations. Given the large number of atoms (~106) and the similarly large number of 
points in reciprocal space for which the calculation is performed (typically 100x100x100=106 for each pattern), 
the computation is performed with a graphical processing unit (GPU), which allows massive parallelism. Current 
GPUs which include up to 2500 cores are particularly efficient for computing large diffraction maps.  Eq. (III.1)  
was computed with the PyNX code (Favre-Nicolin et al.  2011) on a NVidia GTX 580 GPU which achieves a 
speed of calculation of up to 4*1010 atoms.reflections.s-1. This is almost 3 orders of magnitude higher than with a 
single core central processing unit (CPU). For our usual calculations (sum in Eq. (III.1) for 106   atoms and 106 

points in reciprocal space), the calculation of the 3D CXD pattern around a Bragg position takes about 25-30 
seconds. Such calculations can easily be performed during experiments to help data evaluation. 
In the present study, all the calculations are carried out in the vicinity of Bragg positions  g defined by their 
Miller indices hkl.  g is a particular case of the generic scattering vector q, and in the following it will be referred 
as the diffraction vector. The effect of dislocations on CXD patterns arises from their corresponding atomic  
displacement field u(r) with respect to the lattice of the perfect crystal. A commonly reported method in electron 
microscopy  is  to  use  a  diffraction  vector  parallel  to  the  dislocation  line  (Williams  &  Carter  1996).  The  
invisibility condition g.b = 0 (Williams & Carter 1996, Head et al. 1967, Steeds 1966), where b is the Burgers 
vector of the dislocation,  is  also extensively employed in this study,  in  particular  to  evidence the effect  of  
dissociation. According to Eq. (III.1), it is clear that crystal defects distort the diffraction pattern when they  
produce a displacement field, which is not perpendicular to the diffraction vector  g, and conversely one can 
expect a maximal effect when the main direction of the displacement field is parallel to  g. However in most 
cases, the detailed distortion cannot be predicted easily: already in infinite or semi-infinite isotropic materials the  
displacement field can have a complex analytical form, and the situation is further complicated by the relaxation 
of  the  system,  which  is  affected  by the  interatomic  potentials  and the tension free  mechanical  equilibrium 
conditions at the free surfaces. All these considerations explain the need to rely on an atomistic description with 
reliable inter-atomic potentials for a more complete and accurate description of the problem.
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III.3. Simulations on fcc nanocrystals

Fig.  III.1  illustrates  a  30x30x30nm3 perfect  (strain  and  defect-free)  copper  nanocrystal  in  Wulff 
geometry after relaxation (Fig. 1.a) and the corresponding 3D intensity map of its reciprocal space calculated  
according to Eq. (III.1) (Fig. III.1.b). In the following it will be referred as the reference nanocrystal. 
It is important to notice that the assumption of a strain free and defect free object for the reference nanocrystal is  
only  valid  in  the  initial  state,  i.e. before  the  nanocrystal  has  been  relaxed  by  energy  minimization.  Upon 
relaxation a contraction of the surface atoms towards the bulk can be observed (Huang et al. 2008). As illustrated 
on Fig. III.1.a the motion of the surface atoms is strongly correlated to their coordination number explaining why 
such high displacement is observed for corner and edges atoms. Additionally, since the {1 0 0} surface atoms are  
less coordinated than the {1 1 1} surface atoms, the {1 0 0} facets tend to contract more towards the bulk than 
the {1 1 1} facets. Coherent X-ray diffraction is very sensitive to the atomic structure of the nanocrystal surfaces 
and characteristic features due to the contraction of nanocrystals facets during relaxation can be observed on the  
calculated CXD patterns. They also depend on the hkl indices of the Bragg reflection. However, we will see in 
the next section that the introduction of a single defect within the crystallite produces an even stronger signature 
on CXD patterns. As a result in the case of the defective nanocrystals, even if the contraction of surface atoms 
still have some effects on the calculated diffraction patterns, it can be assumed negligible in comparison to  the  
features associated to the defect and its corresponding displacement field. Since we deal only with defective 
nanocrystals in the next sections, the effect of the displacement of surface atoms and the corresponding surface  
strain is  not further addressed in this work. 
If we were dealing with a perfect crystal, the CXD patterns around all allowed Bragg reflections would be -
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Fig.  III.1 (a)  Defect  free  gold  nanocrystal  of  Wulff  geometry  and  size  30x30x30nm3.  The  colour  scale  encodes  the  magnitude  of 
displacements of the surface atoms after relaxation. (b) 3D intensity map of the corresponding reciprocal space. (c) Zoom on the Bragg  
reflection g = 2 2 0. The area of the reciprocal space is kept to the same value in all figures and is equal to 0.045x0.0675 (1/ Å)2 
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- identical to the CXD pattern at the origin of the reciprocal lattice. Here the surface relaxation is weak enough 
so that the CXD patterns still display essentially the same features, which can be observed for instance around g 

# 2 2 0 (Fig. III.1.c): intensity is maximal at the Bragg position; the diffraction pattern forms streaks along the {1 
1 1} and {1 0 0} directions due to the crystal facets, and these streaks are fringed because of the finite size of the 
crystal. We call I0 = N2,  where N is the number of atoms in the nanocrystal, the intensity scattered at the exact 
Bragg position by the perfect crystal. In the following we will use this reference intensity to quantify the effect  
of  crystal  defects.  For  the  reference  nanocrystal  all  the  calculations  around  a  given  Bragg  reflection  are 
performed in a reciprocal space volume of 0.045x0.045x0.0675 (1/ Å)3.  Since all the calculations presented in 
section III.3 are performed on crystals whose size and number of atoms are similar to the reference crystal,  the 
investigated area of the reciprocal space in  this section is always the same and equal to  0.045x0.0675 (1/  Å)2 

(area within the black rectangle surrounding a CXD pattern (such as  Fig.  III.1.c)). Consequently, in order to 
simplify  the  figures,  axis  are  not  shown on reciprocal  space  figures.  Additionally,  the  dynamical  range  of 
intensities is limited to 4.2 decades which is typical for a CXD experiment. Similarly, the intensity dynamical 
range is kept to the same value all along section 3. 

III.3.1. Screw  dislocations

          For a screw dislocation, the displacement field u(r) is parallel to the dislocation line and the Burgers 
vector b, such that u is proportional to b and g.b = 0 is an invisibility condition for a perfect screw dislocation. 

However, this condition is not strictly fulfilled in the vicinity of  g (q ≠ g), such that a weak distortion of the 
Bragg spot cannot be excluded. This distortion could lead to strong diffuse scattering in the case of many defects  
measured with an incoherent x-ray beam. 
The screw dislocation simulated here has a Burgers vector  b = ½ [1 1 0]. It is introduced at the centre of the 
nanocrystal with its associated displacement field in an infinite isotropic medium: ux = u // b = bθ/2π.  The initial 
configuration  is  relaxed by  quenched molecular  dynamics  simulations  to  get  the  relaxed positions  and the  
corresponding  atomic  displacement  field.  Fig.  III.2.a  and  III.2.c  show  the  ux

 component  of  the  atomic 
displacement field,  i.e. parallel to the Burgers vector and line direction, for both the initial and the relaxed  
configuration:   it is exactly equal to  ± b/2  in the initial configuration, while it increases during the relaxation 
process  partly  due  to  the  dissociation  into  partial  dislocations  but  also to  the contraction  of  surface  atoms 
described  in  the  previous  section.  On  Fig. III2.b  and  III.2.d,  atoms  are  color-coded  according  to  their 
coordination number and only the defective, corner and edge atoms are shown. The dislocation dissociates in 
both {1 1 1} planes that contain the Burgers vector,  i.e. the (1 1 1) and (1 1 1) planes and thus adopts a non-
planar  configuration  (Fig  III.2.d).  At  the  end  of  the  relaxation  process  two  sets  of  two  partial  Shockley 
dislocations (Hull & Bacon 2001) are stabilized within the nanocrystal with respective Burgers vector of 1/6[2 1 
1] and 1/6[1 2 1] in the (1 1 1) plane and 1/6[2 1 1] and 1/6[1 2 1] in the (1 1 1) plane. This crossed configuration 
is more energetically favourable than the configuration with coplanar stacking faults because of the negative  
energy of the intersecting node (Rasmussen et al. 1997). The ux  component of the atomic displacement field is 
exactly equal to b/4 within the (1 1 1) stacking fault ribbon. The contraction of the surface atoms towards the 
bulk, which is particularly high for corner and edge atoms due to their low coordination number, is similar to the 
case of the defect-free crystal. 
The  invisibility criterion  g.b = 0  is selected to evidence the effect of dissociation. With such a diffraction 
condition, when the dislocation is not-dissociated (Fig. III.2.e), the Bragg peak is undistorted compared to that of 
a perfect crystal. This is not the case for the dissociated dislocation, which yields a splitting of the Bragg peak  
along  b (Fig.  III.2.f).  For low  h,  k,  l values (typically for  h+k+l < 4) no splitting can be evidenced  but  the 
elongation  of  the  Bragg  peak  along  b is  clearly  visible. This  demonstrates  that  dissociation  can  be 
unambiguously evidenced using CXD. For this particular diffraction vector, interferences between the faulted 
planes and the facets also induce strong distortions in the fringes along the [1 1 1]  and [1 1 1] directions. It is 
well known that stacking faults create - streaks along the normal of their plane, but here it is modulated by the -
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Fig. III.2 Screw dislocation in a 30x30x30 nm3 copper crystal with a Wulff geometry. (a) and (c) The colour scale shows the ux component 
of the atomic displacement field for both initial and relaxed configurations. (b) and (d) Perfect screw dislocation with b � 1/2[1 1 0].  and 
dissociation of the perfect dislocation in 2 sets of Shockley partials in the (1 1 1) and (1 1 1) planes Only the defective, edge and corner 
atoms are shown. Calculated CXD patterns with g.b = 0 (g = 2 2 4) for a perfect (e) and dissociated dislocations (f). (g) Intensity along [1 
1 1]  (log scale). Calculated CXD patterns with g // b (g = 2 2 0) for a perfect (h) and  dissociated dislocations (i). (j) Intensity along [0 0 
1]. Perfect (k) dissociated (l) and intensity along [0 0 1] (m) with g // bp  (g = 2 4 2). Perfect (n), dissociated (o) and intensity (p) along [1 
1 0] for general g (g = 2 0 0) . The area of the reciprocal space is kept to the same value in all figures and is equal to 0.045x0.0675 (1/ Å)2
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- form factor of the crystal.  A closer look at the intensity profile along the [1 1 1] direction (Fig. III.2.g) reveals 
that the fringes intensity decrease steadily as we move away from the Bragg position  in the case of a perfect 
dislocation while the intensity profile is more erratic in the case of a dissociated dislocation with a drop of  
intensity every two fringes. The doubling of the fringes periodicity can be explained by the position of the  
stacking fault at the centre of the crystallite, which implies that the distance between two (1 1 1) facets is twice 
the distance between a (1 1 1) facet and the (1 1 1) faulted plane. As the extent in the reciprocal  space is  
inversely proportional to the one in the real space, the period of the fringes produced by the stacking fault fringes  
is therefore twice the period of the fringes induced by the crystal facets.
The case  g $$  b shown in Fig.  III.2.h and  III.2.i  for a perfect and a dissociated dislocations exhibits a very 
characteristic signature on the CXD pattern: at the Bragg position, the intensity vanishes (completely for the 
perfect  dislocation,  almost  completely  for  the  dissociated  dislocation).  Instead  we  observe  a  ring-shape 
distribution of intensity around the Bragg position. For a perfect screw dislocation at the centre of an isotropic  
material, the symmetry would impose an uniaxial distribution of intensity with axis parallel to the dislocation  
line. Here the anisotropy of the elasticity tensor slightly distorts the perfect ring (Fig.  III.2.h). The ring size is 
strongly dependent on the Miller indexes of the reflection and on the crystal size. For g = 2 2 0 and a 30x30x30 
nm3 crystallite, the ring diameter is d = 0.01 Å-1. Micro or  nanocrystals observed experimentally are often one 
order of magnitude larger (Beutier  et al.  2013a, Mordehai  et al.  2011a), resulting in a ring  diameter 10 times 
smaller in the reciprocal space. Our ability to resolve such features experimentally will be discussed in the last  
section. For a dissociated dislocation (Fig. III.2.i.), a ring shaped pattern is still obtained but the distribution of 
intensity in the ring is more contrasted and the intensity at the centre does not completely vanish anymore (it is  
in  fact  not  strictly  zero in  the case of  the perfect  dislocation,  but  it  increases  by a  factor  of  25 when the  
dislocation dissociates). Due to the dissociation in partials, the strain around the dislocations is inhomogeneous  
but one can assume that this inhomogeneity does not produce a sufficient effect to affect the shape of the CXD 
pattern.  However the effect  of  dissociation can clearly be seen in the distribution of intensity on the CXD  
pattern. A tetragonal distribution, typical of the 110 zone axis, is observed in both cases, but in the case of the 
perfect dislocation it looks almost hexagonal, reflecting the crystal shape projected along the dislocation axis,  
since the latter  induces no strong asymmetry.  In the dissociated case,  the symmetry of  the defect  structure  
induces a significant change of distribution and its anisotropy dominates the symmetry of the crystal shape.  For 
the latter, the maxima of intensity are along the [0 0 1] which is a good indication of the anisotropy of the strain  
along the [0 0 1] and [1 1 0] axes. The intensity profile along [0 0 1] (Fig.  III.2.j) reveals an increase of the 
maxima of intensity of about 20%, while the intensity of the maxima along [1 1 0] decreases by 25%. 
When g is parallel to a partial Burgers vector  bp (Fig.  III.2.k & III.2.l)  the resulting diffraction pattern for a 
perfect  dislocation  is  very  similar  to  the  case  g //  b,  with  a  ring  shaped  pattern  oriented  along  b.  After 
dissociation, a ring shaped pattern is still observed, but now oriented along the partial Burgers vector  bp. For 
these  particular  diffraction  conditions,  we  can  infer  that  the  Shockley  partial  is  seen  as  a  single  perfect  
dislocation with a signature independent of the other partial and of the stacking fault. 
Finally,  for  a  general  g (Figs.  III.2.n &  III.2.o),  a  perfect  screw  dislocation  still  produces  a  ring  shaped 
diffraction pattern with an axis along b. A relaxed system yields a distorted and disoriented ring-shaped pattern. 
Under such diffraction conditions, all 4 Shockley partials contribute to the diffraction pattern but unlike the  
particular cases detailed above, the ring axis is dependent on g but not directed along any particular direction.
The screw dislocation is therefore a relatively simple case to understand. For a perfect dislocation, only two  
cases are possible. When the extinction condition g.b = 0 is fulfilled, the dislocation remains invisible and the 
resulting pattern is similar to that of a perfect crystal. For any other diffraction vector, the characteristic signature
of a perfect dislocation is a ring shaped pattern oriented along  b.  Analysis of  CXD patterns produced by a 
dissociated dislocation is not as straightforward, but it appears very clearly that the diffraction conditions where 
g is  perpendicular to  b or  parallel to a potential  bp are best suited to evidence the effect of dissociation. For 
diffraction vectors yielding a ring-shaped pattern, the anisotropic distribution of intensity and the increase of the  
maximum of intensity (by approximately 20%) and of the intensity in Bragg position are also good indicators of 
a dissociation.
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III.3.2. Edge dislocations

Now we introduce an edge dislocation at the centre of the reference crystal. The Burgers vector is b � ½ 
[1 1 0] which is by definition perpendicular to the dislocation line direction t = [1 1 2]. Similarly to a perfect 
screw dislocation, an edge dislocation dissociates during relaxation in two Shockley partials, but the dissociation 
is now planar and constrained to the (1 1 1)  slip plane of the dislocation (Fig. III.3.c and III.3.d).
The analysis of the CXD pattern is less straightforward in this case than for a screw dislocation because of the 
strain component normal to the slip plane. We use Cartesian coordinates  x,  y,  z so that the z-axis is along the 
dislocation line  t and the  x-axis is along the Burgers vector  b (y-axis is along a third direction  bxt).  In the 
approximation of an isotropic and infinite material, the symmetry of the problem constrains the displacement  
field in the x-y plane and it is independent of z. Furthermore, an analytical expression can be derived  (Hull & 
Bacon 2001, Hirth & Lothe 1968):

ux = u∥b= b

2π [tan
−1 y

x
+ 1

2(1−ν)
xy

( x
2+ y

2)]                        (III.2)

uy = u∥(b×t )=
b

8π(1−ν) [(1−2 ν) ln( x
2+ y

2)+
( x

2−y
2)

(x
2+ y

2) ]        (III.3)

where ν is the Poisson Ratio.This analytical displacement field is injected in the perfect nanocrystal as the initial 
state of the edge dislocation before relaxation.The ux component of the atomic displacement field is shown in 
Fig. III.3.a and III.3.c for the initial and relaxed configurations respectively. Similarly to the case of the screw 
dislocation, it is equal to  ± b/2  for a perfect edge dislocation. Upon relaxation it slightly increases due to the  
dissociation into partials and to the contraction of surface atoms. For atoms within the (111) stacking fault ribbon  
uX = b/4. From Eq.  (III.2)  and  Eq.  (III.3),  one  can  easily  understand  that  complete  invisibility  of  an  edge 
dislocation may only be achieved when g.b = 0 and g.(bxt) = 0, satisfied only if g is parallel to the dislocation 
line. As illustrated in Fig. III.3.e, when the diffraction vector fulfils this invisibility condition, the dislocation  
remains indeed invisible and the resulting CXD pattern is similar to that of a perfect crystal. As revealed by the  
intensity profile along the [1 1 1] direction, dissociation of the dislocation (Fig. III.3.g) results in the appearance 
of intense fringes along [1 1 1] with twice the period of the crystal finite-size fringes.  As shown in the previous  
section, this is a clear evidence of the presence of a stacking fault in the (1 1 1) plane located at the centre of the  
crystallite.  In the vicinity of  g �  2 2  4, the invisibility condition is not strictly fulfilled resulting in a large 
decrease of the maximum intensity of the central spot (around 35%, Fig III.3.f). However, in such diffraction 
conditions, only displacements parallel to the dislocation line can be detected. They are not strictly equal to zero  
when the dislocation is relaxed but they remain very limited and the effect produced by the dissociation on the  
calculated CXD pattern remains relatively weak. The conditions g.b � 0 with g not parallel to t are more suited to 
evidence the effect of the dissociation. In this configuration (Fig. III.3.h), a perfect dislocation yields a CXD 
pattern elongated along  b with a strong decrease of intensity of the Bragg spot (40% of the perfect crystal) 
consistent with the fact that this diffraction condition is sensitive to the displacements in the planes perpendicular 
to  the  dislocation  line  (Hull  & Bacon 2001,  Williams  & Carter  1996).  The  CXD pattern  obtained  for  the  
dissociated dislocation (Fig. III.3.i & III.3.j) is very similar to that of a dissociated screw dislocation, with a split  
of the Bragg peak along b and fringes along the [1 1 1] direction associated to the (1 1 1) stacking fault (Fig. 
III.3.j). Similarly to the screw dislocation, the split of the Bragg peak is not visible for low h, k, l values (h+k+l < 
4) which only induce an elongation along b.  The correlation between the intensity and spacing of Bragg spots 
and the crystal SFE is addressed in more details in subsection III.3.3. 
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Fig. III.3:  Edge dislocation in a 30x30x30 nm3 copper crystal. (a) and (c)  ux component of the atomic displacement field for both 
initial and relaxed configurations. (b) and (d) Perfect edge dislocation with  b �  1/2[1  1 0] and  t  = [1 1  2] and dissociation of the 
perfect dislocation in 2 Shockley partials in the (1 1 1) plane. Only the defective, edge and corner atoms are shown. Calculated CXD 
pattern for a perfect (e) and dissociated (f) dislocations. (g) Intensity along [1 1 1] for perfect and dissociated dislocations (log scale) 
with g.b = 0 and g.(bxt) = 0  (g = 2 2 4). Perfect (h), dissociated (i) and intensity along [1 1 1]  for both cases (j) with g.b = 0 and g.
(bxt) ≠ 0 (g = 2 2 4).  Perfect (k), dissociated (l) and intensity along [1 1 1] for  a defect-free crystal and dissociated dislocation (log 
scale) (m) with g // b (g = 2 2 0).  Perfect (n), dissociated (o) and intensity along [1 1 1]  for both cases (p) with g // bp   (g = 2 4 2). 
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When g �� b (Fig. III.3.k & III.3.l), as in the case of a screw dislocation, an edge dislocation produces a strong 
and characteristic signature, but the effect of dissociation is not as significant. Close to the Bragg position one  
can notice the elongation of the Bragg spot intensity along b for perfect and dissociated dislocations. The effect 
of  dissociation is reflected by an increase of the Bragg spot intensity by a factor of 2 during relaxation. Both  
perfect and dissociated dislocations also induce intense fringes along the [1 1 1] direction with an apparent  
doubling of the fringes period. This doubling of the period has also been reported by (Wilson 1952), (Wilson  
1955) and  (Gailhanou & Roussel 2013) in the case of a perfect screw dislocation. It  is not related to a (1 1 1) 
stacking fault since it is observed for both perfect and dissociated dislocations. For g // bp (Fig. III.3.n & III.3.o), 
similar  fringes  along [1 1 1] and an elongation along  b can be observed for  both  perfect  and dissociated 
dislocations. A more surprising result is the vanishing intensity at the exact Bragg peak position probably related 
to the 3π phase jump induced by the dislocation for the 2 4 2 reflection. As in the g // b case, the intensity of the 
central spots increases by a factor 3 during relaxation. For any other selected diffraction vector, the calculated  
CXD pattern results in two clear and identifiable effects, a splitting or at least an elongation along b and intense 
fringes along [1 1 1] (i.e. the direction perpendicular to the dissociation plane).

III.3.3. Stacking faults

Similarly to dislocations, stacking faults induce a global shift of one part of the crystal with respect to  
another  and  thus  appear  as  phase  defects  in  diffraction.  But,  while  dislocations  induce  a  long  distance  
heterogeneous strain field, elastic strain caused by a stacking fault remains limited to the vicinity of the fault  
(Hirth & Lothe 1968). According to Eq. (III.1), CXD is sensitive to the displacement field, even in the absence  
of elastic strain, and in fact the stacking fault is the case that can produce the maximum interference contrast.  
The relative simple signature on CXD patterns combined with their frequent occurrence in nanowires with low 
SFE (1D systems) have already motivated numerous studies of such materials using CXD (Chamard et al. 2008, 
Favre-Nicolin et al. 2010, Jacques et al. 2013): it has been used to try to evaluate the number of stacking faults 
in an InSb pillar (Jacques  et al.  2013) and to get useful information about the fault sequence in a GaAs/GaP 
nanowire (Favre-Nicolin et al.  2010). While CXD has been mostly used to study systems with no or very few 
crystal defects, these studies demonstrate that it can be used efficiently on systems with multiple defects. This  
opens the perspective to apply the technique to a wider range of systems, even if the case of multiple defects is  
so far limited to 1D systems. In the present  paper we deal  with the case of stacking faults  in 3D systems.  
Stacking faults are fairly common in fcc metals and usually occur in {111} crystallographic planes.
Let us start with the simple case a stacking fault completely separating the crystal in two parts either side of a 

(1 1 1) plane. The phase jump Δφ across the stacking fault can be expressed as:

Δϕ = 2π (hk
l
).

n111

3 (11
1
) = 2π

3
n111(h+k +l)                               (III.4)

where n1 1 1 is the number of faulted planes. If it is a multiple of 3, Δφ is a multiple of 2π for any Bragg reflection 
and  it  is  impossible  to  evidence  the  fault  in  diffraction,  unless  the  volume  of  the  faulted  part  becomes  
comparable to that of the rest of the crystal. 
A stacking fault is created by the insertion or the removal of a close packed {1 1 1} layer in the crystal. The 
removal of a plane is called an intrinsic stacking fault, whereas the insertion of a layer is called an extrinsic  
stacking fault. If the stacking fault results from the dissociation of a perfect dislocation, it is necessarily intrinsic  
(n1 1 1 = 2). Close to a Bragg position, the (h,k,l) values can be approximated by the integer values of the Bragg 
position. Depending on the selected diffraction vector, only two cases can occur. When h+k+l=3n, the resulting 
phase jump is a multiple of 2π and the stacking fault remains invisible (Fig. III.4.b). This invisibility condition 
can be exploited to hide a particular type of stacking fault and instead highlight elastic strain and other defects  
(Favre-Nicolin et al. 2010). When h+k+l≠3n, the stacking fault causes a phase shift of  ±2π/3 between the two 
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parts of the crystal, inducing a strong signature in the diffraction pattern. The intensity in the vicinity of the 
Bragg position g can then be expressed as follows:

I (q≃g) ≃ ∣F1 (q)+F2 (q)e

2iπ
3 ∣

2

                        (III.5)

where  F1 and  F2 are the structure factors of the crystal parts on either side of the stacking fault. At the exact  
Bragg position, F1 and F2 are essentially proportional to the respective volume fractions x and 1-x of unfaulted 
material either side of the stacking fault and:

I (g) = x
2+(1−x)2−x(1−x)             (III.6)

Destructive interference is  maximal when the two volumes are equal:  the intensity is  then a quarter  of  the  
intensity diffracted by the perfect crystal which means that the best contrast is obtained when the stacking fault is 
located in the middle of the volume.
The complete picture of the vicinity of the Bragg position (q ≈ g) is obtained with PyNX calculations performed 
on our model crystal after introduction of a traversing stacking fault passing through the centre (Fig. III.4.a). It 
confirms that the stacking fault is invisible on the 111 reflection (h+k+l=3n) (Fig.  III.4.b), while it has a clear 
signature on the 1 1 1 reflection (h+k+l≠3n) (Fig. III.4.c). The intensity at the exact 1 1 1 Bragg position roughly 
equals ¼ of the intensity at the exact 1 1 1 Bragg position, as predicted above. The most characteristic signature 
of the stacking fault is the reinforcement of the intensity on the streak along [1 1 1], with a modification of its  
fringes,  while  fringes  along  other  directions  are  barely  changed.  Here  the  modification  of  the  fringes  is  
essentially a doubling of the period, which is a consequence of the stacking fault being in the middle of the  
crystal. 
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Fig.  III.4 (a) (1 1 1) Stacking fault  in a silver crystal with a Wulff geometry induced by the  
complete relaxation of a perfect edge line dislocation. (b) Corresponding CXD pattern when  g 

fulfils the extinction conditions, i.e. h+k+l=3n (g � 1 1 1). (c) Same CXD pattern when  h + k + l 
≠ 3n (g = 1 1 -1). (d) Intensity along [1 1 1] for both cases (log scale). The selected area of the  
reciprocal space is kept to the same value in all figures and is equal to 0.045x0.0675 (1/ Å)2 
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Traversing stacking faults are not the only common case in nanocrystals: as seen above, dissociated dislocations 
can stabilize in ribbon-shaped stacking faults, due to the competition between SFE  and repulsive forces between  
the partials. It is interesting to see if one can get an idea of the extension of a single stacking fault from a CXD  
measurement. For a given material, the ability of a perfect dislocation to dissociate and produce a stacking fault  
is  influenced by two main parameters,  its  stacking fault  energy  γs   and its  shear modulus  μ.  Physically,  the 

dissociation length of a dislocation is represented by the dimensionless material parameter γs/μbp, where bp is the 
modulus of the partial Burgers vector of the dislocation, see for example Chassagne et al. 2011. Materials with a 
low  γs/μbp value have widely dissociated dislocations with a high constriction stress while the occurrence of 
dissociated dislocations or stacking faults  is  less frequent in materials with a high  γs/μbp.  Calculations were 
performed on 5 different fcc metals with similar size and shape (Fig. III.5, Gold and Nickel are not shown) and 
SFE ranging from 17.8 mJ/m2 (silver), to 149.3 mJ/m2 (aluminium) (Cockayne  et al.  1971).  Values given by 
EAM potentials and experiments are reported in Tab.1. They are in a very good agreement, except for the case of  
gold for which the discrepancy between EAM and experimental values is close to 25%. We use the SFE given by 
the EAM potentials to calculate the parameter  γs/μbp whose values are reported in Tab.1. As illustrated in Fig. 
III.5.(a,b,c), the dissociation length obtained upon relaxation (1600 relaxation steps) decreases consistently when 
γs/μbp increases:  the  dislocation  is  widely  dissociated  in  silver  which  has  the  lowest  γs/μbp whereas  the 
dissociation remains very limited in aluminium (highest γs/μbp).

Ag Cu Au Ni Al

γs (mJ/m2) from EAM 17.8  (Williams 
et al. 2006)

44.7  (Mishin  et  
al. 2001)

42.6 (Grochola et  
al. 2005) 

125.2  (Mishin 
et al. 1999)

149.3  (Mishin 
et al. 1999)

γs (mJ/m2): experiments 16  (Hirth  & 
Lothe 1968)

45  (Westmacott 
& Peek 1971 )

32 (Jenkins 1972) 125   (Balluffi 
1978)

144  (Carter  & 
Ray 1977)

γs/μbp (x10 ³⁻ ): EAM 3.5 7.4 9.5 11.7 33.5

Average dissociation length (Å) 85 37 47 29 18

Splitting distance (x10 ³ ⁻ Å-1) 6.67 15.1 12.9 16.5 17.1

Maximum intensity 1.87x1011 2.25x1011 2.25x1011 2.21x1011 2.67x1011

Tab. III.1. SFE of 5 fcc metals, from EAM and experiments, and their gs/μbp parameter. Corresponding dissociation length in real space, 
as obtained after 1600 relaxation steps; splitting distance and maximum intensity in reciprocal space for g = 2 2 4.

When looking at the CXD patterns (Fig III.5.d. to III.5.f.) and the intensity profile along [1 1 0] (Fig. III.5.g.), 
one observes the inverse phenomena: a narrow stacking fault induces a large splitting distance (i.e, the distance  
between the maxima of intensity of the splitted Bragg peak) with intense maxima of intensity, a low minimum of  
intensity at the Bragg position and a large splitting distance of the Bragg peaks (Fig III.5.d to III.5.g), whereas a 
wide stacking fault induces a weak splitting, with low maxima of intensity, low intensity drop in Bragg position 
and a small  splitting distance of  the Bragg peaks.  One can also notice  the increasing intensity  of  the [1 1  
1] fringes and the decreasing distance between the maxima of intensity along [1  1 0] as the stacking faults 
spreads into the crystallite.  Copper,  gold and nickel  have similar  γs/μbp values and the resulting dislocation 
dissociation lengths upon relaxation for these three materials are hence rather close. The case of nickel is quite  
interesting since it has a SFE similar to that of aluminium, however its high shear modulus allows to obtain a  
dissociation length equivalent to the one obtained for copper. This illustrates the influence of both parameters on 
the occurrence of stacking faults. Calculations of CXD patterns for nickel and gold (not shown here) logically  
lead to results very similar to the case of copper. Regarding experimental matters, it is then a safe assumption to  
expect the same kind of structural defects in these three fcc metals, and as a result the calculations presented for 
copper in this study can also be used as a reference for experimental work on gold or nickel crystallites. 
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From these first conclusions, some complementary calculations on the relaxation of systems with low SFE such  
as silver were performed. During the first steps of relaxation (Fig III.6.a & III.6.d), the stacking fault remains 
rather narrow, and for g.b � 0%  both partials and the stacking fault display a strong signature on the CXD pattern, 
with respectively a splitting of the Bragg peak along b and intense fringes along [1 1 1]. After 3000 relaxation 
steps, the stacking fault continues to spread and the splitting of the Bragg reflection cannot be observed any  
longer  while the [1 1 1] fringes become more intense. As the stacking fault extends, the intensity at the Bragg  
position increases while the global maximum of intensity steadily decreases, and so does the splitting of the  
Bragg reflection (Fig. III.6.b, III.6.e & III.6.g). At this stage of relaxation, the inhomogeneous strain around the 
dislocation,  induces a very low maximum of intensity on the CXD pattern (Fig. III.6.e & III.6.g). During  the 
final steps of relaxation, the stacking fault continues to spread until it emerges on one of the crystal facets  and  
the signature of the Shockley partials (i.e. splitting of the Bragg peak along b) completely vanishes while the 
intensity of the [1 1 1] fringes increases with the width of the stacking fault (Fig. III.6.h). One can also notice the 
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Fig. III. 5 Influence of the Stacking Fault Energy. Dissociated edge dislocations in 30x30x30nm3 and corresponding displacement field (ux 
component) for aluminium (a), copper (b) and silver (c) crystals with a Wulff geometry. (d-f): corresponding CXD patterns with g.b = 0 (g 

� 2 2 4). (g) and (h) Intensity profiles along [1 -1 0] and [1 1 1] (logarithmic scale). The selected area of the reciprocal space is kept to the  
same value in all figures and is equal to 0.045x0.0675 (1/ Å)2 
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sharp increase of the maximum intensity which coincides with the disappearance of the Shockley partials from 
the nanocrystal.  One can assume that  the rather  large inhomogeneous strain around the partials  during the  
dissociation (Fig III.6.a & III.6.b) results in a drop of intensity during the relaxation. As the partials leave the 
crystal, the strain around the stacking fault is weak and with a very limited extent (restrained to the two faulted  
planes of the intrinsic stacking fault) (Fig III.6.c), resulting in a larger intensity close to the Bragg position.

III.3.4. Frank loops

A Frank partial dislocation is formed as the boundary of a fault formed by inserting or removing a close-
packed {1 1 1} layer of atoms in a perfect crystal. Geometrically, the Frank intrinsic stacking fault is identical to 
the intrinsic  fault  produced by the dissociation of  a perfect  dislocation,  except  that  the bounding partial  is  
different. An intrinsic Frank loop is often called a vacancy Frank loop whereas an extrinsic Frank loop can be  
referred as an interstitial Frank loop. The Burgers vector of a Frank loop is perpendicular to the {1 1 1} fault  
plane, with a magnitude equal to the interplanar spacing, i.e. b is of type 1/3<1 1 1>. Here, an extrinsic Frank 
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Fig. III.6: Relaxation for a crystal with a low SFE (silver).  ux  component of the atomic displacement after 900 relaxation steps (a), 3000 
relaxation steps (b) and after full relaxation (c). (d to f) Corresponding CXD pattern for g.b = 0 (g = 2 2 4). (g and h) Intensity along [1 1 0] 
and [1 1 1] (log scale)  The selected area of the reciprocal space is kept to the same value in all figures and is equal to 0.045x0.0675 (1/ Å)2 
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loop with b 	 1/3[1 1 1] is introduced in a 30x30x30nm3 silver nanocrystal with a Wulff shape (Fig. III.7.a). 
During relaxation, the Frank partial dissociates in a low energy, so-called stair-rod dislocation (Hull & Bacon  
2001), and a Shockley partial on an intersecting {1 1 1} plane according to a reaction of the type:

1

3
[1 1 1 ] =

1

6
[1 0 1] +

1

6
[1 2 1 ]                                   (III.7)

The hexagonal Frank loop with Burgers vector  ⅓[1 1 1] can dissociate to produce a stair-rod along each edge 
and a Shockley partial on the three inclined {1 1 1} planes as illustrated in Fig. III.7.a. 
Calculations of diffuse scattering performed on perfect (prismatic) and partial (Frank) dislocation loops in  fcc 
metals (Erhart et al. 1982) and  semiconductors (Nordlund et al. 2000) already provided a very accurate picture 
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Fig. III.7 (a) Relaxed Frank dislocation loop with b = ⅓ [1 1 1] in the centre of a 30x30x30nm3 Wulff silver crystal. The colour code 
represents the coordination number, such that only the defective atoms and nanocrystal edges are shown (b) Calculated CXD patterns 
when g // bSR (g = 2 2 0) , (c)  when g // bS (g = 2 2 4), (d) when g // b (g =  1 1 1), (e) when  g.b = 0 (g = 2 2 0). The selected area of the  
reciprocal space is kept to the same value in all figures and is equal to 0.045x0.0675 (1/ Å)2 
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of the scattering which can be expected from such defects. The Huang diffuse scattering of perfect and Frank 
dislocation loops has  also been studied experimentally  by Larson & Schmatz (1980)  and Larson & Young  
(1987).  They  have  demonstrated  that  Huang  diffuse  scattering  can  be  used  to   determine  the  vacancy  or 
interstitial character of a loop, to estimate their relative proportion in a given population, and to estimate their  
size. It is shown by Nordlund et al.  (2000) that the general features observed in diffuse scattering patterns are 
mostly independent of the choice of the Bragg peak. We demonstrate in the following that in the case of CXD,  
the choice of the Bragg reflection is essential to evidence the characteristic signature of a Frank or a prismatic 
dislocation loop.  
A Frank loop is a pure edge dislocation since the Burgers vector is always perpendicular to the dislocation line.  
Contrary to the case of a straight edge dislocation there is no diffraction condition where g.u = 0 for all the loop 
edges (i.e. g.b=0 AND g.(bxt)=0). This particular case can be used to distinguish a Frank loop from a straight 
dislocation when analysing CXD patterns.  
As in the case of a straight dislocation line (subsection III.3.2), g.b = 0 is a partial extinction condition, since it 
ignores the part of the displacement parallel to the Burgers vector, such that little perturbation is observed around  
these reflections  (Fig.  III.7.e).  The other  part  of  the displacement  field and the relaxation in  stair-rods and 
Shockley partials are responsible for the weak reduction of intensity of the central peak (85% of the perfect  
crystal) and the weak distortions of the pattern visible in Fig. III.7.e.
The case  g//b at the end of the relaxation (Fig.  III.7.d.) also produces some interesting results with a drastic 
reduction of intensity of the central spot (30% of the perfect crystal) and the appearance of a satellite spot along 
the [1 1 1] direction. This reduction in intensity is obviously related to the presence of the loop in the centre of  
the  volume.  In  agreement  with  the  invisibility  conditions  for  a  stacking  fault  detailed  in  Section  3.3,  the  
characteristic signature of a (1 1 1) stacking fault, i.e. fringes along [1 1 1], is not visible on the CXD pattern in 
this case. This particular reflection is also well suited to determine the interstitial or vacancy character of the  
Frank loop.  As shown in Fig. III.7.d, the scattering is more intense for the high q values (presence of a satellite 
peak)  with  respect  to  the  theoretical  Bragg  position.  This  distribution  of  the  scattering  is  expected  for  an 
interstitial Frank loop and in good agreement with Erhart et al. 1982 and Nordlund et al. 2000. In the case of a 
vacancy Frank loop and for this particular reflection (not shown here), the satellite peak is located in the lower q 

values with respect to the theoretical Bragg position. 
As illustrated on Fig.  III.7.b, the dissociation in Shockley and stair-rods partials induce a very characteristic 
signature on CXD patterns when the diffraction vector is parallel to a <1 1 0> direction (Fig III.7.b), (but not 
perpendicular to  b,  i.e. only the 2 2 0, 2 0 2 and 0 2 2 reflections can be used) corresponding to the Burgers 
vector of a partial stair-rod. The pattern then looks fairly similar to that of a screw dislocation with a ring-shaped 
pattern oriented along bSR = <2 2 0> (where bSR is the Burgers vector of the stair-rod dislocation). This kind of 
pattern is not observed when the loop is not dissociated and is a clear indication of the formation of a stair-rod 
dislocation during relaxation.
When looking at the other set of partials, i.e. when g is parallel to one of the Shockley partial (g//bS , g = 2 2 4 
Fig. III.7.c, where bS is the Burgers vector of the Shockley partial dislocation), the resulting CXD pattern is very 
disturbed at the end of relaxation, with intense fringes along [1 1 1]  and an elongated central spot with very low 
intensity in comparison with a perfect crystal (only 8% of the Bragg peak intensity). During the first stages of  
relaxation, the intensity of the central spot is similar to that of a perfect crystal, and only the fringes along [1 1 1]  
indicate the presence of a defect in the crystal. Hence these particular Bragg conditions appear particularly well  
suited to evidence the dissociation of the Frank partial in its intersecting slip planes.

III.3.5. Prismatic loops

A prismatic dislocation loop has a  ½[1 0 1] Burgers vector not contained in the plane of the loop (as 
opposed to a shear loop whose Burgers vector is contained in the plane of the loop). We introduce a prismatic 
loop at the centre of a 30x30x30nm3 copper crystal with a Wulff geometry. The Burgers vector b = ½[1 0 1] 
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decomposes  during relaxation in partial dislocations in its (1 1 1) and (1 1 1) slip planes, as illustrated in 
Fig.  III.8.a.  Since the Burgers vector is perpendicular  to the dislocation line,  the loop edges are pure edge  
dislocations and the invisibility criteria,  i.e. g.b = 0 and g.(bxt) = 0 described in  section III.3.2, apply for this 
type of defect.  However, as in the Frank loop case, since the loop edges are not all aligned, there are always 
segments  of  the  dislocation  loop where  g.(bxt)  ≠  0,  which  produces  a  visible  effect  on  the  CXD pattern. 
However, when  g.b = 0 and  g.(bxt) = 0 for two opposite segments of the loop (for instance  g =  0 2 0) (Fig. 
III.8.f), the signature of the prismatic loop on  CXD patterns is very faint, and the intensity of the Bragg spot is 
similar to the case of  the perfect crystal, with no elongation in any particular direction. When g.b = 0 but g.(bxt) 
≠ 0, i.e. g not parallel to any segment of the loop, (the case g = 2 6 2 is shown in Fig. III.8.e.), the prismatic loop 
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Fig. III.8 (a) Relaxed prismatic dislocation loop with b = ½ [1 0 1] at the centre of a 30x30x30nm3 Wulff copper crystal. The colour code 
represents the coordination number, such that only the defective atoms and nanocrystal edges are shown. The loop decomposes in partial 
dislocations in its (1 1 1) and (1 1 1) slip planes. (b) Same dislocation loop viewed along the [1 0 1] direction. Calculated CXD pattern 
for g // b (g = 2 0 2)  (c), g // bp . (g = 4 2 2) (d), g.b = 0 and g.(bxt) ≠ 0 (g =  2 6 2)  (e) and for g.b = 0 and g.(bxt) = 0 (g = 0 2 0)  (f). The 
selected area of the reciprocal space is kept to the same value in all figures and is equal to 0.045x0.0675 (1/ Å)2 
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Tab. III.2 Summary of all the most relevant cases that can be encountered during the study of the signature of single defects. For each case 
the maximum intensity calculated on the CXD pattern is compared to the intensity for a defect-free crystal with same size and shape. In  
the following n is the direction normal to a stacking fault, t is the dislocation line direction and bxt is the direction perpendicular to both 
the Burgers vector and the dislocation line direction. The best conditions to evidence the defect are highlighted in yellow, while the  
invisibility conditions are highlighted in pale green.

Screw dislocation Edge dislocation Stacking Fault Frank dislocation 
loop

Prismatic 
dislocation
loopUnrelaxed Relaxed Unrelaxed Relaxed

g.(bxt)=0 Single clean spot
I = I0

Single clean spot
I = I0

Single clean spot
I = I0

Single clean spot
Fringes along n

I = 0.78.I0

not applicable 
(N/A)

Small drop of 
intensity in Bragg 
position:

I = 0.85.I0

Single clean spot 
slight distortion 
in the pattern

I = I0

g.b=0
g.(bxt)≠0

Single clean spot
I = I0

Splitting along b 

Fringes along  n
I = 0.2.I0

Elongation along 
b

I = 0.4.I0

Splitting along b
Fringes along  n

I = 0.2.I0

N/A Single clean spot 
slight 
disturbances

I = 0.8.I0

Single clean spot 
Drop of intensity 
in Bragg position

I = 0.65.I0

g // b Ring-shaped 
pattern: ring axis 
along b
Extinction  in 
Bragg position

I = 0.14.I0

Ring shaped 
pattern: ring axis 
along b
Extinction  in 
Bragg position
Maxima of 
intensity along [0 
0 1]

I = 0.18.I0

Fringes along n
Elongation of 
Bragg peak along 
b

I = 0.18.I0

Fringes along n

Elongation of 
Bragg peak along 
b and increased 
intensity in Bragg 
position

I = 0.33.I0

N/A Satellite spot and 
low intensity in 
Bragg position

I = 0.3*I0

No fringes along 
n: g  with 
h+k+l= 3n

Hexagonal 
shaped pattern 
with  elongation 
along b 

Fringes along  n 
Intensity 
maximal in 
Bragg position 

I = 0.5.I0

g // bp
Ring shaped 
pattern: ring axis 
along b
Extinction in 
Bragg position

I = 0.09.I0

Ring shaped 
pattern: ring axis 
along bp

Extinction in 
Bragg position

I = 0.11*I0

Fringes along n
Elongation of 
fringes along b
Extinction  in 
Bragg position

I = 0.09*I0

Fringes and 
splitting along n
Elongation of 
fringes along b

I = 0.23*I0 

N/A Distorted ring-
shaped  pattern 
for g 

cbsr with 
ring axis along bsr

I = 0.16*I0

Similar to g // b 

with a lower 
intensity in 
Bragg position 

I = 0.35*I0 

g with 
h+k+l=3n

N/A (no stacking 
fault (SF)).

Fringes along n 

disappear
N/A (no stacking 
fault (SF)).

Fringes along n 

disappear
Single clean 
spot. I = I0

Fringes along n 

disappear
Fringes along n 

disappear

g with 
h+k+l≠3n

N/A Fringes along n N/A Fringes along n Intense fringes 
along n and 
splitting due to 
the ±2π/3 
phase jump 
induced by the 
SF. Intensity in 
Bragg position 
25% of perfect 
crystal 

N/A N/A

general g Ring shaped 
pattern. 
Ring diameter 
inversely 
proportional to 
crystal size and 
hkl indices

Ring-shaped 
pattern.
Distortion and 
disorientation of 
the ring 
depending on the 
hkl indices of the 
diffraction vector
Increase of the 
maxima of 
intensity during 
relaxation

Fringes and 
splitting along n 

and elongation of 
Bragg peak 
and/or of fringes 
along b,  
depending on the 
selected 
diffraction vector

Fringes and 
splitting along n 

and  elongation/ 
splitting along b 
depending on the 
selected diffraction 
vector
Increase of the 
maximum 
intensity during 
relaxation

Only two 
possible cases 
(see above)

Three main 
effects: 1) fringes 
along n normal to 
the SF, 2) ring 
shaped pattern 
along one of the 
stair-rod partial 
and 3) decrease of 
the intensity of 
the central spot 
and appearance of 
a satellite spot 
depending on hkl

Distorted 
hexagonal 
shaped pattern  
not oriented 
along a particular 
direction and 
dependent of the 
hkl indices of g.
Maximum 
intensity lower 
than perfect 
crystal
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induces some perturbation in the CXD pattern, which is expected since such conditions do not lead to a complete 
extinction for 
an edge dislocation. The central  spot intensity slightly decreases (65% of perfect crystal) and the diffraction 
pattern is elongated in the (1  1 0) plane along the [1 1 1], [1  1 1] and [0 0 1] directions. We now focus on 
diffraction conditions where the prismatic loop should produce a strong and characteristic signature, i.e. g // b. 
As shown in Fig. 8.c (g = 2 0 2), one can observe an hexagonal shaped pattern with an elongation along the 
Burgers vector direction  b �  ½ [1 0 1] and a strong decrease of the intensity of the central   spot  (by half  
compared to the perfect crystal). One can also notice the increased intensity of the [1 1 1] and [1 1 1] fringes, 
due to the stacking faults in the dissociated loop edges. Similarly to an edge dislocation, the  conditions when g �� 

bp  ,  for instance  g �  2 2 4 (Fig.  III.8.d), also produces a characteristic signature (Fig.  III.8.e). The resulting 
diffraction pattern is similar to the case g ��  b (Fig. III.8.c) with a hexagonal-shaped pattern elongated along b 

and a reduction of the central spot intensity by a factor of 3. Finally, for a general diffraction vector g the defect 
signature can clearly be identified on the CXD pattern, but its intensity is generally lower than for the particular  
cases g �� b and g // bp. Additionally, the hexagonal shaped pattern is slightly disoriented with respect to b. 
In conclusion to this section, similarly to simple dislocation lines and stacking faults, Frank and prismatic loops 
produce a characteristic signature strongly influenced by the choice of the diffraction vector and the invisibility  
conditions.  The main difference between a  dislocation loop and a  line dislocation lies  in  the choice of  the 
diffraction conditions to evidence such defects. While for the latter the case  g.b=0 is an appropriate choice to 
evidence dissociation, this condition is less adapted to dislocation loops since it will hide their characteristic 
signature. However, we will see in the last section that the proper use of these invisibility conditions turns out to 
be particularly useful to determine the Burgers vector of any kind of dislocation. 
This study of simple and ideal cases of single defects drives us to a simple conclusion: a given crystalline defect  
has a characteristic signature, which can be identified and interpreted using coherent x-ray diffraction. Equally  
important is the influence of the diffraction vector on the resulting CXD pattern, and the need to select the 
appropriate vector in order to highlight or hide the signature of a given crystal defect. One has to keep in mind 
that particular cases detailed throughout this study are not always the best suited for all  types of crystalline  
defects. These considerations should be useful in order to select the best experimental conditions to evidence a 
given  crystalline defect.  Additionally,  as  illustrated in  the next  Section,  these simple  cases  can  be  used to  
understand and interpret CXD patterns from more complex and realistic structures. An overview of the cases  
detailed  throughout  this  study  is  presented  in  Table  2,  which  highlights  the  best  diffraction  conditions  to 
evidence each type of crystalline defect.

III.3.6. Influence of the crystal size and shape

            The cases detailed in subsections III.3.1 to III.3.6 share the same geometry with a single defect  
introduced at the centre of a Wulff crystal. However, the position of the dislocation and the boundary conditions  
of the crystal might have a considerable influence on the defect signature and their effect is investigated in the  
present section. To study the effect of the crystal shape, we compare the results obtained with a crystal of Wulff  
geometry with a spherical crystal. We simulated a sphere of copper with radius r = 14.1 nm (corresponding to 
1.2x106 atoms, a number similar to the reference crystal), at the centre of  which we introduce a dislocation line 
of pure screw or pure edge character, with Burgers vector b = ½ [1 1 0]. Similarly to what has been observed 
with the Wulff geometry, the perfect screw dislocation dissociates during relaxation in two sets of two Shockley  
partials in its two {1 1 1} slip planes, while the edge dislocation dissociates in the (1 1 1) plane only (Fig. III.9.j). 
As illustrated on Fig. III.9.d & III.9.g, the  ux component of the displacement field is very similar to the one 
obtained for a Wulff geometry. In both cases it is exactly equal to  ± b/2.  The only differences which can be 
expected on the calculated CXD patterns should be related to the nanocrystal  shape.  In the case of perfect  
crystals,  the  influence  of  the  shape  is  seen  in  the  form factor:  instead  of  streaked fringes  along the  facet  
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directions, one observes spherical fringes, and the shape of the central spot also reveals the geometry (Fig III.9.b 

& III.9.c). Such details are easily evidenced experimentally with decent statistics. To examine the case of the  
faulted crystals, we choose a diffraction vector parallel to the Burgers vector (g = 2 2 0). As illustrated in Fig. 

110

Fig. III.9  a) Defect free copper spherical crystal with r = 14.1nm. Corresponding CXD patterns with g // b (g = 2 2 0) for the sphere  (b) 

and the reference copper crystal in Wulff geometry (c). (d) Perfect screw dislocation with b  ½ [1 1 0]  at the centre of the section in the 
same spherical crystal. The colour scale shows the ux component of the atomic displacement field . Corresponding CXD patterns with g // 

b (g = 2 2 0) for a sphere (e) and a Wulff crystal (f). (g) Perfect edge dislocation with b  ½ [1 1 0] in the same  crystal. Corresponding 
CXD patterns with g //  b (g = 2 2 0) for a sphere (h) and a Wulff crystal (i). (j)  Dissociation of the perfect dislocation in 2 Shockley 
partials in the (1 1 1) plane with bp1  = 1/6[1 2 1] and bp2 = 1/6[2 1 1] in the same crystal. Corresponding CXD patterns with g.b = 0 (g = 2 
2 4) for a sphere (k) and a Wulff crystal (l). The selected area of the reciprocal space is kept to the same value in all figures and is equal  
to 0.045x0.0675 (1/ Å)2 

1.93

-1.40

Å

(j)

I
max

= 0.14.I
0
 I

max
= 0.14.I

0
 

I
max

= 0.16.I
0
 I

max
= 0.18.I

0
 

I
max

= 0.20.I
0

I
max

= 0.18.I
0

g // b

g // b

g.b = 0

[1 1 -2]

[1 -1 0]

[1 1 1]

(d) (e) (f)

(h) (i)(g)

Wulff (28x28x28 nm3)Sphere (r = 14.1 nm)(a)

(k)

1.28

-1.28

1.28

-1.27

Å

Å

[0 0 1]

[1 1 0]

 [1 -1 0]  

[0 0 1]

[1 1 0]

 [1 -1 0]  

[1 -1 0]

[1 1 1]

 [-1 -1 2]  

[1 -1 0]

[1 1 1]

 [-1 -1 2]  

(l)

(b) (c)



Chapter III: Signature of individual defects in CXD patterns: a numerical study

III.9.e,  the perfect  screw dislocation still  yields a ringshaped pattern with its  axis along the Burgers vector  
direction. The crystal shape only affects the distribution of  intensity in the ring (Figs. III.9.e and III.9.f). For the  
perfect  edge dislocation,  similar conclusions are drawn, and the calculated CXD patterns displays the same 
features which have been observed for the Wulff crystal such as fringes along the [1 1 1] direction and the 
elongation of the Bragg peak along b. The distribution of intensity is very similar for both Wulff and spheric 
crystallites (Figs. III.9.h & III.9.i). 
The effect of the crystallite size has also been investigated by comparing the obtained CXD patterns of Wulff  
shape crystals with size ranging from 5 to 60 nm. While this would be a simple scaling exercise in a continuous  
description of matter such as FEM, here the problem is not invariant because of the fundamental size of the  
defect, given by the modulus of the Burgers vector. Of course we evidence in the diffraction patterns the scaling  
of the form factor in proportion to the change of size of the crystal. But one might expect a significant effect  
related to the change of ratio between crystal shape and defect size. However, no significant size effects are seen 
on the signatures of the defects, regardless of the type of defect and the chosen Bragg reflection, in the range of  
sizes explored. It suggests than we are still in a size range in which a continuous description of matter would be  
valid,  provided  a  sufficiently  good  continuous  description  of  the  defect  and  its  strain  field.  An  important  
consequence of the weak influence of size and shape of the crystal  containing the defect  is  that the results 
presented above can be generally applied to a wide range of size and shapes of fcc crystals. This is particularly 
useful since samples may contain many crystals of the same materials with a wide range of size and shapes,  
depending of the processing route (in particular in the case of dewetting: Beutier et al. 2013a, Mordehai et al.  
2011a, Mordehai et al. 2011b).
The edge and screw dislocations are not stable in a spherical  crystallite and the Shockley partials tend to leave  
the crystallite during relaxation. To make relevant comparisons between relaxed dislocations in the sphere and 
the Wulff crystallites, the relaxation is stopped after the same number of steps in both configurations (typically 
1600 steps for the copper nanocrystal) before the disappearance of the partials from the crystallite (Fig III.9.j).  
Additionally, the contraction of the surface atoms towards the bulk during relaxation is strongly affected by the 
change of geometry. For these two reasons, the obtained values of the ux component of the atomic displacement 
field (Fig III.9.j) differs from the ones obtained in the Wulff geometry (section III.3.2).  We use the extinction 
condition  g.b = 0 (g = 2 2 4) to evidence the effect of dissociation. The Bragg peak splits along the Burgers 
vector direction, and fringes along the normal to the stacking fault (n = [1 1 1]) are clearly evidenced, even 
though the crystal does not have (1 1 1) facets (Fig III.9.k). Another interesting observation is the similarity of  
the ratio Idefect / I0  between the two crystallites for all two types of defects.
From these examples,  one can conclude that  the boundary conditions have only limited influence on CXD 
patterns. While the shape determines the form factor of the Bragg reflection, yielding for instance strong fringes 
in faceted crystals, the shape and intensity distribution of the features induced by the defects, generally close to 
the Bragg position, are only marginally affected. It is important to notice that a logarithmic scale, and therefore a  
few decades of dynamical range in the data, are needed to characterise the form factor, whereas the defects have 
an obvious impact on the central part of the pattern if the Bragg reflection is well chosen.

III.3.7. Influence of the defect position

To evidence the effect of the defect position, we chose to focus on two simple defects: a perfect screw 
dislocation and a stacking fault, both in a 30x30x30 nm3  copper crystal of Wulff shape. The screw dislocation is 
introduced at several positions in the crystal:  0, 1, 5 and 10 nm away from the centre of the crystal and the 2 2 0 
reflection is used to probe the dislocation. As illustrated in Fig. III.10.a, the displacements of the dislocation line 
induces a considerable effect on the intensity distribution of the calculated diffraction pattern. As the dislocation 
moves towards the emerging facets of the crystal, the distribution of intensity in reciprocal space becomes highly 
anisotropic until the ring shaped pattern vanishes when the dislocation reaches one edge of the crystal. The same  
results could be obtained for an edge dislocation line in both its perfect and relaxed states (not shown here).
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Another very important consideration is the unstable character of dislocations which are not introduced close to 
the centre of the crystallite. According to our calculations in the reference crystallite, for a perfect dislocation 
introduced more than 3 nm away from the centre,  the Shockley partials  always leave the crystallite during  
relaxation.  One  can  then  assume  that  the  probability  to  probe  dissociated  dislocations  far  away  from  the 
crystallite centre in experimental crystals is very low. This strengthens the relevance of our study since most of  
the calculations are performed with dislocations introduced at the centre of the crystallite. 
As seen in Section , a stacking fault introduced at the centre of the reference crystal leads to a splitting of the 
central spot and intense fringes along the normal to the (1 1 1) stacking fault plane with a doubling of spacing  
between fringes. When the stacking fault is placed at the centre of the crystal, the two parts of the object which  
interfere are equal, yielding a symmetric distribution of intensity in the fringes along the [1 1 1] direction (see 
Fig 10.b and 10.c.). A stacking fault off the crystal centre splits the volume in two unequal parts and yields  an 
asymmetric distribution of intensity along the [1 1 1] axis. Fig. 10.b indeed shows that a stacking fault splitting 
the crystal in two volumes such that V1 = 4.V2  yields  an asymmetry of the [1 1 1] fringes intensity distribution 
which is further increased when the stacking fault is moved towards an edge of the crystal (V 1  = 8.V2  ). The 
intensity at the exact Bragg position can be evaluated and, according to Eq. (III.6), as the stacking fault moves 
away from the centre,  the interferences become less destructive and the Bragg position becomes a peak of  
intensity again, like for the perfect crystal. 

This section confirms that the defect position has a very strong effect on the calculated CXD patterns. This effect  
increases with the distance between the defect and the centre of the illuminated crystal. In the vicinity of the  
centre, the intensity distribution is strongly altered but a given defect can clearly be identified from its signature  
on the diffraction pattern. However, close to an edge of the crystal, the characteristic signature of a given defect  
vanishes, and our ability to identify the defect from its signature in reciprocal space becomes questionable. As a 
consequence, it is also expected that detailed structure of interfaces (not their associated role as strain generator)  
will be difficult to characterize since inherently they are located at one boundary of the diffracting crystal.

III.4. Application to a complex case: indentation of a gold nanocrystal

The study of model systems is very useful to understand and interpret the signature induced by a single defect  
and  to  demonstrate  the  influence  of  the  selection  of  the  diffraction  vector  on  CXD  patterns.  However,  
interpretations of the pattern can also be deduced for more complex and realistic configurations of defects such - 

112

Fig. III.10: (a) Effect of the position of a perfect screw dislocation in a 30x30x30nm 3 copper crystal in a Wulff geometry. At the vicinity of 
the crystal centre the intensity distribution is altered, and as the dislocation moves towards an edge of the crystal its characteristic signature  
completely vanishes. (b)  Effect of the position of a stacking fault in a 15x15x15 nm 3 copper crystal in a Wulff geometry. The stacking 
fault position strongly affects fringes intensity and period, and the intensity and splitting of the Bragg reflection. (c) Intensity along [1 1  
1] for different positions of the stacking fault in the crystallite. The selected area of the reciprocal space is kept to the same value in all  
figures and is equal to 0.045x0.0675 (1/ Å)2 
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Fig.  III.11 (a) Simulation of the indentation of a 12.1 nm high gold nanoparticle by a cube-corner indenter.  (b) and (c) Atomistic  
configuration at the initial state and corresponding CXD pattern (see text for more details) The dislocations are shown in grey. (d) and (e)  
Gold nanoparticle after 650000 indentation steps (t = 3.25 ns) and calculated CXD pattern. (f) and (g) Gold nanoparticle after 850000  
indentation steps (t = 4.25 ns) and calculated CXD pattern. (h) and (i) Gold nanoparticle at t = 5 ns and corresponding CXD pattern. (j)  

and (k) Gold nanoparticle at the final stages of indentation (t = 6 ns) and corresponding CXD pattern.  The selected area of the reciprocal  
space is kept to the same value in all figures and is equal to 0.08x0.12 (1/ Å)2 
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as  the  one  obtained  during  plastic  indentation  of  a  crystallite.  More  details  concerning  the  dislocation 
mechanisms during nano-indentation are given by Mordehai et al. (2011b). In the present section, only few  key 
stages of the indentation process and the corresponding CXD patterns in reciprocal space are detailed. Molecular 
dynamics  simulations  with  the  Large-scale  Atomic/Molecular  Massively  Parallel  Simulator  (LAMMPS, 
Plimpton 1995) and a Au EAM potential (Grochola et al. 2005) are used to simulate the indentation of a 12.1 nm 
gold nanoparticle on  a sapphire substrate (Mordehai et al. 2011a, Mordehai et al. 2011b). 
The Winterbottom construction (Winterbottom 1967) is employed, considering the surface energies of the Au 
potential  and the interface energy to  initialize  the particle configuration (Fig.  III.11.b).  The indenter  in  the 
simulation is  lowered at  a constant velocity and the integration step is 5 fs.  To avoid the complex  atomic  
description of the particle/substrate and indenter/particle,  both  the indenter and substrate are assumed non-
deformable  (satisfying  the  experimental  condition  of  using  exceptionally   stiff  and  hard  materials  for  the 
substrate and indenter, respectively sapphire and diamond) and are frozen into their perfect crystal locations  
(Mordehai et al. 2011b). The effect of the residual / processing strain induced by the substrate is thus not taken in 
account in this model. 
Figs. III.11.a & III.11.c show the gold particle in its initial state and the corresponding CXD pattern around the 
Bragg position g � 1 1 1, parallel to its upper facet. These are realistic  diffraction conditions. Given the smaller 
size of the particle compared to the reference crystallite (12.1 nm vs 30nm), the calculation of the 3D CXD  
pattern is done on a larger volume of the reciprocal space:  0.8x0.8x1.2 (1/ Å)3. Additionally, the dynamic range 
is kept to 4.15 decades, but the maximum of intensity is decreased by a factor 100 (10 times less atoms in the 
particle).  Since the crystal is still in its pristine state, the diffraction pattern looks very clean with a maximum  
intensity at Bragg positions and rather intense fringes along [1 1 1] due to the relatively large size of its (111)  
facet. 
Fig.  III.11.d illustrates the atomistic configuration and its  corresponding CXD pattern after 650000 steps of 
indentation (t = 3.25 ns). At this stage of the indentation process, nucleation and glide of multiple dislocations  

already occurred, leaving short slip steps on the {1 1 1} and {1 0 0} facets.  A dislocation half-loop with Burgers  
vector of type b = ½ <1 1 0> dissociated in partials in one of its {1 1 1} slip planes can be seen at the centre of 
the volume. When looking at the CXD pattern, this defect induces a strong and characteristic signature with  
intense fringes along [1 1 1] due to the stacking fault, and a splitting related to the phase jump induced by the  
dislocation half loop. One can notice that the period of the defect fringes is approximately twice the period of the 
facet fringes. As stated in previous sections, this is a good indication of the defect location at the centre of the 
volume. Additionally, since the upper (1 1 1) facet is compressed, the period of the fringes along this direction 
slightly increases. 
After 850000 steps (t = 4.25 ns) (Fig.  III.11.f),  dislocations left multiple slip steps on the crystal facets, and 
multiple dislocation half-loops are found in the crystal. The largest loop is dissociated in partials in the  (1 1 1) 
and (1 1 1)  planes,  with a Burgers vector  along the intersection between these two planes,  i.e. ½  [1 0 1]. 
Correspondingly, the CXD pattern displays intense fringes along the [1 1  1] (Fig.  III.11.g) and [1 1 1] (not 
shown) directions. The period of the fringes along [1 1 1] roughly equals four times that of the facets fringes. 
One can guess that this is due to the decomposition of two dislocations in the (1 1 1) slip plane. Similarly to the 
previous step, we can observe the Bragg peak splitting into two spots, probably due to the phase jump induced 
by the main dislocation half-loop.
After  deeper indentation,  around 10  steps (t  = 5 ns),  no more dislocations can be found remaining in the⁶  
crystallite (Fig.  III.11.h). Consequently, the calculated CXD pattern displays a single and clean spot at Bragg 
position, and SF fringes along [1 1 1] and [1 1 1] have completely vanished. One can notice that the period of the 
fringes along [1 1 1] increased since the crystal went under further compression. 
At the final stages of the simulated indentation process (t = 6 ns), the crystal hosts multiple dislocation loops 
which decomposed in partials in three out of the four available {1 1 1} slip planes (Fig. III.11.j). The diffraction 
pattern  becomes  very  difficult  to  interpret  due  to  the  interplay  of  multiple  defects,  and  the  characteristic  
signatures such as a splitting or intense fringes along one of the <1 1 1> directions cannot be identified. At this  
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stage, the diffraction pattern is well “speckled” and a statistical interpretation could relay the identification of  
individual defects as suggested by Favre-Nicolin et al. (2010) and Jacques et al. (2013).
We now come back to an earlier stage of the indentation (t = 3.25 ns), when a single dislocation half loop can be 
found in the particle (Fig. III.12). Our goal is to determine the Burgers vector of this loop using the extinction  
conditions detailed in previous sections. Since this dislocation half-loop is a mixed dislocation, there are no  
conditions  where  g.u is  exactly zero everywhere (Hirth & Lothe 1968).  However one can assume that  the 
condition g.b is sufficient to hide most of the dislocation signature in the dislocation pattern. The Burgers vector 
of the dislocation half loop is of  ½<1 1 0> type, consequently two of the <1 1 1> diffraction vectors must be 
perpendicular to  b. When looking at the calculated CXD patterns for four of the eight 1 1 1-type diffraction  
vectors, one can notice the signature of the defect is only visible for g = 1 1 1 and g = 1 1 1 whereas no signature 
can be found for g � 1 1 1 and g = 1 1 1 (Fig. III.12). Both diffraction vectors fulfill the extinction criterion and 
there is only one possible Burgers vector perpendicular to these two directions: b � ½ [0 1 1] . This demonstrates 
the possibility to identify both the Burgers vector and the slip plane of a dislocation by the appropriate selection  
of two, or at most three, diffraction vectors. More generally, this study proves that the technique is adapted to the  
interpretation  of  CXD  patterns  from  realistic  structures.  On  the  other  hand,  as  shown  by  the  atomistic  
configuration from the late stages of indentation, the interpretation of CXD patterns from complex structures 
with  multiple  defects  remains  highly  challenging  due  to  the  interplay  between  multiple  defects  on  the 
corresponding CXD pattern.
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Fig. III.12 (a) Gold nanoparticle after 650000 indentation steps. A dislocation half-loop 
with b of type  ½ <1 1 0> can be observed. (b) to (e) Calculated CXD patterns for four 
different 1 1 1-type diffraction vectors.  The selected area of the reciprocal space is kept 
to the same value in all figures and is equal to 0.08x0.12 (1/ Å)2 
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III.5. Discussion

The results above show that all typical defects of fcc crystals induce strong distortions of the CXD patterns at 
most  Bragg reflections.  This holds both for dislocations,  which induce a long distance strain field,  and for  
stacking faults, which are nearly strain-free defects. The case of the stacking fault illustrates that coherent X-ray 
diffraction is properly speaking sensitive to the atomic displacement field and not just the elastic strain: in this  
case it extends over a semi-infinite volume, hence the localised signature at the Bragg peaks. Even better, each 
defect has a characteristic signature on particular Bragg peaks, such that it can in principle be unambiguously  
identified from the measurement of one or several reflections: for instance, the characteristic CXD pattern of a  
perfect screw dislocation at a Bragg reflection not perpendicular to the Burgers vector leaves no ambiguity on 
the nature of the defect and its Burgers vector; similarly, characteristic fringes at reflections with  h±k±l ≠ 3n 
indicates  the  presence  of  a  stacking  fault  and  reveals  its  orientation.  While  these  two  cases  are  quite  
straightforward,  the identification can be much more delicate for defects which display complex diffraction  
patterns such as Frank or Prismatic loop. For the latter it appears clearly that several reflections are needed in 
order to guess  what kind of  defect  the system hosts.  For instance,  a relaxed Frank loop can be efficiently  
identified by using two reflections parallel to a partial stair-rod and a partial Shockley. Similarly to what has  
been observed from the elastic diffuse scattering of dislocation loops, the interstitial or vacancy character of a  
Frank loop (or the intrinsic or extrinsic character of a Stacking Fault) can also be identified using coherent X-ray  
diffraction. 
For both screw and edge dislocations, the technique can also be used to unambiguously evidence the dissociation 
into Shockley partials with two very clear and identifiable effects: elongation and splitting of the Bragg peak  
along b and doubling of the fringes period in the direction perpendicular to the dissociation plane (sections 3.1 
and  ). The dissociation of the dislocation is best evidenced using reflections of high indices, and preferably 
perpendicular to the Burgers vectors. One can infer that, more generally, such measurement is sensitive to the  
core structure of the dislocation, since it influences the spatial shift between two sub-volumes of the crystal.
Moreover, even reflections that do not show any distortion can be very useful in establishing the characteristic 
features of a crystal defect: a wise use of invisibility criteria allows the determination of a dislocation Burgers  
vector and dissociation plane using only a couple of well chosen reflections. This holds in principle for any kind 
of single defects that can be encountered in fcc materials.
Based on these results, we propose an experimental strategy to identify and characterize a single defect in a fcc 
crystal.
The first step would be to measure several 1 1 1-type reflections in order to distinguish between dislocations and 
stacking faults / Frank loops: if the defect is a stacking fault or a Frank loop, the defect signature should vanish 
for only one pair (g,-g) of these reflections  and be visible for every other 1 1 1 reflection, whereas it will be 
invisible for two pairs (g,-g) if it is a dislocation. In the first case, a Frank loop is easily distinguished from the 
stacking faults by the strong distortion at the Bragg position. In the case of dislocations, the Burgers vector can  
be determined by identifying the two pairs (g,-g) out of four for which the signature is visible. Until this stage 
the character of the dislocation does not matter. Once the Burgers vector is established, the use of a reflection g 

//  b will allow to determine the character of  the dislocation. A prismatic loop is identified by simultaneous  
evidence for edge and screw dislocations. 
Following this procedure it is in principle possible to determine all the characteristics of a given single defect:  
for a dislocation, its type, Burgers vector, dissociation plane, dissociation length and an estimate of its position;  
for a stacking fault, the faulted plane, its extrinsic or intrinsic character (vacancy or interstitial type in the case of  
a Frank dislocation loop) and a rough estimate of its position.
Regarding experimental matters, it turns out that a high dynamical range is not needed during measurements. In  
cases presented here, a single decade of intensity is enough to evidence a distortion or a split of the Bragg peak,  
and two decades suffice to evidence a modification of fringes due to a stacking fault. The counting time can thus  
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be significantly reduced, making easier the live monitoring of deformation mechanisms (in such case however,  
the choice of the Bragg reflection for live monitoring implies that some defects remain invisible). The direct 
analysis of the reciprocal space is thus very complementary to real space reconstruction, which requires longer  
counting times. 
An important concern regarding the experimental set-up is our ability to resolve the features induced by defects  
during coherent X-ray diffraction experiments. In fact, the fundamental size of the finest diffraction features on  
CXD patterns is determined by the size of the diffracting volume (i.e. the sample or the beam size, depending on 
which is the smaller one). If the experimental setup allows to sample the reciprocal space with a step size small  
enough to resolve the fringes induced by the finite size of a perfect crystal, it is also able to resolve any kind of  
defect signature in a faulted crystal of the same size, independently of the nature and the number of defects. For  
instance, the splitting distance (i.e, the distance between the two maxima  of intensity of the splitted Bragg peak) 
induced by a dislocation is of the same order of magnitude as the fringe period is related to the crystal size.
Additionally,  direct  analysis  of  the  reciprocal  space  relies  on  the  comparison  between  simulation  and  
experimental data. Even if valuable information can be already extracted from the 2D cut of the detector plane,  
this approach implies most of the time to record the full 3D CXD pattern in order to produce the needed 2D cuts  
of the reciprocal space. For typical CXD experiments in Bragg geometry with crystal whose size is around 
300nm (Beutier  et  al.  2013a,  Watari  et  al.  2011),  the  acquisition  of  a  3D CXD pattern  which  fulfills  the 
oversampling conditions in the 3 directions of the space imply to probe the recipocal space with an extent of  
approximately  ±0.5° and steps of 0.01° (100 points in total). To achieve a dynamical range between 4 and 5 
decades of intensity, the usual exposure time lies between 2 and 5 seconds for each point of the rocking curve,  
and  between 200 and 500 seconds for the acquisition a full 3D CXD pattern.
For a direct analysis of CXD patterns we suggested that a single decade of intensity is sufficient to evidence a  
distortion or a splitting of the Bragg peak while 2 decades are needed for the modification of fringes due to a  
stacking fault. The acquisition time can thus be reduced at least by a factor 50 (0.1s or even less per point). It  
would thus only need 4 to 10 seconds (50 seconds due to the detector deadtime) to perform the acquisition of a 
full 3D CXD pattern. With only one decade of intensity, the 3D reconstruction of the experimental data is not  
likely to provide a  complete and accurate picture of the strain and defect distributions, while the analysis of the  
reciprocal  space  pattern  can  already  provide  some  information  on  the  latter.  To  obtain  the  same  kind  of 
dynamical range for 30 nm crystal (size comparable to the molecular statics simulations), the acquisition time 
has to be multiplied by 1000. However for a 300 nm crystal a 0.1s acquisition time provides almost 3 decades of  
intensity.  In  principle  the acquisition time can be divided by a  factor  2  or  3  if  one wants  to  evidence the  
perturbations in the crystal fringes, and even 20 to 30 to highlight the splitting or distortion of the Bragg peak. 
One could also wonder if these calculations, performed on fcc metals, are valid for other crystal structures such 
as hexagonal or body-centred cubic lattices. In the latter, the dislocation structure, its motion and relaxation, are 
very different from fcc crystals. The calculations performed on dissociated dislocations should in principle not be 
valid for such crystalline structure. However it appears reasonable to think that the simulations performed for the  
perfect dislocations and stacking faults are still correct: these perfect defects are described by simple geometric  
models; only the Burgers vector may differ in other crystal structures. In the case of stacking faults, it induces a  
different phase shift, hence a different contrast, but modulated streaks are still expected, provided the planar  
geometry of the stacking fault is stable. Different extinction conditions than h+k+l=3n will apply. Several works 
on materials with the wurtzite and the zinc-blende structures (Chamard et al.  2008, Favre-Nicolin et al.  2010, 
Jacques et al. 2013) have shown that the phase jump induced by stacking faults in these crystal structures is the  
same as in fcc structures (±2π/3 depending on the number of faulted planes and the hkl indices of the reflection). 
In the case of the perfect edge and screw dislocations, the displacement fields scale with the Burgers vector, such  
that the contrast of characteristic features may be different.
If this study establishes the efficiency of CXD to probe single defects, it does not address the case of multiple  
defects which can be encountered in various experimental samples. Very few studies have been carried out so far  
on multiple defects and they only focus on the case of stacking faults. In such complex systems a wise use of the  
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invisibility conditions can provide very useful information on the defect content and density. Alternatively, as  
pointed out  in  section   and section 4,  a  statistical  approach can be used to  get  relevant  information about 
dislocation density and their  distribution (Jacques  et  al.  2013) or about the stacking fault  sequence (Favre-
Nicolin et al. 2010).
A further complication is the interaction of the defects with residual strain in the sample, due for instance to the 
growth process. Here we discarded this complication to focus on the defects, but in many realistic cases it is a  
crude approximation and the calculations presented here are for instance not  suited to the case of interface  
dislocations. The study of crystallites in epitaxial relationship with their substrate, resulting in inhomogeneous 
strain distribution with a significant contribution of the latter on CXD patterns (Diaz et al. 2010, Beutier et al.  
2012, Mastropietro  et al.  2014) could be a further development. This would allow to make comparisons with 
more realistic experimental cases even if disentangling the contributions of interface strain and defects appears  
quite challenging.

