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Résumé:

La complexité des CPUs s’est accrue considérablement depuis leurs débuts, in-
troduisant des mécanismes comme le renommage de registres, l’exécution dans le
désordre, la vectorisation, les préfetchers et les environnements multi-coeurs pour
améliorer les performances avec chaque nouvelle génération de processeurs. Cepen-
dant, la difficulté a suivi la même tendance pour ce qui est a) d’utiliser ces mêmes
mécanismes à leur plein potentiel, b) d’évaluer si un programme utilise une machine
correctement, ou c) de savoir si le design d’un processeur répond bien aux besoins
des utilisateurs.

Cette thèse porte sur l’amélioration de l’observabilité des facteurs limitants dans
les boucles de calcul intensif, ainsi que leurs interactions au sein de microarchitec-
tures modernes.

Nous introduirons d’abord un framework combinant CQA et DECAN (des outils
d’analyse respectivement statique et dynamique) pour obtenir des métriques détail-
lées de performance sur des petits codelets et dans divers scénarios d’exécution.

Nous présenterons ensuite PAMDA, une méthodologie d’analyse de performance
tirant partie de l’analyse de codelets pour détecter d’éventuels problèmes de perfor-
mance dans des applications de calcul à haute performance et en guider la résolution.

Un travail permettant au modèle linéaire Cape de couvrir la microarchitecture
Sandy Bridge de façon détaillée sera décrit, lui donnant plus de flexibilité pour
effectuer du codesign matériel / logiciel. Il sera mis en pratique dans VP3, un outil
évaluant les gains de performance atteignables en vectorisant des boucles.

Nous décrirons finalement UFS, une approche combinant analyse statique et
simulation au cycle près pour permettre l’estimation rapide du temps d’exécution
d’une boucle en prenant en compte certaines des limites de l’exécution en désordre
dans des microarchitectures modernes.

Mots Clés: codelet, analyse de boucle, analyse statique, analyse dynamique,
calcul intensif, HPC, optimisation, modélisation rapide, performance, exécution
dans le désordre, simulation au cycle près
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Abstract:

The complexity of CPUs has increased considerably since their beginnings, intro-
ducing mechanisms such as register renaming, out-of-order execution, vectorization,
prefetchers and multi-core environments to keep performance rising with each prod-
uct generation. However, so has the difficulty in making proper use of all these
mechanisms, or even evaluating whether one’s program makes good use of a ma-
chine, whether users’ needs match a CPU’s design, or, for CPU architects, knowing
how each feature really affects customers.

This thesis focuses on increasing the observability of potential bottlenecks in
HPC computational loops and how they relate to each other in modern microarchi-
tectures.

We will first introduce a framework combining CQA and DECAN (respectively
static and dynamic analysis tools) to get detailed performance metrics on small
codelets in various execution scenarios.

We will then present PAMDA, a performance analysis methodology leveraging
elements obtained from codelet analysis to detect potential performance problems
in HPC applications and help resolve them.

A work extending the Cape linear model to better cover Sandy Bridge and give
it more flexibility for HW/SW codesign purposes will also be described. It will be
directly used in VP3, a tool evaluating the performance gains vectorizing loops could
provide.

Finally, we will describe UFS, an approach combining static analysis and cycle-
accurate simulation to very quickly estimate a loop’s execution time while accounting
for out-of-order limitations in modern CPUs.

Keywords: codelet, loop analysis, static analysis, dynamic analysis, HPC,
optimization, fast modeling, performance, out-of-order, cycle-accurate simulation
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Chapter 1

Introduction

The growing complexity behind modern CPU microarchitectures [1, 2] makes per-
formance evaluation and modeling a very complex task. Indeed, modern CPUs will
typically implement features such as pipelining, register renaming, speculative and
out-of-order execution, data prefetchers, vectorization, virtual memory, caches and
multiple execution cores. While each of them can be beneficial to performance, they
also make performance analysis more difficult.

On the consumer side of the CPU design process, users want to know which
product fits their needs best in terms of performance, energy consumption and/or
price. Software developers will be more concerned with adjusting their applications
to make the best use of existing features, especially when performance represents a
direct competitive advantage.

On the designer side, CPU manufacturers need to build microarchitectures of-
fering the characteristics wanted by users while keeping costs low. Furthermore,
as product improvements may have to rely on complex mechanisms, they have to
guide software developers on how to use them while also having the contrary objec-
tive of preventing competitor plagia by controlling the exposure of their performance
recipes.

In this context, performance modeling can be used to cost-effectively:

1. Help users find out which hardware would best fit their applications (without
actually buying all the considered hardware first).

2. Expose optimization opportunities to software developers (without first testing
them).

3. Offer CPU architects insights on which hardware improvements would speed
user applications the most (without first implementing them).

This chapter will describe why performance modeling is important in the field
of High Performance Computing (HPC) and proceed to present the objectives and
contributions of this thesis. It will also provide a quick overview of the document.

1.1 High Performance Computing (HPC)

HPC represents the use of large-scale machines called supercomputers to process
compute workloads extremely quickly. It is used (and needed) in areas as diverse
as aerodynamic simulations, cryptanalysis, engine design, oil and gas exploration,
molecular dynamics or weather forecasting.

It is an environment with very interesting characteristics:

1. Performance is a primary objective and can result in hefty monetary gains.
For instance, a faster numerical simulator will be able to provide more results,
or/and results of a better quality, in domains as various as the design of cars,
plane wings, nuclear plants or the development of new drugs.
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2. The used supercomputers can have millions of execution cores [3], offering
potentially tremendous calculation speeds and making energy consumption
an unavoidable (and expensive) concern: a poorly used machine is a costly
machine.

3. Users and software developers can be strongly tied, or even be the same enti-
ties. It creates an interesting dynamic where developers are strongly motivated
to optimize their code to make the best use of existing resources, and may also
have a say in which machines to buy next.

As HPC applications typically spend very large amounts of time in compu-
tational loops due to processing large data sets, loop analysis is a primary go-to
approach for HPC performance analysis, optimization and modeling.

1.2 Objectives and Contributions

This thesis focuses on increasing the cost-effective observability of potential bottle-
necks in HPC computational loops and how they relate to each other. It aims to
do so by combining static and dynamic approaches to identify, quantify, and model
both the bottlenecks and their interactions.

Its main contributions are:

1. PAMDA, a performance evaluation methodology using a blend of static and
dynamic analyses to find bottlenecks and quantify their impact. Its main
purpose is to expose optimization opportunities.

2. An adaptation of the Cape linear model to the Sandy Bridge microarchitecture
as well as a direct application thereof with VP3, a vectorization gain predictor.

3. Uop Flow Simulation (UFS), a loop performance modeling technique com-
bining static analysis and cycle-level simulation to account for out-of-order
limitations at a very low execution cost.

Other less significant contributions include:

1. A loop performance measurement framework combining static and dynamic
analysis tools to evaluate loop performance from different angles.

2. An empirical approach to quantify out-of-order resources.

1.3 Overview

Chapter 2 will present some background information to familiarize readers with CPU
microarchitectural details and nomenclature, performance analysis approaches and
tools, as well as with the use of small benchmarks called codelets.

We will introduce a framework combining CQA and DECAN (respectively static
and dynamic analysis tools) in Chapter 3. Its objective is to get detailed performance
metrics on small codelets given various execution scenarios.

We will then present PAMDA, a performance analysis methodology, in Chap-
ter 4. It leverages elements obtained from codelet analysis to detect potential per-
formance problems in HPC applications and help resolve them.
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Chapter 5 will describe a work extending the Cape linear model to better cover
Sandy Bridge and give it more flexibility for HW/SW codesign purposes. It will
be directly used in Chapter 6 with VP3, a tool evaluating the performance gains
vectorizing loops could provide.

Chapter 7 will introduce UFS, an approach combining static analysis and cycle-
accurate simulation to very quickly estimate a loop’s execution time while accounting
for out-of-order limitations in modern CPUs, and better identifying out-of-order
related issues than PAMDA or Cape modeling.

We will finally conclude in Chapter 8, summarizing our contributions and pre-
senting future work.





Chapter 2

Background

This chapter will focus on presenting the technical context for this thesis and intro-
duce some of the nomenclature used throughout this manuscript.

It will first describe modern Intel microarchitectures detailedly, before presenting
different performance analysis approaches and tools. It will also explain some of
the advantages and limitations of codelets, small benchmarks which we will use for
modeling purposes in later chapters.

2.1 Recent Microarchitectures

Microarchitectures are the result of different design choices and incremental im-
provements carried over CPU generations. They are typically pipelined and feature
the following components:

1. Front-End (FE): component of reading and decoding instructions, making
them available to the rest of the execution pipeline.

2. Back-End (BE): executes the instructions provided by the Front-End.

3. Memory Hierarchy: caches can be used to improve the effective speed of mem-
ory accesses for both data and instructions.

We will present some of the microarchitectures particularly relevant to HPC
here, using information from official sources [4, 5, 6, 7, 8], technical news articles [9,
10, 11, 12, 13, 14, 15], test-based reports [16] and our own observations.

2.1.1 Sandy Bridge

Sandy Bridge (SNB) is a microarchitecture used in the performance-oriented Big
Core family of Intel CPUs. It is a tock in the manufacturer’s tick-tock development
cycle [17], meaning it keeps the same 32 nm lithography as itsWestmere predecessor,
but brings important microarchitectural changes.

It will be the microarchitecture this thesis most focuses on. We will present it
in details and later use it as a base point to describe the incremental improvements
brought by its Ivy Bridge and Haswell successors.

SNB Stock Keeping Units (SKUs) can have from 1 to 6 cores.

2.1.1.1 Front-End

Sandy Bridge’s decode pipeline (also called legacy decode pipeline) is in charge of
fetching instructions from the memory hierarchy and decoding them, producing uops
more easily interpretable by the Back-End. It is the component the most directly
affected by the complexity of the x86 instruction sets, and can produce up to 16
bytes of uop or 4 uops per cycle, whichever is the most restrictive. Furthermore, it
has branch prediction abilities, and can decode and provide uops speculatively.
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While it can typically only decode up to 4 instructions per cycle, it implements
extra features to increase its effective bandwidth:

1. Macrofusion: allows a simple integer instruction and a following branch in-
struction to be decoded as a single uop in certain circumstances. This actually
brings the maximum theoretical number of decoded instructions to 5 per cycle
in favorable corner cases.

2. Microfusion: complex instructions may need to get divided in smaller log-
ical operations (or components) when decoded to simplify the Back-End’s
work. Microfusion allows instructions having both an arithmetic and a mem-
ory components to be fit in a single uop for part of the pipeline despite this
constraint, potentially doubling the effective FE bandwidth. For instance,
MULPD (%rax), %xmm0 will occupy a single uop slot until each component
needs to be executed separately.

Figure 2.1: Simplified Sandy Bridge Front-End
Sandy Bridge’s Front-End can produce up to 4 uops using any of three different

generation mechanisms: the decoders (legacy pipeline), the Uop Cache and the Uop
Queue (when iterating over small loops). Only one uop source may be active at a
time.

Furthermore, as decoding is a slow and expensive process, Intel CPU architects
designed extra mechanisms to prevent instructions from having to be constantly
re-decoded, reducing the pressure on the legacy pipeline and increasing the FE’s
bandwidth (see Figure 2.1):

1. The uop queue: queues uops right before the RAT, allowing some FE or Back-
End stalls to be absorbed. A loop detection mechanism called Loop Stream
Detector detects when uops currently in the queue are part of a loop, and can
decide to a) stop taking uops from the legacy pipeline, b) not destroy the uops
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it sends to the Back-End and c) replay them as many times as necessary.
While its peak bandwidth is still 4 uops per cycle, there is no limit on the
number of transferred bytes anymore, increasing the effective FE bandwidth
when lengthy uops are present.
It has a maximum capacity of 28 uops on SNB.

2. The uop cache (or Decoded ICache): it saves uops decoded by the legacy
pipeline, and can serve as an alternative uop provider for the uop queue.
As with the legacy pipeline and the uop queue, its peak bandwidth is 4 uops
per cycle, though with a maximum of 32 bytes of uop being generated per
cycle.
It is extremely large compared to the uop queue’s capacity and can contain
up to 1536 uops in ideal conditions.

2.1.1.2 Execution Engine

Figure 2.2: Simplified Sandy Bridge Execution Engine
The RAT issues uops from the Front-End to the Back-End after having allocated

the necessary out-of-order resources and renamed their operands.
The ROB keeps track of all in-flight uops (both those pending execution and

the ones waiting for retirement), while other resources are more specific (e.g. the
LB keeps track of load entries). All resources are allocated at issue time and only
reclaimed at retirement, with the notable exception of RS entries (which are released
once uops are dispatched to compatible execution ports).

The RS can dispatch up to 6 uops per cycle (one to each port) out-of-order.

The Resource Allocation Table (RAT) is the gateway component between the
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Front-End the FE to the Back-End. It issues uops in-order, performs register re-
naming and allocates the resources necessary to their out-of-order execution. While
all uops need an entry in the ReOrder Buffer (ROB) to be issued, other out-of-order
buffers are allocated on a per-case basis.
Interestingly, not all uops need to be sent to the Reservation Station to wait for
execution: Sandy Bridge processes nop uops (which have no input nor output) and
zero-idioms (whose output is always zero, and hence have no relevant input) directly
in the RAT.
Other resources such as the Branch Buffer, Load Buffer, Physical Registers and
Store buffer are intuitively only allocated for respectively branches, loads and soft-
ware prefetches, uops with a register output and stores.
Furthermore, with the exception of Reservation Station entries, resources are only
released at the retirement step.

The Reservation Station holds uops until their input operands are ready, and
then dispatches them to adequate execution ports. The latter will forward them to
the proper Functional Units where they will begin their execution.

Most Functional Units are fully pipelined, often giving them a throughput of 1
uop per cycle.

Fully executed uops are retired in-order, at which point their output is committed
to the architectural state and their resources freed.

Figure 2.2 summarizes our description of Sandy Bridge’s execution engine.

2.1.1.3 Memory Hierarchy

The role of the memory hierarchy is to dampen the impact of RAM’s limited band-
width and latency by acting as intermediaries to the main (RAM) memory. Indeed,
caches can be much faster than RAM in both regards due to their being much
smaller: as a general rule, the smaller the memory unit is, the faster it can perform.
CPUs may consequently have several levels of cache, each offering different levels of
capacity and performance.

Sandy Bridge’s memory hierarchy is summarized in Figure 2.3.
Load and Store Units can each transfer up to 16 bytes from/to the L1 data cache

per cycle, though there are 2 of the former and only 1 of the latter. While they
can work concurrently (for an aggregated bandwidth of 24 bytes per cycle), this can
only be achieved when using AVX 32-byte vector transfers due to port restrictions
(32-byte transfers keep memory units busy for 2 cycles, allowing store address uops
to use ports 2 and 3 without penalizing loads).

All of Sandy Bridge’s data caches are write-back: upper cache levels are only
made aware of memory writes (or stores) when cache lines from lower levels are
evicted. Sandy Bridge’s 32-KB L1 data cache is 8-way associative and virtually
indexed. Its 256-KB L2 cache also has an associativity of 8, but is physically indexed
and interestingly neither inclusive nor exclusive in regards to L1. The L3’s size is
SKU-dependent and can range from 1 to 20 MB. Its associativity is also variable,
and is between 12 and 16 depending on the model.

All three cache levels use an NRU (Not Recently Used, a variant of Least Recently
Used) replacement policy.

Four data prefetchers are also present, whose role is to predict which cache lines
are going to be needed in the future and request them ahead of time:
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Figure 2.3: Simplified Sandy Bridge Memory Hierarchy
The data L1 has a combined bandwidth of 48 bytes per cycle, as load and store

accesses can be performed in parallel. The L2’s 32 bytes per cycle bandwidth is shared
for all fetch and store accesses from the L1s. However, only the data L1 can write
data back to the L2. Each L3 slice also has a dedicated bandwidth of 32 bytes per
cycle which is shared for read and write accesses from the L2.

The L3 is distributed over all the cores, allowing each core to have their own
dedicated access to L3. The bi-directional data ring connecting the slices allows each
core to access the entirety of L3, though latency may vary a bit depending on far the
relevant slice is.

L3 slices share the same memory controllers for RAM accesses.

1. The DCU Prefetcher (operates in L1): detects ascending-address loads within
the same cache line and fetches the following cache line.

2. The Instruction-Pointer-based Prefetcher (operates in L1): detects access
stride patterns for individual load instructions and fetches cache lines accord-
ingly.
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3. The Spatial Prefetcher (or Adjacent Cache Line Prefetcher ; operates in L2):
pairs contiguous cache lines in 128-byte blocks. Accesses to the first cache line
trigger the fetching of the whole block.

4. The Stream Prefetcher (operates in L2): tries to predict and fetch futurely-
used cache lines based on previous accessed addresses. It can keep track of up
to 32 different access patterns.

Sandy Bridge has a 2-level Translation Lookaside Buffer system:

1. The L1-TLB is 4-way associative, and can contain up to 64 4KB page entries,
32 2MB entries and 4 1GB entries.

2. The L2-TLB is also 4-way associative, and can contain up to 512 4KB page
entries. It cannot hold larger page entries.

2.1.2 Ivy Bridge

Ivy Bridge is the tick improvement of Sandy Bridge, carrying the microarchitecture
to a 22 nm lithography but only bringing moderate microarchitectural changes.

IVB CPUs feature from 1 to 15 cores.

2.1.2.1 Front-End

Sandy Bridge’s uses two physical 28-entry uop queues to support hyper-threading.
Ivy Bridge improves over it by fusing the queues into a single physical one with
56 entries, and virtually splitting it only when hyper-threading is actually used. It
improves its ability to absorb pipeline stalls and increases the maximum size of loops
replayable with the Loop Stream Detector, helping improve performance and lower
power consumption.

2.1.2.2 Execution Engine

Ivy Bridge introduces 0-latency register moves: in some cases, register moves can be
achieved by merely making the named register point to the source physical register,
which can be done by the RAT.

The architects also improved the divider / square root unit, likely taking advan-
tage of the finer lithography to widen it and improve its bandwidth significantly (as
well as its latency to a lesser extent).

2.1.2.3 Memory Hierarchy

While the sizes of L1 and L2 are the same for IVB as for SNB, the maximum L3
size was increased from 20 MB to 37.5.

Furthermore, L3 seems to use an adaptive replacement policy [18].
Ivy Bridge also introduces the Next-Page Prefetcher (NPP), which detects mem-

ory accesses nearing the beginning or the end of a page to fetch the matching page
translation entry. It is not clear whether the NPP fetches entries to the L2 data
cache or directly to the TLBs, though Intel patent [19] suggests the latter.

2.1.3 Haswell

Haswell is the tock after Ivy Bridge, focusing once again on microarchitectural
changes and still using the same 22 nm lithography.
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2.1.3.1 Front-End

Haswell’s Front-End is largely the same as Ivy Bridge’s.

2.1.3.2 Execution Engine

Figure 2.4: Simplified Haswell Execution Engine
The Haswell execution engine brings various improvements over Sandy Bridge,

such as more execution ports, new Fused Multiply-Add functional units, larger out-
of-order buffers and memory units able to process 32-byte transfers in a single cycle.

The execution engine has some important changes, which are summarized in
Figure 2.4. Some of the most important ones include:

1. There now being 8 dispatch ports (against 6 previously), one of which is ded-
icated to handle store address uops.

2. Pipelined Fused Multiply-Add units being placed behind ports 0 and 1, dou-
bling the potential number of FP operations per cycle. Indeed, they can each
execute vector operations such as result = vector1 ∗ vector2 + vector3 with
a throughput of 1 per cycle (note: in Haswell’s implementation, the result
register must be one of the inputs).

3. The sizes of most out-of-order resources are increased.

2.1.3.3 Memory Hierarchy

The L1 bandwidth is doubled, allowing the two load units and the store unit to each
transfer up to 32 bytes per cycle (for a combined bandwidth of 96 bytes per cycle).

The L2 bandwidth was also doubled, allowing a full cache line (64 bytes) to be
transferred between L1 and L2 every cycle.
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The minimum and maximum L3 sizes were increased to reach respectively 2 MB
and 45 MB.

Furthermore, some SKUs are equipped with Crystalwell embedded DRAM act-
ing as a 128MB L4 victim cache, providing important bandwidth and latency
bonuses.

2.1.4 Silvermont

Unlike SNB, IVB and HSW, Silvermont (SLM) is a microarchitecture used for Atom
processors, for which emphasis is on low power consumption. Its Bay Trail variant
targets the mobile sector, while Avoton micro-server versions were also designed.

Silvermont uses a 22 nm lithography, just like main line processor, and comprises
between 1 (in Bay Trail) and 8 cores (in Avoton).

It is a particularly interesting x86 microarchitecture due to how energy con-
sumption considerations impacted its design. Furthermore, future high-performance
Knights Landing chips will feature around 70 Silvermont-inspired cores, making it
very relevant in the HPC sphere.

2.1.4.1 Front-End

Figure 2.5: Simplified Silvermont Front-End
Silvermont’s Front-End can provide the RAT with up to 2 uops per cycle. How-

ever, its decoders are limited, and D1 can only decode simple instructions.
A feature called Loop Stream Detector can help compensate for the decoders’

weaknesses when executing loops with small loop bodies, pinning down uops in the
Uop Queue and replaying them for as long as possible. The Front-End can then
consistently reach its peak bandwidth.

Silvermont’s Front-End supports speculative execution and branch prediction.
It is 2-wide (see Figure 2.5), meaning it can decode and provide up to 2 uops to the
Back-End per cycle. This is twice less than what Big Core microarchitectures can
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do, and is further aggravated by SLM’s individual instruction decoders being less
potent than those in the main line products. They are however more power-efficient.

There is also a Loop Stream Detector in the uop queue, which takes a very high
importance due to the decoders’ weaknesses. While for SNB/IVB/HSW using the
LSD is done rather opportunistically, it is an important factor for SLM performance.

2.1.4.2 Execution Engine

The RAT / Allocation / Rename cluster bridges the FE with the BE, inserting uops
in-order after a) allocating some of the necessary resources for their execution and
b) renaming their input and output registers.

All uops need an entry in the ROB. It is also not clear when other resources
(e.g. Load Buffer) are allocated, as Intel claims Silvermont uses a late allocation /
early resource reclamation scheme [20].

The scheduler system is distributed over different Reservation Stations, each
handling a specific execution port (see Figure 2.6), and their own in-order or out-
of-order dispatch policy:

1. FP RS 0: handles FP and vector additions, as well as some other arithmetic
and logic operations. Dispatches uops in-order (only in regards to uops in
FP-RS-1).

2. FP RS 1: handles FP and vector multiplications, divisions, shuffles and other
operations. Dispatches uops in-order (only in regards to uops in FP-RS-2).

3. Int RS 0: handles integer arithmetic, logic and shift operations. Dispatches
uops out-of-order.

4. Int RS 1: handles integer arithmetic and logic as well as branches. Dispatches
uops out-of-order.

5. Mem RS: handles address generations, loads and stores. Dispatches uops in-
order, but allows accesses to complete out-of-order to absorb latency.

Fully executed uops are retired and committed in-order.

2.1.4.3 Memory Hierarchy

Silvermont has a 24KB L1 with an associativity of 6. The load and store units
can transfer up to 16 bytes per cycle from/to it, though they likely cannot do so
simultaneously (as only one address per cycle can be generated for loads and stores).
It adopts a random cache line replacement policy.

Single-core Silvermont SKUs have a 512KB L2.
SKUs with more than 1 core are organized in pairs of cores called modules, with
each module having 1 MB of dedicated 16-way associative L2. The overall cache size
for 8-core Silvermont CPUs hence reaches 4 MB, though each core is constrained to
only use the L2 slice from its own package.
The L1 and the L2 can exchange up to 32 bytes per cycle, though this link is shared
with all the cores in the package. It uses an NRU cache line replacement policy.

The L1 and L2 caches are both write-back.
There are two data prefetchers, the L1 Spatial Prefetcher and an L2 “advanced”

prefetcher. They are likely respectively inspired by the L1 DCU and the L2 Streamer
prefetchers from the Big Core CPUs, but not many details are given.
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Figure 2.6: Simplified Silvermont Execution Engine
Unlike Big Core microarchitecture, there is no unified reservation station. Fur-

thermore, each small RS acts with its own rules:

1. The FP Reservation Stations have to dispatch their uops in-order.

2. The Mem RS also has to dispatch uops in-order (to help memory scheduling
be as simple as possible), but they are non-blocking and can be be completed
out-of-order.

3. Integer Reservation Stations can dispatch uops out-of-order.

The ports presented here might not actually have a discrete existence, (as absent
from any official documentation we could find), but we decided to put them here
anyway to simplify the figure. We labelled them in a manner consistent with Big
Core CPUs.

Silvermont also has a 2-level TLB cache:

1. The L1 TLB has 48 4KB entries and is fully associative.

2. The L2 TLB has 128 4KB entries and 16 2MB entries, and is 4-way associative.
It is not inclusive (nor exclusive) in regards to the L1.

Figure 2.7 summarizes this memory hierarchy.

2.2 Performance Analysis

Different approaches can be adopted to analyze performance, each working with
their own tradeoffs. This section will present some of them.
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Figure 2.7: Simplified Silvermont Memory Hierarchy
The Load and the Store units cannot access L1 in parallel, so the data L1’s

bandwidth is of 16 bytes per cycle.
The L2 cache space and bandwidth are shared between cores from a same pack-

age.
Finally, the memory controllers are shared by all cores on the CPU.

2.2.1 Static Analysis

Static analysis consists in evaluating software without executing it. This offers the
advantage of being particularly fast, at the cost of working with a limited amount
of information.

We will present tools using this approach in this section.

2.2.1.1 Code Quality Analyzer (CQA)

CQA [21] evaluates the quality of assembly loops and projects their potential peak
performance. It is developed inside the MAQAO [22] framework, which handles
both the disassembling of target compiled binaries and the detection of the loops
within.

Operating at the assembly level provides several advantages:
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1. The evaluated code is the code executed by the machine. This is not (neces-
sarily) when working at the source level due to the optimizations the compiler
can apply.

2. Loop instructions can be tightly coupled to known microarchitecture features
and functional units, making performance estimates solidly grounded in reality.

However, assembly-level static analysis does not (consistently) allow to detect
and account for issues such as poor memory strides, which could have been observed
in the source code.

CQA’s metrics include:

1. Peak performance in L1 (assuming no memory-related issues, infinite-size
buffers and an infinite number of iterations).

2. Front-End performance.

3. Distribution of the workload across the different ports and functional units.

4. Vectorization-efficiency metrics.

5. Impact of inter-iteration dependencies.

CQA can also provide suggestions on how to fix detected performance problems.

2.2.1.2 Intel Architecture Code Analyzer (IACA)

IACA is also a static analysis tool working at the assembly level. Unlike CQA, it
uses markers inserted at the source level to locate the code to analyze. It allows
users to easily target the parts they want analyzed, but forces them to place these
markers and recompile their application.

Two types of analyses are possible:

1. Throughput analysis: the target block of code is treated as if it were a loop
for the purpose of detecting inter- iteration dependencies, and evaluates per-
formance in terms of instruction throughput. (This analysis is very close to
CQA’s, though with the extra assumption that the Front-End can always
deliver 4 uops per cycle.)

2. Latency analysis: IACA evaluates the number of cycles needed go executed
the target block once.

In both cases, IACA can highlight the assembly instructions that are are part
of the performance bottleneck.

2.2.2 Dynamic Analysis

Dynamic analysis uses runtime information to evaluate performance. It can pro-
vide large amounts of information not obtainable through purely static means, but
typically requires the target program to be executed at least once.

Furthermore, it introduces problems of its own, such as measurement stability
and precision.
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2.2.2.1 Hardware Support

Hardware can implement features specifically intended for performance evaluation.
They can allow dynamic analysis to be faster, easier, more precise and/or collect
more relevant information.

The Time Stamp Counter [23] (TSC) provides a very precise way of measuring
time at a very low cost. Indeed, it counts the number of spent cycles, and is readable
in only around 30 cycles using the RDTSC instruction on Sandy Bridge, making it
very cost-effective.

Performance Monitoring Counters [24] can also count events other than just
cycles, such as the number of retired instructions, the number of cache lines read
from RAM, the number of stalls at different stages of the execution pipeline or even
power consumption. All this information can be obtained through other means
(value tracing, simulation, hardware probes), but at a much higher complexity and
cost.

Furthermore, different methods can be used to access these counters:

1. Sampling: counters are parameterized to keep track of certain events and raise
an interrupt when a certain threshold is reached. Sampling software can then
identify the last retired instruction and credit it for the overflown counter’s
events, reset said counter to 0 and resume the program’s execution. It is a
very cheap and non-intrusive way to collect performance counter data.

2. Tracing: sampling’s precision is not perfect as it essentially works by “blaming”
the instruction that caused the overflow for the entirety of the event sample
without any guarantee that it is indeed responsible for a majority of them.
Furthermore, it cannot dissociate events associated to the same code but in
different execution contexts (e.g. different function parameters). Tracing ad-
dresses these concerns by inserting start and stop probes in strategic parts of
the code (e.g. right before and after a loop), allowing to a) precisely count
events caused by the loop, and only by the loop and b) separate events caused
by the same code area but at different times. It however comes at a higher
cost because probes need to be inserted in the first place, and is not a working
solution for tiny pieces of code.

3. Multiplexing: multiplexing consists in using the same hardware counter to
monitor more than one event. It is done by making the counter alternate
between the watched events during the measurement phases. It allows to
collect more counters simultaneously (as the number of monitoring units is
limited), but can degrade the precision of results.

However, the overhead for accessing PMCs can be important and should be
considered when using them [25].

2.2.2.2 Finding Hotspots

Finding an application’s hotspots (i.e. parts of the program needing the most time
to execute) is important for performance analysis and optimization as it allows tools
and developers to focus on parts of the code that have an important impact on the
overall execution time. Different techniques can be used to find them.

For instance, Intel compilers have an option to insert RDTSC probes in the
assembly code, tracing the time spent in different loops and functions [26]. The
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main drawback of this method is that it requires having access to the source code
(and recompiling it for performance monitoring purposes).

Tools such as VTune [27] and Perf [28] can detect hotspots using sampling.
The Perf module of MAQAO [29] can also do so in applications using OpenMP or
OpenMPI frameworks. Though this technique is not perfect [30], it is very efficient
and does not require any changes to be made to the target application.

2.2.2.3 Counter-based Analysis

Programs or frameworks such as Oprofile [31], PAPI [32] and Likwid [33] only per-
form PMC measurements, leaving the analysis to other tools.

VTune [27] is a special case and combines both measurement and analysis abil-
ities. Among them, the Top-Down approach [34] evaluates the performance contri-
butions of the Front-End, Back-End, retirement and memory accesses.

Levinthal [35] offers counter-based performance metrics to evaluate performance
bottlenecks.

HPC oriented frameworks [36] can also detect and categorize performance issues
in parallel applications, as well as suggest potential fixes such as in-lining functions
or changing data structures.

2.2.2.4 Differential Analysis

Differential Analysis [37] consists in a) transforming a given target code to isolate
some of its characteristics and b) comparing the execution times of the original and
the modified codes to evaluate the impact of the targeted characteristics.

DECAN is a tool implementing this approach at the assembly loop level. It was
developed within MAQAO [22], using the framework’s binary patching features [38]
to generate new binaries with modified loops.

Figure 2.8 show-cases its main transformations:

1. LS (Loads/Stores): only keep memory instructions, address calculations and
control flow instructions (which are necessary for the loop to iterate normally).
Running this variant allows to see the contribution of memory accesses to the
original loop’s execution time.

2. FP (Floating Point): only keep floating point instructions and the control
flow. It isolates the impact of FP operations in the original loop.

DECAN can be used on sequential, OpenMP and MPI programs alike.
One of the drawbacks of this approach is overhead, as each of the the target

loop’s variants need to be executed.

2.2.3 Simulation

Simulation can bring information that is difficult or impossible to otherwise get,
and is often used as a means of validating performance models when the modeled
hardware does not exist, or is hard to access.

However, it is a complex process for which one of the trade-offs is nearly always
execution time, though other factors (e.g. memory consumption) may also get in
the picture.
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Figure 2.8: Example of DECAN Loop Transformations
This example assembly code multiplies all elements from an array by a constant.
DECAN can be used to patch loops to isolate some of their performance char-

acteristics.
In the LS version, the MULPD floating point instructions were removed.
In the FP version, loads were transformed into zero-idiom XORPS instruc-

tions to avoid creating new dependencies on the XMM registers. Stores were simply
removed.

2.2.3.1 Simulation Techniques

Different techniques can be used depending on the objectives of the simulation, or
the targeted performance trade-off.

Execution-driven simulators [39, 40] simulate both the semantic of a program
and its behavior on the modeled system. It allows them to tackle problems from
scratch, but at high cost.

Trace-driven simulation offsets part of the problem by first collecting relevant
execution details [41] (e.g. the list of all instructions executed for a program, as
well as their outputs), and then using these traces to reconstitute the program’s
semantics. The simulation then only targets the behavior of the traced instructions,
allowing it to be both less complex and faster than an execution-driven equivalent.
However, trade-offs for using this technique include a) having to run the target
program on a real machine (or an execution-driven simulator...) at least once to
collect the traces, b) storing and using

trace files which can be extremely large and c) not being able to see the impact
of e.g. randomness or different instruction sets without getting different traces.

Simulators can also have varying scopes. Full-system simulators [42, 43, 44] will
simulate not just the CPU, but also other components such as graphical cards or
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network cards so as to be able to run entire operating systems. However, their
main objective is more likely to enable e.g. driver development for not-yet-existing
hardware or system-level performance analysis, taking their focus further away from
pure CPU performance analysis. PTLsim [45] adopts an interesting approach com-
bining virtualization and simulation for performance analysis, allowing users to use
virtualization’s near-native execution speed when speed is important, and switching
to simulation mode for performance analysis.

2.2.3.2 Cycle-Accurate Simulation

Detailed cycle-accurate simulation is the only way to get a perfect knowledge of a
system’s performance. It offers a full visibility on all relevant mechanisms without
any impact on the results (unlike hardware or software measurement probes).

However, it comes with several drawbacks:

1. Execution time: simulators modeling everything perfectly will typically sim-
ulate at rates of a few thousand cycles per second [46], which represents a
slowdown in the order of millions.

2. Amount of data: it can be hard to know which parts of the modeled system
are actually relevant, and tell the cause from the consequence: simulation does
not supersede analysis.

3. Purely simulation-based analysis can be very slow, as each tested potential
bottleneck has to be tested separately and result in whole new simulation run.

Furthermore, cycle-accurate simulators modeling all the details of modern CPUs’
hardware implementations are not publicly available, limiting their applicability for
performance analysis for general application developers.

2.2.3.3 Improving Simulation Speeds

Different approaches have been developed to improve the speed of simulation:

1. Sampled simulation [47, 48]: simulating only parts of the execution in details
allows to use faster techniques (e.g. emulation) for most of the time. The
quality of the results will then depend on the sampling rate, and the quality
(representativeness) of the samples.

2. Using dedicated simulation hardware [49, 50]: using FPGAs can greatly help
with achieving better simulation speeds, as the hardware running the simula-
tion is specifically fine-tuned for this task.

3. Interval simulation [51]: focuses on modeling the impact of miss events (e.g.
cache miss, branch misprediction) and uses a simplified, fast model for the
rest of the execution.

2.2.3.4 Functional Simulation

Specialized functional simulators can also provide interesting information. Such
tools focus on reproducing realistic behaviors with no particular regards for timing.

