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préparée au sein de l’école doctorale I2S∗

et des unités de recherche UMR 5149, UMR AGAP
dans l’équipe projet Inria Virtual Plants

présentée par Pierre Fernique
le 10/12/2014

Titre :

A statistical modeling
framework for analyzing

tree-indexed data

Application to plant development at

microscopic and macroscopic scales
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M. Philippe Leray Polytech’Nantes, Pr Rapporteur
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Résumé





Titre Un cadre de modélisation statistique pour l’analyse de données indexées par des
arborescences – Application au développement des plantes à l’échelle microscopique et
macroscopique

Résumé Nous nous intéressons à des modèles statistiques pour les données indexées
par des arborescences. Dans le contexte de l’équipe Virtual Plants, équipe hôte de cette
thèse, les applications d’intérêt portent sur le développement de la plante et sa modu-
lation par des facteurs environnementaux et génétiques. Nous nous restreignons donc à
des applications issues du développement de la plante, à la fois au niveau microscopique
avec l’étude de la lignée cellulaire du tissu biologique servant à la croissance des plantes,
et au niveau macroscopique avec le mécanisme de production de branches. Le catalogue
de modèles disponibles pour les données indexées par des arborescences est beaucoup
moins important que celui disponible pour les données indexées par des chemins. Cette
thèse vise donc à proposer un cadre de modélisation statistique pour l’étude de patterns
pour données indexées par des arborescences. À cette fin, deux classes différentes de
modèles statistiques, les modèles de Markov et de détection de ruptures, sont étudiées.

Mots-clés Architecture des plantes; données indexées par des arborescences lignage
cellulaire; modèle de détection de ruptures; modèle de Markov; modèle graphique

Title A statistical modeling framework for analyzing tree-indexed data – Application
to plant development at microscopic and macroscopic scales

Abstract We address statistical models for tree-indexed data. In the context of the
Virtual Plants team, host team of this thesis, applications of interest focus on plant de-
velopment and its modulation by environmental and genetic factors. We thus focus on
plant developmental applications, both at the microscopic level with the study of the cell
lineage in the biological tissue responsible for the plant growth, and at the macroscopic
level with the mechanism of production of branches. The catalog of models available
for tree-indexed data is far less important than the one available for path-indexed data.
This thesis therefore aims at proposing a statistical modeling framework for studying
patterns in tree-indexed data. To this end, two different classes of statistical models,
Markov and change-point models, are investigated.

Keywords Cell lineage; change-point model; graphical model; Markov model; plant
architecture; tree-indexed data
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Introduction

We address statistical models for structured data. In the case where statistical indi-
viduals are structured, graph-indexed data – based on graphs which are mathematical
objects composed of vertices and edges – are used to represent and store data. Each ver-
tex represents an elementary entity of an individual and edges represent either temporal
precedence, topological or spatial adjacency between these entities. Most widespread
examples of graph-indexed data are:

• Data indexed by directed path graphs. In such graphs there is an order among
vertices and each vertex (except the last one), called parent vertex, is connected
to the next one, called child vertex. Edges are directed and represent the order
between vertices. Path-indexed data, also known as sequences or chains, are used
to describe either time-evolution of individuals or topological sequences (e.g. DNA
sequences or succession of nodes along plant shoots).

• Data indexed by grid graphs. In such graphs there is no order among vertices
and a vertex is connected to a set of vertices, called neighbor vertices. As there is
no order, edges are undirected and they represent direct connectivity of vertices.
Regular grid-indexed data with a fixed size neighborhood are especially used to
describe images and more generally grid graphs provide an efficient representation
of spatial data.

We focus here on less common data which are indexed by directed tree graphs. Tree-
indexed data can be seen as a generalization of path-indexed data since directed path
graphs are directed tree graphs where there is at most one child per vertex. Let us
consider the simple example of one cell followed-up throughout time. The directed path
representation would enable to represent the evolution of this cell throughout time but
as soon as it divides either we could consider two new paths representing the evolution
of child cells, or a cell would be arbitrarily chosen as the continuation of the initial path
while the other would be treated as the beginning of a new path. Since directed tree
vertices can have more than one child, we are able to keep track of cell divisions using
tree-indexed data where a given cell is connected to its two child cells. Among other
applications in statistics, tree-indexed data have been used in multiscale representation
of images (Choi and Baraniuk, 2001) or more generally signals (Crouse et al., 1998;
Durand et al., 2004), cell lineages (Olariu et al., 2009) and plant representation (Durand
et al., 2005). In the context of the Virtual Plants team, host team of this thesis,
applications of interest focus on plant development and its modulation by environmental
and genetic factors. Plants are branching living organisms that develop throughout their
lifetimes. Organs are created by small embryogenetic regions at the tip of axis, called
apical meristems. One of the main objectives of the Virtual Plants team is to study
plant apical meristem functioning and development. Tree-indexed data can be found in
this context at two complementary scales:

• At a macroscopic scale. The methodology consists in analyzing the structures
produced by meristems. This can be seen as a methodology that aims at solving an
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inverse problem in which one infers the meristem functioning from the whole plants
they produce. Each vertex represents a botanical entity (elementary constituent of
plants) and edges encode either the temporal precedence of two botanical entities
produced by the same meristem or the direct lineage relationships among two
meristems (branching process in plants).

• At a microscopic scale. The aim is to understand how physiological and genetic
processes control meristem functioning at tissular scale. Recent scientific and tech-
nological advances in developmental biology enable to access data at the tissular
scale and especially cell lineages. Each vertex represents a cell and edges encode
either the tracking of a cell throughout time or the lineage relationships among
parent and child cells.

While trees are closely related to paths, the catalog of models available for tree-
indexed data is far less important than the one available for sequences. Historically, first
interest in tree-indexed data only concerned tree topology without considering attributes
attached to vertices. When considering the problem of family name extinction, Watson
and Galton (1875) proposed a simple branching stochastic process only considering the
topology. This process was later generalized under the name Multi-Type Branching
Process (MTBP), considering both topology and categorical outcomes in tree-indexed
data (see Harris, 2002). Such an improvement rendered this model applicable in many
biological area (see Haccou et al., 2005; Kimmel and Axelrod, 2002, for examples). It’s
worth noting that these approaches are suitable for modeling tree-indexed data but
were originally applied on univariate (resp. multivariate) counts data corresponding to
the number of children of each vertex (resp. the number of children in each category
for each parent category). The corresponding estimated distributions were therefore
called generation distributions. More recently, an effort has been made to develop limit
theorems (Yang, 2003) and algorithms for Markov Tree (MT) models applied to tree-
indexed data with missing categorical values (Ronen et al., 1995) or non-categorical
values (Crouse et al., 1998; Durand et al., 2004; Bacciu et al., 2010). MT models are
stochastic processes where in the simplest case future events of the process are assumed
to be independent of the past ones given the present one. Hidden Markov Tree (HMT)
models introduced by Crouse et al. (1998) are to MT models what Hidden Markov
Chain (HMC) models are to Markov Chain (MC) models (see Ephraim and Merhav,
2002, for a review). The basic idea of HMT models is to define an unobserved categorical
MT process that is linked to the observation process by simple probabilistic mappings.
Hidden Markov models are thus not restricted to categorical outcomes but can deal with
multidimensional outcomes combining heterogeneous variables. Note that contrarily to
path graphs where the structure is unchanged whichever the chosen direction, directed
tree graphs are non-symmetrical structures. In fact, as presented by Durand et al.
(2005), one can distinguish two types of MT models:

• Markov In-Trees (MITs) studied by Bacciu et al. (2010) where the edges are di-
rected from the leaves to the root,

• Markov Out-Trees (MOTs) introduced by Ronen et al. (1995) where the edges are
directed from the root to the leaves.
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Due to restricted scope of applications – mostly image segmentation, signal classifica-
tion/denoising or image document categorization – where the tree structure is fixed by
the user, the topology is therefore not considered in such models contrarily to the MTBP
case.

This thesis aims at proposing a statistical modeling framework for studying pat-
terns in tree-indexed data. To this end, two different classes of statistical models are
investigated:

• An enlarged family of Hidden Markov Out-Tree (HMOT) models is considered.
Such models based on the modeling of local dependencies between child and parent
vertices are particularly suited for motif detection in trees such as alternation along
paths within the tree or succession of homogeneous zones concerning botanical
entity fates or cell identities. In order to model highly-structured motifs, the
classical HMOT model family is enlarged to take account of dependencies between
children and randomness of tree structures (i.e. variable number of child vertices).
In a first step, this new family of model is introduced in the case of trees with strong
topological constraints (binary trees), and semi-parametric HMOT models with
general observation processes are applied to cell lineages. In a second step, general
trees are considered and combinatorics induced by variable and high number of
children are modeled with parametric MOT models in order to obtain parsimonious
models that could be applied to the HMOT case as well.

• The generalization of multiple change-point models from path-indexed data to
tree-indexed data is investigated. Such models belong to the class of long-range
dependency models and are particularly suited when tree-indexed data exhibit
roughly homogeneous zones separated by marked change points. Application of
such models enable the segmentation of tree-indexed data.

As a consequence, graphs, probabilistic graphical models and latent state models emerged
as transversal thematics in this thesis.

Chapter 1 introduces graphs and graphical models. First, general definitions, prop-
erties and visualization algorithms are given. In particular, the different types of graphs
used in statistical modeling – undirected, directed and mixed – are introduced. Secondly,
the general graphical model framework relying on a graph for compactly encoding com-
plex distributions is developed. Focus is therefore first on Markov and factorization
properties defined in order to ensure that a distribution and its graph representation
are consistent. This formalism enables the derivation of rich sets of independence as-
sertions holding in a probability distribution by simply examining graphs or defining
distributions from graphs. Nevertheless, since for a given distribution, many graph rep-
resentations are consistent but not necessarily optimal, the concepts of minimal and
perfect Independence maps (I-maps) are thus introduced. Afterward, the use of graphi-
cal models in terms of interpretability of models, efficiency of inference and distribution
manipulation are illustrated with the example of multivariate Gaussian distributions.

In chapter 2 graphs and graphical models defined in chapter 1 are used in the par-
ticular context of directed tree graphs. This encompasses the formal definition of tree-
indexed data, their visualization and presentation of statistical models available in lit-
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erature to deal with such structured data. Particular emphasis is placed on the two
different data sets studied in this thesis and the associated modeling issues:

• At a microscopic scale, tree-indexed data are used to represent cell lineages ob-
served in meristems. The case of a floral meristem is considered and the objective
is to recover cell identities during the first stages of morphogenesis (from the ini-
tial undifferentiated stage to the emergence of sepals). Cell identities are not
directly observable but only indirectly through different geometrical, mechanical
and hormonal features attached to cells. The recovery of cell identities enables to
characterize the cell division process through time and to identify homogeneous
regions in terms of cell identities by spatial projection.

• At a macroscopic scale, tree-indexed data are used to represent whole plants. We
here consider the example of mango trees. As other tropical trees, mango trees
are characterized by strong phenological asynchronisms, between and within trees,
entailing patchiness. Patchiness is characterized by clumps of either vegetative,
reproductive or resting botanical entities within the canopy. Latent states are
therefore assimilated to patch fates, clump mostly composed of vegetative, resting
or flowering botanical entities for example. In this particular case, segmenting the
canopy in homogeneous regions is relevant for patch identification at a given date
while motif identification allows to understand how such patterns can be set up
throughout plant lifetime.

In chapter 3, we focus on models relying on local dependency assumption. An
enlarged family of HMOT models is introduced in order to relax the assumption of
independence between children given their parent in state-of-the-art HMOT models. As
a consequence, the concept of generation distributions of MTBPs is here re-introduced
into HMOT models. The upward-downward smoothing algorithm which enables to
implement efficiently the E-step of the Expectation-Maximization (EM) algorithm and
the dynamic programming algorithm for restoring the most probable state tree are
derived. The interest of such models is illustrated on cell lineages in floral meristems
where non-parametric generation distributions are coupled with parametric observation
models in order to define semi-parametric HMOT models.

Cell lineages can be considered as simple tree-indexed data since there is at most
two children for a vertex (and at least one child). In the practical setting of plant
architecture analysis, the combinatorics induced by the variable and high number of
child vertices in each state induces an inflation in the number of semi-parametric HMOT
models parameters. We address the inference of discrete-state models for complex tree-
structured data in chapter 4. Our aim is to introduce parametric MOT that can be
efficiently estimated on the basis of data of limited size. Each generation distribution,
corresponding to a discrete multivariate distribution within this macroscopic model, is
modeled by a graphical model where each variable corresponds to a number of children
in a given state. In order to address the inference of these generation distributions, a
new method for the inference of Mixed Acyclic Graph (MAG) models is proposed. The
estimation of each graphical model relies on a greedy algorithm for graph selection. The
proposed modeling approach is illustrated on mango tree architecture analysis in the
context of the set-up of patches within trees.
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In chapter 5, the classical multiple change-point models for path-indexed data are
transposed to tree-indexed data. The objective of multiple change-point models is to
partition a heterogeneous tree-indexed data into homogeneous subtree-indexed data of
consequent sizes. Contrarily to MT models, relying on local dependencies, multiple
change-point models are relevant for tree-indexed data within which long-range depen-
dencies have to be modeled. Since optimal algorithms of multiple change-point models
for sequences cannot be transposed to trees, we propose here an efficient heuristic for
tree segmentation. The segmented subtrees are grouped in a post-processing phase, and
this segmentation/clustering approach is justified by the occurrence of similar disjoint
patches in the canopy. Application of such models is illustrated on mango trees where
subtrees are assimilated to plant patches and clusters of patches to patch types (e.g.
vegetative, flowering or resting patch).

In the last chapter we focus on works currently in progress and perspectives. An
originality of the Virtual Plants team is the effort dedicated to software development. All
methods and models developed by team members are integrated in a common software
component, V-Plants, within the OpenAlea platform (Pradal et al., 2008). This chapter
gives an overview of the software resulting from the implementation of statistical models
and methods developed in this thesis in order to make them available to the team
members and partners. Chapter 3 focus was on HMOT models, however Hidden Markov
In-Tree (HMIT) – discussed by Durand et al. (2005) and developed by Bacciu et al.
(2010) – are related models that also take into account dependencies between children.
Such models are therefore discussed with respect to HMOT models. Concerning the
generation distributions of HMOT, we considered the use of graphical models in order
to reveal exclusion and inclusion patterns in child fates. An alternative model, based
on mixture models, is presented and the different hypotheses induced by these two
models are hereafter discussed. Finally, we revisit the patchiness phenomenon and
present an integrative analysis that could be conducted in order to decipher mango tree
asynchronisms and patchiness phenomena.





Chapter 1

Graphs and graphical models
frameworks

Abstract In this chapter graphs and graphical models are introduced and illustrated
using Gaussian multivariate distributions.

First, general definitions, properties (e.g. topological notions, remarkable graphs...)
and visualization algorithms are given for usual graphs (i.e. undirected, directed and
mixed graphs).

Then, the graphical model framework is developed. This encompasses the presen-
tation of Markovian properties, factorization properties and concepts of minimal and
perfect independence maps. These properties are used to factorize multivariate distri-
butions from a given graph, for the inquiry of independence patterns holding in such
distributions and to discuss to which extent graphs proposed for distributions are rele-
vant.

Finally, the Gaussian graphical models are discussed in order to illustrate the general
concepts formerly derived. In particular advantages of graphical model in terms of
parametrization and inference of Gaussian multivariate distributions are reviewed.

Keywords factorization property; Gaussian multivariate distribution; graph; graph
drawing; graphical model; I-map; Markov property; quotient graph; subgraph
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1.1 Introduction to graph theory

In mathematics and computer science, graph theory is the study of graphs, which are
mathematical structures used to describe relations in systems consisting in many related
objects. This introduction to graph theory is made in order to define and use graphs
in the context of statistical analysis. It is worth noting that as many scientific fields
use graphs, the terminology depends on the context. We are using here the usual
terminology that can be found in statistical reference textbooks about graphical models
(see Lauritzen, 1996; Koller and Friedman, 2009).

1.1.1 Definitions1

Graphs Let G be a graph. G is defined by a pair (V , E) where:

• The vertex set, noted V , is a finite subset of N.

• The edge set, noted E , is a finite subset of V × V pairs of distinct vertices in V ,

∅ ⊆ E ⊆ P (V) .

with P (·) the set of pairs of distinct elements of a set,

P (V) =
{

(u, v) ∈ V2
∣

∣

∣u 6= v
}

.

Note

We are here only considering simple graphs where no loop edge can be found,

∀v ∈ V, (v, v) 6∈ E .

For an edge (s, t) ∈ E , the vertex s is called the source vertex and t the target vertex
and vertices are said to be adjacent. If an edge (s, t) is in E and if:

• (t, s) is not in E , it is a directed edge.

• (t, s) is also present in E , it is an undirected edge.

Therefore, considering elements present in E different types of graphs can be considered:

• Undirected graphs containing only undirected edges,

G ∈ U (V)⇒ ∀ (u, v) ∈ P (V) , (u, v) ∈ E ⇔ (v, u) ∈ E ,

where U (·) is the set of all undirected graphs with given vertex set.

• Directed graphs containing only directed edges,

G ∈ D (V)⇒ ∀ (u, v) ∈ P (V) , (u, v) ∈ E ⇒ (v, u) 6∈ E ,

where D (·) is the set of all directed graphs with given vertex set.

1This section is largely based on Lauritzen (1996)
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• Mixed graphs, containing both undirected (E ′) and directed edge sets (E ′′),

G ∈M (V)⇒ E = [E ′ ⊎ E ′′] ∧


∀ (u, v) ∈ P (V) ,







(u, v) ∈ E ′ ⇔ (v, u) ∈ E ′

(u, v) ∈ E ′′ ⇒ (v, u) 6∈ E ′′



 ,

where M (·) is the set of all mixed graphs with given vertex set, ⊎ denotes the
union of disjoint sets and ∧ the logical and operator.

Note

Mixed graphs such as E ′ = ∅ (respectively E ′ = E), are directed graphs (re-
spectively undirected graphs). Mixed graphs are therefore considered as a
generalization of undirected graphs and directed graphs.

Induced subgraphs A subgraph GA is a graph induced by a given subset A of the
vertex set of G . GA = (VA, EA) is defined by the vertices A and all edges of G having
both source and target in A,

EA = E ∩ P (A) .

Quotient graphs A quotient graph GΠ is a graph induced by a given partition Π of
the vertex set of G . GΠ = (VΠ, EΠ) is defined by:

• Its vertex set represents an indexing of the partition blocks,

Π = {Πi}i∈VΠ
.

• Its edge set represents edges between partitions blocks,

EΠ = {(i, j) ∈ P (VΠ) |Πi × Πj ∩ E 6= ∅} .

1.1.2 Drawings

A strong advantage of those mathematical objects is that using some conventions, in-
formation abouts pairs (V , E) defining G can be easily interpreted using drawings. Such
drawings are pictorial representations of the vertex and edge sets depicting the relational
information encoded in graphs for visualization purposes. We will present here principal
conventions used to draw those figures.

1.1.2.1 Node and link diagrams

Principle A widespread graph drawing type is the node and link diagram. Let con-
sider a graph G and vertex coordinates noted r̄ = (rv)v∈V where

∀v ∈ V, rv ∈ R× R,

as we here only consider 2 dimensional layouts. For each vertex v ∈ V one draws a circle
centered on the coordinate rv labeled v. Considering the edges set E one distinguishes
different cases of edges:
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• an undirected edge (s, t) is represented by a straight line connecting the two labeled
circles s and t.

• a directed edge (s, t) is represented by an arrow pointing from the source labeled
circle s to the target labeled circle t.

Given these conventions, node and link diagrams are concerned with the automatic com-
putation of vertices coordinates in order to draw the graph. As presented in Tamassia
(2007, and references therein) there exists a lot of algorithms in the literature in order
to do so. Such algorithms can be separated into two principal classes:

• algorithms for small graphs (i.e. |V| / 100),

• algorithms for large graphs (i.e. |V| ' 100).

Where |·| denotes the cardinality of a set.

As in this thesis, we will mostly deal with small graphs, we will focus here on the
former class where algorithms are intuitive, simple to implement and produce layouts
that tend to be clear for graphs of small size.

Undirected graphs layouts Some of the most flexible algorithms for computing
layouts of simple undirected graphs belong to the class of force-directed algorithms. Such
algorithms compute the layout of a graph using mechanical models to produce layouts
respecting some generally accepted criteria (see Kobourov, 2012, for more details):

1. minimize edge crossings,

2. make edge lengths uniform,

3. reflect inherent symmetry.

In the algorithm of Eades (1984) the graph is abstracted into a mechanical system
composed of steel rings and springs. Each vertex is assimilated to a steel ring and each
edge to a spring attached to corresponding steel rings. Therefore, once the steel rings
are placed at initial positions, the system is evolving according to:

• ~FĒ , a force exerted between non-adjacent vertices. This repulsive force is due to
an electric charge γ of steel rings and its norm is inversely proportional to the
square-root of the vertices distance.

• ~FE , a force exerted between adjacent vertices. This force due to strings has a norm
logarithmically proportional to the vertices distance. Actually when two adjacent
vertices are too close, the force is repulsive and when they are too far apart the
force is attractive. The distance of equilibrium is defined by parameter β and the
characteristic of springs by α.
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This system tends to reach a state of minimal energy corresponding to an aesthetic
layout of undirected graphs. As at each iteration all vertices are moving simultaneously,
the quantity of movement computed can be damped using f∆ in order to prevent too
important displacement that would not be relevant. When publishing their algorithm
of undirected graphs layouts Fruchterman and Reingold (1991) added the aesthetic
criterion:

4. distribute the vertices evenly.

As other algorithms developed afterward (see Kobourov, 2012, and references therein)
this algorithm is very similar to the one proposed by Eades (1984). Main differences
are:

• ~FĒ , the force exerted between non-adjacent vertices is replaced by ~FP , a force
applied to all pairs of vertices. This force is also a repulsive one with a norm
inversely proportional for vertices distances.

• ~FE , the force exerted between adjacent vertices has now a norm proportional to
the square of the distance of adjacent vertices.

These two forces are inspired from forces exerted between atomic particles or celestial
bodies. Norm of forces computed can be particularly excessive, they therefore proposed
to limit the quantity of movements by decreasing the temperature of the system instead
of damping. This last phenomenon is assimilated to the well-known annealing effect in
metallurgy often used in computer science as a meta-heuristic (see Kirkpatrick et al.,
1983).

We embedded these two algorithms in algorithm 1 – quadratic in time and space
complexities – to compute graphs layouts (see table 1.1 and figure 1.1).

Algorithm 1 Computing vertex positions of undirected graphs

Require: r̄ = (rv)v∈V initial vertex positions
1 function ForceDirectedPlacement(G)
2 for k ∈ {1, · · · , M} do ⊲ Iterate the procedure M times
3 ∆̄ ← ((0, 0))i∈V ⊲ Resulting forces applied on vertex
4 for u ∈ V do
5 for v ∈ V \ {u} do
6 if (v, u) ∈ E then

7 ∆u ← ∆u + ~FE (ru, rv)

8 ∆v ← ∆v − ~FE (ru, rv)
9 else

10 ∆u ← ∆u + ~FĒ (ru, rv)

11 ∆u ← ∆u + ~FP (ru, rv)

12 for u ∈ V do
13 ru ← ru + ∆̃u min (f∆ (∆u) , fk (k))

return r̄
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Figure 1.1 – Examples of force-directed undirected graphs layout evolution. From left
to right the initial positions of vertices and then, the results of the second, tenth and
hundredth iterations are draw. Starting from given positions, the graph is viewed as
a spring system which evolves to reach a stable configuration. Algorithm 1 have been
configured to used the Fruchterman and Reingold (1991) algorithm but with the Eades

(1984) forces ~FE and ~FĒ respectively in place of ~FE and ~FP forces.

Directed graphs and mixed graphs layouts While force-directed algorithms are
widely used for drawing undirected graphs, there are less used in the context of directed
graphs. The principal reason is that they do not produce layouts highlighting the direc-
tion of edges. More sophisticated algorithms – known as hierarchical drawing algorithms
(see Tamassia, 2007, chapter 13) – were therefore developed for directed graphs in order
to take account of hierarchies generally encoded in directed graphs into the drawing.
Nevertheless, such algorithms require that all edges are oriented and can therefore not
be used for mixed graphs without a preliminary transformation of undirected edges into
directed ones which introduces in the drawing an erroneous impression of hierarchy.

When one is limited to small directed graphs or mixed graphs, the extension of
force-directed algorithms presented by Sugiyama and Misue (1995) is very interesting.
In order to suit force-directed algorithms to directed graphs and mixed graphs they
added to the list of aesthetic criteria the following one:

5. conform links to specified orientations.

They integrated this aesthetic criterion by considering magnetic fields. Actually, each
spring in the physical model is henceforth magnetized and the system is evolving in a
magnetic field defined by:

• a space dependent orientation vector noted ω (.) (see table 1.2),

• a strength noted ν ∈ [0, 1],

with:

• undirected edges as bi-directional magnetic springs,

• directed edges as uni-directional magnetic springs.
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Eades (1984) Fruchterman and Reingold (1991)

~FE : R2 × R
2 → R

2

ru, rv 7→ α · log (||δ||/β) · δ̃

~FĒ : R2 × R
2 → R

2

ru, rv 7→ −γ/||δ|| · δ̃

~FP : R2 × R
2 → R

2

ru, rv 7→ 0

f∆ : R2 → R

∆ 7→ ǫ · ||∆||

fk : N → R

k 7→ +∞

~FE : R2 × R
2 → R

2

ru, rv 7→ κ · ||δ||2 · δ̃

~FĒ : R2 × R
2 → R

2

ru, rv 7→ 0

~FP : R2 × R
2 → R

2

ru, rv 7→ −δ̃/κ2 · ||δ||

f∆ : R2 → R

∆ 7→ ||∆||

fk : N → R

k 7→ λ · exp (−k/τ)

Table 1.1 – Forces used in classical force-directed algorithms. The notation ||·|| denotes
the norm of a vector, ·̃ its normalization and δ = ru − rv the vector from vertex v to
vertex u. ~FP (resp. ~FE , ~FĒ) is a force applied to all pairs of vertices (resp. adjacent
vertices, non-adjacent vertices). Since the relevance of quantity of movement computed
for a vertex is limited to a certain amount, functions f∆ (resp. fk), limiting the norm
of forces applied, are introduced. Usual values for parameters are α = 2.0, β = 1.0,
γ = 1.0 ǫ = 0.1, κ = 1.0, λ = 273.0 and τ = 10.0 for a number of iterations M = 100.

The magnetic force applied is the following

~Fm : R
2 × R

2 → R
2

ru, rv 7→ −
(

1− cos (νθ) − sin (νθ)
sin (νθ) 1− cos (νθ)

)

δ,

where θ is the direct angle between the vectors

δ = ru +
ru + rv

2
,

representing the second half of edge (u, v) and

ω
(

ru + rv

2

)

,

the orientation of the field at the middle of the edge. The introduction of this magnetic
force ~Fm do not change the algorithm 1 as ~FE is henceforth considered as the resulting
force of the one chosen in the undirected case and the magnetic force induced by the
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Field name Orientation vector

South parallel
ω : R2 → R

2

r 7→ (0,−1)

Centrifugal polar
ω : R2 → R

2

r 7→ r̃

Clockwise concentric

ω : R2 → R
2

r 7→
(

0 1
−1 0

)

r̃

Table 1.2 – Usual magnetic fields for force-directed algorithms (Sugiyama and Misue,
1995). r denotes the position considered in magnetic field and r̃ its renormalization.
The usual value for the field strength parameter is ν = 0.1.

field (see figure 1.2). As a consequence of this rotational force, directed edges tend to
be in the direction of the magnetic field whereas undirected ones in the orthogonal one
(see figure 1.3 and figure 1.4).