III.6. Conclusions

We carried a detailed numerical analysis of the effect of defects in fcc nanocrystals on their CXD patterns in the 
vicinity of allowed Bragg reflections. Realistic atomic potentials were used to equilibrate the structures. Our  
analysis demonstrate the unique character of the signature induced by a single defect and the crucial importance 
of  the diffraction conditions i.e., the selection of the diffraction vector. The relaxation of the faulted crystal  
structure is shown to have a large impact on CXD patterns. From these characteristic signatures, we suggest a  
procedure based on the measurement of a few reflections to identify a defect and its characteristics when it is  
known that it is alone in the structure.
We also extended the scope of this study to nanocrystals containing a few defects by analysing the case of a gold  
nanocrystal undergoing simulated indentation: we demonstrated that the defects generated in the early stages of  
indentation can in principle be identified by the study of CXD patterns at several chosen reflections. The use of 
invisibility conditions proves to be particularly efficient on such complex systems.
Such direct  analysis of  the reciprocal  space requires significantly lower counting times than phase retrieval  
imaging methods and is well suited to the live monitoring of the nucleation of defects (for instance to study 
deformation mechanisms during in situ loading experiments).
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Chapter IV: Coherent X-ray diffraction applied to moderately complex systems : 

analysis of the reciprocal space patterns

Introduction

Chapter III demonstrates that coherent X-ray diffraction (CXD) is particularly suited to the study of 
individual defects. In particular, it is shown that single crystal defects have a unique characteristic signature on 
CXD patterns, and that the selection of the diffraction vector is of crucial importance in order to highlight the  
fingerprint of such defects. The case study of the simulated nanoindentation of a gold nanoparticle evidences that  
the  direct  analysis  of  CXD pattern  can  be  used  in  a  more  complex  and realistic  system,  however  in  this 
simulation, only one defect is present in a structure. Hence, the case of multiple defects was not adressed in the  
previous Chapter.  
In the following, we aim at establishing that the study of the coherent X-ray scattering of a moderately complex  
assembly of defects can provide valuable information on the defect type, content, geometry and size distribution.  
In a first part, following the procedure described by Erhart et al. (1982) and Larson & Young (1987) we show the 
sensitivity of CXD to the size and vacancy or interstitial type of individual dislocation loops and we demonstrate  
that it can be extended to the case of stacking faults (SF). The case of multiple defects is addressed through two  
examples, the simulated nanoindentation of a nickel thin film which nucleate several prismatic dislocation loop 
types with equivalent Burgers vectors, and the simulated liquid state dewetting of a copper particle on a tantalum 
substrate which creates a complex network of stacking faults.

IV.1. Case of quantitative determination of a loop size and geometry

Calculations of diffuse scattering performed on perfect (prismatic) and partial (Frank) dislocation loops 
in f.c.c. metals (Erhart et al. 1982) and  semiconductors (Nordlund et al. 2000) already provided a very accurate 
picture of the scattering which can be expected from such defects. The X-ray diffuse scattering of perfect and  
Frank dislocation loops has also been studied experimentally by Larson  (Larson & Schmatz  1980), (Larson & 
Young 1987) and is relatively well understood. Their methodology has has been applied to the case of individual  
perfect  and faulted dislocation loops to  determine the vacancy or  interstitial  character  of  the loops,  and to  
estimate their size.

IV.1.1. Determination of the interstitial or vacancy character of a defect

As illustrated in section III.3.4 and III.3.5, the strain field around faulted Frank and prismatic loops is  
rather complex, and the evaluation of the scattering from such defects can be difficult. Erhart (Erhart et al. 1982) 
and (Larson & Young 1987) considered this scattering in terms of three distinct parts: 

– the Huang diffuse scattering (HDS)  induced by the long range part of the strain field and thus limited to  
small δq in the reciprocal space.

– The asymptotic diffuse scattering (ADS) or Stockes-Wilson scattering resulting from the highly strained 
region in the close vicinity of the loop plane and thus located in larger δq in the reciprocal space. 

– The Structural Diffuse Scattering (SDS) or Laue scattering induced by the core, i.e the defective region 
of the dislocation loop.

The expression of the diffuse scattering A(q)  resulting from a dislocation loop has been formalized by Larson 
(Larson & Schmatz 1980, Larson & Young 1987):

A(q)=∑
j

e
i q .r j

L

+∑
j

e
i δ q .r j ( e−i q .u (r j )−1)    (IV.1)
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where q is the scattering vector and can be expressed as the sum of the reciprocal lattice vector g and a vector δq 

inside the Brillouin zone: q = g + δq.  rj is the ideal position of atom j in the undistorted lattice, and rj + u(rj) the 
position of atoms j in the distorted crystal at the vicinity of the dislocation loop. 
The first sum so-called the Laue scattering (StructuralDiffuse Scattering) takes into account the scattering from 
atoms at positions rj

L in the dislocation loop. The second sum so-called the total distortion scattering (sum of the 
HDS and ADS) is obtained by subtracting the scattered amplitude associated with the perfect crystal from the 
total scattered amplitude (hence the -1 term). The distortion scattering can be considered as two terms, with a  
1/q2 dependence close to the Bragg peak (Huang Diffuse scattering in the q << 1/R region where R is the radius 
of the loop) and a 1/q4 dependence further away from the Bragg peak (Asymptotic Diffuse Scattering (ADS) or 
Wilson-Stockes Scattering in the q > 1/R region).
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Fig. IV.1 Calculated CXD pattern from an interstitial (a) and a vacancy (b) Frank 
dislocation loop with  b  = 1/3[1 1 1] and  g //  b  (g  = 1 1 1). (c) Calculation by 
Erhart  et  al.  (1982)  of  the  diffuse  scattering  in  an  infinite  crystal   from an 
interstitial Frank loop with b = 1/3[1 1 1] and g // b (g = 1 1 1). (d) Scheme of the 
strain field around an interstitial dislocation loop and corresponding distribution 
of  the  diffuse  scattering.  (e)  Calculated  CXD  pattern  from  an  interstitial 
prismatic dislocation loop with b = 1/2[1 0 1] and g // b (g = 1 0 1). Calculated 
CXD patterns for an intrinsic (f) and extrinsic stacking fault (g) for g = 2 0 2  (h 
+ k + l ≠ 3n) 



Chapter IV: CXD applied to moderately complex systems, analysis of reciprocal space patterns

Larson  & Young (1987) gave a detailed interpretation of the ADS which allows to distinguish between vacancy 
and interstitial loops. Fig. IV.1.d, illustrate the lattice strain in the immediate vicinity of the dislocation loop, and 
the corresponding scattering induced by such lattice distortions. For an extrinsic interstitial dislocation loop, the 
extra plane of atoms leads to a compressed region above and below the loop and an expanded region outside the  
periphery of the loop (this strain distribution is discussed in further details in Chapter V, section V.3.1). 
The region in compression exhibits a constant strain over a spherical-like region of diameter roughly that of the  
loop (Ohr 1974). This compression strain gives rise to a diffuse scattering peak at positive δq. The volume of the 
expanded region at the periphery of the loop is much smaller, and consequently the diffuse scattering distributed  
on negative  δq  values (i.e on opposite sides of the reciprocal lattice point) is less intense. Conversely, for an 
intrinsic vacancy dislocation loop, the missing plane of atoms leads to a tensile region above and below the loop 
and a compressive region at the periphery of the loop. The diffuse scattering is the most intense at negative δq 

values.
Erhart  et al.  (1982)  evidenced the presence of oscillations in this diffuse scattering peak. They are due to the  
inversion symmetry of the displacement field for a dislocation loop. Given that  u(r) = -u(-r), at least two points 
of the real lattice scatter into one point of the reciprocal lattice. The resulting interferences lead to oscillations in 
the diffuse scattering peak, the intensity of the scattering depending on the projection of  u(r) on q. Additionally, 
since the overall form of the scattering in this region (ADS or Stockes-Wilson scattering) varies as ~ 1/ q4. The 
oscillations in the  diffraction pattern are best seen for a scaling of the intensity by q4 (not shown in Fig. IV.1). 
Fig IV.1.a  & IV.1.b show the calculated CXD pattern from a 25 nm interstitial (Fig. IV.1.a) and a vacancy  (Fig.  
IV.1.b) Frank dislocation loop in a 30 nm copper nanocrystal of Wulff geometry. Both loops are in the (1 1 1)  
plane with b = 1/3[1 1 1] and the distribution of the scattering is shown in the vicinity of g = 1 1 1 in the [1 1 0] 
plane of the reciprocal space. Unlike in Eq. (IV.1) the scattered amplitude from the perfect crystal is not removed 
from the calculation. 
As already shown in subsection III.3.4, the signature of the [1 1 1] stacking fault is invisible on the CXD pattern 
for this particular  g (h+k+l = 3n), and the spacing between the fringes due to the crystal finite-size remains 
undisturbed. The diffuse scattering from both loops has a distinct signature and is concentrated above and below 
the 1 1 1 Bragg position for the interstitial and vacancy loops respectively. Apart from the oscillation fringes 
along the [1 1 1] direction due to the finite size of the crystal, the calculated diffraction pattern is similar to the  
calculations performed by Erhart et al. (1982) on a Frank dislocation loop oriented along the [1 1 1] axis in an 
infinite crystal (Fig. IV.1.c). 
The interstitial or vacancy character of a prismatic dislocation loop can also be determined from the analysis of 
the  calculated  coherent  X-ray  diffraction  pattern.  A 15  nm prismatic  loop with  b = 1/2[1  0  1]  (similar  in 
geometry as the one shown in section 3.5) is introduced in a 30 nm copper crystallite. The calculation of the 
CXD pattern for  g = [2 0 2] //  b (Fig. IV.1.e) reveals that the presence of diffuse scattering along the [2 0 2]  
direction,  while  almost  no diffuse scattering can be found along the opposite side of the reciprocal  lattice, 
signing the interstitial nature of the prismatic loop.
Finally, it is also possible to deduce the intrinsic or extrinsic character of a stacking fault from a single CXD  
pattern.  The calculation  presented  in  Fig.  IV.1  is  performed around the  2  2  0  reflection  (h+k+l ≠  3n).  As 
demonstrated in subsection III.3.3, for a given Bragg reflection, the phase jumps associated to an intrinsic and 

extrinsic  stacking  fault  in  the  (1  1  1)  plane  are  respectively  equal  to  ϕi =
2π
3

(h+k+ l ) and

ϕe = −
2π
3

(h+k +l ) . For g = 2 2 0, we thus obtain ϕi =
2π
3

and ϕe = −
2π
3

For this particular reflection the intrinsic stacking fault induce a positive phase jump. As illustrated on Fig. IV.1.e  
the satellite spot (weakest part of the splitted Bragg peak) is located along the [1 1 1] direction, i.e the negative 
δq values with respect to the Bragg position. For an extrinsic stacking fault, the phase jump has a negative value 
and the same satellite spot is located along the [1 1 1] direction, i.e in the positive δq (Fig. IV.1.f). 
Conversely, for the 2 0 0 reciprocal lattice point, the phase jumps associated to intrinsic and extrinsic stacking  
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faults are respectively negative and positive. In this case the position of the satellite spot is along [1 1 1] for the 
intrinsic stacking fault, and  [1 1 1] for the extrinsic. In good agreement with previous calculations (Erhart et al. 
1982, Larson & Young 1987, Nordlund  et al.  2000), we thus demonstrated that it is possible to establish the 
intrinsic (vacancy) or extrinsic (interstitial) type of a large number of defects.

IV.1.2. Determination of the size of a dislocation loop

With an incoherent and large X-ray beam, even if it is not possible to determine the Burgers vectors of individual  
dislocation loops, or even to distinguish between Frank and prismatic loops, a lot of information  can be obtained 
by a detailed analysis of both the HDS (Erhart et al. 1982) and the ADS (Larson & Young 1987). At large δq the 
scattering from interstitial and vacancy loops can be completely separated, and the dependency of the strain with  
the radius of the loop allows to estimate its size with the position of the scattering peak. Calculated diffuse  
scattering for discrete loop sizes of both type can be used to fit the experimental data and establish the type and 
size distribution of the loops.

A coherent X-Ray diffraction pattern also contains informations about the size of individual dislocation loops. It  
has been shown (Erhart et al. 1982, Zhou et al. 2005 and Kirk et al. 2006) that the size of a dislocation loop can 
be determined by the spacing between nodal lines of zero intensity.
According to Erhart (Erhart et al.  1982) they correspond to a cylinder of  scattering with zero intensity at the 
zeros of the Bessel  function that  results  from the coherent scattering of a circular  loop.  These cylinder are  
perpendicular to the loop axis and appear as concentric rings in a reciprocal lattice plane perpendicular to the  
loop axis (the (1 1 1) plane in the present study). Here, as illustrated on Fig. IV.2., the hexagonal shape of the  
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Fig. IV.2 (a) Calculated CXD pattern from a 25 nm (a) and a 10 nm (c) Frank 
dislocation loop with  b = 1/3[1 1 1] and  g //  b (g = 1 1 1).  Laue and total 
distorsion scattering from the 25 nm (b) and the 10 nm (d) dislocation loops.



Chapter IV: CXD applied to moderately complex systems, analysis of reciprocal space patterns

Frank loop is reflected in the shape of the nodal lines. 
Fig. IV.2.a &  IV.2.c show the calculated CXD pattern in the (1 1 1) reciprocal space plane for a 25 nm  and a 10 
nm interstitial Frank loop (introduced at the centre of a 30 nm Copper crystal of Wulff geometry) while Fig.  
IV.2.b and IV.2.d  show the sum of the total distortion scattering (HDS + ADS) and of the Laue scattering (SDS)  
(the amplitude scattered by the perfect crystal is removed, see Eq. (IV.1)) for the same dislocation loops.
The nodal lines of zero intensity appear very clearly on Fig. IV.2.b & IV.2.d, and their spacing is inversely 
proportional to the size of the loop. They are also visible on the CXD patterns with the same spacing, but the  
situation is further complicated by the fact they also interfere with the fringes induced by the finite-size of the  
crystal. For the large loop (Fig. IV.2.a), the loop and the crystal are almost of the same size such that the nodal 
lines of zero intensity also appear very clearly on the CXD pattern. For the case of loop significantly smaller  
than the crystal, the periodicity of the fringes related to the size of the crystal largely differ from the periodicity 
of the nodal lines of zero intensity. This results in a complex interference pattern where two sets of periodic  
fringes are visible. Nevertheless, the nodal lines are clearly visible in both cases and can be used to calculate the  
size of the loop. One can notice that the total scattering (Fig IV.2.a) and the diffuse scattering (IV.2.b) patterns  
are very similar in the case of the large dislocation loop. The loop size (25 nm) is comparable to the size of the 
crystal (30 nm), and most atoms are either atoms from the loop itself (Laue scattering) or from the distorted 
lattice surrounding the loop (HDS and ADS scattering). Hence the limited contribution from atoms of the perfect  
crystal. Conversely, a significant part of the scattering comes from the atoms of the undistorted lattice in the case 
of the small dislocation loop. The hexagonal shape of the particle is thus clearly visible on the CXD pattern in  
Fig. IV.2.c. 
As illustrated on table IV.1, the loop size determined by the nodal lines spacing is remarkably similar to the  size  
measured directly on the atomistic configurations. 

Vac 125 U.C Int 125 U.C Vac 75 U.C Int 100 U.C Vac  50 U.C Int 25 U.C

dmeasured  (nm) 206.2 215.7 115.2 174 71.4 45.5

dnodal lines  (nm) 204 215 112.1 171 68 43

Tab. IV. 1 Comparison between the dislocation loops size measured from the atomistic configuration and calculated from 

the spacing of the nodal lines of zero intensity. U.C denotes the number of units cells in the loops.

This approach is thus efficient to estimate the size of individual dislocation loops as well as their geometry,  
Burgers vector and interstitial or vacancy type and has been demonstrated experimentally with the use of a  
coherent electron beam by Kirk et al. (Kirk et al. 2005, Kirk et al. 2006). 
In conventional X-ray diffuse scattering experiments, performed with an incoherent and large beam, the intensity  
distribution is averaged over many loops and various sizes and orientations. However,  with the availability of 
coherent and microfocused X-ray beams and progress in focused X-ray optics, it should be possible to perform 
similar studies with X-rays. 

IV.2. Analysis of the CXD pattern of a moderately complex system: nanoindentation of a 

Nickel thin film

The study of the simulated nanoindentation of a gold nanoparticle (section III.4) demonstrated the ability 
of coherent X-ray diffraction to determine the nature of a given individual defect (Burgers vector, dissociation 
plane, approximate position of the defect...). However, in the case presented in section III.4, only a single defect  
is present in the particle at the particular stage of the indentation process. Additionally, given the small size of  
the particle, the defects nucleated consist of dislocation half loops and not full prismatic dislocation loops which  
are susceptible to be nucleated upon indentation of a sub-micron f.c.c. particle. 
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A simulation by molecular dynamics of plastic indentation on a Nickel thin film made in the lab. (Chang et al. 
(2010)) is used to evaluate the informations that can be retrieved by  direct analysis of CXD in a moderately 
complex case. The nickel thin film contains a network of prismatic dislocation loops nucleated on various slip 
planes. The nanoindentation was carried out along the  [1 1 1] direction of a nickel f.c.c. thin film and an EAM 
potential was employed for nickel atoms (Mishin et al. 1999). The simulation cell is shown schematically in Fig. 
IV.3.a. The indenter is modeled by a repulsive sphere with a radius of 120 Å. The size of the crystal is  173 × 196 
× 162 Å3 containing 521642 atoms. The sphere is gradually moved into the crystal in steps of 0.1 Å along the [1 
1 1] direction, with the bottom atomic layer of the crystal held fixed in that direction (non deformable substrate  
assumption). Periodic boundary conditions are applied along the (1 0 1) and (1 2 1) sides of the cell.  Between 
each increment, the potential energy of the cell is minimized using a Conjugate Gradient algorithm in order to  
obtain a succession of quasi-equilibrium states with increasing indentation depths. Additional details about the  
simulation can be found elsewhere (Chang et al., 2010).

The nucleation process of dislocation is rather complex. Defects first appear at a few nanometers below the  
surface. They first evolve into dislocation lines with Burgers vectors of type ½<1 1 0> and stacking faults in a {1 
1 1} plane bordered by two Shockley partials. Two dislocations segments on two slip systems sharing a common 
Burgers vector form an interstitial prismatic loop. The loops expand in the crystal and eventually detach from the 
surface. They then move away from the surface along their glide cylinder parallel to their Burgers vector. A 
complex network of dislocations is left near the surface beneath the indenter. Further indentation produces a 
more  complex  network  from  which  prismatic  loops  are  regularly  emitted.  At  the  end  of  the  indentation  
simulation, four distinct prismatic loops in three  equivalent variants can be found in the nickel crystal (Fig.  
IV.3.b). One of them with a Burgers vector of  b1 = ½[1 1 0]  two other with b2 =½[0 1 1]  and one with b3 =½[1 
0  1].  As illustrated on Fig.  IV.3.a, the loops  plastically accommodate a net displacement along the [1 1 1] 
direction of indentation and the projection of their glide cylinders covers the contact area with the indenter. Once 
introduced in the crystal, each prismatic loop induces plastic steps on the indented surface corresponding to a  
punch along its Burgers vector. The central triangle shared by the three nucleated loops is displaced along the [1 
1 1] direction as a combination of the three displacements.

In the kinematic theory of diffraction, the scattering amplitude of the individual defects is given by a coherent 
superposition of the scattering amplitudes resulting from the defect atoms and the displaced lattice atoms in their 
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Fig. IV.3 (a) Schematic description of loop nucleation process during [1 1 1] indentation. (b) Atomistic configuration at 
the end of the simulated nanoindentation. Only defective atoms are shown
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neighborhood. With an incoherent x-ray beam the diffuse-scattering intensity arising from a small concentration  
of randomly distributed lattice defects is obtained by the incoherent summation of the contributions from each 
defect.  As already mentioned in the previous section, a detailed analysis of the diffuse scattering at large  δq 

allows to establish the loop type and size distribution. It is however not possible to determine their detailed 
geometry and Burgers vector, and to distinguish between a faulted and a perfect dislocation loop. 
With a coherent X-ray (or electron) beam, the defects in the probed volume interfere coherently, yielding a  
complex “speckled” CXD pattern.  In  the following we aim at  establishing the possibility  to  determine the  
geometry, size, Burgers vector and interstitial or vacancy of each individual defect, when a small assembly of  
defects is illuminated with a coherent X-ray beam.
We apply the procedure described in section III.4 to try to determine the Burgers vector of the loops in the 
crystal. Since several loop with different Burgers vectors can be found in the crystallite, there are no diffraction 
conditions where g.b = 0 for all four loops. Additionally, the profile of the displacement field around prismatic 
loops is not as straightforward as in the case of perfect line dislocation (where analytical expression of the  
displacement field can be derived), each loop consist of two dissociated dislocation segments with Shockley  
partial dislocations.  
As stated in section III.3.2,  a dislocation is  completely invisible for  g.  b = 0 and  g .(bxt)  = 0 (t being the 
dislocation  line  direction).  This  particular  case  only  occurs  for  a  perfect  line  dislocation,  and  when  the  
dislocation is dissociated, a part of the displacement field surrounding the defect is necessarily projected onto the 
scattering vector. Hence, g.b = 0 does not imply g.u = 0. Rather than complete invisibility conditions, prismatic 
loops which fulfill the conditions  g.b = 0 are expected to induce weak perturbations of the CXD pattern. 

We first  use non-coplanar 1 1 1-type diffraction vectors.  As illustrated in Fig.  IV.4,  the diffraction patterns 
displays streaks along the [1 0 1], [1 2 1] and [1 1 1] directions which are fringed due to the finite size of the 
crystal.  Strong interference effects (speckle pattern) between multiple defects can be observed in the diffuse 
scattering intensity. 
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Fig. IV.4 Calculated CXD patterns from the simulated indented for four different 1 1 1-type 
diffraction vectors. The selected volume he reciprocal space is equal to 0.09x0.09x0.09 (1/ 
Å)3 



Chapter IV: CXD applied to moderately complex systems, analysis of reciprocal space patterns

For g � 1 1 1, all loops are visible, while only one type is visible for the other {1 1 1}  vectors (Tab. IV.2). The 
strongest effect is thus observed for the 1 1 1 reflection (Fig. IV.4.d) with a large amount of  diffuse scattering 
mainly along the [1 1 1] direction (out of the plane of the figure), and a maximum intensity equal to less than 
50% of that of the perfect crystal. 
For the other {1 1 1} reflections, the diffraction pattern is less altered with a lower amount of diffuse scattering  
since only one type of dislocation significantly contributes to the diffuse scattering. The largest perturbations are 
encountered for both g � 1 1 1 (Fig. IV.4.c) when only the dislocation loop with b� = ½[1 0 1] is visible (lower 
maximum of intensity: Imax= 0.58.I0) and for g � 1 1 1 (Fig. IV.4.a) where the two dislocation loops with b2 = ½[0 
1 1] are visible (Imax=  0.58.I0). Intuitively we would have expected the  1 1 1  reflection to induce the most 
significant perturbations on the diffraction pattern. However it should be noted that the b2  loops are smaller than 
b3  and one of them is very close to the edge of the crystal. We have seen in section III.3.7 that CXD is very  
sensitive to the defect position and size. For a dislocation loop, it is not surprising to see that a large and central 
loop induce the same amount of diffuse scattering as two smaller dislocation loops with one of them close to the 
crystal surface. It should be noted though, that contrary to a single dislocation line, a dislocation loop does not  
induce a phase shift of  two large volumes on each part of the dislocation line, and  the position of this type of  
defect is expected to have a smaller influence, especially if they are small relatively to the size of the crystal  
(small extent of the displacement field and small size of the phase-shifted volumes).
For the last {1 1 1} reflection,  g � 1 1 1  sensitive to the b1 loop, the decrease of the maximum intensity is less 
pronounced (Imax= 0.68.I0). This can probably explained by the smaller size of the loop and its position closer to 
the crystal surface (as compared to the b3 loop). It should be also noted  that the conditions g.  b = 0  does not 
imply  a  complete  invisibility  of  the  defect  and  for  each  reflection  the  variants  that  fulfill  the  invisibility  
conditions also partially contribute to the perturbations on the CXD patterns. Finally, the contribution of the 
complex network of dislocations below the surface (rather weak due to their position close to the surface), which 
also depends on the diffraction conditions, should not be forgotten. 
A closer look at  the distribution of the intensity (Fig  IV.5) of the three reflections reveals that  it  is  mainly 
distributed for δq parallel to g, i.e along the [1 1 1] direction for g =  1 1 1. It is actually slightly disoriented with 
respect to g in a direction intermediate between g and b. Such asymmetry of the scattering is characteristic of 
interstitial  dislocation loops,  and from Fig.  IV.5.,  it  is  clear  that  all  loops within the crystal  are  interstitial 
(extrinsic) prismatic dislocation loops. 
The Frank or prismatic character of the dislocation loop can also be clearly determined from the analysis of the 1  
1 1-diffraction pattern. Provided that the invisibility conditions are not fulfilled (see subsection III.3.3), a diffuse  
streak of intensity (fringed due to the finite size of the crystal) should be visible along the normal to the{1 1  
1} faulted planes. No such feature can be observed on any of the calculated diffraction patterns, which indicates  
the prismatic nature of the dislocation loops.
The use of four 1 1 1-type reflections validate the presence of several variants of interstitials prismatic loops in 
the crystallite, the b�  type contributing more to the perturbations observed on the CXD patterns. In section III.3.5 
it has been shown that the best conditions to evidence a prismatic dislocation loop are obtained for g // b. Three 2 
2 0-type reflections are used: g = 2 2 0, 0 2 2 and 2 0 2, respectively parallel to b1 , b2  and  b3. 
Similarly to our observations for the 1 1 1-type g vectors, the maximum effect is observed for  g = 2 0 2  (Fig. 
IV.6.b) with the largest decrease of the maximum of intensity  (Imax= 0.31.I0  as opposed to Imax= 0.37.I0  and Imax= 

0.38.I0 for g = 2 2 0 and g = 0 2 2). The maximum effect is observed when g is parallel to the Burgers vector of 
the largest and most central dislocation loop. 
As for the 1 1 1-type diffraction vectors, the diffuse intensity is stronger for δq parallel to g as expected from 
interstitial dislocation loops. If all dislocation loops had the same Burgers vector, for instance b = ½[1 1 0], the 
diffuse scattering would be distributed along the [2 2 0] direction owing to the interstitial type of the dislocation 
loop. Here the analysis is complicated by the presence of loops with at least three distinct Burgers vector. For a  
scattering vector parallel to one of them, the displacement field of the loop with g // b  has the largest projection 
onto the scattering vector. However the displacement field from the other loop variants has also some projection  
on g and as a consequence, the diffuse scattering is not distributed along a specific direction, except for g = 2 0 2 
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where  oscillations  can be observed along the  2 0  2 direction,  another  evidence  that  the  b3  variant  has  the 
strongest contribution on the diffuse scattering. To further refine the analysis of the prismatic loop size and 
distribution in the crystal, we use 4 2 2-type reflections which correspond to vectors parallel to partial Burgers 
vector. Table 2 summarize the calculated intensities for three distinct type of scattering vectors (1 1 1, 2 2 0 and 4 
2 2), and their angle with respect to the Burgers vectors of the prismatic dislocation loops. The smaller is the  
angle, the larger is the projection of the displacement field onto the scattering vectors.  Tab. IV.2 confirms a very 
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Fig. IV.5 Calculated diffraction patterns from the simulated indented nickel crystal for  g =  1 1 1 (a), g =  1 1 1  (b)  and 
g =  1 1 1 (c)

Fig.IV. 6  Calculated diffraction patterns from the simulated indented nickel crystal for  g =  2 2 0 (a), g =  2 0 2  
(b)  and  g =  0 2 2 (c)
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g Imax/I0 b1 [1 1 0] b2 [0 1 1] b3 [1 0 1]

2 2 4 0.115 54.7 30 30

2 4 2 0.150 30 30 54.7

4 2 2 0.117 30 54.7 30

2 2 4 0.169 54.7 73.2 73.2

2 4 2 0.124 73.2 73.2 54.7

4 2 2 0.142 73.2 54.7 73.2

2 4 2 0.192 30 73.2 90

4 2 2 0.230 30 90 73.2

2 2 4 0.180 90 30 73.2  

2 4 2 0.234 73.2 30 90

2 2 4 0.150 90 73.2 30

4 2 2 0.126 73.2 90 30

1 1 1 0.479 35.26 35.26 35.26

1 1 1 0.580 90 35.26 90

1 1 1 0.583 90 90 35.26

1 1 1 0.687 35.26 90 90

2 2 0 0.380 0 60 60

0 2 2 0.367 60 0 60

2 0 2 0.308 0 60 0

Tab. IV.2 Comparison of the decrease of intensity induced by the three variants of dislocation loop for various diffraction 
conditions

clear and general tendency. The b3 loop induce the largest perturbations in the CXD patterns, generally followed 
by the two b2 loops and the smaller  b1  loop. For instance, the reduction of the maximum of intensity is much 
more pronounced for g = 2 4 2, for which the angle with b3 is the smallest (as compared to the angle with  b1 and 
b2),  than for  g = 2 2 4 (small angle with  b1 and large angle with  b2 and b3) . For g = 4 2 2 (small angle with  b2  

and large angle with   b1  and  b3). the reduction of the maximum of intensity is intermediate between the two 
previous cases. The largest decrease of the maximum of intensity is obtained for g = 4 2 2 where the angle with 
b2 and b3 is minimal while the minimum decrease is found for g = 2 4 2 normal to b3 (g.b3 = 0) and almost normal 
to  b1 .

The detailed study of the CXD patterns from an assembly of prismatic dislocation loop using various  
diffraction conditions provide valuable information on the nature and content of defects. The absence of diffuse 
streaks of intensity along any of the <1 1 1> direction allows to determine the prismatic (perfect) nature of  
dislocation loops. Regarding the interstitial or vacancy type and the size distribution of the loops, Larson (Larson  
&  Young  1987)  demonstrated  that  the  detailed  analysis  of  the  asymptotic  diffuse  scattering  and  a  fitting 
procedure allows the determination of the size distribution and interstitial and vacancy character of an assembly  
of dislocation loops. To simulate realistic experimental conditions (incoherent  X-ray beam),  his calculations 
considered  the  presence  of  loops  on  all  equivalent  {1  1  1}  planes  and  an  incoherent  summation  of  the 
contribution from each defect. With a coherent-X-ray beam, the interferences between multiple defects produce  
very complex diffraction patterns, but the interstitial character of the dislocation loops can be clearly established 
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from our calculations. The methodology described by Larson is clearly more adapted to an incoherent X-ray  
beam. However, based on the position and intensity of the asymptotic diffuse scattering peak, its methodology  
could  in principle be applicable with a coherent X-ray beam
The use of coherent-X ray beam foresees the possibility to distinguish between various loops orientations. The 
presence of three different type of prismatic dislocation loops (b1, b2 and b3) is clearly established. While two b2  

loops can be found in the crystal (only one  b1 and b3), the largest perturbations on the CXD patterns are induced 
by the b3 loop which is the largest and the most central. It is thus clear that, the effect of a given crystallographic 
variant of dislocation loops on CXD patterns depends more on the size and central position of the loops rather 
than their number since a single b3  dislocation loop causes more effect than two b2. 
Even with a low number of defects (only four prismatic dislocation loops in the crystal), it appears difficult to  
determine  the  number  and proportion  of  the  crystallographic  variants.  It  is  even  more  complicated  (if  not  
impossible)  to  determine  the  Burgers  vector,  geometry  and  position  of  each  individual  dislocation  loop. 
Additionally, the direct analysis of the CXD patterns implies the use of at least four 1 1 1-type reflections to get  
useful information about the Burgers vector of the dislocation loops in the structure, and even more to refine the 
analysis. Measuring such a large number of reflections on the same crystal would be very challenging if not 
unrealistic experimentally. 

IV.3. Case of a system with multiple stacking faults in equivalent slip planes

As already pointed out  in  Chapter  III,  stacking faults  can be considered as  strain-free defects.  The  
signature of such defects on CXD patterns is only due to the phase jump induced by the removal or insertion of 
densely-packed {1 1 1} planes, and can be even evaluated analytically (subsection III.3.3). If CXD has been so 
far mostly limited to systems containing one or few defects, a couple of experimental studies have successfully  
demonstrated the ability  of  the technique to  investigate  systems containing multiple  stacking faults  (Favre-
Nicolin et al.  2011, Jacques  et al.  2013). In these two studies, the SF are distributed in only one of the {1 1 
1} crystallographic planes. In the present work we aim at demonstrating that CXD can also be used for complex 
network of stacking faults, distributed on several {1 1 1} crystallographic planes
The atomic simulation of the liquid state dewetting of a copper island which is presented in further details in  
Chapter IX provides a good example of such complex network of stacking faults.  Such networks are often 
experimentally found in strain relaxation of very thin films/small scale structure. In our simulation, driven by 
the high lattice mismatch between the f.c.c. copper atoms and the underlying b.c.c. tantalum substrate, partial  
dislocations are nucleated at the substrate particle interface. The leading partial propagate in the crystal until it  
reaches the top surface, leaving a stacking fault inside the particle. 
Fig. IV.7. illustrates the rich and complex microstructure of stacking faults and microtwins which is formed upon 
the  rapid  cooling  of  the  copper  particle.  Interestingly  the  partial  dislocations  nucleate  and  propagate 
predominantly in one slip system for the small (10.5 x 10.5 x 4.1 nm3) particle (Fig. IV.7.a) while 2 or 3 of them 
(depending if the particle is annealed at high temperature before the quench) are activated in the large one (18.5 
x 18.5 x 6.7 nm3, Fig.  IV.7.b). Several grains can be found in the large particle as well as disordered regions 
(circled in red). The microstructure of the two particles is commented in more details in chapter IX. 
For both particles, the invisibility conditions established in subsection III.3.3 are applied to determine the slip  
planes of the partial dislocations and their proportion, directly from the analysis of the CXD pattern.  
As illustrated in Fig IV.7, two slip planes can be found in the small particle: the (1 1 1) and the (1 1 1) planes, the 
latter being largely predominant. The invisibility conditions for these 2 faulted planes are respectively g  = 1 1 1 
(h + k +l = 3n) for the (1 1 1) plane and g = 1 1 1 (h - k +l = 3n) for the (1 1 1) plane.   
Fig IV.8 shows the calculated CXD pattern for four non-coplanar 1 1 1-type diffraction vectors. To facilitate the 
analysis of the diffraction patterns, the scattering from the underlying Ta substrate has been removed.  
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For  g  = 1 1 1 (Fig. IV.8.a), an intense streak of intensity can be observed along the [1 1 1] direction while no 
streak is observed along [1 1 1]. Conversely, for  g  = 1 1 1 (Fig. IV.8.b)  two (1 1 1) stacking faults induce a 
weak streak of intensity along the [1 1 1]  direction while no diffuse scattering is observed along the [1  1 1] 
direction. The streak display oscillations which period is equal to the invert of the distance between the two (1 1 
1) intrinsic  stacking faults  (d  = 2.1 nm).  One can also notice  the presence of the diffraction from the two 
pseudomorphic layers of copper (region circled in yellow). Of course they can not be observed experimentally 
since they diffract in the same position of the reciprocal space as the Tantalum substrate.
In good agreement with the calculations by Jacques et al. (2013), the number of stacking faults and the volume 
fraction of the crystal over which they are distributed have a strong influence on the decrease of the maximum 
intensity. Here, a large number (n = 7) and volume fraction (V~70%) of the 1 1 1 stacking faults leads to a  large 
decrease of the maximum of intensity for g  = 1 1 1 (Imax = 0.16.I0).  On the other hand the two (1 1 1) stacking 
faults, distributed over a small volume fraction (V~5%) induce a limited decrease of the maximum of intensity 
for  g  = 1 1 1 (Imax  = 0.42.I0). For g  =  1 1 1  and  g  =  1 1 1 (Fig. IV.8.c & IV.8.d) which allow to see the 
signature of both stacking fault type, streaks are observed along both [1 1 1] and [1 1 1] directions, and the streak 
along [1 1 1] is much more intense than its counterpart along [1 1 1]. It is clear that the intensity of the streaks 
are driven by the number, position and volume fraction of the stacking faults.  Assuming a number of stacking 
faults large enough to make statistics, the higher is the number of stacking faults in a given {1 1 1} plane and the  
larger is the volume over which they spread, the higher is the intensity of the diffuse streak normal
to the stacking fault plane.
For g = 2 0 2  (Fig. IV.8.e) which fulfills both invisibility conditions (h+k+l = 3n and h -k +l = 3n), the streaks 
are absent in both [1 1 1] and [1 1 1] directions. Finally for g = 0 0 2, streaks are visible along both directions 
(Fig. IV.8.f). 
It should be noted that this statistical approach proposed by Jacques et al. (2013), based study of the decrease of 
the maxima of intensity, and of the relative intensities of the streaks normal to the SF implies that the number of  
defects is sufficiently large and distributed over a large volume fraction. A coherent-X-ray beam is interesting for 

134

Fig. IV.7 (a) 10.5 x 10.5 x 4.1 nm and (b) 18.6 x 18.6 x 6.7 nm Copper particles dewetted on a Tantalum  
substrate above  the melting temperature. Only the defective atoms are shown. In both particles, several intrinsic 
stacking faults (S.F), micro-twin boundaries (T.B) and disordered regions (circled in red) can be evidenced. Both 
particles are seen from the [1 0 1] direction. The two region circled in green in (a) are separated by 7 intrinsic  
stacking faults.
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the study of defective systems precisely because the defects interfere coherently, and the averaging inherent to an  
incoherent X-ray beam is suppressed. Here it is clear that even for a low number of defects a complex “speckle” 
pattern is produced by the assembly of stacking faults. The determination of the spatial distribution of the SF 
from the analysis of the CXD pattern appear to be far from trivial. If the analysis of the speckle pattern becomes 
too complicated, the interest of a coherent X-ray beam becomes questionable, especially for systems containing  
stacking faults. Diffraction patterns measured with an incoherent-X-ray beam does not contain any speckle, but 
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Fig.  IV.8 Calculated  CXD diffraction  patterns  from the  small  (10.5  x  10.5  x  4.1  nm) copper  particle.  (a)  to  (d) 
Calculations for four 1 1 1-type diffraction vectors. (e) for g = 2 0 2  and for  g = 0 0 2. If possible, the direction of the 
diffraction vector is indicated by a red arrow. The black circle highlight the position of the satellite Bragg spot, and the  
yellow circle the position of the scattering from the two pseudomorphic copper layers.
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as discussed above, for a large number of defects, the informations on the spatial configuration, orientation and 
distribution of stacking faults in the volume are not deduced from the analysis of the speckle pattern. Only the  
decrease of the maximum of intensity and the orientation and intensity of the streaks normal to the stacking  
faults are needed, and both also appear on a diffraction pattern collected with an incoherent X-ray beam. 
That being said, some features on the CXD pattern can be  used to gain more insight in the precise determination 
of the microstructure. In the previous section it has been shown that the position of the satellite spot with respect  
to the reciprocal lattice point allows to determine the intrinsic or extrinsic type of a stacking fault. 
As illustrated on Fig. IV.8, similar satellite spot (circled in black) can be found for an assembly of (1  1 1) 
intrinsic stacking faults. The stacking faults are induced by the dissociation of perfect dislocations are indeed 
necessarily intrinsic (see subsection III.3.3). The presence of a satellite spot for a single stacking fault located at  
the centre of the crystal results from a phase shift  between the two parts of the crystal on each side of the  
stacking fault. Here we assume that this satellite spot is induced by the phase shift between the largest volumes 
of the crystal (circled in green in Fig. IV.7), which are separated by 7 intrinsic stacking faults.  The resulting  

phase jump for g =1 1 1 is thus equal to: ϕi = 7.
2 π
3.

(h−k+ l) = 4π+
2π
3

=
2 π
3

With a positive phase jump and stacking faults in the (1 1 1) plane, the satellite spot should be located along the 
[1 1  1] direction which is  the case as illustrated on Fig.  IV.8.b (circled in black). Conversely,  and in good  
agreement with the expectations from intrinsic stacking faults, the satellite spot is along the [1 1 1] direction for 
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Fig. IV. 9 Calculated CXD diffraction patterns from the small (18.6 x 18.6 x 6.7 nm) copper particle. (a) to (d) 
Calculations for four 1 1 1-type diffraction vectors. If possible, the direction of the diffraction vector is indicated by a 
red arrow.
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g = 1 1  1 , g = 1  1 1 and  g =  0 0 2 for which ϕi = −
2 π
3

. This confirms the intrinsic nature of the stacking 

faults. Of course this analysis is only possible because the number and type of the SF is already known. It also  
assumes that the volumes circled in green are indeed the largest volume in the crystal, and that the interferences 
between the other phase-shifted volumes does not induce a modification of the position of the satellite spot. It is  
thus clear that such interpretation would not be possible from experimental data, and unless the displacement 
field is  reconstructed,  it  is  not  possible  to  determine the  extrinsic  or  intrinsic  character  of  each individual  
stacking fault for a large density of such defects.
The  simulated  case  of  dewetting  of  a  'large'  copper  particle  possesses  an  even  richer  and  more  complex 
microstructure including  grain boundaries, microtwin boundaries, disordered regions (circled in red) as well as 
two variants of intrinsic stacking faults. Similarly to the small particle, the stacking fault are located in the (1 1  
1) and the (1 1 1) planes. g  = 1 1 1 and g  = 1 1 1 fulfill the invisibility conditions for the (1 1 1) and (1 1 1) 
stacking faults respectively. Only one streak of intensity is visible in both cases : along [1 1 1] for g = 1 1 1 (Fig. 
IV.9.a) and along  [1  1 1] for  g   = 1 1 1 (Fig. IV.9.b). The richer microstructure produces a more speckled 
diffraction pattern with a very low maximum of intensity with respect to the perfect crystal and as compared to  
the small copper crystal (Imax  = 0.06.I0). One can also notice that the (1  1 1) stacking faults induce a larger 
decrease of the maximum of intensity given due to their larger number and volume fraction (60% vs 40%).
For the two other <1 1 1> reflections, streaks of diffuse intensity are visible along both directions. They also  
appear  doubled.  This  is  probably  due  to  the  diffraction  from  two  distinct  grains  which  are  only  slightly  
misoriented and diffract in almost the same Bragg conditions. Contrary to the case of the small particle, the  
intrinsic or extrinsic character of the stacking faults can not be determined from the analysis of the CXD patterns 
since no distinct satellite peak is visible. The intensities of the streaks are comparable, the [1 1 1] streak being 
slightly more intense owing to the larger number and volume fraction of the (1 1 1) stacking faults.

The direct analysis of CXD patterns in the case of a complex network of stacking faults proves to be an  
interesting approach. The use of four  non coplanar 1 1 1-type reflections allows to determine without ambiguity  
the orientation of the faulted planes using the invisibility conditions. Even better,  if  several crystallographic 
orientations are present in the structure, the intensity of the streak normal to the faulted plane enables to estimate 
the relative proportion of the different orientations. The analysis of the decrease of the maximum of intensity  
provides a good estimation of the volume fraction over which the stacking faults are distributed in the crystallite 
(Jacques et al., 2013).
However, it should be noted that this approach does not necessarily require the use of a Coherent-X-ray beam, 
since no or very few information is deduced from the speckle pattern. The complexity of the latter makes far  
from trivial the determination of the spatial configuration of the SF in the structure directly form the analysis of  
the CXD pattern. If the displacement field can not be reconstructed, the interest of a coherent X-ray beam for the 
analysis of a system with a large number of stacking  is thus questionable.
The analysis of the CXD patterns is more adapted for a low concentration of SF where the intrinsic or extrinsic  
character of the stacking fault can be determined from the position of the satellite spot, and where it is even  
possible to determine the spacing between the stacking faults if only two of them are present along a specific  
orientation. 

Conclusion

The  case  studies  of  the  simulated  nanoindentation  and  of  the  liquid  state  dewetting  of  a  copper  particle  
demonstrate  that  the  detailed  analysis  of  CXD patterns,  using  several  diffraction  vectors  is  an  interesting  
approach for moderately-complex and realistic systems. The use of invisibility conditions is efficient in the case  
of the network on stacking faults.  However,  ,  the analysis  of  the SF content  based on the decrease of the  
maximum of intensity and  of the relative intensities of the streaks normal to the SF does not necessarily require 
the use of a coherent-X-ray beam. 
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The simulated nanoindentation appears to be even more challenging, and it is obvious that in both simulated  
cases  the  identification  of  each  individual  defects  and  all  their  characteristics  (edge-screw  type,  burgers 
vector,...) although trackable is not possible through the direct analysis of the CXD patterns. 
In the next Chapter we will evaluate the ability of phase retrieval methods to reconstruct the 3D displacement  
field from such complex objects.
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Chapter V: Coherent Diffraction Imaging of single defects and of a small assembly 

of defects 

Introduction

In this Chapter, we aim at testing and validating the reconstruction of the 3D CXD pattern to investigate 
the microstructure of isolated crystals, with single dislocation, or a moderately complex network of defects. For 
the case of individual dislocation it has been demonstrated that the direct analysis of CXD patterns allows to  
determine all its characteristics  (dislocation or stacking fault, character of the line (edge/screw), Burgers vector,  
dissociation into partials, position...). This approach can be to some extent applied to more realistic/complex 
systems as shown with the case of the nanoindentation of a  gold crystallite. When multiple defects are nucleated  
on  equivalent  slip  planes,  as  in  the  case  of  the  nanoindentation  of  the  nickel  thin  film  (Chapter  IV),  the 
interpretation of the diffraction patterns is very delicate. Rather than trying to isolate the contribution of each 
individual defect on such complex CXD patterns a statistical interpretation could help to characterize them, as  
suggested by Favre-Nicolin et al. (2010)  and Jacques et al. (2013). 
Ideally, the best approach would be to reconstruct the 3D displacement field around each individual defect.  
There are only few examples of successful reconstructions of systems with crystal defects.  Takahashi  et al.  
(2013)  used 2D-Bragg ptychography to reconstruct a single dislocation and its associated strain field while  
Ulvestad et al. (2015) used Coherent Diffraction Imaging (CDI) to reconstruct a gold crystal with a microtwin. 
Recently Clark et al. (2015) demonstrated that CDI can be used to visualize a network of dislocations in a calcite 
crystal. In the following, we will demonstrate that CDI can be used to visualize both single and multiple defects  
in increasing order of complexity. We will also show the importance of the selection of pertinent diffraction  
vector to identify a given crystal defect.
By definition, a dislocation in crystals either ends at surface or form loops. Especially in fcc metals, dislocation 
lines  are  rarely straight  but  of  mixed character.  Moreover,  a  large  number  of  physical  process  lead to  the  
formation  of  closed  loops  of  various  type:  prismatic  for  indentation  or  around  precipitate,  Frank  loop  in  
quenched  or irradiated crystal, as a product of different dislocation interaction or during high temperature /  
creep...  
Similarly to the methodology  of Chapter III, we will start this section with very simple and typical single crystal  
defects such as screw and edge dislocations in both their perfect and relaxed state for various Bragg reflections.  
The use of realistic atomic scale calculations is required to take all physical effects into account: at first for the  
effect of dissociation into partials (physically related to the stacking fault energy of the crystal), then to have a  
good account of the core structure of the dislocation(s) (i.e where linear elasticity assumption does not apply) 
and finally to handle properly the boundary conditions (free surfaces /  facets of a small scale free standing 
crystallite). At first, we will determine and analyze the displacement field expected at the vicinity of straight  
defect, using the atomic configurations obtained by the atomic simulations of crystallites. We will then perform 
reconstruction calculations of configurations of dislocation of increasing complexity: curved dislocation, loops 
of various type and finally a complete microstructure generated in the course of a nanoindenter penetration in an  
initially pristine crystallite. Finally, by analyzing the microstructure in a nickel thin film undergoing simulated  
nanoindentation,  we  will  confirm  that  CDI  can  be  used  in  a  more  complex  system with  multiple  defects  
nucleated on several slip systems.

V.1. Reconstructed of the displacement field from single dislocation lines and comparison 

with their signature on CXD patterns

Note for the reader: The projections of the displacement field presented in this chapter are obtained by two 
distinct procedures:

140



Chapter V : Coherent Diffraction Imaging of single defects and of a small assembly of defects

– calculation  of  the  displacements  between  the  relaxed  atomic  positions  and  a  reference  perfect  
configuration with  the same number of  atoms.

– reconstruction of the displacement field using phase retrieval algorithms.
In Chapter I,  phase retrieval algorithms have been used for the reconstruction of various projections of the  
displacement field of a perfect dislocation. The very good agreement between the reconstructed and calculated  
displacement field from the atomic positions has been demonstrated (section I.3.4).
In a similar way, the projections of the displacement field are reconstructed for all the cases presented in this  
Chapter.  For  the perfect  dislocations,  the reconstructions are  very consistent  with the calculations  from the  
atomic positions. We chose not to show the comparison between the reconstructed data and the displacement  
field in order to avoid unnecessary overloading of the figures. All the displacement fields presented in sections  
V.1.1 and V.1.2 are thus calculated from the displaced atomic positions. 
The agreement between calculated and reconstructed displacement fields for relaxed defects was not discussed in 
Chapter  I  and  is  thus  evaluated  in  section  V.2.  The  visibility  of  dissociated  defects  with  the  expected 
experimental resolution is also commented in the same section.
For the more complex defect structures presented in the second part of this chapter, the  displacement field can 
not be calculated from the relaxed atomic positions (for various reasons that will be discussed in the following),  
hence, all the displacement fields presented starting from section V.3 are obtained by reconstruction.
The procedure used for all the reconstructions presented in this Chapter has been presented in Chapter I and is  
not further detailed. 

V.1.1. Simple case of a perfect screw dislocation

As shown in subsection III.3.1, in the hypothesis of an infinite isotropic medium, the displacement field 
of a screw dislocation is  parallel  to its Burgers vector (and to the dislocation line)  and  has a very simple 
expression. In a Cartesian frame, where x is the line direction and y and z  perpendicular to the dislocation line,  

uy=uz=0  and  u
x
= bθ

2π
=

b

2π
. tan−1 z

y
 (Hull  and  Bacon 1982).  The displacement  along the  line  direction 

increase uniformly from zero to b as the angle increase from 0 to 2π (Fig. V.1.a). Following elastic theory, the 
displacement field and thus the phase is continuous everywhere, except on the dislocation line where a phase 
jump can be observed.  Here, a perfect screw dislocation (with  b = ½ [1  1 0]) is introduced at the centre of a 
30x30x30nm3 gold crystallite in a Wulff geometry. In the following the various projections of the displacement 
field at the vicinity of dislocations generally corresponds to phase variation of more than 2π. In such cases to 
have a clearer picture of the displacement field, the phase is generally unwrapped (Herraez et al. 2002) before it 
is converted to lattice displacements. Here we represent the displacement and thus the phase as they would 
appear on a reconstruction prior to any phase unwrapping. This representation is chosen to quantify the phase 
jumps induced by dislocations which produce dramatic effects on the calculated CXD patterns (Chapter III &  
IV).  As described in subsection III.3.1, the uniform increase and continuity of the phase induce a ring-shaped 
intensity  distribution  on  the  CXD pattern  for  any   g.b  ≠ 0.  The  value  of  the  phase  jump depends  on  the 
component of the displacement field which is investigated. For g = 1 1 1, a phase variation of  2π corresponds to 
the lattice spacing between  two successive (1  1 1) planes. As shown on Fig. V.1.a, if θ increases by  2π, the 
displacement along the  [1 1 1] direction increases by a/√3 = 2.35 Å which corresponds to a phase variation of 
2π. The resulting phase jump between the two parts on each side of the dislocation line is π. This results in a  
splitting of the Bragg peak in two contributions of equal intensity, and a zero intensity at the theoretical Bragg 
position.
For  g = 2 4 2 an increase of θ by 2π results in a displacement of d = 2.5 Å along the  [2 4 2] direction. For this 
particular  diffraction  vector,  a  phase  variation  of  2π  corresponds  to  half  the  lattice  spacing  between  two 
successive (1 2 1) planes i.e  a/(2.√6) = 0.83 Å. Hence, the displacement d corresponds to a phase variation of 
6π. The phase jump between the two parts on each side of the dislocation line is equal to 3π. This also results in  
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the splitting of the Bragg reflection with an increased spacing between the two peaks as compared to the 1 1 1 
reflection. A systematic study of this splitting distance reveals that it increases with the value of the phase jump  
which in turn increases with the Miller indices of the reflection.

 

V.1.2  Dissociation of an edge dislocation

We now move on to the case of an edge dislocation to determine how the changes observed on the 
diffraction patterns during the dissociation of a perfect dislocation can be correlated to the variations in the 
displacement field. As a remind, for a perfect dislocation in the hypothesis of an infinite and isotropic medium, 
the displacement field u is equal to zero along the dislocation line t. In a Cartesian frame (x,y,z), where the x and 
z-axis are the Burgers vector and line directions respectively, it can be expressed as two components:   

– ux  // b
– uy   //  b  x  t  sensitive to the bending planes about the z-axis caused by the extra plane forming the  

dislocation (see subsections I.3.4 and III.3.2, Eq. (III.2) and Eq. (III.3) for more details). 
Here we introduce a perfect edge dislocation at the centre of a copper Wulff crystallite. The atomic positions are  
then relaxed according to the procedure described in section III.2. The atomic displacement along b, i.e. u220 is 
shown for both the perfect and relaxed dislocation (Fig. V.2). The case of the perfect dislocation was already 
presented in Chapter I.3.4. As opposed to a screw dislocation the displacement field is not isotropic for an edge 
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Fig. V.1 Case of the perfect screw dislocation. A dislocation line with b = ½ [1 1 0] 
is introduced  at  the  centre  of  a  30x30x30nm3 gold  nanocrystal.  Corresponding 
diffraction phase maps and diffraction patterns for g = 1 1 1 (a,b,c) and g = 2 4 2 
(d,e,f). The maximum and minimum for the displacement projected onto g and the 
phase are indicated on the colour bar by black and gray lines.  The depicted area on 
the CXD patterns is equal to (0.049 Å ¹)⁻ 2 
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dislocation. The origin of this anisotropy is discussed in section I.3.4. The anisotropy in the phase distribution  
(almost constant above and below and above the dislocation line and rapidly varying on the left and right of the  
dislocation line) results in an anisotropy of the diffracted intensity which is elongated along the [1 1 1] direction.  
As already discussed, the latter corresponds to the direction which connects the large regions of constant phase  
above and below the dislocation line.
For g = 2 2 0, a phase variation of 2π corresponds to half the lattice spacing between two (1 1 0) planes, i.e the 
magnitude of the Burgers vector. As shown from Fig. V.2.a , the minimum and maximum displacements along 
[1 1 0] with respect to the atomic positions in the perfect crystal are respectively -1.28 Å and 1.28  Å in the plane  
perpendicular to the dislocation line. The displacement amplitude is thus exactly equal to one lattice spacing  
between two (1  1 0) planes and corresponds to an overall phase variation of 4π. This implies that the phase 
difference between the two parts of the crystal on either side of the dislocation line is equal to 2π (Fig. V.2.b): the  
dislocation line does not induce any phase jump. Only the atoms on the dislocation itself are phase-shifted by π 
with respect to the surrounding atoms. Due to the absence of phase jump, the calculated intensity is not equal to  
zero at the Bragg position (Fig. V.2.c).
Upon dissociation of the dislocation, several interesting phenomena occur. As detailed in subsection III.3.3, the  
dissociation of the perfect dislocation in two partial Shockley dislocations leaves an intrinsic stacking fault in the  
(1 1 1) plane between the two partials. The two (1 1 1) planes involved in the stacking fault are shifted with  
respect to each other by 1.28 Å along [1 1 0]. This results in a 2π phase jump which remains invisible, in good 
agreement with the invisibility conditions for a (1 1 1) stacking fault: h + k + l = 3n which are fulfilled for g = 2 
2 0. The displacements are very anisotropic in the crystal with the phase rapidly varying on the left and right of  
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Fig. V.2 Case of the edge dislocation line, perfect (top) and dissociated (bottom), for g = 2 2 0 (g //  

b): Calculated  atomic  displacements  around  single  perfect  and  dissociated  edge  dislocations 
introduced at the centre of a 30x30x30nm3 copper nanocrystal. The maximum and minimum for the 
displacement and the phase are indicated on the colour bar by black and gray lines. The left and 
middle panels show g.u in  (1 1 2) and (1 1 1) planes respectively, while the CXD pattern is shown 
in the right panels. The depicted area on the CXD patterns is equal to (0.055 Å-1)2 
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the partial dislocation while it is almost constant on the top and bottom part of the nanocrystal. The two partial 
dislocations produce a pair of vortices of same chirality in the (1 1 2) plane (Fig. V.2.d). A slice along the [1 1 
1] direction reveals that both dislocations produce a π phase jump which results in the splitting of the Bragg peak  
in three spots (Fig. V.2.f.). The [1 1 1] direction of the splitting is given by the direction which connects the two 
regions of constant phase below and above the dislocation line (white arrow connecting the blue and red-circled  
areas).   One can also notice the increasing of the intensity of the central spot. The region in the stacking fault  
ribbon is phase-shifted by π with respect to the surrounding atoms (Fig. V.2.e).

Similarly to the case of the screw dislocation, the projection of the displacement onto the [2  4 2] reflection 
results in a phase variation of 6π in the plane perpendicular to the dislocation line (Fig. V.3.a). The phase jump 
between the two sides of the dislocation line is thus equal to 3π (Fig. V.3.b) that results in an intensity equal to 
zero at the Bragg position (Fig 3.c). Due to the anisotropy of the displacement field, the Bragg peak is also  
elongated along the [1 1 1] direction. The overall shape of the Bragg peak is very similar to the case of the 2 2 0 
reflection. This can be explained by the fact that both reflections are insensitive to the  uy  component of the 
displacement field. In both cases two minima of intensity (circled in red on Fig. V.3.c) are observed on each side 
of the Bragg position. As confirmed by calculations for other reflections, the total number of minima of intensity 
for an edge dislocation depends on the total phase variation in the plane perpendicular to the dislocation line. 
Here the total phase variation of 6π induce three minima of intensity. Similarly, for the 2 2 0 and 1 1 1 reflections 
respective total phase variations of  4π and 2π result in 2 and 1 minimum of intensity. When the dislocation  
dissociates into two partials, the phase jump induced by the stacking fault ribbon is visible but its value is not  

144

Fig. V.3  Case of the edge dislocation line, perfect (top) and dissociated (bottom), for g = 2 4 2 (g // bp): 
Calculated atomic displacements around single perfect and dissociated edge dislocations introduced at the 
centre of a 30x30x30nm3 copper nanocrystal. The maximum and minimum for the displacement and the 
phase are indicated on the colour bar by black and gray lines. The left and middle panels show g.u in  (1 1 
2) and (1 1 1) planes respectively, while the CXD pattern is shown in the right panels. The depicted area 
on the CXD patterns is equal to (0.055 Å-1)2 
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constant over the stacking fault width (Fig. V.3.d and V.3.f). u242  becomes even more anisotropic with a similar 
behaviour  to  what  has  been observed for  u220:  very steep phase gradients  on the left  and right  side of  the 
dislocation line (2π variation over a very short length), almost constant phase in the top and bottom part of the  
nanocrystal. As illustrated in Fig. V.3.e, the 3π phase jump now decomposes in two successive phase jumps of 2π  
and π induced by the two partial dislocations. A closer look at Fig. V.3.d reveals that the phase undergoes very 
rapid variations (over 3 or 4 atoms) rather than a sharp phase jump as in the case of the perfect dislocation. The  
overall phase 3π shift between the left and right parts of the crystal is thus preserved. The intensity vanishes at  
the Bragg position and the Bragg peak splits into two parts along the [1 1 1] direction (Fig. V.3.f). Similarly to g 

= 2 2 0, the direction of the splitting is given by the direction which connects the two regions of constant phase  
below and above the dislocation line (white arrow connecting the blue and red-circled areas).  

The case  g =  2 0 2 which is not perpendicular to the Burgers vector of the perfect dislocation but to the Burgers  
vector of one of the two partial dislocations has not been presented in the section III.3.2 but also gives interesting 
results. 
The case of a perfect dislocation is quite straightforward as this reflection is only sensitive to the ux  component 
of the displacement field (parallel to the Burgers vector). The minimum and maximum displacements projected 
onto g = 2 0 2 (with respect to the perfect crystal) in the (1 1 2) plane perpendicular to the dislocation line are 
respectively -0.89  Å and 0.38 Å. The displacement amplitude is thus equal to 1.27 Å,  i.e. half the distance 
between two successive (1 0 1) planes corresponding to a phase variation of 2π (Fig. V.4.a). The dislocation line 
induces a discontinuity in the phase, and as illustrated on Fig. V.2.b which show u202  in the (1 1 1) plane left side 
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Fig. V.4  Case of the edge dislocation line, perfect (top) and dissociated (bottom), for g = 2 0 2. 

Calculated  atomic  displacements  around  single  perfect  and  dissociated  edge  dislocations 
introduced at the centre of a 30x30x30nm3 copper nanocrystal. The maximum and minimum for 
the displacement and the phase are indicated on the colour bar by black and gray lines. The left 
and middle panels show g.u in  (1 1 2) and (1 1 1) planes respectively, while the CXD pattern is 
shown in the right panels. The depicted area on the CXD patterns is equal to (0.055 Å-1)2
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of the crystal is phase-shifted by π relatively to the right side. This yields a splitting of the Bragg peak in two  
equal contributions along the [1 1 0] direction, and an intensity equal to zero at the Bragg position (Fig. V.4.c). 
Upon relaxation, the perfect edge dislocation dissociates in two partials with  Burgers vectors of  bp1  = 1/6[2 1 1] 
and  bp2  = 1/6[1 2 1], the latter being perpendicular to g. 
As illustrated on Fig V.4.d & V.4.e, this results in a complete invisibility of bp2. The centre of the 2π phase vortex 
is now shifted to the position of the second partial with bp1 = 1/6[2 1 1]. The atomic displacements in the vicinity 
of the dislocation line are again very anisotropic.  The splitting of the Bragg peak is the signature of the  π phase 
jump induced partial dislocation (Fig 4.e and 4.f.). As shown on the (1 1 1) cut of the reciprocal space, the two 
spots are less intense and misoriented compared to the case of the perfect dislocation. This can be attributed to  
the curvature of the dislocation line.
As shown in subsection III.3.2, the complete invisibility of a perfect edge dislocation can only be achieved when  
both invisibility conditions g.b = 0 and g.(bxt) = 0 are satisfied.  This is only the case when g is parallel to the
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Fig. V.5  Case of the dissociated dislocation line for g = 2 2 4 (g.b = 0 and g.bxt = 0). 
Calculated  atomic  displacements  around  single  perfect  and  dissociated  edge  dislocations 
introduced at the centre of a 30x30x30nm3 copper nanocrystal. The maximum and minimum for 
the displacement and the phase are indicated on the colour bar by black and gray lines .(a) u224 

displacement field in the (1 1 0) plane. (b)  εyy (with y  being the dislocation line direction). (c) 
u224 displacement field in the (1 1 2) plane. The regions of positive and negative displacements 
are indicated with the plus and minus signs. The black circles denote the small areas which are  
phase-shifted by  π. (d)  u224 displacement field in the (1 1 1) plane. (e-f)  Corresponding CXD 
pattern for  g = 2 2 4, in the (1 1 0) (e), (1 1 2) (f) and (1 1 1) (g) planes. The depicted area on the 
CXD patterns is equal to (0.055 Å-1)2
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dislocation line, i.e g = 2 2 4. For a perfect dislocation, the displacements along the dislocation line [1 1 2] are 
equal to zero,  i.e. the phase is constant along this direction and the CXD pattern is similar to that of a perfect  
crystal for g = 2 2 4.  When the perfect dislocation dissociates into two partials, the small displacements along [1 
1 2] produce a visible effect on the CXD pattern (Fig V.5.e. to g). They consist mainly in the decrease of the 
maximum of intensity of the central spot, and the presence of diffuse scattering, mainly concentrated into the (1  
1 2) plane parallel to the dislocation line (subsection III.3.2 for more details). Both the displacement field in the 
real space and the diffracted intensity in the reciprocal space are symmetric with respect to the (1 1 1) plane. 
Fig. V.5.a reveals that the maximum displacements are concentrated in the vicinity of the dislocation line with 
high positive atomic displacements just below the dislocation line and high negative displacements just above  
(Fig.  V.5.a).  The  magnitude  of  both  displacements  tends  to  decrease  with  an  increasing  distance  to  the  
dislocation line. Converted into strain (with y being the [1 1  2] direction), it results in the presence of  high 
compressive strain (up to 6x10-3) below the dislocation line and tensile strain above the dislocation line with a 
lower magnitude (up to 2x10-3) (Fig. V.5.d.). 
At the center of the stacking fault ribbon, the phase jump along the [1 1 1] direction is almost equal to 2π. This is 
in good agreement with the invisibility conditions for a stacking fault : h+k+l = 3n which are fulfilled for g = 2 2 
4. For atoms close to the partial dislocations the phase jump decreases to a value of  π. This phase jump does not  
produce strong effects on the CXD pattern  since only a very small area just below the stacking fault ribbon  
(circled in black  on Fig V.5.c) is phase-shifted by π with respect to the upper part of the crystal. It could explain  
the increase of intensity of  the fringes along the [1 1 1] direction as well as the doubling of their period. Fig 
V.5.d reveals a shift in the phase of the atoms in the stacking fault ribbon with respect to the surrounding atoms.  
While the phase varies rapidly at the interface of the dislocation line, no phase jump is observed and the phase 
varies depending on the position on the atom on the stacking fault ribbon (Fig. V.2.d). There is no characteristic  
signature of this phase shift on the diffraction pattern  although the increasing of the lateral width of the  [1 1 2]  
fringes could be related to the decreasing width of the stacking fault ribbon.
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Fig. V.6 Case of the dissociated dislocation line for g = 2 2 4 (g.b = 0 and g.bxt ≠ 

0). Calculated atomic displacements around single perfect  and dissociated edge 
dislocations introduced at the centre of a 30x30x30nm3 copper nanocrystal.(a) to 
(c) Calculated  u111 displacement in the (1 1 2) (a), (1 1 0) (b) and (1 1 1) planes (c). 
(d) to (f) Corresponding CXD patterns for  g = 2 2 4 in the (1 1 2) (d), (1 1 0) (e) 
and (1 1 1) planes (f).
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We now move on to the case of a dissociated dislocation which is investigated with  g = 2 2 4. Such diffraction 
vector is perpendicular to the Burgers vector of the dislocation but not perpendicular to the dislocation line. In  
subsection III.3.2 we showed that this reflection is particularly suited to evidence the dissociation of a perfect  
dislocation since it produce a very characteristic signature on the diffraction pattern (Fig V.6.g to V.6.i). This can 
be explained by the fact that diffraction vectors with high h,k,l index are sensitive to very small displacements.  
For the particular case of  g = 2 2 4, a 2π phase variation corresponds to half the lattice spacing between two (1 1 
2) planes, i.e 0.74 Å for a copper crystal. As shown on Fig V.6.a to V.6.c the total amplitude of the displacement 
is significant with a value of 1.32 Å which corresponds to 11.2 radians! The maximum positive displacement is  
found on the widest part of the stacking fault ribbon (area circled in black on Fig. V.6.c) while the maximum 
negative displacement is encountered on the (1 1 0) edges (regions circled in red on Fig. V.6.c.). There is thus a 
negative phase gradient directed along both the [1 1 0]  and [1 1 0] direction (Fig. V.6.a. and V.6.c.) This phase 
gradient with an overall phase shift of more than 3π and produces a strong signature on the CXD pattern. It  
consists in an elongation of the Bragg spot along the [1 1 0] and [1 1 0] directions which has been described in 
subsection III.3.2 as the signature of the dissociation of the dislocation (Fig. V.6.g and V.6.j). The symmetry of  
the phase in the real space with the respect to the (1 1 1) plane implies the symmetry of the intensity with respect  
to the same plane in the reciprocal space. In Fig. V.6.a and V.6.b a sharp phase jump along the [1 1 1] direction  
can be observed at the vicinity of the (1 1 1) stacking fault. The 0.24 Å between the atoms above and below the 
stacking fault ribbon corresponds to a 2π/3 phase jump in radians, the value expected from a stacking fault since 
g = 2 2 4 does not fulfill the invisibility conditions. This results in an increased intensity and a doubling of the 
periods of the [1 1 1] fringes (Fig. V.6.g) in good agreement with the results presented in subsection III.3.2.