For instance, tools like Cachegrind [52] track memory accesses and replay them
in a realistic cache structure, evaluating how and whether programs use caches.
Other tools [53] can also characterize multi-threaded workloads.
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2.3 Using Codelets

Tackling important problems can often be simplified by decomposing them into
smaller ones, which are more easily understood and fixed. The codelet approach
applies this principle to modeling and optimization problematics, focusing on smaller
problems to then approach the bigger ones.

2.3.1 Codelet Presentation

Codelet definitions may vary depending on their granularity and purposes. We will
hence clarify our use of the term, as well as some of codelets’ main advantages and
drawbacks.

2.3.1.1 Definition

A codelet is a small piece of code that may be evaluated independently. Codelets
can be coupled to drivers, intendedly minimal code complements allowing them to
be run in a stand-alone manner.

In the context of this thesis, codelets will always be loop nests. However, coarser-
grain codelets like functions could also be used.

2.3.1.2 Why use codelets?

Whether or not codelets are interesting depends on their intended uses:

1. For modeling, they are particularly interesting if they display some novel
or/and unexpected behavior, as their being small helps pinpoint the issue.

2. For optimization, codelets can isolate significant performance problems, allow-
ing potential solutions to be tested in a vacuum.

3. HPC scheduling: codelets could be used as a finer schedulable workload than
threads [54], allowing to make better use of supercomputers’ very high numbers
of cores.

Codelets can offer important advantages in both cases:

1. Evaluating the impact of the environment: codelets’ behavior variations de-
pending on the execution environment (e.g. different host machines or CPU
operating frequencies) can be determined in a cost-effective way due to their
stand-alone nature and their normally small execution times.

2. Varying data sets: some codelets may allow for arbitrary input data sets to be
used, making it possible to see how their behavior evolves with varying cache
localities.

3. Optimization tests: codelets being stand-alone programs allows programmers
to test different optimizations (or compiler optimization flags, compiler ver-
sions, etc.) and only impact the intended code. It would not be as simple with
e.g. real applications, in which potential optimizations may have an impact
on the whole program.
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2.3.1.3 Drawbacks of Codelets

While codelets may be very convenient, their stand-alone property may raise prob-
lems such as:

1. Static interference: the compiler may alter or reorder statements to try to
produce more efficient code (e.g. loop interchanging, in-lining...), or certain
optimizations may be overly optimistic (e.g. optimizing data structures for
individual loops whilst they are used for a whole program). Studying a piece
of code out of its original (or a realistic) context may hence create unnatural
circumstances.

2. Cold/warm cache [55]: the state of the caches when running a codelet may
have a strong impact on its observed behavior. Several possibilities exist (com-
pletely cold caches, completely warm ones, or various degrees in-between). As
there is no universal strategy to create a single most-appropriate execution en-
vironment, users have to make this potentially complex decision on a per-case
basis.

3. Dynamic influence from and on other loops: in a real application, a loop may
have a strong influence on how other loops behave and in turn be influenced
by other loops’ execution. For instance, a previous loop could warm up caches
or on the contrary trash them, and instructions from different loops can also
cohabit in the execution pipeline due to superscalar mechanisms. Combining
the codes of two codelets together may hence produce different results than
when running them separately.

These issues may ultimately cause modeling or optimization projection errors.
They represent a limitation that codelet users should keep in mind.

2.3.2 Artificial Codelets

Developing artificial codelets allows for a fine control of experiments. However, they
require codelet creators to already have a clear idea about what they want to test,
and how.

2.3.2.1 Hand-Crafted Codelets

Some codelets can be handmade to test something specific. Furthermore, small
benchmarks do fit our definition of codelet.

On the hardware side, [56, 57] use simple benchmarks to characterize the effective
bandwidth on a machine. [57] also covers other potential bottlenecks such as memory
latency or network bandwidth.

On the software side, [58, 59] use handmade (and legally vectorizable) loops to
test auto-vectorizing compilers’ abilities.

2.3.2.2 Automated Generation

Codelets can also be generated automatically, following patterns of (potential) in-
terest. Microtools [60] facilitate this process to evaluate the impact of e.g. different
memory access patterns, unrolling or vectorization. They can also measure the
execution times of the resulting codelets.
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Henri Wong [61] generates loops using pointer-chasing to expose the number of
out-of-order resources in the ROB and the Physical Register File in Intel microar-
chitectures, as well as test the impact of zero-idiom and register move instructions
on register consumption.

2.3.3 Extracted Codelets

Codelet extraction is the process of isolating a program’s hotspot as a codelet.
Such codelets offer various advantages over synthetic ones:

1. They represent realistic workloads. For instance, on SNB, there is an impor-
tant penalty for using both SSE and AVX instructions in the same loop. While
a synthetic codelet will be able to exactly address this problem, mixing such
instructions is not a mistake compilers would do in realistic circumstances,
hence much lowering its relevance. Extracted codelets will expose real day-to-
day problems and bottlenecks.
Having realistic workloads allows models to be trained on codes directly rele-
vant to their objectives (e.g. using HPC codelets to model HPC applications).

2. They can be used to study each of an application’s hotspots separately, allow-
ing said application’s performance to be modeled in small bricks rather than
as a whole [62].

2.3.3.1 Manual Extraction

Codelets can be extracted manually, e.g. by copying the source code of a loop.
However, it is a slow and error-prone process which can only be reasonably used
when the number of interesting codelet candidates is low.

However, it is a fairly simple process, and allows for implementation liberties
e.g. to allow arbitrary data sets to be processed by the loop.

2.3.3.2 Automated Extraction

Automating the extraction process greatly reduces the costs of codelet extraction,
as well as the hazards inherent to manual processing. It also makes it realistic to
cover the majority of the execution time in HPC applications potentially comprising
hundreds of hotspots.

Codelet extraction tools can operate at different levels. For instance, [63, 64, 65]
extract hotspots at the source level, also saving the runtime state of the memory so
that the resulting codelet can be replayed faithfully. A drawback of this method is
that there may be discrepancies between the generated compiled codes for original
and extracted versions.

On the other end of the spectrum, [66] identifies codelet-like structures called
simulation points. They are pieces of code pinpointed at the assembly level for the
purpose of speeding up simulation. This technique is extremely faithful in terms of
assembly code and memory states, but limits the adaptability and portability of the
identified workloads.

An in-between approach is adopted in [67], where hotspots are extracted at
a compilation-time Intermediate Representation (IR) level. It offers advantages in
terms of extraction complexity as the IR may be language-independent, but creates a
dependency on the used compiler instead. Unlike source-level extraction, it does not



24 Chapter 2. Background

allow for codelets to be easily modified, but is more flexible than Simulation Points
as it allows for different optimization flags and data sets to be tried. [68] adapts this
approach to parallel codes, operating at a coarser granularity to quickly evaluate
the scalability of OpenMP parallel regions.
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Codelet Performance
Measurement Framework

The complexity of modern CPUs makes loop performance be the result of many
factors simultaneously coming into play. Identifying these factors, their individual
impact and how they interact with one another correspondingly becomes increas-
ingly difficult.

In this chapter, we approach this issue by producing fine-grained data on vari-
ous -but mostly simple- loops in a controlled in vitro environment. The aim is to
produce reliable data allowing to single out certain components’ behavior, check
implementation hypotheses and validate low-level performance-evaluation tools.

3.1 Introduction

Modern CPUs being developed in a highly competitive and industrial environment,
pushing companies into different strategies to protect their competitive advantage:

1. Patenting: while offering legal protection against plagia, patents have the
downsides of a) only protecting implementations, b) requiring the publication
of the material to protect and c) being temporary. Furthermore, as they can
be costly to establish, not all innovative solutions may be deemed worth the
matching cost.

2. Secrecy: confidentiality can protect ideas (outside the realm of patentable ma-
terials), but very little can be done against plagia if the material gets leaked or
stolen. This forces companies to be conservative in terms of releasing technical
implementation details.

In this environment, performance researchers have to deal not just with the
complexity brought by state-of-the art CPUs comprising billions of transistors, but
also with the unknowns induced by hardware characteristics not disclosed by CPU
manufacturers.

We specifically target Intel microarchitectures, for which the manuals provided
by the manufacturer still provide a sizeable amount of information on microarchitec-
tures’ pipeline and hence allow for a reliable overview of the core pipelines. Further
to this, information from patents can provide interesting leads on implemented hard-
ware mechanisms, though patents can exist without the mechanisms they describe
being actually implemented in real-world products.

Empirical data can be used to:

1. Independently validate information from manuals.

2. Test implementation hypotheses (and empirically expose undocumented char-
acteristics).
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3. Validate performance models and find unexpected, unmodeled or/and undoc-
umented phenomena.

This chapter will focus on the production of such reliable, low-level data, from
which other chapters of this thesis will draw information quite extensively.

We will present the target codes, the followed methodology and the experimental
parameters we played with to capture the codes’ performance in different contexts.
We will also present PCR, the data repository we developed to store and exploit the
generated data.

3.2 Target Loops: Numerical Recipes Codelets

The choice of the loops to study is important as it determines not just the breadth
of captured phenomena but also their relevance. For instance, picking codes that
are too similar would expose only a few of the hardware components’ behavior.
Furthermore, if said components only have an impact on performance in extremely
corner cases, one can question the importance of modeling them in details.

We hence picked loops from the Numerical Recipes [69], which present the ad-
vantages of being relatively diverse while also tackling real and significant numerical
challenges.

We will describe how we obtained these loops and why, as well as present the
main implementations of the codelets we selected.

3.2.1 Obtention and Target Properties

Our NR codelets collection is the result of both automatic loop extraction (us-
ing [64]) and manual cherry-picking. The desired properties were as follows:

1. Single innermost loop: there should only be a single innermost loop in the
compiled version of the codelet. This allows us to attribute all measured
performance characteristics to a narrowly defined piece of code, and helps
simplify performance analysis.

2. No innerloop branching: the only branch instruction should be the one al-
lowing the loop to iterate (in compilation terms, the loop comprises a single
basic block). Branches can add a lot of complexity to performance analysis,
especially if they depend on input data values.

3. Data-value invariant iteration test: it may (and should) vary depending on
the dataset size, but should not depend on a dataset’s values. This makes
the code more DECAN tolerant, allowing it to suffer more semantic loss when
getting patched without causing unwanted side effects (e.g. infinite loop).
While some workarounds can be implemented around such issues, we want to
keep the simplicity we aim with these codelets.

4. Work on arbitrary dataset sizes (allowing to study the codelet’s interaction
with caches and the main memory).

5. Perform FP operations. Mere memory transfers, for instance, would not be as
interesting to analyze with DECAN’s classical variants. Furthermore, while
integer computation can be present in hotspots, FP performance (i.e. FLOPS)
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is often the baseline to evaluate a system’s (or an application’s) performance
in scientific computing and we hence focused on it.

On top of this, we wrote several versions of the same extracted loops, altering
characteristics such as the FP precision, the unroll factor, the instruction set to use
or whether or not to vectorize.

3.2.2 Presentation and Categories

We succinctly present our main versions of the NR codelets in Table 3.1.
Column Codelet gives the name by which we commonly refer to these codelets,

and which we will use throughout this thesis manuscript. The names are composed
as follows:

1. The first part of the name (e.g. balanc for balanc_3_de) refers to the function
from which the codelet was extracted.

2. The following number (3 here) is an ID given by Astex [64] during the extrac-
tion process.

3. Finally, the suffix (se in our example) presents our re-implementation details:
the first letter presents the FP precision used in computations (’d ’ for double
precision, ’s’ for single precision and ’m’ for mixed precision code), and the
second letter represents the used instruction set (’e’ for SSE 4.2 and ’x ’ for
AVX ). Although they are not the versions we use by default, we also generated
AVX versions of all the codelets presented here.

Column NR Context explains the purpose of the code from which the codelet
was extracted.

We also show the type of loop nest (column Loop Structure) in the codelet:

1. 1D codelets do not have “active” nested loops (if they exist, they may be
executed once but are not iterated).

2. 2D have “active” nested loops and always operate on square matrices.

3. 2DT are similar to 2D loops, except they follow triangular access patterns
(and may consequently have varying numbers of innermost iterations for a
given data set), making data accesses and branches harder to predict.

As loop performance being often dictated by memory, and memory performance
by data access patterns within the loop, we decided to also show codelets’ memory
access strides (i.e. the distance between accessed elements) in column Access Pattern
to help appreciate codelets’ memory access efficiency:

1. Stride 1 loops make good use of the cache structure by fully using loaded
cache lines.

2. LDA (Leading Dimension Access) codelets’ innermost loop accesses data fol-
lowing a 2D array’s leading dimension, causing them to access elements not
contiguous in memory. The effective stride depends on the data set.

3. CLDA (Constant LDA) codelets’ stride is not 1, but is constant. This allows
for memory performance to be more consistent across data sizes, and happens
due to 1D loops exploring rectangular matrices column-wise (in Fortran).
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Table 3.1: NR Codelet Suite

Codelet NR Context Description

balanc_3_de Matrix balancer 1D 1 Array scaling
elmhes_10_de 1D 1 Daxpy-like
elmhes_11_de 1D CLDA Daxpy-like

four1_2_me FFT 1D 1

hqr_12_se

Eigenvalues finder

2DT 1

hqr_13_de 1D 1

hqr_15_se 1D LDA

jacobi_5_se 2DT 1

lop_13_de 2D LDA

ludcmp_4_se 2DT 1 Complex reduction

matadd_16_de 2D 1

mprove_8_me 2D 1

mprove_9_de 1D 1 Array subtraction

realft2_4_de

Inverse FT

1D 1

realft_4_de 1D 1

relax2_26_de 2D LDA

rstrct_29_de 2D LDA

svbksb_3_se 2D 1

svdcmp_6_de 1D CLDA

svdcmp_11_de 1D CLDA Array scaling

svdcmp_13_de 1D 1

svdcmp_14_de 1D 1

toeplz_1_de
Toeplitz matrix solver

1D 1

toeplz_2_de 1D 1 Daxpy-like
toeplz_4_de 1D 1 Daxpy-like

tridag_1_de 1D 1

tridag_2_de 1D 1 Daxpy-like

Loop 
Structure

Access 
Pattern

Hessenberg form 
reduction

Complex operations 
on an array

Reduction with 
absolute value
Reduction with 
absolute value

Subtracting constant 
from matrix diagonal

Jacobi method to find 
eigenvalues and 

eigenvectors

Reduction with 
absolute value

Nonlinear elliptic 
equation solver

5-point stencil 
computation

Lower upper matrix 
decomposition

Nonlinear elliptic 
equation solver

Adding 2 matrices 
into a 3rd

Linear equation 
solution improvement

Reduction of matrix 
and vector

Complex operations 
on an array

Realft2_4_de w/ 
truncated 

dependencies
Gauss-Seidel matrix 

relaxation
5-point stencil 
computation

Half-weighting 
restriction

5-point stencil 
computation

Singular value 
backsubstitution

Reduction of matrix 
and vector

Matrix singular value 
decomposition

Reduction with 
absolute value

Dividing array 
elements + reduction

Dividing array 
elements, storing 

results in a separate 
array

Reduction on 3 
arrays

Tridiagonal matrix 
solver

Complex operations 
on 3 arrays

List of the 26 in vitro codelets extracted from the Numerical Recipes [69, 70, 71],
and realft_4_de (which we crafted by truncating realft2_4_de).
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On an important note, this characterization was applied after first experiments
were run, allowing us to account for modifications applied by the compiler. For
instance, the compiler interchanges loops in matadd_16_de, causing it to be a stride
1 codelet even though accesses follow the leading dimension in the source code.

3.3 Measurement Methodology

A rigorous measurement methodology is particularly important for our intended
purpose, as the worth of our measured data is entirely dictated by how reliable it
is.

3.3.1 Placing Probes

Fine-grain computer measurements raise several general problems:

1. Observability: watching the experiment may change the result. Software
probes are convenient to measure the CPU’s activity, but the CPU processing
them incurs a measurement overhead affecting the result value. This can be
mitigated with event sampling, but at the cost of precision. Hardware debug-
gers may also help in this regard as a large part of the observation cost is
externalized, though even they may impact the observed behavior.

2. Reproducibility: while many factors can be controlled, some cannot, and it is
impossible to guarantee the same intended experiment will consistently pro-
duce the same output. This is especially true with parallel programs (whose
scheduling is partially random), and memory states (e.g. virtual memory
mapping).

3. In pipelined machines, and even more so in out-of-order ones, it is hard to
exactly pinpoint when the loop to measure starts, and when it ends. Is it when
the first instruction of the loop gets decoded, executed, or retired? What do
we do about instructions foreign to the loop cohabiting in the pipeline?

It is hence particularly important to use probes adequately. Here, we will de-
scribe our probe setup for time on the one hand, and general event counters on the
other.

3.3.1.1 Measuring Time

We use the RDTSC [23, 72] probe provided by DECAN [37] to measure time. As
it is particularly inexpensive, we can place it precisely before and after the target
binary loop (see Figure 3.1) while still retaining an acceptable overhead.

We define the “cycles per iteration” metric derived from RDTSC as:

CycPI_R =
elapsed_time (RDTSC)

nb_assembly_level_iterations

Note: when talking about time, we always use reference cycles, whose length is
independent from the active core frequency. On Intel microprocessors, they usually
tick at the same rate as the maximum non-turbo frequency available on the CPU.
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3.3.1.2 Measuring Hardware Events

The probe for hardware counters (or HWC ) is considerably more expensive as they
require to leave the Linux userland to get initialized and read. This is particularly
true when measuring memory controller related events, as different intermediary
steps need to be taken (both for client CPUs [73] and for server versions [74]). We
hence had to place it at a considerably coarser level to keep the probe overhead low,
and measure the whole program in lieu of just the target loop (see Figure 3.1).

This is only acceptable under the following conditions, which we ensure are met
during measurements (see Section 3.3.2.1):

1. Initialization costs are negligible.

2. The target binary loop is the only significant active loop in the codelet at
runtime.

Certain counters can also be used to report time in reference cycles (for in-
stance, CPU_CLK_UNHALTED.REF in Sandy Bridge): we define the “cycles per
iteration” derived from them as:

CycPI_H =
elapsed_time (HWC)

nb_assembly_level_iterations

Tools like Likwid [33] are used for such HWC measurements.

3.3.1.3 Combined Time Metric (ECPI)

We also define an “enhanced” time metric combining information from both the
RDTSC and the HWC time values, and which we will use as our default time
metric throughout this manuscript:

ECPI = min (CycPI_R, CycPI_H)

This metric makes us get the best from both worlds: if the neighboring loops are
important, CycPI_R is closer to the time actually taken by the loop than its HWC
counterpart. On the other hand, for very small loops where the overhead from the
RDTSC probe might not be negligible, CycPI_H may be more accurate.

3.3.2 Measurement Quality and Stability

Measurement quality is a more abstract property, aiming to make sure measure-
ments are representative of what an experiment is meant to measure. Measurement
stability is important to ensure results are a) reproducible and b) not showing a
statistically aberrant behavior.

In this section, we will explain how we pursue these two orthogonal objectives.

3.3.2.1 Measurement Quality

Controlling noise is a good way to increase the quality of results:

1. The proportion of iterations spent in the target loop (in all innermost loop
iterations inside the codelet) is checked to make sure only one loop is signifi-
cant. This metric needs to be close to 1 to reasonably attribute all hardware
counter events to the target loop (due the probe placement described in Sec-
tion 3.3.1.2).
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2. All measurements are performed on dedicated machines, limiting the noise
created by other processes in the system. Noise could otherwise be created
due to certain resources being shared on the system, such as RAM bandwidth,
cache space or execution time slices.

3. A repetition loop ensures that the caches are properly heated [55, 75] for
all but the first codelet call. It also makes sure that the process startup,
array initialization costs and the first codelet call -likely to be an outlier-
contribute only insignificantly to the overall result in both time and counter
measurements. The number of repetitions to perform is calibrated to make
the program run for at least 1 second and be no less than 100.

4. The program is pinned to an execution core, forbidding the system to migrate
it to different ones. Migrations can impact performance due to e.g. some of
the caches are core-specific, causing some data locality to be lost. The first
core (for each present CPUs) is avoided, as sometimes more solicited by the
OS than others.

5. All CPU cores are set to a constant frequency, avoiding the variance induced
by on-demand or turbo frequency scaling. It also makes it easier to interpret
results.

3.3.2.2 Measurement Stability

Measurement stability is obtained by the use of meta-repetitions: the whole exper-
iment is run several times, allowing us to get different sets of measurements. The
median value is then calculated independently for each metric, and used as the ref-
erence result. A “D” is suffixed on the name of metrics computed this way to clarify
their origin (e.g. CycPI_R_D.).

The number of meta-repetitions favoured in literature is 31 [76, 77, 78], though
we did not notice significant differences when using only 11 -or even 5- in our in-
vitro experiments. This is partly due to the quality controls explained earlier, as
well as to the absence of parallel code in our target codelets. Hence, some of the
results presented may have been produced with numbers of meta-repetitions ranging
from 5 to 31. The practical consideration in keeping this number low is the total
experimental time needed: a tradeoff with must be met.

3.3.2.3 Codelet Program Structure

Figure 3.1 presents the overall structure of our codelet processes (as well as
where we place our different software probes). The codelet is isolated in its own
function and compiled separately, preventing unwanted compiler optimizations (e.g.
finding out the codelet’s results are never used and removing all codelet calls from
the binary). A driver program handles the initialization of the codelet’s arguments
as well as the repetition loop described earlier.

It is important to note that the repetition loop does little in terms of bettering
hardware counter measurements when the instructions represented as “...” in the
figure represent a sizeable part of the function’s execution time, as they too get
repeated. It can happen for very small data sets (in which peel and tail loops can
process a significant part of the workload) or for cases of loop splitting (where the
compiler decides to distribute the source loop’s statements over several assembly
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HW Counters (start) // Only when measuring hardware counters
’driver’ process
{

read arguments (data size, nb repetitions)
allocate and initialize codelet arrays

repetition loop
{

codelet function (arrays, data size, ...)
{

...
RDTSC (start) // Only when measuring time
target binary loop
{

instructions of interest
}
RDTSC (stop) // Only when measuring time
...

}
}

free allocated memory
}
HW Counters (stop) // Only when measuring hardware counters

Figure 3.1: Codelet Structure and Probe Placement

loops), regardless of whether there is only one innermost loop at the source level (as
is the case for all the NR codelets we selected).

3.3.3 CQA Reports

Detailed CQA [21] reports are generated for the studied loop, providing valuable
insights on its theoretical peak performance and a good performance decomposition
for L1 data sets.

Such reports can also help confirm the measurements are sense-making, i.e. aber-
rant values are not produced.

3.4 Varying Experimental Parameters

Codelets can be studied from many different angles: we apply various DECAN [37]
transformations to them, make them run for diverse data sizes, on different machines
(see Table 3.2), core frequencies or memory loads.

We will present the experimental variations supported by the framework and
show result examples in this section.
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Table 3.2: Machine List

CPU
Note

SKU Uarch LLC
Frequencies
Min Max

HSW E3-1270 v3 HSW 4 8 MB 0.8 GHz 3.5 GHz
IVB I7-3770 IVB 4 8 MB 1.6 GHz 3.4 GHz
SLM C2750 SLM 4 4 MB 1.2 GHz 2.4 GHz

SNB1 E5-4640 SNB 8 20 MB 1.2 GHz 2.4 GHz

SNB2 E5-2640 SNB 6 15 MB 1.2 GHz 2.5 GHz

SNB3 E5-2640 SNB 6 15 MB 1.2 GHz 2.5 GHz
SNB4 E3-1240 SNB 4 8 MB 1.6 GHz 3.3 GHz

Machine 
Alias Nb of 

Cores

Transparent 
Huge Pages 

enabled
Poor RAM 

configuration

This table summarizes some of the essential characteristics of the machines
we used to run our experiments, and which will be referred to throughout this
manuscript.

All machines used a 64-bit version of Linux, with a kernel version greater or
equal to 2.6.

Hyper-threading was disabled on all machines (except for Silvermont ones as
they do not support it in the first place).

The poor RAM configuration on SNB2 is due to not all RAM slots being pop-
ulated on the motherboard, and the ones that are not taking advantage of the CPU
and the motherboard’s multi-channel capabilities.

3.4.1 DECAN Variants

DECAN is a tool allowing to patch binary loops so as to extract some of their
performance characteristics.

The main transformations (or variants) we use are:

1. FP: removes memory accesses from the loop, exposing the time taken by float-
ing point operations.

2. LS: removes floating point operations, exposing the time needed to perform
memory accesses.

3. REF: serves as reference point for the original loop’s behavior.

An example of performance decomposition using DECAN (and this framework)
is presented in Figure 3.2. This kind of information is valuable for optimization, as
it allows developers to know what aspects they should prioritize. For instance, here,
it is clear that any significant performance gains can only be achieved by optimizing
memory accesses, and optimizing FP operations should not even be considered.

3.4.2 Data Sizes

An interesting property of the codelets we selected is they can be easily run for
arbitrary zero-filled data sets as their control flow does not depend on the data
values. This allows us to observe how their behavior evolves depending on where
the data is held in the memory hierarchy.



34 Chapter 3. Codelet Performance Measurement Framework

Figure 3.2: DECAN Performance Decomposition Example (balanc_3_de)
The codelet was run on SNB1 (see Table 3.2), for a data set fitting in L3.
All metrics are normalized per iteration. [ECPI_D] represents the measured

execution time, L1D_REPLACEMENT_ND the measured number of cache lines
coming into L1 (using hardware counters), and P0_ND, P1_ND and P5_ND rep-
resent the numbers of uops respectively sent to ports 0, 1 and 5 (according to CQA).

We can see that the patched FP loop preserves the port load on P0 and P5 (ports
mostly responsible for FP operations and control flow) while discarding memory
activity (cache traffic is null, and memory port P2 has no activity).

We can also see that the patched LS loop preserves the memory traffic and P2
activity while significantly decreasing the number of operations on P0. The activity
on P5 is kept and is due to preserving the control flow.

Running the different patched loops makes it easy to see that memory operations
are responsible for most of the execution time here.

Each codelet works on arrays whose size are determined by an input N variable,
which we vary to change data set sizes. However, as codelets are free to do as they
wish with this value (e.g. 1D codelets can allocate N elements per array, whilst
2D codelets allocate N2 of them), may work with elements in single or/and double
precision, and can operate on different numbers of arrays anyway, a given value of
N does not necessarily correspond to the same data set size across codelets.

An example of the advantage obtained by varying data sizes is given in Figure 3.3.
Here, the codelet shows a different behavior depending on where the data is held
in the memory hierarchy. It can give interesting insights as to how the codelet can
be optimized depending on the target workload: if the codelet is typically called
for small data sets, then FP operations should be looked into; otherwise trying to
optimize memory accesses should take priority.

3.4.3 Machines and Microarchitectures

Performance may vary depending on the microarchitecture, the CPU itself or the
machine’s configuration. It can then be interesting to see how codelets’ behavior
changes depending on the machine.

An example is given in Figure 3.4. Here, the optimization impact is more hard-
ware than software related. Developers can use these experiments to know which
microarchitecture best fits their needs.
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Figure 3.3: Example of Codelet Behavior Across Dataset Sizes (toeplz_4_de)
The codelet was run on SNB1 (see Table 3.2). The y-axis represents cycles per

iteration (ECPI_D), while the x-axis shows the input values for N (which controls
the size of the dataset the codelet works on). The input values were chosen arbitrarily
with the objective of sweeping through the different behaviors codelets can exhibit
depending on data cache locality.

We can see the relative contribution of LS to REF’s performance level increases
as the size of the data set grows, pushing the data further and further in the memory
hierarchy. Thanks to LS, we can see the data likely fits in L1 for data points 1000
and 2000, then in L2 until point 10 000 (included), then in L3 until point 800 000,
transitioning to RAM on point 1 000 000, and fully in RAM on later points.

The performance for FP is constant across data sets, which makes sense consid-
ering this DECAN variant does not read or write data from/to the memory hierarchy,
and is hence unimpacted by cache limitations.

We can consequently see FP operations are the bottleneck in L1 and L2, but
have a lesser impact in L3 and RAM.

3.4.4 Frequencies

Energy consumption is one of the three classical considerations for performance
(with time and memory space), and can be optimized by adjusting the operating
frequency of the CPU cores [79, 80]. Indeed, power consumption can be approxi-
mated by the following formula [81, 82], thanks to which we can see it scales with
frequency:

Power = Capacitance ∗ V oltage2 ∗ frequency

Studying how well codelets scale with frequency changes can help find cases in which
frequency scaling is profitable, hence the framework allows for measurements to be
done at different operating frequencies using the CPUFreq [83] system.

Figure 3.5 shows an example of such frequency scaling analysis using our frame-
work. In this case, there may be room for frequency-driven energy savings for RAM
data sets.

Note: all experiments are performed in the highest base frequency available (i.e.
the “reference” frequency in the studied CPUs) unless otherwise specified.
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Figure 3.4: Behavior across Machines (toeplz_1_de)
The y-axis represents cycles per iteration (ECPI_D). The x-axis shows the input

values for the N variable, which governs the size of the dataset.
Detailed descriptions for the machines are available in Table 3.2. As a quick

summary, SNB1 is a machine with a Sandy Bridge CPU with 20 MB of L3 cache
and operating at 2.4 GHz. SNB2 is a machine with a Sandy Bridge CPU with 15 MB
of L3 cache, operating at 2.5 GHz, and with poorly populated RAM slots (reducing
the peak RAM bandwidth). HSW is a machine with a Haswell CPU with 8 MB of
L3 cache and operating at 3.5 GHz. SLM is a machine with a Silvermont CPU with
4 MB of L2 cache and operating at 2.4 GHz. Note: only 2 MB are accessible by a
given Silvermont core, so the effective L2 cache is 2 MB here.

We can see that performance per clock varies depending on the microarchitecture,
with Silvermont behind far behind Sandy Bridge and Haswell even for RAM data
sets. The effect of cache sizes is also particularly visible, with Silvermont’s 2 MB
not holding the data anymore as early as point 60 000.

We can also see Haswell brings a noticeable improvement over Sandy Bridge
when the data still fits in L3 (points below 200 000), though performance for SNB1
is shortly better for points 600 000 and 800 000 (likely due to its L3 being signifi-
cantly bigger). Also, one should keep in mind HSW is running at 3.5 GHz (against
respectively 2.4 and 2.5 GHz for SNB1 and SNB2), contributing to make RAM look
slow on this graph.

Finally, we can see SNB1 works better than SNB2 when RAM gets in the picture,
which is to be expected considering it is configured better in this regard.

3.4.5 Memory Load (using Memload)

Our in vitro codelets are run on a single core, with the rest of the machine being made
to be as little active as possible to get stable and clean measurements. However,
it also puts them in an ideal scenario where they can access all shared resources
with no competition. We developed Memload, a small tool to allow us to retain the
ability to observe codelets’ behavior when other programs make use of the (shared)
RAM bandwidth, providing a more realistic execution environment.

Memload is a multi-threaded program that streams through arrays for no other
purpose than to consume bandwidth from the memory hierarchy. Its threads get
pinned on the cores not used by the codelet so as to only impact CPU-wide resources,
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Figure 3.5: Frequency Scaling Example (elmhes_11_de and svdcmp_13_de)
The codelets were run on a Sandy Bridge CPU. The y-axis represents cycles

per iteration (ECPI_D). The speedup values are graded on the secondary y-axis,
and represent the speedup achieved when switching from the lower frequency to the
higher one. The x-axis shows the input values for the N variable, which governs the
size of the dataset.

Here, we can see svdcmp_13_de scales perfectly with the frequency change
across all data sets: running it in high frequency pays off. The speedup is also im-
portant for elmhes_11_de, but in a less considerably manner when the data comes
from RAM: it falls to 1.5x (from 2) on point 200 000. There may be room for energy
consumption savings here.

and their bandwidth consumption is frequently monitored and regulated.
Inputs can be used to control Memload’s activity:

1. Size of the array to stream through: this allows the user to target a given
element of the memory hierarchy. For instance, if the array fits in L2, then
Memload will not impact the effective bandwidths for L3 and RAM.

2. Target bandwidth consumption: the user specifies the bandwidth Memload
should try to consume (in MB per second). The tool may fail to reach this
number (if the target is unrealistic or the bandwidth reached a saturation
point), but will throttle itself if its exceeds it.

3. Access mode: regular loads can be used to impact both the effective band-
widths and available cache spaces, or non-temporal stores (a.k.a. streaming
stores) to impact the bandwidth without consuming cache space. In the lat-
ter case, RAM bandwidth will be impacted regardless of the size of the array
specified in 1).

We set the Memload tool to consume as much RAM bandwidth as possible
using non-temporal stores: this allows to see the codelet’s behavior in the worst
case scenario while keeping regular and memloaded results directly comparable for
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a given data size (i.e. the codelet’s data does not get shifted to a higher level due
to cache space being occupied by Memload).

Figure 3.6: Memory Load Example (svdcmp_14_de)
The codelets were run on a Sandy Bridge CPU. The y-axis represents cycles per

iteration (ECPI_D). The x-axis shows the input values for the N variable, which
governs the size of the dataset.

Memload has no impact on the FP variant as it makes no use of the (data)
cache hierarchy. LS starts getting impacted on point 800 000 (when not all data
fits in L3 anymore), reaching a peak ECPI_D on point 1 000 000. REF only gets
impacted on point 1 000 000 onwards.

Svdcmp_14_de is strongly dominated by FP operations (due to divisions being
very slow) in all cases when its execution core has free access to the CPU’s RAM
bandwidth. However, a strong memory activity makes it memory bound that when
most of its working data sets do not fit in L3 anymore (starting from point 1 000
000), which we would not be able to see with purely single-threaded experiments.

We can see an example in Figure 3.6. Such data can help developers know what
their code’s bottleneck really is when parallel workloads coexist on the CPU, and
hence guide their optimization effort.

3.4.6 Overall Structure

The framework handles varying the data size, running frequency and Memload
parameters. However, it is up to the user to run the framework on different host
machines. Other parameters not described here (e.g. which compiler or compiler
version to use, or whether CPU features such as hyper-threading and prefetchers
should be active) are also left to the user.

The framework’s general structure is summarized in Figure 3.7.

3.5 Results Repository: PCR

Our codelet performance measurement framework allows us to produce massive
amounts of data:
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compile codelet
identify target loop with DECAN
{

run the program and collect iteration counts
select loop with the highest iterations count

}
generate DECAN variants (LS, FP, etc.) for the target loop
{

CycPI\_R version (with RDTSC probe)
HWC version (without RDTSC probe)

}
static analysis for patched loops
{

extract assembly code
CQA report generation

}
// Changing experimental parameters
for all target data sizes
{

change input file
run the program and collect iteration counts
ensure the target loop is still the most important one
for all target frequencies
{

change core frequency
for all target memory loads
{

configure Memload (if needed)
for all DECAN variants
{

for all meta-repetitions
{

run pinned RDTSC version
get HWC measurements
{

start HWC collection
run pinned HWC version
stop HWC collection

}
}
collect median measurements

}
}

}
}

Figure 3.7: Framework Structure
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• There are 27 codelets in our NR collection.

• The number of collected metrics per individual experiment is around 30 (for
the measured hardware counters and CycPI_R).

• The codelets are run on several machines (roughly 8 different ones for the
NRs).

• The number of DECAN variants usually exceeds the 3 classical ones, and tends
to be more around 5 instead.

• Each codelet is run for 21 different data sizes.

• We typically run codelets on two different frequencies (the lowest and the
highest available).

• Different memory load configurations can be tried, though this is only rarely
done. We can assume the Memload parameter is not significant for the purpose
of giving a rough estimate.

