
User-centred security event visualisation

Christopher Humphries

To cite this version:

Christopher Humphries. User-centred security event visualisation. Cryptography and Security
[cs.CR]. Université Rennes 1, 2015. English. <NNT : 2015REN1S086>. <tel-01242084v2>

HAL Id: tel-01242084

https://hal.inria.fr/tel-01242084v2

Submitted on 25 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/tel-01242084v2

ANNÉE 2015

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse
présentée par

Christopher Humphries
préparée à l’unité de recherche CIDre

Confidentialité, Intégrité, Disponibilité et Répartition

Supélec / INRIA

Visualisation

d’événements de sécurité

centrée autour

de l’utilisateur

User-centred

security event

visualisation

Thèse soutenue à Rennes

le 8 décembre 2015

devant le jury composé de :

Hervé Debar
Télécom SudParis / rapporteur

Jean-Marc Robert
École de Technologie Supérieure / rapporteur

Isabelle Chrisment
Télécom Nancy / examinatrice

Christophe BIDAN
CentraleSupélec / directeur de thèse

Nicolas PRIGENT
CentraleSupélec / co-directeur de thèse

Frédéric Majorczyk
DGA-MI / co-directeur de thèse

I didn’t go to university. Didn’t even finish A-levels. But I have
sympathy for those who did.

— Terry Pratchett

R É S U M É E N F R A N Ç A I S

Alors que les systèmes d’information deviennent de plus en plus
complexes, il n’est plus possible d’en maitriser tous les aspects et
les mécanismes de sécurité traditionnels atteignent leurs limites. Les
systèmes de détection d’intrusion ont été proposés pour faire face
à ce nouveau défi. Ils offrent une approche automatique et rapide
pour détecter et répondre aux intrusions en identifiant des motifs
connus ou des situations qui divergent du comportement normal. Ils
sont excellents pour répéter cette action. Cependant, de tels systèmes
réagissent mal aux événements inconnus, déclenchent beaucoup de
faux positifs et manquent des événements importants. Ainsi, il est
aujourd’hui de plus en plus difficile de gérer les énormes quant-
ités de données produites dans le cadre de la sécurité des systèmes
d’information.

Pour cette raison, les opérateurs humains sont toujours nécessaires
pour donner du sens aux événements de sécurité rapportés. Pour
que leurs interventions soient utiles (en particulier quand la tâche
est d’analyser des alertes), ces opérateurs ont besoin de comprendre
des situations rapidement, d’obtenir facilement une vision globale
et les réponses à des questions, ainsi que de consulter des grandes
quantités de données contextuelles annexes.

La recherche en analyse des évènements de sécurité s’est récem-
ment portée sur la visualisation. La visualisation pour la sécurité
se place entre des solutions manuelles et automatiques, et vise à
combiner le meilleur des deux pour proposer des outils efficaces
en pratiques. En d’autres termes, des représentations visuelles per-
mettent d’améliorer le processus de supervision et de fouille de don-
nées du point de vue de l’opérateur en améliorant la manière dont
les données de sécurité lui sont communiquées.

La conception d’outils de visualisation dédiés à la sécurité est ren-
due difficile par plusieurs aspects : les formats de données et les
protocoles sont variés, les standards sont nombreux et le matériel et
les logiciels informatiques sont souvent paramétrés de manière très
fine par les administrateurs pour répondre à leurs besoin spécifiques.
Alors que certains domaines peuvent compter sur la nature immu-
able des problèmes ou la disponibilité de temps, les problèmes en
sécurité sont trop souvent nouveaux et exigent en outre une attention
immédiate.

./

v

vi

Le processus de visualisation peut être vu comme une série de
transformations de données. Chaque étape peut être spécifiée en util-
isant une grammaire graphique, ce qui permet de construire une de-
scription concrète pour chaque visualisation.

À son niveau le plus élémentaire, une visualisation est un assemblage
de composants graphiques, chacun ayant des attributs paramétrable.
Ces variables visuelles peuvent être associées aux données pour ob-
tenir une transcription graphique d’un sous-ensemble de ces données.
La perception humaine étant hétérogène et changeante, chaque vari-
able visuelle est plus ou moins adaptée pour transmettre les inform-
ations à l’utilisateur. Chacune d’entre elles doit donc être soigneuse-
ment sélectionnée en fonction des objectifs de la visualisation.

Lorsqu’on prend en considération l’expérience utilisateur, un nou-
veau processus d’interaction homme-machine émerge. Des boucles
dans les étapes permettent des retours des utilisateurs et représen-
tent un processus de fouille adopté pendant l’exploration de don-
nées. Pendant toutes ces interactions, les données graphiques doivent
être retraduites mentalement par l’utilisateur. Pour alléger la charge
cognitive induite, la progression de la fouille doit guider l’utilisateur
et suivre une progression logique narrative proche de sa façon de
penser.

./

Actuellement, la visualisation d’événements de sécurité suit une ap-
proche et des objectifs adoptés par des équipes chargés de la sécurité
réactive des systèmes, et vise au moins un but parmi trois :

monitoring Dans le cadre de la surveillance des systèmes et des
réseaux, les opérateurs utilisent des tableaux de bord de visual-
isations pour s’assurer que les métriques sont dans des plages
optimales, dans le but de garantir la disponibilité des services
et chercher des signes d’attaques connues et de comportements
malveillants.

analyse Lorsque des anomalies ou des intrusions sont signalées par
des systèmes de détection ou des opérateurs avec des outils
de monitoring, des outils d’analyse visuelle sont utilisés pour
mieux comprendre ces anomalies/intrusions. En explorant les
données de sécurité, les analystes cherchent à trouver des explic-
ations pour ces incidents, à recréer les scénarios des attaques et
à caractériser les faux négatifs.

reporting Une fois qu’assez d’informations ont été recueillis, elles
ont souvent besoin d’être transmises au reste de l’équipe ou à
des entités externes. Dans ces cas les rapports ont pour objectif
d’informer des collègues, des cadres ou des externes dans le cas
ou la gestion de la crise auprès des médias par exemple.

vii

Pour accomplir chacun de ces objectifs, les outils vont proposer des
visualisations adaptées. La surveillance favorisera des visualisations
adaptées à la compréhension des données en temps réel et compatible
à les données en évolution, donc plus simples et facile à appréhender.
Puisque l’exploration de données est moins sujet aux contraintes du
temps réel, les visualisation peuvent être plus complexes et configur-
able par l’utilisateur. Les rapports communiquant les résultats des
deux étapes précédentes doivent condenser toutes les informations
pour expliquer la situation ainsi qu’un contexte assez riche pour pal-
ier le manque d’interactivité.

./

La construction des outils de visualisation nécessite les connais-
sances de multiples domaines tels que les statistiques, la concep-
tion d’interfaces et la psychologie. Les experts en sécurité manquent
souvent d’expérience dans ces domaines ce qui rend la fabrication
d’outils ad hoc de visualisation difficile. Ils sont avant tout experts
en sécurité, mais rarement entrainé pour la visualisation. Même si la
visualisation sans entrainement fais parfois preuve d’innovation, elle
peut aussi produire des résultats trompeurs.

Réciproquement, l’utilisation d’outils de visualisation pour la sé-
curité nécessite des connaissances en sécurité, en particulier pour ana-
lyser des formats de log et des configurations systèmes. Pour faire
face à ces situations, les experts en sécurité se fient à leur ressenti
pour comprendre la situation, identifier les problèmes, et trouver des
solutions. Cette familiarisation se développe en instincts et habitudes
qui peuvent finalement devenir de réels protocols.

Dans notre cas, les tâches à accomplir demandent l’exploration de
multiples sources d’information différentes, ce qui implique le choix
d’un outil spécifique à chaque fois qu’une nouvelle source d’information
a besoin d’être explorée.

Compte tenu de ces observations, il semble important de préconiser
que la visualisation pour la sécurité doit permettre aux experts de
se concentrer le plus possible sur leurs objectifs (la sécurité) tout en
les libérant des problèmes en dehors de leur milieu d’expertise (le
design).

C’est dans ce but que nous avons conçu ELVis, un outil de visual-
isation de log pour la sécurité. ELVis permet aux experts en sécurité
d’importer des fichiers de log ayant des formats multiples (par ex-
emple, des fichiers de log apache standard et des fichiers syslog tels
que les fichiers d’authentification) et de les explorer grace à des re-
présentations pertinentes sélectionnées et générées automatiquement
en fonction des données qui ont étés choisies.

Pour offrir ces fonctionnalités, ELVis identifie le format du log, trans-
forme chaque ligne en champs et associe à chacun d’entre eux un type

de données. Ces types permettent d’une part d’enrichir les données
avec des calculs descriptifs et d’autre part d’extrapoler des champs
complémentaires. Ils permettent aussi faire d’associer automatique
des visualisations appropriées aux champs sélectionnés.

./

L’analyse peut être considérée comme un processus de filtrage pro-
gressif que l’analyste adopte pour rechercher d’un élément spécifique
d’information. Cependant, même si la détection de chaque action
malveillante est fondamentale, il est aussi important de comprendre
les relations entre les événements de sécurité pour pouvoir reconstru-
ire le scénario global.

Une fois que l’analyste a trouvé un événement intéressant, il ou
elle doit pouvoir découvrir les éléments connexes, même si ces événe-
ments se trouvent dans des fichiers de log différents, générés par
différentes sources et donc exhibant des formats différents.

Quels sont, par exemple, les relations entre les attaques dans différents
composants du système? Une fois qu’un serveur web est compromis,
est-ce que les attaquants ont ensuite effectué d’autres actions malveil-
lantes dans d’autres endroits du système? Dans ce cas là, quelles sont
les conséquences? En réaction à ceci, nous affirmons que l’investigation
en informatique est un processus itératif qui permet à l’analyste de
facilement pouvoir utiliser les information stockées dans des fichiers
de log, même si ceux-ci ne sont pas explicitement liés a priori.

C’est pour faciliter cette tâche que nous avons conçu CORGI, un outil
web qui aider à explorer plusieurs fichiers log simultanément et qui
permet à l’utilisateur de traverser plusieurs ensembles de données en
suivant des points d’intérêt dans ces données.

Pour faire ceci de manière fiable, le système de typage utilisé pour
associer des visualisations avec des sous-ensembles de données est
étendu avec des types sémantiques qui permettent de découvrir des
champs connexes entre les fichiers log. CORGI réutilise les capacités
de visualisation de ELVis et les étend pour améliorer les possibilités
d’exploration.

Le filtrage réactif des données est implémenté pour toutes les vues,
et ces vues réagissent de façon synchronisée pour tout ensembles
des données suivant l’interaction avec les points d’intérêt stockés.
L’interaction utilisateur est une exploration guidée par des points
d’intérêt et une interface conçue pour les cycles de recherche avec
une approche de filtrages progressifs.

Les points d’intérêt peuvent non-seulement être utilisés pour filtrer
et lier plusieurs logs, ils peuvent aussi donner des perspectives sur la
progression et les résultats d’une analyse, fournissant ainsi l’essentiel
pour partager des sessions et pour automatiquement générer des rap-
ports.

viii

ix

A B S T R A C T

Managing the vast quantities of data generated in the context of in-
formation system security becomes more difficult every day. Visual-
isation tools are a solution to help face this challenge. They represent
large quantities of data in a synthetic and often aesthetic way to help
understand and manipulate them.

In this document, we first present a classification of security visu-
alisation tools according to each of their objectives. These can be one
of three: monitoring (following events in real time to identify attacks
as early as possible), analysis (the exploration and manipulation a
posteriori of a an important quantity of data to discover important
events) or reporting (representation a posteriori of known information
in a clear and synthetic fashion to help communication and transmis-
sion).

We then present ELVis, a tool capable of representing security events
from various sources coherently. ELVis automatically proposes appro-
priate representations in function of the type of information (time, IP
address, port, data volume, etc.). In addition, ELVis can be extended
to accept new sources of data.

