
Introduction of Fault-Tolerance Mechanisms for

Permanent Failures in Coherent Shared-Memory

Many-Core Architectures

César Fuguet Tortolero

To cite this version:

César Fuguet Tortolero. Introduction of Fault-Tolerance Mechanisms for Permanent Failures
in Coherent Shared-Memory Many-Core Architectures. Distributed, Parallel, and Cluster
Computing [cs.DC]. Université Pierre et Marie Curie - Paris VI, 2015. English. <NNT :
2015PA066462>. <tel-01292995>

HAL Id: tel-01292995

https://tel.archives-ouvertes.fr/tel-01292995

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en Ligne

https://core.ac.uk/display/46808819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01292995

THÈSE DE DOCTORAT DE
L’UNIVERSITÉ PIERRE ET MARIE CURIE

Specialité

Informatique

École Doctorale Informatique, Télécommunication et Électronique (Paris)

Presentée par

César Armando FUGUET TORTOLERO

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Introduction de mécanismes de tolérance aux pannes franches
dans les architectures de processeur « many-core » à mémoire

partagée cohérente

soutenue le 25 November, 2015
devant le jury composé de :

M. Fabien CLERMIDY Examinateur CEA (Grenoble)
M. Philippe COUSSY Rapporteur Lab-STICC (Lorient)
Mme. Agnès FRITSCH Examinatrice Thales Communications &

Security (Paris)
M. Alain GREINER Directeur de thèse LIP6 (Paris)
M. Lionel LACASSAGNE Examinateur LIP6 (Paris)
M. Gilles SASSATELLI Rapporteur LIRMM (Montpellier)

Dissertation submitted to
THE UNIVERSITY PIERRE ET MARIE CURIE

Department of

Computer Sciences

École Doctorale Informatique, Télécommunication et Électronique (Paris)

Presented by

César Armando FUGUET TORTOLERO

For the degree of

DOCTOR OF PHYLOSOPHY

Subject:

Introduction of Fault Tolerance Mechanisms for Permanent
Failures in Coherent Shared-Memory Many-Core Architectures

Defense on 25 November 2015
Committee:

M. Fabien CLERMIDY Examiner CEA (Grenoble)
M. Philippe COUSSY Reviewer Lab-STICC (Lorient)
Mme. Agnès FRITSCH Examiner Thales Communications &

Security (Paris)
M. Alain GREINER Advisor LIP6 (Paris)
M. Lionel LACASSAGNE Examiner LIP6 (Paris)
M. Gilles SASSATELLI Reviewer LIRMM (Montpellier)

Résumé

L’augmentation continue de la puissance de calcul requise par les applications telles
que la cryptographie, la simulation, l’analyse et distribution de paquets réseau ou le
traitement du signal a fait évoluer la structure interne des processeurs vers des ar-
chitectures massivement parallèles (dites « many-core »). Ces architectures peuvent
contenir des centaines, voire des milliers de cœurs afin de fournir une puissance de
calcul importante avec une consommation énergétique raisonnable.

Néanmoins, l’importante densité de transistors fait que ces architectures sont très
susceptibles aux pannes matérielles. L’augmentation dans la variabilité du proces-
sus de fabrication, et dans les facteurs de stress des transistors, dégrade à la fois le
rendement de fabrication, et leur durée de vie.

Nous proposons donc un mécanisme complet de tolérance aux pannes franches,
permettant les architectures « many-core » à mémoire partagée cohérente de fonc-
tionner dans un mode dégradé. Ce mécanisme permet à ces architectures de s’auto-
reconfigurer afin de supporter aussi bien des défauts de fabrication, que des pannes
de vieillissement après que la puce est en service dans l’équipement.

Le mécanisme s’appuie sur un logiciel embarqué et distribué dans des mémoires
sur puce (« firmware »), qui est exécuté par les cœurs à chaque démarrage du pro-
cesseur, sans aucune intervention externe. Ce logiciel implémente plusieurs algo-
rithmes distribués permettant de localiser les composants défaillants (cœurs, bancs
mémoires, et routeurs des réseaux sur puce), de reconfigurer l’architecture maté-
rielle, et de fournir une description complète de l’infrastructure matérielle fonc-
tionnelle au système d’exploitation.

Notre proposition est évaluée en utilisant un prototype virtuel précis au cycle d’une
architecture « many-core » existante. Nous évaluons à la fois sa latence, et son coût
en surface de silicium.

V

Remerciements

Je remercie M. Alain Greiner, professeur à l’Université Pierre et Marie Curie (UPMC)
et membre du Laboratoire d’Informatique de Paris 6 (LIP6), pour avoir dirigé mes
travaux de recherche. Je vous remercie d’abord pour m’avoir accueilli au laboratoire
en 2011 pour faire un stage, et puis pour m’avoir proposé ce sujet de thèse, intéres-
sant et passionnant. Merci pour votre encadrement tout au long de ces derniers
quatre ans, ce fût un grand plaisir de travailler, et surtout d’apprendre à vos côtés.

J’exprime mes remerciements aux membres du jury. Je remercie M. Philippe Coussy,
professeur au laboratoire Lab-STICC (Université de Bretagne-Sud), et M. Gilles Sas-
satelli, directeur de recherche au LIRMM (CNRS, Université de Montpellier 2), pour
avoir accepté d’être rapporteurs de mon travail, et pour ses remarques très construc-
tives. Je remercie M. Lionel Lacassagne, professeur au laboratoire LIP6, d’avoir par-
ticipé et d’être président de mon jury de thèse. Je remercie également M. Fabien
Clermidy, chef du laboratoire LISAN (CEA-LETI), et Mme. Agnès Fritsch, chef du
laboratoire des architectures avancées à Thales, d’avoir participé à mon jury.

Je tiens à remercier M. Pirouz Bazargan, maître de conférence au LIP6, et M. Jean-
Luc Danger, directeur d’études à Telecom ParisTech, pour avoir participé à mon jury
de mi-parcours, et pour les remarques très constructives à mon travail.

Je remercie aux membres du laboratoire LIP6 pour créer un environnement de tra-
vail agréable et amical. Je remercie tout particulièrement à Abdelmalek Si-Merabet,
Franck Wajsbürt, Pirouz Bazargan, Quentin Meunier et Manuel Bouyer. Je remercie
Mme. Marie-Minerve Louërat, responsable du département SoC au LIP6, pour son
aide sur le plan administratif, et je tiens aussi à remercier Mme. Shahin Mahmoo-
dian pour sa disponibilité au secrétariat.

Je remercie pour leur amitié à tous mes collègues doctorants et ingénieurs : Clé-
ment D., Hao L., Mohammed K., Joël P., Cédric B., Benoît V., Alexandre B., Laurent
L., Jean-Baptiste B. et Vanessa T.. Je remercie Kamel Hacene, que j’ai eu le plaisir
d’encadrer pendant son stage sur la tolérance aux pannes dans les NoCs 3D.

Je remercie M. Gérard Paez-Monzon, professeur à l’Université des Andes (Vene-
zuela) et ancien doctorant au LIP6, pour m’avoir introduit dans le monde de la
conception des circuits numériques.

Finalement, j’étends mes remerciements à ma famille. Je remercie à ma mère et
mon père pour faire de moi la personne que je suis, pour leur amour, et pour m’avoir
appris à atteindre mes objectifs avec travail et patience. Merci à ma sœur Maria Ale-
jandra, et mes neveux Antonio, Maria, et Andrés qui me donnent toujours le sourire.
Je remercie ma compagne Liliana pour son amour, ses encouragements et son sou-
tien tous les jours.

VII

Contents

Résumé V

Remerciements VII

List of Figures XIV

List of Algorithms XV

List of Tables XVII

Outline 1

1 Problem Definition 3

1.1 Motivation . 4

1.2 Many-core Architectures . 5

1.3 Network-on-Chip (NoC) . 6

1.3.1 Globally-Asynchronous Locally-Synchronous (GALS) 6

1.3.2 Routing Algorithm. 7

1.4 Tera-Scale Architecture (TSAR) . 8

1.4.1 Memory Hierarchy . 9

1.4.2 Network-on-Chips. 10

1.4.3 IO Subsystem. 11

1.5 Fault-Tolerance . 12

1.5.1 NoCs Routing Algorithm Reconfiguration 14

1.5.2 Distributed Algorithms . 14

1.6 Problem Definition . 15

2 State of the Art 17

2.1 Fault-Tolerance in Many-Core Processors. 18

2.1.1 Many-Core Yield Enhancement 18

2.1.2 Many-Core Self-Organization . 18

2.1.3 Many-Core Distributed Cores Diagnosis 19

2.2 Fault-Tolerant Routing Algorithms for NoCs 20

2.2.1 Fault-Tolerant Routing Based on Virtual Channels 20

2.2.2 Segment-Based Routing Algorithm 20

IX

2.2.3 Logic-Based Distributed Routing (LBDR) 21

2.2.4 Cycle-Free Contour Fault-Tolerant Routing Algorithm 22

2.3 Conclusion . 24

3 Distributed Recovery Firmware 25

3.1 Global Procedure . 26

3.2 Hardware-Based NoC Fault Detection 28

3.3 Distributed Software-Based Fault Location 28

3.4 Hardware-Assisted NoC Reconfiguration 30

3.4.1 Broadcast Support With Holes . 31

3.4.2 3D NoCs Reconfiguration . 31

3.4.3 Memory Segment Reallocation 31

3.5 OS Loading . 31

3.6 Conclusion . 32

4 Distributed Fault-Location 33

4.1 Intracluster Phase . 34

4.1.1 Software-Based Self-Test (SBST). 35

4.1.2 Intracluster Local Neighbors’ Discovery 37

4.1.3 Local Leader Election . 40

4.1.4 Gateway Hardware Barrier . 41

4.2 Intercluster Phase . 42

4.2.1 Intercluster Neighbors’ Discovery 42

4.3 Coherence Networks . 49

4.3.1 Intracluster Coherence Networks Test 51

4.3.2 Intercluster Coherence Networks Test 51

4.4 Fault-Free Spanning Tree Construction 52

4.4.1 FFST’s Data Structure . 53

4.4.2 FFST’s Construction Algorithm 55

4.5 Map of Operational Resources . 61

4.5.1 Distributed Information Gathering 61

4.5.2 Black-Holes Location Procedure 62

4.6 Conclusion . 64

5 NoC Reconfiguration 67

5.1 Introduction . 68

5.2 Reconfiguration Procedure . 69

5.2.1 Supported NoC Faulty Topologies. 70

X

5.3 Memory Segment Reallocation . 71

5.3.1 Implementation . 71

5.3.2 Limitations of the Segment Reallocation Mechanism 75

5.4 Broadcast Support With Holes in the NoC. 75

5.4.1 Recovery Broadcast Replication Policy 77

5.4.2 Verification of the Recovery Broadcast Replication Policy 80

5.5 Conclusion . 81

6 Experimental Results and Evaluation 83

6.1 Introduction . 84

6.2 Virtual Simulation Prototype . 84

6.3 Fault Model . 86

6.4 Performance Evaluation . 87

6.4.1 Distributed Software-Based Fault Location Latency 88

6.4.2 NoC Reconfiguration Latency . 91

6.4.3 Available Computational Power 92

6.4.4 Linux Kernel Boot in a Defective Architecture 94

6.5 Hardware Cost . 94

6.6 Conclusion . 95

7 Fault-Tolerance Extension for Interconnects above the Computational
Layer 97

7.1 3D NoCs Organization . 98

7.2 Physical Address Space Distribution for L3 Cache Controllers 99

7.3 Fault-Tolerance Mechanism Overview. 100

7.4 Software-Based Fault Location on the 3D NoCs 100

7.4.1 Specific Test Hardware Mechanism 101

7.4.2 Black-hole Location Procedure 101

7.5 Reconfigurable Routing Algorithm for 3D NoCs 103

7.5.1 L2-L3 CMD NoC Recovery Routing Algorithm. 103

7.5.2 L2-L3 RSP NoC Recovery Routing Algorithm 105

7.6 Faulty Routers in the Bottom Layer . 105

7.7 Hardware-Assisted Reconfiguration of the 3D NoCs. 106

7.8 Evaluation . 107

7.8.1 Performance Evaluation . 107

7.8.2 Hardware Cost . 107

7.9 Conclusion . 108

Conclusion 109

XI

A Reconfigurable Cycle-Free Routing Algorithm 113

Bibliography 113

XII

List of Figures

1.1 Variability-Induced Failure Rates for Two Canonical Circuit Types . . . 4

1.2 Examples of NoC Topologies . 6

1.3 X-First Routing Example . 8

1.4 TSAR 2D-Mesh . 9

1.5 TSAR Flattened Global View . 10

1.6 TSAR 3D Stacking Technology . 11

2.1 LBDR: Examples of Topologies . 21

2.2 Contour of a Faulty Router . 22

2.3 The Nine Contour Types for Single-Faulty-Router Topologies 23

3.1 Global Procedure Flow Diagram . 27

3.2 FFST Example in a Mesh with a Faulty Router 29

3.3 NoC Reconfiguration Example . 30

4.1 Software-Based Memory Test. 36

4.2 TSAR CMD Local Interconnect: Multiplexing at Targets 40

4.3 Gateway Hardware Barrier . 43

4.4 Intercluster Neighbors. 44

4.5 Interconnection Path Between Neighbor Clusters. 45

4.6 Interconnection Path Between Neighbor Clusters (Faulty) 49

4.7 Processor Core Triggering the Coherence Network Test 50

4.8 FFST’s Data Structure . 54

4.9 Example of a FFST and its Logical Representation 55

4.10 Example TREEr Array of the Global Leader 55

4.11 Software Mailboxes Between Two Neighbor Clusters 56

4.12 FFST Construction Algorithm Example 58

4.13 FFST Example With Two Partitions . 59

4.14 Black-Hole Location Procedure . 64

5.1 Distribution of the Physical Address Space in TSAR 71

XIII

5.2 Reallocation of a Physical Memory Segment 72

5.3 NoC Routers’ Reconfiguration Register 72

5.4 Example of a Physical Memory Segment Reallocation 74

5.5 Supported Scenario for the Physical Memory Segment Reallocation . . 75

5.6 Example of Packet Broadcasting With the X-First Replication Policy . . 76

5.7 Recovery Broadcast Replication Policy 77

5.8 Examples of the Recovery Broadcast Replication 78

5.9 X-First Router: Channel Dependency Graph 80

6.1 TSAR Cluster with the Fault-Tolerance Additional Hardware 85

6.2 TSAR Virtual Prototype (Logical View) 86

6.3 Fault-Free Spanning Tree’s Construction Latency 88

6.4 Example of a Strongly Modified Topology 89

6.5 Black-Hole Location Procedure Latency 90

6.6 Faulty Router’s Positions for the Black-Hole Location Latency Plots . . 90

6.7 Network-on-Chip Reconfiguration’s Latency. 92

6.8 Mean Available Computational Power 93

7.1 3D Router in the L2-L3 Interconnect . 98

7.2 Interconnection Computational Layer→ L2-L3 NoC 99

7.3 Physical Address Format in the L2-L3 CMD NoC 100

7.4 Reconfiguration Register for L2-L3 NoC Routers. 103

7.5 Examples of the 3D Recovery Routing Algorithm (CMD) 104

7.6 Example of the 3D Recovery Routing Algorithm (RSP) 106

XIV

List of Algorithms

4.1 Local Neighbors’ Discovery . 38

4.2 Local Leader Election . 40

4.3 Neighbor Clusters’ Discovery . 47

4.4 Tag X-First Path Algorithm . 63

5.1 Recovery Broadcast Replication Policy . 79

7.1 Tag ZXY Path Algorithm . 102

A.1 Reconfigurable Cycle-Free Routing Algorithm 114

XV

List of Tables

1.1 Routing Algorithms Used on TSAR 3D NoCs 11

5.1 Routers Routing Decision . 73

6.1 Available Computational Power: Number of Faulty Cores 93

XVII

Outline

The always increasing performance demands of applications such as cryptogra-
phy, scientific simulation, network packets dispatching, signal processing or even
general-purpose computing has made of many-core architectures a necessary trend
in the processor design. These architectures can have hundreds or thousands of
processor cores, so as to provide important computational throughputs with a rea-
sonable power consumption.

However, their important transistor density makes many-core architectures more
prone to hardware failures. There is an augmentation in the fabrication process
variability, and in the stress factors of transistors, which impacts both the manufac-
turing yield and lifetime. A potential solution to this problem is the introduction of
fault-tolerance mechanisms allowing the processor to function in a degraded mode
despite the presence of defective internal components.

We propose a complete in-the-field reconfiguration-based permanent failure re-
covery mechanism for shared-memory many-core processors. This mechanism
is based on a firmware (stored in distributed on-chip read-only memories) exe-
cuted at each hardware reset by the internal processor cores without any external
intervention. It consists in distributed software procedures, which locate the faulty
components (cores, memory banks, and network-on-chip routers), reconfigure the
hardware architecture, and provide a description of the functional hardware infras-
tructure to the operating system.

Our proposal is evaluated using a cycle-accurate SystemC virtual prototype of an
existing many-core architecture. We evaluate both its latency, and its silicon cost.

1

Outline

Detailed Content

• Chapter 1-Problem Definition, presents the motivation of this work, the con-
text of the treated problem (many-cores, networks-on-chip, fault-tolerance,
etc.), and the questions to which this work intends to answer. Additionally,
this chapter describes the TSAR architecture, which is used to demonstrate
our fault-tolerance mechanism.

• Chapter 2-State of the Art, analyzes the state-of-the-art research in the field
of permanent failures recovery in many-core architectures. It presents some
solutions dealing with faulty cores, or faulty NoC routers. This chapter is con-
cluded with the problems that in our knowledge are not yet solved.

• Chapter 3-Distributed Recovery Firmware, presents the general principles of
the proposed in-the-field software-based fault-tolerance mechanism. It gives
a brief description of the software-based procedures for the location of faults,
and the reconfiguration of the hardware; and introduces other contributions
of this work, like the reallocation of a physical memory segment when there
is a deactivated cluster, the support of broadcast communications even when
the NoC is partially defective, or a reconfigurable fault-tolerant algorithm for
3D NoCs.

• Chapter 4-Distributed Fault-Location, presents a detailed description of the
proposed software-based fault-location procedure. This chapter describes
the different distributed procedures of the recovery firmware, defines the prop-
erties that these procedures must satisfy, and proves these properties. Addi-
tionally, it presents a software, but hardware-assisted mechanism to test the
coherence NoCs in the TSAR architecture.

• Chapter 5-NoC Reconfiguration, presents the software-based distributed pro-
cedure to reconfigure the NoCs. Additionally, it presents the mechanism al-
lowing to reallocate the physical memory segment of a deactivated cluster to
one of its neighbors, and a fault-tolerant routing algorithm supporting broad-
cast communications.

• Chapter 6-Experimental Results and Evaluation, presents the evaluation in
terms of latency, and silicon cost of the proposed fault-tolerance mechanism,
that has been implemented in a cycle-accurate virtual prototype of the TSAR
architecture.

• Chapter 7-Fault-Tolerance Extension for Interconnects above the Computational

Layer, presents an extension to the fault-tolerance mechanism to support per-
manent failures in 3D NoCs. This chapter describes a software-based fault-
location, and fault-reconfiguration procedure for these NoCs; and a 3D fault-
tolerant routing algorithm.

2

Chapter 1

Problem Definition

Contents

1.1 Motivation . 4

1.2 Many-core Architectures . 5

1.3 Network-on-Chip (NoC) . 6

1.3.1 Globally-Asynchronous Locally-Synchronous (GALS) 6

1.3.2 Routing Algorithm. 7

1.4 Tera-Scale Architecture (TSAR) . 8

1.4.1 Memory Hierarchy . 9

1.4.2 Networks-on-Chip. 10

1.4.3 IO Subsystem. 11

1.5 Fault-Tolerance . 12

1.5.1 NoCs Routing Algorithm Reconfiguration 14

1.5.2 Distributed Algorithms . 14

1.6 Problem Definition . 15

3

Chapter 1. Problem Definition

1.1 Motivation

Many-core architectures are a current trend in processor design to face the aug-
mentation on the performance demands of modern systems [1]. These architec-
tures take benefit of the increasing transistor density of circuits by the integration of
hundreds or thousands of small cores in a single chip. However, as a consequence of
the very high transistor density, the reliability in this kind of architecture is a major
concern. The technology scaling improves the transistor density but arises the two
following consequences: (1) augmentation in the process variability that impacts
the manufacturing yield and (2) augmentation of the stress factors of transistors
that impacts the lifetime of Integrated Circuits (ICs) [2].

The International Technology Roadmap for Semiconductors (ITRS) [3] estimates
that in the near-future, “the cost of ensuring that each transistor in a large inte-
grated circuit to function within specification may become to high to be practical”
and therefore, there will be a high percentage of non-functional devices right after
fabrication. In the ITRS design report at 2011, the Figure 1.1 shows failure probabil-
ities predictions (y-axis) against the technology nodes (x-axis) for two major com-
ponents in the digital CMOS design: SRAM bitcell and latch. The figure shows that
failure probabilities can reach 10% for SRAM cells in the 16nm technology if tradi-
tional circuit design approaches continue unchanged; therefore shows the neces-
sity of introducing new circuit and architecture techniques.

Figure 1.1 – Variability-Induced Failure Rates for Two Canonical Circuit Types (source: ITRS [3])

A potential solution to this massively defective circuit problem can be the intro-
duction of fault-tolerance mechanisms. These mechanisms improve both yield and
lifetime factors by allowing hardware to function, in a possibly degraded mode, de-
spite the presence of defective internal components. Such a solution is achieved by

4

Chapter 1. Problem Definition

designing systems that can dynamically self-reconfigure to deactivate the internal
failing devices. In order to enable self-reconfiguration during the entire life-time
of the circuit, fault-tolerance should be achieved by means of on-chip components
without any external intervention. Such kind of solutions are denominated “in-the-
field”. These solutions improve the manufacturing yield by allowing to produce cir-
cuits with a tolerated percentage of faulty internal devices and also to improve the
circuit’s lifetime by allowing it to reconfigure when it is already in service after man-
ufacturing (in the field).

1.2 Many-core Architectures

Many-core architectures exploit thread level parallelism through hundreds or thou-
sands of cores and therefore, applications should exhibit highly parallel behaviors.
Some examples of applications are cryptography, finance, weather forecasting, sci-
entific simulation, network packets acquisition and dispatching, or signal process-
ing (e.g. video compression). They can also be used in embedded environments for
automotive or aerospace applications.

In order to reduce architecture bottlenecks, and therefore improve the parallel ex-
ecution, many-cores are usually organized in clusters, interconnected through a
Network-on-Chip (NoC), where each cluster contains various components such as
one or more cores, local memory banks and internal peripherals. This organization
allows a scalable performance by providing important memory and communica-
tion bandwidths.

The communication between cores can be implemented using whether a shared
memory or a message-passing paradigm. On the former, all cores share the same
address space, thus any processor core can write or read any memory location (lo-
cal or remote). On the latter, all processor cores in a cluster have a private address
space, and hence software needs to explicitly move data from the local memory
bank to the remote memory bank by means of message passing in order to perform
communication between clusters. This work is interested in many-core architec-
tures implementing a shared memory address space.

Additionally, to reduce access time and to decrease demands on external memories,
processors implement a memory hierarchy containing one or more levels of cache
memory (lower levels) followed by external main memory and disk (higher levels).
When one or more cache levels are private to a processor core in a shared memory
architecture, a cache coherence problem exists. As a data replica can be at several
private caches, modifications on a replica should be propagated to all other replicas
in order to have a consistent view of the memory by all processor cores. The prop-
agation of changes on replicas could be done by software or hardware. This work is
interested in architectures guarantying cache coherence by hardware.

5

Chapter 1. Problem Definition

(1) (3)(2)

Figure 1.2 – Examples of NoC Topologies: (1) 2D Mesh, (2) 2D Torus, (3) 4×4 Crossbar

1.3 Network-on-Chip (NoC)

NoCs are in charge of the interconnection of internal devices in many-core architec-
tures. Basic components of NoCs are routers and communication channels: routers
are in charge of the routing of incoming packets from one input channel to one out-
put channel; and channels are buffering devices connecting one output port of a
router to an input port of another router.

In general, to avoid communication bottlenecks, the NoCs use regular topologies
providing a scalable communication bandwidth. When the number of devices is
small, they can be interconnected using a fully connected topology like a crossbar
(see Figure 1.2 (3)). Otherwise, if the number of devices is important, the NoCs
use partially connected topologies like multidimensional meshes. Figure 1.2 (1)
and Figure 1.2 (2) show a Two-Dimensional (2D) mesh and torus respectively. In
this work, we consider many-core architectures implementing multidimensional
meshes for the inter-cluster connections as they are the most commonly used. Such
topologies allow, on the one hand to reduce the silicon cost by the implementation
of simple routing algorithms, and on the other hand to reduce the use of long wires
that incur important delays and power dissipation [4].

1.3.1 Globally-Asynchronous Locally-Synchronous (GALS)

One important feature proposed by modern NoCs is the implementation of the
Globally-Asynchronous Locally-Synchronous (GALS) approach. As the size of the
systems grows, is becoming harder to provide a single clock through the whole chip
because of the skew. The skew is produced among other reasons, by the delay in-
curred by wires while sending the clock signal to the different sequential devices of
the chip. When the clock signal has significantly different arrival times to the differ-
ent devices, timing violations may occur. Moreover, with the increment in the clock
frequency such violations are becoming more important.

The term GALS was firstly used by Chapiro [5] and it is a technique consisting in
dividing the chip in several clock-independent regions (clock domains). Each re-
gion is locally synchronous but may be asynchronous with respect to other regions.
In order to allow communication between clock domains, the regions can use bi-
synchronous FIFOs at their interfaces. The advantages of this technique are: mod-
ularity, scalability, smaller clock wires length because there is no need of circuit’s
global clock, power consumption improvements and fault-tolerance.

6

Chapter 1. Problem Definition

The power consumption can be improved in two ways: 1) smaller clock wire lengths
results in smaller wire resistance and decreases power consumption, and 2) as each
region can work with different clock frequencies, one can for example dynamically
slow down the clock of currently unused regions or regions executing some low pri-
ority task. Regarding fault-tolerance, because there are several clocks, the failure of
one of them only affects the concerned region.

1.3.2 Routing Algorithm

The routing algorithm defines which network path is used by packets in order to go
from a source cluster to a destination cluster.

When the path is always the same for all packets transferred between a given pair
of clusters, the routing algorithm is deterministic, and the path depends only on
the packet’s destination. Otherwise, when the path depends on the destination and
on the link status (e.g. network congestion), the routing algorithm is adaptive. The
adaptive routing algorithms use network resources better but they are more expen-
sive than deterministic counterparts. In particular, adaptive solutions do not guar-
antee the in-order delivery property and therefore, need specific hardware in the
Network Interface Controllers (NICs) to reorder packets. This kind of mechanism
is then not always scalable with respect to area, energy consumption and latency.
Therefore, deterministic routing algorithms are commonly preferred in NoCs.

The routing algorithm can be implemented using whether routing tables (a.k.a. for-
warding tables) or a logic-based circuit. When using the former, there is one table
per router that contains at least one entry per destination (per node in the network).
Each entry contains the output port associated to a destination. When using a de-
terministic algorithm, there is exactly one entry per destination. In the case of logic-
based routing algorithms, the output port is computed by a hardwired combina-
tional circuit that takes as an input the destination of the packet. Routing tables are
more flexible concerning topologies but they are not scalable because the number
of entries depends on the number of nodes in the network. As a consequence, the
logic-based implementations are preferred for NoCs because of their scalability as
the area does not depend on the network size.

An important property that routing algorithm must guarantee is that a packet al-
ways reaches its destination. Therefore, it must guard against livelock and dead-
lock situations. The former arises when a packet can be routed an unbounded time
in the network. The latter arises when a packet cannot advance towards its desti-
nation because it waits for a network resource to be freed by another packet. Both
problems can be solved by implementing some restrictions on the routing algo-
rithm. In the case of livelocks, the number of forwarding options of routers should
be restricted to avoid the packet to be redirected indefinitely without reaching its
destination. When using deterministic routing algorithms there is a unique possi-
ble path between any pair of clusters and therefore there is no risk of livelock. In
the case of deadlock situations, they can be avoided by eliminating cycles in the
dependency graph of the network resources [6].

7

Chapter 1. Problem Definition

X

Y

0 1 2

0

1

2

Figure 1.3 – X-First Routing Example

Usually used livelock-free, deadlock-free, deterministic and logic-based routing al-
gorithms are the Dimension-Order Routing (DOR) algorithms. These algorithms
work on multidimensional meshes or torus. The packets are routed in a specified
order of dimensions until it reaches its destination. Figure 1.3 shows an example for
a 2D mesh: a packet is first routed on the X dimension and then on the Y dimension.
This specific case of DOR algorithms is called X-first routing (a.k.a. XY routing).