V.2. Comparison between calculated and reconstructed displacement fields and visibility of 

dissociated defects in experimental reconstructions

The  excellent  agreement  between  the  calculated  and  reconstructed  displacement  fields  for  perfect  
dislocations  was  evidenced  in  Chapter  I.  (subsection  I.4.5).  In  this  subsection,  we  evaluate  the  agreement 
between calculated and reconstructed displacement fields for relaxed dissociated defects. Fig. V.7 shows the  
calculated (Fig.V.7.a to V.7.c) and reconstructed (Fig.V.7.d to V.7.f) displacement fields for  g  =  2 2  4. The 
reconstruction is  carried-out  using the procedure described in Chapter I.  The extent  of  the reciprocal  space 
selected for the calculation gives a voxel size of 0.7x0.7x0.7 nm3 and corresponds to a resolution of 1.5 nm, as 
determined from the PRTF (Chapter I, Chapman et al.  2006). Similarly to the case of perfect dislocations, the 
agreement between the calculated and reconstructed data is excellent, with a perfect reproduction of the phase  
variations.  Note that  reconstructions carried out  for the  projections of the displacement field  presented in 
section  V.1  are  also  very  consistent  with  the  calculations  from  the  atomic  positions.  As  discussed  in  the 
introduction of this section they are not shown to avoid overloading of the figures.
Regarding experimental considerations, it is important to understand that the voxel size along each direction is  
almost one order of magnitude smaller than in the experimental reconstructions presented in Chapters VI & VII.  
Hence  the  very  high  resolution  of  the  reconstructions  for  the  simulated  data,  which  is  unreachable 
experimentally  (Chapter  I).  The  visibility  of  perfect  dislocations  with  low  resolution  data  (10  nm)  is  not  
problematic. Sharp phase jumps are induced at the vicinity of the dislocation, and the displacement field of the 
dislocation has a very large spatial extent (Fig. V.1.a and V.1.b for instance). Independently on the resolution, 
these  two  features  are  always  visible  (Fig.  V.8.a  and  V.8.c).  Dissociated  dislocations  are  potentially  more 
troublesome. As shown in Fig. V.2, when the atomic positions are relaxed, and the defect is equilibrated in the  
particle, the width of the stacking fault ribbon between the two partials remains generally rather small. As a  
remind, the latter is material dependent and is controlled by the shear modulus μ and the stacking fault energy γs 

via the adimensional parameter γs /μbp (subsection III.3.3). It is in principle independent of the size of the particle 
but can be increased if the particle is mechanically solicited (for instance by nanoindentation, Chapter II and 
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Chapter VI). For the Cu particle used in this section, the average width of the stacking fault ribbon is 4 nm. 
Hence it is smaller than the typical voxel size obtained experimentally(between 5 and 10 nm). This is generally 
not problematic as most of the Bragg reflections are only sensitive to one of the two Shockley partials. This is  
case for for instance for g = 2 0 2 (Fig. V.4), but also for all the 1 1 1-
type reflections that do not fulfill the invisibility conditions (section V.3 to V.5). 
For g almost parallel to b it is demonstrated in section V.1 that provided a sufficient resolution is ensured, both 
Shockley partials are visible. For g = 2 2 0  for instance, the 4π phase vortex around the perfect dislocation line 
is splitted in two 2π phase vortices with same chirality whose centres are the two Shockley partials (Fig. V.2.d, 
Fig. V.8.a & V.8.b). If the voxel size is larger than the dissociation length, it is clear that the two Shockley won't  
be  resolved,  and  the  two  phase  singularities  will  appear  as  a  single  one  (Fig.  V.8.d).  It  might  be  not  as 
straightforward  to  determine  the  perfect  or  dissoiciated  character  of  a  dislocation  from  the  recosntructed 
displacement field. That being said, perfect and dissociated  dislocation yield a different phase distribution which  
in principle allows to differentiate them even if only phase singularity is visible in both cases (Fig. V.5.4). 
As  discussed  above,  the  lower  resolution  of  the  experimental  data  is  likely  to  be  compensated  by  larger 
dissociation lengths. It is thus perfectly conceivable that the two phase singularities corresponding to the two 
Shockley partials can be resolved experimentally. For this reason we chose in the following to reconstruct the 
displacement field with a high resolution in the following. This choice is also obviously related to the small size  
of the particles (~15 → 30 nm) which readily exclude the possibility to represent them with a 5x5x5 nm 3 voxel 
size. 
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Fig. V.7 Comparison between the calculated and reconstructed displacements around a perfect edge 

dislocation introduced at the centre of the reference copper nanocrystal for g = 2 2 4 (a) to (c) Calculated  u111 

displacement in the (1 1 2) (a), (1 1 0) (b) and (1 1 1) planes (c). (d) to (f) Reconstructed  u111 displacement in 
the (1 1 2) (d), (1 1 0) (e) and (1 1 1) planes (f). 



Chapter V : Coherent Diffraction Imaging of single defects and of a small assembly of defects

                                                                                                                                           

V.3. Single mixed dislocation in the course of nanoindentation of a gold nanoparticle 

In section III.4, we demonstrated that it is possible to determine the Burgers vector and slip plane of a 
dissociated mixed dislocation nucleated during nanoindentation of a gold nanoparticle. 
In the following we use phase retrieval algorithms to try to find more information about this single defect (width 
of the stacking fault ribon, orientation of the dislocation line, direct imaging...).
In the calculated CXD pattern, the signature of the dislocation is clearly visible for g = 1 1 1 and  g  = 1 1 1 
while it was invisible for g = 1 1 1 and  g = 1 1 1. The Burgers vector of the dislocation was determined to be 
½[0 1 1] because it  is  the only vector that  is  perpendicular  to the two diffraction vectors which fulfill  the  
invisibility conditions ( g.b = 0). 
Fig. V.9.a shows the indented particle viewed from the (1 1 1) direction which is perpendicular to the stacking 
fault  ribbon between the Shockley partials.  The Burgers vector of the perfect  dislocation and of the partial  
Shockley dislocations are indicated by coloured arrows (blue for the perfect and red and green for the partials)  
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Fig. V.8 Identification of dissociated edge dislocations with g // b for low 

and high real-space resolution data. The grid represents the pixel size in 
the  reconstruction. (a)  &  (c)  Phase  variation  around  a  perfect  edge 
dislocation for high (a) and low (d) resolution data. In  both cases the 
phase  vortex  and  sharp  phase  jump  are  visible  independently  on  the 
resolution (b) Phase variation around a dissociated dislocation for high 
resolution data. The stacking fault ribbon is represented by a blue line. 
The pixel size smaller than the physical dissociation length allows to see 
the two phase singularities associated to the two Shockley partials. (d) 
Phase variation around a dissociated dislocation for low resolution data. 
The pixel size larger than the physical dissociation length does not allow 
to resolve the two phase singularities.  
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while  the  direction  of  the  indentation  is  indicated  with  a  purple  arrow (also  on  Fig.  V.9.b  to  V.9.g).  The 
dislocation line is mostly parallel to its Burgers vector, it has thus a dominant screw-type, however, the curvature 
of the dislocation line also brings an additional edge component.
From the direct analysis of the CXD pattern, it was already possible to determine the Burgers vector of the 
partial dislocations. The slip plane of the perfect dislocation was established from the perturbations of the fringes 
along the [1 1 1] direction, and its Burgers vector with the invisibility conditions. With the knowledge of both  
slip  plane  and  Burgers  vector,  the  determination  of  the  partial  Burgers  vector  of  the  Shockley  partial  is  
straightforward since only one combination is possible (Hull & Bacon 1982):

b  = ½ [0 1 1] = 1/6[1 1 2]+1/6[1 2 1]  = bp1 + bp2      (V.1)

As demonstrated in the previous section, a diffraction vector perpendicular to one of the two partial Burgers  
vectors should in principle hide the signature of that partial The situation might be complicated here by the  
mixed-type of the dislocation.
Fig. V.9.b-e show the displacement field reconstructed for the four 1 1 1-type Bragg reflections that have been 
used to determine the Burgers vector of the dislocation. As discussed in the introduction of this chapter, the the 
reconstruction is carried-out following the procedure fully described in Chapter I ( subsection I.3.4). The extent  
of the reciprocal space pattern gives a voxel size of 0.8x0.8x0.8 nm3. This is about 8 times smaller than the 
typical experimental voxel size.
Similarly to Fig. V.7.a the particle is seen from the [1 1 1] direction which is perpendicular to the stacking fault 
ribbon. Unsurprisingly, it remains invisible for g such as g.b = 0 ( g = 1 1 1 and  g = 1 1 1, Fig 9.d and 9.e) while 
it appears clearly for g such as g.b ≠ 0  (g = 1 1 1 and  g  = 1 1 1) (Fig V.9.b & V.9.c) . For the latter, the decrease 
in the reconstructed the electron density that results from the presence of crystal defects (Takahashi et al. 2013, 
Labat et al. 2015) allows to determine the position and the shape of the dislocation. The density is superimposed 
in transparency in Fig. V.9.b, V.9.c and V.9.f. Two major differences arise between g = 1 1 1 and  g  = 1 1 1. 
First,  g = 1 1 1  is parallel to the displacements to the [1 1 1] indentation direction. As seen in Fig. V.9.a, the 
indenter already penetrated deeply in the particle at this stage of the indentation process. As a consequence the (1 
1 1) planes in the vicinity of the indenter are severely compressed which results in a steep phase gradient. The  
negative phase gradient in that area is consistent with a compression. For  g = 1 1 1 the phase in the same region 
is almost constant as u 1 1 1 is weakly sensitive to the displacements along the [1 1 1] direction. In both cases the 
dislocation induce a π phase jump between the two sides of the dislocation line. However the position of the 
phase discontinuity differs between the two configurations.
For the  1 1 1 reflection, it is located on the partial dislocation with bp1 = 1/6[1 2 1](the bottom one), while it is 
located on the second partial with  bp2 =  1/6[1 1 2] for the 1 1 1 reflection. In the (1 1 1) plane which contains the 
stacking fault ribbon, the phase profile is similar to the case of the dissociated edge dislocation for  g. bp  = 0 ( g 

=  2 0  2, Fig. V.4.e).  Although  neither  g  = 1 1 1 nor  g  =  1 1 1 are perpendicular to one of two partials 
dislocations, we observe similar phase distributions in Fig.V.9.b and V.9.c. For g = 1 1 1, almost parallel to bp2 , 
bp1 is completely invisible (Fig. V.9.b) while the invisibility of bp2  is achieved for  g = 1 1 1 almost parallel to bp1  

(Fig. V.9.c) . 
For  the  two other  1  1  1-type  reflections  the  dislocation  is  invisible,  but  some obvious  differences  can  be  
observed between g = 1 1 1 and  g = 1 1 1. The amplitude of the phase variations just below the indenter differs 
between the two reflections. They are significant for g =1 1 1 (Fig. V.9.d) while the phase is almost constant for 
g = 1 1 1 (Fig. V.9.e). The most important difference lies in the invisibility conditions for the two reflections.  g = 
1 1 1 fulfills the total invisibility conditions for a dissociated dislocation since it is perpendicular to b and to the 
Burgers vectors of the partial dislocations. As a consequence, the partial dislocations are completely invisible  
and induce no visible change in the phase (Fig. V.9.e). For  g =1 1 1 the invisibility conditions for the partial 
dislocation are not fulfilled, and some phase variations can be observed at the vicinity of the partial dislocations  
(region circled in red in Fig. V.9.d).
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Fig. V.9 Reconstructed displacement field of the mixed-dislocation for  

several g (a) Gold nanoparticle undergoing simulated nanoindentation 
seen from the [1 1 1] direction. Only the surface and defective atoms 
are shown, and the dislocation appears in grey.  The direction of the 
Burgers vectors are indicated with a blue (perfect dislocation) and red 
and  green  arrows  (partial  dislocations).  (b)  to  (g)  Reconstructed 
displacement field  in the (1 1 1) dislocation slip plane, for various g: 
1 1 1 (b), 1 1 1 (c), 1 1 1 (d), 1 1 1 (e), 0 2 2 (f) and 4 2 2 (g). The 
direction of the g is indicated with a black arrow while the direction 
of the indentation is marked with a purple arrow. 
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Fig.  V.10 Comparison  between  reconstructed  displacement  field  and  

calculated CXD patterns for several  g (a) to (d) Reconstructed displacement 
field in the (0 1 1) plane perpendicular to b for various g: 1 1 1 (b), 1 1 1 (e), 0 
2 2 (f) and 4 2 2 (g). The direction of the strongest phase gradient is indicated 
with a black  arrow,  while  the  white  arrow connects  the  regions of  almost 
constant phase circled in red and blue.  (e) to (h) Corresponding CXD patterns 
in the (0 1 1) plane for the same reflections .The direction of  g  is indicated 
with a red circle (g) or a red arrow (h).
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To  push  a  bit  further  the  analysis,  the  3D  displacement  field  has  been  reconstructed  for  two  additional 
projections. For  g = 0 2 2, parallel to b, the results are similar to the case of a pure edge dislocation. The two 
partial  dislocations  induce two π phase jumps,  and the phase is  relatively constant  for  the area within the  
stacking fault ribbon (Fig. V.9.f). Here the (1 1 1) slice is taken slightly above the staking fault ribbon, such that 
the phase jumps do not appear as a sharp discontinuity but as strong gradients. For the case of a pure edge  
dissociated dislocation, the phase outside the stacking fault ribbon is almost constant (Fig. V.2.e.).  Here the  
phase remains quite constant below the dislocation line, while strong varations are observed for the region above  
the dislocation line. These phase variations can be explained by the sensitivity of   g = 0 2 2 to the compression 
of  the  (1  1  1)  planes  by  the  indenter,   g  is   indeed  almost  anti-parallel  to  the   [1 1 1]  along which  the 
displacements are the strongest. 
g =  4 2 2 would be the invisibility conditions for a pure edge dislocation, but here the mixed character of the 
dislocation  line  prevents  the  existence  of  such  conditions.  Some similarities  with  the  case  of  a  pure  edge 
dislocation can be found though. The region within the stacking fault ribbon is phase shifted compared to the rest  
of the crystal (Fig. V.9.g.). The value of the phase shift is approximately the same as the one observed for a pure 
edge dislocation (Fig. V.5.d). The indenter induce some additional perturbations in the phase. One can notice the 
presence of an area above the dislocation line where the phase becomes negative (area in green  in Fig V.9.e.), as  
well as the presence of a strong phase gradient in a direction perpendicular to the direction of indentation.
As shown in Fig. V.10, the analysis of the reconstructed displacement field in the (0 1 1) plane also reveals some 
interesting informations. For g = 1 1 1 (Fig. V.10.a) and g = 1 1 1 (Fig. V.10.b), it confirms the presence of a 2π 
phase vortex whose centre is one of the two partial dislocations (bp2  for  g = 1 1 1 and  bp1  for  g = 1 1 1). While 
the phase rotation around the dislocation line is relatively isotropic for  g  =  1 1 1 (Fig. V.10.a), it is  highly 
anisotropic for g = 1 1 1 (Fig. V.10.b). A strong phase gradient is observed along the [0 1 1] direction which is 
perpendicular to  the Burgers vector direction and the indentation direction (Fig. V.10.a). 
The relative isotropy of the phase in  real space for  g = 1 1 1 implies an isotropy of the intensity in the reciprocal 
space. A ring-shaped pattern oriented along the [1 1 1] direction is obtained as in the case of a relaxed screw 
dislocation (subsection III.3.1) (Fig. V.8.f). The anisotropic distribution of  intensity in the ring is due to the shift 
of the dislocation line with respect to the particle centre (subsection III.3.7).
For  g = 1 1 1, a splitting of the Bragg peak is observed instead of a ring. As already discussed, the splitting is  
roughly along the direction which connects the regions of constant phase (white arrow which connect the two  
red circled regions on Fig. V.10.a). Similarly to  g = 1 1 1 the anisotropy in the intensity distribution of the Bragg 
peak can be explained by the shift of the dislocation with respect  to the particle centre.
When g is parallel to b a pair of 2π phase vortices with the same direction can be observed. As mentioned in the 
previous paragraph, their centre correspond to the position of the partial dislocation. Although the dislocation is 
of  dominant  screw-type,  the  overall  phase  distribution  is  similar  to  the  case  of  a  dissociated  pure-edge  
dislocation  (Fig  V.8.a).  Similarly  to  our  observations  for  the  two-1  1  1  type  diffraction  vectors,  the  phase 
variation is relatively isotropic around the left partial (bp1 = 1/6[1 2 1]) while it is highly anisotropic for the right 
partial (bp1 = 1/6[1 1 2). For the latter, the strongest phase gradient is also along [0 1 1]. The diffraction pattern in 
the  (0  1  1)  plane  perpendicular  to  the  Burgers  vector  and  quasi  perpendicular  to  the  dislocation  line  is  
surprisingly very similar to the case of a perfect edge dislocation while we would have expected an intensity  
distribution similar  to the case of a dissociated edge dislocation.  The orientation of the Bragg peak is  also 
roughly along the direction which connects the regions of constant phase (white arrow which connect the blue  
and red circled regions on Fig. V.10.c), which almost correspond to the [0 1 1] direction.
For  g =  2 2 4 the displacement field is not as symmetric as in the case of a pure-edge dislocation, but both the 
value of the phase shift and the distribution of the displacements at the vicinity of the stacking fault ribbon are  
quite similar (Fig. V.10.d). Due to  to the strong compressive strain on the topmost (1 1 1) planes, The diffraction  
pattern is very “disturbed” as compared to the case of the pure edge dislocation.
The calculation of the CXD patterns and the reconstruction of the 3D displacement fields for various Bragg 
reflections reveal that the dislocation produces a signature which shares strong similarities with either a pure 
screw dislocation (g = 1 1 1) or a pure edge dislocation (g = 0 2 2). This is probably due to the fact that a mixed 
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dislocation possesses both components.

V.4. Displacement fields from individual dislocation loops 

Although the displacement field around individual dislocation loops is rather complex, some information 
can  readily be obtained from the  CXD pattern. The diffuse scattering of individual dislocation loops has been  
studied numerically (Erhart 1982, Zhou et al. 2005) and experimentally using a coherent electron beam (Kirk et  

al. 2005, Kirk et al. 2006). This allowed to determine both the size, the Frank or Prismatic type and the Burgers 
vector  of  individual  dislocation  loops.  We  evidenced  in  subsections  III.3.4  (Frank),  III.3.5  (Prismatic)  and 
sections IV.1 (Frank and prismatic) that such properties can also be obtained from the analysis of CXD patterns. 
The direct analysis of the CXD patterns is generally quite straightforward in the case of individual dislocation 
lines or stacking faults. They induce strong signature on the CXD pattern (such as a splitting of the Bragg peak) 
because there is generally only one phase singularity (2 in the case of partial dislocations) and as a consequence  
the size of the phase-shifted volumes is very large. The analysis can be complicated by the more complex nature  
of the displacement field around partial dislocations. However, such single defects always induce a clear and 
strong signature in the CXD patterns (unless the invisibility  conditions are fulfilled). 
In the case of dislocation loop, it is shown in the following that a large number of phase singularities are created  
in the nanocrystal, and that the volume in the crystal that are phase shifted with respect to each other remain  
generally limited. As shown in subsections III.3.4, III.3.5 and IV.1 (individual dislocation loops) and in section  
IV.2 (assembly of prismatic loops), the signature of dislocation loops on CXD patterns is generally quite weak.  
The reconstruction of the displacement field around the defect is thus needed to understand all its characteristics.
 

V.4.1. Frank dislocation loops

Interstitial and vacancy dislocation loops are introduced at the  centre of our reference Wulff copper 
nanocrystal. As described in section 3.4 their Burgers vector is of type 1/3 <1 1 1> (1/3[1 1 1] in the present  
case) and both interstitial and vacancy loop contain stacking faults (extrinsic for the interstitial one and intrinsic  
for the vacancy one). Upon relaxation, the hexagonal Frank loop dissociate to produce a stair rod dislocation on 
each edge of the hexagon and a Shockley partial which propagates in the three other {1 1 1} slip planes. 
A vacancy dislocation loop can be produced by the collapse of a platelet of vacancies while an interstitial loop 
can be induced by the precipitation of a close-packed platelet of interstitial atoms. In both case, the creation of  
such defects assume the insertion of removal of atoms within the loop. In section V.1, the atomic displacements  
are calculated from the reference atomic positions in a perfect crystal with the same number of atoms. Since the  
number of atoms is  changed by the introduction of a Frank or a prismatic dislocation loop,  this method of  
calculation  is  no  longer  applicable.  Our  calculation  could  have  been  modified  to  overcome  this  problem.  
However we evidenced in subsection I.3.4 (Chapter I) and section V.2  that the reconstructed displacement fields  
from the calculated CXD pattern are very reliable and consistent with the calculated displacement fields. In the  
following all the displacement fields shown are reconstructed from the diffraction patterns using the procedure  
fully described in  Chapter I. 
The invisibility conditions for Frank dislocation have been detailed in subsection III.3.4, they slightly differ from 
the case of dislocation line, since for instance there are no conditions for which g is parallel to the dislocation 
line. To investigate the displacement field around the dislocation loop we select diffraction conditions that can  
hide different contributions of the dislocation loop, i.e. the stacking fault or the partial dislocations for instance. 
For a given reflection,  if  the stacking fault,  or  the partial  dislocations of the loop are visible they create a  
singularity in the phase. As already described in this manuscript and elsewhere (Takahashi et al. 2013, Labat et  
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al. 2015) these phase singularities induce a dip in the reconstructed electron density that can be used to visualize 
the contour of the defects using isosurfaces of density (as already shown in section V.3. of this chapter). 

For  g  = 1 1 1, the invisibility conditions for the partial dislocations are not fulfilled, their contour is clearly 
visible on Fig. 11.b (red isosurface). Since h+k+l = 3n, the stacking fault is completely invisible.
Conversely, for all the other 1 1 1-type reflections (except the  1 1 1) the stacking fault is visible, while four out 
of six Shockley partials are invisible (blue isosurface in Fig 11.b). The last pair only produce few disturbances in  
the phase and does not appear as a phase singularity.
For g = 2 2 0 (Fig. V.11.c) which is parallel to one of the partial stair rods, none of the invisibility conditions are 
fulfilled and both the (1 1 1) stacking fault and the partial Shockley dislocations cause a phase jump which in 
turn affect the electron density. The stacking fault and all partial dislocations are visible.  
Finally, for a smaller vacancy loop investigated with the same reflection, the  (1 1 1) stacking fault is also visible  
(Fig. V.9.d). It is of course not possible to distinguish between interstitial and vacancy loop from the dip in the 
electron density since it is independent on the sign or magnitude of the singularity in the phase.
The vacancy or interstitial character of the loop can be easily deduced from the reconstructed displacement field.  
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Fig. V.11 Variations in the reconstructed electron density at the vicinity of  

a Frank dislocation loop (a) Relaxed Frank dislocation loop with b = ⅓ [1 
1 1]  in the centre of the reference copper nanocrystal.  (b)  to (d) 70% 
isosurface of the reconstructed electron density which reveals the position 
of the stacking fault and  of the partial dislocations. The Burgers vector of 
the loop is indicated with a red arrow. (b) Reconstructed electron density 
from a 20 nm interstitial loop for  g =  1 1 1 (blue isosurface) and  g =  1 1 
1 (red isosurface). (c) Reconstructed electron density from the same loop 
for  g =  2 2 0. (d) Reconstructed electron density from a 13nm vacancy 
loop for  g =  1 1 1.
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As described in subsections III.3.3 and IV.1.1 the phase jump expected from an intrinsic or extrinsic stacking  
fault depends on the Bragg reflection and can be easily calculated. For  g =  1 1 1, a  2π/3 phase jump is expected 
from an intrinsic stacking fault while a -2π/3 is expected from an extrinsic one.  Here we introduced Frank  
dislocation loops with diameters of 6, 13 and 20 nm in the reference Wulff nanocrystal. The small and the large 
loop  are  interstitial  loops  while  the  intermediate  one  is  a  vacancy  loop.  As  expected  from  the  analytical  
calculations (subsection III.3.3), the latter produces a  2π/3 (Fig. V.12.b) phase jump while a – 2π/3 phase jump 
is found for the two others (Fig. 12.a and 12.c). 

As already discussed in section IV.1.1, this is translated on the CXD pattern by the position of the satellite spot:  
above the Bragg peak for the interstitials (Fig. V.12.d and V.12.f) and below for the vacancy (Fig. V.12.e). One  
can also notice that the larger is the stacking fault,  the more intense is the satellite peak. It  will  eventually  
become more intense than the Bragg peak when the stacking fault spreads all  other the crystal  volume. As  
mentioned in section III.3.3, the intensity of the fringes normal to the stacking fault also increases with the width 
of the stacking fault, while the maximum of intensity decreases. For a given loop size, we also noticed that the  
decrease of  the maximum of intensity is always slightly larger for an interstitial loop than for a vacancy loop. 
In good agreement with our observations in section IV.1.2, the spatial extent of the displacement field increases  
with the diameter of the loop. If some regions of the crystal remain relatively undisturbed for the small loop (Fig.  
V.12.a), the displacement field spreads all over the crystal for the large one (Fig. V.12.c). 
For g = 1 1 1 (g // b) which allows to see the contribution from the partial dislocations, the displacement field  
around the dislocation loop is much more complex and interesting. As illustrated on Fig. 4.a and 4.b, the (1 1 1)  
stacking fault does not produce any visible phase jump and as a result is invisible. The partial dislocation induces  
singularities in the phase, and a partial dislocation line causes a π phase jump in the phase. As a consequence, for  
all the planes that intercept a partial dislocation, the phase around the partial dislocation forms of a vortex. 
Both the (1  1 0) and (1 1  2) plane intercept two partial dislocations and a pair of 2π vortices with opposite  
chirality is seen in both cases (as seen by Takahashi  et al.  2013).  One can notice that the displacements are 
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Fig. V.12 Reconstructed displacement field from loops of varying size and type for  g = 1 1 1. (a) 6nm interstitial 
(b) 13 nm vacancy and (c) 20nm interstitial. The direction of the burgers vector is indicated by a red arrow. (d) to  
(f) Corresponding CXD patterns for  g = 1 1 1



Chapter V : Coherent Diffraction Imaging of single defects and of a small assembly of defects

almost  constant in between the partials,  above and below the dislocation loop (region in red Fig.  V.13.a &  
V.13.b)  while  the  phase  is  varying  rapidly  outside  the  loop.  The  largest  phase  gradient  is  observed in  the 
direction normal to g. This is in very good agreement with the description of the strain field around an interstitial 
Frank loop that was made by Larson & Young (1987). The compressed area above and below the loop exhibits a  
remarkably constant strain, whose extent is roughly the diameter of the loop in both directions. Conversely, in  
the expanded area outside the loop the strain is not constant over any significant spatial extent. 

The (1 1 1) plane which contains the dislocation loop (Fig. V.13.c)  reveals that the (1 1 0) plane is a mirror plane 
for the displacement field. The partial dislocations intercept the (1 1 1) plane on six different locations, and as a  
consequence a loop of 6 vortices of alternating chirality  can be observed. The region inside the loop is phase  
shifted by π with respect to the surrounding region.
For  g = 2 2 0, the situation is different because the stacking fault is visible (Fig. V.11.d to V.11.f) causing an 
additional -2π/3 phase jump phase jump owing to the interstitial nature of the loop. Apart from this phase jump,  
the phase is constant above and below the loop, and varies rapidly outside.  As for  g = 1 1 1, the (1 1 0) and (1 1 
2)  planes  intercept  the  partial  dislocations  in  two  points,  creating  a  pair  of  opposite  phase  vortices.  The 
maximum phase gradient is also normal to g =2 2 0 (red arrow in Fig. V.11.d). This phenomena are observed for 
both  g =2 2 0 and g = 1 1 1. The displacements observed in the (1 1 1) plane (Fig. V.13.f) are very similar to the 
one observed for   g = 1 1 1 with the (1 1 0) plane acting as a mirror plane, resulting in loop of 6 vortices of 
alternating chirality.
As illustrated in Fig. V.14.c, the calculated diffraction pattern from the interstitial dislocation loop for  g = 2 2 0 ( 
g //  bSR) “pseudo ring”  shaped pattern with axis oriented along the [2 2 0]  direction. In subsection III.3.4, a 
parallelism was made with the case of screw dislocation loops. The phase distribution in the case of a screw 
dislocation loop is fairly simple (subsection V.1.1), with a single  π phase singularity at the dislocation line  
position and thus a 2π phase vortex in the plane perpendicular to the dislocation line. The phase distribution in  
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Fig. V.13  Reconstructed displacement field from a 20 nm Frank interstitial loop for several g. The direction of g 

is indicated by a red arrow while the direction of the burgers vector of the loop is denoted by a blue arrow. The 
position of the loop is shown in transparency. (70%  isosurface of the reconstructed electon density).  (a) to (c) 
Reconstructed u111 displacement field  in the (1 1 0) (d), (1 1 2) (e) and (1 1 1) (f) planes. (d) to (f) Reconstructed 
u220 displacement field  in the (1 1 0) (d), (1 1 2) (e) and (1 1 1) (f) planes.  
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the (2 2 0) plane perpendicular to g is here much more complicated with three phase singularities: 2 vortices with 
opposite chirality corresponding to the two positions where the partial dislocations intercept the (1 1 0) plane,  
and the -2π/3 phase jump induced by the extrinsic stacking fault. 
This example evidences that two completely different displacement fields around a given crystal defect can  
induce a relatively similar signature.  To have a clear picture of the defect, it is thus necessary to reconstruct the  
displacement field around the dislocation loop

V.4.2. Prismatic dislocation loops
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 Fig. V.14  Reconstructed u2 2 0 displacement field from the 20nm interstitial loop in the (2 2 0) plane. (a) and (b). 
(c) Corresponding CXD pattern for  g = 2 2 0. The position of the loop is shown in transparency. (70%  isosurface 
of the reconstructed electon density).
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In this section, the displacement field around a prismatic dislocation loop is reconstructed for several  
Bragg reflections. We will see that they share strong similarities with Frank dislocation loops.
As presented in subsection III.3.5, a single dislocation loop is introduced at the centre of our reference copper  
nanocrystal. At the end of the relaxation, the loop consists of four dislocation segments which are connected 
together in the form of a diamond (Fig V.15.a). The dislocation segments form stacking fault ribbons in the (1 1 
1) and (1 1 1) plane which are bounded by two partial dislocations. 
As a consequence, a total of eight partial dislocation is present in the loop. Similarly to what has been done for  
the mixed dislocation (section V.3) and the Frank dislocation loop (subsection V.4.1), the visibility or invisibility  
of the loop can be evaluated by the absence or presence of singularities in the phase. The corresponding dips in  
the reconstructed density unveil the contours of the loop. Three different reflections are used to characterize the 
displacement field around the defect. The most interesting case probably occurs for g = 2 0 2 (g // b).  All eight 
partial dislocations induce dips in the reconstructed density (red isosurface in Fig. V.15.b). This means that they 
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Fig. V.15 Reconstruction of the displacement field from a diamond shaped prismatic loop for several g (a) 
Relaxed 15x10 nm2 diamond shaped prismatic dislocation loop with  b =  ½ [1 0 1] at the centre of  the 
reference Wulff copper crystal. The colour code represents the coordination number, such that  only the 
defective atoms and nanocrystal edges are shown. (b) 70% isosurface of the reconstructed electron density  
which reveals the position of the loop for g = 1 1 1(green isosurface)  and  g = 2 0 2 (red isosurface). (d) to 
(f) Reconstructed displacement field in the (1 0 1) plane for g = 1 1 1 (d),  g = 2 0 2 (e) and g = 1 1 1 (f). 
The orientation of the burgers vector is indicated by either a black arrow or a black circle. The letter c and 
d denote phase discontinuities at the interface between two dislocation segments.
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all create singularities in the phase. 
For g = 1 1 1, the partial dislocations are not distinguished (green isosurface in Fig. V.15.b) . This means that  
either this reflection is not sensitive to all the partials as in the case of a dissociated mixed dislocation) or that the  
dissociation can not be seen for this reflection. The dips of intensities seems to be located at the position of the 
partial dislocation, the first option is thus the most likely. 
Fig.  V.15.d  to  V.15.f,  show the reconstructed displacements  for  the three reflections,  in  the (1  0  1)  plane,  
perpendicular to the loop axis. For g = 1 1 1 (Fig. V.15.d)  the partial dislocations induce discontinuities in the  

161

Fig.  V.16 Reconstructed  displacement  field  from  the  diamond  shaped  prismatic  

dislocation loop for  g = 2 0 2 and  g = 1 1 1 in  the (1 0 1) plane : (a) and (d), the (0 1 0) 
plane (b) and (e) and the (1 1 1) plane (c) and (f). The position of the loop is shown in 
transparency. (70%  isosurface of the reconstructed electron density).
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phase. The region inside the loop is phase-shifted by π with respect to the region outside the loop. For g = 2 2 0 
the partial dislocations are seen individually, and the (1 1 0) plane intercept them only at points c and d where  
four  partial  dislocations  belonging  to  two dislocations  segments  are  connected.  The  π  phase  jump is  only 
observed in the vicinity of c and d. Finally, the dislocation loop remains invisible  g  = 1 1  1, (g.b  = 0), the 
dislocation remains completely invisible, although some variations in the phase can be observed at the vicinity of  
the  (1 1 1) stacking fault ribbons (Fig. V.15.f). The (1 0 1) and (0 1 0) planes which are parallel to the loop axis 
are more suited to visualize the complex displacement field around the dislocation loop (Fig. V.16). As discussed 
in the previous paragraph, all eight partial dislocations are visible for  g  = 2 0 2  (visible in transparency on 
Fig.16.). The partial dislocations intercept the (1 0 1) and (0 1 0) planes in four distinct points and form on each 
plane two pair of vortices with opposite chiralty: A-B and C-D in the (g = 2 0 2 plane (Fig 16.a) and  E-F and G-
H in the (0 1 0) plane (Fig. 16.b). 
A crucial difference arises compared to the case of Frank dislocation loops. In the case of a Frank loop, the phase 
is almost constant in the region along the loop axis and between the partial dislocations, while it varies rapidly  
outside the loop. In the case of prismatic loops, the exact opposite phenomenon occur: rapid phase variation are 
observed along the loop axis, inside the diamond shape formed by the partials, while it is almost constant in the  
region outside the tetrahedron . This phase profile and the absence of phase jump due to the absence of the  
stacking fault for a prismatic loop makes easy the distinction between a prismatic and a Frank dislocation loop. 
The value of the phase jump induced by the partial dislocation can be obtained from the phase distribution in the  
(1 1 1) plane that contains one of the stacking fault ribbon (Fig. 16.c). As seen from Fig. 16.c, the region in the 
stacking  fault  ribbon  is  phase  shifted  by  2π/3  with  respect  to  the  surrounding  atoms.  This  value  is  quite 
surprising since it differs from the case of a dissociated edge dislocation and a mixed dislocation, where the  
stacking fault ribbon is phase-shifted by π with respect to the surrounding region (for g //  b). This is probably 
related to the anisotropy of the phase vortices in the planes perpendicular to the partial dislocations, so that the  
phase jump between the two parts on the dislocation line is not necessarily π.
For g = 1 1 1, the displacement field is less complicated. Fig. V16.d & V16.f reveals that only half of the partial 
dislocation are seen, since phase singularities are observed in only two points in the (1 0 1) and (0 1 0) planes. 
These two singularities form a pair of vortices with opposite chirality.
Similarly to g = 2 0 2 , there is a large phase gradient in the region along  the loop axis, inside the tetrahedron 
while the phase is much more stable outside. The partial dislocation induces a  π phase jump, as seen from Fig.  
16.g,  a value in good  agreement with the cases of dissociated edge and mixed dislocations.

The complex nature  of the displacement field around dislocation loop inherently produces  complex 
signature  which  are  difficult  to  analyze.  Even  if  the  distinction  between  a  prismatic  or  Frank  loop,  the 
determination of its interstitial or vacancy character, or its size and Burgers vector can be determined from its  
signature on CXD patterns, the reconstruction of 3D field allows to obtain a richer and more complete picture of  
the defect. We will see in the next section that it is even more true when the crystal hosts several dislocation 
loops.

 V.5. Case of a moderately complex system : simulated nanoindentation of a nickel thin film 

We have seen in section IV.2 that an assembly of prismatic dislocation loop produces a very complex 
signature in the CXD pattern. Some information can be obtained on the dominant crystallographic variant from 
the decrease of the maximum of  intensity.  However,  even with a low number of defects,  the  CXD pattern  
induced by the interferences between the dislocation loop is already complex, and it appears delicate to establish  
the number of loops and even harder to determine the Burgers vector of each dislocation loop. Additionally, the 
procedure described in section IV.2 is based on the use of a large number of reflections (at least four and up to  
twenty-two), an approach which is really not realistic experimentally.
In the following we establish that the reconstruction of the displacement field is a much more suitable approach 
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in the case of moderately complex systems.  Similarly to section V.3, all the displacement fields obtained for 
various  reflections  are  reconstructed  from  the  calculated  CXD  patterns  with  the  procedure  described  in 
subsection I.3.4. The system studied here is a nickel thin film that underwent a simulated nanoindentation along 
the [1 1 1] direction, described in more details in section IV.2.  Several dislocation loops are nucleated in the  
process, and at the end of the indenter penetration, four dislocation loops, with three crystallographic variants 
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Fig. V.17 Reconstructed electron density in the nickel thin film for several reflections  (a) 
Atomistic configuration at the end of the indentation of a nickel thin films. Several prismatic 
dislocation loops with equivalent burgers vectors can be found in the structure. (b) to (f) 65% 
isosurface of the reconstructed electron density which reveals the invisibility or visibility of 
the loops at various g. 
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remain in the structure: two of them with b2 = 1/2[0 1 1], and one each with b1 = 1/2[ 1 1 0] and  b3 = 1/2[ 1 0 1]. 
An additional complex network of dislocation network is observed just below the indenter (Fig. V.17.a). 
As in sections V.3-5, we use the dips in the reconstructed electron density to confirm the position and Burgers 
vector of the dislocations. For g = 1 1 1, none of the invisibility conditions are fulfilled, and all the dislocation 
loops are visible (Fig. V.17.b). This is in good agreement with the large decrease of intensity which is observed 
on the 1 1 1 diffraction pattern, as compared to the other {1 1 1} diffraction vectors.  
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Fig.  V.18 Reconstructed  displacement  field  in  the  (1  1  1)  plane  for  several  

reflections (a) Atomistic configuration seen from the [1 1 1] direction. It reveals 
the position of the dislocations in the structure, and the location of the (1 1 1) 
plane which intercept the partial dislocations and where the displacement field is 
reconstructed. (b) to (f) Reconstructed displacement field around the dislocation 
loop for four 111-type reflections: (b) g = 1 1 1, (c) g = 1 1 1, (d) g = 1 1 1 and g = 
1 1 1 (e) and for g = 0 2 2
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g = 1 1 1 satisfies the invisibility conditions for b2  and b3  while the  b1  loop should be visible. As seen from Fig. 
V.17.c, only b1  is visible, in good agreement with the invisibility conditions. The reconstructed density is also in  
good agreement with the reconstructed densities for the two other 1 1 1 diffraction vectors with only the b2  loops 
visible for  g = 1 1 1 and only b3 visible for  g = 1 1 1. 
g = 2 0 2 does not fulfill any of the aforementioned invisibility conditions so that all the dislocation loop are 
visible. However in good agreement with our observations in section V.4.2, the reflection parallel to  b3  allows to 
see all the partial dislocations for this loop (circled in red on Fig. V.17.f). 
In all cases, the position of the dislocation loop in the crystal match perfectly with the atomistic configuration, 
demonstrating that classical phase retrieval algorithms are perfectly suitable to deal with moderately complex  
systems, at least on simulated data. Their application to the analysis of  experimental  results is discussed in  
details in the next chapter.
Fig. V.18 shows the displacement fields around the dislocation loop for different Bragg reflections. The structure 
is seen from the [1 1 1] direction. The dislocation arrangement and the way they intercept the  [1 1 1] plane is 
illustrated in Fig. V.18.a.
For  g = 1 1 1 where all the dislocation loops are visible, the displacement fields obtained are in good agreement  
with our observations in section V.4.2. While all four partial dislocations intercept the (1 1 1) plane for the three 
dislocations, only two phase singularities are seen in each case, meaning that only half of  the partial dislocation 
are seen. For the three dislocation loops, the phase singularities consist of two pair of vortices with opposite  
chirality, as described in section V.4.2. 
Also in good agreement with the previous simulations is the strong phase gradient along the loop axis,  between 
the partials while the phase is relatively stable outside the visible loops. Due to the irregular shape of the loops,  
the displacement field is not as symmetric as in section V.4.2 when the loop exhibits a diamond shape with its  
axis parallel to its Burgers vector (not the case here).
For  the  three  other  1  1  1-type  diffraction  vectors  (Fig.  V.18.c-e),  similar  observations  can  be  made.  The 
displacement field around each loop is similar to the 1 1 1 reflection, with similar phase gradient and orientation, 
except only one of the crystallographic variant is visible. The position of the phase singularities also differ from 
the 1 1 1 reflection in some cases. This is particularly visible for  g = 1 1 1 (Fig. V.18.e) where the phase vortex 
is around the partial A while it is around the partial B for  g = 1 1 1.  Since the stacking fault ribbon between the 
two partials is in the (1 1 1) plane (Fig V.17.a), and since the b3 dislocation loop has a Burgers vector of 1/2[ 1 0 
1], there is only one combination of partial dislocations possible in the ( 1 1 1) plane :  b3p1 = 1/6[1 1 2] and  b3p2 = 
1/6[2 1 1]. For a given g, and according to our observations in section V.3, the partial visible is the one with b 

almost parallel to g. We can thus conclude that A, visible with  g = 1 1 1, has a partial Burgers vector of 1/6[1 1 
2] while B, visible with g = 1 1 1, has a partial Burgers vector of 1/6[2 1 1].
For  g = 0 2 2 parallel to b2 , all dislocation loop are visible. Since g is neither parallel to b1 nor b3, only half of 
the partial dislocations are visible for these loops, and thus only one pair of vortices in the (1 1 1) plane. For the 
b2 variant, all the partial dislocation are visible, which results in the presence of two pairs of phase vortices with  
opposite chirality.
Fig. V.19 show the difference in the displacement field for the b3 loop, when the two partials are visible (g // b3,  

Fig. V.19.a) and only one is visible (Fig. V.19.b). Here the two pair of vortices for g // b3 (and  the single pair for 
g = 1 1 1) are not visible since the dislocation loop is not closed. Most of dislocation loop in the structure should  
be named half dislocation loops rather than complete dislocation loops (steps on surface were not studied in  
detail). As already mentioned in the beginning of this section and as best seen in Fig. V.20, for a plane normal to 
the loop axis (which is not necessarily the Burgers vector) and when only half of the partial dislocations are 
visible (typically for a 1 1 1-type reflection), the phase shift between the region inside the loop and the region 
outside the loop is equal to π. Fig. V.20 shows the profile of the displacement field and the π phase jump induced 
by the partial for all four crystallographic variants.
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Fig.  V.20 Reconstructed  displacement  field  from four  crystallographic  variants  of  prismatic  

loops (a) b2 =1/2[0 1 1] and  g = 1 1 1, (b) b3=1/2[ 1 0 1] and g = 1 1 1, (c) b1 =1/2[ 1 1 0] and g = 
1 1 1  and (d) b3  g = 1 1 1 and  b =1/2[1 0 1] . (a) to (c) can be found in the nickel crystal while 
(d) was introduced in the reference copper Wulff crystal. The displacement field is reconstructed 
in a plane perpendicular to the loop axis which is not necessarily the burgers vector of the loop.

Fig.V. 19 Reconstructed displacement field around the b3  loop (b3 = 1/2[ 1 0 1]) in the (1 2 1)  

plane: for g = 2 0 2 (a) and g = 1 1 1 (b).
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 Conclusion

The various cases studied in this chapter demonstrate that the Burgers vector of all dislocation loop can  
be easily determined with the reconstruction of the displacement field, either with the invisibility conditions of  
the dislocation loop (use of 111-type diffraction vector perpendicular to the Burgers vector of the loop) or the 
total  or  partial  visibility  of  the  partial  dislocation  loop  (220-type  diffraction  vector  parallel  to  one  of  the 
crystallographic  variant).  From the  position  of  the  phase  singularities,  it  is  even  possible  to  determine  the 
Burgers vector of the partial dislocations. With at most four Bragg reflections (three are in principle sufficient),  
the Burgers vector as well as all the characteristics of the dislocation in the structure can be determined. This  
procedure can thus be applied on experimental systems. 
Regarding  experimental  parameters,  it  has  been  shown  in  this  chapter  that  the  signature  of  an  individual  
dislocation loop on a CXD pattern is not as strong and characteristic as the signature from a dislocation line.
This is mainly due to the fact that the phase-shifted volumes does not extent over the whole crystal size as in the  
case of a single dislocation line, and also that their displacement field has a limited spatial extent. In all the  
simulations presented in chapter 3 and 4, the loop size is very large with respect to the crystal size, the signature  
of the loop is thus clearly visible. In experiments, dislocation loops nucleated within crystals of one order of  
magnitude larger are expected to produce a very weak signature on the CXD pattern. 
If multiple dislocation loops are present in the structure, the CXD pattern resulting from their interferences is so 
far  too complex to  be interpreted.  The reconstruction of  the displacement  field overcome this  problem for  
moderately complex systems allowing to determine the number, shape, orientation, Burgers vector of all the  
loops  within  the  structure  with  a  low number  of  Bragg reflections.  It  should  be  also  pointed  out  that  the 
technique does not provide a lot of information the complex network of dislocations just below the indenter and 
all the aforementioned comments are only valid if the dislocations are well separated from each other.
The  next chapter will aim at demonstrating that the direct analysis CXD patterns and the reconstruction of the 
displacement field can be used in combination in experimental systems. 
We will try to understand the evolution of the microstructure in a sub-micron gold particle that undergoes in-situ 
nanoindentation (Zhe et al., 2014). The direct analysis will be used for the live monitoring of the nucleation of 
defects,  while the reconstruction of the 3D displacement field will  allow to understand the evolution of the 
crystal microstructure.
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Chapter VI: Investigation of the mechanical properties of a single gold crystal by in-

situ nano-indentation in combination with coherent Bragg diffraction imaging

Introduction

Throughout Chapter III to V, we demonstrated that Coherent X-ray diffraction is a powerful tool to 

investigate  the  microstructure  of  isolated  crystals.  Individual  crystal  defects  can  be  directly  identified 

through the distinct signature they produce on CXD patterns at well chosen Bragg reflections. The use of  

invisibility conditions allows to determine all the characteristics of a given single defect (edge-or screw type, 

Burgers vector,  dissociation,  position,...).  This  method can be also applied to  more realistic systems,  as  

demonstrated by the case of the simulated nanoindentation of a gold particle, where the Burgers vector of a 

single mixed dislocation was clearly identified. However, this approach is far less suitable for moderately  

complex systems, with as few as 3 or 4 individual defects. The complex interference pattern between the  

defects becomes very delicate to interpret, and though some useful informations on the microstructure can be 

deduced through the interpretation of CXD patterns at several Bragg reflections (sections IV.2 & IV.3 ), the  

complete determination of the microstructure is completely out of reach. 

As demonstrated in Chapter V with the simulated nanoindentation of a Nickel thin film, it is possible to 

reconstruct  the  displacement  field  around  each  individual  defect  in  the  structure.  The  variations  in  the 

electron density allows the precise determination of the defect size and position, while the phase jump and  

surrounding displacement field allows the unambiguous determination of the defect type. The use of the  

invisibility conditions enables to uncover the Burgers vector as well as all the characteristics of each defect  

in the structure. However, the applicability of Coherent Bragg Diffraction Imaging (CBDI) have only been 

demonstrated  on  simulated  data.  The  reconstruction  of  the  simulated  data  is  much  easier  than  the  

experimental one for several reasons. First, the extent of the reciprocal space that can be selected is not  

limited by the dynamical range of the diffraction data. As soon as the oversampling conditions (Sayre 1952)  

are fulfilled, an unrealistically large portion of the Brillouin zone can be selected. The resolution achieved  is  

one order of magnitude higher in the simulation than in the experiment. Additionally, in simulation, the phase 

variations observed depends only on the crystal structure and are not affected by the experimental conditions.  

These issues have been discussed in Chapter I and are also presented in section IV.5.3. Consequently, the 

successful  experimental  demonstration of BCDI has only been achieved by a small  number of research  

groups, and on systems containing a limited amount of defects (Takahashi et al. 2013, Ulvestad et al. 2015 

and Clark et al. 2015)

In the following chapter, we will apply the methods described in Chapter III to V to analyze the evolution of  

the microstructure in an  in situ nanoindented sub-micron gold crystal. To our knowledge, the imaging of 

defect by BCDI, that were nucleated by mechanical loading  in situ has not yet been reported in the literature. 

We will start by describing the sample preparation, and discussing the choice of  sample for this experiment. 

The experimental details will be given in section VI.2, while the diffraction patterns from several islands will  

be compared in section VI.3, to illustrate the signature of residual strain on CXD patterns. In section VI.4, a  

simple molecular static simulation is presented to visualize the strain distribution in the gold particle. The  

most interesting outcomes of the experiment are presented in section VI.5. Following the method presented  

in Chapters  III & IV, a detailed analysis of the CXD patterns is presented in subsection VI.5.1. Subsections  

VI.5.2 and VI.5.3 are respectively dedicated to the analysis of the evolution of the shape of the particle under 

illumination by the X-ray beam, and to the visualization of the u1 1 1 displacement field around a prismatic 

dislocation loop that is nucleated after several loading iterations. Finally, the evolution of the phase and 

strain field in the particle, upon emission and annihilation of prismatic dislocation loop is interpreted and  

discussed in the last section of this Chapter.

VI.1 Sample preparation

This experiment aims at investigating the evolution of microstructure upon indentation. In order to 

capture the signature of defects nucleated during the indentation process, the initial crystal needs to be as  
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perfect as possible. In a precedent study, the strain field in sub-micrometric Cu islands on a Ta substrate was 

investigated by Beutier et al. (2013a) and Beutier et al. (2013b). The detailed structure of this heteroepitaxial 

interface are presented in details in Chapters VIII and IX. The copper islands are strongly bounded to the 

tantalum substrate, such that a large amount of the thermoelastic strain generated during the cooling to the  

room temperature after dewetting is transmitted to the particle.  This inhomogeneous strain tends to hide the 

features related to the shape of the crystal and can thus make difficult the clear identification of defects.  

Additionally, the phase retrieval of the diffraction data is always delicate in highly and heterogeneously 

strained systems, even if the applicability of phase retrieval algorithms on such systems has been shown by 

Minkevitch et al. (2007) and Diaz et al. (2010).      

For the investigation of the nucleation of defects by CXD, it is preferable to select a sample with a lower 

amount  of  residual  strain.  Gold  nanoparticles  have  attracted  considerable  interest  for  their  various  

applications. In previous CXD studies, the gold particles were obtained by the dewetting of a gold thin film  

on a SiO2 substrate (Williams et al. 2003, Robinson et al. 2009, Watari  et al.  2011) such that no epitaxial 

relationship was found between the particle and the substrate. In this work the gold particles are grown on a  

c-plane oriented sapphire ((0001) single crystal α-Al2O3). This interface is a good example of a f.c.c. metal α-

Al2O3 interface which are one of the most studied among the metal-ceramic interfaces. The Au-sapphire  

system itself is of particular interest due to its technological importance (Sadan & Kaplan 2006).

& Kaplan 2006,  Sadan & Kaplan 2006b) promotes the solid  state  dewetting of gold particles  from the  

substrate. The epitaxy of f.c.c.  thin films with a Volmer-Weber mode (i.e 3D film growth by growth of  

islands) on sapphire was studied in details by Bialas & Heneka (1994). It was evidenced that several metals  

(Ag and Cu) can grow epitaxially on a c-plane oriented sapphire substrate. For the case of Au, the structure 

of the thin film was described as an intermediate stage between epitaxy and strong texture. More recently,  

Amram & Rabkin (2013) reported that 10 nm gold  thin films grown on a cleaned and annealed  α-Al2O3 

substrate are polycrystalline  with a grain size of the order of the film thickness. The films have a very strong 

[1  1  1]  out-of  plane  texture  with  a  seemingly  random  in-plane  crystalline  orientation,  although  some 

variations in the pole-figure tends to indicate a weak hetero-epitaxy for part of the grains in the film. It was 

concluded that the large misfit between Au and sapphire (larger than for other fcc metals) does not allow  

direct hetero-epitaxial growth of the thin film. This conclusion should be tempered by the results by Bialas & 

Heneka (1994)  which evidenced the epitaxial  growth of  Ag on  α-Al2O3  while  its  lattice  mismatch with 

sapphire is comparable to gold (even slightly larger). 

In the work by Amram & Rabkin (2013), the gold particles obtained by solid-state dewetting also exhibit a  

nearly random in-plane orientation. In fact, a scan along the azimuthal angle φ reveals the presence of two 

sets  of  peaks (30° apart),  each being composed of  six  peaks 60° apart.  These peaks correspond to the 

orientation relationship (OR) associated with a local minimum of the film-substrate interface energy. It was  

also stated that individual particles formed at the late stage of dewetting may rotate towards the low-energy 

in-plane orientation, explaining the larger degree of in-plane orientation than in the thin film. The particles  

grown from grains with a large disorientation do not experience this driving force towards the OR with a  

local minimum of interface energy and keep a random orientation.

The influence of the surface state of the sapphire substrate on the orientation of the gold thin film and of the 

dewetted particles has also been studied extensively in our group (Rupp 2015). It was concluded that the  

growth-mode of the thin film strongly depends on the substrate preparation. With an high temperature air  

annealed and cleaned substrate, the results are similar to Amram & Rabkin (2013) with no preferential in-

plane orientation of the gold thin film, and a [1 1 1] out of plane texture. However, a larger degree of in-

plane ordering is found when the substrate is just cleaned but not annealed. This orientation becomes even 

more pronounced after the solid state dewetting of gold particles from the substrate and suggest that the  

hetero-epitaxial growth of particles on the sapphire substrate. This difference between the high temperature 

air annealed and non annealed substrate might be attributed to surface termination. When the substrate is just  

cleaned,  the sapphire  is  either  terminated by an aluminium or  an oxygen atom,  while  the annealing of  

sapphire leads to well defined atomic steps with an oxygen termination. The latter case not favourable to the  

hetero-epitaxial growth on the gold thin film due to the low affinity of Au for oxygen (Francis & Salvador  

2007). Slightly different results are obtained when the substrate (epitaxy ready condition) is measured as 

received or is just annealed without being cleaned, but they both exhibit to some extent in-plane relationship 
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with the sapphire substrate, which is reinforced after the solid state dewetting.  The growth mode of gold on 

sapphire strongly depends on the experimental conditions (temperature, atmosphere) (Kosinova et al. 2015) 

as well  as the surface state of the sapphire since the thermodynamical  stability of the gold on sapphire  

depends on the chemical potential of sapphire and of partial pressure of O. In any case both the mechanical  

and  thermodynamical stability of a metal-ceramic interface are expected to be lower than for the case of a  

bimetallic interface with metal bonds. The gold particles on the ionic-like sapphire are expected to have 

weak bonds, and the amount of residual strain in the particle should be much lower.

The gold crystals used in this experiment were prepared at the Technion in Haifa (Israel) in the group of  

E.Rabkin / D.Mordehai. A gold film with a thickness of 45 nm is magnetron sputtered on a sapphire (0001)  

substrate under air. Upon annealing at 930 °C for 24 hours (i.e. below the melting point of Au), a large 

number of irregularly distributed Au islands  is obtained by solid state dewetting (Fig. VI.3). Their typical 

lateral size ranges from 200 nm to 2 μm while their height varies between 100 nm and 600 nm (Fig. VI.3, see 

also subsection II.4.2.3). As in the case of the liquid state dewetting (Chapter VII), the formed particles are  

strongly faceted and exhibit a Winterbottom equilibrium shape (Winterbottom 1967). However, while the 

islands dewetted in the liquid phase can exhibit various out-of plane orientations (Sadan & Kaplan 2006), the 

islands grown by solid-state dewetting are all oriented with the Au [1 1 1] direction normal to the (0001)  

sapphire surface. As discussed in the introduction of this chapter,  (Amram & Rabkin 2013) the gold particles 

also exhibit a low degree of in-plane ordering, the preferred orientation corresponding to the lowest cost in  

interface energy. 

It should however be noted that the degree of in-plane orientation also depends on the surface state of the  

sapphire and on the experimental conditions for the solid state dewetting, since most of the gold particles  

obtained by solid-state dewetting in our group (SIMaP) exhibit a strong-degree of in-plane orientation with 

respect to the sapphire substrate (Fig. VI.1 & VI.2). 

This well defined in plane orientation for the SIMaP particles is confirmed by laboratory X-ray diffraction  
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Fig. VI.1 Summary of the possible orientation relationship between 

the gold particle and the sapphire substrate. (a) Au(1 1 1)[1 1 0]||

Al2O3(0 0 0 1)[1 0 1 0](b) Au(1 1 1)[ 0 1 1]||Al2O3(0 0 0 1)[1 0 1 0] 

and (c) Au(1 1 1)[1 0 1]||Al2O3(0 0 0 1)[1 0 1 0]. (d) SEM picture of 

an experimental particle which shows a slight disorientation (2-3°) 

with respect to the [1 0 1 0] axis of the sapphire
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measurements (Langlais 2016, Rupp 2015). Only three distincts in plane orientations are possible (Fig VI.1  

and VI.2). They are obtained by rotation of 60° along  φ such that either the [1  1 0], [0  1 1] or [1 0 1] 

direction of the gold particle is parallel to the [1 0 1 0] crystallographic axis of the sapphire substrate.

This orientation relationship (OR) can also be seen alternatively as an alignment of the [1 1 2], [2 1 1] or [1 2 

1] direction of the particle with the [1 1 2 0] direction of the sapphire. The three equivalent relationship can 

thus be described as follows :  Au(1 1 1)[1  1 0]||Al2O3(0 0 0 1)[1 0  1 0] (Fig. VI.1.a), Au(1 1 1)[0  1 1]||

Al2O3(0 0 0 1)[1 0  1 0]  (Fig.  VI.1.b) and Au(1 1 1)[1 0 1]||Al2O3(0 0 0 1)[1 0  1 0]  (Fig.  VI.1.c)  or 

alternatively Au(1 1 1)[1 1 2]||Al2O3(0 0 0 1)[1 1 2 0] (Fig. VI.1.a), Au(1 1 1)[2 1 1]||Al2O3(0 0 0 1)[1 1 2 0] 

(Fig. VI.1.b) and Au(1 1 1)[1 0 1]||Al2O3(0 0 0 1)[1 1 2 0]  (Fig. VI.1.c). These OR are in good agreement 

with  the  results  on  other  f.c.c.  metals  on  α-Al2O3  such  as  Nickel  (Meltzman  et  al.  2012).  A slight 

disorientation of the gold particle with respect to the sapphire substrate (of the order of 2 degrees) is revealed 

by XRD measurements and SEM pictures (Fig VI.2).   Both the particles used during the experiment and 

shown  in  Fig.  VI.2  and  Fig.  VI.3  are  dewetted  at  the  same  temperature  but  annealed  under  different 

atmosphere.  The particles  from the  Technion Inst.  are  annealed under  a  forming gas  flow (Ar-10% H 2 

99.999%  pure)  while  the  particles  from SIMaP were  annealed  under  air.  The  high  degree  of  in-plane  

orientation suggests that a state closer to the equilibrium has been reached for the SIMaP particles since the  

described OR would correspond to the minimum of interface energy. It can not be attributed to the duration  

of the annealing since it is much shorter in the case of the SIMaP particles (1 hour versus 24 hours). The 

rotation of  the particle  towards the low energy orientation  occurs  from the  beginning of  the dewetting  

process. The differences might origin from the degree of in-plane orientation of the gold initial non dewetted 

thin films which is largely dependent of the sapphire surface. The SIMaP particles were dewetted from  

polycrystalline thin film that was not annealed. As discussed earlier it exhibits a rather large degree of in-

plane orientation. Conversely, the orientation of the gold thin film for the Technion particles which was  

deposited on an annealed substrate is described as nearly random. 

The  rotation  of  the  particle  towards  the  low-energy OR could have  also be  altered  by the  presence of 

172

Fig. VI.2  SEM picture of a population of solid state dewetted gold islands upon annealing of a 20 nm  

gold  thin  film  at  950°C  for  1h.  Both  equiaxed  Winterbottom  particles  and   metastable  particles 

elongated  along one  of  the  <1  1  0> directions  can  be  identified.  The green  elipse  illustrates  the 

footprint of a 1x1 μm  beam with an incident angle of 20°C while the red line defines the region where 

the gold particles have been removed by scratching the sample with a tweezer.
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impurities  on  the  substrate.  Although,  in  both  cases  the  sample  were  placed  in  a  quartz  tube  to  avoid 

contaminations,  they  can  not  be  totally  excluded.  In  the  case  of  the  Technion  sample,  the  resin 

mask/lithography process that was used  is prone to have brought some impurities that significantly affected 

the sapphire surface state. 

As already reported by various authors (Mordehai  et al.  2011, Malyi  et al.  2011) some of the particle are 

elongated along one of the densely packed <1 1 1> or <1 1 0> directions (Fig. VI.2). These particles are 

lower in height as compared to the equi-axed Winterbottom particles. It has been stated that they remain 

stable  after  elongated  annealing  times  (up  to  50  h  at  900°C)  and  do  not transform  into  equi-axed 

Winterbottom particles (Mordehai  et al.  2011).  They thus correspond to a kinetically limited metastable 

shape as compared to the equilibrium shape of Winterbottom particles. More recently, Malyi  et al.  (2012) 

reported a decreasing of the lateral dimension of the elongated particles with an increasing annealing time at  

higher temperature (up to 65h at  950°C).  Fig.  VI.2 show the SIMaP particles,  grown with a very short 

annealing time, hence the large proportion of elongated particles than in the sample used for the experiment 

(Fig. VI.3). As compared with the dewetting processed in the liquid phase, the Winterbottom particles are 

further away from the Equilibrium Crystal Shape (ECS). Due to the partial wetting of the gold particle on the  

sapphire substrate the lateral size of the particles is significantly larger than their height. The particles exhibit  

a flat aspect ratio with enlarged (1 1 1) facet normal to the substrate (Fig. VI.2). A large amount of surface  

stress owing to the differential contraction of the flat facets (Watari et al. 2011) is expected to  be found in 

the structure. The long annealing time combined with the high annealing temperature for the particles used in 

this experiment gives more time to the particles to reach their ECS and is expected to reduce the amount of  

surface strain.

However, and similarly to the case of  copper islands on a Ta substrate, the main source of strain in the island 

probably results from the difference of thermal expansion coefficient between gold and sapphire Δα = αAu - 

αAl203. The cooling down of  ΔT ~ 925°C from the annealing temperature to the room temperature would lead 

to a  Δα ΔT ~ 0.8% of thermal mismatch. Such mismatch would  correspond to a rather large mean residual  

strain as in the case of copper islands, (Beutier et al. 2013a), but this strain can be partially relaxed through 

diffusion and rearrangement at the interface, such that a much lower mean residual strain may be expected in  

the particles. Laboratory XRD measurements allowed to obtain an estimated value of the mean residual  

strain of <εzz = 0.1%>. Such value is significantly lower than the strain found in copper crystals on tantalum,  

and a strain dominated CXD pattern as in the case of copper island on a Tantalum substrate is not expected.

An important requirement for CXD experiments is to be able to isolate a single gold crystal. The dewetting  

process results in regularly distributed particles, with a  spacing which appear to depend on the thermal  
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Fig. VI.3 Solid state dewetted particles from Technion Inst.(a) SEM picture of the solid state dewetted gold particles. 

The mask used for the deposition of  the gold thin film allows to obtain a regular array cf crystals with a single and  

isolated  particle  at  the  centre  of  each  square.  (b)  Zoom  of  the  gold  particle  that  was  selected  for  the  in-situ 

nanoindentation experiment
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treatment (Langlais 2016, Rupp 2015). It has been shown in particular that a low heating rate to reach the 

annealing temperature favours the nucleation of small particles in between the larger ones. A larger heating 

rate  tends  to  prevent  this  phenomena  and a  typical  spacing  of  2-3  μm between the island is  generally 

observed (Fig. VI.2). 

To enable the phase retrieval of  the diffraction data, both the transverse and longitudinal coherence length of 

the incoming X-ray beam should exceed the dimensions of the sample.  This obviously implies that  the 

incoming X-ray beam is larger than the particle. The typical lateral size of the gold particles is of the order of  

800 nm while their  average height is around 400 nm (see Chapter II). The incident X-ray beam should not  

be smaller than these dimensions. Additionally, the relatively small value of  the Bragg angles used for the  

collection of the diffraction data results in a enlarged footprint of the beam on the sample. For instance, for 

an angle incident angle of 15° which is the Bragg angle for the gold 1 1 1 reflection at 9.7 keV, and for a  

beam size of  (FWHM ~ 0.8x0.4 μm2 , HxV) the footprint is equal to 0.8x1.3 μm2,. The green ellipse in Fig. 

VI.2 show that the footprint of a 1x1 μm2 (FWHM) which illuminates a particle with an incident angle of 20° 

is significantly smaller than the typical spacing between two islands. However, the tails of the beam are 

much larger than the FWHM such that the partial illumination of neighboring islands and the associated 

interferences on the CXD patterns can not be excluded. To isolate the island, a very simple and somehow  

rough procedure was to scratch the sample with tweezers in order to remove gold islands in some regions of 

the sample as described in subsection II.4.2.2. As illustrated in Fig VI.2, the particle at the vicinity of the  

depleted region (delimited by a red line) are well isolated. 

To  completely  prevent  the  potential  illumination  of  several  particles,  at  the  expense  of  substrate  

contamination as discussed previously, a lithography/mask process route was used during the deposition of 

the initial gold film. A regular array of Au crystals was prepared where an individual Au particle was located  

in the centre of a square formed by Au crystals (Fig. VI.3.a). The side length of this square amounted to 50  

µm allowing for studying a single Au island and image it before and after the experiment by SEM. The 25  

µm gap with the closest neighbour ensure that the illuminated crystal is completely isolated.

VI.2 Coherent X-ray diffraction experiment

For coherent Bragg diffraction imaging, the 8 keV X-ray beam was focused down to 500 x 300 nm 2 

(HxV, FWHM) using a tungsten Fresnel zone plate with a diameter of 300 µm. The high precision slits  

installed in front of the FZP were closed to 60 x 300 µm2 matching the lateral coherence lengths at the 

upgraded ID01 beamline. In order to fully illuminate the isolated islands, it was eventually defocused to a 

larger size (estimated to be 700 x 400 nm2). A significant part of the beam time was dedicated to the selection 

of the best candidate for the in situ nano-indentation experiment. In order to select the most “perfect” crystal, 

a 3D CXD pattern was collected at the 1 1 1 Bragg reflection for each of the potential candidate. To do so, a  

series of rocking curves (subsection II.1.5) was acquired on several islands by rotating the sample by +/- 0.5°  

(∆q =  ± 1.34 nm-1). The 2D diffraction patterns were collected using a 516x516 pixels Maxipix detector 

(ESRF) installed at a distance of 1.3m downstream the sample. The 2D CXD patterns were then stacked  

together and a coordinate change was performed in order to work in the laboratory reference (subsection 

II.1.6). 

Most of the crystals that were measured were very defective with a “speckled” CXD pattern indicating the 

presence of several crystal defects. However, for two of them, located in the 'A2' and 'B3' positions of the 

array, the diffraction pattern appeared very clean, with a single Bragg spot and a maximum intensity at the 

Bragg position (Fig. VI.4). The absence of splitting of the Bragg peak indicates that there are no defect in the 

structure that induce a phase-shift of a large volume of the crystal. Mordehai  et al.  2011 reported by TEM 

investigation  the  presence  of  a  small  number  of  long  sessile  dislocations  produced  during  the  particle  

formation. Such defect would induce phase shifts between large volumes in the crystal and  produce a very  

distinct signature on the CXD pattern. The presence of such dislocation lines or stacking faults that spread in 

the whole crystal volume is thus improbable, unless their Burger vectors are perpendicular to g. However, the 

presence of small dislocation loop which can induce phase-shift  of small parts of the crystal can not be 

excluded.  If in both crystals the Bragg peak is slightly elongated along the [1 1 1] direction due to the 
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enlarged (1 1 1) facet normal to the sapphire substrate, it appears relatively undistorted. This, associated to  

the good visibility of the fringes induced by the finite size of the crystal is a good indication of the low 

amount of residual strain or at least of the absence of large inhomogeneous strain in the particle (Beutier et  

al. 2013a). The 'A2' island has been finally selected for the in situ nano-mechanical tests.

To perform the in situ indentation, the in situ AFM “SFINX” (Zhe et al. 2014) which have been developed 

within the framework of the ANR MecaNIX project was installed on the diffractometer of the upgraded ID01  

beamline. The AFM-tip, the Au islands, and the focused X-ray beam were aligned with respect to each other  

by simultaneously recording an AFM topography image and a scanning X-ray diffraction map. The scheme 

of the experiment is shown on Fig. VI.5.a. After alignment, the AFM-tip was positioned above a selected Au 

island (Fig. VI.5.a), the feedback loop of the AFM (Fig. VI.5.b) as well as the excitation of the cantilever are 

switched off, and the tip was moved down with a speed of 2 nm/s indenting the island. At pre-defined loads,  

the AFM-tip was retracted with the same speed until it reached a position of 1 µm above the island top facet. 