Lastly, we present CORGI, an successor to ELVIS which allows the
simultaneous manipulation of multiple sources of data to correlate
them. With the help of CORGI, it is possible to filter security events
from a datasource by multiple criteria, which facilitates following
events on the currently analysed information systems.

A C K N O W L E D G E M E N T S

To Nicolas whose help is too often overlooked. I could not and
would not have arrived this far without yours.

To Frederic for being patient with me beyond boundaries. Sorry
for the angry outbursts.

To Christophe, who plays the bad guy so well we sometimes forget
how much he actually cares.

To Clémence for putting up with me for so long, for helping me to
keep a life and for making me smile through tough times.

To Mom for teaching me about kindness, and to Dad for teaching
me to think about people.

To Thomas for that extra dose of crazy.
To my friends for asking questions and helping me to answer mine.
Thank you all dearly.

Rennes, October 2015 C.

xi

C O N T E N T S

������������ 1

1 ��� ����� �� ������������� 7

1.1 Data Transformation . 7

1.2 Visual Mapping . 9

1.3 Perception . 12

1.4 Design . 16

1.4.1 Guidelines for effective visual representations . 17

1.4.2 Cognitive dimensions of notations 19

1.5 Conclusion . 21

2 ������������� ��� �������� 23

2.1 Visualisation for Monitoring 26

2.1.1 Familiar patterns 26

2.1.2 Situational awareness 33

2.1.3 Responding to scale 36

2.2 Visualisation for Analysis 41

2.2.1 Search processes 41

2.2.2 Scene reconstruction 44

2.3 Visualisation for Reporting 51

2.3.1 Collaboration . 51

2.3.2 Communication 52

2.4 Conclusion . 54

3 ��������� �������� ������������� 55

3.1 Log management . 56

3.1.1 Log file organisation 57

3.1.2 Log file acquisition 59

3.1.3 Log file augmentation 60

3.2 Summary view . 62

3.3 User interactions . 64

3.3.1 Selecting fields of interest 64

3.3.2 Automated selection of representations 64

3.3.3 Brushing and filtering 66

3.4 Implementation . 68

3.5 Experimentation . 68

3.5.1 Exploring logs . 69

3.5.2 Interpretation . 69

3.6 Conclusion . 72

4 ������������� �������� ������������� 73

4.1 Log Files . 74

xiii

xiv ��������

4.1.1 Log File Organisation 74

4.1.2 Operations on a Single Log File 74

4.1.3 Relating Datasets 75

4.1.3.1 Relations Based on Values of Interest . 76

4.1.3.2 Relations Based on Time 76

4.2 Visualisation and User Interaction 77

4.2.1 Overview . 77

4.2.2 Importing Logs 79

4.2.3 Timeview Panel 79

4.2.4 Fields Summary View 80

4.2.5 Full-Sized Charts View 81

4.2.6 Values of Interest Box 83

4.3 Implementation . 83

4.4 Experimentation . 87

4.5 Conclusion . 88

���������� & ������ ���� 91

a ���� 95

�������� 99

������������ 101

I N T R O D U C T I O N

“A common mistake that people make when
trying to design something completely foolproof is
to underestimate the ingenuity of complete fools."

— Douglas Adams

The increasingly ubiquitous nature of computing has been accom-
panied by an ever growing need for better and more reliable security.

Although some security issues can be prevented using security
mechanisms, complete systems knowledge is often beyond the scope
of understanding and grows continuously. To help with unpredicted
issues, additional tools are used to detect anomalous activities and
known attacks. However, these also require configuration, which
again means fully understanding the concerned systems and the vast
amounts of data they produce.

In this section, we discuss the proactive security strategies adopted
to ensure information system security, why reactive security meas-
ures are still required, and what problems these in turn create. We
then introduce visualisation as a solution to some of these problems,
along with the challenges presented by security visualisation.

����������� ������ ��������

Information system security aims to protect information and ser-
vices against external and internal attackers. It consists in insuring
the three following fundamental properties:

• Confidentiality consists in ensuring that only authorised parties
can access data and services.

• Integrity consists in ensuring that only authorised parties can
modify data and services.

• Availability consists in ensuring that data and services are avail-
able to authorised parties when required, even when systems
are under attack.

These properties are applied according to a security policy, a set of
clearly expressed rules which define what is authorised and/or what
is forbidden. Confidentiality, integrity and availability can either be
ensured proactively or reactively.

1

2 ������������

Proactive security

Proactive security consists in enforcing the security policy a priori.
First, secure programming techniques and frameworks allow pro-

grammers to develop operating systems and applications with fewer
implementation errors. Second, configuration hardening consists in tun-
ing the configuration of the various components (OS, applications
and protocols) to make a given setup more robust in a given produc-
tion environment. Third, authentication and access control restrict ac-
cess to the system resources to verified and authorised entities, prefer-
ably by ensuring the least privilege principle. Fourth, communication
security, often relying on cryptography, ensures their confidentiality
and integrity. See [4] for many examples of applications and techno-
logies.

In theory, the tools and procedures used to enforce the security
policy for known data and services are designed to guarantee their
security. However, in practice, policies, procedures, configurations,
tools and protocols can display flaws due in part to incomplete know-
ledge and/or flawed implementations.

Ensuring security fundamentals is very difficult, as is making secur-
ity systems unbreakable. The task of taking all scenarios of use and
possible flaws into account dramatically increases in difficulty and
requirements. The number of users, and their frequency and concur-
rency of use make future proofing systems a now almost impossible
task. This is why, aside from the proactive security solutions that
try to ensure a priori confidentiality, integrity and availability, reactive
security is also used.

Reactive security

Reactive security consists in designing systems to detect, limit and
possibly correct compromises.

Reacting to security issues in systems requires maintaining accur-
ate representations and activity histories for every component which
composes these systems. The most widely used approach for obtain-
ing this information is logging, which requires a new category of
tools capable of distributed collection and analysis of the resulting
datasets. The resulting datasets are rarely small, in part due to the
size of the systems but also because the archived history needs to be
as far reaching in time as possible. Because of these factors, analysis
without the assistance of automatic tools is often unfeasible.

Autonomous measures such as antiviral software and monitoring
software help to detect misuse of services and anomalies in agent
behaviour. Monitoring software helps operators stay in control of
systems by detecting changes in metrics and system health, following
symptoms which can indicate anomalies and attacks.

������������ 3

Intrusion Detection Systems (IDS) are another category of reactive
security tools. They collect information about events on the systems
they monitor and try to detect attacks from this information. When
an attack is detected, an alert is raised.

IDSes can first be classified according to the type of system they
monitor [15]:

• Network Intrusion Detection Systems (NIDS) such as [65] for
instance monitor networks.

• Host Intrusion Detection Systems (HIDS) such as [9] for instance
monitor operating systems or the interactions between the OS
and the applications (often, system calls).

• Application Intrusion Detection Systems (AIDS) such as [64] mon-
itor the internals of applications.

Whatever the source of information they use, IDSes can also be
classified according to the approach they follow to detect attacks.
Two different approaches currently exist: misuse-based detection and
anomaly-based detection.

Misuse-based intrusion detection systems are loaded with patterns
to know what an attack looks like and try to match any event on the
monitored system with the attacks they know. They therefore require
misuse databases that are as complete and up-to-date as possible.
This kind of IDS generally reacts well and reliably to known attacks.
However, it misses unknown attacks (especially zero days1) since, by
definition, these attacks are not in its database, and produces bad res-
ults when signatures are too broad or narrow. Therefore, misuse-based
IDSes potentially suffer from numerous false negatives, i. e. they do
not raise alerts when some attacks occur.

In contrast, anomaly-based intrusion detection systems know how
a network, system or application behaves in normal conditions and
react to unusual behaviours that are considered as attacks. Anomaly-
based IDSes therefore require a training phase to learn what a normal
behaviour looks like. Anomaly-based IDSes handle unknown attacks
better than misuse-based IDSes as long as these attacks exhibit a be-
haviour that is significantly different from the one that is considered
normal. However, the learning phase is often a problem:

• either it provides a very specific description of the normal be-
haviour, in which case some slightly different but normal beha-
viour will trigger an alarm (false positive),

• or the description is very broad and some attacks will go un-
detected by mimicking a normal behaviour (false negative),

1 Zero days are attack methods that are unknown from the community at a given time,
and especially when they are used by attackers for the first time.

4 ������������

• and in both cases, there is no easy way of making sure that the
training data is free of attacks.

In practice, both these approaches are used in varying combina-
tions, but training and/or up-to-date databases are still required and
both generate false negatives and/or false positives. Specifically, se-
curity operators are often overwhelmed by alerts, many of these be-
ing redundant. Research is currently underway on tools which help
correlate and aggregate alerts to make them more manageable [24].
Nevertheless, it is often difficult for operators to decide which ones
are valid. In consequence, extensive human intervention is still re-
quired, which makes fully-automated intrusion detection unfeasible
or at least imperfect in practice.

�������� ������ ���� ���� ��� ����

Automatic security tools used for reactive security such as intru-
sion detection systems aim to offer an automatic and fast approach
to detect intrusions. They are programmed to respond to situations
with known patterns or situations which diverge from normal beha-
viour, and excel at repeating this action. However, such systems do
not react well to unknown events, trigger many false positives and
miss important events. Therefore, human operators are still required
to make sense of reported security events. Unfortunately, for their
interventions to be useful (especially when the task consists in ana-
lysing alerts), they need to quickly understand situations, easily ob-
tain overview and answers to questions, and consult a large context
of data for reference. For them to perform this in a relevant way, it is
necessary to keep a precise record of every event which happened on
the monitored system. This record should be as complete as possible,
and in most cases, confidentiality, integrity and availability should
be insured for them too. This leads to a scalability problem: an ever
growing amount of data needs to be stored, indexed, protected and
processed, at least partially, by people.

Machines often store human readable text logs of their activities
for easier access by operators. These logs tend to be much too large
for human friendly reading though. When these logs are processed
manually, standard UNIX text processing tools are used, such as sed,
grep, and find. While these command-line tools offer a flexible ap-
proach to data mining, using them requires a lot of concentration for
what is often slow manual data mining. Because of the scales of data,
manual data mining is too time and mind-consuming to remain an
option. In fact, even automatic solutions sometimes show signs of
slowness and fail to perform fast enough [18].

In light of the situation, research in security analytics has recently
been increasingly centred around security visualisation. Security visu-

������������ 5

alisation lies between manual and automatic solutions, and aims to
combine the best of both into usable tools. In other words, using
visual representations experts aim to to improve the monitoring and
data mining process for people by helping to better communicate se-
curity data.

��� ���������� ���� �������� �������������

Visualisation has historically been used to represent data so ideas
can be more easily shared or understood. First used in the form of
maps and later with diagrams, the modern science of visualisation
is an expansive field. During the last two centuries many techniques
and designs have been invented to address new problems [72].

This has lead to sophisticated visual representations of data finding
places in day to day life. Charts have become popular, sometimes
even taken for granted and often used to display numbers and trends
in presentations or infographics. Security and visualisation are not
new partners; a modicum of visual representations is now expected
when security is concerned.

Although the problems in security are sometimes similar to those
in other domains (e.g., monitoring information flow), designing visu-
alisation tools for security is made challenging by the disparity of se-
curity issues: data formats and protocols vary, the standards are nu-
merous, hardware and software configurations are often custom [6].
While some domains can rely on the unchanging nature of problems
or the availability of time, security issues are often new and require
immediate attention by nature.

However, as with any tool, good security visualisation tools need
to help experts reduce tedious and repetitive tasks to a minimum,
and let them express their expert knowledge as directly and easily as
possible.

�������������

The published contributions of this thesis are threefold:

In order to better understand the combination of visualisation and
security, the approaches taken by research and available tools
need to be studied. We develop a point of view based on scen-
arios involving personas faced with problems and goals, and
split security visualisation in general between three goals: mon-
itoring, analysis and reporting.