The number of data points for the NRs’ DECAN entries alone (disregarding CQA-
generated values) then conservatively reaches 27∗30∗8∗5∗21∗2 ' 1.3million. This
is also ignoring re-runs (due to tool updates) and runs with atypical experimental
variations (e.g. more DECAN variants, more collected metrics...).

We hence developed Perfcloud Results Repository (PCR), a database tool to
keep track of the large volumes of data produced by our framework. Indeed, a
major challenge when having so much data is being able to navigate it. PCR allows
users to retrieve data and easily draw comparisons, as we did throughout Section 3.4.

3.5.1 Features

PCR’s main features include:

1. Remote access through a web interface.

2. Manual exploration of the results in case users are interested in a very specific
piece of data.

3. Fetching important amounts of data through a combination of filters (e.g.
“get all data about codelet balanc_3_de from the Numerical Recipes which
was obtained on machine SNB1 ”). Usable filters include application names,
codelet names, machine names or CPU types, data sizes, operating frequency,
DECAN variants, etc.

4. User-specified layouts of data: while the data is always presented in tables,
users can choose how to structure them. With the example above, the user
could decide to have data for different DECAN variants show up in different
tables, data for different data sizes in different rows, and data for different
frequencies in different columns.

5. On-the-fly generation of “aggregate” metrics computed using stored data. For
instance, users can specify they want an extra ECPI_D metric to be computed
as the minimum of the CycPI_R and CycPI_H values.

6. Exportation of fetched data to CSV or XLS files.



3.6. Related Work 41

7. Data importation using a simple specialized input format, enabling other
frameworks to produce compatible input files.

It can also be used by several people at the same time, allowing other researchers
to store and share experimental results of their own. Some of the in vivo data
presented later in the manuscript was made available to us this way.

Most of the data used in this manuscript went through PCR to facilitate their
storage and formatting. At the time of writing, our repository indexed over 17.5
million measured values, over more than 4300 codelets (and loops) and 22 machines.

3.5.2 Technical Details

PCR can be accessed through a web Front-End, allowing it to be used remotely
with any web browser. It was entirely developed in PHP, except for a Java-written
module used to generate XLS files.

It is backed with a SQL database, which handles most of the complexity behind
indexing and retrieving data and ensures the integrity of the repository.
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3.6 Related Work

The Microtools [60] also focus on studying codelets at a low level, also using using
techniques such as pinning and meta-repetitions to get accurate and stable results.
However, they mostly focus on purely synthetic workloads, and do not use static
analysis. Hardware counters are also not currently supported.

Vtune [27] integrates many different functionalities similar to those used in our
framework, but focuses entirely on program optimization. Our framework focuses
on a single codelet, analyzing it from many different angles.

The Codelet Tuning Infrastructure [84] (CTI) project measures loops from whole
applications, using both static analysis and dynamic measurements. However, as
with VTune, they are not studying individual loops as extensively as our framework
allows and focus instead on providing an overview at the application level. They also
offer to share experimental results in a multi-user environment, furtherly providing
all necessary files to re-run experiments.

3.7 Future Work

A stability metric can be computed for each measurement, using the following for-
mula:

stability = (median−min)/min

Adding this feature to the framework would allow for a very fine-grained evaluation
of how stable the results are.

The framework in general could be improved to support parallel codelets, better
tackling the evergrowing need in this domain. Supporting loops containing con-
ditional code (other than for iterating) would also open more codelets to further
scrutiny.
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Some work is still needed to determine how codelets with several loops could
best be supported with the described approach. A possible lead is to extend DE-
CAN’s patching capacity to single out a single loop and disable others, allowing
each relevant loop to be studied in separate runs.

Better measurement speeds could also be achieved by using less strict methods
than “start and stop” for counter measurements, such as sampling. Furthermore,
inserting probes around the repetition loop to better target the region to measure
would allow us to reduce the number of repetitions needed to get quality results.

Finally, while the framework was tested on “big core” Intel microarchitectures
(Sandy Bridge, Ivy Bridge, Haswell; both on desktop and server versions) and on
Silvermont (Avoton), work on both the tools it uses (CQA, DECAN, etc.) and itself
will be needed to support later microarchitectures, or completely different ones such
as ARM. Mobile computing with smartphones and tablets represents a large chunk
of today’s computing use, and studying the microarchitectures lying underneath
could bring interesting insights on possible optimization opportunities.

3.8 Conclusion

We have presented the measurement methodology behind our Codelet Performance
Measurement Framework, combining static and dynamic analysis tools such as CQA,
DECAN and Likwid to produce quality low-level measurements and insights.

We have also presented our NR codelet collection, which we tested extensively
through our measurement framework and will make repeated appearances in the
rest of this manuscript.

We will use this data to help create PAMDA (Performance Assessment Method-
ology using DECAN) in Chapter 4, to extend the Cape modeling tool and refine
CQA and DECAN variants (see Chapter 5), and as validation data for our static
Uop Flow Simulation loop modeling (see Chapter 7).



Chapter 4

PAMDA: Performance
Assessment Methodology Using

Differential Analysis

Identifying performance bottlenecks in applications is crucial to improve their effi-
ciency, but it may be difficult to precisely assess their impact on performance: in
particular, two performance problems can interact making it difficult to isolate and
therefore to correct them. We propose PAMDA [85], a methodology to single out
performance problems through hierarchical bottlenecks detection. Important po-
tential performance issues are classified in a ’Performance Breakdown Tree’ which
is used to drive our iterative analysis cycle, prioritizing the most relevant prob-
lems. Our system relies on MAQAO toolset and code’s differential analysis. While
MAQAO is a performance analysis and optimization tool suite, the differential anal-
ysis approach, which is implemented through DECAN tool, consists in quantifying
performance changes when applying controlled transformations to the target code.
Our focus will be on performance issues raised by processors and memory sub-
systems in multicore architectures. We will demonstrate the approach on loops
extracted from real life HPC applications.

4.1 Introduction

The recent progress of high performance architectures generates new challenges for
performance evaluation tools: more complex processors (larger vectors, many cores),
more complex memory systems (multiple memory levels including NUMA, multiple-
level prefetch mechanisms), more complex systems (large increase in core counts up
to several hundred of thousands now) are all key issues which need to be simulta-
neously optimized to get a decent performance level.

To work properly, all of these mechanisms require specific properties from the
target code. For example, good exploitation of memory hierarchies relies on good
spatial and temporal locality within the target code. The lack of such properties
induces variable performance penalties: such combinations (mismatch between hard-
ware and software) are denoted performance pathologies. Most of them have been
identified (cf. Table 4.1) and efficient workarounds are well known. The current gen-
eration of performance tools (TAU [86], PerfExpert [87], VTune [27], ThreadSpot-
ter [88], Scalasca [89], Vampir [90]) is excellent at detecting such pathologies al-
though some are fairly specialized: for instance, Scalasca/Vampir mainly addresses
MPI/OpenMP issues, requiring the combined use of several tools to get a global
overview of all of the performance pathologies present in an application.

Most of the current tools do not provide any direct insight on the potential cost
of a pathology. Furthermore, the user has no idea about what the potential benefit
of optimizing his code to fix a given pathology is. These two points prevent him from
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focusing on the right issue. For example, let us consider a program containing two
hot routines A and B, respectively consuming 40 % and 20 % of the total execution
time. Let us further assume that the potential achievable performance gain on A is
10 % while on B it is up to 60 %. The overall performance impact on B is up to
60 % * 20 % = 12 % while on routine A, it is at best 10 % * 40 % = 4 %. As a
consequence, it is preferable to focus on routine B. Additionally, the user has no clue
of what the current performance level is, compared with the best one achievable,
i.e. he may not know when optimizing is worth the investment.

In general, the situation is even worse since a simple loop may simultaneously
exhibit several performance pathologies. In such cases, most of the tools cited above
give no hint to the user of which ones are dominant and really worth fixing. For
instance, a loop can suffer from both a high miss rate and the presence of costly
Floating-Point (FP) operations such as div/sqrt: trying to improve the hit rate does
not improve the performance if the dominant bottleneck is the div/sqrt operations.

In this paper, we present a coherent set of tools (MicroTools [60], CQA [91,
92, 22, 21], DECAN [37], MTL [93]) to address this lack of user’s guidance in the
tedious and difficult task of program optimization. These tools are integrated in
a unified methodology (PAMDA) to help the user to quickly identify performance
pathologies and to assess their cost and impact on the global performance. The
different techniques (static analysis, value profiling, dynamic analysis) appear to be
more appropriate and give a more accurate answer depending upon performance
pathologies to be fixed: for example, detecting a badly strided access is immediate
through value tracing of array addresses while the same task is extremely tedious
when only using static analysis or hardware counters. Anyway, such array access
tracing should only be triggered when necessary due to its high cost. In this paper,
we focus on providing performance insight at the core level and parallel OpenMP
structures. Our analysis can be combined with MPI analysis provided by tools such
as Scalasca, TAU or Vampir.

Through the integrated methodology PAMDA, we aim at providing the following
contributions:

• Getting a global hierarchical view of performance pathologies/bottlenecks

• Getting an estimate of the impact of a given performance pathology taking
into account all other present pathologies

• Demonstrating that different specialized tools can be used for pathology de-
tection and analysis

• Performing an hierarchical exploration of bottlenecks according to their cost:
the more precise but expensive tools are only used on specific well chosen
cases.

Section 2 presents a motivating example in detail. Section 3 details the various
key components of PAMDA while Section 4 describes the combined use of these
different tools. Section 5 describes some experimental use of PAMDA. Section 6
gives an overview of related works and the added value of the PAMDA system.
Finally, Section 7 gives conclusions and future directions for improvement.
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Table 4.1: A few typical performance pathologies

Pathologies Issues Workarounds
ADD/MUL parallel Loop fusion, code rewriting

ADD/MUL balance execution (of fused multiply e.g. use distributivity
add unit) underused

Non pipelined Presence of non pipelined Loop hoisting, rewriting code to use
execution units instructions: div, sqrt other instructions eg. x86: div and sqrt

Use another compiler, check option
Vectorization Unvectorized loop driving vectorization, use pragmas to

help compiler, manual source rewriting
Complex control
flow graph in Prevents vectorization Loop hoisting or code specialization

innermost loops
Unaligned memory Presence of vector-unaligned Data padding, use pragma and/or

access load/store instructions attributes to force the compiler
Bad spatial locality Loss of bandwidth and Rearrange data structures
and/or non stride 1 cache space or loop interchange

Bad temporal Loss of perf. due to avoidable Loop blocking or data restructuring
locality capacity misses

4K aliasing Unneeded serialization of Adding offset during allocation,
memory accesses data padding

Associativity Loss of performance due to Loop distribution, rearrange
conflict avoidable conflict misses data structures

Loss of bandwidth due to Data padding or rearrange
False sharing coherence traffic and data structures

higher latency access
Loss of bandwidth and Use bigger pages,

Cache leaking cache space due to poor blocking
physical-virtual mapping

Load unbalance Loss of parallel perf. Balance work among threads or remove
due to waiting nodes unnecessary lock

Bad affinity Loss of parallel perf. due to Use numactl to pin threads on physical
conflict for shared resources CPUs

High number of Too many streams for
memory streams hardware prefetcher or See conflict misses

conflict miss issues
Significant loop overhead, Try different unrolling factors,

Lack of loop lack of instruction-level unroll and jam for loops nest,
unrolling parallelism try classical affinities

(compact, scatter, etc.)

4.2 Motivating Example

Figure 4.1 presents the source code of one of the hottest loops extracted from PO-
LARIS(MD) [94]: a molecular dynamics application developed at CEA DSV. PO-
LARIS(MD) is a multiscale code based on Newton equations: it has been successfully
used to model Factor Xa involved in thrombosis.

This loop simultaneously presents a few interesting potential pathologies:

• Variable loop trip count

• Fairly complex loop body which might lead to inefficient code generation by
the compiler

• Presence of div/sqrt operations

• Strided and indirect access to arrays (scatter/gather type)

• Multiple simultaneous reduction operations leading to inter iteration depen-
dencies
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nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 - x(nj1) ; u2 = x12 - x(nj2) ; u3 = x13 - x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi+rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c - u1g ; g2c = g2c - u2g ; g3c = g3c - u3g

gr(nj1,thread_num) = gr(nj1,thread_num) + u1g

gr(nj2,thread_num) = gr(nj2,thread_num) + u2g

gr(nj3,thread_num) = gr(nj3,thread_num) + u3g

do j = ni+nvalue1,nato

end do

div/sqrt
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Figure 4.1: Polaris Source Code Sample
The code’s main performance pathologies are highlighted in pink.

All these pathologies can be directly identified by simple analysis of the source
code. The major difficulty is to assess the cost of each of them and therefore to
decide which should be worked on.

A first value profiling of the loop iteration count reveals that the trip count is
widely varying between 1 and 2000. However the amount of time spent in the small
(less than 150 iterations) loop trip count instances remains limited to less than 10 %.
The remaining interval of loop trip counts is further divided into 10 deciles and one
representative instance is selected for each of them. Further timings on analyzing
loop trip count impact indicate that the average cost per iteration globally remains
constant independently from the trip count. Therefore, the data size variation seems
to have no impact on performance: the same optimization techniques should apply
for instances having a loop trip count between 150 and 2000.

The static analyzer (see Figure 4.3) provides us with the following key informa-
tion: in the original version, neither Load/Store (LS) operations nor FP ones are
vectorized. It further indicates that due to the presence of div/sqrt operations, the
FP operations are the main bottlenecks. It also points out that even if the FP op-
erations were vectorized, the bottlenecks due to sqrt/div operations would remain.
However this information has to be taken with caution since the static analyzer
assumes that all data accesses are ideal, i.e. performed from L1.

Dynamic analysis using code variants generated by DECAN is presented in Fig-
ure 4.2. Initially, the original code (in dark blue bars) shows that FP operations
(see FP versus LS DECAN variants) clearly are the dominating bottlenecks. Fur-
thermore, the good match between CQA and REF clearly indicates that analysis
made by CQA is valid and pertinent. Optimizing this loop is simply obtained by
inserting the SIMD pragma ’!DEC$ VECTOR ALWAYS’, which forces the compiler to
vectorize FP operations. However, the compiler does not vectorize loads and stores
due to the presence of strides and indirect access. Rerunning DECAN variants of
this optimized version (see light blue bars in Figure 4.2) shows that even for this op-
timized version FP operations still remain the key bottleneck (comparison between
LS and FP). Therefore, there is no point in optimizing data access, the only hope of



4.3. Ingredients: Main Tool Set Components 47

Figure 4.2: DECAN Analysis Example

The y-axis represents the number of cycles per source iteration: lower is better.
Comparing static estimates obtained by CQA with dynamic measurements per-

formed on different code variants generated by DECAN of both of the original and
vectorized versions: REF is the reference binary loop (no binary modifications in-
troduced by DECAN), FP (resp. LS) is the DECAN binary loop variant in which
all of the Load/Store (resp. FP) instructions have been suppressed, REF_NSD
(resp. FP_NSD) is the DECAN binary loop variant in which only FP sqrt and
div instructions (resp. all of the Load/Store and FP sqrt/div instructions) have been
suppressed.

optimization lies in improving div/sqrt operations: for example SP instead of DP.
Unfortunately, such a change would alter the numerical stability of the code and
cannot be used.

The major lesson to be drawn from this case study is that a combined use of
CQA and DECAN allows us to quickly identify the optimization to be performed
and also gives us a clear halt on tackling other pathologies without impacting overall
performance.

4.3 Ingredients: Main Tool Set Components

Performance assessment issues require robust methodologies and tools. Therefore,
in order to systematically provide programmers with a performance pathology hi-
erarchy and its related costs, the current work considers two toolsets: MicroTools,
for microbenchmarking the architecture, and the MAQAO [91, 92, 22] framework,
which is a performance analysis and optimization tool suite.

MAQAO’s goal is to analyze binary codes and to provide application develop-
ers with reports to optimize their code. The tool mixes both static (code quality
evaluation) and dynamic (profiling, characterization) analyses based on the ability
to reconstruct low level (basic blocks, instructions, etc.) and high level structures
such as functions and loops. Another MAQAO key feature is its extensibility. Users
easily write plugins thanks to an embedded scripting language (Lua), which allows
fast prototyping of new MAQAO-tools.

From MAQAO, PAMDA extensively uses three tools including the Code Quality
Analyzer tool (CQA) exposed in section 4.3.2, the Differential Analysis framework



48
Chapter 4. PAMDA: Performance Assessment Methodology Using

Differential Analysis

(DECAN) presented in section 4.3.3, and finally the Memory Tracing Library (MTL)
in section 4.3.4. We briefly present the main contribution of each of these tools to
PAMDA and then describe their major characteristics.

4.3.1 MicroTools: Microbenchmarking the Architecture

Microbenchmarking [95, 96, 97] is an essential tool to investigate the real potential
of a given architecture: more precisely, in PAMDA, microbenchmarking is first
used to determine both FP units performance and achievable peak bandwidth of
various hardware components such as cache/RAM levels, and second to estimate
the potential cost of various pathologies (unaligned access, 4K aliasing, high miss
rate, etc.).

For achieving these goals, PAMDA relies on MicroTools , consisting of two
main components: MicroCreator tool automatically generates a set of benchmark
programs, while MicroLauncher framework executes them in a stable and closed
environment.

4.3.2 CQA: Code Quality Analyzer

In PAMDA, the CQA framework is used first for providing a performance target
under ideal data access conditions (all operands are supposed to be in L1), second
for providing a bottleneck hierarchy analysis between the various hardware compo-
nents of the core (FP units, load/store ports, etc.) and third for detecting some
performance pathologies (presence of inter iterations dependencies, div/sqrt oper-
ations) which are worth investigating via specialized DECAN variants. The ideal
assumption (all operands in L1) is essential for CPU bound codes such as the PO-
LARIS(MD) loop studied in the previous section. For memory bound loops, it needs
to be complemented with a dynamic analysis.

CQA is a static analysis tool directly dealing with binary code. It extracts key
characteristics, and detects potential inefficiencies. It provides users with general
code metrics such as details on basic loop characteristics, the number of instructions,
µops, and used XMM/YMM vector registers. CQA also allows users to obtain
more in-depth information on the loop execution on the target architecture. For
example, the tool provides a reliable Front-End pipeline execution report, which is
an estimated number of cycles spent during each Front-End pipeline stage. The
tool gives the same type of report for the Back-End. Finally, CQA provides a cycle
estimate of loop body performance under ideal conditions: all operands in L1, no
branches and infinite loop count (steady state behavior).

CQA is able to report both low and high level metrics/reports (figure 4.3).
For example, when a loop is not fully vectorized, the high level report provides
a potential speedup (if all instructions were vectorized) and corresponding hints
(compiler flags and source transformations). For the same loop, some low level
metrics/reports show the breakdown of vectorization ratios per instruction type
(loads, stores, ADDs, etc.) giving the user a more in-depth view of the issue.

CQA supports Intel 64 micro-architectures from Core 2 to Haswell.

4.3.3 DECAN: Differential Analysis

In PAMDA, DECAN is used for quantitatively assessing performance pathologies
impact. The general idea is fairly simple: a given pathology is associated with the
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Figure 4.3: Low-Level CQA Output

presence of a given subset of instructions, for example div/sqrt operations, then DE-
CAN generate a binary version of the loop in which the corresponding instructions
are deleted or properly modified. This altered binary is measured and compared
with the original unmodified version.

The resulting binary does not in general preserve semantics, i.e. numerical values
generated with DECAN variants are not identical to the original ones. For our
performance analysis objective, this is not a critical issue but for the subsequent
program execution, control behavior might be altered. To avoid such problems, the
original loop is systematically replayed after the execution of the modified binary in
order to restore correct memory values.

DECAN starts by using static analysis on the target loop produced by CQA.
The goal is to select instruction subsets to be transformed, as the selection process
is driven by the desired type of behavior to highlight. Afterward, instructions
are carefully transformed in a manner that minimizes unwanted side effects
that may disturb the observations, such as changes in the code layout and
instruction dependencies. It also inserts some monitoring probes to be able to
accurately compare the modified part of the code with the original one. Also, and
as stated earlier, DECAN is built on top of the MAQAO framework, hence, it
uses the MAQAO disassembler/patcher to forward modifications on the instructions.

Using DECAN’s features, PAMDA generates altered binaries, thereby split-
ting performance problems between CPU, memory, and OpenMP issues. Table 4.2
presents a range of loop variants used within the methodology discussed in Section
4.4.

4.3.4 MTL: Memory Tracing Library

Within PAMDA, MTL provides specific analysis of pathologies related to data access
patterns in particular stride values, alignment characteristics, data sharing issues in
multi threaded codes, etc. MTL works by tracing addresses and by generating
compact representations of data access patterns. MTL is not limited to innermost
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Table 4.2: DECAN variants and transformations

Variant Type of SSE/AVX
Instructions Involved

Transformation

LS All arithmetic instructions Instruction deleted
FP All memory instructions Instruction deleted
DL1 All memory instructions Instruction operands modified to

target a unique address
NODIV All division instructions Instruction operands modified to

target a unique addresses
NORED All reduction instructions Instruction deleted

S2L All store instructions Converted into load instructions
NO_STORE All store instructions Instructions are deleted

loops but directly deals with multiple nested loops, allowing to detect more subtle
pathologies: for example, row major instead of column major accesses for a Fortran
array (stored column wise) are automatically detected. To perform these analyses,
MTL uses the MAQAO Instrumentation Language (MIL) [98]. This language makes
the development of program analysis tools based on static binary instrumentation
easier. In fact, MIL is a specific language for object-oriented and event-directed
domains to perform binary instrumentation at a high level of abstraction using
structural objects (functions, loops, etc.), events, filters, and probes.

4.4 Recipe: PAMDA Tool Chain

Figure 4.4: PAMDA Overview

Individual tools are the building blocks that PAMDA glue together through a
set of scripts. These scripts are under development but most of the principles have
been already evaluated. Figure 4.4 presents PAMDA’s overall organization, which
includes application profiling, cost analysis, structural checks, CPU and memory
subsystems evaluation, and finally OpenMP evaluation for parallel applications.
The current section describes PAMDA’s components.

4.4.1 Hotspot identification

To limit the processing cost, we focus on the most time consuming portions of the
code. Our target loops are defined as the loops with a cumulated execution time
exceeding 80% of the total execution time. It should be noted that with such an
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aggregated measurement, we can end up with a large number of loops with small
individual contributions. Such target loops are identified using MAQAO sampling.

4.4.2 Performance overview

Figure 4.5: Performance Investigation Overview
T means the condition is true and F that it is False.

The PAMDA approach divides performance bottlenecks into two main categories
(Figure 4.5): memory subsystem and CPU. Then, their respective contribution to
the overall execution time is quantified using DECAN transformations LS (assessing
memory subsystem performance) and DL1 (assessing CPU subsystem performance).
The ratio of these contributions reveals whether the loop is memory or/and CPU
bound. Ideally, pipeline and out of order mechanisms insure that cycles spent for
memory accesses and for arithmetic operations perfectly overlap: as a result, the
time taken by REF should be the maximum time taken either by LS or DL1. In such
a case, only the slower component needs optimizing. If the time taken by LS and
DL1 is similar, the workload is said to be balanced: optimizing both components
is necessary to improve the loop’s performance. Finally, when cycles taken by the
memory and CPU components are poorly covered by one another (unsaturation),
optimizing either of them can be sufficient to gain overall performance.

4.4.3 Loop structure check

Loop structure issues can be detrimental to performance, and may be detected
using DECAN’s loop trip counting feature. Indeed, in the case of unrolling or
vectorization, peel and tail scalar codes may have to be generated to cover for
remaining iterations. If too much time is spent in these peel and tail codes, this
might indicate the unroll factor is too high with respect to the source loop iteration
count. To detect such cases, loop trip counts for each version (peel/tail/main) are
determined, and we check whether the main loop is processing at least 90 % of the
source code iterations.

In some cases, the number of iterations per loop instance may not be large
enough to fully benefit from unrolling or vectorization. This is easily highlighted by
comparing the dynamic execution time of the DL1 DECAN variant with the CQA
estimate, as the latter assume an infinite trip count. The difficulty to optimize such
loops is exacerbated when the loop trip counts are not constant.
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Figure 4.6: Detecting Structural Issues

4.4.4 CPU evaluation

Figure 4.7: DL1 Subtree: CPU Performance Evaluation

Besides data accesses, CPU performance may be limited by other pathologies such
as long dependency chains (deps), reductions (RED), scalar instructions or long la-
tency floating point operations (div): these pathologies can be detected through the
combined use of CQA and DECAN (Figure 4.7). The Front-End can also slow down
the execution by failing to provide the Back-End with micro-operations at a suffi-
cient rate. Comparing their contribution to L1 performance (DL1) is a cost-effective
way to identify such problems. Finally, CQA can provide us with estimations of the
effect of vectorizing a loop. We precisely quantify CPU related issues, enabling us to
reliably assess potential for optimizations such as getting rid of divisions, suppress-
ing dependencies or vectorizing. This information can guide the user’s optimization
decisions.
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4.4.5 Bandwidth measurement

Data access rates from different cache levels / RAM highly depend on several factors,
such as the instructions used or the access pattern. To account for it, we generate
microkernels loading data in an ideal stream case, testing different configurations
for load operations, with or without various software prefetch instructions, and/or
splitting the accessed data in streams accessed in parallel. We also force misaligned
addressing for vmovups and movups. Finally, we use Microlaunch to run these
benchmarks for each level of the memory hierarchy.

Table 4.3: Bytes per Cycle for Each Memory Level (Sandy Bridge E5-2680)

Instruction L1 L2 L3 RAM
vmovaps 31.74 15.05 10.81 5.10
vmovups 31.73 14.96 10.81 5.10
movaps 30.72 18.16 10.80 5.14
movups 29.53 17.07 10.79 5.23
movsd 15.67 11.55 10.61 5.36
movss 7.91 6.65 6.39 4.97

On our target architecture, 128-bit SSE load instructions could roughly achieve
the same bandwidth as 256-bit AVX (Table 4.3) throughout the whole memory
hierarchy. Except for movss, all instructions could attain similar bandwidths in L3
and RAM: only the type of instruction really matters for data accesses from L1 or
L2, and data alignment is not as relevant as it once was.

4.4.6 Memory evaluation

Figure 4.8: LS Subtree: Memory Performance Evaluation

Memory performance can be quite complex to evaluate. In Figure 4.8, we use
MTL to find the different access patterns and strides for each memory group (as
defined by the grouping analysis [37]). Memory accesses typically are more efficient
when targeting contiguous bytes, while discontiguous accesses reduce the spatial
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locality of data. The worst case scenario is having large and unpredictable strides,
as hardware prefetchers may not be able to function properly. MTL also provides
the data reuse distance, allowing the temporal locality evaluation of groups.

Once potential performance caveats are identified, we can use DECAN transfor-
mation del-group to single out offending groups and quantify their contribution to
the LS variant global time. Comparing the bandwidth measured for each group with
the bandwidth obtained in ideal conditions in the bandwidth measurement phase
may then provide us with an upper limit on achievable performance.

4.4.7 OpenMP evaluation

Figure 4.9: OpenMP Performance Subtree
STD represents the standard deviation between threads, while OVH stands for

our OpenMP OverHead evaluation.

Some issues are specific to parallel programs using OpenMP (Figure 4.9). The
standard deviation (STD) of the execution time for each thread points out workload
imbalances. It is particularly important that no thread takes significantly longer
than others to compute its working set, as loop barriers may then highly penal-
izing stalls. Another issue is excessive cache coherency traffic generated by store
operations on shared data. Transformation S2L converts all stores to loads: we can
quantify coherency penalties by comparing S2L with REF. Furthermore, the OpenMP
Overhead (OVH) module of MAQAO is able to measure the portion of time spent
in OpenMP routines, providing an OpenMP overhead metric.

4.5 Experimental results

We applied our methodology on two scientific applications: PNBench and RTM.
The analysis processes and test results are presented below.

4.5.1 PNBench

PNBench is an OpenMP/MPI kernel used at CEA (French Department of Energy).
Hot loops are memory bound and are ideal to stress tools dedicated to memory
optimizations.

All tests are performed on a two-socket Sandy-Bridge machine, composed of two
Intel E5-2680 processors with 8 physical cores each.
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The profiling done on the initial MPI version of the code presents four loops
consuming more than 8% of the global execution time each. Because of a lack of
space, we only study the first one, but the three other loops have a similar behavior.

Figure 4.10: Streams Analysis on PNBench
The REF curve corresponds to the performance of the original code. The LS

(resp. DL1) curve corresponds to the DECAN variant where all FP instructions
have been suppressed (resp. all data accesses are forced to come out of L1).

According to the methodology, the next step consists in gaining more insight
on the loop characteristics through performance overview, hence, the LS and DL1
DECAN variants are used. The corresponding results shown in Figure 4.10 indicate
a strong domination of data accesses, with the LS curve being well over the DL1
curve and matching the REF one. Consequently, the investigation follows the LS
subtree.

Table 4.4: PNBench MTL Results

Group Instructions Pattern
G1 Load (Double) 8*i1
G6 Load (Double) 8*i1+217600*i2+1088*i3
G5 Store (Double) 8*i1+218688*i2+1088*i3

This table shows PNBench MTL results for the three most relevant instruction
groups.

In order to get more information on data accesses, we use MTL. Six instruction
groups are detected but only three of them contain relevant SSE instructions dealing
with FP arrays. The MTL results shown in Table 4.4 indicate a simple access pattern
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for group G1 (stride 1) and, for groups G6 and G5, more complicated patterns which
need to be optimized. As a result, in this step we are able to characterize our memory
accesses with precision. Though, it leaves us with two accesses and no possibility to
know which one is the most important.

Figure 4.11: Group cost analysis on PNBench
Each group curve corresponds to performance of the loop while the target group

is deleted. The original code performance (REF) is used as reference.

At this point, we return to our notion of ROI provided through Differential
analysis and apply the DECAN del-group transformation for each of the three
selected groups. The del-group results shown in Figure 4.11 clearly indicate that
G6 is the most costly group by far: it should be our first optimization target.

With the finding of the delinquent instruction group, the analysis phase comes
to its end. The next logical step is to try and optimize the targeted memory access.
Fortunately, the information given by MTL reveals an interesting pathology. The
access pattern of the instruction of interest has a big stride in the innermost loop
(1088*i3) and a small one in the outermost loop (8*i1). In order to diminish the
access penalty we perform loop interchange between the two loops, which results
in a considerable performance gain at the loop level with a speedup of 7.7x and
consequently a speedup of 1.4x on the overall performance of the application.

4.5.2 RTM

Reverse Time Migration (RTM) [99] is a standard algorithm used for geophysical
prospection. The code used in this study is an industrial implementation of the
RTM algorithm by the oil & gas company TOTAL.

Our RTM code operates on a regular 3D grid. More than 90% of the application
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execution time is spent in two functions, Inner and Damping, which execute similar
codes on two different parts of the domain: Inner is devoted to the core of the
domain while Damping is used on the skin of the domain. Standard domain decom-
position techniques are used to spread the workload on multicore target machines.
Since the grid is uniform, load balancing can be easily tuned by using rectangular
sub-domain decomposition and by properly adjusting the sub-domain size.

All experiments are done on a single socket machine, which contains a quad-core
Intel Xeon E3-1240 processor with a cache hierarchy of 32KB (L1), 256KB (L2) and
8MB (shared L3).

Step 1: The original version of the code is provided with a default non-optimized
blocking. The first analysis on the OpenMP subtree reveals an imbalanced work
sharing. A second analysis done at the level of the performance overview subtree
shows that the code is highly bounded by memory operations. In order to fix this,
we focus on the blocking strategy. As a result it turns out that the default block
size is responsible for both the load imbalance between threads and the bad memory
behavior. We can then select a strategy which provides a good balance at the work
sharing level as well as a good trade-off between the LS and FP streams. However,
we note that, to obtain an optimal strategy, a more dedicated tool should be used.

Step 2: The second step of the analysis consists in going further in the OpenMP
subtree and checking how the RTM code performs in term of coherency. As explained
earlier, the structure of the code induces a non-negligible coherency traffic. Figure
4.12 shows experimental results after applying the S2L transformation on RTM.
While the x-axis details loops respectively identified from Inner and Damping, the
y-axis represents speedups over the original loops. The results indicate a negligible
gain due to canceling potential coherency modifiers and a minimal gain, observed on
two loops, due to a complete deletion of the stores. Consequently, we can conclude
that maintaining the overall coherency state remains negligible, therefore, there
would be no point in going further in this direction.

Figure 4.12: Evaluation of the Cost of Cache Coherence Protocol
The S2L variants show similar performance as their corresponding reference

versions. The NO_STORE variants are the same, except for two loops which present
an observable store cost.
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4.6 Related Work

Improving an application’s efficiency requires identifying performance problems
through measurement and analysis but assessing bottlenecks impact on performance
is much harder. To achieve that, most researchers consider a qualitative approach.
TAU [86] represents a parallel performance system that addresses diverse require-
ments for performance observation and analysis. Although performance evaluation
issues require robust methodologies and tools, TAU only offers support to the per-
formance analysis in various ways, including instrumentation, profiling and trace
measurements.

Tools such as Intel VTune [27], GNU profiler (Gprof) [100], Oprofile [31], Mem-
Spy [101], VAMPIR [90], and Scalasca [89] provide considerable insight on the ap-
plication’s profile. In term of methodology Scalasca, for instance, proposes an in-
cremental performance-analysis procedure that integrates runtime summaries based
on event tracing. While these tools help hardware and software engineers find per-
formance pathologies, significant manual performance tuning remain for software
improvements, for example, selecting instructions in particular part of a program.

PerfExpert [87], HPCToolkit [102], and AutoSCOPE [103] pinpoint performance
bottlenecks using performance monitoring events. Furthermore, while PerfExpert
suggests performance optimizations, AutoSCOPE extends PerfExpert by automat-
ically determining appropriate source-code optimizations and compiler flags. Con-
trary to PAMDA, the considered tools do not provide a methodology presenting the
cost related to the identified bottleneck. ThreadSpotter also helps a programmer by
presenting a list of high level advice without addressing return on investment issues:
what to do in case of multiple bottlenecks? How much do bottlenecks cost?

Interestingly in [104, 105], the authors present an automated system that finger-
prints the pathological patterns of the hardware performance events and identifies
the pathologies in applications, allowing programmers to reap the architectural in-
sights. The proposed technique is close to the current work and includes pathology
description through microbenchmarks as well as pathology identification using a de-
cision tree. However, in order to evaluate usual performance pathologies, PAMDA
additionally integrates pathology cost analysis.

The above survey indicates that performance evaluation requires a robust
methodology, but traditional methods do not help much with coping with the overall
hardware complexity and with guiding the optimization effort. Also, previous works
focus on performance bottleneck identification providing optimization advice with-
out providing potential gains. The previous factors motivate to consider PAMDA
as the only methodology combining both qualitative and quantitative approaches to
drive the optimization process.
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4.8 Conclusion and Future Work

Application performance analysis is a constantly evolving art. The rapid changes
in the hardware mixed with new coding paradigms force analysis tools to handle as
many pathologies as possible. This can only be achieved at the expense of usability.
At the end, application developers work with extremely powerful tools but they have
to face significant differences and difficulties to use them.

This paper illustrates the usefulness of performance assessment combining static
analysis, value profiling and dynamic analysis. The proposed tool chain, PAMDA,
helps the user to quickly identify performance pathologies and assess their cost and
impact on the global performance.

The goal in using PAMDA is to make sure that the right effort is spent at each
step of the analysis and on the right part of the code. Furthermore, we try to create
some synergy between different tools by combining them in a unified methodology.
We provide some case studies to illustrate the overall analysis and optimization
process. Experimental results clearly demonstrate PAMDA’s benefits.