Note

The force presented here is not the same as the one presented by Sugiyama and
Misue (1995). The main reason of this modification is that considering their force
the edge lengths are highly modified by the magnetic field. Therefore results pro-
duced are in contradiction with the aesthetic criteria ‘2. make edge lengths uniform’
and this behavior is reinforced as soon as the force of the field is increased. The
force we propose produces for an edge (u, v) a rotation at the center of the edge of
an angle proportional:

• to the angle between the edge and the orientation vector,

• to the force of the field.

without modifying the edge length.

Initialization In this thesis, small graphs drawings are achieved using algorithms 1
for vertex positioning and a customized interface to the matplotlib package (Hunter,
2007) for the drawing production. As force-directed algorithms are highly sensitive to
the initial vertex positions we considered the following strategies:
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Figure 1.2 – Examples of force-directed directed graphs layout evolution. From left to
right the initial positions of vertices and then, the results of the second, tenth and hun-
dredth iterations are draw. Starting from given positions, the graph is viewed as a mag-
netized spring system which evolve to reach a stable configuration given a magnetic field
(the parallel one in this case).

Figure 1.3 – Examples of movements induced by a magnetic field. The field orientation
vector is represented by a compass directed from the south (in white) to the north pole
(in red). Forces resulting from the magnetic field are represented by white arrows applied
at both extremities of edges. On (A) the successive movements of a directed edge are
represented and on (B) the movements of an undirected one. The directed edge converges
to the direction of the magnetic filed while the undirected one oscillates around the
orthogonal direction.



17 Graphs and graphical models frameworks

Figure 1.4 – Examples of magnetic fields. (A) The south parallel field. (B) The polar
one. (C) The clockwise concentric one. The ideal direction of directed edges are repre-
sented at given positions considering 3 of the magnetic fields proposed by Sugiyama and
Misue (1995).

• random, each coordinates is randomly set on the square
[
√

|V|/2,
√

|V|/2
]2

.

• circular, each coordinates is deterministically and evenly set on the circle centered

at (0, 0) and of radius
√

|V|. Instead of considering the vertices with their natural

ordering, relevant ordering of vertices (see Tarjan, 1972, for more details and in
particular the Depth-First Search (DFS) ordering) based on adjacencies can be
used in order to improve this initialization.

It is worth noting that if algorithm 1 is automatically producing a nice layout, the
result could be furthermore improved by manual corrections. We therefore configured
our matplotlib interface in order to allow a posteriori vertex position corrections while
updating link conformations.

1.1.2.2 Matrix plots

The utility of the basic force-directed algorithms to compute vertex positions is limited
to small graphs and results are of poor quality for graphs with more than a few hundred
vertices. They are multiple reasons why the traditional force-directed approach does
not perform well for large graphs. One of the main obstacles to the scalability of these
approaches is the fact that the underlying physical model has many local minima. In
cases of large graphs another useful drawing approach is inspired from matrix drawings.
A graph G can be represented using V × V square matrices noted G :

• The adjacency matrix of a graph of general element G
u,v

defined as follows

∀ (u, v) ∈ V2,







G
u,v

= 1 if (u, v) ∈ E ,

G
u,v

= 0 otherwise.
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Figure 1.5 – Adjacency matrix drawing. Here an adjacency matrix G, a permutation
matrix P and the corresponding rows and columns permutation of the adjacency matrix
of an undirected graph are represented. If the adjacency matrix describes the topological
information encoded in the graph it can be relevant to rearrange the rows and columns of
this matrix in order to highlight structural information. Whereas the adjacency matrix
G of the graph with 50 vertices does not reveal particular topological information, the
permuted matrix corresponding to a permutation of vertex labels highlights the presence
of 5 clusters of vertices.

• The incidence matrix of a graph G of general element G
u,v

defined as follows

∀ (u, v) ∈ V2,



















G
u,v

= 1 if [(u, v) ∈ E ∧ (v, u) ∈ E ] ∨ [(u, v) ∈ E ∧ (v, u) 6∈ E ] ,

G
u,v

= −1 if [(u, v) 6∈ E ] ∧ [(v, u) ∈ E ] ,

G
u,v

= 0 otherwise,

,

where ∨ denotes the logical or operator.

To represent these matrices a square surface of V2 pixels is considered and each pixel
located at position (u, v) ∈ V2 is colored according to the value of the element G

(u,v)
. In

order to map the different values of G to colors, we used color-maps defined in matplotlib
package (Hunter, 2007, see figure 1.5).

Let consider a permutation σ(.) ∈ S (V) where S (·) is the set of all permutations
of a set. Graph adjacency matrix drawing can sometimes be enhanced by the drawing
of a permuted version of the matrix P t · G · P where the permutation matrix P general
element Pu,v is defined as follows

∀ (u, v) ∈ V2,







Pu,v = 1 if v = σ(u)

Pu,v = 0 otherwise.

As for the circular initialization for node and link diagrams such relevant permuta-
tions are related to vertex ordering (Tarjan, 1972) induced by the topological information
encoded in graphs which we will further illustrate.
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1.1.3 Graph properties2

Mixed graphs are a generalization of undirected graphs and directed graphs but for the
sake of understanding concepts regarding graphs will be first presented for undirected
graphs and directed graphs. In order to generalize these definitions to mixed graphs,
an effort has been made to define undirected graphs and directed graphs notions in a
manner that they hold for all types of graphs.

1.1.3.1 Undirected graphs

Topological notions Two distinct vertices u, v ∈ V are said to be neighbors if the
edges (u, v) and (v, u) are present in E . The set of neighbors of vertex is noted ne (·)
and its cardinality – called degree – deg (·),

∀v ∈ V, ne (v) = {u ∈ V | [(u, v) ∈ E ] ∧ [(v, u) ∈ E ]} ,

deg (v) = |ne (v)| .

For a subset A of V , its neighborhood is defined as the union of the neighborhood of
each of its elements discarding its own elements,

∀A ⊆ V , ne (A) = {∪v∈Ane (v)} \ A,

and its closure is noted Ne (·),

∀A ⊆ V , Ne (A) = ne (A) ∪ A.

The subset A ⊆ V such that in the subgraph GA all vertices have all the other
vertices as neighbors is a clique. When A is a clique such that for any other vertex
i ∈ V \ A, A ∪ {i} is no more a clique, A is said to be a maximal clique. The set of all
maximal cliques in the undirected graph G is noted KG . The notion of maximal clique is
central in undirected graphs and the listing of all maximal cliques can be done using the
Bron and Kerbosch (1973) algorithm which has a worst case time complexity of O

(

3
K
3

)

(Tomita et al., 2006). Although other algorithms for computing KG have been designed
since 1973 this algorithm and optimized variants are reported as being more efficient in
practice than the alternatives (Cazals and Karande, 2008).

A path of length l from a vertex u ∈ V toward a vertex v ∈ V is a sequence
α0 = u, . . . , αl−1 = v of distinct vertices such as (αk−1, αk) ∈ E for all k ∈ |[0, l|[. If there
is a path from a vertex u ∈ V to a vertex v ∈ V and another one from v to u, vertices u
and v are said to be connected. The set of vertices connected to a vertex, noted cn (·),
is defined as follows

∀v ∈ V, cn (v) =
[{

∪u∈ne(v)cn (u)
}

∪ ne (v)
]

\ {v} .

For a subset A of V , its connected vertex set is defined as the union of vertices connected
to each of its elements discarding its own elements,

∀A ⊆ V , cn (V) = {∪v∈Acn (v)} \ A,

2This section is largely based on Lauritzen (1996)
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Figure 1.6 – Remarkable undirected graphs. Graph G0 is a tree and G1 a complete graph.
Graph G2 is not chordal as there is a diamond shape 1, 2, 3, 4 missing a chord (1, 3)
and/or (2, 4). Graph G3 is one of the chordal embedding of G2 where the chord (2, 4)
has been added. The 4-cycle 1, 2, 3, 4 has therefore been split in 2 3-cycles 1, 2, 4 and
2, 4, 3.

and its closures is noted Cn (·),

∀A ⊆ V , Cn (V) = cn (A) ∪ A.

A graph such that every vertex is connected to the others is said to be a connected
graph. A connected component of an undirected graph G is a subset A of V such that
GA is connected and that every every vertex of A is not connected to any vertices in
V \ A.

A path of length l > 2 pointing from a vertex v to the same vertex v is a l-cycle.
A chord is an edge linking 2 non-consecutive vertices in a cycle. A diamond shape is a
l-cycle with l ≥ 4 containing no chords.

Remarkable graphs Considering edge sets, important classes of undirected graphs
can be defined (see figure 1.6).

An undirected graph G is said to be a complete graph if V is a clique

KG = {V} .

If an undirected graph has no l-cycles and is connected, it is a tree. If it has more
than one connected component but all connected components are trees, it is a forest.

If any l-cycles for l > 3 in a graph have a chord then the graph is a chordal graph.
By extension undirected graphs with no cycles are also said to be chordal. In fact, if
an undirected graph does not containing any diamond shape, it is chordal. A chordal
embedding G ′ = (V , E ′) of a non-chordal graph G = (V , E) is a chordal graph such as
E ⊂ E ′. Computing a minimal chordal embedding – a chordal embedding such as the
number of edges added is minimal – of a non-chordal graph is NP-hard (Yannakakis,
1981), a good heuristic for computing a chordal embedding is to generate a well chosen
ordering of vertices such as the number of chords added is reasonable (see Rose et al.,
1976; Amestoy et al., 1996; Berry et al., 2004, for more details).
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Separation property For three disjoints subsets of V , A, B and C, the subset C
is said to be (A,B)-separator if all paths from vertices in A to vertices in B intersect
vertices in C. This property is noted

A
G

⊥ B|C.

When no confusion could arise the notations A ⊥ B|C if C is not the empty set, or
A ⊥ B otherwise, will be used. If C is (A,B)-separator and for any vertices i ∈ C,
C \ {i} is no more (A,B)-separator, C is a minimal (A,B)-separator.

When considering a fourth disjoint subset of D ⊂ V , some important properties can
be derived from graph separation:

• The symmetry property,

A ⊥ B | C ⇔ B ⊥ A | C.

• The decomposition property,

A ⊥ B ∪ C |D ⇒ A ⊥ B |D.

• The weak union property,

A ⊥ B ∪ C |D ⇒ A ⊥ B |D ∪ C.

• The contraction property,

[A ⊥ B |D, C] ∧ [A ⊥ C |D]⇒ A ⊥ B, C |D.

• The intersection property,

[A ⊥ B | C] ∧ [A ⊥ C |B]⇒ A ⊥ B, C.

Let S (G) denote the set that contains all the separations that holds in G ,

S (G) =
{

(A,B, C) ∈ P3 (V)
∣

∣

∣A ⊥ B | C
}

.

For any two undirected graphs G and G ′ sharing the same vertex set, if they do not have
the same set of edges, their sets of separations differ,

∀ (G , G ′) ∈ U2 (V) , E 6= E ′ ⇔ S (G) 6= S (G ′) .
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1.1.3.2 Directed graphs

Topological notions A vertex s is said to parent of a vertex t if the edge (s, t) is in
E but not the edge (t, s). Correspondingly t is said to be a child of the vertex s. One
denotes by:

• pa (·), the set of parents of a vertex,

∀v ∈ V, pa (v) = {u ∈ V | [(u, v) ∈ E ] ∧ [(v, u) 6∈ E ]} ,

deg−(v) = |pa (v) |,

where deg−(·) is the in-degree (i.e. number of parents) of a vertex.

• an (·) the set of ancestors of a vertex,

∀v ∈ V, an (v) =
{

∪u∈pa(v)an (u)
}

∪ pa (v) .

• ch (·), the set of children of a vertex,

∀v ∈ V, ch (v) = {u ∈ V | (v, u) ∈ E ∧ (u, v) 6∈ E} .

deg+(v) = |ch (v) |,

where deg+(·) is the out-degree (i.e. number of children) of a vertex.

• de (·), the set of descendants of a vertex,

∀v ∈ V, de (v) =
{

∪u∈ch(v)de (u)
}

∪ ch (v) .

• nd (·), the set of non-descendants of a vertex,

∀v ∈ V, nd (v) = V \ [de (v) ∪ {v}] .

Similarly, for any subset A of V , same notations are used,

pa (A) = {∪v∈Apa (v)} \ A,

ch (A) = {∪v∈Ach (v)} \ A,

an (A) = {∪v∈Aan (v)} \ A,

de (A) = {∪v∈Ade (v)} \ A,

and capitalized ones for their closures,

Pa (A) = pa (A) ∪ A,

Ch (A) = ch (A) ∪ A,

An (A) = an (A) ∪ A,

De (A) = de (A) ∪ A,

Nd (A) = nd (A) ∪ A.
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The set of roots, noted R, is the set of vertices with no parents,

R =
{

v ∈ V
∣

∣

∣ deg−(v) = 0
}

,

and the set of leaves, noted L, is the set of vertices with no children,

L =
{

v ∈ V
∣

∣

∣ deg+(v) = 0
}

,

A directed path of length l from a vertex u ∈ V toward a vertex v ∈ V is a sequence
α0 = u, . . . , αl−1 = v of vertices such as (αk−1, αk) ∈ E for all k ∈ |[0, l|[ and there is at
least one (αk, αk−1) 6∈ E . A directed l-cycle is a directed path of length l > 1 from a
vertex v ∈ V to the same vertex v.

A v-shape is a set of 3 distinct vertices u, v and w of V such that (see G{1,2,3} in
figure 1.7):

• w is a child of u and v,

• u is not a child of v and conversely.

In a directed graph a v-shape is also called an immorality. On denotes by IG the set of
immoralities in G defined as follows

IG =
{

(u, v, w) ∈ V3
∣

∣

∣ [u 6∈ pa (v)] ∧ [v 6∈ pa (u)] ∧ [w ∈ ch (u)] ∧ [w ∈ ch (v)]
}

.

Remarkable graphs Considering the edge set it is possible to define important classes
of directed graphs (see figure 1.7).

A Directed Acyclic Graph (DAG) is a directed graph which does not contain any
directed l-cycles. By opposition directed cyclic graphs are directed graphs that are not
DAGs.

A directed forest is a DAG such that none of its vertices has an in-degree superior
to 1 and at least one vertex has an in-degree equal to 0. Moreover, if a directed forest
has only one vertex having a null in-degree, it is a directed tree.

There are two transformations of a directed graph G into an undirected graph gen-
erally considered:

• Its undirected version noted Gu = (V , Eu), is the undirected graph obtained by
dropping edge directions,

Eu = E ∪ Er,

where Er is the set of reversed edges,

Er = {(t, s) ∈ P (V) \ E | (s, t) ∈ E} .

• Its moral graph noted Gm = (V , Em), is the undirected graph obtained by adding
all edges corresponding to immoralities into its undirected version,

Em = Eu ∪
{

(u, v) ∈ P (V)
∣

∣

∣ ∃w ∈ V, (u, v, w) ∈ IG

}

.
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Figure 1.7 – Remarkable directed graphs. Contrary to graph G4 in which we have the
directed 3-cycle 1, 2, 3, 1, graph G5, where the only difference is the reversal of the edge
(3, 1) into (1, 3), is a DAG. Graph G6 is a DAG with 3 immoralities (0, 3), (2, 3) and
(0, 2) therefore many those edges were added into its undirected version in order to build
its moral graph Gm

6 , which is complete.

Separation property Let A, B and C be three disjoints subsets of V . The subset C
is said to be (A,B)-d-separator if C is (A,B)-separator in Gm

an(A∪B∪C)
3,

A
G

⊥
d
B | C ⇒

Gm
an(A∪B∪C)

A ⊥ B | C.

When no confusion could arise the notations A ⊥ B|C if C is not the empty set, or
A ⊥ B otherwise, will be used.

If as in the undirected graph case the same important properties can be derived from
graph d-separation, there are few important remarks to be done concerning the set of
separations in a directed graph:

• The set of separations of an undirected graph can be represented by a directed
graph with no immoralities if and only if the undirected graph graph is chordal.
Such graphs are said to be Separation equivalent (S-equivalent). A conversion
from a chordal graph into a directed graph can be made by considering a vertex
as the center of the undirected graph and orienting edges in a centrifugal way.
Conversely, as soon as a directed graph has an immorality it has no S-equivalent
in the undirected graph space (see figure 1.8).

• Contrarily to undirected graphs, for any two directed graphs G and G ′ sharing the
same vertex set, if they do not have the same set of edges, their sets of separations
do not necessarily differ,

∀ (G , G ′) ∈ D2 (V) , E 6= E ′ 6⇔ S (G) 6= S (G ′) .

Actually, these two directed graphs are S-equivalent if and only if they have the
same undirected version and the same set of v-shapes,

∀ (G , G ′) ∈ D2 (V) , S (G) = S (G ′)⇔






Eu = E ′u,

IG = IG′ .

3The subgraph operator has the precedence over the moralization
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Figure 1.8 – The d-separation property. In graph G7 as the vertices 0 and 1 are separated
in G7

m
an({0,1}), 1 ⊥ 0 does hold but not 1 ⊥ 0 | 2 as the immorality (0, 1) in G7

m
an({0,1,2}) is

moralized thus vertices 0 and 1 are not separated by vertex 2.

1.1.3.3 Mixed graphs

Topological notions Mixed graphs can be viewed as a generalization of undirected
graphs and directed graphs, therefore notions issued from both undirected graphs and
directed graphs have to be extended. In order to describe vertices and vertex subset
relations, notions defined only for directed graphs such as:

• parents,

• children,

• ancestors,

• descendants,

• non-descendants,

and the notion of neighbors or connected vertices only defined for undirected graphs
remain the same, as each of these notation closures. As mixed graphs combine lineage
and neighborhood relations, it is convenient to work with the notion of boundary, noted
bd (·), defined as the union of parents and neighbors of the vertex,

∀v ∈ V, bd (v) = pa (v) ∪ ne (v) .

As for previous notations the boundary of a subset A of V , it is the union of the
boundaries of each vertex of A minus all elements belonging to A,

∀A ⊆ V , bd (A) = {∪v∈Abd (v)} \ A,

and its closure is noted Bd (·),

Bd (A) = bd (A) ∪ A.

A chain component is a set A of V such that GA is a connected undirected graph
and for all vertices v ∈ V \ A, GA∪{i} is no more a connected undirected graph. One
denotes by HG the set containing all chain components in a mixed graph.
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A u-shape is a set of 4 distinct vertices u, v, w and z of V such that (see G9 in
figure 1.9):

• w and z are in the same chain component,

• w is a child of u,

• z is a child of v,

• u is not in the boundary of v and conversely.

An immorality in a mixed graph is an u-shape or a v-shape. On denotes by IG the set
of immoralities in G defined as follows

IG =
{

(u, v, w) ∈ V3
∣

∣

∣ [u 6∈ pa (v)] ∧ [v 6∈ pa (u)] ∧ [w ∈ ch (u)] ∧ [w ∈ ch (v)]
}

∪















(u, v, w, z) ∈ V4

∣

∣

∣

∣

∣

∣

∣

∣

[u 6∈ bd (v)] ∧ [v 6∈ bd (u)]

∧ [w ∈ ch (u)] ∧ [z ∈ ch (v)]

∧ [w ∈ cn (z)] ∧ [z ∈ cn (w)]















.

Remarkable graphs As for undirected graphs and directed graphs particular edge
sets define important classes of mixed graphs (see figure 1.9).

In particular, the notion of DAG can also be extend to mixed graphs considering
that a mixed graph is said to be a Mixed Acyclic Graph (MAG) if it does not contains
any directed l-cycles. By opposition mixed cyclic graphs are mixed graphs which are
not MAGs.

Moreover, the following two transformations of a mixed graph G into an undirected
graph are generally considered:

• its undirected version noted Gu = (V , Eu), is the undirected graph obtained by
dropping directed edge directions,

Eu = E ∪ Er.

• ant its moral graph noted Gm = (V , Em), is the undirected graph obtained by
adding all edges corresponding to immoralities into its undirected version,

Em = Eu ∪











(u, v) ∈ P (V)

∣

∣

∣

∣

∣

∣

∣

[

∃w ∈ V, (u, v, w) ∈ IG

]

∨
[

∃ (w, z) ∈ V2, (u, v, w, z) ∈ IG

]











.

Separation property Let be three disjoint subsets A, B and C ⊂ V . The set C
m-separates sets A and B if C separates A and B in Gm

an(A∪B∪C)
4,

A
G

⊥
m
B | C ⇒ A

Gm
an(A∪B∪C)

⊥ B | C.
4The subgraph operator has the precedence over the moralization
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Figure 1.9 – Remarkable mixed graphs. Graph G8 is a mixed cyclic graph as there is the
directed 4-cycle 0, 3, 2, 1, 0. On graph G9 which is a MAG there is one u-shape implying
the immorality (2, 3). Graph Gm

9 , the moral graph of G9, is not chordal as the immorality
(2, 3) in G9 induced the addition of edge (2, 3) in comparison to its undirected version.

When no confusion could arise the notations A ⊥ B|C if C is not the empty set, or
A ⊥ B otherwise, will be used.

Mixed graphs generalize both undirected graphs and directed graphs

∀V ⊆ N
∗, M (V) ⊃ U (V) ∪ D (V) ,

and, as soon as there exists u-shapes in a mixed graph (see figure 1.10), it has no S-
equivalent in U (V) nor D (V) which illustrates the interest of considering mixed graphs
(see figure 1.11). As for the directed case, two mixed graphs G and G ′ sharing the
same vertex set but not the same edge set are not necessarily different in terms of m-
separations. In fact, similarly to the directed graph case, they are equivalent if and only
if they have the same undirected version, the same set of v-shapes and u-shapes,

∀ (G , G ′) ∈M2 (V) , S (G) = S (G ′)⇔






Eu = E ′u,

IG = IG′ .

1.2 Graphical model framework

Graphical models use a graph-based representation as the basis for compactly encoding
a complex distribution. In this graph representation the vertices correspond to random
variables and edges to direct probabilistic relationships between them.

1.2.1 Random vectors and independencies

Let X be a random variable defined on the probability space (Ω,F , P ) and x an outcome
of X. If the observation space of X, noted X :

• is N or a subset of N, the random variable X is said to be a discrete random
variable,
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Figure 1.10 – The m-separation property. In the graph G10, 0 ⊥ 3|1, 2, 1 ⊥ 3|0, 4 (see
Gm

10) and 1 ⊥ 2 (see G10
m
an({0,1})) hold but not 1 ⊥ 2|3, 4 as the edge (1, 2) is added in the

moral graph Gm
10

Figure 1.11 – Separation relations among the classes of graphs. (A) A representation of
separation spaces for undirected, directed and mixed graphs. (B) A representation of a
diamond shape, typical feature of undirected graphs. (C) A representation of a v-shape,
typical feature of directed graphs. (D) A representation of an u-shape, typical feature of
mixed graphs. The largest separation class is the one of mixed graphs which contains
diamond shapes, v-shapes and/or u-shapes. The intersection of undirected graphs and
directed graphs spaces is corresponding to chordal undirected graphs and directed graphs
without immoralities sub-spaces. As soon as there is a diamond shape in a undirected
graph, it cannot be represented by a S-equivalent directed graph. Conversely, as soon
as a directed graph has a v-shape, it cannot be represented by a S-equivalent undirected
graph. Note that the S-equivalent classes of directed graphs (i.e. directed graphs same
undirected version and the same set of v-shapes) and mixed graphs (i.e. mixed graphs
same undirected version, the same set of v-shapes and u-shapes) spaces are not rep-
resented. If it were the classes would be split in a lot of S-equivalent graphs classes.
In particular, in U (V) ∩ D (V) each S-equivalent classes is represented by an chordal
undirected graph.
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• is R or a subset of R but not one of N, the random variable X is said to be a
continuous random variable.

For a collection (Xv)v∈V of random variables defined on (Ωv,Fv, Pv)v∈V , X = (Xv)v∈V

denotes the random vector defined on the probability space (Ω,F , P ), x an outcome of
X and X its observation space. For a subset A of V , XA (resp. xA or X A) denotes
the random vector (Xv)v∈A (resp. an outcome or the observation space of the random
vector (Xv)v∈A). In particular ∆ and Γ denote the partition of V such as:

• X ∆ ⊆ N
|∆|, the random vector X∆ is said to be a discrete random vector,

• X Γ ⊆ R
|Γ|, the random vector XΓ is said to a continuous random vector.

If both subsets are not empty, the random vector X is said to be a heterogeneous
random vector.

Note that in the following X is considered to be a discrete random vector for con-
venience but the extension to continuous or mixed random vectors is straightforward.
For three distinct subsets A, B and C of V , XA is independent of XB given XC under
the joint distribution P if and only if

∀x ∈ X ,

P (XA∪B = xA∪B |XC = xC) = P (XA = xA |XC = xC) · P (XB = xB |XC = xC) ,

whenever
P (XC = xC) > 0,

this conditional independence relationship noted

XA

P

⊥⊥XB |XC,

will be simplified, when no confusion could arise, by the notations A ⊥⊥ B|C if C is not
the empty set, or A ⊥⊥ B otherwise. If C = ∅, it is said to be a marginal independence.

When considering a fourth disjoint set D of V , one can see that the same important
properties hold in case of conditional independencies and graph separations. This intu-
itively introduces the reason of developing a formalism in order to encodes conditional
independencies in graphs:

• The symmetry property,

A
P

⊥⊥ B | C ⇔ B
P

⊥⊥ A | C,

• The decomposition property,

A
P

⊥⊥ B ∪ C |D ⇒ A
P

⊥⊥ B |D,

• The weak union property,

A
P

⊥⊥ B ∪ C |D ⇒ A
P

⊥⊥ B |D ∪ C,
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• The contraction property,
[

A
P

⊥⊥ B
∣

∣

∣

∣

∣

D ∪ C
]

∧
[

A
P

⊥⊥ C
∣

∣

∣

∣

∣

D
]

⇒ A
P

⊥⊥ B ∪ C |D,

Note that the intersection property,
[

A
G

⊥ B
∣

∣

∣

∣

∣

C
]

∧
[

A
G

⊥ C
∣

∣

∣

∣

∣

B
]

⇒ A
G

⊥ B ∪ C,

which is always true in graphs, holds only under some conditions for conditional inde-
pendencies

[

A
P

⊥⊥ B
∣

∣

∣

∣

∣

C
]

∧
[

A
P

⊥⊥ C
∣

∣

∣

∣

∣

B
]

⇒ A
P

⊥⊥ B ∪ C,

Actually, the intersection property hold for some interesting distributions called positive
distributions. But, for instance, when considering that there exists some deterministic
relationships among random variables it does not hold anymore. Let us consider the
example presented in Lauritzen (1996) such as:

• V = {0, 1, 2},

• X0 = X1 = X2,

• P (X0 = 0) = P (X0 = 1) = 1
2
.