DOR algorithms have the advantage to be simple, and therefore cost-effective so-
lutions for NoCs. However, they do not support irregular topologies. When some
NoC routers or channels are faulty in a regular topology, it may become irregular,
and then DOR algorithms cannot support it. In such cases, the communication
between clusters is broken, and the entire chip is useless. This is why some modifi-
cations need to be introduced in such algorithms in order to support some irregular
topologies while preserving their low-cost, deadlock free and livelock free proper-
ties. Such modifications will be presented in Section 1.5.

1.4 Tera-Scale Architecture (TSAR)

The architecture used by this work to validate and evaluate the proposed fault tol-
erance technique is TSAR.

TSAR [7] is a scalable, cache-coherent, shared-memory many-core jointly designed
by BULL, LIP6 and CEA-LETI in the framework of the European CATRENE SHARP
project. It supports up to 1024 processor cores organized as a mesh of clusters,
where each cluster contains up to 4 processor cores as shown in Figure 1.4. Each
processor core has a private L1 data cache and L1 instruction cache. Additionally,
each cluster contains a shared L2 cache controller, which can be accessed by any
processor core in the system, an interrupt controller (XICU) and a Direct Access
Memory (DMA) controller.

8

Chapter 1. Problem Definition

Coherence Direct

DSPIN Routers

XICU DMA

Memory
Cache

(L2)

IO
Bridge

Local Interconnects
(CMD, RSP, P2M, M2P, CLACK)

MIPS32

Cache
L1

MIPS32

Cache
L1

MIPS32

Cache
L1

MIPS32

Cache
L1

M2P P2M CLACK CMD RSP

01
(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

Figure 1.4 – TSAR 2D-Mesh

1.4.1 Memory Hierarchy

In Tera-Scale Architecture (TSAR) the memory is logically shared but physically dis-
tributed. This means that every memory location is shared and can be accessed by
any processor core, but the address space is physically distributed in every cluster.
Each cluster manages an exclusive segment of the physical address space defined
by the most significant bits of the physical address. As a result of this address space
distribution, the TSAR is a Non-Uniform Memory Access (NUMA) architecture, i.e.,
the memory access latency is not uniform for the entire address space but depends
on the distance between the processor core and the target memory location.

The physical address space length is 1 Terabyte (40 bits addresses) but to be energy
efficient, this architecture uses 32-bits, single instruction issue, RISC cores with a
4 Gigabytes address space (32-bits addresses). These cores implement the MIPS32
Instruction Set Architecture (ISA) with a Memory Management Unit (MMU) con-
taining two separates Translation Lookaside Buffers (TLBs): one for data and one
for instructions. This custom MMU implementation allows, in particular, to main-
tain the TLBs coherence by hardware.

In addition to the L1 and L2 cache controllers, TSAR implements a third level of
cache (L3). Nominal capacities of L2 and L3 caches are 256 Kbytes and 1 Mbyte,
respectively. The L1 data and instruction caches have each 16 Kbytes. The Figure 1.5
contains a flattened global view of the TSAR architecture with its memory hierarchy.

Regarding cache coherence, because L1 caches are private but L2 caches are shared,
TSAR implements a hardware cache-coherence protocol called Distributed Hybrid
Cache Coherence Protocol (DHCCP). The L1 caches implements a write-through

policy while the L2 caches implements a write-back policy.

9

Chapter 1. Problem Definition

PROC0 PROC1 PROC2 PROC3 PROC0 PROC1 PROC2 PROC3 PROC0 PROC1 PROC2 PROC3

LOCAL INTERCONNECT LOCAL INTERCONNECT LOCAL INTERCONNECTIOB IOB

L1-L2 INTERCONNECT (2D DSPIN)

L2-L3 INTERCONNECT (3D DSPIN)

XRAM XRAM

TTY FBF NIC DMA IOC

IO INTERCONNECT

• DMA: Direct Access Memory Coprocessor

• FBF: Frame Buffer

• IOB: IO Bridge

• IOC: External Disk Controller

• MEMC: Memory Cache (L2)

• NIC: Ethernet Network Interface Controller

• PROC: Processor Core

• ROM: Recovery Firmware’s ROM

• TTY: Terminal

• XICU: eXtended Interrupt Controller Unit

• XRAM: eXternal RAM

XRAM INTERCONNECT (3D DSPIN)

L3 L3 L3

System-on-Chip

MEMC

(L2)
XICU DMA

MEMC

(L2)
XICU DMA

MEMC

(L2)
XICU DMA

Figure 1.5 – TSAR Flattened Global View

1.4.2 Networks-on-Chip

Several independent internal NoCs are implemented in TSAR. The Figure 1.6 shows
the physical implementation. It relies on a Three-Dimensional (3D) stacking tech-
nology: in the first layer (called computational layer) are the cores, L1 cache and L2
caches. The other layers contain the distributed L3 cache.

The computational layer of TSAR (shown in Figure 1.4) implements five physically
independent NoCs (CMD, RSP, M2P, P2M & CLACK): two for the direct traffic (nor-
mal read and write transactions triggered by L1 cache controllers or DMA-capable
internal peripherals) and three for the coherence traffic (triggered by L1 and L2
cache controllers to maintain the memory coherency). The CMD and RSP NoCs
transport the commands and responses of the direct transactions, respectively. The
M2P and CLACK NoCs transport commands from the L2 cache to L1 cache con-
trollers and the P2M NoC transport commands from the L1 cache to L2 cache con-
trollers. These three independent NoCs are required by the coherence protocol be-
cause some transactions need three phases. Thus, for deadlock avoiding, the mes-
sages on each phase must use independent networks.

The five NoCs in the computational layer implement a two-level hierarchical struc-
ture: local and global. The local interconnect uses a crossbar for intracluster com-
munication, and the global interconnect uses the 2D-mesh Distributed, Scalable,
Programmable, Integrated Network (DSPIN) for intercluster communication.

10

Chapter 1. Problem Definition

Figure 1.6 – TSAR 3D Stacking Technology (source: Guthmuller, Miro-Panades, and Greiner [8])

Miro Panades, Greiner, and Sheibanyrad [9] define the DSPIN NoC infrastructure
which is intended for clustered shared memory multiprocessor architectures. It im-
plements a 2D mesh topology and uses the deterministic, deadlock and livelock
free, in-order delivery, X-first routing algorithm. Additionally, it implements the
GALS approach, i.e., each cluster in the architecture can have its own clock source
with a possibly different frequency with respect to other clusters. The communi-
cation between clock domains is achieved through bi-synchronous FIFO buffers in
the router-to-router interconnection channels.

Guthmuller, Miro-Panades, and Greiner [8] define the L3 cache architecture imple-
mented in TSAR. The L3 cache layers use a 3D version of the DSPIN infrastruc-
ture for NoCs. There are two independent 3D NoCs for L2 and L3 cache controllers
command and response traffics. Additionally, there are two 3D NoCs for command
and response traffics between L3 cache controllers and the external memory banks
(XRAM). Table 1.1 shows the routing algorithms used by these NoCs. In summary,
TSAR implements nine internal NoCs.

NoC Routing Algorithm

L2→ L3 ZXY

L3→ L2 XYThenDown

L3→ XRAM XYThenDown

XRAM→ L3 ZXY

Table 1.1 – Routing Algorithms Used on TSAR 3D NoCs

1.4.3 IO Subsystem

Input/Output (IO) peripherals are connected to an external IO interconnect. TSAR
implements bridges placed in specific clusters of the computational layer to access
this interconnect.

11

Chapter 1. Problem Definition

As shown in Figure 1.4, TSAR implements two IO bridges: one on cluster (0, 0) and
another on cluster (XSIZE −1, YSIZE −1)where XSIZE and YSIZE are the size of the
2D mesh on X and Y dimensions, respectively. These two clusters are called in the
remainder of this document as IO clusters. The two IO bridges are connected to the
same IO interconnect and therefore, provide two different paths to access external
peripherals. This redundancy is important for fault-tolerance purposes: if one IO
cluster is faulty, the other one can be used.

1.5 Fault-Tolerance

Fault tolerant systems are capable of operating despite the presence of faults. For
this purpose, systems must implement fault tolerance techniques whose complex-
ity depends on the reliability requirements. One of the requirements that must be
defined is the kind of tolerated faults.

When classifying faults by duration, two coarse categories can be distinguished:
permanent faults and transient faults. Permanent faults remain in existence in-
definitely and transient faults appear and disappear within short periods of time.
The formers can appear as the consequence of manufacturing defects or aging; the
latter can appear because of external disturbances effects like radiation. In mod-
ern ICs the problem of permanent failures is becoming important because of the
process variability, and the accelerated aging issues of current technology nodes.
Such issues are a consequence of the technology scaling and the related very high
transistor density. This work focusses in fault tolerance techniques for permanent
failures.

There are several types of fault tolerance techniques. The dynamic reconfiguration
approach tries to recover a desirable state of the system when faults have been de-
tected. The reconfiguration can consist in replacing faulty components by backup
spares, or isolating faulty components from the rest of the system. Techniques that
isolate and deactivate faulty components, are called graceful degradation techniques.
Such techniques use the redundant hardware resources of the system to allow a de-
graded operational mode. This work focusses on this kind of techniques.

Regarding many-core architectures, graceful degradation techniques are an inter-
esting fault tolerance approach because these architectures are inherently redun-
dant (several identical cores, memory banks and NoC routers). Therefore, one can
imagine various operational modes where faulty cores, memory banks or NoC re-
sources are deactivated and the remainder of the system continues to perform its
functions with only a limited performance degradation.

The system reconfiguration can be performed by means of external or internal de-
vices (or both). When the reconfiguration is performed autonomously by internal
devices, the system is called in-the-field self-reconfigurable (a.k.a. self-healing sys-
tems or self-adaptable systems). Such systems are able to heal themselves after the
occurrences of failures on internal devices during its entire lifetime. Therefore, they

12

Chapter 1. Problem Definition

can self-reconfigure to recover from manufacturing defects or from components
wear-out. This work searches an in-the-field self-reconfiguration solution that im-
proves both manufacturing yield and lifetime of many-core processor chips.

The reconfiguration-based fault tolerances approaches involve four issues [10]: fault
detection, fault location, fault containment, and fault recovery. Fault detection is
the ability of a system to recognize that a fault occurred; fault location is the pro-
cess of determining where a fault has occurred; fault containment is the process
of isolating a fault and preventing its effects from propagating throughout the sys-
tem; and fault recovery is the ability of the system to regain an operational mode
via reconfiguration.

Fault Detection

The first process performed in any reconfiguration-based fault tolerance technique
is the fault detection. In this process the erroneous behavior of internal compo-
nents is detected, in order to allow a subsequent location and deactivation of failed
components.

This work tries to reuse existent fault detection techniques and therefore, it focusses
on how to solve the fault location, fault containment and fault recovery issues. Here-
after a brief introduction of some existent fault detection techniques is presented.

In general, the fault detection process consists on applying test patterns to the in-
puts of the Device Under Test (DUT), and the outputs are compared to expected
values. Errors are detected when there are differences between the obtained val-
ues and the expected ones. For the purpose of applying test patterns, there are
several techniques and among these techniques there are: Automated Test Equip-
ment (ATE), Built-In Self-Test (BIST) and Software-Based Self-Test (SBST).

The ATE is an external test equipment that is connected to inputs and outputs of
the entire chip. It performs comparisons against expected values in order to detect
errors. This approach is not suited for in-the-field fault detection.

The BIST techniques were introduced to perform test at the system nominal clock
frequency and allow the DUT to self-diagnose. In this technique, dedicated test
pattern generators and analyzers are introduced in the chip. However, when the
complexity of the DUT is important, the BIST overhead may also be important.

Finally, the SBST solution uses the internal processor cores to run test procedures
that are generally stored either in internal or external Read-Only Memory (ROM).
These test procedures allow the core to diagnose itself and the memory subsystem.
As the core uses its native instruction set to generate and analyze test patterns, there
is no need of additional test-specific hardware. Test procedures write and read dif-
ferent memory locations, and perform comparisons to detect erroneous behaviors.
Like BISTs, the SBSTs can be run in the field at the nominal clock frequency of the
system.

13

Chapter 1. Problem Definition

In this work we plan to use pre-existent BIST solutions for the NoCs, and pre-existent
SBSTs solutions for the processor cores and memories. NoC routers have a rather
low hardware complexity, and the associated overhead of the BIST mechanism is
not important.

In order to implement the fault detection on NoCs, this work intends to use a dis-
tributed BIST like the one defined by Zhang, Greiner, and Benabdenbi [11]. This
BIST is distributed in every router, and it performs the router deactivation when a
fault is detected at every processor power-on.

Regarding the processor cores, several SBST solutions exist [12]–[14]. These solu-
tions allow the test of a core and the memory subsystem, by means of self-testing
programs. As reference, in Kranitis, Paschalis, Gizopoulos, et al. [12], the authors
propose a SBST for a MIPS32 processor with a 5-stage pipeline. This SBST achieves
a 92% fault coverage, with a latency of 10 Kcycles, and 7 Kbytes of code.

1.5.1 NoCs Routing Algorithm Reconfiguration

The use of regular topologies in the NoCs, provides an intrinsic redundancy which
can be used for fault-tolerance. In fact, in this kind of topology there are several
paths between any pair of communicating nodes. However, in order to reduce the
silicon cost and guaranty in-order delivery, the NoCs use deterministic routing algo-
rithms where any pair of nodes communicate to each other through a deterministic
path. In this scenario, when there is a faulty router in a path, the communication is
broken. Therefore, it is necessary to introduce a reconfiguration mechanism in the
routers in order to modify their routing algorithm and then, reestablish commu-
nication by bypassing the faulty components. However, this reconfiguration must
guaranty that the new routing algorithm is deadlock and livelock free.

The solution proposed by Zhang, Greiner, and Taktak [15] deals with the reconfigu-
ration of the 2D DSPIN interconnect in order to bypass a faulty router. This solution
consists in the introduction of a configuration register in the DSPIN routers that al-
lows modifying the default X-first routing. However, this solution needs that the
faulty routers (creating holes in the network) are precisely located, and it requires
a reconfiguration communication infrastructure to reliably reconfigure the routers.
This work searches solutions to these two problems.

1.5.2 Distributed Algorithms

The location of faulty routers is required to reconfigure the remaining routers and
adapt to the new irregular topology. The main problem is to centralize all this dis-
tributed information (location of faulty routers) to compute a new global routing
algorithm.

This work will search a solution to locate faulty routers by executing a distributed
firmware. The goal is to reuse the processor cores to reduce the overall hardware

14

Chapter 1. Problem Definition

cost of the solution. However, this implies that the fault tolerance mechanism is
running on an unreliable hardware as some processor cores, memory banks or com-
munication links can be faulty.

For this reason, the solution to this problem requires distributed algorithms. Such
algorithms are executed in parallel by processor cores, but they need to work coor-
dinately in order to centralize the distributed gathered information and take con-
sensual decisions. Moreover, these algorithms must consider the problem of being
executed on unreliable hardware and this is one of the main challenges that this
work has to face.

1.6 Problem Definition

The technology scaling allows circuits to improve their computational power by in-
creasing the transistor density. However, there is also an increase of the probability
of failures, and the cost of ensuring that every transistor in the chip works within
the specifications is becoming not practical. A possible approach to deal with these
defective chips is to introduce reconfiguration-based fault-tolerant mechanisms.
Such mechanisms can improve both the manufacturing yield and lifetime by al-
lowing the circuits to work degradedly despite the presence of faults.

Many-core architectures are inherently redundant. They contain multiple cores
and memory banks. The regular NoC topologies provide redundant communica-
tion paths between internal components. Therefore, the general question to which
this work will intend to answer is: how to take benefit of the many-core archi-
tectures’ intrinsic redundancy in order to tolerate permanent failures in cores,
memory banks and NoC components?. This work considers in-the-field reconfig-
uration (i.e. after the chip manufacturing) without any external intervention. Be-
sides, in order to reduce the overhead of the fault-tolerance mechanism, this work
focusses in solutions reusing at maximum the existent hardware for the reconfigu-
ration (e.g. reuse of internal cores, memories and communication infrastructure).
Such a solution can be based on distributed software procedures executed in paral-
lel by all processor cores, on the one hand, to provide scalable reconfiguration times
and, on the other hand, to provide robustness because the reconfiguration does not
depend on a unique non-faulty device.

Regarding the fault-tolerance on the NoCs, our work relies upon two existent tech-
nologies: the first, proposed by Zhang, Greiner, and Benabdenbi [11] provides a
BIST for the detection and deactivation at every hardware reset of the faulty routers
in a 2D mesh NoC; the second, proposed by Zhang, Greiner, and Taktak [15] pro-
vides a reconfigurable dead-lock free routing function for this kind of NoC which
allows bypassing the deactivated faulty routers. However, in order to perform the
reconfiguration of the NoC, we need to locate the deactivated routers, compute the
new global routing algorithm, and provide a reliable communication infrastructure
to reconfigure the routers.

15

Chapter 1. Problem Definition

Thus, this work intends to answer the two following questions: (1) how to locate
the faulty routers, faulty cores, and faulty memory banks in order to build a map
of the operational hardware devices ? and (2) how to reconfigure the routers re-
liably when the existent hardware communication infrastructure is partially de-
fective?. As explained in Section 1.1, many-core architectures have several internal
NoCs allowing the transmission of different types of messages (e.g. normal mem-
ory accesses, hardware cache coherence) between different internal devices. This
work considers the reconfiguration of all internal NoCs to effectively increase the
fault tolerance in many-cores.

Additionally, we focus in many-core processors capable of executing commodity
Operating Systems (OSs) like Linux or NetBSD. Such OSs need to determine the
complete description of the hardware in order to initialize their internal data struc-
tures. In the presence of hard faults, the available devices may change and thus,
the OS needs to know about these changes. Our work answers the following ques-
tion: how to transmit the map of the functional hardware devices to the OS so as
to support its execution on a degraded architecture?.

16

Chapter 2

State of the Art

Contents

2.1 Fault-Tolerance in Many-Core Processors. 18

2.1.1 Many-Core Yield Enhancement . 18

2.1.2 Many-Core Self-Organization . 18

2.1.3 Many-Core Distributed Cores Diagnosis 19

2.2 Fault-Tolerant Routing Algorithms for NoCs 20

2.2.1 Fault-Tolerant Routing Based on Virtual Channels 20

2.2.2 Segment-Based Routing Algorithm 20

2.2.3 Logic-Based Distributed Routing (LBDR) 21

2.2.4 Cycle-Free Contour Fault-Tolerant Routing Algorithm 22

2.3 Conclusion . 24

17

Chapter 2. State of the Art

This chapter analyses the state-of-the-art research in the field of permanent failures
recovery in many-core architectures. It is divided in three sections.

The first section presents fault-tolerance techniques dealing with permanent fail-
ures in many-core processors. The second section focuses in the NoC, and presents
some fault-tolerant routing algorithms to support faulty routers or links. Finally,
there is a conclusion section, where we present the problems that in our consider-
ation are not yet solved, and for which we will propose a solution.

2.1 Fault-Tolerance in Many-Core Processors

This section presents three solutions related to the problem of supporting perma-
nent failures in many-core processors.

2.1.1 Many-Core Yield Enhancement

In Zhang, Han, Xu, et al. [16], the authors propose the N+M fault-tolerance tech-
nique for yield enhancement. This technique uses a core-level redundancy scheme
where a N-core processor is fabricated with M spare cores.

The idea is to always provide N cores to customers, in spite of the presence of faulty
cores. The chip is reconfigured after fabrication, and it can be repaired only if there
are at most M faulty cores. This technique does not consider faults in the NoC.

This kind of solution has an important hardware overhead by introducing spare
cores which are not used during normal operation. And, the cost of tolerating sev-
eral faulty cores is restrictive because it depends on the number of spares. More im-
portantly, this work does not support in-the-field reconfiguration, as the proposed
technique does not provide any self-reconfiguration mechanism.

2.1.2 Many-Core Self-Organization

In Zajac and Collet [17] and Collet, Zajac, Psarakis, et al. [18], the authors propose
a self-organization approach to support permanent failures recovery in the field.
This approach considers the problem of diagnosing cores, and the problem of dis-
covering communication routes in many-core processors at power-on.

The core diagnosis is based on a software mutual test. Each core executes a diag-
nosis program locally stored in a flash-like memory. A core tests itself and its direct
neighbors. When a good core detects a problem on one of its neighbors, it stops all
communications with this one. The NoC diagnosis uses a hardware-based method
to test the point to point communication channels and routers, and is performed
independently of the core diagnosis.

18

Chapter 2. State of the Art

Regarding the communication routes discovery, all nodes broadcast a message to
discover the routes to reach all the other good nodes. During this process, the routers
use a specific hardware mechanism to broadcast the message packet, and add the
local routing decision to the packet header. When a node receives this packet, the
followed route (path) is contained in the header, and the receiving node sends an
acknowledgement to the emitter which follows the same route. Finally, after the
reception of acknowledgements, the emitter builds and stores an array of routes to
contact other good nodes.

The routing algorithm of the NoC is not specified by the authors, but it can be un-
derstood that they use a NoC with source routing as the packages header contain
the route to follow. With source routing, the emitter (source) sends in the packet
header the entire path (route) to reach the destination. This kind of routing algo-
rithms are inherently fault-tolerant because source routing supports any topology
(regular or not).

However, this approach has two important overheads with respect to distributed
routing algorithms where each router computes locally the forwarding link: 1) pack-
ets are bigger because they need to store the paths, and 2) the routers need a buffer
to store the routes to all nodes of the mesh. Therefore, NoCs implementing source
routing are not scalable. As explained in Chapter 1, distributed deterministic rout-
ing algorithms are preferred for NoCs because of their low hardware complexity. Of
course, they need to be reconfigurable in order to be fault tolerant.

2.1.3 Many-Core Distributed Cores Diagnosis

In Kamran and Navabi [19], the authors propose a scalable in-the-field test architec-
ture to distribute test stimuli among homogeneous processing cores in many-core
processors.

All cores are tested by executing locally a SBST. However, instead of storing the en-
tire SBST in each cluster, this solution proposes the use of small test buffers (about
ten words) at each cluster, which are filled periodically by means of a specific hard-
ware network. The SBST is stored in one on-chip or off-chip memory, and is divided
in small pieces of code called test-snippets. The test-snippets are broadcast one
by one through the specific hardware network to all test buffers, and are executed
locally by cores. When the cores finish the execution of all test snippets, another
hardware device centralize the test results using another specific network, and di-
agnoses the cores.

This solution proposes an alternative to the overhead of distributed on-chip ROMs
containing SBSTs. Instead, the proposed mechanism uses a specific hardware com-
munication network and buffers for the test distribution and result centralization.
However, this makes the solution more prone to failures because a single fault in
these specific networks prevents the cores’ diagnosis. The advantage of using dis-
tributed on-chip ROMs, is that a faulty ROM only affects the cores in the cluster
containing the faulty ROM.

19

Chapter 2. State of the Art

Moreover, this work focuses on the test of cores. Therefore, it needs to be completed
with reconfiguration-based recovery strategies allowing many-core processors to
self-reconfigure, and operate despite the presence of faulty components.

2.2 Fault-Tolerant Routing Algorithms for NoCs

This section presents four solutions to support permanent failures in the NoC of
many-core processors. These solutions propose fault-tolerant algorithms allowing
a NoC to route packets on irregular topologies, resulting from the combination of
faults in routers or point to point communication channels.

2.2.1 Fault-Tolerant Routing Based on Virtual Channels

In Chaix and Avresky [20], [21], the authors propose an adaptive deadlock-free rout-
ing algorithm using virtual channels. The proposed routing algorithm implements
two virtual channels in the NoC, and these virtual channels form two virtual net-
works which implement each a different routing algorithm: one uses the north-last
algorithm, and the other uses the south-last algorithm. Cunningham and Avresky
[22] presents these routing algorithms.

Each of these routing algorithms are deadlock-free because they prohibit some turns
as for the X-first routing algorithm presented in Chapter 1. However, there are less
prohibited turns to provide adaptability. Therefore, there can exist several com-
munication paths between two nodes, and the routers make dynamic routing deci-
sions based on the neighbors’ status (faulty or functional). This adaptability allows
bypassing faulty routers and links in the NoC.

This kind of adaptive routing algorithms are an interesting approach to support in-
the-field fault-tolerance in NoCs. Such routing algorithms tolerate all single faulty
router or link topologies, and several multiple faulty router or links topologies. How-
ever, the use of virtual channels represents an important hardware overhead. In
fact, the introduction of virtual channels in routers increases significantly their area
and delays because of the extra buffering, switching and arbitrating [23].

2.2.2 Segment-Based Routing Algorithm

In Mejia, Flich, Duato, et al. [24], the authors propose a routing algorithm support-
ing irregular topologies, which can result as a consequence of faults. This algorithm,
called segment-based routing (SR), was first proposed for parallel computers or
clusters but can be applied in many-core NoCs.

The segment-based routing algorithm is deterministic and do not use virtual chan-
nels. It works by partitioning the network into segments, which are composed by

20

Chapter 2. State of the Art

routers and links. These segments are disjoint (a router or link belongs to one seg-
ment only). Within each segment, a bidirectional routing restriction is introduced
to break cycles. At the end, the entire network has no cycle, and the routing algo-
rithm is deadlock free.

This algorithm is topology agnostic, and can handle any topology derived from any
combination of faults. However, it needs routing tables at each router, with one en-
try per possible destination, so it is not a scalable solution, as explained in Chapter 1.

2.2.3 Logic-Based Distributed Routing (LBDR)

In Rodrigo, Medardoni, Flich, et al. [25], the authors propose the Logic-Based Dis-
tributed Routing (LBDR) mechanism to implement distributed routing algorithms
in 2D meshes. This mechanism replace routing tables in routers by a register with
three bits per output port, and a small logic of several gates. In 2D meshes, this re-
sults in a 12-bits register per router. This LBDR mechanism allows implementing
the so-called minimal adaptive routing algorithms: only shortest paths defined in
the original 2D mesh (2D mesh without faults) can be chosen.

When the SR algorithm [24], presented above, is implemented with the LBDR mech-
anism, the resulting routing algorithm allows tolerating various irregular topolo-
gies, derived from some combinations of faults, with a small hardware overhead.
Examples of supported irregular topologies are shown in Figure 2.1 [1 - 6]. How-
ever, as a consequence of the minimal path restriction, some simple faulty topolo-
gies are not supported. For example, as shown in Figure 2.1 7 , a single faulty router
in the center of the mesh is not supported by LBDR because some packets need a
non-minimal path to bypass the faulty router. In the original topology (illustrated in
Figure 2.1 1), a packet from node (2,2) to node (2,0) would take two hops. However,
if the router (2,1) is faulty, the packets need at least four hops to reach its destination.

1

2

3
4

1

2

1 2 3 4

5 6 7

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

Faulty Router

Functional Router

Figure 2.1 – Examples of topologies: 1,2,3,4,5,6 are supported by LBDR, but 7 is not.

21

Chapter 2. State of the Art

2.2.4 Cycle-Free Contour Fault-Tolerant Routing Algorithm

In Zhang, Greiner, and Taktak [15], the authors present a fault-tolerant, distributed,
reconfigurable routing algorithm that can be used in any 2D-Mesh NoC.

The proposed routing algorithm is low cost (only an 8% hardware overhead on the
NoC), it tolerates any single faulty router topology, it is scalable because its hardware
cost does not depend on the mesh size, it is deadlock-free by adopting a cycle free
approach, and it is deterministic to guarantee the in-order delivery.

The main idea of this routing algorithm is to route packets through a cycle-free con-
tour surrounding a faulty router in order to bypass it. This mechanism divides the
mesh in two disjoint regions as shown in Figure 2.2: the region B containing the
faulty router and its contour, and the region A containing all the other fault-free
routers. The contour of a faulty router contains all its direct neighbors (N, S, W, E),
and its indirect neighbors (NW, NE, SW, SE).

NW N NE

SW S SE

W E

B

A

Figure 2.2 – Contour of a Faulty Router

The routers in region A use the X-first routing algorithm, but the routers in region
B use a modified routing algorithm. This modified routing algorithm is based on

the X-first algorithm but authorizes or prohibits some turns to allow bypassing a
faulty router without introducing any cycle. This last property is important to guar-
antee a deadlock-free routing. There are nine different kinds of contours depending
on the position of the faulty router, as shown in Figure 2.3. To bypass a faulty router,
the modified routing algorithm allows some additional turns (with respect to the X-
first algorithm) in the contour of this faulty router. Additionally, when the faulty
router is in the center of the mesh, some turns are prohibited in the NE router to
prevent the introduction of a cycle.