The provided methodology is admittedly far from being finished. Our constant
challenge is to keep improving it as well as working towards full automation. We
also aim to enlarge it for other kind of paradigms through the integration of analyses
provided by complementary tools such as Scalasca, Vampir and TAU. Additionally,
refining optimization investigations is crucial in order to make it more user-friendly.





Chapter 5

Extending the Cape Model

Cape is a model answering the need for a global view of a machine’s performance
parameters, and allowing users to evaluate the impact of a HW or SW change across
the whole system.

In this chapter, we will present the work we have done to help improve and
extend the Cape modeling capabilities on modern Intel microarchitectures. These
improvements range from sanitizing Cape inputs to adding key model components.

This work focuses mainly on Sandy Bridge, but we will also mention character-
istics from Ivy Bridge and Haswell when they differ.

5.1 Presentation of Cape

Cape is a loop-centric performance model that is mostly aimed at hardware / soft-
ware codesign, but can also be used to precisely decompose performance for opti-
mization purposes.

While its principles were used and validated in the context of frequency scaling
in [70], the work presented in this chapter helped refine its approach, bringing more
modeling details, precision and matching the hardware more closely.

5.1.1 Core Principles

We will begin our presentation of Cape by introducing the concept of nodes, small
linear models targeting specific hardware components or characteristics.

Each node has a bandwidth, i.e. a certain amount of work it can process every
cycle, and is essentially a hardware characteristic. However, how much these nodes
are solicited (which we will call the node’s workload) is program dependent, and
hence a software attribute. From a node’s point of view, the time taken to process
a certain workload is defined by:

node time = workload / node bandwidth

As an example, a “branch node” could model the impact of branch instructions
on Sandy Bridge by having a workload equal to the number of branches needed to
run the code, and a bandwidth of 1 branch per cycle (as there is only one branch
unit in the the SNB microarchitecture). Branch instructions would then necessarily
take at least number of branches / bandwidth cycles to get executed.

Cape combines these individual nodes, assuming they are completely indepen-
dent from one another:

cape time = max
all nodes

(node time)

The Cape model is consequently a bandwidth-centric model comprising a linear
equations system. Modifying hardware characteristics is hence particularly easy
(as only about modifying bandwidth values for individual nodes), and presenting
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a trivial numerical complexity: exploring potential designs is hence made a rather
computationally trivial task. Another interesting property of this model is that it
allows the implementation of a fast inverse performance function, giving a list of
hardware changes needed to reach a target performance.

5.1.2 Identifying Nodes and their Bandwidths

Nodes may vary both in nature and in bandwidths depending on the target microar-
chitecture. For instance, one may question the relevance of a FP division node in
the context of old CPUs not supporting them natively. Which nodes to use, and
what their bandwidth should be set to is hence completely hardware-specific and
can be obtained through various means:

1. Documentation: manuals such as [106] can give clear information on a mi-
croarchitecture’s main components and potential bottlenecks.

2. Benchmarks: empiric data (e.g. [107]) can complement (and sometimes sup-
plement) the official documentation, especially to fine-tune bandwidths.

3. Using DECAN variants. We will discuss this in more details in Section 5.1.4.

4. Trial and error: running Cape through various codes can reveal important
error cases, which may be due to overlooked components.

Previous implementations of Cape modeled a restricted number of components,
mostly targeting functional units and the CPU’s ability to compute floating point
operations. This work is about complementing and refining previously existing
nodes to better cover the complexity behind modern microarchitectures such as
Sandy Bridge.

5.1.3 Getting Node Capacities

Node capacities are workload-dependent, and can be obtained with:

1. Static analysis: CQA [21] can provide detailed instruction and uop counts for
a binary loop, precisely quantifying workloads.

2. Dynamic analysis: certain information is hard or impossible to obtain purely
statically, and may be obtained through dynamic runs. This is the case e.g.
for memory workloads.

We will see this in more details in Section 5.4.

5.1.4 Isolating the Memory Workload

The memory subsystem can respond in surprisingly diverse ways to a given workload,
depending on characteristics such as the number and type of used instructions (scalar
vs. vector, single precision vs. double precision), the access strides or the number
of memory streams being accessed simultaneously. The consequence is that setting
a constant bandwidth for memory performance is a difficult task and is still a work
in progress.

The Cape model we worked with hence uses codelet-specific bandwidths to char-
acterize the memory system. While it goes against the original premise that nodes’
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bandwidth should be entirely defined by the hardware, it allows us to put this par-
ticular issue aside until a better solution is found. Some memory-related nodes still
have workload-independent bandwidths, as we will see in Section 5.4.

We hence use DECAN [37]’s “LS” variant to isolate the memory workload from
the target loop, and then measure the memory bandwidth obtainable with the loop’s
specific access pattern.

A practical consequence of this lack of “global” bandwidth for some of the mem-
ory nodes is that only codelets with similar memory profiles can be considered
simultaneously without introducing importance modeling errors.

5.1.5 Saturation Evaluation

Measurements can be used for validation purposes, allowing to check Cape’s time
projections’ validity for the machine in question. This is typically done through the
evaluation of saturation: at the individual node level, saturation is defined as:

node saturation = node time / measured loop time

At the Cape level, system saturation is defined as:

system saturation = max
all nodes

(node saturation)

Cape relies on the system being fully saturated to properly decompose perfor-
mance and estimate the impact of bandwidth changes. On the one hand, undersat-
uration (i.e. the system saturation being below 100%) will cause Cape to under-
estimate the time taken to process a given workload, and hence be too optimistic.
This may happen when an important node is missing, or when a node’s bandwidth
was incorrectly set to too high a value. On the other hand, oversaturation (i.e.
the system saturation exceeding 100%) will cause Cape to overestimate the needed
execution time for a workload and give pessimistic results. This can happen when
having set a node’s bandwidth to an incorrectly low value.

DECAN can also be used for refining this validation process, isolating the work-
load for FP or LS related nodes, and hence allowing for saturation checks to be done
at a finer level.

5.1.6 Cape Inputs

We use inputs generated using the framework presented in Chapter 3.
DECAN variant LS is used to get memory bandwidths for workload-dependent

node bandwidths and fine-grain validation data for the workload-independent nodes.
Variant REF is used to get reference times for the target loop, used for Cape time
projections’ validation. Variant FP is used to get fine-grain validation data for FP
nodes’ validation.

5.2 DECAN Variant Refinements

As Cape depends on DECAN variants both to get bandwidth inputs for memory
nodes and to get validation comparison points, it is particularly important that their
transformation rules be as faithful as possible to their intended purpose.

We will describe a few refinements to the main DECAN variants we use (REF,
LS and FP) that were made with this intent.
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5.2.1 Tackling Partial Vector Register Loads

Register loads fill part of a register with data coming from the memory hierarchy.
The amount of data copied this way depends on the instruction’s type; for instance,
MOVSD copies a Single Double (i.e. 8 bytes), andMOVAPS copies an entire 128-bit
register’s worth (i.e. 16 bytes).

Perhaps counter-intuitively, most register loads actually set the part of the reg-
ister that was not fetched from memory to 0. For instance, loading value “5.6” with
a MOVSD in a 128-bit register formerly containing DP values “1.2 3.4” will produce
a new register value of “0.0 5.6” (and not “1.2 5.6”).

This presents the important advantage of causing load operations not to de-
pend on the state of the target register, increasing the potential Instruction Level
Parallelism.

Special load instructions can be used so as not to erase the not-loaded part of the
register, for instance MOVHPD (which loads 8 bytes in the upper half of a 128-bit
register, preserving the lower one) or VINSERTF128 (which does the same with 16
bytes and a 256-bit register). However, this comes at the cost of a dependency on
the previous register value, and an extra uop is needed to stitch the loaded values
and the old register value together.

We hence modified DECAN variant transformation rules to take it into account:

1. For LS: load instructions preserving parts of the target register should be
treated like fused load + arithmetic instructions, and the instruction trans-
formed to only keep the load component. For instance, “MOVHPD (%rax),
%xmm0 ” should be transformed into a “MOVSD (%rax), %xmm0 ”.

2. For FP: such instructions should not be removed altogether, and instead trans-
formed to only keep the arithmetic component. We chose MOVLHPS for this
purpose for SSE instructions due to being similar to the original instruction’s
arithmetic uop’s expected behavior (same dispatch port and same expected
latency on SNB, IVB and HSW [107]). For AVX, we had to pick a different in-
struction due to MOVLHPS not having an AVX version, and chose VANDPS
for the same reasons as above.

The same process should be applied to these special instructions when they are
employed as stores, as an extra uop is still needed to extract the intended value.

This transformation helps keep only memory workloads on LS, and all of the
needed arithmetic in FP.

5.2.2 The Case of Floating Point Divisions

Some additions and multiplications can be more or less complex depending on the
operands (even taking aside the thorny issue of denormalized numbers). For in-
stance, it is obvious by human standards that adding 0 to a number, or multiplying
it by 1 is simple. Similarly, multiplying by 10 is also trivial when using the decimal
notation.

This applies in base 2 as well, leaving some optimization opportunities for hard-
ware designers. Interestingly, using pipelined functional units makes it both harder
to implement such tricks while also making them less relevant: if a functional unit is
going to produce 1 result per cycle anyway, why even bother with operand-dependent
optimizations?
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However, divisions (and in particular, floating point ones) are not (fully)
pipelined on Intel microarchitectures, meaning such data-dependent optimizations
can (and do) still actually improve their throughput [108]. The main factor in de-
termining how long a division is going to take is the size of the mantissa (i.e. the
position of the least- significant bit) in the divisor.

The effective division bandwidth being data-dependent is an issue for Cape, as
the bandwidth for floating point divisions cannot be reduced to a simple constant
anymore. Furthermore, the transformations applied in the FP DECAN variant can
have an impact on input operands for divisions, creating a discrepancy between the
workload’s complexity for REF and for FP. We address these two issues by modify-
ing division instruction operands so that they always fall in the worse case (which we
assume to be more frequent in real-world work loads) in both variants. For instance,
“DIVPD %xmm0, %xmm1 ” would be preponed with “MOVAPS global variable con-
taining 1.0, %xmm0 ” and “MOVAPS global variable containing an approximation
of pi, %xmm1 ”.

This is however not a perfect solution as it disrupts the original loop’s semantics,
but is effective at ensuring the complexity for divisions is always the same.

The very same reasoning and fix apply for other variable-latency operations such
as square roots.

5.3 Front-End Modeling Subtleties

The x86 and x86-64 instruction sets are complex, in good part due to Intel preserv-
ing backward-compatibility with previous CPU versions: they can only evolve by
growing bigger, and cannot be reworked for efficiency purposes.

This complexity is carried over in the Front-End, limiting its operation speed.
First overlooked in our Sandy Bridge Cape model implementation, some of its

caveats forced us to dive deeper in its limitations to create a realistic FE node.

5.3.1 Accounting for Unlamination

With a theoretical bandwidth of 4 uops per cycle, the FE should rarely be the bot-
tleneck in SNB. Indeed, microfusion allows two different operations to be combined
in a single FE uop in some cases, increasing the effective FE bandwidth [109]:

1. Stores: stores require both a “store data” and a “store address’ components,
which need to be dispatched on different ports. Microfusion allows them to
occupy a single slot until they reach the Back-End.

2. Arithmetic instructions fetching data from memory (e.g. MULPS (%rax),
%xmm0 multiplies the contents of the address pointed by %rax with the value
of %xmm0): as with stores, the FE can often make the two components be
sent to the Back-End as a single uop.

It is hence possible possible to keep all 6 of SNB’s execution ports busy with its
FE bandwidth:

• A fused vector multiply and load uop will use ports 0 (for the arithmetic
component) and one of ports 2 or 3 (for the load).
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• A fused store uop will use port 4 (for the “store data” component), and
whichever port (among ports 2 and 3) that was not used for the load for
the “store address” component.

• A branch uop will use port 5.

• A vector addition will use port 1.

Unfortunately, limitations on microfusion force some uops to be split prematurely
(or unlaminated) in the uop queue, degrading the effective FE bandwidth [110].

Table 5.1: Finding Unlamination Rules

Codelet
Measured Unlamination Criteria

SNB2 HSW Never

elmhes_10_de 26 18 26 22 18 18
elmhes_10_dx 34 30 34 30 30 22
svdcmp_6_dx 49 49 49 49 49 41
svdcmp_11_dx 8 8 8 8 8 8

>= 3 
regs.

>= 3 regs., 
except stores

>= 4 
regs.

Results are in post-unlamination uops per iteration. Measurements values were ob-
tained by measuring the UOPS_ISSUED.ANY hardware event. The codelets ending
with an x are AVX variations of the main codelets, and are interesting here as they
can use non-destructive 3-address statements. Presented codelets were selected to
cover a wide range of possible unlamination scenarios.

Unlamination criteria values in bold (with a blue background) match the mea-
sured values for Sandy Bridge; those in italic (with a red background) match mea-
surements for Haswell. Values in both bold and italic (with a purple background)
match either microarchitecture.

The >= 3 regs. unlamination criterion matches the limitations described in
the official documentation for Sandy Bridge. However, it is clearly pessimistic for
Haswell, so we tested relaxed criteria to try to expose the new unlamination rules.
Criterion >= 4 regs. is the only one matching Haswell measurements on all studied
codelets.

The main restriction seems to be related to the number of register operands uop
need, as can be seen in Table 5.1:

1. On SNB and IVB, fused uops using more than 2 register slots will be unlami-
nated. For instance, MULPS (%rax), %xmm0 will remain fused, but MULPS
(%rax, %r10, 8), %xmm0 will not (3 register operands).

2. On HSW, we observed this behavior was improved (through the use of the
UOPS_ISSUED.ANY hardware counter which counts the number of uops
issued by the RAT and the number of usable register slots was increased to
4. As a consequence, SSE instructions are not unlaminated anymore (for
this specific reason), but the problem still exists for AVX instructions such as
VMULPS (%rax, %r10, 8), %xmm0, %xmm0.

Other cases of unlamination exist, but in more fringe circumstances, limiting their
impact.
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Unlamination makes the FE be suddenly relevant again in performance model-
ing: we hence added a new node whose bandwidth is 4 uops per cycle, but for which
the workload is based on post-unlamination uop counts.

5.3.2 Ceiling Effect

We also stumbled against another restriction in Sandy Bridge and Ivy Bridge’s FE
that prevents uops from different iterations from getting sent to the Back-End in
the same cycle.

Table 5.2: Front-End Stress Experiment Example

#Line Instruction Nb Uops to Issue
1 VXORPS %xmm1, %xmm1, %xmm2 1
... VXORPS %xmm1, %xmm1, %xmm2 1
n VXORPS %xmm1, %xmm1, %xmm2 1

n + 1 SUB $1, %rdi 0.5 (macrofused)
n + 2 JG .LOOP 0.5 (macrofused)

We can adjust the number of uops to be issued (per iteration) by modifying the
number of V XORPS instructions. Getting a loop with x uops would be achieved by
having n = x− 1 V XORPS and the macrofused uop.

Note: V XORPS instructions operating on the same input registers (zero-idiom)
are handled in the RAT and made to point to a zero-filled register. They do not need
to get dispatched, so execution ports are only involved for the macrofused branch
uop.

We developed simple microbenchmarks (see Table 5.2) to expose this phe-
nomenon.

Figure 5.1 shows our experimental results on SNB and HSW. IVB has identical
results to SNB though they are not presented separately there. Fixing this behavior
could hence be achieved by applying an integer ceiling when computing the satura-
tion for the FE node, i.e. issuing x uops per iteration should be estimated as taking
ceiling(x / FE bandwidth) instead of just x / FE bandwidth. For instance, issuing
5 uops with a FE bandwidth of 4 should be counted as taking 2 cycles.

However, ceiling operations can cause issues for evaluating linear equation sys-
tems as they are discontinuous on integers. We instead shifted the burden on
the workload, i.e. a loop body containing x uops should be counted as having
x + x % FE bandwidth uops instead.

Table 5.1 also shows this issue was addressed in Haswell, so the ceiling does not
have to be applied anymore in HSW’s FE node.

5.3.3 New Front-End DECAN Variant

The different limitations the FE suffers increased the interest in isolating its role in
explaining loop performance. We could hence create an FES DECAN variant sub-
stituting all (non-control flow) instructions with an equivalent number of multibyte-
NOP micro-ops. Multibyte NOPs are preferred over regular one-byte ones to avoid
complications with the uop cache when too many tiny instructions are placed con-
tiguously [111].
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Figure 5.1: Exposing the Front-End Ceiling Effect
Experiments start from 4 uops per iteration (representing the point where the

FE starts being a bottleneck for our generated codelets) and stop at 41, where the
worst case misprediction for not taking into account the ceiling effect (0.75 cycles)
would only represent a 0.75 / 11 = 7% error.

First, we can notice steps on SNB4’s curve confirming the existence of the ceiling
effect on this microarchitecture. The SNB FE node error (w/ ceiling) curve captures
it well, with errors only on point 12 and 28 due to unfortunate instruction alignments
preventing the macrofusion of the CMP and JB instructions and increasing the
effective uop count by 1. On the other hand, the SNB FE node error (w/o ceiling)
curves does not, causing errors of up to nearly 0.8 cycle (against the expected 0.75).

HSW results are interesting, and show the cycles per iteration increase in a nice
linear fashion until 11 uops. It evolves in an in-between manner between 12 and
28 uops, before joining back SNB’s curve starting from 29 uops onwards. It is not
clear why 29 is the turning point as the available uop queue’s size should be of 56
in Haswell, but the improvement tackles the cases in which the phenomenon is most
important.

IVB results are extremely close to SNB’s on the presented range (1% difference
in the worst case) and were consequently left out to simplify the graph.

It is hence better to use a ceiling-adjusted formula to model the FE’s bandwidth
in SNB and IVB, and one without for HSW.

Single-byte NOPs are inserted when necessary to account for unlamination. (E.g.
a store with a complex address computation will be replaced by both a multibyte
NOP and a single-byte one).

Just as with the FP variant, FES can be used to provide validation numbers for
Cape modeling.

5.4 Back-End Modeling Improvements

The Back-End part of the core pipeline was also significantly overhauled by adding
fine-grain nodes for the execution engine and the memory hierarchy.

While improving the model’s precision was the primary motivation for adding
most of these new nodes, some were added with the model’s flexibility in mind.

We will present these changes and their purpose in this section.
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5.4.1 Dispatch

Dispatch-related nodes cover execution ports and the handling of inter-iteration
dependencies.

5.4.1.1 Execution Ports

Execution ports act as access points (or gateways) for the functional units (FUs)
they manage. Each FU is dedicated to a given port.

There are 6 execution ports in SNB and IVB, and 8 in HSW.
Each port can forward one uop to an FU per cycle, and so even if one of their

FU is currently active: they consequently all have a bandwidth of 1 uop / cycle.
Their workload is obtained thanks to CQA’s port distribution metrics, but capac-

ities could also be alternatively obtained by using hardware counters. For instance,
UOPS_DISPATCHED_PORT.PORT_5 counts the number of uops dispatched
on port 5 in SNB.

5.4.1.2 Inter-iteration Dependencies

Inter-iteration dependencies are dependencies that carry over from one iteration to
the other, potentially severely reducing the Instruction Level Parallelism exploitable
by the out-of-order engine.

They are governed more by instruction latencies than by their bandwidth (as
the execution of instructions from the same dependency chain cannot be pipelined),
making them hard to evaluate for a bandwidth-centric model such as Cape. The
length of inter-iteration dependency chains represent an upper bound for the time
needed to complete an iteration.

Our solution was to add a pseudo-node keeping track of such dependencies: it can
figuratively eliminate inter-iteration dependencies at a rate of 1 cycle of latency per
cycle; and its workload is simply the length of the biggest inter-iteration dependency
chain as determined by CQA.

It could be improved by keeping track of the different instructions involved in
all the inter-iteration dependency chains and giving users the ability to modify the
latency for each instruction type (allowing Cape to recompute its effective workload
on the fly), but is helpful in its current form as a first way of tackling this issue.

5.4.2 Functional Units

Key functional units (e.g. FP adder) were part of the base Cape nodes and did not
need adding.

However, they could be split into more detailed nodes to add more flexibility to
the model and improve the overview of performance bottlenecks. For instance, on
SNB, the FP adder:

1. Can process 1 FP add uop per cycle (original bottleneck).

2. Can execute a maximum of 1 SP or DP scalar addition per cycle (scalar
performance bandwidth).

3. Can execute up to 4 SP (2 DP) additions when using SSE vector instructions.

4. Can execute up to 8 SP (4 DP) additions when using AVX vector instructions.
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Operation
Assigned Workload

Add node 1 Add node 2 Add node 3 Add node 4 Add node 5 Add node 6 Add node 7 Add node 8
256-bit vector add 1 1 1 1 1 1 1 1
128-bit vector add 1 1 1 1

DP scalar add 1 1
SP scalar add 1

Physical adder length (256-bit)

Figure 5.2: Modeling the FP Add Functional Unit
This figure represents the modeling of the “FP add” functional unit in Sandy

Bridge.
All FP additions are theorized to be performed by a functional unit whose full

potential is only harnessed for 256-bit vector additions. Different nodes hence allow
to account for the maximum theoretical bandwidth of scalar additions being of 1 per
cycle (on Sandy Bridge) while keeping track of how well the unit is used.

Furthermore, it makes it possible for users to model the rate of scalar and vector
operations separately.

The adder is hence virtually split in 8 nodes (as illustrated in Figure 5.2), rep-
resenting each of the possible addition “lanes” in the abstracted adder:

1. An AVX full-vector addition uses all lanes.

2. An SSE full-vector addition uses only the first 4 ones.

3. A DP addition uses the first two lanes.

4. An SP addition only uses the first one.

Having more nodes allows Cape to tackle the same issue from different points
of view, and e.g. evaluate how often vector units really are used for the considered
loops, and how relevant the unit’s width really is.

This flexibility will also be used in Chapter 6 when evaluating loops’ vectorization
potential.

5.4.3 Memory Hierarchy

Memory modeling went through important changes with the introduction of detailed
memory nodes for each step of the memory hierarchy and an explicit handling of
TLB misses.

5.4.3.1 L1 Accesses

L1 accesses can be approached in the same fashion as scalar and vector FP operations
seen earlier. There are two load units, each behind separate ports (P2 and P3).

On SNB and IVB, each of these units can fetch:

1. 128 bits per cycle in case of vector loads.

2. 8 bytes per cycle in case of scalar DP load.

3. 4 bytes per cycle in case of scalar SP load.

Interestingly, an implication is that a 256-bit load keeps a load unit busy for 2 cycles.
We can hence split the 128-bit data paths in 4 lanes of 4 bytes each, and create

as many matching nodes.
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Operation
Assigned Workload

Store node 1 Store node 2 Store node 3 Store node 4
256-bit vector store 2 2 2 2
128-bit vector store 1 1 1 1

DP scalar store 1 1
SP scalar store 1

Store data path length (128-bit)

Figure 5.3: Modeling the Store Functional Unit
This figure represents the modeling of the “data store” functional unit in Sandy

Bridge.
The reasoning behind splitting the functional unit in different nodes is exactly

the same as for FP additions (seen in Figure 5.2). The main difference resides in the
physical data path being of only 128-bit in Sandy Bridge, making 256-bit stores keep
each store node busy for twice the regular amount of time. This limit is addressed
in Haswell with data paths being extended to 256 bits.

Stores units operate in an identical fashion, though there is only one in the
studied microarchitectures (behind P4). The node modeling for stores is shown in
Figure 5.3.

Capacities for each node is obtained with CQA, which classifies and counts
memory instructions depending on how many bytes they move.

Note: the width of units’ data paths was increased to 256 bits in HSW, doubling
the number of 4-byte lanes and allowing 256-bit vector loads and stores to complete
in a single cycle.

5.4.3.2 L2, L3 and RAM

The memory hierarchy provides data in small chunks of 64 bytes called “cache lines”.
We can thus create nodes representing the read and write traffic for these cache

lines between these different levels:

1. L2RW for L1 and L2.

2. L3RW for L2 and L3.

3. RAMRW for L3 and RAM.

The exact number of nodes may vary depending on the microarchitecture and the
exact SKU. For instance, SLM does not have an L3 cache, and CPUs equipped with
Crystalwell on-chip DRAM have the equivalent of an L4.

The workload for these nodes is the number of cache line transfers caused by the
loop’s execution, which can be hard to get statically for various reasons:

1. Access patterns are not always determinable statically. They may even change
depending on the input data set (e.g. Leading Dimension strides in multi-
dimension arrays).

2. Hardware prefetchers can add unknowns as to which lines really are fetched.

3. Cache structures may react in unexpectable ways depending on runtime pa-
rameters (e.g. associativity conflicts), causing some lines to be evicted prema-
turely and fetched several times.
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We hence use hardware counter measurements to obtain capacities, allowing us
to use the actual workload instead of speculated values.

Table 5.3: Traffic Count Formulas for HSW, SLM and SNB / IVB

Uarch L2RW L3RW RAMRW

HSW

SLM N / A

SNB / IVB

L1D.REPLACEMENT + 
L2_TRANS.L1D_WB

L2_LINES_IN.ALL + 
L2_TRANS_L2_WB

CAS_COUNT.RD + 
CAS_COUNT.WR

MEM_UOPS_RETIRED.L1
_MISS_LOADS +

PF_L1_DATA_RD +
DEMAND_RFO +

(COREWB -
OFFCORE_RESPONSE.
COREWB.L2_MISS.ANY)

LONGEST_LAT_
CACHE.MISS + 

L2_WB

L1D.REPLACEMENT + 
L1D_WB_RQST.ALL

L2_LINES_IN.ALL + 
L2_TRANS.L2_WB + 
L1D_WB_RQST.MISS

CAS_COUNT.RD + 
CAS_COUNT.WR

These counters and formulas represent both the read and the write traffics at
each level of the memory hierarchy. For instance, on SNB, L1D.REPLACEMENT
represents the number of cache lines getting imported into L1 from upper cache levels,
and L1D_WB_RQST.ALL the number of cache lines written back to upper levels
after getting modified by the execution engine.

In SNB, the L3RW formula has 3 components due to writebacks being counted
separately depending on whether the involved cache lines are present in L2. Indeed,
the L2 is not inclusive, and there is no guarantee a line evicted by L1 is present
there.

The SLM L2RW formula is more complicated than its peers due to not having
straightforward read and write counters. The number of fetched lines is hence de-
composed in: explicit demand loads, loads due to the fetch-on-write mechanism and
prefetched lines. The number of written lines is obtained by counting all writebacks
everywhere (L1 and L2 writebacks) and subtracting L2’s.

The CAS_COUNT counters are only available on the server variants of
SNB, IVB and HSW. They can be substituted with DRAM_DATA_READS and
DRAM_DATA_READS [73].

Adjustments may be necessary in case of non-temporal stores, which we did not
or encounter in studied loops.

Official counter descriptions can be obtained from [112].

Table 5.3 shows counters and formulas that can be used for this purpose.
As explained in Section 5.1.4, the difficulty in determining a single global band-

width for memory nodes pushed us to instead determine bandwidths on a per codelet
basis. Bandwidths for the L2RW, L3RW and RAMRW nodes are hence defined us-
ing the LS DECAN variant for the considered loops:

node bw = node workload / LS variant execution time

It can be further refined to instead use the maximum effective LS bandwidth across
all data sets (when more than one data points are available for a given codelet). This
shortcut limits our ability to accurately consider codelets with different memory
characteristics at the same time.
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5.4.3.3 Translation Lookaside Buffer

Page walking (i.e. fetching a page translation from the memory hierarchy rather
than from the Translation Lookaside Buffers) is a costly a) latency-bound b) non-
pipelined process with the potential of being a significant bottleneck in loops with
large strides.

Figure 5.4: Impact of TLB Misses
Results show the LS variant of hqr_15_se and are normalized per iteration.

ECPI represents the execution time in cycles. The TLB_MISS data is shown on
the secondary y-axis. All data sets fit in L3 for this codelet.

Hqr_15_se triggers TLB misses starting from point 800, reaching 2 TLB misses
per iteration at point 1008 for SNB2. SNB1 prevents most of the problem by using
Transparent Huge Pages [113], and hence reveals page walks are indeed the bottleneck
on this codelet.

We can see that each page walk takes around 26 cycles on SNB2. We hence
set the matching page walk (or TLB miss) bandwidth to 1/26 per cycle, though this
number may change depending on on the size of the pages used, as well as the type
of virtual memory indexation.

We hence created a TLB miss node defined as following on SNB:

1. Workload: number of L2 TLB misses as measured with hardware counters
(DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK ).

2. Bandwidth: defined empirically (see Figure 5.4).

TLB miss bw = inverse (measured TLB miss cost) = 1 / 26

Which counters to use is microarchitecture-dependent.
The effective page walk bandwidth may vary depending on the machine and the

CPU’s microarchitecture. For instance, Broadwell should be able to process 2 TLB
misses in parallel [114].

The TLB miss node could be refined, as the exact penalty of a TLB miss depends
on how far in the memory hierarchy the page translations have to be fetched. It
could then be decomposed in different nodes, each accounting for misses of different
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severity. A global node could then aggregate the results of these specialized nodes
in an additive manner. However, we found this degree of details to be unnecessary
so far.

5.5 Handling Unsaturation

Unsaturation happens when none of the model’s nodes is fully saturated for a given
workload and an actual measurement. In other words, the model fails to explain the
entirety of the execution time, creating a mismatch between performance projections
and reality.

We will present this phenomenon, some of its potential causes, and approaches
that can be used to improve the model’s precision.

5.5.1 Definition and Effect of Unsaturation

Unsaturation is the degree at which the modeled system is not fully saturated (in
the sense of the system saturation metric defined earlier). We can hence define an
unsaturation metric as follows:

unsaturation = 1 − system saturation

Unsaturation causes the Cape model to overestimate performance as it needs to
fill this gap by scaling performance up until a node does reach a saturation point
(and its system saturation assumption is fulfilled).

The following issues can cause unsaturation:

1. An existing node is mismodeled. For instance, not taking into account unlam-
ination can cause the Front-End’s workload to be underestimated, and hence
create system level unsaturation if the Front-End is the actual bottleneck in
the considered loop.

2. An important node is missing: some hardware features may have been over-
looked when building the model. For instance, retirement is ignored in our
current implementation as we assume it is working at an equivalent speed as
the Front-End. This assumption could cause unsaturation if it broke for a
codelet.

3. Limited buffer sizes: buffers (out-of-order resources in this context) allow the
hardware to absorb some latency, e.g. from memory accesses or individual in-
structions. Cape nodes being bandwidth-centric makes them mostly oblivious
to buffer restrictions, and not account for cases where the lack of buffer entries
penalizes actual performance.

The root problem for the two first cases can (and should) be fixed by correcting
the wrong assumptions in existing nodes, or creating new ones as the need arises.

The third case is harder to handle as it stems from non-bandwidth-related hard-
ware characteristics, making the usual bandwidth-centric approach less applicable.
We hence used the observation that system unsaturation is typically highest when
the arithmetic and memory workloads are equivalent to introduce a post-Cape-
calculation.

We will describe both these approaches in this section.
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5.5.2 Overlooked or Mismodeled Nodes

The primary reasons why hardware components can be overlooked (and hence not
have a node of their own) are:

1. Wrongful assumptions they cannot be (or rarely ever are) bottlenecks. For
instance, SNB’s uop cache can make one think the Front-End should not be
a problem anymore (compared to earlier Core microarchitectures), whilst the
restrictions explored earlier show it is counter-intuitively still an important
component.

2. They did not get in the picture in previously considered loops. Cape is in large
part an evolutive model, where nodes are added as they are needed. This is the
case for the TLB miss node (which was unimportant for as long as we studied
loops with hardware-friendly access strides) or inter-iteration dependencies.

Components can be mismodeled when their behavior was not as simple as an-
ticipated, and:

1. The bandwidth is incorrect: this could e.g. happen for the divider nodes when
we were not addressing the variable complexity of divisions in the considered
codelets.

2. The workload is misevaluated: this would happen for the Front-End node if
unsaturation were not accounted for.

5.5.3 Buffer-Induced Unsaturation

The difficulty in estimating how a code will be impacted by the necessarily limited
size of out-of-order buffers makes buffer-induced unsaturation the hardest type of
unsaturation to address. This is partly due to DECAN transformations changing
the level of stress on out-of-order resources in the execution pipeline.

Our approach here rests on the observation that out-of-order buffers tend to
have the biggest impact when FP and memory instructions take similar amounts
of time to process 5.5. Intuitively, this situation fosters competition for acquiring
shared resources such as Reservation Station or ROB entries.

We can then build statistics for the level of interference due to buffers depending
on the time taken by FP and memory nodes, and heuristically adjust the model’s
output based on measured precedents.

From a user’s perspective, it can be thought similarly to a Fourier transform
for signal processing. Instead of switching to the frequency domain, using Cape
allows to see hardware and software from a bandwidth-centric view, helping perform
changes on the SW or HW sides with a trivial complexity (compared to other existing
options). However, unlike Fourier transforms, switching to the “bandwidth” domain
induces some performance distortion which we try to dampen with our heuristic
adjustment.

5.6 Related Work

Other mechanistic models such as [115, 116] target HW mechanisms to perform per-
formance projections, though they focus on miss events to compute performance and
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Figure 5.5: DECAN-level System Saturation
This figure shows DECAN-level saturation across all our classical NR codelets

(on SNB2 and for all data sets) as a function of the ratio cycles per iter-
ation (LS) / cycles per iteration (FP). DECAN-level saturation is the ratio
min (FES, FP, LS) / REF (where each variant name represents the time spent
in said variant). It quantifies the degree of overlap for the Front-End, floating point
and memory workloads and can be used as a base line to estimate Cape-level system
saturation. Points with an LS / FP ratio over 2 do exist but were not shown to
clarify the figure; their saturation values neared 1. 317 data points are shown on the
graph.

We can see saturation tends to be lower when the LS / FP ratio nears 1. The
triangle with dashed lines represents the generally expected realm of saturation values
for a codelet given an LS / FP ratio.

We can see outlier data points for realft_4_de in the bottom left side of the
triangle, reaching a saturation of only 0.8 despite having an LS / FP ratio of 0.4
(which is quite distant from the expected worst-case scenario of 1). Most points near
the upper right point of the triangle represent toeplz_1_de, though their impact is
lesser due to being above the 0.9 line. Another outlier is the point in the top right
part of the graph with a saturation exceeding 1, which should not happen. This
is likely due to a measurement error, with the measured LS time exceeding that of
REF.

Other codelets with saturation typically below 0.90 are four1_2_me, lop_13_de,
mprove_8_me and rstrct_29_de. Causes behind this phenomenon will be explored
in more details in Chapter 7.

assume execution goes unimpeded outside them (in contrast to Cape’s bandwidth-
centric approach).

Treibig and Hager [117] propose a mechanistic performance model for memory
workloads assigning constant costs for cache line transfers based on the estimated
cache activity. This differs from the still codelet-specific effective bandwidths for
our L2, L3 and RAM nodes and is actually more in line with what we would seek
for Cape nodes. However, it is not precise enough yet for our purposes.

The Roofline model [118] evaluates the relationship between RAM bandwidth
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and operational intensity (the number of operations performed per byte transferred
from/to RAM) to offer insights on a program’s maximum theoretical performance.
While the model provides an admittedly limited accuracy, it is also very simple
and inexpensive, aiming more at guiding the optimization process than at correctly
predicting performance.