If we have 0 ⊥⊥ 2 | 1 and 0 ⊥⊥ 1 | 2, we do not have 0 ⊥⊥ 1, 2 since

P (X = {0, 0, 0}) =
1

2
6= 1

2
· 1

2
= P

(

X{1,2} = {0, 0}
)

· P (X0 = 0) .

In order to discuss the similarities between separations in a graph and conditional
independencies in a distribution let I (P ) be the set that contains all the independencies
that holds in a distribution,

I (P ) =

{

(A,B, C) ∈ V3

∣

∣

∣

∣

∣

A
P

⊥⊥ B | C
}

.

1.2.2 From graphs to distributions5

The formalism of graphical models relies on the definition of Markov and factorization
properties ensuring that given a graph G and a distribution P ,

I (P ) ⊆ S (G) .

The interest of such a formalism is to enable the derivation of a rich set of independence
assertions holding in distributions by simply examining graphs or to define relevant
factorization of the distribution for graph structured random vectors.

5This section is largely based on Lauritzen (1996)
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1.2.2.1 The undirected case

The distribution P is said to obey, relatively to the undirected graph G :

• The Pairwise Markov property (PM), if for every pair of distinct vertices (u, v) that
do not belong to set of edges, the random variables Xu and Xv are conditionally
independent given the random vector XV\{u,v},

∀ (u, v) ∈
{

(s, t) ∈ V2
∣

∣

∣ [s 6= t] ∧ [(s, t) 6∈ E ]
}

, u
P

⊥⊥ v | V \ {u, v} . (PM)

• The Local Markov property (LM), if for every vertex v the random variable Xv is
conditionally independent to the random vector XV\Ne(v) given the random vector
Xne(v).

∀v ∈ V, v
P

⊥⊥ V \ Ne (v) | ne (v) . (LM)

• The Global Markov property (GM), if for every triplets of disjoint subsets A, B
and C of vertices, the random vectors XA and XB are conditionally independent
given the random vector XC if C separates them,

∀A ⊆ V ,∀B ⊆ V \ A,∀C ⊆ V \ {A ∪ B} , A
G

⊥ B | C ⇒ A
P

⊥⊥ B | C. (GM)

• The Factorization property (F), if there exists non-negative functions φC (xC)
called clique potentials such that

∀x ∈X (Ω) , P (X = x) =
1

Z

∏

C∈KG

φC (xC) , (F)

where the partition function Z is a renormalization quantity defined by,

Z =
∑

x∈X

∏

C∈KG

φC (xC) .

For distributions in which the intersection property holds,

(F)⇔ (GM)⇔ (LM)⇔ (PM),

but in the general case,

(F)⇒ (GM)⇒ (LM)⇒ (PM).

Let consider the example introduced by Moussouris (1974) and discussed in Lauritzen
(1996) in order to illustrate that (GM) may not imply (F). Let V = {0, 1, 2, 3},

Ω = ×v∈V {0, 1} ,
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and

∀x ∈
{

(0, 0, 0, 0) , (1, 0, 0, 0) , (1, 1, 0, 0) , (1, 1, 1, 0) ,
(0, 0, 0, 1) , (0, 0, 1, 1) , (0, 1, 1, 1) , (1, 1, 1, 1)

}

, P (X = x) =
1

8
. (1.1)

The conditional distribution of X0 given that X{1,3} = (0, 1) is degenerate,

P
(

X0 = 0
∣

∣

∣X{1,3} = (0, 1)
)

= 1,

and therefore trivially independent of X2. All other combinations of conditions on X{1,3}

give in a similar way degenerate distributions for one of the remaining variables and it
can also been observed for given variables X{0,2}. Hence,

[0 ⊥⊥ 2 | 1, 3] ∧ [1 ⊥⊥ 3 | 0, 2] ,

which is compatible with graph G12 (see figure 1.12) in term of (GM) but not in term
of (F) as the probability distribution do not factorize according to it. Let us consider a
reductio ad absurdum. If P factorizes according to G12:

P (X = (0, 0, 0, 0)) = φ{0,1} (0, 0) φ{1,2} (0, 0) φ{2,3} (0, 0) φ{3,0} (0, 0) =
1

8
,

and

P (X = (0, 0, 1, 0)) = φ{0,1} (0, 0) φ{1,2} (0, 1) φ{2,3} (1, 0) φ{3,0} (0, 0) = 0,

thus
φ{1,2} (0, 1) φ{2,3} (1, 0) = 0.

Using

P (X = (0, 0, 1, 1)) = φ{0,1} (0, 0) φ{1,2} (0, 1) φ{2,3} (1, 1) φ{3,0} (1, 0) =
1

8
,

is leading to
φ{2,3} (1, 0) = 0,

which contradicts

P (X = (1, 1, 1, 0)) = φ{0,1} (1, 1) φ{1,2} (1, 1) φ{2,3} (1, 0) φ{3,0} (0, 1) =
1

8
6= 0.

Hence P does not factorize according to G12.

1.2.2.2 The directed acyclic case

The distribution P is said to obey with respect to the DAG G :

• The Directed Pairwise Markov property (DPM) if for every pair of distinct vertices
(u, v) that are not adjacent such that v is a non-descendant of u, the random
variables Xu and Xv are conditionally independent given random vector Xnd(u)\{v},

∀u ∈ V,∀v ∈ nd (u) , u
P

⊥⊥ v | nd (u) \ {v} . (DPM)
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Figure 1.12 – Moussouris (1974) chordless four-cycle graph. Graph G12 represents P
(GM) properties defined by (1.1) but P cannot be factorized according to (F). If (F)⇒
(GM) the reciprocal is not always true.

• The Directed Local Markov property (DLM) if for every vertex v, the random
variable Xv is independent of the random vector Xnd(v)\pa(v) given the random
vector Xpa(v),

∀v ∈ V, v
P

⊥⊥ nd (v) \ pa (v) | pa (v) . (DLM)

• The Directed Global Markov property (DGM), if for every triplets of disjoint
subsets A, B and C of vertices, the random vectors XA and XB are conditionally
independent given the random vector XC if C d-separates them,

∀A ⊆ V ,∀B ⊆ V \ A,∀C ⊆ V \ {A ∪ B} , A
G

⊥
d
B | C ⇒ A

P

⊥⊥ B | C. (DGM)

• The Directed Factorization property (DF) if the distribution can be factorized as
follows,

∀x ∈X (Ω) , P [X = x] =
∏

v∈V

P
(

Xv = Xv

∣

∣

∣Xpa(v) = xpa(v)

)

. (DF)

In the directed acyclic case for any distribution P , almost all these properties are equiv-
alent,

(DF)⇔ (DGM)⇔ (DLM)⇐ (DPM),

and for distributions in which the intersection property holds they are all equivalents,

(DF)⇔ (DGM)⇔ (DLM)⇔ (DPM).

1.2.2.3 The mixed acyclic case

The distribution P is said to obey with respect to the MAG G :
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• The Pairwise Chain Markov property (PCM) if for every pair of distinct vertices
(u, v) that are not adjacent such that v is a non-descendant of u, the random vari-
ables Xu and Xv are conditionally independent given the random vector Xnd(u)\{v},

∀u ∈ V, ∀v ∈ nd (u) , u
P

⊥⊥ v | nd (u) \ {v} . (PCM)

• The Local Chain Markov property (LCM) if for every vertex v, the random variable
Xv is independent of the random vector Xnd(v)\bd(v) given the random vector
Xbd(v),

∀v ∈ V, v
P

⊥⊥ nd (v) \ bd (v) | bd (v) . (LCM)

• The Global Chain Markov property (GCM) if for every triplets of disjoint sub-
sets A, B and C of vertices, the random vectors XA and XB are conditionally
independent given the random vector XC if C m-separates them,

∀A ⊆ V ,∀B ⊆ V \ A,∀C ⊆ V \ {A ∪ B} , A
G

⊥
m
B | C ⇒ A

P

⊥⊥ B | C. (GCM)

• The Factorization Chain property (FC) if the distribution can be factorized as
follows,

P (X = x) =
∏

C∈HG

P
(

XC = xC

∣

∣

∣Xpa(C) = Xpa(C)

)

(FC)

where for each chain component C ∈ HG , P
(

XC = xC

∣

∣

∣Xpa(C) = xpa(C)

)

obeys to

(F) in Gm
A∪pa(A), the moral subgraph induced by A ∪ pa (A).

In the mixed acyclic case, with analogy with the undirected case, for any distribution
P , we have

(FC)⇒ (GCM)⇒ (LCM)⇒ (PCM)

in the general case but if the intersection property holds in P ,

(FC)⇔ (GCM)⇔ (LCM)⇔ (PCM).
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Note

In fact, four classes of Markov properties for chain graphs have been discussed in
the literature (see Drton, 2009, and references therein). These four types arise by
combining two different interpretations of directed edges with two different inter-
pretations of undirected edges. Two of them are widely used to represent structured
random vectors:

• The Lauritzen, Wermuth and Frydenberg property (LWF) or block concen-
tration Markov property for mixed graphs (Lauritzen and Wermuth, 1989;
Frydenberg, 1990).

• The Alternate Markov Property (AMP) or concentration regression Markov
property for mixed graphs (Andersson et al., 1996).

We focused here on the LWF mixed graphs as they are known to be more easily
interpretable in the Gaussian case (Cox and Wermuth, 1993) and to lead to smooth
models even for discrete multivariate distribtuions (Drton, 2009).

1.2.3 From distributions to graphs6

Given a graph G and a distribution P , we hereinabove presented under which conditions
G is an Independence map (I-map) for P , that is

I (P ) ⊆ S (G) ,

or how to define relevant factorizations of P given the graph G . If the latter property
is useful for modeling purposes, the derivation of independence assertions holding in
distributions by simply examining graphs is of particular interest for interpretation
purposes. To this end, the construction of G from a given P needs to be minimal in
some sense: the complete graph is always an I-map but does not enable the derivation
of independence assertions holding in P .

A graph G is a minimal I-map for P if it is an I-map and if the removal of any edge
in G renders it not an I-map. G is a perfect I-map for P if the set of separations holding
in G is equal to the set of independencies holding in P ,

I (P ) = S (G) .

1.3 Gaussian graphical models7

In the remainder of this chapter we focus on Gaussian graphical models as an illustration
of the graphical model framework.

6This section is largely based on Koller and Friedman (2009)
7This section is largely based on Koller and Friedman (2009) and Lauritzen (1996)
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1.3.1 Parametrizations

Gaussian distributions A continuous random variable X follows an univariate Gaus-
sian distribution with mean µ and variance σ2, denoted by X ∼ N (µ, σ2), if it has the
following density function

f (x) =
1√
2πσ

exp

{

−(x− µ)2

2σ2

}

.

Similarly, a continuous random vector X = (Xv)v∈V follows a multivariate Gaussian
distribution with vector mean µ and variance-covariance matrix Σ, denoted by X ∼
N (µ, Σ), if it has the following density function

f (x) =
1

√

(2π)|V| det (Σ)
exp

{

−1

2
(x− µ)T Σ−1 (x− µ)

}

,

where det (Σ) denotes the determinant of the variance-covariance matrix, and ·T the
transpose of a vector or a matrix. For multivariate Gaussian distributions, independen-
cies are easy to determine directly from the parameters of the distributions:

• marginal independencies can be determined in the variance-covariance matrix

∀ (u, v) ∈ P (V) , Σu,v = 0⇔ Xu ⊥⊥ Xv,

• conditional independencies can determined in the concentration matrix Θ = Σ−1

∀ (u, v) ∈ P (V) , Θu,v = 0⇔ Xu ⊥⊥ Xv |XV\{u,v}.

Let Π = {A,B} be a partition of V such as

µ =

(

µA

µB

)

,

and

Σ =

(

ΣA,A ΣA,B

ΣB,A ΣB,B

)

.

The distribution of XA |XB = xB is a multivariate Gaussian distribution denoted
N (µ′, Σ′) with

µ′ = µA + ΣA,BΣ−1
B,B (xB − µB) ,

and
Σ′ = ΣA,A − ΣA,BΣ−1

B,BΣB,A.

Variables indexed by A are called response variables, and these indexed by B are called
explanatory variables.

Using block matrix decomposition note that

ΘB,A = −Σ−1
B,BΣB,A

(

ΣA,A − ΣA,BΣ−1
B,BΣB,A

)−1

= −Σ−1
B,BΣB,AΣ′−1

= −Σ−1
B,BΣB,AΘ′,
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with Θ′ = Σ′−1. Therefore

ΘA,B = ΘT
B,A

= −
(

Σ−1
B,BΣB,AΣ′−1

)T

= −Θ′
(

Σ−1
B,BΣB,A

)T

= −Θ′ΣA,BΣ−1
B,B.

Hence, conditional independence relationships in conditional Gaussian distributions can
be derived from null coefficients (Wermuth and Lauritzen, 1990):

• in the matrix Θ′ΣA,BΣ−1
B,B considering a response and an explanatory variable given

all other response and explanatory variables.

• in the matrix Θ′ considering two response variables given all other response and
explanatory variables.

The matrix ΣA,BΣ−1
B,B is called the regression matrix and its elements regression coeffi-

cients.

From Gaussian distributions to graphs Since multivariate Gaussian densities are
positive distributions, in the case of:

• undirected graphical models

(F)⇔ (GM)⇔ (LM)⇔ (PM),

• directed graphical models

(DF)⇔ (DGM)⇔ (DLM)⇔ (DPM),

• mixed graphical models

(FC)⇔ (GCM)⇔ (LCM)⇔ (PCM).

As a consequence, with the conditional independence properties stated above, the matrix
G where the general element G

u,v
is obtained by binarization of the concentration matrix,

∀ (u, v) ∈ P (V) ,







G
u,v

= 1 if Θu,v 6= 0,

G
u,v

= 0 otherwise,

is an adjacency matrix of an undirected graph G corresponding to a minimal I-map of
the distribution. Gaussian directed graphical model are defined such that each variable
associated to a vertex:

• without parent follows an univariate marginal Gaussian distribution,
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Figure 1.13 – Examples of Gaussian graphical models. (A) An undirected perfect I-map
for a multivariate Gaussian distribution. (B) A directed minimal I-map of the multivari-
ate Gaussian distribution defined in (A). (C) A directed perfect I-map for a multivariate
Gaussian distribution. (D) An undirected minimal I-map of the multivariate Gaussian
distribution defined in (C). In (A) the definition of the multivariate Gaussian distribu-
tion require 12 parameters since there are 4 means and 8 non null coefficients in the
concentration matrix whereas the same distribution in (B) is defined with 13 parameters
since there are 4 means and 4 variances and 5 regression coefficients. Similarly, the
multivariate Gaussian distribution in (C) is defined by 8 parameters whereas in (D) 9
parameters are used.

• with parents follows an univariate conditional Gaussian distribution.

In fact, Wermuth (1980) demonstrated that any multivariate Gaussian distribution can
also be represented by a Gaussian directed graphical model with any ordering σ ∈ S (V)
such as

∀v ∈ V∗, pa (σ(v)) ⊆
{

Xσ(0), . . . , Xσ(v−1)

}

.

As soon as there are non-zero regression coefficients, the resulting graphs (i.e. for each
ordering) are also I-maps. Similar results holds for Gaussian mixed graphs with partial
ordering of vertices (Wermuth, 1992). Gaussian mixed graphical models are defined in
a similar way as Gaussian directed graphical models. The only differences are that if
a chain component has cardinality superior to 1, considered variables follow a multi-
variate marginal Gaussian distribution if they do not have parents or a multivariate
conditional Gaussian distribution otherwise. While the three representations are equiv-
alent in their expressive power, there is not a one-to-one correspondence between their
parametrizations (see figure 1.13).

1.3.2 Inference

Parameter inference Given a directed graph, the Maximum Likelihood (ML) pa-
rameter inference of Gaussian multivariate distributions reduces to ML parameter infer-
ence of univariate marginal and conditional Gaussian distributions, which is standard
in statistics.

In the case of undirected graph, the problem of ML parameter inference reduces to a
convex optimization problem with the concentration matrix as variable. This problem
was first studied by Dempster (1972) under the name of covariance selection. For an
undirected graph, there are two cases:
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1. The graph is chordal. In this case, the solution of the problem can expressed in
closed form (see Wermuth (1980) or Lauritzen (1996) for details).

2. The graph is not chordal. There is no closed form in this case and the ML pa-
rameter inference has to be computed iteratively (see Dempster (1972) and Speed
and Kiiveri (1986) for common algorithms).

These two cases have also been studied in details by Dahl et al. (2005) who designed
clear and efficient algorithms for both cases, especially for non-chordal graph via chordal
embedding.

The case of a mixed graph G can easily be tackled using undirected graph ML
inferences in each moral subgraphs Gm

A∪pa(A) induced by chain components A ∈ HG in
a first step and then a conditioning step with respect to pa (A), or directly using block
recursive equations (Wermuth, 1992).

Structure inference Hereinabove we focused on parameter inference given a graph.
Design of such graphs require expert knowledge but in many applications there are
simply no experts with sufficient knowledge to be able to design these graphs. In such
cases, given a sample to model, the joint inference of structure and parameters enable
to infer these graphs, which can be a posteriori interpreted by experts.

If the sampling distribution is assumed to be faithful to a Gaussian undirected graph-
ical model, the inference of structure involve finding the pattern of zeros in the concen-
tration matrix. Traditionally, a greedy forward-backward search algorithm was used to
determine the zero pattern (Lauritzen, 1996). More recently, another way to estimate
the undirected graphical model has been introduced. This approach consist in finding
the set of neighbors of each vertex in the graph by regressing that variable against the
remaining variables. Meinshausen and Buhlmann (2006) studied this case with the use
the Lasso of Tibshirani (1996) and showed that the resulting estimator is consistent,
even for high-dimensional graphs. On this basis, exact or faster Lasso based algorithms
has been developed to infer the undirected graph (see Banerjee et al. (2008) or the
graphical lasso of Friedman et al. (2008) for example) in Gaussian case. Some exten-
sions to discrete multivariate counts data or mixed data have also been proposed (Yang
et al., 2012).

If the sampling distribution is assumed to be faithful to a Gaussian directed graphical
model, the inference of structure involve finding a directed acyclic graph. There are two
main approaches for structure inference in the case of directed acyclic graphs (see Gamez
et al., 2011, and references therein):

• The use of greedy search algorithms. Given a consistent scoring function – as the
Bayesian Information Criterion (BIC) for instance, see Yang and Chang (2002)
for a review of different scores – a search heuristic among the DAG space is used
to incrementally improve the considered graphical model. Greedy algorithms were
widely studied in literature (Buntine, 1991, 1996; Heckerman et al., 1995; Chicker-
ing, 2002; De Campos and Puerta, 2001; Friedman and Goldszmidt, 1997; Fried-
man et al., 1999). One of the reason may be that they do not depend, in most cases
(see Chickering, 2002, for a counter-example), on the distribution parametrization
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while producing interpretable models due to their graphical representation. There-
fore the directed acyclic graphical model representation was a available for lot of
scientific field interested in complex multivariate distributions.

• The use of constraint-based methods involving test of hypothesis (Spirtes et al.,
2000; Neapolitan et al., 2004).

The case of a sampling distribution assumed to be faithful to a Gaussian mixed
graphical model has been considered less often in the literature. Proposed algorithms
(Edwards, 2000; Ma et al., 2008; Drton and Perlman, 2008) mostly focused on test of
hypothesis and can require an a priori the knowledge of the chain components. More-
over, they are highly related to the Gaussian distribution, another approach could be
to propose a greedy search algorithm extension to enable search among the MAG space
in order to generalize graph inference algorithms for mixed acyclic graphical models to
discrete, categorical and continuous variables.
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Chapter 2

Tree-indexed data and Markov Tree
(MT) models

Abstract In this chapter graphs and graphical models introduced in the previous
chapter are used in the context of directed tree-graphs.

Firstly directed tree-graphs are used to define tree-indexed data that are the struc-
tured data of interest in this thesis. In the context of statistical modeling for tree-indexed
data, visualization of these data is critical for hypothesis formulation and model valida-
tion. Some drawing algorithms are therefore introduced.

Secondly, examples of tree-indexed data used in the remainder of this thesis are
presented in details. Two examples taken from plant developmental biology are con-
sidered and associated modeling issues introduced. The first one at a microscopic scale
where tree-indexed data are used to represent cell lineage trees. The second one at a
macroscopic scale where tree-indexed data are used to represent plant architecture.

Finally, since presented examples raise the issue of motif detection in tree-indexed
data, state-of-the-art methods that address such problems are reviewed. In particuler
the ability of such models to detect motifs of interest in these applications are discussed.
This enables to target the hypotheses that need to be relaxed in the remainder of this
thesis.

Keywords cell lineage; Markovian models; plant architecture; quotient tree graph;
tree graph drawing; tree-indexed data; tree pattern
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2.1 Introduction to tree-indexed data

2.1.1 Definitions

Tree-indexed data Data of interest are tree-indexed data x̄ = (xt)t∈T where T ⊂ N

is the set of vertices of a directed tree graph T = (T , E), E ⊂ T × T \ R the set of
directed edges representing lineage relationships between vertices and R the set of roots.

Note

Sensu stricto T is a directed tree graph but sensu lato, T is a forest of directed tree
graphs.

Let A be a subset of T and x̄A be the subset of x̄ obtained by only considering
vertices in A,

∀A ⊆ T , x̄A = (xt)t∈A .

Topological notions Since T is a tree – or a forest – topological notions of directed
graphs directly apply to tree-indexed data.

For example child (ch (.)), descendant (de (.)), ancestor (an (.)) sets of a vertex – or
set of vertices – and their closures (capitalized notations) allow the characterization of
relations between vertices in the data. In particular, for any vertex t ∈ T , x̄De(t) is the
subset indexed by the subtree τt = sub [τ, De (t)] rooted at vertex t.

It is worth noting that in trees, the parents set (pa (.)) of a vertex has cardinal 0 or
1. Therefore the notation of parenthood defined for directed graphs is slightly altered
when working with trees. The parent of a vertex is only defined for non-root vertices
and is another vertex

∀ (v, u) ∈ T × T \ R, (v, u) ∈ E ⇔ pa (u) = v.

Vertices sharing the same parent are called sibling vertices.
Roots, noted R, and leaves, noted L, play a central role in trees. The length of the

directed path from a root to a vertex t is named depth of a vertex and denoted dt ,

∀t ∈ T , dt =







0 if t ∈ R,

dpa(t) + 1 otherwise.
.

Similarly, the length of longest directed path from a vertex to its leaves is named height
and denoted ht,

∀t ∈ T , ht =











0 if t ∈ L,

max
s∈ch(t)

{hs}+ 1 otherwise.
.

Quotient tree graphs Quotient tree graphs are quotient graphs of tree graphs, noted
τΠ, that are tree graphs. As presented in Godin and Caraglio (1998), a sufficient con-
dition to obtain quotient tree graphs (or similarly quotient forest graphs obtained from
forest graphs) is that the subgraphs induced by quotients in Π must be sensu stricto
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Figure 2.1 – Quotient tree graphs. (A) A tree graph with 5 quotients represent by the
dashed hulls including vertices quotiented. (B) The quotient tree graph obtained by
considering the 2 black quotients and the 2 red ones. (C) The quotient tree graph obtained
by considering the 2 black quotients and the green one. In (B) and (C) vertices are
colored according to the color of quotients in (A). The quotient tree (C) is obtained from
a partition where each subgraph induced by quotients are tree graphs. This a sufficient
condition but not neccessary as illustrated on (CB where the quotient tree graph has one
red quotient which induce a forest tree graph (see Godin and Caraglio, 1998, for more
details).

tree graphs (see figure 2.1). These quotient tree graphs are particularly interesting in
the context of tree-indexed data. In fact, this quotienting operations can be seen as the
production of structure at coarser scales enabling data inquiries at larger scales.

2.1.2 Drawing tree-indexed data1

The objective of tree-indexed data drawing is to automatically produce informative
geometric representations for visualization purposes. Since tree-indexed data can be
viewed as directed graphs, they could benefits from the drawing conventions and algo-
rithms previously presented (see sub-section 1.1.2 page 10). Nevertheless, it is common
to modify the directed graph drawing standards for trees in order to take into account

1This section is largely based on Tamassia (2007, chapter 5)
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their topological particularities.

Aesthetics of tree drawings Trees and forests are by definition sparse graphs – same
number of edges than number of vertices minus the number of roots – therefore node
and link diagrams are preferred to adjacency plots. Usually, node and link diagram for
drawing trees are compared considering qualitative and quantitative aesthetic criteria:

• the area, defined as the surface of the enclosing rectangle of vertex drawing.

• the ratio, defined as the ratio of the length of the shortest side to the length of
the longest side of the enclosing rectangle of vertex drawing.

• the subtree separation property. A drawing of T satisfies the subtree separation
property defined by Chan et al. (1997) if, for any two distinct vertices u and v of
T , the enclosing rectangles of the drawing of Tu and Tv do not overlap with each
other.

Moreover, considering the simplicity of tree topology compared to general directed
graphs, two non-exclusive types of drawing are of marked interest:

• Directional drawing. Considering a directed axis in the coordinate system used to
draw the trees, no child is placed before its parent. With such a convention and
for clarity purposes, one can switch from arrows to lines in order to represent a
directed edge, since there is no confusion about the edge direction.

• Planar drawing. A planar drawing is a drawing in which edges do not intersect in
the drawing. Planar drawings are normally easier to understand than non-planar
drawings (i.e. with edge-crossings). Since any tree admits a planar drawing, it is
desirable to obtain planar drawings for trees.

Both Eades (1991) and Fruchterman and Reingold (1991) reported the difficulty of
drawing trees without edges crossing by force-directed algorithms. Even when using the
magnetic extension of Sugiyama and Misue (1995) if the drawing tend to be directional,
the result is not guaranteed to be planar. Hereafter we present only two classes of
tree layout algorithms among many others (see Tamassia, 2007, chapter 5 and reference
therein). We focused on these two classes since they are relatively easy to understand
and to implement while producing high quality layouts.

Level-based layouts The level-based approach to draw trees is characterized by the
fact that vertices at the same depth are aligned on the same straight line (i.e. the level)
and for two given depths these straight lines are parallel (Bloesch, 1993; Reingold and
Tilford, 1981; Buchheim et al., 2002; Walker, 1990). Algorithms based on this approach
produce intuitive drawings that exhibit clear display of symmetries and respect both
planarity and directionality conventions (see algorithm 2 and its results in figure 2.2).
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Algorithm 2 Computing vertex positions of trees for a level drawing

Require: σ a reversed Depth-First Search (DFS) ordering
1 function LevelLayout(T )
2 r̄ ← (0, dt)t∈T ⊲ Use the depth of vertex as second coordinate
3 l ← 0 ⊲ Initialize leaf index
4 for v ∈ T do ⊲ Compute vertex first coordinates
5 if σ(v) ∈ L then
6 rσ(v),0 ← l ⊲ Assign leaf index as first coordinate
7 l ← l + 1 ⊲ Increment the leaf index
8 else
9 rσ(v),0 ←

(

∑

u∈ch(v) ru,0

)

/|ch (v) | ⊲ Assign non-leaf first coordinate
return r̄

Radial layouts While drawing using the level-based layouts respects, in most cases,
usual tree drawing conventions and the subtree separation property (it is not the case
for the algorithms proposed by Buchheim et al. (2002) and Walker (1990)) quantitative
aesthetics criteria are not satisfactory. For instance let T be a perfect binary tree of
depth d. In a perfect binary tree every non-leaf vertex has two children. Therefore there
are 2d leaves. The drawing of T produced using algorithm 2 has:

• an area of d · 2d units,

• a ratio of 2−d.