In the X-first routing algorithm, each router forwards the packet based on its local
coordinates, and the destination coordinates. However, in order to implement the
proposed reconfigurable fault-tolerant routing algorithm, the routers also needs a

22

Chapter 2. State of the Art

NE

E

SESSW

W

NW NN NE

E

SES SSW

W

NW N

E

SESSW

WE

SES SSW

W

W

NW NNE

EW

NW NNE

E

N

Allowed turns

Mesh Boundaries

Figure 2.3 – The Nine Contour Types for Single-Faulty-Router Topologies

configuration register. This register uses 4 bits, and contains one of the following
nine values: NORMAL, N_OF_X, NE_OF_X, E_OF_X, SE_OF_X, S_OF_X, SW_OF_X,

W_OF_X, NW_OF_X. When the configuration register of a router contains NORMAL,
it is in region A and uses the normal X-first algorithm. Otherwise, the router is in
region B and uses the modified routing algorithm, which depends on its position
with respect to the faulty router. If the value is N_OF_X, the router is at the north of
the faulty router; if the value is NE_OF_X, the router is at the northeast of the faulty
router; and so on. The reconfigurable routing function implemented at each router
is detailed in Appendix A.

This routing algorithm supports any single faulty router topology, and can be ex-
tended to support a single faulty region: a rectangular region covering all faulty
routers. However, in this region there may be functional routers which would be
wasted.

This is an interesting low-cost solution to support permanent failures in the NoC.
However, this solution only defines the fault-tolerant routing algorithm, and re-
quires that the faulty router is precisely located, and it requires a reconfiguration
communication infrastructure to reliably configure the routers on its contour, and
repair the NoC. These two problems must be solved.

23

Chapter 2. State of the Art

2.3 Conclusion

In this chapter, we analyzed the state-of-the-art research regarding fault-tolerance
mechanisms dealing with permanent failures in many-core architectures.

These state-of-the-art solutions are either focused on supporting faulty cores, or
faulty routers or communication channels in the NoC. However, these solutions do
not handle the more general problem of discovering and deactivating all kinds of
faulty components (cores, distributed memory banks and NoC routers), central-
ize this information, reconfigure the NoC, and provide the OS with an explicit car-
tography of an operational hardware platform. This is essential in order to allow
commodity OSs (like Linux or NetBSD) to self-adapt, and run in a degraded mode
despite the presence of hardware faults.

In this work, we are interested in a complete solution allowing shared-memory many-
core processors to self-reconfigure, define a degraded mode, and boot a commodity
OS, in the presence of hardware faults, without any external intervention. For this
purpose, we propose a fully distributed, yet cooperative software-based solution,
which is executed at the chip power-on by internal cores, to discover, deactivate
and reconfigure the processor in the field.

Regarding the NoC reconfiguration, we choose to use the fault-tolerant routing al-
gorithm proposed by Zhang, Greiner, and Taktak [15] in our complete solution to
support permanent failures in many-core processors. However, as described above,
this solution needs the faulty router to be located, and a reliable communication
infrastructure to reconfigure the NoC itself. Our proposed software-based solution
will intend to solve both problems.

24

Chapter 3

Distributed Recovery Firmware

Contents

3.1 Global Procedure . 26

3.2 Hardware-Based NoC Fault Detection . 28

3.3 Distributed Software-Based Fault Location 28

3.4 Hardware-Assisted NoC Reconfiguration 30

3.4.1 Broadcast Support With Holes . 31

3.4.2 3D NoCs Reconfiguration . 31

3.4.3 Memory Segment Reallocation . 31

3.5 OS Loading . 31

3.6 Conclusion . 32

25

Chapter 3. Distributed Recovery Firmware

This section introduces the proposed in-the-field self-reconfiguration mechanism
to support permanent failure recovery in cache-coherent shared-memory many-
core architectures. Its objective is to improve both the manufacturing yield and
the lifetime of this kind of chip by implementing dynamic reconfiguration at every
processor reset. We believe that the processor is capable of operating with a limited
performance degradation despite the presence of faulty devices.

In order to decrease the silicon cost, this mechanism is mostly implemented as a
distributed firmware executed by the internal cores. To allow in-the-field recovery,
a part of this firmware is replicated in internal, distributed, Read-Only Memories
(ROMs). Another part is stored in an external mass storage device to reduce the
size of the internal ROMs. To reduce the risk of fault propagation, the firmware is
replicated in every cluster. This allows also to improve the robustness of the solution
because a faulty ROM only affects the cluster containing it.

As a consequence of using the internal cores to execute the replicated firmware,
this reconfiguration firmware must execute on unreliable hardware devices because
some processor cores, memory banks, or communication resources can be faulty.
Therefore, the fault-tolerance mechanism relies on distributed algorithms that are
executed cooperatively by the cores, and face the problem of unreliable hardware
by implementing self-diagnostic procedures to detect faulty behaviors.

3.1 Global Procedure

The fault-tolerance mechanism consists of several distributed and cooperative al-
gorithms to locate the faulty devices, centralize the distributed information to build
a global map of the functional infrastructure, and reconfigure the hardware to by-
pass the faulty devices. The mechanism acts as a smart distributed boot-loader
service, which launches a commodity Operating System (OS) upon the functional
infrastructure from an external mass storage device, and provides to this last the
global map of the functional infrastructure, so it adapts to the modified topology.
This functional topology can change between successive executions of the OS be-
cause new permanent faults can appear at each reset.

The complete fault-tolerance mechanism is shown in Figure 3.1. It implements the
following four stages:

1 Hardware-Based NoC Fault Detection.

2 Distributed Software-Based Fault Location.

3 Hardware-Assisted NoC Reconfiguration.

4 OS loading.

The first stage performs a fully-distributed hardware Built-In Self-Test (BIST) method
for each router of the Networks-on-Chip (NoCs). The stages 2 , 3 , and 4 are the
ones implemented in the recovery firmware.

26

Chapter 3. Distributed Recovery Firmware

Network-on-Chip

Built-In Self-Test

Router/Channel

Deactivation
Ok?

Router/Channel

Activation

Cores

Activation

Cores

Software-Based

Self-Test

Core

Self-Deactivation

Core Idled

Distributed

Information

Gathering

No

Yes

Hardware-Based NoC

Fault Detection

1

Distributed

Software-Based

Fault Location

2

Hardware-Assisted

NoC Reconfiguration

3

Core Idled

4

OS Loading

All

Routers/Channels All Processor Cores

Intracluster

Neighbors’

Discovery

Ok?
No

Yes

Local Leader

Election

No

Yes

Local

Leader?

Intercluster

Neighbors’

Discovery

Fault-Free

Spanning Tree

Construction

Network-on-Chip

Reconfiguration

No

Yes

Global

Leader?

Operating System

Loading

Hardware-Assisted

NoC Reconfiguration

Figure 3.1 – Global Procedure Flow Diagram

27

Chapter 3. Distributed Recovery Firmware

3.2 Hardware-Based NoC Fault Detection

This first stage uses an existent hardware BIST solution proposed by Zhang, Greiner,
and Benabdenbi [11]. This solution consists in a BIST that is distributed in every
router of the NoC. The NoC is described as a set of routers connected by point to
point communication channels. The BIST performs the test of each inter-router
channel, and tests the router itself at each hardware reset. The BIST deactivates the
faulty channels, but when the router itself is faulty, all channels connected to this
faulty router are deactivated.

A deactivated channel behaves as a black-hole: all incoming packets are consumed,

and no packet is produced.

The TSAR architecture has five NoCs in the computational layer, and each cluster
has thus five routers (as detailed in Section 1.4.2). Each of these NoCs implements
this BIST mechanism. When one or more of these routers in a cluster are faulty, the
entire cluster is deactivated (i.e. local cores are not activated). Even if a cluster is
deactivated, its functional NoC routers can still be used.

This BIST supports GALS NoCs, and its latency depends on the ratio between two
clock frequencies in two neighbor routers. When the clock frequencies are the same
(even with different phases), the latency is about 300 clock cycles.

3.3 Distributed Software-Based Fault Location

This stage performs the construction of a reliable software-based communication
infrastructure with a tree topology, called Fault-Free Spanning Tree (FFST), which is
temporarily used during the boot. This infrastructure (detailed in Chapter 4) is used
to build a global map of the operational hardware components, and to reconfigure
the NoCs.

Each node of the FFST is a functional cluster of the processor, and each edge is
a software-based full-duplex point-to-point communication channel between two
neighbor clusters. Each cluster in the FFST is represented by one of its functional
local cores (called local leader), and the root of the FFST (called global leader) is a
core in an Input/Output (IO) cluster.

The construction of the FFST is performed by the execution of the distributed re-
covery firmware at each cluster. This construction needs various phases:

1. In order to belong to the FFST, a cluster must be functional, so it needs to pass
various software-based diagnostic tests (called intracluster tests) executed by
the local processor cores. Then, each core discovers its functional intracluster
neighbors (i.e. other functional local cores), and one of these cores is elected
local leader. This intracluster stage is detailed in Section 4.1.

28

Chapter 3. Distributed Recovery Firmware

2. The FFST is based on the communication between neighbor clusters, there-
fore each local leader needs to discover with which direct neighbors a full-
duplex communication is possible. A full-duplex communication is possible
when two neighbor clusters can communicate through all the five NoCs in
the computational layer. This intercluster neighbor discovering is detailed in
Section 4.2. Section 4.3 details a specific hardware mechanism to test the co-
herence NoCs.

3. At this point, the local leaders know the local functional cores, and the func-
tional neighbor clusters, but the global map of the operational resources is
unknown. In order to build this global map, all local leaders build the FFST by
cooperatively executing a distributed algorithm. At the end of this procedure,
the global leader of the processor is elected. The construction of the FFST is
detailed in Section 4.4.

4. At the end of the FFST construction, the global leader has a global map of the
computational resources (cores and memory banks), but a global map of the
communication resources is still not available. Therefore, the global leader
uses the FFST to ask the local leaders to execute a software procedure to locate
the holes in the NoCs, and then centralize the distributed information to build
this global map of communication resources. This procedure is detailed in
Section 4.5.

Chapter 4 details the different distributed procedures in this stage, enumerates the
properties that these procedures must satisfy, and proves these properties.

Figure 3.2 shows an example of a FFST for a 4×3 mesh. In this example, the router
in cluster (2,1) is faulty, and this cluster is not reachable by its neighbors. Therefore,
the FFST covers all clusters but that one. As we can see, an edge of the FFST is im-
plemented by two software mailboxes (memory buffers) to provide the full-duplex
communication between two neighbor clusters.

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

L2 Cache

P1 P2 P3

Periph

L2 Cache

P1 P2 P3

Periph

P0

P0

Interconnect

Interconnect

FFST RootFFST EdgeFaulty Router FFST MailboxLocal Leader

Figure 3.2 – FFST Example in a Mesh with a Faulty Router

29

Chapter 3. Distributed Recovery Firmware

3.4 Hardware-Assisted NoC Reconfiguration

This stage (detailed in Chapter 5) performs the reconfiguration of partially defective
NoCs in order to modify the global routing function, and bypass the holes.

In order to support the NoCs reconfiguration, the routers in the NoCs of the com-
putational layer implement the reconfigurable routing algorithm defined by Zhang,
Greiner, and Taktak [15] (detailed in Chapter 2). All routers contain a reconfigura-
tion register that needs to be written to change the routing function, and we propose
a software procedure to perform this reconfiguration (detailed in Section 5.2).

During the NoC reconfiguration phase, the global leader uses the global map of the
communication resources to determine the location of holes, and it uses the FFST
as a reconfiguration bus to reach reliably the clusters on the contour of holes, and
reconfigure the involved routers. During this procedure, the local leaders behave as
software-based routers allowing the global leader to address any functional cluster.

At the end of this stage, the partially defective NoCs are reconfigured, and the hard-
ware communication between functional clusters is reestablished. Therefore, the
FFST is not needed anymore for intercluster communications. Figure 3.3 shows an
example where a core in the cluster (0,2) accesses the memory in the cluster (2,0).
Due to the reconfiguration of the routers on the contour (in gray), the command
bypasses the faulty router (2,1).

NE

SE

E

NNW

W

SW S

Faulty Router Broken PathNew Path

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

Figure 3.3 – NoC Reconfiguration Example with a Faulty Router in Coordinates (2,1)

30

Chapter 3. Distributed Recovery Firmware

3.4.1 Broadcast Support With Holes

The reconfigurable routing algorithm used supports any single-faulty-router topol-
ogy for unicast communications. However, the M2P NoC of the TSAR architecture,
in addition to unicast communications, uses broadcast communications to allow
L2 cache controllers to invalidate a cache line in all L1 cache controllers.

As broadcast communications are not supported by this reconfigurable routing al-
gorithm, we propose a new routing algorithm supporting broadcast on any single-
faulty-router topology (detailed in Section 5.4.1).

3.4.2 3D NoCs Reconfiguration

Additionally, the TSAR architecture has other NoCs above the computational layer
with a 3D-mesh topology, and we propose an extension to the reconfigurable rout-
ing algorithm to support this kind of topology in Section 7.5.

We propose also a software-based procedure to locate the holes in these NoCs, and
perform their reconfiguration. Chapter 7 explains these procedures to deal with
failures in 3D NoCs.

3.4.3 Memory Segment Reallocation

The TSAR architecture implements a physically distributed address space, where
each cluster controls one physical memory segment, and when a cluster is deacti-
vated, the corresponding physical memory becomes unusable.

As TSAR has redundant communication resources provided by L2-L3 interconnects,
we propose a mechanism to modify the global routing function to reallocate the
physical memory segment of a deactivated cluster to one of its neighbors (detailed
in Section 5.3), to avoid the memory loss.

3.5 OS Loading

During this stage, the global leader loads in memory the OS from an external mass
storage device.

Commodity OSs, like Linux or NetBSD, can use a structure called Device Tree Blob
(DTB) to describe the hardware platform ([26], [27]). This structure is passed from
the boot-loader to the kernel. The DTB provides the kernel with the ability to adapt
to different configurations of the same architecture with no need of recompilation.

This work proposes to store in the external mass storage a reference DTB contain-
ing all the devices in the processor. This reference DTB is copied on memory, and

31

Chapter 3. Distributed Recovery Firmware

patched by the boot-loader in order to remove the faulty devices from it (e.g. proces-
sor cores, memory banks). The devices to remove during the patch are determined
from the global map of operational computational resources built during the dis-
tributed software-based fault-location phase.

Finally, the patched DTB is passed to the OS as a parameter, and the OS has the
ability to adapt to the possibly degraded architecture at every boot.

3.6 Conclusion

In this chapter, we have presented a global description of our in-the-field fault-
tolerance mechanism to support permanent failures in shared-memory many-core
architectures. It consists in a distributed recovery firmware (stored in distributed
on-chip ROMs), which acts as a smart distributed boot-loader, and launches a com-
modity operating system upon the functional hardware infrastructure.

This fault-tolerance mechanism uses pre-existent technologies: the NoC BIST [11],
and the NoC reconfigurable routing algorithm [15].

Our main contribution is to include these technologies in a complete flow to sup-
port in-the-field permanent failures. The internal cores execute, in an unreliable
hardware, self-diagnostic software procedures to deactivate the faulty hardware de-
vices, and reconfigure the architecture. These procedures implement distributed
algorithms to:

1. Elect a local leader at each cluster.

2. Elect the global leader of the processor.

3. Build the reliable FFST software-based communication infrastructure.

4. Build the global map of the operational hardware devices.

32

Chapter 4

Distributed Fault-Location

Contents

4.1 Intracluster Phase . 34

4.1.1 Software-Based Self-Test (SBST). 35

4.1.2 Intracluster Local Neighbors’ Discovery 37

4.1.3 Local Leader Election . 40

4.1.4 Gateway Hardware Barrier . 41

4.2 Intercluster Phase . 42

4.2.1 Intercluster Neighbors’ Discovery . 42

4.3 Coherence Networks . 49

4.3.1 Intracluster Coherence Networks Test 51

4.3.2 Intercluster Coherence Networks Test 51

4.4 Fault-Free Spanning Tree Construction . 52

4.4.1 FFST’s Data Structure . 53

4.4.2 FFST’s Construction Algorithm . 55

4.5 Map of Operational Resources . 61

4.5.1 Distributed Information Gathering 61

4.5.2 Black-Holes Location Procedure . 62

4.6 Conclusion . 64

33

Chapter 4. Distributed Fault-Location

This chapter presents the software-based method to locate the faulty cores, faulty
memory banks and faulty routers, and build a global map of the operational plat-
form. This global map describes the actual Network-on-Chip (NoC) topology (as it
can exist black-holes in the 2D mesh), and the different hardware resources that are
reported functional to the Operating System (OS). As described in Chapter 3, the
method makes the assumption that all faulty routers have been deactivated by the
NoC Built-In Self-Test (BIST).

To build this global map, the proposed solution introduces the Fault-Free Spanning
Tree (FFST) infrastructure. This infrastructure provides a temporary software-based
reliable communication support between the functional clusters of the architec-
ture. It is built dynamically at each hardware reset of the processor by the execution
of a distributed recovery firmware at each cluster. The construction of the FFST is
performed in the following three phases, which are explained in the following sec-
tions:

1. Intracluster phase (Section 4.1).

2. Intercluster phase (Section 4.2).

3. Fault-Free Spanning Tree’s construction (Section 4.4).

The method has been implemented in the many-core TSAR. However, it supports
any shared-memory many-core architecture implementing a 2D mesh topology.
And it can be extended to support any multidimensional mesh or torus topology.

4.1 Intracluster Phase

At the end of the NoC BIST, the hardware reset signal of the cores is deasserted. In
each cluster, all local cores start to execute the recovery firmware stored in the local
Read-Only Memory (ROM). The cores test the local hardware resources to decide
if the cluster should be declared functional. This test consists in several diagnostic
software procedures. A functional cluster needs to satisfy the following conditions:

1. At least one local core is functional.

2. The local ROM containing the recovery firmware is functional.

3. The local memory bank is functional.

4. All the local interconnects are functional.

When the processor cores start the execution of the recovery firmware, the clus-
ter is logically disconnected from the global NoC: only local communications are
possible (local-to-global or global-to-local communications are blocked). This dis-
connection is achieved through the introduction of a hardware barrier mechanism
in the gateway between the local interconnects and the NoC routers (detailed in
Section 4.1.4). The goal of this mechanism is to avoid the fault propagation (e.g.
when a faulty core triggers invalid transactions because of a faulty control signal).

34

Chapter 4. Distributed Fault-Location

Additionally, the L2 cache controller implements a special mode (called scratchpad
mode) at hardware reset. In this mode, the L2 cache controller behaves as a simple
local Random Access Memory (RAM), because read and write transactions to the
external RAM are inhibited. As for the hardware gateway barrier, the goal of this
mechanism is to avoid the fault propagation: avoid that a faulty core writes the ex-
ternal memory. In TSAR, the local L2 cache controller has a capacity of 256 KBytes.
Therefore, the distributed recovery firmware can only use the lowest 256 KBytes of
the memory space at each cluster. If a faulty core reads or writes beyond this limit,
the L2 cache drops the request, and do not respond to the core. This emulates a
black-hole behavior, and the faulty core is blocked because the transaction never
completes.

The hardware gateway barrier and the special scratchpad mode of the L2 cache con-
troller are both controllable by the software. The gateway barrier is disabled only if
the cluster is declared functional at the end of this intracluster phase. And the spe-
cial scratchpad mode of the L2 cache controller is disabled after the NoC reconfig-
uration phase.

At the end of the intracluster phase, if a cluster does not respect one of the above
conditions, it is declared faulty and kept disconnected from the global NoC. Pro-
cessor cores in a faulty cluster enter an idle mode and do not participate in further
stages of the recovery process. All faulty components (cores included) will not be re-
ported to the OS and will not be used during the OS’s execution. Moreover, because
of the hardware gateway barrier, the entire cluster behaves as a black hole. Even if
a cluster is disconnected, its NoC routers can still be used if they are functional.

The intracluster phase consists in the following sequentially executed procedures:

1. Software-Based Self-Test (SBST).

2. Intracluster Neighbor Cores’ Discovery.

3. Local Leader Election.

4.1.1 Software-Based Self-Test (SBST)

The SBST contains procedures which test the processor core’s internal logic and
registers, and the L1 caches. If a core self-diagnoses as faulty, it self-deactivates. A
self-deactivated core is logically disconnected from the architecture: it enters an
idle mode, and it is not reported to the OS.

During this SBST, the cores use the local memory to store temporary data, and the
local interconnects to communicate with the local memory. Additionally, they read
instructions and constant data from the local ROM. As these components cannot
be trusted, they are tested, at the same time as the cores, by the cores.

Property 4.1.1. At the end of the SBST stage, each processor core that is faulty or de-

tects a fault in a cluster component (local memory, local interconnects or local ROM)

self-deactivates.

35

Chapter 4. Distributed Fault-Location

Test of the Local Memory and Direct Interconnects

When processor cores start the execution of the recovery firmware, each one uses a
private exclusive memory segment for its stack. In order to test the local memory,
each core writes a sequence of patterns P = p0, p1, . . . , pn in its stack segment, and
then checks that each of these patterns can be correctly read.

This write, read & verify approach to test memories is called March tests [28]. A
March test is a sequence of memory operations (read & write) applied to each cell of
the target memory. For example, if only stuck-at faults are considered, the cores use
two patterns: a pattern p0 and its complement p0. Such procedure allows verifying
that each bit of a memory location is not stuck at some value (an example is shown
in Figure 4.1). In this process, the data bus of direct local interconnects (used by
normal memory accesses) is also tested. If a fault is detected by a processor core
during this test, the core self-deactivates.

In TSAR, during a data write or read, the data bus of the CMD and RSP local inter-
connects are respectively tested.

Corei Memory

Write(@A,0x55555555)

@A0x55555555

Read(@A)

Rsp(0x55555555)

Rsp

Corei Memory

Write(@A,0xAAAAAAAA)

@A0xAAAA8AAA

Test with pattern 0x5555555 passed.

Test with pattern 0xAAAAAAAA failed.

Error Detected→ Stuck-at-0 fault at bit 13.

Read(@A)

Rsp(0xAAAA8AAA)

Rsp

1

2

Figure 4.1 – Software-Based Memory Test: Processor Core Writing Two Test Patterns to Detect Stuck-
at Faults

At the end of this test, each core has tested both the memory and the direct local
interconnects. The memory is only partially tested because each core only tests
its stack segment to avoid conflicting accesses with other cores. Therefore, in next
stages the local memory should be tested more extensively.

36

Chapter 4. Distributed Fault-Location

Test of the Coherence Local Interconnects (P2M, M2P, CLACK)

In TSAR, three specific NoCs are used to maintain the coherence between L1 and
L2 caches.

During the intracluster phase, the processor cores in all clusters test these local co-
herence interconnects, using a specific hardware mechanism, which is detailed in
Section 4.3.

Test of the Local ROM

The local cores read a subset of words in the local ROM and perform a hash op-
eration to produce a signature. Then, a reference signature stored in the ROM is
compared with the resulting signature. If the signatures are different, the cores self-
deactivate.

4.1.2 Intracluster Local Neighbors’ Discovery

This discovery procedure is only executed by the functional cores because, as stated
by Property 4.1.1, each faulty core self-deactivates during the SBST stage.

In this procedure, each core executes the Algorithm 4.1, which is detailed below,
in order to discover the other functional cores in the cluster. This procedure must
satisfy the following property (proved in Section 4.1.2):

Property 4.1.2. At the end of the procedure, each functional core i has a list NPi with

all the functional cores in the same cluster (local neighbors).

The local neighbors’ discovery procedure is executed in parallel by all processor
cores. Additionally, the cores may start asynchronously the execution of this proce-
dure, because some cores may finish sooner the SBST stage.

Algorithm 4.1 receives as input a list NPi containing all possible neighbors in the
same cluster of the executing core i . The first step is to set a status variable to OK .
Each core i has a status variable statusi that can only be written by core i , but can
be read by the other cores. Then, each core checks the status variable of its possible
neighbors. There are two reasons why a status variable would not contain the OK

value: (1) the associated processor core is faulty, and it has self-deactivated during
the SBST stage, or (2) the associated processor core is functional but it has not fin-
ished yet the SBST. Therefore, a processor core checks at most MAX_RETRIES times
each neighbor’s status variable. If this maximum number of retries is reached for a
neighbor, this neighbor is removed from the NPi list. Otherwise, if a neighbor’s sta-
tus is OK , the core keeps this neighbor in its own NPi list, and adds it to the DONE

list so this neighbor is not tested anymore (the neighbor has been discovered).

When a core finishes the execution of this procedure, the list NP contains the IDs of
all functional cores in the same cluster.

37

Chapter 4. Distributed Fault-Location

Algorithm 4.1: Local Neighbors’ Discovery

LocalNeighborsDiscovery()

Input: A list NPi, built by core i , containing all neighbor cores in the same cluster

Result: NPi contains the functional local neighbor cores

begin
/* Inform neighbors that core i is functional */

Write(statusi, OK)

/* The DONE set will contain the functional neighbors */

DONE←;

/* Set to 0 the number of retries for each neighbor */

foreach n ∈NPi do retriesn = 0

while DONE 6=NPi do
foreach n ∈ {NPi−DONE} do

if Read(statusn) =OK then
DONE←DONE + {n}

else if retriesn ≥MAX_RETRIES then
NPi←NPi−{n}

else
retriesn = retriesn+1

end
end

end

/* Complete the NPi list with the executing core i */

NPi←NPi+ {i }
end

Initialization value of the status variables

In order to avoid false diagnostics (consider a faulty core as functional), the status
variables of all processor cores must be initialized to a value different from the OK

value before the execution of the neighbors’ discovery procedure. This guarantees
that if a core reads an OK value on a status variable, it is because the associated
processor core has written it.

The initialization of these variables is not a simple problem because all cores exe-
cute concurrently the local firmware. For this reason, the memory locations used
for the status variables are initialized by the hardware reset.

In TSAR, there are four processor cores per cluster, and the procedure needs four
hardware initialized locations in each cluster. The Extended Interrupt Controller
Unit (XICU) peripheral provides up to 32 memory-mapped registers for inter-core
communication. These registers, initialized to 0 by the hardware reset, are used for
the status variables, and we choose another value for OK (e.g. 0xFFFFFFFF).

38

Chapter 4. Distributed Fault-Location

Proof of the Local Neighbors’ Discovery Procedure’s Property

This section proves the Property 4.1.2 of the neighbors’ discovery procedure. This
proof uses two auxiliary lemmas explained hereafter:

Lemma 4.1.2.1 (Liveness). Each functional core remains in the NP list of all its func-

tional neighbors.

Proof. Each functional core i eventually writes in its statusi variable the OK value.
Then, its functional neighbors eventually read the statusi variable, and they keep
the core i in their NP list. Of course, the MAX_RETRIES value must be chosen big
enough to allow all functional cores write their status variable. �

Lemma 4.1.2.2 (Safety). At the end of the procedure, the list NP of each core contains

only functional cores.

Proof. When a core i is faulty, it self-deactivates during the SBST (Property 4.1.1),
and it does not set its status variable (statusi) to OK . Therefore, the other processor
cores never read the OK value on the statusi variable, and they remove the core i

from their list NP. �

Lemma 4.1.2.1 and Lemma 4.1.2.2 prove that functional cores remain in the NP list
and faulty cores are removed. This proves the Property 4.1.2.

Definition of the MAX_RETRIES Constant

An important characteristic of this algorithm is that the verification of the prop-
erty above depends strongly on the MAX_RETRIES constant. This constant can be
bounded because the local interconnect implements a round-robin policy.

During the intracluster phase, the processor cores share the same local ROM, mem-
ory and peripherals. Figure 4.2 shows partially the CMD local interconnect of the
TSAR architecture (only the processor cores, L2 cache and the XICU components
are showed). The arbiters in the local interconnect implement a round-robin pol-
icy guarantying that all cores access the resources in a bounded time. Therefore,
if all cores start the execution of the local neighbors’ discovery at the same time,
MAX_RETRIES can contain a small value like 1. But, as the SBST execution time
may variate for different cores we decide to choose a bigger value (16).

Another important characteristic is that the chosen value affects the overall latency
of the distributed recovery firmware. The neighbors’ discovery procedure finishes
when all the possible neighbors have been discovered, or when the number of re-
tries for each non-discovered neighbor reaches the MAX_RETRIES constant. Then,
if the MAX_RETRIES value is big, and there is one faulty processor core, the func-
tional processor cores in the cluster wait an unnecessarily long time.

39

Chapter 4. Distributed Fault-Location

Arbiter Arbiter

Proc 0

Memory

Cache
XICU

Proc 1 Proc 2 Proc 3

FIFO

Buffers

CMD

Local Crossbar

Figure 4.2 – TSAR CMD Local Interconnect: Multiplexing at Targets

4.1.3 Local Leader Election

The local leader election stage follows the neighbors’ discovery procedure. During
this stage, a procedure is executed at each cluster to elect a local processor core as
leader of its cluster. This leader represents the cluster in further stages of the recov-
ery firmware. The implemented procedure must guarantee the following property:

Property 4.1.3. At the end of the local leader election, there must only be one proces-

sor core elected as local leader at each cluster.