Linear regression models built with [119] provide a high speed and flexibility in
terms of exploring potential designs. They also take more factors into consideration
than Cape by modeling latency, buffer sizes and cache sizes explicitly. However,
they are trained on a per-program basis using a cycle-accurate simulator to pre-
determine the relationship between key microarchitectural characteristics. Cape
only needs cost-effective analyses or measurements, and is directly applied to existing
microarchitectures.

Techniques such as [120] can also used to harness the precise design insights
provided by simulators despite their extremely low speed. A smart selection of
parameter combinations can help reduce the number of simulation runs needed to
explore design spaces.

Cape also operates at a strict loop granularity, preventing compensation effects
in a program’s execution when validating the model.

5.7 Future Work

Explicit support for queue modeling would help not depend on ad hoc heuristic
solutions to fix performance projections, be more accurate and be overall more
flexible with the performance tuning knobs made available to users. Furthermore,
queues have an important role in absorbing and improving the performance of the
memory subsystem. Queue modeling could be very beneficial in improving memory
modeling, possibly to the point where memory nodes’ bandwidth may be used across
codelets. This is an important challenge, but one that may significantly improve
Cape modeling as a whole.

One of the strongest advantages of Cape is that users can modify both hardware
features (node bandwidths), but also software ones (node capacities). Adjusting
these parameters can lead to interesting performance tuning insights in terms of
vectorization potential (as will be seen in Chapter 6), or other optimizations such
as loop blocking: what would happen if the workload for L3 was increased, and that
of RAM decreased by the same amount?

Cape could also help determine whether parallelization efforts could be worth-
while by modeling the RAM bandwidth achievable by the CPU and that by a single
core separately, and exposing the leeway between the two.

Finally, Cape could be used to project performance from a given machine to
another, if a list of bandwidth modifications can be supplied. For instance, what
would happen on a machine with RAM that is twice faster? In a more complex
fashion, projections between microarchitectures could also be done. For instance,
projecting HSW performance from SNB measurements could be tried by distributing
some of the dispatch workload on more ports, increasing the bandwidth of the divider
to match its speedup, doubling the L1 and L2 bandwidths...

While validation data is hard to get when making arbitrary hardware modifi-
cations due to not having reference measurements to compare projections to, more
validation data on software related changes (e.g. L3 blocking) could strengthen the
credibility of the model in hard-to-verify areas.
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5.9 Conclusion

Cape is a powerful model combining simple linear micromodels called nodes to
decompose loop performance and allow very fast performance projections to be
done when modifying hardware or software characteristics.

We presented Cape improvements aiming at adapting it to recent Intel Core
CPUs, and particularly Sandy Bridge. This work was a necessary step to give Cape
a detailed awareness and control of the main bottlenecks in these CPUs, opening
the door to works such as VP3 (see Chapter 6).

The Cape performance decomposition performed with modeling in mind can also
be used for just what it is, i.e. a very detailed and hierarchized list of bottlenecks
established at a relatively low cost. In this sense, Cape could be a direct competitor
to PAMDA (presented in Chapter 4).

The work done to find missing nodes, improve existing ones and explain mis-
matches also helped refine other tools and approaches. For instance, a new basic
transformation called FES was added to DECAN to estimate the impact of the
Front-End, and unlamination is now compensated for in other DECAN variants
aiming to preserve the Front-End workload. The effects of both unlamination and
uop queue restrictions on uops from different iterations were also integrated in CQA.

Furthermore, the importance of out-of-order queues was exposed thanks to the
mismatches we could not explain with regular bandwidth-centered nodes, leading
us to explore projects such as Uop Flow Simulation (see Chapter 7).



Chapter 6

VP3: A Vectorization Potential
Performance Prototype

We present VP3 [121], a new methodology and tool prototype for vectorization in-
sight. It works on real applications and data, and offers accurate performance gain
bounds. VP3 guides expert developers toward the highest potential performance
gain sections of the application and helps them avoid those with low potential.
Choices of vectorization legality are left to the developer. Examples of its effec-
tiveness are given. The ideas and insights provided may also be of use to compiler
designers as well as system architects.

6.1 Introduction

High end microprocessors rely more and more on vector hardware units and instruc-
tion sets to increase their peak performance, including VIS1 and MMX2 (64 bits),
AltiVec3, SSE4 and NEON5 (128 bits), AVX6 (256 bits) and soon AVX-5127 (512
bits). On AVX-512, maximum DP scalar code performance is 1/8th of the peak.
Using full vector length versus scalar results in a modest increase in power with po-
tentially important performance gains [122], leading to major energy/performance
gains, so there is a strong incentive to exploit vector units as much as possible.

To that end, much effort has been spent on automatic vectorization technology.
Vectorizers detect dependencies that prevent vectorization, and also try to remove
harmful dependencies using loop transformations such as splitting, unroll and jam,
array renaming, interchange, etc. Finally, they emit vector code, dealing with target
instruction set limitations. For example, non-unit stride vector loads are not sup-
ported in SSE or AVX, so the compiler applies transformations to avoid non-unit
stride accesses. As a result, vectorizers have reached a very high level of complex-
ity. In practice, advanced analyses are limited to control compilation time, so many
vectorization opportunities are not exploited [59]. Furthermore, some vectorization
restructuring needs are very costly or beyond automatic tools (e.g. tracing for exact
data dependence analysis), so developers must hand-modify codes. All of this makes
vectorization expensive, so vectorization efforts must be spent wisely.

When automatic vectorization results are disappointing, developers need simple
ways to understand their reasonable options, given the available time and skills.

1SPARCR© Visual Instruction Set
TM

2IntelR© MMX
TM

technology
3IBMR© AltiVec

TM

4IntelR© Streaming SIMD Extensions
TM

5ARMR© NEON
TM

6IntelR© Advanced Vector Extensions
TM

7IntelR© Advanced Vector Extensions 512
TM
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After profiling, their best current option is often adding SIMD directives to exper-
iment with potential performance gains. This can force compiler vectorization by
ignoring data dependencies. The generated code can reveal potential performance
gains, but less robustly than VP3, for several reasons:

1. Compilers may fail to vectorize some loops, even with directives.

2. Compiled code may crash because it is incorrect (due to directives forcing the
compiler to ignore actually important dependencies).

3. The compiler does not produce the detailed quantitative information that VP3

can.

As a developer tool, VP3 would be used whenever a vectorizing compiler gave
weak results. VP3 would allow developers to understand their best restructuring
options, together with the potential performance payoff of each.

Both SIMD directives and VP3 suffer from the major aggravation that potential
gains depend on dynamic code properties such as loop iteration count (short vectors
benefit less from vectorization than long ones), operand locations (too many RAM
accesses lead to minor payoff) or data alignment. Vectorization is only relevant
when it can be done legally (i.e. preserving the final output) and with a satisfying
speedup. VP3 and SIMD directive insertion can both violate program semantics, and
evaluating vectorization legality is very costly, so first getting an idea of potential
performance gains can be an efficient way of trimming out low-incentive candidates
from the list of loops to consider.

Vectorization is not an all-or-nothing activity; partial vectorization (e.g. vector-
izing only the floating-point operations) can yield solid performance gains. With
SIMD directives this is hard to control, whereas VP3 fully exploits partial vectoriza-
tion automatically. VP3 has options allowing it to assume non-unit stride, gather, or
scatter architectural features, and gives performance estimates even where a given
compiler fails. Manual optimization choices can be delicate because they depend
upon target architectures’ vector lengths and instruction set characteristics. For
example, the vector units of the recent Silvermont8 and Haswell9 processors are
very different. VP3 architecture options can be used to choose the best-performing
system for a given code.

The major contribution of this chapter is VP3, a methodology and tool pro-
totype, which assesses potential vectorization performance gains, guides the user
toward loops with potentially high benefits, and has the following properties:

1. Quantitative assessment of vectorization performance gains, in terms of the
target architecture’s details, taking into account dynamic constraints such as
loop iteration count and operand location.

2. Single pass, no-fail operation, in contrast with the complexities of deciding
where to insert SIMD directives.

3. Practicality relative to running speed (few times real time), in vivo analysis
of real production applications and data, and at least 80% coverage of total
real time.

8IntelR© Silvermont microarchitecture
94th Generation IntelR© Core

TM
processors
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Section 6.2 describes VP3 operation from a user’s point of view, while Section 6.3
has examples of usage on real applications. Section 6.4 gives the general architec-
ture/principles of the tool. Section 6.5 presents VP3 methodology and validation
of the performance gains predicted versus real measurements. Section 6.6 presents
tool extensions under development.

6.2 Tool Operation

This section will present general objectives for prediction tools, as well as VP3’s
output.

6.2.1 General Objectives for Prediction Tools

Performance tools usually work on the principle of informing users about the current
situation inside a computation. For an existing program and data set, profilers
show where the execution time is spent and performance problem summaries are
developed to point to problems on the basis of compiler and run-time information.
Seldom does a tool predict performance gains in specific areas of a source code.
VP3’s capabilities are to distinguish good performance from bad according to a
user-defined threshold, and to make accurate predictions about performance above
the threshold. It can do this for the cache-neighborhood of any data set provided
for measurement, and report that neighborhood to the user (e.g. L3 contained).

Figure 6.1: Operating Space of a Performance Prediction Tool

Fig. 6.1 shows the overall situation for any such tool, relative to performance
and to the prediction quality. The axes are defined as speedup by vectorization
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over scalar time and are marked to show good and bad performance. The x-axis
represents VP3 predicted speedup, and the y-axis shows actual speedup obtained
by compiler or manual vectorization. The point θ marked on each axis marks a
threshold performance that the tool user chooses as a worthwhile vectorization per-
formance goal. It may depend on the maximum theoretical speedup possible, the
time allowed for the vectorization work, and the skill of the SW development team.
The band between 0 and 1 represents various types of performance that we call er-
roneous, where vectorization may lead to slowdowns. Such issues have various HW
and SW sources beyond the scope of this paper.

Within the graph, labels show the tool quality regions. The dashed line with
slope of 1 represents perfect predictions made by an ideal tool. The four quadrants
show prediction quality. We can state 3 tool objectives, in rank order:

1. Reject candidates with performance potential below threshold θ (“correctly
dismissed”).

2. Quantify gains for the complementary region of potential performance im-
provement (“correctly targeted”).

3. Carry out these two types of predictions with relatively low respective errors.

The lower left quadrant is most important because it saves developers time and
effort by not having to even consider certain loops. The upper right quadrant forms
the target loops, and the solid lines with slopes above and below 1 denote regions
with large errors, which may also be set by user parameters. If a tool projects
a sufficiently large gain, and the gain obtained is even greater, few users will be
unhappy. Even if the gain is less than projected but above the threshold, the tool
is useful.

The lower right quadrant of “misdirected efforts” shows the region where a tool
gives a high projection but the actual gain is below the threshold. The upper left
quadrant of “overlooked opportunities” shows rejected loops that are actually worth
vectorizing. Both quadrants are to be avoided.

6.2.2 Tool Output

VP3 output for each target loop is an estimated vectorization speedup gain. Such
output is augmented by an analysis of the main source of performance losses, in-
cluding:

• Whether the loop performance is dominated by data access (Load Store in-
structions) or arithmetic (Floating Point instructions) and by how much. This
is useful to guide the user in optimization and in particular through partial
vectorization.

• For data access bound code, non-unit stride access is reported, as is the most
heavily used memory hierarchy level. More precise data on non-unit stride
values can be provided at the cost of an additional run. Also, VP3 will accept
(by default) non-aligned vector loads and stores. An estimate of potential gain
by alignment can also be provided.

• For Floating Point bound code, potential recurrence limitations, slow oper-
ations or code bloated by address computations or data reorganizations are
reported.



6.3. Experimental Results 83

This reporting can be even further refined by compiling the code with -g option
enabling to establish a correlation between assembly load/store instructions and
arrays in the source code.

6.3 Experimental Results

This section will present results for VP3 on real-world industry applications.

6.3.1 Motivating Example

YALES2 [123, 124] is a numerical simulator of turbulent reactive flows using the
Large Eddy Simulation method. It is a finite volume code for unstructured meshes,
with an innovative 4th order spatial scheme for the discretization of convective and
diffusive terms. It is based on the low-Mach number approximations of the Navier-
Stokes equations, which solves an elliptic Poisson equation at each iteration and
scales well to over 16K cores. The MPI version uses subdomain decomposition with
adjustable domain size, allowing efficient cache usage.

do ip=1,el_grp%npair
S1 ino1 = pair2node1_v(ip)
S2 ino2 = pair2node2_v(ip)
S3 co = sym_op_v(ip)*(r1_p_v(ino2) - r1_p_v(ino1))
S4 prod_r1_v(ino1) = prod_r1_v(ino1) + co
S5 prod_r1_v(ino2) = prod_r1_v(ino2) - co
end do

Figure 6.2: YALES2 loop example

Consider vectorizing the YALES2 loop of Figure 6.2. Statements S1 and S2
obviously vectorize. S3 is more challenging because the indirect addressing needs
hardware support (vector gather instructions) which is available on the latest gen-
eration of Intel R© Haswell processors. S4 and S5 are much more difficult because
indexes ino1 and ino2 can take values throughout the loop execution that create
dependencies within S4 and S5 themselves, and between them. So there are 3 levels
of vectorization opportunities in Figure 6.2.

1. The easiest to vectorize are S1, S2 and S3 and the FP operations in S3, S4
and S5. While within autovectorizer capabilities, the current vectorizers did
not vectorize.

2. The LS dependencies of S4 and S5 due to indices ino1 and ino2, can be
removed by introducing coloring to ensure that ino1 and ino2 values are
distinct. This is well beyond autovectorizer capabilities, but VP3 can suggest,
e.g. that scatter instructions would be usable if the developer introduced
coloring. Forced vectorization using SIMD directives can cause the generated
code to be wrong with the application producing errors or crashing.

3. To avoid all of the issues related to indirect addressing, VP3 could advise the
code developer to first use coloring to remove dependencies, and second to
entirely restructure the arrays to generate stride 1 accesses, which will be then
easy to vectorize. This second step is a major undertaking, requiring one to
copy portions of irregular data structures into regular ones.
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Solutions 2 and 3 put increasing burden on the code developer (several weeks of
code rewriting). Before embarking on such efforts, developers want to know how
much performance gain to expect. The main goal of VP3 is to provide such answers.
However, succeeding in vectorizing is not enough, because vectorization is highly
dependent upon data access location: if data is in L1, performance gains will be
much larger than if operands have to be fetched from memory. In the latter case,
it means that code developers will not only have to perform data restructuring but
also blocking, further increasing the cost of vectorization.

6.3.2 VP3 on YALES2

Vectorizing YALES2 is a major challenge due to the indirect accesses induced by
the irregular mesh structure: many of the loops have a structure very similar to the
one presented in Figure 6.2. Of the 200 loops necessary to achieve 80% coverage
of the total application time, about 2/3 are data access bound, the rest being FP
bound. Some loop bodies are fairly complex; two contain more than 300 assembly
instructions. On Sandy Bridge architectures, the lack of scatter or gather operations
would be a performance killer for vectorization.

Figure 6.3: VP3 Projection Results for YALES2:
Low Prospects for Vectorization

For YALES2, the results shown in Fig. 6.3 corresponds to a Sandy Bridge target.
Since Sandy Bridge does not support Scatter/Gather instructions, VP3 was set not
to perform Load/Store vectorization. The performance gains remain modest (1.2 to
1.3X). Since the cost for vectorizing this code was extremely high, and VP3 showed
limited performance gain potential, we did not push for this optimization for Sandy
Bridge.

On Haswell, the loads could be vectorized but the overall gain would remain
limited due to performance limitations of the gather instructions.
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6.3.3 VP3 on POLARIS(MD)

POLARIS(MD) (developed at CEA DSV) is a parallel code that simulates micro-
scopic molecular systems using sophisticated interatomic potentials (including po-
larization effects and beyond). It includes an efficient multi-level polarizable coarse
grained approach to modeling an extended chemical environment (from nanome-
ter to micrometer scale). It is well-suited to investigate the properties of solvated
protein systems and of heavy ions in complex chemical environments [125].

Figure 6.4: Source Code for POLARIS Loop Example
Out of all the potential performance issues, only the division and square root

operations impede performance.
Disclaimer: we already evaluated this particular loop with PAMDA (in Sec-

tion 4.2), but we will analyze it again from the VP3 perspective here.

A typical loop computing interactions between pairs of atoms is shown in Fig. 6.4.
This loop was originally not vectorized to preserve roundoff. The key issue was to
determine what was worth vectorizing. A first VP3 run showed that the cost of
FP instructions was 4 times higher than the cost of Load Store instructions; the
effort had to be focused on FP vectorization. VP3 further revealed that partial
vectorization of FP would provide a 2X performance improvement simply due to
the SQRT and DIV vectorization. SIMD directives were added, full runs were made
to check that round off errors did not change, and the loop got a 2X speedup. The
code contained 40 similar loops (i.e. containing DIV/SQRT) for which VP3 gave
similar diagnostics. The SIMD directive was applied to all 40 loops resulting in a
1.5X speed up on the whole application.

VP3 was run on 7 fairly large POLARIS codelets (up to 111 assembly instructions
in the loop body), including the FP saturated one discussed above. Fig. 6.5 shows
the scalar (Sca), projected vector (Projected Vec) and hand-vectorized (Vec) results,
as well as their speedup ratio (Real Speedup).

One of them actually shows an unforeseen slowdown due to unexpectedly com-
plex address computations, causing a 25% over-prediction. Furthermore, it is in the
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Figure 6.5: VP3 Projection Results for POLARIS:
VP3 vs. Measurements

lower right quadrant in Fig. 6.6: the user would be misled into vectorizing it. The
6 others are correctly estimated to highly profit from vectorization. Despite 2 being
over-predicted by around 30%, the user’s minimum expectation would be met.

Figure 6.6: Operating Space of VP3 on POLARIS (θ = 1.2)

6.4 Tool Principles

The key principles of the method are to first isolate the performance contribu-
tions of FP (floating-point) arithmetic operations and LS (load/store) data access
operations, then model the performance impact of vectorization on each of these
components and finally recombine them to get the global performance.
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Starting with a scalar binary loop, vector performance (in cycles/iteration) pre-
diction proceeds in 4 phases (see Fig. 6.7):

1. FP/LS variants generation and measurement (Section 6.4.1):

(a) Generation of FP and LS variants of the original scalar loop using DE-
CAN [37].

(b) Execute and measure the FP and LS variants, as well as the original
binary.

2. Static projection of FP and LS vectorized performance using the generated
FP/LS variants (Section 6.4.2).

3. Refinement of projected LS vectorized performance with memory traffic in-
formation gathered from scalar execution to account for memory hierarchy
performance bottlenecks that limit vectorization benefits (Section 6.4.3).

4. Combine the projected FP and LS vectorized performance to get overall vec-
torized performance (Section 6.4.4).

The vector performance can be refined further by adding extra time for compiler-
generated peel/tail loops10 .

1(a). Generate LS variant

2. Static 
Projection

3. Refine LS 
Projection

4. Combine FP/LS Perf.

Sca. Binary (FP+LS Ops) 

Projected FP 
Vec. Perf.

Projected LS 
Vec. Perf.

Projected  Overall Vec. Perf.

Refined 
Projected 

LS Vec. Perf.

Memory 
traffic 

Sca. FP variant Sca. LS variant 

2. Static 
Projection

Sca. 
(FP+LS) 

Perf.

Sca. FP 
Perf.

Sca. LS 
Perf.

1(a). Generate FP variant

4. Relate Sca. FP/LS/FP+LS Perf.

Formula relates FP & LS 
Perf. to Overall Perf.

1(b). Execute binary

1(b). Execute variant1(b). Execute variant

Figure 6.7: VP3 Vec. Projection Steps

10These loops are generated to get proper data alignment for vectorized loop execution and deal
with leftover iterations.



88 Chapter 6. VP3: A Vectorization Potential Performance Prototype

6.4.1 FP/LS Variants Generation and Measurement

Starting with a scalar binary loop, VP3 invokes DECAN [37] (a binary loop trans-
former) to generate two scalar binary variants: LS (in which all FP arithmetic
instructions have been suppressed) and FP (in which all data access instructions
have been replaced by XORPS instructions on the same register in order to avoid
introducing extra dependencies).

These scalar variants, along with the original binary loop, are executed with
different input data sizes to explore memory accesses from L1, L2, L3 and RAM. For
each execution, in addition to measuring cycles per iteration, performance evaluation
counters are used to collect memory traffic information (less than 10 counters are
required to model data traffic accurately between all cache levels). These dynamic
measurements are used to refine LS projection (Section 6.4.3).

6.4.2 Static Projection of FP/LS Operations

This phase is entirely built around CQA [21], a tool for analyzing binaries statically.
CQA estimates a binary loop’s performance (cycles/iteration) without executing it,
by assuming all operands are in L1 and the loop trip count is infinite.

For each scalar FP/LS binary loop generated in Section 6.4.1, CQA can project
the vectorized performance by generating a vectorized version of the corresponding
scalar binary loop (called vector mockup code) and statically analyzing the vector-
ized loop.

To generate the vector mockup code for a loop, CQA unrolls and jams consecu-
tive iterations to regroup the unrolled instances of scalar instructions into “packs”,
which become candidates for vectorization. The jamming process is made taking
the dependence into consideration. CQA examines each pack of scalar instructions
and tries to replace it by vector equivalents using the same register operands. There
are three kinds of scalar instruction packs:

1. Simple scalar FP instructions (e.g. ADDSS instruction with only register
operands) are simply replaced by their vector equivalent (e.g. ADDPS).

2. Simple scalar Load/Store instructions (e.g. MOVSS instruction with a memory
operand) are replaced by a vector equivalent (e.g. MOVAPS), if CQA detects a
stride-1 memory access pattern. Otherwise, for non-unit stride accesses, the
instruction is not vectorized and special instructions (insert/merge) are added
to pack scalar operands into a vector register.

3. Scalar FP-LS mixed instructions (e.g. ADDSS instruction with a memory
operand) are first split into a simple FP and a simple Load/Store instruc-
tion. These instructions are then handled as described in 1 and 2 above.

Sometimes the user may want VP3 to project the vectorization performance
when only FP operations are vectorized. This is done by generating the insert/merge
instruction even when the Load/Store instruction performs stride-1 access.

6.4.3 Refinement of Static Projection of LS Operations

To refine the vector performance of LS Operations to account for performance degra-
dation due to L2, L3, RAM and TLB activities, VP3 uses Cape [70] with inputs from
CQA static analysis (Section 6.4.2) and dynamic measurements from Section 6.4.1.
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Cape projects cycles per iteration of a loop by modeling a system consisting of N
nodes. Each node abstracts a hardware subsystem using software-related metrics. A
maximum operation rate called bandwidth is associated with each node (Bi for node
i). Per loop iteration, node i will perform Oi operations. Cape uses Equation 6.1
to compute the cycles per iteration T of the loop. To get the vector performance

T = max
1≤i≤N

Oi

Bi
(6.1)

of LS operations, the relevant nodes are:

1. L1 Load, L1 Store, Front-End, issue ports. The operation counts are obtained
from CQA analysis results. The microarchitecture bandwidths are obtained
from [106].

2. L2, L3, RAM. The operation/traffic counts are obtained from performance
counters (Section 6.4.1). Here, we assume the data access pattern of a vector-
ized loop is the same as the scalar version of the loop, so we can use operations
counts from scalar loop runs. The bandwidths are obtained by using scaling
factors from Table 6.1 to scale up the bandwidths determined from scalar loop
runs. The scalar bandwidths are empirically determined by observing the peak
traffic rate when the scalar loop is executed with different input data sizes.

3. TLB. The operation count is obtained from a performance counter, multiplied
by a TLB miss penalty. The bandwidth is assumed to be 1. Similar to
L2/L3/RAM node, we assume the TLB behavior of a vectorized loop is the
same as the scalar loop.

Table 6.1: BW Scaling Factors (BW Vector / BW Scalar)

Type of Scalar L2 L3 RAM
Single Precision 2.04 1.63 1.25
Double Precision 1.79 1.40 1.10

In bullet 2 above, Table 6.1 was used for bandwidth scaling for SSE vector in-
structions. It is measured by running various kernels using different types of vector
instructions (loads/stores, SP/DP). Numbers of streams were measured, and com-
pared with equivalent kernels using scalar instructions. Table 6.1 shows that vector
instructions nearly double the bandwidth of L2 but the increase drops when access-
ing the farthest levels (L3 and RAM).

6.4.4 Combining FP/LS Projection Results

With performance projection for FP (TFP, Section 6.4.2) and LS (TLS, Section 6.4.3)
in cycles per iteration, VP3 combines them to generate the overall performance
estimate (TREF). VP3 assumes the relationship between TFP, TLS and TREF can
be related by a fitting function f such that TREF = f(TFP, TLS). Therefore, to
compute overall performance projection, VP3 applies f with projected performance
of FP and LS as inputs. The function is continually fitted by using scalar loop
measurements described in Section 6.4.1 where scalar performance of FP, LS and
overall are measured. VP3 assumes the same function can be applied for both scalar
and vector versions of the loop.
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6.4.5 Tool Speed

High time-consuming tools can only be useful to find a few hot loops. VP3 needs
no trace and requires only several runs of the instrumented program, as follows.
First, generation and execution of microbenchmarks for Table 6.1 is made once for
all applications running on the same target architecture and is therefore negligible.
Second, CQA passes (Section 6.4.2) and Cape (Section 6.4.3 and 6.4.4) computations
are extremely fast (under a few seconds). So the cost of VP3 is low enough to deal
with a few hundred loops per application. This is often essential because many real-
life applications have a very flat profile; reaching 80% coverage of total execution
time may require 200 loops.

Most time consuming for VP3 is application-specific measurements described in
Section 6.4.1. A static analysis CQA pass allows the identification of unvectorized
(or partially vectorized) target loops. Then running the application provides infor-
mation about target loops, e.g. their weight in the program’s total execution time
and iteration counts. This can be done using Intel compilers, which provide max,
min, and average, at modest overhead cost (20%), or using the MIL infrastructure
[98] to provide more detailed information on the loop iteration count distribution at
the cost of a higher overhead. Gathering traffic information via counters requires 3
further runs. Typically, the overhead associated with such collection remains under
20%. Next we execute the FP and LS DECAN variants. This can be achieved in
a single run by using a rollback mechanism after each target loop; the overhead
is 2X the execution time coverage. In total, 5 application runs are needed, with
various slowdowns. Assuming a target coverage of 80%, the total time is around
1.2 + 3× 1.2 + (1 + 2× 0.8) = 7.4 full application runs.

Once the data is available, it only takes a few seconds for a user to load it, choose
whether to project the impact of fully or partially vectorizing and get the results.

6.5 Validation

This section will present the validation process we used and its results.

6.5.1 Methodology, Measurements and Experimental Settings

To assess the quality/limitations of VP3, we picked a set of loops which were vec-
torized using a standard vectorizer. Then we forced the compiler to generate scalar
versions using proper flags. These scalar versions were fed into VP3 to generate
estimates of potential vectorization gains. These estimates were compared with
measurements of the vectorized loops.

The loops used for validation were extracted from Numerical Recipes (NR) [69]
and previously used to validate Cape’s features [70]. They were carefully selected
to cover a wide range of different behavior: 1D/2D loops, 1D/2D arrays, unit and
non-unit stride accesses. Both vector and scalar variants were compiled using Intel R©

Fortran Compiler (v12.1.3), using compiler flag “-O3” (as well as “-no-vec” for the
scalar versions of the NRs, to prevent auto-vectorization). We made a few tests with
compiler version v14 but (in most cases) differences were minimal.

All measurements were performed on a quad-socket Intel R© Xeon E5-4640 (Sandy
Bridge11) with Intel R© Hyper-Threading Technology deactivated, on RHEL 6.3 x86-

112nd Generation IntelR© Core
TM

processors
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64 with Transparent Huge Pages . On every CPU, each of the 8 cores has dedicated:
L1 instruction cache of 32KB, L1 data cache of 32KB and L2 cache of 256KB, plus
access to a 20MB L3 cache shared by all cores of the chip.

6.5.2 Error Analysis

To capture the expected vectorization benefits/effort, VP3 allows developers to set
threshold θ (see Fig. 6.1), to focus only on loops for which potential vectorization
performance gains are above threshold. As an example, we set default θ = 1.2, but
for a given type of app and developer skills, any value may be chosen. Fig. 6.8
summarizes, for the 16 validation codelets, the number of errors (mispredictions)
and the breakdown between over predictions and under predictions. We allow a
default tolerance of ±0.02, i.e. when the user asks for θ = 1.2, we guarantee a
prediction for 1.18 ≤ θ ≤ 1.22. Note that the number of errors decreases linearly
to 1 as the tolerance goes to 0.03. Developers could adjust the tolerance to study
error sensitivity for a given set of apps, before doing their work.

Figure 6.8: Error Cases/16 Validation Codelets vs. θ Tolerance

Our performance prediction methodology has the following sources of deviations
from compiler vectorization results (cases 1. and 2.) and potential errors (3.):

1. Dependence violation: during the mockup vector generation in CQA, vec-
torized statements for which there are RAW dependencies between memory
accesses could exist. Since we do not have such dependence information, our
vectorization process could generate incorrect code and therefore an erroneous
(conservative) prediction. Other types of dependence (WAR or WAW) are not
an issue since a powerful vectorizer can easily work around them to generate
vector code.

2. Poor scalar code: since the VP3 vectorization process is a line by line re-
placement of scalar by vector instructions, it is very sensitive to the code qual-
ity of the initial scalar code. This is why we explore several unroll variants
(via directives) to ensure that our process uses a high quality starting point.
Note that VP3 will not alter cache traffic. This is acceptable because apart
from some corner cases, cache-optimization transformations are profitable to
both scalar and vector versions. Therefore, if loop interchange is beneficial to
scalar code, our starting point should be a loop interchanged scalar binary.
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3. Load-store variation: to account for the increase in performance over scalar
code for vector data access, we use a simple scaling table obtained by mi-
crobenchmarking (Tab. 6.1). For the moment, this table does not distinguish
between loads and stores and the number of streams (separate array accesses).
This can be improved by using more extensive benchmarks, and static analysis
which will give us the number of load and store streams.

6.6 Extensions

In this paper, we have assumed that loops do not contain any branches. Re-
cent vector instruction sets support masked operations which obtain accept-
able vector efficiency for loop structures containing simple branch structures, i.e.
(if. . . then. . . else). Our framework can be extended to cover such cases by using
static analysis along the two potential paths. The mockup generation in CQA will
assume that the two paths are generated using masked instructions.

The dynamic analysis then has the extra task of modeling the branch outcome
time accounting for the branching probabilities. Assuming that traffic remains un-
changed, the LS prediction can be performed in a similar manner to loops without
branches. This is a valid assumption if the branch alternates targets at a fine level.
Otherwise, a different method would have to be used.

Besides predicting the impact of moving from scalar to vector, VP3 can also be
used for moving from SSE to AVX, from AVX to AVX-512, or any pair of similar
vector instruction sets. Some care has to be taken when moving among architectures
because cache size changes may alter traffic.

6.7 Related Work

Due to the renewed importance of vector units, a lot of research effort has been
recently devoted to vectorization. First, [59] analyzed in depth the major deficien-
cies of current vectorizers and proposed to (re)incorporate classical optimization
techniques to improve automatic vectorization process. Then, to improve classical
static dependence analysis, Vector Seeker [126] used on-line dynamic memory trac-
ing analysis to obtain an accurate dependence analysis. The on-line tracing process
is costly but it can detect candidate loops for vectorization which could not be an-
alyzed satisfactorily with classic static techniques. Holewinski [127] took a similar
angle but restricted their effort to regularly indexed loops. However, they provided
useful information on loops for which unit-stride access could be obtained therefore
improving the vectorization process. Rane [128] proposed combining static infor-
mation (compiler optimization reports detailing the main reasons why the compiler
failed to vectorize) with dynamic information (loop coverage, iteration count, stride,
alignment) to help the user in selecting target loops for vectorization. Finally, [129]
tried to vectorize directly at the assembly level, and therefore is subject to the same
issues as SIMD directives.

None of the above provides estimates of vectorization performance gains. VP3

is in fact complementary to the previous work. Running VP3 first will allow the
selection of loops of interest, and then tools like Vector Seeker can be used to discover
whether or not vectorization is legal.
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6.8 Conclusions

We have presented our fast and flexible prototype VP3 for vectorization insight.
VP3 can be used by compiler and software developer to focus on loops with high
vectorization gain, taking into account dynamic constraints like loop iteration count
and operand location. To validate VP3, we used 16 validation codelets extracted
from [69] and [59]. We observed that VP3 can project the vectorized performance
from scalar performance within reasonable error thresholds. We also performed fur-
ther investigations and have identified sources of errors, which will drive our future
improvements of the tool. In addition to evaluating VP3 with respect to difference
between projected and measured vectorized performance, we also evaluated the re-
sults considering the impact to the user. To evaluate VP3 on real world problems, we
used VP3 to analyze POLARIS and YALES2. For POLARIS, the results matched
well the previous human optimization effort. We believe VP3, as it stands, is a
useful tool for those who want to improve software performance by vectorization.
With the improvement we are performing, VP3 will deliver higher quality insight to
the users.





Chapter 7

Uop Flow Simulation

Different performance models can be built with very different purposes in mind. For
instance, CPU architects may need very low-level cycle-accurate simulators to find
and fix bugs in their design, in which case accuracy is so important that practical
aspects like processing time and lightweightness become completely secondary. At
the other end of the spectrum, models like CQA [21] and Cape [70] aim to provide
good-enough predictions at minimum cost, both in terms of time and space. Many
models exist as compromises between these extremes.

In this chapter, we will present Uop Flow Simulation (UFS), a technique simu-
lating a CPU’s out-of-order engine’s behavior on a cycle-accurate basis and offering
the following advantages:

1. Awareness of out-of-order engine limitations.

2. Very fast speed: several hundred thousand simulated cycles per second in
typical cases.

3. Low memory consumption: only a few MB of RAM are required.

4. Small input files: only limited, statically extracted information needs be used
for a given codelet.

We will explain key limitations of the out-of-order engine in Intel Core microar-
chitectures and use them to craft experiments exposing the effective sizes of out-of-
order resources.

We will then describe our model in details and validate our UFS implementation
both on in vitro codelets extracted from the Numerical Recipes [69] or Maleki’s
codelets [59], and on real-world loops from industry applications YALES2 [123] and
AVBP [130], using CQA as comparison point to highlight our model’s contribution.

7.1 Introduction

In a way, understanding performance is about understanding what prevents peak
performance from being reached. For instance, Sandy Bridge’s peak FP performance
is only obtained when using the vector multiplication and addition units every cycle
(respectively located behind ports 0 and 1), reaching 16 SP FP per cycle. Code
that only uses additions would only be able to use one of these units, bringing the
achievable peak down to 8 SP FP per cycles. If the code is furtherly not vectorized,
then only 1 SP FP per cycle could be computed.

Furthermore, codelets will solicit different components more or less intensively,
causing one (or some) of them to fall behind the others and drag the system’s
performance down by acting as figurative bottlenecks.

CQA and Cape shine at detecting and modeling the peak achievable performance
for a given code and finding the matching bottlenecks when their performance can
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be expressed in terms of bandwidth. However, they often do not consider Execu-
tion Bubbles, cycles in which such components are not used (or underused) due to
microarchitectural constraints.

Hence, a key question is: how are such bubbles created, and how can they be
detected, quantified and modeled?