A total of 6 iterations of loading-unloading was performed and a 3D diffraction pattern was collected after  

each  unloading.  Finally  a  last  diffraction  pattern  was  recorded after  24  hours  of  illumination  with  the 

coherent  X-ray beam.  Between these two steps,  diffraction patterns were collected for  additional  Bragg  

reflections: one specular 2 2 2 reflection and two off-specular 1 1 1 and 1 1 1 reflections. The reconstruction 

of  the  displacement  field  for  four  different  g  with  three  of  them being  non-coplanar  would  have  fully 

determine the microstructure inside the particle (as illustrated in sections V.3 and V.5). Unfortunately, the 

phase retrieval of the diffraction data was only possible for g = 1 1 1. 

This failure can be explained by several reasons. The beam being of a size comparable to the sample, the 

complete illumination of the particle for g = 1 1 1 was only achieved because of the large footprint of the 

beam at low incidence angle. For the 2 2 2 reflection the larger Bragg angle did not allow to completely 

illuminate the crystal. As seen from the slice in the (qx,qy) plane (Fig. VI.6.a), parallel to the specular (1 1 1)  

facet, the contrast of the fringes along the direction of the facets is very poor. Fringes are induced by 
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Fig. VI.4: CXD diffraction patterns from the two crystals with the  

least estimated residual strain and defect content. (a) and (b) (qy-

qz)  slice  of  the  reciprocal  space  for  the  A2  and  B3  crystal 

respectively.  (c)  and  (d)   (qx-qy)  for  the  A2  and  B3  crystal 

respectively

A2

B3

(a) (b)

(c) (d)B3 (b)
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interferences  between  two  parallel  crystal  facets,  and  the  absence  of  contrast  is  either  due  to  a  weak 

coherence of the beam (which is not the case here) or due to the fact that the two facets are not illuminated 

simultaneously. The diffraction data at this Bragg reflection is thus not usable for phase retrieval. 

For the off-specular reflections, the diffractometer on the ID01 beamline was not designed to routinely work  

in  off-specular  geometry.  It  is  only  possible  to  measure  the  off-specular  reflections  through a  complex 

combination of motions of the diffractometer axes. The <1 1 1> reflection were only reachable at a grazing 

incidence angle (3°). Even with the large resulting footprint, the gap with the closest crystallite was sufficient  

to ensure that  only the A2 crystal was illuminated.  Interferences with neighbouring crystals can thus be 

excluded. Additionally, the rather large footprint of the beam ensured a complete illumination of the crystal.  

The fringes contrast is very poor for g = 1 1 1 (Fig. VI.6.b) while it is more pronounced for  g = 1 1 1 (Fig. 

VI.6.c). This difference in term of fringes contrast is rather surprising since the crystal was illuminated with  

the same incident angle in both cases. No satisfying explanation to the failure of the phase retrieval of the  

diffraction data has been found so far. It may come from the asymmetry of the beam with such low incident 

angle.

  

VI.3 Selection of the gold particle and importance of the preparation conditions 

As discussed in sections VI.1 & VI.2, the pristine crystal needs to be as perfect as possible (i.e low  

residual strain and low defect content). The A2 crystal seems to be a particularly good candidate since both 

the Bragg peak and the fringes appear nearly undistorted which indicates both the absence of large residual  

strain and of a low defect content.  As compared to previous CXD experiments with similar sample, the  

signature of the strain is almost invisible in the CXD pattern. Fig. VI.7 show various diffraction patterns  

calculated for  g  =  1 1 1 and  g  = 2 2 2 from particles with similar size and geometry. They all exhibit a 
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Fig. VI.6: CXD patterns measured at other Bragg reflections. (a) g = 2 2 2 in the (qx,qy) plane of the reciprocal space. (b) 

g = 1 1 1 (c) g =  1 1 1. For (b) and (c), the coordinate transformation to work in the laboratory reference has not been  

performed

(a)               g = 2 2 2

 

(b)              

        g = 1 1 1         

(c)

        g = 1 1 1 (qx,qy)



Chapter VI: Investigation of the mechanical properties of a single Au crystal by in situ nano-indentation with BCDI

Winterbottom shape which is very close to the equilibrium crystal shape, and the aspect ratio between their  

lateral size and height is comparable (of the order of 0.5). However, they are grown with different thermal  

treatments, and a different surface state of the sapphire substrate. The first particle (Fig. VI.7.a) is the particle 

from Technion which has been measured during this experiment (A2 crystal). The other 3 particles (Fig.  

VI.7.e, VI.7.i & VI.7.m) are SIMaP particles whose preparation process was described in subsection II.3.1.1  

and section VI.1. 

For each particle, the direction of the incident X-ray beam is indicated with a green arrow, while the blue  

arrow  show  the  [1  0  1 0] direction  of  the  sapphire  substrate.  As  shown  in  section  VI.1,  the  in-plane 

orientation of the particle seems to be well defined for particles (e), (i) and (m) with one of the <1  1 0> 

direction almost parallel to the [1 0 1 0] direction of the sapphire substate. For the A2 particle, a strong in 

plane misorientation (approximately 15°) is observed. As discussed in section VI.1, the other particles on this 

substrate exhibit a spread of in-plane orientations on the sample though some degree of in-plane ordering is 

observed. We suggested in section VI.1 that the Technion particle is at an intermediate stage between strong 

texture and epitaxy while the SIMaP particle are in epitaxy with the substrate and thus exhibit a stronger 

binding with the sapphire substrate.

The corresponding diffraction patterns  are  in  very good agreement  with these assumptions.  For  the A2  

particle, and as described in section VI.2, the Bragg peak is weakly distorted, suggesting a low amount of 

residual strain (Fig. VI.7.b to VI.7.d). We inferred in the previous section that the main of source of strain is 

the thermoelastic strain (Δα ΔT) induced during the cooling of the particle. Since the A2 particle has a weak 

binding with the substrate  that would allow a better relaxation during cooling, only a very small part of Δα 

ΔT remains.

The diffraction patterns from the SIMaP particles show some obvious differences. The diffraction data from 

(e) was collected at the I13 beamline of the diamond light source, using a 9.375 keV coherent X-ray beam. 

The procedure described in section VI.2 was used to measure a 3D CXD pattern around the 1 1 1 Bragg 

reflection. The stronger binding between the particle and the substrate seem to keep unrelaxed a significant  

part of the thermoelastic strain to the particle and produce a very clear and distinct signature on the CXD  

pattern. As seen from Fig. VI.7.h, the Bragg peak is elongated along the three <1 1 1> directions which are  

not perpendicular to the top facet. This case is intermediate between a strain free particle, and a particle with  

a large and inhomogeneous interfacial strain (Beutier et al. 2013a). The shape of the crystal is still visible on 

the CXD pattern (presence of fringes along the direction of the facets), but the inhomogeneous strain induce  

a clear broadening of the Bragg peak. 

The last two particles were measured from the same sample but on different beam lines, and with a different  

Bragg reflection for the last one. The 1 1 1 Bragg peak of particle (i) has been also collected at the upgraded  

ID01 beamline (ESRF) during a previous experimental run, using a coherent X-ray beam at 9keV. The CXD 

pattern from the last particle (m) was measured on the CRYSTAL beamline of the synchrotron SOLEIL,  

using a 8.9 keV coherent X-ray beam.

As  illustrated  from Fig.  VI.7.l,  the  elongation  of  the  Bragg  peak  along  the  <1 1  1> directions  is  less 

pronounced than in particle (e), suggesting a lower amount of residual strain.  As opposite to the A2 particle,  

the Bragg peak does not  consist  of  a single clean spot,  but  is splitted in two main parts  indicating the  

presence of defect in structure. Particle (e) and (i) being from the same sample, one could wonder why 

particles with the equivalent size and shape,  and grown with the same thermal treatment with the same 

surface state for the substrate, exhibit such large differences in term of residual strain. As discussed in section 

VI.1, the residual strain can be partially relaxed through the emission of dislocation that migrates to the 

substrate  particle  interface,  and through the  diffusion of  vacancies  (or  of  cluster  of  vacancies  know as 

vacancy Frank loops) in the substrate. We can assume that the relaxation of the strain is more or less efficient  

from one particle to another, independently on its size and geometry. 

The diffraction pattern from the last particle (m) measured for the 2 2 2 Bragg reflection is largely strain 

dominated. The Bragg peak is even more elongated along the <1 1 1> directions than in particle (e), due to 

the larger sensitivity of the 2 2 2 reflection to lattice displacements along the [1 1 1] direction. We estimate 
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Fig. VI.7: Signature of the thermoelastic strain on the CXD pattern. The green arrow on figures �a), (e), (i) and (m) 

denotes the direction of the incident x-ray beam while the blue arrow indicate the [1 0 1 0] direction of the sapphire 

substrate. (a) 600x600x300 Au crystal that was measured during the present experiment with a 8 keV coherent X-ray 

beam. Corresponding CXD pattern around  g = 1 1 1 in the (qy,qz)  (b), (qx,qz)  (c) and (qx,qy)  (d)  planes of the 

reciprocal space. (e) 800x800x400 nm gold particle annealed during 1hour at 950 °C. The 1 1 1 Bragg reflection was  

collected at the I13 beamline of the Diamond light source, using a 9.375 keV coherent X-ray beam. Corresponding  

CXD pattern in the qyqz (f), qxqz (g) and qxqy (h) planes. (i) 800x800x400 nm gold particle dewetted with the same 

thermal  treatment  as  in  (e) measured  during a previous experimental  run  on the ID01 beamline using a 9 keV 

coherent X-ray beam. Corresponding CXD patterns around g = 1 1 1 in the (qy,qz)  (j), (qx,qz)  (k) and (qx,qy) (l) 

planes.  (m) 750x750x370  nm  gold  particle  dewetted  with  the  same  thermal  treatment  as  in  (e) and  (i).  The 

measurements were made at the crystal beamline of the synchrotron Soleil, using a 8.9 keV coherent X-ray beam. 

Corresponding CXD patterns around g = 2 2 2 in the (qy,qz) (n), (qx,qz) (o) and (qx,qy) (p) planes. Simulated 2 2 2 

Bragg reflection calculated from a gold crystal modeled with FEM in the (qy,qz) (q), (qx,qz) (r) and (s) planes. The 

thermal mismatch corresponds an average deformation εzz ~0.3%. 
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that the level of strain is comparable in (e) and (m) and of course much larger than in (a). A particle with size  

and shape comparable to particle (m) was modeled using FEM. The strain field was calculated assuming 

only thermoelastic deformation (no plasticity), and the u2 2 2 displacement field used for the calculation of the 

diffracted intensity was obtained from the the strain field by integration. More details about the details of  

calculations of the diffracted intensity can be found elsewhere (Beutier et al. 2013a). 

The calculated diffraction pattern (Fig. VI.7.q to VI.7.s) show some strong similarities with the experimental 

data,  with an  elongation of  the Bragg peak along the  <1 1  1> directions,  but  also along the  <0 0  1>  

directions. (Langlais 2016). Similarly to the case of copper island, the simulation of the CXD pattern with 

the strain field from the FEM allows to obtain a good estimation of the mean residual strain along z (with z  

being the 1 1 1 direction) :  εzz ~ 0.3%. This value is significantly larger than the result obtained from the 

XRD laboratory measurements, which is a statistical average of Winterbottom and elongated crystallites.  

However, we have seen that the level of residual strain can be very different from one particle to another  

(large difference between particle (i) and (m) for instance), even if they belong to the same sample. 

The comparison of the CXD patterns form the A2 patterns with CXD patterns measured during previous 

experiments suggests an almost strain-free and defect free particle in its pristine state. As discussed at the  

beginning of section VI.1, it is thus a particularly good candidate for a detailed study of defect nucleation in 

small size crystal.

VI.4 Simple model of the thermoelastic strain with molecular statics simulations
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Fig.  VI.8 Thermoelastic  strain  modeled  with  molecular  statics  simulations.  (a)  30x30x30nm  gold 

nanoparticle with a varying amount of thermal mismatch with the underlying substrate. (b) CXD pattern 

calculated around  g  = 2 2 2 for the unrelaxed strain-free particle. (c)  εzz   strain with z being the [1 1 

1] direction induced by a 4.2% lattice mismatch with the substrate. (d) Corresponding CXD pattern for  g = 

2 2 2



Chapter VI: Investigation of the mechanical properties of a single Au crystal by in situ nano-indentation with BCDI

The  effect  of  thermoelastic  strain  on  CXD  patterns  can  also  be  modeled  through  molecular  statics 

simulations.  Of  course  the  dimensions  of  the  experimental  particles  (few  hundred  of  nanometers)  are  

unreachable with atomistic simulations. The results presented in this short section are purely qualitative but  

they provide a good description of the strain distribution in the particle.

A 30x30x30 nm3 gold particle in a Wulff geometry was modeled using EAM potentials (Grochola  et al.  

2005) (Fig. VI.8.a) The sapphire substrate is simulated by a block of 20 layers of gold atoms frozen in their  

position and the thermal mismatch by imposing a displacement corresponding to compressive loading along 

the in-plane  [1 1 0] and [1 1 2] directions. For a given value of thermal mismatch, the atomic position in the 

particle are then relaxed, and the diffraction pattern is calculated in the kinematic approximation (Chapter 

III). The gold atoms mimicking the substrate are not taken into account to only capture the signature from the 

particle. Given the small size of the particles, the lattice mismatch has to be set to very large values in order  

to produce level of strain in the particle that sufficiently affect the diffraction pattern. 

Fig. VI.8.b & VI.8.c show the calculated diffraction patterns in the (1 1 1) plane parallel to the (1 1 1)  

specular facet  for  g  = 2 2 2.   For the unrelaxed particle,  the diffraction pattern is  almost  isotropic,  the 

hexagonal shape of the particle is reflected in the hexagonal shape of the diffraction pattern. Both the fringes 

along the <1 1 1> and <0 0 1> direction are intercepted by the (1 1 1) plane, resulting in a six-fold symmetry.

The diffraction pattern from the strained particle is also calculated for  g  = 2 2 2 for an equivalent initial 

imposed  interfacial  strain  of  5.2%.  As  discussed  in  the  next  chapter  (Chapter  VII)  the  average  lattice 

parameter in nanoparticles tends to decrease upon relaxation such that the value of the lattice mismatch is in 

fact  significantly lower.  Similarly to the FEM calculations,  the Bragg peak evolves towards a triangular 

shape, and is elongated along both <1 1 1> and <0 0 1> directions. This signature of the strain is quite  

consistent with our observations on the experimental data. The  atomic strain along [1 1 1]:  εzz   calculated 

from the atomic positions is represented on Fig. VI.8.c in the (1 1 1) plane, about half-way of the height of  

the particle.  The elongation of the <1 1 1> and <1 0 0> fringes seems to be associated seems with alternating 

regions of tension and compression. The areas of compression are located close to the {1 1 1} facets while 

the areas of tension are close to the {1 0 0} facets. 

VI.5 Results

In this section  the  in-situ indentation experiment are reported.  A detailed analysis of both the CXD 

patterns and of the displacement field reconstructed from the diffraction data are provided.

VI.5.1 Analysis of the CXD patterns at various iteration of the loading unloading cycle

As presented in section VI.2, we carried out a total of 6 loading-unloading iterations. Each iteration 

consists in increments of an imposed total displacement of the z-piezo, with a maximum of 40 nm amplitude,  

once the surface is detected. During this slow loading, the tip is withdrawn as soon as a subtle variation in  

the diffraction pattern (actually on the detector) seem to appear. This procedure of quasi-static indentation is  

used so that initial irreversible change in the particle are not missed, Beutier  et al. (2013b). In past in-situ 

loading,  too large depth/load excursion have provoked the typical  burst  of  defects  (pop in events).  The 

diffraction pattern presented in Fig.  VI.9 are collected at  four different  stages of the in-situ  indentation  

experiment: on the pristine particle, before indentation, after 3 loadings, after 4 loadings and after 6 loadings  

and after a 24h illumination under the beam.

The simulated nano-indentation presented in section IV.2 (for  the analysis  of  the CXD patterns) and in  

section V.5 (analysis of  the reconstructed displacement field) presented the detailed defect structure that  

should correspond to the nucleation by indentation of a sub-micron f.c.c. particle indented along the [1 1 1] 

direction. Three crystallographic equivalent variants of prismatic dislocation loops are regularly emitted from 

the region just below the indenter with a Burgers vector of type 1/2<1 1 0>. They are thus all visible with g 

= 1 1 1. Under indentation load they are likely to move along their glide cylinder parallel to their Burgers  

vector until they are annihilated at the crystal substrate interfaces. The 3D CXD patterns are always recorded 
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Fig. VI.9: CXD patterns at different stages of the indentation experiment measured around g = 1 

1 1. (qy,qz) (a), (qx,qz) (b) and (qx,qy) (c) slices of the reciprocal space for the pristine island. 

Same  slices of the reciprocal space after three cycles of loading-unloading (d to f), four cycles (g 

to I), 7 cycles and 24 hours of illumination under the X-ray beam.
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after  unloading, such that most of the dislocation  that are created during the loading have probably left the  

crystal.  Even if dislocation loops are present in the structure, their signature on the CXD pattern should  

remain rather limited. The displacement field of prismatic dislocation loops have been presented in details in  

sections V.4 and V.5 and it has been evidenced that the strain field around dislocation loop extends over a 

region that does not exceed the loop diameter. The volume of the phase shifted volumes in the crystal are 

small, unless the loop has a size comparable to that of the crystal which is very unlikely.  As a consequence,  

a 20 nm loop nucleated in a 600x600x300 nm3 crystal as the one measured experimentally is expected to 

create a weak signature on the CXD pattern. The diffraction pattern from the pristine island has already been  

described in section VI.3. The Bragg peak is weakly distorted and the fringes along the directions normal to 

the crystal facet are clearly visible, suggesting a low mean residual strain. A closer look at the fringes along  

the (1 1 1) direction  in the (qx,qz) slice of the reciprocal space reveals that they are slightly distorted (area  

circled in red on Fig VI.9.b). This could indicate the presence of some strain in the particle. The fringes along 

the <0 0 1> directions can also be distinguished, but the contrast is rather poor for the fringes along [0 1  

0] and [1 0 0] (Fig. VI.9.c, circled in red).

After three loading-unloading events (I=3), some visible changes can be observed (Fig. VI.9.d to VI.9.f). A 

close look close to the Bragg position in the (qx,qz) slice of the reciprocal space (Fig VI.9.d) reveals a slight  

modification of the shape of the Bragg peak (area circled in black). Since no splitting can be observed, we  

can infer that if some defects have been nucleated, they don't induce the phase shift of large volumes in the 

crystal, in good agreement with our predictions. The analysis of the (qx,qz) and (qx,qy) slices also reveals  

interesting informations (Fig. VI.9.e & VI.9.f). The distortion of the (1 1 1) fringes that was observed in the  

(qx,qz) slice has completely vanished, suggesting that some of the residual strain has been relaxed. On the  

(qx,qy) slice the hexagonal shape of the particle can clearly seen in the CXD pattern .We have seen in the 

simulations (section VI.4 for instance) that such visibility of the shape of the particle is a good indication of 

the absence of strain. The contrast in the fringes along the [1 0 0] and [0 1 0] directions is also enhanced as 

compared to the pristine particle. Overall, we notice a slight modification of the Bragg peak which could be  

the signature of the nucleation of defects. On the other hand, the CXD patterns looks cleaner with the almost  

complete  vanishing  of  the  fringes  distortion  and  an  improvement  of  the  fringes  contrast  along  some 

directions. This suggest an overall decrease the residual strain in the particle. 

The diffraction pattern collected after  four  indentation events  (I=4)  tends to  confirm this  trend.  On the  

(qy,qz) slice of the reciprocal space (Fig. VI.9.g), the shape of the Bragg peak is very similar to the case of 

the pristine particle. This could be an indication that the modifications observed for (I=3) are indeed related 

to the nucleation of defects. Additionally, the distortion of the (1 1 1) fringes (Fig.  VI.9.g &  VI.9.h) has 

completely vanished, and the contrast of the fringes along [1 0 0] and [0 1 0] is even further enhanced as 

compared to I=3. This in good agreement with our hypothesis of the decrease of the mean residual strain in  

the particle after few loading and unloading events. 

Fig. VI.9.j to VI.9.l show slices of the CXD pattern that was collected after 6 loading-unloading iterations  

followed by a 24 h illumination under the beam. Some strong differences are observed with the previous  

stages of the indentation. They suggest a change in the particle shape. This is particularly obvious in the 

(qx,qy) slice (Fig. VI.9.l) where the orientation of the <0 0 1> fringes indicated by the red arrows has been 

clearly modified such that the (qx,qz) slice (Fig. VI.9.k) now intercept the fringes along the [1 0 0] direction. 

The reconstruction of the electron density should allow to visualize the detailed evolution of the particle  

shape. Apart from this changes, the Bragg peak still consists of a single clean spot while the (1 1 1) fringes  

are not distorted. The mean residual strain in the particle does not seem to have significantly increased. 

The direct analysis of CXD patterns provide some useful informations. A change in the orientation of the 

facet fringes reveals a modification of the shape of the particle under illumination. It is also quite clear that 

the diffraction pattern appears  more perfect  after  few loadings.  This  suggest  a  partial  relaxation of  the  

residual strain, by emission of dislocations also known as “mechanical annealing” (Matthews & Blakeslee 

1974). As discussed in section V.5 and at the beginning of this paragraph, the signature of small dislocation 

loops in a large crystal  volume are not  expected to produce a clear signature on the CXD pattern.  The 

variations in the shape of the Bragg peak could be attributed to the nucleation of defect in the structure, but  

the presence of dislocation loop in the crystal  can only be confirmed through the phase retrieval  of the 
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diffraction data.

VI.5.2 Reconstruction of the electron density

The phase retrieval of the diffraction data was carried out using classical phase retrieval algorithms  

(Fienup 1982, Marchesini 2003), following the procedure described in details in Chapters I & VII. The u1 1 1  

displacement field was reconstructed for each iteration of the loading unloading cycle. 

Similarly to the case of the twin particles, the best solution are selected according to their metric error and to 

the homogeneity of the electron density. For each scan, a total of 40 random starts was performed, and the 10  

best solution were averaged to produce the final image of the sample. 

The reconstructed electron density shown on Fig. VI.10 is averaged over 50 reconstructions: the 10 best 

reconstructions for the first five stages of the indentation (I=0 to I=4). Given the averaging over a large  

number of estimates, the isosurface drawn at 30% of the electron density appears very smooth. The voxel  

size given by the extent in the reciprocal space is equal to (7.4x8.45x7.75 nm3). 

In good agreement with previous observations (Sadan & Kaplan 2006, Malyi  et al  2012) the particle is 

strongly faceted with a Winterbottom equilibrium shape. All the {1 0 0} and {1 1 1} facets connected with 

rounded  interfaces  can  clearly  be  identified.  The  particle  is  wider  than  it  is  tall,  suggesting  that  the  

equilibrium crystal shape (Chapter II) has not been completely reached (Watari  et al.  2011). Fig. VI.10.b 

confirms the misorientation of 15° with respect to the [1 0 1 0] axis of the sapphire substrate. Fig. VI.10.c 

and 10.d are thus seen 15° from the [1  1 0] and [1 1  2] directions respectively. The reconstruction of the 

electron density at each iteration of the loading-unloading cycle reveals a remarkable reproducibility of the 

shape of the particle for I=0 to I=6 (Fig. VI.11.a to VI.11.g). For the latter, the density is averaged over a 
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Fig.  VI.10:  Reconstructed  electron  density  isosurface  drawn  at  30% of  the  maximum  density.  The  density  is 

averaged  over  50  reconstruction  consisting  of   the  10  best  reconstructions  at  each  iteration  of  the  loading  –  

unloading cycle for I=0 to I=4 (with i the number of loading-unloading cycles).  (b) is seen from the z direction 

which corresponds to the [1 1 1] direction while (c) and (d) are seen from the x and y direction which are almost 

parallel to the [1 1 0] and [1 1 2] directions.
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fewer number of solutions such that the isosurface appears a bit  rougher. Of course the footprint of the 

indenter on the top (1 1 1) surface can not be seen from the reconstruction since we limit the amount of  

plastic deformation. The remarkable similarities between each stage of the indentation and with the SEM 

picture is  a quite good evidence of the convergence of the phase retrieval  algorithms towards the good 

solution. 

After 24 hours ageing with illumination, the shape of the particle has completely evolved (Fig VI.11.h). First, 

the height of the particle remains unchanged (within 20 nm upper bound resolution), but the respective area  

for <1 1 1> and <1 0 0> facets have dramatically evolved. Moreover, an in-plane rotation of the crystallite is  

clearly visible: the <1 1 0>  intercepts of <1 1 1> and <1 0 0> facets have rotated (Fig. VI.11), by around 5-

10° and finally, and an asymmetric elongation along [0 1 1] can be observed. This change of shape is rather 

striking. Several mechanisms can be considered, all include surface diffusion which are not negligible at RT 

over 24 h:   

– alteration of  surface  energies  and their  relative  ratio,  due  for  example  to  surface  contamination 

(ionization phenomena of air induced by the beam). This would indeed lead to a more isotropic  

shape.

– free energy change (elastic stored energy of the residual strain) that induces a morphological change 

of the shape of the particle (Muller  et al. 1998, see subsection II.3.1.1): the equilibrium shape of 

crystals (Wulff, Winterbottom...) formalism are proposed to explain the shape of crystallites from 

their formation (only transition from vapor/liquid to perfect crystal are considered). If additional  

energetical volumic contributions  are added, this alters the ECS. This is the case treated by Kaishew 

(1952) applied to ECS by Muller  et al.  (1998) involving epitaxial strain for example. This should 

lead to a change of relative facets area proportion, but also the height (equilibrium wetting angle) as  

stated by Muller et al. (1998). Rotation has not been considered in their calculations, since isotropic 

elastic field are only considered.

– rotation  induced  by  the  crystal  plasticity  :  if  during  the  plastic  events,  an  unbalanced  net 

displacement accumulates at the interface (due to a unbalanced slip system nucleation/activation),  

this would produce after atomic rearrangement at the interface a net rotation. This rearrangement is  

not  immediate,  since  it  would  have  been  observed during  the  mechanical  iteration,  but  a  24  h 

annealing  at  RT  could  allow  general  diffusion  based  mechanism  to  modify  the  weak 

crystallite/substrate interface.
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Fig.  VI.11:  Reconstructed  electron  density  isosurface  drawn  at  25% of  the  maximum density  for  each  

iteration of  the loading-unloading cycle.  The density  is  averaged over the 10 best  reconstructions after 

iterative mechanical loadings (a-g) and (h) after 24 h ageing  at RT  under the beam
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VI.5.3 Imaging of the displacement field around a prismatic dislocation loop

The strongest modification of the shape of the Bragg peak is observed after 3 loading-unloading 

events. We suspect that some defect could be present in the particle at this stage of the indentation.

For weakly strained systems, the phase of the retrieved complex-valued electron density f(r) often presents 

some variations that can be related to the experimental conditions rather than to the crystal structure. They 

mainly consist of a reciprocal space offset which induces a linear phase ramp, refraction effects (Harder et  

al.  2007) presented in Chapter II and further discussed in  Chapter VII and curved illumination wavefront 

(Chamard  et  al.  2010).  Any phase ramp due to a bad centering of the diffraction data is  eliminated by  

multiplying f(r) by the phase ramp calculated from the centre of mass (Clark  et al.  2015). The only other 

phase variations that are not related to the crystal structure are thus the refraction effect and the illumination 

wavefront inhomogeneities. Fig. VI.12 show the reconstructed displacement field for I=3. A region where the 

phase drops significantly (by almost 2 radians) can clearly be identified near the [0 1 0] and [1 1 1] facets 

(region circled in red on Fig. VI.12.d) The linear phase variations in this region are clearly attributed to the 

phase of the illumination wavefront rather than the u111 displacement field in the crystal.

The particle was illuminated with a beam size which is only slightly larger than its lateral size and height  

(600x600x300 nm3 particle versus beam size of  FWHM ~700x400 nm2 HxV). For a sample placed exactly 

in the focal spot of a Fresnel-Zone plate, the phase of the wavefront is expected to be flat in the focus 

(Schroer  et al.  2008, Takahashi  et al.  2009, Mastropietro  et al.  2011). However, under such experimental 

conditions,  and for  a  beam size only slightly larger than the sample,  distortion of  the wave front  were 

reported to cause phase variations of as much as 0.5 radians (Diaz A. et al. 2009).  Here the sample was not 

placed in the focal spot of the Fresnel zone plate and the distortions of the wave front are expected to be even  

larger. The retrieved phase at the sample is thus a mixing of the illumination wavefront phase with the phase 

of the complex sample density itself. 

In order to disentangle the contribution of both phases, a 2D ptychography scan (Rodenburg et al. 2007) was 

performed at the 2 2 2 Bragg reflection to reconstruct  the wavefront.  Such reconstruction has not  been  

performed yet and in the following the retrieved phase is a mixing of the illumination wavefront phase with 

the  phase  of  the  sample  itself.   Given  the  large  phase  variations  observed  around  defects  and  at  the  

substrate/particle  interface,  this  should  not  be  too  problematic  for  the  analysis  of  he  evolution  of  the  

microstructure. We will indeed see in the following, that the footprint of the beam is always clearly visible on 

the reconstruction and does not vary from one reconstruction to another. However, given the significant  

contribution of the phase of  the wavefront, this correction will need to be implemented in a near future. The 

maximum phase shift accounting from refraction effects is of the order of 0.45 radians. Its contribution to the  

phase  variations  is  thus  much  smaller  than  the  contribution  from  the  distorted  wavefront  and  can  be  

neglected. If some of the phase fluctuations can be attributed to the experimental conditions, some phase  

variations can clearly be attributed to the evolution of the microstructure of the sample.

Fig. VI.12.a show the isosurface of the reconstructed electron density of the sample drawn at 25% of the  

maximum  value  of  the  density.  A loop-shaped  drop  of  density  is  seen  at  the  centre  of  the  particle,  

approximately 100 nm above the substrate-particle interface.  It strongly resembles to the dips of intensity  

that we identified at the vicinity of dislocations in our simulations (section V.3 to V.5).  The (y,z) (1 1 0) (Fig. 

VI.2.b), (x,z) (1 1 2) (Fig. VI.2.c) and (x,y) (1 1 1) (Fig. VI.2.d) planes intercept the loop in two locations 

where a pair of vortices with opposite chirality can be observed. This profile of the u1 1 1 displacement field 

around the defect (Fig VI.13.b) is very similar to the u1 1 1 displacement field we observed around simulated 

prismatic dislocation loops (Fig. VI.13.e). Between the two phase vortices, the rapid phase variations along 

the loop axis are localized to a region which does not exceed the loop diameter. 

In the plane that intercepts the loop perpendicularly to its axis (Fig VI.13.a and VI.13.c), the phase shift 

between the regions inside and outside the loop is roughly equal to π, as in simulations (Fig. VI.13.d)  

The loop diameter is approximately 50 nm. As discussed in the previous section, such a small loop in a large  

crystal produces a very weak signature on the CXD pattern, and the identification of such defect can be 

achieved only through the reconstruction of the displacement field. In any case, the very strong similarities  

between simulation and experiment leaves little doubt on the presence of a prismatic dislocation loop in the 

structure at this stage of the indentation experiment. 
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What is more surprising is the presence of a single dislocation loop in the structure. As discussed earlier 

(section  V.5),  upon nano-indentation,  loop are  regularly  emitted  from the  region  below the  indenter  to 

accommodate plastically the area of contact of the tip, but most of them can be annihilated at the crystal  

surfaces. Although it can not be excluded that some dislocation loop can stabilize in the crystal after the 

unloading of the indenter tip, the presence of a single one rather than an assembly with equivalent Burgers  

vector was not necessarily expected. It could be also conceivable that some of the loops in the crystal fulfill  

the invisibility conditions and are thus invisible in the reconstruction. However, this hypothesis is unlikely. 

Upon indentation along the [1 1 1] direction, there are only three possible Burgers vectors for the nucleated 

dislocation loops, and  none of them is perpendicular to g = 1 1 1.

The most efficient way to determine the Burgers vector of the dislocation loop is through the invisibility 

conditions as discussed in sections III.4.1, IV.2 & V.5.  Two off specular reflections were measured during  

the  experiment  (g  =  1 1  1 and   g  =  1  1 1).  The  possible  Burgers  vector  of  the  loop  is  necessarily 

perpendicular to one of them and possibly to the two. In any case, the use of these two reflections would  

have allow to determine the Burgers vector of the loop. Unfortunately, and as discussed in section V.2, the 

phase retrieval of the diffraction data did not converge for these two reflections.

Although it is less reliable, there is another possibility to determine the Burgers vector of the loop. It is based 

on the determination of the slip planes of the Shockley partials of the loop from the reconstructed electron 

density. The Burgers vectors of the loop being perpendicular to the slip planes of the Shockley partials, the 

determination of its orientation is straightforward if the slip planes are known. For the 1 1 1-type diffraction 

vectors, only half of the Shockley partials are visible (section V.4, & V.5).  However, for the simulated data,  

it is quite easy to determine if a {1 1 1} plane intersect a loop or contain a part of the dislocation loop. In the 

latter case, this means that it is slip a plane for the Shockley partials. For the experimental data, due to the  

much larger voxel size and the small loop size with respect to the size of the crystal, it is more challenging to 
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Fig.  VI.12 Reconstruction of the displacement field around a prismatic dislocation loop nucleated after four  

iterations in the loading-unloading cycle.  (a) Reconstructed electron density drawn at 15% of the maximum 

density. The  drops in the electron density indicate the position of the loops. Reconstructed u1 1 1  displacement 

field in the (1 1 0 ) (b), (1 1 2) (c) and 1 1 1 (d) planes which are intercepted by the loop in two locations. The 

electron density is superimposed in transparency to locate the position of the loop with precision Red ellipse  

marks where the phase of the wavefront has a significant contribution - see text for more details.
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make the distinction between a plane intersecting or containing a dislocation loop. It is nevertheless possible 

to establish with almost certainty that the (1 1 1) plane contain a part of the loop, while the (1 1 1) plane does 

not contain any part of the loop. The Burgers vector of the loop is thus the vector perpendicular to the (1 1 1) 

and (1 1 1) plane i.e 1/2[1 0 1]. Of course this method is not very reliable, especially on the experimental  

data where the dislocation loop only extent over 6x6 pixels.  

In summary, a planar loop of 50 nm diameter (6 pixels), with the exact phase jump of a prismatic loop is  

clearly evidenced. Moreover, using geometrical arguments and based on the appearance of the displacement  

field (stacking fault ribbon evidenced with the  g1 1 1 ) we conclude that it is a prismatic loop. Quantitative 

determination of its Burgers vector can not be achieved with almost certainty without reconstructions of off-

specular reflections. Nevertheless, prismatic loops are well known to nucleate to accommodate the contact of 

area  of  the  indenter.  Moreover  its  diameter  of  around  50  nm  confirm  its  certain  nucleation  from  the 

indentation process since this corresponds to a radius of contact of 3 nm, corresponding to the initial plastic  

deformation stage. Again, nucleation of prismatic loops in f.c.c. metals at room temperature is generally only 

observed as a punching relaxation mechanisms in the crystal to accommodate imposed eigenstrain: around  

spherical incoherent precipitates (Ashby, giving birth to the concept of strain gradient plasticity in 1971) or  

around spherical/blunt indenter (Ashby 1971).

VI.5.4 Evolution of the displacement and strain fields in the particle during the loading-

unloading iterations

In subsection VI.5.1, we established that the CXD patterns appeared more “perfect” after  a few 

loading-unloading events, suggesting that the strain was partially relaxed through the emission of dislocation 

loops. The reconstruction of the u1 1 1  displacement field allow to monitor the evolution of the strain in the 

particle at each stage of the indentation. On Fig. VI.13, the u1 1 1 displacement field is reconstructed for five 
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Fig.  VI.13 Comparison  between  the  u1  1  1  displacement  fields  from  the  experimental  loop  and  from  the  

dislocation loops nucleated during the simulated nanoindentation of  a nickel thin film.  Reconstructed  u1  1  1  

(experiment) and u1 1 1  (simulation) displacement field in planes perpendicular to the experimental (a) and (c) 

and simulated (d) loop axes.  Same displacement field in planes intercepting the experimental (b) and simulated 

(e) dislocation loops. 
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stages of the indentation experiment. As discussed in subsection VI.5.3, the wavefront of the beam induces a 

large phase decrease at the vicinity of the [1 1 1] and [0 1 0] facet: the top part of the crystal on the (x,y) 

slice, and the left part for the (y,z) and (x,z) slices. As seen from Fig VI.14.a, VI.14.d, … VI.14.m, a regular 

phase ramp of almost 2 radians is seen in this part of the crystal, and is observed for each reconstruction. It 

can not be related to the evolution of the microstructure, and won't be taken into account in our analysis. In  

the rest of the crystal, it is clear that the phase wavefront has a smaller contributions on the overall phase 

variations. We will only discuss the phase variations in this part of the crystal to comment on the evolution of  

the microstructure. 

As demonstrated by Newton et al. 2010, the full strain tensor of the crystal can only be obtained with 3 non-

coplanar Bragg reflections. In our case, we are able to reconstruct the displacement field for one reflection. If  

x, y and z are respectively the [1 1 0], [1 1 2] and [1 1 1] directions , only the displacement along z and of the 

corresponding  deformations  along  the  z  axis  εzz  are  accessible  with  g  =  1  1  1.  The  evolution  of  the 

microstructure would be best seen through the reconstruction of the 3D displacement field and of the six 

independent components of the strain tensor after each indentation event. However,  g = 1 1 1 is sensitive to 

the displacements along the indentation direction and allows to detect  any  defect  nucleated during the  

indentation process. The obtaining of both the displacement and strain field along z already gives a lot of  

information  on  the  strain  and  defect  content  in  the  crystal.  In  the  following,  the  evolution  of  the  

microstructure  is  only  commented  through  the  changes  in  the  displacements  and  strain  along  z.  The 

reconstructed phase presented here are averaged over the ten best solutions for the reconstruction at each  

iteration of the loading/unloading cycle. For I=3, where a dislocation loop has been identified in the previous  

section, the position of the loop slightly varies from one reconstruction to another, such that the phase jump 

and the displacement field around the loop are not located on the same pixels. When the 10 solutions with 

the lowest metric error and the most homogeneous electron density are averaged, the displacement field 

around the loop, those extent is limited, does not appear anymore on the  reconstruction. However, some 

phase discontinuities are still clearly visible (Fig. VI.14.d). Their positions are consistent with the location of  

the loop on Fig. VI.12 & VI.13. The other consequence of the averaging is the smoother appearance of the 

phase, which allows to better see the phase gradients at the substrate/particle interface, and close to the  

particle surfaces. 

In the pristine particle, the total phase variations are quite large, with an amplitude close to 2 radians (1/3 of 

the lattice spacing between two (1 1 1) planes). At the bottom of the particle, a positive phase gradient of 

approximately 1.1 radians is observed along the [1 1 1] direction (Fig VI.14.a & VI.15). This suggest the 

presence of compressive strain εzz at the substrate particle interface. This phase gradient changes sign at one 

third of the height of the particle. Between h = 100 nm and h = 300 nm (height of the specular (1 1 1) facet),  

a negative phase gradient of -2.2 radians is observed (Fig VI.14.a & VI.15). The overall phase variations are 

thus significantly larger than in the case of a twinned particle of similar dimensions (Chapter VII). These 

lager phase gradients can be linked to the different methods of preparation for the two particles. The twinned  

particle was growth by dewetting above the melting temperature of gold. In this case, the in-plane orientation 

is completely random and the particle has no epitaxial relationship with the substrate. Upon cooling to room 

temperature, only a small part of the thermoelastic strain remains in the particle, mainly at the substrate 

particle interface. Its contribution is of the same order of magnitude as the surface strain, induced by the 

relaxation of the free surfaces (Chapter VII). The large positive and negative phase gradients along the z ([1 

1 1]) direction are thus attributed to the  interfacial strain. It induces a weak distortion of the [1 1 1] fringes, 

clearly visible on the (qx,qz) slice of the reciprocal space (Fig. VI.9.c). Some phase variations can also be 

identified at the vicinity of  several facets (regions circled in red on Fig. VI.14.a, VI.14.d & VI.14.j). For I=0 

and I=3, a decrease of the phase is observed close to the [0 0 1] facet, while for I=4, I=5 and I=6, a decrease 

of the same order of magnitude can be identified close to the [1 1 1] facet.  These phase variations are 

localized close to the surface, and can be clearly attributed to surface strain. The latter decays rapidly in the  

bulk, obeying the continuum elasticity equations at a surface (Landau & Lifshift 1986). Unlike the case of  

the twinned particle  in  Chapter  VII,  the  substrate  interfacial  strain  outshines  the  surface strain  and the 

contribution of the latter is not decisive to explain the overall strain distribution. 

After 3 indentation iterations, the u1 1 1 displacement field is largely modified in the particle. A positive phase 

gradient along z can still be identified at the substrate particle interface, however both its amplitude and Fig. 
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Fig. VI.14: Reconstructed φ111 phase field  for increasing iterations of the loading-unloading cycle. The phase 

variations in the regions circled in red are attributed to the presence of surface strain (a) Reconstructed  u111  in the (x,y), 

(x,z) and (y,z) planes corresponding respectively to the (1 1 1), (1 1 2) and (1 1 0) planes. (d), (g), (j) and (m) phase 

fields in the same planes after 3, 4, 5 and 7 iterations of the loading-unloading cycle. The yellow circle in(d) denotes the 

position of the dislocation loop. Isosurface of the phase drawn for 1.8 rads < φ111 < 2.6 rads (magenta) 1.0 rads < φ111 < 

1.8 rads  (blue) in the pristine Au crystal (b), after 3 iterations (e), after four iterations (h), after 5 iterations (k) and after 

7 iterations (n). Corresponding CXD patterns in the (qy,qz) plane for the pristine particle (c), after 3 iterations (f) after 

four iterations (l) and after 7 iterations (o)
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spatial extent have decreased (0.8 versus 1.1 radians, and 50 nm vs 100 nm Fig. VI.14). The slope of this  

phase  gradient  is  thus  higher  than  in  the  pristine  particle,  implying  an  increased  and  more  localized  

compressive strain at the substrate/particle interface. The inversion of the sign of the phase gradient now 

occurs at the approximate height of the  dislocation loop, and a large and rapid decrease of the phase (Δφ ~ 1 

rads) is observed over a spatial extent of 100 nm (between h =50 nm and h = 150 nm, Fig. VI.15). Above h = 

150  nm,  the  phase  is  remarkably  stable  (  Δφ ~ 0.2  rads).   Although  the  displacement  field  around  a 

dislocation loop has a limited extent, it strongly impacts the displacement field inside the particle. The phase 

variations are now concentrated in the vicinity of the dislocation loop, while almost constant above half-way 

of the particle height. Consequently, neglecting the very large phase variations located only at the vicinity of 

the dislocation loop, the amplitude of the phase variations that can be attributed to the interfacial strain have  

been divided  by almost a factor 2 (1.2 radians vs 2.2 radians). In Fig VI.14.b and VI.14.e, isosurfaces of the  

phase are drawn for  1.8 rads  <  φ111 < 2.6 rads (magenta) and 1.0 rads  <  φ111 < 1.8 rads. As seen on Fig. 

VI.14.e, it is clear that the phase varies rapidly at the vicinity of the dislocation loop while it is almost  

constant for h >150 nm.

For I=4, the dislocation loop have left the crystal, and the phase is very homogeneous. A negative phase  

gradient is still present at the substrate particle interface, with similar value as in the pristine particle, but  

distributed over a slightly larger spatial extent (~150 nm vs 120 nm). Above h = 150 nm, the phase gradient 

is negative, but with an amplitude reduced by a factor 2 as compared with the pristine particle (Δφ ~ 1 rads, 

Fig. VI.14). As seen from Fig. VI.14.h, the region of the crystal where 1.8 rads < φ111 < 2.6 rads now extends 

over 4/5 of its height, while it was confined into a much smaller region in the pristine particle (Fig. VI.14.a). 

The homogeneity of the phase suggests that the elastic strain in the particle has been partially relaxed. This  

relaxation occurs through the emission of  dislocation loops that accommodate the interfacial strain at the  

substrate/particle interface (Matthews & Blakeslee 1974).  

For I=5, the strain has been already relaxed in the particle, such that the emission of dislocation loops does 

190

Fig. VI.15:  Phase profile along z (the [1 1 1] direction) at each iteration of the loading-unloading cycle. The 

variations are averaged over the region in the red rectangle as shown on the top left figure.
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not induce large variations in the phase field. The phase is still very homogeneous in the crystal. Although  

slightly reduced as compared to I=4, the regions of the crystal for which 1.8 rads < φ111 < 2.6 and  1.0 rads <

 φ111 < 2.6 are still significantly larger than in the pristine particle. However, both the positive phase gradient 

at the interface, and the negative phase gradient in the particle have increased in value. The relaxation of the  

strain in the particle was already achieved at  the previous stage of the indentation,  and the emission of  

supplementary loops that accumulate at the substrate particle interface might induce a slight increase of the 

strain in the particle.

As  seen  in  sections  VI.5.1  and VI.5.2,  the  shape  of  the  particle  is  completely  changed after  24  hours  

illumination under the X-ray beam. As a consequence, the strain distribution in the particle is changed and 

tends to increase. A positive phase gradient is still visible at the substrate/particle interface, which amplitude 

and spatial extent are similar to I=5 (Fig. VI.15). However, while the phase gradient is monotonic for h >150 

nm in the previous (I=1-5) cases, Δφ alternates between regions of positive and negative values after RT 

ageing. This implies the existence of regions of compressive and tensile strain on the top of the particle,  

which are completely absent for I=3 and I=4. 

To provide a clearer picture of the evolution of the strain in the particle, the εzz strain component is derivated 

from the u1 1 1 displacement field through a very simple calculation:

ϵzz=
(δu11 1)

δ z
         (VII.1)

For each stage of the indentation, the strain is represented in the (1 1 0) (y-z slice), (1 1 2) (x-z slice) and (1 1 

1) (x-y slice) of the crystal. For the first two planes, the slice is taken close to the centre of the particle, while  

the slice in the (1 1 1) plane is close to the substrate/particle interface. The volumic strain distribution  ε zz  is 

also represented  (Fig. VI.15.b, VI.15.e …, VI.15.n). Only the regions undergoing either a large compression 

(εzz < -7.10-4) or a large tension (εzz  >7.10-4) are shown, respectively with a blue and a yellow isosurface. 

In summary, three different strain distribution states can be observed during the mechanical loadings, and an 

important evolution in both strain distribution and shape of the particle is evidenced after 24h ageing

Initial residual strain state:

The  largest  amount  of  strain  is  encountered  in  the  initial  state  of  the  particle  (Fig  VI.16.a-c).  The  

substrate/particle interface corresponds to a region of compression, which extends over a bit more than 50 

nanometers. Close to the centre of the particle, a large region of tensile strain is clearly visible. 

Presence of dislocations:

After  3  indentations  events,  the  compressive strain at  the substrate  particle  interface is  only marginally 

affected, its spatial extent has slightly diminished as discussed in the previous paragraph (Fig. VI.16.d). This 

variation can be attributed to the presence of the dislocation loop in the crystal, which is quite close (~100 

nm) to the substrate particle interface. As a consequence, this is the only scan for which the slice in the (1 1  

1) plane close to the interface does not show a large region of compression (Fig. VI.16.d). Near the centre of 

the particle, the tensile strain has completely vanished and is now localized at the vicinity of the dislocation  

loop. Given the spatial extent of the strain field around the loop, we can infer that the modification of the  

shape of the Bragg peak (Fig VI.16.f) can be attributed to the strain field around the dislocation loop and not  

to the phase jump induced by the loop. The distortions observed in the [1 1 1] fringes below the Bragg peak 

are probably induced by this localized tensile strain, since the fringes above the Bragg peak appear relatively 

undisturbed.

Mechanical  annealing:  For I=4 and I=5,  the compressive strain at  the substrate/particle interface is  still 

present,  although slightly reduced in magnitude as compared to the initial  state particle (Fig VI.15.g & 

VI.15.j). On the other hand, the region of tensile strain has almost completely vanished. This is in good 

agreement with our hypothesis of mechanical annealing, through the nucleation of dislocation loops.

24 h ageing:

Associated with the evolution of the shape/rotation of the particle,we observe a large modification of the 

strain  distribution  after  the  RT  ageing.  The  region  of  compression  strain  is  still  present  at  the 

substrate/particle interface, and both its amplitude and spatial extent are comparable with the case of the 
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Fig. VI.16: Reconstructed εzz strain field  for increasing iterations of the loading-unloading cycle. (a) Reconstructed  εzz 

strain field  in the (x,y), (x,z) and (y,z) planes corresponding respectively to the (1 1 1), (1 1 2) and (1 1 0) planes. (d), 

(g), (j) and (m) strain field in the same planes after 3, 4, 5 and 7 iterations of the loading-unloading cycle.  Isosurface of 

the strain drawn for εzz < 7.10-4 (blue) and εzz > 7.10-4 (orange) in the pristine Au crystal (b), after 3 iterations (e), after four 

iterations (h), after 5 iterations (k) and after 6 iterations (n). Corresponding CXD patterns in the (qy,qz) plane for the 

pristine particle (c), after 3 iterations (f) after 4 iterations (l) and after 6 iterations and 24 hours illumination (o)
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initial state of the particle (Fig. VI.13.m and VI.13.n). Inside the particle, instead of a large region of tensile 

strain, alternate regions of large compressive and tensile strain are observed. The amount of elastic strain  

energy in the particle can be approximated  by using an equivalent thin film geometry (in-plane periodic 

condition):

E el=
1

2
M ∑

i

ϵi

2
          (VI.2)

where M is the biaxial in plane elastic modulus. Applied to the crystallite this is a rough approximation since  

we only use one component of the strain tensor. On the other hand, the sum is carried out on all voxel of the  

reconstructed particle.

The evolution of the curve is in good agreement with our previous observations. A relatively large amount of  

residual strain is present in the initial state which does not dramatically evolve in the first iterations of the  

indentation process (I = 0 → 2). The strain is maximal at I = 3 where a dislocation loop remain in the  

structure  and reaches  a  minimum after  4  loading/unloading  iterations  consistent  with  our  hypothesis  of 

mechanical annealing. The emission of additional dislocation loops at the next loading iterations tends to 

increase the residual strain in the particle (in particular at I = 5). After 24 hours of ageing, the strain is  

partially relaxed, associated with an evolution of the particle shape and rotation.  We are on the course to try 

to recover the full displacement field using Finite Element Method to solve the mixed boundary problem:  

namely,  knowing  the  volumic  shape  (reconstructed  electron  density),  the  boundary  conditions  and  one 

component  (z)  of  the  displacement  field  (reconstructed  phase),  the  differential  equation  of  mechanical  

equilibrium can be solved.

Conclusion

We applied the methodology detailed in Chapters III - V to study the evolution of the microstructure  

in a gold nanoparticle that was in situ nanoindented while illuminated by a coherent X-ray beam. 

A selected gold particle with a low residual  strain and defect  content  in its  pristine state was carefully  

selected for the indentation experiment. Only a low degree of in-plane orientation was found for the particles 

used in this experiment, which suggests that the growth of the particles is not epitaxial. It is shown that the 

spread of in-plane orientation of the particles is highly dependent of the surface state of the substrate which  

in turn is driving the degree of in plane orientation of the gold thin film. A very clean CXD pattern is  
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energy” stored in the particle versus the number of  

loadings of the particle
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observed for  g = 1 1 1 for particles which are not well oriented, while a broadening of the Bragg peak is  

observed at the same Bragg reflection when the in-plane orientation is well defined. This broadening of the 

Bragg peak is attributed to the interfacial thermoelastic strain which is induced during the cooling to the 

room temperature. For the particles in hetero-epitaxy, the bonding with the substrate is stronger, and a larger 

part of the thermoelastic strain is transmitted to the particle. The particles used in this experiment exhibit a  

low  amount  of  residual  strain  which  is  favorable  for  the  identification  of  nucleated  defects.  This 

identification is achieved through the methods described in Chapters III-IV and V, i.e. the direct analysis of 

the reciprocal space and the reconstruction of the 3D displacement field. The direct analysis of the CXD 

pattern  only  reveals  subtle  changes  in  the  microstructure  of  the  crystal.  After  a  few loading-unloading  

iterations, the CXD patterns appear more “perfect” and it is suggested that this evolution can be attributed to  

the relaxation of the strain in the particle.  A change of the shape of the Bragg peak at a particular stage of the  

indentation could be an indication of the presence of defects in the structure. Finally, the modification of the 

shape  of  the  particle  under  illumination  of  the  X-ray  beam is  clearly  seen  through  the  change  in  the 

orientation of the facet fringes.

The reconstruction of the electron density and the φ111 phase field brings a finer analysis of the evolution of 

the microstructure. The shape of the particle does not evolve during the six iterations of the indentation, and 

is  remarkably consistent  with the SEM pictures.  After  24 hours  ageing,  both shape and rotation of  the  

crystallite is evidenced. The presence of a prismatic dislocation loop in the structure is well characterized.  

The remarkably good agreement of both the phase jump and displacement field around the defect with the  

simulated data leaves no doubt on this type of  defect. The Burgers vector of the dislocation loop can be  

inferred  from  the  determination  of  the  planes  of  the  stacking  fault  ribbons  which  are  visible  on  the 

reconstructed electron density. 

The analysis of both the u1 1 1 displacement field and the  εzz strain field confirms that the initial residual strain 

in the pristine particle is  relaxed through the emission of prismatic loops.  Their  field accommodate the  

interfacial strain at the substrate-particle. After 4 loading-unloading events,  no dislocations are present in the  

structure, the particle is almost strain free, as confirmed by the calculation of the elastic strain stored energy. 

Although the experience was successful,  there is  a large room for improvement.  As discussed earlier,  a  

dislocation  loop was  identified  at  only  one  stage  of  the  indentation.  Most  of  the  dislocation  loops  are 

immediately annihilated at crystal surfaces after their nucleation.  A future experiment will aim at tackle this 

issue by recording the CXD patterns while the tip is in contact with the sample by scanning the energy of the 

incident X-ray beam (instead of a rocking curve after the tip retraction). The second improvement would be 

to achieve the reconstruction of  the displacement  field for  off-specular  reflection,  which would allow a 

complete description of the microstructure as discussed earlier. 

In  summary  we  evidenced  the  nucleation  of  prismatic  dislocation  loops  by  in-situ  mechanical  

loading.  To the best  of  our knowledge,  this is the first  time evidencing a prismatic loop by CBDI.  The  

relaxation of the strain in the particle, through mechanical annealing has also be clearly demonstrated. 

194



Chapter VI: Investigation of the mechanical properties of a single Au crystal by in situ nano-indentation with BCDI

Bibliography

Amram, D., & Rabkin, E. (2013) Acta Materiala 61, 4113-4126

Ashby, M.F.  (1971)  Strengthening methods in crystals, Chapter 3, edited by Kelly A.and Nicholson R.B., 

John Wiley & sons, inc, New York

Beutier, G., Verdier, M., Parry, G., Gilles, B., Labat, S., Richard, M. I., Cornelius, T., Lory, P. -F., Vu Hoang, 

S., Livet, F., Thomas, O. & De Boissieu, M. (2013a). Thin Solid Films 530, 120-124.

Beutier, G., Verdier, M., de Boissieu, M.; Gilles, B., Livet, F., Cornelius, T., Labat, S., Richard, M.-I. & 

Thomas,O.(2013b) Jal of Physics : Conf. Ser., IOP, 425, 132003 

Bialas, H., & Heneka, K. (1994) Vacuum 45, 79-87

Chamard., V, Dolle, M., Baldinozzi, G., Livet, F., de Boissieu, M., Labat, S., Picca, F. ,  Mocuta, C.

Donnadieu, P. and Metzger, T.H. (2010) Journal of Modern Optics 57(9), 816–825

Chapman, H. N. et al. (2006)  J. Opt. Soc. Am. A 23, 1179–1200 . 

Clark, J. N., Ihli, J., Schenk, A., Kim, Y-Y., Kulak, A. N., Campbell, J. M., Nisbet, G., Meldrum, F. C. &  

Robinson, I. K (2015) Nature materials 14

Diaz, A., Chamard, V., Mocuta, Stangl, J., Mandl, B., Vila-Comamala, J., Metzger, T.H. & Bauer, G. (2009) 

Phys. Rev. B. 79, 125324. 

Diaz, A., Chamard, V., Mocuta, C., Magalhaes- Paniago, R., Stangl, J., Carbone, G., Metzger, T.H., Bauer, G. 

(2010) New J. Phys. 12, 035006. 

Fienup, J. R. (1982).  Appl. Opt. 21, 2758-2769 

Francis, A.J & Salvador, P.A. (2007) J Mater Res 22(89). 

Grochola, G. S., Russo, P. & Snook, I. K. (2005). J. Chem. Phys. 123, 204719.  

Harder, R., Pfeifer, M. A., Williams, G. J., Vartaniants, I. A. & Robinson, I. K. (2007).  Phys. Rev. B  76, 

115425

Kaishew, R., (1952), Arbeitstagung Festkorper Physik, Dresden,  p. 81.

Kosinova, A., Kovalenko, O., Klingera, L. & Rabkin, E. (2015)  Acta Materialia 83, 91–101.

Labat. S., Richard, M-I., Dupraz, M., Gailhanou, M., Beutier, G., Verdier, M., Mastropietro, F., Cornelius, T. 

W., Schülli, T. U., Eymery, J. & Thomas, O. (2015) ACS Nano 

Landau, L.D &  Lifshitz, E. M. (1986) Theory of Elasticity (Pergamon 1986) 

Langlais. S PHD Thesis (2015)

Malyi, O., Klinger,  L., Srolovitz, D. J., Rabkin, E. (2011) Acta Materialia 59, 2872–2881 

Malyi, O. & Rabkin, E. (2012) Acta Materiala 60, 261-268 

195



Chapter VI: Investigation of the mechanical properties of a single Au crystal by in situ nano-indentation with BCDI

Marchesini, S. (2003). Phys. Rev. B ,�, 140101

Mastropietro, F., Carbone, D., Diaz, A., Eymery, J., Sentenac, A., Metzger, T. H., Chamard, V. & Favre-

Nicolin, V. (2011). Optics Express 19, 20. 

Matthews,  J.W. & Blakeslee, A. E. (1974) J. Crystal Growth 27, 118.

Meltzman, H., Mordehai, D., Kaplan, W.D (2012) Acta Mater. 60, 4359-4365. 

Minkevich, A.A., Gailhanou, M., Micha, J.S., Charlet, B., Chamard, V., Thomas, O. (2007) Phys. Rev. B  76, 

104106. 

Mordehai, D., Lee, S. W., Backes, B., Srolovitz, D. J., Nix, W. D. & Rabkin, E. (2011). Acta Mater. 59, 5202-

5215. 

Müller, P., Kern, R. (1998) J. Cryst. Growth. 193, 257-270. 

Newton, M. C., Leake, S., J., Harder, R. & Robinson, I., K. (2010). Nature Materials 9, 120-124 

Robinson, I. K. & Harder, R. (2009). Nature Materials 8, 291-298. 

Rupp. R Master internship (2015)

Sadan, H. & Kaplan, W. D. (2006). J. Mater. Sci. 41, 5099-5107.

Sadan H. & Kaplan W. D. (2006b).  J. Mater. Sci 41 5371-5375. 

Sayre, D. (1952) Acta. Cryst. 5, 843. 

Schroer, C.G., Boye, P., Feldkamp, J.M., Patommel, J., Schropp, A., Schwab, A., Stephan, S., Burghammer, 

M., Schoder, S. & Riekel, C.(2008)  Phys. Rev. Lett. 101, 090801. 

Takahashi, Y., Nishino, Y., Tsutsumi, R., Kubo, H., Furukawa, H., Mimura, H., Matsuyama, S.; Zettsu, N.,  

Matsubara, E., Ishikawa, T., Yamauchi, K. (2009). Phys. Rev. B  80, 054103. 

Takahashi, Y., Suzuki, A., Furukatu, S., Yamauchi, K., Kohmura,Y. & Ishikawa, T. (2013). Phys. Rev. B 87, 

121201. 

Rodenburg, J.M., Hurst, A.C., Cullis, A.G., Dobson, B.R., Pfeiffer, F., Bunk, O., David, C., Jefimovs, K. & 

Johnson, I. (2007) Phys. Rev. Lett. 98, 034801. 

Ulvestad, A., Clark, J. N., Harder, R., Robinson, I. K. & Shpyrko, O. G. (2015), Nanoletters. 15 

Watari, M.,  McKendry, R. A., Vögtli, M., Aeppli, G., Soh., Y- A., Shi, X., Xiong, G., Huang, X., Harder, R.,  

and Robinson, I., K. .(2011), Nature Materials 10, 862-866

Winterbottom, W. L. (1967). Acta Metall. 15, 303.  

Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. (2003) Phys. Rev. Lett. 90, 175501 . 

196



Chapter VI: Investigation of the mechanical properties of a single Au crystal by in situ nano-indentation with BCDI

Zhe, R.,  Mastropietro, F., Davydok, A., Langlais, S.,  Richard, M.-I., Furter, J.-J., Thomas, O., Dupraz, M., 

Verdier, M., Beutier, G., Boesecke, P. & Cornelius, T. W. (2014). J. Synchrotron Rad. 21, 1128-1133. 

197



Chapter VII: Investigation of the three-dimensional strain distribution in a sub-

micron twinned gold island by coherent X-ray diffraction and molecular statics 

simulations

Contents

Abstract.............................................................................................................................................198
Introduction......................................................................................................................................198
VII.1 Sample preparation.................................................................................................................199
VII.2 CXD experiment.....................................................................................................................200
VII.2. Molecular statics simulations.................................................................................................204

VII.2.1 Size effects......................................................................................................................204
VII.2.2 Influence of the boundary conditions..............................................................................207

Conclusion........................................................................................................................................211
Bibliography.....................................................................................................................................212

This Chapter is a draft of a paper that will be  soon submitted, hence it features an abstract and the  

list of all the collaborators who were involved in this work.



Chapter VII: Investigation of the 3D  strain distribution in a sub-micron twinned gold island by CXD and MS 
calculations

Chapter VII: Investigation of the three-dimensional strain distribution in a sub-micron 

twinned gold island by coherent X-ray diffraction and molecular statics simulations

Maxime Dupraz1,*, Guillaume Beutier1, Simon Langlais1, Aaron Parsons3, Guillaume Parry1, David 
Rodney1,2,  Marc Verdier1

1 SIMaP, Univ. Grenoble Alpes & CNRS, F-38000 Grenoble, France
2 Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, F-69622 Villeurbanne, France

 3 Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK 

Abstract

The strain field of a twinned sub-micrometric gold crystal is studied with coherent x-ray diffraction and  
molecular dynamics calculations. 
Coherent X-ray diffraction imaging is used to visualize the 3D strain distribution within the particle. The  
strain distribution suggest and reveals an inhomogeneous relaxation of the surface atoms.
To gain insight and understand the 3D strain distribution, crystals of a few tens of nanometers with various 
boundary conditions (Wulff single crystal, free-standing particle, particle constrained by a substrate...) are  
modeled with interatomic potentials. The calculation of their diffraction patterns and the reconstruction 3D 
displacement fields allows quantitative comparisons with the experimental data. 
The  strain  distribution  within  the  crystallite  is  driven  by  the  relaxation  of  free  surfaces  to  reach  the  
equilibrium crystal shape and the interfacial strain imposed to the crystal by the thermal mismatch occuring 
during the preparation of the sample. This study confirms the absence of strain at the twin boundary.

Introduction

Current  technological  efforts  in  material  processing  have  focused  on  nanomaterials  such  as  
nanoparticle catalysts  (Lu et al. 2001, Waszczuck et al. 2002). The case of gold nanoparticles is of particular 
interest because of their diverse applications (Lou et al. 2001). 
The performance of these materials is affected by the detailed structure of their shape and by the exact  
configuration  of  their  surface.  Surface  reconstruction  or  surface  induced  strain  may  also  affect  their  
behaviour. Of particular interest is the structure of equilibrium crystal shape (ECS). The  surface structure of 
an  equilibrium  shape  is  driven  by  the  orientation  dependence  of  the  surface  free  energy  of  a  crystal  
(Winterbottom 1967). Surface atoms have fewer interatomic bonds than their bulk counterparts and they 
often relax and reconstruct on extended two-dimensional surfaces. Generally the study of the displacement of 
the topmost atomic layers is sufficient to describe the surface contraction. The situation is complicated in the 
case of nanocrystals where the relaxation of the free-surfaces exhibit some coordination dependence (Huang 
et al. 2008). For instance, the contraction is stronger for edge and corner atoms which are less coordinated,  
and the atom relaxation must be accommodated in accordance with constraints imposed by neighbouring 
atoms. Understanding the relaxation of surface atoms is of great importance due to the large impact they  
have  on  surface  energies  and  interfacial  stability  (Ibach  1997),  and  as  a  consequence  on  the  resulting 
equilibrium crystal  shape (ECS).  The relaxation of  free-surfaces  is  also likely to  affect  mechanical  and 
electronic properties of nanocrystals (Gilbert et al.  2007, Alivisatos 1996). 
On top of the surface relaxation and strain, the presence of defects and crystallographic imperfections can  
further  alter  the  material  properties.  In  particular,  twin  domains  are  of  great  importance  in  many  
technological challenges in particular in the understanding of plastic deformation mechanisms.
A variety of techniques are available to characterize the structure of sub-micron sized objects. Transmission  
electron microscopy (TEM) can achieve sub-nanometer resolution but is hindered by the low-penetration 
depth of electrons to thin samples, or samples which can be cut or milled to a thickness of few tens of  
nanometers without affecting and the shape of the structure to be studied. 
Alternatively scanning electron microscopy (SEM) can be used to study the equilibrium shape of crystal as it  
produces a single view of the sample surface. However, the technique is limited in resolution and insensitive  
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to the strain or degree of crystallinity. 
As demonstrated recently by Scott et al. (2012) and Chen et al. (2013), Electron tomography can be used  to 
visualize 3D structure of a gold nanoparticle and to identify twinned regions with an atomic resolution. 
Although very impressive, the technique is not applicable for particles larger than 10 nanometers.
Coherent-X-ray Diffraction (CXD) taking advantage of the larger depth of X-rays can be used to image the 
full  three-dimensional displacement field in sub-micron objects with a resolution of the order of 10 nm 
without requiring any complex sample preparation. The technique being able to probe deviations from the 
perfect lattice is not only sensitive to the defect structure, but also to all the other sources of strain in the  
particle: the mismatch strain at the interface for particles in epitaxy, the thermoelastic strain induced by  
thermal treatment and the surface strain produced by the relaxation of free surfaces.
In this chapter, the technique is used to study the 3D strain-field distribution in a twinned gold sub-micron 
particle which depends on all these contributions. 
The preparation process of the gold crystallite and the detailed experimental CXD results are given in the  
first two sections. In a last part, molecular dynamics simulations are used to gain insight and understand the 
3D strain distribution inside the particle. Both size effects and influence of the boundary conditions are 
discussed in this last section.

VII.1 Sample preparation

Gold nanocrystals were prepared by dewetting a thin film on a sapphire substrate, as described in 
details by Sadan & Kaplan (2006). A 20 nm thick film of Au is deposited on a 'epi-ready' c-plane oriented 
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Fig.  VII.1 SEM picture  of  Au particles  dewetted  at  1100°C  on  a  (0001)  

sapphire  substrate.  (a)  Spatial  distribution  of  the  particles.  The  coloured 
circle around the particles indicates their out-of-plane orientation with respect 
to  the  sapphire  substrate. Red:  Au(1  1 1)//Al2O3 (0  0 0 1),  blue:  Au(0  0 
1)//Al2O3 (0 0 0 1),  green:  Au(1 1 0)//Al2O3 (0 0 0 1)(b)  Au nanoparticle 
with a microtwin.
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sapphire substrate ((0 0 0 1) single crystal α-Al2O3). The dewetting of the thin film is carried-out by heating 
during 10 hours at 1100°C in air, above the gold melting point (liquid state dewetting). This temperature is  
reached with a fast heating rate of 50°C/min. This process results in the formation of highly faceted particles  
with diameter varying form 200 to 800 nm separated by a typical distance of 2 μm (Fig. VII.1). Their well 
known Winterbottom equilibrium shape   (Winterbottom 1967)   consists  of  {1  0 0} and {1 1  1} facets 
separated by rough curved surfaces (Wang &  Wynblatt 1998, Heyraud & Métois 1982 Sadan & Kaplan 
2006, see Chapter II for more details). 
SEM observations show highly faceted particles containing fewer rough interfaces than their counterpart 
dewetted under UHV environment. As already reported by Sadan & Kaplan (2006), this can be explained by 
the preferential the segregation of impurities on the Au surface, decreasing the surface energy of the facets  
planes. A large proportions of particle with a grain boundary generally in the form of a twinned boundary can 
be  observed (Fig.  VII.2.a.  presence  of  a  twin  boundary).  For  the  single  crystal  particles,  three  distinct 
orientations with the substrate are observed: Au (1 0 0)//Al2O3 (0 0 0 1) (circled in blue in Fig. VII.1), Au(1 1 
0)//Al2O3 (0 0 0 1) (circled in green in Fig. VII.1) and Au (1 1 1)//Al 2O3 (0 0 0 1) (circled in red in Fig. 
VII.1), the latter being predominant. As compared to their counterparts dewetted in the solid-state, there is no 
indication of in-plane ordering. As pointed out by Sadan and Kaplan, most of the (1 1 1) and (1 0 0) planes  
parallel to the substrate surface show an inclination of  the particle with respect to the surface which has been  
explained by the presence of an array of interfacial dislocations to reduce the strain. 