The second contribution, called ELVis [33], is the proof of concept for
a tool which addresses the experience requirements faced by

6 ������������

experts needing to visualise security data. Using an application
design which separates security knowledge from visualisation
knowledge, experts from each party can add their knowledge to
the tool, and security practitioners can explore security inform-
ation without prior training in visualisation.

The third contribution, called CORGI [32], extends these ideas for bet-
ter exploration of security data. By first helping experts to col-
lect points of interest in logs, they can then traverse multiple
sources of data during a single session and also use these points
to share information and build reports.

The next chapters broadly follow the contributions in their chro-
nological order of implementation. The first chapter discusses the
state of visualisation, transformations of data, combinations of visual
variables, the perception of visualisation and the design factors for ef-
fective visualisations. Chapter two discusses the application of visu-
alisation in security, the problems they try to solve and the personas
we can deduce from these problems. We describe how any secur-
ity tool addresses these problems and personas, each to certain de-
grees. Chapter three describes ELVis, the first tool developed during
this thesis, and chapter four is dedicated to CORGI, which builds up-
pon the concepts of ELVis.

1 T H E S TAT E O F
V I S U A L I S AT I O N

Visualisation presents information for people and aims to make
complex data easier to understand and clear enough to help gain
insight.

This chapter offers a decomposition of visualisation into interde-
pendent processes operating at different levels of detail. The next
section discusses the pipelines which process raw data into visual-
isations with intermediate transformation steps. Section1.2 focuses
on the composition of these steps and frameworks for composing
graphical elements. Section1.3 explores the mechanisms in percep-
tion which explain human affinity for visual understanding and why
visualisation works. Section1.4 describes goal oriented design for
visualisation centred around people and their problems and also ap-
proaches for improving visualisation design.

�.� ���� ��������������

Although visualisation has been a long standing tool for commu-
nicating information, adequate domain languages for describing the
design of a visual representation, its components and the process of
visualisation have only been developed in recent decades.

Accurate language is important in this case. Software and visual-
isations are built using semantically meaningful languages specific to
the domain. Thanks to improvements in these areas, the construction
of visualisations has gradually become increasingly well defined and
useful.

Aiming to build a reliable foundation for the production of quant-
itative graphics, Wilkinson [78] proposes a formal grammar for spe-
cifying visual representations as translations of data into graphical
counterparts. Part of the work discusses the processes in visualisation
software which transform raw data into a final visual representation,
and describes a linear multi-step pipeline for data (Fig 1.1).

First, variables are isolated in the raw data. These are then trans-
formed and combined using algebraic methods. The resulting sets
are put to scale and a last mathematical step applies statistical meth-
ods to obtain information such as averages and frequencies. The next
steps determine representations for each datum, assigning geometry
to variables, mapping them to a coordinate system, then adding aes-
thetic parameters.

7

8 ��� ����� �� �������������

Figure 1.1: Wilkinsons data-flow diagram as pictured in The Grammar of
Graphics [78]. Each step provides a different type of transforma-
tion, changing the original data incrementally in nature and/or
type from the raw data source to final image renderer.

Centred around data transformation, this pipeline models the pro-
cess of creating a visual representation from raw data. However, the
end results are limited to static representations, capable only of com-
municating information to the user. Building true interactive graphics
provides feedback to the system and a direct interface with informa-
tion, improving the exploration of visualisations.

In contrast, Ben Fry [22] approaches visualisation from a point of
view which takes interaction into account. He presents the different
aspects of designing fully interactive visualisations. After describing
not only the production of graphics but also user interaction and
exploration, he describes a pipeline which generalises the execution
steps for interactive visualisations (Fig 1.2).

Figure 1.2: Ben Fry’s seven stage visualisation pipeline from Visualising Data [22]. Not centred
around transforming data, Fry chooses instead to concentrate on the software function
at each step. The addition of return points implies a cyclical and interactive mode of
operation.

A pipeline describes a process closer to the methodologies of ana-
lysis and exploration. The interaction step is meant to represent a
basic interface with graphics, but several points of return to previous
steps in the pipeline add the possibility for direct feedback from the
user. Able to affect changes to the filtering, mining and acquisition

�.� ������ ������� 9

steps, the user can change the scope of a view, scale properties and
sources of information to influence the end result. This upgrades the
visualisation process from a static process to an interactive cycle of
visual exploration.

While the information is being interacted with and once the visu-
alisation has been seen, it still has to be understood by the user and
transformed from visual representation back into the actual inform-
ation. To better understand this process, we can study how inform-
ation is presented and explained in journalism. In [62] multiple nar-
rative structures are described, each with a certain degree of inter-
activity. In a martini glass structure narrative pattern, the user follows
an introduction to the subject, which is followed by a tightly guided
presentation of the problems, and ends with an open-ended free ex-
ploration of the data. The more guided interactive slideshow pattern
implies a linear presentation of the problem with transitioned steps,
where each step allows the user some freedom of exploration to un-
derstand it. The drill-down pattern is more iterative than the previous
two, and is well summarised in the mantra “Overview first, then fil-
ter, then details on demand” coined by Shneiderman [63]. The two
former techniques rely on one or more steps of bespoke design to
construct a narrative. While they are effective for sharing insight and
reporting, drill-down seems more suited to visual data mining, as it is
the closest to the pipeline for interactive graphics. This approach is
popular in the security visualisation community, and is closely tied to
visual data mining. While the process is not specifically attached to
visualisation, it offers an effective approach to visual and interactive
exploration of data, while relying on an expressive global visualisa-
tion as a starting point for first step understanding.

�.� ������ �������

In the previous section, we introduced grammars which help spe-
cify visual representations and the corresponding data pipelines which
transform raw data into graphical information. Each step in a pipeline
is composed of functions which transform various forms of data and
depend on the output of the previous steps. Because specific visual
representations can only be built using the right data structures, the
functions in each step are chosen according to the requirements of
the next step. This implies that each chain of transformations is built
for achieving a specific task with specific data.

Even if choosing these functions seems creatively free, they are
tightly constrained by the data and the visualisation, which is dir-
ectly dependant on the cognitive and psychological properties of per-
ception. Correctly exploiting these helps build a visualisation which
completes its objectives of communication and interaction.

10 ��� ����� �� �������������

For example, the implications of expressing quantities are differ-
ent from those of expressing frequencies. Each provides a different
view of information and adequate visualisations will be perceived
differently. Time is often expressed as a continuous variable, rep-
resented as an additional axis, but time can also be discrete, split
between seconds, minutes, hours, days and other units, depending
on the viewers objectives. Each approach has an impact on the ease
of pattern recognition.

We also need to account for the irregular nature of human per-
ception. Even for basic visualisation, different representations are
perceived in different ways, and some are better than others for per-
ceiving differences or distributions. Colour is a widely used visual
parameter in communication for differentiation. Contrasting colours
can be used to represent state or nature: red for danger, yellow for
warnings, and green is the “good” colour. However, with colour only
a finite number of categories can be perceived and properly distin-
guished.

Many other graphical properties can be used, such as position, ro-
tation and alignment to better visualise a property of the data. In
[5], Bertin gathers his experience in cartography and charting into a
synthesis of principles for graphical communication. Using compar-
ative studies of techniques for making use of shape, orientation, col-
our, texture, volume and size, he constructed a classification of visual
variables ordered by versatility (Fig 1.3). Following this classification,
the recommended best practice is to encode the two most important
dimensions to the position of marks, and then assign any further di-
mensions to the next variables following its order and particularities.

Building effective visual representations of data implies choosing
effective graphical techniques, and choices like these ultimately define
the tasks a visualisation tool is adapted for. These should therefore
be determined according to the objectives and the overall motivations
for designing the visualisation. When we wish to convey an effective
comparison of different event frequencies for example, using texture
would be an unfavourable choice of technique, as it is unsuited for
comparing quantities.

To simplify this choice, Mackinlay [48] describes more meaningful
and contextual rules for making visualisation design a more auto-
matic process. He proposes a variation on Bertin’s visual variables
which encompasses more graphical techniques and adds a classifica-
tion by type of data (Fig 1.4).

These categorisations of graphical techniques are essential for the
foundation of meaningful and effective design of information repres-
entations. Using visual variables also favours better consistency in
design across different representations and enables their use in pro-
grams with automatic design. For example, one can automatically
determine the number of categories in a visualisation and determine

�.� ������ ������� 11

Figure 1.3: The visual variables proposed by Bertin[5]. These are ordered
from top to bottom by versatility. Each is more or less effective at
expressing the similarities (⌘) or differences (6=) between marks,
as well as their order, quantifiably (Q) or not (O).

which dimension is best suited for the data. Orientation can be ef-
fective for discerning a small number of values, but as a first choice,
length, size or position will often be more efficient. This explains the
clarity of bar charts compared with the more popular pie chart which
can be difficult to understand. When other choices are not available,
colour is often used but is much less effective for multiple categor-
ies. In any case, we must note that in order for these variables to be
effective, they have to relate semantically to the domain the data is
from.

Finally, the effectiveness of each variable does not change according
to the nature of the data, but because of the particularities of human
perception, which are discussed in the next section.

12 ��� ����� �� �������������

Figure 1.4: Mackinlay extends the set of visual variables [48]. These are lis-
ted by effectiveness for three types of data (quantitative, ordinal
or nominal). The slope graph illustrates how the effectiveness
of a visual variable changes according to the data type. For ex-
ample, comparing quantitative data by encoding to length is the
second most effective approach, but using length to compare or-
dinal data is much less effective. In this case density is a much
better choice of variable. The variables in the gray boxes are not
relevant to that type of data.

�.� ����������

Human vision has many features which, through natural selection,
have evolved according to success factors such as hunting prouesse
and danger evasion. A consequence of this process is the variability
and inconsistency of perception quality:

• A focal point allows people to focus on elements to inspect them
in detail, but peripheral vision is adapted to reacting to move-
ment;

• Some colours such as red and blue, are perceived more clearly
than others.

• Counting small groups of marks is almost pre-attentive, but
counting large groups requires effort.

• People can recognise familiar shapes and identify objects, but
also see these in clouds and stars.

Some visual changes trigger the use of more attention than others
and follow a logic similar to Bertin’s classification of visual variables:
the amplitude and nature of the reaction to visual changes are linked
to the nature of the visual properties which are changing. A small
change in position or size is often easier to notice than a gradual
change of colour or texture.

�.� ���������� 13

(a) Colour Absent (b) Colour Present

(c) Shape Absent (d) Shape Present

(e) Conjoined Absent (f) Conjoined Present

Figure 1.5: Pre-attentive properties compared and combined.

In addition to their effectiveness at provoking reaction, some visual
variables have pre-attentive properties [28]. These properties trigger
rapid subconscious processing capacities which allow people to un-
derstand parts of a situation before being consciously aware of its
information (Fig 1.5). By definition, these pre-attentive reactions gen-
erally happen within 200 ms and help people detect minute changes
in image details.

14 ��� ����� �� �������������

Strategic use of pre-attentive triggers can signal changes in one ele-
ment among hundreds, sometimes thousands of others and drastic-
ally decrease reaction times [29]. To this end, they are an unavoid-
able resource when designing monitoring and real-time visualisa-
tions which require fast pattern detection.

When pre-attentive reactions are triggered in several locations at
once, or when multiple properties are used in combination, the re-
action is slower: attention is being called to multiple locations using
different evaluation types at once, and the effect is diminished.

The human capacity to make sense of apparent visual chaos is
addressed by the theory of Gestalt2 psychology. According to this
theory, any visual representation is interpreted as a whole, and not
merely the sum of its elements. Gestalt theory has four basic proper-
ties (with examples in Fig 1.6):

��������� , whereby objects are recognised in their entirety instead
of being reconstituted from their components.

����������� , whereby shapes are perceived, even when they are hid-
den or absent.

�������������� , whereby images can be simultaneously interpreted
in multiple ways.

���������� , whereby objects are recognised regardless of transform-
ation, e.g., size, rotation, position and even deformations.