The proposed procedure uses a simple criterion to elect the local leader: the func-
tional processor core with the lowest ID becomes the leader. Algorithm 4.2 shows
the procedure executed by all the functional cores at each cluster.

Algorithm 4.2: Local Leader Election

LocalLeaderElection()

Input: The list NPi of core i with the functional cores in the same cluster

Input: The constant IDi with the ID of core i

begin
/* Check if a local neighbor core has a lower ID */

foreach n ∈NPi−{i } do
if IDn < IDi then Idle()

end
/* Only one core (the local leader) exits the foreach without going to idle */

end

40

Chapter 4. Distributed Fault-Location

A core i checks in its list NPi if there is a local neighbor with a lower ID than his. If
there is at least one, the core i enters an idle state. Otherwise, it becomes the local
leader and passes to the next stage of the recovery firmware. Every core that enters
the idle state is not used anymore during the recovery firmware execution but it
will be reported as functional to the OS. Therefore, after the OS is loaded, it can use
these cores.

The local leader election procedure is the last stage of the intracluster phase. After
this phase, the local leader participates in the intercluster phase, but before it has to
make some additional tests. As mentioned previously, each local core tests only the
resources that it uses. In particular, each core tests its memory segment. However,
when there are faulty cores, their segments are not tested, and the local leader has
to test these segments to finally diagnose its cluster as functional (if no problem is
detected). If a problem is detected, then the local leader self-deactivates, and its
cluster does not participate in further stages of the distributed recovery firmware.

Proof of the Local Leader Election’s Property

This subsection proves the Property 4.1.3 of the local leader election procedure.
This property states that the local leader election procedure must guarantee that
only one core (with the lowest local ID) is elected as leader at each cluster, and the
other cores enter an idle state.

Property 4.1.2 states that at the end of the local neighbors’ discovery procedure each
core has a list of all functional cores in the same cluster. Then, the NP0, NP1, . . . , NPn

lists are the same (NP0 =NP1 = · · ·=NPn). As each core has an unique ID, these lists
have one unique minimum, and the corresponding core becomes the local leader.

4.1.4 Gateway Hardware Barrier

After the hardware reset, each cluster is logically disconnected from the rest of the
architecture in order to improve the fault-containment. At this point, only local-to-
local communications are allowed (communications between local processor cores
and local peripherals). The goal of this disconnection is to avoid that a faulty initia-
tor pollutes the rest of the architecture by sending invalid packets. This disconnec-
tion is implemented with a hardware barrier mechanism at each interface between
local and global networks (gateway between local interconnects and NoC routers).
Only if a cluster passes its intracluster tests, this barrier is deactivated.

In TSAR, this hardware barrier is implemented in the five networks as shown in
Figure 4.3. This barrier is controlled by an enable signal that is itself controlled by
the software. To allow this control from the software, the hardware barrier’s enable
signal is connected to a memory-mapped register that can be written by the soft-
ware. When this register contains the value 0, the enable signal is set, and the hard-
ware barrier is activated. If the register contains a value different from 0, the enable

41

Chapter 4. Distributed Fault-Location

signal is unset, and the hardware barrier is deactivated. This memory-mapped reg-
ister, in the case of TSAR, is in the XICU component. This register is initialized to 0
after the hardware reset and therefore, the hardware barrier is activated.

As can be seen in Figure 4.3, the hardware barrier uses a simple combinational cir-
cuit. It consists of 4 logic gates per network: 2 logic gates for the incoming channel
and 2 logic gates for the outgoing channel. These gates are connected to the control
signals of the incoming and outgoing channels to recreate a black-hole behavior. A
black-hole consumes every incoming packet and no outgoing packet is produced.
If a faulty local initiator tries to send a packet to another cluster when the barrier is
activated, this packet is dropped at the gateway.

The intracluster phase finishes by the election of the local leader. At this point, the
cluster has been tested and diagnosed as functional. Therefore, the local leader is
the one in charge of deactivating the gateway hardware barrier.

4.2 Intercluster Phase

As presented in Chapter 3, the FFST is a tree covering the functional clusters of the
architecture. Each node of this tree is the local leader of a functional cluster, and
each edge is a full duplex communication channel between two neighbor nodes.
An edge is implemented as a pair of point-to-point software mailboxes (memory
buffers). After the intracluster phase, each local leader knows the local functional
cores, but it does not know the functional neighbor clusters’ status.

Therefore, the first step in the FFST’s construction is the discovery of neighbor clus-
ters. This discovery stage is executed after the intracluster phase. The executing
cores are the local leaders, and the clusters are not disconnected anymore from the
global NoC, because the local leader disabled the gateway hardware barrier.

Additionally, the faulty NoC routers behave as black-holes, and the functional ones
implement the X-first routing function.

4.2.1 Intercluster Neighbors’ Discovery

During this stage, each local leader tries to communicate with its direct neighbor
clusters. In the case of TSAR, each local leader tries to communicate with its neigh-
bors through the five implemented networks (CMD, RSP, M2P, P2M and CLACK).
When a neighbor passes the test, it means that a FFST edge may be implemented be-
tween these two neighbor clusters. Therefore, this discovery procedure must guar-
antee the following property:

Property 4.2.1. At the end of this procedure, each local leader i has a list NCi con-

taining the neighbor clusters with which a full-duplex communication is possible.

42

Chapter 4. Distributed Fault-Location

Proc 0 Proc 1 Proc 2 Proc 3
Memory

Cache
XICU

CMD Interconnect

RSP Interconnect

M2P Interconnect

P2M Interconnect

CLACK Interconnect

Hardware

Barrier

Enable

CMD

RSP

M2P

P2M

CLACK

R

R

ROK

ROK W

WOK

W

WOK

WDATA

RDATA WDATA

RDATA

Hardware

Barrier

Enable

Local

Interconnect Router

Figure 4.3 – Gateway Hardware Barrier

43

Chapter 4. Distributed Fault-Location

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

NORTH

EASTWEST

SOUTH

Figure 4.4 – Intercluster Neighbors

In a 2D mesh, two nodes A and B are considered neighbors when the Manhat-
tan distance distance (A, B) equals 1. This distance is computed with Equation 4.1,
where AX , BX , AY , BY are the X and Y coordinates of nodes A and B , respectively.

distance (A, B) = |BX −AX |+ |BY −AY | (4.1)

Therefore, the number of direct neighbors of a node in a 2D mesh is four (NORTH,

SOUTH, EAST, WEST), except for nodes in mesh’s boundaries where the number of
neighbors is fewer (three or two depending if it is on a side or a corner, respectively).
The Figure 4.4 shows the neighbors of a central cluster in a mesh. In this example,
the neighbors of cluster (1,1) are: (1,2), (1,0), (2,1), (0,1).

Hereafter is presented the test of the CMD & RSP networks, which are used for nor-
mal memory accesses. The test of the coherence networks (P2M, M2P & CLACK) is
discussed in Section 4.3.

In order to test the CMD & RSP networks, the neighbor clusters’ discovery stage uses
a modified version of the neighbors’ discovery algorithm described in Section 4.1.2.
Some modifications are required because there is an important difference: the exe-
cuting cores are local leaders in different clusters. This difference implies that local
leaders need to access not only their local memory but also the neighbor clusters’
memory to test the communication.

In a shared-memory architecture, any core can access any memory location in any
cluster, and the target cluster is generally identified by the Most Significant Bits
(MSBs) of the address. For example, in TSAR the target cluster is identified by the
8 MSBs of the 40-bits physical addresses.

As for the intracluster phase, each local leader has its status variable in its local
memory. The first action performed is to write OK in its local status variable. The
second action is to check the status variable of each neighbor cluster by using the

44

Chapter 4. Distributed Fault-Location

appropriate memory addresses. However, during this intercluster test a new prob-
lem can arise because there can be black-holes in the path.

Figure 4.5 shows the hardware components of the direct network tested during a
neighbor-to-neighbor communication. When a local leader tries to communicate
with a neighbor cluster, two kinds of hardware components are tested: the target
neighbor cluster itself, and the NoC routers between both clusters. If one of these
hardware components is faulty, it behaves as a black-hole: faulty routers were trans-
formed in black-holes by the NoC BIST, and faulty clusters are black-holes because
the gateway hardware barrier is not deactivated. The following section explains how
the cores can deal with black-holes.

Core

(x+1,y)

Memory

(x+1,y)

CMD
(x,y)

CMD
(x+1,y)Core

(x,y)

Memory

(x,y) RSP
(x,y)

RSP
(x+1,y)

Local Interconnect

RSP

Local Interconnect

CMD

Local Interconnect

CMD

Local Interconnect

RSP

NoC

Routers

Figure 4.5 – Interconnection Path Between Neighbor Clusters

Watchdog Timer

When a core tries to read a non-cacheable memory location, the data cache con-
troller starts a network read transaction. This transaction consists of a command
packet to the device mapped on the target address, followed by a response packet
from the target device to the issuing cache controller. The cache controller that
started the transaction waits the response packet before allowing the core to con-
tinue the execution of further instructions. Therefore, when a local leader tries to
read the status variable of a neighbor cluster, if there is a black-hole in the path, the
command or response packet would be dropped, and the local leader processor
core would wait indefinitely the end of the transaction.

To solve this problem, we introduce a watchdog timer in the L1 cache controller to
abort the transaction. When a L1 cache controller triggers a read or write transac-
tion, it triggers also the watchdog timer. If there is a watchdog timeout (the watch-
dog timer reaches a specified threshold), the L1 cache controller responds to the

45

Chapter 4. Distributed Fault-Location

processor core with a software exception, aborts the transaction, and writes a spe-
cific value into the exception code register (TransactionAborted).

The watchdog threshold is stored in a dedicated cache configuration register, which
is set by software. Its value must be set accordingly to the worst case transaction
latency. This threshold is of course architecture dependent. In the case of TSAR,
the worst case latency for a memory transaction on a neighbor cluster is less than
100 cycles. Here again, this worst case value has always an upper-bound because
both the local interconnect and NoC routers implement a round-robin policy.

The software exception makes the processor core to execute the exception han-
dler of the distributed recovery firmware. This exception handler makes a decision
about the neighbor which caused the exception, and then returns to the neighbors’
discovery algorithm to continue the test of other neighbors.

Neighbor Clusters’ Discovery Algorithm

The modified algorithm for the neighbor clusters’ discovery is shown in Algorithm 4.3.
Initially, each local leader i has initially a list NCi with all its possible neighbors
(NORTH, SOUTH, EAST, WEST). During the execution, each local leader tries to
read the status of the neighbors in its own list and removes the ones for which it
does not succeed. At the end, the NCi list contains only the neighbor clusters for
which the local leader i read successfully the OK status.

The difference, between this algorithm and the one used during the intracluster
phase, concerns the Read operation on the neighbors’ status variable. When a local
leader tries to read a neighbor’s status, it sets the abortable variable to true in order
to inform the exception handler that a watchdog timeout can arise during this op-
eration. If there is a watchdog timeout, the exception handler is executed, and sets
to false the abortable variable in order to inform the software that an exception has
arisen. Then, the exception handler returns the execution to the instruction follow-
ing the Read operation. At this point, the software tests if the abortable variable is
false, and if it is, the core sets the return value to KO so the neighbor is not added
to the list of tested neighbors. If there is no exception, the Read operation returns
the value read from the statusn variable of neighbor n , and when the return value is
OK , the testing core i adds n to the list of discovered neighbors.

As shown in Algorithm 4.3, when there is a watchdog timeout during the test of a
neighbor, this neighbor is not immediately diagnosed as faulty. Instead, the neigh-
bor is tested several times before making a diagnostic. When a local leader i tests a
neighbor cluster n , a watchdog timeout can arise for three different reasons:

1. There is a faulty command or response router between clusters i and n .

2. The neighbor cluster is faulty, and its gateway hardware barrier is activated.

3. The neighbor cluster is functional but it has not finished executing its intra-
cluster phase, and its gateway hardware barrier is still activated.

46

Chapter 4. Distributed Fault-Location

Algorithm 4.3: Neighbor Clusters’ Discovery

NeighborsDiscovery()

Input: A list NCi with the testable neighbor clusters of core i

Result: NCi contains the functional neighbor clusters of core i

begin
/* Inform neighbors that core i is functional */

Write(statusi, OK)

/* This set will contain the functional neighbors */

DONE←;

/* Set to 0 the number of test retries for each neighbor */

foreach n ∈NCi do retriesn = 0

while DONE 6=NCi do
foreach n ∈ {NCi−DONE} do

abortable= true

value= Read(statusn)

/* If there is a watchdog timeout during Read(), the function

ExceptionHandler() is called, and abortable is reset to false */

if abortable= false then value=KO

else abortable= false

if value=OK then
DONE←DONE + {n}

else if retriesn ≥MAX_RETRIES then
NCi←NCi−{n}

else
retriesn = retriesn+1

end
end

end
end

ExceptionHandler()

begin
if ExcCode= TransactionAborted then

if abortable= true then
abortable= false

ExceptionReturn()

else
Idle()

end
...

end

47

Chapter 4. Distributed Fault-Location

For cases 1 and 2, a full-duplex communication is not possible with the cluster n ,
and the local leader i must remove n from the NCi list. In the case 3, the local leader
i should keep n in the NCi list, but i should wait long enough so n finishes its intr-
acluster phase. This wait is implemented with the MAX_RETRIES constant. A local
leader tests MAX_RETRIES times each neighbor before diagnosing it as faulty. This
last case can arrive because the distributed firmware is executed asynchronously
by the different clusters in the architecture. Therefore, the MAX_RETRIES should
consider the Worst Case Execution Time (WCET) of the intracluster phase.

Proof of the Neighbor Clusters’ Discovery’s Property

The proof of the Property 4.2.1 is almost the same that for the Property 4.1.2. How-
ever, there is a difference. Even when two neighbor clusters are functional, they may
not communicate to each other if there are NoC black-holes between them. There-
fore, when a local leader in a cluster A tests a neighbor cluster B , three different
scenarios are considered:

1. B is faulty.

2. A and B are functional, and there is no NoC black-hole between them.

3. A and B are functional, but there are NoC black-holes between them.

For the first case, as cluster B is faulty, the local leader in cluster A never succeeds
to read B ’s status variable and finishes by removing B from the NCA list. This guar-
antees that, after the execution of Algorithm 4.3, all faulty neighbor clusters are re-
moved from the NC list of all local leaders.

For the second case, the proof of Property 4.2.1 is the same that for the intracluster
neighbors’ discovery. As both clusters A and B are functional, they will set their
status variable to OK , and eventually cluster A will read the cluster B ’s status and
keep it in the NCA, and cluster B will eventually do the same. This guarantees that
two functional neighbor clusters, with no NoC black-hole between, will keep each
other in their respective NC list.

For the third case, as a full-duplex communication is not possible between clusters
A and B , B should be removed from the NCA list, and cluster A should be removed
from the NCB list. This can be stated as follows:

Lemma 4.2.1.1. If a full-duplex communication is not possible between two func-

tional neighbor clusters A and B , then A /∈NCB and B /∈NCA.

Lemma 4.2.1.1 can be proved by contradiction. Consider that at the end of the
neighbor clusters discovery procedure, A ∈ NCB and B /∈ NCA. This means that, in
one hand, cluster B successfully accessed the memory of cluster A, but on the other
hand, cluster A failed to access the memory of cluster B . If cluster A failed to access
the memory in cluster B , then there is black-hole in the NoC. Yet, when cluster A

accesses the memory of cluster B , the memory access transaction (command and
response) uses the same routers than a transaction from cluster B to the memory

48

Chapter 4. Distributed Fault-Location

of cluster A (as shown in Figure 4.6). Therefore, there is a contradiction. If there is
a black-hole between both clusters, then cluster B cannot successfully access the
memory of A.

In conclusion, each local leader i has in its local NCi list all the neighbor clusters
with which a full-duplex communication is possible.

Core

(x+1,y)

Memory

(x+1,y)

CMD
(x,y)

CMD
(x+1,y)Core

(x,y)

Memory

(x,y) RSP
(x,y)

RSP
(x+1,y)

Local Interconnect

RSP

Local Interconnect

CMD

Local Interconnect

CMD

Local Interconnect

RSP

NoC

Routers

Figure 4.6 – Interconnection Path Between Neighbor Clusters (Faulty)

4.3 Coherence Networks

This section presents the proposed solution to test the coherence networks in the
TSAR architecture. This solution consists in a hardware-software mechanism that
allows the cores to test the coherence networks, and the test procedure is entirely
driven by the software.

As described in Section 1.4, TSAR implements three NoCs for coherence transac-
tions between L1 and L2 caches. The L1 cache controllers are initiators on the P2M

interconnect, while the L2 caches are the targets; and the L2 caches are initiators
on the M2P and CLACK interconnects, while the L1 caches are the targets. These
NoCs are hierarchically implemented in two levels (as for CMD & RSP networks):
local and global.

Coherence transactions are issued by cache controllers, and these transactions are
not directly triggered by software reads and writes. This makes difficult the test of
coherence networks and therefore, a specific hardware mechanism is proposed. To
allow the software to directly test these networks, the Finite State Machines (FSMs)
of L1 and L2 cache controllers must be modified. The modification allows the pro-
cessor core to trigger a coherence transaction by writing into specific cache config-
uration registers.

49

Chapter 4. Distributed Fault-Location

FSMs

Dest XY

Processor

NoC

Memory

Cache

(X,Y)

Cache L1

M2P P2M CLACK

Trigger

Test

4

5 66

7 7

M2P P2M CLACK

Watchdog

Threshold

Watchdog

Timer

Timeout

FSMs

83

1Data2

=

+1

ExcCode 9

∗

Figure 4.7 – Processor Core Triggering the Coherence Network Test

50

Chapter 4. Distributed Fault-Location

This complete coherence networks test mechanism is described in Figure 4.7. The
steps are the following:

1 The core writes in the Data register the value to be sent as data through the
P2M network.

2 The core writes in the Dest XY register the coordinates of the target L2 cache
controller.

3 The writing in 2 triggers the coherence network test and blocks the core until
the test transaction is finished.

4 The L1 cache controller sends a test packet to the L2 cache controller (speci-
fied in the Dest XY register) through the P2M interconnect with the specified
value (contained in the Data register).

5 When the L2 cache controller receives the P2M test packet, it prepares two
packets by copying the received data.

6 The L2 cache controller sends one packet on the M2P interconnect and an-
other packet on the CLACK interconnect.

7 When the L1 cache controller receives both response packets, it compares the
received data with the sent one. If it does not receive both response packets
before the watchdog threshold, the watchdog timer triggers a Timeout.

8 In this step, the cache controller responds to the core to release it. When the
received data is different from the sent one, or if there is a watchdog timeout,
the L1 cache controller signals an exception and writes the TransactionAborted

value into the exception code register (ExcCode). Otherwise, the cache con-
troller responds the core normally so it continues the execution.

4.3.1 Intracluster Coherence Networks Test

The test of the intracluster coherence interconnects is performed during the intr-
acluster phase. During this phase, each processor core uses the mechanism ex-
plained above to test the coherence interconnections with the local L2 cache con-
troller. In order to test if these networks have stuck-at faults, the cores perform twice
this test with two different patterns as for the intracluster memory test. If this test
fails, then the issuing core self-deactivates.

4.3.2 Intercluster Coherence Networks Test

This test is performed after the neighbor clusters’ discovery procedure. Therefore,
at this point, the local leaders know the neighbor clusters with which a full-duplex
communication is possible through direct networks (CMD & RSP). These neighbors
are in the NC list of each local leader.

51

Chapter 4. Distributed Fault-Location

As for the intracluster phase, the intercluster coherence networks test uses the mech-
anism explained above, but this time, local leaders try to communicate with the L2
cache of neighbor clusters (clusters in the NC list) instead of their local L2 cache.
During this test, each local leader sends a test packet on the P2M network to one
neighbor’s L2 cache, and then waits for the acknowledgements on the M2P and
CLACK networks. However, as this time the transaction passes through coherence
NoC routers, if there are black-holes, one or more packets are dropped, and the
local leader cache controller would wait indefinitely. As for the neighbor clusters’
discovery algorithm, this problem is solved with the watchdog timer.

The software triggers the coherence test by writing in the Dest XY coprocessor regis-
ter the coordinates of the target L2 cache, and this also triggers the watchdog timer.
If both acknowledgements on networks M2P and CLACK do not arrive before the
watchdog timeout, the cache controller aborts the transaction (it stops waiting for
the acknowledgements), and it responds to the processor core with an error. This
allows the software to diagnose the communication with the target neighbor and
continue the test on other neighbors.

During the test of the coherence network, each local leader knows its functional
neighbor clusters (stored in the NC list). Therefore, when a local leader tests the
communication with one of these neighbors, if this test fails, the only possible rea-
son is that there is a black-hole in at least one of the coherence NoCs. This means
that each local leader tests the communication with each neighbor only once, and
if the test fails, then it removes the target neighbor from its NC list because a full-
duplex communication is not possible with it.

In conclusion, at the end of this coherence networks test between neighbor clusters,
the NC list contains the neighbor clusters with which a full-duplex communication
is possible through all networks (CMD, RSP, M2P, P2M, CLACK).

4.4 Fault-Free Spanning Tree Construction

In this phase, local leaders work cooperatively to build the FFST. The FFST is de-
fined as a collection of nodes (clusters) and edges, where each node represents a
functional cluster, and each edge is a full-duplex communication channel between
two nodes. This FFST respects the following property:

Property 4.4.1. Two functional clusters (nodes) A and B may be connected by an

FFST’s edge if and only if A ∈NCB and B ∈NCA.

Property 4.4.1 states that one FFST’s edge can only connect two neighbor clusters
which support a full-duplex communication. Therefore, the communication re-
sources interconnecting both clusters are functional.

This software-based infrastructure is called Fault-Free Spanning Tree because it cov-
ers uniquely fault-free computation and communication resources. All nodes and
edges of the FFST are mapped upon previously tested hardware components.

52

Chapter 4. Distributed Fault-Location

The root of the FFST is necessarily an Input/Output (IO) cluster, because the root
cluster must access IO peripherals. When there are several IO clusters, all are candi-
dates to become the FFST’s root. The one becoming root is elected dynamically with
a distributed election procedure during the FFST’s construction. The local leader
in the FFST’s root cluster becomes the global leader, and therefore the FFST’s root
election problem is also called global leader’s election problem.

The FFST’s root is not statically defined to improve robustness: if an IO cluster is
faulty, then another IO cluster can become the FFST’s root. In the case where all IO
clusters are faulty, the entire processor is considered faulty and therefore useless.
IO peripherals support all interactions between the user and the computer. If these
devices are not accessible, then the many-core processor is useless. The TSAR ar-
chitecture contains two IO clusters, and therefore two candidates to become global
leader.

The functional clusters belonging to the FFST will be the ones reachable from the
global leader as stated in the following property:

Property 4.4.2. Considering Cr the FFST’s root cluster, and Cm a functional cluster, if

Cm is reachable from Cr, then Cm belongs to the FFST.

Definition 4.4.1. During the FFST’s construction, a cluster Cj is reachable from a
cluster Ci, if there exists at least one path:

Ci, Ci+1, Ci+2, . . . , Ci+n, Cj | Ci+1 ∈NCi ∧Ci+1 ∈NCi+2 ∧ . . .∧Cj ∈NCi+n

In can be concluded from Property 4.2.1, Property 4.4.2 and Definition 4.4.1 that, if
a cluster Cj is reachable from a cluster Ci, then Cj is reachable from the cluster Ci.
Therefore, the FFST’s root can reach reliably any node in the tree, and inversely, any
node in the tree can reach reliably the FFST’s root.

4.4.1 FFST’s Data Structure

The FFST infrastructure is implemented as a distributed data structure. Each lo-
cal leader i has a local instance of this structure in its local memory, and it is filled
during the FFST’s construction.

This distributed data structure of a local leader i is called TREEi. Figure 4.8 shows
an instance of this structure. It is implemented as an array whose number of en-
tries equals the number of clusters in the mesh. Each entry has two fields: Par-

ent and Cores. The Parent field indicates the parent of the node (NORTH, SOUTH,

EAST, WEST). Additionally, the Parent field can contain the values ROOT or NULL to
indicate that the node is the FFST’s root, or does not belong to the TREEi array, re-
spectively. The Cores field contains the list of functional cores in the corresponding
cluster. This list is the NPi list defined in Property 4.1.2. Finally, each entry’s index
is defined as index (x, y) = x ∗YSIZE + y, where x and y are the coordinates of the
target cluster.

53

Chapter 4. Distributed Fault-Location

Parent Cores

1

2

N - 2

0

N - 1

NP0

NP1

NPN−2

NPN−1

DIR

DIR

DIR

DIR

DIR

DIR ∈ { NULL, ROOT, NORTH, SOUTH, EAST, WEST }

NP2

Index

N
u

m
b

e
r

o
f

C
lu

s
te

rs

Figure 4.8 – FFST’s Data Structure

A tree can be defined recursively as a root node with pointers to the subtrees of its
children. These subtrees are mutually exclusive because, by definition, in a tree
there is a unique path between two nodes. The FFST is defined this way: each dis-
tributed TREEi does not contain all the nodes in the FFST. Instead, a TREEi array
represents the subtree whose root node is the local leader i . This subtree contains
the node i and the nodes in the subtrees of its children. As a consequence, only the
TREEr array of the global leader (r) contains the complete description of the FFST.
This is stated in the following definitions:

Definition 4.4.2. The TREEi of a local leader i is defined as the merging of the TREE

arrays of its children and the node i .

TREEi = { { i }∪
⋃

n

TREEn | n is child of i } (4.2)

Definition 4.4.3. The merging operation
⋃

, between two or more TREE arrays, is
equivalent to the union operator in set theory: the result is an array with all distinct
elements in the input TREE arrays.

Definition 4.4.4. Let r be the processor’s global leader, the TREEr array contains all
the functional clusters reachable from r . This means that TREEr ≡ FFST.

Figure 4.10 shows the TREEr array for the example FFST in Figure 4.9. This array
belongs to the processor’s global leader in the cluster (0,0). There is a faulty router
in cluster (2,1). This cluster does not belong to the FFST, and therefore it has the
value NULL. In Figure 4.10, the cluster (0,0) has the value ROOT because it is the
FFST’s root. Nodes (0,1) and (1,0) have the values SOUTH and WEST, respectively,
because their parent cluster is (0,0).

As defined above, the FFST’s data structure stores uniquely the parent of each node.
Therefore, if a local leader wants to know its children, then it must search in its TREEi

array the neighbor nodes entries which has the Parent field pointing to itself.

54

Chapter 4. Distributed Fault-Location

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

(0,0)

(0,1) (1,0)

(0,2) (2,0)

(3,0)

(3,1)

(3,2)

(2,2)

(1,2)

(1,1)

FFST Edge FFST Root Local LeaderFaulty Router

Figure 4.9 – Example of a FFST and its Logical Representation in a 4×3 Mesh With a Faulty Router

Parent Cores

(0,0) = 0 ROOT

SOUTH

SOUTH

(0,1) = 1

(0,2) = 2

(1,0) = 3

(1,1) = 4

(1,2) = 5

(2,0) = 6

(2,1) = 7

(2,2) = 8

(3,0) = 9

(3,1) = 10

(3,2) = 11

SOUTH

SOUTH

SOUTH

NULL ;

WEST

WEST

WEST

WEST

WEST

{P0, P1, P2, P3}

Index

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

{P0, P1, P2, P3}

Figure 4.10 – Example TREEr Array of the Global Leader

4.4.2 FFST’s Construction Algorithm

This section explains the algorithm to build the FFST software-based infrastruc-
ture. At the end of this algorithm, among all the candidate clusters, one becomes
the global leader of the processor. This global leader is the FFST’s root, and all
the nodes reachable from this global leader are the nodes of this tree as stated in
Property 4.4.2. The following property must be also respected:

Property 4.4.3. At the end of the FFST’s construction algorithm, only one local leader

(representing a functional IO cluster) is elected global leader.

The distributed firmware implements, in the local memory of each functional clus-
ter, one input software mailbox for each functional neighbor cluster in its NCi list.

55

Chapter 4. Distributed Fault-Location

Figure 4.11 shows a pair of these mailboxes implemented by two neighbor clusters.
For a mesh topology, there are at most four mailboxes in a cluster. At the end of the
FFST’s construction algorithm, one mailbox pair implements one FFST’s edge.

L2 Cache

P1 P2 P3

Periph

L2 Cache

P1 P2 P3

Periph

P0

P0

Interconnect

Interconnect

Router Local Leader Mailbox

Figure 4.11 – Software Mailboxes Between Two Neighbor Clusters

During this construction algorithm, the candidates to become global leader try to
build each a tree in parallel. Each candidate tries to join to its tree all reachable
functional clusters. This joining process is performed by means of message prop-
agation. Three kind of messages are used during the FFST’s construction: JOIN,
ACCEPT and DONE.