As presented in Tamassia (2007, Chapter 5), by considering a geometric transformation
from Cartesian coordinates to polar ones, a level-based layout yields a radial one (see
algorithm 3 and its results in figure 2.2).

Algorithm 3 Computing vertex positions of trees for a radial drawing

1 function RadialLayout(T )
2 r̄ ← LevelLayout(T ) ⊲ Compute vertex r̄ Cartesian coordinates
3 θ ← max

t∈T
{rt,0} −min

t∈T
{rt,0}+ 1

4 for t ∈ T do
5 rt,0 ← 2π · rt,0/θ ⊲ Transform vertex Cartesian coordinates into polar ones

return r̄

Compared to the level drawing of T , the radial drawing produced by algorithm 3
has:

• an area of d2 units,

• a ratio of 1.

Such values are far more satisfactory for these criteria. Given a level-based layout re-
specting planarity and directionality conventions such as those produced by algorithm 2,
the geometric transformation from Cartesian coordinates to polar ones preserves these
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Figure 2.2 – Drawing of trees. (A) The level-based drawing produced by algorithm 2.
(B) The radial drawing produced by algorithm 3. Each edge is represented by a straight
line as directions are evident as drawings are directional. Each vertex is represented
with a black filled dot. Both drawings are directional since no child vertex is before
its parent considering the second unit vector. Roots of trees are situated at the bottom
using algorithm 2 whereas there are situated in the inner-most concentric circle using
algorithm 3. In this thesis tree drawings are achieved using algorithms 2 or 3 for node
positioning and a customized interface to the matplotlib package for the rest (Barrett
et al., 2005; Hunter, 2007).

conventions. Moreover, although algorithm 3 drawings do not respect sensu stricto
the subtree separation property, if one changes the enclosing rectangle by an enclosing
triangle, the subtree separation property is respected.

2.2 Tree-indexed data and plants

Tree-indexed data are particularly used in signal processing (Crouse et al., 1998; Das-
gupta et al., 2001) or 2D and 3D images (Choi and Baraniuk, 2001) as multi-scale
representations of path or grid-indexed data. We hereafter do not present a large spec-
trum of tree-indexed data use but we focus on those which can be collected in the
case of plant development. In particular, we present the usefulness of tree-indexed data
representation at two scales:

• at a microscopic one, where tree-indexed data represents cell lineages in tissues all
along their development (Olariu et al., 2009),

• at a macroscopic one, where tree-indexed data represents the whole plant archi-
tecture (Durand et al., 2005).
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2.2.1 Tree-indexed data at cellular scale

The study of morphogenesis A major challenge in developmental biology is to un-
derstand how multi-cellular tissues can give rise to complex shapes in animals or plants.
It is therefore crucial to be able to quantify and explain the cellular and tissular patterns
taking place during morphogenesis2. Although several studies have provided profound
insight into the molecular regulatory networks that act during development, the effects
of such networks on shape transformations are often only described qualitatively. De-
scribing size and shape changes as a geometrical output of gene activity requires the
quantification of growth patterns at a cellular resolution. Obtaining accurate geometric
information about cell position and shape is essential to develop quantitative models
of morphogenesis. It is also fundamental to identify groups of cells, not only based on
their differentiation state, but on the outcome of the mechanical, genetic and hormonal
events that drive morphogenesis.

Meristems and tree representation of tissues3 In plants, meristems are driving
morphogenesis phenomenon. A meristem is a set of embryonic cells that organizes the
construction of the plant. It creates new tissues by successive divisions of its stem cells.
This division process is coupled with:

• a phenomenon maintaining certain cells obtained by division into a totipotency4

state,

• a phenomenon enrolling certain cells obtained by division into a differentiation
genetic program.

Divisions occur in such a way that cell entering the differentiating process will be part
of new tissues and organs while the meristem does not disappear, since there is a con-
stant regeneration of the totipotent cells composing it. Considering tissues and organs
produced and location within plant three main types of meristems can be considered:

• The Shoot Apical Meristem (SAM) located at the apex of stems (see figure 2.3).
It is responsible for the genesis of the aerial part of the plant, that is leaves, stems
and inflorescences5. The inflorescence set up is the result of the transformation of
a Shoot Apical Meristem (SAM) into a floral meristem.

• The Root Apical Meristem (RAM) located at the tip of the root and responsible
for the genesis of the below ground part of the plant, roots.

• The secondary meristems, which are responsible – when located inside stems – for
the thickening of the stems, or of roots – when located inside roots.

2The morphogenesis is the process of organisms’ shapes acquisition
3This section is largely based on Campbell and Reece (1984) and Nultsch (1998)
4Totipotency is a cellular property reflecting the cell capacity to differentiate into any specialized

cell
5An inflorescence is a group of flowers on a stem or complicated arrangement of branches issued

from a stem.
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Figure 2.3 – Mersitem and example of tree-indexed data at microscopic scale (Fernandez,
2010; Legrand, 2014). (A) SAM of Arabidopsis thaliana photography and associated flo-
ral meristems. At some point, cells not maintained as embryonic cells in the SAM enter
into the differentiation process of floral meristems. (B, C) Schematic cross-sections of
a same meristem at different times are represented with identified cells (ct)t∈J0,11K. The
possible location of this cross-section is located on (A) with a dotted black line. Only the
first two layers of cells L1 and L2 are represented in this scheme. (C) Tree representa-
tion of the follow up from (A) to (B) where each cell is represented by the corresponding
labeled vertex and lineages are represented by directed edges. Cells of the first obser-
vation (A) are considered as roots of the trees and at each time, a cell is connected to
itself at the precedent time if no division occurred and to its mother otherwise. Only two
divisions occurred here, from cell 1 to cells 6 and 7 and from cell 2 to cells 8 and 9.

The idea of meristem development representation into a tree-structure, is to follow
up in time meristem cells represented by vertices and use edges to represent lineage
relationships (see figure 2.3).

Tree-indexed data collection by 3D + t meristem imaging Fernandez et al.
(2010) presented a method to generate 3D digitized tissues at cell resolution with au-
tomatic tracking of cell lineage during growth. To create a digitized tissue that can be
used to quantitatively analyze growth in four dimensions, they developed an experimen-
tal pipeline comprising two key steps:

• Multi-angle Acquisition, 3 dimensional Reconstruction and Segmentation (MARS).
The multi-angle acquisition produces stacks of 2D images that are transformed into
3D images. In each voxel of the images the intensity of the signal associated to
cell walls – or other sources, for instance genetic markers – is stored. At the end
of the MARS step, the segmentation associates each voxel to a given cell of the
meristem or to the background (see figure 2.4).

• Automated Lineage Tracking (ALT). Once the cells have been identified in the
MARS step, the goal of the ALT step is to perform cell tracking all along the
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Figure 2.4 – Example of a 3D + t reconstruction and segmentation. (A) 3D images
reconstructed after the multi-angle acquisition are displayed according to time. Images,
from left to right, were respectively taken at 0h, 26h, 44h, 56h and 69h after the beginning
of the experiment according to Das et al. (2009) experimental design. The red color is
due to a marker of cell walls. (B) The corresponding segmented images are presented.
Cells are identified and their color is given according to their root identifier in lineage
trees (see Legrand, 2014, for more details). Since cells in the same lineage tree share
the same color, it can be seen that even though there is no explicit spatial information
in trees, since cells cannot migrate in plants, there is an implicit spatial information.

experiment. At the end of the ALT step lineage trees of cells are obtained.

Available data In this thesis we focused on the joint work concerning flower morpho-
genesis in Arabidopsis thaliana done with J. Legrand, another Ph.D. student of the team
(Legrand, 2014). We were interested in SAMs of Arabidopsis thaliana transformed into
floral meristems. In contrast to the original SAM, a floral meristem follows a determi-
nate growth process6. This transformation is controlled by the expression of particular
genes, called identity genes, specifying floral organs and causing determinate growth.
This work is focused on the L1 cell layer7 (see figure 2.4) and the lineage trees was
produced by Fernandez et al. (2010) MARS-ALT method (see figure 2.3).

Under the assumption that the differentiation process of cells in floral meristems can
be assimilated to succession of finite unobservable cell identities, we aim at recovering

6The determinate growth process is induced by the termination of stem cells production in the
mersitem

7The L1 cell layer is the one at the surface of the meristem
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these identities on the basis of genetic and geometrical cell characteristics (Legrand,
2014) such as:

• volume,

• surfaces (internal L1/L2 and external L1),

• inertia values (according to three axes),

• principal and secondary curvatures,

• AHP68 concentration.

Moreover, in order to understand early mechanisms at stake during flower morphogenesis
we aimed at identifying and characterizing cell identity motifs.

2.2.2 Tree-indexed data at whole plant scale9

Plant architecture analysis The importance of the topological structure for under-
standing and analyzing the development of plants was underlined by Hallé et al. (1978)
and Gatsuk et al. (1980) who introduced the analysis of plant architecture. Architec-
tural analysis was at first essentially developed as a qualitative method for describing
plants (Barthélémy et al., 1989). Afterward, a large research effort was devoted on the
one hand to validating and refining architectural concepts and, on the other hand, to
studying their application to agronomic contexts. These two preoccupations have led
researchers to study progressively how to quantify plant architecture and to develop cor-
responding concepts and tools (see Godin and Caraglio, 1998, and references therein).
The quantitative approach was rapidly faced with the problem of obtaining computa-
tional representations of plants that are consistent with field observations. This problem
raises the question of measuring plant topological structures and formally representing
them.

SAM activity, plant modularity and tree representation of plants The notion
of plant topological structure is based on the idea of decomposing a plant into elementary
constituents and describing their connections. To obtain natural decompositions, it is
possible to take advantage of the fact that the outcome of the plant growth process is
modular: a stem is a succession of metamers constituted by an internode, the upper
node, leaves and axillary buds attached to the node (see figure 2.5)

The topological structure stemming from a modular organism such as plants consists
of a description of the connections between its elementary constituents. Considering only
one SAM activity leads to consider stems that can be viewed as sequences: a metamer
is connected to an anterior metamer – called the predecessor metamer – and possibly
to a posterior metamer – called the successor metamer. But as a SAM produces buds
containing other SAMs as soon as an axillary meristem of a stem develops into a lateral

8The AHP6 is a marker for a hormonal signal (cytokinins) present in floral meristem
9This section is largely based on Godin and Caraglio (1998); Barthélémy and Caraglio (2007)
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Figure 2.5 – (A) Shoot apical meristem and (B) stem organization (Barthélémy and
Caraglio, 2007). Each leafy axis (B) ends in an apical meristem frequently protected
by an apical bud (A). Each stem comprises a succession of metamers (in gray on (B)
constituted by an internode, the upper node, leaves and axillary buds attached to the
node).

axis, a metamer may have more than one child counting the successor and the lateral(s)
metamer(s) but only has one predecessor. The whole plant can thus be viewed as a
tree-like structure (see figure 2.6).

Tree-indexed data collection by retrospective measurements Plant growth is
often a cyclic phenomenon: the setting up of metamers may be interrupted by resting
phases corresponding for instance to winter for temperate species. It is thus interesting
to consider the meristematic activity at different scales according to the growth strategy
of the plant when collecting the plant topological structure. Indeed, if the metamer is
the basic unit of the architecture of the plant, according to the plant growth cycles the
tree-indexation of data can be considered at different scales (see figure 2.7):

• At the Growth Unit (GU) scale. The GU is composed of the metamers established
in a ininterrupted phase of growth.

• At the annual shoot scale. The annual shoot corresponds to the GUs established
over a year.

• At the axis scale. The axis corresponds to the succession of annual shoots or GUs
produced by the same meristem.

When studying the architecture of a plant, the selection of the botanical entity – ele-
mentary constituent at the considered scale – is therefore primordial in order to describe
the plant growth strategy (see figure 2.6):
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Figure 2.6 – Tree-indexed data representation of plants (Durand et al., 2005). (A) The
plant is represented at the Growth Unit (GU) scale where each GU is denoted by ev

with v ∈ [|0, 14|[. (B) The formal tree graph representation of the same plant is drawn:
each GU ev is represented by a vertex v. Part of the topological information is not
encoded in the graph but can be stored as a property (the three shoots borne by e1). Few
other vertices properties can be defined such the lengths of GUs, their top and bottom
diameters. . . depending on the conducted experiment.

• For the common walnut (Sabatier et al., 1998), we can find two types of annual
shoots. Monocyclic annual shoots are preformed in the winter bud. The annual
shoot and GU have thus the same meaning. Bicyclic annual shoots are for their
part constituted of two GUs. Considering the objectives of the analysis the botan-
ical entity chosen could be the GUs or the annual shoots.

• For some tropical plants, growth can be almost continuous. As a consequence GU
are therefore no more relevant. A reasonable choice could be therefore to consider
the metamers or the axis as the botanical entity.

Moreover, it is worth noting that if the axis scales are defined for all plants, the GU and
the annual shoot scales are mainly defined for temperate species.

Morphological markers, which reflect the past meristem activity, enable the botanist
to reconstruct the life of a plant by identifying a posteriori growth periods. The tree
graph T is therefore constructed with respect to the plant growth strategy (see fig-
ure 2.6). During the same time the univariate set x̄ or more generally the multivariate
set x̄ is collected considering characteristics – depending on the experiment – of botanical
entities such as length, diameter, number (or presence) of flowers, number (or presence)
of fruits.

We here only consider the collection of a tree-indexed data. Nevertheless since on
the same plant there are more than one pertinent scale, data is actually collected using
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Figure 2.7 – Plant modularity (Barthélémy and Caraglio, 2007). This diagram represents
main scales of organization (botanical entity) and repetition phenomena (terms in italics
or in boxes) in seed plants.

the Multiscale Tree Graph (MTG) data structure defined by Godin and Caraglio (1998).
This MTG data structure can be seen as tree-indexed data where scales are represented
by a recursive quotienting of the tree at finer scale (see Godin and Caraglio (1998) for
more details). The choice of the scale is therefore made a posteriori in order to produce
a tree-indexed data and can depend on the studied plant growth aspect.

Available data In this thesis we focused on the joint work concerning mango tree
phenology done with Annaëlle Dambreville, Pierre-Eric Lauri et Frédéric Normand. Us-
ing mango MTGs containing 15 trees belonging to 5 cultivars collected during the thesis
of Dambreville (2012), we aimed at highlighting and characterizing the mango trees
patchiness phenomenon. As other tropical trees, mango tree is characterized by strong
phenological asynchronisms, between and within trees, entailing patchiness (Chacko,
1986, see figure 2.8). Patchiness is characterized by clumps of either vegetative or repro-
ductive GUs within the canopy: while some parts of the tree canopy develop vegetative
GUs, other parts may remain in rest or produce inflorescences at the same time. These
asynchronisms concern more or less large branching systems (Ramı́rez and Davenport,
2010). They entail various agronomic problems, such as the repeated use of pesticides
to protect recurrent susceptible phenological stages from pests, or a too extended period
of fruit maturity, which may lead to difficulties to organize fruit harvesting.

Previous studies by Dambreville et al. (2013) showed that the fate and burst date of
a daughter GU are strongly affected by these of ancestor GUs, indicating that patchiness
pattern formation could be studied using spatio-temporal analysis. Our objective here
was unfold as follows:

• Characterizing tree patchiness. As stated above, patchiness corresponds to more
or less large branching systems sharing almost similar GUs fates. We therefore
aimed at recovering a quotient tree of tree-indexed data at GU scale in which
quotients were roughly homogeneous in terms of GU fates.
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Figure 2.8 – Illustration of mango tree patchiness (Dambreville, 2012). This mango tree
is separated into two parts. The left one in dark green is a clump of old GUs wherein
fruits can be found. In contrary the right one in light green is a clump of new vegetative
GUs.

• Identifying the mechanisms responsible for the set-up of tree patchiness. An in-
quiry of fate alternations along paths within the tree or successions of homogeneous
zones in mango trees could reveal mechanisms at stake in this set-up. To this end,
we therefore aimed at highlighting particular fate motifs in mango trees at GU
scale.

2.3 Markov models for tree indexed-data

We here assume that the indexed set, x̄ = (xt)t∈T , or more generally x̄ = (xt)t∈T , are
the outcomes of a random process.

Note

We here consider that τ is sensu stricto a tree. The only root of the tree is noted
r. In a forest, trees are considered as independent and indentically distributed.
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2.3.1 Markov models

Let us first consider the simple case where x̄ is the realization of a X -valued stochastic
process X̄ = (Xt)t∈T such that X ⊂ N is called the state space. We are here interested
in modeling the distribution of the random process

P
(

X̄ = x̄
)

. (2.1)

When considering the case of tree-indexed data, the simplest dependent model that can
be constructed is the one that directly consider the tree-graph of the data as a graphical
model combined with an usual homogeneity assumption. Combining both hypotheses
leads to the following factorization of (2.1):

P
(

X̄ = x̄
)

= P (Xr = xr)
∏

t∈T \{r}

P
(

Xt = xt

∣

∣

∣Xpa(t) = xpa(t)

)

. (2.2)

Given factorization (2.2), classical Markovian models for path-indexed data have
been easily adapted to tree-indexed data. These models are called Independent Markov
Out-Tree (IMOT) where independent stands for the fact that for such models siblings
are assumed independent given their parent. Considering the mango tree application we
aimed at highlighting GU fate motifs assuming that at some point, there is a switch from
a homogeneous tree to a heterogeneous patchy tree. In order to detect such patterns,
we assumed that for a given parent fate:

• and a given growth period, only few different state combinations could be observed
for children,

• and for a generation, all children states could be observed.

Under these assumptions we wanted to model dependencies among children fates in order
to obtain such inclusion/exclusion patterns. Since in (2.2) children fates are assumed
independent given their parent fate, we had to consider other models (see Durand et al.,
2005, for a discussion of available models):

• Markov In-Tree (MIT) models. Instead of modeling siblings given their parent
as in IMOT, the parent is modeled given its children, introducing the following
factorization of (2.1),

P
(

X̄ = x̄
)

=
∏

l∈L

P (Xl = xl)
∏

t∈T \L

P
(

Xt = xt

∣

∣

∣Xch(t) = xch(t)

)

, (2.3)

where siblings are marginally independent but conditionally dependent to their
parent.

• Multi-Type Branching Process (MTBP). Under a permutation invariance property
(see Haccou et al., 2005; Kimmel and Axelrod, 2002, for more details), an extension
of Markov Out-Tree (MOT) models considering dependencies between children
and where the tree topology is partially represented trought the parametrization
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of vertex out-degree combinatorics. The following factorization of (2.1) is therefore
introduced

P
(

X̄ = x̄
)

∝ P (Xr = xr)
∏

t∈T

P (N t = nt |Xt = xt) , (2.4)

where N t is the discrete random vector of the number of children of vertex t in
each state.

In the context of mango tree analysis, the assumption of unordered children and the
combinatorics induced by the variable and high number of child vertices in each state
induces an inflation in the number of the model parameters. We therefore focused on
parametric versions of these models. Since parametric MIT models are not suitable
for left-right cases (see chapter 5.4), we thus focused on MTBP models. The issue of
specifying parametric MTBPs reduces to the problem of defining parametric models for
discrete multivariate counts. The classical discrete multivariate distributions catalog
(Johnson et al., 1997) only propose rigid dependence and covariance patterns, thus
the next step towards modeling mango tree patchiness was to derive flexible discrete
multivariate distributions with complex dependency patterns. This has been dealt with
the introduction of mixed graphical models for multivariate discrete random vectors.

2.3.2 Hidden Markov Tree (HMT) models

When confronted to tree-indexed data that do not contain few discrete outcomes as the
mango tree case but multidimensional heterogeneous outcomes as the floral meristem
case, the MIT and MTBP models cannot be considered as they stand. A widespread
extension of Markov Tree (MT) models in such cases is to consider Hidden Markov Tree
(HMT) models. HMT models introduced by Crouse et al. (1998) are for MT models
what Hidden Markov Chain (HMC) models are to Markov Chain (MC) models. As for
HMC models (see Ephraim and Merhav, 2002, for more details), HMT models are no
more restricted to categorical variables but deal with any types of random variables or
vectors at low cost in term of parameters.

A HMT model can be viewed as a pair of stochastic processes (St, X t)t∈T where

S̄ = (St)t∈T is a S-valued MT process called state process and the output or observed

process X̄ is related to S̄ by a probabilistic mapping. Thus, for HMT models, the
distribution (2.1) is rewritten as follows

P
(

X̄ = x̄
)

=
∑

s̄∈S|T |

P
(

S̄ = s̄, X̄ = x̄
)

=
∑

s̄∈S|T |

P
(

S̄ = s̄
)

∏

t∈T

fst
(xt) , (2.5)

where fst
(.) denotes the density function of the multivariate random vector X t given

the vertex state St = st. Parametrization of HMT models are therefore only depending
on that of the state process and of observation densities. The assumption of the output
process at vertex t depending only on the underlying state process at vertex t is relevant
for the floral meristem application since these states can be interpreted as cell identities
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(see Olariu et al., 2009, for an example with human cells). The use of HMT models
relies on two main algorithms:

• The smoothing algorithm. Quantities computed during the smoothing algorithm
enable an efficient implementation of the E-step of the Expectation-Maximization
(EM) algorithm for model parameters inference. Moreover by computing the prob-
abilities of being in each states for each vertex given all the observed data, it con-
stitutes a relevant diagnosis tool (see Durand et al. (2004) in the context of binary
trees).

• The dynamic programming restoration algorithm. The goal of this algorithm is
to reveal the most probable state tree given all observed data. In our case of
floral meristem study, since hidden states are assumed to be corresponding to cell
identities, this algorithm provides a direct interpretation of the data.

Because of application contexts, literature on HMT models focused on models defined by
(2.5) where the vertex out-degree combinatorics is not represented in the parametriza-
tion, in particular:

• Crouse et al. (1998) and Durand et al. (2004) developed efficient EM algorithms
and restoration algorithms for Independent Hidden Markov Out-Tree (HIMOT)
models where state processes were modeled by IMOT.

• Bacciu et al. (2010) developed the EM algorithm and restoration algorithm for
parametric Hidden Markov In-Tree (HMIT) models.

Nevertheless, it was expected that there were high differences between cell identity
division patterns and that this phenomena could lead to better discrimination and in-
terpretation of cell identities. The next step towards modeling cell lineage trees was
therefore to derive EM and restoration algorithms where the state process was modeled
by a MTBP.
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Chapter 3

Semi-parametric Hidden Markov
Out-Tree (HMOT) models for cell

lineage analysis

Abstract An enlarged family of Hidden Markov Out-Tree (HMOT) models is intro-
duced. Contrarily of state-of-the-art HMOT models, in theses models child vertices
are not independent given their parent vertex and the number of children per parent
is random. The upward-downward smoothing algorithm which in particular enables to
implement efficiently the E-step of the Expectation-Maximization (EM) algorithm and
the dynamic programming algorithm for the restoration of the most probable state tree
are derived for this family of models. The interest of such models is illustrated on cell
lineages in floral meristems where non-parametric generation distributions are coupled
with parametric observation models in order to define semi-parametric HMOT models

Keywords cell lineage; dynamic programming algorithm; hidden Markov out-tree
model; smoothing algorithm; upward-downward algorithm; viterbi-algorithm;
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3.1 Introduction

Cell division is the key mechanism responsible for the development of plant organ (leaf,
stem, flower, root). Data of interest typically consist of time series of growing organs at
a cellular resolution obtained by live imaging. Considering that various geometrical and
morphological characteristics of cells can be extracted from these images , we assume
that organogenesis can be described using a small number of cell categories referred to
as cell identities in the following. In order to study the emergence of new cell identities
during organogenesis, we choose to focus tree-indexed data corresponding to lineage
forests extracted from the time series of tissues corresponding to growing organs. The
only spatial structuring taken into account thus corresponds to siblings with respect to
a given parent cell. This is supported by the fact that cell topology is only affected by
division, which makes the local spatial information taken into account in this approach
highly relevant.

The Hidden Markov Out-Tree (HMOT) models were introduced by Crouse et al.
(1998) as a direct generalization of Hidden Markov Chain (HMC) models to tree-indexed
data. In a HMOT model, the non-observable states, assimilated to the cell identities in
our application context, are arranged as a directed tree, whose topology duplicates those
of the observed data (i.e. the cell characteristics). These initially proposed models have
the same parametrization as first-order HMC models. This is the consequence of two
main assumptions: the tree topology and in particular the vertex out-degree combina-
torics is not represented in the model parametrization and the children are independent
given their parent. These two strong assumptions enable efficient algorithms to be de-
signed both for estimation of an HMOT model and for the restoration of the most
probable state out-tree (see Durand et al., 2004). We here introduce an enlarged family
of HMOT models that relax these two assumptions. Since we focus here on binary trees
this family is presented in its semi-parametric version where semi-parametric stands
for parametric modeling of the observation process and non-parametric modeling of the
state process. For this family of models, the application of the Expectation-Maximi-
zation (EM) algorithm is straightforward and technical difficulties are concentrated in
the design of the upward-downward smoothing algorithm that enables the implemen-
tation of the E-step of the EM algorithm, and the dynamic programming algorithm
for the restoration of the most probable state tree. The upward-downward algorithm
was initially proposed by Ronen et al. (1995) for the estimation of Markov Out-Tree
(MOT) models with missing data and then adapted to the case of HMOT models by
Crouse et al. (1998). This initially proposed algorithm is the analogous of the forward-
backward algorithm proposed by Baum et al. (1970) for HMC models (see Ephraim
and Merhav, 2002, for an overview of Hidden Markov Model (HMM) and associated
statistical methods). Like the forward and backward recursions, the upward and down-
ward recursions are not numerically stable. To overcome this problem, Durand et al.
(2004) proposed an upward-downward algorithm which is a true smoothing algorithm
and therefore numerically stable.

The remainder of this chapter is organized as follows. HMOT for ordered and un-
ordered tree-indexed data are defined in section 3.2. The dedicated upward-downward
algorithm which is a true smoothing algorithm, the EM algorithm and the dynamic
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programming restoration algorithm are derived in section 3.3. These models are applied
and discussed in the case of early stages of flower development in section 3.4.

3.2 Definitions

Data of interest are univariate tree-indexed data x̄ = (xt)t∈T – or more generally mul-
tivariate tree-indexed data noted x̄ = (xt)t∈T – where T ⊂ N is the set of vertices of
a directed tree-graph τ = (T , E) and E ⊂ T × T \ R the set of directed edges repre-
senting lineage relationships between vertices. R represent the set of roots and L the
set of leaves of τ . Let pa (.) denote the parent, ch (.) the child set, de (.) the descendant
set and nd (.) the non-descendant set of a vertex. These notations also apply to set of
vertices (see Lauritzen, 1996, for graph terminology). Capitalized versions indicate the
closure of the corresponding notation,

∀t ∈ T , De (t) = de (t) ∪ {t} .