(a) Kanizsa triangle (b) World Wide Fund for
Nature (WWF) logo

(c) Rubin vase

Figure 1.6: These three figures demonstrate multiple Gestalt properties.
(a) is composed of six distinct shapes, but an extra triangle is
perceived in the negative space left by these. This has the effect
of completing the discs and back triangle
(b) similarly, although it is incomplete, we instantly recognise
the shape of a giant panda.
(c) this image can be simultaneously interpreted both as a vase
and as two faces.

2 German term meaning “shape, form”.

�.� ���������� 15

In addition to these principles, the Gestalt laws of grouping explain
why humans see certain objects as groups. Objects are subconsciously
associated when their visual properties are similar, or when they are
close or participate to an optical flow (Fig 1.7). These principles ex-
plain why humans still have an edge for extracting information from
images when compared to machine learning algorithms. Data visual-
isation makes use of these phenomena to help people extract patterns,
groups and outliers from large amounts of otherwise intractable data
in search of possible meaning and interpretation3.

Figure 1.7: Due to the layout of the discs on the left, they are perceived as
belonging to the same square. However, when they are split into
three columns the viewer sees three three distinct groups. The
same effect can be obtained using colour.

However, misuse of these phenomena can also lead to the recog-
nition of coincidental and meaningless patterns. Constellations are
named by cultures according to the familiar shapes they seem to form
and people often recognise shapes in cloud formations, but no there
is scientific basis for predictions made based on these observations.
In fact, machines can also succombe to these kinds of false positives:
artificial neural nets trained to recognise certain images can demon-
strate this phenomenon on a much grander scale [50]. In order to
avoiding these false positives, the design must be carefully tested and
be accompanied by enough context to debunk misleading patterns.

Changes in isolated or combined pre-attentive properties combined
with Gestalt properties help people to quickly detect and even under-
stand correlations or the beginnings of a phenomena in data which
machines would have difficulty finding. Together, they partly explain
why certain visual variables and their combinations have a different
impact than others. By building a visualisation out of marks with
attributes depending directly on data, we give a means to the human
mind. One such example in visualisation is the heat map or density
map. Adjacent points with a single or multiple colours are no longer
only linked by proximity, but also form zones which can in some
cases be interesting for the user. Similarly, maps representing wind
speed using vectors show not only the speed at each point of a map,
they also display the shape of wind flow across the entire map (Fig
1.8).

3 Or as evolution would have it, in search of danger or prey.

16 ��� ����� �� �������������

Figure 1.8: Using vector fields, a prime example of optical flow, winds can be represented super-
imposed on a map already containing temperature zones and state delimitations.
Source: Department of Atmospheric Sciences (DAS) at the University of Illinois at
Urbana-Champaign

�.� ������

The creation of tools which accomplish their objectives optimally
is guided by design principles. Although good marketing may help
persuade people to try tools, good design is at the heart of those
which are adopted and used on a daily basis. They help people to
simplify tasks and accomplish them in an enjoyable way.

Building better tools means taking user constraints into account
and carefully understanding the goals of the design to build guidelines.
These tools need to be tested and evaluated at every step of the de-
velopment. This is true for all cognitive objects: languages, games,
physical tools, user interfaces, visualisations. . .

Evaluating a design is difficult. There currently exists no single
rule which on its own can guide the construction or verification of
a tool. All through the development and design processes, multiple
factors need to be taken into account to guide designers and provide
them with the ability to verify the correctness of the end result.

�.� ������ 17

The design process for a tool needs to take into account the people
who will end up using the tool. The challenges of designing around
users and the results of failing to do so are already well studied [52].

Goal-oriented design centres the design process around people by
aiming to satisfy the needs of the product end-users. To this end, full
understanding of the goals of a user needs to be achieved in order to
best solve the problem and validate the orientation of the approach.

Goal-oriented design calls for the definition of personas, artificial
user profiles created after interviewing the real target users. A full
persona comprises both the description of the users and their goals by
creating names and back stories which correspond to the real users.
These personas are artificial composites, but accurately represent real
people. Back stories and names help make the personas believable so
argumentation is possible while avoiding the personal biases of real
people.

�.�.� Guidelines for effective visual representations

Effective design is made easier when following guidelines. Tufte
introduced good practices and rules for the production of effective
and truthful data graphics in scientific literature and the media. In a
four part series of books [72]–[75] he explores guidelines for success-
ful visualisation by making extensive use of examples.

Among the first guidelines for improving visual representations is
the data-ink ratio:

Data-ink ratio =
Data-ink

Total ink used to print the graphic
(1.1)

The ratio between the quantity of “ink” directly used to represent
data and the total quantity of “ink” used for the representation helps
to evaluate the amount of misused space. Maximising this ratio re-
duces the amount of noise, which can be misleading or confusing,
and improves focus and readability of the end product (Fig 1.9).

Another guiding ratio is the lie factor between the visual representa-
tion and the data itself, this time addressing the perceived amplitude
of a variable in its graphical representation and its actual value:

Lie Factor =
size of effect shown in graphic

size of effect in data
(1.2)

size of effect =
|second value - first value|

first value
(1.3)

18 ��� ����� �� �������������

Figure 1.9: In [74], Tufte removes unwanted noise from a bar graph to improve its data-ink ratio.

While this factor is meant more for custom made visual represent-
ations, the best practice is to keep this ratio as close to 1:1 as possible.
Using non-linear scales and magnification techniques can distort per-
ception of data values for example (Fig 1.10).

Figure 1.10: In this graphic, originally published by the NY Times, perspective is misused to exag-
gerate the growth of the evolution of mandated fuel economy standards for autos set
by the US Department of Transportation [74]. The data shows an increase of less than
200%, while the image displays an increase of almost 900%.

One way of addressing these two factors is to reduce “chart junk”,
the needless decorative aesthetics often encountered in visual repres-
entations. Again, this issue largely concerns single purpose diagrams
and infographics. However, care should be taken when including

�.� ������ 19

Figure 1.11: Displaying these bars in 3D is confusing and unnecessary chart-
junk, as are the guides and surfaces which provide no extra
information.
Source: Leonhard Seyfang, 2005

these extra visual artefacts, even when they provide visual references
or redundancy (see Fig 1.11).

data density of display =
number of entries in dataset

area of data display
(1.4)

�.�.� Cognitive dimensions of notations

The cognitive dimensions framework[7], [8] helps to guide and
evaluate the design process. Cognitive dimensions are designed to
be a light means of evaluating design quality, instead of relying of in-
depth analysis. They offer a shared vocabulary for discussing factors
when designing the interfaces for objects.

Cognitive dimensions provide an abstract, high level description of
user interfaces and how users interact with them. It deals with them
in terms of consistency, error-proneness, hard mental operations, vis-
cosity or premature commitment. These viewpoints help with the
creation of new interfaces based on already existing designs by repos-
itioning the design on a particular dimension.

Cognitive dimensions are factors which can help people evaluate
usability and design of tools. These dimensions help with discussing
and building new tools based on the flaws in others. They are used
not only for user interfaces but for all cognitive interfaces: program-
ming languages, visualisations, diagrams. . .

Green’s original list [26] included 14 different cognitive dimensions,
which can be extended depending on the domain:

abstraction gradient : To which extent does the notation abstract
the problem?

closeness of mapping : How close is the notation to the problem?

20 ��� ����� �� �������������

consistency : When part of the notation has been understood, can
the rest be successfully guessed?

diffuseness / terseness : How efficient is the notation at produ-
cing the desired result or meaning?

error-proneness : Is the notation likely to influence the user into
making a mistake?

hard mental operations : How much mental work is required at
the notational level, rather than at the semantic level? Does the
user need to resort to taking notes for keeping track of things?

hidden dependencies : Are dependencies between entities in the
notation visible? Are these dependencies indicated in both dir-
ections? Do changes in one area of the notation lead to unex-
pected consequences?

juxtaposability : Can different parts of the notation be compared
side-by-side at the same time?

premature commitment : Do tasks need to be accomplished in a
specific order? Are there decisions that must be made before
all the necessary information is available? Can those decisions
be reversed or corrected later?

progressive evaluation : To which extent is it possible to evaluate
or obtain feedback on an incomplete solution?

role-expressiveness : How obvious is the role of each component
in the notation as a whole?

secondary notation and escape from formalism : Can notations
carry extra information outside of syntax, such as layout, color,
or other cues?

viscosity : Are there any barriers to change? How much effort is
required to make a change using the notation?

’knock-on viscosity’ : changes in the code violate internal con-
straints in the program, whose resolutions may violate fur-
ther internal constraints.

’repetition viscosity’ : a single action within the user’s con-
ceptual model requires many, repetitive device actions.

’scope viscosity’ : changes to the size of the data set require
changes to the program structure itself.

visibility : How easily can parts of the notation be identified, ac-
cessed and made visible?

�.� ���������� 21

Not all of these guidelines apply to visual representations. Some
are meant to be applied to more abstract cognitive tools such as lan-
guages. They are also not designed to be followed as strict nota-
tional rules, and are therefore difficult to implement programmatic-
ally. They are nevertheless useful criteria for broadly evaluating a
tool, isolating flaws and finding starting points for discussing the is-
sues.

�.� ����������

In this chapter, we have addressed visualisation as a medium of
transforming data into visual information and briefly discussed trans-
formation pipelines. We have also discussed how visual representa-
tions can be broken down into visual variables, directly associated
by mathematical variables in the data. We have seen how their indi-
vidual effectiveness changes when facing different types of data and
different problems. We followed with a brief study of pre-attentive
processing and gestalt perception to understand how we perceive
combinations of marks and help choose variables and layout. The last
part first addressed visualisation design around goals and personas,
with tools such as cognitive dimensions of notations to help evaluate
design decisions, and ended with broad guidelines for improving the
clarity and richness of visualisations by removing misleading visuals
and increasing data density.

In the next chapter, we build a viewpoint on the state of security
visualisation by studying published research literature and security
visualisation tools. By examining and categorising the applied tech-
niques, we gain a better understanding of which problems are being
solved and how.

2 V I S U A L I S AT I O N F O R
S E C U R I T Y

“An approximate answer to the right problem is
worth a good deal more than an exact answer to
an approximate problem."

— John Tukey

Research in security visualisation has seen a gradual increase over
the last decade, and visualisations now frequently feature in security
tools both on the silver screen and in real-world security situations.

Using visualisation to display information in large quantities is ef-
fective for explaining the complexity of a problem. The effect is con-
vincing and useful for relating security issues to the public. However,
the goal of this thesis is to apply visualisation to tools which help
security practitioners understand security data.

Security visualisation is often influenced by visualisation from other
domains, such as biology. These techniques can sometimes be dir-
ectly re-applied to problems in security where the data has similar
characteristics. For example, biological visualisation tools such as Cir-
cos are used to analyse genomic data but have also been applied to
situational awareness [21], [46] and communication analysis [34] (Fig
2.1). Hive plots [31] have been advocated as an alternative to node-
link graphs for representing protein transfers in bacteria. Because
this data largely resembles the function calls in operating systems
and software, the same visualisation techniques have been studied
for visualising distributed memory computations [17].

As this work focuses on security events and network security, the
scope of this thesis will be limited to cases where time is a factor,
putting aside other fields such as static program analysis and mal-
ware structure visualisation for example. Currently visualisation for
security events follows an approach and objectives adopted by teams
tasked with the reactive security of systems, and serves at least one
of three purposes:

monitoring Using dashboards of visualisations to monitor systems
and networks, operators make sure that metrics are within op-
timal ranges to guaranty service availability and watch for the
patterns for known attacks and malicious behaviour.

analysis When anomalies are detected by operators using monit-
oring software or when systems fail altogether, visual analysis

23

24 ������������� ��� ��������

Figure 2.1: Using Circos to visualise inappropriate email circulation on a
corporate network [34]. Each ring section represents a single col-
our coded user. Central connections indicate sent emails, colour
coded by sender, and external histograms indicate period (red
is recent, orange less, and green is old). The blue user is rapidly
identified as a source and the magenta user as a mass emailer.

tools are used to explore and analyse security data. Their object-
ive is to find explanations for incidents, recreate attack scenarios
and characterise intrusions missed during monitoring.

reporting When an attack scenario is ready or malicious patterns
are discovered, these insights and hypotheses need to be passed
on to others for the next courses of action. These reports are
generated both as part of routine protocol but also in times of
incident when people with higher executive authority need to
intervene.