• The JOIN message is a request from a candidate to another node to join its
tree. This message contains the ID of the triggering candidate, and it is broad-
cast by each receiving node to all its functional neighbors but the sender.

• The ACCEPT message is an acknowledgement to a JOIN message. It is issued
by a node when it accepts (with all its subtree) to join a tree. This message
contains the ID of the acknowledged JOIN message.

• The DONE message is issued by the elected global leader when the FFST’s
construction completes. It signals all the nodes that the FFST’s construction
process is finished.

There are two difficulties related to the parallel and asynchronous execution of this
algorithm:

1. A node can receive more than one JOIN message concerning the same can-
didate. As the JOIN messages are broadcast by each receiving node, if a node

56

Chapter 4. Distributed Fault-Location

has more than one functional neighbor, it can receive several identical JOIN

messages from each of them. In that case it handles the first one and discards
the others.

2. A node can receive more than one JOIN message sent by different candidates.
This happens when a node is reachable by several candidates. In this case,
when the FFST’s construction algorithm completes, the node will belong to
the tree of the candidate with the highest priority.

The remainder of this section describes the execution of the FFST construction al-
gorithm.

The local leaders which are not candidates to become global leader start to poll the
mailboxes waiting for a message from one neighbor. However, the candidates to be-
come global leader, start the algorithm broadcasting a JOIN message to all clusters
in their NCi list. In TSAR there are two candidates to become global leader: clus-
ter (0,0) and cluster (XSIZE-1,YSIZE-1). These messages are written into the software
mailboxes previously described.

The entire process is illustrated in Figure 4.12. This figure shows a possible execu-
tion of the algorithm to build the FFST in Figure 4.9. In this example, the two IO
clusters (0,0) and (3,2) try to build each a tree, while the cluster (2,1) is faulty.

When a local leader receives a JOIN message, it set its own entry in its local TREEi

structure: it sets the Cores field with its NPi list, and sets the Parent field with the
sender cluster’s direction. Thus, this establishes a FFST’s edge between the receiv-
ing (child) and sender (parent) clusters. Next, it propagates the JOIN message to
all its functional neighbor clusters but the sender (see 2 in Figure 4.12). This is re-
cursively done to flood the mesh, and the message is received by all the functional
clusters reachable from the triggering candidate. Additionally, when a local leader
receives a JOIN message, it saves the ID of the triggering candidate. The ACCEPT

message is not sent immediately. This ACCEPT message is sent only when all the
acknowledgements for the broadcast JOIN message are received.

This is a parallel procedure: all the candidates to become global leader broadcast
JOIN messages to build a tree. However, we want only one tree to become the pro-
cessor’s FFST, and only one of these candidates to become the global leader. To do
this, the FFST’s construction algorithm assigns a static priority to each candidate.
The candidates with lower IDs have higher priorities. When a local leader i receives
a JOIN message from a candidate n , it checks first if it belongs already to a tree. If
i belongs to a tree m , then it checks the priorities. If ID(n) < ID(m), then i changes
to the tree n : it resets its TREEi array, re-adds its entry with the new parent, and
broadcasts the new JOIN message to its neighbors but the sender (see 3 , 4 and
5 in Figure 4.12). Otherwise, if ID(n) > ID(m), then i ignores the JOIN message

from n .

When a local leader propagates a JOIN message to all its functional neighbor clus-
ters (but the sender), and waits an acknowledgement for each one. The acknowl-
edgement can be of two kinds: an ACCEPT message or a JOIN message with the
same triggering candidate. As explained before, a node may receive a JOIN message

57

Chapter 4. Distributed Fault-Location

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

JOIN

J
O

IN

J
O

IN
J
O

IN

J
O

IN

J
O

IN

J
O

IN

J
O

IN

J
O

IN

A
C

C
E

P
T

A
C

C
E

P
T

J
O

IN

ACCEPTACCEPT

ACCEPTACCEPTACCEPT

A
C

C
E

P
T

A
C

C
E

P
T

A
C

C
E

P
T

D
O

N
E

DONE DONE

DONE DONEDONE

D
O

N
E

D
O

N
E

D
O

N
E

D
O

N
E

2

3 4

5 6

7 8

1

Figure 4.12 – FFST Construction Algorithm Example

58

Chapter 4. Distributed Fault-Location

from the same candidate more than once (e.g. see 3 , 4 and 5 in Figure 4.12). In
that case, the redundant JOIN messages mean that the sender node already belongs
to another branch of the same tree.

The ACCEPT message is sent from a local leader to its parent when it has received
all the acknowledgements for all previously sent JOIN messages (see 5 , 6 and 7

in Figure 4.12). When a local leader i receives an ACCEPT message from a neighbor
n , it means that n has joined the tree and accepted i as parent. In this case, the
local leader i merges, using Definition 4.4.3, the TREEn array of n with its own TREEi

array. To perform this merge, the local leader i accesses the local memory of n , and
it copies into its TREEi array the entries in the TREEn array.

When a local leader i receives all the acknowledgments for a previously sent JOIN

message, it has in its local TREEi structure the representation of the subtree for
which it is the local root. And in particular, if a candidate to become global leader i

receives all acknowledgements, then it has in its TREEi structure a tree with all the
nodes that it can reach. When all the candidates are mutually reachable, at the end
of the algorithm, the global leader is the candidate with the smallest index because
all reachable nodes switched to the smallest index candidate.

Special Case: Partitioned Mesh

When there are too many black-holes in the mesh (deactivated faulty routers or
faulty clusters), the graph may be partitioned in several non-connected sub-graphs
which cannot communicate with each other.

(0,2)

(0,1)

(0,0)

(1,2)

(1,1)

(1,0)

(2,2)

(2,1)

(2,0)

(3,2)

(3,1)

(3,0)

Faulty Cluster FFST RootFFST Edge

Figure 4.13 – FFST Example With Two Partitions

59

Chapter 4. Distributed Fault-Location

If there are two candidates to become global leader in different sub-graphs, then
there will be two different trees at the end of the FFST’s construction algorithm. An
example is shown in Figure 4.13. In this example, as there is no path (as defined in
Definition 4.4.1) connecting both candidates, then the JOIN messages from each
candidate never find each other, and each candidate builds a different tree.

In such cases, the distributed recovery firmware must choose the tree with the great-
est number of clusters, and deactivate the others. However, as the trees belong to
different sub-graphs, a global consensus is not possible. For this reason, the dis-
tributed firmware uses a decentralized method to choose the FFST. When a candi-
date to become global leader finishes the construction of its tree, it counts the num-
ber of reached nodes. If this number is greater than N /2 (where N is the total num-
ber of clusters in the mesh), then it becomes the global leader, and its tree becomes
the FFST. In contrast, if the number of reached nodes is less or equal than N /2,
then the candidate self-deactivates. In the example of Figure 4.13, the local leader
of cluster (0,0) becomes the global leader, and the local leader of cluster (3,2) self-
deactivates and send a message to its descendants to signal them that they should
deactivate. If no tree has more than N /2 clusters, the entire processor is considered
faulty. This leads to the following property:

Property 4.4.4. The processor can recover from failures when there is at least one

functional IO cluster, and one of these functional IO clusters can reach more than

N /2 clusters (where N is the total number of clusters in the processor).

When a candidate becomes global leader, it broadcasts a DONE message through
the FFST (see 8 in Figure 4.12) to inform its descendants that the FFST is built, and
they can all enter the next phase of the distributed recovery firmware.

Proof of the FFST’s Construction Algorithm Properties

First the Property 4.4.1 is proved. In Section 4.2.1, it was proved that at the end of the
intercluster phase, each local leader i has a NCi list containing all its functional clus-
ters with which a full-duplex communication is possible. Therefore, if there are two
clusters A and B , and B ∈ NCA, then A ∈ NCB to effectively support a bidirectional
communication. During the FFST’s construction algorithm, the JOIN messages to
build the tree are propagated by each local leader to the functional neighbor clus-
ters in their NC list. As the FFST’s edges are established when a cluster receives a
JOIN message, then two clusters A and B connected by an FFST’s edge, will always
respect that A ∈NCB, and B ∈NCA.

Property 4.4.2 is proved as follows. As explain in Section 4.4.2, the JOIN messages
are broadcast by all local leaders to flood the mesh. If a cluster Cm is reachable by the
global leader in Cr, then there exists a path (as stated in Definition 4.4.1) consisting
in a sequence of neighbor clusters from Cr to Cm. Therefore, the JOIN message will
reach Cm, and Cm will join the FFST.

Finally, to prove the Property 4.4.3, as explained in Section 4.4.2, each candidate
to become global leader has a priority. When more than one candidate is reachable

60

Chapter 4. Distributed Fault-Location

from another candidate, the JOIN message of the candidate with the highest priority
will prevail, and all reachable clusters will belong to its tree (including the other
candidates that join this tree and stop their attempt to build a tree of their own). In
the case where the mesh is partitioned, when a tree has more than N /2 clusters, it
becomes the FFST, and as each sub-graph contains an exclusive set of clusters, the
other sub-graphs have necessarily less than N /2 clusters and self-deactivate.

4.5 Map of Operational Resources

This section describes how the distributed recovery firmware uses the FFST to build
a global map of the operational computational and communication resources of the
many-core processor.

The new global routing function implemented after the NoC reconfiguration is com-
puted based on the global map of the operational communication resources built
during the distributed information gathering. The remainder of this section de-
tails the distributed information gathering. NoC reconfiguration will be explained
in Chapter 5.

4.5.1 Distributed Information Gathering

In the previous stages, four distributed procedures were executed: the first is the
NoC BIST (Section 3.2) where each NoC router self-tests and self-deactivates if it
detects a fault; the second is the intracluster test phase (Section 4.1) where all the
cores determine if they can be declared functional; the third is the intercluster test
phase (Section 4.2) where the functional full-duplex communication channels be-
tween neighbor clusters are identified; the fourth is the FFST’s construction and
global leader’s election (Section 4.4). All this diagnostic information is distributed,
and therefore there is not a global status of the processor. The FFST’s global leader
gathers all this distributed information, and builds a global map of the processor’s
operational hardware. The operational hardware of this global map can be clas-
sified in two categories: (1) operational computational resources (clusters), and
(2) operational communication resources (NoC routers).

The map of the computational resources is contained in the FFST’s root node. The
detailed information about the functional cores at each cluster is known, because
during the FFST’s construction, the local leaders fill the Cores field of the TREEi

structure. And the functional memory banks are known, because in a cluster self-
declared functional, the memory bank is functional. Therefore, the TREEr structure
of the root cluster already contains a complete description of the computational
resources.

To complete the global map of the operational hardware, only the map of oper-
ational communication resources is missing (accurate location of the functional
routers in the NoC). This location procedure is called Black-Holes Location.

61

Chapter 4. Distributed Fault-Location

4.5.2 Black-Holes Location Procedure

Consider two clusters CA and CB. When CA tries to communicate with CB during
the intercluster phase (Section 4.2), the test can fail because: (1) there are one or
more faulty router in one network between CA and CB, or (2) CB is faulty. Then, the
intercluster test phase cannot decide if the communication resources are faulty.

We propose another software procedure, which relies on the FFST, to locate the
faulty routers. This procedure is executed after the FFST’s construction, and it is
triggered by the global leader. The FFST’s root cluster broadcast a BLACK-HOLE

LOCATION message through the FFST to all nodes. When a node receives this mes-
sage, it propagates the message to its children and executes the software procedure
explained below.

When a node finishes the procedure, it waits for the acknowledgements of all chil-
dren before sending an acknowledgement to its parent. If the global leader receives
the acknowledgement from all its children, the black-hole location procedure is fin-
ished.

When a local leader receives the BLACK-HOLE LOCATION message, it tests the com-
munication with all the clusters in the mesh (functional or not) through all NoCs.
In order to test the DIRECT networks (CMD and RSP), every local leader tries to
read the memory in all the clusters. And to test the COHERENCE networks (P2M,
M2P and CLACK), every local leader uses the mechanism explained in Section 4.3
to access the L2 cache in all clusters.

If there is one or more faulty routers (black-holes) in the path between the initia-
tor local leader and its target, then the watchdog timer of the local leader triggers
an exception allowing the software to diagnose the path. If, on the contrary, a lo-
cal leader tests successfully another cluster, this local leader tags all routers in the
path as functional. Tagging a router means to register it in a table, stored in the local
memory of the cluster. This table is called Locally Discovered Routers Table (LDRT).
There is one LDRT per NoC, and the number of entries of each table equals the num-
ber of clusters in the mesh. This table contains, at each entry, the status of a router
in the associated NoC. This status is encoded in one bit: (0) faulty or (1) functional.
In TSAR, each local leader fills four tables (CMD, RSP and P2M NoCs have its own
table, and the M2P and CLACK NoCs share one). As the maximum mesh’s size is
16×16= 256 clusters, each table occupies 256 bits of memory (1 Kbit is the total for
the four tables).

During the black-hole location procedure, the NoCs are not reconfigured, and all
routers implement the X-first routing algorithm. Then, when a local leader tests
another cluster, the transactions’ packets follow a deterministic X-first path, and
the local leaders use Algorithm 4.4 to tag the routers. This algorithm receives as
parameters the coordinates of the source and target clusters, and a LDRT. A trans-
action consists in a command and then a response or acknowledgement, thus this
algorithm is used twice for each transaction: the first time to tag the routers used by
the command packet, and the second time to tag the routers used by the response
or acknowledgement.

62

Chapter 4. Distributed Fault-Location

Algorithm 4.4: Tag X-First Path Algorithm

TagPath()

Input: LDRT : a table with the status of the routers in a NoC

Input: IX , IY : the X and Y coordinates of the initiator cluster

Input: TX , TY : the X and Y coordinates of the target cluster

begin
/* Tag the router on the initiator coordinates */

LDRT [IX][IY] = 1

/* Tag the routers on the X direction */

Xmin = min(IX , TX)

Xmax = max(IX , TX)

for x = Xmi n to Xma x do
if x 6= IX then LDRT [x][IY] = 1

end

/* Tag the routers on the Y direction */

Ymin = min(IY , TY)

Ymax = max(IY , TY)

for y = Ymi n to Yma x do
if y 6= IY then LDRT [TX][y] = 1

end
end

For example, when testing the CMD & RSP networks, if a local leader A in a cluster
(XA,YA) tests a cluster (XB ,YB), and this test succeeds, then A calls:

• TagPath(LDRT CMD, (XA, YA), (XB , YB)) to tag the CMD routers.

• TagPath(LDRT RSP, (XB , YB), (XA, YA)) to tag the RSP routers.

Note that for the RSP network, the initiator and target coordinates are inverted be-
cause the target is the sender of the response. Analogously, during the test of the
coherence networks, the local leaders A uses the TagPath function on the LDRT P2M

and the LDRT M2P & CLACK to tag the routers in those networks when the test succeeds.

Figure 4.14 shows an execution example of the black-hole location procedure in a
4× 3 mesh with a faulty cluster at (2,1) and a faulty router at (2,0). This example
only represents one NoC for the sake of simplicity. After a local leader finishes the
test of all other clusters, it has only the status of all communication paths that it
can test (see 1 and 2). Therefore, in order to build a global map of the communi-
cation resources, all the LDRTs in all clusters should be merged to have one single
LDRT per NoC. This merge is made recursively (see 3). After a node finishes the
local execution of the black-hole procedure, it waits an acknowledgement of its chil-
dren signalling that they finish also the procedure. When they do, each local leader
merges its LDRTs with those of its children, and then it sends an acknowledgement
to its parent. Eventually the global leader receives the acknowledgement from its
children, and it merges also its LDRTs with the ones of its children.

63

Chapter 4. Distributed Fault-Location

Global Leader at (0,0) Tests Communication

Paths and Tags the Routers in its Local LDRT
1

Local Leader at (0,1) Tests Communication Paths

and Tags the Routers in its Local LDRT
2

All Local Leaders Send Their LDRTs to the

Global Leader Through the FFST
3

After the Merge of the LDRTs, All Functional

Routers Are Tagged
4

Figure 4.14 – Black-Hole Location Procedure

At the end, the resulting LDRTCMD, LDRTRSP, LDRTP2M and LDRTM2P & CLACK in the
global leader’s cluster, represent the global map of the communication resources
(see 4).

4.6 Conclusion

This chapter explained the proposed software-based solution for locating faulty
cores, faulty memory banks and faulty NoC routers in a shared memory many-core
architecture. This solution uses a ROM distributed in all clusters which contains the
recovery firmware executed at each processor’s reset or power-on by all the cores.

The cores self-test, test their cluster, build the FFST software-based communication
infrastructure, and finally use this FFST to centralize the distributed diagnostic in-
formation and build a global map of the operational hardware. The global map con-
siders the computational resources (processor cores and memories) and the com-
munication resources (routers of the different NoCs).

The global map of computation resources is the one passed to the OS after it is
loaded, so it can self-adapt to the actual hardware.

64

Chapter 4. Distributed Fault-Location

The global map of communication resources is used to compute a new global rout-
ing function, which allows bypassing the faulty routers. To implement this new
routing function the NoCs routers need to be reconfigured. This work proposes
a software mechanism to reconfigure the routers which is based on the use of the
FFST. This solution is presented in Chapter 5.

Though the proposed solution is based on the execution of a distributed firmware
by the cores, four hardware mechanisms are required by this solution. A watch-
dog timer at each L1 cache, a mechanism allowing the software to directly test the
coherence networks between cache controllers, a mechanism to use the L2 cache
controller as a local RAM, and the gateway hardware barrier mechanism to allow
disconnecting a cluster from the global NoC.

The entire solution has been validated and evaluated on a cycle-accurate and bit-
accurate virtual prototype of the TSAR architecture. The performance evaluation
and the hardware cost will be presented in Chapter 6.

65

Chapter 5

NoC Reconfiguration

Contents

5.1 Introduction . 68

5.2 Reconfiguration Procedure . 69

5.2.1 Supported NoC Faulty Topologies. 70

5.3 Memory Segment Reallocation . 71

5.3.1 Implementation . 71

5.3.2 Limitations of the Segment Reallocation Mechanism 75

5.4 Broadcast Support With Holes in the NoC. 75

5.4.1 Recovery Broadcast Replication Policy 77

5.4.2 Verification of the Recovery Broadcast Replication Policy 80

5.5 Conclusion . 81

67

Chapter 5. NoC Reconfiguration

5.1 Introduction

When there are holes in the NoC (faulty routers), the communication between clus-
ters is broken, and a reconfiguration mechanism is needed to modify the global
routing function, and repair the intercluster communication. This new global rout-
ing function needs to bypass the holes in the NoC, so that the remaining operational
cores may communicate to each other.

When starting the NoC reconfiguration phase, the faulty routers were deactivated
at the power-on by the distributed hardware BIST and behave as black-holes. Then,
these holes have been located using the distributed software-based location proce-
dure presented in Chapter 4.

Additionally, a software-based communication infrastructure, called FFST, has been
built. This FFST allows the global leader (a core in an IO cluster) to communicate re-
liably with the other operational cores in the processor, by means of software point-
to-point full-duplex communication channels between operational neighbor clus-
ters. This FFST was used, in particular, to centralize the information gathered dur-
ing the distributed software-based location procedure into the cluster of the global
leader, and build a global map of the computational and communication opera-
tional resources.

Even if the FFST provides a communication infrastructure allowing the intercore
communication, the NoC still needs to be reconfigured. The FFST is only a tem-
porary software infrastructure with very low communication bandwidth. More-
over, the cores behave as software routers which relay messages in a neighbor-to-
neighbor basis incurring important communication latencies.

In order to tolerate holes in the NoC, we choose to use the reconfigurable routing
algorithm proposed by Zhang, Greiner, and Taktak [15] (explained in Section 2.2.4).
In this algorithm, the routers in the contour of the holes need to be reconfigured
in order to modify the routing algorithm and repair the communication. This algo-
rithm is called recovery routing algorithm.

The recovery routing algorithm needs the NoC holes to be located, and requires a
reliable communication infrastructure to reconfigure the routers in their contour.
We propose a fully software-based solution for both problems in order to limit the
hardware overhead of our complete fault-tolerance strategy.

We propose to use the global map of communication resources, built during the
software-based location procedure, to know the location of holes; and we propose
to use the FFST as the communication infrastructure to reconfigure the routers in
the contour of the holes.

The use of the FFST avoids the integration of a specific hardware reconfiguration
network by reusing the existing communication resources. As these communica-
tion resources may be partially defective, the FFST uses only the resources previ-
ously tested and declared functional during the distributed recovery firmware exe-
cution. This allows a reliable reconfiguration of the NoC.

68

Chapter 5. NoC Reconfiguration

At this phase, most of the software procedure allowing the NoC reconfiguration are
executed by the global leader of the FFST. As the global leader has direct access to the
IO peripherals, the procedures which are exclusively executed by the global leader
are stored in an external mass storage device in order to reduce the size of the dis-
tributed ROMs.

In the following, Section 5.2 describes the NoC reconfiguration procedure. Then,
Section 5.3 describes a new mechanism to allow the reallocation of the memory seg-
ment of a deactivated cluster to one of its neighbor, and finally, Section 5.4 describes
a new mechanism to support broadcast when there are holes in the NoC.

5.2 Reconfiguration Procedure

The NoC reconfiguration procedure begins after the black-hole location procedure
(Section 4.5.2), when the global leader has built the global map of the communica-
tion resources. Therefore, the global leader knows the location of the holes (if any),
in the five NoCs of the TSAR architecture (CMD, RSP, M2P, P2M & CLACK).

The recovery firmware is responsible for the NoC reconfiguration. The global leader
sends reconfiguration commands, through the FFST, to the clusters in the contour
of the holes. Then, the local leaders in these clusters reconfigure the local routers
by writing in their reconfiguration register. These reconfiguration commands are
implemented as messages emitted by the global leader, and propagated through
the FFST to their destination.

During this process, the local leaders of the clusters in the FFST behave as soft-
ware routers. When the global leader needs to send a reconfiguration command,
it searches in its TREEr data structure (detailed in Chapter 4) to which child’s sub-
tree belongs the target cluster, and sends the reconfiguration message to that child.
Then, recursively, each local leader, receiving a message, forwards this message
to one of its children (based on its local TREEi data structure) until the message
reaches its destination. At this point, the local leader in the target cluster recon-
figures the target local NoC router, and sends an acknowledgement message to the
global leader.

In TSAR, the writing in the reconfiguration register of the NoC routers is performed
through the XICU, because the NoC routers are not directly addressable by the soft-
ware. As there are five independent NoCs, there are five memory-mapped reconfig-
uration registers in the XICU allowing to reconfigure independently each of the five
local routers.

At the end of the NoC BIST executed at power-on, the routers that passed the hard-
ware test, are configured with the NORMAL value in their reconfiguration register
(use the default X-first routing algorithm).

The reconfiguration commands sent by the global leader contains the coordinates
of the target cluster, an index corresponding to one of the five NoCs (0: CMD, 1: RSP,

69

Chapter 5. NoC Reconfiguration

2: M2P, 3: P2M, and 4: CLACK), and the relative position of the target cluster with
respect to the hole (NE_OF_X, N_OF_X, NW_OF_X, E_OF_X, W_OF_X, SE_OF_X,

S_OF_X, SW_OF_X). When the target cluster receives a reconfiguration message, it
writes the configuration in the local XICU, accordingly to the message information.

The global leader sends the reconfiguration messages sequentially to all the clusters
in the contour: it sends a message to a cluster, and waits for its acknowledgement
before sending another reconfiguration message to the next cluster in the contour.
When the global leader reconfigures the contour of all holes in the different NoCs,
the NoC reconfiguration phase is finished. At this point, the global leader broadcast
a specific message to all the local leaders in the FFST, to signal that they must pass
to the OS loading phase.

After the NoC reconfiguration phase, the new implemented global routing algo-
rithm bypasses the holes in the NoC. Therefore, the FFST is not needed anymore
for the intercluster communication.

As explained in Chapter 4, when there are one or more faulty routers in a cluster,
the entire cluster is deactivated and behaves as a black-hole. Therefore, because of
the physical distribution of the address space, the memory segment of deactivated
clusters cannot be accessed by the OS. In Section 5.3, we propose a mechanism to
reallocate the memory segment of a deactivated cluster to one of its neighbor clus-
ters, so as to reduce the memory loss incurred by faults.

5.2.1 Supported NoC Faulty Topologies

In order to support a faulty router in a NoC, the following property must be met:

Property 5.2.1. All the clusters in the contour of a hole must be functional, and be-

long to the FFST.

This condition is needed in order to allow the reconfiguration of all the routers on
the contour of a hole. Of course, all the routers on the contour of a hole need to be
also functional, but this is guaranteed by the condition above because a cluster with
one or more faulty routers is deactivated and cannot belong to the FFST.

The reconfigurable routing algorithm supports any single-faulty-router topology in
the NoC, and the authors have demonstrated that this algorithm guarantees the
deadlock and livelock freedom for this kind of topologies (one faulty router).

In TSAR, the five NoCs (CMD, RSP, M2P, P2M & CLACK) are physically indepen-
dent, and each can be reconfigured in order to support holes. Therefore, our fault-
tolerance strategy supports at most one faulty router per NoC.

70

Chapter 5. NoC Reconfiguration

5.3 Memory Segment Reallocation

As explained in Chapter 1, the TSAR architecture implements a physically distributed
address space, where each cluster controls one physical memory segment (typically
one gigabyte per cluster), hence, if a cluster is deactivated, the corresponding phys-
ical memory becomes unusable for the OS. Figure 5.1 illustrates the distribution of
the memory address space on a 4-clusters architecture.

IOB IOB

L1-L2 INTERCONNECT (2D DSPIN)

L2-L3 INTERCONNECT (3D DSPIN)

XRAM XRAM

XRAM INTERCONNECT (3D DSPIN)
System-on-Chip

LOCAL INTERCONNECT

MEMC XICU DMA

PROC0 PROC1 PROC2 PROC3

LOCAL INTERCONNECT

MEMC XICU DMA

PROC0 PROC1 PROC2 PROC3

LOCAL INTERCONNECT

MEMC XICU DMA

PROC0 PROC1 PROC2 PROC3

LOCAL INTERCONNECT

MEMC XICU DMA

PROC0 PROC1 PROC2 PROC3

L3 L3 L3 L3

IO IO

Figure 5.1 – Distribution of the Physical Address Space in TSAR

Fortunately, in TSAR, all clusters can communicate through several physically in-
dependent networks (L1-L2, L2-L3 & XRAM). In case of a deactivated cluster, the
L2-L3 and XRAM NoCs can be used to reach the memory segment of this cluster.

We propose a reconfiguration of the global routing algorithm to reallocate the phys-
ical memory segment of a deactivated cluster to a functional neighbor. An example
of such segment reallocation is shown in Figure 5.2.

When a cluster is functional, its associated physical memory segment is accessed
through its local L2 cache controller. However, if this cluster is deactivated, after the
reallocation, its physical memory segment can be accessed through the L2 cache
controller of one of its neighbors.

5.3.1 Implementation

The segment reallocation is based on the same idea of going around a deactivated
cluster. The routers in this contour are reconfigured in order to reroute the packets,
whose destination is the deactivated cluster, to one of its neighbors.

71

Chapter 5. NoC Reconfiguration

IOB IOB

L1-L2 INTERCONNECT (2D DSPIN)

XRAM XRAM

System-on-Chip

LOCAL INTERCONNECT

PROC1 PROC2 PROC3

LOCAL INTERCONNECT

MEMC XICU DMA

PROC0 PROC1 PROC2 PROC3

LOCAL INTERCONNECT

MEMC XICU DMA

PROC0 PROC1 PROC2 PROC3

XICU DMA

PROC0 PROC1 PROC2 PROC3

L3 L3 L3 L3

IO IO

MEMC XICU DMA

PROC0

Physical Memory

Segment Reallocation

LOCAL INTERCONNECT

MEMC

L2-L3 INTERCONNECT (3D DSPIN)

XRAM INTERCONNECT (3D DSPIN)

Figure 5.2 – Reallocation of a Physical Memory Segment From a Deactivated Cluster to One of its
Neighbors

In order to reduce the hardware cost of the solution, the segment reallocation mech-
anism reuses the information in the configuration register of the NoC routers for the
recovery routing algorithm (position in the contour: N_OF_X, NE_OF_X, etc) to de-
termine the coordinates of the deactivated cluster.

It requires an additional 4-bits register with two fields: the direction to which a
packet should be forwarded when the destination is the deactivated cluster, called
Reallocation Direction; and a bit, called Blackhole Bypass, which is explained be-
low. Both informations need also to be written by the recovery firmware during the
NoC reconfiguration. Figure 5.3 shows the complete reconfiguration register of the
routers in the NoC.