7.1.1 On Model Accuracy

We will quantify the accuracy of our model using the error and fidelity metrics,
whose respective definitions are presented in Equations 7.1 and 7.2.

error = |measured execution time− predicted execution time
measured execution time

| (7.1)

fidelity = 1− error (7.2)

7.1.2 On Buffer Sizes

Performance in superscalar out-of-order CPUs relies on queues a bit everywhere in
the pipeline. Queues are a well-studied topic, partly due to how they can be applied
to considerably more fields than just computer architecture.

Little’s Law [131] is a central element of queuing theory, and states that

average number of waiting customers = arrival rate ∗ average wait time.

In other words [132]:

used queue entries = bandwidth ∗ latency

The consequence is that the higher the bandwidth or the latency, the bigger the
queue (or buffer) should be not to lose performance.

A balanced system is a system in which buffer sizes are perfectly matched to
both bandwidth and latency. In other words, resource scarcity and latency never
prevent full bandwidth from being used.

While Little’s formula is hard to apply directly to in-flight uops due to data
dependencies, the varying nature of latency for different types of instructions and the
particular relationship between the different out-of-order buffers, the point remains
that buffer size and latency are two important performance factors that the largely
bandwidth-centric Cape and CQA models mostly overlook. This would not be
a problem if buffer sizes were always sufficiently large, but the exact number of
resources needed to reach peak theoretical performance is program-dependent and
has no upper bound (we will actually use this property in Section A).

Considering architectures have to work with limited resources, buffer sizes can
never be large enough to cover all cases perfectly. A direct consequence is that
systems can only be balanced for a given workload. Here, we will focus on codelets
causing some imbalance on our target systems, and on how it is impacts CQA’s
fidelity.
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7.1.3 On Uop Scheduling

The dispatcher (in our case, the Reservation Station) has many uops to manage,
up to 6 uops to dispatch every cycle on Sandy Bridge (respectively 6 and 8 on Ivy
Bridge and Haswell), and limited information to do so intelligently. The complexity
of the task forces the selection process to be as simple as possible while remaining
legal. Heuristics have to be used to gain as much in simplicity as needed while losing
as little performance as possible. We will describe some of them, as well as their
practical implications.

7.1.4 Out-of-Context Analysis

We will describe UFS as performing out-of-context (or contextless) analyses, as it
does not use any contextual information to run. Such context could be static infor-
mation like the presence outside the target loop of instructions that could impact
its dependencies, which would not be expensive to extract. More importantly to our
approach, though, UFS does not use dynamic context information such as register
values, the number of loop iterations, branch traces or accessed memory addresses.

This makes UFS extremely fast as the studied loop (or the program it comes
from) does not need to ever be run and typically expensive processes such as execu-
tion trace collection can be completely avoided. It also makes UFS very simple as far
as cycle-accurate simulations go. However, it limits the number of phenomena that
can be accurately modeled and makes issues such as memory dependencies invisible
to the model.

CQA is a tool that also works contextlessly, making it a good comparison point
for our model.

7.1.5 Motivating Example: Realft2_4_de

We will use codelet realft2_4_de as a motivating example to show the kind of
problems raised by limited out-of-order resource sizes, as well as showcase how UFS
can pinpoint the issue.

7.1.5.1 Presentation

Realft2_4_de (Figure 7.1a) is a codelet from our Numerical Recipes suite, and
is part of an inverse Fourier transform algorithm. It is a particularly interesting
codelet as it suffers from an important CQA error even for L1 data sets. Indeed,
CQA overestimates the loop’s speed by 46% (see Table 7.1), making it a good case
for precise study because:

1. It shows our target systems can be imbalanced for real world loops even with
the very low latency provided by the L1 cache.

2. It proves said imbalance can result in significant performance drops.

3. The L1 latency and bandwidth are easy to determine statically (provided
accesses do not conflict with each other, as is the case here), unlike with other
cache levels or RAM. This allows us to take out the memory access variable
of our analysis.

4. It reduces the list of potential culprit components involved in the phenomenon
to those found in the execution core itself.
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Figure 7.1: Realft2_4_de Codelet

(a) Source Code (b) Source Level DDG

Realft2_4_de is a codelet from our Numerical Recipes suite, and is part of an
inverse Fourier transform algorithm.

Here, the DDG was made at the source level for clarity purposes. However,
an assembly level version, more consistent with low-level analyses, is presented in
Figure 7.2 (in conjunction with Table 7.2).

Table 7.1: Realft2_4_de: Measurements and CQA Error

Metric REF LS FP FES
Measured Duration 23.36 5.21 20.21 16.26

CQA Duration Projection 16.00 5.00 16.00 14.5
Error 31.51% 4.03% 20.83% 10.82%

Measured Resource Stalls 7.85 [RS] 0.01 7.31 [RS] 0.01

Measurements are in cycle per assembly loop iteration.
Here, we can see the error for REF is noticeably higher than for its LS, FP and

REF components. Hardware counters suggest the Reservation Station (RS) may
have a role in this unmodeled performance degradation.

7.1.5.2 Low-Level View

Detailed investigation using hardware counters (Table 7.1) revealed that stalls due
to out-of-order resource scarcity may have had an impact on the actual performance.
While not all stalls necessarily impede the execution, this was still an interesting lead
directly incriminating the RS. As it is the buffer holding uops until their operands are
ready, it gets particularly stressed when there are dependencies between instructions:
we gave them a particular scrutiny in Figure 7.1b.

7.1.6 Alternative Motivating Example: Realft_4_de

Realft_4_de is an alternative version of the realft2_4_de codelet in which inter-
iteration dependencies were removed. In practical terms, statements 13, 14 and 15
were removed from the source code presented in Figure 7.1a. Whilst it is no longer
a valid Numerical Recipes codelet, the generated code is interesting and shifts the
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Table 7.2: Realft2_4_de Assembly Instructions

#Id Instruction Type Dispatch Ports
1 MOVAPS %XMM1, %XMM10 FP Move 5
2 LEA -0x1(, %RAX, 2), %RDI Address Comp. 0, 5
3 MOVSXD %EDI, %R8 Address Comp. 0, 1, 5
4 MOVAPS %XMM4, %XMM11 FP Move 5
5 NEG %R8 Address Comp. 0, 1, 5
6 INC %RAX Control 0, 1, 5
7 ADD %RCX, %R8 Address Comp. 0, 1, 5
8 MOVSD (%RSI, %RDI, 8), %XMM15 Load 2, 3
9 MOVAPS %XMM15, %XMM13 FP Move 5
10 MOVSD -0x8(%RSI, %RDI, 8), %XMM14 Load 2, 3
11 MOVSD -0x8(%RSI, %R8, 8), %XMM6 Load 2, 3
12 MOVAPS %XMM14, %XMM12 FP Move 5
13 MOVSD -0x10(%RSI, %R8, 8), %XMM7 Load 2, 3
14 ADDSD %XMM6, %XMM15 FP Add 1
15 ADDSD %XMM7, %XMM12 FP Add 1
16 SUBSD %XMM7, %XMM14 FP Sub 1
17 SUBSD %XMM6, %XMM13 FP Sub 1
18 MULSD %XMM2, %XMM15 FP Mul 0
19 MULSD %XMM3, %XMM12 FP Mul 0
20 MULSD %XMM3, %XMM14 FP Mul 0
21 MULSD %XMM15, %XMM10 FP Mul 0
22 MULSD %XMM3, %XMM13 FP Mul 0
23 MULSD %XMM14, %XMM11 FP Mul 0
24 MULSD %XMM4, %XMM15 FP Mul 0
25 MULSD %XMM1, %XMM14 FP Mul 0
26 MOVAPS %XMM12, %XMM8 FP Move 5
27 MOVAPS %XMM13, %XMM9 FP Move 5
28 MOVAPS %XMM1, %XMM6 FP Move 5
29 MOVAPS %XMM4, %XMM7 FP Move 5
30 MULSD %XMM5, %XMM6 FP Mul 0
31 ADDSD %XMM10, %XMM8 FP Add 1
32 ADDSD %XMM15, %XMM9 FP Add 1
33 MULSD %XMM0, %XMM7 FP Mul 0
34 SUBSD %XMM10, %XMM12 FP Sub 1
35 SUBSD %XMM13, %XMM15 FP Sub 1
36 SUBSD %XMM11, %XMM8 FP Sub 1
37 ADDSD %XMM14, %XMM9 FP Add 1
38 ADDSD %XMM1, %XMM6 FP Add 1
39 ADDSD %XMM11, %XMM12 FP Add 1
40 ADDSD %XMM14, %XMM15 FP Add 1
41 MOVSD %XMM8, -0x8(%RSI, %RDI, 8) Store (2, 3) + 4
42 MOVAPS %XMM4, %XMM8 FP Move 5
43 MULSD %XMM5, %XMM8 FP Mul 0
44 MOVSD %XMM9, (%RSI, %RDI, 8) Store (2, 3) + 4
45 MOVAPS %XMM1, %XMM9 FP Move 5
46 MULSD %XMM0, %XMM9 FP Mul 0
47 ADDSD %XMM4, %XMM8 FP Add 1
48 MOVAPS %XMM6, %XMM1 FP Move 5
49 MOVAPS %XMM8, %XMM4 FP Move 5
50 MOVSD %XMM12, -0x10(%RSI, %R8, 8) Store (2, 3) + 4
51 SUBSD %XMM7, %XMM1 FP Sub 1
52 ADDSD %XMM9, %XMM4 FP Add 1
53 MOVSD %XMM15, -0x8(%RSI, %R8, 8) Store (2, 3) + 4
54 CMP + JLE %RDX, %RAX Control 5

The two instructions in line 54 will be decoded into a single macrofused uop by the FE.
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Figure 7.2: Realft2_4_de DDG
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focus from inter-iterations dependencies to intra-iteration ones.
Measurement results for this codelet are presented in Table 7.3. They show that

the stalls and CQA error for FP and LS are completely disconnected from those for
REF.

Table 7.3: Realft_4_de: Measurements and CQA Error

Metric REF LS FP FES
Measured Duration 15.66 5.16 12.54 12.18

CQA Duration Projection 12.00 5.00 12.00 11.00
Error 23.37% 3.10% 4.31% 9.69%

Measured Resource Stalls 4.36 [RS] 0.01 3.17 [RS] 0.01

Measurements are in cycle per assembly loop iteration.
As with the original version of the code, we can see the error for REF is consider-

ably higher than for its subcomponents. Hardware counters still flag the Reservation
Station (RS) as being potentially problematic.

7.2 Understanding Out-of-Order Engine Limitations

While the out-of-order engine implemented in modern CPUs is a powerful mecha-
nism to extract Instruction Level Parallelism, it comes with significant limitations.

7.2.1 In-Order Issue and Retirement

An important thing to keep in mind is that out-of-order execution only applies to
a limited part of the execution core. The issuing and retiring of uops is still done
in-order, which provides very interesting properties. For instance:

1. Transparency: speculative states are completely hidden from programs, for
which the execution appears to be completely in-order.

2. A legal architectural state can always be retrieved in case of interruption or
branch misprediction (e.g. mispredicted uops never impact the architectural
state).

3. Resource allocation conflict avoidance: older uops never have to wait for
younger uops to release resources to get issued. This prevents deadlock situa-
tions and spares the hardware from implementing costly detection and reme-
diation mechanisms.

This hard ordering constraint can sometimes get in the way of performance, as
it can prevent both the Front-End and the retirement unit from operating at full
speed. In the case of retirement, it can also delay the time when certain out-of-order
resources are freed and made available to newer uops.

Proposals to get around this limitation exist, but are not implemented in the
studied hardware as far as we know. For instance, [133] and [134] show that per-
formance could be indirectly gained by extremely speculative execution, where the
execution of certain uops can be pursued not to advance the program’s state, but
to prefetch data to cache intelligently.
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7.2.2 Finite Out-of-Order Resources

The execution window represents the uops being currently processed by the out-of-
order engine. As uops may need to keep resources from the time they are issued
until they are retired, its maximum size is constrained by the number of entries
available in each buffer. The Reservation Station is a special case, as its resources
are released at dispatch time and not retirement, but it can be a window size limiter
too.

Having a large execution window is important, as it gives the hardware more
opportunities to find instruction level parallelism (or more precisely, uop level par-
allelism) and improve performance. However, not only is increasing buffer sizes
increasingly complex, the performance return per entry also decreases as sizes
grow [135].

CPU architects consequently have to find a compromise between performance
gain and resource sizes, which results in performance drops in certain codes.

7.2.3 Dispatching Heuristics

The out-of-order dispatching of uops is a complex task, for which flawless imple-
mentations would be extremely costly:

1. Only uops whose operands are ready can be handled by functional units: only
those should be considered for dispatching.

2. Some uops require functional units only present behind a single execution
port, making it easy to determine which one to send them to. However, this is
not always the case and many uops can be processed by any of several ports,
meaning extra intelligence is required to maximize performance.

3. The critical path for uop execution is hard to estimate.

Heuristics are consequently used to reduce dispatch complexity.

7.2.3.1 Port Binding

Uops being able to go to different ports gives the dispatch mechanism some leeway
about which port to use, potentially reducing the number of port conflicts for uops in
the RS. However, not all algorithms are adequate for this task. The ideal one would
evaluate dispatch opportunities every cycle, maximizing the number of dispatched
uops without actively penalizing any. For instance, if there are three uops in the RS
for which respectively going to the following ports (1 | 2 | 3), (1) and (1 | 2) would
be legal, an ideal dispatcher would make sure to dispatch the first uop on port 3,
the second on port 1, and the third on port 2. However, this is extremely complex,
as the dispatch port for the first uop has to be determined using information from
uops that may be dispatched in the very same cycle.

In practice, simplifications are used. [136] strongly suggests the dispatch port is
chosen depending on the number of uops assigned to each port in the RS in some
Intel microarchitectures. There are different ways it could be done, but a possibility
is that uops are bound to a single port when entering the RS, favoring the legal port
for which the least number of uops are already assigned. With our earlier example,
the first uop would be assigned to e.g. port 1 when entering the RS, the second
would be assigned to port 1 (as it is the only port it can be legally dispatched to),
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and the third to port 2 (due to port 1 already having 2 uops assigned to it, vs. 0 for
port 2). This version is particularly easy to implement for the hardware, as once a
uop is in the RS it can only ever go to a single port, and the dispatch algorithm is
basic (for each port, dispatch the oldest uop whose operands are ready and which is
assigned to this port).

Another possibility is that this is computed dynamically. In this case, the count
of eligible uops at the beginning of the dispatch would be (P1: 2, P2: 2, P3: 1).
The dispatcher would send the first uop on port 3 due to its being the least loaded
legal port (leaving ports 1 and 2 to do work for which they cannot be avoided), the
second uop to port 1 due to not having a choice, and the third to port 2 due to
port 1 having been used already. However, this assumes that the dispatcher can use
the information a port was already chosen to intelligently dispatch other uops in
the same cycle. Also, heuristics would have to be used when all ports are equally
loaded anyway, unless the count itself can be updated several times within a cycle.
[137] describes a technique for dynamic port assignment inside the RS, but it uses
certain heuristics too, and its description and recentness suggests it was probably
not used before at least Haswell.

7.2.3.2 Pseudo FIFO Dispatching

An ideal dispatch strategy would ensure critical uops are always dispatched first.
However, this would require extensive knowledge of instructions’ dependencies, and
hence be complex to implement.

Instead, the hardware can (and does, as far as we know) use the following heuris-
tic: for each port, always dispatch the oldest compatible uop whose operands are
ready. This presents several advantages:

1. Relative simplicity: no dependence graph or history of instruction dependen-
cies needs be computed by the hardware, and only basic information is used:
operand readiness, assigned port, and age of the RS entry.

2. Good resource management: as retirement is done in-order, older uops wait-
ing for execution prevent all younger uops from retiring and releasing their
resources. This strategy can hence reduce the amount of time for which each
resource entry is allocated, and make better use of existing buffers.

While it often works well, there are cases in which it is not optimal. We wrote a
pair of codelets (“rs_pb” and “rs_fix”) exposing the issue: their assembly code can
be found in Table 7.4, and results can be seen in Table 7.5.

7.2.4 Inter-iteration Dependencies

Inter-iteration dependencies are dependencies that are carried throughout the entire
loop call. While uops from the same dependency chain have to be executed serially,
out-of-order mechanisms can allow independent uops to be dispatched in parallel
and absorb the induced latency.

However, if the inter-iteration dependency chain is long enough, it can cause
latencies nearly impossible to absorb even with very large buffers and a perfect
dispatcher: they impose a de facto upper bound on loop performance.

Figure 7.3 shows 3 examples of problematic inter-iteration dependencies with
varying degrees of complexity.
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Table 7.4: Exposing Pseudo FIFO limitations: Assembly Code for “rs_pb”

#Line Instruction Purpose
1 XORPS %xmm0, %xmm0 Resets dependency chain
2 MULPS %xmm0, %xmm0 Starts dependency chain
3 ADDPS %xmm0, %xmm0 Extends dependency chain
... ADDPS %xmm0, %xmm0 Extends dependency chain
14 ADDPS %xmm0, %xmm0 Extends dependency chain
15 MULPS %xmm0, %xmm1 Dependent operation
16 MULPS %xmm0, %xmm2 Dependent operation
17 MULPS %xmm0, %xmm3 Dependent operation
... MULPS %xmm0, %xmm[1+(...-15)%15] Dependent operation
68 MULPS %xmm0, %xmm9 Dependent operation
69 ADD $1, %eax Iteration count
70 SUB $2, %rdi Loop control
71 JGE .LOOP Loop control

The only difference in “rs_fix” is that the instruction on line 2 is an ADDPS
instead of a MULPS. As FP additions and multiplications go on different ports,
it prevents uops from instruction #2 from competing with instructions labeled as
dependent operations to get dispatched.

Table 7.5: Exposing Pseudo FIFO limitations: Experimental Results

Metric rs_pb rs_fix
Measured Cycles 95.11 54.82
CQA Cycles 55 54

Measured RS Stalls 77.53 37.29

Results are normalized by the number of iterations.
In both versions of the codelet, the dependent operation uops fill up the RS as

the dependency chain gets executed, preventing the next iteration’s uops from getting
issued and considered for dispatching. As instruction #14 is executed, dependent
instructions can finally get dispatched and make room for the next iteration’s depen-
dency chain.

In rs_pb, instruction/uop #3 is only dispatched after all MULPS from the pre-
vious iteration: as all their operands are ready, the older uops take priority even
though they are not in the critical path (pseudo FIFO). This results in additions
getting stuck in the RS, waiting for the instruction #3’s execution to progress. Mul-
tiplications and additions are consequently never executed in parallel, causing a huge
performance loss not foreseen by CQA. The very high number of RS stalls is a con-
sequence of this phenomenon.

In rs_fix, instruction #3 is now an addition: it can be dispatched as soon as it
gets in the RS as older uops do not compete for the same execution port. It unlocks
the execution of the rest of the ADDPS uops in the iteration’s dependency chain,
allowing full parallelism of the multiplications from iteration N with the additions
of iteration N + 1, and reaching the performance peak predicted by CQA.
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Figure 7.3: Inter-Iteration Dependency Cases
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Nodes represent instructions, and arrows dependencies between them. Arrow
labels represent the weight of the dependency in cycles (and matches the duration
of the instruction from which it originates). Red arrows represent dependencies
crossing the boundary of an iteration. Cycles in such graphs are what we call inter-
iteration dependencies. For instance, in 7.3a, instruction 2 depends on the instance
of instruction 1 from the same iteration, while instruction 1 depends on the instance
of instruction 2 from the previous one. There is a cycle between 1 and 2 with a
summed weight of 5 + 3 = 8 cycles: each loop iteration will last at least 8 cycles,
regardless of any other hardware specification (out-of-order buffer sizes, number of
execution ports, etc.).

Dependency chains like the one in 7.3a can be detected and accounted statically
(which CQA does). However, the one in 7.3b is more tricky: dependency-aware
hardware would be able to maintain an upper performance bound of 8 cycles per
iteration by prioritizing instructions from the inter-iteration chain (i.e. instructions
1 and 3 in this case), but real-world dispatch algorithms do not take this into account
and instances of instruction 2 will be prioritized over instances of instruction 3 from
the same iteration due to being older. Assuming only one multiplication can be
dispatched in a given cycle, a 1-cycle delay will appear on top of the chain’s original
8 cycles due to this dispatch imperfection, bringing the upper bound to 9 cycles per
iteration instead.

In 7.3c, there is nothing the dispatcher can do to prevent this extra delay: the
order in which instructions 2 and 3 are dispatched is now irrelevant. Only having
at least 2 multipliers could eliminate the extra delay.

7.3 Input Resource Sizes

A key aspect to building our UFS model is getting inputs faithful to how the target
microarchitectures behave in the real-world. This applies to e.g. instruction latencies
(for which we rely on [107]), but also to other characteristics such as their effective
out-of-order resource sizes.

While many of the theoretical sizes for the resources in question are publicly



106 Chapter 7. Uop Flow Simulation

available, they may differ from the sizes experienced in practice [61].
We wrote experiments to measure practical resource sizes and use the results as

default input for UFS. A summary of our results can be found in Table 7.6 while
the details and methodology were placed in Appendix A.

Gaps between on-paper figures and our results are likely due to microarchitec-
tural constraints on resource allocation or deallocation we are not aware of, the
impact of which we aim to alleviate by using these adjusted values.

Table 7.6: Experimental Resource Quantifying Summary

Uarch SNB IVB HSW
BB 48 48 48
LB 64 64 72

FP PRF 112 113 138
Integer PRF 128 130 144
Overall PRF 141 165 177

ROB 165 168 192
RS 48 51 51
SB 36 36 42

ROB Microfusion No Yes Yes
RS Microfusion No No No

We found the practical sizes of the PRFs, the ROB and the RS to be differ-
ent from the official ones in all three microarchitectures. Such differences can be
explained by e.g. the mode the processor is working in (64-bit mode exposes more
named registers than the 32-bit one), the number of pipeline stages involved in allo-
cating or releasing resources, or by technical limitations unknown to us.

7.4 Pipeline Model

We will present the UFS models we built aiming at Intel Big Core microarchitectures
in this section.

7.4.1 Principles

The purpose of the model is to account for limits of the out-of-order engine not
taken into account in CQA using a limited cycle-accurate simulation, while still
operating with very limited amounts of information on target loops. The semantics
of instructions is completely disregarded; only the flow of uops is being computed,
estimating the speed at which uops may travel through the pipeline.

7.4.1.1 Cycle-Accurate Simulation

Detailed interactions between uops and the pipeline are taken into account are
simulated. For instance, the simulation keeps track of in-flight uops and the number
of available resources, constraining the flow of simulated uops as a real system would.
Dispatching constraints and heuristics are also implemented, allowing for a realistic
estimation of port load in complex loops.
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7.4.1.2 Limited Input

The simulator uses two types of inputs:

1. Loop information: as the model is only tracking the flow of uops and not their
semantic purpose, register and memory values are not needed. It uses only
basic information obtainable from static analysis, such as the type, register
operands and outputs for each instruction in the studied loop. It also uses Ag-
ner’s instruction tables [107] as reference for instruction dispatch port(s) and
latency. Just as with CQA, loop inputs are generated using the MAQAO [138]
framework. An example input is provided in Table 7.7.

2. Microarchitecture information: simple parameters such as the size of each out-
of-order resource or the Front-End and retirement uop bandwidth are needed.
Default values (see 7.3) can be provided for each target microarchitecture. All
the studied microarchitectures have an issue and retire bandwidth of 4 uops
per cycle. A few behaviors are also microarchitecture specific, such as the
status of microfused uops in the ROB.

Table 7.7: Partial UFS Loop Input Example (Realft2_4_de)

#Insn Nb_FE Type Input Output Latency Ports
1 1 compute XMM1 XMM10 1 P5
2 1 compute RAX RDI 1 P1, P5
...
8 1 load RSI, RDI XMM15 4 P2, P3
...

store_addr RSI, R8 1 P2, P3
53 1

store XMM15 3 P4
54 1 branch RDX, RAX test 1 P5

The specifics of what an instruction exactly does is irrelevant for UFS. Instead,
only characteristics such as the number of uops it takes in the Front-End (Nb_FE),
input/output registers and latency are important.

The type category allows us to determine what type of resource the uop will need
to get issued (e.g. branch buffer entry for branch uops), coupled with the output
field: for instance, instruction 1 is going to need a vector register as it produces an
XMM value, while instruction 2 will need an integer one.

The ports column provides a list of ports compatible with the uop.
In some cases, a single instruction gets split in several uops. As each of them

can potentially have different attributes, differences between them need to be described
explicitly. This is the case for instruction 53.

Complementary attributes are sometimes needed, e.g. in case of division uops,
as they are going to use special resources exclusively for variable amounts of time.

The number of loop iterations to simulate can also be specified, with a default
value of 1000.

The limited information needed to run UFS makes it possible to analyze loops
outside their execution context, and hence gain very important amounts of time by
not needing to simulate or execute uninteresting parts of the code to obtain legal
register or/and memory states.
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7.4.2 Engine

UFS simulates as many cycles as needed for last uop of the N th iteration to retire,
with N being the number of iterations to simulate. The different simulation steps
for a cycle are as follows (in order of simulation):

1. Update [no order]: flags uops as being executed L cycles after they were dis-
patched, with L being their attributed latency. It is the equivalent of uop
outputs being written back to the RS, allowing dependent uops to get dis-
patched.

2. Retire [in-order]: removes executed uops from the pipeline and releases their
attributed resources. In a real microarchitecture, this is the step at which
executed uops’ outputs would be committed to the architectural state.

3. Dispatch [out-of-order]: removes uops from the RS when all the uops they
depend on were properly executed and a compatible execution port is available.

4. Issue [in-order]: inserts new uops in the ROB (and RS if need be) and allocates
all needed resources, but only if the latter are available.

The current cycle count (i.e. number of cycles simulated so far) is maintained
and updated every cycle.

Figure 7.4 presents an overview of the model. We will describe details for each
simulated component in the coming sections.

7.4.3 Simplified Front-End

As UFS targets loops, we can safely assume that all the uops sent to the uop queue
came from the uop cache, hence ignoring the legacy decode pipeline and its limita-
tions and providing a constant uop bandwidth of 4 per cycle. While the uop cache
has limits of its own (e.g. it cannot generate more than 32B worth of uops in a
cycle), we decided to ignore them as we could not find real world cases where they
got in the picture. This is partly due to compilers being able to avoid dangerous
situations by padding the code.

We also assume the branch predictor is perfect and never makes mistakes, mean-
ing we do not need to simulate any rollback mechanisms. This is a decently safe
assumption for the loops we study due to their high numbers of iterations, but
limits the applicability of UFS for loops whose iteration counts are both small and
unpredictable.

We consequently model Front-End performance in a simplified way:

1. For SNB / IVB: 4 uops can be generated every cycle, except a limitation of
the uop queue prevents uops from different iterations from being sent to the
RAT in the same cycle. For instance, if a loop has 10 uops, the uop queue will
send 4 uops in the first two cycles, but only 2 in the third.

2. For HSW: 4 uops can be generated every cycle: the limit experienced in SNB
and IVB was apparently lifted.

In some cases, the uop queue has to unfuse microfused uops (or unlaminated)
before being able to send them to the RAT [110], causing more issue bandwidth to
be consumed (and sometimes, also more out-of-order resources). We take common
cases into account using the following rules:
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Figure 7.4: UFS Uop Flow Chart
Several types of uops are used in the pipeline. For instance, Front-End uops

(FE uops) are different from Queue uops or ROB uops. Generally, the closer to the
Front-End, the closer to the original instruction the uop is. As different components
can split uops when processing them, Back-End uops may contain less of the original
information and semantic than their earlier counterparts. In other words, more
Back-End uops than FE uops may be needed to describe the same instruction. Such
transformations will be detailed in the matching component’s modeling description.

The ROB and the RS are both resources and uop containers. Other resources
have a more passive role and do not describe uops, acting instead as mere depen-
dencies.

1. For SNB / IVB, unlaminate when the number of register inputs for the whole
instruction is greater than 2.

2. For HSW, unlaminate when the number of register inputs and outputs for an
AVX instruction is greater than 4. This rule was obtained empirically.

The resulting model is described in Algorithm 1.

7.4.4 Resource Allocation Table (RAT)

The simulated RAT is in charge of issuing uops from the Uop Queue to the ROB
and the RS, as well as allocating the resources necessary to their proper execution
and binding them to specific ports.

It does not have any bandwidth limit other than that induced by the Uop Queue’s
output.
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/* Prevents uop queue starvation */
/* (assuming perfect uop cache) */
fill_queue = FE_bw - nb_uops (uop queue);
while fill_queue > 0 do

insert (new uop cache uop, uop queue);
if has_to_be_unlaminated (youngest_queue_uop) then

unlaminate (youngest_queue_uop);
end
fill_queue –;

end
/* Adapts uop queue behavior depending */
/* on the target microarchitecture */
if target_uarch in {SNB, IVB} then

issuable_uops = min (FE_bw, nb queue uops before next iteration);
else if target_uarch == HSW then

issuable_uops = FE_bw;
/* Tries to get uops issued (by the RAT) */
while issuable_uops > 0 do

if issue (oldest_queue_uop) == SUCCESS then
issuable_uops –;

else
break;

end
end

Algorithm 1: Simplified Front-End Algorithm

7.4.4.1 Resource Allocation

Typical resource allocation for queue uops (i.e. uops as sent by the uop queue) is
described in Table 7.8.

In regular cases, a simple table look-up is enough to find resource attribution.
However, it gets more complex when an instruction is decomposed into more than
a single uop. In this case, all the resources needed at the instruction level will
be allocated when the first uop reaches the Back-End. For instance, stores are
decomposed into a store address and a store data uops: in this case, a Store Buffer
entry will be reserved as soon as the store address uop is issued, and the second uop
will be assumed to use the same entry. However, individual uop resources (ROB or
RS entry) will still be allocated at the uop granularity.

It is important to note that if any resource is missing for the uop being currently
considered, the RAT will stall and not issue any other uop until resources for the
first one are first made available. This is commonly referred to as a resource stall.

Algorithm 2 summarizes how we model the issue mechanism.

7.4.4.2 Port Binding

Available information about dispatch algorithms in recent Intel microprocessors is
rare and limited. We decided to bind uops to single ports in the RAT, sparing the
RS from having to do a complex cycle-per-cycle evaluation of dispatch opportunities.
Smarter strategies could be used, but we preferred to keep our simulation rules as
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Table 7.8: Needed Resources for Queue Uop Types and Outputs (SNB)

Uop Characteristics Needed Resources
Type Output BB LB All-P FP-P Int-P ROB RS SB
Branch 1 1 1
Branch GPR, test 1 1 1 1 1
Compute GPR 1 1 1 1
Compute Vector Reg. 1 1 1 1

Fused compute GPR 1 1 1 2* 2
Fused compute Vector Reg. 1 1 1 2* 2
Unlam. 1st uop GPR 1 1 1 1 1
Unlam. 1st uop Vector Reg. 1 1 1 1 1
Unlam. 2nd uop Any 1 1
Secondary uop Any 1 1

Load GPR 1 1 1 1 1
Load Vector Reg. 1 1 1 1 1
Nop 1
Nop GPR 1* 1* 1
Nop Vector Reg. 1* 1* 1

Store_addr 1 1 1
Store 1 1

Fused store 2* 2 1

This table presents the resources needed to issue uops with given characteristics
(i.e. send them to the Back-End) in UFS modeling. GPR stands for “General
Purpose Register”, while Vector Reg. refers to vector registers, a.k.a. XMM, YMM
or ZMM registers. All-P, FP-P and Int-P respectively refer to the All, FP and
Integer PRFs.

For instance, a load uop with a vector register output will need entries in the
LB, the All and FP PRFs, the ROB and the RS.

Nop-typed uops do not need to be dispatched as they are taken care of directly
at issue time. This applies to regular NOP instructions, which do not have any
input or output. However, other instructions are handled similarly, such as XORPS
instructions applied to identical registers: the hardware can recognize such cases as
always generating null values, making dispatching the uop unnecessary. A XORPS
uop can hence fall in either the compute (if it operates on different registers), either
the nop one (if it does not), changing the way the simulation will later treat it.

Macrofused uops are a special case in which consecutive flag-modifying and con-
ditional branch instructions are represented by a single uop. While other conditions
apply in the hardware [139], we assume macrofusion to always be successful, and the
resulting uops to be in the branch category with a GPR, test output.

In case of unlaminated uops (i.e. uops that were fused in the FE, but were split
in the uop queue), we assume the output register to be allocated when issuing the
first RAT uop, and that the second uop consequently only needs RS and ROB slots.
The same rationale is applied to multi-uop instructions, for which only the first uop
will be given physical registers.

Values with stars (*) are decremented for IVB and HSW, as the hardware seems
to make better use of physical registers in zero-idiom cases [61].

simple as reasonably possible.
The simulated RAT keeps track of the number of in-flight uops assigned to each

port, and assigns any queue uop with several port options to the least loaded one.
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input : target /*a uop from the uop queue*/
output: success status
if enough resources are available for target then

allocate needed resources to target;
port binding (target);
insert target in ROB and RS;
remove target from uop queue;
return SUCCESS;

end
return FAILURE;

Algorithm 2: Issue Algorithm

In case of equality, the port with the lowest digit is assigned (which creates a slight
bias towards low-digit ports).

This process is repeated on a per-uop basis, i.e. the simulated RAT uses knowl-
edge generated by issuing younger uops in the same cycle, rather than using counts
only updated once a cycle, which may in turn be optimistic. It is described in
Algorithm 3.

Arbitrary numbers of ports can be activated as their use is regulated by the loop
input file anyway (see 7.4.1.2). New microarchitectures with more (or fewer) ports
could be simulated by tweaking input files’ uop port attribution scheme to match
the target’s.

input : target /*a uop being issued*/
Least_Loaded_Port = -1;
Least_Loaded_Port_Load = +∞;
foreach Eligible Port P for target in ascending digit order do

if in_flight_uop_nb (P) < Least_Loaded_Port_Load then
Least_Loaded_Port = P;
Least_Loaded_Port_Load = in_flight_uop_nb (P);

end
end
make Least_Loaded_Port the only eligible one for target;

Algorithm 3: Port Binding Algorithm

7.4.5 Out-of-Order Flow

Uops may progress in an out-of-order fashion from the moment they arrive in the
Reservation Station until they are completed.

7.4.5.1 Reservation Station (Uop Scheduler)

The Reservation Station holds uops until their operands are ready, and the needed
port and functional unit are available. When arriving in the RS, queue uops that
are still microfused get split in two (see Section A.8.2), simplifying the dispatch
mechanism.

The dispatch is done prioritizing older uops, following Algorithm 4.
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for P = 0; P <= Nb Ports; P ++ do
foreach RS uop U, in descending order of age do

if U is bound to port P and
U’s operands are ready and
port P’s functional unit for U is available

then
dispatch uop U on port P;
remove uop U from the RS;
break;

end
end

end
Algorithm 4: Dispatch Algorithm

7.4.5.2 Port and Functional Unit Modeling

Ports act as gateways to the functional units they manage. They are modeled as
all being completely identical, and being able to process any uop sent to them by
the RS. Functional units are not modeled distinctly, and constraints over them are
modeled inside their respective port instead. Several rules are applied to match
realistic settings:

1. A port can only process a single uop per cycle (enforced by dispatch algorithm).

2. Uops can be flagged as needing exclusive use of certain functional units for
several cycles. For instance, division uops will make exclusive use of the divider
unit for (potentially) dozens of cycles. A port processing such a uop will flag
itself as not being able to handle other uops needing this particular unit for
the specified duration. The same mechanism is also used for 256-bit memory
operations on SNB and IVB. A port with busy functional units can still service
uops not needing them.

3. While the port itself does not check whether it should legally be able to process
a given uop, the RS verifies this a priori, preventing such situations in the first
place.