These three purposes are embodied by three personas [66] which
represent individuals facing security information (Fig 2.2).

These personas represent the states of people within an operational
security team. Some are monitoring the current system states, while
others analyse security data to understand new attacks and find un-
detected others. Every team member needs to collaborate with others
to cover the tasks as best as possible, and can communicate effectively
through reporting, both inside the team and with external parties.

������������� ��� �������� 25

Figure 2.2: A team of three personas. Monitoring and analysis personas
communicate with each other and third parties by temporarily
assuming a reporting persona.

A monitoring persona is tasked with watching realtime feeds of in-
formation. The collected information represents the current situation
of systems and networks as closely as possible to reality and is there-
fore time indexed and displayed in real time. While this informa-
tion can be obtained raw and unprocessed, it will more often be pre-
processed by other systems tasked themselves with detecting anom-
alies and intrusions (as stated in the introduction). As these systems
are not perfect their task can be regarded as a reduction of the work
load and an initial filter step. The operator is tasked with watching
for anomalies in case of false negatives and validating alerts in case
of false positives. Due to the real time nature of the task, most of the
patterns for normal or anomalous activity need to already be known,
and the visualisations are preconfigured to help with catching these
patterns. An operator in this situation has little or no time for refer-
ring to external sources of information and can only rely on personal
experience to understand situations and react as fast possible with
effective decisions. Not only is the information delivered in real time,
but systems and networks also continue to increase in size. Operat-
ors need to monitor continuously increasing amounts of information
and coordinate with other operators in order to manage sometimes
unforeseen and punctual spikes of possibly legitimate traffic.

An analysis persona is tasked with analysing historical information
to reconstruct scenarios for unexplained anomalies found during mon-
itoring phases and to find anomalies undetected by previous systems.
Data mining is time consuming, but reacting to situations is less cru-
cial when analysing security data than when monitoring systems. Op-
erators require flexible visualisations for manipulating their view of
the information, filter out unwanted data to focus on specific sets in-
formation and concentrate on details. As the information is historical,
operators are also able to explore the data across time. This is crucial
to reconstructing events and understanding new scenarios. Other
sources of information may be imported and referenced to provide
context and enrich information. The exploration process itself is an
invaluable source of reference to the operator, who frequently takes
notes to document progress and not lose track.

26 ������������� ��� ��������

A reporting persona can follow one of the two previous personas
who has found anomalies or completed the analysis of new inform-
ation. Following the discovery of this new information, collaborat-
ing with other people is often necessary. External parties have the
expertise required to understand the situation or executive author-
ity required to react. In both cases anyone receiving these reports
needs to understand the reconstructed events. This can be made
easier through annotation and recommendation from the operator.
The context of the events and how they were discovered need to be
comprehensively and equally understood by all parties so that all
misunderstandings are avoided.

In this chapter we will study security visualisation tools from the
perspective of these three points of view. The next three sections will
start with descriptions of the problems and requirements of a persona
tasked with one of the purposes. We will then describe techniques
used and shared by security visualisation tools designed to solve each
of these problems.

�.� ������������� ��� ����������

When monitoring systems and networks, operators use security
visualisation to more easily cover as many systems and important
factors as possible. Visual representations of system states and net-
work communications allow the operators to detect significant change
in real-time and detect anomalous behaviour patterns without being
inundated by alarms or relying on potentially mis-trained detection
systems. These visualisations are designed to solve specific problems
with data, and the right configuration of visual variables can help
operators catch the right patterns.

Dashboards generally use arrangements of visualisations designed
to effectively display metrics along with their bounds and history. To
catch more evasive traffic patterns and make use of correlation, more
complex configurations and visual representations are designed, but
generally monitoring tools are designed to solve a subset of problems
depending on the situation. By design, they are not often flexible
outside of these considerations.

In order to function well in production, monitoring visualisations
are optimised for three distinct features: familiar pattern recognition,
situational awareness and scalability.

�.�.� Familiar patterns

As discussed in the introduction, operators rely on familiar visual
patterns and watch for outliers in these which could indicate a change
in events.

�.� ������������� ��� ���������� 27

Figure 2.3: To search for patterns in RealSecure[59] alarms, Colombe et al. display[12] each alarm
in time as a row of properties and colour coded by relevance.

In order to detect patterns in events, tools often provide scatter-
plots4 for simple two dimensional correlation. By selecting the right
dimensions to correlate, operators who understand the normal func-
tion of systems will recognise when patterns for those dimensions
diverge. Colombe et al. [12] watch for anomalies in RealSecure [59]
alarms by correlating the properties of each alarm in detail (Fig 2.3).
PortVis [49] maps events by port and time as single pixels in an ef-
fort to maximise data density and concentrate on detecting port scan
activity by displaying patterns in time. This task is split between
two scatterplots, using one to cover all ports for a given period and
another as a port activity timeline (Fig 2.4). IDSRainstorm [1] aggreg-
ates addresses and time to display multiple class B address spaces
for one day of traffic (Fig 2.5). IPMatrix [38] visualises the sources
of Snort alarms by splitting the IP addresses by octet and visualising

4 a graph in which the values of two variables are plotted along two axes, the pattern
of the resulting points revealing any correlation present

28 ������������� ��� ��������

Figure 2.4: PortVis [49] tool makes use of two large scatterplots. The left one displays port usage
for the entire 65536 port range by mapping traffic within a 256 by 256 coordinate system.
The other displays traffic according to time for the entire dataset timeline and enables
filtering by time period and the detection of time related patterns such as port scans.

local and internet level activity in two scatterplot visualisations (Fig
2.6).

Scatterplots are effective tools for visualising correlations between
two dimensions, as the two main dimensions are encoded to the posi-
tion of each mark, the most versatile visual variable (See Fig 1.3, page
11). With marks as small as pixels maximum data density can be
achieved, and further dimensions can be added to the visualisation
using visual variables such as colour or shape for categorical data and
size or value for ordinal data. However these extra dimensions are

�.� ������������� ��� ���������� 29

Figure 2.5: IDSRainstorm [1] displays an entire days worth of alerts on the GeorgiaTech network.
This first main visualisation is arranged into columns to represent several class B ad-
dress spaces, each of which displays a day of alerts along the horizontal axis as rows
of pixels, colour coded by severity. The vertical axis is used to group addresses, each
representing twenty addresses. A pixel aggregates several alerts and addresses and
represents the most severe alert in that group of addresses for that time.

severely limited in distinguishable values compared with the range
available for the position variable. This constraint makes visualising
patterns for more than two dimensions difficult, particularly when
time is considered.

30 ������������� ��� ��������

Figure 2.6: IPMatrix [38] uses two coordinated scatterplots, one for the A and B “internet level”
address spaces and one for the C and D “local level” address spaces. Each one displays
detected attacks by address spaces as pixels colour coded to the type of attack. These
points are superimposed over a grid of square bins showing the number of attacks by
block of addresses. Histograms along each axis display total activity for each value.

Heat maps are a special variety of scatterplot, designed to map
the same two dimensional correlations with an extra dimension en-
coded to the mark value variable. For heat maps, this extra dimension
can be time, which helps to represent the density correlation patterns
through time. When properly configured these types of visualisations
help to characterise activity over a period of time and provide histor-
ical visual profiles for variable correlation. PortVis [49] uses them to
display port activity over time, but this approach has also been used
for objectives other than monitoring to characterise traffic and recog-
nise protocols in encrypted traffic [44], [79] using packet sizes (Fig
2.7).

While scatterplots are limited to representing events punctually or
with any distinction in time, heat maps can help operators under-
stand the historical evolution of a pattern, and use that context to
understand more recent events. For example, the activity on a host
for the past hour can be compared with a heat map describing traffic

�.� ������������� ��� ���������� 31

over the last day, or even for the entire lifetime of a host. However,
while this approach solves issues related to time, designers of monit-
oring tools are still effectively limited to three dimensions per repres-
entation.

Figure 2.7: In [44], [79], traffic is characterised using heat maps of packet bigrams. Point coordin-
ates are mapped to the size of the first packet and second packets and value is mapped
to the quantity of that bigram. These visual motifs display four different protocols
with characteristic and rapidly recognisable patterns thanks to the distinctive relation-
ship between the sizes of sent and received packets in different protocols.

When multiple numeric dimensions need to be correlated, one ap-
proach is to split these into multiple scatterplots highly coupled either
by shared or relatable dimensions, and arranged to encourage visual
comparison. Discussed previously, IPMatrix [38] splits IP addresses
into two and displays scatterplots for internet level and local level
traffic. Linked visualisations in PortVis [49] complement each other
to provide some level of interactivity.

Using multiple visualisations which share a common dimension,
such as time, or sharing filters, operators can use dashboards to simul-
taneously follow changes in multiple synchronised datasources. The

32 ������������� ��� ��������

number of available visual variables is a limit for single visualisations,
which makes this approach more scalable. However, because adding
extra views requires more physical display space, the full interface is
quickly limited by available space. Also, due to the distance between
each visualisation and the isolation of each component, seeing rela-
tions between dimensions and detecting correlations is more difficult
than when these dimensions share space.

Figure 2.8: [36] visualises Snort and Bro scan detection using 3D scatterplots. Connections are
mapped by source address, destination address and destination port. These fade out
with time to help highlight the most recent ones. Using this configuration, millions
of connections can be represented in near real-time, allowing security practitioners to
visually detect scan patterns over time.

Instead of separating data into multiple views and sacrificing direct
pattern recognition, some use three dimensional visualisation. For
instance, 3D scatterplots can simultaneously map source IP address,
destination IP address and destination port in one single space have
been used in [36]. This allows operators to directly see correlations
between all three dimensions at once, with the additional risks of
elements occluding others. Perspective also makes comparing values

�.� ������������� ��� ���������� 33

difficult. Additionally patterns require exact viewpoint orientation,
panning and zoom to be seen (Fig 2.8).

Using three dimensional visualisation quickly solves some correla-
tion issues. By mapping ordinal dimensions to the position of each
mark, and two further dimensions to the colour and value (opacity)
visual variables, a single visualisation can help correlate five dimen-
sions. However, five dimensions is more or less a hard limit5, and
three dimensional visualisation suffers perception issues: perspect-
ive can make reading values misleading, occlusion means that marks
can always be hiding others, and some patterns might only be noticed
from certain angles, leading to a continuous need for interaction.

./

To monitor security event data for familiar patterns, security admin-
istrators need visualisations which can display these patterns without
needing extra configuration. Scatterplots and heat maps can reliably
display patterns for a small number of dimensions. However, to cor-
relate beyond this limit, practitioners will need to split events over
multiple visualisations.

In the next subsection, we discuss how security tools help practi-
tioners keep in touch with the current situation.

�.�.� Situational awareness

Changes in visual patterns are signs of potential anomalies. To
react effectively the situation needs to be understood quickly. Proper
context and readily available inspection are essential.

Decision-making is therefore directly dependant on situational aware-
ness and implies being able to quickly obtain answers to basic but
essential questions. VisAlert [21], [46], [47] proposes a visualisation
designed specifically for understanding the nature, time and location
of events thanks in part to context for each of these factors to compare
an event with its history and location (Fig 2.9).

More generally, composite visual representations combine multiple
types of marks in close proximity to help users relate different dimen-
sions of a dataset. They have the advantage of being tailor made for
specific situational awareness, and provide answers quickly with rich
context. However, this approach also restricts extendability to other
questions and different sets of dimensions. Bespoke design also re-
quires a period of adaptation to unfamiliar visualisation.

In contrast with a unified single central visualisation, Overflow [23]
distributes data dimensions across an interface with multiple adjacent
visualisations (Fig 2.10).