VII.2 CXD experiment

200

Fig. VII.2 Twinned gold particle considered in this experiment (a) 50% isosurface 
of the reconstructed electron density. (b) Modelled twin nanoparticle. The region 
circled in red corresponds to the grain that was measured experimentally (c) (1 1 0) 
cut  of  the  coherent  X-ray  diffraction  pattern  used  for  the  reconstruction  .The 
direction of the scattering vector is indicated with a red arrow
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The measurement of the gold islands was carried out at the I13-1 beamline of the Diamond light  
source. Coherent X-Rays of 9.7 keV were focused onto the sample using  Kirkpatrick-Baez mirrors. The  
beam size on the sample was approximately 8 x 6 μm2 on the sample. 
Despite the large beam size and low separation between islands, it was possible to isolate a crystal with a (0 
0 1) out-of plane orientation whose occurrence is less frequent than the (1 1 1).  The 0 0 2 Bragg reflection of  
an individual gold island was measured in specular geometry, corresponding to a Bragg angle θ of 18.2° at 
9.7 keV. The diffracted intensity was recorded with a 516x516 pixel detector MAXIPIX (pixel size of 55 
μm), mounted 0.945 meters downstream from the sample.  This set-up gives a resolution of 2 x 10 -4  Å-1 in 
reciprocal space. Three-dimensional maps of the Bragg reflection were collected by rocking the sample over  
1° (Δq = 1 nm-1 ) with steps of  0.005° and a 2 s exposure time per point. This procedure was repeated twice,  
and the 3D CXD patterns were summed together to increase the dynamical range.  
Fig VII.2.d shows a cut perpendicular the (1 1 0) axis of the CXD pattern. The direction of the scattering  
vector q is indicated by a red arrow. The intensity is maximal at the 0 0 2 Bragg position and forms streaks 
along the {1 1 1} and {1 0 0} directions due to the crystal facets. These streaks are fringed because of the 
finite size of the crystal. The increased intensity and the doubling of the period of the fringes  along the [1 1 
1] direction (yellow arrow in Fig. VIII.2.c), indicates a shorter distance between the two (1 1 1) facets (as 
compared to the other <1 1 1> and <1 0 0> directions). This can be the signature of either a truncated single 
crystal particle, or a twinned particle where only one of the two grains is diffracting with the 0 0 2 Bragg 
conditions. The latter explanation is more consistent with the SEM observations (Fig. VII.1). 
Another interesting feature of the CXD pattern is the asymmetry of the intensity around the Bragg position.  
In particular, along the [0 0 1] direction where the intensity of the fringes at high scattering angle (above the  
Bragg  position)  is  stronger  than  their  intensity  at  low  scattering  angle  (below  the  Bragg  position).  A 
diffraction  pattern  measured  from  a  strain  free  and  defect  free  crystal  would  appear  perfectly 
centrosymmetric, and a loss of the local symmetry is an indication of strain within the nanocrystal (Robinson 
et  al. 2001).  Huang  et  al.  (2008)  demonstrated  that  such  redistribution  of  intensity  from  low to  high 
scattering angle was the signature of surface contraction, the direction of the asymmetry being along the  
facet undergoing the maximum contraction  (i.e. the (0 0 1) facet)).
The direct analysis of the diffraction data allows to obtain valuable information on the strain and defect  
content, however the reconstruction of the full 3D displacement field provide a more complete picture. In the 
past few years, Coherent X-ray Diffraction has been routinely used as an imaging technique. Provided that  
the crystal is isolated, and the diffraction data is oversampled by twice the Nyquist frequency (Sayre 1952)  
(i.e.  at  least  2  pixels  per  fringe  on  the  diffraction  data)  the  complex  sample  density ρ̃(r) may  be 
reconstructed from the diffraction data using phase retrieval algorithms (see Chapter I for more details).  
CXD is highly sensitive to internal strains within a crystal, which appears as phase changes on the complex 
sample density.  The amplitude and the phase of the latter can be expressed as the electron density of the  
sample and as the projection of the displacement from the ideal crystal lattice, u(r), onto the reciprocal lattice 
g vector the Bragg peak chosen: φ( r) =  -g.u(r). 
Recently  it  has  been  shown  that  several  non-coplanar  vectors  can  be  combined  to  extract  the  full  
displacement field u(r) (Newton et al. 2010, Labat et al. 2015). In this work we used only the 0 0 2 Bragg 
reflection to highlight the displacements along the [0 0 1] direction.
A coordinate change was performed on the diffraction in order to depict the 3D-reciprocal space maps in the 
laboratory reference (subsection II.1.6). The 512x370x512 matrix was cropped to a size of 398x370x398 and 
binned by a factor 2 in the three dimensions, to obtain a 199x185x199 3D matrix which was used for the  
reconstruction .
Three algorithms were used for the reconstruction: Error Reduction (ER) (Gerchberg & Saxon 1972), Hybrid 
Input Output (HIO) (Fienup 1982) and Shrink-Wrap (SW) (Marchesini 2003) (details on these algorithms are 
given in Chapter I of this manuscript). A strong air scattering was observed on the collected CXD patterns,  
since no flight-tube was placed between the sample and the detector. In order to remove this air scattering  
and greatly reduce the noise on the reconstructions, the diffraction data was thresholded by setting all the  
pixels with 4 or less photons to zero. The 'hot pixels' of the detector (high value on the pixel where no photon  
is present) were also set to zero (subsection II.1.2). 
In  the  phase  retrieval  procedure,  both  reciprocal  space  and  real  space  are  updated  at  each  step  of  the 
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algorithm and constraints are applied on both sides. Inputs of the algorithms are the measured intensity data 
and a finite size 3D support in which all the complex sample density ρ̃(r)  is constrained. In our case this 
initial support is  the autocorrelation function of the object (Marchesini 2003, subsection I.4.3.5).
The procedure consists of an alterning of 50 ER and 100 HIO repeated 100 times, with an update of the 
support using SW at the end of every series of (100 HIO +50 ER). This method is used over 200 random  
starts,  and the best  solutions are selected according to their  metric error,  which quantifies the matching  
between the retrieved intensity and measured intensity (subsection I.4.3.4).  This provide a population of  
solutions with equivalent metric errors. To discriminate between these solutions, the standard deviation of the 
electron density is used (Labat et al. 2015). The final image is averaged over the 20 solutions with the lowest 
metric error and the most homogeneous electron density.
To avoid any linear phase ramp in ρ̃(r)  induced by the bad centering of the diffraction data, its Fourier 
transform, F(q) is re-centred (to the nearest pixel) using the centre of mass of |A(q)|4 as suggested by Clark 
(Clark  et  al.  2015).  Sub-pixel  shifting  is  done  by  multiplying  ρ̃(r) by  the  appropriate  phase  ramp 
calculated from the centre of mass.
Fig. VII.2.a shows the reconstructed electron density of the crystal  as a yellow isosurface drawn at 50% of  
the maximum density. The twinned region is rotated out of the 0 0 2 Bragg condition and is thus missing. As  
estimated from the shape of the particle close to the ECS, approximately 40% of the particle is reconstructed.  
In good agreement with the SEM observations, the reconstructed particle is highly faceted, with reduced 
rough curved area in between the {1 0 0} and {1 1 1} facets. The atomic model in Fig. VII.2.b illustrates the  
estimated relative proportion of the two grains. As stated earlier, the equilibrium shape of the particle is  
known as the Wulff  equilibrium shape (Winterbottom et al.  1967,  Chapter II) which is achieved by the 
minimization of the surface energy by an optimization of the surface area of different crystallographic plane. 
In the case of a partial wetting of the underlying substrate, the equilibrium shape is a truncated Wulff shape 
known as the Winterbottom shape (Winterbottom et al. 1967) :  the (0 0 1) facet on which the particle sits is 
more extended than the two others {1 0 0} facets (subsection II.3.1.2). The latter are very small compared to 
the surrounding {1 1 1} facets, suggesting the crystal has not completely reached the ECS. 
Fig. VII.3 shows the reconstructed displacement field within the gold particle. The maximum phase variation 
in the nanocrystal is 1.2 radians. In the particular case of   φ0 0 2 =  - g0 0 2  .  u0 0 2  ,  a phase variation of 2π 
corresponds  to  half  the  lattice  spacing  between  two  consecutive  (0  0  1)  planes,  i.e. 2.04  Å.  Here  the 
displacements involved are thus very small and of the order of  0.4  Å in the [0 0 2] direction.
Given the size of the crystal and the relatively weak strain, the data has been corrected for refraction (Harder  
et al. 2007). The shape of the crystal being almost spherical (with the twinned part), the phase shift from x-
rays scattering at its center (when the refraction, is expected to be maximal) is given by Ф0 = kdδ, where the 
diameter of the particle  d = 350 nm,  the wave vector  k = 49.1 nm-1 and the refraction index δ = 3.19 x 10-5. 
Close to its centre, a spherical particle of such diameter has a phase shift of: Ф0 = 0.55 rads (corresponding to 
a u0 0 2 ~ 0.18 Å).
This phase shift due to refraction can be calculated in each point of the crystallite r according to the equation 
given by (Harder et al., 2007): 
 

Φ =
Φ0

2
∑

j=i , f
( k̂ j .ρ−√1−∣k̂ j .ρ∣

2−∣ρ∣2 )          (VII.1)

where  k̂ j  are units vector pointing toward the centre of the sphere in the direction of the incident and 

diffracted wave vectors, ρ =
r

r 0

is a fraction of the crystal radius r0  = d/2 including the non-diffractive 

grain. 
In order to apply the refraction correction, the shape of the particle has to be known precisely. In particular, it
is  clear  from Eq.  (VII.1)  that  the calculated phase shift  at  each point  of  the crystallite  depends on the  
definition of the centre of the particle. In our case, less than a half of the particle is reconstructed, but the  
centre  of  the  particle  can  be  estimated  quite  precisely  from  the  3D  reconstruction.  The  spherical  
approximation is also reasonable since the particles  are perfectly spherical in the liquid phase (slightly 
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truncated because of the partial wetting of gold) before faceting upon solidification.
Fig. VII.4 shows a phase map before (left) and after (right) the refraction correction. The section of the  
crystal displayed is perpendicular to the beam direction. As illustrated in Fig. VII.4.b, the maximum phase 
shift is encountered for a point slightly below the particle centre with a value of 0.58 radians while the phase 
shift is equal to zero only for the points on the top (0 0 1) facet lying in the direction of the q vector. The top 
(0 0 1) facet does not exist in the reconstructed grain, and the minimum phase shift here is thus equal to 0.12 
radians. The maximal phase difference induced by refraction is thus estimated to be of the order of 0.45  
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Fig. VII.4 Effect of the correction for refraction. Cross section of the phase map perpendicular to the beam direction: 
phase map before correction for refraction (a). Refraction phase only (b) and phase map after correction for refraction  
(c).  The direction of the scattering vector is indicated by a red arrow. And the approximated centre of the particle 

Fig.  VII.3 Reconstructed  electron  density  and  u0  0  2  displacement  for  the  twinned  gold  

particle.  (a)  Isosurfaces  of  the  u0  0  2  component  of  the displacement  field.  Central  cross 
sections of the displacement field along the [1 1 2] (b) [1 1 0] (c) and [1 1 1] d directions.
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radians  (corresponding  to  a  displacement  of  0.15  Å,  it  contributes  significantly  to  the  reconstructed 
displacement field and is thus taken into account in the reconstructions. 
After correction for refraction, the average phase inside the crystallite is calculated and set to zero, meaning  
that the reference for the displacements shown in Fig VII.3 is the average displacement along the  [0 0 1]  
direction. Note that this procedure is not performed in Fig. VII.4.c, explaining the high positive values for 
the data corrected for refraction.
It has been shown by Watari  et al.  (2011) that the facet and the curved areas of sub-micron gold particles 
undergo a differential  contraction.  The same observations was made by Huang  et  al. (2008) on smaller 
particles (~ 5 nm). In particular, he evidenced the differential contraction of the {1 1 1} and {1 0 0} surface  
planes, the latter  being more pronounced. As a general  tendency, upon relaxation surface atoms tend to  
contract towards the bulk. The driving force for this contraction is attributed to the smoothing of the electron 
surface density resulting in an electrostatic force which pulls surface ions towards the bulk (Smoluchowski 
1941 and Howe 1997).  This contraction being dependent on their coordination number, it is maximal for 
rough surface (Howe 1997), such as the edge and corner. Interplanar spacings of at least the first three atomic  
planes have been experimentally measured for several low-index surfaces of unreconstructed thin film of 
gold, see MacLaren, et al. (1991): in brief, they report outward displacement for {1 1 1 } top layer, no net  
displacement for {0 0 1} and larger inward but oscillating for the rough {0 1 1} surface.
The reconstruction of the displacement field projected onto the 0 0 2 Bragg reflection reveals that such 
behaviour is also visible on larger crystals. Most of the {1 1 1} facets tend to be in expansion while the {1 0 
0} facets are in contraction. The maximum contraction is observed for the lateral {1 0 0} facets ( the (0 1 0) 
and (1 0 0), (circled blue areas in Fig. VII.3.b), while the net positive displacement on the (0 0 1) facet (Fig.  
VII.3.c) suggests that it might be constrained by the underlying substrate. Most of the {1 1 1}  facets are in 
expansion (Fig VII.3.a,c,d), this expansion being maximal on the edge of the lateral {1 1 1} facets in contact 
with the twin boundary (Fig VII.3.a & VII.3.d, red circled areas). Interestingly, the (1  1 1) surface plane, 
parallel  to  the  twin-boundary  undergoes  contraction,  also  possibly  due  to  the  fact  that  the  particle  is  
constrained by the substrate.
The displacement profile on the twin boundary ((1 1 1) facet) is more complex, with alternating areas of 
contraction (mostly on the top most  part)  and expansion (mostly at  the substrate/particle interface (Fig. 
VII.3.d). Cut along (1 1 1)  (Fig. VII.3.d) and (1 1 2) planes (Fig. VII.3.d) reveals that the displacement is 
symmetrical with respect to the [1 1 2] and [1 1 1]  axis. 

VII.2. Molecular statics simulations

VII.2.1 Size effects

To understand the strain distribution within the crystallite, we simulated the twinned crystal using 
Molecular  Statics  (MS)  with  Embedded  Atom  Method  (EAM)  potentials  (Grochola  et  al.  2005),  that 
reproduce accurately surface energies and elastic properties. The geometry employed here also consists in  
the Wulff  geometry which minimizes the surface energy.  The determination of the surface area of each  
crystallographic plane corresponding to the Wulff equilibrium shape is calculated by using 2 ratio of surface  
energies γ111/ γ100 and  γ110/ γ100  calculated from relaxed surfaces. This method yields a crystallite with {1 0 0} 
and {1 1 1} facets separated by sharp edges.
The surface area of the crystallographic planes is then adjusted to fit the shape of the experimental particle.  
To match the experimental shape, surface area of all {1 1 1} surfaces are increased implying a reduction of 
the surface area of  the (0  1 0)  and (1 0  0)  facets.  This  is  a  good evidence  that  the particle  measured 
experimentally has not reached its full equilibrium shape, probably due to the fact that no equilibration was 
performed below the melting temperature. The (0 0 1) facet, parallel to the substrate is also enlarged due to  
the partial wetting of the gold particle (subsection II.3.1.1).
The simulated and experimental gold particles feature two main differences. The first one being that the  
rough curved areas between the  {1 0 0} and {1 1 1} facets have not been taken into account. As observed  
from the reconstruction of the electron density (Fig. VII.2.b) and confirmed by the SEM pictures (Fig. VII.1 
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and VII.2.a), their extent is rather limited compared to the flat facets. Nevertheless, their contribution to the  
surface strain has been clearly demonstrated (Watari et al. 2001), and should induce some discrepancies in 
the strain distribution. It has been also evidenced by Huang et al. (2008) that the contraction of surface atoms 
is coordination dependent, implying a strong contraction of the edge and corner atoms compared to atoms  
located at the centre of a facet. Due to the absence of sharp edges, these effects are rather limited on the  
experimental particle. 
More evident is the difference of scales between experimental and simulated crystals. The dimensions of the  
reconstructed grain are approximately 360x270x270 nm3. This represents approximately 1.4 billions atoms, a 
number unreachable with our current computational power. 
To capture the size effect on the strain distribution, several free-standing gold nanoparticles are modeled with 
radius varying from 25 nm to 170 nm (respectively 15 times and twice smaller than experimental particle).  
The nanocrystals are equilibrated at 0 K by energy minimization until  they reach their equilibrium. The 
relaxation is performed on the full particle in its Wulff equilibrium shape. At the end of the relaxation, the  
particle is cut along its (1 1 1) twin plane. 
In the following, the diffraction patterns are calculated in the kinematic approximation (justified by the small 
size  of  the  crystals)  using  the  software  PyNX  (Favre-Nicollin  2010,  subsection  I.3.3).  The  simulated 
diffraction patterns are inverted with the similar  procedure as described in subsection I.4.5,  providing a  
macroscopic view of the strain in the simulated particle. The excellent agreement between the reconstructed 
and calculated displacement fields from the atomic positions have been demonstrated in Chapter V of this  
manuscript. Here we chose to use the reconstructed displacement fields rather than the calculated one. This 
choice is primarily justified by the fact that the software OVITO (Stukowski 2010) used the visualization of 
the atomic configuration and the calculation of the atomic displacements has difficulties to handle very large  
crystal sizes (> 100 nm). Additionally, using this enables a visualization of the displacement field  consistent  
with the experimental data. 

Fig VII.5.a and VII.5.b show the calculated diffraction patterns for the 25 nm and 170 nm particles. The 
reciprocal space area shown is inversely proportional to their size. They look very similar,  suggesting a  
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Fig. VII.5 Influence of the size of the particle on the calculated CXD patterns and the reconstructed u 0 0 2 displacement  

fields.  Calculated CXD patterns for a 25nm (a) and 170nm (b) gold nanoparticle. Intensity profile along the [0 0 1]  
direction for both particle. Projected displacement field for the 25nm (d) and 170 nm (e) particles. (f) Intensity profile 

along [0 0 1] for a varying number of surface layers removed
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similar distribution of the strain within the nanocrystal. The main difference lies in the asymmetry of the 
Bragg peak. The redistribution of intensity from low to high scattering angle is clearly visible on both CXD 
patterns (Fig VII.5.a-c), but it is more pronounced on the smaller particle (Fig VII.5.c). It is directed along 
the [0 0 1] perpendicular to the facet undergoing the maximum contraction. 
The measurement of the lattice spacing between the first few surface planes (25 nm particle) for the {1 1 1} 
and {1 0 0} orientations reveals respective lattice contraction of  3.8% and 5.9%. Also interesting is the  
oscillatory behaviour of this relaxation. The contraction of the first surface plane is indeed followed by an 
expansion of the underlying plane and then a damped contraction of the third plane (this pattern slightly 
differs depending on the orientation). This surface distortion can be described  in the form of Rayleigh wave  
that die off exponentially (1/e) into the bulk with a decay length of  L/2π where  L the period of the wave 
along the surface is twice the width of the facet (Landau & Lifshitz 1986, Harder et al. 2007). The smaller is 
the crystal, the faster is the decay.  It is also quite obvious that the smaller is the crystal, the larger is the 
contribution of  the surface atoms as  compared to  their  bulk counterpart.  The average lattice  parameter,  
measured from the position of the Bragg peak, for the 25 nm and 170 nm particles are respectively 4.67 nm  
(0.31% contraction compared to the bulk value) and 4.73 nm (0.17% contraction). 
Fig. VII.5.f shows the contribution of the first few surface layers to the CXD pattern, by removing the first 
surface layers of the 25 nm particle. The overall shape of the Bragg peak does not dramatically change, but  
the distribution of intensity  becomes more symmetric.  A similar  effect  can be observed on the 170 nm 
particle, but less pronounced. It is thus clear that larger is the crystal, the smaller is the contribution of the 
first few surface layers and the smaller is the asymmetry of the Bragg peak.  Apart from the signature of the 
contraction of the surface atoms, both the diffraction patterns and reconstructed 3D maps of the displacement  
field are remarkably similar (Fig VII.5.c & VII.5.d) .  
The surface strain decay depends on the facet size and a crystal of different size but with a similar size ratio  
between its facet, i.e., the same equilibrium shape, will present an equivalent phase distribution. It is thus 
clear that for a free standing particle, the 3D displacement field only depends on the equilibrium crystal 
shape (ECS), i.e, the distribution of the surface area between  its {1 1 1} and {1 0 0} facet. Obviously, the 
smaller is the particle, the larger is the strain, since the same amount of displacement is distributed in a much  
smaller volume. 
The  particle is modeled with the lattice parameter of the bulk gold (a = 4.08  Å), and upon relaxation it 
undergoes  an  overall  coordination  dependent  contraction  of  the  surface  atoms.  If  the  reconstructed 
displacement map was computed relatively to the bulk lattice parameter, we would only observe negative net  

displacements corresponding to different levels of contraction. It is thus important to understand that the 
positive net displacements on the displacement maps (Fig VII.5.c & VII.5.d) are relative to the average 
lattice constant in the particle. The areas which appear in expansion (positive net displacement) are also in  

contraction for a reference crystal with the lattice constant of bulk  gold.

A cut along the {1 0 0} direction reveals that the maximum contraction (~ 0.2 Å) is observed for the corner 
and edge atoms located on the (0 0 1) facet (blue circled area in Fig. VII.5.d & VII.5.e). All three {1 0 
0} facets are in contraction (with a higher contraction of the surface atoms), while all the {1 1 1} facets,  
except the top (1 1 1)  are in tension. The bottom of the (1 1 1) large facet, which is not a free surface, is in 
tension, while its top undergoes contraction. 
It  is  clear  from  both  the  diffraction  pattern  and  the  reconstruction  of  the  displacement  field  that  the 
agreement between the experimental data is far from perfect. In particular, the (1 1 1) facet which induces 
contraction in the experiment displays expansion in the simulated particle. Conversely, the (1  1 1) facet 
produces tension experimentally while contraction in the simulation. The relaxation of the free surfaces alone 
can not explain the profile of displacement field in the experimental particle. 
This suggests the presence of another source of strain resulting from processing: the crystallite/substrate  
interfacial strain. An upper bound calculation can be obtained from the difference Δα = αAu- αAl2O3 of thermal 
expansion between gold and sapphire. The particle being cooled down from melting to room temperature,  a  
large ΔαΔT ~ 0.9% of  residual  tensile  strain can be present  -geometry considered here  as  a  film on a  
substrate. In the case of  3D islands, the residual strain is expected to be significantly lower than a 2D film. 

206



Chapter VII: Investigation of the 3D  strain distribution in a sub-micron twinned gold island by CXD and MS 
calculations

VII.2.2 Influence of the boundary conditions

To determine the influence of the substrate and of the twin boundary on the strain distribution, 50 nm 
gold nanocrystals are equilibrated with various boundary conditions.  The first case is an unrelaxed Wulff  
crystal,  i.e.,  similar in geometry as compared to the experimental particle,  but without relaxation of the  
atomic positions. The second particle named Wulff (c) is obtained following the procedure described in the 
previous section: relaxation of a single crystal  Wulff particle which is cut  along the (1 1  1) plane after 
equilibration. The third particle, (d) is a twinned particle, i.e., the  (1 1 1)  plane is a twin boundary, and the 
relaxation is  performed on this twinned particle.  (c)  and (d) aim at  establishing the amount of strain is  
induced at the vicinity of a twin boundary.  (e) is similar to (b), except that the particle is cut along its (1 1 1) 
plane before energy minimization. The (1 1 1) plane is thus a free surface. Finally, (f) aims at simulating the 
effect of interfacial strain. The (0 0 1) facet of  a single crystal Wulff particle is parallel and in contact with a 
gold substrate. The atoms of the substrate are frozen and the lattice parameter of this underlying substrate is 
set to impose a defined amount of thermoelastic/interfacial strain. The corresponding lattice mismatch is  
calculated from the in-plane lattice parameter of the (0 0 1) surface atoms in a free-standing and equilibrated 
Wulff particle. A value of a = 4.069 nm is obtained. 

The calculated CXD pattern from the unrelaxed crystal (Fig. VII.6.b.) exhibits some significant difference 
with the experimental diffraction pattern. Since no strain is present in the unrelaxed crystal, its diffraction  
pattern is perfectly centrosymmetric . The signature of the strain in the experimental CXD pattern (Fig.  
VII.6.a.)  is reflected in the asymmetry of the diffraction pattern. The asymmetry of the intensity distribution 
along the [0 0 1] direction is not as distinct as pronounced as in simulations, due to the larger size of the 
crystal (360 nm vs 25 to 170 nm).

The free-standing truncated Wulff  and twinned particle produce very similar  diffraction pattern.  In both  
cases, the shape of the Bragg peak is strongly affected by the relaxation of the free-surfaces. The Bragg peak 
becomes asymmetric, and the periodicity of the fringes along the [1  1 1] is disturbed, especially at low 
scattering angles (below the Bragg peak). The signature of the strain induced by the twin boundary is far 
from  obvious,  except  from  slight  variations  of  intensities,  the  calculated  diffraction  patterns  is  almost  
indistinguishable from its Wulff counterpart. This is not a surprising result, considering that a twin boundary 
is a coherent interface and should not generate strain.
As illustrated on Fig VII.6.f, this is a completely different story when the (1 1 1) plane is a free surface. The 
shape of the Bragg peak is strongly affected due to the fact that this large facet undergoes strong contraction. 
This is another confirmation that the particle measured is a twinned crystal, and not a single crystal cut along  
its (1 1 1) plane. 

When the particle is constrained by an underlying substrate (e), the agreement with experimental data is  
much better. Both the increased intensity and elongation of the “arm” above the Bragg peak and decreased 
intensity of the “arm” below the Bragg peak are accurately reproduced. The periodicity of the fringes along  
the  [1  1 1] direction appears less disturbed, though it is not as periodic as in the experiment. Overall the  
simulated diffraction pattern appears less symmetric than its  experimental  counterpart.  It  should be also 
noted that the amount of mismatch strain needed to match the experimental data depends on the size of the 
particle. The smaller is the particle, the larger needs to be the lattice mismatch to simulate the interfacial  
strain. The value of the lattice mismatch employed here were respectively 1.2%, 0.8% and 0.5% for a 25 nm,  
50 nm and 75 nm particle. The experimental particle being significantly larger than these sizes, the estimated 
interfacial strain in the particle is assumed to be much smaller than 0.5%. As discussed in the previous  
section, a value of 0.1% is a realistic estimation and would be in good agreement with the weak distortion 
observed in the CXD pattern (subsection VI.1.3).
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The u 0 0 2  displacement fields of the simulations, as obtained by the inversion of the simulated CXD are in  
good agreement with the analysis of the CXD patterns.
As already discussed in subsection VII.2.1,  the relaxation of the free surfaces alone does not  provide a 
satisfying agreement with the experiment data, even if some similarities can be found. The contraction of  
both the lateral {1 0 0} facets and of the corner and edge atoms of the (0 0 1) facet are well reproduced. 
As expected from their similar CXD patterns, the reconstructed displacements for the single Wulff crystal 
(Fig. VII.7.b) and the twinned crystal (Fig. VII.7.c) are very similar.
The  expansion  or  contraction  of  the  free  surfaces  is  equivalent,  but  some  slight  differences  arise.  In  
particular, a positive displacement of the lateral {1 1 1} facets can be observed in both cases, but it is more 
intense at the twin boundary (red circled area in Fig. VII.7.c).
Similar behaviour is observed experimentally, suggesting that the corner atoms are strained at the interface.
When the twin boundary is considered as a free surface (Fig. VII.7.d), the reconstructed displacement is 
dominated by the contraction of the (1 1 1) surface atoms which is three times larger than the maximum -
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Fig. VII. 6  Dependence of the CXD patterns for g = 0 0 2 on the boundary conditions.  

CXD patterns for the experimental particle (a) and simulated particles (b-e). (b) CXD 
pattern calculated before relaxation (no strain). (c) Relaxed free-standing (no substrate 
strain) Wulff particle.  (d) Relaxed free-standing Twinned particle.  (e) Relaxed free-
standing  with  the  twin  boundary  considered  as  a  free-surface.  (f)  Relaxed  Wulff 
particle constrained by an underlying substrate
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- contraction observed in the other cases (about 0.7 Å as compared to 0.25  Å).  
The best agreement can be found when some interfacial strain is added to the equation (Fig VII.7.e). Fig. 
VII.8,  shows  a  comparison  between the  experiment  and a  smaller  particle  which  is  constrained  by  its  
substrate. Cuts perpendicular to the 3 <1 0 0> axis reveal a good agreement with the experimental data. The  
contraction of the lateral {1 0 0} facets is particularly well reproduced (blue circled area in Fig. VII.8.b and  
8.d ), so is the expansion in the red circled area in Fig. VII.8.b & VII.8.d.  The interfacial strain is clearly  
visible at the substrate/particle interface in the simulated particle (Fig VII.8.e). This lattice expansion at the 
substrate/particle interface is also visible on the experimental particle although  less pronounced. 
The maximum tensile strain observed  on the edges of the {1 1 1} facet in contact with the twin boundary is  
not found in the simulated particle (red circled area in Fig. VII.8.a & VII.8.c). This discrepancy is probably 
due to the fact that the relaxation is performed on a perfect Wulff single crystal which is cut afterwards and 
not on a twinned particle. 
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Fig.  VII.7 Distribution of  the u0  0  2   displacement  field depending  on the  

boundary conditions.  Cross section of the projected displacement field for 
(a) The experimental particle. (b) Relaxed free-standing (no substrate strain) 
Wulff particle.(c) Relaxed free-standing Twinned particle. (d) Relaxed free-
standing Twinned particle.(e) Relaxed free-standing with the twin boundary 
considered as a free-surface.  (f) Relaxed Wulff particle constrained by an 
underlying substrate
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Experiment Wulff Twin Wulff free surfaces Wulff + 
substrate

(0 0 1) Expansion + 
contraction of the 

corner atoms

Contraction 
(stronger for the 
corner atoms)

Contraction 
(stronger for the 
corner atoms)

Contraction 
(stronger for the 
corner atoms)

Expansion + 
slight 

contraction of 
the corner atoms

(1 0 0) & (0 1 0) Contraction Contraction Contraction Contraction Contraction

(1 1 1) Contraction Expansion Expansion Expansion Contraction

( 1 1 1) (twin 
boundary)

Expansion 
(bottom)

Contraction (top)

Expansion 
(bottom)

Contraction (top)

Expansion 
(bottom)

Contraction (top)

Strong contraction Expansion 
(bottom)

Contraction 
(top)

{1 1 1} lateral facets Expansion 
(stronger for the 

edge atoms)

Expansion Expansion 
(stronger for the 

edge atoms)

Contraction Expansion

(1 1 1) top facet Expansion Contraction Contraction Expansion (edge 
atoms)

Contraction (facet)

Expansion + 
Contraction

Tab. VII.1. Contraction or expansion associated with facets.
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Fig. VII.8 Comparison between experimental and simulated reconstructions. Reconstructed electron density (50%) for 
the experimental (a) and simulated (c) particles  which indicate the  position of the cross sections of the displacement 
field. (100), (010) and (001)  cross sections of the displacement field for the experimental (b) and simulated particle (d)
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Conclusion

We have studied the 3D displacement field of a twinned gold sub-micrometric crystallite  using 
coherent  X-ray diffraction and molecular  dynamics  simulation.  The loss  of  symmetry in  the diffraction 
pattern suggests the presence of inhomogeneous strain inside the particle. The reconstruction of the electron 
density reveals a highly faceted particle with {1 0 0} and {1 1 1} and relatively small curved areas between  
the facets. The particle is truncated due to the partial wetting of gold on sapphire and has almost reached its  
equilibrium crystal shape. The reconstruction of the 3D displacement field reveals an alternating pattern of  
inward and outward lattice displacement with a general tendency of contraction for the {1 0 0} facets and  
expansion for the {1 1 1} facets (relatively to the average lattice contraction). It also suggest the presence of  
a weak amount of interfacial strain.
Molecular Statics simulations are carried out to explore the strain distribution in the particle. It is shown that  
the  displacement  field  (both  magnitude  and  distribution)  in  a  free  standing  crystallite  is  driven  by  its  
geometry rather than its size. The size effect is revealed by the anisotropy of the intensity distribution in the 
diffraction  patterns.  The  calculation  of  the  diffraction  patterns  from  the  relaxed  particles  with  various 
boundary conditions shows that the best agreement with our experimental data is found for a particle strained 
by an underlying substrate. 
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Chapter VIII : Study of an heterogeneous bi-metallic interface  (Cu-Ta) 

investigated by surface diffraction, ab-initio and molecular dynamics 

calculations

Introduction

Copper is nowadays a widely used interconnected metal in integrated circuits (IC) devices. However,  
the rapid diffusion of copper through silicon and its poor adhesion to silicon oxide led to the investigation of 
reliable  diffusion  barrier  metal  to  isolate  the  copper  interconnects  from  the  silicon  chips.  Among  the  
diffusion barrier metals Tantalum is one of the most interesting candidates and the past two decades have  
seen an increasing interest on the study of the Cu/Ta system (Holloway et al. 1992, Laurila et al. 2000). On 
top of its technological interest, Cu/Ta is also a prime example of a strongly heterogeneous film-substrate 
system with almost zero mutual solubility  (Massalski 1986), different crystal structure (f.c.c. Cu vs b.c.c. 
Ta), different lattice parameters as well  as many other properties.  An atomic scale understanding of the  
growth mode, structure and thermal stability of Cu thin films on Ta substrates is thus of both fundamental 
and technological importance
As a misfitting  system, the Cu/Ta interface is a good example of a bi-metallic system with a Stranski-
Krastanov (SK) growth mode (Rodriguez & Goodman 1991). It  combines features of the Volmer-Weber  
growth mode (film growth by growth of islands) and the layer-by-layer growth mode known as the Frank-
van-der-Merve (FM) growth mode and  can be described as a growth of 3D islands on top a thin film. The 
structure and morphology of the Cu/Ta interface is however difficult to predict and the study of the stability  
and wetting behaviour of thin Cu films deposi ted  on  a  Ta  substrate  has  been  the  subject  of  several 
experimental investigations and controversial observations over the past few years. 
Kuhn  et al  (1993)  studied ultra thin Cu films deposited on a Ta(1 1 0) substrate. They established that  
ultrathin Cu films form a stable pseudomorphic (PM) layer on top of the Ta substrate for a coverage up to  
1.22 monolayers (ML). Chen et al.  (2000) studied the influence of impurities on the wetting behaviour of 
ultrathin Cu films on Ta(1 1 0). They reported the stability of a Cu sub-monolayer on a clean Ta(1 1 0)  
substrate for temperatures up to to 1000K,  a temperature at which diffusion into the bulk occurs. More  
recently, Fillot  et al.  (2007) reported the dewetting of Cu from Ta (1 1 0) substrates, leaving exactly one  
stable Cu monolayer on top of which 3D islands of Cu form. In 2009 Venugopal  et al.  investigated the 
stability of  Cu thin films with varying thickness deposited on clean Ta(1 1 0) and Ta(1 0 0) substrates at  
room temperature. They described the agglomeration of the thin film into islands at a temperature which 
depends on the film thickness. The out-of-plane and in-plane orientation islands differ for the two substrate 
surfaces, and the presence of a wetting layer of 1 or 2 ML was reported for both orientations. 
Atomistic simulations were also helpful to provide some new insights in the formation and structure of Cu 
film growth on Ta substrate.  Klaver and Thijsse (2003) used Molecular Dynamics (MD) calculations to 
simulate the deposition of copper on b.c.c. Ta (1 0 0) and Ta (1 1 0) and β-Ta (0 0 1). For the deposition of 
Cu on the Ta(1 0 0) substrate they describe the formation of a stable PM ML, on top of which grains with  
f.c.c. (1 1 1) out-of plane orientation and two different in-plane orientations are formed. These grains have  
mobile grain boundaries, and upon further deposition, the smaller grains are absorbed by the larger grains to  
form an almost defect free monocrystalline films with (1 1 1) orientation. Following this work, large scale 
MD simulations of Cu deposition on Ta(1 0 0) were performed by Lazic et al. (2010). They reported a quite 
rich and complex microstructure. The Cu thin film forms a first stable PM layer, on top of which it grows in 
the form of a superstructure of 26 atoms misfit supercells which upon relaxation breaks up into islands. The 
third layer and above are f.c.c. (1 1 1) planes with grain boundaries as main defects. The thermodynamical 
and mechanical stability of Cu films on Ta (110) has also been investigated by Hashibon,  Elsässer et al. 

(2008),  using Density Functional  Theory (DFT) in the local  density approximation,  and later  with M D 
calculations (Hashibon, Lozovoi et al. 2008). The DFT study reported the stability of an incoherent ML of 
Cu on Ta. The MD simulations showed the stability of a Cu pseudomorpic ML with mismatch occurring  
along the [0 0 1] direction of the Ta substrate. Thicker Cu films are unstable and agglomerate into islands, 
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leaving a stable Cu ML on the surface.
If the atomic structure of the Cu ML on top of a Ta (1 1 0) substrate remains quite controversial, there are  
several experimental studies as well as DFT and MD simulation that report the presence of a single stable Cu 
ML of a Ta(1 1 0) surface. The growth mode and wetting behaviour of Cu thin films on Ta(100) is not as well 
documented. The dewetting of Cu thin films deposited on Ta(1 0 0) has been reported in several studies (Kim 
et al 2005, Venugopal et al. 2009). There is also some experimental evidences of the presence of a wetting 
layer  covering the Ta(1 0 0) surface,  between the dewetted islands (Venugopal  et  al.  2009).  Venugopal 
estimated the thickness of this layer to  less than 5 Å, corresponding to 1 or 2 ML. However, the precise 
number of ML and their crystal structure remains so far unknown. 
Surface X-ray diffraction (SXRD) is a powerful probe of the structure of crystalline surfaces (Robinson & 
Tweet, 1992). Sharp interfaces give rise to Crystal Truncation Rods (CTR) in reciprocal space (Andrews & 
Cowley, 1985, Ribinson 1986, see subsection II.2.1). CTRs can be used to go beyond a 2D description of  the 
surface structure (Robinson 1986) and are particularly useful to evidence pseudomorpĥic wetting layers (Ball 
et al. 2002). Indeed, the scattering amplitude from a PM wetting layer is enhanced by interference with the 
scattering amplitude from the substrate in the vicinity of the Bragg reflections of the latter, allowing, with  
synchrotron radiation, a quantitative characterisation of the structure of the PM layer. This is precisely the  
experimental method used in this report, to shed light on the nature of the copper on tantalum (100) interface.
In this study we  measured CTRs of a clean Ta (1 0 0) surface while performing an  in situ  dewetting of 
copper thin film. The results provide atomic details on the Ta surface termination and in particular allow us  
to determine the number of PM Cu layers on top of the Ta(1 0 0) surface as well as their interplanar spacing.  
All the experimental details and results are presented in section VIII.1. 
To gain a new insight in the experimental results, DFT calculations in the local density approximation are 
presented in section VIII.2. The thermodynamic stability of several thin Cu films on a Ta(100) surface, with  
a varying number of ML and crystal structure (f.c.c or PM (b.c.c.)), is investigated by the calculation of the  
excess interface energy. In order to determine the number of PM Cu layers as well as their inter planar  
spacing  from  the  measured  CTR,  the  structure  factors  of  the  relaxed  configuration  are  calculated  and 
compared to the experimental data. The agreement between the predictions from excess interface energy 
calculation and the experimental results are discussed. 
In the last section some complementary calculations are performed with an Angular Dependant Potential 
(ADP) developed by Hashibon, Elsässer et al. (2008) . The excess interface energy is calculated for a variety 
of thin Cu film on Ta (100) interfaces and compared to the results from DFT calculations. The structure  
factor of the film/substrate structure of lowest energy is then calculated and compared to the experimental  
data. The use of this potential to work on larger systems, in particular to study the dewetted 3D islands on top 
of the thin wetting Cu layer is finally discussed at the end of this section. 

VIII.1. Experiment

VIII.1.1. Experimental details

The  experiment was carried out at the ESRF on the BM32 SUV (CRG-IF) beamline. It is equipped 
with a large UHV chamber mounted on a four circle diffractometer. The UHV chamber itself features several 
evaporation sources for  in situ epitaxial deposition. It  is also equipped with a high temperature furnace.  
However the preparation of a clean Ta(1 0 0) requires the flash annealing of the Ta substrate at very high  
temperatures (above 2000K) which can not be reached with the set-up on the beamline. The first stage of the  
surface preparation was thus performed in our laboratory UHV chamber.
A high purity (more than 99.9999%) Ta crystal, cut and  polished to less than 0.1° along the (0 0 1) plane 
was purchased from MaTecK. The surface is  prepared by repeated cycles of Argon sputtering and flash 
annealing above 2000 K to remove all  the oxygen and carbon contamination (Musket  et al.  1982). The 
atomic flatness of the surface is monitored by Low-Energy Electron Diffraction (LEED), and the absence of  
oxygen or carbon contamination is checked by X-ray Photoelectron Spectrometry (XPS). A protective 5 nm 
copper layer is then deposited to protect the Ta surface during the transfer under primary vacuum to the 
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beamline chamber. The sample is shortly exposed to air during the introduction in the beamline chamber. 
This obviously leads to a significant oxygen and carbon surface contamination as illustrated on Fig. VIII.1.a.  
To clean the Ta surface, the sample is annealed during 8 hours at 300°C and the copper is then evaporated at 

1100°C during 3 minutes. This procedure has been repeated 4 times during two different experimental runs 
and has proven to be efficient  to prevent  the Ta surface from a high level  of   contamination.  For both  
experiments  no  carbon  contamination  is  observed  after  Cu  evaporation.  However  for  the  second 
experimental run, the oxygen contamination of the Ta surface remains significant after Cu evaporation (Fig.  
VIII.1.a). The conditions of preparation of the Ta surface, and the Cu deposition and dewetting then differ  
depending on the sample and the experimental run. 
For  the first  Ta  substrate  which  was  used during  the first  experimental  run (thereafter  CuTa1),  the  Cu 
deposition was done by sputtering during 5 minutes, allowing the deposition of approximately 9 nm of Cu. 
The surface was then cleaned during 20 minutes by Ar bombardment. To perform the dewetting, the sample 
was then heated during 20 minutes at 750° when the dewetting occurs. As illustrated in Fig. VIII.1.b, this  
preparation procedure allowed to obtain a clean Ta surface. 
During the  dewetting,  the  temperature  was monitored with  a  pyrometer  and  the base  pressure  into  the  
chamber was carefully checked to avoid any copper evaporation. The thickness of the Cu film was controlled 
by monitoring the FWHM of the rocking curve for the Cu 2 0 0 reflection. The  beginning of dewetting is 
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Fig. VIII.1 Auger spectra showing the surface contamination at various stages of the experiment  a) before and after Cu 
evaporation . b) before and after Cu annealing and Ar bombardment. c) before and after Cu dewetting. d) before and 
after CTR measurements
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reflected in the sharp increase of the peak intensity and the diminution of its FWHM. The analysis of the 
Auger spectrum reveals that the ratio between low energy electron and high energy electrons  increase after  
the Cu dewetting. This can be explained by the presence of a thin wetting layer in-between the islands (Fig. 
VIII.1.c). 
For the second experimental run, the sample was prepared with 3 different procedures. For the first one,  
named CuTa2, the copper was deposited at a deposition rate of 1 ML(1.8 Å)/5'20” during approximately two 
hours. The estimated thickness of the Cu thin film was approximately 22 ML i.e., 4 nm. The Cu dewetting 
was performed at 800 °C during 5 minutes and the sample is further heated at 830°C during 1 minute. This  
procedure lead to reasonably low level of oxygen and almost no carbon contamination.
For  CuTa3  the  Ta  surface  and  the  Copper  deposition  and  dewetting  were  performed  under  the  same 
conditions.  The  substrate  surface  was  restored  in  the  laboratory  between  CuTa2  and  CuTa3,  using  the 
procedure described above. Before the CTR measurements, the Auger spectrum, did not show no sign of 
carbon contamination, and a low oxygen contamination. 
A last  measurement was done on this sample (CuTa4).  To get  rid of the significant oxygen and carbon  
contamination that occurred during the CTR measurement, Cu was evaporated at 1100°C during 3 minutes. 
A single Cu ML was then deposited at room temperature. After the measurement of one CTR, two additional 
Cu ML were deposited. The sample was then heated 30 minutes at 430°C, 5 minutes at 670°C and the  
dewetting was performed at 780°C during 1 minute. As illustrated in Fig. VIII.2.b, this procedure turned out  
to be particularly efficient to reduce the oxygen contamination and allowed to obtain an almost clean Ta 
surface. 
Overall we managed to obtain reproducibly a clean Ta surface for all 4 CTR measurements, although a low 
oxygen contamination was observed for the 2nd experimental run (Fig VIII.1.c). However, it is also clear  
from Fig. VIII.1.d that most of the carbon and oxygen contamination occured during the CTR measurements  
and that the surface contamination for a given rod is strongly correlated to the time elapsed between the 
dewetting of the Cu thin film and the CTR measurement.
Tab. VIII.1 summarizes the Ta surface state, before and after the CTR measurements, and time elapsed (in  
hours) between the dewetting and measurement. 

Oxygen contamination Carbon contamination CTR 11L CTR 10L

Before CTR After CTR Before CTR After CTR

CuTa1 No Yes No Yes 3.5 0.5

CuTa2 Low Yes No Low 2 3.5

CuTa3 Low Low No Low 0.5 3.5

CuTa4 Very low Yes No Yes 0.5 3.5

Tab. VIII.1: Surface contamination of the Ta(100) surface before and after CTR measurements

 
For the rod 1 0 L the cleanest surface state is obtained for CuTa1 followed by CuTa4, CuTa3 and CuTa2. For  
the rod 1 1 L it is achieved for CuTa4 followed by CuTa3, CuTa2 and CuTa1.

CTR measurements were performed with the sample mounted in the so called z-axis geometry described in 
more details in subsection (II.2.3) and elsewhere (Bloch 1985, Vlieg 1998). 
The energy of the incoming monochromatic X-ray beam was set to 22 keV and the size of the beam on the 
sample  was  approximately  (0.5x0.3  mm FWHM).  The  scattered  intensity  was  recorded  on  a  2D pixel 
detector placed 50 centimetres away from the sample.
In order to reduce the Thermal Diffuse Scattering (TDS) from the bulk, the penetration of X-ray into the  
sample has to be kept as small as possible. This can be achieved by using a low glancing angle α of the  
incoming X-ray beam. In the present it was set  to 0.6°, a value  slightly above the critical angle of total 
external reflection (respectively 0.194° and 0.154° for Cu and Ta at 22 keV).  The sample was carefully 
aligned in order to put  the surface normal exactly parallel to the axis for azimuthal rotation ω ,  i.e., the 
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scattering  angle  is  independent  of  the  ω rotation.  The  rod  scans  were  then  performed  by  a  combined 
movement of ω rotation of the sample and of the detector which can be moved out to the surface plane by an  
angle β in order to probe different exit angles to the surface of the diffracted beam (section II.2.3 for more  
details). 

The atomic structure within a crystal unit cell can then be determined from the structure factors. A very  
accurate determination of structure factors can be obtained from the integrated intensities of a reflection  
(Vlieg 1997).  The integrated intensities along the CTR were measured thanks to angular  ω scan of the 
reflection over a range of ± 5° and steps of 0.1°. This relatively large range was selected to ensure the 
accurate measurement of the background level. To obtain a precise value of the integrated intensities, this  
background needs to be properly subtracted. This is done thanks to the software  ANA (Vlieg 1997, Vlieg  
2013) which enables the background subtraction, integrated intensities calculation and conversion of  the  
latter into structure factors.

VIII.1.2. Comparisons between different surface states

A respective total of  8, 5, 6 and 4 rods were measured for CuTa1, CuTa2, CuTa3 and CuTa4 with 
different states of surface contamination. Both CTR 1 1 L and 1 0 L shown on Fig. VIII.3.a and VIII.3.b are  
averaged over 2 symmetry-equivalent reflections (1 1 L and 1 1 L for the 1 1 L, 1 0 L and 0 1 L for the 1 0 L 
rod). 
The CTR 1 1 L was measured on an almost clean surface with no carbon contamination and a very low 
oxygen contamination for CuTa3 and CuTa4, while the surface contamination (for both oxygen and carbon) 
was significant for CuTa1. As illustrated in Fig. VIII.3, the 1 1 L CTR for CuTa3 and CuTa4  are almost  
equivalent and some differences can be observed for CuTa1. The peak at L = 0.7 is smoother and shifted to 
an higher exit angle, and the bump observed between L = 1.1 and L = 1.5 for CuTa3 and CuTa4 is less 
prominent on CuTa1. Given that 1 1 L rods measured on a clean Ta surface (CuTa3 and CuTa4) are very 
reproducible, the differences observed for CuTa1 are likely to be related to surface contamination.
Similar conclusions can be drawn for the CTR 1 0 L, where the clean surface was measured for CuTa1 and 
the contaminated surface for CuTa3 and CuTa4. The rod profiles are again very similar for an equivalent  
state  of  surface  contamination,  while  differences  can  be  observed  with  the  case  of  a  clean  Ta  surface 
(CuTa1). The profile of the rods are very similar with a drop of the structure factor amplitude for L = 2.1 and 
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a bump observed between 2.2 and 2.6 . The main difference lies in the structure factor amplitudes for high 
exit angles which are significantly lower for the contaminated surfaces (CuTa3 and CuTa4). 
From these four distinct CTR measurements with different sample, preparation process and surface state, we 
can conclude that the CTR are reproducible. Although visible, the effect of the surface contamination is  
weak.

VIII.2. Density Functional theory calculations

From the measured CTRs, the precise determination of the structure of the interface is in principle 
obtained by the fitting of the experimental data. However, in this work, DFT calculations are performed to  
gain further insight in the experimental results. The agreement between the interfaces predicted from the  
experimental data and the DFT calculations is quantified and discussed in extensive details.

VIII.2.1. Computational method

Total energy calculations are performed using the local-density approximation to the exchange and 
correlation  and  norm  conserving  Martins-Troullier  pseudopotentials  (Troullier  &  Martins  1993)  as 
implemented in the PWSCF code (Giannozzi et al. 2009). The wavefunction and charge density cutoffs are 
taken as 90 Ry and 360 Ry, respectively. Atomic relaxation is performed until forces on atoms are less than  
0.03 eV/Å. The bulk structures of b.c.c Ta and f.c.c Cu are fully optimized using a 12x12x12 Monkhorst-
Pack grid (Monkhorst & Pack 1976) for the integration of the irreducible Brillouin zone leading to   aCu  = 
3.5538 Å and  a Ta= 3.235 Å. The slab calculations of a few pseudomorphic Cu layers described in the 
following section employ 12x12x1 Monkhorst-Pack grid while the Cu f.c.c interface is computed employing 
the Gamma point only.

VIII.2.2. Supercell configuration

In  order  to  determine the stability  and structure  of  a  Cu thin  film on Ta(1  0 0),  the  following 
interfaces systems are modeled using a periodic slab configuration: 1 to 5 PM layers of Cu on top of Ta, a  
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surface contamination.  Error bars have been omitted to facilitate the vizualization.
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single Cu f.c.c. layer on top of Ta and a f.c.c layer on top of 2 PM layers of Cu on a Ta substrate.
For the PM Cu layers,  i.e. adopting a b.c.c. structure coherent with the Ta substrate, 14 Ta (1 0 0) planes are 
considered and 1 to 5 b.c.c Cu layers are located on on both sides of the slab leading to two equivalent Cu/Ta 
interfaces. Each layer is modeled using one atom per unit cell by taking advantage of periodic boundary  
conditions along the y and x direction. A thick vacuum region of about 15 Å is considered along z between  
the two Cu films in order to ensure a negligible interaction between the two free surfaces. The structural 
relaxation is computed by relaxing the z coordinate of all atoms within the supercell. 
The calculation of f.c.c. Cu requires a significantly larger cell. The orientation relationship of the thin film 
with respect to the substrate is Cu(0 0 1)[1 1 0]//Ta(0 0 1)[1 0 0] inducing an in-plane misfit strain of  εxx  = 
31.4%  (calculated from the computed lattice parameters of the corresponding bulk) if the Cu is strained to  
the nominal value of the bulk Ta lattice parameter. This in plane strain was minimized by creating a supercell 
of 9x9 Cu f.c.c. atoms on top of  7x7 Ta  b.c.c. (Fig VIII.4.b). The corresponding lattice mismatch for 9 Cu  
atoms on top of 7 Ta atoms is about 0.13%.

Fig. VIII.4: (a) Periodic slab configuration to model the relaxation of a varying number of PM Cu layers. (b) 9x9 Cu /
7x7 Ta supercell used to model the relaxation of thin fcc films on top of the bcc Ta substrate

Given the large size of the supercell, a smaller number of Ta planes is considered here. For the single f.c.c.  
layer, 6 Ta planes are used  (6 Ta/1 Cu f.c.c.) leading to a 375 atoms supercell while for the f.c.c. layer on top  
of 2 PM layers only 5 Ta planes are used (5 Ta / 2 Cu PM / 1 Cu f.c.c., 424 atoms). In all cases only the z  
coordinates of all Cu atoms plus the first 3 interfacial Ta planes are relaxed to reduce the computational cost 
of the calculations.

VIII.2.3. Calculation of the excess interface energies

The  thermodynamical  stability of Cu thin films is  evaluated by computing the excess interface  
energy as the energy difference between the fully relaxed configuration for each model and the configuration 
with the same number of atoms in their bulk environments. It can thus be written as:

γ = (E
supercell

−(E
Tabulk

+E
Cu bulk

))/2A        (VIII.1)

where Esupercell is the total energy of the slab calculation and A is the surface area (considered twice for the two 
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Fig.  VIII.4 Configurations  considered  for  the  DFT  calculations  (a) 
Periodic slab configuration to model the relaxation of a varying number of 
PM Cu layers. (b) 9x9 Cu /7x7 Ta supercell used to model the relaxation of 
thin fcc films on top of the bcc Ta substrate
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Cu/Ta interfaces).  The excess interface energy described in Eq. (VIII.1)  is  the sum of the film/substrate 
interface energy, γi,  and  the free surface energy of the thin film, γf, i.e.  γ = γi  + γf. As the number of layers of 
the film increases, the strain contribution (1/2Eε2h) becomes implicitly contained in Eq. (VIII.1) and this 
term dominates the trend. In order to evaluate the stability and growth mode of a film on a substrate, the 
energy difference between the free surface and the interface configurations needs to be considered. This is  
given by (Freund & Suresh 2003, Wuttig & Liu 2004) :

δ = γ
i
+γ

f
−γ

s        (VIII.2) 

where γi  and γf  are described above and and γs  is the free surface energy of the substrate. For δ < 0 the 
film/substrate interface is thermodynamically stable and a complete coverage of the substrate by the thin film  
is obtained. When this condition is satisfied, a layer-by-layer growth, known as the Frank-van-der-Merwe 
mode is OBSERVED(Frank & Van der Merve 1949, Van der Merve 1963). Starting from  δ = 0, the Stranski-
Krastanov growth is obtained, which corresponds to a 3D growth on the top of the thin film.
The excess interface energies calculated up to 6 Cu PM layers are reported in Tab. VIII.2. 

1PM 2PM 3PM 4PM 5PM 6PM

γ (J/m2) 2.50 2.19 2.63 2.78 3.13 3.32

Tab. VIII.2 : Comparison of the excess interface energy calculated for 1 to 6 PM Cu layers.

Our computed free surface energy γf  is 3.18 J/m2 which is larger than the experimental value of  2.5  J/m2 

(Tyson & Miller 1977), but close to other theoretical values of  3.10 J/m2 (Vitos et al. 1998) and 3.14 J/m2, 
(Aqra & Ayyad 2011). The free Ta (100) surface energy exceeds the excess interface energy, resulting in δ <  
0, for up to 5 PM layers. As mentioned above, the increase in   γ found for increasing number of layers, 
reflects the increase in strain energy.
The configuration with 2 PM layers on the top of the substrate corresponds to the most stable configuration 
for  a  thin  film of  Cu on  Ta(1  0  0)  while  1,  3,  4  and 5  Cu PM layers  are  metastable.  Therefore,  our 
calculations indicate that a  Frank-van-der-Merwe growth mode is awaited up to 5 PM layers above which a  
Stranski-Krastanov mode should be expected. This result is consistent with experimental data which reported  
the presence of 1 or 2 wetting layers (Venugopal  et al.  2009). For all the PM configurations, the high in-
plane tensile strain induce a compensative high out-of-plane compressive strain among the Cu layers. The 
precise interplanar spacing and strain level for the case of 2 PM layers are presented in more details in the  
next subsection. 
The excess interface energies for the two configurations involving Cu f.c.c. layers are not available from our  
calculations. Our attempt to relax a single Cu f.c.c. monolayer on Ta(1 0 0), as described in the previous 
section as the 6 Ta / 1 Cu f.c.c. configuration, did not converge to a reasonable structure, although we see the 
tendency to form at least a first PM layer. Our attempt to check for the possible stability of a single f.c.c.  
layer on top of the 2 PM layers also failed, as we observe a structural modulation of the f.c.c. structure out of  
plane indicative of periodic boundary conditions leading to non-zero strain.
As a comparison, we computed the wetting behaviour of Cu on Ta(1 1 0) and found that 1 pseudomorphic  
layer is thermodynamically the most stable configuration, while 2 pseudomorphic layers are metastable. The 
computed free surface energy of Ta(1 1 0) is 2.98 J/m2 while the excess interface energy is 2.34 J/m2 and 2.74 
J/m2, respectively. This result is at variance with the work of Hashibon & Elsässer et al. (2008) but consistent 
with several experimental works (Kuhn  et al. 1993, Chen  et al. 2000) reporting the observation of a PM 
monolayer.

VIII.2.4. Calculation of the structure factors

According  to  our  DFT  calculations,  the  configuration  which  has  been  found  to  be  the  most 
thermodynamically stable is 2 PM Copper layers on top of the (1 0 0) Ta surface. The agreement between  
DFT simulations can be demonstrated by calculating the structure factors of the relaxed configurations.
These calculation  are performed using the software ROD(Vlieg 1999) according to Eq. (VIII.3):
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F hkl=∑
j

f j e
−B j Q

2 /(16π2)
e

2π i (hx j+ky j+ lz j )        (VIII.3)

where fj is the atomic scattering factor of atom j, B the Debye-Waller parameter, (hkl) the diffraction indices 
and (xyz)j the position of atom j in fractional coordinates.
Fig. VIII.5. presents several comparisons between CTR measured from the clean Ta surface (CuTa4), and the 
simulated CTR for 1, 2 and 3 PM Cu layers. For both 1 1 L and 0 1 L it is clear that the best agreement and  
by far can be found for 2 PM layers. It is also interesting to notice that the structure factors are systematically 
overestimated at high exit angles. Despite this discrepancy, the 2 PM model manage to reproduce accurately  
all the peaks and curves inflection observed on the experimental data. It should be also pointed out that the  
best agreement between the simulated CTR and the measured one is systematically found for the cleanest Ta  
surface demonstrating the effect of surface contamination discussed in section VIII.1.

The position of the Cu layers for the configuration which manage to reproduce accurately the experimental  
data are illustrated in Fig. VIII.6.  The high lattice mismatch between Copper and Tantalum  induces an in-
plane strain  εxx of 31.4%. This results in a reduced Cu interplanar direction along the (0 0 1) direction by 
almost 36% for the 2nd Cu plane and 11% for the 1st Cu plane. The Tantalum atoms are also affected by the  
presence of neighbouring Cu atoms, and a strong relaxation can be observed for the first 3 Tantalum planes. 
The  first  two  Ta  interfacial  planes  are  compressed  by  respectively  3.9  and  2.5% for  Ta -1  and  Ta-2.  To 
compensate for this compression the  spacing between  Ta-2  and Ta-3  significantly increase (by 2.3%). It is 
interesting to notice that the relaxation of Ta atoms is mostly limited to the first 3 interfacial planes. The 
spacing between Ta-4, and Ta-5, Ta-5  and  Ta-6, and Ta-6  and  Ta-7 is indeed close to the bulk nominal value of Ta 
(respective variations of -0.3%, -0.45% and 0.24%).
To quantify the importance of the Ta  relaxation and provide an accurate description of the Cu-Ta interface 
and surface, the structure factor of 4 different systems has been calculated and compared to the experimental 
data. In the first case, the relaxation of the Cu atoms is taken into account whereas the atomic positions for  
Ta are equal to their unrelaxed bulk values. In the 2nd, 3rd and 4th case, the relaxation of Cu is taken in 
account and the relaxation of the Ta atoms is restricted respectively to 2,3 and 7 Ta planes.
As illustrated in Fig. VIII.7, for up to 3 Ta planes, the number of Ta planes taken into account for relaxation  
has a very strong influence on the calculated structure factors. In all cases and independently of the number 
of relaxed Ta planes, the positions of the minima of amplitude are accurately reproduced for both CTR.  
However, the agreement between the calculated structure factors and the experimental data is not very good 
for less than 3 relaxed Ta plane.  For the 1 0 L CTR, all 4 configurations manage to reproduce the drop of  

222

Fig. VIII.5 1 0 L (a) and 1 1 L(b)  calculated structure factors for a varying number of PM Cu layers compared with experimental  

data
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intensity around L = 2.1, however the bump which is observed in the 2.2 < L < 2.6 region is only accurately 

reproduced for Ta  ≥  3. Similar conclusions can be drawn for the 1 1 L CTR where the configurations with 0 
and 2 relaxed Ta planes fail to reproduce the curve inflection in the  1 < L < 1.5 and 2.3 < L < 2.7 regions. 
The drop of amplitude for L =  0.7 is also strongly overestimated when the number of relaxed Ta planes is 
inferior to 3. The simulated CTR for 3 and 7 relaxed Ta planes exhibit a remarkable similarity. This tends to 
confirm that the relaxation of the Ta planes is mostly limited to the first 3 interfacial planes and is consistent  
with the small value of displacements found for the Ta planes further away from the Cu-Ta interface. 

 
Comparison between experimental data and calculated structure factors allowed to determine the number of  
stable PM layers and to provide a precise estimation of the interplanar distance for the surface atoms.
If  the  calculated  structure  factor  from the  model  structure  described  in  subsection  VIII.2.2  is  in  good 
agreement with the experimental data, it should be pointed out that the measurements carried out at ESRF 
were only sensitive to PM  layers, since the scans are done along the Ta CTRs. However the presence of 
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Fig. VIII.7 Influence of the number of relaxed Ta planes on the calculated 10L (a) and 11L(b) structure factors

(a) (b)

Fig.  VIII.6 Interplanar spacing versus plane index for 2 and 7 relaxed  

Ta planes. The positions are expressed in reduced coordinates relatively 
to the Tantalum unit cell.
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f.c.c. copper on top of the PM Cu layers can not be excluder and is likely to modify the interplanar spacing  
between the Cu layers. 

VIII.2.5. Fitting of the experimental data

The calculated structure factor is a sum of the bulk contribution and the surface contribution (Vlieg 1999):

F tot = SR [(1− f s)∑
j

α j F b , j

2 + f s∑
j

α j( F b , j+ F s , j)
2]

1/2
       (VIII.4)

where S is the scale, R the roughness parameter,  fs the fraction of the crystal covered by a surface layer, αj  is 
the occupancy of domain j, Fb,j and Fs,j  are respectively the structure factors of the jth domain of the bulk and 
of the jth  domain of the surface unit cell. 
According to Eq. (VIII.3) and (VIII.4), there is a total of 6 parameters can be fitted in order to improve the  
agreement with the experimental  data:  the scale,  the roughness,  the surface fraction,  the occupancy,  the 
interplanar spacing and the Debye-Waller factor. Fig. VIII.8. shows a comparison between the experimental 
data and the DFT calculations before and after fitting. The parameters used for the fit are listed in Tab.  
VIII.3. A readily reasonable agreement can be found between DFT calculations and experimental data by 
fitting only the scale.

For the 1 0 L CTR, the fit is done on the first data set  (CuTa1)  since it has presumably the lowest level of  
surface contamination. As shown in Fig. VIII.8, fitting only one experimental parameter, the surface fraction 
allows a much better agreement with the experimental data. 
To further improve the fit the inter planar spacing and the Debye Waller factor of the surface atoms are 
relaxed. The displacement obtained expressed in reduced coordinates remain very small, demonstrating that  
the inter planar spacing is accurately predicted by DFT calculations. The Debye-Waller factors obtained from 
the fit are significantly larger than the bulk value especially for the second Cu layer,  however, they are in the 
right order of magnitude.
The fit of the 1 1 L CTR is done on the fourth data set (CuTa4). One can notice that the surface fraction is  
significantly higher than the one found for CuTa1.  This can probably be explained by the differences in the  
surface preparation detailed in subsection VIII.1.1. 
Similarly to the 10L CTR, a good agreement with the experimental data is obtained by applying rather large 
Debye-Waller factors (even larger than for the 10L CTR), while the calculated displacements are very small 
and in good agreement with the DFT calculations.
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Fig. VIII.8: 1 0 L(a) and 1 1 L(b) calculated structure factors, before and after fitting
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1 0 L 1 1 L

Scale 0.4713 0.1561

Roughness 0.014 0.0173

Surface fraction 0.9396 0.9805

Spacing Ta-2 Ta-3 -0.0048

Spacing Ta-1 Ta-2 -0.0041

Spacing Ta0Ta-1 -0.0005 0.0041

Spacing Cu1 Ta0 0.0108 0.0056

Spacing Cu2 Cu1 -0.0207 0.0094

Debye-Waller Ta-1 0.9886

Debye-Waller Ta0 1.1877 4.1520

Debye-Waller Cu1 2.4648 4.3292

Debye-Waller Cu2 8.0034 8.0562

Tab. VIII.3 Parameters used for the fitting of the structure factors.

VIII.3. Atomistic simulations with an angle-dependent potential for the Cu-Ta system

The DFT calculations provide a very good agreement with the experimental data. Both calculations 
of the excess interface energy and of the structure factor confirm that the most stable interface consists of 2  
PM layers of Cu on the Ta (1 0 0) surface. However, the high computational cost of DFT simulations limits  
the size of the simulations. It is already difficult to evaluate the stability of f.c.c. layers of Cu on top of the 
b.c.c. Ta surface, given the number of atoms involved in the simulation. For the same reason, the prediction  
of the growth mode above the first PM layers can not be achieved with DFT calculations. The study of the 
dewetting of the Cu thin film on the Ta surface that will be presented in the next section can only be achieved 
through large-scale atomic simulations. These simulations relies on the use of interatomic potentials. 
Large-scale atomic simulations can provide new insights in the understanding of the structure of bimetallic  
interfaces. However, the lack of reliable cross interatomic potentials for binary systems prevented their use in  
a large range of systems. Most of them are based on the embedded-atom method (EAM, Daw & Baskes  
1984). If reliable EAM potentials have been developed for f.c.c. metals such as Cu (Mishin et al. 2001), they 
are less adapted for b.c.c metals due to the angular dependency of the interatomic forces. An EAM potential  
for the Cu-Ta system has been developed (Johnson 1990) and applied to simulations of Cu-Ta interfaces 
(Klaver and Thijsse 2003, Lazić  et al.  2010), but this model lacks an accurate description of  the atomic 
bonding as it does not take into account their angular dependence. 
This lack of reliable cross potentials for the Cu-Ta system has been eventually overcome in 2008, by the 
development of an angle-dependent potential (ADP) (Hashibon, Lozovoi  et al.  2008).  This potential was 
modeled by crossing two existing potentials for pure Cu (Mishin  et al.  2001) and Ta (Mishin & Lozovoi 
2006). It was tested against first-principle energies (Hashibon, Elsässer et al. 2008) and applied to molecular 
dynamics simulations of wetting and dewetting of Cu and Ta. It was found that a Cu thin film placed on top 
of a  Ta(1 1 0) surface dewets from it, forming a Cu droplet on top of a stable Cu monolayer, while a drop of 
liquid Cu placed on a clean Ta(1 1 0) surface spreads over it as a stable monolayer. 
These results are in good agreement with experiments (Kuhn  et al.   1993,  Chen  et al.   2000) and  first-
principle calculations (Hashibon, Elsässer et al. 2008). They validate the potential for describing the Cu-Ta 
interface on a Ta (1 1 0) surface. We have seen in the previous sections, that the wetting behaviour and  
structure of the Cu ML on top of a Ta (1 0 0) are very different from what has been observed on a Ta (1 1 0) 
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surface. In the following, the validity of the potential potential to describe the Cu-Ta(1 0 0) interface is  
discussed extensively.

VIII.3.1. Calculation of the excess interface energies

To evaluate the accuracy of the potential, the structures described in section I.2 have been modeled 
and relaxed using the ADP potential. The relaxation is performed at 0 K by energy minimization, using a  
quench dynamical algorithm (Rodney et al. 2005). The excess interface energies are calculated at the end of 
the relaxation using Eq. (VIII.1), and the structure factor are calculated from the atomic positions obtained in 
the relaxed configuration. Due to the very low computational cost for Molecular Statics (MS) on such small  
systems, the stability of a larger range of configurations has been evaluated. 1 to 6 Cu ML are put on top of 
the Ta (1 0 0) substrate. For a given number of ML, all the possible combinations of f.c.c and PM layers , 
with all the PM layers between the substrate and the f.c.c. layers, are tested. For instance for 2 ML, three 
cases are evaluated: 2 PM layers, 1 PM layer and 1 f.c.c. and 2 f.c.c. layers. 
For the f.c.c layers, the in-plane strain is minimized by creating a supercell of  22 x 22 Cu atoms on top of 
17 x17 b.c.c.  Ta. This corresponds to an in-plane  strain of -0.07% (-7.10-4) with  aCu  =3.615 Å and aTa 

=3.3058 Å (bulk values). This value is sufficiently low to consider that the system is almost strain free before  
relaxation. 
Table 2 presents some of the results obtained for up to 6 ML of Cu. Contrary to the results presented  for  
molecular  statics  (MS)  simulations,  the  atoms  are  relaxed  in  all  directions  of  space,  such  that  a 
reorganization  of   the  atomic  structure  is  possible.  To  allow  meaningful  comparisons  with  the  DFT 
calculations, the values of excess interface energies when only the relaxation of the z position is authorized 
are also given.

1 PM 1 f.c.c 2 PM 1 PM /
1 f.c.c

2 f.c.c 3 PM 1 PM /
2 f.c.c

5 PM 1 PM / 
4 f.c.c

3 PM /
2 f.c.c

6 PM 7 PM 1 PM / 
6 f.c.c

γ(J/m2) 0.89
0.89

1.08
2.25

0.92
0.93

1.27
2.08

1.64
3.02

1.65
1.66

1.78
2.53

1.90
2.12

2.05
2.55

2.08 1.95
2.33

2.00
2.57

2.10
2.55

Tab.  VIII.4 Comparison of the excess interface energies, calculated with the ADP potential for 1 to 6 Cu ML.  The 
values in black (in red) are calculated for a relaxation of x,y and z positions (of the z position only)  

The first comment that can be made from these values is the overall tendency of the excess interface energies  
to be very low, as compared to the values obtained from the first-principle calculations. 
For the sake of comparison, the free surface energies of the Ta (1 0 0)  and Ta (1 1 0) have been calculated.  
They are equal respectively to 2.24  J/m2  and 2.06  J/m2 which is much lower than the values obtained  for 
the first-principle calculations (3.18  J/m2  for Ta(1 0 0) and 2.98 J/m2 for Ta(1 1 0)) but quite close to the 
experimental value of  2.5 J/m2 (Tyson & Miller 1977). The surface energies of relaxed Cu (1 1 1) and (1 0 0) 
surfaces are calculated to be respectively 1.24  J/m2  and 1.34  J/m2,  values significantly lower than the 
experimental value of  1.8  J/m2  (Tyson & Miller 1977). 
Since the values of the free surface energies are clearly underestimated, it is not surprising to calculate very  
low values for  the excess interface energies. However, it should be noticed though that the values obtained 
for 1 and 2 PM layers are unexpectedly low as compared to the free surface energy of Ta (1 0 0). If we  
compare the ratio  between the excess interface energy for 1 PM layer and the free surface energy of Ta (1 0  
0),  a  value  of  only  0.41  is  obtained  for  the  ADP potential  as  compared  to  0.78  for  the  first-principle  
calculations. Above 3 PM layers, the agreement is much better with 0.74 for the ADP potential and 0.82 for 
the first-principle calculations. These  values for 1 and 2 PM are discussed in more details in subsection 
VIII.3.3.
Regarding the stability of the ML, the results also slightly differ as compared to the DFT calculations. While 
the latter clearly points to a larger stability of the 2 PM layers, the trend is less clear with the  ADP potential.  
The excess interface energies are indeed comparable between 2 PM and 1 PM, with the latter being slightly  
lower. It should be noted that a sharp increase of  γ occurs between 2 and 3 PM while it increases more 
steadily above 3 PM. It is thus clear that the maximum number of PM layers is strictly inferior to 3.
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It is also obvious from the calculations that for few Cu layers, the f.c.c. structure is far less stable than the  
b.c.c. structure. For one PM layer, the relatively low excess interface energy found for 1 f.c.c as compared to 
1 PM can be attributed to a transformation of the f.c.c. layer to a b.c.c. layer upon relaxation. The f.c.c. layer  
being more densely-packed than the PM layer, the atoms that can not fill the first PM layer decorate the 2nd 
plane (Fig. VIII.9.a). When the relaxation is constrained to the z direction, the transformation into b.c.c. is  
not possible, and the highly unstable f.c.c. layer forms ripples (Fig. VIII.9.b). Its excess interface energy is 
even larger than the free surface energy of  Ta (0 0 1), suggesting that this layer is unstable. 
For up to five layers, the f.c.c.  layers with a (0 0 1) orientation are not stable. Depending on the initial  
number  of  f.c.c  layers,  1  or  2  PM layers  generally  form at  Cu/Ta interface,  with highly  defective  and 
disordered planes on top of them (Fig. VIII.9.c).