For any set A ⊆ T , x̄A denote the subset of x̄ obtained by only considering the vertices
in A,

∀A ⊆ T , x̄A = (xt)t∈A.

The notation n̄ = (nt)t∈T designates the univariate tree-indexed data indexed by the
same tree as x̄ and corresponding to the number of children of each vertex,

∀t ∈ T , nt = |ch (t) |.

3.2.1 Markov Out-Tree (MOT) models

We here assume that x̄ = (xt)t∈T , or more generally x̄ = (xt)t∈T , and n̄ = (nt)t∈T are
the outcomes of a random process. Note that in the following τ is considered sensu
stricto as a tree and that in a forest, trees are considered as independent and identically
distributed. Let r denote the only root of τ . Let us first consider the simple case where:

• x̄ is the realization of a X -valued stochastic process X̄ = (Xt)t∈T such that X ⊂ N

is called the state space and each value x ∈ X is called state. This process is
therefore called this state process.

• n̄ is the realization of a N -valued stochastic process N̄ = (Nt)t∈T with N ⊂ N.
This process is called generation process.

These considerations raise the question of modeling the joint distribution

P
(

X̄ = x̄, N̄ = n̄
)

. (3.1)

Markov Tree (MT) models are parsimonious models relying on local dependence as-
sumptions in X̄ with respect to the tree topology. The induced conditional independence
hypotheses are called Markov properties. The order of a MT model is related to these
Markov properties and refers to the number of ancestors or predecessors considered to
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model siblings. Contrarily to sequences where the structure is unchanged whichever the
chosen direction, directed trees are non-symmetrical structures. In fact, as presented by
Durand et al. (2005), one can distinguish two types of MT models of order 1:

• Markov In-Trees (MITs) studied by Bacciu et al. (2010) where a vertex is modeled
given its children,

• MOTs introduced by Ronen et al. (1995) where children are modeled given their
parent.

We here focus on the case of MOT models of order 1, modeling tree-indexed data
considering only child-parent local dependencies. The key difference with the models of
Crouse et al. (1998) and Durand et al. (2004) is that we now assume that the children
vertices are not independent given their parent vertex and that the tree topology is
partially represented through the generation process.

3.2.1.1 Markov Ordered Out-Tree (MOOT) models

The usual Markov property of order 1 is expressed in trees as the assumption that the
state process at vertex t is independent of its non-descendants processes given its parent
state process

∀t ∈ T , Xt ⊥⊥ Nnd(t)\pa(t), X̄nd(t)\{pa(t)}

∣

∣

∣Xpa(t) .

Similarly, it is assumed that the generation process at vertex t is independent of its
non-descendants processes given its state process

∀t ∈ T , Nt ⊥⊥ N̄nd(t), X̄nd(t) |Xt.

The preceding assumptions induce the following factorization of the joint distribu-
tion (3.1)

P
(

X̄ = x̄, N̄ = n̄
)

= P (Xr = xr)
∏

t∈T

{

P
(

X̄ch(t) = x̄ch(t)

∣

∣

∣Xt = xt, Nt = nt

)

×P (Nt = nt |Xt = xt)} . (3.2)

where the child set, ch (.), is considered as an ordered set. Considering (3.2), a Markov
Ordered Out-Tree (MOOT) model is specified by:

• one initial distribution for the root vertex

πxr
= P (Xr = xr) ,

with
∑

x∈X πx = 1.

• as many composition distributions as states

∀t ∈ T , Πxt

(

x̄ch(t)

)

= P
(

X̄ch(t) = x̄ch(t)

∣

∣

∣Xt = xt

)

,

with
∀x ∈ X ,∀n ∈ N ,

∑

x̄∈X n

Π(n)
x (x̄) = 1.
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Number Maximal degree

of states 2 3 4

2 13 29 61
3 38 119 362
4 83 339 1363

Table 3.1 – Number of parameters of Markov ordered out-tree models as a function of
the number of states and the maximal degree.

• as many generation distributions as states

∀t ∈ T , Γxt
(nt) = P (Nt = nt |Xt = xt)

with

∀x ∈ X ,
∑

n∈N

Γx (n) = 1.

Without any further hypotheses, there is a total of

|X | − 1 + |X |
(

|N | − 1 +
∑

n∈N

{|X |n − 1}
)

,

independent parameters to define (see table 3.1). But in practice, such models can be
parsimoniously parametrized using:

• Markov Chain (MC) models and variants (Ephraim and Merhav, 2002) for each
composition distribution. Ordered children can be viewed as a sequence for which
local dependencies can be assumed leading to the factorization of the composition
distribution.

• Parametric discrete univariate distributions (Johnson et al., 1993) for each gener-
ation distribution.

3.2.1.2 Markov Unordered Out-Tree (MUOT) models

Depending on the application context, one can either consider ordered or unordered
trees. In our context focusing on cell division, the latter case is more relevant since
both children appear at the same time. Considering no order structure among sib-
lings is equivalent of assuming that composition probabilities are invariant under every
permutation of children vertices,

∀t ∈ T , ∀σ ∈ S [ch(t)] , Π(nt)
xt

(

x̄ch(t)

)

= Π(nt)
xt

(

x̄σ·ch(t)

)

.
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Let N t = (Nt,x)
x∈X denote the random vector of the number of children of vertex t in

the different states X , I (·) the indicator function and nt = (nt,x)
x∈X an outcome of N t.

As a consequence of the latter assumption

P (N t = nt |Xt = xt) = Γxt
(nt)

(

nt

nt,0, · · · , nt,|X |−1

)

Πxt

(

x̄ch(t)

)

,

where
(

·
·,··· ,·

)

denote the multinomial coefficient. Adaptations of algorithms for MOOT

models to the Markov Unordered Out-Tree (MUOT) models case are therefore straight-
forward and only require combinatorics arguments.

For MUOT models the marginal distribution (3.1) is factorized as follows

P
(

X̄ = x̄, N̄ = n̄
)

∝ P (Xr = xr)
∏

t∈T

P (N t = nt|Xt = xt, ) . (3.3)

This factorization corresponds to the family of Multi-Type Branching Processes (MTBPs)
introduced as a generalization of Watson and Galton (1875) processes (see Harris, 2002).
In such MOT models, composition and generation distributions are replaced by the cor-
responding generation distributions

∀t ∈ T , Γxt
(nt) = P (N t = nt|Xt = xt) ,

with

∀x ∈ X ,
∑

n∈N |X |

Γx (n) = 1.

Hence, the total number of independent parameters drops to

|X | − 1 + |X |
[

∑

n∈N

{(

|X |+ n− 1

n

)}

− 1

]

,

where
(

·
·

)

denote the binomial coefficient (see table 3.2). Their parametrization is highly
related to the parametrization of discrete multivariate count models. In practice, two
different cases can be considered:

Simple trees. In cell lineage trees N = {1, 2}. Value 0 corresponds to the censuring
at the end of the experiment since no cell death is observed. The combinatorics of
child states is therefore reasonable for models with few states and non-parametric
models can be considered.

General trees. The combinatorics induced by the variable and high number of child
vertices in each state induces an inflation in the number of model parameters. In
such cases, models can be parsimoniously parametrized using different paramet-
ric discrete multivariate distributions (Johnson et al., 1997) for each generation
distribution.
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Number Maximal degree

of states 2 3 4

2 11 19 29
3 29 59 104
4 59 139 279

Table 3.2 – Number of parameters of Markov unordered out-tree models as a function
of the number of states and the maximal degree.

3.2.2 Hidden Markov Tree (HMT) models

Hidden Markov Tree (HMT) models introduced by Crouse et al. (1998) have the same
parametrization of standard HMC models for sequences. As for HMC models (see
Ephraim and Merhav, 2002, for more details), HMT models are not restricted to cate-
gorical variables but allow any types of random variables or vectors to be considered,
at low cost in term of parameters.

In our case, a HMOT model can be viewed as a triplet of stochastic processes
(St, Nt, Xt)t∈T where:

• S̄ = (St)t∈T is a S-valued state process.

• N̄ = (Nt)t∈T is a N -valued generation process.

• X̄ = (Xt)t∈T is a X -valued process corresponding to the output or observation

process. This process is related to S̄ by a probabilistic function fst
(xt).

To simplify notations we will consider an univariate discrete output process in the fol-
lowing

∀t ∈ T , fst
(xt) = P (Xt = xt |St = st) ,

with

∀s ∈ S,
∑

x∈X

fs (x) = 1 and X ⊆ N.

It is assumed that the output process at vertex t only depends on the underlying state
process at vertex t

∀t ∈ T , Xt ⊥⊥ S̄T \t, X̄T \t, N̄T |St. (3.4)

Thus, for HMOT models, the marginal distribution (3.1) can be factorized as follows

P
(

X̄ = x̄, N̄ = n̄
)

=
∑

s̄∈S|T |

P
(

S̄ = s̄, N̄ = n̄, X̄ = x̄
)

=
∑

s̄∈S|T |

P
(

S̄ = s̄, N̄ = n̄
)

∏

t∈T

fst
(xt) . (3.5)
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Parametrization of HMOT models therefore only depends on that of the state process
and the observation probabilities fst

(xt). Thus, with appropriate parametrization, the
extension to the continuous or mixed multivariate case is straightforward.

We define Hidden Markov Ordered Out-Tree (HMOOT) models as HMT models
where the state process is a MOOT model. Similarly, for Hidden Markov Unordered
Out-Tree (HMUOT) models the corresponding state process is a MUOT.

3.3 Computational methods for Hidden Markov Out-

Tree (HMOT) models

Since it is assumed a priori that any outcome value could be observed in any states, the
state process S̄ is not directly observable but only indirectly through the observation
process X̄. Therefore, the use of HMT models relies on two main algorithms:

• the smoothing algorithm, which computes the probabilities of being in each state
for each vertex given the observed tree,

• the restoration algorithm, which compute the most probable state tree given the
observed tree.

Parameter Maximum Likelihood (ML) inference can be done using the EM algorithm
or its variants (see McLachlan and Peel, 2004, for more details) based on quantities
computed in the smoothing algorithm.

In the remainder of this section, we derive algorithms for HMOOT and HMUOT
models. Therefore we introduce the notion of transition distributions, noted

∀t ∈ T , ∆st

(

s̄ch(t)

)

= P
(

Nt = nt, S̄ch(t) = s̄ch(t)

∣

∣

∣St = st

)

,

with:

• For MOOT,

∀t ∈ T , ∆st

(

s̄ch(t)

)

= Γst
(nt) Π(nt)

st

(

s̄ch(t)

)

.

• For MUOT,

∀t ∈ T , ∆st

(

s̄ch(t)

)

=
Γst

(nt)
(

nt

nt,0,··· ,nt,|S|−1

) .

In particular, ∆st
(∅) denote the probability of having 0 children for a vertex in state st.

3.3.1 Upward-downward smoothing algorithm

The aim of the smoothing algorithm is to compute the smoothed probabilities,

ξt (s) = P
(

St = s
∣

∣

∣ X̄ = x̄, N̄ = n̄
)

,
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for each vertex t and each state s. Such probabilities can be recursively computed using
a downward pass (i.e. vertices are taken successively from root to leaves) requiring the
upward probabilities,

βt (s) = P
(

St = s
∣

∣

∣ X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

,

which are computed in an upward pass (i.e. vertices are taken successively from leaves
to root).

Preprocessing As for Independent Hidden Markov Out-Tree (HIMOT) models dis-
cussed by Durand et al. (2004), the upward recursion requires the preliminary knowledge
of the marginal state distributions for each vertices and each states, which can be com-
puted in an initial downward recursion (Durand et al., 2004). For an observed tree, this
preprocessing is initialized at the root vertex with,

∀s ∈ S, P (Sr = s) = πs, (3.6)

Afterward, the computation is done for all parent vertices taken from the root to the
leaf vertices,

∀t ∈ T ,∀s̄ ∈ Snt , P
(

S̄ch(t) = s̄
)

=
∑

s∈S

∆s (s̄) P (St = s) ,

∀c ∈ ch (t) , ∀s ∈ S, P (Sc = s) =
∑

s̄∈Snt−1

P
(

Sch(t)\{c} = s̄, Sc = s
)

. (3.7)

Upward recursion The upward recursion is initialized for each leaf vertex by

∀l ∈ L, ∀s ∈ S, βl (s) = P (Sl = s |Xl = xl, Nl = 0)

∝ P (Xl = xl, Nl = 0 |Sl = s) P (Sl = s) (⋆)

∝ ∆s (∅) fs (xl) P (Sl = s) ,

where (⋆) indicates the use of the Bayes’ rule.

Then, for each of the remaining vertices taken upwards, we have the following recur-
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sion

∀t ∈ T \ L,∀s ∈ S,

βt (s) = P
(

St = s
∣

∣

∣ X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

∝
∑

s̄∈Snt

P
(

S̄ch(t) = s̄, St = s, X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

(⋆)

∝
∑

s̄∈Snt

{

P (St = s) P
(

Nt = nt, S̄ch(t) = s̄
∣

∣

∣St = s
)

P (Xt = xt |St = s)

×
∏

sc∈s̄
c∈ch(t)

P
(

X̄De(c) = x̄De(c), N̄De(c) = n̄De(c)

∣

∣

∣Sc = sc

)















∝
∑

s̄∈Snt

{P (St = s) ∆s (s̄) fs (xt)

×
∏

sc∈s̄
c∈ch(t)

P
(

Sc = sc

∣

∣

∣ X̄De(c) = x̄De(c), N̄De(c) = n̄De(c)

)

P (Sc = sc)















(⋆)

∝ P (St = s) fs (xt)
∑

s̄∈Snt

∆s (s̄)
∏

sc∈s̄
c∈ch(t)

βc (sc)

P (Sc = sc)
, (3.8)

Let φt be the normalization constant for each vertex upward probability distribution,
the different (⋆) give

∀l ∈ L, φl = P (Xl = xl, Nl = 0)

= P
(

X̄De(l) = x̄De(l), N̄De(l) = n̄De(l)

)

,

for each leaf vertices, and

∀t ∈ T \ L, φt =
P
(

X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

∏

c∈ch(t) P
(

X̄De(c) = x̄De(c), N̄De(c) = n̄De(c)

)

for the internal vertices. Since,

∏

t∈T

φu =

∏

t∈T P
(

X̄De(t) = xDe(t), N̄De(t) = nDe(t)

)

∏

t∈T \{r} P
(

X̄De(t) = xDe(t), N̄De(t) = NDe(t)

)

= P
(

X̄De(r) = xDe(r), N̄De(r) = n̄De(r)

)

= P
(

X̄ = x̄, N̄ = n̄
)

,

the log-likelihood can be computed as a byproduct of the upward recursion. Among
other potential applications, this computation allows the monitoring of the EM algo-
rithm convergence (McLachlan and Krishnan, 2007) and model selection (Claeskens and
Hjort, 2008).
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Downward recursion The downward recursion of the smoothing algorithm is initial-
ized at the root vertex by,

∀s ∈ S, ξr (s) = P
(

Sr = s
∣

∣

∣ X̄ = x̄, N̄ = n̄
)

= βr (s) . (3.9)

For all remaining vertices let us remark first that

∀t ∈ T \ L,∀s ∈ S,∀s̄ ∈Snt ,

P
(

S̄ch(t) = s̄
∣

∣

∣St = s, X̄ = x̄, N̄ = n̄
)

= P
(

S̄ch(t) = s̄
∣

∣

∣St = s, X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

=
P
(

S̄ch(t) = s̄, St = s, X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

P
(

St = s, X̄De(t) = x̄De(t), N̄De(t) = n̄De(t)

)

=
P (St = s) fs (xt) ∆s (s̄)

βt (s) φt

∏

sc∈s̄
c∈ch(t)

βc (sc)

P (Sc = sc)
,

(3.10)

using (3.4) and previous calculations in (3.8). We therefore obtain directly the following
downward recursion,

∀t ∈ T ,∀s̄ ∈ Snt ,

P
(

S̄ch(t) = s̄
∣

∣

∣ X̄ = x̄, N̄ = n̄
)

=
∑

s∈S

ξt (s)
P (St = s) fs (xt) ∆s (s̄)

βt (s) φt

∏

sc∈s̄
c∈ch(t)

βc (sc)

P (Sc = sc)
,

∀c ∈ ch (t) , ∀s ∈ S, ξc (s) =
∑

s̄∈Snt−1

P
(

Sch(t)\{c} = s̄, Sc = s
∣

∣

∣ X̄ = x̄, N̄ = n̄
)

. (3.11)

3.3.2 Application of the Expectation-Maximization algorithm

With reference to HIMOT models (see Crouse et al., 1998; Durand et al., 2004), the
adaptation of the EM algorithm is straightforward. Let us consider the complete data
where both the outputs x̄ and the states s̄ of the underlying MT model are observed.
Note that in this section x̄ is considered as a forest. The EM algorithm iteratively
modifying model parameters in order to increase the likelihood, let θ be the vector of
model parameters and θ(k) denote the current value of θ at iteration k. The conditional
expectation of the complete-data log-likelihood is given by

Q
(

θ
∣

∣

∣ θ(k)
)

= E
{

log L
(

S̄, X̄; θ
) ∣

∣

∣ X̄ = x̄, N̄ = n̄; θ(k)
}

.

Let θ = θO ⊎ θL

⊎

s∈S
θs with θO = {fs (x)}x∈X ,s∈S , θR = {πs}s∈S , and

∀s ∈ S, θs = {∆s (s̄)}s̄∈S̄ ,

where
S̄ =

⋃

n∈N

Sn.
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Using (3.2) and (3.5), this conditional expectation can be rewritten as a sum of terms,
each term depending on a given subset of parameters

Q
(

θ
∣

∣

∣ θ(k)
)

= QO

(

θO

∣

∣

∣ θ(k)
)

+ QR

(

θR

∣

∣

∣ θ(k)
)

+
∑

s∈S

Qs

(

θs

∣

∣

∣ θ(k)
)

,

with

QO

(

θO

∣

∣

∣ θ(k)
)

=
∑

s∈S

∑

t∈T

P
(

Xt = xt, St = s
∣

∣

∣ X̄ = x̄, N̄ = n̄; θ(k)
)

log fs (xt) . (3.12)

QR

(

θR

∣

∣

∣ θ(k)
)

=
∑

r∈R

∑

s∈S

P
(

Sr = s
∣

∣

∣ X̄ = x̄, N̄ = n̄; θ(k)
)

log πs (3.13)

∀s ∈ S,

Qs

(

θs

∣

∣

∣ θ(k)
)

=
∑

t∈T

∑

s̄∈Snt

P
(

S̄ch(t) = s̄, St = s
∣

∣

∣ X̄ = x̄, N̄ = n̄; θ(k)
)

log ∆s (s̄) (3.14)

During the M-step the initial and transition probabilities are directly obtained re-
spectively from the maximization of (3.13),

∀s ∈ S, π(k+1)
s ∝

∑

r∈R

P
(

Sr = s
∣

∣

∣ X̄ = x̄, N̄ = n̄
)

∝
∑

r∈R

ξr (s) ,

given by (3.9), and the maximization of (3.14),

∀n ∈ N ,∀s ∈ S,∀s̄ ∈ Sn, ∆(k+1)
s (s̄) ∝

∑

t∈T
nt=n

P
(

S̄ch(t) = s̄, St = s
∣

∣

∣ X̄ = x̄, N̄ = n̄
)

∝
∑

t∈T
nt=n

ξt (s)
P (St = s) fs (xt) ∆s (s̄)

βt (s) φt

∏

sc∈s̄
c∈ch(t)

βc (sc)

P (Sc = sc)
.

given by (3.7), (3.8), and (3.11). Note that for algorithmic aspects the computation of
the transient quantity

∀t ∈ T \ L,∀s ∈ S, ϕt (s) =
βt (s) φt

fs (xt) P (St = s)
=

∑

s̄∈Snt

∆s (s̄)
∏

sc∈s̄
c∈ch(t)

βc (sc)

P (Sc = sc)
,

is done during the upward recursion of the smoothing algorithm for all non-leaf vertices.
In the case of the Monte Carlo EM (MCEM) (Wei and Tanner, 1990) algorithm,

the E-step of the EM algorithm is replaced by an approximation of the completed
log-likelihood. In the case of HMOT models this approximation is computed using a
downward simulation of the state process given the observation and generation processes
initialized at root vertices with (3.9) and proceeding with vertices taken downwards
considering (3.10). The M-step of the MCEM algorithm is based on count data extracted
from the simulated states.
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3.3.3 Dynamic programming restoration algorithm

The objective of this Viterbi-like algorithm is to restore the most probable state tree s̄
associated with the observed tree x̄ . This is a major diagnostic tool in many applications
of hidden Markovian models as in most applications, the knowledge of the hidden states
provides an interpretation of the data.

The Viterbi upward recursion for a HMOT is initialized for each leaf vertex by

∀l ∈ L, ∀s ∈ S, δt (s) = P (Xt = xtNt = 0 |St = s)

= ∆s (∅) fs (xt) .

Then, for each of the internal vertices taken upward, we have the following recursion

∀t ∈ T \ L,∀s ∈ S,

δt (s) = max
s̄de(t)

{

P
(

X̄De(t) = x̄De(t), N̄De(t) = n̄De(t), S̄de(t) = s̄de(t)

∣

∣

∣St = s
)}

= max
s̄de(t)

{

P
(

X̄de(t) = x̄de(t), N̄de(t) = n̄de(t), S̄de(ch(t)) = s̄de(ch(t))

∣

∣

∣ S̄ch(t) = s̄ch(t)

)

× P (Xt = xt |St = s) P
(

Nt = nt, S̄ch(t) = s̄ch(t)

∣

∣

∣St = s
)}

= max
s̄de(t)















∏

sc∈s̄
c∈ch(t)

P
(

X̄De(c) = x̄De(c), N̄De(c) = n̄De(c), S̄de(c) = s̄de(c)

∣

∣

∣Sc = sc

)

×∆s

(

s̄ch(t)

)}

fs (xt)

= max
s̄ch(t)















∏

sc∈s̄
c∈ch(t)

max
s̄de(c)

{

P
(

X̄De(c) = x̄De(c), N̄De(c) = n̄De(c), S̄de(c) = s̄de(c)

∣

∣

∣Sc = sc

)}

×∆s

(

s̄ch(t)

)}

fs (xt)

= max
s̄ch(t)















∆s

(

s̄ch(t)

)

∏

sc∈s̄
c∈ch(t)

δc (sc)















fs (xt) . (3.15)

The probability of the observed tree x̄ jointly with the most probable state tree is
∏

r∈R maxs {δr (s) πs}. The recursion (3.15) is equivalent to the upward recursion (3.8)
where the summation on the states are replaced by maximization. To retrieve the most
probable state tree, it is necessary to store for each vertex t and each state s the optimal
states corresponding to each of the children. The backtracking procedure consists in
tracing downward along the backpointers from the optimal root state to the optimal
leaf states.
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Figure 3.1 – Example of a 3D + t images and meristem early stages. The 3D images
reconstructed after the multi-angle acquisition are displayed according to time. Images,
from left to right, were respectively taken at 0h, 26h, 44h, 56h and 69h after the be-
ginning of the experiment according to Das et al. (2009) experimental design. The red
color is due to a marker of cell walls (vital dye FM4− 64). We here focus on the first
three stages of floral mersitem development. The stage 1 is observed at 0h when there is
no clear distinction between floral meristem (confined in the dotted circle) and the inflo-
rescence meristem. The stage 2 is observed at 26h with clear boundary (represented by
the dotted line) between the inflorescence meristem and the floral meristem. The early
stage 3 is observed at 69h when sepals start emerging at the sides of the floral meristem
(represented by the dotted line).

3.4 Application to cell lineage trees

3.4.1 Results

The use of HMOT models is illustrated by the analysis of early stages of flower develop-
ment which is usually described as a series of morphological events (Smyth et al., 1990).
Only the first three stages were observed during the experiment (see figures 3.1, 3.2):

Stage 1 corresponds to the floral meristem development from the initiation as a small
bulge on the flank of the inflorescence meristem.

Stage 2 starts when the floral bud is separated from the inflorescence meristem by a
small crease between the two meristems.

Stage 3 is characterized by the emergence of the sepals from the sides of the floral
meristem, growing to overlie the primordium.

In a first step, cell identities were inferred on the basis of the following cell charac-
teristics:

• volume,

• epidermal surface,

• external surface,
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Figure 3.2 – Spatial regions on the floral meristem at stage 3. At stage 3 spatial regions
are relatively well defined and can be assigned manually. The most advanced sepal
corresponds to red cells and the latest ones to green cells. Orange cells correspond to the
central dome and light blue ones to the central zone. Boundary cells are in dark blue.

• inertia values (according to three axes),

• principal and secondary curvatures.

These characteristics have been modeled independently using univariate Gaussian or
Gamma distributions (depending on the observation space). Concerning the genera-
tion distributions we used a non-parametric dependence models corresponding to the
saturated model.

The number of states was selected using the Bayesian Information Criterion (BIC)
(Schwarz, 1978). Although BIC properties have not been established in this context,
it is used frequently (Durand et al., 2005). This penalized likelihood criterion makes a
trade-off between fit of model to the data and model parsimony and favored a 4-state
model (model M0). Epidermal surface, internal surface, volume and curvatures of the
cells are structuring observed variables in this model since the estimated observation
distributions for the different states are well separated for this five characteristics (see
figure 3.3). These observation distributions allowed us to characterize the different
states:

State 0 and 3 correspond to large cells and are mostly differentiated by their curva-
tures (both negative for state 0 and positive for state 3).

State 1 corresponds to small cells with both curvatures almost of the same norm and
mostly negative, this being typical characteristics of saddle forms.

State 2 is in-between considering size but with clearly positive curvatures correspond-
ing to the dome area.

In contrast, states do not have marked differences with respect to anisotropies.
Using the restoration algorithm, the spatial regions that emerged from the cell iden-

tity labeling were then characterized (see figures 3.2,3.4):

Central dome and zone have been assigned to state 2.
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Figure 3.3 – Observation distributions of the hidden Markov unordered out-tree model.
Observed histogram and mixture of observed distributions for each structuring charac-
teristic. State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in
dark red. Surfaces and volumes are modeled by Gamma distributions and curvatures by
Gaussian distribution. Combining separations induced by surfaces and volume in one
hand and curvatures in the other hand indicates that states are well separated using only
these characteristics.
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Figure 3.4 – Restoration of hidden states for using the restoration algorithm for Hidden
Markov Unordered Out-Tree (HMUOT) models. Images, from left to right, were respec-
tively taken at 0h, 26h, 44h, 56h and 69h after the beginning of the experiment. Spatial
projection of the four states obtained using for the HMUOT estimated using epidermis
surface, internal surface, volume, curvatures and inertia as cell characteristics. State 0
is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in dark red. Sepals are
mostly identified by considering state 0 and 3, the dome by state 2 and boundary cells
by state 1.

Sepals have been split into states 0 and 3.

Boundary zone has been assigned to state 1.