5 Evolution has favoured rapid counting of predators or prey in small groups, but this
talent was less useful when facing large groups. This resulted in almost pre-attentive
speeds when counting small groups of marks, which do not scale very far.

34 ������������� ��� ��������

Figure 2.9: In VisAlert [21], [46], [47], alerts are mapped to a coloured ra-
dial slice of a surrounding ring corresponding to its type, and
moves outwards as it ages. To show where the alert took place,
the space inside the ring houses a spacial or organisational visu-
alisation to which each alert is linked. When used for network
intrusions for example, this central visualisation can be a graph
representation of the network.

Using simplified and more familiar views, operators understand
new information with less adaptation and can more easily configure
which dimensions to display. Following changes in more dimensions
and datasets simultaneously is possible when these are synchronised
and arranged in an efficient layout. However, finding an efficient
layout is a challenging task. With the wrong choice, following and re-
lating dimensions visualised in views far from each other becomes a
difficult cognitive task, and using simplified representations removes
meaning sometimes crucial to good background context.

NIMBLE [56] employs a more concrete design approach by organ-
ising monitored hosts into graphs of cards and directly displaying
connections. Explanations for events and recommendations are then
directly written in the card and links (Fig 2.11).

Concrete representations such as node-link graphs communicate
the semantics of the data well. Following the cognitive dimensions
closeness of mapping and hard mental operations (page 19), node-link
graphs help people understand data as a network of connections. Us-
ing these types of visual metaphors, operators can more easily use
their experience and work in familiar territory. However, these ap-

�.� ������������� ��� ���������� 35

Figure 2.10: OverFlow [23] provides three views. The first is a radial visualisation displaying the
different network elements. Rings inside each element show a simplified represent-
ation of its hierarchy, and lines between the network elements show ingoing and
outgoing communication between them. The second visualisation displays the de-
tailed hierarchy for a selected element using a tree map, with the same colours as
the simplified ring display. The last visualisations show the ip-groups for network
elements.

proaches can rapidly become complex when representing large scale
datasets, and can be misleading when the layout process is automatic.

Force based layouts lead people to see patterns which do not come
from the original data. In these visualisations the position variable
for each mark is the result of repulsion and attraction forces seeking
equilibrium. Any emerging patterns are the result of this progressive
physical simulation. They are by definition difficult to predict or re-
produce and can show radically different results depending on initial
placements or additional data.

./

To maximise the situational awareness of security practitioners, se-
curity visualisation tools are designed to answer fundamental ques-
tions about the type of situation which could be encountered. Us-
ing visualisations which provide spatial and temporal context using
visual analogies close to the problem world keeps practitioners in fa-
miliar territory and helps them understand any situational changes
faster.

36 ������������� ��� ��������

Figure 2.11: NIMBLE displays a graph-based visualisation which links information cards based
on triggered alerts. Each card represents one or more hosts with more or less details
about them. The links then carry text descriptions for the type of alert concerning the
connected nodes.

In the next subsection, we discuss how security visualisation tools
can stay useful when faced with large quantities data.

�.�.� Responding to scale

Monitoring services need to manage large numbers of datasources
from entire networks of hosts. For instance, data centres contain
many nodes running hundreds of services all connected by complex
networks. Monitoring this data with visualisation means managing
the same increasing scales of data, often with requirements for real-
time updates and data history.

The physical constraints of displays usually limit real-time visual-
isation to filtered datasets. To improve the visualisation of real-time
network data, Daniel et al. [14] describe two visualisations to help al-
leviate these problems which make heavy use of sparkline type visu-
alisations (Fig 2.12).

The term sparkline was introduced in [72] to designate “small, high
resolution graphics embedded in a context of words, numbers, im-
ages”. These small and compact charts are intended for communicat-
ing large amounts of data in small spaces, and can often be used in
the same space as words in text or tables for example.

�.� ������������� ��� ���������� 37

Small multiples are series of graphics sharing the same design and
configuration of variables to display the changes of an index variable.
This unshifting design makes changes in information clearly percept-
ible as differences in the state “snapshots”. When aligned according
to the index variable, trends can be made clear.

Figure 2.12: Based on LiveRac6, CLIQUE [14] offers a tabular organisation of data with columns
for each service and rows for users. Each cell initially contains a sparkline type
visualisation which can be expanded to show more detail.

Yu et al. [80] use testbeds for visualising services and machines in
grids of miniature pie charts. Colour coded warnings and errors
stand out and problems can quickly be identified (Fig 2.13). Clock-
view [37] was designed for representing the state of hundreds of hosts
on a network. Once again, small charts represent hosts which are
then superimposed with a graph representation of the network. Each
chart shows the evolution of activity on a host over time and can
be tuned for the desired granularity of time (Fig 2.14). Pearlman et
al. [54] choose to represent hosts as link-node graph to explicitely rep-
resent the network organisation. Each host is once again represented
using a compound circular visualisation composed of rings. Each

6 Liverac is a visualisation tool used to explore data with numerous dimensions from
large numbers of hosts.

38 ������������� ��� ��������

ring summarises the running services for a given period of time and
proportionally to the used resources (Fig 2.15).

Figure 2.13: Yu et al. [80] propose a testbed visualisation tool with trees for displaying hierarchy,
graph and matrix views for displaying network flows, timelines for displaying user
activity, but also a device status visualisation, using small multiple grids of pie chart
glyphs. Each row corresponds to a specific host, and each column a service. Each
glyph displays current status and current alert proportions, and provides details on
demand.

DAEDALUS [35] uses 3D visualisation to monitor large numbers
of connections and events on multiple organisations with known ad-
dress spaces and “darknet” spaces (Fig 2.16).

Using three dimensions extends the limits of screen space to en-
compass depth. This adds more usable space for visualisations, but
comes with previously discussed disadvantages. While the objective
of scaling a visualisation is to represent more information, problems
with occlusion and perspective in 3D visualisations still limit data
density to the available physical pixels. To alleviate these issues, use
of animation and visual hints is essential.

./

Monitoring tools make significant use of correlation visualisations
with fixed configurations and often combine visualisation techniques
in different views to cover as much data as possible:

• combinations of pre-configured visualisations for pattern recog-
nition, such as scatterplots and parallel plots;

• visualisation adapted to parallelisation (pixels, radial charts. . .);

�.� ������������� ��� ���������� 39

Figure 2.14: In ClockView [37] each host is represented as a radial chart, similar to a clock, again
displaying activity for 24 hours, but as a glyph, and easily comparable. For network
structure awareness, a communications graph can be superimposed on top of the view.
After interesting hosts have been found, focusing on them replaces the global view
by other better suited visualisations. Activity is better shown using a pixel matrix
with better granularity for over time, and the individual clock charts are shown in
a parallel plot configuration for correlation. An even more detailed view displays a
port matrix for examining the interactions between two specific machines.

• motion and transitioned updates to show change in time.

These shared factors are well suited to helping the monitoring per-
sona keep track of events. They help maximise the quantities of dis-
played information while keeping interaction to a minimum so the
operator can focus on recognising patterns.

They also share several limits due to their specialisation: they are
often designed for handling a single type of data using a fixed visual-
isation to help operators to see patterns. Following this approach im-
plies that only known issues related to these data sources will be effi-
ciently caught. This seems typical of monitoring visualisation, which
need to provide a familiar view to be effective and help maintain a
first line of defence. This characteristic explains the need for analysis
tools.

./

40 ������������� ��� ��������

Figure 2.15: Pearlman [54] et al. use compound glyphs to display running services. Here each node
represents its currently hosted services as a hierarchical donut chart. These services
are displayed proportionally, with outer rings representing their recent state, enabling
people to see a partial short-term history. Simple hosts have simple representations,
and can be rendered smaller to make important nodes more prominent.

Figure 2.16: DAEDALUS [35] is a uses three dimensional visualisation. The centre of the view
is occupied by a sphere divided into 256 by 256 points and capable of representing
mapping an entire /16 network. From this sphere, emanating lines represent connec-
tions and points travelling along them are events. The sphere is surrounded by ring
charts which each represent a monitored organisation with occupied address spaces
and dark net spaces. Alarms triggered by these events are made visible using the
Chinese character meaning “caution”.

�.� ������������� ��� �������� 41

Monitoring tools tools allow operators to watch for familiar pat-
terns in large quantities of data, and are built with realtime situational
awareness in mind:

• simple correlation visualisations such as scatterplots and heat
maps;

• designs which help with situational awareness by answering
fundamental questions and providing relatable visual analogies;

• visualisations which can be scaled down and highly parallel-
ised.

Most of these tools are built to monitor specific situations. Their
designs are largely static with very few options for configuration and
often for specific sources of information. This can make them very
efficient, but also reduces adaptability.

The next section discusses tools with very different objects, those
designed for security data analysis.

�.� ������������� ��� ��������

Security data analysis follows the tasks of monitoring when in-
trusions are detected or when new anomalies cannot be explained.
Operators use analysis tools to better understand situations and the
process of events leading to them.

Analysing data with visualisation implies exploring different con-
figurations and types of visual representations in search of meaning-
ful information. The analysis is guided either by a specific objective,
such as finding a flow of intrusions, or aims to find interesting pat-
terns and signs of potentially malicious activity without critical time
constraints. To this end, tools for visual analysis are designed for
data exploration and often for specific data sources, but still need to
be flexible.

Visualisation tools for security analysis are designed to accomplish
two goals: provide a method of exploration through search cycles
and help reconstruct narratives.

�.�.� Search processes

In order to provide a forensic search experience and better explore
security data, tools are designed to encourage searching using inter-
action cycles. These function by reacting to operator feedback and
updating the visualisations or visualised data. As time is less a factor
than when monitoring systems, operators are free to inspect details
and backtrack to previous steps.

42 ������������� ��� ��������

Figure 2.17: The Analyst’s Notebook [3] displays data using maps to locate forensic data, node
graph to visualise links between them as well as matrices, bar charts and tables for
details and distributions.

Commercial tools such as The Analyst’s Notebook [3] provide visu-
alisations adapted for exploring information to find links in real-
world forensic data (Fig. 2.17). Using these tools the operator can
cycle between the visualisations using each as a filter for the others
to refine the search until only the essential information is found.

NVisionIP [40] provides three levels of detail in separate views for
exploring NetFlow data to offer a drill down approach typical in visu-
alisation tools (Fig 2.18). Instead of using sequential visualisations to
provide drill-down exploration, Harrison et al. [27] use multiple sim-
ultaneous synchronised views. Each view reacts to changes in the
others and can filter the shared information. This incremental fil-
tering gradually helps the operator focus on points of interest (Fig
2.19). BGP Eye [55] was designed to help visualise and explore bor-
der gateway protocol (BGP) anomalies that are signs of potential ma-
licious activity. Multiple successive views offer different complement-
ary points of view of the anomalies (Fig 2.20).

./

�.� ������������� ��� �������� 43

Figure 2.18: The three main views in NVisionIP [40]: the main view displays flows by subnet and
host using a “galaxy view” scatter plot. Selecting in this view opens a small multiple
view to compare hosts, which can then also open a view for inspecting machine
details. Flows can be marked with colours to help follow them in each view.

Each of these approaches uses multiple views to show different
parts of a dataset. In each case these views are tightly related and
linked together to form either a hierarchy or a multi facet interface.
Interaction with any single view through selection, panning or zoom-
ing translates to filters for the dataset as a whole. When the dataset is
filtered, the exploration progresses to a new data subset. This triggers
updates or replacements of current representations depending on the
nature of this subset.

In a hierarchy of views, each new subset of information is repres-
ented using a replacement configuration of views. In a multi facet
interface, the effects of these actions are displayed through updates
to the concerned views. These results help operators analyse security
information using a consistent drill-down type exploration process.