Conversely, the PM structure is very stable for few Cu layers but unstable for a large number of layers. 
For up to 3 PM layers, the relaxation of the structure is only achieved through a decrease of the interplanar 
distance.  Indeed,  the  excess  interface  energies  have  exactly  the  same  values  for  a  relaxation  in  three  
dimensions and a relaxation along z only. Above 5 PM, the structure is not stable anymore, as illustrated by 
the divergence between the excess energies calculated for a relaxation along z and for a relaxation  in three 
dimensions (Tab. 4). The strain contribution which is extremely large for a PM layers increases linearly with  
the number of layers (½Eε0

2h), causing their instability above 5 layers. This instability is reflected in the 
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Fig.  VIII.9:  Atomic  structures  from  a  different  set  of  initial  Cu  thin  films  obtained  by  energy  

minimization at 0K with the ADP potential. The color coding corresponds to the energy of the atoms. 
The axis directions in blue indicate the orientation of  the Ta substrate while the ones in  orange 
indicate the orientation of the Cu atoms. (a) 1 f.c.c Cu layer on top of a (0 0 1) Ta surface relaxed by 
energy minimization in all three directions of space (b) side view of the same f.c.c layer relaxed only 
along the z ([0 0 1]) direction (c) 2 f.c.c Cu layers on top of a (0 0 1) Ta surface relaxed in all three  
directions of space (d) 7 P.M Cu layers on top of a (0 0 1) Ta surface relaxed by energy minimization 
in all three directions of space. The crystal structure in the region circled in red can be described as a  
fish bone structure (see text for more details)
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calculated excess interface energies. It exceeds the Ta (1 0 0) free surface energy for n layers  > 5 when the 
atomic reorganization of the layer is not allowed (relaxation only along z). This is in very good agreement 
with the DFT calculations for which the number of metastable PM layers is found to be exactly the same.
For a larger number of PM layers, a stable structure is achieved through the transformation of the PM planes 
into several grains with a pronounced (1 1 0) texture on top of two stables PM layers. 
At the grain boundaries,  the atomic structure resembles to the fish-bone structure (region circled in red) that  
was found by Klaver and Thijsse 2003 for a simulated growth of a Cu thin film on a (0 0 1) Ta surface. 
In  summary,  when the atoms are  relaxed in  all  directions,  for  up to  7 layers  and independently of  the  
proportion of f.c.c and PM layers, all the calculated excess interface energies are lower than the free surface  
energy of the (1 0 0) Ta surface. The stability of the thin film is achieved through a reorganization of the  
atomic structure. For a low number of Cu layers, the f.c.c. structure is not stable and the presence of a few 
f.c.c layers on top of the  2 PM layers that were measured experimentally is thus highly improbable. 
Similarly to the DFT calculations, the maximum number of stable  PM layers is found to be 5. Above this 
limit,  the  stability  of  the structure  is  achieved through the transformation of  the PM layers  into highly 
disordered f.c.c. layers with a (1 1 0) texture. The preferred orientation for the 3D islands is not clearly 
determined at this point, and will be the object of  the next chapter.

VII.3.2. Calculation of the structure factors

As  in  subsection  I.2.4  for  the  DFT calculations,  the  agreement  of  the  experimental  data  and the  ADP 
calculations can be evaluated through the calculation of the structure factors for the relaxed atomic positions.
Fig. VIII.10. presents a comparisons between the 1 1 L CTR measured from the clean Ta surface (CuTa4), 
and the simulated CTR for 1, 2 and 3 PM Cu layers (a) and for a varying number of relaxed Ta planes.

Conclusions

The agreement is not  as good as for the DFT calculations where a very good conformity was found for 2P M 
layers, even without fitting the data. Here the “best” agreement is also clearly found for 2 PM, but the peaks  
and inflections of  the curve are not well reproduced. If the minimum and maximum of the structure factors 
are in reasonably good correspondence  (respectively for L = 0.7 and L = 2 in both cases), the agreement is 
particularly bad in the 1 < L < 1.5 region. The bump observed at  L = 1.3 on the experimental data, which  
was attributed to the relaxation of the topmost planes of the Ta substrate, corresponds to a dip for the ADP 
calculations. Conversely, two bumps are observed for  L = 1.0 and L = 1.6 on the simulated data, which are  
absent on the experimental one.
Similarly to the DFT calculations, it is clear that the relaxation of the Ta planes plays an important role on the 
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Fig. VIII.10: Calculated structure factors with the ADP potential (a) 1 1 L  calculated structure factor for a varying number 
of PM Cu layers compared with experimental data  (b) Influence of the number of relaxed Ta planes on the calculated 1 1 L 
structure factor

(a) (b)
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calculated structure factor.
Surprisingly, the best agreement is found when the relaxation of the Ta planes is not taken into account. The 
agreement with the experimental data is in this case particularly good for the low exit angles. This suggest 
that the relaxation of the Ta planes is not accurately reproduced by the ADP potential. 
To confirm this hypothesis, the spacing between the surface layers is plotted in Fig.VIII.11 and compared 
with the positions obtained from the DFT calculations.

The discrepancy between the ADP and DFT calculations  is  significant.The two Cu surface planes  both  
undergo contraction, but the contraction of the topmost Cu plane is largely underestimated with the ADP 
potential (-21% contraction vs -36%), while the contraction of the 1st Cu layer is significantly overestimated  
(-17% vs -12 %). For the Ta planes, the agreement is even worse. For the topmost Ta plane (Ta 0), a similar 
level of contraction is found for the ADP and DFT simulations (respectively -4 and -3.8%). On the other  
hand, where the 2nd  and 3rd  were found to be respectively in contraction (-1.5%) and expansion (+2.3%) for 
the  DFT simulations,  a  completely  opposite  behaviour  is  found  for  the  ADP potential  with  respective 
expansion of +1.5% and contraction of -3.3%. The level of contraction or expansion for the two Cu surface 
planes, and for the five topmost Ta planes is summarized in Tab. VIII.5.

Ta-4 Ta-3 Ta-2 Ta-1 Ta0 Cu1 Cu2 

DFT -0.5% -0.3% +2.3% -1.5% -3.8% -11% -36%

ADP -0.3% +0.8% -1.5% +3.3% -4% -17% -21%

Tab. VIII.5 : Summary of the contraction and expansion of the surface planes for the DFT and ADP simulations 

In both cases, it is clear that the relaxation of the Ta substrate is essentially limited to the three closest planes 
to the interface.  This  is  in  good agreement  with Fig.  VIII.7  & VIII.10.b where almost  no difference is 
observed for the structure factors calculated for 3 relaxed Ta planes and 7 Ta planes. 
The origin of the extra bumps at L = 1.0 and L = 1.6 for the 1 1 L CTR (ADP simulations) is also clearly  
related to the relaxation of the Ta planes. It is thus clear that the ADP potential mostly fails to predict the  
precise atomic structure at the Cu-Ta interface, even though the best agreement is found for 2 PM layers like 
the DFT calculations.
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Fig. VIII. 11: Interplanar spacing versus plane index for the ADP and DFT 

calculations

Ta Cu
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VIII.3.3. Testing the potential
 

Both the unexpectedly low values calculated for the excess interface energies and the poor ability of  
the potential  to  predict  the precise  atomic structure at  the Cu-Ta interface question the accuracy of  the  
potential for the prediction of the Cu-Ta(1 0 0) interface. In the work by Hashivon, Lozovoi et al. (2008), the 
potential was extensively tested against first-principle calculations. The phase diagram of the Cu-Ta system 
practically  shows  zero  mutual  solubility  between  Cu  and  Ta  and  does  not  contain  any  intermetallic 
compound or other solid phases (Massalski 1986). To use this potential for the study of the Cu-Ta interface, 
it is thus a requisite that it does not produce any stable Cu-Ta compounds at any composition or temperature.  
The relative formation energy  ΔE of several  artificial  f.c.c.-based layered structures  containing stacking 
sequences of CuCuTa and CuTaTa (1 1 1) was calculated and compared to the equilibrium f.c.c. Cu (1 1 1) 
and b.c.c. Ta (1 1 0) around the energy minimum. In each case the relative formation energy was found to be 
positive, indicating that all the compounds were instable. The agreement between the ADP calculations and 
the first-principles calculations was reasonably good, indicating that the potential is suitable for atomistic  
simulations of this system.
Here we extend the calculations by Hashibon by calculating the relative formation energies for artificial  
layered structured representing possible atomic arrangements at the Ta (0 0 1) // Cu (0 0 1) interface.  The  
stability of several stacking sequence is evaluated for both the f.c.c. (0 0 1) and the b.c.c. (0 0 1) structures. 
To ensure the validity of our calculations, the formation energies of stacking sequences with a (1 1 1) f.c.c  
orientation are also calculated and compared to the results obtained by Hashibon. Finally, the stability of  the  
CuCuTaTa b.c.c (1 1 0) sequence which was not tested by Hashibon is also evaluated. 
Tab.  VIII.6  summarizes  the  equilibrium  formation  energies  of  these  compounds  obtained  by  ADP 
calculations :

Structure ΔE (eV)

CuCuTa / f.c.c (1 1 1) 0.171 (0.172)

CuCuCuTaTaTa / f.c.c (1 1 1) 0.356 (0.351)

CuTaTa / f.c.c (1 1 1) 0.304 (0.294)

CuCuTaTa / b.c.c (1 1 0) -0.020

CuCuCuTaTaTa / b.c.c (0 0 1) -0.030

CuCuCuTa / b.c.c (0 0 1) 0.153

CuCuTaTa / b.c.c (0 0 1) 0.033

CuCuCuTaTaTa / f.c.c (0 0 1) 0.252

Tab.  VIII.6: Equilibrium formation energies (in eV per atom, relative to f.c.c Cu and b.c.c Ta) of Cu-Ta compounds 
obtained with ADP potential. The value in brackets are the values calculated by Hashibon for the same structure

The formation energies calculated for the 1 1 1 f.c.c compounds are equivalent  to the values found by 
Hashibon.  That  was  expected  since  the  same  ADP potential  is  used  and  confirm  the  validity  of  our 
calculations. Way more problematic, it appears that the potential can form some stable Cu-Ta compounds. 
For the Ta (0 0 1) surface, very low but positive formation energies are found for the CuCuCuTa / b.c.c (0 0 
1) and CuCuTaTa/ b.c.c (0 0 1) structure. However the formation energy is found to be negative for the 
CuCuCuTaTaTa / b.c.c (0 0 1) compound which is obviously not expected for a system with zero-mutual 
solubility. A similar negative formation energy for the CuCuCuTaTaTa / b.c.c. (1 1 0) compound.  On the  
other hand all the compounds with a f.c.c structure (either (1 1 1) or (0 0 1)) have a formation energy which  
is largely positive and comparable to the DFT calculations (at least for the (1 1 1) orientation).
It is thus obvious that the stability of the b.c.c Cu atoms (i.e. the Cu PM layers) is largely overestimated for 
both the (0 0 1) and (1 1 0) orientation. 
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This explains the unexpectedly low excess interface energies that were found for 1 and 2 PM Cu layers, 
while the energy of the single f.c.c layer was in the expected range. The excess interface energy for a single  
PM Cu layer on top of a Ta (1 1 0) surface is found to be 0.43 J/m2  as compared to the 2.34 J/m2  obtained 
from the DFT calculations. Converted into ratio with respect to the Ta(1 1 0) free surface energies, respective  
values of  0.21 and  0.78 are found for the ADP and DFT calculations. It confirms that the problem is not  
restrained to the (0 0 1) orientation which is surprisingly not discussed by Hashibon in his paper.

We  conclude  that  excess  interface  energies  for  very  few  monolayers  calculated  with  the  ADP 
potential  are largely wrong and the ability of this potential to finely predict the Cu-Ta interface appears very 
questionable. That being said, the tendencies obtained with the potential are in good agreement with the DFT 
calculations. The same number of stable PM layers is predicted, and the presence of 2 PM layers on top of 
the (0 0 1) Ta surface appear to be very favourable energetically. However, contrary to the DFT calculations,  
it can not be clearly asserted that 2 PM layers are more stable than a single one.

VIII.3.4. Application to the solid state dewetting of a Cu thin film

While the ADP potential fails to predict the precise atomic structure at the Cu-Ta interface for a few 
atomic layers, it correctly predicts the instability of a single Cu atomic layer and of thicker thin films on the  
Ta(110) surface, in agreement with experimental observations (Kuhn et al. 1993, Chen et al. 2000) and DFT 
calculations (Hashibon, Elsässer et al. 2008). It is thus possible that the potential can accurately predict the 
wetting or dewetting behaviour of  Cu thin films on top of  a (1 0 0) Ta surface and even provide a precise  
description of the atomic structure at the interface between the Ta substrate and the 3D islands grown on top 
of the 2 PM layers.
In the two examples presented in this section we aim at simulating the solid state dewetting of the Cu thin  
film on a Ta(0 0 1) surface. This topic is the object of Chapter IX, and the structure of the islands and of the  
CuTa interface shall not be detailed. With this simulation, we seek to demonstrate that the potential predicts  
the correct number of the PM layers between the Cu islands. To this end we examine two different initial 
configurations, with a similar structure of the thin film but a different number of PM layers. Given that the  
simulation is done below the melting point of Cu, the diffusion of the Cu atoms is not sufficient to achieve 
the solid state dewetting from a continuous thin film in a reasonable amount of time. The starting point of the 
simulation  consists  of  a  truncated  Cu  thin  film  with  sharp  boundaries  along  the  [1  1  0]   and  [1  1 0] 
corresponding to the [1 0 0] and [0 1 0] directions of the Ta substrate (Fig. VIII.12.a & VIII.12.c). As seen on 
Fig. VIII.12.a, the first initial structure sits on the bare Ta substrate, while it is deposited on a single PM layer  
for the second one. The Cu thin film composed of 11 f.c.c layers and the orientation relationship with respect  
to the Ta substrate has been described in subsection VIII.2.2 : Cu (0 0 1)[1 1 0] || Ta (0 0 1)[1 1 0]. The in-
plane strain is minimized by adjusting the lateral width of the thin film. The minimum value of in-plane 
strain of -0.07% is obtained for 23 atoms of Cu on top of 18 atoms of Ta.  The first initial structure contains 
6348  atoms  while  the  second  one  contains   6973  atoms  owing  to  the  extra  PM  layer  structure  (Fig. 
VIII.12.c). The Ta substrate is composed of 10 planes of 25x25 = 625 atoms each corresponding to a total 
number of 6250 Ta atoms. As shown in Fig. VIII.12.a and 12.c, the substrate is significantly larger than the  
Cu thin film to leave  sufficient space for the Cu atoms to diffuse on the Ta surface. Periodic boudaries are  
applied along the in-plane x and y directions.
The evolution of the two configurations is studied at 1040 K, way below the melting temperature of the bulk  
Cu (1357 K), but quite close to the melting point in this simulation given the small number of Cu atoms in 
the the thin film (Yeshchenko et al. 2007, Attarian Shandiz et al. 2007)). This temperature was also chosen 
because it is consistent with the temperature at which the solid state dewetting is performed experimentally 
(1073K).
For the first  initial configuration, the thin film is  annealed during 23.5 ns at  1040K.  This annealing is 
followed by a quench to room temperature (RT, 300K), and an energy minimization at 300K to suppress the  
thermal noise. 
For the 2nd configuration, the annealing time is shorter and equal to 8.64 ns. It is also followed by a quench 
from the annealing temperature to the RT in 0.8 ns and a subsequent energy minimization.
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As stated previously, the microstructure of the dewetted island and particularly the structure of the Cu-Ta 
interface will be discussed in extensive details in Chapter IX. For this section we are mainly interested in the 
structure of the interface outside the island. We evidenced experimentally the presence of two 2PM  on top of  
the Ta (1 0 0) surface, and a number of PM layers consistent with the experiment would be encouraging and 
would increase our conviction that the potential can predict the good Cu-Ta interface, despite the limitations 
mentioned in subsections VIII.3.2 & VIII.3.3

As illustrated in Fig. VIII.12.b & VIII.12.d, the final shape of the island is remarkably reproducible (Chapter  
IX for more details) and two PM copper layers are covering the Ta substrate in the final  stage of both 
simulations. For the configuration with no PM layer in the initial state, the complete coverage of the first  
layer is almost completely achieved after 13 ns while the coverage of the second one is completed in about  
20 ns. It should be also noted that the coverage of the 2nd layer begins at early stages of the simulation, and  
long before the coverage of the first-layer is completed. No start of the initiate of the covering of a third layer  
can be evidenced at any stage of the simulation. For the second simulation, the substrate is entirely covered 
by a single PM layer in the initial state, and a second layer starts forming at early stages of the simulation 
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Fig. VIII.12 Simulation of the solid state dewetting of Cu islands on a (0 0 1) Ta surface for a varying  

number of PM layer in the initial configuration. (a) f.c.c. (0 0 1) Cu thin film on top of the (0 0 1) Ta 
substrate. (b) Dewetted island on top of 2 PM layers after 23 ns at 1040K. (c) f.c.c. Cu thin film on top  
of a single PM layer (d) Dewetted island on top of 2 PM layers after 8.64 ns at 1040K.
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and is almost achieved after 8.5 ns.
The reproducibility of this interface and its consistency with the experimental  data is very encouraging.  
Despite the lack of accuracy of the potential in the precise description of the Cu-Ta interface (bad prediction  
of the relaxation of the topmost Ta planes),  and the limitations highlighted in section VIII.3.3, the ADP 
potential manages to accurately reproduce the number of PM layers outside the islands, independently of 
their initial number. This and the fact that is clearly the best potential to describe the Cu-Ta interface justify  
its use in Chapter IX for the prediction of the Cu-Ta interface in the dewetted islands. 

 Conclusions

We have presented a detailed study of the Cu(0 0 1)/Ta( 0 0 1) interface by surface X-ray diffraction  
and DFT and MD calculations. For the experimental part, the solid-state dewetting of a copper thin film on a 
carefully prepared Ta surface was performed in situ during two successive experimental runs. Several crystal 
truncation rods were measured after the dewetting of the thin-film to determine the precise structure of the 
Cu-Ta interface. It was evidenced that the CTR measurements are strongly influenced by the level of surface 
contamination. A careful preparation procedure allowed to obtain an almost contamination free Ta surface  
after dewetting, but it was clearly demonstrated that most of the contamination occurred during the CTR  
measurements. Since several samples were measured, the CTR were measured for different level of surface 
contaminations and a very good reproducibility was found for a similar level of surface contamination.
The DFT calculations allowed  to gain a new insight in the experimental results. From the calculation of the  
excess interface energies, up to 5 ML of PM Cu were found to be metastable on top of the Ta (1 0 0) surface. 
The most stable interface was found to be 2 PM layers. The agreement with the experimental data was  
evaluated through the calculations  of  the structure  factors  from the relaxed atomic positions,  and for  a  
varying number of PM layers and of relaxed Ta planes. The best agreement was found to be by far for 2 PM  
layers, in good agreement with the calculations of the excess interface energies. It was also evidenced that  
the relaxation of the interfacial Ta planes plays a large role in the calculated structure factor and that a precise 
description of the interface is only achieved if the first three Ta planes are relaxed. The agreement between  
the  experimental  data  and the  DFT calculations  was  found to  be  very  good without  any  fitting  of  the 
experimental data, but a fitting of the experimental data was performed to reinforce this agreement.
The study of the dewetting of the Cu thin film on the Ta surface that will be presented in Chapter IX can only  
be  achieved through  large-scale  atomic  simulations.  These  simulations  relies  on  the  use  of  interatomic 
potentials. To ensure of the ability of the ADP potential to predict the interface between the substrate and the 
dewetted islands, it was tested against the DFT calculations and the experimental data.
The calculation of the excess interface energies revealed some discrepancies with the DFT calculations. They 
were found to be unexpectedly low, especially for a low number of PM layers. Additionally, the superior  
stability of the 2 PM layers as compared to a single PM layer was not clearly established. On the other hand,  
the potential predicted the metastability of up to 5 PM layers as in the DFT calculations. The large difference 
of excess interface energies between n=2 and n=3 PM layers also demonstrates that the potential predict a  
number of PM layers strictly inferior to 3. 
The precise description of the precise Cu-Ta interface (spacing between the layers) was found to be much 
less satisfying than with the DFT calculations. In particular, the relaxation of the Ta substrate was quite badly 
reproduced. 
To understand these discrepancies, the potential was tested by calculating the equilibrium formation energy 
of several compounds consisting of alternating layers of Cu and Ta with both f.c.c. and b.c.c. structure. The  
equilibrium formation energies was found to be unexpectedly low for all the b.c.c compounds, and even  
negative for some of them. This is  a clear evidence that  the stability of the cu b.c.c.  layers are clearly  
overestimated with the potential, and it explains why such low excess interface energies were found for a 
low number of PM layers. 
In the last section  the potential was applied in MD simulations of the solid state dewetting of a Cu thin film 
on  a  Ta  (1  0  0)  surface  for  various  initial  configurations.  At  the  end  of  the  simulated  dewetting  an 
encouragingly reproducible number of 2 PM layers was found independently of the initial configuration.  
This result is consistent with both the DFT calculations and the experimental data, and demonstrate  that the  
potential can predict the good interface for the thin film outside the islands. The shape of the island is also 
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very reproducible and very consistent with the experimental observations and will be discussed in Chapter  
IX. Despite the evident limitations pointed out in sections VIII.3.2 andVIII.3.3 this potential will thus be 
used to predict the interface between the Ta (0 0 1)  and the dewetted islands.
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Chapter IX: Interface of copper islands dewetted in the solid state on the 

Tantalum (0 0 1) surface studied by coherent X-ray diffraction and molecular 

dynamics simulations

Introduction

In Chapter VIII we investigated the atomic structure of the Cu wetting layer on a (0 0 1) Ta surface. The 
analysis of the intensity along the crystal truncation rod allows to precisely determine the spacing between the  
surface layers relative to the bulk as well as the surface termination. DFT calculations are able to predict a Cu-Ta  
interface which is remarkably consistent with experimental results. Due to the large number of atoms that would 
be involved in the simulation, it  is  unfortunately not possible to use  ab initio calculations to determine the 
atomic-structure of the Cu-Ta interface in the islands. For such a large number of atoms, large-scale atomic 
simulations using inter-atomic potentials can provide new insights in the prediction of the atomic structure of the  
interface. The ability of the Cu-Ta ADP potential developed by Hashibon & Lozovoi et al. (2008) to predict an 
interface for the wetting PM layers has been evaluated in Chapter VIII.  Some issues were evidenced with the 
potential.  It  clearly  underestimates  the  excess  interface  energy,  and  predicts the  stability  of  some  Cu-Ta 
compounds (while the Cu-Ta system practically shows zero mutual solubility, Massalski 1986)! Additionally, a 
poor  agreement  is  found  between  the  structure  factors  calculated  from  the  relaxed  atomic  positions  with 
molecular dynamics (MD) and the XRD experimental data. In particular, the prediction of the relaxation of the 
interfacial Ta planes, which plays a large role in the calculated structure factors was found to be quite badly  
reproduced. 
On the other hand, the potential reproduces the correct number of stable PM layers in good agreement with the  
surface diffraction data and the DFT calculations. The MD simulations of solid state dewetting also reproducibly 
predicts the presence of two wetting pseudomorphic (PM) layers, independently of the initial conditions of the 
simulation (number of PM layers, size of the particle, wetting or dewetting process…). 
Despite its limitations, it is clear that the ADP potential provided by Hashibon is the best cross-potential to  
simulate the Cu-Ta interface. As discussed in section VIII.3, the other existing potentials (Johnson 1990) based 
on the embedded atom method (EAM, Daw & Baskes 1984) do not provide a sufficiently accurate description of 
the atomic bonding for the b.c.c. atoms (they do not take into account the angular dependence). In any case, the 
development and fitting of a new potential for the Cu-Ta system was out of scope of this work. 
As discussed in the introduction of Chapter VIII, the solid state dewetting of Cu thin films on a Ta (0 0 1) surface 
has been little studied in the literature. It is reported by Venugopal et al. (2009) who evidence the presence of a 
wetting layer at the substrate/particle interface by He desorption experiments. The thickness of this ultra-thin  
film is then estimated to be smaller than 5 Å corresponding to 1 or 2 Cu monolayers (ML). 
Surface diffraction experiments combined with DFT calculations provided a precise description of this wetting 
layer (Chapter VIII). On the other hand, the atomic structure of the islands has not been reported yet, and this is  
the focus of this chapter. 
In a first part, we detail the sample preparation, describe the geometry of the dewetted island, and discuss the  
influence of the large interfacial strain induced during the dewetting thermal treatment.
In a second part, the molecular dynamics simulations of the solid-state and liquid-state dewetting are presented.  
The  orientation  and  equilibrium  shape  of  the  particles  is  discussed  and  compared  to  the  shape  of  the 
experimental  islands.  The  influence  of  the  initial  conditions  for  the  simulation  (temperature,  boundary  
conditions, size of the particle) on the equilibrium shape of the particle is also evaluated. The interfaces obtained  
with the simulated experimental conditions and the evolution of their atomic structure for long annealing times 
are presented in sub-sections X.2.2 & X.2.3 respectively. After that, the interfaces obtained by MD simulations  
are compared with the experimental  interfaces imaged by high resolution transmission electron microscopy.  
Finally, the influence of the atomic structure of the interface on the distribution of the displacement field in the  
particle is discussed in the last section of this chapter. 
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IX.1. Sample preparation and description

The Cu particles are obtained by the solid-state dewetting procedure detailed in Chapter II (section 
II.3.1.1). It requires a careful preparation in UHV of the Ta surface (Musket et al. 1982), a topic that is addressed 
in sub-sections VIII.1.1 and VIII.1.2. The islands are dewetted in a UHV environment by heating a 5 nm Cu thin 
film at 800°C during five minutes. Fig. IX.1 shows typical dewetted Cu crystallites which display a variety of  
size and shapes. Their lateral dimensions varies between 200 nm and 1  μm and their height usually ranges 
between 100 and 400 nm (as measured with Atomic Force Microscopy). 
The shape of the particles consists of a largely truncated Wulff equilibrium shape (Winterbottom 1967) with a (0 
0 1) specular facet and 4 lateral {1 1 1} facets connected with rounded edges. They exhibit a unique crystalline 
orientation relationship (OR) with respect to the Tantalum substrate: Cu (0 0 1)[1 1 0] // Ta (0 0 1)[1  0 0] as 
confirmed by Electron Backscatter diffraction (Beutier et al. 2013a). 
This very well defined orientation and the flat (0 0 1) specular facet make them good candidates for in situ nano-
indentation  experiments  combined  with  coherent  X-ray  diffraction  (CXD)  to  monitor  the  evolution  of  the 
microstructure (3D strain and nucleation of defects (Beutier et al. 2013b)). 
The strain field in these islands has been studied by Beutier et al. (2013a) and it has been found to be particularly 
large (εzz ~ -0.65%) and heterogeneous, inducing large perturbations in CXD patterns. The large residual strain in 
the island is solely due to the interfacial strain. It is of the same order  as  the thermal strain induced by the 
difference Δα = αCu - αTa of thermal expansion coefficients between Ta and Cu from cooling. It is estimated that 
the cooling of the particle from the annealing temperature (AT) to room temperature (RT) leads to a large amount  
of tensile thermoelastic strain: ΔαΔT ~ 0.82%. A large part of the thermoelastic strain remains in the particle,  
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Fig. IX.1: Secondary Electron Microscopy of the solid state dewetted copper islands. The enlargement in the 
insight shows the crystallographic axes. (from Beutier et al 2013a)
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with a value of ΔαΔT ~ 0.4%. Indeed the precise temperature at which dewetting is finished to leave isolated  
crystallites  is  not  yet  determined on Ta(001);  however  one can  assume strain free  interface at  this  critical  
temperature (experimentally completed at 400°C in 30 min., so between 500-800°C (Verdier 2008) ). 
The presence of a wetting layer consisting of 2 PM layers has been established in chapter VIII and it is also  
reasonable to assume a network of dislocations to be present at the substrate-particle interface since a theoretical  
mismatch of as much as 31.4% needs to be accommodated along both in-plane directions. The question of the  
structure of such an interface is puzzling, even more intriguing if one realizes that the crystallite looks defect  
free: TEM cross sections evidence no dislocation in the bulk of crystallite and CXD patterns are qualitatively 
very close to the strain field obtained by only elastic calculations modelled by Finite Element Method (Beutier et  

al 2013a). Since interfacial dislocations do not produce any phase jump in the crystal, they can not be directly 
apparent on Coherent-X-ray Diffraction (CXD) pattern. On the other hand, since the technique is sensitive to the 
displacement field it is pertinent to search for a signature of the structure of this interface. The influence of the  
structure of the interface on the displacement fields and strain field distribution is addressed in further details in  
section IX.4 of this chapter.

IX.2. Molecular dynamics simulations of the Cu-Ta interface using the angle-dependent 

potential

IX.2.1. Simulation of the solid-state and liquid-state dewetting

The potential used for the MD simulations is the same as in chapter VIII, namely the ADP potential 
developed by  Hashibon,  Lozovoi  et  al.  (2008).  We have seen previously that  despite  its  strong limitations 
(addressed in sections VIII.3.2 and VIII.3.3 and in the introduction of this chapter), it is surprisingly able to  
predict the stability and the correct number of PM layers at the Cu-Ta interface. More importantly it predict s the 
correct  number of wetting layers (2 PM) outside the islands,  independently on the initial  conditions  of  the  
simulation. Due to the very limited physical time accessible in MD for the size of simulation we investigate (a 
few ns) it is not realistic to perform MD simulations of the complete solid-state dewetting from a continuous Cu 
thin film. To overcome this limitation, two configurations have been selected to simulate the dewetting of the Cu  
particles on top of a Ta (0 0 1) surface. 
The first approach is to perform the dewetting above the melting temperature of Cu while the second one is to  
carry out the dewetting at temperatures comparable to the experiment, below the Cu melting point. We will see  
in the following that for the latter are not properly speaking solid-state dewetting simulations.
Using the same potential, Hashibon, Lozovoi et al. (2008) demonstrated the instability of two f.c.c. (1 1 1) Cu 
layers on top of a b.c.c. (1 1 0) Ta substrate. Upon heating at 1400°C, the uniform thin film rapidly breaks up and  
agglomerates in droplets with a (1 1 1) f.c.c structure. Prior to this work, it was numerically tested if similar 
behaviour is observed for Cu thin-films on top of a Ta (0 0 1) surface. This initial configuration consists in of 5  
Cu f.c.c. (0 0 1) layers. Upon heating at 1500 K it is observed that the film breaks up and agglomerates in several  
small  droplets  with  a  f.c.c.  structure,  leaving  2  PM  layers  at  the  Cu-Ta  interface  (not  shown  here).  This 
simulation thus demonstrates that the instability of thick Cu films on top of Ta (0 0 1) surfaces is also well  
reproduced with the potential. It was noticed that the process was significantly longer than in the case of a Ta(1 1  
0) surface, and that the dewetted islands are very small (a few nanometres). 
Larger sizes of islands are simulated by changing the initial conditions of the simulations. In order to dewet a 
single and large island in the simulation cell, two types of initial configurations are considered. The first consists  
of  the thin film which sharp truncations  along both in-plane directions  and is  already described in  section 
VIII.3.4. As illustrated in Fig. IX.2.a it appears like a parallelepiped volume of Cu atoms. The second initial  
configuration is an island which shape is similar to the top truncated pyramidal one as in the experiment, except 
that the lateral {1 1 1} facets are connected with sharp boundaries instead of rounded edges. In the latter case, if 

239



 Chapter IX: Study of the interface of solid-state dewetted islands by CXD and MD simulations

240

Fig. IX.2 Comparison of the simulated solid state and liquid state dewetting for various initial configurations.  

The atoms are coloured according to their potential energy, using the scale at the left of the figure (a) f.c.c. (0 0  
1) thin film on top of a single PM Cu layer. (b) Evolution of the atomic configuration after annealing at 1200 K 
for 14 ns, and quench from AT to RT in 1 ns (c) f.c.c. (0 0 1) island on top of a single PM Cu layer. (d) Atomic  
configuration  after  annealing  at  1150  K  for  15  ns  and  quench  from  AT to  RT in  1  ns.  (e)  (f)  Atomic 
configuration after annealing at 1500 K for 5 ns and quench from AT to RT in 1 ns. The parallel lines on (e)  
denote the presence of an intrinsic stacking fault.
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the  temperature  of  the  simulation  is  below  the  Cu  melting  point,  the  simulation  can  be  described  as  a  
relaxationof the particle at a finite temperature. It allows to monitor evolution of both the shape of the island and 
of the Cu-Ta interface without the need to perform time consuming simulations.
Fig. IX.2.a shows one of the initial “thin film” configurations used for both solid-state and liquid state dewetting 
simulations. This configuration named thin-film (a) in the following consists of 24 f.c.c. (0 0 1) layers, and an  
interfacial  Cu PM layer on top of a Ta(0 0 1) surface.  Similarly to the configurations described in section  
VIII.3.4, the in-plane strained is minimized by adjusting the lateral width of the thin film. The minimum value of  
-0.07% lateral strain is obtained for 45 Cu atoms on top 35 Ta atoms with aCu = 3.615 Å and aTa = 3.3058 Å at 0 
K. The substrate is made of eight Ta (0 0 1) layers so that the system contains 51409 Cu atoms and 33708 Ta  
atoms. The thin film has the orientation relationship (OR) with the substrate defined previously i.e. Cu(0 0 1)[1 1 
0] // Ta(0 0 1)[1 0 0]. When it reaches its equilibrium shape, the particle measures 11.5 x 11.5 x4.5 nm3.
The solid-state dewetting simulation is performed by setting the thin film at T = 1200K, which is below the  
melting  temperature  of  bulk  Cu,  but  above  the  experimental  temperature  (~1070K).  Additionally  and  as  
discussed in section VIII.3.4, this temperature is expected to be close to the melting point of Cu for such a small  
nanoparticle (Yeshchenko  et  al.  2007,  Attarian Shandiz  et  al.  2007).  This  elevated temperature is  primarily 
selected to increase the mobility of the Cu atoms and thus reduce the computing time needed to reach the 
equilibrium shape for the particle. The particle is annealed for 14 ns, then quenched from AT to RT in 1 ns and a 
subsequent energy minimization is carried out. It should be noted that the energy minimization is done at 300 K.  
At this temperature, both lattice parameters increase, in agreement with the thermal expansion coefficients, to  
values of aCu  = 3.6297 Å and aTa  = 3.3156 Å. However, the lattice parameter of Ta is here constrained by the 
periodic boundary conditions, and is thus equal to the 0 K value. 
With 45 f.c.c.  atoms on top of 35 PM atoms,  the coincidence is not  as perfect  at  300 K, and the in-plane  
mismatch strain is only minimized to a value of -0.47%. Upon annealing, the atoms at the sharp edges diffuse to 
the surface, and the thin film rapidly lose its squared shape. The flat (1 1 0) facets gradually transforms into {1 1  
1} facets interconnected by rounded rough surfaces (Fig. IX.2.b). The fraction of the curved areas is significantly  
larger than in the experimental particle (Fig. IX.3.a). This is attributed to the higher annealing temperature, close 
to the melting temperature of copper. After 4 ns the shape of the particle does not change much, and on the initial  
Ta surface around the particle, a 2nd wetting layer is gradually formed by diffusion of atoms out of the crystallite . 
Both out-of plane and in-plane OR do not evolve upon further annealing.
To evidence the influence of the initial configuration on the equilibrium shape of the particle, another series of 
simulations are considered, with an island already close to its equilibrium shape as a starting point (Fig. IX.2.c).  
The simulations are performed above and below the melting point to compare the results from solid-state and 
liquid state dewetting. The initial configuration, named particle (a) in the following, is slightly smaller thin film  
(a) with 20 f.c.c. (0 0 1) planes on top of a single PM layer. The substrate consists only of 6 Ta planes so that the  
number  of  atoms  is  significantly  lower  than  in  thin  film  (a)  with  21295  Cu  atoms  and  10525  Ta.  This 
corresponds to dimensions of 10.2 x 10.2 x 3.8 nm3. The supercell consists of a different number of Cu on Ta 
atoms (40/31 vs 45/35) which leads to a larger value of compressive in-plane strain of -0.52% and -0.93% at 0 
and 300 K. 
In  order  to  obtain  an  equilibrium shape  in  a  better  agreement  with  the  experimental  shape,  the  annealing  
temperature is lowered to 1100 K for the dewetting in the solid phase.  It  is  equivalent  to the experimental  
annealing temperature but still close to the Cu melting point for such small particle size. Similarly to thin film  
(a), a 1 ns quench followed by an energy minimization is performed after the annealing.
The annealing time is similar to thin film (a) (15 ns) so that the coverage of the 2 nd  Cu ML (Fig. IX.2.d) is 
comparable (Fig. IX.2.b). Upon annealing, the sharp boundaries gradually transform into rough rounded surface. 
After 15 ns of annealing, the equilibrium shape of the particle shape is remarkably similar to the equilibrium 
shape observed experimentally, the large spatial extent of the spherical areas relative to the flat facets is again  
attributed to the equilibration temperature closer to the Cu melting temperature. 
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As illustrated in Fig. IX.3, independently of the initial configuration (thin film or particle), the number of PM 
layers at the Cu-Ta interface or of the size of the particle, the experimental equilibrium shape is remarkably well  
reproduced. The equilibrium shape is achieved by the minimization of the surface energy by an optimisation of 
the surface area of different crystallographic plane (Winterbottom et al. 1967). It is thus clear that the potential 
predict Cu surface energies in relative good agreement with the experimental observations.
One important question is to determine if the same crystal structure is obtained when the dewetting is performed  
above the melting temperature. There are only few experimental studies of the dewetting of a Cu thin film on a 
Ta(0 0 1) surface and none of them was performed above the Cu melting temperature. The requirement of a  
clean Ta surface state implies to perform the dewetting in an UHV environment with a base pressure of the order  
of 10-8 to 10-9, which is much lower than the vapor pressure of pure liquid Copper (of the order of 10 -6 at 1400 K, 
McCormack et al., 1965). This poses experimental difficulties, which can be eventually overcome by performing 
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Fig. IX.3 Comparisons of the shape of experimental and simulated particles obtained by solid-state dewetting. The atoms 
are coloured according to their potential energy, using the scale at the left of the figure (a) SEM picture of a 750x750x350 
nm3 solid-state dewetted copper island. (b)-(c)-(d) Simulated copper islands obtained from various initial configurations (b) 
Annealing of a f.c.c. (0 0 1) thin film (thin film (b)) on top of a single PM layer at 1040 K and for 8.64 ns. (c) Annealing of 
particle (a) at 1150K for 15 ns. (d) Annealing of thin film (a) at 1200K for 14 ns. 
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the dewetting under a small pressure of nitrogen or Argon gas. In any case, the liquid state dewetting of a Cu  
islands has not been reported experimentally and the crystal structure of the islands is unknown.  

The simulation of the liquid state dewetting is achieved by heating the thin film at 1500 K (way above the Cu 
melting point) for 5 ns. Similarly to previous simulations, the annealing is followed by a quench from AT to RT  
in 1 ns followed by a subsequent energy minimization. As illustrated in Fig. X.2.e & X.2.f, the crystal structure  
obtained for the dewetted particle completely differs from the previous simulations, performed below the Cu 
melting point. Fig. IX.2.e reveals the complexity of the microstructure in the-island. A f.c.c. structure is still  
obtained but with a different (1 0 1) out-of-plane orientation. The particle is highly defective and contains 7 
intrinsic stacking fault (one of them is indicated by parallel red lines), and a grain boundary as a result of the  
solidification process during the numerical quench process
The main grain occupies 95% of the volume of the particle, the [1 0 1] direction is slightly misoriented with the 
[1 0 0] axis of the Ta substrate. The OR relationship can thus be defined as Cu (1 0 1)[1 0 1] // Ta (0 0 1)[1 0 0]. 
The surface of the crystallite is also completely different. First-of all, the particle has a (1 0 1) out of plane  
orientation  and  it  is  well  known that  the  low-densely  packed  (1  0  1)  free  surface  is  highly  unfavourable  
energetically as compared to the (0 0 1) and (1 1 1) free surface (Vitos et al. 1998). The potential reproduce quite 
well this trend since the potential energy of a (1 0 1) surface atom is found to be significantly higher (-2.87  
eV/atom) than the one obtained for a (1 0 0) surface atom (-3.02 eV/atom) or a (1 1 1) surface atom (-3.11  
eV/Atom). As a consequence, the particle does not exhibit a specular (1 0 1) facet that would be too costly  
energetically. Some changes are also visible in the orientation of the lateral facets. They do not consist any more 
in four low-energy {1 1 1} facets but in a set of two {1 1 1} and two {1 0 0} facets. Overall the crystal surface is  
very rough, with a lot of terraces and the facets are not well defined as in the case of the solid state dewetted  
particle. It is clear that the equilibrium particle shape has not been achieved. Long equilibration time below the  
melting point would probably allow the particle to get closer to its equilibrium shape. 
The  fact  that  a  different  orientation  from  the  liquid  state  dewetting  is  observed  poses  several  questions.  
Considering the issues with the potential highlighted section VIII.3.2 and VIII.3.2, the fact that it leads to two 
different  orientations  depending  on  the  temperature  of  the  simulation  is  worrisome.  It  is  clear  and  well  
reproducible that the experimental solid state dewetting promotes a (0 0 1) out-of plane orientation, and there is  
so far no experimental data for the liquid state dewetting to validate or contradict the simulation. It  is thus 
difficult  from only these simulations  to  determine whether  if  the  variation of  orientation is  a real  physical  
phenomenon or just an artefact / quench effect. 
Our solid-state dewetting simulations are in agreement with the experimental results but the OR found at the end 
of the simulation is already present in the initial configuration. It is thus possible that the (1 0 1) orientation  
corresponds to an absolute minimum of energy for this potential. Below the Cu melting point, the atoms do not 
have enough mobility to reach this orientation and the (0 0 1) orientation only corresponds to a local minimum.  
In such case, the potential would clearly contradicts the experimental results. 
The excess interface energy used in Chapter VIII is a relevant criterion to evaluate the stability of an interface. 
This parameter has been calculated for several Cu-Ta interfaces with the two orientations and a varying number  
of  PM layers.  Detailed  calculations  are  reported  in  Appendix.  I.  In  summary it  is  shown that  the  (0  0  1) 
orientation is the most stable starting from n = 13 Cu planes and above, in good agreement with the experimental 
observations. For this orientation, two interfaces with a different number of PM layer are found to be equivalent 
energetically. In both cases the large lattice mismatch is accommodated by only two transitions plane : 1 b.c.c. 
and 1 f.c.c. that differ in position depending on the initial configuration: if the latter consists of 1 PM layer, these  
transitions layers correspond to the 1st and 2nd Cu planes starting from the interface. This interface is called the 1 
PM configuration in the following. For 2 PM layers in the initial configuration, these layers are observed in the  
2nd and 3rd Cu planes starting from the interface. This interface is named the 2 PM configuration in the following. 
A detailed study of  these transition planes  (Appendix A1.2)  reveal  that  they consist  of  of  elementary cells  
separated by a network of orthogonal dislocations (Fig. IX.4.). This network of orthogonal dislocation allows an 
almost complete relaxation of the initial mismatch strain. The position of the transition planes determine the 
position  of  the  core  of  the  interfacial  dislocations.  For  the  1  PM  and  2  PM  configurations,  it  is  located 
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respectively in the first and second Cu planes. In both case, The dislocations are regularly spaced (every 4 or 5 
planes), hence the average spacing between two dislocations for both configurations is reproducible, independent 
on the size of the particle and equal to 1 dislocation every 4.5 Cu plane. 

IX.2.2. Interfaces obtained with simulated experimental conditions

The interfaces described briefly in the previous sub-section and in extensive details in Appendix A1 are 
the most stable energetically as determined from the excess interface energy criterion. They are obtained by 
energy minimization at 0K and thus rare not necessarily representative of the experimental Cu-Ta interface. The 
study of the atomic structure of the interface of the crystallites presented in section IX.1 should provide a clearer  
picture of the structure of the interfaces that can be obtained experimentally.
The particle shown in Fig. IX.4 is the particle (c) described in Appendix A1.1. The particle consists of 2 PM and  
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Fig. IX.4: Evolution of the structure of the interface of particle (c) after 1 ns of annealing at 1000K. The atoms are coloured 

according to their potential energy. The scale not indicated here is the same as in previous figures. (a) Atomic structure of the 
2nd Cu layer with 2 sets of periodic cells: 5Cu/4Ta and 4Cu/3Ta along both in-plane directions. (c) Evolution of the particle 
shape (particle (c) after one second of annealing at 1000 K followed by a 1 ns from AT to RT and a subsequent energy 
minimization. (c) Evolution of the structure of the 2nd Cu layer after annealing. (d) Evolution of the network of interfacial 
dislocation. Two variants of interfacial dislocations can be found in the structure
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37 f.c.c. layers in the initial configuration. Similarly to the configurations presented in section X.2.1, the Cu/Ta  
ratio is adjusted so that the in-plane strain is minimize (67/52 atoms corresponding to ε 0 = -0.07%). The particle 
sits on 12 Ta planes which gives a 99553 Cu atoms and 38998 Ta atoms in total. This corresponds to a size of 
17.1x17.1x7 nm3.
The aim of the simulation is to capture the effect of short annealing time on the evolution of both particle shape 
and atomic structure of the interface. Particle (c) is thus annealed at 1050K for 1 ns and then quenched to room 
temperature in 1 ns. As usual this quench is followed by an energy minimization (at 300 K) . It should be noted 
that the starting point of the simulation is not the unrelaxed particle, i.e. the particle before the nucleation of the 
strain relieving dislocations, but the relaxed particle with the array of dislocations described in the previous sub-
section (again, see Appendix A1.1.  and A1.2 for more details).  As seen from Fig. IX.4.a,  this  array of two 
families of orthogonal dislocations is clearly visible in the transition b.c.c. plane (2nd  Cu layer). Even for short 
annealing times, the particle shape rapidly evolve (Fig. IX.4.b). The transformation of the sharp edges between 
{1 1 1} lateral facets, into rough rounded interfaces is already initiated and starts from the bottom of the particle. 
The evolution of the atomic structure of the Cu-Ta interface is even more rapid and interesting. As illustrated on  
Fig. IX.4.b some degree of ordering can still be observed in the 2nd Cu plane, and the 4x4, 3x4 (…) elementary 
cells are still visible in some regions. However, the atomic structure can not be described as a b.c.c. structure  
since the number of atoms have significantly increased so that the arrangement of atoms in some regions is  
closer to a f.c.c. structure. Similarly, for the above Cu plane which was usually described as the transition f.c.c.  
plane (not shown here), the presence of the 5x4 elementary cells can not be as distinctly established as in the  
ideal case of the energy minimization at 0 K. The side view of the structure provides a clearer picture of the  
modification of the interface. The array of orthogonal dislocations is still present in the structure, but unlike the  
energy minimization at 0 K, the dislocations cores are now located either in the 1 st  Cu plane or in the 2nd  Cu 
plane.  This  is  in  good  agreement  with  our  observations  on  the  2 nd  Cu  plane  which  was  described  as  an 
intermediate structure between f.c.c. and b.c.c. The number of dislocations and the average interval between  
them is kept, with one dislocation every 4.5 Cu plane (15 dislocations for 67 Cu planes).
In Fig. IX.4.c, the regions close to the crystal edges are more densely-packed, and have thus a dominant f.c.c 
structure where a majority of 1st  plane dislocations are nucleated. Conversely, in the less densely-packed b.c.c 
regions (around the crystal centre), a majority of 2nd plane dislocations is observed. It should be emphasized that 
these calculations are in very good agreement with the results from the excess interface energies calculation  
which are not able to determine whether the 1 PM or the 2 PM interface is  the most stable. It  is thus not 
surprising to obtain an interface which combines the characteristics of both configurations.

IX.2.3. Evolution of the interface for longer annealing times

Similarly to the equilibrium shape, the atomic structure of the interface is prone to evolve upon longer 
annealing times. The evolution of the interface, is illustrated through two examples, a small particle obtained 
from thin-film (b) that was used to evaluate the potential in section VIII.3.4 and a larger one obtained from thin-
film (a) (section IX.2.1). Thin film (b) sits on the bare Tantalum in the initial configuration and is annealed for 
23.5 ns at 1040 K (see section VIII.3.4). The thermal treatment for thin film (a) is described in details in section 
IX.2.1. As a reminder the latter sits on a single PM plane in the initial configuration. Fig. IX.5 shows the atomic 
structure of the 2nd Cu plane for the small and the large particle after respective annealing times of 23 and 15 ns.  
As illustrated on Fig. IX.5.a, the structure of the 2nd plane for the small particle exhibit a large degree of ordering. 
The crystal structure is again intermediate between b.c.c and f.c.c but the latter clearly dominates the trend, and 
several 5 f.c.c/4 P.M and 4 f.c.c/3 P.M (see Appendix A1) can be identified, mostly at the particle centre. Fig.  
IX.5.b confirm that the 1st plane interfacial dislocations are predominant in the structure.
For the larger particle, the 2nd Cu plane is clearly intermediate between f.c.c. and b.c.c. (Fig. IX.5.c), and the 2nd 

plane variant seems to be slightly predominant as illustrated on (Fig. IX.5.d). 
At the interface inter-diffusion of atoms occurs, and some interstitial Ta atoms are observed in the first-Cu layer 
(circled in red), while several Cu atoms diffuse in the substrate. The Cu and Ta having almost zero mutual 
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solubility  (Massalski  1986),  such  behaviour  is  not  expected  and is  probably  related  to  the  issues  with  the 
potential highlighted in subsections VIII.3.2 and VIII.3.3. 

In summary, all the atomic configurations presented in section IX.1 to X.3 that are annealed below the  
Cu melting point, leads to very reproducible Cu-Ta interface. An array of two families of orthogonal dislocations  
is always obtained, with a regular interval between them. Neither the number of PM layers (0, 1 or 2), nor the  
boundary conditions in the initial configuration have a significant effect on the final equilibrium shape of the  
particle or on the atomic structure of the interface. Similar results are indeed obtained for the thin-film and the 
particle as a starting point for the simulation. The interval between dislocations is also very reproducible and is  
always equal to 4 or 5 Cu planes (except for thin-film (a) where intervals of 3 Cu planes can be found). For all  
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Fig. IX.5: Size dependency of the Cu-Ta interface. The scale not indicated here is the same as in previous figures. (a) 
Atomic structure of the 2nd Cu layer of a small particle (obtained by annealing of thin film (b)). It is highly disordered but 
with a dominant f.c.c. (0 0 1) structure. (b) Side view of the Cu-Ta interface, the interfacial dislocations starting from the 
first Cu layer are predominant. (b) Atomic structure of the 2nd Cu layer of a larger particle (obtained by annealing of thin 
film (a)). (d) Side view of the Cu-Ta interface, the interfacial dislocations starting from the second Cu layer are 
predominant.
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particles, the density of dislocations is exactly the same with one dislocation every 4.5 Cu plane. 
Regarding the size of the particle, a possible size effect might be observed with the tendency of the 1 st  plane 
dislocations to be predominant in small particles while the 2nd  plane dislocations are more present in the larger 
ones. However we have not carried out a systematic size study to draw any conclusion at this stage.

IX.3. HR-TEM observation of the Cu-Ta interface

Below the Cu melting point, the Cu-Ta interface obtained with the Cu-Ta potential is very reproducible, 
but this does not mean that it is a structure consistent with the experimental interface. 
If it is possible to determine the detailed atomic structure of the Cu-Ta interface for the wetting layer outside the  
islands, by measuring the crystal  truncation rod (CTR) of a clean Ta (1 0 0) surface in a synchrotron.  The 
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Fig. IX.6: HR-TEM micrograph illustrating the atomic structure of the Cu-Ta interface (FIB cross section of typical Cu  

island)
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measurement of the integrated intensities along the Bragg rods enables to determine the height of the surface  
atom relative to the Bulk layer (Robinson 1986, Feidenhans'l 1989 and Robinson & Tweet 1992). 
The determination of the precise in-plane structure, which was not discussed in Chapter VIII is also possible. By 
using grazing incidence and exit angles to the surface, the scattering vector (momentum transfer) (see Chapter  
VIII) can be kept nearly parallel to the surface, which allows the determination of the in-plane structure that is  
the 3D surface structure projected onto the surface plane. However, here the situation is complicated by the  
presence of bulk f.c.c atoms on top of the interfacial planes, which make difficult the use of surface diffraction  
techniques, since the signal from the first planes will be shadowed by the bulk atoms.
Coherent X-ray diffraction (CXD), gives access to the 3D displacement field in isolated objects and is very  
sensitive to the presence of dislocations. However, the latter are only detected if they produce a phase shift  
between the neighbouring regions of the crystal separated by a dislocation. This is not the case for interfacial  
dislocations, which do not produce any phase shift in the Cu island. The technique is however sensitive to the  
inhomogeneous strain field at the vicinity of the dislocations and a modification of the atomic structure of the  
interface is expected to induce a modification in the distribution in the strain field, which can be investigated by 
CXD. This is the object of section IX.4.
For the study of interfaces with atomic resolution, high-resolution transmission electron microscopy (HR-TEM) 
is a good alternative to X-ray diffraction techniques. It allows the direct imaging of the sample with atomic  
resolution (Spence 1980). Fig. IX.6 shows the detailed atomic structure of the Cu-Ta interface, as seen from the 
[0 1 0] direction of the Ta substrate (corresponding to the [1 1 0] direction of the island). It is confirmed that the 
large mismatch strain is accommodated by misfit dislocations.
The interval between the dislocations is remarkably consistent with the predictions from the ADP simulations. 
They are indeed mostly distributed every 4 or 5 Cu planes, even if spacings of 6 planes which were not found in 
the simulations are also observed. The region delimited by the green contour corresponds to 45 Cu planes and 35  
Ta planes. This corresponds to the optimum ratio that was found for the minimization of the in-plane strain with  
the potential at 0 K. With the experimental lattice parameters of  aCu = 3.6149 Å and  aTa = 3.3013 Å this also 
corresponds to a very low value of in-plane mismatch strain of -0.2 %. The presence of 10 extra-Cu planes  
implies the presence of 10 edge dislocations in the green volume. The value of one dislocation every 4.5 Cu  
planes that was predicted by the potential is observed experimentally. Even more interesting, it appears that all  
the dislocations core are not located on the same Cu plane as predicted by the MD simulations. As illustrated on 
Fig. IX.6, the atomic resolution is not completely achieved at the Cu-Ta interface, and the atoms appear very 
blurry. The precise determination of the core of the dislocations is rather delicate. However, from the estimated  
position of the interface planes (black lines) it is possible to establish that there are at least two different starting  
planes. The variant in magenta which is defined as the second plane variant seems to be predominant, in good 
agreement with the prediction of the MD simulations for large particles.

In summary, despite the tendency of the potential to overestimate the stability of the PM layer, and 
despite  the  fact  that  he  predicts  a  lower  interface  energy for  the  (1  0  1)  orientation  (explaining  why  this  
orientation is  promoted for  the liquid state  dewetting simulations),  the  potential  is  able  to  predict  a  Cu-Ta  
interface and an equilibrium shape of the particle that seems to be consistent with the experiment. The atomic  
structure  of  the interface  and the  ECS predicted  from the solid-state  dewetting simulations  are  remarkably 
reproducible,  independently on the initial  conditions  for  the simulation (number  of  PM layers  or  boundary  
conditions for the particle). Unfortunately, experimental liquid state dewetting of Copper was not successful. 

IX.4. Influence of the atomic structure of the interface on the distribution of the displacement 

field

As  discussed  in  section  X.1  and  this  chapter,  the  residual  strain  field  in  the  island  is  large  and  
heterogeneous. In the paper by Beutier et al. (2013a), it is claimed that this strain field mainly originate from the 
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the interfacial strain estimated to be of the order of 0.4%, corresponding to ε zz  ~ -0.65%. Although quite large 
these values are two order of magnitude smaller than the nominal mismatch strain ε0  ~ 31.4% for the Cu / Ta 
system which indicate that it is almost completely relaxed by the structure of the interface. 
The strain in the relaxed particles have several origins: the thermoelastic strain that is generated during the  
cooling of the particle, the interfacial strain (including pseudomorphic layers and misfit dislocation to adapt the  
f.c.c./b.c.c.  crystals)  and  the  surface  strain  connected  to  the  relaxation  of  the  free-surfaces  to  reach  the 
equilibrium crystal shape. It is also established by Beutier et al. (2013a) that the residual strain is only half the 
ΔαΔT value that is calculated for a cooling down of the particle from the dewetting temperature to the RT. The  
presence of the 2 wetting PM layers certainly plays a role in the relaxation of both the initial mismatch strain,  
and of the thermal mismatch strain (thermoelastic strain). To explore the properties of such an unusual interface,  
we carried out various MD simulations.
In the following we consider particles of two sizes. They are significantly larger than the particles presented in  
the previous section but still at least one order of magnitude smaller than the typical experimental particle. Here  
the  small  particle  measures  40x40x15 nm3  and the  large  74x74x27.5  nm3.  Unlike  the  FEM simulations  by 
Beutier  et  al.  (2013a),  this  difference  of  scale  between simulation  and  experiment  implies  that  the  results 
presented in this section do not allow to estimate a quantitative value of the residual strain in the particle. 
The aim of this section is to understand how the strain distribution in the particle can be affected by the network  
of interfacial dislocation. We also seek at demonstrating if the two stable interfaces lead to a different strain  
distribution and thus induce a different signature in CXD patterns. 
For both sizes the two most stable interfaces, corresponding to 1 PM and 2PM Cu layers are modelled. The total 
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Fig. IX.7: (a) Distribution of the uz  displacement field in a 40x40x15 Cu particle relaxed by energy minimization. (b)-
(c)-(d) Slices of the 0 0 2 Cu reflection computed for the uz displacement field (b) (0 0 1) slice, (c) (1 1 0) slice and (d) 0 
0 1 slice
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interfacial strain is modelled by adjusting the lateral dimensions of the particle in order to induce a certain  
amount of mismatch strain. For the small particle, a mismatch strain of 1.14% is achieved by a ratio of 156 Cu  
f.c.c atoms on top of the 122 PM atoms. The substrate contains 16 Ta planes and the simulation cell contains a  
large number of atoms: 1196863 Cu atoms and 262144 Ta for the 1 PM configuration and 1208063 Cu atoms for  
the 2 PM configuration, with the same number of Ta atoms. 
For the large particle, a similar mismatch strain is obtained by a ratio of 281 f.c.c atoms on top of 219 PM atoms. 
The substrate is thicker with 50 Ta planes, for a total of 6774136 Cu atoms and 3125000 Ta atoms for the 1 PM 
configuration, and 6819736 Cu atoms with the same number of Ta atoms for the 2 PM. The value selected for 
the simulated thermoelastic strain is significantly larger than the experimental value of 0.4% (Beutier  et al.  

2013a), in order to make sure that the interfacial strain has a significant contribution to the residual strain in the 
particle, and produce a distinct signature on the calculated CXD patterns.
The relaxed configuration is obtained by energy minimization at 0 K. The relaxation of the atomic positions is  
allowed in the three directions of the space. The bottom most last Ta planes is not fixed, but its relaxation is  
allowed only along the z direction. Fig. IX.7.a shows the distribution of the uz  displacement field in the small 
particle and the underlying substrate at the end of the relaxation. The particle has 1 PM layer in the initial  
configuration and the displacements are calculated relatively to the atomic positions in the initial configuration.  
Though they are not clearly visible on Fig. IX.7.a, the network of orthogonal dislocations which was described  
previously is present at the substrate particle interface. Since the simulation is performed at 0 K, the interface  
correspond to the ideal 1 PM case with all dislocations separated by 4 or 5 Cu planes and starting from the 1 st Cu 
plane (transition b.c.c plane). Large displacements can be identified at the vicinity of the dislocations, but they 
have very limited spatial extent. 
The largest negative displacements are obtained close to the centre of the particle, while the largest positive  
displacement are found on the corners of the particle, at the sharp intersections between the lateral {1 1 1} facets. 
Overall, the presence of interfacial dislocation does not seem to have much effect on the distribution on the  
displacement field. It has been shown by Beutier  et al.  (2013a) that large and heterogeneous interfacial strain 
have a very strong signature on CXD patterns. In a 800 nm particle a ΔαΔT ~ 0.4 % (corresponding to ε zz  ~ 
-0.65%) residual strain leads to a CXD pattern which is largely strain dominated so that the features related to  
the shape of the particle (fringes induced by the finite shape of the crystal ) tend to disappear. The effect of the  
strain on CXD patterns is discussed in extensive details in section VI. 3. The 3D CXD patterns are calculated in  
the kinematic approximation. More details on the calculation procedure are found in section Chapter III, and 
elsewhere (Favre-Nicolin 2011). As expected from a particle which exhibits a large amount of heterogeneous  
residual strain, the CXD pattern is largely strain dominated. A large broadening of the Bragg peak is observed  
and shape of the Bragg peak can be more or less be described as a square-based pyramid (Fig. IX.7.b). Some  
features related to the shape of the particle are still visible. Periodic fringes (with a spacing invert to the height of  
the particle) are observed along the specular (0 0 2) reflection (Fig. IX.7.c & IX.7.d). They are bended due to the  
heterogeneity of the strain. The fringes along the {1 1 1} direction are still visible above the Bragg peak (Fig. 
IX.7.c), below the Bragg peak they form diffuse streaks of intensity. 
Fig. IX.8 show a comparison between the Cu 0 0 2 Bragg reflection calculated from the MS simulations and the 
same reflection measured from a typical Cu islands and calculated from FEM simulations of an island with size 
comparable to the experimental particle. Details on the FEM simulations are given in (Beutier et al. 2013a). A 
qualitative good agreement is found between the molecular statics (MS) simulations the experimental data and 
the FEM simulation. The 3D Bragg peak exhibits the same pyramidal shape, and the bending of the (0 0 1) 
fringes is also observed (Fig. IX.8.c & IX.8.g). However, although a larger thermal mismatch strain was applied 
( 1.1% vs 0.4%) it is clear that the CXD pattern is less strain dominated. Some features of the shape are still 
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clearly apparent, and the broadening of the Bragg peak is much less pronounced. In both the experimental data  
and the FEM simulations, the diffracted intensity is spread over a large area, and it is difficult to define a region 
which corresponds to a maximum of intensity (Fig. IX.8.a & IX.8.b). For the MS simulations, the maximum of 
the  Bragg  peak  is  still  clearly  visible  and  consists  of  a  single  clean  spot  though  elongated  due  to  the  
inhomogeneous strain (Fig. IX.8.c). No evidence of the presence of dislocations (splitting of the Bragg peak,  
chapter III) can be observed on the CXD pattern. As already discussed, the interfacial dislocations does not  
produce any phase discontinuities, and the extent of the displacement field around the dislocations seems to be  
very limited. The weaker signature of the strain on the CXD pattern can be clearly attributed to the small size of 
the particle. 
Fig. IX.9 shows the distribution of the εzz strain in a (1 1 0) slice taken at the centre of the 40x40x15 nm3 particle 
with 2 PM layers in the initial configuration. 
It is clear that the non-uniform strain distribution introduced by the dislocations has a very limited spatial extent.  
It is thus not surprising that it does not produce any distinct signature on the CXD pattern. The analysis of the  
atomic strain reveals that the topmost Ta layer and the 1st PM Cu layer undergo a large compressive strain of the 
order of -11 to -17%, depending on the position of the atoms. The strain is partially relaxed in the 2nd PM plane 
by the nucleation of dislocations, with values of the order of 1 to 2%. 
The 1st f.c.c layer (3rd Cu plane) undergoes a large tensile strain (of the order of 14%), which is reduced close to  
the dislocation positions (to a value of 7%). It then rapidly decreases, starting from the 2nd f.c.c layer. 
The  εzz strain is relatively low and homogeneous in the rest of the island. It is slightly negative close to the  
interface while it increases with the height of the particle to become positive in a region below the (0 0 1)  
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Fig. IX.8: Comparison of the 0 0 2 Bragg reflection from a typical experimental island, from FEM simulations and from 

MS simulations.(a) – (b) – (c) (qx,qz) slices of the 0 0 2 Bragg reflection measured experimentally (a), calculated from 
the FEM simulations (b) calculated from the MS simulations (c). (d) – (e) – (g) Isosurface of the Cu (0 0 2) Bragg 
reflection, measured experimentally (d), calculated from the FEM simulations (e), calculated from the MS simulations 
(g). (f) (x,z) slice through a Cu island with size comparable to the experimental particle showing the displacement field 
uz for interfacial strain of 0.4% by FEM
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specular facet. The contribution of the surface strain induced by the relaxation of the free-surfaces to reach the  
equilibrium shape  is  also  visible  (see  Chapter  VII  for  more  details).  The  first-two surface  planes  undergo 
compressive strain. This is especially visible on the top (0 0 1) facet where respective contractions of 1.5% and 
0.5% of the first two surface layers are observed, while a positive tensile strain of about 0.7% is observed in the 
underlying region. 
It is well known that a contraction of the first few layers is observed during the relaxation of metallic surfaces  
(Howe 1997). In particles close to the ECS, (Huang et al. 2008) evidenced a coordination dependent contraction 
of the surface atoms. The largest out-of plane contraction occur for the edge and corner atoms (respectively 3  
and 4.5% contraction), with the lowest coordination number. For the same reason, a differential contraction of  
the {1 1 1} and {1 0 0} facets is observed, the latter being more pronounced. 

The  continuum  elasticity  (Landau  &  Lisfitz  1986)  theory  predicts  that  the  surface  distortions  die  off  
exponentially (to 1/e) in the bulk with a decay length of L/2π. Where L is the period of the wave on the surface 
which corresponds approximately to twice the width of the facets (Harder et al.  2007). The surface strain thus 
decays very rapidly in the structure. 

The last remaining question was to determine whether or not the structure of the dislocations at the interface has  
a strong influence on the strain distribution in the particle. Here the u0 0 2 displacement field is calculated for the 
two interfaces (1 or 2 PM in the initial configuration) and for two particle sizes exhibiting the same amount of 
thermal mismatch strain (1.1%). As illustrated in Fig. X.10.a & X.10.b, the distribution of the displacement field  
is very similar for the two interfaces. The core location of the interfacial dislocations does not play a significant 
role,  and the spatial  extent  of  the non-uniform strain field around the dislocations does  not  vary from one 
interface to the other. As a consequence, the 0 0 2 Bragg reflection is very similar for the two interfaces (Fig.  
X.10.e and Fig. X.10.f). For the 2 PM case, the Bragg peak is slightly more elongated (Fig. X.10.f). It appears 
thus impossible to differentiate the two interfaces from the CXD pattern alone. 
Similar conclusions can be drawn for the large (74x74x27.5) particle. Both the  u0 0  2 displacement fields and 
corresponding CXD patterns are very similar (Fig. X.10.c & X.10.d). Some variations can be observed in the [0 
0 1] fringes above the Bragg peak, but they remain very limited.
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Fig. IX.9: (x,z) slice through a 40x40x15 nm Cu island showing the strain field εzz for ΔαΔT = 1.13%
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Fig. IX.10 Comparison of the distribution of the uz displacement field for the 1 PM and 2 PM configurations  

(a) – (b) – (c) – (d) (x,z) slice through Cu islands with various sizes and number of PM layers in the initial  
configuration. showing the displacement field uz for ΔαΔT = 1.13% (a) 40x40x15 nm3 particle, 1 PM layer, 
(b)  40x40x15 nm3 particle,  2 PM layers (c) 73x73x27.5 nm3 particle,  1 PM layer,  (b) 73x73x27.5 nm3 

particle, 2 PM layers. (e) – (f) - (g) – (h) (qx,qz) slices of the 0 0 2 Bragg reflection computed for the same  
uz displacement field.
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Due to the larger size of the particle, the amplitude of the displacement are larger for the same amount of thermal  
mismatch strain. The CXD pattern differs from the small particle, and the broadening of the Bragg peak is more 
pronounced. This suggest that CXD patterns similar to the experiment and to the FEM calculations would be 
observed if it was be possible to relax particles of similar size with the ADP potential. With our computational  
power  (cluster  of  60  cores/384 Gb)  we are  able  to  relax  particles  containing  more  than  10 7  atoms,  which 
corresponds to a size of 140x140x53 nm. The length scale involved in the experiment should thus be accessible  
in a near future. It should be also noted that when the scattering vector is parallel to the surface (for instance the  
2 2 0 reflection), the difference between the two interfaces is much more obvious (not shown here), however this 
kind of geometry is not adapted to a CXD experiment.

Conclusion

Large scale atomistic simulations using a ADP Cu-Ta potential have proven to be an efficient tool to  
predict the atomic structure of the interface between the Ta b.c.c. (0 0 1) surface and a solid state dewetted island  
with a (0 0 1) f.c.c. orientation. Both the predicted atomic structure of the interface and the equilibrium shape of 
the particle are reproducible below the melting point  of  Cu,  independently on the initial  conditions for the  
simulation (number of PM layers, size of the particle, boundary conditions...) and are very consistent with the  
shape and interface obtained experimentally. 
A  different  orientation  was  predicted  for  the  liquid  state  dewetting  simulations;  unfortunately,  due  to  
unsuccessful experiments , it is not clearly established if this orientation would exist.
CXD is a powerful tool to investigate 3 D displacement field in isolated objects, however it is clear that the  
technique can not provide much insight on the atomic structure of the Cu-Ta interface, since the calculated CXD 
patterns from the two most stable interfaces appear very similar as their residual strain is nearly equivalent.

254



 Chapter IX: Study of the interface of solid-state dewetted islands by CXD and MD simulations

Bibliography 

Attarian Shandiza , M., Safaeia , A., Sanjabia, S., Barberb, Z.H. (2007) J. Phys. Chem. Sol. 68, 1396-1399.

Beutier, G., Verdier, M., Parry, G., Gilles, B., Labat, S., Richard, M. I., Cornelius, T., Lory, P. -F., Vu Hoang, S.,  
Livet, F., Thomas, O. & De Boissieu, M. (2012). Thin Solid Films 530, 120-124.

Beutier, G., Verdier, M., De Boissieu, M., Gilles, B., Livet,  F., Richard, M. I., Cornelius, T. W., Labat, S. & 
Thomas ., O. (2013). J. Phys .Conf. Series 425, 132003. 

Daw, M. S. & Baskes, M., I. (1984) Phys. Rev. B 29, 6443 (1984).

Favre-Nicolin, V., Richard, M. I. & Renevier, H. (2011). J. Appl. Cryst. 44, 635-640. 

Feidenhans'l, R. (1989) Surface Science Reports 10, 105-188

Freund, L. B. & Suresh, S. (2003) Thin Film Materials: Stress, Defect Formation and Surface Evolution, edited 
by Cambridge University Press, Cambridge, England

Giannakopoulos ,K. P., & Goodhew, P. J (1998) J. Crystal Growth 188, 26-31.