Recovery Config

Black

Hole

Bypass

Reallocation Direction

8 bits

03457

Figure 5.3 – NoC Routers’ Reconfiguration Register

The possible values for the Reallocation Direction are: NORTH, SOUTH, WEST, EAST,
and LOCAL. When a router in the contour of a deactivated cluster receives a packet
whose destination is this last, it forwards the packet to the north, south, west, east,
or to the local cluster, respectively.

The Blackhole Bypass bit determines if the recovery routing algorithm is used, or
only the segment reallocation mechanism is enabled. As explained in Chapter 4, a
cluster may be deactivated because of a faulty router, or because it did not pass its

72

Chapter 5. NoC Reconfiguration

intracluster tests (e.g. all local cores are faulty). If a cluster is deactivated, but its
routers are functional (the routers belong to the communication resources global
map after the black-hole location procedure), these routers can still be used so the
network bandwidth, and latency are not degraded unnecessarily. Therefore, when
the bit Blackhole Bypass is unset, the routers in the contour of a deactivated cluster
only reroute packets whose destination is this deactivated cluster, otherwise, the
packets are still routed using the normal X-First routing.

The routers in the contour of a deactivated cluster perform a comparison between
the destination coordinates of the incoming packets, and the coordinates of the de-
activated cluster. If they match, the packet need to be rerouted. The coordinates of
the deactivated cluster are computed locally by the router using the information in
its reconfiguration register, and its local coordinates. For example, when its config-
uration register contains N_OF_X, and its local coordinates are (XL,YL), if it receives
a packet whose destination coordinates are (XL,YL+1), it forwards the packet ac-
cording to Reallocation Direction.

Figure 5.4 1 shows an example of the reconfiguration of a contour to reallocate the
segment of a deactivated cluster to the neighbor cluster on its west direction. This
figure shows for each router their respective reconfiguration register values. In this
example, the Blackhole Bypass bit is unset, hence only the packets to the deacti-
vated cluster are rerouted. Figure 5.4 2 shows another example, where the cluster
in coordinates (3,1) sends a command to the cluster in coordinates (0,1). As the
target cluster is not the deactivated one, and the Blackhole Bypass bit is unset, the
command packet is routed normally using the X-first routing algorithm. Table 5.1
summarize the behavior of the routers with respect to the configuration values.

Recovery
Config

Reallocation
Direction

Blackhole
Bypass

Routing Decision

NORMAL - - Forward the packets according to the X-first
routing algorithm.

6=NORMAL DIR 0 If the destination is the deactivated cluster, the
packet is forwarded to DIR. Otherwise, the
packet is forwarded according to the X-first
routing algorithm.

6=NORMAL DIR 1 If the destination is the deactivated cluster, the
packet is forwarded to DIR. Otherwise, the packet
is forwarded according to the recovery algorithm.

Table 5.1 – Routers Routing Decision With Respect to the Reconfiguration Values

To perform the reallocation of a memory segment, not all the NoCs need to be re-
configured: only the CMD & P2M NoCs. The reason is that these networks transmit
packets from the cores, and use memory addresses for routing the packets. On the
contrary, the RSP, M2P & CLACK networks use cores’ identifiers for routing. As all the
cores in a deactivated cluster are also deactivated, and cannot communicate with
other clusters, it is not possible that a packet on the RSP, M2P & CLACK networks
would address one of these cores.

73

Chapter 5. NoC Reconfiguration

When a packet’s destination is the deactivated cluster, the packet is

rerouted according to the Reallocation Direction
1

NORMAL

NORMAL

NORMAL

NW_OF_X
BYPASS
SOUTH

N_OF_X
BYPASS
WEST

NE_OF_X
BYPASS
WEST

W_OF_X
BYPASS
LOCAL

E_OF_X
BYPASS
SOUTH

SW_OF_X
BYPASS
NORTH

S_OF_X
BYPASS
WEST

SE_OF_X
BYPASS
WEST

NORMAL

NORMAL

NORMAL

NORMAL

NW_OF_X
BYPASS
SOUTH

N_OF_X
BYPASS
WEST

NE_OF_X
BYPASS
WEST

W_OF_X
BYPASS
LOCAL

E_OF_X
BYPASS
SOUTH

SW_OF_X
BYPASS
NORTH

S_OF_X
BYPASS
WEST

SE_OF_X
BYPASS
WEST

NORMAL

Segment Reallocation

When a packet’s destination is not the deactivated cluster, and the

Bypass Blackhole bit is unset, the packet is routed normally with the

X-first routing algorithm

2

RECOVERY CONFIG

BLACKHOLE BYPASS

REALLOCATION DIRECTION

NoC Routers

Reconfiguration

Register

Deactivated

Cluster

Figure 5.4 – Example of a Physical Memory Segment Reallocation With the Cluster (2,1) Deactivated

74

Chapter 5. NoC Reconfiguration

5.3.2 Limitations of the Segment Reallocation Mechanism

The segment reallocation mechanism needs the recovery firmware to reconfigure
the routers in the contour of deactivated clusters. Therefore, Property 5.2.1 must
be met. Section 5.2.1 explained that only one faulty router per NoC is supported.
However, the segment reallocation mechanism supports the reallocation of more
than one segment if the following property is also met (in addition to Property 5.2.1):

Property 5.3.1. None of the clusters in the contour of a deactivated cluster belongs

also to the contour of another deactivated cluster (contours are disjoint).

When Property 5.3.1, or Property 5.2.1 are not met, the segment of the deactivated
cluster is not reallocated. The corresponding memory is lost, and the packets that
targets this segment are forwarded to the deactivated cluster, and dropped by its
gateway hardware barrier mechanism. However, these memory segments are not
included in the Device Tree Blob (DTB) structure containing the operational plat-
form resources, and should not be used by the OS.

Figure 5.5 shows one example of a supported scenario where two memory segments
can be reallocated, and another example of a non-supported scenario where two
memory segments cannot, because their contours are not disjoint.

Segment Reallocation
Segment Reallocation

N NE

E

SES

NW

W

SW

N

S

N

S

N

S

?

?

?

Supported scenario: the contour of both

deactivated clusters are disjoint.

Non-supported scenario: the contour of both

deactivated clusters are not disjoint. The routers

with the ? symbol are in both contours.

Figure 5.5 – Examples of a Supported and a Non-Supported Scenario for the Physical Memory Seg-
ment Reallocation

5.4 Broadcast Support With Holes in the NoC

In the TSAR architecture, all the NoCs implement a unicast communication style
where each packet is intended for only one target device. However, the M2P NoC
must also support a broadcast communication. In the cache coherence protocol
between L1 and L2 caches, a L2 cache can send an invalidation request, which must
be delivered to all the L1 caches in the architecture.

The DSPIN NoC (used by all the NoCs in the TSAR architecture), implements a broad-
cast replication policy, which defines how an incoming broadcast packet on an in-

75

Chapter 5. NoC Reconfiguration

put port is replicated, and forwarded to the output ports. This broadcast replication
policy must guarantee the Property 5.4.1.

Property 5.4.1. A broadcast packet from an initiator is delivered to all the targets in

the network, and each target receives the broadcast packet strictly once.

In the DSPIN NoC, the broadcast replication policy consists in replicating, and for-
warding the packet based on the X-first routing algorithm:

• When the incoming port is WEST (resp. EAST), the packet is replicated and
forwarded to the EAST (resp. WEST), NORTH, SOUTH, and LOCAL output ports.

• When the incoming port is NORTH (resp. SOUTH), the packet is replicated and
forwarded to the SOUTH (resp. NORTH), and LOCAL output ports.

• When the incoming port is LOCAL, the packet is replicated and forwarded to
the EAST, WEST, NORTH, and SOUTH output ports.

This X-first broadcast replication policy inhibits the same turns as the X-first rout-
ing algorithm in order to guarantee the deadlock freedom. Additionally, as the X-
first routing algorithm guarantees that there exists a unique and deterministic path
between an initiator and a target, a target receives a broadcast packet only once.
Figure 5.6 shows an example of the broadcasting from the cluster (0, 1), where the
NoC replicates and forwards the broadcast packet according to the X-first replica-
tion policy.

The broadcast packet reaches all the clusters

using the X-first broadcast replication policy

The broadcast packet cannot reach all the

clusters after the faulty router with the X-first

broadcast replication policy.

Figure 5.6 – Example of Packet Broadcasting With the X-First Replication Policy

However, when there are holes in the M2P NoC, the X-first replication policy can-
not deliver a packet to all clusters because some paths are broken. Figure 5.6 shows
another example where the router in coordinates (2, 1) is faulty, and the X-first repli-
cation policy cannot deliver a broadcast packet to all the clusters. Therefore, as for
the unicast communication, a new reconfigurable broadcast replication policy is
needed in order to bypass the holes, and guarantee the Property 5.4.1.

76

Chapter 5. NoC Reconfiguration

5.4.1 Recovery Broadcast Replication Policy

We propose a reconfigurable broadcast replication policy in order to support broad-
cast communications in any single-faulty-router topology. We called this mecha-
nism as recovery broadcast replication policy in the remainder of this chapter. As
for the recovery routing algorithm, the mechanism consists in creating a contour
around a hole in the NoC to allow the packets to bypass it.

The X-First broadcast replication policy explained above, determines how to repli-
cate, and forward a broadcast packet based on the input port. The recovery broad-
cast replication policy uses the input port, and the position of the router in the
contour of the hole. This is the value in the recovery reconfiguration register, and
therefore this mechanism does not need any additional configuration information.
When the recovery configuration register contains NORMAL, the routers use the de-
fault X-first broadcast replication policy. Otherwise, the routers in the contour of a
hole use the recovery broadcast replication policy.

The recovery firmware is in charge of modifying the reconfiguration register of the
NoC routers. Algorithm 5.1 details the recovery broadcast replication policy imple-
mented in the routers, and Figure 5.7 illustrates this replication policy by showing
all the possible directions to which a router can forward a broadcast packet.

TW→N

TW→S TE→S

NNW NE

SSW SE

W E

Figure 5.7 – NoC Forwarding Possibilities of the Recovery Broadcast Replication Policy

The forwarding possibilities in Figure 5.7 are represented with arrows. With respect
to the X-first broadcast replication policy, the recovery broadcast replication pol-
icy adds some turns (TW→N, TW→S, and TE→S), it inhibits all the paths between the

77

Chapter 5. NoC Reconfiguration

N, and the NE routers, and it inhibits, in some cases, the forwarding of broadcast
packets between the S and the SE routers (dashed lines in Figure 5.7).

The turns TW→N, TW→S, and TE→S allow a broadcast packet to bypass the hole, and
reach all the clusters in the mesh. Additionally, the inhibited directions for forward-
ing are needed to guarantee that a packet is delivered strictly once to all clusters.
This is explained further in the following.

The reason why it is necessary to inhibit the broadcast packet forwarding between
the N and NE routers is illustrated in the example at the left of Figure 5.8: if the N

router forwards a broadcast packet to the NE router, the clusters with X ≥ XNE would
receive the broadcast packet twice, and Property 5.4.1 would not be met. However,
as it can be seen with the non-dashed lines, with the inhibition of the broadcast
packet forwarding between the N and NE routers, the broadcast packet reaches once
all clusters, and Property 5.4.1 is met.

NW N NE

SW S SE

W E

NW N NE

SW S SE

W E

Figure 5.8 – Examples of the Recovery Broadcast Replication: It is Illustrated Why the Inhibition of
the Packet Forwarding Between the N and NE Routers, and the S and SE Routers is Necessary

In the previous examples, the broadcast packet forwarding between the S and the
SE routers was permitted. The example at the right of Figure 5.8 shows a case where
the S → SE forwarding, and the turn TE→S, need to be inhibited to guarantee the
unicity of the broadcast delivery.

Therefore, the S and SE routers need a mechanism to decide whether the broadcast
packet should be forwarded to S (or SE), or not. The only cases where the S and SE

routers must inhibit the broadcast packet’s forwarding between each other (called
special forwarding), is when the broadcast source cluster is above the contour of
the hole (Y > Yhole+1), as for the example at the right in Figure 5.8. In that case, the
broadcast packet reaches all the clusters in the same row than the source, and then
goes downwards and upwards through all the columns. The clusters in the south
direction of the hole are reached with the turn TW→S (Figure 5.7). However, as the
packet is going downwards on all columns, the routers S and SE do not need to
forward the packet to each other column.

78

Chapter 5. NoC Reconfiguration

Algorithm 5.1: Recovery Broadcast Replication Policy

RecoveryBroadcastReplicationPolicy()

Input: PORTin: the input port from which the broadcast packet entered the router.

Input: CONFIG: the reconfiguration register’s Recovery Config value.

Input: (XL, YL): the router’s local coordinates.

Input: Special: special bit in the broadcast packet’s header.

begin
if PORTin = LOCAL then

Forward(NORTH)

Forward(SOUTH)

if CONFIG 6=N_OF_X or XL = 0 or YL = 1 then
Forward(EAST)

if CONFIG 6=NE_OF_X or XL = 1 or YL = 1 then
Forward(WEST)

else if PORTin =NORTH then
Forward(SOUTH)

if CONFIG = SW_OF_X then
Forward(EAST)

if CONFIG = SE_OF_X and (XL = 1 or Special) then
Forward(WEST)

Forward(LOCAL)

else if PORTin = SOUTH then
Forward(NORTH)

if CONFIG =NW_OF_X then
Forward(EAST)

if CONFIG =NE_OF_X and (XL = 1 or YL = 1) then
Forward(WEST)

Forward(LOCAL)

else if PORTin = EAST then
if CONFIG 6=NE_OF_X or XL = 1 or YL = 1 then

Forward(WEST)

Forward(NORTH)

Forward(SOUTH)

Forward(LOCAL)

else if PORTin =WEST then
if CONFIG 6=N_OF_X or YL = 1) and (CONFIG 6= S_OF_X or Special)

then
Forward(EAST)

Forward(NORTH)

Forward(SOUTH)

Forward(LOCAL)

end
end

79

Chapter 5. NoC Reconfiguration

We propose to use a bit in the header flit of a broadcast packet to signal that the
special forwarding must be used. As this special forwarding is needed when the
broadcast packet’s source is above the contour of a hole, the routers N and NE are
in charge of setting the special bit when they receive a broadcast from their NORTH

input port. Then, as the packet is replicated and forwarded downwards on their
respective columns, the routers S and SE will receive the packets with the special
bit set.

In TSAR, there were several unused bits in the header flit of a broadcast packet,
therefore one of these bits is used for the special bit.

5.4.2 Verification of the Recovery Broadcast Replication Policy

The verification of the recovery broadcast replication policy is two-fold: first, we
need to verify that the broadcast packets’ forwarding is deadlock free. Second, we
need to verify that a broadcast packet, independently of its source and the hole
position, reaches all the other functional clusters of the architecture strictly once
(Property 5.4.1).

In order to probe that the recovery broadcast replication policy is deadlock free, we
used the theorem from Dally and Seitz [6], which states that a network is deadlock
free if and only if the channel dependency graph (CDG) does not contain any cycle.
The CDG is a directed graph, where the vertices are the inter-router channels, and
the edges represent a possible path between two channels defined by the routing
algorithm. Figure 5.9 illustrates the CDG for a router implementing the X-first rout-
ing algorithm. The dependencies of the LOCAL channels are not shown for the sake
of clarity.

NORTH

SOUTH

EASTWEST

LO
CAL

Figure 5.9 – Channel Dependency Graph of a Router Implementing the X-First Routing

As explained below, we need to support the recovery broadcast replication policy in
the M2P NoC. This NoC implements both unicast and broadcast transactions, thus
the CDG include the channel dependencies for both styles of communication.

80

Chapter 5. NoC Reconfiguration

We realized a C++model with the Boost Graph Library [29] of the CDG in a 10×10
mesh with a hole in all the 100 possible coordinates. In none of the 100 resulting
CDGs there was a cycle, so we can conclude that the recovery broadcast replication
policy is deadlock free.

Regarding the verification of Property 5.4.1, we simulated a virtual prototype of a
10×10 mesh. Each node of the mesh consists of a broadcast initiator, a simple tar-
get, and a reconfigurable router implementing the recovery broadcast replication
policy. We simulated all possible single-faulty-router scenarios: 100 possible coor-
dinates for the hole, and 99 possible sources for the broadcast. In all 9900 simula-
tions, the broadcast was delivered strictly once to all the clusters in the mesh.

5.5 Conclusion

In this chapter we presented the NoC reconfiguration phase of our fault-tolerance
strategy.

When there are holes in the NoC, the communication between clusters is broken,
and a reconfiguration mechanism is needed to modify the global routing function,
and repair the intercluster communication.

We proposed a fully software-based solution to locate the holes in the NoC, and to
reconfigure reliably the routers in the contour of holes. This allows modifying the
global routing function, and repair the intercluster communication. We suppose
that the routers implement the reconfigurable cycle-free contour routing algorithm
proposed by Zhang, Greiner, and Taktak [15].

The holes’ location is known from the global map of communication resources,
built in the previous phase of the distributed recovery firmware (Chapter 4), and the
NoC reconfiguration is performed by means of software reconfiguration messages
sent by the global leader through the FFST. This fully software-based approach re-
duces the hardware overhead of our fault-tolerance strategy.

Additionally, in this chapter we proposed a new mechanism to reallocate the mem-
ory segment of a deactivated cluster to one of its neighbors, and therefore reduce the
memory loss incurred by hard faults. This segment reallocation is implemented by
modifying the global routing function of the NoC in order to reroute packets whose
destination is a deactivated cluster. The mechanism benefits of the communication
resources redundancy provided by the L2-L3 interconnect in the TSAR architecture.

And finally, we proposed a mechanism allowing the NoC to support broadcast com-
munications in the presence of holes. This is an important feature because many-
core architectures use generally broadcast communications for hardware cache co-
herency. The proposed mechanism is scalable because it is logic-based (it does not
use any kind of forwarding table), and uses the same information as for the recovery
routing algorithm: the relative position of the local router with respect to the hole.
We called this mechanism as recovery broadcast replication policy.

81

Chapter 5. NoC Reconfiguration

The recovery broadcast replication policy has been verified to be deadlock free in
any single-faulty-router topology. We also verified that the recovery broadcast repli-
cation policy guarantees that a broadcast packet reaches all the functional clusters
in the architecture (independently of its source, or the position of the hole), and we
verified the unicity of the broadcast delivery (each clusters receives strictly once the
same broadcast packet).

82

Chapter 6

Experimental Results and Evaluation

Contents

6.1 Introduction . 84

6.2 Virtual Simulation Prototype . 84

6.3 Fault Model . 86

6.4 Performance Evaluation . 87

6.4.1 Distributed Software-Based Fault Location Latency 88

6.4.2 NoC Reconfiguration Latency . 91

6.4.3 Available Computational Power . 92

6.4.4 Linux Kernel Boot in a Defective Architecture 94

6.5 Hardware Cost . 94

6.6 Conclusion . 95

83

Chapter 6. Experimental Results and Evaluation

6.1 Introduction

In this chapter we evaluate our proposed fault-tolerance mechanism for shared-
memory many-core architectures. Our evaluation is two-folded: on the one hand,
we evaluate its performance, and on the other hand, we evaluate its hardware cost.

Regarding the performance, in Section 6.4.1, we evaluate the latency of the fault-
tolerance mechanism. As this mechanism is executed at every processor power-on,
it is important that the latency is kept low. We also analyze the percentage of faulty
cores supported by the fault-tolerance mechanism.

Regarding the hardware cost, in Section 6.5, we evaluate the hardware overhead in-
troduced by our fault-tolerance mechanism. We pay special attention to the cost
induced by the distributed ROMs containing the fault-recovery firmware.

This evaluation has been performed on a cycle-accurate SystemC [30]–[32] virtual
prototype of the TSAR many-core processor. The TSAR many-core processor has
a complete register-transfer level (RTL) specification, but we chose to perform the
evaluation on the SystemC virtual prototype for the faster simulation speed.

Additionally, we performed a validation of the fault-tolerance mechanism by exe-
cuting the Linux kernel [33] on the virtual prototype with a partially defective plat-
form. In these experimentations, the recovery firmware locates the faulty devices,
then loads the Linux kernel, and passes to this last a Device Tree Blob (DTB) struc-
ture with the modified hardware platform (all faulty devices are removed from the
original description).

The outline of this chapter is the following: Section 6.2 describes the virtual pro-
totype of the TSAR architecture, Section 6.3 describes the fault model, Section 6.4
evaluates the performance of the fault-tolerance mechanism, Section 6.5 evaluates
the silicon cost, and finally, Section 6.6 concludes this chapter.

6.2 Virtual Simulation Prototype

The validation and evaluation of the proposed solution have been performed using
a cycle-accurate and bit-accurate (CABA) SystemC virtual prototype of the TSAR
many-core architecture [7]. Due to the high accuracy with which these models rep-
resent the hardware components, the obtained measures are almost the same as
the ones that would be obtained on the hardware prototype.

The TSAR virtual prototype is developed with the SoCLib [34] library hosted by the
LIP6 laboratory. SoCLib is mainly a library of SystemC simulation models (IPs) for
the virtual prototyping of multi-processor system-on-chip (MP-SoC).

Of course, the virtual prototype of the TSAR architecture has been modified to in-
troduce the various hardware modifications required by the fault-tolerance mech-
anism:

84

Chapter 6. Experimental Results and Evaluation

• One ROM per cluster, which contains the recovery firmware.

• One watchdog timer in each L1 cache controller (Section 4.2.1).

• The L1 and L2 caches controllers’ FSMs have been modified to support the
coherence networks test mechanism (Section 4.3).

• The hardware gateway barrier in the local interconnects (Section 4.1.4).

• The scratchpad mode in the L2 cache controller.

• The recovery routing algorithm, the segment reallocation mechanism, and
the recovery broadcast replication policy were implemented in the DSPIN
routers of the NoCs (Chapter 5).

Additionally, the virtual prototype was modified to allow the injection of faults (ac-
cording to the fault model described in Section 6.3).

Figure 6.1 illustrates a TSAR cluster with all the additional hardware required for
our fault-tolerance mechanism, and Figure 6.2 shows a logical view of the complete
virtual prototype. The virtual prototype used for these experimentations is a sim-
plified version of TSAR without the third level of caches, and the associated NoCs
(between the L2 and L3 caches). However, it contains a NoC (XRAM interconnect)
for interconnecting the L2 caches (called MEMC on Figure 6.2), IO bridges and ex-
ternal RAMs (XRAMs), and an external NoC (IO interconnect) interconnecting the
IO bridges and external peripherals.

LOCAL INTERCONNECTS (M2P. P2M, CLACK, CMD, RSP)

PROC0

Memory

Cache (L2)

DMA

Recovery

Firmware’s

ROM

XICU

M2P P2M CLACK CMD RSP

Configuration from XICU

Gateway

Hardware

Barrier Enable

From the XICU

Reconfiguration Signals

Coherence Test

Watchdog

PROC0

Coherence Test

Watchdog

PROC0

Coherence Test

Watchdog

PROC1

Coherence Test

Watchdog

PROC0

Coherence Test

Watchdog

PROC2

Coherence Test

Watchdog

PROC0

Coherence Test

Watchdog

PROC3

Coherence Test

Watchdog

Coherence Test

Scratchpad Mode

BIST BIST BIST BIST BIST

DSPIN

L1-L2

Routers

Figure 6.1 – TSAR Cluster with the Fault-Tolerance Additional Hardware

85

Chapter 6. Experimental Results and Evaluation

MEMC XICU DMA ROM MEMC XICU DMA ROM MEMC XICU DMA ROM

PROC0 PROC1 PROC2 PROC3 PROC0 PROC1 PROC2 PROC3 PROC0 PROC1 PROC2 PROC3

LOCAL INTERCONNECT LOCAL INTERCONNECT LOCAL INTERCONNECTIOB IOB

L1-L2 INTERCONNECT (2D DSPIN)

XRAM INTERCONNECT (2D DSPIN)

XRAMXRAM XRAM

TTY FBF NIC DMA IOC

IO INTERCONNECT

• DMA: Direct Access Memory Coprocessor

• FBF: Frame Buffer

• IOB: IO Bridge

• IOC: External Disk Controller

• MEMC: Memory Cache (L2)

• NIC: Ethernet Network Interface Controller

• PROC: Processor Core

• ROM: Recovery Firmware’s ROM

• TTY: Terminal

• XICU: eXtended Interrupt Controller Unit

• XRAM: eXternal RAM

Figure 6.2 – TSAR Virtual Prototype (Logical View)

6.3 Fault Model

Our simulation virtual prototype supports the injection of two kinds of faults: faulty
cores or faulty routers. For each simulation, we can choose precisely which cores
or routers are faulty by giving their coordinates. In the case of the NoC routers, we
choose also the type (CMD, RSP, M2P, P2M & CLACK).

When one or more of the five routers in a cluster are faulty, the entire cluster is de-
activated (all the processor cores in the cluster are idled), but the other non-faulty
routers are still activated, so they can be used even if the local cluster cannot.

Because of the hardware gateway barrier mechanism implemented in each cluster
(explained in Section 4.1.4), the clusters behave as black-holes at the beginning of
the simulation: all incoming packets at the gateway are consumed, and no packet
is produced. This hardware gateway barrier can only be released by the local cores
when the cluster passes its intracluster phase. In the case of a deactivated cluster,
as all its local cores are idled, the cluster behaves as a black-hole.

The actual distributed BIST of the NoC is not implemented in the virtual prototype:
when a faulty router is chosen to be faulty, it is deactivated from the beginning of
the simulation, and all its ports behave as black-holes.

Regarding the cores, when a faulty core is chosen to be faulty, it is self-deactivated
during the execution of the Software-Based Self-Test (SBST). The implemented SBST
executed during the intracluster phase is therefore very simple: in all distributed
ROMs, there is an array with the IDs of the faulty cores, and each core searches in
this array if there is a match for its own ID. In such case, the core self-deactivates.

86

Chapter 6. Experimental Results and Evaluation

6.4 Performance Evaluation

The evaluations were performed by the simulation of various sizes of the architec-
ture: 4, 8, 16, 32, 64, 128 and 256 clusters (each cluster containing 4 processor cores).

Our entire proposed fault-tolerance mechanism consists in the following four stages:

1. Hardware-Based NoC Fault Detection.

2. Distributed Software-Based Fault Location.

3. Hardware-Assisted NoC Reconfiguration.

4. OS Loading.

The hardware-based NoC fault detection stage refers to the distributed BIST exe-
cuted at the processor power-on to detect faults in the routers and channels of the
NoC. As explained in Section 1.5, our fault-tolerance mechanism uses existent fault-
detection solutions for both the NoC, and the processor cores. In the case of the
NoC, we use as a reference the distributed BIST proposed by Zhang, Greiner, and
Benabdenbi [11]. The latency of this mechanism is less than 300 clock cycles.

The distributed software-based fault location stage refers to the distributed and co-
operative fault-location procedures executed by the internal cores, after the NoC
BIST. These procedures allow the creation of a global map describing the opera-
tional hardware, which contains both the computational (i.e. cores and memory
banks) and communication (i.e. NoC routers) devices. The latency of this stage is
analyzed in Section 6.4.1.

The hardware-assisted NoC reconfiguration stage refers to the procedure executed
by all the local leaders in the FFST, and coordinated by the global leader, to recon-
figure the NoC, and change the global routing function. This reconfiguration allows
repairing the intercluster communication, which is broken when there are holes in
the NoC (faulty routers); and allows the reallocation of memory segments of deac-
tivated clusters to its neighbors, in order to reduce the performance degradation
induced by faults. The latency of this stage is analyzed in Section 6.4.2.

The latency of the OS loading stage is not analyzed, because it is strongly dependent
on the throughput of the external disk controller.

Section 6.4.3 analyzes the number of tolerated faulty cores. The recovery firmware
needs the many-core processor to meet some conditions in order to recover from
failures. When the number of faulty cores increases, some of these conditions may
be violated, and the processor is not able to recover. In this section we analyze this
problem.

And finally, Section 6.4.4 describes our experimentations on loading and executing
the Linux kernel in a partially defective architecture.

87

Chapter 6. Experimental Results and Evaluation

6.4.1 Distributed Software-Based Fault Location Latency

The procedures executed during the distributed software-based fault location stage
are organized in several phases (explained in Chapter 4): processor cores’ SBST, in-
tracluster neighbors’ discovery, local leader’s election, intercluster neighbors’ dis-
covery, FFST (Fault-Free Spanning Tree) construction, and the distributed informa-
tion gathering. At the end of these procedures, the FFST software-based commu-
nication infrastructure is built, and the global leader has a global map of the oper-
ational hardware.

FFST’s Construction Latency

The FFST’s construction latency considers all the phases until the FFST is actually
built: from the cores’ SBST, to the distributed algorithm to build the FFST.

Figure 6.3 shows this latency with respect to the size of the architecture (in terms of
the number of clusters), and the percentage of randomly injected faulty cores.