A hierarchy based approach adopts a structure close to the drill-
down metaphor. When the analyst focuses on a different data subset,
new views are generated which can each be designed for the aspects
of the new data. However, exchanging one view for another means

44 ������������� ��� ��������

Figure 2.19: Harrison et al. propose [27] multiple synchronised views for spatial analysis. The
first view offers a graph based layout of the network. For temporal analysis, a time
histogram shows all events for a given period. The third view shows the updated
graph after time filtering has been applied using the time histogram.

losing perspective on other parts of the data which can provide con-
text critical to understanding the nature of the new dataset. An ap-
proach using faceted views conserves the same multiple views of the
dataset throughout the exploration process. Although this means that
representations for new information are constrained, this also helps
operators follow the links and relations between different views. Is
is worth noting that in both cases, the exploration history is hidden
or even lost. This makes returning to previous steps a difficult task,
which might require taking manual notes.

�.�.� Scene reconstruction

Cyclical search processes make interactions with analysis tools closer
to a the search methodology proposed by Shneiderman:

• using a global view to search for anomalies,

• removing groups of items which seem uninteresting,

• and inspecting remaining areas in detail to find relatable points
within them.

Operators search for outliers then link data together to reconstruct
a narrative describing the events and their protagonists. For operators
to follow the designed search process, they need to see meaningful
links between data which could help reconstruct events. Interfaces
are designed to juxtapose different but related views of datasets and
provide intuitive means to link information from one view to another.

The Network Visualiser (TNV) [25] was designed as an alternat-
ive to Wireshark, augmented with visualisation to provide a global

�.� ������������� ��� �������� 45

Figure 2.20: BGP Eye [55] uses three visualisations: The first is a force-based graph layout showing
BGP events triggered by specific Autonomous Systems (AS). The second uses a path
distance based layout with source nodes at the bottom, sink nodes at the top and all
intermediate nodes placed between according to a distance metric determined using
a breadth-first-search algorithm. The third uses a circular representation to display
connections between observation routers in an inner ring and peer routers in an outer
ring. The last view is a complex association of two plane visualisations, one showing
concerned border routers, and the corresponding prefix statuses, enabling security
practitioners to see which prefix/router has recently seen changes to routing paths.

view of network packets. First, operators can quickly obtain a global
understanding of packet capture files. The interface lays out traffic
from left to right, with sources on the left and destinations on the
right. An accompanying histogram provides an interactive timeline
(Fig 2.21). Operators follow traffic from source to destination, while
passing through a matrix which describes the nature of the inform-
ation. Using the same left to right analogy for flow of information
from clients to servers, Portall [19] helps the user understand client
and server processes and how they communicate with each other (Fig
2.22).

Tools such as PicViz [71] and SeeSoft [16] were designed to handle
numerous types of log files and concentrate on a single highly con-
figurable visualisation. PicViz centres its interface around a parallel
plot to help detect correlations and points of connection between di-
mensions (Fig. 2.23), while SeeSoft provides a textual representation

46 ������������� ��� ��������

Figure 2.21: TNV [25] is designed around a central matrix visualisation dis-
plays circulating packets, annotated by direction and colour
coded by protocol type. On either side, addresses are listed
and linked to the different packet flows. On the right, a par-
allel plot shows port usage, and underneath, a histogram dis-
plays traffic evolution and enables filtering. As such, filters
surround a horizontal progression of packets, making it easier
to comprehend network traffic.

of log files with a colour code for differentiating and grouping events
(Fig. 2.24).

BURN (Baring Unknown Rogue Networks) [60] helps with the ex-
ploration of autonomous systems by malicious activity. To visual-
ise datasets of autonomous systems (AS) containing rogue activity,
Roveta et al. use animation to make malicious activity stand out
more and transitions to display the evolution of the concerned sys-
tems (Fig 2.25). The different views allow operators to see data by
rank of maliciousness, by geographic location and by historical activ-
ity. By moving between these aspects by following points of interest,
operators can reason about the different AS and build a richer picture
of events.

./

Visualisation tools designed for analysis help operators to discover
links between security data. With visualisations sharing dimensions
and a layout to encourage comparison of these visualisations, oper-
ators can reason about the differences between these properties and
actors, but also the similarities. This allows them to form groups of

�.� ������������� ��� �������� 47

Figure 2.22: In Portall [19] clients are listed on the left and servers on the right, and their run-
ning processes are linked in a graph, displayed as boxes with process details, notably
connection activity histogram.

events, move from data to data, and through the links which emerge,
try to reconstruct scenarios.

To summarise, in contrast with monitoring tools, analysis tools en-
courage taking time for exploration, and allow users to focus on parts
of the data. Again, multiple views are often available using the same
correlation visualisations but these are modifiable, with more possib-
ilities for interaction. They are built to allow for search cycles with
the objective of understanding and recreating events:

• linked combinations of visualisations for pattern and trend re-
cognition;

• strong use of filtering to configure visualisation parameters;

• motion used as true variables to indicate differences and to
mark importance.

Many of these tools are designed to help explore a single type of
data, such as Snort alerts or pcap files. Analysing issues with sys-
tems often requires relating multiple sources of data, such as proxy
access logs and authentication logs, to properly reconstruct events.
This implies switching between tools during an exploration session

48 ������������� ��� ��������

Figure 2.23: PicViz [71] is designed around a central parallel coordinate plot which can be con-
figured to show correlations in data between dimensions.

and passing analysis notes from one tool to the next. However, even
if some tools take multiple sources of data into account, they con-
centrate on a single visual representation regardless of the nature of
the data, and pursuing the analysis by traversing from one dataset to
another is not addressed.

�.� ������������� ��� �������� 49

Figure 2.24: SeeSoft [16] displays log files in a "10,000 feet view" and applies a custom colour code
to each line to help the user detect patterns and groups of events.

50 ������������� ��� ��������

Figure 2.25: In BURN [60], systems are represented by bubbles, more anim-
ated and irregular when active and which rise to the top of
a bubble chart the more they are active. Sparkline graphs en-
able quick inspection of activity and behaviour changes, while
a histogram shows global activity over time and enables time
frame filtering. Two other views, a global map and an activity
matrix, enable both a geographical inspection of activity and
more accurate inspection of changes in activity.

�.� ������������� ��� ��������� 51

�.� ������������� ��� ���������

For a team to function properly, its members need to be coordin-
ated, especially by sharing information. Depending on how the team
is organised and the roles of each member this sharing of information
can take multiple forms.

When team members assume the same roles and work together,
they need to maintain a shared state for the current tasks. This keeps
each member up to date so together they can accomplish it com-
pletely and efficiently. Their synchronisation requires a basic min-
imum: sharing state updates with references to their context. For
team members with different roles, working together requires sharing
more context to understand received messages. For example, when
anomalies are flagged during monitoring and need to be shared with
analysts for further study, the contents of the task needs to be accom-
panied by context within the data as well as an explanation.

Some pieces of information also need to be sent outside the team to
people who might have little pre-existing context for understanding.
These people can range from stakeholders with some knowledge of
the situation to the public who can quite possibly have no knowledge
of the domain. They require much richer context, and may even need
a full explanation to understand the contents of the message. The
key in these situations is to send the right amount of context, essen-
tial for understanding information presented within reports. When
a destination is closer to the problem, the amount of context needed
for the message to be understood is much less than if the destination
has little or no prior context for understanding.

To elaborate, we now explore both ends of this spectrum, desig-
nated as collaboration and communication.

�.�.� Collaboration

The aim of collaboration is to divide a task into parts among people
and synchronise them so they progress faster. Monitoring operators
often need to collaborate as teams. Whether these operators are work-
ing in parallel or relaying in shifts, sharing metadata is an essential
part of the job. For example, operators will want to mark events
as benign or dangerous and avoid unnecessary work. During ana-
lysis phases, tagging and linking information is essential. Not only
does this metadata provide the contents of the message, it can also be
linked to the context in which it was tagged. Reports with the right
context are necessary for effective mitigation or for communicating
back to operators monitoring the real-time feeds of information.

To manage the results produced by long and complicated network
data analysis sessions and help to avoid bad reports, FlowTag [42] lets
analysts tag interesting and related items. This makes the process

52 ������������� ��� ��������

Figure 2.26: FlowTag [42] provides classic command line tools along with sliders for simple filter-
ing and parallel plot correlation. Additionally flows can be tagged for future reference
and for building better reports.

easier to manage, but also easier to share with others, making the
analytical process a more collaborative task. Tagged data also makes
full reports easier to produce, thanks to the possibility of gathering
all related data into one corpus (Fig 2.26).

Additions to NVisionIP [41] also add the capacity to record visual
exploration paths. This means reports can take the form of a replay
of the actual exploration.

�.�.� Communication

When reports are transmitted to people outside of a team, the recip-
ients often require more context than internal people. These people
can be close, such as other teams within the same institution, but can
also be as distant as remote stakeholders or journalists.

For these closer people who already have some situational context,
sharing the visual state can suffice. For example, VisAlert [21], [46],
[47] is designed to provide essential situational context. When an
alert needs to be reported a screen capture can suffice because it con-
tains all the information required to understand why that alert was
reported (Fig. 2.9).

�.� ������������� ��� ��������� 53

Figure 2.27: This press release from Kaspersky Lab maps out the world wide victims of the Red
October malware.

In cases where the recipient is new, the message might need to be
accompanied by a richer, more complete context. In these situations,
the message can make use of pre-existing shared context. Visual meta-
phors are an invaluable source of shared context, information which
all parties are familiar with. Maps are often used for representing
simple datasets, but deliver a whole host of familiar context to better
understand those few points.

Other visualisations, while not the most efficient for correlation
or analysis, are less abstract and therefore better at communicating
meaning and the nature of the information. Node-link graphs for
example, while impractical for many cases, are effective at commu-
nicating the idea of a interconnection.

To summarise, tools which help operators with reporting allow
them to share information between each other when collaborating
in a team, but also communicate information outside of the team to
third parties. By providing features which help operators to collect
and annotate important data, the necessary information for collabor-
ation is more readily available. When directly linked to the relevant
context, this information is also more easily shared with people who

54 ������������� ��� ��������

may not have the knowledge necessary to directly understand the
issues at hand.

�.� ����������

In this chapter, we have presented and analysed many visualisation
tools dedicated to security event visualisation to associate techniques
with the problems and goals faced by operators in three different
situations. Monitoring tools often use a fixed visualisation to focus on
changes in data, looking for patterns. Analysis tools help to search
data using more configurable visualisations for better exploration of
data. Reporting tools extend monitoring and analysis tools with fea-
tures for taking notes and sharing relevant information within teams
or transmitting it to external parties.

Together these tools cover a wide range of situations and help to
address many different problems. It would seem that if all of these
tools were readily available security issues would be easily dealt with.
However, incidents are often combinations of issues from multiple
different systems each providing different sources of information to
process. Effectively handling such a breach would require choosing
the right tools, but with so many options the risks of choice aver-
sion [61] are high. Added to this are the difficulties of moving results
from one tool to another when points of interest require a different
point of view.

Because these tools tend to share visualisation approaches for sim-
ilar data, we advocate that the choice should be between representa-
tions instead of between tools. The following chapter describes ELVis,
a tool we designed to assist with security visualisation and help prac-
titioners concentrate on their information instead of choosing repres-
entations.

3 A S S I S T I V E S E C U R I T Y
V I S U A L I S AT I O N

While they are invaluable sources of information, log files are often
impractical to analyse both because of their human-oriented formats
and because of their size, many gigabytes being not uncommon.

Many visualisation tools, among which [16], [39], [53], [71], have
been designed to help analysts better understand the content of log
files. These tools often focus on a specific type of log file or a specific
set of log files. Due to that fact, they do not allow the analyst to
opportunistically benefit from other types of log files that could be
available.

Building visualisation tools requires visualisation expertise and know-
ledge of domains such as statistics, design and psychology. Unfortu-
nately, security experts trying to create ad hoc visualisation tools are
rarely able to complete the task well due to lack of experience. They
are first and foremost security experts, and second – if at all – ex-
perts in visualisation. History has shown that although visualisation
without training can sometimes be innovative and effective, it can
also lead to misleading results [75].