Hashibon, A., Lozovoi, A. Y., Mishin, Y., Elsässer, C. & Gumbsch, P. (2008) Phys. Rev. B 77, 0941131

Howe J. M. (1997),. Interfaces in materials, edited by John Wiley & Sons, Inc.

Huang, W. J., Sun, R., Tao, J., Menard, L. D., Nuzzo, R.G. & Zuo, J. M. (2008). Nature Materials 7, 308-313. 

Johnson, R.A (1990) Phys. Rev. B 41, 9717.

Jonsdottir, F. (1995) Mat. Res. Soc. Symp. Proc. 356, 45-51

Massalski, T. B. (1986) Binary Alloy Phase Diagrams edited by Materials Park, OH

Matthews, J.W. & Blakeslee, A. E. (1974) J. Crystal Growth 27, 118.

Matthews J.W. & Blakeslee, A. E. (1975) J. Crystal Growth 29, 273.

McCormack, J. M., Myers, J. R. & Saxer, R. K. (1965) J. Chem. Eng. Data 10(4), 319-321.

Musket, R.G, McLean, W., Colmenares, C.A., Makowiecki, D. M. & Seikhaus, W. J (1982) Appl. of Surf. Sci.  

10, 143-207.

Pinnington, T., Lavoie, C. & Tiedje, T. (1997) J. Vac. Sci. and Tech. B 15, 1265-1269

Robinson, I. K. (1986) Phys. Rev. B. 33(6)

Robinson, I.K & Tweet, D. J. (1992) Rep. Prog. Phys. 55, 599-651 

Rodney, D. & Phillips, R. (1999) Phys. Rev. Lett. 82, 1704 

255



 Chapter IX: Study of the interface of solid-state dewetted islands by CXD and MD simulations

Rodney, D. & Martin, G. (2000) Phys. Rev. B 61, 8174

Rodney, D., Fivel, M. & Dendievel, R. (2005) Phys. Rev. Lett. 95, 108004.

Spence, J. C. H (1988) [1980] Experimental high-resolution electron microscopy. Edited by New York: Oxford 
U. Press.

Springholz, G. (1999) Applied Physics Letters 75, 3099-3101.

Venugopal, V. & Thijsse, B. J. (2009) Thin solid Films 517, 5482-5488

Verdier M (2008) ANR n°06-NANO-051 CRISTAL processing report

Vitos, L., Ruban, A. V., Skriver, H., L. & Kollár, J. (1998) Surface Science 411, 186-202

Winterbottom, W. L. (1967). Acta Metall. 15, 303. 

Yeshchenko ,O.A, Dmitruk, I. A., Alexeenko, A. A. & Dmytruk, A. M. (2007) Phys. Rev. B 75, 085434. 

256



Chapter X: Investigation of the three-dimensional distribution of Polar Inversion 

Domain Boundary in GaN wires

Contents

X.1 GaN nanowires and Inversion Domain Boundaries .......................................................................257

X.2 CXD experiment.............................................................................................................................258

Conclusion.............................................................................................................................................260

Bibliography...........................................................................................................................................261



Chapter X: Investigation of the 3D distribution of Polar Inversion Domains boundaries in GaN wires

Chapter X: Investigation of the three-dimensional distribution of Polar Inversion 

Domain Boundary in GaN wires

X.1 GaN nanowires and Inversion Domain Boundaries 

As seen in previous chapters, f.c.c. metals are difficult to grow without a high density of defect and are  

thus  well  applied  for  their  shaping  /  working  ability.  Conversely,  semiconductors  in  general  and  GaN in  

particular can be grown with nearly no structural defects (dislocations),  due to their high melting point and 

covalent bonding. This is fortunate, since their technological use is dedicated to functional properties, such as 

electron  transport  properties  or  optoelectronic:  the  presence  of  structural  defects  is  a  major  drawback. 

Nevertheless, an old mechanical problem, the so called the Eshelby twist (Eshelby 1954), has been revisited in  

the 2000's thanks to the technological progress of nanowire growth: the presence of one or a group of screw 

dislocations stabilized at the core of the wire. These dislocations are usually bent to the side wall surface along a 

distance of the order of magnitude of the diameter (Chen et al. 2011)

The initial objective in the ANR MecaNIX project was to use such an isolated screw dislocation for Coherent  

Diffraction Imaging (CDI) experiments on these model structures. A dedicated synchrotron experiment has been  

unsuccessful  to  find a  wire  with a trapped dislocation.  This would have left  a  clear  Bragg splitting on the 

experimental CXD pattern. 

Nevertheless, the detailed data analysis of theses measurements reveals an equally interesting microstructure.  

Instead of phase vortices, constant phase jumps between domains of homogeneous phase are observed. 

These constant phase jumps between domains are related to the presence of planar defects in the (0 1 1 0) planes. 

The latter are very flat and remain parallel to the [0 0 0 1] growth direction. These planar defects are known as  

Inversion Domain Boundaries (IDB, Northrup et al. 1996): locally the occupation of the Ga and N sublattices is 

inversed (Fig. X.1), and the GaN polarity (defined by the Ga-N bonding, see Appendix. A2) is reversed between  

each side of the boundary, hence the name polar IDB.

IDBs can be imaged by SEM after chemical etching of the wire, for example as shown in Fig. X.2.b. Under H2  

carrier gas, -c (nitrogen terminated) GaN surface stays flat, whereas the +c (Ga-Terminated) surface is  -

257

Fig. X.1 3D representation of an Inversion Domain Boundary or Wall (IDB) in the [0 1 1 

0]  separating two-oppositely polarized GaN domains.  The left  and right domains are 

respectively N-polar oriented (-c orientation) and Ga-polar oriented (+c orientation)
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- roughened and exhibits small faceted pyramids (Fig. X.2.b). Nevertheless, a non destructive characterization of 

these wires (in the 100 nm – µm diameter size) to reveal the spatial distribution can also be achieved.

As discussed above it relies in the use of Coherent X-ray Diffraction which was used in the previous chapters to 

investigate the microstructure of sub-micron f.c.c. crystals..

It is particularly relevant for the study of IDBs since the latter can indeed be described as low-energy, coherent  

and thus strain-free interfaces.

The absence of inhomogeneous strain or structural  defect  that  could alter  the phase distribution makes this 

system particularly suitable for CDI. Using this technique, it is possible to access the precise atomic structure of  

the IDB. The high resolution of the phase allows to probe atomic displacements as small as a few picometres. 

Annex A2 (Labat et al, 2015), is dedicated to the investigation of such domains. Using several reflections, it is 

demonstrated that picoscale displacements along and across the wire can be extracted from several non-coplanar  

reflections using CDI. In this study, the absolute polarity of each domain is also unambiguously identified.

The data analysis in Annex A2 is carried out in 2 dimensions so that the eventual variations of the IDB along the  

c-axis are not investigated. The reconstruction of the 3D displacement field can provide some insight in the  

evolution of the domain sizes and distributions along the wire axis. This unpublished complementary work is the  

purpose of this very brief Chapter. 

X.2 CXD experiment

The GaN wires in this study are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on a  c – 

oriented (0 0 0 1) sapphire substrate. Details on the sample preparation are found in Appendix A2. The growth 

conditions promote a vertical growth and hexagonal wires with average diameter of 600 nm and height of 3-5 

μm are obtained (Fig. X.1.b). A low wire density is required for individual analysis with a micro-focused beam.  

For the sample of interest, a typical spacing of 5-10 μm is achieved between the wires (Fig. X.1.b) which is ideal 

for individual analysis of the nanowires with a CXD beam. 

The collection of the diffraction data is performed around the 0 0 4 reflection, corresponding to a Bragg angle of 

θ = 32° at 9 keV. A single wire is illuminated by a 0.8 x 0.4 (HxV) μm2 coherent beam focused by a Fresnel Zone 

Plate (FZP). The diffracted intensity is collected by a 516x516 pixels MAXIPIX detector (pixel size of 55 μm) 

placed  1.3m  downstream  from  the  sample.  Further  experimental  details  are  found  in  the  supplementary 

information of Appendix A2. 
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Fig. X.2 Scanning electron microscopy pictures of GaN wires obtained by MOVPE. (a) 25° - tilted view taken at the 

centre of the wafer showing single crystal wires. (b) top view taken at the wafer edge for a sample etched under H 2 

carrier gas to underline polarity inversion domain boundaries
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Fig. X.3 2 D and 3 D reconstruction of the u0 0 4 displacement field at several positions along 

the GaN wire. 2D & 3D reconstruction carried out at the base (a & d), centre (b & e) and top (c 

& f) of the NW. (f) Schematics of the wire where the positions at which the measurements have 

been performed are indicated by a red dot.

Fig. X. 4 Evolution of the relative proportion and position of the interface 

between two IDB along the c-axis. (a) 3D distribution of the phase revealing 

two IDB. (c) y-z slice showing the abesnce of variation in the relative 

proportion of the two domains. (c) Evolution of the position of the interface 

at varying height. 
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The wire of interest is 400 nm thick (as measured by the reconstruction) and approximately 5 μm high. The latter 

is  estimated  by  scanning the  wire  along its  height,  using  the  z piezo-stage,  while  recording  the  diffracted 

intensity at each position of the scan. The measurement of the CXD patterns is carried out at 3 distinct positions  

along the  wire,  close  to  its  base,  at  the  centre  and close  to  the  top.  The  three  positions  are  separated  by  

approximately 1.5 μm. For each position, 3D CXD patterns are collected by rocking the sample over a range of 

1.28° by steps of 0.005°. 

Similarly to the approach described in Appendix A2, 2D intensity maps are first extracted from the 3D data in  

order to reconstruct a 2D image of the sample (Fig. X.3.a-c). The latter corresponds to the projection of the  

measured volume along the c-axis. The reconstruction is carried out using the procedure described in previous 

Chapters (Chapter VI & VII), consisting of alternating cycles of Error Reduction (ER) and Hybrid Input Output 

(HIO) with a regular upgrade of the support by Shrink Wrap (SW).

The 2D reconstructions  reveal  that  a  constant  phase jump of  2.8 radians  consistent  with the measurements 

presented in Appendix A2 is observed for the three positions. The distribution of the IDB is slightly modified  

along the  c-axis. Note that the reconstruction shown for the top position correspond to a complex-conjugated 

solution ρ̃(r) explaining why both phase values and domain positions are inverted as compared to the other 

reconstructions. 

These 2D reconstructions at various heights of the wire show that the inner structure is not completely invariant. 

The remaining question is to determine if the latter is invariant at small scale, in the illuminated volume (~0.4  

μm in height). The 3D reconstruction of the diffraction data can address this question.

The results of the 3D reconstructions are shown in Fig. X.3.d-f. Note that smooth edges are normally expected at 

the boundaries of the illuminated volume since the latter is defined by the beam. Here we arbitrarily define a  

support with sharp boundaries which is a rough approximation. The support shape is determined from the 2D  

reconstruction and extended along the c-axis. It is not updated by SW during the phase-retrieval procedure. A 

reasonably good convergence of the procedure is achieved with this fixed support. 

Fig. X.3.d-f  shows that the relative proportion of the different domains is not significantly modified with the 

position along the  c-axis. This is confirmed by measurements carried out on a different wire, with a different  

distribution of IDBs. The position of the interface and the relative proportion of the two polar IDB is found to be 

practically constant over a height of 0.8 μm. The calculated phase-jump between the two domains is determined 

to be 2.8 rad, in good agreement with data gathered on other wires. 

Conclusion

The 3D reconstructions reveals that the inner structure does not undergo strong modifications along the 

wire axis. It is shown that the structure of the IDB is significantly modified over the whole wire length, but that  

the variations are very small within the volume illuminated by the X-ray beam. 

The 3D reconstruction is thus not necessarily needed to understand the microstructure since the 2D 

projections already provides most of the interesting information.
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Chapter XI: Investigation of the magnetic structure and dynamics of sub-micron 

magnetic elements using Fourier Transform Holography

Introduction

In the previous chapters we demonstrated the interest of X-ray diffraction (XRD) techniques, and in  
particular  of  coherent  X-ray  diffraction,  to  investigate  the  structural  properties  of  sub-micrometer  objects.  
However, XRD techniques are not limited to the study of structural properties and are also relevant for the  
investigation of functional properties. Among them are the magnetic properties which also exhibit some size 
dependence. 

Patterned and self-organized magnetic nanostructures are currently the subject of much interest due to 
their great potential in future nanotechnology (Wolf  et al.  2001), including spintronics applications in which 
control of the spin orientation opens up a large range of perspectives in magnetoelectronic devices. One of the  
distinctive examples  is  the synchronized arrays  of  spin-torque oscillators (STO),  a  novel  type of nanoscale  
source of microwaves (Slavin et al. 2009). Characterization of the magnetic states on the submicroscopic scale is 
however still a challenge, precluding advances in understanding and utilization of the properties of such new  
materials.

Since  its  first  demonstration  more  than 20 years  ago by McNulty  et  al.  (1992) soft  X-ray  Fourier 
Transform Holography (FTH) has attracted considerable attention for imaging of nanostructured materials. Its  
high spatial resolution and independence from optical aberration are very beneficial for experimental studies of 
material properties. By exploiting the circular dichroism of soft x-ray resonant magnetic scattering (SXRMS), 
Eisebitt et al. (2004) demonstrated the application of the technique to magnetic materials. Magnetic holography 
combines  the  advantages  of  conventional  FTH  (nanometre  spatial  resolution,  straightforward  image 
reconstruction, sensitivity to buried layers,..) and XMCD (magnetic and element contrast). In the last decade, it  
has developed into a mature magnetic imaging technique. It is now well established for the study of in-plane 
magnetization (Tieg et al. 2010) and can be also used under applied electric and magnetic fields (Hellwig et al.  

2006, Tieg et al. 2010). This feature is of particular interest as traditional imaging techniques such as magnetic  
force microscopy (MFM) are less suited for such measurements since they employ magnetic probes which are 
influenced by the external field. More recently, the technique took advantage of the ultrashort coherent X-ray 
pulses of a free electron laser to investigate ultrafast magnetization dynamics (Korff von Schmising et al. 2014).

In this chapter we first present the basics of Fourier Transform Holography and its application to the 
imaging of magnetic structures. In the following section, we detail the specificities of the experimental set-up 
that was used to perform most of the magnetic holographic experiments. To image the in-plane magnetization we  
employ a particular holographic imaging technique named HERALDO. The relevance of this technique and its  
advantages as compared to traditional FTH are exposed in section XI.1.4. The second part of this chapter is 
dedicated  to  the  presentation  of  the  synchrotron  experiments  carried-out  during  this  PhD  work.  In  this 
experimental part the key aspects to achieve a successful reconstruction are also discussed. In the first section of 
this second part, we use HERALDO to image the in-plane magnetization of a Fe/Ni element. The magnetic  
structure consist of a vortex closure domain which motion can be induced by a magnetic field. The study of the  
field-induced motion of  this  vortex  is  presented  in  section XI.2.3.  The  understanding of  the magnetization 
dynamics of magnetic nanostructures is of particular technological interest. In the last part of this chapter, we  
investigate the magnetization dynamics of two types of objects. Section XI.2.4 presents an experiment dedicated  
to the imaging of the precession of the vortex in Permalloy (Py) elements in time-resolved mode. Section XI.2.5  
investigates the magnetization dynamics of the so-called spin-torque oscillators.
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X.1 Fourier Transform Holography

X.1.1 Basics of Fourier Transform Holography

We have seen in Chapter I that a coherent scattering pattern contains only half of the information on the  
illuminated object, as only intensities and not the phase of the scattered waves are measured. Using iterative 
phase retrieval algorithms (Gerchberg & Saxton 1972, Fienup 1982, Fienup 1987) it  is however possible to 
retrieve the sample complex density numerically (Chapter I). 
As no optical elements are used in this approach, the spatial resolution achievable with the technique is not 
limited by optical aberrations. Provided that sufficient oversampling is achieved, the resolution only depends on 
the maximum of the scattering vector, hence the term “lensless imaging method” to designate the technique.
Phase  retrieval  algorithms  are  not  the  only  option  to  address  the  phase  problem,  and  in  some  cases,  an 
holographic method can be used. It  relies on the fact that, if a reference wavefield from a suitable scatterer 
interferes at the detector plane with the wave scattered by the sample, the phase information can be sufficiently  
preserved such that an image of the object can be reconstructed from the measured intensity pattern. 
This  method  named  holography  was  first  established  in  the  visible  spectral  range  using  lasers,  and  was  
introduced by Gabor (1948) to improve the resolution of electron microscopes. 
In the in-line geometry proposed by Gabor, a so-called Gabor-Leigth hologram is recorded at the detector plane.  
The latter  results from the interferences between the wavefield from the sample of interest  and a reference  
scatterer which is in this case the incident wavefield (Fig. X.1.a). 
Almost two decades later, Stroke (1965) demonstrated that the high resolution required for lensless imaging 
techniques can be achieved by the use of a point reference in the plane of the object. The interference hologram  
recorded at the detector plane is defined as a lensless Fourier-Transform Hologram (Fig. X.1.b).

This approach is a very elegant and simple way to address the phase problem. The phase of the object wave-field  
is encoded by the reference wave-field in the far-field scattered intensity collected by an area detector. 
Both amplitude and phase of  the complex image of  the object  are  obtained using a  single  inverse  Fourier  
transform.
The mathematical formalism of Fourier Transform Holography (FTH) can be expressed as follows. The scattered 
wave-field in the far field regime A(qx ,qy) can be represented by the sum of the wave-field O(qx ,qy) scattered by 
the object o(x,y) and the wave-field R(qx,qy) scattered by a point reference r(x,y), where x and y are the Cartesian 
transverse coordinates in the real space, and qx and qy are the Cartesian transverse coordinates in the reciprocal 
space:
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Fig. XI.1 Schematics of the interferences between the wavefront scattered by the object and a reference wavefront.  (a) 
Gabor in line geometry → black : incident/reference wavefront , red : wavefront scattered by the sample. (b) Lensless  
Fourier Transform geometry → green : wavefront scattered by a point reference located in the same plane as the object.
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We have seen in Chapter I that the inverse Fourier Transform of the far field intensity pattern is equal to the  
spatial  autocorrelation of  the scattering object  (also known as  a  Patterson map).  Here this  function can be  
decomposed in four terms as illustrated in Fig. XI.2. The central part of the autocorrelation contains the object-
object  and  reference-reference  autocorrelations  which  are  not  of  interest.  The  sample–reference  cross 
correlations are seen on opposite sides of this central structure. They correspond to the complex object image  
and its complex conjugate and are located around r and -r where r is the vector from the reference to the object. 
The spatial resolution achievable in the object image is equal to the size of the reference scatterer. 
If the technique was primarily demonstrated in the visible spectral range using lasers, the availability of coherent  
X-ray beams made possible its transposition to the soft X-ray range (McNulty et al. 1992, Eisebitt et al. 2004). It 
has also been implemented in Bragg geometry with hard X-rays (Chamard et al. 2010). 

The limitation in spatial resolution can be seen as a drawback in comparison to the iterative phase retrieval  
approach, where the resolution is only limited by the spatial extent of the far-field intensity pattern. To improve 
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Fig. XI.2 Schematics of the Fourier Transform Holography (FTH) technique. (a) Sample and point-reference illuminated by 
a  coherent  X-ray  beam.  (b)  Far-field  intensity  interference  pattern  (hologram)  recorded  by  an  area  detector  (c)  Two 
dimensional Fourier transform of the hologram where the complex image of the sample appear in the cross-correlation  
terms.
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the spatial resolution, the technique can be used in combination with phase retrieval algorithms. In this case, the 
image obtained by FTH is used to define the finite support and the starting guess of the phase retrieval procedure  
(Eisebitt et al. 2003).

X.1.2 Experimental set-up

The magnetic holography experiments presented in this work were carried-out on three beamlines at  
three  different  synchrotron  facilities:  I06  at  Diamond Light  Source,  SEXTANTS SOLEIL and ID32 at  the 
European Synchrotron Radiation Facility. 
The three beamlines share some common points. The source of the X-ray beam is an undulator to provide a high 
brilliance and are designed to operate in the soft X-ray energy range (typically 0.05 → 1.8 keV for SEXTANTS, 
0.1 → 1.5 keV for I06 and 0.4 → 1.6 keV for ID32). This energy range contains the L2-3 absorption edges of 3d- 
transition metals, which is essential for the experiments presented in the following. 
Additionally, since  most  of  the  experiments  carried  out  on  these  beamlines  involve  magnetic  elements,  an 
important feature of the undulators is that they can provide variable polarization of the incident X-ray beam 
(either circular or linear, see section XI.1.3). The monochromatization of the beam is ensured by a plane grating  
monochromator which gives an energy resolution of ΔE/E ~ 10-4. 
For coherent scattering experiments, the beam is refocused using toroidal mirrors placed between 1.5 and 3 m 
upstream the sample. Beam sizes of 200 (H) x 20 (V) μm2 , (FWHM) and 80 (H) x 50 (V) μm2 are obtained for 
the I06 and SEXTANTS beamline respectively. 

Fig. XI.3 shows the holographic set-up in the experimental hutch of the I06 beamline. Note that the strong  
absorption of  soft  X-rays  in  air  requires  to  carry the experiment  in  an  UHV chamber.  Generally,  it  is  not  
necessary to work in UHV conditions (< 10-9 mbar), and the base pressure in the chamber during the experiment 
is typically of the order of 10-6 mbar. 
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Fig. XI.3 Schematics of the experimental set-up on the I06 beamline (Diamond Light Source)
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The energy range used for these experiments (700-850 eV) is one order of magnitude smaller than that of the 
CXD experiments in Bragg geometry. According to Eq. (I.4)(Chapter I), the transverse coherence length are  
expected to be larger  than in  the hard X-ray regime. However,  the 200(H) x 20(V)  μm2  beam is not  fully 
coherent, at least in the horizontal direction. To extract the coherent part of the beam, a circular pinhole is placed 
50 mm upstream the sample. Pinholes of variable diameters have been used for the holographic experiments, the  
typical diameter being 20 μm. Note that for the ID32 beamline (ESRF) where the sample is located 120 meters 
downstream the source, larger transverse coherence lengths are obtained and larger pinhole diameters (50 μm) 
can be used without degrading the coherence properties.  Due to the diffraction from the pinhole, a reduced 
pinhole size such as a 10 μm pinhole implies a larger beam size in the sample plane than a 20 μm one.
As illustrated in Fig. XI.3, the holographic experiments are carried out in a forward scattering geometry; the  
sample plane is perpendicular to the incident X-ray beam. Both sample and pinhole are mounted on holders for  
alignment in the beam. For the pinhole holder, piezo-actuators are used to ensure a precise positioning.  The 
sample holder is mounted on a rotation axis, such that the sample can be tilted with respect to the incident X-ray  
beam. This feature is essential for the investigation of in-plane magnetization (see section XI.1.4). 
The scattering intensity is collected by a back-illuminated CCD (BI-CCD) from Princeton Instruments. The  
CCD chip  consists  of  2048x2048 pixels  of  size  13.5  μm.  The  camera  is  mounted  on  a  flange,  hence  the 
sample/detector distance can not be reduced below 47 cm. A beamstop prevents exposing the CCD camera in the 
direct beam.
As discussed in the previous section, the real space resolution of FTH is limited by two parameters: the size of  
the reference, and the extent of the reciprocal space pattern. In the case of the forward scattering geometry, the 
decay of intensity with q is not as pronounced as in the case of the Bragg geometry such that a large extent of the  
reciprocal space is in principle accessible. For the samples used in this work, the aperture of the reference slit  
(see section XI.2.1) is generally of the order of 20 nm, which gives the limit of the resolution accessible by FTH. 
The extent of the reciprocal space accessible is given by the angular acceptance of the area detector which 
depends on the sample-detector distance D :

r limit = λ . D

n
pixels

. s
pixels

   (XI.2)

where λ is the X-ray wavelength, npixels is the number of pixels of the CCD camera and spixels is their size. We will 
see in the next section that the experiments were carried out at the absorption edge of 3d-transition metals which 
corresponds to 700-850 eV. The pixel size of 13.5 μm gives a resolution limit of 30 nm with the I06 set-up. It 
turns out that the resolution is here limited by the extent of the reciprocal space. In order to improve the spatial  
resolution, it is thus necessary to increase the angular acceptance of the area detector, for instance by decreasing  
the sample-detector distance.
The camera being mounted on a flange at the I06 end-station, it is so far not possible with this set-up to bring the  
detector closer to the sample. As a comparison, the set-up on the ID32 and SEXTANTS beamlines allows to 
decrease the sample/detector to a value of 30 cm. With a similar detector, this gives a resolution limit of 17 nm.

XI.1.3 Magnetic contrast polarization and interference

In this PhD work, FTH is used to investigate magnetic structures in transition metals exploiting the  
circular dichroism of soft X-ray resonant magnetic scattering (SXRMS) in forward scattering geometry. The 
term dichroism is  used  to  to  reflect  the dependence of  photon  absorption of  a  material  on polarization.  It  
originates in anisotropies in the charge or the spin in the material.  In the latter  case we speak of magnetic  
dichroism. 
Metals  are  usually  ferromagnetic  and  their  magnetic  properties  are  best  studied  with  circular  dichroism.  
Circularly  polarized  X-rays  are  sensitive  to  the  projection  of  the  magnetic  moments  onto  the  propagation 
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direction, both in the absorption and in the scattering cross-section. In FTH, we use the circular dichroism to 
image the magnetic moments along the propagation vector: it is similar to X-ray Magnetic Circular Dichroism 
(XMCD), which is an absorption spectroscopy, but in (small angle) scattering geometry.
In the photon absorption process, core electrons are excited into empty states and thereby probe the electronic  
and magnetic properties of the empty valence levels. For the case of 3d transition elements such as Fe, Ni and 
Co which magnetic properties are largely determined by the 3d valence electrons. 

To access their magnetic properties it  is thus interesting to excite 2p core electrons to use 2p → 3d dipole  
transitions (L2,3 absorption edges). Band structure plays an important role in the shape of the absorption spectra  
of 3d transition metals. The photo-electron is excited from the spin-orbit split 2p3/2  and 2p1/2  levels to empty d 
valence states (L3 and L2 edges respectively, Fig. XI.4.a).
In XMCD spectroscopy pioneered by Schültz 1987, the L3  and L2  resonant intensities can be linked with the 
number of empty d states (holes). For a magnetic material the electronic shell has a spin moment which is given 
by the imbalance of spin-up and spin-down electrons (or spin-up and spin-down holes). This difference between 
the number  of  spin-up and spin-down hole  can be measured if  the X-ray absorption process  becomes spin  
dependent.  The photoelectron carries the transferred angular momentum of the photon as a spin or angular 
momentum or both (Stohr & Wu 1994). If the photo-electron originates from a spin-orbit split level, for instance  
the 2p3/2 level (L3), the angular momentum can be transferred in part to the spin through the spin-orbit coupling.  
Right Circularly Polarized (RCP) and Left Circularly Polarized (LCP) photons carries an angular momentum 
with opposite direction, hence photo-electrons with opposite spins are created in the two cases. As illustrated in  
Fig. XI.4.b, this results in different absorption for the two polarizations at the L2 and L3 edges. The technique has 
thus both a chemical sensitivity and electron shell sensitivity.
Soft  X-ray resonant magnetic scattering combines X-ray scattering with XMCD or X-Ray Magnetic Linear  
Dichroism (XMLD) and is used in this PhD work to study magnetic structures. Usually, X-ray scattering is 
weakly sensitive to magnetism, and the non-resonant magnetic scattering which can be defined as the scattering 
from the orbital and spin moment of the electron is much weaker than the charge scattering. The situation is  
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Fig. XI.4 Illustration of the X-ray circular magnetic dichroism (XMCD) (a) Electronic transitions in L-edge X-ray 
absorption for circular magnetic dichroism. The transition occurs between the split 2p core level and the empty spin  
polarized 3d states. (c) L-edge absorption spectra of Co in the presence of XMCD.
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changed when the incident photon energy is tuned close to an absorption edge where for the reasons described  
above (spin-orbit coupling of the core electrons), X-ray scattering becomes very sensitive to magnetization. 
The  polarization  dependence  in  charge  and  resonant  magnetic  scattering  is  expressed  in  the  following  
representation of the complex scattering factors  fn  for a scattering centre  n  (Hannon  et al.  1988, Lovesey & 
Collins 1996)

f
n

= F 0( ϵ̂ f
* . ϵ̂

i
) − i F1 (ϵ̂ f

*×ϵ̂
i
). m̂ + F 2(ϵ̂ f

* . m̂)(ϵ̂
i
. m̂)     (XI.3)

where  m̂ is the local magnetization unit vector and εi  and  εf  the polarisation of the incident and scattered 
photons respectively. F0 , F1 and F2 depend on the energy E of X-rays. The F0  term gives the charge scattering 
and contains anomalous terms f

c
'+i f

c
' ' which are large near the absorption edge. This term allows to study 

the  charge  order.  The  F1 term  is  the  magnetic  scattering f
m

'+ i f
m

' ' which  depends  linearly  on  the 
magnetization direction and can become comparable to F0 near L2,3 and M4,5 absorption edges (Fig. XI.5). The 
third term F2 has a quadratic dependence in the magnetization direction and is thus sensitive to orbital order, but 
it is usually much smaller than F0 and F1. For the 3d transition metals at the L2,3  absorption edge, the resonant 
magnetic scattering is comparable in amplitude to the charge scattering.

The magnetic scattering intensity is a function of both the photon energy and the wave-vectors  ki  (kf) of the 
incident (scattered) X-ray beam: this can be shown from Eq. (XI.3) (Hill & McMorrow, 1995). The scattering 
intensity is given by:
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n
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n
(E )e

i q .rn∣
2

                (XI.4)

where the summation over the scatterer  n runs over a coherence volume in the sample. The magnetic terms fn  

containing F1 and F2 in Eq. (XI.3) give rise to circular and linear X-ray magnetic dichroism in the scattered or  
absorbed X-ray intensity. 

By taking  the Fourier transforms ρ and M̂ of the charge density and of the unit magnetization vector, Eq. 
(XI.3) can be rewritten as

F (q) = F0( ϵ̂ f * . ϵ̂i)ρ(q) − i F 1( ϵ̂ f *×ϵ̂i) . M̂ (q) = M c(q) + M m (q)                 (XI.5)
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Fig. XI.5 Real and imaginary parts of (a) the charge scattering F0 and (b) the magnetic 

scattering F1 at the Fe L2,3 edges (from Van der Laan, 2008)
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where Mc(q) and Mm(q) refer to the Fourier transform of the charge and magnetic contributions.  Note that for the 
sake of simplicity we discarded the third term of Eq. (XI.3),  F2, which is much smaller in amplitude than F0 and 
F1.

In interference experiments such as holography, the ability to interfere depends on the polarization state of the 
interfering  beams.  Following  the  formalism  introduced  by  Hill  &  McMorrow  (1996),  the  polarization 
dependence of the magnetic scattering cross-section can be reformulated in term of linear polarization states,  
perpendicular and parallel to the scattering plane. 
It is convenient to write the geometry factors (ϵ̂

f
* . ϵ̂

i
) and (ϵ̂

f
*×ϵ̂

i
) .m̂ as a 2 x 2 matrix,

(σ→σ ' π→σ '

σ→π ' π→π ' )    (XI.6)

 
representing the different scattering channels,  where the linear polarization perpendicular and parallel to the 
scattering plane is denoted σ and π polarization respectively. The primes refer to the scattered beam. 

Using  the  unit  vectors  k̂
i and  k̂ f  along  the  incident  and  scattered  beams  respectively.  The  Fourier 

transform of the complex resonant scattering factor can be expressed as follows:

F (q ) = F 0(1 0
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f.
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The first term, which does not have off-diagonal elements, keeps the polarization state unchanged, i.e. an ϵ̂i∥

photon is scattered into an ̂ϵ f ∥ photon (π → π' scattering) and ̂ϵi⊥ → ̂ϵ f ⊥  (σ → σ ' scattering). On the 

other hand, the magnetic scattering term allows both σ → π' scattering and σ' → π as well as π → π' scattering 
while σ → σ' is forbidden. Note that the off-diagonal elements are ϵ̂

i∥ . ̂ϵ
f ⊥ = k̂

i
and ̂ϵi⊥ . ̂ϵ f ∥ = −k̂ f . In 

other words, Eq.  (XI.6) shows that  the magnetization component parallel to the scattering plane rotates the  
polarization channel while the magnetization component perpendicular to the scattering plane appears in the π → 
π' channel. 
In forward small-angle scattering, where k̂ i ≈ k̂ f , Eq. (XI.6) can be simplified : 

F (q ) = F 0ρ(1 0
0 1)−i F1( 0 k̂

−k̂ 0) . M̂    (XI.7)

It comes that in forward scattering geometry, the only interference term between charge and magnetism vanishes  
with linear polarization. It was also the only term probing magnetic component perpendicular to the scattering  
plane and thus to the propagation vector. Circular polarization is thus needed to access the magnetic contrast.

Let us consider now a magnetic sample with a point reference (a pinhole) in a forward scattering geometry. At  
the absorption edge, the resonant scattering from the sample interfere with the unscattered wave propagating 
from the pinhole. 
For an incident X-ray beam with linear polarization, the scattering intensity collected by the CCD camera is 
expressed as follows.

I lin(q) = ∣F (q)∣2 =∣F0ρ(q )∣2+∣F1∣
2∣k̂ . M̂ (q)∣2 ≃ ∣F0ρ(q )∣2    (XI.8)
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There is  an interference between the charge scattering from the sample and the unscattered reference wave  
propagating from the pinhole, and a charge hologram is recorded. However, no interference is recorded between 
the magnetic scattering and the reference wave. It  can be understood by the fact  that for linearly polarized  
radiation, the magnetic scattering term is maximized when the plane of polarization is rotated by π/2 (see Eq. 
(XI.7)) while the diffraction from the pinhole does not change the polarization of the X-ray beam. Unscattered 
and magnetically scattered X-rays go into orthogonal polarization channels and can not interfere. The magnetic 
contrast is thus not accessible in forward scattering geometry with linearly polarized X-rays. 
With circularly polarized X-rays, right and left circular polarized X-rays are scattered into the same polarization 
state and can interfere with the pinhole wave at the detector plane. The scattering intensity collected by the CCD 
camera is expressed as follows;

I circ(q )=∣F 0ρ∣
2+∣F 1∣

2∣k̂ . M̂∣2±2ℜ[F 0 F 1ρ k̂ . M̂ ]    (XI.9)

A charge-magnetic interference term appears in Eq. (XI.9) which sign depends on the helicity of the incident X-
rays. From Eq. (XI.9) it also comes that if the coherent scattering intensities measured with right and left circular  
polarization are added, the magnetic-interference term vanishes, and the intensity distribution obtained is exactly 
the same as the intensity distribution with linear polarization (Eisebitt et al. 2003). Linear polarization can thus 
be thought as the coherent superposition of right and left circular polarization. 

The intensity difference is much more interesting. As seen from Eq. (XI  10), the difference between the two 
polarizations leads to the cancellation of the pure charge scattering and magnetic scattering terms. The difference  
hologram is proportional to the reference - magnetic interference term alone: 

I
XMCD

(q)=4 ℜ[F 0 F 1ρ(q )k̂ . M̂ (q)]  (XI.10)

The difference of two opposite helicity images can thus be used to enhance the magnetic contrast and suppress 
any non-magnetic contributions. 
It turns out that by exploiting the circular dichroism of SXRMS it is possible to turn conventional FTH into a  
magnetic  imaging  technique.  As  discussed  previously,  the  use  of  the  technique  for  magnetic  systems  was 
pioneered by Eisebitt  et al in 2004 and has developed into a mature magnetic imaging technique in the last  
decade.

XI.1.4 Investigation of in-plane magnetic scattering

In  the  field  of  magnetic  imaging  FTH  has  been  primarily  applied  to  systems  with  out-of-plane 
magnetization (Eisebitt et al. 2004). The most typical structures are based on [Co/Pd]or [Co/Pt] multilayers. This 
limitation is owing to the sample mask structure and the angular dependence of the XMCD effect. FTH samples  
are usually prepared on the back side of a Si3N4  membrane while the front side carries the mask to define the 
sample and reference beams. This common sample-mask design has a fixed field-of-view.
Tieg et al. (2010) demonstrated the possibility of imaging the in-plane magnetization by adapting the mask and 
scattering geometry to record holograms at off-normal incidence. In this geometry, the reference beam is defined 
by an inclined hole. (Fig. XI.6.a from Tieg et al. 2010)
From Eq. (XI.10) it comes that the magnetic contrast in FTH using XMCD is proportional to the projection of 
the magnetization onto the incident wave vector :  M̂ . k̂

i
.  In a forward scattering geometry, the in-plane 

magnetized samples can thus be only imaged with a tilt angle  α. Fig. XI.6.a shows the off-normal geometry 
employed by Tieg to image the in-plane  magnetization. An inclined reference hole is milled by Focused Ion 
Beam (FIB) at 20° with respect to the surface normal. Note that the hole has a quite large opening angle which 
allow FTH imaging at ± 15° with respect to the milling angle. The increase in the magnetic contrast with the 
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tilting angle is clearly visible (Fig. XI.6.c & XI.6.f). As discussed above, the larger is the tilt angle, the larger is 
the projection of the sample onto the plane normal to the beam, and the larger is the projection of the in-plane  
magnetization along the beam direction. 
We will see in the next-sections that we mainly investigated in-plane magnetic structures in this PhD work,  
hence the off-normal geometry was generally employed. 

XI.1.5 Extended reference

A recent development in the Field of FTH has reduced the restrictions on the reference size to allow a  
wider range of possibilities, and more flexibility during the holographic experiments.
The technique known as Holography with Extended Reference by Autocorrelation Linear Differential Operator  
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Fig. XI.6 Imaging the in-plane magnetisation with FTH (a) Cross section of 
the sample-mask assembly with an inclined and conically shaped reference 
hole. (c) 2x2 μm2 Co element, the square object hole is indicated by yellow 
corners. Holograms from the Co element measured at tilt-angles  α of 0° (c), 
15°(d)  and  30°(e).  Images  (c-e)  show  difference  holograms  for  opposite 
helicities and (g) gives the sum of both helicities. (f) Line scan showing that  
the  intensity  in  the  difference  hologram scales  with  the  projection  of  the 
magnetization  on  the  incoming  beam  direction.  (h)  Reconstruction  of  the 
sample using (g)
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(HERALDO) enables the use of extended objects references without compromising and even enhancing the 
spatial resolution. It was introduced by Guizar & Fienup (2007) and first demonstrated experimentally a year 
later (Guizar & Fienup 2008). Its lensless imaging capabilities have also been extended to the soft-X-ray regime, 
(Zhu et al. 2010) and to femto second imaging (Gauthier et al. 2010). More recently, it has been applied to the 
imaging of out-of-plane (Duckworth et al. 2011) and in-plane (Duckworth et al. 2013) magnetic structures. 
In HERALDO the reference wave emerges from a sharp feature or an edge on an extended structure, and the 
image is differentially encoded in the autocorrelation of the coherent far-field intensity pattern, i.e.  the Fourier 
transform  of  the  recorded  hologram.  The  reconstruction  procedure  is  based  on  the  application  of  linear 
differential operators to the Fourier transform of the hologram. 
In the experiments presented in this manuscript we used a linear slit as extended reference around the magnetic 
sample (Fig. XI.7.a). The latter induce an intense streak of intensity on the recorded hologram (Fig. XI.7.b). The 
differential filter to be multiplied to the hologram is defined by the directional derivative of the edges from the  
extended reference (Fig. XI.7.d). Prior knowledge of the slit orientation is unnecessary as it is determined from 
the slit that it forms on the hologram (Fig. XI.7.b)

With a slit used as a reference, the reference waves emerge from the sharp edges on the slits, providing two 
independent reconstructions. Note that in order to obtain two independent reconstructions, the two ends of the 
slits must satisfy the HERALDO separation conditions defined by Guizar-Sicairos & Fienup (2007). In short, a  
sufficient distance must be ensured between the magnetic sample and the slit and between both ends of the slits.  
If  these conditions are not satisfied, i.e.  the edges of the slits are too close, the two reconstructions overlap. 
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Fig. XI.7 HERALDO schematics (a) Object and extended reference illuminated by a coherent X-ray beam. (b) Far field 
intensity hologram recorded by an area detector. The bright streak is induced by the diffraction from the slit. (c) Fourier 
transform of the differential hologram. (d) Differential filter applied to the hologram. (e) Reconstructed hologram after 
application of the differential filter.
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Similarly to the case of a point-reference, a complex conjugate image is obtained for the two reconstructions.  
The resolution is non longer determined by the size of the reference but rather by the quality of the sharpness  
features. 
The  use  of  an  extended reference  has  several  advantages.  In  standard  FTH,  there  is  a  compromise  in  the 
determination of the size of the reference point-source between two requirements: the resolution given by the 
reference size and the flux through the reference for observing interference fringes with a good contrast. The  
hologram of the fringe visibility depends on the relative amplitude of the wave-fields diffracted by the object and 
by the reference. It is thus maximum when these amplitudes are equal (Gauthier et al. 2010, Szoke 1997).
With an extended reference the flux is no longer limited by the size of the reference. The wavefields diffracted 
by  the  object  and  the  reference  become comparable  in  intensity.  This  yields  an  increased  fringe  visibility, 
especially at large scattering angles (corresponding to higher resolution) where the scattering is generally weak 
and a potential enhancement of the resolution as compared with a point source reference.
The  second  advantage  is  more  specific  to  the  experiments  presented  in  this  work,  where  the  in-plane  
magnetization is  investigated.  As shown in the previous section,  the contrast  in  the in-plane magnetization 
depends on the projection of the latter onto the wave-vector of the X-ray beam. It is thus only accessible if the  
sample is tilted with respect to the incident X-ray beam. As shown by Tieg  et al.  2010, the point-reference 
(pinhole) needs to be milled with an inclination with respect to the surface normal. Beyond the experimental 
difficulties  of  milling  an  inclined  hole  with  FIB,  the  main  limitation  with  this  configuration  is  its  lack  of 
versatility. Only a limited angular range is reachable, and to image the sample in normal geometry (sample 
normal parallel to the direction of propagation), two holes need to be milled. The use of a slit as an extended  
reference overcome these limitations, and FTH can be imaged with good contrast within a large range of tilt  
angles (± 45° with the I06 experimental set-up). 

XI.2 Investigation of the in-plane magnetization of nanostructures and their dynamics

During this PhD, I was involved in several FTH experiments aiming at imaging magnetic structures and 
their  dynamics.  If  I  did  not  participate  to  the  sample  preparation,  my contribution  was  significant  for  the 
measurement and the analysis (i.e.  the reconstruction) of the experimental data. The most interesting results of 
the holography experiments carried out during this PhD are presented in this section. 

XI.2.1 Determination of the magnetic structure of a permalloy thin film

In this work, FTH was primarily used for the investigation of the in-plane magnetization in permalloy 
(Fe/Ni) thin films.  The preparation procedure of the sample is briefly described in the following.  Note that  
additional details on the preparation procedure can be found elsewhere (Duckworth et al. 2011) 
The processing starts by depositing a 50 nm thick Py film onto the front side of 100 nm thick Si3N4 membrane. 
The sample is protected with a 2 nm Ta capping layer. On the reverse side of the membrane, a 600 nm Au layer  
is deposited to act as an X-ray opaque mask. FIB milling is used to pattern a square 3.0 μm field of view (FOV) 
into the mask, milled down as far as the membrane. FIB is then used to cut out the material from the continuous 
thin film on the other side of the membrane, such that an isolated Py element remains within the FOV aperture 
(Fig. XI.8.a & XI.8.b). The lateral dimensions of the Py element are generally selected between 400 nm and 1 
μm (Fig.  XI.8.a).  Note that  larger dimensions have been used for the study of the magnetization dynamics 
presented in section XI.2.3 (around 2 μm). The geometry of the Py element has been also varied and both square 
and disc elements were used. The Py element is positioned to one side of the FOV aperture in accordance to the  
geometry of the experiment to avoid the Au mask blocking soft-X-rays from passing through the Py element  
when the sample is illuminated and rotated in the X-ray beam (Fig. XI.8.d). 
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Measurements of the Py sample were performed at several synchrotron facilities listed in section XI.1.2 of this  
chapter. Here we focus on the experiment carried out on the I06 beamline at the Diamond light source whose set-
up is described in section XI.1.2. 
To investigate the magnetization in the Py element, the normal to the sample is rotated by 30° and 45° with  
respect  to the direction of propagation of the X-ray beam. The off-normal geometry is  similar  to the setup 
reported by Tieg et al. (2010) except that the reference slit allows to image the magnetic structure at larger tilt 
angles,  hence  the  larger  projection  of  the  magnetization  onto  the  wave  vector  of  the  x-ray  beam,  and the  
expected enhanced magnetic contrast.
The photon energy is usually tuned to the L3  absorption edge of Fe (~708 eV). Note that holograms were also 
taken at the Ni L3 edge where the magnetic contrast was not as good. 
Holograms  are  collected  using  both  helicities  of  circularly  polarized  X-rays.  Typically,  100 holograms  are 
recorded for  each polarization.  The exposure time for  each hologram depends on the available  flux,  but  is 
usually  around 5s  with minimum and maximum values of 2  and 10 s respectively (note  that  much shorter 
exposure  time  are  used  for  the  experiment  presented  in  section  XI.2.5).  The  exposure  time  needs  to  be  
sufficiently large to maximize the Signal to Noise (S/N) ratio at high scattering angle but sufficiently small to  
avoid saturation of the CCD camera. The Princeton camera used for most of the FTH experiments can hold a  
maximum of 65 000 electrons per pixel. Usually, the exposure time for a single frame is set such that the number  
of electrons stored into the most exposed pixels is just below the maximum value. The 100 individual frames for  
each polarization are accumulated in  order to further reduce the S/N ratio  and enhance the resolution.  The 
accumulated holograms recorded for both polarizations are then subtracted from each other. According to Eq.  
(XI.10) this allows to remove the effects of the charge scattering and maximize the magnetic contrast.
Fig. XI.9 shows the holograms recorded at the tilt angle α of 0°, 30° and 45°. Fig XI.9.a-c correspond to the 
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Fig.  XI.8 Imaging  the  in-plane  magnetisation  in  a  Py  square  element (a)  SEM 
picture of the 400 nm square Py element. The black circular area is the aperture in 
the gold mask to allowing the x-rays to go through the sample. The reference slit is 
located  5  μm away from the  sample.  (b)  Schematics  of  the  sample.  (c)  Sample 
design, the front side of the SiN membrane is covered with gold mask blocking the 
X-rays  everywhere  apart  from  the  circular  aperture  and  the  reference  slit.  (d) 
geometry of the experiment, the sample is rotated in the X-ray beam to image the in-
plane magnetisation. 
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difference  betweens  the holograms recorded with  opposite  photon helicities,  while  Fig.  XI.9.  d-f  show the 
reconstructed magnetic structure from the different holograms. Note that the figures show only the centre of the 
holograms. For the reconstruction, the full data covering a wave vector range of 0.21 nm-1 was used. 
In normal geometry, the sample is orthogonal to the incident X-ray beam, the in-plane magnetization has no  
projection  onto  the  beam.  Consequently,  since  the  measurement  is  only  sensitive  to  the  out-of  plane 
magnetization, no structure is revealed in this geometry. As seen from Fig. XI.9.a, the difference between the 
two polarizations is not exactly equal to zero. This could be due to a small misalignment of the sample, which  
result in a very small sensitivity to the in-plane magnetization (Tieg et al. 2010). However it is more likely that 
this small remaining intensity results from the fact that the right and left polarization does not yield the same flux 
on the sample plane.  Consequently the difference between the two polarization in the absence of magnetic  
scattering  is  not  exactly  equal  to  zero,  and  the  charge  scattering  terms  in  Eq.  (XI.9)  and  (XI.10)  are  not  
completely canceled in the difference hologram. 
Of course, this can be corrected by normalization of the positive and negative helicities as discussed in the next  
sub-section.  Here  this  correction  was  applied  before  reconstruction  of  the  hologram  by  inverse  Fourier 
Transform such that the magnetic hologram appears very clean (Fig. XI.9.d).  A faint outline of the circular  
aperture is  visible.  If the normalization was perfect,  this contour which is  clearly a charge scattering effect  
should completely vanish. 
The sensitivity to the in-plane magnetization in off-normal geometry is well illustrated in Fig. XI.9.b & XI.9.c 
where additional features appear on the hologram. These features completely vanish when the photon energy is  
detuned,  confirming their  magnetic  nature.  The  corresponding reconstruction  assess  the  dependence  of  the 
magnetic contrast with the tilt angle. Due to the increasing projection of the in-plane magnetization along the 
beam direction, the best contrast is obtained for the larger tilt angle, i.e.  45°. In both cases, the reconstruction 
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Fig.  XI.9 Influence  of  the  tilt  angle  for  the  imaging  of  the  in-plane  magnetisation.  

Difference holograms for opposite photon helicities measured at tilt angles α of 0° (a), 30° 
(b )and 45°(c). (d-f) Corresponding reconstructions showing an increase of the magnetic 
contrast with the tilt angle. 
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reveals a Landau ground state which is typical for Py elements of this size. In the square element it consists of  
four  triangular  domains  with  the  static  magnetization  abruptly  rotating  in  domain  walls  aligned  along  the 
diagonals of the square (Fig. XI.10). In Fig. XI.10., the Landau ground state is reconstructed for a larger 2 x 2  
μm2 Py element. A remarkable agreement is found with the micromagnetic simulations (left part of Fig. XI.10). 
The magnetic structure is also referred as a vortex domain closure, since a 30 nm vortex with out-of plane 
magnetization is located at the intersection of the four triangular domains. We will see in the next sections that  
the position vortex core can be displaced with the application of an external magnetic field.

XI.2.2 Experimental considerations and correction of the experimental data

From the various holographic experiments performed in this PhD work we realized that the quality of  

276

Fig.  XI.10:  Vortex closure domain in a Py square element at  

the remanence obtained from micromagnetic simulations (left)  

and experimentally from a 2x2 μm2 Py square element.

Fig.  XI.11:  Influence on the ratio between the intensity scattered by the slit and the sample.  (a) 
Hologram  from  a  700x700  nm2  Py  square  element  measured  at  tilt  angle  α of  45°.  (b-c) 
Reconstructed hologram for two different ratio between the intensity scattered by the slit and the 
sample. (b) IS / ID =1/3, (c) IS / ID = 3/4
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the reconstructed data is highly dependent on the quality of the experimental set-up. Of course, some corrections  
which  are  described  in  the  following  can  be  applied,  but  if  a  “good”  hologram is  not  recorded  from the 
beginning, only little can be done to improve the quality of the data. 

Ratio between the intensity scattered by the slit and the sample

As discussed by Gauthier  et al.  (2010), the hologram fringe visibility is maximum when the amplitude of the 
wave field diffracted by the object and the slit are equal. For this reason, the quality of the image reconstruction  
can potentially  be  enhanced as  compared  to  a  point-source reference.  In  the  experiments  presented in  this  
manuscript, the size of the beam is defined by the pinhole placed in front of the sample. For the I06 experiments  
a 20  μm pinhole was used, and the distance between the sample and the slit is of the order of 5 to 10  μm. 
Consequently, depending on the position of the beam on the sample, either the scattering from the slit or from 
the sample is reinforced. This ratio needs to be optimized. The slit induce an intense streak of intensity on the 
hologram, experimentally, the ratio was calculated by taking the maximum intensity of the pixels in region S 
(scattering from the slit, Fig. XI.11.a) and region D (scattering from the device). With a 20  μm pinhole, the 
optimum ratio was determined experimentally to be between ½ <  IS  /  ID  ~ ¾ (Fig. XI.11.c).  Note that for the 
ESRF experiment presented in section XI.2.4,  a 50 μm pinhole is used. Due to the resulting  larger beam size, 
the ratio is less dependent on the beam position, and these considerations are less critical.

Calibration of the undulator(s) 

Another  very important  point  is  the calibration of  the helical  undulator.  It  is  essential  that  the two 
circular polarizations yield the same flux on the sample. As discussed thereafter, differences in intensity for the 
two polarizations  can  be  usually  corrected.  However,  the  larger  is  the  difference,  the  more  difficult  is  the 
correction of the experimental data (see below, Normalization). This typically occurred for the experiments on 
the I06 beamline, hence the importance of a good calibration of the undulator. For the experiments carried-out on 
the SEXTANTS and ID32 beamline, the undulator was very well calibrated, yielding the same flux for both  
polarizations. In this case and provided a good stability of the experimental set-up, the differential holograms are  
very clean (almost no charge scattering) and don't need any correction (except the optimization of the phase of  
the complex image discussed in the following)

Stability of the optics and of the monochromator

Since the acquisition time for the holograms is rather long (typically 500 to 1000s per polarization), a 
high  stability  in  the  beamline  optics  and  in  particular  of  the  monochromator  is  required.  During  the  first 
experimental runs on the I06 beamline, large variations in the beam intensity and position on the sample were  
noticed during the collection of the holograms. They resulted in large difference in the intensity collected for the 
two polarizations. Beyond the fact that it is particularly tiresome to realign the sample in the beam in between 
two measurements,  the  data  analysis  is  complicated  by  the large difference of  intensities  between the two  
polarizations, as discussed in the previous paragraph.

Saturation of pixels on the CCD camera

To achieve the best resolution possible, it is essential to probe a large extent of the reciprocal space.  
Increasing the exposure time improves the S/N ratio at high q, however it is critical to avoid the saturation of the 
pixels  in the central  area surrounding the beamstop.  Beyond the fact  that  it  can damage the camera,  these  
saturated  pixels  create  artifacts  in  the  reconstruction  which  are  difficult  to  remove.  The  usual  strategy we 
employed to obtain a good S/N ratio while avoiding overexposure was to set the exposure time in order to obtain 
the largest possible dynamical range (without saturation of the pixels in the central region) for a single frame,  

277



Chapter XI : Investigation of the magnetic structure and dynamics of sub-micron magnetic elements using FTH

and  to  accumulate  a  large  number  of  frames  in  order  to  improve  the  S/N ratio  (typically  a  100 for  each  
polarization)

Detector correction

The detector correction was already discussed in section II.3.2. The main issue lies in the presence of  
“hot pixels” in the hologram. These pixels can be removed by hand when they are not too numerous. This was 
generally the case for most of the experiments we carried-out. 
A more elegant way (and probably more efficient) would be to use the droplet algorithm proposed by Livet 
(2000),  this  algorithm  can  handle  both  hot  pixels  and  cosmic  X-rays.  It  was  not  implemented  in  our 
reconstruction procedure.

Normalization

The acquisition of an hologram which allows to access the magnetic contrast supposes the measurement 
of both helicities. As discussed above, if the helical undulator is not properly calibrated, the available flux on the  
sample can change between the two circular polarizations. An even more problematic issue is the drift of the X-
ray beam during the measurement due to the lack of stability of the experimental set-up. The latter can cause 
large intensity variations during the acquisition of the hologram. In this case, the difference between the two 
polarization contains some contributions of the charge scattering. The charge contributions can be removed by  
normalization of the two polarizations. A reliable method is to plot an histogram of the intensities of all the  
pixels on the hologram for both polarizations. If the histograms coincide for the two polarizations, there is no 
need for normalization. If the two histograms don't overlap, a correcting factor is applied. 
This correction is generally efficient, but as discussed above, the larger is the difference in intensity between the 
two polarizations, the more difficult is the correction of the experimental data (difficulty to remove some charge  
scattering artifacts).

Beamstop correction

The beamstop used to block the direct beam can be potentially problematic for the reconstruction. The 
usual  strategy to  deal  with  the beamstop is  to  mask all  the  pixels  within  the  circular  area defined by the  
beamstop, i.e. to set the the pixels value to zero in the region. This method creates sharp variations of intensity 
between the region within the beamstop where all the pixels are set to zero and the surrounding region where the  
scattering is maximal. These sharp variations can create artifacts in the reconstruction. To limit these artifacts the 
beamstop was generally convoluted with a Gaussian in order to obtain a “smooth” beamstop. 
It should be noticed although that this correction is not critical for the quality of the reconstruction, especially  
when using HERALDO. Indeed, the differential filter applied on the differential autocorrelation is typically a  
high pass filter, i.e. the information is preferentially encoded at large scattering angles (Zhu et al. 2010). The loss 
of  the  central  part  of  the  data  is  thus  not  essential  for  achieving  high  quality  reconstructions.  From  our 
experiment, when a lot of artifacts can be found in the reconstructed image, masking a large central part of the 
data can even be a basic but efficient way to improve the quality of the reconstruction.

Phase correction

Generally, in the reconstructed complex image, the magnetic contrast is “shared” between the real and 
the imaginary part of the phase. As shown from Eq. (XI.10), the charge magnetism interference term is real.  
Hence all  the magnetic  contrast  should be contained in the real  part  of  the phase.  The optimization of the 
magnetic contrast is done by rotating the phase by a certain amount which corresponds to the maximum contrast  
for the real part and the minimum contrast of the imaginary part. The optimization of the rotation angle can be 
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done using by monitoring the reconstructed images (Fig.  XI.12.a-d) while rotating the phase. Alternatively, a 
reliable method is to draw a line profile through the magnetic domains, and to adjust the phase angle in order to  
yield a maximum contrast for the real part and the minimum for the imaginary part (Fig. XI.12.e-f). 

XI.2.3 Field dependence measurements

In  the  previous  section,  the  suitability  of  HERALDO  to  image  the  vortex  domain  closure  at  the 
remanence  was  well  established  for  several  Py  elements  with  various  sizes  and  geometry  (disc  or  square  
element). Before trying to image complex vortex motions in a time-resolved mode, it was necessary to confirm 
that relatively simple and well understood displacement of the vortex core can be imaged with the technique. In  
that optic, the dependence on the vortex core position on an external magnetic field was investigated. 
The schematic drawing of the experiment is shown in Fig. XI.13.a. An external magnetic field is applied to the  
tilted sample (by typical values of 30 to 45°) to image the evolution of the in-plane magnetic structure with an 
increasing external field which is applied along the direction indicated in Fig. XI.12.e.
Fig. XI.13. b shows the magneto-optical Kerr effect (MOKE) Kerr hysteresis loop of a single Py square obtained 
from micromagnetic (OOMMF) simulations. When the magnetic field is decreased from the saturated state, the  
Kerr  signal  (M/Msat)  gradually  decreases  (1)  until  it  reaches  a  so-called  nucleation  field  Hn  where a  single 
magnetic vortex is formed on the Py square element (2). The nucleation of the magnetic vortex is reflected by an  
abrupt jump in the Kerr signal. In the remanent state, the vortex stays at the square centre, and when a magnetic 
field is applied the vortex is shifted perpendicular to the magnetic field to increase the net magnetization along 
the field. At the annihilation field Han, the vortex vanishes and the magnetization state turns out to be a single 
domain (3). The reversal of the magnetization of the square element is thus accompanied by nucleation and  
annihilation of the single vortex (Guslienko et al.  2002). The study of the field dependent displacement of the 
vortex has been carried-out on the I06 beamline. The sample of interest is a square Py element with relatively  
large lateral  dimensions (900 nm).The external  magnetic  field is  applied with a  permanent  magnet  and the  
photon energy is tuned at the L3 Fe absorption edge (706 eV in this experiment). The imaging of the magnetic 
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Fig.  XI.12 Effect  of  the  “phase  optimization”.  Real  and  imaginary  part  of  the 
reconstructed magnetic structure in a Py square element. (a) and (c) Real part with 
and without the phase optimization. (b) and (d) Imaginary part with and without the 
phase optimization. (f) and (e) Line scan along the magnetic element before (f) and 
after (e) the phase optimization. 
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structure for each field value is achieved following the procedure described in section XI.2.1: accumulation of  
100 holograms for each polarization with a 6s exposure time for each frame. At zero field, similarly to our  
previous observations, a Landau ground state is observed. The vortex core is roughly at the centre of the square  
element (Fig. XI.14.a), in good agreement with the micromagnetic simulations. As discussed above, when a  
magnetic field is applied, the vortex is shifted perpendicularly to the field to increase the net magnetization along  
the field (Fig XI.14.b and XI.14.c). At 170 Oe, the field is close to the annihilation field, and the vortex has 
almost completely vanished. 
Despite the poor quality of the reconstruction, the field-induced displacement of the vortex in the square Py  
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Fig. XI.13: Kerr-hysteresis loop in square Py element (a) Schematic drawing of the application 
of the field on the magnetic sample. (b) Micomagnetic simulation showing a hysteresis loop of 
a Pu square element. Several positions along the loop are marked with simulated images of the  
domain pattern at different field values

Fig.  XI.14 Field-induced  displacement  of  the  vortex  core  and  comparisons  with  micromagnetic  

modeling. The square Py element is imaged at several field values. (a) Landau domain structure which 
formed at remanence (b-d) Displacement of the vortex core perpendicularly to the applied field. The 
shift increases with the applied field (e-f) Micromagnetic simulations of (a-d).
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element  is  clearly  visible  and  is  in  reasonably  good  agreement  with  the  micromagnetic  simulations.  The 
discrepancy between the simulations and the experimental data could result from the idealistic nature of the  
model.

XI.2.4 Time resolved imaging of the magnetic vortex dynamics

In the previous sub-sections we mainly employed the Py elements as model objects to demonstrate the  
suitability of FTH coupled with XMCD to investigate in-plane magnetic structures. However, and as discussed 
previously  these  elements  also  have  a  great  technological  interest,  and  understanding  the  magnetization  
dynamics of such objects is of prime importance. The vortex domain closures can perform a number of functions  
ranging form non-volatile high-density data storage to microscopic microwave generators (Madami et al. 2011, 
Pribiag et al.  2007). The latter has recently attracted particular attention when it has been shown that a vortex  
can be excited with DC current and perform as a microwave oscillator (Pribiag et al. 2007). It has been predicted 
that if a macroscopic pattern of isolated vortices could be coupled to obtain phase synchronized precession, the  
generated  power  would  be  sufficient  for  wireless  communication  of  microwave  radiation  in  localised 
macroscopic regions (Sugimoto et al. 2011). 
The technological exploitation of vortex oscillators supposes a detailed understanding of their magnetization 
dynamics.  We have demonstrated in the previous section that holographic imaging can provide the precise in-
plane structure of Py elements and is well suited to study the displacements of the vortex core induced by a  
magnetic field. In this section, the technique is used in time resolved mode, to investigate the precession of the 
vortex core induced by short magnetic pulses. 
The experiment has been carried-out on the upgraded ID32 beamline at ESRF on 2 x 2  μm2  Py squares (Fig. 
XI.10). The Py sample are processed using the procedure described in section X.2.1 and elsewhere 
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Fig.  XI.15:  Schematics  of  the  time-resolved  experiment  .  (a)  Stroboscopic  imaging  in  pulsed 
excitation in 16 bunch operating mode. The magnetic pulse is triggered by the X-ray bunch and  
delayed by dt. (b) OOMMF calculation of the gyration of the vortex core in a 500x500 nm 2 Py square 
element for three different stages of the precession (c) Py element and coplanar waveguide (CPW) 
tracks on the other side of the membrane behind the circular aperture. (d) Orientation of sample with 
respect to the X-ray beam.



Chapter XI : Investigation of the magnetic structure and dynamics of sub-micron magnetic elements using FTH

(Duckworth  et  al.  2011).  To provide the RF field,  coplanar waveguides (CPW) are integrated on the Si 3N4 

membrane using lithographic procedures (Fig. XI.15.c). In some experiments not presented in this manuscript, 
the size of the Py elements was generally chosen to match the resonant frequencies (sub-gigahertz range) of the  
vortex oscillation (the later being determined by micromagnetic (OOMMF) simulations). In this experiment this 
knowledge is not required since the vortex is excited at its eigenmodes.
The principle of the experiment is shown in Fig.  XI.15.d, the sample is rotated by 45° to image the in-plane 
magnetization. The holograms for both polarizations are recorded following the procedure described in section 
XI.2.1 with some adjustments corresponding to the particularities of the beamline. The main difference between 
the I06 and SEXTANTS beamline and the ID32 beamline lies in the distance between the source and the sample. 
The latter is much larger for the ID32 beamline.  As a consequence,  larger transverse coherence lengths are 
obtained, and larger pinhole diameters are used (50  μm instead of 20  μm). The flux on the sample is  thus 
increased thanks to the larger pinhole diameter, but on the other hand, the 16 bunch operating mode yield an 
inherent  decrease  of  the  available  flux.  As  a  consequence,  the  counting  time  for  both  polarizations  was 
equivalent to the I06 experiments (500-800s per polarization).  
The set-up allows to bring the CCD camera closer to the sample (~33 cm), but on the other hand a different type 
of CCD camera is used, with a smaller chip (1340x1300 pixels) and a 20 μm pixel size. Using Eq. (XI.2), the 
resolution limit depending on the extent of the reciprocal space is calculated to be 22 nm as compared to the 30 
nm obtained with the I06 set-up.
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Fig.  XI.16:  Field induced displacement of the vortex core.  The red dot incicate the 
position of the vortex core in the Landau ground state (a) Reconstruction of the Landau 
ground state at the remanence (no field applied) for the 2x2 μm2 Py element. (b) and (c) 
Shift of the vortex perpendicularly too the applied field with increased field values. (d)  
Line profile through the vortex core revealing the vertical displacement of the vortex 
core.

(a) (b) (c)

(d)
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Vortex vertical 
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To confirm that the waveguide is able to provide the RF field, measurements were first carried out with a static 
magnetic field, to check the field-induced displacement of the vortex core. These measurements were also a  
good opportunity to evaluate the quality of the reconstruction provided by the set-up. 
Fig. XI.16 show the reconstructed in-plane magnetization at the remanence (zero-field, Fig. XI.16.a) and for two 
different  field-values  (Fig.  XI.16.b  & XI.16.c).  A very good quality  reconstruction  is  obtained.  The  vortex 
closure domain is perfectly visible,  and the vortex core is  located at  the centre of the square element.  The  
contributions from the charge scattering are very weak (faint contour of the aperture is visible) even without  
normalization of the data: the two polarizations yield a similar intensity thanks to a good calibration of the 
undulator and the very good stability of the experimental set-up. Knowing the dimensions of the Py square (2 x 2  
μm2) it is possible to evaluate the resolution of the data by counting the number of pixels in the Py element. Pixel  
sizes of 24 μm and 36 μm in the vertical and horizontal directions of the hologram are found respectively. The  
larger pixel size along the horizontal direction is explained by the fact that the 45° tilt angle leads to a projection  
of the sample onto the plane normal to the beam, which causes a  contraction (by sin 45°) of the real space 
images along the horizontal direction. 
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Fig. XI.17 Reconstruction of the magnetic flux closure for different delays  

from the rise point of the magnetic pulse. (a) – (g) Position of the vortex 
core for increasing delay times. The red dot indicates the initial position of 
the vortex core (dt = 0). (h) OOMMF calculation of the gyration of the 
vortex  core  in  a  Py  square  element  for  three  different  stages  of  the 
precession
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When the field is applied, one can notice that the vortex is shifted perpendicularly to the field in order to increase 
the net magnetization along the field. This displacement increases with the applied field, as illustrated in Fig. XI.  
16.b,c where the red dot indicates the position of the vortex core in the ground state. Respective displacements of 
100 and 170 nm are found along the vertical direction for the small and large field value. Note that the vortex  
displacements remain rather limited, indicating that the Py element is far from saturation. 
In any case, the displacement of the vortex core indicates that the CPW is able to provide the RF field and that  
the time resolved measurement can be performed.  
To investigate the magnetization dynamics of vortices, the measurements are performed in stroboscopic mode by 
using an RF pulsed excitation. The X-ray pulses are provided by the 16 bunch filling mode with 176 ns between 
bunches (Fig. XI.15.a). The pump field pulses are used to induce a damped vortex precession while the X-ray 
probe pulses can image a particular phase of the precession (Fig. XI.15.b) and serve as triggers for the pump 
(Fig. XI.15.a). The 176 ns delay between the bunches is in principle sufficiently long for each gyration to be  
dumped before the next one is excited. Overall we imaged 7 frames with delay times starting from 0 to 8 ns. The  
delay time correspond to the delay between the front edge of the pump pulse and the X-ray probe pulse. 
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Fig. XI.18: Position of the vortex core for different stages of the precession. (a) and (b) Line profiles 
through the vortex core showing the evolution of the vertical and horizontal positions of the vortex core. 
The line profiles are taken at positions indicated in (d). (c) Position of the core for various delay times. 
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Fig. XI.17.a to g shows the evolution of the vortex core position for different delays. The initial position of the  
vortex core is indicated by a red dot. From Fig. XI.17, it is clear that the largest oscillations are observed at the  
beginning of the precession. The displacement of the vortex core is indeed obvious between 0 and 1 ns (Fig 
XI.17.a & XI.17.b) and between 1 and 2 ns (Fig. XI.17.b & XI.17.c). After 2 ns, the displacements are much  
more difficult to see on the reconstructed images. It should be noted that the amount of displacement is less than  
predicted by the micromagnetic simulations (Fig. XI.17.h). 
To precisely quantify the displacement of the core, vertical and horizontal profiles (Fig. XI.18.a & XI.18.b) are 
drawn though the vortex core, along the directions indicated in Fig. XI.18.d. The variations of the core position 
are more obvious on the line profiles,  and allows to determine the position of the core for each delay. Fig.  
XI.18.c shows how the position of the core moves from the beginning of the oscillation towards the end when  
the excitation is dumped. The displacement of the core and its cyclic motion is clearly visible, as predicted from 
simulations. No satisfying explanation was found so far to explain the small amplitude and the higher asymmetry 
of the gyration as compared to the simulations or experimental results with other techniques (Jung et al. 2011). 
These effects can either arise due to particular structure of the pulse (for instance, slow rise time), or coupling  
effects induced by the periodic pattern of magnetic vortex oscillators (Ogrin et al. 2015).
In any case and as discussed by Ogrin  et al.  2015, this experiment is to our knowledge  the first successful  

attempt of using x-ray time resolved holography for imaging in-plane magnetized materials.