7.4.5.3 Uops’ Execution Status Modeling

ROB uops have a time stamp field used to mark their status, and holding the
cycle count at which they will be fully executed. By convention, the default value
for newly issued uops is −1: a uop’s output is available if current cycle count ≥
the uop′s execution time stamp > −1.

Updating ROB uops’ execution time stamp is typically done at dispatch time:
as we deal with constant latencies, we can know in advance on what cycle the uop’s
output is going to be ready (current cycle count+ uop latency).

In the case of typical nop-typed instructions (such as NOP and zero-idiom in-
structions like XOR %some_reg, %same_reg), their time stamp is directly popu-
lated with a correct value at issue time, reflecting the RAT being able to process
them completely in the studied microarchitectures. As they also have 0 cycle of
latency, their stamp is simply set to current cycle count.
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However, we found an extra simulation step to be necessary to handle zero-
latency register moves (implemented in IVB and HSW), which are nop-typed and
are entirely handled at issue time too. Contrary to NOPs or zero-idioms, register
moves have register inputs, the availability of which is not necessarily established
yet when the move uop is issued. We tackle this issue by inserting such uops with
a negative time stamp if their input operand’s availability is not known yet, and
letting a new “uop status update” simulation step update them when it is. This step
is performed at the very beginning of every cycle, ensuring zero-latency moves do
not stall retirement or dispatch.

7.4.6 Retirement

The retirement unit removes uops from the ROB, releases their resources and makes
them available for futurely issued uops. Not all the following rules for modeling
retirement are documented or strictly necessary, so we will explain our reasoning
and degree of certainty as well:

1. (Needed) Retirement is done in-order: no uop can be retired if an older uop
still exists in the ROB. This is necessary to be able to handle precise exceptions
and rollback to a legal state.

2. (Certain) Retirement peak bandwidth is at least equal to that of the
Front-End. Otherwise, retirement would become a bottleneck when non-
unlaminated uops are issued, which we empirically did not find to be the
case. We implemented this rule by setting the default retirement bandwidth
to be the same as the FE’s (4 uops per cycle), and by allowing ROB uops that
were still microfused in the RAT to only count as a single uop in this regard.

3. (Assumption) Resources released in a given cycle cannot be reused in the same
cycle. Our understanding is that it would be extremely complex to implement
a solution allowing this, with very little performance to be gained (potentially
increasing each resource’s effective size by a maximum of 4). Note: we apply
the same reasoning to the RS, even though its entries are freed at dispatch
time instead of at retirement.

4. (Assumption) All resources allocated at the instruction level at issue time are
released when retiring the last uop for the instruction in question. (This is
not certain because the resource allocation scheme we use is an extrapolation
to begin with.)

In the case of register-writing uops, real hardware retirement cannot free the very
physical registers that were attributed at issue time, but rather the ones formerly
used to hold the matching named registers’ architectural state. Strictly speaking,
this is contradicting the simplified modeling described above; however it is irrelevant
for our purposes as a) we do not model individual registers, but only the number
of used ones and b) we use the numbers of registers available for speculation as
simulation input.

7.4.7 Things Not Modeled

Many aspects of the target microarchitectures’ behavior are not simulated. Some of
them are inherently so due to our approach, such as:
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1. Cache and RAM behavior: accurate prediction of cache behavior would require
simulating the program’s semantics to identify the accessed cache lines or/and
generating a dynamic trace of memory accesses, either of which would be
extremely time consuming and barring the out-of-context analysis doable with
UFS.

2. Read after write (RAW) memory accesses and conflicts: while some of them
can be detected statically (which would be compatible with our limited input
objective), finding them all would require using the same processes as for cache
behavior. Furthermore, as compilers can typically preventively fix statically
detectable occurrences anyway (especially in innermost loops), the value of
partial coverage of RAW hazards would be questionable for the HPC loops we
study.

3. Branch mispredictions: as with memory accesses, extensive dynamic informa-
tion is required for the detailed simulation of branch mispredictions. Hence,
we do not model branch predictors or the pipeline flushes needed when a mis-
predict (or exception) occurs. This restricts our ability to model short or
branchy loops accurately.

Others are implementation choices, more subject to change:

1. The Load Matrix (LM) (see Appendix B): a little-documented out-of-order
resource that keeps track of load uops from the moment they are issued until
they are completed [140]. It was not implemented yet at the time of writing
this chapter due to time constraints, but is likely rarely a limiting factor when
operating in L1. Implementing it will be necessary to achieve a good accuracy
when targeting higher latencies and cache levels.

2. The impact of pending stores on later load and/or store uops: stores whose ad-
dress calculation was not dispatched or completed yet might prevent later load
and store uops from getting dispatched due to memory ordering constraints.
More experiments and tests should be done to ascertain this.

3. There are fewer simulated stages than existing for the target microarchitec-
tures. While the number of stages mostly does not impact us as we do not
model branch misprediction, it could have a slight impact on resource con-
sumption and could be adjusted in the future.

4. Writeback bus conflicts and execution stack value transfers: while they are
detailed well in [141, 142], we expect them to very rarely ever play a visible
role in performance degradations, and implementing them to hence have a low
effort / reward ratio.

5. Partial integer register stalls: some registers’ subparts have explicit architec-
tural names (e.g. AL represents the lowest 8 bits of 64-bit register RAX ),
allowing them to be accessed using different granularities. However, mixing
such accesses sometimes incurs various penalties, as described in [143]. As
with writeback bus conflicts, we expect the potential implementation gain not
to be worth the extra complexity, and consequently opted to leave this issue
aside for the time being.
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6. Multi-output instructions: some instructions modify several registers. The
current model does not support attributing several physical registers to the
same instruction, but it could be easily implemented; the only reason why we
have not done so yet is that they are infrequent in the HPC codes we target.

Furthermore, while a lot of information is available in terms of how Intel CPUs
work, many hardware implementation details are not publicly available. We could
fill some of the gaps using reasonable guesses, but they are probably flawed to some
degree, restricting the precision attainable by our model.

7.4.8 Ad-Hoc L1 Modeling

While our model does not support detailed cache modeling, we can still change L1
performance in two manners:

1. Change the latency of load and store uops, which reflects L1 latency accurately.

2. Change the rate at which load uops’ output is made available to other uops,
impacting the effective L1 bandwidth.

We hence implemented the following (optional) features, focusing on loads:

1. Load latency change: the simulator ignores the latency specified for load uops
in input files, and sets them to a user-specified value instead. This is an option
of convenience as it allows users to quickly change L1’s load latency but finer
adjustments can be made by modifying loop input files.

2. Cycles per load restriction: the uop status update simulation phase described
in 7.4.5.3 was tweaked to actively delay load uops by incrementing their ex-
ecution time stamp when the defined quota is temporarily exceeded. This
prevents them from retiring, and dependent uops from getting dispatched.
This bandwidth constraint is expressed in cycles per load. Its default value
matches the hardware’s bandwidth (with each load keeping L1 busy for 0.5
cycles, i.e. up to 2 loads are executable by cycle), but it is a freely modifiable
parameter.

This latter feature has no other purpose than to allow for a crude evaluation of
how bandwidth constrained a codelet is.

7.5 Validation

The validation work for UFS is two-fold:

1. Accuracy: checking whether the model provides faithful time estimations for
loops operating in L1.

2. Speed: making sure simulations are not prohibitively slow for their intended
use.

We will focus on SNB validation, as it is the microarchitecture we most targeted
during this thesis and identifying SNB performance drops was the primary moti-
vation for developing UFS in the first place. Furthermore, its modeling is used as
basis for IVB and HSW support, making SNB validation particularly important.
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We will use the fidelity metric described in Section 7.1.1 to represent UFS ac-
curacy for each studied loop, and systematically compare UFS results with CQA
projections to highlight our model’s contributions.

A short study of the time taken by our UFS prototype will be made, and results
will be presented in terms of simulated cycles per second.

7.5.1 Another Look at our Motivating Examples

We will have a second look at the motivating examples presented earlier to see what
light our UFS implementation could shed.

7.5.1.1 Realft2_4_de

Running UFS on the REF variant of realft2_4_de gives encouraging results (see Ta-
ble 7.9), completely filling the gap between the CQA cycles estimation and the
measurement.

Table 7.9: Realft2_4_de: UFS Validation (SNB)

Metric Cycles per Iteration Fidelity
Measured 23.36 N/A
CQA 16.00 68.49%

UFS (Normal buffers) 23.01 98.50%
UFS (Large buffers) 19.03 N/A

Fidelity for UFS (with regular SNB parameters) is 98.50%, an important im-
provement over CQA’s 68.49%.

Running UFS again with all out-of-order resources set to have 1000 entries
(UFS - Large Buffers row) shows nearly 4 (23.01 − 19.03 = 3.98) cycles can be
gained by merely increasing buffer sizes.

Table 7.10 shows a cycle-per-cycle trace of the UFS simulation for this codelet.
Its columns show the following for every cycle:

1. C / RS : respectively the cycle count and number of RS entries available at
the beginning of the cycle. Other resource counters were left out for simplicity
as they do not impact performance for this codelet.

2. Issued : issued uops.

3. Cpltd : uops reaching execution maturity; they can potentially be retired and
dependent uops can now be dispatched.

4. Dispatched : where and when each uop is dispatched. Note that the color codes
are the same as the ones used in Table 7.2 and Figure 7.2.

5. Retired : retired uops.

We chose to show cycles 189 to 211 as a) they show an entire assembly iteration
being issued and b) a steady state is reached. Indeed, early iterations can behave
in a significantly different manner as the pipeline fills up. Here, the trace for later
iterations is strictly identical to the one presented except for shifted iteration num-
bers.

Several observations can be made:
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1. Up to 3 different iterations cohabit in the pipeline: on cycle 189, uops from it-
eration 10 get issued as uops from iteration 8 are still being retired. However,
the distance between the oldest and the youngest uops is of only uops re-
maining from iteration 8 + uops from iteration 9 + uops from iteration 10 =
(54 − 46 + 1) + 54 + 4 = 67, which gives an idea of the window size for this
codelet.

2. The port binding algorithm was particularly efficient here, and the workload is
as balanced as can legally be. As a consequence, P1 (the bottleneck according
to CQA) only handles uops for which it is the only legal option.

3. The number of instructions dispatched per cycle varies from 1 (cycle 207) to
4 (cycle 192), with an average of 54/23 = 2.35.

4. The RAT often gets stalled by the lack of RS entries in most cycles (e.g. only
issuing 2 uops on cycle 190). It only issues uops at full speed on cycles 189
and 193.

5. The reason only 1 uop is issued on cycle 211 is the SNB RAT limitation on
issuing uops from different iterations in the same cycle.

6. P1 execution bubbles are revealed, explaining the mismatch between CQA
and measurements.

This accuracy gain is due to two main factors:

1. RS size awareness: running UFS again with a virtually infinite RS size shows
that 4 cycles could be gained from having larger out-of-order buffers (Ta-
ble 7.9).

2. Realistic dispatch: heuristics prioritized uops not on the critical path.

The CQA evaluation represents the performance the loop would attain if not for
these issues.

7.5.1.2 Realft_4_de

UFS results for the REF variant of realft_4_de (see Table 7.11) also explain a size-
able chunk of the gap between the CQA-predicted and the measured performances.
However, unlike realft2_4_de, only the size of the RS gets in the picture: running
UFS again with larger buffers produces the same time estimate as CQA.

7.5.2 In Vitro Validation

We generalized our validation procedure on codelets we had already studied previ-
ously, and for which experimental data was readily available (see Chapter 3). We
narrowed down our selection to those for which the smallest used data sets fit en-
tirely in L1, in their SSE version. We hence used a) 14 codelets from the Numerical
Recipes (NRs) [69] and b) 2 from Maleki’s vectorization test codelets [59], present
in both their vectorized and scalar versions (see Section 6.5).



7.5. Validation 119

Table 7.10: Realft2_4_de UFS Trace

DispatchedC
RS

Issued Cpltd P0 P1 P2 P3 P4 P5 Retired

189
4

[10,1,1/1]
[10,2,1/1]
[10,3,1/1]
[10,4,1/1]

[8,44,2/2]
[8,47,1/1]
[9,53,1/2]

[9,15,1/1] [8,49,1/1]

[8,43,1/1]
[8,44,1/2]
[8,44,2/2]
[8,45,1/1]

190
2

[10,5,1/1]
[10,6,1/1]

[8,49,1/1]
[8,50,2/2]
[8,51,1/1]

[10,2,1/1] [8,52,1/1] [9,1,1/1]

[8,46,1/1]
[8,47,1/1]
[8,48,1/1]
[8,49,1/1]

191
3

[10,7,1/1]
[10,8,1/1]
[10,9,1/1]

[8,53,2/2]
[9,1,1/1]
[9,14,1/1]
[10,2,1/1]

[9,18,1/1] [9,16,1/1] [9,28,1/1]
[8,50,1/2]
[8,50,2/2]
[8,51,1/1]

192
3

[10,10,1/1]
[10,11,1/1]
[10,12,1/1]

[9,15,1/1]
[9,28,1/1] [9,19,1/1] [9,17,1/1] [10,8,1/1] [9,45,1/1]

193
4

[10,13,1/1]
[10,14,1/1]
[10,15,1/1]
[10,16,1/1]

[8,52,1/1]
[9,45,1/1] [9,30,1/1] [10,10,1/1] [9,4,1/1]

[8,52,1/1]
[8,53,1/2]
[8,53,2/2]
[8,54,1/1]

194
3

[10,17,1/1]
[10,18,1/1]
[10,19,1/1]

[9,4,1/1]
[9,16,1/1] [9,20,1/1] [9,29,1/1]

[9,1,1/1]
[9,2,1/1]
[9,3,1/1]
[9,4,1/1]

195
2

[10,20,1/1]
[10,21,1/1]

[9,17,1/1]
[9,29,1/1] [9,22,1/1] [9,42,1/1]

[9,5,1/1]
[9,6,1/1]
[9,7,1/1]
[9,8,1/1]

196
2

[10,22,1/1]
[10,23,1/1]

[9,18,1/1]
[9,42,1/1]
[10,8,1/1]

[9,21,1/1] [9,54,1/1]

[9,9,1/1]
[9,10,1/1]
[9,11,1/1]
[9,12,1/1]

197
2

[10,24,1/1]
[10,25,1/1]

[9,19,1/1]
[9,54,1/1]
[10,10,1/1]

[9,24,1/1] [9,26,1/1]

[9,13,1/1]
[9,14,1/1]
[9,15,1/1]
[9,16,1/1]

198
2

[10,26,1/1]
[10,27,1/1]

[9,26,1/1]
[9,30,1/1] [9,33,1/1] [9,38,1/1] [10,3,1/1]

[9,17,1/1]
[9,18,1/1]
[9,19,1/1]

199
3

[10,28,1/1]
[10,29,1/1]
[10,30,1/1]

[9,20,1/1]
[10,3,1/1] [9,23,1/1] [10,9,1/1] [9,20,1/1]

200
2

[10,31,1/1]
[10,32,1/1]

[9,22,1/1]
[10,9,1/1] [9,25,1/1] [9,27,1/1]

201
2

[10,33,1/1]
[10,34,1/1]

[9,21,1/1]
[9,27,1/1]
[9,38,1/1]

[9,43,1/1] [9,31,1/1] [9,48,1/1] [9,21,1/1]
[9,22,1/1]

202
3

[10,35,1/1]
[10,36,1/1]
[10,37,1/1]

[9,24,1/1]
[9,48,1/1] [9,46,1/1] [9,32,1/1] [10,12,1/1]

203
3

[10,38,1/1]
[10,39,1/1]
[10,40,1/1]

[9,33,1/1]
[10,12,1/1] [10,5,1/1] [9,34,1/1]

204
2

[10,41,1/2]
[10,41,2/2]

[9,23,1/1]
[9,31,1/1]
[10,5,1/1]

[10,6,1/1] [9,35,1/1] [10,7,1/1] [9,23,1/1]
[9,24,1/1]

205
3

[10,42,1/1]
[10,43,1/1]
[10,44,1/2]

[9,25,1/1]
[9,32,1/1]
[10,6,1/1]
[10,7,1/1]

[9,36,1/1] [10,13,1/1] [10,11,1/1]

[9,25,1/1]
[9,26,1/1]
[9,27,1/1]
[9,28,1/1]

206
3

[10,44,2/2]
[10,45,1/1]
[10,46,1/1]

[9,34,1/1]
[9,43,1/1] [9,37,1/1] [10,41,1/2] [10,44,1/2]

[9,29,1/1]
[9,30,1/1]
[9,31,1/1]
[9,32,1/1]

207
3

[10,47,1/1]
[10,48,1/1]
[10,49,1/1]

[9,35,1/1]
[9,46,1/1]
[10,41,1/2]
[10,44,1/2]

[9,39,1/1]
[9,33,1/1]
[9,34,1/1]
[9,35,1/1]

208
1 [10,50,1/2] [9,36,1/1] [9,40,1/1] [9,41,2/2] [9,36,1/1]

209
2

[10,50,2/2]
[10,51,1/1]

[9,37,1/1]
[10,11,1/1]
[10,13,1/1]

[9,47,1/1] [10,50,1/2] [9,44,2/2] [9,37,1/1]
[9,38,1/1]

210
3

[10,52,1/1]
[10,53,1/2]
[10,53,2/2]

[9,39,1/1]
[10,50,1/2] [9,51,1/1] [9,50,2/2] [9,39,1/1]

211
2 [10,54,1/1] [9,40,1/1]

[9,41,2/2] [10,14,1/1] [10,53,1/2] [9,53,2/2]

[9,40,1/1]
[9,41,1/2]
[9,41,2/2]
[9,42,1/1]

Uops are represented by triplets of the following format: [iteration, instruction
number, uop rank / number of uops for the instruction]. A fourth element is needed
for codelets where some uops are still microfused in the Back-End, but it is not the
case here.

Uop ids are consistent with the ones detailed in Table 7.2 and used in Figure 7.2.
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Table 7.11: Realft_4_de: UFS Validation (SNB)

Metric Cycles per Iteration Fidelity
Measured 15.66 N/A
CQA 12.00 76.63%

UFS (Normal buffers) 14.53 92.78%
UFS (Large buffers) 12.04 N/A

Fidelity for UFS (with regular SNB parameters) is 92.78%, improving over CQA
(76.63%), but not as drastically as with realft2_4_de.

Running UFS again with all out-of-order resources set to have 1000 entries
(UFS - Large Buffers row) shows 2.5 (14.53 − 12.04 = 2.49) cycles can be gained
with bigger buffers, matching CQA’s projection.

7.5.2.1 Experimental Setup

NR codelets were compiled with icc v.12.1.3, with compilation flags -O3 -xSSE4.2 -
g ; Maleki codelets were compiled with -O3 -xSSE4.2 -std=c99 -g for vector versions,
and -O3 -xSSE4.2 -std=c99 -no-vec -g for their scalar counterpart.

Experimental measurements were made on SNB CPUs, with hyper-threading
deactivated, and following the methodology described in Chapter 3. Data L1 size
is 32 KB, as with all SNB CPUs. As we focus exclusively per-cycle single-core L1
performance, the exact model number is not relevant.

We perform our validation for the three main DECAN transformations: FP, LS
and REF.

7.5.2.2 FP Variant

Figure 7.5: In Vitro Validation for FP [SNB]
UFS gives accurate results for FP variants. However, CQA already gives good

results in most cases, and UFS only provides a significant improvement for re-
alft2_4_de (with a .15 point gain).

More importantly, UFS’s fidelity is always higher than (or equal to) CQA’s.
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Figure 7.5 shows the results for the FP versions of the selected codelets. UFS
improves projections (compared to CQA) for certain codelets, but in most cases the
gain is rather negligible.

The average fidelity for UFS is 96.02%, versus 94.55% for CQA. Hence, UFS has
a high fidelity for FP, but does not establish a strong advantage over CQA there.

7.5.2.3 LS Variant

Figure 7.6: In Vitro Validation for LS [SNB]
UFS provides exactly the same time estimations as CQA for LS variants.

UFS results for LS (Figure 7.6) are even less marked than FP ones in regard to
differentiating from CQA, and there is no corner case which UFS deals better with
anymore.

This is however not surprising, as UFS’s main added value is the handling of
pipeline hazards not likely to occur with codes composed almost entirely of pure
memory instructions: the number of dependencies is reduced, and with it the diffi-
culty in keeping relevant dispatch ports busy.

Still, as with FP, UFS fails to show a clear advantage over regular CQA analyses.

7.5.2.4 REF Variant

REF is the most interesting variant for several reasons:

1. For the user, it is the one that actually matters in terms of experienced per-
formance.

2. For our validation purposes, REF is the variant where the instruction flows
from FP and LS are combined, increasing the overall complexity of the whole
uop flow.

Results for REF can be found in Figure 7.7. UFS fills important gaps left
by CQA, the most important case of which (realft2_4_de) we saw in details in



122 Chapter 7. Uop Flow Simulation

Figure 7.7: In Vitro Validation for REF [SNB]
CQA modeling is sufficient in the majority of cases, but UFS provides a signifi-

cant fidelity gain for several codelets ( four1_2_me, realft2_4_de, realft_4_de and
toeplz_1_de) without compromising accuracy in any of the others.

There are still sizeable gaps for certain codelets, with a fidelity of only 71% in
the worst case ( s1244_se).

Section 7.5.1.1. The improvements for four1_2_me, realft2_4_de, realft_4_de
and toeplz_1_de were of respectively .21, .30, .16 and .06 points.

However, not everything is explained yet, with projections for s1244_se still
having an error of around 30% (29% for UFS, 30% for CQA).

The average fidelity for UFS is 92.73%, against 88.49% for CQA: the difference
is more than twice higher for REF than it is for FP.

7.5.3 In Vivo Validation

We then shifted our validation focus from in vitro codelets to loops from actual
industrial applications. They are typically more complex than NR or Maleki codes,
and may give a legitimate idea of how UFS fares in real world cases.

7.5.3.1 Experimental Setup

Performance measurements for these applications were performed in vivo using DE-
CAN.

The host machine had a two-socket E5-2670 SNB CPU, with 32 KB of data L1
cache, 256 KB of L2, and 20 MB of L3. It also had 32 GB of DDR3 RAM.

For each tested application, we selected loops that:

1. Are hot spots: the studied loops are relevant to the application’s performance.

2. Are innermost, have no conditional code and can therefore be analyzed out of
context (see Section 7.1.4).

3. Have a measured time of more than 500 cycles per loop call for all the classical
FP, LS and REF variants. This is needed to make sure measurements are
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reliable (small ones can be inconsistent [144]). This may exclude small loops
that are called numerous times.

We use DECAN variant DL1 [37] to force all memory accesses to hit constant
locations, and thereby getting a precise idea of what the original loop’s performance
would be if its working set fit in L1. This also allows us to make direct comparisons
between measured cycles per iteration vs. UFS and CQA projections, as other
components of the memory hierarchy are artificially withdrawn from the picture.

7.5.3.2 YALES2: 3D Cylinder

YALES2 [123, 124] is a numerical simulator of turbulent reactive flows using the
Large Eddy Simulation method. Its performance scales almost linearly with the
number of execution cores even with thousands of cores.

Figure 7.8: In Vivo Validation for DL1: Y2 / 3D Cylinder [SNB]
Gaps between CQA projections and measurements are frequent and often im-

portant, but UFS covers many of them at least partially. In the most favorable case
(loop 22062), UFS makes a perfect projection (fidelity of 1.00), while CQA’s fidelity
is at only .65.

Certain loops’ performance is still unexplainedly poor, though. For instance,
both UFS and CQA have a fidelity of .65 for loop 3754.

Figure 7.8 shows UFS and CQA results for the 3D cylinder part of this applica-
tion. UFS shows fidelity gains of more than 0.05 points for 12 loops out of 26, with
a maximum gain of .35 for loop 22062. Other particularly important gains include
.28 and .24 for respectively loops 22040 and 4389.

Some loops’ performance are degraded by factors apparently not modeled by
UFS, with disappointing fidelities of respectively .65 and .75 for loops 3754 and
3424.

The average fidelity is of 91.67% for UFS, versus 82.93% for CQA.
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7.5.3.3 AVBP

AVBP [130] is a parallel CFD numerical simulator targeting reactive unsteady flows.
Its performance scales nearly linearly for up to 4K nodes [145].

Figure 7.9: In Vivo Validation for DL1: AVBP [SNB]
UFS improves the static modeling of the studied loops significantly, with all

projections having a fidelity higher than 75%. Indeed, the worst case is 78.18% for
loop 13906.

There is however still room for improvement.

Figure 7.9 shows UFS and CQA results for 29 AVBP hot loops on Sandy Bridge.
UFS shows fidelity gains of more than 0.05 points for 9 of them, with a maximum
gain of .27 point for loops 7507 and 7510. Other important gains include .20 for
loops 7719 and 3665.

The worst fidelity for UFS is 78.18% for loop 13906 (against 66.76% for CQA
on loop 3665).

The average fidelity is of 91.73% for UFS, versus 86.34% for CQA.

7.5.4 Simulation Speed

Speed is very important for performance evaluation tools, especially in the context
of optimization: various versions of a program can be tested, e.g. trying different
compiler flags or hand optimizations.

A model’s quality can be thought of in terms of return on investment: are the
model’s insights worth their cost?

We will hence study UFS’s speed in this section, and evaluate the cost of UFS
analyses.

7.5.4.1 Experimental Setup

Simulations were run serially on a desktop machine with an i7-4770 HSW CPU,
running at 3.4 GHz. They were run on a single core, with 32 KB of L1 data cache,
256 KB of L2 cache and 8 MB of L3. It also had 16 GB of DDR3 RAM.



7.5. Validation 125

The targeted microarchitecture was SNB, with its default microarchitectural
parameters, but simulating different numbers of iterations: 1000 and 100 000. The
former is the default one and the most relevant to our analysis, while the latter
was run to give an idea of sustained simulation speeds past the initialization phase
(slowed down by I/O).

Execution times were measured using the time Linux tool, with a resolution time
of 10 ms. While other measurement methods would be more precise, we deemed this
one to be enough for our purposes here. Furthermore, the time needed to generate
the loop input files with MAQAO is not counted here. Measures were performed
with 11 meta-repetitions to stabilize results.

7.5.4.2 NRs and Maleki Codelets

Figure 7.10: UFS Speed Validation for NRs and Maleki Codelets (REF Variant)
Our UFS prototype is very fast, and simulates hundreds of thousands of cy-

cles per second. When simulating 100 000 iterations (which is excessively high for
projecting a loop’s performance, but may give a better idea of the simulation perfor-
mance when ignoring initialization costs) this number can be above 1M cycles per
second (e.g. hqr_15_se).

In practice, simulation times are around .05 seconds for each loop, though some
of them reach .20 (e.g. svdcmp_14_de).

Figure 7.10 shows simulation speeds for the REF versions of the in vitro codelets
studied earlier. We can see that simulating 1000 iterations usually takes around .05
seconds per loop, with peaks to around .20 for certain codelets.

UFS can also simulate many cycles per second, with peaks going as high as
500K cycles / second (for svdcmp_13_de) when simulating 1000 iterations, and 1M
cycles / second (for hqr_15_se) when simulating 100 000. The discrepancy is due
to initialization costs being absorbed in the latter case.

For NR and Maleki codelets, we achieve on average:

1. Simulation times (for 1000 iterations) of approximately .04 seconds per loop;
and sequentially simulate up to 21.18 loops in a second.
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2. The simulation of 314K cycles per second for 1000 iterations (and less rele-
vantly, 664K for 100 000 iterations).

7.5.4.3 YALES2: 3D Cylinder

Figure 7.11: UFS Speed Validation for YALES2: 3D Cylinder
Our UFS prototype typically simulates around 200K cycles per second here. This

number doubles when simulating 100 000 iterations.
In practice, simulation times are around .10 seconds for each loop. Some of

them are particularly long to simulate, though, and can take around .60 seconds to
complete (e.g. loop 12557).

Figure 7.11 shows simulation speeds for the YALES2 (3D Cylinder) loops we
studied. Here, the time needed to simulate 1000 iterations has a high variability,
and can go from as low as .02 seconds to as high as .56. This is due to how some
of the loops are very complex and comprise hundreds of instructions. Hence, each
iteration needs more simulated cycles to complete. Furthermore, the number of
instructions can impact the locality of our UFS prototype’s data structures, with
large loops consequently being simulated less quickly.

However, the numbers of simulated cycles per second is still on par with the
ones experienced with in vitro codelets, ranging from 200K (loops 9632 and 36505 )
to 430K (loop 5268 ) when simulating 1000 iterations. The range is greater when
simulating 100 000 iterations, starting at 305K (loop 12578 ) and ending at 1.136M
(loop 3651 ).

For YALES2: 3D cylinder, we achieve on average:

1. Simulation times (for 1000 iterations) of approximately .13 seconds per loop;
and sequentially simulate up to 8 loops in a second.

2. The simulation of 281K cycles per second for 1000 iterations (and 549K for
100 000 iterations).
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Figure 7.12: UFS Speed Validation for AVBP
Our UFS prototype simulates an average of 300K cycles per second for the

studied loops. This average is 1.6x higher when simulating 100 000 iterations.
The average simulation time is of around .28 seconds for each loop. Loop 7578

takes particularly long to simulate (2.73 seconds) and presents an interesting case
as it is also the loop for which simulating cycles is the fastest (with 416k cycles per
second). The long duration is due to the loop containing 1337 instructions (includ-
ing divisions), making each of the 1000 iterations require many simulated cycles to
complete. The divisions are also what causes the high simulated cycles per second
ratio: they slow down the flow of uops in the pipeline (causing stalls), and as a result
the average number of changes to the pipeline’s state between cycles is quite low.

The average simulation time would be .19 second without this outlier.

7.5.4.4 AVBP

Figure 7.12 shows simulation speeds for the AVBP loops we studied. As with
YALES2 loops, the simulation time for a 1000 iteration is highly variable, going
from as low as .02 for loop 3685 to as high as 2.73 seconds for loop 7578.

However, simulations take .28 seconds on average, which is longer than for
YALES2 (.13 seconds). The difference is due to AVBP loops being more com-
plex and consisting of 200 assembly statements on average, while this metric was at
an already high value of 110 for YALES2.

We can hence sequentially simulate ∼ 3.57 AVBP loops per second.

7.5.4.5 Comparison with CQA

We will quickly assess CQA’s speed to give an idea of how UFS compares to it.
As CQA can process hundreds of loops per second, measuring individual loops’
processing time would prove tricky. Instead, we chose to run CQA on the YALES2
(3D cylinder) binary for:

1. All loops (including many that are never actually called at runtime).

2. The 26 loops studied earlier (in a single run).
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When removing the overhead due to the MAQAO framework (mostly consisting
in disassembling the binary) to make comparisons with UFS fair, we found that
CQA could process a) 303.78 loops per second in the first case and b) 42.85 in the
second.

If we assume the average complexity for all the loops present in the YALES2 bi-
nary to be equal to the average complexity of the studied NR and Maleki codelets, we
can roughly estimate UFS to be 303/21 ' 15x slower than CQA for low-complexity
cases, and 43/8 ' 5x for more complex loops.

Applied to AVBP, the same methodology shows that CQA can process 260.25

loops per second when handling all the loops in the binary, and 30.98 when tar-
geting the hot loops we studied earlier. This brings the overhead for using UFS to
260.25/21 ' 12.39 for simple cases (using the same assumption of average simplicity
as above), and to 30.98/3.57 ' 8.68 for complex cases.

7.6 Related Work

Code Quality Analyzer (CQA) [21], to which we compared UFS throughout this
chapter, is the tool the closest to UFS that we know of: both analyze loops at a
binary / assembly level, rely on purely static inputs and have a special emphasis on
L1 performance. They actually both use the MAQAO framework to generate their
inputs. CQA works in terms of bandwidth, which it assumes to be unimpeded by
execution hazards. As its name suggests, it assesses the quality of targeted loops,
for which it provides a detailed bottleneck decomposition as well as optimization
suggestions and projections. UFS differs by focusing solely on time estimations, ac-
counting for dispatch inefficiencies and limited buffer sizes. It does so by simulating
the pipeline’s behavior on a cycle-accurate basis, adding precision at the cost of
speed. Finally, CQA supports more microarchitectures than UFS.

IACA [146] works similarly to CQA, and estimates the throughput of a target
code based on uop port binding and latency in ideal conditions. It can target
arbitrary code sections using delimiting markers, while both CQA and UFS only
operate at the loop level. It does not account for the hazards UFS was tailored to
detect, and we consequently expect it to be faster but less accurate. Like CQA,
IACA also supports more microarchitectures than UFS.

Zesto [46, 147] is an x86 cycle-accurate simulator built on top of Sim-
pleScalar [148] and implements a very detailed simulation of the out-of-order engine
similar to that of UFS. However, as with other detailed simulators like [149], the
approaches are very different: it works as a regular CPU simulator and handles the
semantics of the simulated program. Its simulation scope is also much wider, with
a detailed simulation of branch prediction, caches and RAM. UFS focuses solely on
the execution pipeline, and particularly the out-of-order engine. It disregards the
semantics, and targets loops directly with no need for contextual information (such
as register values, memory state, etc.), making it considerably faster due to both
not having to simulate regions of little interest and simulating significantly fewer
things. Furthermore, UFS targets SNB, IVB and HSW, while to the best of our
knowledge Zesto only supports older microarchitectures.

Very fast simulators exist, but typically focus on different problematics. For
instance, Sniper [150, 151] uses both interval simulation (an approach focusing on
miss events) and parallelism to simulate multicore CPUs efficiently. As said events
(cache misses and branch mispredictions) are irrelevant in the cases targeted by
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UFS (memory accesses always hit L1, loops have no if statements and have large
numbers of iterations), the use cases are completely disjoint.

UFS is to our knowledge the only model targeting binary / assembly loops that
both disregards the execution context and accounts for dispatch hazards and limited
out-of-order resources.

7.7 Future Work

Evaluating the impact of unmodeled hardware constraints would be interesting to
determine whether or not implementing them in UFS could be profitable. Such
constraints include writeback bus conflicts and partial register stalls.

The impact of simulating fewer loop iterations should also be studied, as our
current default value of 1000 may be unnecessarily high and time consuming.

As our base UFS model is aimed at Sandy Bridge, we could easily construct
models for incremental improvements such as Ivy Bridge and Haswell on top of it.
However, a validation work is necessary to evaluate their respective fidelities, and
see if more microarchitecture-specific rules have to be implemented. Expanding the
model to support further “Big Core” microarchitectures (e.g. Broadwell, Skylake...)
would also be of interest.

The idea of Uop Flow Simulation can be applied to vastly different microarchi-
tectures (such as the one used in Silvermont cores, or even ARM CPUs), and could
have interesting applications beyond performance evaluation tools. For instance, its
working out of context means it could easily be used by compilers to better evaluate
and improve a generated code’s quality.

In terms of codesign, UFS models could be used to quickly estimate the impact
of a microarchitectural change on thousands of loops in a few minutes. Coupling
this modeling technique with a bandwidth-centric fast-simulation model such as
Cape [70] would allow for non-L1 cases to be handled efficiently as well.
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7.9 Conclusion

We demonstrated UFS, a cycle-accurate loop performance model allowing for the
static, out-of-context analysis of assembly loops. It takes into account many of the
low-level details used by tools like CQA or IACA, and goes further by estimating
the impact of out-of-order resource sizes and various pipeline hazards.

Our UFS prototype shows that UFS is very accurate, and exposes formerly
unexplained performance drops in loops from industrial applications and in vitro
codelets alike. Furthermore, it offers very high simulation speeds and can serially
process dozens of loops per second, making it very cost effective.
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Conclusion

This chapter will summarize the contributions of this thesis and present leads for
future work.