0 32 64 96 128 160 192 224 256
0

100

200

300

400

Number of Clusters

L
a

te
n

c
y

(K
c
y

c
le

s
)

Faulty

Cores (%)

0%

15%

30%

45%

60%

75%

Figure 6.3 – Fault-Free Spanning Tree’s Construction Latency

Two important informations can be obtained from Figure 6.3:

1. The FFST’s construction latency grows linearly with the number of clusters,
and it is about 225 Kcycles in a 1024-cores architecture (16×16 mesh of clus-
ters).

2. There is a weak impact of the number of faulty cores on the latency. Only
when the percentage of faulty cores is larger than 45% the latency is affected.

88

Chapter 6. Experimental Results and Evaluation

The increase of the latency when the percentage of faulty cores is larger than 45%
can be explained by the increase in the number of deactivated clusters (clusters with
no functional cores), that has two consequences:

• The intercluster neighbors’ discovery takes longer because the functional clus-
ters test each neighbor several times before diagnosing it as faulty.

• The latency of the FFST’s construction procedure increases because it de-
pends on the diameter of the functional network. The FFST construction is
based on the propagation of messages in a neighbor-to-neighbor basis, and
if the diameter of the network increases, it takes longer to reach all the func-
tional clusters.

In a graph, the diameter is defined as the upper bound of the shortest distance be-
tween any two nodes. In a complete 2D mesh, the diameter is the Manhattan dis-
tance between two corner nodes. However, when the topology derived from deac-
tivated clusters is strongly modified, the diameter can be increased.

An example of a strongly modified topology is shown in Figure 6.4. In the right fig-
ure, there is no deactivated cluster, and the largest round-trip is 10. In the left figure,
the deactivated clusters modified the diameter, and the largest round-trip distance
is 16.

JOIN

ACCEPT

Figure 6.4 – Example of a Strongly Modified Topology Because of Deactivated Clusters

Black-Hole Location Procedure Latency

Figure 6.5 shows the latency of the black-hole location procedure. It is composed
of three parts:

1. The time required to send a broadcast message through the FFST to inform all
functional clusters that they must execute the black-hole location procedure.

2. The execution time of the black-hole location, which is executed in parallel
by all the functional clusters in the FFST.

3. The time needed to centralize the distributed information in the global leader’s
cluster.

89

Chapter 6. Experimental Results and Evaluation

0 32 64 96 128 160 192 224 256
0

200

400

600

800

Number of Clusters

L
a

te
n

c
y

(K
c
y

c
le

s
)

Faulty Router’s

Position

NW Corner

N Border

NE Corner

W Border

Center

E Border

S Border

SE Corner

Figure 6.5 – Black-Hole Location Procedure Latency with Respect to the Position of a Faulty Router
and the Number of Clusters in the Architecture

Data of Figure 6.5 are obtained from several single-faulty-router simulations. The
black-hole procedure’s latency is plotted with respect to the number of clusters in
the architecture, and the faulty router’s position. Figure 6.6 illustrates the faulty
router’s position used for simulations.

NNW NE

W E

S SE

Center

Figure 6.6 – Faulty Router’s Positions for the Black-Hole Location Latency Plots

From Figure 6.5 we can conclude that the black-hole location procedure latency in-
creases linearly with the number of clusters, and the maximum latency observed in
simulations is of 720 Kcycles in a 1024-cores architecture (256 clusters). Addition-
ally, we can observe that the latency is more affected when the faulty router is in
the middle column of the mesh (N, Center, and S cases). In these cases, there is a
latency increase of 35% with respect to all other cases (NW, W, NE, E and SE).

90

Chapter 6. Experimental Results and Evaluation

This increase can be explained because the latency of the black-hole location pro-
cedure is strongly dependent of the number of watchdog timeouts triggered within
its execution. During this procedure, all the local leaders try to reach all clusters, as
explained in Chapter 4, and the routers in the NoC use the X-first routing algorithm.
When there is a faulty router, some X-first paths are broken, and trigger a watchdog
timeout on the local leaders. The more timeouts are triggered, the more the local
leaders wait before testing all the clusters. Because of the central symmetry in a 2D
mesh, when the hole is in the middle column, the number of timeouts increases.

We can conclude, from Figure 6.3 and Figure 6.5, that the worst case latency of our
fault-location procedure is of at most 1.2 Mcycles in a 1024-cores architecture. This
value considers the latencies of both the FFST’s construction and the black-hole
location procedure, which allow the construction of the global map containing the
computational and communication operational resources of the architecture.

6.4.2 NoC Reconfiguration Latency

In this section we analyze the latency of the NoC reconfiguration software-based
procedure explained in Chapter 5. During this procedure, the global leader sends
through the FFST reconfiguration commands to all the clusters in the contour of
the faulty routers, in order to change the global routing algorithm of the NoC, and
bypass the holes.

The NoC reconfiguration latency is plotted in Figure 6.7 with respect to the number
of clusters, and the faulty router’s position.

We can observe that the latency depends on both:

1. The distance between the global leader and the faulty router.

2. The number of clusters in the contour of the faulty router.

In these simulations, as the cluster (0,0) is functional, it is the global leader of the
processor. Therefore, the farthest faulty router is in the NE position, and then in
the N or E positions. For these positions we find the longest latencies for the NoC
reconfiguration. As these are positions in the boundary of the mesh, their contours
are not complete.

As we can see in Figure 6.6, the NE cluster has three clusters on its contour, and the
N, and E clusters have each five clusters on their contours. However, when the faulty
router is in the center of the mesh, it has a complete contour of eight clusters, and
the reconfiguration latency is higher. We observed the worst NoC reconfiguration
latency in this case: 329 Kcycles.

From the latency analysis of the fault-location, and NoC reconfiguration proce-
dures, we can observe that the entire software-based fault-tolerance procedure takes
at most 1.5 Mcycles in order to reconfigure the hardware, and allow the processor
to recover from permanent failures.

91

Chapter 6. Experimental Results and Evaluation

0 32 64 96 128 160 192 224 256
0

100

200

300

400

Number of Clusters

L
a

te
n

c
y

(K
c
y

c
le

s
)

Faulty Router’s

Position

NW Corner

N Border

NE Corner

W Border

Center

E Border

S Border

SE Corner

Figure 6.7 – Network-on-Chip Reconfiguration’s Latency with Respect to the Position of a Faulty
Router and the Number of Clusters in the Architecture

This 1.5 Mcycles value does not take into account the latencies of the NoC BIST, and
the SBST. Considering the latency of the NoC BIST proposed in [11] (300 cycles), and
the latency in the SBST proposed in [12] (10 Kcycles), the total latency of the fault-
tolerance mechanism is still less than 1.6 Mcycles. This means that, if the clock
frequency of the processor is 1 GHz, the complete fault-tolerance mechanism takes
only 1.6 ms to be executed, which is negligible, compared to the operating system
boot.

6.4.3 Available Computational Power

Figure 6.8 shows the available computational power with respect to the number of
faulty cores in the architecture. As the clusters in the FFST represent the usable
computational hardware, the available computational power is the number of cores
in the FFST (reached cores). Each point in this figure is the arithmetic mean of the
number of reached cores on 100 simulations with a 256-cores architecture (64 clus-
ters). Table 6.1 shows the percentages of randomly injected faulty cores.

Ideally, the available computational power should be the complement of the faulty
cores (e.g. when there are 30% of faulty cores, the available computational power
should be the remaining 70% cores). This ideal case is represented with the dashed
line in Figure 6.8. The solid line represents the obtained computational power.

We can observe the actual computational power follows the ideal one while the per-
centage of faulty cores is less than 60%. After that, all the available functional cores
are not reached by the FFST, and some computational power is wasted. We can also
observe that after 80% (205) of faulty cores, the computational power is zero.

92

Chapter 6. Experimental Results and Evaluation

0 32 64 96 128 160 192 224 256
0

32

64

96

128

160

192

224

256

Number of Faulty Cores

N
u

m
b

e
r

o
f

R
e

a
c
h

e
d

C
o

re
s

(A
v
a

il
a

b
le

C
o

m
p

u
ta

ti
o

n
a

l
P

o
w

e
r)

Ideal

Arithmetic Mean for

100 Simulations

Figure 6.8 – Mean Available Computational Power on 100 Simulations with Respect to the Number
of Faulty Cores in an 8×8 mesh (64 clusters)

Percentage (%) Number of
Faulty Cores

0 0
15 39
30 77
45 116
60 154
75 192
80 205
85 218

Table 6.1 – Number of Faulty Cores Used for the Available Computational Power Plot

In Section 4.4.2, we explained that the processor can recover from failures (have a
computational power greater than 0) when there is at least one functional IO cluster,
and one of these functional IO clusters can reach more than N /2 clusters (where N

is the total number of clusters in the processor).

When the percentage of faulty cores is important, the number of deactivated clus-
ters is also important. Therefore, there is a high probability for IO clusters to be
faulty. Moreover, when the number of deactivated clusters is important, the archi-
tecture can be partitioned, and even if there are still functional IO clusters, these
cannot reach more than N /2 clusters. In such case, the processor cannot recover
from failures, and is useless.

However, we can observe that our software-based fault-tolerance solution supports
up to 75% of faulty cores, which is a surprisingly good result.

93

Chapter 6. Experimental Results and Evaluation

6.4.4 Linux Kernel Boot in a Defective Architecture

There exists a port of the Linux kernel for the TSAR architecture [35]. This port was
successfully executed in various prototypes of the architecture: a cycle-accurate
SystemC virtual prototype, a FPGA-based (Field Programmable Gate Array) proto-
type, and a hardware emulator-based 96-cores prototype.

In the framework of this work, we have executed the Linux kernel in a partially de-
fective virtual prototype of TSAR with 16 clusters (64 cores). Different configura-
tions of faulty cores and faulty routers were introduced, and the Linux Kernel was
successfully run in all simulations.

In these experimentations, the recovery firmware is acting as a smart distributed
boot-loader executed at the processor power-on: the recovery firmware locates the
faulty devices, builds a global map of the operational hardware, reconfigures the
NoC when there are holes, and finally boots the Linux kernel. The booting process,
which is the final stage of our recovery firmware, performs first a translation of the
global map of the operational hardware to the Device Tree Blob (DTB) format, saves
the resulting data structure in memory, loads the Linux kernel from the external disk
controller, and passes to the kernel a pointer to the DTB. Then, the Linux kernel
parses the DTB, and adapts to the subjacent hardware architecture.

6.5 Hardware Cost

In order to implement our proposed fault-tolerance mechanism for shared-memory
many-core architectures, some additional hardware mechanisms need to be imple-
mented. These mechanisms have been listed in Section 6.2.

All the mechanisms, except for the recovery firmware’s ROM, have a negligible hard-
ware cost. Regarding the ROM, we evaluate its cost with respect to the size in num-
ber of memory bits. The required capacity of the on-chip distributed ROM is 10.8
Kbytes (per cluster) without a real SBST. If we consider the SBST proposed in [12] (7
Kbytes), the total required capacity per cluster’s ROM is 17.8 Kbytes.

In the TSAR architecture, the L1 and L2 cache controllers have a capacity of 32
Kbytes (16 Kbytes for data, and 16 Kbytes for instructions) and 256 Kbytes, respec-
tively. As there are four L1 cache controllers, and one L2 cache controller per clus-
ter, the total memory bits considering all the cache controllers in a cluster is 512
Kbytes. Therefore, the 17.8 Kbytes of the recovery firmware’s ROM represents less
than a 3.5% overhead on the total memory bits of a cluster.

Considering that the area of a ROM memory cell is much smaller than a SRAM mem-
ory cell (used for caches’ memory), we estimate the area overhead to be less than
1% of the total silicon area.

94

Chapter 6. Experimental Results and Evaluation

6.6 Conclusion

In this chapter, we evaluated the fault-tolerance mechanism proposed in Chapter 4
and Chapter 5. In particular, we evaluated the latency, and the hardware cost.

Regarding the latency, we implemented the proposed mechanism in the SystemC
cycle-accurate virtual prototype of the TSAR architecture. Various simulations were
performed with different faulty configurations in order to estimate the worst case
execution latency. We obtained that the distributed software-based fault-location
procedure to build the global map of the operational hardware, and the subsequent
reconfiguration of the NoC, takes at most 1.6 ms with a processor’s clock frequency
of 1 GHz. The latency evaluation is important because the recovery firmware is ex-
ecuted at each processor’s power-on, but the 1.6 ms latency is negligible compared
to the operating system boot latency.

Regarding the hardware cost, we estimate the hardware overhead caused by the dis-
tributed firmware to be less than 1% of the total silicon area. Therefore, we consider
the hardware cost of our complete fault-tolerance mechanism to be affordable.

Another important measure that we have presented in this chapter is the percentage
of tolerated faulty cores in the processor. We found that the procedure can tolerate
up to 75% of faulty cores.

Finally, we have also validated our fault-tolerance mechanism by booting and exe-
cuting successfully the Linux kernel in a partially defective virtual prototype of the
TSAR architecture (previously reconfigured by the distributed recovery firmware).

95

Chapter 7

Fault-Tolerance Extension for
Interconnects above the
Computational Layer

Contents

7.1 3D NoCs Organization . 98

7.2 Physical Address Space Distribution for L3 Cache Controllers 99

7.3 Fault-Tolerance Mechanism Overview. 100

7.4 Software-Based Fault Location on the 3D NoCs 100

7.4.1 Specific Test Hardware Mechanism 101

7.4.2 Black-hole Location Procedure . 101

7.5 Reconfigurable Routing Algorithm for 3D NoCs 103

7.5.1 L2-L3 CMD NoC Recovery Routing Algorithm. 103

7.5.2 L2-L3 RSP NoC Recovery Routing Algorithm 105

7.6 Faulty Routers in the Bottom Layer . 105

7.7 Hardware-Assisted Reconfiguration of the 3D NoCs. 106

7.8 Evaluation . 107

7.8.1 Performance Evaluation . 107

7.8.2 Hardware Cost . 107

7.9 Conclusion . 108

97

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

The mechanism presented in chapters 4 and 5 allows the processor to support faulty
cores, faulty memory banks, and faulty routers in the NoCs interconnecting L1 and
L2 cache controllers. In this chapter, we propose an extension to support perma-
nent failures in the interconnects above the computational layer.

7.1 3D NoCs Organization

As explained in Chapter 1, the TSAR architecture has two additional interconnects
above the computational layer: the first is the L2-L3 interconnect, which provides
the communication between L2 cache controllers, external peripherals (through
the IO bridges) and L3 cache controllers, and the second is the XRAM interconnect
which provides the communication between L3 cache controllers and external RAM
controllers.

The L3 cache controllers are physically implemented above the computational layer
using a 3D stacking technology. As one or more L3 cache layers can be implemented,
the interconnects above the computational layer use thus a 3D-mesh topology. The
routers in these NoCs use a modified DSPIN architecture with two additional ports:
UP, and DOWN [8]. A 3D router in the L2-L3 interconnect is illustrated in Figure 7.1.

DOWN

(X, Y, Z-1)

L3 Cache

(X, Y, Z)

UP

(X, Y, Z+1)

SOUTH

(X, Y-1, Z)

NORTH

(X, Y+1, Z)

WEST

(X-1, Y, Z)

EAST

(X+1, Y, Z)

(X, Y, Z)
LOCAL

Figure 7.1 – 3D Router in the L2-L3 Interconnect

These interconnects consist each in two NoCs: one for commands, and one for re-
sponses. In the L2-L3 interconnect, the L2 cache controllers and IO bridges are the
initiators, and the L3 cache controllers are the targets. In the XRAM interconnect,
the L3 cache controllers are the initiators, and the external RAM controllers are the
targets. During normal operation, the L2 cache controllers initiate transactions to
the L3 cache controllers when there is a cache miss, or a cache line eviction; and the
same for the L3 cache controllers toward the XRAM.

The computational layer is interconnected with the bottom layer of the L2-L3 NoCs.
From the computational layer, the initiators are the L2 cache controllers or the IO
bridges in the clusters (0, 0) and (XSIZE-1, YSIZE-1). Figure 7.2 illustrates the in-
terconnection between the computational layer and the bottom layer of the L2-L3
NoCs. The L2 cache controllers (or IO bridges) are logically connected to the first
layer of L3 caches (Z = 0), but are physically on the bottom.

98

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

L3 Cache

(X, Y, 1)

(X, Y, 1)
LOCALOUT

L3 Cache

(X, Y, 0)

(X, Y, 0)
LOCALOUT

L2 Cache

(X, Y)

LOCALIN

X

Z
Y

L3 Cache

(X, Y, 1)

(X, Y, 1)
LOCALIN

L3 Cache

(X, Y, 0)

(X, Y, 0)
LOCALIN

LOCALOUT

L2-L3 CMD NoC L2-L3 RSP NoC

L2 Cache

(X, Y)

Figure 7.2 – Interconnection between the Bottom Layer of the CMD L2-L3 NoC and the Computa-
tional Layer

7.2 Physical Address Space Distribution for L3 Cache
Controllers

The physical memory address space is statically distributed among the L3 cache
controllers, and each manages an exclusive memory segment. This exclusive mem-
ory segment is determined by some bits of physical addresses.

Each L2 cache controller accesses only the L3 cache controllers above its cluster
(L3 cache controllers with the same (X, Y) coordinates) to enforce the data access
locality. Therefore, the (X, Y) coordinates of the memory segment managed by a
L3 cache controller are determined from the 8 MSB (most significant bits) of the
40-bits address (as for the L2 cache controllers in the computational layer).

The third coordinate Z is determined from other bits of the address. In order to
maximize the parallelism on the L3 cache controllers, we need to use the lowest
bits of the address (as these are the most frequently modified). However, these bits
cannot be in the bits used to index the L3 cache controllers, because the caches
would be underutilized.

In TSAR, each L3 cache controller has a 1 Mbyte capacity, and implements a set-
associative microarchitecture with 16-ways, 512 sets, and 128 bytes per line. There-
fore, the 17 LSB of the physical address are used by the cache (bits 0–16), and we use
the bits 17–18 for the Z coordinate (as shown in Figure 7.3).

99

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

Regarding the routing, the 3D DSPIN routers decode the addresses’ 10 MSB to de-
termine the target (X, Y, Z) coordinates. As the Z coordinate is not adjacent to the
X,Y fields in the 40 bits address, the input network interface controllers position the
Z coordinate after the X and Y coordinates in the packets’ header flit, before the
packets enter the NoC. Then, the output network interface controllers reposition
the Z coordinate on its original bits, at the exit of the network. This Z coordinate
swapping is illustrated in Figure 7.3.

032

ZX Y

616183539

032

L3

OFFSET

L3

SET INDEX

ZX Y

616303539

L3

OFFSET

L3

SET INDEX

Figure 7.3 – Physical Address Format in the L2-L3 CMD NoC, and Z Coordinate Swapping

7.3 Fault-Tolerance Mechanism Overview

In order to tolerate permanent failures in these interconnects, we need to address
the detection, location, containment, and reconfiguration issues.

Regarding the fault detection and containment, we propose to use the same type
of hardware BIST solution, executed at the processor power-on. It deactivates the
faulty routers as in the 2D mesh, and a deactivated router behaves as a black-hole.

Regarding the fault-location, we extend the recovery firmware (used in the compu-
tational layer) to locate the holes in the 3D NoCs, and build a map of the operational
hardware. This extension is explained in Section 7.4.

And finally, regarding the fault-reconfiguration, in Section 7.5, we extend the re-
configurable cycle-free contour routing algorithm (detailed in Chapter 2), to bypass
holes in the 3D meshes.

7.4 Software-Based Fault Location on the 3D NoCs

This section presents the software-based procedure to locate the holes in the 3D
NoCs of the TSAR architecture. At the processor’s power-on, the faulty routers in
these NoCs are deactivated by the distributed hardware BIST, but they need to be
located in order to build a global map of the operational communication resources.
Then, based on this map, the NoCs can be reconfigured to change the global routing
function and bypass the holes.

The idea is the same that for the black-hole location procedure in Section 4.5.2: ini-
tiators must trigger memory transactions in the L2-L3 interconnects to check which

100

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

paths are broken. However, the processor cores are not directly connected to these
L2-L3 NoCs.

7.4.1 Specific Test Hardware Mechanism

In order to ease the test of these NoCs, the proposed procedure uses a specific hard-
ware mechanism in the L2 cache controllers allowing the software to trigger a test
transaction in the L2-L3 interconnect. The principle was presented in Chapter 4 to
test the cache-coherency NoCs in the L1-L2 interconnects.

The mechanism defines in the L2 cache controllers three memory-mapped regis-
ters: the first register allows the software to write the coordinates (X, Y, Z) of the
target L3 cache controller; the second allows to store the data to send; and the
third stores the status of the test transaction (command/response). The software
writes the data to send, the coordinates of the target L3 cache controller, and the L2
cache controller triggers a write command on the L2-L3 command NoC. Then, the
L2 cache controller waits for a response on the L2-L3 response NoC.

When the L2 cache controller triggers a test transaction, it starts a watchdog timer.
If the response does not arrive before a specific threshold, the FAIL value is stored
in the status register. Otherwise, if the response is received before the timeout, the
L2 cache controller writes the SUCCESS value.

Then, the software reads the status register to check whether the test transaction
was successful or not.

7.4.2 Black-hole Location Procedure

The black-hole location procedure for L2-L3 interconnects is executed after the one
for the L1-L2 interconnects. At this point, each functional cluster is represented by
a local leader (a local processor core), and the FFST is built.

Additionally, as explained in Chapter 4, the L2 cache controllers behave as scratch-
pads (i.e. simple memory banks) after the processor power-on. This allows the re-
covery firmware to be executed without using the L2-L3 interconnects that have not
been tested yet.

When the local leaders receive the BLACK-HOLE LOCATION message from the global
leader, they locate the holes in the L1-L2 interconnects first, and then they locate
the holes in the L2-L3 interconnects. Each local leader tries to reach all the L3 cache
controllers from its local L2 cache controller using the mechanism described in
Section 7.4.1, and builds a Locally Discovered Routers Table (LDRT) data structure
for both the L2-L3 command NoC, and the L2-L3 response NoC. These LDRTs are
three-dimensional arrays, where each entry contains the status of a router in the
corresponding 3D NoC.

101

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

In TSAR, the L2-L3 command NoC uses a ZXY routing algorithm (a.k.a. Z-first rout-
ing), and the L2-L3 response NoC uses a XYThenDown routing algorithm (a.k.a. Z-

last routing). When a local leader reaches successfully a L3 cache controller, it tags
the routers in the path in the LDRT according to these routing algorithms.

Algorithm 7.1 shows the algorithm used for tagging the routers of the L2-L3 com-
mand NoC when a test transaction is performed successfully. The algorithm to tag
the routers in the L2-L3 response NoC is almost the same, but the tagging is per-
formed according to the XYThenDown algorithm.

When a local leader finishes the black-hole location procedure for each NoC (L1-L2
interconnects, and L2-L3 interconnects), they centralize the gathered LDRTs in the
global leader’s cluster. This centralization is performed recursively from the leaves
of the FFST to the root (as explained in Chapter 4).

In the LDRTs for the 3D NoCs, additionally to the status information of the routers,
each local leader stores its local X and Y coordinates. This will allow the global leader
to know for each L3 cache controller, which L2 cache controller can successfully
reach it. This information is used during the 3D NoCs reconfiguration (explained
in Section 7.7).

Algorithm 7.1: Tag ZXY Path Algorithm

TagZXYPath()

Input: LDRT3D: a table with the status of the routers in a 3D NoC

Input: IX , IY : the X and Y coordinates of the initiator cluster

Input: TX , TY , T Z : the X , Y and Z coordinates of the target L3 cache controller

begin
/* Tag the routers on the Z direction */

/* The initiators are always the L2 cache controllers (Z = 0) */

for z = 0 to TZ do
LDRT3D[IX][IY][z] = 1

end

/* Tag the routers on the X direction */

Xmin = min(IX , TX)

Xmax = max(IX , TX)

for x = Xmi n to Xma x do
if x 6= IX then LDRT3D[x][IY][TZ] = 1

end

/* Tag the routers on the Y direction */

Ymin = min(IY , TY)

Ymax = max(IY , TY)

for y = Ymi n to Yma x do
if y 6= IY then LDRT3D[TX][y][TZ] = 1

end
end

102

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

7.5 Reconfigurable Routing Algorithm for 3D NoCs

In this section we propose an extension to the reconfigurable cycle-free contour
routing to support holes in a 3D NoC. The new reconfigurable routing algorithm
allowing to bypass the holes is called in the remainder of this chapter as 3D recovery
routing algorithm.

There are two variants for the 3D recovery routing algorithm: one for the L2-L3 CMD
NoC routers, which implement the Z-first routing; and another for the L2-L3 RSP
NoC routers, which implement the XYThenDown routing algorithm.

For both NoCs (CMD & RSP) the proposed solution supports one faulty router per
layer. For example, if there are four L3 layers, the proposed recovery routing algo-
rithm can support at most four faulty routers on each NoC, if each faulty router is
in a different layer.

Each NoC router implements a 6-bits reconfiguration register which needs to be
modified by the software to modify the routing function. Figure 7.4 shows this re-
configuration register.

Recovery ConfigZ-First

6 bits

0345

UD_OF_X

Figure 7.4 – Reconfiguration Register for L2-L3 NoC Routers

The RECOVERY_CONFIG indicates the position of the router with respect to a hole
in the same layer (same XY plane), and can contain the same values as the 2D recov-
ery algorithm: NORMAL, NW_OF_X, N_OF_X, NE_OF_X, W_OF_X, E_OF_X, SW_OF_X,

S_OF_X, SE_OF_X. The UD_OF_X indicates that the router is either above (UP) or
below (DOWN) a faulty router. And finally, the Z-FIRST bit is only used in the case
of L2-L3 RSP NoC routers, and indicates that the router must use the Z-first routing
algorithm.

7.5.1 L2-L3 CMD NoC Recovery Routing Algorithm

In the L2-L3 CMD NoC, the command packets are issued from the bottom layer. The
initiators in this layer are the L2 cache controllers, or the IO bridges in IO clusters
(0,0) and (XSIZE-1, YSIZE-1). As explained in Section 7.2, the L2 cache controller
can only send commands to the L3 cache controllers that have the same X and Y
coordinates, but the IO bridges can send commands to any L3 cache controller. By
default, the routers in this NoC use the Z-first routing algorithm.

The Z-first routing algorithm consists in two phases: the first phase routes the packet
to the Z coordinate of the destination (vertical phase), and the second routes the
packet to the X and Y coordinates of the destination (horizontal phase).

103

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

The principle of the recovery routing algorithm for the CMD 3D NoC is the follow-
ing: if the routing of a packet is in the vertical phase, and the router above the cur-
rent one is faulty, the packet is forwarded to a neighbor router in the XY plane, so the
packet can continue its vertical phase. And, when the packet routing is in the hori-
zontal phase, and the current router is in the XY contour of a faulty router, the packet
is forwarded according to the 2D recovery routing algorithm detailed in Chapter 2.

An example of the 3D recovery routing algorithm is shown in Figure 7.5. In these
examples there are two L3 layers in a 3x3 clusters platform. In Figure 7.5 1 , the
IO bridge in the cluster (0,0) addresses the L3 cache controller in coordinates (X=1,

Y=2, Z=1), but there is a faulty router in coordinates (0, 0, 1). Therefore, during the
vertical phase, the packet is rerouted first to the (1, 0, 0) router, so it can be forwarded
up by this router. Figure 7.5 2 shows another example, where the same IO bridge
addresses the same cluster (1, 2, 1), but there is a faulty router in coordinates (1, 1,

1). Therefore, during the horizontal phase, the packet is forwarded around the hole
by the recovery routing algorithm.

N

E

UD

N NENW

EW

S SESW

UD

1 2X

Y
Z

(0,0,0)

(0,0,1) (0,0,1)

(1,2,1)

NE

(1,2,1)

(0,0,0)

Figure 7.5 – Examples of the 3D Recovery Routing Algorithm for the L2-L3 CMD NoCs

As it can be seen in Figure 7.5, the routers that need to be reconfigured in the L1-
L2 CMD NoC (when there is a hole) is the router below the hole, and the routers
on the XY contour around the faulty router. In the router below, the bit UD_OF_X

is set, and in the routers on the XY contour the RECOVERY_CONFIG is set with the
corresponding value.

When a router in the L2-L3 CMD NoC is faulty, the corresponding L3 cache con-
troller is deactivated. Because of the static physical distribution of the address space
on the L3 cache controllers, the associated memory segment should be removed
from the computational map, so the OS do not use it. However, it is possible to
implement the memory segment reallocation mechanism described in Chapter 5.

104

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

7.5.2 L2-L3 RSP NoC Recovery Routing Algorithm

The 3D recovery routing algorithm for the L2-L3 RSP NoC is similar but not identical
to the CMD NoC, because in the RSP NoC the response packets can be issued from
any layer, and the targets are always the L2 cache controllers, or the IO bridges in the
bottom layer. By default, the L2-L3 RSP NoC routers use the XYThenDown routing
algorithm.