State 2 is the main state of the first time point and presents a high spatio-temporal
coherence from 0h to 69h. Despite an early stage of meristem differentiation at 0h,
few cells are already assigned to putative sepals. At subsequent time points, the multi-
plication of sepal and dome cells with the apparition of boundary cells, delimiting the
frontier between sepals and the dome zone, is observed. The apparition of boundary
cells is unobtrusive until 44h but significant as the continuous border is clearly identified
starting from 56h. In fact, at this time point and the next, state 2 clearly corresponds
to the dome, states 0 and 3 to the sepals and state 1 to the boundary. Temporal changes
in cell identity are highlighted by the highest estimated probabilities in each generation
distribution

Γ0 (0, 0, 0, 2) = 0.07, Γ1 (0, 0, 0, 1) = 0.13,

Γ0 (1, 0, 0, 0) = 0.29, Γ1 (0, 1, 0, 0) = 0.45,

Γ0 (1, 0, 0, 1) = 0.42, Γ1 (0, 2, 0, 0) = 0.35.

Γ0 (2, 0, 0, 0) = 0.20.

Γ3 (0, 0, 0, 1) = 0.14,

Γ2 (0, 0, 0, 1) = 0.13, Γ3 (0, 0, 0, 2) = 0.09,

Γ2 (0, 0, 0, 2) = 0.10, Γ3 (0, 0, 1, 1) = 0.11,

Γ2 (0, 0, 1, 0) = 0.18, Γ3 (0, 1, 0, 1) = 0.35,

Γ2 (0, 0, 1, 1) = 0.28, Γ3 (0, 2, 0, 0) = 0.17,

Γ2 (0, 0, 2, 0) = 0.31. Γ3 (1, 0, 0, 0) = 0.05.
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Recall that
∀s ∈ {0, 1, 2, 3} , Γs (n0, n1, n2, n3) ,

denotes the probability of having jointly n0, n1, n2 and n3 children in state 0, 1, 2 and
3 considering a parent cell in state s. The reproduction and emergence of cell identities
underlined by generation distributions are consistent with biological beliefs. State 3 is a
hub for transitions from state 2 at 0h to other states at times superior to 44h. Transition
from state 3 to state 0 corresponds to transition from early cells to late ones in sepals.
Transition from state 3 to state 1 corresponds to emergence of boundary cells induced
by sepal formation, it seems to be a passive phenomena more than an active one.

3.4.2 Discussions

Data limitation Regarding the biological interpretations drawn from the outputs of
the HMOT models, we would like to stress that they have been partly limited by the
number of available successive time points and data quality. Indeed, the time intervals
between successive images were too large, thus a few divisions were not observed. For
biological purposes these missing divisions were interpolated but this resulted into the
presence of a large number of predicted cells without observed characteristics (almost
50%). In addition, the number of time points (5) also limited the investigation in details
of cell division patterns. To solve this, Yassin Rehafi – former Ph.D. student of the team
– used an enhanced version of the experimental protocol to acquire more time points
(up to 15) and with a smaller time interval between successive acquisitions. In addition,
the obtained raw images are of better quality. This will help to obtain more accurate
segmentations and thus more reliable cell characteristics. Since some algorithms tend
to systematically overestimate or underestimate the cell characteristics values, there are
still some improvements to be done in the cell characteristic computation from raw or
segmented images. This is in particular true for the curvature characteristics computed
with an unadaptive algorithm, which could enhanced by an adaptive one (Tong and
Tang, 2005).

Dependence hypothesis LetM1 be the inferred HMUOT model in which the num-
ber of children in each state are assumed to be independent

∀s ∈ S,∀t ∈ T , P (N t = nt |St = s) =
∏

i∈S

P (Nt,i = nt,i |St = s) ,

Comparing M0 to M1 enable to discuss the benefit of introducing dependencies in
HMUOT models (see figure 3.5).

It is not surprising to that M0 has a higher log-likelihood than M1 since the state
processes are nested and have theoretically respectively 55 and 36 independent pa-
rameters. Nevertheless, the estimated models have a number of non-zero parameters
relatively close: 22 for M0 against 18 for M1. As a consequence, the BIC is higher for
M0 (−18164) than forM1 (−18668). This fact indicates that there is a clear benefit of
taking into account dependencies in this application.

According to the confusion table 3.3, the robustness of the restoration algorithm with
respect to model misspecifications induced little changes concerning the most probable
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Figure 3.5 – Iterations of the Expectation-Maximization (EM) algorithm for the inde-
pendent and dependent Markov unordered out-tree models. The successive log-likelihood
improvements during the EM algorithm for the independent model are numbered from 0
up to 20. The successive log-likelihood improvements during the EM algorithm for the
dependent model are numbered from 21 up to 56. The maximum log-likelihood estimates
reach −18286.48 for M1 and −17730.57 for M0.

cell identities with models M0 and M1. Nevertheless, most of assignment mismatches
concern the state 3. If the limited quality and amount of data did not allow to observe
clear left-right models –in left-right models there are successions of transient states and
final absorbing states such that states are partially ordered – the generation distribu-
tions for state 3 estimated in M0 emphasizes the main differences concerning left-right
HMUOT models. If the number of children in each state are assumed to be:

Independent. In such models, a left-right model is induced by forbidden states tran-
sitions whatever the fact that division occurred or not.

Dependent. In such models, a left-right model can take into account the division
phenomenon. InM1, the state 3 cannot change without dividing except for state
0 which corresponds to sepal cells aging. However, when a cell in state 3 divides,
it can give mostly a cell in the same state and in states 1 or 2, which corresponds
to the transient period when the boundary zone is set up. The dependent model
enable to detect via its generation distributions patterns that are of marked interest
for the biological application.

Link to Hidden Independent Markov Out-Tree (HIMOT) The HIMOT pro-
posed by Crouse et al. (1998) have the same parametrization of standard hidden first-
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M1 M0 states

states 0 1 2 3

0 197 18 0 98
1 0 533 20 69
2 0 5 358 24
3 28 15 19 280

Table 3.3 – Confusion table regarding the most probable state tree for the model M1

(number of children in each state independent) against the model M0 (number of chil-
dren in each state dependent). The matching between the restorations are high (more
than 82%) since the restoration can be considered as robust relatively to model misspec-
ifications (Durand et al., 2005).

order Markov chain models. This is the consequence of a strong conditional indepen-
dence assumption within the state process where the child vertices are independent
given the state of the parent vertex. Given this assumption the following transition
distributions are obtained for MOOT models

∀t ∈ T , Π(nt)
xt

(

x̄ch(t)

)

=
∏

xc∈x̄ch(t)

c∈ch(t)

P (Xc = xc |Xt = xt, Nt = nt)

=
∏

x∈X

(πxt
(x))nt,x ,

with
∀x ∈ X ,

∑

x′∈X

πx (x′) = 1.

Hence, for MUOT models

∀t ∈ T , Γxt

(

x̄ch(t)

)

= Γxt
(nt)

(

nt

nt,0, · · · , nt,|X |−1

)

∏

x∈X

(πxt
(x))nt,x .

This corresponds to parametric generation distributions with sum compound multino-
mial parametrization (see Johnson et al., 1997).

Parametric generation distributions We only considered semi-parametric HMUOT
in this application since we were dealing with simple trees. For general trees, the combi-
natorics induced by the variable and high number of child vertices in each state induces
a rapid inflation in the number of model parameters (see table 3.2). In such cases, since
the data used to infer each generation distribution is of limited size, the inference of
parametric HMUOT models is required in order to obtained reliable generation distri-
butions. As it has been presented, this issue reduces to the inference of parametric
discrete multivariate distributions (Johnson et al., 1997) and will be discussed in the
next chapter.
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Chapter 4

Inference of Mixed Acyclic
Graphical Models (MAGMs) in

Multi-Type Branching Processes
(MTBPs)

Abstract We address the inference of discrete state-space models for tree-structured
data. Our aim is to introduce parametric Multi-Type Branching Processes (MTBPs)
that can be efficiently estimated on the basis of data of limited size. Each generation
distribution within this macroscopic model is modeled by a Discrete Parametric Mixed
Acyclic Graphical Model (DPMAGM). Special attention is first given to the case of
Poisson Mixed Acyclic Graphical Model (PMAGM) in order to introduce constraints
imposed in such DPMAGM. Then, the model is generalized to other distributions than
Poisson. The algorithm presented for the estimation of each graphical model relies on
a greedy algorithm.The proposed modeling approach is illustrated on plant datasets.

Keywords Branching process; discrete multivariate distribution; graph selection; mixed
acyclic graphical model; multivariate count data; plant architecture; tree pattern
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4.1 Introduction

We consider discrete state-space stochastic processes indexed by a directed tree. Our
aim is to introduce parametric models that can be efficiently estimated on the basis
of data of limited size and that are easily interpretable. These models rely on local
dependency assumptions between parent and child vertices and belong to the family of
Multi-Type Branching Processes (MTBPs).

In a practical setting of general tree analysis, the combinatorics induced by the
variable and high number of child vertices in each state induces an inflation in the
number of model parameters. Inference of MTBPs mostly reduces to inference of their
generation distributions, which are discrete multivariate distributions. In order to have
interpretable results, we propose to focus on a family of discrete multivariate generation
distributions that fulfills the following criteria:

1. Multivariate parametric distributions have to be used since the direct estimation
of probability masses on the basis of multivariate counts is unreliable except for
very large data sets.

2. These multivariate parametric distributions can have zero-inflated, right-skewed
and natural number valued marginals, so that discretized multivariate Gaussian
distributions are not appropriate.

3. These multivariate parametric distributions can easily be simulated and proba-
bility masses can easily be computed in order to investigate motifs induced by
generation distributions and long-range patterns stemming from these generation
distributions as trees develop.

4. Child states that tend to appear simultaneously or on the contrary to be incom-
patible can be identified.

To achieve this goal, we introduce parametric MTBPs incorporating probabilistic
graphical models (Koller and Friedman, 2009) to represent each generation distributions.
In this framework conditional independence relationships between number of children
in each state can be easily represented. In particular, graph identification is one way to
consider the above-mentioned criterion (4). Three kinds of graphical models are usual:
undirected graphical models, Directed Acyclic Graphical Models (DAGMs) and Mixed
Acyclic Graphical Models (MAGMs). Methods for graph identification were proposed
for:

Undirected graphical models. Using log-linear models or a multivariate Gaussian
distribution assumption, approaches based on a L1 penalization (Lasso) were pro-
posed (see Friedman et al. (2008) for the Gaussian graphical Lasso). To some ex-
tent, these approaches were extended to discrete multivariate distributions using
Poisson regression models and more generally Generalized Linear Models (GLMs)
(Yang et al., 2012).

DAGMs. Most methods rely on an exploration of the Directed Acyclic Graph (DAG)
space using search heuristics (e.g. hill climbing, see Chickering (2002) for instance)
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and consistent scores (e.g. Bayesian Information Criterion (BIC), see Yang and
Chang (2002) for details). At each step of the greedy algorithm a list of graphs
is proposed using graph edition (i.e. edges are removed, reversed or added), then
the graph with highest score is selected. This procedure is repeated until the score
reaches a local optimum (see for Koller and Friedman (2009) a review).

MAGMs. If MAGMs generalize both undirected graphical models and DAGMs, they
have been considered less often in the literature. Proposed algorithms (Edwards,
2000; Ma et al., 2008; Drton and Perlman, 2008) mostly focused on tests of hypoth-
esis and require an a priori the knowledge of the chain components. Moreover,
most of them rely on Gaussian distributions or log-linear models that are not
adapted to criteria 1 or 2.

We choose here to use discrete parametric MAGMs for generation distribution in
MTBPs. The remainder of this chapter is organized as follows. MTBPs with Pois-
son Mixed Acyclic Graphical Models (PMAGMs) and their generalization to Discrete
Parametric Mixed Acyclic Graphical Models (DPMAGMs) used to model generation dis-
tributions are presented in section 4.2. A dedicated algorithm for inference of MAGMs
is introduced in section 4.3. Then, the interest of such models in the case of MTBPs
is illustrated in section 4.4 using the example of the mango tree asynchronism analysis.
Finally, in section 4.5, work in progress and possible extensions of considered MAGMs
to multivariate continuous or mixed distributions are discussed.

4.2 Definitions

Data of interest are categorical tree-indexed data x̄ = (xt)t∈T where T ⊂ N is the set
of vertices of a directed tree-graph τ = (T , E) and E ⊂ T × T \ R the set of directed
edges representing lineage relationships between vertices. R represent the set of roots
and L the set of leaves of τ . Let pa (.) denote the parent, ch (.) the child set, de (.) the
descendant set and nd (.) the non-descendant set of a vertex. These notations also apply
to sets of vertices (see Koller and Friedman, 2009, for graph terminology). For any set
A ⊆ T , let x̄A denote the subset of x̄ obtained by only considering the vertices in A,

∀A ⊆ T , x̄A = (xt)t∈A.

The notation n̄ = (nt)t∈T denotes the univariate tree-indexed data indexed by the same
tree as x̄ and corresponding to the number of children of each vertex,

∀t ∈ T , nt = |ch (t) |.

4.2.1 Multi-Type Branching Processes (MTBPs)

We here assume that x̄ = (xt)t∈T and n̄ = (nt)t∈T are the outcomes of a random
process. In the following, τ is considered sensu stricto as a tree and in a forest, trees
are considered as independent and identically distributed. Let r denote the only root of
τ . We here consider the simple case where:
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• x̄ is the realization of a X -valued stochastic process X̄ = (Xt)t∈T such that X ⊂ N

is called the state space and each value x ∈ X is called state. This process is
therefore called the state process.

• n̄ is the realization of a N -valued stochastic process N̄ = (Nt)t∈T with N ⊂ N.
This process is called generation process.

These considerations raise the question of modeling the joint distribution

P
(

X̄ = x̄, N̄ = n̄
)

. (4.1)

MTBPs are parsimonious models relying on local dependence assumptions in X̄ with
respect to tree topology. More precisely, the following Markov property is considered

∀t ∈ T , Xt ⊥⊥ Nnd(t)\{pa(t)}, X̄nd(t)\{pa(t)}

∣

∣

∣Xpa(t) .

This assumption that the state variable at vertex t is independent of its non-descendants
variables given its parent state variable combined with the assumption that the gener-
ation process at vertex t is independent of its non-descendants variables given its state
variable

∀t ∈ T , Nt ⊥⊥ N̄nd(t), X̄nd(t) |Xt.

Adding a permutation invariance property (see Haccou et al., 2005, for details) lead to
parsimonious model, in which the distribution (4.1) is factorized as follows

P
(

X̄ = x̄, N̄ = n̄
)

∝ P (Xr = xr)
∏

t∈T \{r}

P (N t = nt |Xt = xt) , (4.2)

where N t is the discrete random vector of the number of children of vertex t in each
state. Therefore, the outcomes to model are the realizations, (nt)t∈T , of the discrete
random vector N t for each vertex

∀t ∈ T , nt = (nt,x)
x∈X

= (|{c ∈ ch (t)|Xc = x}|)x∈X ,

nt =
∑

x∈X

nt,x.

Under a homogeneity hypothesis, the considered MTBPs are thus specified by |X | dis-
crete multivariate distributions – one by state – called generation distributions and an
initial distribution for the root vertex that will not be considered hereafter.

4.2.2 Poisson Mixed Acyclic Graphical Models (PMAGMs)

We here propose to model these generation distributions by MAGMs. Since, in the
following, we focus on a single generation distribution, the vertex indexing and parent
state conditioning will be omitted in notations.
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Parametrization A MAGM is a bipartite model composed of a graph G and a dis-
tribution P . The graph G is a Mixed Acyclic Graph (MAG) and P is said to satisfy the
Factorization Chain property (FC) with respect to G ,

P (N = n) =
∏

C∈HG

P
(

N C = nC

∣

∣

∣Npa(C) = npa(C)

)

, (4.3)

where HG denotes the set of chain components of G induced by undirected edges and
pa (.) the set of parents of a chain component induced by directed edges. Considering
multivariate counts, we define a PMAGM as a MAGM where:

• For a chain component C that is a singleton and has no parent, NC follows an
univariate marginal Poisson distribution,

∀C ∈ HG , {|C| = 1} ∧ {|pa (C) | = 0} ⇒ NC ∼ P (θC) .

• For a chain component C that is a singleton and has at least one parent, NC|Npa(C) =
npa(C) follows a conditional Poisson distribution,

∀C ∈ HG , {|C| = 1} ∧ {|pa (C) | > 0} ⇒ NC|Npa(C) = npa(c) ∼ P
(

fC

(

npa(C)

))

.

• For a chain component C that is not a singleton and has no parent, N C follows a
multivariate marginal Poisson distribution,

∀C ∈ HG , {|C| > 1} ∧ {|pa (C) | = 0} ⇒N C ∼ P|C| (θC) .

• For a chain component C that is not a singleton and has at least one parent,
N C|Npa(C) = npa(C) follows a multivariate conditional Poisson distribution,

∀C ∈ HG , {|C| > 1} ∧ {|pa (C) | > 0} ⇒N C|Npa(C) = npa(c) ∼ P|C|

(

fC

(

npa(C)

))

.

We will here only present the basic multivariate marginal and conditional Poisson dis-
tributions. The reader can refer to Johnson et al. (1993, 1997), Karlis (2003) and Karlis
and Meligkotsidou (2005) for further details. The derivation of the multivariate Poisson
distribution considered here is the result of multivariate reduction (see Mardia (1970) for
further examples). The idea is to start with some independent random variables and to
create new ones by considering some functions of the original variables. Since each new
variable is a function of the original ones, a dependence structure is imposed creating
multivariate models. Here, for a chain component C ∈ HG , the multivariate marginal
Poisson distributions (Karlis, 2003) are constructed considering |C| + 1 independent
univariate marginal Poisson variables denoted Y0, . . . , Y|C| and

∀c ∈ C, Nc = Y0 + Y(c)+1,

where (c) denotes the rank of c in C. Similarly, multivariate conditional Poisson distri-
butions (Karlis and Meligkotsidou, 2005) are constructed considering |C| independent
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Number of Number of parameters for the
states non-parametric case Poisson worst case

2 19 11
3 59 29
4 139 59

Table 4.1 – Number of parameters in non-parametric and worst case Poisson multi-
type branching processes as a function of the number of states given trees with N =
{0, 1, 2, 3}. For binary trees, there is at worst the same number of parameters in both
cases. Note that the number of parameters in the non-parametric models is also a func-
tion of the cardinality of N but it is not true for the Poisson case.

univariate marginal Poisson variables and one common univariate conditional Poisson
variable.

Under this parametrization, the number of parameters, noted |θ|, is bounded in the
worst case by:

|θ| ≤ |X | − 1 + |X |
∑

C∈HG

(|C|+ 1 + |pa (C) |)

≤ |X | − 1 +
|X |2 (|X |+ 3)

2
,

where the worst case is obtained by considering a complete DAG. In contrast to the
number of parameters for non-parametric MTBPs,

|X | − 1 + |X |
[

∑

n∈N

{(

|X |+ n− 1

n

)}

− 1

]

,

far more parsimonious models for generation distributions are obtained even for rela-
tively low observed vertex out-degrees when considering PMAGMs (see table 4.1).

Complete chain components Usually, for each C ∈ HG , the conditional distribu-

tions P
(

N C = nC

∣

∣

∣Npa(C) = npa(C)

)

are factorized as products of clique factors (Lau-

ritzen, 1996). The issue of defining discrete parametric models for these distributions
is related to the definition of parametric discrete undirected graphical models. In such
undirected graphical models P satisfies the Factorization property (F)

P (N = n) =
∏

C∈HG

φC (nC) , (4.4)

with respect to the undirected graph G .
The case of univariate and multivariate Poisson distributions lead to undirected

graphical models where each chain component is complete. In order to obtain paramet-
ric undirected graphical models with sparse graphs, the recent framework of Yang et al.
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(2012) is of marked interest. In such models, each variable follows a conditional distri-
bution conditioned on its neighbors in the graph. The undirected edges of the graph are
in fact considered as bi-directed edges. Yang et al. (2012, 2014) considered the GLMs
framework (McCullagh and Nelder, 1989) to define these conditional distributions and
in particular Poisson regressions (Allen and Liu, 2012). Nevertheless, if criteria (1),
(2) and (4) raised in the introduction are verified, the third one is problematic for two
reasons:

• In this framework, the partition function is not computationally tractable even
for a small number of vertices. Moreover, the joint distribution may even not be
defined (coefficients of the Poisson regression models must all be negative). As a
consequence masses cannot be computed exactly and/or rapidly.

• Simulations are conducted via Monte-Carlo Markov Chain (MCMC) methods such
as the Gibbs sampler (Gilks, 2005). This algorithms introduce important mixing
time issue such as the minimum chain length in order to reach the stationary
distribution and the sampling interval in order to have independent events.

For these reasons we therefore chose to consider MAGMs such that chain components
are complete.

Chain component vertices with same parents In addition to the complete chain
component constraint, vertices of a same chain component have the same parents in
the defined PMAGMs. The direct consequence of these constraints is that the set of
independences represented by the PMAGM class is the same as the one represented by
Poisson Directed Acyclic Graphical Models (PDAGMs). The PDAGMs are defined as
DAGMs such that P satisfies the Directed Factorization property (DF)

P (N = n) =
∏

x∈X

P
(

Nx = nx

∣

∣

∣Npa(x) = npa(x)

)

, (4.5)

with respect to the directed acyclic graph G and such that:

• For a vertex v that has no parent, Nv follows an univariate marginal Poisson
distribution.

• For a vertex v that has at least one parent, Nv|Npa(v) = npa(v) follows a conditional
Poisson distribution.

Nevertheless, the particular interest of PMAGMs with respect to PDAGMs can be
illustrated by two major examples:

The parametric catalog. Although multivariate Poisson distributions are highly re-
lated to univariate Poisson distributions, a multivariate Poisson distribution can-
not be expressed as a succession of Poisson regressions. The distributions of
PMAGMs are therefore more general than the PDAGMs ones.
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Controlled variance. Let us consider a weakly connected component in a PDAGM
such that covariances between variables are positive. For simulation studies, an
undesirable effect is that if the first random variable – in term of topology –
produced a relatively rare event (high values), the succession of exponential links
for Poisson regressions tends to produce at the end a multivariate count with a
huge count sum. In contrast, in a chain component with positive covariances, this
effect is damped.

4.2.3 Discrete Parametric Mixed Acyclic Graphical Models (DP-
MAGMs)

In the case of DPMAGMs, the objective is to relax the Poissonian hypothesis. As
presented by Johnson et al. (1997), the spectrum of discrete multivariate parametric
distributions is not so large and mostly rely on generalization of usual discrete univariate
parametric distributions (Johnson et al., 1993):

• the binomial distribution is generalized into the multinomial distribution,

• the negative binomial distribution is generalized into the negative multinomial
distribution,

• and the multivariate Poisson distribution has already been introduced.

If, as in the Poisson case, multinomial and negative multinomial distributions and/or
regressions can easily be introduced in MAGM, the minimal Independence map (I-map)
chain components of resulting DPMAGMs are subject to the two same constraints:

1. all chain components are complete,

2. all vertices of a chain component have the same parents.

4.3 Discrete Parametric Mixed Acyclic Graphical

Models

(DPMAGMs) inference

In the following, we address inference of DPMAGM in two different cases:

• A graph is given. In such case, the Maximum Likelihood (ML) parameter inference
of a DPMAGM for which the given graph is an I-map is presented.

• No graph is given. In such case, the inference of the graph is performed using a
search heuristic and graph scoring via ML inference.
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4.3.1 Parameter inference

Let us consider a graph G that fulfills constraints (1) and (2). In such case parameter
inference reduces to multinomial, negative multinomial, multivariate Poisson marginal
or conditional distributions for chain components of cardinality superior to 1 and bi-
nomial, negative binomial and Poisson marginal or conditional distributions otherwise.
Such inferences are standard in statistics and the ML estimates have closed forms (John-
son et al., 1997) or can be estimated via iterative algorithms such as the Expectation-
Maximization (EM) algorithm for multivariate Poisson marginal (Karlis, 2003) or con-
ditional distributions (Karlis and Meligkotsidou, 2005).

In the case where a graph G that does not fulfill the imposed constraints is given as
an I-map, it cannot be a minimal I-map. The solution is therefore to degrade the given
graph – by removing undirected and/or directed edges – until reaching a graph, which
fulfills constraints (1) and (2).

4.3.2 Structure inference

If the graph is not given, inference of graph structure and distribution parameters has
to be performed. As in many discrete optimization problems, graph identification for
DAGMs and MAGMs do not appear to admit tractable solutions. In such cases heuristic
methods have to be considered, although they do not guarantee to find the optimal
solution. We here consider an extension of the standard method proposed for DAGMs,
the local search.

The local search method operates over a search space (set of graphs in our case).
This search space can be represented as an undirected graph where:

The vertex set is the set of candidate solutions, each being associated with a score.
In the case of DAGMs, a vertex G represents a DAG and the score, noted score (G)
corresponds to log-likelihood, BIC or Akaike Information Criterion (AIC) obtained
after ML parameter estimation (see Yang and Chang (2002) for a review of con-
sistent scores in this case).

The edge set is defined using search operators. In the case of DAGMs, these operators
correspond to edit operations: adding, removing or reversing an edge (see Koller
and Friedman (2009) for a review). As a consequence, the neighbor set of a graph
G is defined as the DAG subspace such that there is only one edge that is added,
removed or reversed in G :

∀G ∈ Da (X ) , ne (G)=















G ′ ∈ Da (X )

∣

∣

∣

∣

∣

∣

∣

∣

∃! (u, v) ∈ P (X ) ,

[E ′ ∪ (u, v) = E ∪ (v, u)]

∨ [E ′ = E ∪ (u, v)]

∨ [E ′ ∪ (u, v) = E ]















,

with Da (X ) the set of directed acyclic graphs with X as vertex set.

Given this search space and an initial candidate G (0), the local search consists in itera-
tively selecting among the neighbors of G (t−1) the candidate G (t) with highest score,

∀G (0) ∈ Da (X ) ,∀t ∈ N
∗, G (t) = arg max

G∈ne(G(t−1))
{score (G)} ,
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until the score reaches a local optimum.
The efficiency of this heuristic relies on a connected state space and this space inter-

connectivity definition:

• If each candidate has few neighbors, then the search procedure has to consider only
a few options at each iteration, which can be evaluated exhaustively. However,
due to the small number of neighbors, the path to an optimal solution can be long
and the probability of being stuck in a local optimum is high.

• If each candidate has many neighbors, the path to the optimal is shorter and the
probability of being stuck in a local optimum is lower. Nevertheless, each step can
be computationally intensive or even prohibitive.

Local search in Mixed Acyclic Graph (MAG) space The local search in the
MAG search space combines edit operations in the DAG and the undirected search
space (adding or removing undirected edges). To improve the search space connectivity
the following additional edit operations can be considered:

Orientation. An undirected edge in a MAG is oriented in the two directions.

Disorientation. A directed edge in a MAG is disoriented.

The major drawback of this search space is the huge number of local optima when
considering DPMAGM (see figure 4.1). Except for few simple cases (e.g. a graph without
any edge), the neighborhood of a minimal I-map is composed of graphs that are not
minimal I-maps. As a consequence, these graphs are degraded in order to correspond to
constraints (1) and (2) for ML parameter inference. Most of these minimal I-maps are
therefore local optima (considering the neighborhood), the local search in this search
space is stuck rapidly in local optima and inferred DPMAGM will not be relevant.