8.1 Contributions

This thesis has explored the identification, quantification and modeling of HPC
loops’ bottlenecks, and provided the following major contributions:

1. PAMDA (in Chapter 4), a performance assessment methodology that combines
static and dynamic analysis tools to help software developers find performance
bottlenecks, quantify them and expose optimization opportunities.

2. An extension of the Cape linear model to Sandy Bridge (in Chapter 5), and
an application thereof with VP3 (in Chapter 6) a tool evaluating potential
vectorization gains for scalar loops.

3. UFS (in Chapter 7), an approach combining static analysis and cycle-accurate
simulation to predict loop execution times a) with realistic out-of-order en-
gine constraints and b) at a very fast speed. UFS identifies and quantifies
performance problems not well captured by PAMDA or/and Cape modeling.

More minor contributions include:

1. A framework and methodology to study single-loop codelets from different
angles, using static and dynamic tools and different execution parameters (in
Chapter 3).

2. An experimental approach to quantify out-of-order buffers (in Appendix A).

8.2 Publications

Some of the work performed for this thesis was also presented in the following
publications:

1. Simsys: A Performance Simulation Framework [70].

2. PAMDA: Performance Assessment Using MAQAO Toolset and Differential
Analysis [85].

3. VP3: A Vectorization Potential Performance Prototype [121].

8.3 Future Work

We will present the main research leads and challenges related to our work here.
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8.3.1 Differential Analysis

Differential analysis is the main objective of the DECAN tool, which is used as a
component of most the tools and methodologies presented in this thesis.

The buffer-related interactions between the FP and LS instruction streams in
the out-of-order engine represent a challenge to the differential analysis approach.
Indeed, we could not find loop transformation rules that would directly isolate the
performance impact of limited buffer sizes, so we can only estimate them by assuming
leftovers not explained by other transformations.

Studying how safe this assumption is using detailed cycle-accurate simulators
would be interesting, as well as actually trying to find an acceptable way to directly
measure the impact of buffer sizes. A possible lead is to use dependency-breaking
instructions (such as zero-idiom XORPS ) to reset dependencies after each load and
before each store. However, this potential transformation would have an impact on
the Front-End which should be accounted for.

8.3.2 Cape Modeling

While the Cape bandwidth-centric modeling is very fast, flexible and usable for
various purposes, it is currently being negatively affected by latency and buffer-size
related phenomena. This needs to be addressed to improve the model’s precision, es-
pecially when explored potential designs get too distant from the original machine’s
characteristics.

This could be done by involving simulator tools to handle part of the projection
work (and e.g. refine final designs). While this would come at a cost in terms of
projection speed, it would fit Cape’s objective of exploring designs at a low cost
while leaving the implementation details to more specialized tools.

Another possibility is to explicitly model latency and buffer widths within Cape.
It may be possible to use specialized pseudo-nodes to adjust bandwidth-centric
projections, but would require a more extensive knowledge of all the key queues
and latencies within the modeled system.

8.3.3 Uop Flow Simulation

Testing and validating UFS on Ivy Bridge, Haswell and Broadwell would be a worth-
while endeavor, especially as Core CPUs evolve at Intel’s fast-paced cycles of ticks
and tocks [17]. However, the interest could be even greater on microarchitectures
that are different altogether, such as Intel Silvermont, AMD’s Bulldozer and Zen,
ARM’s ARMv8 and IBM’s POWER8.

UFS could also be used to perform sensitivity analyses on loops regarding out-
of-order buffers or access latencies, and evaluate their behavior beyond just L1.

Finally, as UFS is very fast and works completely out-of-context, it could rea-
sonably be used by compilers instead of less detailed heuristics to better evaluate
the quality of generated assembly codes.



Appendix A

Quantifying Effective
Out-of-Order Resource Sizes

We can quantify them experimentally by crafting loops purposefully straining them,
using the out-of-order weaknesses presented in Section 7.2. [61] achieved this for the
ROB and the PRF using linked lists with poor spatial locality, also finding that FP
and Integer registers are not entirely independent.

We extend on this work by:

1. Using square root operations instead of linked lists to generate stable high
latencies, and to get constant execution times for as long as the number of
targeted resources is not exceeded.

2. Measuring more resources (Branch, Load and Store buffers), as well as the
Reservation Station (for which a slightly different technique has to be used).

3. Doing the measurements on HSW further to SNB and IVB.

A.1 Basic Experimental Blocks

We use different techniques to handle the two resource deallocation schemes existing
in the target systems:

1. The “allocated at issue, released at retirement” scheme used for the BB, LB,
PRFs, ROB and SB. Here, we use blocks of slow FP square roots to jam uop
retirements, and independent instructions targeting different resources. This
setup is described in Table A.1.

The dispatcher is able to keep the divider unit permanently busy for as long
as the next iteration’s jam’s first uop is issued before the current iteration’s
jam’s last uop is fully executed. This is not the case anymore when the number
of resources required by payload uops (and the control instructions) exceeds
those available and causes issue stalls.

2. The “allocated at issue, released at dispatch” scheme, only used for the RS.
The same idea is applied, but this time the jam prevents payload uops from
getting dispatched. The latter are made to depend on the last square root
operation for this purpose, making sure they stay in the RS until the last
jam’s uop is executed.

We can then try to determine the size of a given resource by varying the number
of resources needed in the payload, and looking for the performance break point.
We will refer to the number of instructions in the payload as being the Payload Size,
or P.
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The amount of square root instructions in the jam may have to be tweaked
depending on the expected size of the target buffer. As square root operations
being slow allows us to stack more uops behind them without their becoming a
bottleneck, we use an approximation of Pi to increase their effective latency1.

As a side note, we use the AVX instruction set to be able to use the 3-operand
form, and be able to use input operands non-destructively. We do however only use
128-bit vectors to simplify uop counting and dispatching. For instance, V SQRTPD
would need 3 uops in its 256-bit version in SNB.

Table A.1: Resource Quantifying Experiment Example

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming
2 VSQRTPD %xmm0, %xmm1 Jamming
3 [instruction needing targeted resource] Payload
4 SUB $1, %rdi Loop Control
5 JG .LOOP Loop Control

The jam consists of slow FP square root operations, leaving plenty of time for
the payload instructions to be issued and executed out-of-order.

Retirement being done in-order prevents the payload’s resources from being re-
leased until the jam itself is retired.

We can adjust the number of required resources by modifying the number of
instructions in the payload.

A.2 Quantifying Branch Buffer Entries

The Branch Buffer keeps track of all branch uops, allowing the out-of-order engine
to restore the Instruction Pointer to the correct address when the branch predictor
is wrong.

We use JE 0 branch instructions to fill up the branch buffer, ensuring they are
never taken by setting the test flag with a always-false CMP $-1, %rdi comparison.
The throughput for conditional branch instructions is 1 uop per cycle on SNB and
IVB, and 2 on HSW. Furthermore, we used 5 VSQRTPD instructions to create a
5 ∗ 21 = 105-cycle jam on SNB (5 ∗ 14 = 70 for IVB/HSW), leaving enough time for
around 105 ∗ 1 = 105 branch uops to be dispatched in parallel (resp. 70 ∗ 1 = 70 for
IVB, and 70 ∗ 2 = 140 for HSW).

An example assembly code for P = 2 is presented in Table A.2. As a side note,
the target loops containing extra branches made it impossible to process them with
the usual framework from Chapter 3, so measurements were made using source-level
RDTSC probes instead.

Results for varying payload sizes are shown in Figure A.1. A performance degra-
dation appears for point 48 in SNB, IVB and HSW: when taking into account the
regular loop branch, it shows only 48 branches can be in-flight at the same time.
This matches official figures perfectly (see Table A.3).

1The effective complexity of FP Square Root or Division operations depends on the complexity
of the input numbers. Dividing by 1 can consequently be done faster than by 1.123.
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Table A.2: Resource Quantifying Experiment Example for the BB (P = 2)

#Line Instruction Purpose
1 CMP $-1, %rdi Changing test flag
2 VSQRTPD %xmm0, %xmm1 Jamming retirement
3 VSQRTPD %xmm0, %xmm1 Jamming retirement
4 VSQRTPD %xmm0, %xmm1 Jamming retirement
5 VSQRTPD %xmm0, %xmm1 Jamming retirement
6 VSQRTPD %xmm0, %xmm1 Jamming retirement
7 JE 0 Payload
8 JE 0 Payload
9 SUB $1, %rdi Loop Control
10 JG .LOOP Loop Control

This is the BB Quantifying Experience’s assembly code for 2 payload instruc-
tions. Retirement is jammed with VSQRTPD instructions, and a constant test flag
is prepared so that payload branches are never taken.

Figure A.1: Quantifying Branch Buffer Entries
The performance drops on point 48 for all studied architectures. When account-

ing for the experimental loop’s base branch, it shows SNB, IVB and HSW all have
48 entries in their Branch Buffer.

Table A.3: BB Size: Measured vs. Official

Uarch Measured Official Difference
SNB [47-48] 48 0
IVB 48 48 0
HSW 48 48 0

Measurements match official numbers perfectly for the Branch Buffer.
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A.3 Quantifying Load Buffer Entries

The LB keeps track of all load uops from the time they were issued until they are
retired. It allows the out-of-order engine to prevent potential read-write conflicts
between load and store uops.

The experiment used to quantify LB entries is a simple variation of the generic
one presented in Table A.1, in which the payload is made of varying numbers of
load instructions.

Instruction “VMOVUPS mem, xmm” was chosen due to having a high reciprocal
throughput of 2 on all target microarchitectures (provided the memory location they
target is properly aligned on a 16B boundary, as is the case here). Furthermore, we
used 5 VSQRTPD instructions to create a 5∗21 = 105-cycle jam on SNB (5∗14 = 70

for IVB/HSW), leaving enough time for around 105 ∗ 2 = 210 (resp. 70 ∗ 2 = 140)
loads to be executed in parallel.

An example assembly code for P = 2 is presented in Table A.4.
Results for varying payload sizes are shown in Figure A.2. A performance degra-

dation appears for point 65 in SNB and IVB, showing that the 65th instruction
needing an LB entry was the one too many for these microarchitectures. This is
strong evidence that both SNB and IVB have 64 LB entries. Haswell’s performance
break point occurs on point 73, suggesting it has 72 entries. These numbers match
official figures perfectly (see Table A.5).

Table A.4: Resource Quantifying Experiment Example for the LB (P = 2)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
2 VSQRTPD %xmm0, %xmm1 Jamming retirement
3 VSQRTPD %xmm0, %xmm1 Jamming retirement
4 VSQRTPD %xmm0, %xmm1 Jamming retirement
5 VSQRTPD %xmm0, %xmm1 Jamming retirement
6 VMOVUPS 0(%rsi), %xmm1 Payload
7 VMOVUPS 0(%rsi), %xmm1 Payload
8 SUB $1, %rdi Loop Control
9 JG .LOOP Loop Control

This is the LB Quantifying Experience’s assembly code for 2 payload instruc-
tions. In this case, the payload consists of register loads, each of which needing 1
LB entry to be issued. Its result can be seen in Figure A.2 on coordinate X = 2.

Table A.5: LB Size: Measured vs. Official

Uarch Measured Official Difference
SNB 64 64 0
IVB 64 64 0
HSW 72 72 0

Measurements match official numbers perfectly for the LB.
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Figure A.2: Quantifying Load Buffer Entries
The performance drops significantly on point 65 for SNB and IVB, and 73 for

HSW. This suggests SNB and IVB have 64 LB entries, and HSW 72.
We can also notice SNB experiences performance degradation spikes. This seems

to be fixed in IVB and HSW.

A.4 Quantifying PRF Entries

The PRF keeps track of the register values attributed by each uop. It allows registers
to hold speculative values while also keeping the architectural state, making sure
there is always a legal state to get back to in case of e.g. branch misprediction.

A.4.1 Quantifying FP PRF Entries

The FP PRF keeps track of vector register values.

Table A.6: Resource Quantifying Experiment Example for the FP PRF (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
... VSQRTPD %xmm0, %xmm1 Jamming retirement
15 VSQRTPD %xmm0, %xmm1 Jamming retirement
16 VXORPD %xmm3, %xmm5, %xmm4 Payload
17 VADDPD %xmm3, %xmm3, %xmm4 Payload
18 VXORPD %xmm3, %xmm5, %xmm4 Payload
19 VADDPD %xmm3, %xmm3, %xmm4 Payload
20 SUB $1, %rdi Loop Control
21 JG .LOOP Loop Control

The jam comprises 15 VSQRTPD instructions. The payload consists of inter-
twined xors and additions, each needing an FP PRF entry to be issued.

As with the LB, the experiment used to quantify FP PRF entries is a variation
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of the one presented in Table A.1. The payload comprises different instructions to
increase the uop throughput per cycle:

1. “VXORPD %xmm3, %xmm5, %xmm4 ” only has a throughput of 1, but gets
dispatched on a different port from VSQRTPD, avoiding potential dispatch
conflicts.

2. “VADDPD %xmm3, %xmm3, %xmm4 ” also has a throughput of 1, but gets
dispatched on ports different from either VSQRTPD or VXORPD.

Hence, alternating between VXORPD and VADDPD allows us to solicit different
execution ports, and increase the payload’s potential throughput to 2 uops per cycle.

We used 15 VSQRTPD instructions to create a 15 ∗ 21 = 315-cycle jam on SNB
(15 ∗ 14 = 210 for IVB/HSW), leaving enough time for around 315 ∗ 2 = 360 (resp.
210 ∗ 2 = 420) payload uops to be executed in parallel.

An example assembly code for P = 4 is presented in Table A.6.

Figure A.3: Quantifying FP PRF Entries
The performance breaking points for IVB and HSW are respectively around [108-

112] and [131-137]. The SNB curve is considerably less clear, but there is a clear
trend upwards starting from point 80.

Results for varying payload sizes are shown in Figure A.3. Unfortunately, results
are not as clear cut as for the LB, and require more interpretation:

1. The experiments actually count registers available for the speculative state,
rather than all those in the FP PRF.

2. The jam’s uops also require vector registers to be issued: this creates an offset
of 1 between the size of the payload and the tested number of FP PRF entries.
For instance, for P = X, X +1 entries are needed to get visibility on the next
iteration’s jam.

SNB exhibits strange performance bumps while decidedly still within the FP PRF’s
size. It is also harder to pinpoint a particular break point for SNB than for IVB or
HSW.
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Table A.7: FP PRF Size: Measured vs. Official

Uarch Measured Official Difference
SNB [80-112] 144 32
IVB [109-113] 144 31
HSW [132-138] 168 30

A 16-register difference is expected, as there are 16 named vector registers, and
as many physical registers have to be used to maintain their latest known-to-be-
valid values (i.e. affected by already-retired uops). We do not know why 16 others
apparently cannot be used for speculative states.

Table A.7 shows the measured sizes vs. the official ones. A constant difference
of 32 registers seems to appear. While 16 can easily be explained due to having to
maintain the architectural state for the 16 named vector registers (XMM[0-15]), it
is not clear why twice this number is apparently unusable for speculative states.

A.4.2 Quantifying Integer PRF Entries

The Integer PRF is the equivalent of the FP PRF for general purpose registers.

Table A.8: Resource Quantifying Experiment Example for the Integer PRF (P =
4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
... VSQRTPD %xmm0, %xmm1 Jamming retirement
15 VSQRTPD %xmm0, %xmm1 Jamming retirement
16 ADD $0, %r11 Payload
17 ADD $0, %r12 Payload
18 ADD $0, %r13 Payload
19 ADD $0, %r10 Payload
20 SUB $1, %rdi Loop Control
21 JG .LOOP Loop Control

The jam comprises 15 VSQRTPD instructions. The payload consists of “add
%0, %reg” instructions, which have a throughput of 3 per cycle.

The experiment used to quantify Int PRF entries is very similar to the one
used for the FP PRF. The payload only uses ADD instructions, but they can be
dispatched on three different ports, allowing for a throughput of 3 uops per cycle on
SNB/IVB, and of 4 on HSW. However, unlike previously, we cannot ascertain there
will be no dispatch conflict between uops from the jam and those from the payload.

We used 15 VSQRTPD instructions to create a 15 ∗ 21 = 315-cycle jam on SNB
(15 ∗ 14 = 210 for IVB/HSW), leaving enough time for around 315 ∗ 3 = 945 (resp.
210 ∗ 3 = 630) payload uops to be executed in parallel.

An example assembly code for P = 4 is presented in Table A.8.
Table A.9 shows the measured sizes vs. the official ones. The difference between

them seems to improve with Haswell, but does not quite reach the ideal limit of 16.
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Figure A.4: Quantifying Integer PRF Entries

Table A.9: Integer PRF Size: Measured vs. Official

Uarch Measured Official Difference
SNB [114-128] 160 32
IVB [126-130] 160 30
HSW [136-144] 168 24

The gap between the official and the effective sizes of the Int PRF is roughly the
same as the one for the FP PRF in both SNB and HSW. It makes sense, as there are
as many named GP registers as vector ones in the studied modes. However, some
progress is apparent in HSW.

A.4.3 Quantifying Overall PRF Entries

[61] shows something seems to limit the overall number of registers allocated at a
given point. We hypothesize this limit as resulting from the existence of a resource
shared by the Integer and the FP PRFs, and call it Overall PRF.

The experiment used to quantify Overall PRF entries is mixing the payloads
used for the Int and the FP PRFs. It results in a payload with a throughput of 2
uops per cycle, and roughly allocating as many registers from both PRFs.

Table A.11 shows the measured sizes vs. the one we would expect. Here, consid-
ering we could find no official description of a limit on overall register allocations,
we used the size of the ROB as the “official” limit. While IVB seems little affected
by this problem, both SNB and HSW are shown to suffer from it. This confirms the
observation made in [61].

A.5 Quantifying ROB Entries

The ReOrder Buffer keeps track of uops from the moment they are issued and until
they are retired. It is the biggest out-of-order buffer as all Back-End uops need to
be held in it during their life-time, including those that do not need to be dispatched
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Table A.10: RQ Experiment Example for the Overall PRF (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
... VSQRTPD %xmm0, %xmm1 Jamming retirement
15 VSQRTPD %xmm0, %xmm1 Jamming retirement
16 ADD $0, %r10 Payload
17 VADDPD %xmm3, %xmm3, %xmm4 Payload
18 ADD $0, %r10 Payload
19 VADDPD %xmm3, %xmm3, %xmm4 Payload
20 SUB $1, %rdi Loop Control
21 JG .LOOP Loop Control

The jam comprises 15 VSQRTPD instructions. The payload consists of inter-
twined GP and vector additions, for a cumulated throughput of 2 uops per cycle.

Figure A.5: Quantifying Overall PRF Entries

Table A.11: Overall PRF Size: Measured vs. Official

Uarch Measured Official Difference
SNB [115-141] 168? 27?
IVB [152-165] 168? 3?
HSW [164-177] 192? 15?

The number of entries attributed to the “Overall PRF” is increased in IVB, but
did not follow the same progression as the FP and Int PRFs in HSW: more registers
can be allocated simultaneously (177 vs. 165), but the gap increases (15 vs. 3).

(e.g. NOPs). The Instruction Window represents all the uops in the ROB, from
which the out-of-order engine can try to extract instruction-level parallelism.

The experiment used to quantify ROB entries uses the same light jam as for
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Table A.12: RQ Experiment Example for the ROB (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
... VSQRTPD %xmm0, %xmm1 Jamming retirement
5 VSQRTPD %xmm0, %xmm1 Jamming retirement
6 NOP Payload
7 NOP Payload
8 NOP Payload
9 NOP Payload
10 SUB $1, %rdi Loop Control
11 JG .LOOP Loop Control

The jam comprises 5 VSQRTPD instructions. The payload consists of NOP
instructions, which do not need to get dispatched, and have a throughput of 4 per
cycle.

LB entries: even though it is considerably bigger, the need to jam the execution is
lessened by our use of NOP instructions in the payload and their high throughput
of 4 uops per cycle. Indeed, NOP (“No Operation”) does nothing more than change
the Instruction Pointer, and is “executed” at the same time as it is issued. However,
it does need to be retired in-order.

Our use of 5 VSQRTPD instructions create a 5 ∗ 21 = 105-cycle jam on SNB
(5 ∗ 14 = 70 for IVB/HSW), meaning as many as 105 ∗ 4 = 420 (resp. 70 ∗ 4 = 280)
NOPs could be issued in parallel.

An example assembly code for P = 4 is presented in Table A.12.

Figure A.6: Quantifying ROB Entries

Figure A.6 shows experimental results for the ROB measurement experiments.
To interpret this figure, one needs to keep in mind instructions from the loop control
and the jam also use up ROB slots, causing a slight shift between the size of the
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payload size and the number of entries actually reserved.

Table A.13: ROB Size: Measured vs. Official

Uarch Measured Official Difference
SNB [159-165] 168 3
IVB [155-168] 168 0
HSW [185-192] 192 0

The difference between the effective (measured) and the expected (official) ROB
sizes is very small. However, the measured degradation window for Ivy Bridge is not
negligible, with a span of over 13 entries.

Table A.13 shows the measured sizes vs. the one we would expect. The difference
is very small, through performance degradations occur when nearing the total size.
Haswell improves on this behavior without completely fixing it.

A.6 Quantifying RS Entries

The Reservation Station holds all uops that need to be dispatched from the moment
they are issued until they are dispatched. It keeps track of the dependencies between
them, and dispatches uops once their operands are ready. This latter characteristic
makes it unique among out-of-order resources, as its resources are released before
retirement.

Table A.14: RQ Experiment Example for the RS (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming dispatch
... VSQRTPD %xmm0, %xmm1 Jamming dispatch
5 VSQRTPD %xmm0, %xmm1 Jamming dispatch
6 VADDPS %xmm1, %xmm1, %xmm2 Payload
7 VADDPS %xmm1, %xmm1, %xmm2 Payload
8 VADDPS %xmm1, %xmm1, %xmm2 Payload
9 VADDPS %xmm1, %xmm1, %xmm2 Payload
10 SUB $1, %rdi Loop Control
11 JG .LOOP Loop Control

The jam comprises 5 VSQRTPD instructions. The payload consists of VADDPS
instructions with a dependency on a register produced by the jam, forcing them to
stay in the RS until XMM1 is ready. They have a throughput of 1 uop per cycle.

The experiments to quantify the number of RS entries have to take this into
account, as this RS slots getting freed out-of-order makes our classical set-up inade-
quate. We will hence adjust the payload to actually depend on the jam, preventing
their getting untimely dispatched and ensuring they stay in the RS for as long as
the jam is still being executed. Table A.14 represents an instance of our RS size
experiment for P = 4.

The jams will interestingly only execute in-order (despite their uops never de-
pending on one another) due to the RS always selecting the oldest uop for which
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input operands are ready for each port: as VSQRTPD uops can only get dispatched
on P0 and have the same unmodified input register, they will necessarily execute
in-order. This makes it impossible for the last uop from a particular jam to be dis-
patched before its predecessors (preventing payload uops to get dispatched before
all previous jam uops are completely executed), and also prevents jams from later
iterations to interfere with the current one. The question is then: how many uops
can fit in the RS before preventing the visibility of the next iteration’s jam?

As before, we use 5 VSQRTPD instructions to create a 5 ∗ 21 = 105-cycle jam
on SNB (5 ∗ 14 = 70 for IVB/HSW). We use VADDPS instructions in the payload,
which have a throughput of 1 per cycle, meaning we can dispatch 105 ∗ 1 = 105

(resp. 70 ∗ 1 = 70) payload instructions in parallel with the the next jam without
impacting performance (provided the RS is large enough).

Figure A.7: Quantifying RS Entries
The transition from enough to not enough RS entries is interestingly much

smoother for SNB than for IVB and HSW.

Figure A.7 shows results for our measurement experiments on the RS. Here,
control instructions are not a problem as they do not depend on the jam and can
thus be executed out-of-order. The number of entries occupying the RS between
two jams is then exactly the number of instructions in the payload.

Table A.15: RS Size: Measured vs. Official

Uarch Measured Official Difference
SNB 48 54 6
IVB [49-51] 54 3
HSW 51 60 9

The mismatch is more important on SNB than on IVB, with a drop of 11% vs.
6%. It increases back on HSW with 15%.

The origin of these gaps is unknown.

Table A.15 shows the measured sizes vs. the one we would expect. The difference
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is small on SNB and IVB (respectively 6 and 3), but it gets annoyingly high with
HSW (9) as the RS is of limited size in the first place.

A.7 Quantifying Store Buffer Entries

The SB keeps track of all store uops from the time they were issued until they are
retired. It is complementary to the LB in terms of preventing illegal access orders,
but also holds the stored values as they are only committed to memory at retirement.

Table A.16: RQ Experiment Example for the SB (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
... VSQRTPD %xmm0, %xmm1 Jamming retirement
5 VSQRTPD %xmm0, %xmm1 Jamming retirement
6 VMOVUPS %xmm3, 64(%rsi) Payload
7 VMOVUPS %xmm3, 64(%rsi) Payload
8 VMOVUPS %xmm3, 64(%rsi) Payload
9 VMOVUPS %xmm3, 64(%rsi) Payload
10 SUB $1, %rdi Loop Control
11 JG .LOOP Loop Control

The jam comprises 5 VSQRTPD instructions. The payload consists of vector
store instructions with a throughput of 1 instruction per cycle.

We use a light jam of 5 VSQRTPD instructions, as the expected SB size is rather
small. The payload comprises VMOVUPS store instructions, with a throughput of
1 store uop per cycle. As with the RS, it means we can dispatch up to 105 store
uops in SNB (70 for IVB and HSW) without stores become lengthier than square
root operations.

Figure A.8 shows our experimental results for the SB size. They are very clear
cut, as were the ones for the LB.

Table A.17: SB Size: Measured vs. Official

Uarch Measured Official Difference
SNB 36 36 0
IVB 36 36 0
HSW 42 42 0

The measured SB sizes match the official ones perfectly.

Table A.17 shows the measured and the expected sizes match perfectly, revealing
that the LB and the SB behave in a similar fashion here too.

A.8 Impact of Microfusion on Resource Consumption

Microfusion is an interesting case of hardware optimization, keeping uops needing to
be dispatched to different functional units as one for a large part of the pipeline. This
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Figure A.8: Quantifying SB Entries
The transition points due to SB entries scarcity is very clear on all 3 studied

microarchitectures: 37 for SNB and IVB, and 43 for HSW.

happens for stores, as well as for instructions having both data load and arithmetic
components, such as MULPD (%rax), %xmm1.

We saw in Chapter 3 that in unlamination cases, the splitting of microfused uops
was done in the uop queue, i.e. before getting in the RAT. Here, we will try to find
out when it is done in other cases, so as to determine how many entries they should
be expected to consume in each out-of-order resource.

A.8.1 ROB Microfusion

We try to single out the resource consumption of microfused uops in terms of ROB
entries by using a special preamble. We use 15 VSQRTPDs for the usual purpose
of jamming retirement, and add 20 vector load [simple address] + vector add in-
structions to put microfused uops in the ROB. The payload consists of a varying
numbers of NOPs, as with the ROB resource-quantifying experiment. Table A.18
represents such an experiment for P = 4.

We can then evaluate whether not-unlaminated microfused uops remain fused in
the ROB by comparing the results from these experiments (in Figure A.9) with those
from the regular ROB experiment. We roughly expect a shift of 20 entries if they
do remain fused, or 40 if they do not. Table A.19 shows that in SNB, microfused
uops seem to consume 2 distinct entries in the ROB, but that they only take 1 in
IVB and HSW. This improvement increases the effective ROB size when microfused
operations are used.

A.8.2 RS Microfusion

We adopt the same strategy for determining the status of microfusion in the RS as
the one used for the ROB. The experiments are based on the ones used for finding
the size of the RS, except that an extra “base load” (consisting of 15 instructions
whose uops are still microfused in the uop queue) is added, and the jam is adjusted
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Table A.18: Microfusion Evaluation Experiment for the ROB (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming retirement
... VSQRTPD %xmm0, %xmm1 Jamming retirement
15 VSQRTPD %xmm0, %xmm1 Jamming retirement
16 VADDPS 64(%r12), %xmm0, %xmm2 Base Load
... VADDPS 64(%r12), %xmm0, %xmm2 Base Load
35 VADDPS 64(%r12), %xmm0, %xmm2 Base Load
36 NOP Payload
37 NOP Payload
38 NOP Payload
39 NOP Payload
40 SUB $1, %rdi Loop Control
41 JG .LOOP Loop Control

The jam comprises 15 VSQRTPD instructions. The base experiment consists
consists of (vector load + addition) instructions with a throughput of 1 instruction
per cycle. The payload then adjusts the ROB stress with simple NOPs.

Figure A.9: ROB Microfusion Evaluation
The performance drop is shifted on the left (compared to Figure A.6) as expected,

due to the extra instructions in the preamble.

so that load operations indirectly depend on it. An example for P = 4 is provided
in Table A.20.

Figure A.10 shows the results of these adjusted experiments, with performance
breakpoints occurring noticeably earlier than in the original curves (from Fig-
ure A.7). The following elements should be considered when evaluating this shift:

1. There are 2 extra entries taken in the RS due to the extra instructions in the
jam.
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Table A.19: ROB Microfusion Evaluation

Uarch New Bump Original Bump Difference Fusion
SNB 119 [158-164] {39, 45} No
IVB [133-145] [154-167] {21, 22} Yes
HSW [161-169] [184-191] {23, 22} Yes

The New Bump column indicates the position of the performance break point in
the ROB Microfusion experiments in terms of P . Original Bump does the same for
the ROB Size experiments. The Difference is the subtraction of New Bump from
Original Bump (or of the matching mins and maxes when relevant).

The expected difference in case microfused operations takes 2 slots in the ROB
is 40, and 20 if they only take 1. Here, it is clear SNB is in former case, and IVB
and HSW in the latter.

Table A.20: Microfusion Evaluation Experiment for the RS (P = 4)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming dispatch
... VSQRTPD %xmm0, %xmm1 Jamming dispatch
5 VSQRTPD %xmm0, %xmm1 Jamming dispatch
6 VMOVMSKPD %xmm1, %r13 Jamming dispatch
7 ADD %r13, %r12 Jamming dispatch
8 VADDPS 64(%r12), %xmm1, %xmm2 Base Load
... VADDPS 64(%r12), %xmm1, %xmm2 Base Load
23 VADDPS 64(%r12), %xmm1, %xmm2 Base Load
24 VADDPS %xmm1, %xmm1, %xmm2 Payload
25 VADDPS %xmm1, %xmm1, %xmm2 Payload
29 VADDPS %xmm1, %xmm1, %xmm2 Payload
27 VADDPS %xmm1, %xmm1, %xmm2 Payload
28 SUB $1, %rdi Loop Control
29 JG .LOOP Loop Control

The jam comprises 5 VSQRTPD instructions, as well as a VMOVMSKPD
and an integer ADD. The base experiment consists of (vector load + addition) in-
structions with a throughput of 1 instruction per cycle. The payload instructions
(vector additions) have an overall throughput of 1 per cycle. Each of the uops in
both the base load and the payload depend on the jam: FP additions depend on the
last VSQRTPD, while address calculations depend on the ADD.

Increasing the size of the payload allows us to detect how much the microfused
instructions from the base load really take inside the RS.

2. If microfused uops take a single entry in the RS, then 15 extra other slots
would be used by the new base load.

3. If not, then 30 extra slots will be taken.

Hence, if the shift is of 15 + 2 = 17, then microfused uops take a single slot. If it is
30 + 2 = 32, then microfused uops are split in the RS and need 2 slots.
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Figure A.10: RS Microfusion Evaluation
The performance drops gets shifted on the left compared to the regular RS size

experiments (from Figure A.7) due to a) the extra instructions in the jam and b)
the base load.

Table A.21: RS Microfusion Evaluation

Uarch New Bump Original Bump Difference Fusion
SNB 14 48 {34} No
IVB [16-20] [49-51] {33-31} No
HSW [23-26] 51 {28,25} No

The New Bump column indicates the position of the performance break point
in the RS Microfusion experiments in terms of P . Original Bump does the same
for the RS Size experiments. The Difference is the subtraction of New Bump from
Original Bump (or of the matching mins and maxes when relevant).

In all the cases, the Difference is closer to 32 than it is to 17, indicating uops
are not microfused in the RS in any of the studied microarchitectures. However,
the result for HSW is not as clear cut as for SNB and IVB, which combined to the
important offset in the measured size of the RS vs. the official one (see Table A.15)
suggests the full capacity of the RS might only be achievable when microfused uops
are used.

Table A.21 provides a detailed comparison between the curves, and shows that
microfused uops take 2 entries in the RS on all studied microarchitectures.





Appendix B

Note on the Load Matrix

This section was placed in a separate appendix as unlike Appendix A, its results were
not used throughout the rest of the manuscript. However, they will be very relevant
in future work, especially when trying to use UFS on loops operating beyond L1.

B.1 Load Matrix Presentation

The Load Matrix (LM) keeps track of all load uops from the time they were issued
until they are completed [140]. It is not clear what its role exactly is, but it probably
works hand-in-hand with the LB to prevent read-write conflicts between load and
store uops.

B.2 Quantifying Load Matrix Entries

The experiment used to quantify LM entries is a variation of the one used to quantify
RS entries (in Section A.6), except the payload is made entirely of varying numbers
of load instructions.

Instruction “VMOVSS mem, xmm” was chosen due to having a high reciprocal
throughput of 2 on all target microarchitectures. Furthermore, we used 5 VSQRTPD
instructions to create a 5 ∗ 21 = 105-cycle jam on SNB (5 ∗ 14 = 70 for IVB/HSW),
leaving enough time for around 105 ∗ 4 = 420 (resp. 70 ∗ 4 = 280) uops to be issued
during its execution.

Table B.1: Resource Quantifying Experiment Example for the LM (P = 2)

#Line Instruction Purpose
1 VSQRTPD %xmm0, %xmm1 Jamming dispatch
... VSQRTPD %xmm0, %xmm1 Jamming dispatch
5 VSQRTPD %xmm0, %xmm1 Jamming dispatch
6 VMOVMSKPD %xmm1, %r13 Jamming dispatch
7 ADD %r13, %r12 Jamming dispatch
8 VMOVSS (%r12), %xmm2 Base Load
9 VMOVSS (%r12), %xmm2 Base Load
10 SUB $1, %rdi Loop Control
11 JG .LOOP Loop Control

This is the LM Quantifying Experience’s assembly code for 2 payload instruc-
tions. In this case, the payload consists of register loads, each of which needing 1
LM entry to be issued (and until they are dispatched and completed).

An example assembly code for P = 2 is presented in Table B.1.
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Figure B.1: Quantifying Load Matrix Entries
The performance drops significantly on point 33 for SNB, IVB and HSW. This

suggests they all have 32 LM entries.
We can also observe IVB and HSW’s curves are smoother than SNB’s, suggest-

ing better resource allocation / reclaiming mechanisms were implemented.

Results for varying payload sizes are shown in Figure B.1. The result from the
experiment described in Table B.1 is presented on coordinate X = 2. A performance
degradation appears for point 33 in all microarchitectures, showing that the 33rd
load was the one too many in all cases. This strongly suggests that the LM has 32
entries in SNB, IVB and HSW.

Table B.2: LM Size: Measured vs. Official

Uarch Measured Official
SNB 32 ?
IVB 32 ?
HSW 32 ?

All studied microarchitectures appear to have 32 LM entries. We could not find
official numbers to compare these results with.

We could not find any official figures to compare these numbers with (See Ta-
ble B.2).
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