The XYThenDown routing algorithm consists of the same two phases as the Z-first

routing algorithm, but it performs first the horizontal phase, and then the vertical
phase.

When a packet is in the vertical phase but the current router is on top of a faulty
router, the packet needs to be rerouted to a neighbor router in the same XY plane, so
it can go down. However, as the L2-L3 NoC RSP routers use by default the XYThen-

Down algorithm, the neighbor router will return the packet and create a live-lock.

In order to solve this problem, the RSP 3D recovery routing algorithm implements
the following behavior in the RSP NoC routers:

• The direct neighbors (north, south, east and west) of the router above the hole
implement the Z-first routing algorithm.

• All the routers in the XY contour of the hole are reconfigured to implement
the 2D recovery routing algorithm.

• When a router in the XY contour of a hole needs to forward a packet to the X
and Y coordinates of this hole, it sends the packet to the layer below.

Figure 7.6 shows an example of the RSP 3D recovery routing algorithm. In this ex-
ample, the L3 cache controllers in coordinates (1, 1, 2) and (2, 1, 2) send a response
packet to the clusters (1, 1, 0) and (0, 0, 0), respectively. As the router (1, 1, 2) is
above a faulty router, its bit UD_OF_X is set, and it forwards the packet to one of its
direct neighbors. Then, its direct neighbors have been reconfigured to implement
the Z-first routing algorithm, so they send the packet to the layer below. When the
router in the west of the faulty router receives the packet, as the X and Y coordinates
of the destination are the same as for the hole, this router sends the packet to the
layer below. In the bottom layer, the packet is routed normally to its destination.

7.6 Faulty Routers in the Bottom Layer

When there is a faulty router in the bottom layer (Z = 0), the corresponding (X,Y)

cluster cannot communicate with the L3 cache controllers.

When the affected cluster has been deactivated during the FFST construction pro-
cedure, its memory segment will be reallocated during the L1-L2 NoC reconfigura-
tion. Therefore, the L3 cache controllers above the deactivated cluster are still used
because they are accessed through one of its neighbor clusters.

105

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

X

Y
Z

(1,1,0)

Y

UDZF

ZF

ZF

ZF

(1,1,2)

N NENW

EW

S SESW

(0,0,0)

(2,1,2)

UD: UD_OF_X bit is set.

ZF: Z-first bit is set.

Figure 7.6 – Example of the 3D Recovery Routing Algorithm for the L2-L3 RSP NoC

However, when the affected cluster is functional, the entire memory segment asso-
ciated cannot be used anymore. This is a design decision: we prefer to deactivate
a memory segment instead of deactivate the four processor cores in the affected
cluster.

7.7 Hardware-Assisted Reconfiguration of the 3D NoCs

This sections explains how the recovery firmware reconfigures the routers in the
L2-L3 NoCs. After the black-hole location procedure (detailed in Section 7.4.2), the
global leader of the FFST has the global map of operational routers in these NoCs,
and can determine which routers need to be reconfigured according to the recon-
figurable 3D recovery routing algorithm (detailed in Section 7.5).

The global leader is in charge of modifying the reconfiguration registers in the L2-L3
NoCs routers. As the L2-L3 routers are not directly addressable, their reconfigura-
tion registers are implemented in the local L3 cache controller. Each L3 cache con-
troller has thus two memory-mapped registers: one for its local L2-L3 CMD router,
and another for its local L2-L3 RSP router.

In order to write in these reconfiguration registers, the global leader uses the specific
hardware mechanism detailed in Section 7.4.1. When there are holes in these NoCs,
some L3 cache controllers can be accessed from only a subset of the L2 cache con-

106

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

trollers. As explained in Section 7.4.2, the LDRT data structure for the L2-L3 NoCs
contains for each router which L2 cache controller can reach the corresponding L3
cache controller. Therefore, the global leader uses this information to know from
which L2 cache controller it needs to reconfigure the different routers.

This reconfiguration is performed after the one of the L1-L2 NoCs, so the global
leader can access directly the L2 cache controller of the functional clusters without
using the FFST. This reduces importantly the reconfiguration latency of the L2-L3
NoCs.

7.8 Evaluation

In this section, we evaluate the performance, and the hardware cost of the extension
to support permanent failures in the NoCs above the computational layer.

7.8.1 Performance Evaluation

The performance evaluation was made with a SystemC virtual prototype of the TSAR
architecture. This virtual prototype is the same as presented in Chapter 6, but it in-
cludes additionally the L2-L3 NoCs, and the L3 cache controllers. The maximum
number of clusters evaluated with this virtual prototype was 16 (4× 4 mesh), and
the prototype implemented four layers of L3 cache controllers.

Regarding the latency of the black-hole location procedure, the total latency to build
the global map of the communication resources is increased by 20 Kcycles.

Regarding the latency of the reconfiguration procedure, as the reconfiguration of a
L2-L3 NoC does not use the slow FFST software-based communication infrastruc-
ture, the reconfiguration is much faster than the reconfiguration of the L1-L2 NoCs.
We observed that the reconfiguration of a L2-L3 NoC, in order to bypass a faulty
router, needs at most 10 Kcycles (in contrast to the 75 Kcycles needed to reconfig-
ure a NoC of the L1-L2 interconnect).

From these results, we conclude that the total latency of the recovery firmware is
negligibly increased by the software procedures to 1) locate holes in the L2-L3 NoCs,
and 2) reconfigure these NoCs when there is a faulty router. Therefore, even with the
support of permanent failures in the 3D NoCs above the computational layer, the
latency of the software-based mechanism is still fully-acceptable.

7.8.2 Hardware Cost

The additional hardware mechanisms needed to support permanent failures in the
L2-L3 NoCs are:

1. Reconfiguration register in the 3D-DSPIN routers (6 bits).

107

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

2. Specific hardware mechanism in the L2 cache controllers to trigger test trans-
actions in the L2-L3 NoCs (one watchdog timer, two 32-bits registers for the
address and the test data, and one flip-flop for the test status).

3. Software procedures in the recovery firmware to locate the holes, and recon-
figure the routers in the L2-L3 interconnect (extra 2 Kbytes).

The total firmware size passes thus from 17.8 to 19.8 Kbytes. Therefore, we consider
that the complete fault-tolerance mechanism still has a very low hardware over-
head.

7.9 Conclusion

In this chapter, we presented an extension to the software-based fault-tolerance
mechanism in order to support in-the-field permanent failures on the NoCs above
the computational layer of the TSAR architecture. Shared-memory many-core ar-
chitectures implement generally various levels of interconnects to provide the com-
munication between the processor cores, different levels of cache memories, and
peripherals. Therefore, the mechanism presented in this chapter can also be used
for shared-memory many-core architectures other than TSAR.

In the case of TSAR, the interconnects above the computational layer use a 3D-mesh
topology. Therefore, we have extended the recovery routing algorithm presented in
Chapter 2, to support holes in this kind of topologies. We have proposed a recovery
routing algorithm based on the Z-first routing algorithm (for the L2-L3 CMD NoC),
and another based on the XYThenDown algorithm (for the L2-L3 RSP NoC).

The evaluation of the mechanism shows that its latency and its hardware cost are
negligible, so the complete fault-tolerance mechanism remains scalable.

108

Conclusion

In this chapter we answer the questions stated in the problem definition (Chapter 1),
and then we present some future work.

How to take benefit of the many-core architectures’ intrinsic redundancy in order
to tolerate permanent failures in cores, memory banks, and NoC components?

The proposed fault-tolerance mechanism is based on a recovery firmware, which
is executed by the internal processor cores (without any external intervention) at
every processor reset. It allows the processor to support permanent failures at fab-
rication time (improving yield), and in the field (improving lifetime). This firmware
consists in distributed and cooperative self-diagnostic procedures, which allow the
cores to self-test, locate the faulty hardware components, and reconfigure the hard-
ware.

How to locate the faulty routers, faulty cores, and faulty memory banks in order
to build a map of the operational hardware devices ?

Three stages can be distinguished in the recovery firmware: distributed software-
based fault location, hardware-assisted NoC reconfiguration, and OS loading.

The global map of the computational (cores and memory banks) and communica-
tion (NoC routers) operational resources is built during the distributed software-
based fault location stage. This stage is subdivided into several phases, consist-
ing each in distributed algorithms: discovery of local neighbors, election of a lo-
cal leader in each cluster, discovery of direct neighbor clusters, distributed and co-
operative construction of a reliable software-based communication infrastructure
(called FFST), location of faulty routers in the NoCs, and centralization of the dis-
tributed information through the FFST.

We evaluated the fault-tolerance mechanism in terms of latency, hardware cost,
and percentage of tolerated faulty cores. The latency and the percentage of toler-
ated faulty cores were investigated on the cycle-accurate virtual prototype of the
TSAR many-core architecture; and the hardware cost was investigated in terms of
the memory bits required by the distributed recovery firmware, and the other re-
quired fault-tolerance hardware mechanisms.

• Regarding the latency, we obtained a worst case execution latency of 1.6 Mcy-
cles to build the global map of the operational hardware, and to reconfigure
the NoC in a 1024-cores architecture. This represents 1.6 ms with a processor’s

109

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

clock frequency of 1 GHz. Therefore, even if the recovery firmware is executed
at each processor’s power-on, the 1.6 ms latency is negligible compared to
the operating system boot latency. Additionally, we observed that this latency
grows linearly with the number of clusters in the many-core architecture, so
it is scalable.

• Regarding the hardware cost, we estimate the hardware overhead caused by
the distributed firmware to be less than 1% of the total silicon area. Therefore,
we consider the hardware cost of our complete fault-tolerance mechanism to
be affordable.

• Regarding the percentage of tolerated faulty cores, we obtained that the fault-
tolerance mechanism supports up to 75% of faulty cores.

How to reconfigure the routers reliably when the existent hardware communica-
tion infrastructure is partially defective?

The hardware-assisted NoC reconfiguration is achieved via the FFST, which is used
by the elected global leader as a reliable software-based reconfiguration bus to mod-
ify the global routing function of the NoCs.

Regarding the fault-tolerant routing algorithm, the routers of the NoCs implement
the reconfigurable routing algorithm defined by Zhang, Greiner, and Taktak [15],
but we extended this algorithm with a mechanism to support the reallocation of
the physical memory segment of a deactivated cluster to one of its neighbors, and a
new routing algorithm to support broadcast communications in any single-faulty-
router topology. This new broadcast routing algorithm was proved deadlock free.

Additionally, we realized an extension to the fault-tolerance mechanism to support
failures in the 3D NoCs implemented above the computational layer of the TSAR
architecture. This extension is two-folded: on the one hand, we defined distributed
software procedures for the location of faulty routers, and their reconfiguration; and
on the other hand, we propose a 3D reconfigurable routing algorithm to support
faulty routers in these 3D NoCs.

How to transmit the map of the functional hardware devices to the OS so as to
support its execution on a degraded architecture?

Regarding the OS loading, we use the standard Device Tree Blob (DTB) description
to inform the OS of the operational hardware infrastructure at each processor re-
set. This DTB is built from the global map of computational resources, determined
during the distributed software-based fault location stage.

This mechanism was validated by loading the Linux Kernel on a defective archi-
tecture. We used the cycle-accurate virtual prototype of TSAR including our fault-
tolerance mechanism, we injected faulty components, and the distributed recovery
firmware launched the Linux kernel with a dynamically built DTB, containing the
description of the operational hardware infrastructure.

110

Chapter 7. Fault-Tolerance Extension for Interconnects above the Computational Layer

Future Work

Fault-Detection During the OS Execution

Our fault-tolerance mechanism locates the faulty devices, and reconfigure the ar-
chitecture at each power-on. This is essential to launch the operating system on a
reliable hardware platform. However, some systems can be executed during long
time, and permanent failures can appear during the execution. In that case, the OS
needs to implement some mechanism to automatically detect these failures, reboot
the hardware, and allow the recovery firmware to reconfigure the architecture.

The OS fault-detection mechanism can reuse the procedures in the recovery firmware.
This needs to be studied.

NoC Fault-Tolerance

The pre-existent NoC reconfigurable routing algorithm used in this work, and the
fault-tolerant broadcast routing algorithm proposed have a low silicon cost, but
support only single-faulty-router topologies.

However, in future integrated circuits with a high failure rate, it would be important
to tolerate more complex irregular topologies. Some state-of-the-art fault-tolerant
routing algorithms support such kind of topology, but presents a high hardware
overhead. Therefore, this problem needs also to be studied further.

111

Appendix A

Reconfigurable Cycle-Free Routing
Algorithm

Algorithm A.1 details the routing function implemented at each NoC router with
the fault-tolerant routing algorithm defined by Zhang, Greiner, and Taktak [15].

This fault-tolerant routing algorithm supports any single-faulty-router topology in
a 2D mesh. Each router contains a 4-bits configuration register, which modifies the
routing function of the router according to its position in the contour around a hole.
This configuration register can contain nine possible values: NORMAL, N_OF_X,

NE_OF_X, E_OF_X, SE_OF_X, S_OF_X, SW_OF_X, W_OF_X, NW_OF_X.

When the configuration register contains NORMAL, the router is not in the contour
around a hole, and implements the X-first routing function. Otherwise, the router is
in the contour around a hole, and the configuration value determines the position
with respect to this hole.

The reconfigurable cycle-free routing function at each router forwards the packets
according to the local coordinates of the router (XL, YL), the destination coordinates
(XD, YD), and the configuration value CFG.

113

Chapter A. Reconfigurable Cycle-Free Routing Algorithm

Algorithm A.1: Reconfigurable Cycle-Free Routing Algorithm

RecoveryRoutingAlgorithm()

Input: CFG: the reconfiguration register’s Recovery Config value.

Input: (XD, YD): the destination coordinates.

Input: (XL, YL): the local coordinates.

begin
if XD > XL then

if CFG ∈ {NE_OF_X , E_OF_X , SE_OF_X , S_OF_X , NORMAL } then
Forward(EAST)

else if CFG = N_OF_X then
if (YL = 1) or (XL = 0) or (YD ≥ YL) or (XD > (XL +1)) then Forward(EAST)

else Forward(WEST)

else if CFG = NW _OF_X then
if (YL = 1) or (YD ≥ YL) or (XD > (XL +2)) then Forward(EAST)

else Forward(SOUTH)

else if CFG = W _OF_X then
if (YL = 0) or (YD > YL) then Forward(NORTH)

else Forward(SOUTH)

else if CFG = SW _OF_X then
if (YD ≤ YL) or (XD > (XL +1)) then Forward(EAST)

else Forward(NORTH)

else if XD < XL then
if CFG ∈ {N_OF_X , NW _OF_X , W _OF_X , SW _OF_X , S_OF_X , NORMAL}

then
Forward(WEST)

else if CFG = NE_OF_X then
if (XD < (XL −1)) or (YD ≥ YL) then Forward(WEST)

else Forward(SOUTH)

else if CFG = SE_OF_X then
if (XL = 1) or (YD > (YL +1)) then Forward(NORTH)

else Forward(WEST)

else if CFG = E_OF_X then
if (YL = 0) or ((XL = 1) and (YD > YL)) then Forward(NORTH)

else Forward(SOUTH)

else if YD > YL then
if CFG 6= S_OF_X then Forward(NORTH)

else if XL 6= 0 then Forward(WEST)

else Forward(EAST)

else if YD < YL then
if CFG 6= N_OF_X then Forward(SOUTH)

else if XL 6= 0 then Forward(WEST)

else Forward(EAST)

end
Forward(LOCAL)

end

114

Bibliography

[1] S. Borkar, “Thousand Core Chips: A Technology Perspective”, in Proceedings

of the 44th Annual Design Automation Conference, ser. DAC ’07, New York,
NY, USA: ACM, 2007, pp. 746–749, ISBN: 978-1-59593-627-1. DOI: 10 . 1145/
1278480.1278667. [Online]. Available: http://doi.acm.org/10.1145/1278480.
1278667.

[2] J. Henkel, L. Bauer, N. Dutt, et al., “Reliable On-chip Systems in the Nano-
era: Lessons Learnt and Future Trends”, in Proceedings of the 50th Annual

Design Automation Conference, ser. DAC ’13, New York, NY, USA: ACM, 2013,
99:1–99:10, ISBN: 978-1-4503-2071-9. DOI: 10 . 1145/2463209 . 2488857. [On-
line]. Available: http://doi.acm.org/10.1145/2463209.2488857.

[3] International Technology Roadmap for Semiconductors (ITRS). (2013). Pro-
cess Integration, Devices, and Structures Report, [Online]. Available: http://
www.itrs.net.

[4] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection
Networks”, in Design Automation Conference, 2001. Proceedings, IEEE, 2001,
pp. 684–689. DOI: 10.1109/DAC.2001.156225.

[5] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Systems (Per-
formance, Reliability, Digital)”, AAI8506166, PhD thesis, Stanford, CA, USA,
1985.

[6] W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks”, IEEE Transactions on Computers, vol. C-36, no. 5,
pp. 547–553, May 1987, ISSN: 0018-9340. DOI: 10.1109/TC.1987.1676939.

[7] LIP6. (2015). TSAR, [Online]. Available: https://www-soc.lip6.fr/trac/tsar.

[8] E. Guthmuller, I. Miro-Panades, and A. Greiner, “Adaptive Stackable 3D Cache
Architecture for Manycores”, in 2012 IEEE Computer Society Annual Sympo-

sium on VLSI - ISVLSI, Amherst, MA, United States, Aug. 2012, pp. 39–44. DOI:
10.1109/ISVLSI.2012.36. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-00743530.

[9] I. Miro Panades, A. Greiner, and A. Sheibanyrad, “A Low Cost Network-on-
Chip with Guaranteed Service Well Suited to the GALS Approach”, in 1st In-

ternational Conference on Nano-Networks and Workshops - NanoNet ’06, Sep.
2006, pp. 1–5. DOI: 10.1109/NANONET.2006.346219.

[10] B. Johnson, “Fault-Tolerant Microprocessor-Based Systems”, IEEE Micro, vol.
4, no. 6, pp. 6–21, Dec. 1984, ISSN: 0272-1732. DOI: 10.1109/MM.1984.291277.

115

http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667
http://dx.doi.org/10.1145/2463209.2488857
http://doi.acm.org/10.1145/2463209.2488857
http://www.itrs.net
http://www.itrs.net
http://dx.doi.org/10.1109/DAC.2001.156225
http://dx.doi.org/10.1109/TC.1987.1676939
https://www-soc.lip6.fr/trac/tsar
http://dx.doi.org/10.1109/ISVLSI.2012.36
https://hal.archives-ouvertes.fr/hal-00743530
https://hal.archives-ouvertes.fr/hal-00743530
http://dx.doi.org/10.1109/NANONET.2006.346219
http://dx.doi.org/10.1109/MM.1984.291277

Bibliography

[11] Z. Zhang, A. Greiner, and M. Benabdenbi, “Fully distributed initialization pro-
cedure for a 2D-Mesh NoC, including off-line BIST and partial deactivation of
faulty components”, in 2010 IEEE 16th International On-Line Testing Sympo-

sium, IEEE, Jul. 2010, pp. 194–196, ISBN: 978-1-4244-7724-1. DOI: 10.1109/
IOLTS.2010.5560209.

[12] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-Based Self-
Testing of Embedded Processors”, IEEE Transactions on Computers, vol. 54,
no. 4, pp. 461–475, 2005.

[13] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Microprocessor
Software-Based Self-Testing”, IEEE Design and Test of Computers, no. 3, pp. 4–
19, 2010.

[14] S. Di Carlo, P. Prinetto, and A. Savino, “Software-Based Self-Test of Set As-
sociative Cache Memories”, IEEE Transactions on Computers, vol. 60, no. 7,
pp. 1030–1044, 2011.

[15] Z. Zhang, A. Greiner, and S. Taktak, “A Reconfigurable Routing Algorithm for
a Fault-Tolerant 2D-Mesh Network-on-Chip”, in Proceedings of the 45th an-

nual conference on Design automation - DAC ’08, New York, New York, USA:
ACM Press, 2008, pp. 441–446, ISBN: 9781605581156. DOI: 10.1145/1391469.
1391584.

[16] L. Zhang, Y. Han, Q. Xu, and X. Li, “Defect Tolerance in Homogeneous Many-
core Processors Using Core-Level Redundancy with Unified Topology”, in De-

sign, Automation and Test in Europe, 2008. DATE ’08, ACM, Mar. 2008, pp. 891–
896. DOI: 10.1109/DATE.2008.4484787.

[17] P. Zajac and J. Collet, “Production Yield and Self-Configuration in the Future
Massively Defective Nanochips”, in 22nd IEEE International Symposium on

Defect and Fault-Tolerance in VLSI Systems - DFT ’07, Sep. 2007, pp. 197–205.
DOI: 10.1109/DFT.2007.34.

[18] J. H. Collet, P. Zajac, M. Psarakis, and D. Gizopoulos, “Chip Self-Organization
and Fault Tolerance in Massively Defective Multicore Arrays”, IEEE Transac-

tions On Dependable and Secure Computing, vol. 8, no. 2, pp. 207–217, 2011.

[19] A. Kamran and Z. Navabi, “Online Periodic Test Mechanism for Homogeneous
Many-Core Processors”, in 2013 IFIP/IEEE 21st International Conference on

Very Large Scale Integration (VLSI-SoC), Oct. 2013, pp. 256–259. DOI: 10.1109/
VLSI-SoC.2013.6673285.

[20] F. Chaix, D. Avresky, et al., “Fault-Tolerant Deadlock-Free Adaptive Routing
for Any Set of Link and Node Failures in Multi-cores Systems”, in 9th IEEE

International Symposium on Network Computing and Applications (NCA), Jul.
2010, pp. 52–59. DOI: 10.1109/NCA.2010.14.

[21] ——, “A Fault-Tolerant Deadlock-Free Adaptive Routing for on Chip Intercon-
nects”, in Design, Automation Test in Europe Conference Exhibition (DATE),
Mar. 2011, pp. 1–4. DOI: 10.1109/DATE.2011.5763303.

116

http://dx.doi.org/10.1109/IOLTS.2010.5560209
http://dx.doi.org/10.1109/IOLTS.2010.5560209
http://dx.doi.org/10.1145/1391469.1391584
http://dx.doi.org/10.1145/1391469.1391584
http://dx.doi.org/10.1109/DATE.2008.4484787
http://dx.doi.org/10.1109/DFT.2007.34
http://dx.doi.org/10.1109/VLSI-SoC.2013.6673285
http://dx.doi.org/10.1109/VLSI-SoC.2013.6673285
http://dx.doi.org/10.1109/NCA.2010.14
http://dx.doi.org/10.1109/DATE.2011.5763303

Bibliography

[22] C. Cunningham and D. Avresky, “Fault-Tolerant Adaptive Routing for Two-
Dimensional Meshes”, in First IEEE Symposium on High-Performance Com-

puter Architecture, 1995, pp. 122–131. DOI: 10.1109/HPCA.1995.386549.

[23] C. J. Glass and L. M. Ni, “Fault-Tolerant Wormhole Routing in Meshes Without
Virtual Channels”, IEEE transactions on parallel and distributed systems, vol.
7, no. 6, pp. 620–636, 1996.

[24] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-Based Rout-
ing: an Efficient Fault-Tolerant Routing Algorithm for Meshes and Tori”, in
20th International Parallel and Distributed Processing Symposium, IPDPS, Apr.
2006, 10–pp. DOI: 10.1109/IPDPS.2006.1639341.

[25] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato, “Efficient Imple-
mentation of Distributed Routing Algorithms for NoCs”, IET Computers Dig-

ital Techniques, vol. 3, 460–475(15), 5 Sep. 2009, ISSN: 1751-8601.

[26] D. Gibson and B. Herrenschmidt, “Device Trees Everywhere”, OzLabs, IBM

Linux Technology Center, 2006.

[27] G. Likely and J. Boyer, “A Symphony of Flavours: Using the device tree to de-
scribe embedded hardware”, in Proceedings of the Linux Symposium, Volume

Two, Ottawa, Canada, 2008, pp. 27–38.

[28] A. van de Goor, “Using march tests to test SRAMs”, Design Test of Computers,

IEEE, vol. 10, no. 1, pp. 8–14, Mar. 1993, ISSN: 0740-7475. DOI: 10.1109/54.
199799.

[29] J. Siek, L.-Q. Lee, and A. Lumsdaine. (2015). Boost graph library, [Online]. Avail-
able: http://www.boost.org/libs/graph/.

[30] IEEE Computer Society, 1666-2011 IEEE Standard for SystemC Language Ref-

erence Manual, IEEE, 2012, ISBN: 978-0-7381-6801-2 STD97162.

[31] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemCTM.
Springer Science and Business Media, 2002.

[32] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the Ground

Up. Springer Science and Business Media, 2009, vol. 71.

[33] D. P. Bovet and M. Cesati, Understanding the Linux kernel. O’Reilly Media,
Inc., 2005.

[34] LIP6. (2015). SoCLib, [Online]. Available: http://www.soclib.fr.

[35] J. Porquet, A. Greiner, and C. Fuguet T., “Porting the Linux kernel to the TSAR
manycore architecture”, Design, Automation and Test in Europe University

Booth (DATE), 2015.

117

http://dx.doi.org/10.1109/HPCA.1995.386549
http://dx.doi.org/10.1109/IPDPS.2006.1639341
http://dx.doi.org/10.1109/54.199799
http://dx.doi.org/10.1109/54.199799
http://www.boost.org/libs/graph/
http://www.soclib.fr

	Résumé
	Remerciements
	List of Figures
	List of Algorithms
	List of Tables
	Outline
	Problem Definition
	Motivation
	Many-core Architectures
	Network-on-Chip (NoC)
	Globally-Asynchronous Locally-Synchronous (GALS)
	Routing Algorithm

	Tera-Scale Architecture (TSAR)
	Memory Hierarchy
	Networks-on-Chip

	Fault-Tolerance
	NoCs Routing Algorithm Reconfiguration
	Distributed Algorithms

	Problem Definition

	State of the Art
	Fault-Tolerance in Many-Core Processors
	Many-Core Yield Enhancement
	Many-Core Self-Organization
	Many-Core Distributed Cores Diagnosis

	Fault-Tolerant Routing Algorithms for NoCs
	Fault-Tolerant Routing Based on Virtual Channels
	Segment-Based Routing Algorithm
	Logic-Based Distributed Routing (LBDR)
	Cycle-Free Contour Fault-Tolerant Routing Algorithm

	Conclusion

	Distributed Recovery Firmware
	Global Procedure
	Hardware-Based NoC Fault Detection
	Distributed Software-Based Fault Location
	Hardware-Assisted NoC Reconfiguration
	Broadcast Support With Holes
	3D NoCs Reconfiguration
	Memory Segment Reallocation

	OS Loading
	Conclusion

	Distributed Fault-Location
	Intracluster Phase
	Software-Based Self-Test (SBST)
	Intracluster Local Neighbors' Discovery
	Local Leader Election
	Gateway Hardware Barrier

	Intercluster Phase
	Intercluster Neighbors' Discovery

	Coherence Networks
	Intracluster Coherence Networks Test
	Intercluster Coherence Networks Test

	Fault-Free Spanning Tree Construction
	FFST's Data Structure
	FFST's Construction Algorithm

	Map of Operational Resources
	Distributed Information Gathering
	Black-Holes Location Procedure

	Conclusion

	NoC Reconfiguration
	Introduction
	Reconfiguration Procedure
	Supported NoC Faulty Topologies

	Memory Segment Reallocation
	Implementation
	Limitations of the Segment Reallocation Mechanism

	Broadcast Support With Holes in the NoC
	Recovery Broadcast Replication Policy
	Verification of the Recovery Broadcast Replication Policy

	Conclusion

	Experimental Results and Evaluation
	Introduction
	Virtual Simulation Prototype
	Fault Model
	Performance Evaluation
	Distributed Software-Based Fault Location Latency
	NoC Reconfiguration Latency
	Available Computational Power
	Linux Kernel Boot in a Defective Architecture

	Hardware Cost
	Conclusion

	Fault-Tolerance Extension for Interconnects above the Computational Layer
	3D NoCs Organization
	Physical Address Space Distribution for L3 Cache Controllers
	Fault-Tolerance Mechanism Overview
	Software-Based Fault Location on the 3D NoCs
	Specific Test Hardware Mechanism
	Black-hole Location Procedure

	Reconfigurable Routing Algorithm for 3D NoCs
	L2-L3 CMD NoC Recovery Routing Algorithm
	L2-L3 RSP NoC Recovery Routing Algorithm

	Faulty Routers in the Bottom Layer
	Hardware-Assisted Reconfiguration of the 3D NoCs
	Evaluation
	Performance Evaluation
	Hardware Cost

	Conclusion

	Conclusion
	Reconfigurable Cycle-Free Routing Algorithm
	Bibliography