Local search in Quotient Acyclic Graph (QAG) space An alternative is there-
fore to change the search space. This approach is inspired from the Greedy Equivalent
Search (GES) defined by Chickering (2003). The GES is a local search for DAGM graph
inference that does not consider the DAG search space but the Equivalent Directed
Acyclic Graph (EDAG) search space. An EDAG is a Partially Directed Acyclic Graph
(PDAG) representing the set of DAGs that are Separation equivalent (S-equivalent)
(see Chickering (2002, 2003) for more details). Note that a PDAG is a graph containing
both undirected edges and directed edges but that is not assimilated to a MAG since its
separation properties are those of the S-equivalent DAGs it represents. For few models
(mostly non-parametric and Gaussian ones), S-equivalent DAGs share the same score.
The GES is therefore a local search that operates over the EDAG search space in order
to limit score redundancy and local optima.

In our case, the idea is to define a search space that operates over the MAG that
are possible minimal I-maps for DPMAGM. To this end, let us first define the Quotient
Acyclic Graph (QAG). A QAG of a MAG G is pair (GΠ, Π) where:

• Π = HG is a quotienting,
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|X | |Da (X ) | |Qa (X ) | |Ma (X ) |
1 1 1 1
2 3 4 4
3 25 34 50
4 543 715 1, 688
5 29, 281 35, 381 142, 624
6 3, 781, 503 4, 258, 357 28, 903, 216
7 1, 138, 779, 265 1, 222, 487, 933 13, 663, 125, 680
8 783, 702, 329, 343 816, 625, 721, 787 14, 762, 428, 500, 992

Table 4.2 – Number of Directed Acyclic Graphs (DAGs), Quotient Acyclic Graphs
(QAGs) and Mixed Acyclic Graphs (MAGs) as function of the vertex number. |X | is the
vertex number. The number of DAGs as function of the vertex number, noted |Da (X ) |,
has been calculated by Robinson (1973). The number of MAGs, noted |Ma (X ) |, has
been calculated by Steinsky (2003). The number of QAG, noted |Ma (X ) | is given by
(4.6)

• GΠ is the quotient graph of G induced by the quotienting Π that is a DAG.

As a direct consequence of constraints (1) and (2) for a given X vertex set, there is
a one-to-one mapping between the space of DPMAGM minimal I-maps and the QAG
space, noted Qa (X ). Since:

• The Stirling number of second kind

{

|X |
x + 1

}

,

gives the number of ways of partitioning the vertex set into x + 1 non-empty
cliques.

• For each of these partitions, a QAG can be defined.

The number of QAG, noted |Qa (X ) | is given by

|Qa (X ) | =
|X |−1
∑

x=0

{

|X |
x + 1

}

|Da ({0, · · · , x}) | (4.6)

with |Da ({0, · · · , x})| the number of DAGs with vertex set {0, · · · , x}. The QAG space
is therefore far less large than the MAG space (see table 4.2). Moreover, if the sampling
distribution is faithful to a DPMAGM, its minimal I-map is in the QAG space.

As a consequence, the local search is conducted in the QAG search space. Since
QAGs are DAGs, the edit operations for DAGs can be used. Nevertheless, if only these
operations are considered, the search space is not connected since quotients remain
unchanged. We furthermore considered the following operations:
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Figure 4.1 – Local search in Mixed Acyclic Graph (MAG) and Quotient Acyclic Graph
(QAG) search spaces. The MAG search space vertices are represented by black or green
disks and edges by black lines. The QAG search space vertices are represented by red
circles and edges by red lines. The surrounding of a vertex in MAG search space by a
vertex in the QAG search space represents the fact that they encode the same MAG. Since
DPMAGMs are considered, the MAG search space is not relevant as most of minimal
Independence-maps (I-maps) represented in green have non-minimal I-maps represented
in black as neighbors. This induces the fact that most I-maps are local optima in the
MAG search space. A contrario since the QAG search space only considers the minimal
I-maps of DPMAGM, the probability of being stuck in local optima is lower.

Quotient merging. Two quotients A and B of Π are merged into A∪B if the closure
of parent set of A is the parent set of B. This results in the deletion of a vertex
in the QAG.

Quotient splitting. A vertex c of a quotient C ∈ Π is used to form a new quotient
that is a singleton and has parents {C ∪ pa (C)}\{c}. This results in the insertion
of a vertex in the QAG.

4.4 Application to Multi-Type Branching Processes

(MTBPs): the case of mango tree asynchro-

nisms

As other tropical trees, mango tree is characterized by strong phenological asynchro-
nisms, between and within trees, entailing patchiness (Chacko, 1986). Patchiness is char-
acterized by clumps of either vegetative or reproductive Growth Units (GUs) within the
canopy: while some parts of the tree canopy develop vegetative GUs, other parts may
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remain in rest or produce inflorescences at the same time. These asynchronisms con-
cern more or less large branching systems (Ramı́rez and Davenport, 2010). They entail
various agronomic problems, such as the repeated use of pesticides to protect recurrent
sensible phenological stages from pests, or a too extended period of fruit maturity, which
may lead to difficulties to organize fruit harvesting.

At a given date, if all terminal GUs produced both vegetative and reproductive
child GUs in the same proportions and synchronously (i.e. at the same burst dates),
all branching systems would grow synchronously and would have the same distribution
of fates. Patchiness results from mutual exclusions, at the local scale of sibling GUs,
between some of their burst dates, and/or fates. Our objective was to identify and
characterize such exclusions and to open new perspectives to eventually connect them
to patchiness at the canopy scale.

Previous studies showed that the fate and burst date of a child GU are strongly
affected by those of some ancestor GUs (Dambreville et al., 2013). This approach,
based on regression models, only made possible to identify the effects of several factors
(e.g. timing of development or fate of the parent GU, fruit load) on a single response
variable, called GU feature (e.g. either the timing of development or the fate of a single
child GU). This approach suffered from two main limitations:

• features of a GU cannot be predicted together in an obvious manner,

• a feature cannot be globally predicted for all child GUs if interactions exist between
sibling GUs, additionally to those with the parent GU.

To characterize dependencies (in particular, exclusions) between child GUs through
their architectural and phenological contexts, it is necessary that the notion of GU state
combines (see figure 4.2 and 4.3):

The growth cycle delay. The growth cycle i of mango trees extends from July, 1st of
year i− 1 until March, 1st of year i + 1. During this growth cycle, the vegetative
phase corresponding to GU burst takes place between July, 1st of year i− 1 until
June, 30th of year i, then there is the flowering phase until September 30th of year
i, and finally there is the fructifying phase until March 1st of year i + 1. With
respect to its parent GU burst date, a child GU can burst in the same (S) growth
cycle or in the next (N) one.

The flush of burst of a GU. Each growth cycle of a mango tree is divided into three
flushes. The early flush corresponds to the period where the vegetative phase
of a cycle overlaps the flowering phase of the previous cycle. The intermediate
flush corresponds to the period where the vegetative phase of a cycle overlaps the
fructifying phase of the previous cycle. The late flush corresponds to the period
where the vegetative phase does not overlap the previous or the next cycles. A
GU can thus burst in the early (E), the intermediate (I) or the late (L) flush of
the growth cycle.

The fate of a GU. The most important characteristic of a GU is its vegetative or
reproductive character. Three cases have to be considered, the GU is vegetative
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Figure 4.2 – Scheme of mango trees growth cycles. There are 3 phases in the mango
tree growth cycle: the vegetative phase (in green), the flowering phase (in yellow) and
the fructifying phase (in magenta). Since there is a new growth cycle by year and that a
growth cycle last for a year and a half, the vegetative phase is decomposed into 3 flushes
(early, intermediate and late) corresponding to the overlap of this phase with the phases
of the previous cycle.

(V), reproductive with terminal flowering (T) or reproductive with lateral flowering
(L).

Over the 18 states defined by the Cartesian product of the GU characteristics, only
eleven states were observed1:

X = {SEV, SLV, NEV, NIV, NLV, SIT, SLT, NIT, NLT, SIL, NIL}

Eleven DPMAGMs or PMAGMs were thus identified, each one associated with one par-
ent GU state. We focus on graphs presented in figure 4.4 associated with the parent state
SIT. Considering the QAG of the PMAGM estimated, 5 quotients are identified. Note
that since we are considering PMAGM, covariances are positive in each quotient. Ex-
cept for states NLV, NLT and NEV for which the edges correspond to positive regression
coefficients, all the other edges are associated with negative ones. In the following we
therefore group these former states. As a consequence, there are 3 exclusive strategies:

NIL & NIT children. In this configuration only flowering children produced in the
intermediate flush of the next cycle are found.

NIV & SLT children. Note that SLT children are quite rare. In this group only NIV
children are of relative importance. Such vegetative children are produced in the
same period as in the previous configuration.

NEV, NLV & NLT children. In this configuration children can be both flowering or
vegetative and are spread on periods (the early and late flushes in the next cycle)
not represented by the two previous configurations.

1states are defined by concatenation of period, flush and fates abbreviations instead of positive
integers for clarity purposes
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Figure 4.3 – States of Growth Units (GUs) in mango trees. (A) Temporal components
of states. States of GUs are defined combining two temporal characteristics. A relative
one focusing on the fact that a GU can burst in the same cycle as its parent GU or
in the following one. An absolute one focusing on the fact that given the flush, the
competitions for GU resource allocation is not the same. During the early flush new
GUs are in competition with flowering GUs. In the intermediate flush new GUs are in
competition with developing fruits. In the late flush new GUs are only in competition
with themselves. (B) Fate components of states. The most important characteristic of
a GU is its vegetative or reproductive character. Note that in the case of flowering, the
position of the flower is important in an agronomic point-of-view since available space
for child GUs is not the same.

These three strategies are thus highly consistent with the patchiness set-up. The first
two are contrasted regarding the fate of the children (vegetative against reproductive)
but not on the period of burst. The last one is contrasted to former ones in term of
periods (early or late against intermediate flushes in the same cycle) but no particular
fate is represented. Given SIT parent GUs, our results highlights mutual exclusions
between some of their burst periods or fates. These results illustrate the ability of the
parametric MTBPs to identify in which contexts a given parent GU can or cannot have
child GUs at different flushes or with different fates, which can be interpreted as the
origin of asynchronisms.

4.5 Concluding remarks

Discrete Parametric Mixed Acyclic Graphical Models (DPMAGMs) Let con-
sider the given parametric catalog of discrete multivariate distributions:

• multinomial and derived distributions,
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Figure 4.4 – (A) Mixed Acyclic Graph (MAG) and (B) Quotient Acyclic Graph (QAG)
of a generation distribution. The parent state of the generation distribution is SIT, a
flowering GU burst in the same cycle as its parent during the intermediate flush. It is
there not surprising that children in states SEV, SLV, SIT, and SIL are not observed
(and therefore not represented) since these states are temporally or biologically incom-
patible (the succession of three GUs burst in the same cycle is highly improbable). The
QAG is very convenient as it represents the MAG at a coarser scale, which is less com-
plicated. Black edges are associated with positive covariances and red edges with negative
covariances.

• negative multinomial distribution,

• multivariate Poisson distribution.

All these distributions impose the same sign on covariances between random variables.
If it can be seen as a flaw when they are directly used to model multivariate count data,
when plugged in DPMAGMs it enables a two-stage interpretation of the model.

As illustrated in the results, the same sign of covariances in quotients help to interpret
within quotients relations and to bring to the foreground biological meaning of these
quotients. Then, the use of the QAG allows to investigate efficiently relations between
quotients by representing the MAG at a coarser scale.

Gaussian Mixed Acyclic Graphical Models (GMAGMs) In this chapter only
MAGM for multivariate count data were considered. In case of collections of real-
valued outcomes, Gaussian Mixed Acylic Graphical Models (GMAGMs) are of marked
interest. Since GMAGMs are not constrained, contrarily to DPMAGMs, they offer
a relevant alternative to Gaussian undirected graphical models or Gaussian Directed
Acylic Graphical Models (GDAGMs).

If for graph identification of GMAGMs the local search in the MAG space could
thus be used, it is important to remark that the local search space in the QAG could
be more relevant. In fact, using Lasso estimators such as the Gaussian graphical Lasso
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(Friedman et al., 2008), the optimal MAG, which is a partial graph of a MAG encoded
by a QAG, is selected easily and the estimation is consistent. Therefore the local search
in QAG combined with the Lasso estimator is an interesting alternative to the local
search in MAG space. Current work consists in implementing such estimators in order
to perform a sensibility analysis of our heuristic and to compare it to the local search
space in MAG space.

A study of emerging patterns Considering the motifs highlighted by generation
distributions is only a local point of view on asynchronisms. This local point of view can
be turned into a more integrated view by predicting, using the MTBP model, the total
number of descendant GUs at each flush and each fate using limit theorems (Yang, 2003)
or simulation approximations. Note that this patchiness can be viewed also as a long-
range pattern present in trees and it will be therefore relevant to consider long-range
dependency models for tree-indexed as discussed in the next chapter.
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Chapter 5

Quantification of plant patchiness
via tree-structured statistical

models: a
tree-segmentation/clustering

approach

Abstract The classical multiple change-point models for path-indexed data are trans-
posed to tree-indexed data. The objective of multiple change-point models is to partition
a heterogeneous tree-indexed data into homogeneous subtree-indexed data of consequent
sizes. Since optimal algorithms of multiple change-point models for sequences cannot
be transposed to trees, we propose here an efficient heuristic for tree segmentation. The
segmented subtrees are grouped in a post-processing phase, since the occurrence of sim-
ilar disjoint patches in the canopy is observed. Application of such models is illustrated
on mango trees where subtrees are assimilated to plant patches and clusters of patches
to patch types (e.g. vegetative, flowering or resting patch).

Keywords Change-point model; plant architecture; mango tree; tree clustering; tree
pattern; tree segmentation
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5.1 Introduction

As other tropical trees, mango tree is characterized by strong phenological asynchro-
nisms, between and within trees, entailing patchiness (Chacko, 1986). Patchiness is
characterized by clumps of either vegetative or reproductive Growth Units (GUs) within
the canopy: while some parts of the tree canopy develop vegetative GUs, other parts
may remain in rest or produce inflorescences at the same time. These asynchronisms
concern more or less large branching systems (Ramı́rez and Davenport, 2010). They
entail various agronomic problems, such as the repeated use of pesticides to protect
recurrent sensible phenological stages from pests, or a too extended period of fruit ma-
turity, which may lead to difficulties to organize fruit harvesting. The objective here
is to define a statistical methodology in order to identify and quantify such patchiness
patterns. This approach is particularly interesting since it could enable the quantifica-
tion of this phenomenon, and more generally, allow to highlight patchiness patterns for
species where such patterns are not directly apparent in the data.

Tree-indexed data are used as plant architecture representation and it is assumed
that plant patches can be assimilated to a partition of tree-indexed data into subtrees.
It is therefore assumed that there are subtrees within which the botanical entity char-
acteristics follow the same or nearly the same distribution and between which botanical
entity characteristics have different distributions. The detection of such subtrees can be
thus stated as tree-indexed data segmentation. Although patchiness is a spatio-temporal
phenomenon, we focus here on its spatial aspect on given trees observed at given dates.
Such a point of view introduces a lot of missing values in tree-indexed data since over
these periods mostly vertices corresponding to the canopy (i.e. leaf of trees) are ob-
served. Classical statistical models for tree-indexed data (Crouse et al., 1998; Durand
et al., 2004, 2005) based on Markovian hypotheses are no more relevant since internal
vertices are not observed. The chosen strategy is the search for abrupt changes in the
proportions of GU types within the tree. This is the analog of sequence segmentation
problems (Hupé et al., 2004; Olshen et al., 2004; Picard et al., 2005) carried on trees. It
is worth noting that exact methods for determining the most probable segmentation of
a sequence cannot be transposed to tree-structured data. We here therefore propose a
greedy algorithm for segmenting trees. As underlined by Picard et al. (2007), the output
of the segmentation procedure is a partition of trees considering that each element of
this partition is different from each others while two non-adjacent subtrees can be very
similar. We therefore propose a two-stage tree segmentation/clustering algorithm based
on the previous segmentation procedure combined with a mixture model in order to
identify similar subtrees.

The remainder of this chapter is organized as follows. Following the presentation
of tree-structured representation of plants, the segmentation/clustering models are de-
veloped and practical aspects of the application of these models to botanical data are
addressed in section 5.2. The contribution of these segmentation/clustering models for
tree-indexed data in plant architecture is then illustrated in section 5.3 through the
patchiness application. Finally, efficiency and technical difficulties concerning these
models are discussed in section 5.4.
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Figure 5.1 – Tree-indexed data extraction from plants (Durand et al., 2005). (A) A
plant is observed at the GU scale where each GU is denoted by ev with v ∈ [|0, 14|[. (B)
Tree-graph representation of the same plant is drawn: each GU ev is represented by a
vertex v.

5.2 Material and methods

5.2.1 Tree-structured representation of plants

As discussed by Godin and Caraglio (1998), plant topology can be described formally
through Multiscale Tree Graphs (MTGs). In a MTG, each vertex corresponds to a
botanical entity at a given scale (e.g. metamer, GU) and each edge represent the
physical connections between two botanical entities and each scale to a more-or-less
macroscopic viewpoint on the plant (see chapter 2 for more details). Considering the
methodology presented by Durand et al. (2005, see figure 5.1) for Hidden Markov Tree
(HMT) models, a plant can also be represented by a tree-graph corresponding to a single
scale of a MTG for statistical analysis purposes.

Data of interest are thus univariate tree-indexed data x̄ = (xt)t∈T – or more generally
multivariate tree-indexed data noted x̄ = (xt)t∈T – where T ⊂ N is the set of vertices
of a directed tree-graph τ = (T , E) and E ⊂ T × T \ R the set of directed edges
representing lineage relationships between vertices. R represent the set of roots and L
the set of leaves of τ . Until further notice, we consider that τ is sensu stricto a tree
and the only root of τ is denoted by r. Let pa (.) denote the parent, ch (.) the child set,
de (.) the descendant set and nd (.) the non-descendant set of a vertex. These notations
also apply to set of vertices (see Lauritzen, 1996, for graph terminology). Capitalized
versions indicate the closure of the corresponding notation,

∀t ∈ T , De (t) = de (t) ∪ {t} .

For any set A ⊆ T , x̄A denote the subset of x̄ obtained by only considering the vertices
in A,

∀A ⊆ T , x̄A = (xt)t∈A.
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and τA the subtree induced by A. The in-degree of a vertex t in a tree, τ is denoted by
deg−

τ (t). This in-degree is equal to 0 if the vertex is a root or 1 otherwise.

5.2.2 Modeling plant patchiness with tree segmentation/cluster-
ing models

To simplify notations we will consider in the following the case where x̄ is the realization
of a X -valued stochastic process X̄ = (Xt)t∈T such that X ⊂ N is called the observation
space.

Contrarily to Picard et al. (2007) who proposed segmentation/clustering models
for sequences where the segmentation and the clustering were performed in a single
stage we here propose a two-stage approach. In a first stage, each tree is quotiented
into homogeneous subtrees considering tree segmentation models. In a second stage, a
mixture model is used to group these homogeneous subtrees into clusters with similar
biological characteristics.

Segmentation models A segmentation model is defined by a vertex quotienting,
noted Π, such that each quotient induces a sensu stricto tree (any path between two
vertices of one quotient is composed of vertices in the same quotient). Given these
quotients, vertices in the same quotient are supposed to be independent and identically
distributed. The parametrization of a segmentation model is therefore defined by these
quotients and completed by one observation distribution for each quotient. As a conse-
quence of these assumptions the log-likelihood, L (x̄; Π, θΠ) of the model decomposes as
follows:

L (x̄; Π, θΠ) =
∑

π∈Π

∑

v∈π

log fπ (xv) ,

where fπ (·) denotes the observation distribution of the quotient π ∈ Π and θΠ the set
of parameters of these observation distributions.

The quotients in Π can also be identified by the set of change points, noted P . Each
of them corresponds to the root of the subtree induced by the considered quotient

∀Π ∈ P (T ) , P =
{

t ∈ T
∣

∣

∣ ∃π ∈ Π, [t ∈ π] ∧
[

deg−
τπ

(t) = 0
]}

,

where P (·) denotes the powerset of a set. The function ν (·) denotes the function that
returns the quotienting associated to a set of change points:

ν : P (T ) → P (T )
P 7→ Π

.

Inference of quotients In our practical case, given a quotienting Π, the inference of
observation distributions is a simple Maximum Likelihood (ML) inference within each
quotient. A major issue is, given a number K of quotients, to find the quotienting
that maximizes the log-likelihood. Exact methods for determining the most probable
segmentation of a path-indexed data cannot be transposed to tree-indexed data. We
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therefore propose an heuristic approach in order to find a local optimal solution (see
Hawkins (1976) for a similar approach on path-indexed data).

Let P(k) denotes the change points set associated to k+1 quotients and corresponding
to a local optimum of the log-likelihood. By definition, P(0) is the change points set
inducing one quotient and therefore only contains the root of the tree,

P(0) = {r} .

Finding the change points set P(1), which maximizes the log-likelihood of the segmen-
tation model with two quotients, can easily be done by testing successively all non-root
vertices as change points

P(1) = P (0) ∪
{

arg max
t∈T

{

L
(

x̄; ν
(

P(0) ∪ {t}
)

, θ
ν(P(0)∪{t})

)}

}

.

The optimal segmentation of a tree into 2 subtrees is therefore easily found. The prin-
ciple of the heuristic presented in algorithm 4 is to use this principle to iteratively build
the quotienting. Note that in order to reduce the probability of being stuck in local op-
tima, at each step, if a new change point has been found, the removal of change points
is considered until no more removal increases the log-likelihood.

Selection of the number of quotients If the number of quotients is unknown it
has to be selected. Since the purpose of the segmentation is to reveal plant patches, the
estimation of the number of quotient remains central. This problem can be handled in
the more general context of model selection, as for the path-indexed data cases, using
statistical criteria adapted to the case of segmentation models (Zhang and Siegmund,
2007; Rigaill et al., 2012) or slope heuristics (Lebarbier, 2005; Baudry et al., 2012).

In our practical context of categorical observations, penalized-likelihood criteria with
fixed penalties select over-parametrized models and are not adapted. We therefore con-
sidered the data-driven slope heuristic method implemented by Baudry et al. (2012).
Since this method requires the computation of over-parametrized models, we thus con-
sidered the computation of change-points sequences up to 20 change points.

Tree clustering models The segmentation models enable the detection of subtrees
such that the observations do not change substantially within each subtree but change
markedly between two adjacent subtrees. Nevertheless, the occurrence of similar non-
adjacent subtrees in the tree is an important feature. It is therefore assumed that:

• There are a finite and small number of these different types of quotients and that
all vertices in a quotient are of the same type.

• Vertices in the same quotient are independent and identically distributed given
the type of the quotient.

The Expectation-Maximization (EM) and the Maximum A Posteriori (MAP) assign-
ment of quotients of standard mixture models (McLachlan and Peel, 2004) under the
constraint that vertices belonging to a given quotient are assigned to the same compo-
nent were therefore applied in this context to group similar patches.
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Algorithm 4 Computing a sequence of change points set

Require: x̄, T , the tree-indexed data
1 function TreeSegmentation(K)

2

(

P(k)
)

k∈{1,K−1}
← (∅)k∈{1,K−1} ⊲ change-points set initialization

3

(

L(k)
)

k∈{1,K−1}
← (−∞)k∈{1,K−1} ⊲ change-points set score initialization

4 k ← 0 ⊲ Step
5 P(0) ← {r} ⊲ The root is the optimal first change point
6 while k < K do

7 P ← P(k) ∪
{

arg max
t∈T

{

L
(

x̄; ν
(

P(k) ∪ {t}
)

, θ
ν(P(k)∪{t})

)}

}

8 if L(k+1) ≤ L
(

x̄; ν (P) , θν(P)

)

then
9 k ← k + 1

10 P(k) ← P ⊲ Add a change point

11 L(k) ← L
(

x̄; ν
(

P(k)
)

, θ
ν(P(k))

)

⊲ Update the score

12 P ← P(k) \






arg max
p∈P(k)\{r}

{

L
(

x̄; ν
(

P(k) \ {p}
)

, θ
ν(P(k)\{p})

)}







13 while L(k−1) < L
(

x̄; ν (P) , θν(P)

)

do
14 k ← k − 1
15 P(k) ← P ⊲ Remove a change point

16 L(k) ← L
(

x̄; ν
(

P(k)
)

, θ
ν(P(k))

)

⊲ Update the score

17 else
18 k ← k + 1

return
(

P(k),L(k)
)

k∈{0,··· ,K}

5.2.3 Plant material

Experimental design The experimental orchard was located at the Cirad1 research
station in Saint-Pierre, Réunion Island. For each of the following cultivars, 5 mango
trees were described at the GU scale (Dambreville et al., 2013):

• Cogshall,

• Jose,

• Kensington Pride,

• Irwin,

• Kent,

• Nam Doc Mai,

1French Agricultural Research Center for International Development
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Figure 5.2 – Mango tree growth cycles. (A) Number of new fructifying GUs by day. (B)
Number of new flowering GUs by day. (C) Number of new GUs by month. (D) Scheme
of mango tree growth cycles. There are 3 phases in the mango tree growth cycle: the
vegetative phase (in green), the flowering phase (in yellow) and the fructifying phase (in
magenta). Since there is a new growth cycle each year and that a growth cycle lasts for
a year and a half, the vegetative phase is decomposed into 3 flushes (early, intermediate
and late) corresponding to the overlap of this phase with the phases of the previous cycle.

• Tommy Atkins.

These trees were fully described for (see figure 5.2):

• Vegetative GUs bursting between September, 2003 and November 2005.

• Reproductive GUs flowering or fructifying between July, 2004 and March, 2006.

Since the mango growth cycle of year i is a period ranging from July, 1st of year i− 1 to
March, 1st of the year i + 1, 2 growth cycles were completely observed (see figure 5.2),
but the complete tree topology has been reported.

Temporal resolution While the patchiness is a spatio-temporal phenomenon, we
focus here on its spatial aspect on given trees observed at given dates (see figure 5.3).
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In particular, considering a growth cycle (see figure 5.2) there are 3 periods of marked
interest:

The early flush. The early flush corresponds to the period where the vegetative phase
of a growth cycle overlaps the flowering phase of the previous cycle.

The intermediate flush. The intermediate flush corresponds to the period where the
vegetative phase of a growth cycle overlaps the fructifying phase of the previous
cycle.

The late flush. The late flush corresponds to the period where the vegetative phase
of a growth cycle does not overlap the previous or the next cycles.

Patchiness was therefore investigated at the flush temporal resolution. For each of these
flushes and each growth cycles, tree-indexed data were extracted from plants at the GU
scale as follows:

1. Any GU which burst occurred before the considered date was not considered.

2. Any reproductive GU which flowering occurred in previous growth cycle was not
considered because of the limited lifetime of these structures.

3. Any GU which burst or flowering occurred in the current growth cycle and flush
was labeled as F for a reproductive GU or V for a vegetative GU.

4. Any leaf of the tree graph which had no label was labeled R for resting GU.

As a consequence we obtained 181 trees within which mostly leaf vertices were observed
with the following observation space2

X = {F, R, V } .

5.3 Results

5.3.1 Tree segmentation

Over the 181 trees, only 132 were successfully segmented. The major reason of these fail-
ures was the presence of trees with a very low level of noise, therefore over-parametrized
models for penalty computation could not be computed for these trees. Note that even
if we did not considered these trees, these failures to obtain over-parametrized models
could be considered as an indication of trees that are patches.