XI.2.5 Observation of the resonance gyration of the magnetic vortex in a nano-contact spin torque 
oscillator

Prior to the ESRF experiment presented in the previous sub-section, most of our first tentatives to image  
the magnetic vortex dynamics in the Py element were unsuccessful. Two experiments were performed on the I06 
beamline to try to resolve temporal magnetic configurations of the magnetic vortex and to explore their resonant 
gyration. The main objective of these experiments was to study the resonance characteristics of the gyration as a 
function of the geometric external parameters of the system, including the bias field and applied radio frequency 
(RF) power. Unfortunately, it was found that for all the Py elements tested, no distinguished RF magnetic signal 
from them could be obtained. It was thus decided to use another type of samples, exhibiting vortex dynamics but  
generated by the Spin Transfer Torque (STT) phenomena (Slonczewski 1996). 
The samples are based on nano-contact spin-torque oscillator (NC-STO) and utilises STT to excite ferromagnetic  
resonance (FMR) in which the damping is balanced by the torque of the spin-polarised current, creating auto-
oscillations or damping-free precession of magnetisation (Pribiag et al. 2007). 
The samples were manufactured at KTH by J.  Åkerman group who also provided the RF characteristics.  In 
previous experimental studies, it was shown that a microwave signal can be generated from this system with the 
amount  of  power  and  the  line  width  comparable  with  those  produced  in  giant  magneto-resistance  (GMR) 
systems. The observed effect has a relation to the magnetisation dynamics in the NiFe layer (Fig. XI.19.a), but 
the exact nature of it is not completely understood. Given the large range of generated microwaves (from 250 
MHz to 3 GHz), it was suggested that the effect must involve a complex behaviour based on a vortex-antivortex 
(V-AV) pair (Petit-Watelot et al. 2012). 
We investigated these dynamics with HERALDO, which was found to be suitable for imaging both in-plane and 
out-of-plane components of the magnetisation with a very good spatial resolution (20-30 nm). The technique is 
particularly relevant for the study of magnetic vortices because their dynamics can be generally described as the  
combination of these two components. 
The  experiment  was  carried-out  on  the  SEXTANTS beamline.  Details  on  the  setup  for  coherent-scattering 
experiments (including holographic experiments) can be found elsewhere (Sacchi et al. 2012). Both out-of-plane 
and in plane magnetization were investigated by varying the tilt angle of the sample (from 0 to 45°). 
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The main  advantages  of  the  set-up  as  compared  to  the  I06  beamline  are  the  very  good calibration  of  the  
undulators,  the high stability of the set-up (no normalization needed), and the possibility to bring the CCD  
camera closer to the sample (less than 30 cm). The resolution limit with this set-up is 17 nm, a value which is  
confirmed by our reconstructions (Fig. XI.20).
The sample is a NC-STO single layer vortex device which consists of a stack of Pd5-Cu20-NiFe7-Cu2-Pd2 (in 
nm, Fig.  XI.19.a). It is grown on the same mask structure that has been used for the experiments with the Py 
elements 
The vortex gyration is excited with a DC current in the region 0-35 mA, using an integrated CPW with a ~ 100 
nm nanocontact which is shown in Fig.  XI.19.b. As discussed previously, one of the main advantage of the 
sample is that the dynamic effects can be observed in a continuous spectrum of excitation frequencies, roughly 
proportional to the DC current supplied to the sample. The measurements have been performed on two samples  
with different sizes of the nanocontact for different values of the DC current and different tilt-angles. 
Fig.  XI.19  show the recorded holograms and the corresponding reconstructions  for  different  values  of  DC 
currents (no current applied, -26 mA and 26 mA) and with the photon energy tuned to the Fe L3 edge. 
The strategy to record the holograms is slightly different as compared to the previous experiments. The single-
frame exposure is very short (~ 60 ms) but a larger number of frames is accumulated (typically 800). 
As shown from Fig. XI.20. a-c the magnetic contrast is readily visible on the holograms. In particular, it is clear 
that the current of opposite signs lead to a different magnetic contrast. 
The reconstructed holograms (Fig.  XI.20.d-f) confirm that the system exhibit a vortex like magnetic system 
formation  that  depends  on  the  current  and  changes  chirality  of  in-plane  vector  rotation  depending  on  the 
orientation of the current. Note that the imaging was not performed in time-resolved mode, and the gyration of 
the vortex is thus averaged over time. The reconstructed images show the trace of this gyration. The latter is  
coloured according to the projection of the magnetisation components in the vortex structure onto the direction 
of  the  wave  vector  of  the  incident-beam.  Note  that  the  vortex  formation  occurs  on  the  edge  of  the  'rim' 
corresponding spatially to the aperture of the gold layer. 
Based on the fact that the vortex structure is observed away from the nanocontact, it is expected that at this value  
of the current, the vortex structure was initially formed underneath the contact, but was then displaced due to the 
large variation of the potential and the magnitude of the current. 
Our first interpretation is that the vortex gets eventually pined on the boundary of the rim. It is indeed likely that  
the magnetic layer is highly stressed at these points because of the physical removal of the gold layer behind the  
Si3N4 membrane. The mechanical stress along the rim is likely to cause a sharp variation of the potential energy  
density (due to anisotropic effects) which can play a role of a pinning site where the vortex is likely to get  
trapped. The fact this result can be produced by both orientations of the current suggest that this effect is due to  
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Fig. XI.19 Nano-contact spin torque oscillator (STO) (a) Scheme of the “single” layer Nanocontact spin-torque 
oscillator. (b) SEM view of the nanocontact (image taken from Sani et al. 2013)
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the magnetic field generated by the DC current rather than the Spin-Transfer-Torque. The latter is still present  
but can not be distinguished, unless the vortex is free to move. 
This observation is very interesting since it allows to image the vortex system which otherwise would likely to 
dissipate or run off from the nanocontact area. On the other hand, the pinning site adds additional potential  
which inhibit the dynamic properties. In a future experiment, it is planned to find an optimal condition, in order 
to observe the vortex dynamics and eventually apply time resolved measurements.

Conclusions

In summary it is demonstrated in this chapter that Fourier transform holography applied to magnetic 
systems is a very powerful technique to investigate the magnetic structure and dynamics in sub-micrometer  
magnetic elements. The use of an extended reference can enhance the resolution of the reconstructed data and  
allows to image easily both in-plane and out-of plane magnetization.
In the experimental part of this chapter, it is shown that the in-plane magnetic structure of several magnetic 
systems  can  be  determined  with  magnetic  HERALDO.  More  importantly,  the  technique  can  be  used  to 
investigate  the  magnetization  (in  plane  and  out-of-plane)  dynamics  in  sub-micrometer  structures.  The 
demonstration of  the ability of the technique to provide new insight in the understanding of magnetization  
dynamics  of  vortex  domain  closures  in  Py  element  and  of  Spin  Torque  oscillator  is  a  very  interesting  
contribution  to  the  field.  It  is  believed that  these  results  could  be  of  great  value  in  developing  promising 
technologies for computation and communication applications.
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Fig. XI.20 HERALDO reconstructed image of the magnetisation in the single layer structure for several  

DC currents applied.  (a-c) Difference holograms for opposite photon helicities and different values of 
DC current; (a) I =0, (b) I = -26 mA (c) I = 26 mA. (d-f) Corresponding reconstructions revealing the in-
plane magnetic structure. The contrast indicates black (right) and white (lef) direction of the in-plane  
magnetisation component
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Conclusions and perspectives

The perspective chosen for this work is taken from the metal physics / metallurgy approach (Materials  

Science) to establish the properties of complex system formed by a very large number of atoms in crystalline  

state. It is classically based on the study and understanding of the interrelationship between microstructure of  

defects, physical properties and processing. In this framework, we use a specific experimental tool, synchrotron 

radiation, more specifically, coherent X-Rays diffraction techniques to address some fundamental and topical 

questions. There is indeed a good convergence between the range of length scale accessible by CXD for metals 

and the one concerning size effects on structural and mechanical properties questioning. 

Structural defects and size effect on mechanical properties

The mechanical response of crystals stems from the nature, density and behaviour of crystal defects.  

Compared to bulk scale, submicron size samples have a different response because of some modification of the 

predominant mechanisms of deformation. This modification is not linked with the apparition of a new type  of 

defect, which is still dislocation based, but in their detailed character and production. What dictates the selection 

of a given mechanism of deformation is a matter of the internal state of stress (elastic stored energy is the driving  

force) and the ability to nucleate a specific type of dislocation/source (kinetic). 

• The residual internal stress level in small structure is strongly modified as compared to the bulk:  first 

the closer proximity to boundary conditions (role of free surfaces,  spatial  extent of interfacial strain 

more or less relaxed) raises its magnitude, but also its spatial heterogeneity. Second, depending on the 

processing route, a same geometrical object can be in a more or less relaxed state of residual strain. A 

big challenge is to measure this internal state  and  to identify the possible  stress generator: density of 

defects and interface relaxation essentially.

• The next question concerns the nucleation mechanism: what character/structure of dislocation would be 

able to relax and in what proportion an external loading condition superimposed on an initial state of  

strain.  This dictates critical  level  of  mechanical  loading for which the object  undergoes irreversible 

deformation.

We have in this work made several steps to answer these questions.

Quantitative defect identification and imaging: 

• a first requirement is to demonstrate the ability of  CXD technique to quantitatively identify all type of 

dislocation-related defects, and the requirements to do so. In an comprehensive way,  we developed in 

Chapter III and IV method and numerical tools to list  the pertinent signature on the diffraction pattern 

characteristic of most characters of dislocation (perfect, dissociated and partial), including stacking fault 

ribbon.  It  includes  configurations  associated  with  the  physical  variation  of  stacking  fault  energies 

covering all  f.c.c  metals.  Moreover  the effect  of  arrangement  in  pertinent  dislocation loop type,  as 

experimentally  encountered  in  thermal  quench,  irradiation  and  indentation  is  also  achieved.  Best  

contrast,  condition of visibility and the associated relevant  choice of the Bragg diffraction vector is 

established and discussed for each case. 

It  turns out,  that within the kinematic approximation,  CXD technique is as much pertinent as TEM 

contrast imaging to quantitatively identify defect. The requirements of using several g vector is as much 

as in TEM for example to unambiguously determine a Burgers vector. Practically speaking, since both 

techniques are based on the long range strain field generated by the defect, this can be achieved for  

'isolated' defects. For example in TEM defect imaging, absolute determination of defect nature can only 

be made on a part of a thin foil  where the line/structure stands isolated (50nm -100nm thickness) and  
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where internal strain is rather low (e.g. impossible in tangled dislocation lines / large variation of due to 

other  sources  of  strain).  The  application  of  defect  determination  by  CXD  on  atomitic  realistic  

configuration is demonstrated Chapter IV. 

• The imaging capacity by phase and electron density reconstruction is a powerful technique that in our 

opinion can fill the absence in CXD (lens less technique by nature) of multi-beam contrast techniques as 

in TEM (weak beam mode for example). 

Using reconstruction, we established for the first time on a exhaustive list of defects a methodology that  

quantitatively identifies the geometrical and physical nature of the defect:

◦ the local electron density contrast resolves the location of a dislocation line,

◦ the reconstructed phase magnitude (quantitatively defined by  the  product of  g with the  defect 

phase jump) and chirality defines unambiguously the nature of the defect.

Due to the long rang strain field of the defects and the localisation of the phase jump on the defect, this  

can be achieved with a spatial resolution of the reconstruction smaller than the physical size of the  

object. Finally, it can (with the pertinent choice of the diffraction vector) already be applied on 2D 

reconstruction. 

• The extreme sensitivity to crystalline imperfection in CXD pattern is a powerful tool to quickly evaluate 

the  quality  of  a  crystallite.  We  show  a  large  variation  of  crystallite  quality  for  equivalent  shape 

structures (as observed by AFM / FEG-SEM) obtained by the dewetting process. The non destructive 

nature of CXD characterization allow to make sure that any mechanical characterization is carried out  

on equivalent initial state, which is compulsory for investigating size effects on mechanical response.

Fast mapping of large collection of samples (a few thousands gold crystallites per area) has been carried 

out  as well  as complementary characterization  (AFM) of same area:  this opens the perspective for 

statistical measurements of mechanical response as function of size and crystallite quality, an on going 

work at the lab. with a dedicated SEM in-situ nanoindentation system. 

• An original in situ deformation experiment of indentation on a pristine gold crystallite is presented and 

by applying our methodology, successful determination of the nucleated stage is demonstrated. Using 

3D reconstructions at different stages of mechanical loading:

• a prismatic loop generation is clearly identified: this mechanism is in good agreement with 

atomic simulations previously reported. 

• We demonstrate the interplay of nucleated defects with interfacial strain leading to 'mechanical  

annealing'

• More surprisingly, strong recovery mechanisms operate after ageing modifying the global shape 

and orientation of the deformed crystallite. 

This successful experiment paves the way  for exploring  different  mechanical  loading  on our model 

samples.

Interfaces and boundary conditions have also successfully been explored on various systems :

• In a pristine twinned part of gold crystallite, we were able to probe the high sensitivity of the phase 

reconstruction to measure the effect of free surface relaxation. At first, we checked that the coherent  

interface (twin) is not exhibiting a long range strain field, and help to isolate the diffracted part of the 

crystal from the substrate interfacial strain. This 'free standing like' diffracted crystallite allow us to 

have access to local measurement of the free surface relaxation. I,n this configuration, we interpret the  

phase gradient  close to  <100> and <111> facets  as  their  respective expected atomic surface strain  

relaxation.
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• A  more  complex  case  of  interface  in  bimetallic  system  has  been  revisited.  The  f.c.c/b.c.c 

Cu[001]/Ta[001] system studied in  the laboratory  is  confirmed to  be  of   Stransky-Krastanov type. 

Namely we quantitatively measured by in-situ XRD the wetting layer to consist in two pseudomorphic 

Cu atomic layers on Ta.  It shows excellent agreement with extensive ab-initio calculations. The CXD 

pattern of the f.c.c highly strained crystallite is discussed in terms of the f.c.c/b.c.c interfacial structure 

and evaluated with the help of extensive and large scale Molecular Statics simulations.

• Finally, successful 3D reconstruction is demonstrated to obtain the microstructure of inversion polarity 

domain along a GaN wire.

As a final note, we can draw a general perspective about 3D strain imaging in the framework of mechanics and 

structural stability including size effects: the combination of measuring quantitatively,  in situ, even in buried 

structure, both microstructural defects and internal displacement field makes CXD as a unique tool to solve 

fundamental mechanical problems. The most advanced theory to incorporate size effect in continuum model is 

based on strain gradient plasticity. It lacks however of some experimental validation, for example to evaluate  

quantitatively the back stress against an interface. CXD can also address some long standing question like for  

example  the  understanding  of  plastic  deformation  by  twining  mechanism  and  fracture/plastic  relaxation  

problems. 

At last, a field not yet fully addressed with this technique concerns studies of phase transformations in small 

system.

Magnetic configuration and time resolved dynamics

• In a model micrometer dot  of  permalloy (Fe-Ni),  size effect  on complex magnetic configuration is 

successfully demonstrated, using our reconstruction of Fourier Transform Holography. Moreover, time-

resolved dynamics of magnetic vortices at the nanosecond is demonstrated in this micromagnetic model 

system.  This  opens  the  perspective  to  study  coupling  effects  in  small  scale  systems,  particularly 

concerning the ferroelectric-ferromagnetic coupling induced in multilayers made of multiferroelectric  

materials with magneto-strictive metallic layers.

The  challenging  scientific  perspectives  we  presented  shall  benefit  from  constant  improvements  of 

coherent X-rays sources, particularly some actual or available or in a very near future. Higher brilliance sources  

bring increased resolution in reconstruction due to probing larger portion of reciprocal  space.  Programmed  

upgrades at standard synchrotron sources shall bring a x10 factor in that respect. Even more spectacular are the 

characteristics  of  X-ray  free  electron  lasers,  where  up  to  9  decades  in  brilliance  is  available.  Access  to  

exceptional   time  resolved  experiments,  as  already  demonstrated  in  magnetic  holography  by  von  Korff 

Schmising  et  al.  (2014)  or  by  Clark  et  al.  (2013)  for  acoustic  wave  imaging  in  crystallite  have  been  

demonstrated.

Clark, J. N. et al. (2013).  Science 341, 56–59

Von Korff Schmising, C. et al. (2014) Phys. Rev. Lett. 112, 217203 
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Appendix A1: Study of the Cu/Tantalum (0 0 1) interface

A1.1 Calculation of the excess interface energies for several Cu-Ta interfaces

The excess interface energy was introduced in Chapter VIII  and  used to evaluate the thermodynamical 
stability of Cu thin film. In this chapter it is used to check the stability of several Cu-Ta interfaces. As a remind it 
can be expressed as following :

γ = (E supercell−( ETa bulk−ECu bulk ))/ A   (A1.1)

where Esupercell  is the sum of the potential energies of the atoms in the atomic configuration, and ETa bulk and  ECu bulk  

are  the  cohesion  energies  for  Ta  and Cu  multiplied  by  the  respective  number  of  Ta  and Cu  atoms in  the  
configuration and A is the surface area of the thin film. With this potential, the cohesion energies for the bulk Ta 
atoms and bulk Cu atoms are respectively -3.54 eV/atom and -8.1 eV/atom.
Equation (IX.1) depends on the energy of the Cu-Ta interface, the free surface energy of the Cu thin film, and of  
a strain contribution, and the excess interface energy is also given by:

γ = γ i+γ f +
1
2

E ϵ0
2
h    (A1.2)

where γi  is the energy of the interface, γf  the free surface energy of the Cu surface and  1/2E ε0
2 h is the elastic 

strain contribution which increases linearly with the height of the thin-film. In a strain free surface, the excess  

interface energy would be simply the sum of γ i  and γf, and it is straightforward to understand that the sum of 
these two contributions,  which is  the most  adapted criteria to evaluate a  stability  of an interface,  is  the  y-

intercept of  γ = f(h).

In the following,  γ is calculated for 6 distinct interfaces (0 PM, 1PM and 2PM for each orientation), and various 
height of thin films. The geometry considered in these simulations is not a particle close to the equilibrium 
shape, but a thin film. Periodic boundary conditions are thus applied along x and y. (Fig. A1.1.a). To simulate a 
semi-infinite substrate, the bottom layer of the Ta substrate is fixed in all three directions of space. The energy of  
the atoms in this plane are set to zero and not considered in the excess interface energies calculation.
The  determination of the atomic structure and of the excess interface energy for each interface is  achieved 
through an energy minimization of the structure at 0K using using a quenched dynamical algorithm (Rodney et  

al.  2005). The force between atoms are minimized until  they are less than  2.10-5   eV/Å.  It  is important to 
understand that  the atomic structure of  each interface strongly evolves  upon relaxation since the atoms are 
relaxed in all three directions. In particular, the atomic structure of the Cu-Ta interface with 0 Cu PM layer is  
likely to evolve due to the thermodynamical stability of the PM structure on a Ta (0 0 1) surface.
The in-plane strain for the (0 0 1) orientation is minimized to the value of -0.07% with the supercell already  
described in Chapter VIII which consists of 22x22 Cu atoms on top of 17x17 Ta atoms. 
The relaxation of the strain in the thin film clearly depends on the width of the substrate. The strain at the Cu-Ta 
interface is indeed partially relaxed in the Ta substrate. From Eq. (A1.2) it is clear that larger values of strain in 
the thin film leads to an increased excess interface energy. For a low number of Ta planes (n < 4), the mismatch  
strain in the interface can not be relaxed in the substrate and the relaxation of the interface is achieved through a  
modification of the atomic structure in the thin film. As the number of substrate planes increase, the strain of the  
interface is more efficiently released in the substrate. A decrease of  γ is observed for an increasing number of 
substrate planes for up to 9 Ta planes. Above this value, it is almost independent on the thickness of the Ta  
substrate.  In order to make quantitative comparisons between interface with different  atomic structure,  it  is  
important  to  make  sure  that  a  low thickness  of  the  substrate  does  not  induce  a  modification  of  the  strain 
distribution in the thin film. The Cu-Ta interface was modeled with a sufficiently large number of Ta planes 
(n=12).
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The  minimization of the in-plane strain for the (1 0 1) orientation is achieved through a slightly different Cu/Ta 
ratio. As discussed in the previous section the OR relationship for this orientation can be described as follows:
Cu(1 0 1)[1 0 1] || Ta (0 0 1)[1 0 0]. This means that the  [1 0 1] axis of the Cu thin film is aligned with the [1 0 
0] direction of the Ta substrate, while the [0 1 0] direction of the thin film is aligned with the [0 1 0]  direction of 
the Ta substrate. 
Along the [1 0  1] direction which will be called the x direction in the following, the minimization of εxx  to a 
value of -0.07% is achieved through the ratio described in the previous paragraph (22 Cu/17 Ta). Along the y  
direction,  the nominal  value of the  mismatch strain is  equal  to 2*(aCu  – aTa)/(aTa  + aCu)  ~ 8.9%. This value 
significantly lower than  εxx  is minimized to  0.02% by a ratio of  32 Cu atoms on top 35 Ta atoms. Overall, the  
supercell for the (1 0 1) orientation consists of 22x32 Cu / 17x35 Ta atoms. 
For both orientation, the in-plane strain is minimized to such low values that the strain contribution in Eq. (A1.2)  
is expected to be very small. As a consequence the excess interface energy should be nearly independent on the 
height of the Cu thin film.

The excess interface energies are calculated for the six interfaces with a number of Cu planes  varying between 9  
and 100. Below this number, the structure of the thin film is too defective to obtain reliable values of γ. 
As expected the latter is mostly independent of the number of Cu planes, except for a low number of layers with  
the (1 0 1) orientation where the value of γ rapidly increase with the number of Cu planes, when this number is  
below about 20. Above n = 20 planes, a transition occurs, and  γ becomes independent of the number of Cu 
planes. This transition will be explained in the following.
For the (1 0 1) orientation,  γ0, i.e the y-intercept of the curve which represents the sum of the interface energy 
and of the free surface energy of the Cu thin film is calculated from the slope of the curve after the transition ( i.e 

for n> 20). From Fig. A1.2, it appears that a low value of γ is obtained for three distinct interfaces, namely f.c.c. 
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Fig.  A1.1 Geometries  considered in  the simulations.  The copper atoms are  coloured in  

yellow, and the Ta atoms in grey (a) Thin-film simulation with periodic boundary conditions 
along x and y and a large vacuum region along z. (b) Simulation cell with periodic boundary 
conditions along x, y and z to calculate the interface energy
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(0 0 1) / 1 PM, f.c.c. (0 0 1)/ 2 PM and f.c.c. (1 0 1) / 1 PM. 
For the two orientations, the largest values of  γ are obtained for 0 PM layers in the initial configuration. As  
described previously, when the first Cu layer has a f.c.c structure in the initial configuration, it undergoes a f.c.c  
to b.c.c. (0 0 1) transformation. The latter is less densely-packed and the extra-atoms that can not fill this first  
b.c.c. layer are distributed in the overhead planes and form a complex structure which is intermediate between 
f.c.c. and b.c.c. in the 2nd and 3rd Cu planes. In the 4th Cu plane and above for the (1 0 1) orientation ( 5th and above 
for the (0 0 1)), defect free f.c.c planes are obtained (not shown here). These interfaces are highly unfavorable  
energetically and they are not likely to be formed experimentally. 
The important outcome of these simulations is that the (0 0 1) orientation appears to be more stable than the (1 1  
0) above n = 13 Cu planes. Of course this number is largely inferior to the height of the observed experimental 
islands which ranges between 100 and 400 nm so this is in good agreement with the experimental observations.

At this stage it is not clear if 2 PM layers in the initial configuration leads to a more stable interface than a single  
PM layer since the excess interface energies are found to be equivalent for the two configurations. This suggests  
the existence of two interfaces which are very close energetically. However it should be also noted that these 
results contradict liquid state dewetting simulations we performed with this potential, where a (1 0 1) orientation 
was obtained for as much as 55 Cu planes. 
The discrepancy between these two results can be explained quite easily. As evidenced in the previous section,  
and contrary to their (0 0 1) counterparts, the crystallites dewetted with the (1 0 1) orientation exhibit a very 
rough surface. No (1 0 1) specular facet is present on top of the particles, free surfaces with this orientation are  
indeed very unfavorable energetically. In the current simulations, the structures consist of thin film of varying 
thickness with a large (1 0 1) free-surface for the (1 0 1) orientation. Since the excess interface energy is the sum 
of the free-surface energy of the thin film and of the interface energy, it is normal that the value of  γf  is largely 
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0 1) orientation and a varying number of PM layers in the initial configuration.
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superior for the (1 0 1) orientation. It is also likely that the potential predicts lower values of interface energies 
for the (1 0 1) orientation, which would explain why the (1 0 1) orientation is promoted for liquid state dewetted  
particles. 
To calculate the value of the interface energy, a different geometry is considered. Instead of a thin film, the  
simulation cell is periodic along the x,y,z directions with two equivalent Cu-Ta interfaces (Fig. A1.4.b). The 
supercell is created with the same Cu-Ta ratio to ensure an almost strain-free configuration. 
Similarly to the thin film simulations, the interface energy is obtained by energy minimization at 0 K . The 
values of γi  for the four most stable interfaces are presented in table. I.

(1 0 1) / 1 PM (1 0 1) / 2 PM (0 0 1) / 1 PM (0 0 1) / 2 PM

γint  (J/m2) 0.64 0.75 0.79 0.82

Tab. A1.1: Comparison of the interface energies respectively to the bulk Cu and bulk Ta values

These calculations confirm that the (1 0 1) orientation leads to lower interface energies, explaining why this  
orientation is promoted for the liquid state dewetted particles. It does not necessarily contradict the experimental  
results since the particles dewetted experimentally exhibit a shape close to the ECS with large (1 1 1) and (1 0 0)  
free-surfaces. The present calculations evidence that the (1 0 1) orientation is the most stable only if the particle 
is far from the equilibrium crystal shape (ECS) and does not contain any (1 0 1) free surfaces. For particles  
which are  close to  the ECS,  it  is  thus  clear  that  the potential  will  favour  the (0 0 1)  orientation,  in  good 
agreement with the experimental results.

Fig. A1.3 shows the atomic structure of the three most stable Cu-Ta interfaces. For the values of mismatch strain  
considered, ( εxx  = εyy ~ 31.4% for the (0 0 1) orientation, εxx  ~ 31.4% and εyy  ~ 8.9% for the (1 0 1) orientation) 
it is clear that the thickness of the thin film is largely above the critical thickness for dislocation misfit generation 
(Matthews & Blakeslee 1974), so that the large elastic mismatch strain will be partially relaxed by introducing 
misfit dislocations. 
If the initial configuration has a (0 0 1) orientation and contains a single PM layer, the structure of the first Cu 
layer does not change upon relaxation, and a b.c.c. structure is still observed. However, the position of the atoms  
is significantly modified (Fig. A1.3.a). They form elementary cells of 3 or 4 atoms along both in-plane directions 
(4x4, 4x3 and 3x4 and 3x3 atoms, see Fig. A1.3 where these elementary cells are separated by red dashed lines).  
The second Cu plane has a f.c.c.  structure but  it  is clear from Fig. A1.3.b that  the atoms are not  regularly  
distributed. They also form elementary cells of 4 or 5 atoms along both in-plane direction. In fact, 5 f.c.c atoms  
can be found on top of 4 PM atoms, while 4 f.c.c atoms are placed on top of 3 PM atoms. The 4 f.c.c Cu atoms 
on the 3 PM Cu atoms are in tension (εxx  ~ 3.04%) while the 5 f.c.c Cu atoms on the 4 PM atoms are in 
compression (εxx  ~ -3.40%). Although significantly lower than the nominal value of   εxx  ~ 31.4%, it should be 
noted that this value is almost two orders of magnitude larger than the strain obtained with the ratio 22 Cu / 17 
Ta. The 5 Cu/4 Ta and 4 Cu/ 3 Ta elementary cells are separated by two families of orthogonal edge dislocations 
which are aligned along the substrate x and y directions. In contrast to the initial mismatch strain, they give rise  
to a nonuniform strain distribution that will discussed in the next sub-section and in the final section of this  
chapter.
For 2 PM layers in the initial configuration, the first plane is a perfect b.c.c. plane (Fig. A1.3.d), on top of which  
a second b.c.c. plane with 4x4, 4x3 and 3x4 and 3x3 elementary cells (Fig. A1.3.e) is observed. This plane is  
equivalent to the first-Cu plane in the 1 PM configuration. On top of this b.c.c.  plane, a f.c.c.  plane which 
corresponds to the 2nd Cu plane for the 1 PM configuration can be found (Fig. A1.3.f) For the 4 th layer and above 
a perfect f.c.c structure is obtained (not shown here). 
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Fig. A1.3 Structure of the most stable Cu-Ta interfaces determined from the values of the excess interface  

energies. The atoms are coloured according to their potential energy, using the scale at the left of the figure 

Atomic structure of the first three Cu planes, obtained by energy minimization of the structures at 0K, for  
various initial configurations. (a)-(b)-(c) E.I : 20 f.c.c (0  0 1) planes / 1 PM / 12 Ta planes. (d)-(e)-(f)  E.I : 
19 f.c.c (0  0 1) planes / 2 PM / 12 Ta planes. (g)-(h)-(i) E.I : 20 f.c.c (1  0 1) planes / 1 PM / 12 Ta planes. 
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Unsurprisingly, the atomic structure of the first Cu planes is largely different for the (1 0 1) orientation with a  
single PM layer in the initial configuration. The first plane is also b.c.c but it is clear from Fig. A1.3.g that atoms  
also form elementary cells. Along the x [1 0 1] they  consist of 3 or 4 Cu atoms, while a strong decrease of the 
spacing between two successive rows of atoms is observed every 10 or 11 rows of atoms along the [0 1 0]  
direction. On top of this first transition b.c.c. plane, a transition f.c.c. plane is found. Along the x direction, and  
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Fig. A1. 4 Network of interfacial dislocations for the most stable Cu-Ta interfaces after energy minimization of the structure 

at 0 K. The atoms are coloured according to their potential energy, using the scale at the left of the figure  (a) E.I 20 f.c.c (0 0 
1) / 1 PM / 12 Ta. (b ) E.I 19 f.c.c (0 0 1) / 2 PM / 12 Ta. (c)  E.I 19 f.c.c (1 0 1) / 1 PM / 12 Ta. 
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similarly to the (0 0 1) orientation, 5 f.c.c atoms are found on top of the four PM, while 4 f.c.c atoms are on top  
of 3 PM atoms. 
Along the [0 1 0] direction, the εyy  is minimized by two supercell configurations: 9 f.c.c atoms on top of 10 PM 
and 10 f.c.c / 11 PM which corresponds respectively to in-plane strain values of -0.6 and -1.6%. These values are 
significantly smaller than the nominal in-plane strain value of 8.9%, but 30 and 80 times larger than the in-plane  
strain achieved through the creation of a 32x35 supercell. Similarly to the (0 0 1) orientation with 1 PM layer,  
perfect f.c.c layers are observed for the third layer and above.
These three interfaces share some common points. The very large lattice mismatch between the Ta  b.c.c and the 
Cu f.c.c is accommodated with only two transition planes, one b.c.c and one f.c.c. This accommodation is done 
through the creation of small elementary cells which does not correspond to the optimum ratio for the reduction 
of the in-plane strain. However, it should be noted that all the supercells that minimize the in-plane strain along a 
<1 1 0>  direction are obtained by a summation of 5/4 and 4/3 elementary cells (Fig. A1.3 separated by red  
dashed lines). For instance, a minimum is observed for 13 f.c.c and 10 P.M planes which can be decomposed in 
(5/4+4/3+4/3).  Similarly,  22/17  can  be  decomposed  in  (5/4+4/3+4/3+5/4+4/3).  The  optimum  ratio  for  the 
minimization of the in-plane strain are listed in table 2 for up to 35 Cu atoms and 27 Ta (or PM Cu atoms)

ratio 4/3 5/4 9/7 13/10 22/17 30/23 31/24 35/27

ε0 (%) -3.05 3.41 0.59 -0.52 -0.07 -0.85 0.12 -0.23

Tab. A1.2 List of the Cu/Ta ratio that minimize the in-plane strain at 0 K.

In order to have a clearer picture of the dislocation network, Fig. A1.4 show a side view of the interfaces. For the  
1 PM configuration, the alternating pattern of 4 f.c.c/3 PM atoms and 5 f.c.c/4 PM atoms is clearly visible.  
interfacial dislocations can be evidenced along both in-plane directions. The extra half plane is along a <1 1 1> 
direction. They all start from the first Cu plane which was described as a transition b.c.c. plane previously.
A similar structure of the interface is observed for 2 PM. The network of interfacial dislocations has the same  
spacing and in order to accommodate the large mismatch strain, as much as five dislocations are found in the  
structure. Unlike the 1 PM configuration, they do not start at the Cu-Ta interface, but at the 2 nd Cu plane, since 
both b.c.c and f.c.c transition are shifted one plane above for a relaxation from the initial 2 PM configuration.
For the (1 0 1) orientation with 1 PM layer, the dislocation network is similar to the (0 0 1) orientation along the 
[1 0 1] orientation, with regularly spaced dislocations starting from the the Cu-Ta interface (not shown on Fig.7).  
Along the [0 1 0] direction, the dislocation structure is largely different. The dislocations at the interface  exhibit  
a pentagonal core similar to the Lomer-Cotrell dislocations  described by Rodney & Phillips (1999), Rodney & 
Martin (2000). 
For the three orientation, the very large mismatch strain is accommodated by the creation of elementary cells  
separated by dislocations. The nature of the dislocations depends on the nature of the interface, and different type 
of dislocations are nucleated for the (1 0 1) orientation. As already stated, for the most energetically favorable 
interfaces, the lattice mismatch is accommodated by only two transition planes (1 f.c.c. and 1 b.c.c.). Below and  
above these planes, perfect b.c.c. and f.c.c. layers are observed. For the case of 1 and 2 PM layer in the initial  
configuration, similar interfaces are obtained and the number of PM layers only influence the position of the 
transition layers (1st and 2nd Cu planes for 1 PM and  2nd and 3rd Cu planes for 2 PM).  For the (0 0 1) orientation, 
the two interfaces are energetically equivalent.

As illustrated in Fig. A1.2, the excess interface energy for the (1 0 1) orientation depends on the number of Cu 
layers for n < 20 Cu layers. Since the in-plane strain strain is minimized through the creation of supercells, the  
origin of this thickness dependency for very thin Cu films is unclear.
To understand this behaviour, the interfaces of a thin (9 f.c.c layers and h ~ 1.15 nm) and a thick Cu film ( 20 
f.c.c layers and h ~ 2.6 nm) are compared for the (1 0 1) orientation. 
As illustrated on Fig. 8.a and 8.b the atomic structure of the 2nd plane differs between the thin and the thick Cu 
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film. As described in the previous paragraph, a large gap is observed every 9 or 10 Cu atoms, which corresponds 
to the pentagonal core of the dislocations. For the thick Cu film, the gap is free of atoms while the presence of  
atoms is observed at the junction of the [1 0 1] supercells for the thin Cu film. 
The side view of the interface (Fig. 8.c and 8.d) provides a better picture of the evolution of the atomic structure 
of the Cu film. For the thin Cu film, the core of the dislocations is filled with an extra-atom while it remains 
empty for the thick one. A closer look at the surface plane reveals the presence of periodic ripples associated 
with this modification of the atomic structure of the interface in the Cu thin film. These periodic ripples, that can 
be described as a surface waviness (roughness), are related to the presence of misfit dislocations. As discussed  
by Freund & Suresh (2003), a thin film of height h that is epitaxially bonded to a thick substrate is uniformly 
strained and has a flat surface before any strain-relieving dislocations are formed at the substrate/film interface.  
The chemical potential can indeed be considered as spatially uniform over the surface of the film so that the flat  
surface  is  an  equilibrium shape.  The  condition  of  uniform chemical  potential  are  not  fulfilled  once  misfit  
dislocations are formed at the film-substrate interface. The magnitude of the average elastic strain along the  
surface is reduced by the formation of dislocations, and the strain distribution becomes spatially non-uniform.  
The non-uniform strain field has a several consequences, in particular it implies that the surface 
chemical  potential  becomes  nonuniform.  As  a  consequence,  there  is  a  configurational  force  acting  on  the 
nominally flat surface tending to change its shape: the film exhibits periodic fluctuations in surface shape. 
In our case, the periodicity of the fluctuations is clearly correlated with the position of the misfit dislocations.
Such correlations in the fluctuations of the surface shape correlated in position with misfit dislocations on the 
interface have been observed by Pinnington et al.(1997), Giannakopoulos and Goodhew (1998) and Springholz 
(1999) in partially relaxed thin film. A commonly reported idea is that a strained surface will roughen and that  
the nonuniform strain along the surface will lead to formation of dislocations at the highest concentration sites  
(Freund & Suresh 2003).  In such materials, the strain energy field arises mainly from three sources: the initial  
uniform lattice mismatch strain, the strain associated with the interface misfit dislocations which partially relax  
the elastic mismatch strain and an additional contribution due to the waviness of the surface (Jonsdottir 1994). 
In our simulations  an array of two families  of orthogonal  dislocations  is  obtained for both orientation.  All  
dislocations have a  Burgers vector of magnitude b. They are distributed at the Cu-Ta interface at a distance h  of 
the film surface at intervals  p and q in the  x  and y  directions. The full relaxation of the mismatch strain only 
occurs when (Jonsdottir 1995):

p

h
=

b

ϵxx d √2
,

q

h
=

b

ϵ y y d √2
   (A1.3)

 
For the thin Cu film, q/h = 3 while the second term is equal to 0.78. It is thus clear that the mismatch strain is not  
completely relaxed by misfit dislocations and the roughness of the surface is thus expected.
It has been established that the amplitude of the fluctuations and thus the degree of roughness of the interface  
can  be  determined  by  the  fraction  of  the  elastic  mismatch  strain  that  is  relaxed  by  formation  of  misfit  
dislocations (Jonsdottir 1995).  For a given mismatch strain and film thickness, the amplitude of the fluctuation 
decreases with the decrease of the dislocation spacing (Freund & Suresh 2003, Jonsdottir 1995). In our case i the  
fluctuations are more pronounced along the [0 1 0] orientation where the spacing between dislocations is much 
larger than along the [1 0  1] but the nominal mismatch strain along both in-plane direction 
differs by a factor 3, so that it can not be established if our simulations follow this trend. It has been also reported 
by Freund & Suresh (2003) that the magnitude of the elastic strain at the film surface due to dislocations is  
typically on the order of  b/h. This gives values of respectively 5% and 11.1% for the thick and thin Cu films 
respectively. For the latter, this value is even larger than the mismatch strain along y, and the large amplitude of  
the fluctuations of the surface plane is not surprising. For the thick Cu film (Fig. A1.5.d), the mismatch strain is 
only twice the value of the elastic strain due to the dislocations, but the latter is not sufficient to induce large 
perturbations at the surface plane. The lower magnitude of the elastic strain due to dislocations at the surface, the 
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higher is the uniformity of the chemical potential. The flat surface is less prone to change its shape. 
This is very clear in our simulations where the surface completely vanishing in the thick Cu film resulting in  an  
almost perfectly flat  (1 0 1) free-surface. 
The flatness of the surface is confirmed by the calculation of the atomic positions in the thin film with respect to 
the atomic positions in a very thick Cu film (n=129 f.c.c Cu planes).
For n = 9 f.c.c. oscillations are observed for the x, y and z atomic positions. For the z position, the amplitude of 
the oscillations increase for atoms closer to the surface (atoms with higher index on Fig. A1.5.e). For n = 24, no  
such oscillations are observed, and the atomic position are similar to that of a thick film, even when the atoms  
are close to the surface. An indirect consequence of the fluctuations of the surface shape is a reduction of the  
free-surface energy of the (1 0 1) surface. We have seen previously that a large (1 0 1) free surface is very  
unfavourable energetically as compared to the more densely-packed (1 0 0) and (1 1 1) free surfaces. As a  
remind, with this potential, the chemical potential of a (1 0 1) surface atom is equal to -2.87 eV/at while it is  
equal to -3.02 eV/at for a (1 0 0) surface atom. 
Here the surface fluctuations locally reduces the spacing between the atoms along the y direction so that it get  
closer to the value along the x direction. In other words, the starting of a transition from a tetragonal unit-cell  
(corresponding to the (1 0 1) orientation) to a cubic unit cell ( (0 0 1) orientation) is locally observed. 
The minimum spacing along the y direction is observed for the atoms above the pentagonal dislocations (regions 
circled in red). In this region, the spacing between two atoms in the unit cell is still equal to a Cu/√2 along the [1 0 
1] while along the [0 1 0] direction the lower is the number of Cu planes, the larger is the compression of the unit 
cell. For 10 f.c.c Cu planes, the lattice spacing is reduced to 3.40 Å corresponding to a compression of 6%. The 
unit-cell is still tetragonal, but the reduced asymmetry between the two in-plane directions induce a decrease of 
the atom energy of 0.04 eV (-2.91 eV vs -2.87 eV). Of course the compression of the rows above the Lomer  
dislocations implies a compensative expansion of the neighbouring atoms, and the lattice spacing is increased by 
up to 2.7% in the region between the dislocations. This of course induce an increase of the atom energies but by  
only 0.015 eV. 
Overall these alternating regions of expansion and compression lead to a decrease of the free-surface energy of  
the (1 0 1) surface. The lower is the number of  Cu planes the larger is the amplitude of the oscillations, and the  
larger is the subsequent decrease of the free-surface energy. Conversely, an increasing thickness of the thin film 
causes a damping of the oscillations which completely vanishes above 20 f.c.c planes. The free-surface energy  
becomes independent of the number of Cu planes for n > 20 explaining the flat slope of the curve in this region  
in Fig. A1.2. Nevertheless it should be noted that the ultrathin Cu films are very defective, inducing an overall  
increase of the excess interface energy.

A1.2 Atomic structure of the Cu-Ta interface in solid state dewetted particles

In section A.1.1 we evaluated the stability of several Cu-Ta interfaces in thin-film structures. However,  
this chapter aims at determining the atomic structure of the Cu-Ta interface for the Cu particles.
As discussed in the introduction of this chapter, in the presence of mismatch strain, there is a natural tendency  
for thin films to agglomerate into islands in the presence of mismatch strain, for sufficiently high temperature. It  
is clear that the total free energy of the system will be affected in forming any particular island arrangement from  
a strained thin-film. As discussed by Freund & Suresh (2003), it might result in a positive or negative net change  
whether the surface energy increase or the elastic energy reduction dominates the process. 
In the case of the solid state dewetting of the Cu islands, it is clear that the island maintains the epitaxial bond 
with the substrate so that the mismatch strain is probably not affected by dewetting. However, the relaxation of  
the free-surface to reach the ECS might affect the structure of the Cu-Ta interface. 
In a first step, the idea is to evaluate the agreement between the interface structures obtained for a thin film and  
for and island. Two initial configurations with 1 and 2 PM Cu layers and a varying number of f.c.c (0 0 1) layers  
are considered. In both case, the initial shape of the particle is already close to the ECS. Similarly to the thin film 
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simulations, the relaxed atomic structure of the two interfaces is obtained by energy minimization at 0K.
The 1 PM island is composed of 24 f.c.c planes and the  supercell consists of 45x45 atoms which are on top of  
35x35 Cu PM atoms (ε0 = -0.07%). The substrate contains 12 Ta planes for a total of 30584 Cu atoms and 27500 
Ta atoms (Fig. 9.a). This gives a size of 11.2x11.2x4.5 nm3 for the relaxed particle.  

The 2 PM island is slightly larger (37 f.c.c) planes, while maintaining the same Cu/Ta ratio (67/52, ε 0 = -0.07%) 
and the same number of Ta planes (99553 Cu atoms and 38998 Ta atoms in total). This corresponds to a size of  
17.1x17.1x7 nm3.
The atomic structure  of  the relaxed interfaces  is  presented on Fig.  A1.6.b & A1.6.c.  The relaxation of  the 
mismatch strain is achieved by the nucleation of the same network of orthogonal families of edge dislocations, 
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Fig. A1.5 Network of interfacial dislocations in the dewetted islands, for a varying number of PM layers. Atoms are 
colour coded according to their potential energy. The scale not indicated here is the same as in previous figures. (a) 
Initial configuration: 24 f.c.c. planes/ 1PM/ 12 Ta (b) Atomic arrangement of the 2nd Cu plane after energy 
minimization at 0K. (c) Atomic arrangement of the 3rd  Cu plane after energy minimization at 0K at 0K. (b) Side 
view of the relaxed Cu-Ta interface in particle (b) The particle hosts a network of dislocation which start from the 
first Cu plane. (c) Side view of the relaxed Cu-Ta interface in particle (c).  The particle hosts a network of 
dislocation which start from the second Cu plane.
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which act as boundaries for the 5 f.c.c / 4 P.M and 4 f.c.c / 3 P.M elementary cells. For both particles, the  
dislocations are regularly spaced, with intervals equivalent to the thin-film simulations (every 4 or 5 Cu planes). 
For  the  1  PM particle,  10  dislocations  are  distributed  in  45  Cu planes  and for  2  PM,  15  dislocations  are  
distributed in 67 planes. This gives the exact same ratio of one dislocation every 4.5 Cu plane. 
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 Fig. A1.6 Explanation of the presence of  two  regimes in the excess interface energy vs number of planes curve for the (1 1  

0) orientation. The atoms are coloured according to their potential energy, using the scale at the left of the figure (a) Atomic 
structure of the 2nd  Cu plane for n = 9 f.c.c planes. The red circled indicate the location of the supplementary atoms (b) 
Atomic structure 2nd  Cu plane for n = 21 f.c.c planes. (c) and (d) Side view of the Cu-Ta interface for n = 9 and n =21 f.c.c 
planes. (e), (f) Variations of the x, y and z atomic positions for  n= 9 f.c.c and n = 21 f.c.c planes, relatively to the positions 
in a thick Cu film (n=129 planes)  
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For the 2nd PM dislocation, the interval between dislocations always corresponds to Cu/Ta ratio which minimize 
the in-plane strain at 0K.  If the left-most dislocation  is located in plane 0, the next dislocation is found in plane 
4. From the left to the right of the particles, dislocations are found at positions 13, 17, 22, 26, 31, 35, 39, 44 … 
They all correspond to ratio that minimize the in-plane strain (Tab. A1.2). To a certain extent, the alterning of 5/4  
and 4/3 elementary cells is thus not random, and aims at building larger supercells which minimize the in-plain  
strain to even lower values.
For the 1 PM particle, all the dislocations originate from the 1st Cu plane (namely the transition b.c.c. plane). As 
illustrated on Fig. A1.6.b, the 2nd  Cu layer, namely the f.c.c transition layer, is not as perfect as in the case of a 
thin film. Several disordered regions are observed at the vicinity of the crystal free surface and of the particle-
substrate interface. In these regions atoms undergo large strain values, and the interaction of the surface strain,  
the strain form the misfit dislocation and the residual misfit strain might explain this relative disorder. 
For the particle with two 2 PM layers in the initial configuration, the interface is not affected by the boundary  
conditions,  i.e the relaxed free surfaces of the crystallite. Similarly to the thin-film simulation, the dislocation 
array starts from the b.c.c transition plane, i.e the second Cu plane. 
From these two simulations, it appears the boundary conditions of the simulations have a limited effect on the 
atomic structure of the interface, and the obtained interfaces are similar to the case of the thin-films, although it  
is slightly more disordered for 1 PM layer in the initial configuration.
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Appendix A2 : Inversion Domain Boundaries in GaN Wires Revealed by 

Coherent Bragg Imaging 

Appendix A2 is the paper published by Stéphane Labat and co-workers in ACS Nano earlier this year. I  

was significantly involved in both the synchrotron experiments and the data analysis (reconstruction). 
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T
he physical properties of crystals are
strongly affected by the presence of
defects: dislocations, stacking faults

and twins have a prominent role in the
mechanical behavior, vacancies are crucial
in the diffusion process and electrical, and
optical properties are widely affected by
defects too.1 The detailed knowledge of
defects distribution in crystals is thus a
prerequisite for understanding how physi-
cal properties are affected. For many years,
methods based on transmission electron
microscopy (TEM) have been unchallenged
for investigating defects in crystals and have
provided numerous essential results.2�6 But
recently, a new lensless imaging technique
using coherentX-ray diffractionhas emerged,
which is able to determine the atomic dis-
placementfield in a crystal from themeasure-
ment of Bragg reflections.7 This technique
is called Coherent Bragg Imaging (CBI). Up
to now, it has been mainly used, however,

for imaging perfect crystals with very small
strain.7�10 Very few works use it for materials
containing defects.11�13

Here, we report on the first study of
the displacement field induced by several
Inversion Domain Boundaries in Gallium
Nitride (GaN) wires with a spatial resolu-
tion better than 10 nm and a displace-
ment accuracy of a few picometres. Nitride
materials are studied intensively and their
growth mastering has opened the way to
blue-light emission14 and power devices
applications. Since defects in GaN wires
are a key issue,15 such results give new
insights into the optoelectronic properties
of nitride semiconductors.

RESULTS AND DISCUSSION

The GaN wires of this study were grown
by Metal Organic Vapor Phase Epitaxy
(MOVPE) on a c-oriented sapphire substrate.
A samplewith a lowwiredensitywasprepared
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ABSTRACT Interfaces between polarity domains in nitride semiconductors,

the so-called Inversion Domain Boundaries (IDB), have been widely described,

both theoretically and experimentally, as perfect interfaces (without disloca-

tions and vacancies). Although ideal planar IDBs are well documented, the

understanding of their configurations and interactions inside crystals relies on

perfect-interface assumptions. Here, we report on the microscopic configura-

tion of IDBs inside n-doped gallium nitride wires revealed by coherent X-ray

Bragg imaging. Complex IDB configurations are evidenced with 6 nm resolution

and the absolute polarity of each domain is unambiguously identified. Picoscale

displacements along and across the wire are directly extracted from several Bragg reflections using phase retrieval algorithms, revealing rigid

relative displacements of the domains and the absence of microscopic strain away from the IDBs. More generally, this method offers an accurate

inner view of the displacements and strain of interacting defects inside small crystals that may alter optoelectronic properties of semiconductor

devices.

KEYWORDS: GaN wires . inversion domain boundary . coherent X-ray Bragg imaging . displacement field
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in order to ease the individual analysis with the micro-
focused X-ray beam: specific surface annealings and
growth conditions (detailed in theMethods section) pro-
mote the 'vertical' growth (i.e., perpendicular to the
surface of the substrate) of hexagonalwireswith average
diameter of 600 nm and length of 3�5 μm (Figure 1a).
They have their c-axis parallel or antiparallel to

the growth axis and smooth lateral {110}m-plane
facets. The wires are in epitaxial relationship with the
sapphire as confirmed by grazing incidence X-ray and
electron diffraction: [110]GaN//[010]Al203 and [001]GaN//
[001]Al203with twist and tiltmisorientations of less than
half a degree.16 TEM studies have shown that “defect-
free wires” are single crystalline with a flat top surface
and have no extended defects along the length, except
for threading dislocations nucleated at the lattice
mismatched interface. These dislocations are usually
bent to the sidewall surface along a distance of the
order of magnitude of the diameter.5,17 Polarity in non-
centrosymmetric wurtzite crystal is defined with stan-
dard notations: the bond pointing from the Ga cation
to theN anion defines the polar axis c labeled [001] also
called Ga-polar orientation.Within the selected growth
conditions, the wires are mostly N-polar oriented, i.e.,
along�c axis. Nevertheless, IDBs separatingþc and�c

crystal orientation domains have been observed in the
core of guided wires close to the holes of patterned
masks.5,18 The lateral overgrowth tends to favor the
occurrence of IDBs nucleating on the surface defects
of the SiNx seed layer.19 In this paper, we select
“defective” wires close to the wafer edge in order to
increase the probability of occurrence of IDB defects
and to benefit from an even lower wire density. This
defective character has been checked by etching a
sample at the end of the growth under H2 to reveal sel-
ectively the �c andþc orientation domains (note that
similar results can be obtained ex situ by wet KOH solu-
tions20): under H2 carrier gas,�c (nitrogen-terminated)
GaN surface stays flat, whereas the þc (gallium-
terminated) surface is roughened and exhibits small
faceted pyramids. This procedure is demonstrated in

Figure 1b. IDBs are clearly observed and show complex
structures separating flat (�c) and rough (þc) surfaces.
Note that facets can be visible at some wire edges. This
faceting provides also a signature ofþc GaN growth as
evidenced by previous TEM studies.5

The CBI technique was used to investigate the ar-
rangement of the IDBs inside the GaN wires and the
displacement field generated by these defects. The
very good epitaxial relationship of the wires with
the substrate eases the otherwise tedious alignment
procedure of a known wire with the microfocused
X-ray beam (Figure 2).
When a crystal is fully illuminated by a coherent X-ray

beam, the scattered waves from all parts of the sample
interfere in thediffractionpattern. The intensity scattered
by the sample is measured in far field and a real space
image of the sample may be reconstructed from the
intensity pattern thanks to phase retrieval algorithms.
When the intensity pattern is measured close to a Bragg
peak, a complex-valued image of the sample (named
F(r)) is retrieved, which is related to the structure factor
F(G,r) and the displacement field U(r) by the expression:

F(r) ¼ F(G, r) e� i2πG:U(r) (1)

where G corresponds to the scattering vector of the
Bragg Peak. Note that the sign convention used to

Figure 1. Scanning electron microscopy images of GaN wires obtained by MOVPE. (a) A 25�-view taken at the center of the
wafer showing single crystal wires and (b) top view taken at the wafer edge for a sample etched under H2 carrier gas to
underline polarity inversion domain boundaries. The growth conditions (mostly flows and materials supply) are changed in
the 2 mm outer edges.

Figure 2. Sketch of the experimental setup for coherent
X-ray Bragg imaging.
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describe the plane wave eikr implies a minus sign in the
Fourier transform of eq 1. The spatial resolution or pixel
size of the reconstructed image of the object is inversely
proportional to the extension of the intensity measure-
ments around the Bragg peak. Extended diffraction
pattern measurements provide small pixel sizes in the
reconstructed sample images. Because of the steep
decrease of intensity away from the Bragg peaks, the
pixel size in the sample image is rarely smaller than
10 nm. For the sake of clarity, the modulus M(r) and
phase φ(r) of the reconstructed object will be displayed
in two separate images. From eq 1,M(r) and φ(r) can be
written as

M(r) ¼ jF(G, r)j and φ(r) ¼ ψF(G, r)� 2πG:U(r) (2)

where ψF corresponds to the phase of the complex
structure factor F(G,r). In the case of GaN wires contain-
ing inversion domains, the samemoduli are expected for
the two types of domain, but different phases will be
observed including the effects of the structure factors
and the displacement field. Thus, one expects a homo-
geneous modulus map M(r) and an inhomogeneous
phase map φ(r). Each Bragg peak is sensitive to the
displacement field U(r) projected onto the scattering
vector G, i.e., G.U(r). To extract the full displacement
vector field U(r), at least three noncoplanar Bragg peaks
are needed. In this work, we measured five Bragg peaks:
004, 014, 104, 112, and 203. The redundancy is expected
to improve the reliability of the retrieved vectorfieldU(r).
The intensity measurements were done while illuminat-
ing a slab (∼400nm thick) atmid-height of thewire. Each
of the five diffraction patterns was measured in three
dimensions by recording a stack of frames of an area
detector while rocking the sample across the reflection.
In all three-dimensional diffraction patterns, the mea-
sured intensity is concentrated in an (h,k)-plane perpen-
dicular to the l-axis. This means that the inner structure
of the measured slab is constant along the wire axis. 2D
intensity maps were thus extracted from the 3D data
sets in order to reconstruct a 2D image of the sample
(Figure 3a). The latter is therefore a projection of the
measured slab along the c-axis, which provides a good
image of the inner structure in this translation-invariant
sample.
In all five diffraction patterns, the 6 streaks observed

along directions separated by an angle of 60� clearly
demonstrate the hexagonal shape of the wire. Each
diffraction pattern was used independently to recon-
struct an image of the inner structure of the wire with
different displacement field components. The sample
is reconstructed with a pixel size of 6� 6 nm2 because
of the extent of the measured intensity in the recipro-
cal space. Phase retrieval of the diffraction data was
carried out using standard algorithms21,22 based on
Fourier transforms going back and forth between the
direct space (sample image) and the reciprocal space
(diffraction patterns).

The reconstruction procedure (see Methods and
Supporting Information S1) is carried out a thousand
times with random initial phases for each diffraction
pattern. Two criteria were used to identify the best
reconstructions: the agreement with the measured
intensity and the homogeneity of the modulus map.
The best solutions, which fulfill these two criteria, are
used to determine the accuracy of the results (see
Supporting Information S1). Then, we are still left with
two solutions, F(r) and F*(�r), which fulfill equally the
two criteria (Figure 4).
For this specific 2D case, F*(�r) corresponds to a

180� rotation of F(r) with phases of opposite sign.
However, they can be distinguished by considering
the optical path length inside the sample. Indeed, the
waves scattered by atoms at the surface and inside the
wire travel along different optical paths because of
the shape of the wire: the travel inside the crystal from
the entrance to the scatterer and from the scatterer
to the exit is less for atoms at surfaces. In the crystal,
the refractive index n is slightly different from 1, which
means that the phase velocity is not the same as in
the air. For 9 keV X-rays in GaN, n = 1� δþ iβwith δ =
1.356� 10�5 and β = 2.5� 10�7 (ref 23). δ and β imply
a phase shift and an absorption, respectively. Thus, for
a diameter of 500 nm, the phase shift between the
surface and the center of the wire is around 0.3 rad,
which is not negligible. By contrast, the absorption
is less than 1% and will be neglected. According to
the Fourier transform convention mentioned in eq 1,
the plane wave of the incident and diffracted beam is
written eikr, where k = 2π/λ is the wave vector of the
plane wave in vacuum and λ the wavelength of
the X-ray beam. After a traveled distance d inside the
crystal, the phase of the beam is shifted negatively by
�kδd. A negative curvature of the phase is therefore
expected in the middle of the wire, which is clearly
identified in one of the two possible reconstructed
objects (Figure 4).
Moreover, the specific fingerprint of the phase

shift coming from the optical path length cannot be
confused with a displacement field inside the wire.
In particular, the phase is curved only in the direction
transverse to the scattering plane (X), and is flat along
the longitudinal one (Figure 4). Note that we neglect
the curvature of the incident wavefront, which is
mostly flat at this scale for our setup.24 In conclusion,
the identification of the optical path length effect
allows the unambiguous determination of the correct
solution F(r), fromwhich we can deduce the polarity of
each domain.
Figure 3b displays the best reconstructed images of

the wire for the 5 Bragg peaks including the optical
path length correction. All five solutions converge to
the same shape and inner structure. The average
diameter of the wire is estimated at (490 ( 10) nm.
The reconstructions clearly evidence the presence of
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three domains: one large and two smalls. The phase
values (Figure 3b) are constant inside the domains and
the two small domains show the same phase value for
all reconstructions. In the following, the three domains
will be called domains 1, 2, and 3 as mentioned in
Figure 3b. The IDBs, separating the domains, corre-
spond to the {100} planes, which have been reported
in many studies.25,26 In the modulus maps of the re-
constructed samples (Figure 3b), a gap clearly appears
at the position of the IDBs. This is an artifact of the
Fourier transform caused by data truncation. Indeed,
numerical test demonstrates that an ideal sample
with homogeneous modulus map and a phase shift
between domains cannot be reconstructed without
such an artifact, since only a small part of the reciprocal
space is used for reconstruction. In the present study,
themeasured reciprocal space corresponds to the 20th

of the reciprocal space unit cell. Such a partial reciprocal
space measurement implies an artifact in the modulus
of the reconstructed object.
The homogeneity of the phase inside the domains

denotes the absence of significant strain variation.
The first column of Table 1 reports the experimental
difference in the phase values between domains 1 and
2�3 at different Bragg reflections. These differences
originate in the phase difference of the structure factor
ψF between Ga and N-terminated GaN domains and a
homogeneous displacement of the domains between
each other. For the calculations of ψF, the internal
parameter uc is equal to 0.377 (ref 27) and the analytical
atomic scattering factors of Ga and N were taken from
the work of Waasmaier and Kirfel.28 This work assumes
a spherical electron density around atoms, which is
not perfectly true for the GaN wurtzite since the Ga�N

Figure 3. Coherent X-ray diffraction measurements of five Bragg reflections of a single GaN wire and the corresponding real
space reconstructions (modulus and phase). The (hkl) planes are indicated in the top left corner of the figures. (a) Intensities
are shown in countswith a log scale. (b) The real space reconstructions (modulus andphase), the (X,Y,Z) axis correspond to the
crystallographic directions([210],[010],[001]).
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bonds have a strong ionic character. However, the
difference with the structure factor determined from
convergent beam electron diffraction or from electron
densities calculated using density functional theory
does not affect ψF by more than a few hundredths of
a radian.29 The theoretical difference of the structure
factor (ΔψF) between�c andþc domains are reported
in the second column of Table 1, supposing that the 1
and 2�3 domains are�c andþcoriented, respectively.
It clearly shows a disagreement with experimental
values. One has to introduce a rigid displacement of
the atomic lattice in the z direction of (c/2 þ 8) pm
of the þc with respect to the �c domains (see third

column of Table 1) to match the experimental values.
The error bar of this value is estimated to be 1 pm from
the accuracy of the phase shift. The theoretical values
do not fit the experimental ones, when the polarities
of the 1 and 2�3 domains are mutually exchanged,
meaning that the 1 and 2�3 domains are þc (Ga-
terminated) and �c (N-terminated) oriented crystals,
respectively. Thus, it is possible to assert that the
largest domain is�c (N-terminated) and the two small
domains are þc (Ga-terminated), in agreement with
the usual tendency of this type of wire growth.5,20

Moreover, the displacement of the atomic lattice
between the �c and þc inversion domains along the
z direction implies that the Ga atomic network of the
þc domains is 8 pm higher than the N atomic network
of the�c domain. In the (x,y)-plane, no displacement is
needed to fit the experimental phase values. Never-
theless, the accuracy of the displacement in this plane
is worse than the one along the z axis. It is estimated to
4 pm. This implies that atoms from domains 2�3 are
shifted by less than 4 pm in the (x,y)-plane with respect
to the atoms of domain 1.
Four different models of the {100}, IDB structure

have been reported in the literature.30,31 One of them,
the IDB* structure proposed by Northurp et al.,30 is by
far the best match with our measurements. It can be
formed by translating one side of an IDB by c/2 along
the [001] direction and contains 4-fold and 8-fold rings
of bonds that prevent Ga�Ga and N�N bonds. It has
been demonstrated that the IDB* structure is the most
energetically favorable one and the one experimen-
tally observed in thin films.26 However, the IDB* struc-
ture differs from our results in two ways. On the one
hand, the displacement along the z axis is c/2 for the
IDB* and our measurements in the GaN wire reveal an
additional shift ofþ8pm.On the other hand, the 10 pm
displacement perpendicular to the IDB* predicted by
Northrup et al. is not observed in our wire. However, it
can be noted that this experimental work corresponds
toamore complicated situation: thiswire contains several
IDBs* which interact with each other and with the sur-
faces. Such a configuration can affect the equilibrium
structure of the IDB*, which has been calculated for an
isolated defect in an infinite media by Northrup and co-
worker.30 Moreover, in a wire containing several IDBs*
with different orientations, the displacements perpen-
dicular to the IDBs* have to relax to accommodate each
other. Interestingly, our molecular statics calculations
with Tersoff-Brenner potential failed to reproduce the
displacement field found experimentally, even though
the complex configuration of domains had been taken
into account (Supporting Information S3).
It is worth noting that the 004 reflection has been

measured at mid-height of several GaN wires (see
Supporting Information S2). Different domain config-
urations were observed, but the retrieved phase
shift between inversion domains is always the same.

Figure 4. Effect of the optical path length. (a and b) Two
phase maps of reconstructed objects giving the same 004
diffraction patterns. The phase changes along the X and Y

directions in the reconstructed objects (blue dots) are
compared to the expected phase changes originated in
the optical path lengths (red dots): (c and e) for the solution
shown in (a) and (d and f) for the solution shown in (b). This
confirms solution (b) as the correct one.

TABLE 1. Phase Difference between the Domains 1 and

2�3
a

(hkl)

Δφ experimental

(rad)

Δψ theoretical

(rad)

Δφ (rad) with Uz = (c/2 þ 8)

pm and Ux,y = 0 pm

(004) �2.80 ( 0.05 3.07 �2.79

(014) �2.75 ( 0.1 3.07 �2.79

(104) �2.85 ( 0.1 3.07 �2.79

(112) 1.50 ( 0.1 1.24 1.45

(203) 2.80 ( 0.2 �0.63 2.81

a For the two last columns, domains 1 and 2�3 are related to �c and þc GaN

crystal, respectively.
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Therefore, we conclude that the 8 pm displacement
along the c-axis, determined with an accuracy of 1 pm,
is not due to a particular domain configuration, but a
general feature of the IDB* structure. The in-plane
components of the displacement field were measured
only for thewire of Figure 3, which suggests that the in-
plane components must be smaller than the accuracy
of our measurements in that plane (∼4 pm).
A possible explanation, yet to be verified, to the

discrepancy between experimental and numerical re-
sults, is the segregation of silicon atoms in the IDBs.
Indeed, the growth is performed with a high Si-dopant
concentration (above 1020 cm�3 in the wire bulk16),
and it is known that the presence of silicon at an IDB
perpendicular to the c-axis modifies the bond length
at the interface.32 The present case of these prismatic
IDBs has not been reported yet.

CONCLUSIONS

In conclusion, the inner structure of GaN wires
containing a complex arrangement of inversion

domains has been investigated by CBI with a spatial
resolution of 6 nm and a displacement field accuracy of
1 pm along the c-axis and 4 pm in the (001) plane. The
absolute polarity of the domains is unambiguously
revealed and the microscopic structures of the IDBs
characterized: the Ga-terminated domains undergo
a rigid relative displacement with respect to the
N-terminated domain of (c/2 þ 8) pm along the c-axis
and almost zero in the (001) plane. Such a surprising
displacement field cannot be explained by atomistic
simulations and may originate in the high Si-dopant
concentration. Finally, let us point out that this study
demonstrates that the CBI technique offers the possi-
bility to get a very precise inner view of the micro-
structure of small crystals in the presence of interacting
defects. This work opens theway to the nondestructive
characterization of various defects inside small crystals.
This technique can be also applied in a straightfor-
ward manner to materials under complex environ-
ment or operando as found in microelectronics and
optoelectronics devices.

METHODS

Sample Preparation. The growth of self-catalyzed GaN wires
has been performed on c-plane sapphire substrates by metal
organic vapor phase epitaxy (MOVPE) in a 3 � 2 in. closed-
coupled showerhead reactor. As described by R. Koester et al.,16

the substrate is cleaned under H2 at high temperature and
annealed under ammonia to promote the formation of an
Al(O)N layer (∼1.5 nm thick according to X-ray reflectivity
measurement) before the deposition of a thin SiNx layer
(∼2 nm thick) playing the role of a selective growth layer with
respect to GaN.33 Another ammonia annealing stabilizes the
surface stoichiometry and induces the formation of composi-
tion fluctuations or thinner areas that can be punched through
by GaN deposition to achieve epitaxy with sapphire. The GaN
polarity and the shape of the objects are directly determined
by the atomic stacking of the Al(O)N layer.25 A high Si-dopant
concentration (induced by silane diluted in a majority N2 carrier
gas) and a small V/III molar ratio (ammonia to trimethylgallium)
promote the vertical wire growth (see details in ref 16). By
adjusting the growth conditions for CBI studies, we obtained
3�5 μm wire length for 150 s of growth with quite low density
(about 106 cm�2) as illustrated by the scanning electron micro-
scopy view of Figure 1a.

Experiment. X-ray Coherent Bragg Imagingwas performed at
the ID01 beamline of the European Synchrotron Radiation
Facility. A coherent portion of themonochromatic (9.0 keV) beam
was selectedwith highprecision slits bymatching their horizontal
and vertical gaps with the transverse coherence lengths of the
beamline: 20 μm (horizontally) and 60 μm (vertically) close to
the sample position. The coherent beam was then focused to
0.8 μm� 0.4 μmusing a Fresnel Zone Plate (diameter of 300 μm),
in order to illuminate a single GaN wire (Figure 2). Diffraction
was measured by a two-dimensional detector (516 � 516 pixels
of 55 μm placed at 1.307 m from the sample). 3D data sets were
recorded by rocking the sample over a range of 1.28� by steps
of 0.005�.

Reconstruction. Three standard algorithms were used: Error
Reduction (ER), Hybrid Input-Output (HIO) and Shrink Wrap
(SW).21,22 At each step, constraints are applied in the reciprocal
space and in the direct space. A custom version of the SW
method has been used to determine the support region, i.e.,
the shape of the object. The SW procedure is stopped when
the shrinking process slows down. The support or shape of the

object is then adapted manually to get the best homogeneous
modulus map. With these supports, a procedure mixing ER and
HIO is done 1000 times with different initial random phases
associated with the measured intensity. The modulus was left
completely free inside the support.
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Résumé de thèse

Les propriétés physiques à petite échelle de longueur diffèrent fortement de celles du matériau massif,  

typiquement en deçà du micromètre. Par exemple, la résistance mécanique augmente quand la taille diminue et  

de fortes contraintes résiduelles liés aux procédés d'élaboration sont présentes au sein de nanostructures. Il existe 

ainsi  un  besoin  d'une  meilleure  compréhension  de  la  relation  entre  la  microstructure  et  les  propriétés  des 

matériaux aux échelles sub-micrométriques. La diffraction des rayons-X cohérents (CXD) est une technique 

émergente  de  synchrotron  qui  est  très  sensible  aux  champs  de  déformation  et  à  la  présence  de  défauts  

structuraux.  En principe,  une image 3D de la  microstructure  de l'échantillon peut-être  obtenue à  partir  des 

données de diffraction cohérente. De plus , les rayons X cohérents peuvent être aussi utilisés pour l'imagerie par 

holographie de domaines/structures magnétiques. Ces deux techniques sont mises en pratique dans ces travaux  

de  thèse.  Tout  d'abord,  nous  démontrons  que  la  CXD  permet  d'identifier  quantitativement  dans  l'espace  

réciproque tous les types de dislocations, dans le cas d'arrangements simples. Pour des structures plus complexes  

de défauts, la reconstruction numérique de la densité électronique et de la phase permet de déterminer leur nature  

et microstructure 3D. Ces deux méthodologies, i.e. l'analyse de la signature des défauts dans l'espace réciproque 

et la reconstruction dans l'espace réel, sont appliquées au cours d'une expérience de déformation  in situ  d'une 

micro-cristallite d'or par nano-indentation. En s'appuyant sur  les reconstructions 3D à différents stades de la 

sollicitation  mécanique,  la  germination  une  boucle  de  dislocation  prismatique  est  clairement  identifiée.  

L'interaction entre les défauts germés et la  déformation résiduelle dans la cristallite, conduit à une relaxation  

équivalente à un  “recuit mécanique”. De plus la sensibilité  de la technique est évaluée dans le cas d'interfaces 

(surface  libre,  mâcle,  hétéro-épitaxie).  L'holographie  magnétique  est  utilisée  pour  déterminer  les  structures 

magnétiques dans des plots micrométriques de permalloy (FeNi) qui prennent la forme de vortex. De plus leur  

dynamique sous champ magnétique  est résolue en temps (à la nanoseconde).

Abstract

Physical properties at small length scale deviate strongly from the bulk counterpart, typically below the  

micrometer.  For  instance,  mechanical  strength  increases  with  reducing  size,  large  residual  strain  due  to  

processing are present in nanostructures. Thus a better understanding of the physical properties in relationship  

with  the  microstructure  is  needed  for  sub-micrometer  materials.  Coherent  X-ray  Diffraction  (CXD)  is  an 

emerging synchrotron technique very sensitive to strain fields and structural defects that allows the detailed  

measurement of the crystal structure,including strain field and defects, of micro/nano-objects. In principle, a 3D 

image of the microstructure of the sample can be obtained from the CXD data. X-ray coherent beam can also be  

used with holographic techniques to image magnetic domains/structures. Both techniques are applied in this  

work. First,  we demonstrate that CXD can quantitatively identify in reciprocal space all  type of dislocation  

related defects in simple arrangements. In more complex defects structures, numerical reconstruction of electron 

density and phase allow to determine their nature and 3D microstructure. Both methodologies,  i.e.  reciprocal 

space analysis and real space reconstruction are applied during an original in situ nanoindentation experiment of 

a  gold  crystallite.  Using  3D reconstructions  at  different  stages  of  the  mechanical  loading,  nucleation  of  a 

prismatic dislocation loop is clearly identified. The interplay of nucleated defects with the initial residual strain 

leads to a relaxation equivalent to a “mechanical annealing” process. Moreover, sensitivity of the technique is  

evaluated for the case of interfaces (free surface, twin, heteroepitaxy). We successfully use magnetic holography 

to determine the magnetic structures in micrometric permalloy (FeNi) dots, as vortices. Moreover, time-resolved 

of their dynamics at the nanosecond is demonstrated.