Nevertheless, as illustrated on figure 5.4, the segmentation of trees successfully de-
tected 608 patches with various compositions and relative sizes. Note that only few
patches of height 0 were detected (6%), which indicates that there were relatively few
over-segmented trees.

2observations are defined by GUs characteristics abbreviations instead of positive integers for clarity
purposes
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Figure 5.3 – Illustration of mango tree patchiness (Dambreville, 2012). This mango tree
is separated into two parts. The left one in dark green is a clump of old GUs where fruits
can be found. In contrary the right one in light green is a clump of new vegetative GUs.
This visual patchy aspect is mostly due to GUs situated in the canopy at a given date.

5.3.2 Subtree clustering

If the composition of patches varies, most of them were close to the vegetative, flowering
or resting poles (see figure 5.4). The second stage of clustering was therefore highly rel-
evant since the occurrence of similar non-adjacent subtrees in the tree was an important
feature.

For the mixture model, we considered three different states that enabled the cluster-
ing of subtrees into 3 clusters and to assess the general composition of theses patches
(see figure 5.4). According to the observations distributions:

Flowering patches have been assigned to state 0,

f0 (F) = 0.7,

f0 (R) = 0.26,

f0 (V) = 0.04.

Vegetative patches have been assigned to state 1,

f1 (F) = 0.08,

f1 (R) = 0.13,

f1 (V) = 0.79.
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Figure 5.4 – Ternary plots of the outputs of the segmentation/clustering algorithm (A)
Ternary plot of the initial trees. (B) Ternary plot of the segmented trees. In both graphs
each tree or subtree is identified by a blank disk, which size is proportional to its relative
size with respect to the original tree. (C) Ternary plot of clustered subtrees. In this
graph each cluster of subtrees is identified by a blank disk, which size is proportional
to its weights in the inferred mixture model. In these ternary plots, the left bottom
corner of the triangles represents the pure flowering trees, the right bottom corner the
pure resting trees and the top corner the pure vegetative trees. Therefore, a tree near a
corner of the triangle is an almost pure tree. On the contrary, if it is near an edge it
has a very low proportion of the characteristic represented at the corner opposed to the
edge. The colored triangles in the background of these ternary plots correspond to bins
of histograms colored according to a heat map (from dark blue corresponding to low tree
frequency to red for high frequency). In (A), the histogram of initial trees is represented
and in (B,C), the histogram of segmented subtrees are represented.
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Resting patches have been assigned to state 2,

f2 (F) = 0.2,

f2 (R) = 0.72,

f2 (V) = 0.08.

According to the weights

π0 = 0.22,

π1 = 0.46,

π2 = 0.32,

there is a slight excess of vegetative patches, but all patches are clearly presents. Note
that this excess of vegetative patches can be biologically understood since the observed
mango trees were young and therefore not at their permanent production regime, which
induces more flowering GUs.

While there is quite an opposition between vegetative and flowering GUs within
patches, resting GUs are present in non negligible quantities in each patches.

5.3.3 Cultivar comparisons

The interest of tree segmentation/clustering models is that given the patches and their
identities, the different cultivars can be compared. For instance, we computed by cultivar
(see figure 5.5):

The relative sizes of patches. The empirical cumulative distribution functions of
relative sizes of patches enabled the comparison of cultivar behaviors in terms
of patch sizes. The relative size of a patch is defined as the ratio of the number of
vertex in the patch to the number of vertex in the complete tree. If most of the
cultivars have almost the same behavior, three cultivars are relatively different.
Irwin has the biggest patches, in contrast to Tommy Atkins that has the smallest
patches. Jose is also quite interesting since it is the cultivar with the most hetero-
geneous patch sizes and contrarily to other cultivars it has no marked plateau for
intermediate patch sizes.

The MAP assignment of quotients. MAP assignment of quotients brings informa-
tion about patch representations in cultivars. The most marked differences concern
Tommy Atkins. Tommy Atkins has only 2 categories of patches, flowering patches
being quasi-absent, these being partly compensated by a significant proportion of
flowers in resting patches.

5.4 Discussion

Performance Our segmentation approach is based on an heuristic. We therefore as-
sessed the performance of this heuristic approach assuming that the number of quotients
was known.
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Figure 5.5 – Comparisons of patch patterns for the different cultivars. (A) MAP assign-
ment of quotients. (B) Cumulative distribution functions of the relative size of patches.
The relative size of a patch is defined as the ratio of the number of vertex in the patch
to the number of vertex in the complete tree. For both graphs, Cogshall cultivar is in
red, Jose in yellow, Kensington Pride in magenta, Tommy Atkins in green, Nam Doc
Mai in cyan, Irwin in blue, Kent in gray and the all cultivar together are represented in
black.

To this end we simulated 100 different trees using simple Watson and Galton (1875)
processes with patches at random heights. Once the height was simulated, given a
topological ordering of the change points, their identities were simulated with periodic
Markov chains of period 2 (two consecutive vertices cannot thus have the same identity).
Then, each of these identities were projected onto corresponding leaf vertices. For each
of these leaf-labeled trees, 10 different noise intensities (ranging from 0.0 up to 1.0) were
simulated, with the noise intensity defined as the frequency of re-labeled vertices.

For these 1, 000 trees obtained, our heuristic method was used to recover the quo-
tienting corresponding to the number of simulated quotients. As presented in Denœud
and Guénoche (2006), the comparison of obtained and simulated quotienting was based
on the comparison of their quotienting matrices. A quotienting matrix Π of a given
quotienting Π of vertices T , is the square matrix of general element Πi,j defined as
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Figure 5.6 – Performance of the segmentation heuristic for tree-indexed data. This
performance was assessed with a simulation study by comparing the simulated and seg-
mented quotients. These comparisons were conducted using the sensitivity and specificity
scores of the results.

follows:

∀(i, j) ∈ T 2, Πi,j =















0 if [i = j] ,

1 if ∃π ∈ Π, [i ∈ π] ∧ [j ∈ π] ,

0 otherwise.

Comparisons of specificity and sensibility of such matrices indicated that the approach
was well adapted in order to recover the simulated quotienting (see figure 5.6). Note
that, even in some cases of very low noise, the sensibility can be surprisingly low. The
reason of this problem is due to identifiably issues that can be summarized with the
following question: ‘Is it a flowering tree with vegetative patches or a vegetative tree with
flowering patches?’. At some point, if proportions of simulated states are quite similar,
a small level of noise can make the difference, if it was considered as ‘a flowering tree
with vegetative patches’ but that the heuristic method found that it was ‘a vegetative
tree with flowering patches’, the corresponding comparison of simulated and segmented
quotients induces a low sensibility but a high the specificity.

Scale comparisons The scale of patch expression is of marked interest. If in one
tree this can be tackled by the comparison of height, depth or width distributions
according to the different type of patches, as soon as we are in presence of a forest,
this is approach is no more relevant. Therefore, the approach consisting in computing
distributions of relative heights, depths or widths with respect to the tree within which
the patch is found can be used (see figure 5.5). Nevertheless, since plant topology can
be described formally through MTGs, it could be relevant to consider the quotiented
tree resulting from tree segmentation as an inferred scale and to compare it to the
biological scales encoded into the MTG. This could be tackled using distances between
tree quotienting defined by Ferraro et al. (2003). Using this distance, the distances
between tree quotienting obtained by the segmentation stage and the nested biological
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quotientings could contribute to identify the scale of patchiness patterns within the
different cultivars and their modifications across time.
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Work in progress and perspectives

This thesis aimed at proposing a statistical modeling framework for studying patterns
in tree-indexed data. To this end, two major different classes of statistical models were
investigated.

In chapter 3, we considered Hidden Markov Out-Tree (HMOT) models relying on
local dependency assumptions and dedicated to motif analysis. A generalization of state-
of-the-art HMOT models have been introduced in order to consider dependences between
siblings and randomness of the generation process. This work required the design of an
upward-downward smoothing algorithm in order to implement efficiently the E-step of
the Expectation-Maximization (EM) algorithm and a dynamic programming algorithm
for the restoration of the most probable state tree for this family of models. The upward-
downward algorithm developed corresponds to an instance of the generic algorithm for
graphical models proposed by Jensen et al. (1990). Compared to this generic algorithm,
the more dedicated upward-downward algorithm have the following desirable properties:

• The upward and downward recursions are numerically stables.

• It is a true smoothing algorithm and its outputs, that is state profiles, can be used
as a diagnostic tool.

• Intermediate results of the upward-downward algorithm, clearly defined in terms of
conditional probabilities can be used in different contexts such as, the computation
of the log-likelihood of the observed data or the simulation of a state tree given
an observed tree.

In chapter 4, focus was on unordered trees with high number of child vertices in the
context of a categorical observed process. Since the state process of Hidden Markov
Unordered Out-Tree (HMUOT) models studied in chapter 3 is modeled by Multi-Type
Branching Processes (MTBPs), this chapter considered the case of MTBPs and focused
on the design of parametric version of HMUOT models in a simpler case. Inference of
MTBPs mostly reduces to inference of their generation distributions, which are discrete
multivariate distributions. Since the analysis of multivariate count data is a recurrent
and crucial issue in numerous modeling problems, particularly in the fields of biology,
ecology, sociology and econometrics, the scope of the problems that could be dealt with
such models is much more larger than the considered application to MTBPs. In order
to characterize dependences between components of these discrete multivariate distribu-
tions, we introduced Discrete Parametric Mixed Acyclic Graphical Model (DPMAGM).
If parameter inference for such models is a classical issue in statistics we considered the
inference of the structure that has been considered less often in the literature. Structure
inference was tackled using a local search within the Quotient Acyclic Graph (QAG)
search space instead of the Mixed Acyclic Graph (MAG) one in order to minimize the
probability of being stuck in local optima. The interest of this search space is not limited
to DPMAGMs and we are now considering the case of Gaussian Mixed Acylic Graphi-
cal Model (GMAGM) to test and compare our heuristic to the local search space in the
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MAG space and other methods (Edwards, 2000; Ma et al., 2008; Drton and Perlman,
2008).

In chapter 5, the generalization of multiple change-points models from path-indexed
data to tree-indexed data was investigated. In contrast to HMOT models, such models
belong to the class of long-range dependency models and are suitable for segmenta-
tion analysis. Since exact methods for determining the most probable segmentation of
path-indexed data cannot be transposed to tree-indexed data, we proposed an effective
heuristic approach. If in our application context, focus was on categorical variables, this
approach can also be applied to any types of random variables or vectors. Note that
in a few cases where decompositions of the log-likelihood are available (e.g. Poisson
piecewise constant parameters or Gaussian change in mean and variance models), little
work could be done in order to improve time and space complexity of such algorithms.

In the remainder of this chapter we describe work in progress and perspectives con-
veyed by this thesis. We first focus on the effort dedicated to software development. All
methods and models developed by team members are integrated in a common software
component, V-Plants, within the OpenAlea platform (Pradal et al., 2008). An overview
of the software resulting from the implementation of statistical models and methods
developed in this thesis in order to make them available to the team members and part-
ners is therefore done. Then, if chapter 3 focus was on HMOT models, Hidden Markov
In-Tree (HMIT) – discussed by Durand et al. (2005) and developed by Bacciu et al.
(2010) – are related models that also take into account dependencies between children.
Such models and their parametrizations are therefore discussed with respect to HMOT
models. Concerning the generation distributions of HMOT, in chapter 4 we considered
the use of graphical models in order to reveal exclusion and inclusion patterns in child
fates. An alternative model, based on mixture models, is presented and the different
hypotheses induced by these two models are hereafter discussed. Finally, we revisit the
patchiness phenomenon discussed in chapters 4 and 5 and present an integrative analysis
that could be conducted in order to decipher mango tree asynchronisms and patchiness
phenomena.

StatisKit: graphical model inference in C++ and

Python

Project description StatisKit is a bipartite library (C++ and Python) developed
during the thesis concerning the domain of graphical models ranging from Hidden
Markov Tree (HMT) models inference on the basis of tree-indexed data to undirected
graph, Directed Acyclic Graph (DAG) and Mixed Acyclic Graph (MAG) model pa-
rameters and structure inference for multivariate mixed data. It is distributed under
the CeCILL-C license as a package of the OpenAlea platform, encouraging its use and
development in academic settings. StatisKit provides implementations of most recent
work of Virtual Plants team in the field of statistics (in particular methods presented
in Peyhardi (2013) and in this thesis) This work started in 2011 and a beta version
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Programming Source lines of code

Language Count Percentage

C++ 38, 207 57.16%
Python 28, 637 42.84%

All 66, 844

Table 6.1 – Repartition of lines of code in StatisKit. This table uses data generated by
Wheeler (2001) SLOCCout program.

was publicly released as a package of the OpenAlea platform in 20133. Since then, the
project have been augmented with Markovian models and segmentation algorithms for
tree-indexed data and a new released is planned at the end of 2014.

Underlying technologies The C++ and Python programming languages are popu-
lar languages for scientific computing. The C++ language designed to be compiled into
low-level code allows to design efficient libraries. Nevertheless, such libraries are not
intuitive and easy to manipulate for data analysis. The high-level interactive nature of
Python language is an appealing choice for non-specialists of computer science such as
biologists. In OpenAlea, a common choice is therefore to combine C++ language for the
design of library and Python language for the definition of its Application Programming
Interface (API) (see table 6.1).

Code design To facilitate the extensibility of the module a particular attention has
been paid to the inheritance diagrams of model and estimators classes. Moreover, rather
than providing as many features as possible, the project goal has been to provide solid
implementations of estimators. Hence, the code quality is ensured by:

1. The design of generic algorithms that can be tested on benchmark data. This is
done by an extensive use of templates and virtual classes in C++ allowing code
factoring.

2. The design of specific algorithms that are more efficient than the former ones
but more specialized. It is in particular possible to test by simulation complexity
improvements and to ensure that results are consistent with the generic algorithms.

For object of database types no hierarchy is imposed. The only requirement of such
classes is to have a clear identification of models available (e.g. univariate distributions
for univariate data, tree processes for tree-indexed data) in order to build corresponding
model selection environment (classes combining a data and the best model or the ordered
or unordered collection of proposed models during estimation procedures).

3Available under the name statistic at http://openalea.gforge.inria.fr/dokuwiki/doku.php?

id=packages:statistic:statistic

http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:statistic:statistic
http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:statistic:statistic
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Diffusion Stability of releases are ensured in the Python version using unit and func-
tional tests (with Nose and DocTest Arbuckle, 2010). Moreover, in a context of repro-
ducible research, all analyzes performed in this thesis are available in IPython Notebooks
(Perez and Granger, 2007) tutorials combining our models and a few R procedures (R
Development Core Team, 2011). At this stage, the software is mostly missing licenses
in headers and functions documentation required to be published.

Dependencies The minimal dependency for installation is the OpenAlea platform
core (Pradal et al., 2008, for deployment), the Eigen library (Guennebaud et al., 2010,
for linear algebra), Boost libraries (Schling, 2011, for many things). For an usage in
Python the usual packages Numpy (Van Der Walt et al., 2011, for linear algebra data
structure and basic arithmetic operations), Scipy (Jones et al., 2001, for linear algebra)
and Matplotlib (Hunter, 2007) are required.

Hidden Markov In-Tree (HMIT) models

In chapter 3 we only focused on Hidden Markov Out-Tree (HMOT) models but contrarily
to sequences, directed trees are non-symmetrical structures and this induces fundamen-
tal differences in model parametrization for Markov Out-Tree (MOT) (edges directed
from the root to the leaves) and Markov In-Tree (MIT) models (edges directed from the
leaves to the root). For a given tree structure with vertices labeled with discrete states,
we have a small number of potentially complex multivariate transition distributions
in the MOT model case and a large number of simple univariate transition distribu-
tion in the MIT model case. The parametrization of a MIT model is analogous to the
parametrization of a high-order Markov Chain (MC) model and the different approaches
to build parsimonious high-order MC models (i.e. full parametric approaches such as
the mixture transition distribution model of Raftery (1985) and memory selection ap-
proaches leading to variable-order Markov chains (Ron et al., 1996; Bühlmann et al.,
1999; Csiszár and Talata, 2006) can be transposed to MIT models.

Parsimonious Markov Ordered In-Tree (MOIT) models Considering the Markov
property, vertices are independent of their descendants given their children

∀t ∈ T , Xt ⊥⊥ X̄de(ch(t))

∣

∣

∣ X̄ch(t) .

This is equivalent to the following factorization of the process distribution

P
(

X̄ = x̄
)

=
∏

l∈L

P (Xl = xl)
∏

t∈T \L

P
(

Xt = xt

∣

∣

∣ X̄ch(t) = x̄ch(t)

)

. (6.1)

leading to MIT models. It is worth noting that due to the opposite direction – from
leaf to root vertices – of the Markov property, random generation of children cannot be
modeled as in MOT model cases. According to (6.1) a MIT model is defined by the
following parameters:
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• An initial distribution for leaf vertices,

∀l ∈ L, πxl
= P (Xl = xl) ,

with
∑

x∈X πx = 1.

• Transition distributions from child vertices to their parent for each given configu-
ration of child states

∀v ∈ V, Γx̄ch(v)
(xv) = P

(

Xv = xv

∣

∣

∣ X̄ch(v) = X̄ch(v)

)

,

with
∀x ∈ X , ∀d ∈ deg+(T \ L) , ∀x̄ ∈ X d,

∑

x∈X

Γx̄ (x) = 1.

Without any further hypotheses there is a total of

|X | − 1 + (|X | − 1)
∑

d∈deg+(T \L)

|X d|

independent parameters to define but in practice, the parametrization of a MIT model
is analogous to the parametrization of a high-order MC model, the out-degree of the
vertices playing the role of the order of the MC. Concerning high-order MC models for
path-indexed graphs two approaches have been proposed to build parsimonious models:

Mixture transition distribution. These models were introduced by Raftery (1985)
and later generalized as Mixed Memory Markov Chain (MMMC) models by Saul
and Jordan (1999). This kind of parametric high-order MC relies on an analogy
with Auto-Regressive (AR) models where high-order transition probabilities are
represented as convex combinations – or mixture – of first-order transition prob-
abilities. The constraints on the dependencies induced by this kind of parametric
modeling stay unclear. This principle has been transposed to Hidden Markov
In-Tree (HMIT) models by Bacciu et al. (2010).

Variable-order Markov chain. In these models (Ron et al., 1996; Bühlmann et al.,
1999; Csiszár and Talata, 2006), the memory length is variable and depends on
the context. The idea here is to aggregate memories with similar suffixes (i.e.
most recent states) that share the same transition distributions. The aggregation
of memories relies on the fact the successive states in memories are ordered. Con-
trarily to mixture transition distribution models and mixed memory Markov mod-
els, this nonparametric approach does not impose constraints on the dependencies
that can be represented. This approach could be transposed to MIT model by
imposing order constraints either on the children of a vertex and/or on the states.

Parsimonious Markov Unordered In-Tree (MUIT) models In the case of Markov
Unordered In-Tree (MUIT) models, transition distributions simplify into

∀t ∈ T \ L, Γnt
(xt) = P (Xt = xt |N t = nt) ,
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with
∀n ∈ N

|X |,
∑

x∈X

Γn (x) = 1.

which imply a total of

|X | − 1 + (|X | − 1)
∑

d∈deg+(T \R)

(

|X |+ d− 1

d

)

,

independent parameters, but in practice each of these transition distributions can be
parsimoniously modeled by categorical regressions (Tutz, 2011).

If we reconsider the example developed in chapter 3, since the roots of lineage trees
are not systematically at time 0h, it would be relevant to orient the lineage trees from
the leaf vertices at the last time point to the roots. This leads to the Hidden Markov
Unordered In-Tree (HMUIT) model, which is parametrized by transition probabilities.
The transition probability matrix is described by the regression matrix of the categorical
regressions. Since branching viewed backward is coalescence, this model can be viewed as
a hidden coalescence process. We expect this model to give complementary information,
with respect to the HMOT, regarding in particular the cell identities identified at the
first time points on the basis of cell identities propagated from the last time points (see
figure 6.7). Nevertheless simple categorical regressions suffer from the fact that left-right
models cannot be defined. In order to allow an ordering or a partial ordering on states
it could highly relevant to consider the extension of categorical regressions proposed by
Peyhardi et al. (2014a,b).

Multivariate mixture models in Multi-Type Branch-

ing Processes (MTBPs)

In chapter 4, we considered discrete multivariate parametric distributions that fulfill the
following criteria:

2. These multivariate parametric distributions can have zero-inflated, right-skewed
and natural number valued marginals, so that discretized multivariate Gaussian
distributions are not appropriate.

3. These multivariate parametric distributions can easily be simulated and proba-
bility masses can easily be computed in order to investigate motifs induced by
generation distributions and long-range patterns stemming from these generation
distributions as trees develop.

4. Child states that tend to appear simultaneously or on the contrary to be incom-
patible can be identified.

To this end, we defined Discrete Parametric Mixed Acyclic Graphical Model (DP-
MAGM) that are consistent with criterion (4). Nevertheless this imposed the constraint
of gradual changes considering exclusion patterns. It could therefore be interesting to
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Figure 6.7 – Comparison of the restoration of hidden states using the Viterbi-like al-
gorithm for HMIT and HMOT models. Images, from left to right, were respectively
taken at 0h, 26h, 44h, 56h and 69h after the beginning of the experiment. (A) Spatial
projection of the four states obtained using the HMUIT model. (B) Spatial projection
of the four states obtained using the Hidden Markov Unordered Out-Tree (HMUOT)
model. Both models were estimated using epidermis surface, internal surface, volume,
curvatures and inertia as cell characteristics. State 0 is in dark blue, state 1 in light
blue, state 2 in yellow and state 3 in dark red. Sepals are mostly identified by states 0
and 3, the dome by state 2 and boundary cells by state 1.

consider models, in which on contrary abrupt changes are considered. To this end, we
propose to use the following mixture decomposition of the generation distributions

P
(

(N)x∈X = (nx)x∈X

)

= P (N = n)

=
∑

m∈M

πmPm (N = n) ,

whereM⊂ N represents the set of components, (πm)m∈M the weights of the components
and (Pm(·))m∈M are the discrete multivariate parametric generation distributions, which
fulfill criteria (2)-(4). These mixture models have been used extensively in the literature,
especially for representing the univariate case the over-representation of zeros. Note
that in the multivariate case, this issue is more difficult since there are different ways of
seeing the over-representation of zeros. We propose to address this issue as a problem
of variables quotienting with |M| quotients such as:

∀m ∈M, ∀x ∈ X \ Xm, Pm (Nx > 0) ≈ 0,
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where X =
⋃

m∈MXm. We therefore address this issue by using a model within which in
each component there is only one quotient of states has a significant number of children
and such that these quotients have only a significant number of children in only one
component. The mixture model thus fulfills criterion (4).

The major problem in this model is to identify the components. Let us consider the
dichotomous random vector (Bx)x∈X where

∀x ∈ X , Bx =







0 if Nx = 0,

1 otherwise.

and the random variable S =
∑

x∈X Bx. Precise investigations on the distribution of the
random vector (Bx)x∈X given S ≥ 2 could be of marked interest are we expect to have:

• Negative covariances between pairs of variables that are not in the same compo-
nents,

• Positive covariances between pairs of variables that are in the same components.

Let G be the graph of positive covariances composed of the vertex set X and the edge
set E . E is defined as the set of edges that correspond to positive covariances in the
conditional dichotomous random vector,

E =
{

(i, j) ∈ X 2
∣

∣

∣ [i 6= j] ∧ [Cov (Bi, Bj |S ≥ 2) > 0]
}

.

If there is a small level of noise, the quotienting could be identified by the connected
components of the graph G . In case of a high level of noise, a preliminary step of
covariance selection (see for Yang et al. (2012, 2014) for examples) could be used to
detect non-significant covariances.

Note that if this kind of procedure could identify the components, once the compo-
nents are known the Expectation-Maximization (EM) algorithm (McLachlan and Peel,
2004) for parameter inference could be initialized quite easily by the following approxi-
mation of the initial posterior probabilities:

∀n ∈ N |X |,∀x ∈ X , bx =







0 if nx = 0,

1 otherwise
,

∀m ∈M, P (M = m |N = n) ∝
∑

x∈X

bx × I (x ∈ m) ,

where I (.) denotes the indicator function.

Integrative models for deciphering mango tree asyn-

chronisms

In chapter 5 the patches were assimilated to hidden states in the subtree clustering
stage. The motif analysis conducted in chapter 4 could therefore be enhanced and
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used to decipher more precisely mango tree asynchronisms incorporating hidden states,
assimilated to patch identities. The use of HMUOT defined in chapter 3 combined with
the DPMAGM studied in chapter 4 for modeling generation distributions would lead to
parametric HMOT where motifs could be easily interpreted considering the graphical
representation of generation distributions.

When considering the motifs highlighted by generation distributions, we only capture
a local point of view on asynchronisms. This local point of view can be turned into a
more integrated view by simulating state trees corresponding to the observed mango
trees. The change-point detection algorithm defined in chapter 5 could then be applied
to these simulated trees. This step would be used in order to test whether the long-range
patchiness patterns emerge or not when these motifs are chained during tree growth.
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Titre Un cadre de modélisation statistique pour l’analyse de données indexées par des
arborescences – Application au développement des plantes à l’échelle microscopique et
macroscopique

Résumé Nous nous intéressons à des modèles statistiques pour les données indexées
par des arborescences. Dans le contexte de l’équipe Virtual Plants, équipe hôte de cette
thèse, les applications d’intérêt portent sur le développement de la plante et sa modu-
lation par des facteurs environnementaux et génétiques. Nous nous restreignons donc à
des applications issues du développement de la plante, à la fois au niveau microscopique
avec l’étude de la lignée cellulaire du tissu biologique servant à la croissance des plantes,
et au niveau macroscopique avec le mécanisme de production de branches. Le catalogue
de modèles disponibles pour les données indexées par des arborescences est beaucoup
moins important que celui disponible pour les données indexées par des chemins. Cette
thèse vise donc à proposer un cadre de modélisation statistique pour l’étude de patterns
pour données indexées par des arborescences. À cette fin, deux classes différentes de
modèles statistiques, les modèles de Markov et de détection de ruptures, sont étudiées.

Mots-clés Architecture des plantes; données indexées par des arborescences lignage
cellulaire; modèle de détection de ruptures; modèle de Markov; modèle graphique

Title A statistical modeling framework for analyzing tree-indexed data – Application
to plant development at microscopic and macroscopic scales

Abstract We address statistical models for tree-indexed data. In the context of the
Virtual Plants team, host team of this thesis, applications of interest focus on plant de-
velopment and its modulation by environmental and genetic factors. We thus focus on
plant developmental applications, both at the microscopic level with the study of the cell
lineage in the biological tissue responsible for the plant growth, and at the macroscopic
level with the mechanism of production of branches. The catalog of models available
for tree-indexed data is far less important than the one available for path-indexed data.
This thesis therefore aims at proposing a statistical modeling framework for studying
patterns in tree-indexed data. To this end, two different classes of statistical models,
Markov and change-point models, are investigated.

Keywords Cell lineage; change-point model; graphical model; Markov model; plant
architecture; tree-indexed data
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