Using security visualisation software requires knowledge and ex-
perience in security, especially for analysing custom log formats and
system configurations [53]. When faced with a situation, experts rely
on familiar processes to ascertain the situation, identify issues, and
find solutions. With these sequential goals in mind, they intuitively
develop habits in the form of behaviour patterns and personal proto-
cols [2].

In our case, the tasks at hand require exploring multiple different
sources of information, but also unfortunately choosing a specific tool
every time a new source of information needs to be explored.

In light of these observations, it seems reasonable to advocate that
security visualisation should let security experts concentrate on their
objectives as much as possible while freeing them from issues outside
their area of expertise.

To this end we designed ELVis, a security-oriented extensible log
visualisation tool. ELVis allows security experts to import log files
with multiple formats (e.g, apache standard logs and syslog files
such as authentication logs) and explore them through relevant rep-
resentations automatically selected and generated according to the
data chosen for display.

ELVis was built with two objectives in mind:

55

56 ��������� �������� �������������

1. to allow security experts to benefit from appropriate visual rep-
resentations of the log files they need to analyse without the
need for experience in additional domains such as graphic design.

2. to be as versatile as possible by handling many types of log
files and by being extensible for handling extra formats without
requiring the help of visualisation experts to design new repres-
entations specific to these new types of log files.

The interaction process with ELVis is composed of three phases:

��� ����������� ��� ������� ���� , during which the user im-
ports the required log files. The resulting datasets are then
automatically enriched by the system and summary visualisa-
tions are displayed for each of them using small multiples [74],
[75]. These representations are the starting point for exploring
the logs.

��������� ��������� ��� �������������� ���������� , during
which the user selects fields to be represented and relevant rep-
resentations for these are automatically chosen.

��������� , during which the user can remove unwanted informa-
tion or, equivalently, focus on wanted information.

Subsequent iterations and enhancements also added a phase of
brushing and filtering, during which the user can brush the timeline
to focus on periods of time or select specific values of interest in the
visualisations to inspect related events.

These three phases are described in detail in the rest of this chapter.
In Section3.1, we explain how logs are managed in ELVis. In Sec-
tion3.2, we illustrate the first representation proposed in ELVis, which
summarises a dataset. In Section3.3, we describe the user interactions
and show how valid representations are automatically chosen accord-
ing to the information the user wants to display. In Section4.3 we
discuss how the main features of ELVis were implemented. Finally,
in Section4.4, we demonstrate the previous functions using the Hon-
eynet Forensic Challenge 10 dataset [69].

�.� ��� ����������

Numerous security-oriented visualisation tools are specific to a cer-
tain log file format. For instance, ClockView [37] and PeekKernel-
Flows [77] use NetFlow logs to monitor large IP spaces over long
periods. NetBytes Viewer [67] also uses NetFlow logs to focus on the
communications of a single host/subnetwork, and is implemented in
the more recent project FloViz [68], which offers more visualisation

�.� ��� ���������� 57

options. TNV [25] represents pcap files in a way that allows better
comprehension of the communications between hosts on a network.
Finally, [1] provides a representation to make it easier to understand
StealthWatch IDS logs. In contrast with these proposals, ELVis is de-
signed to provide relevant representations for a large set of security-
related log files.

The log import process is consistent with the first steps in the
pipelines described in Section1.1. In this section, we first describe
how the log files we took into consideration are organised. We then
describe the acquisition, parsing and mining parts of our data pipeline
by showing how ELVis automatically extracts, structures and enriches
datasets from these logs, while adding metadata to provide more in-
formation for the end users.

�.�.� Log file organisation

Log files are automatically generated by operating systems or ap-
plications to keep track of events. When an event occurs, a new entry
is added at the end of the log file. Without loss of generality, we con-
sider that each entry is stored as a line in the log file. Consequently,
each event of interest corresponds to a line. We also consider that
all the entries/lines in a log file follow the same structure: each
of them contains the same fields (or columns). Listing 1 displays a
sample log of Apache access. For every entry in a log, the value of
a field may be null (not present) or undefined (with no value). For
example, in listing 1 the identd and userid fields are not informed,
and are instead filled with the - placeholder. This definition of logs
is very broad and encompasses many data sources such as tcpdump

packet capture files, Snort alert logs, Apache access and error

logs, Linux authentication logs, etc. However, it does not cover
certain log files well such as the Linux kernel log for which the
format is more permissive, and Dpkg logs, for which each event can
span several lines.

3 10.0.1.2 - - [19/Apr/2010:07:33:47 -0700] "GET /feed/

HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1",!

4 10.0.1.2 - - [19/Apr/2010:08:02:10 -0700] "GET /feed/

HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1",!

5 123.4.59.174 - - [19/Apr/2010:08:26:30 -0700] "GET

http://proxyjudge1.proxyfire.net/fastenv HTTP/1.1" 404

1466 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1)"

,!

,!

,!

Listing 1: A sample standard apache log file.

58 ��������� �������� �������������

In log files, each field can be defined by its meaning, a type or an
extendable type and its value. In ELVis, the meaning is provided by
a label which describes what the field means. For instance, it can
be Source IP, Destination IP, Source port, Time, Alert Severity,
HTTP Response Code, etc. In different log files, the fields can have
very different meanings since each log file contains information which
is relevant specifically to the application or system which created it.
Furthermore, some meanings can be very specific to an application
and will not be used in any other type of log file, making it very
difficult to be exhaustive when defining possible meanings. In con-
sequence, the meanings of the various fields are mainly of interest to
the user and will not be used in ELVis to automatically select suitable
representations.

In ELVis, each field is also associated with a type. In contrast with
the meanings, the types we define are generic enough to encompass
all the fields currently in use for the log files we selected, while being
specific enough (as we show in Section3.1.3) to allow the automatic
selection of relevant representations. We currently use three different
basic types:

����������� when two entries with the same value for the field be-
long to the same category. Values in categorical type fields can-
not be naturally ordered or added. However, a set of unique
values can be computed (i. e., how many categories there are),
as well as their distributions, etc. IP address, UDP/TCP port or
CVE value are examples of categorical fields.

������������ when the values of the field can be counted, added,
compared and can have computable means and sums. For in-
stance, a packet size field is quantitative.

���� when the values of the field are time, which can be presented
in multiple different ways: timestamps are numbers, whereas
dates are often strings.

������������ when the values can be located on a map. For in-
stance, the location field that gives the GPS coordinates of an
IP is geographical.

Some fields are very common in security-related logs, e.g, times-
tamps, IP addresses and ports. These kinds of fields have a specific
meaning for security experts and are generally used to obtain further
information. For example, GPS coordinates can be deduced from a
public IP address, the weekday can be deduced from a timestamp,
etc. In consequence, an extendable type can be associated with these
specific fields in addition to one of the three fundamental types. As
their name implies, extendable types are used to automatically enrich
the dataset by creating new fields which depend on a field having a

�.� ��� ���������� 59

(\S+) (\S+) (\S+) [([^\]]+)\] "([^"]+)" (\S+) (\S+) (?:"([^"]+)")? (?: "(?:[^"]+)")?

10.0.1.2 - - [19/Apr/2010:06:36:15 -0700] "GET /feed/ HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1"
IP IDENTD USERID TIME REQUEST STATUS SIZE REFERER USERAGENT

Figure 3.1: Each group in a format pattern is associated with a field in a log line.

given extendable type. Currently, we have defined four extendable
types: timestamp which can become human readable time, IP which
can be geolocated, TCP port and UDP port which can be associated
with default services. We provide more information on how extend-
able types are used in Section3.1.3.

In the following sections, we explain how datasets are acquired
from log files, how (extendable) types are assigned to fields and how
datasets are augmented. Later in this thesis, we show how field types
are used to choose the relevant representations.

�.�.� Log file acquisition

The first step of log file acquisition consists in parsing the log files
submitted by the user. (S)he can submit log files either by dragging
them into the browser window or by using upload button on the top
right of the page (cf. Fig. 3.2 p.62).

ELVis is configured with a set of dataset formats (among which
Apache standard, syslog and its variations - auth.log for instance
- and Snort IDS). Each of them is linked to a given log file format.
When a log file is submitted, ELVis tries to match the first line with
each loaded format using its pattern. If a match is found, a dataset
is created from the file using the matched format. The format iden-
tifier is then added to the dataset, this information being known by
the parser. We should mention that in order to create a new dataset
format and import new log files, the user need only provide a regu-
lar expression matching the format of a line for this log as well as the
label, the type and/or extendable type for each field (Listing 2).

This approach works well for many log formats, but has limita-
tions. Optional fields can be managed by using optional groups in
the line pattern, but malformed files are a challenge. Regular expres-
sions depend on strict matching, and although logs are generated
automatically in a consistent manner, file corruption during storage
or transmission can remove separators or tokens essential to match-
ing fields. Any line which does not match is skipped, which provides
some measure of fault tolerance. However if this line happens to
be the first line, used for selecting a compatible format, no matching
format will be found. If it contained security relevant information, the
whole log entry is lost and will not be taken into account. Multiline

60 ��������� �������� �������������

logs are also problematic, and would require an approach using state
machines instead of stateless regular expressions to match tokens for
the start and end of events.

Once the whole file has been parsed and associated with a labeled
and typed dataset format, the augmentation stage can start.

�.�.� Log file augmentation

ELVis augments logs in two different ways: “horizontal” augmentation
and “vertical” augmentation.

Horizontal augmentation consists in adding extra fields to each entry
(in other words, new columns to the dataset) based on the extend-
able types. If an extendable type is found, the corresponding fields
are generated for each entry of the dataset. For instance, a location

field is added for each field exhibiting the IP extendable type in the
entry. This new field is automatically labeled “Loc[labelOfTheIPfield]”
to indicate this extension.

When horizontal augmentation is completed, ELVis performs ver-
tical augmentation on the dataset. This consists in computing statistics
for each field (including the fields that have been added during the
horizontal augmentation phase) which are global to all the values.
Vertical augmentation of a field depends on the type of the field. On
categorical fields, a set of unique values is computed as well as their
distribution (see table 3.1). On quantitative fields, minimum, max-
imum, mean and sum total values are computed (see table 3.2). The
computed results are stored as metadata in the dataset.

value 200 301 302 400 404 500 502

count 306 8 13 3 29 4 2

Table 3.1: For categorical fields such as HTTP status codes, unique values
and their distribution are computed.

statistic sum min max mean median
value 4682912 20 16605 13773.27 8292.5

Table 3.2: For quantitative fields such as HTTP response sizes, the sum, min-
imum, maximum, mean and median values are computed.

Each of the imported log files is then displayed in a summary view,
which are described and explained in the next section.

�.� ��� ���������� 61

1 Elvis.registerFormat({

2

3 name: ’apache log’,

4

5 pattern: /(\S+) (\S+) (\S+) \[([^\]]+)\] "([^"]+)" (\S+)

(\S+)(?: "([^"]+)")?(?: "(?:[^"]+)")?/,,!

6

7 fields: [

8 {

9 label: ’ip’,

10 type: [’categorical’, ’ip’]

11 }, {

12 label: ’identd’,

13 type: [’categorical’]

14 }, {

15 label: ’userid’,

16 type: [’categorical’]

17 }, {

18 label: ’time’,

19 type: [’time’],

20 transform: d3.time.format(’%d/%b/%Y:%X %Z’).parse

21 }, {

22 label: ’request’,

23 type: [’categorical’, ’http-request’]

24 }, {

25 label: ’status’,

26 type: [’categorical’, ’http-status’]

27 }, {

28 label: ’size’,

29 type: [’quantitative’],

30 unit: ’bytes’

31 }, {

32 label: ’referer’,

33 type: [’categorical’]

34 }, {

35 label: ’useragent’,

36 type: [’categorical’]

37 }

38]

39

40 });

Listing 2: The format definition for the apache standard log format. Each
format contains a name, a regular expression for parsing the in-
tended logs and an ordered list of fields which map to the log file
(see Fig 3.1). Each field contains a label and a list of types and any
possible extendable types.

62 ��������� �������� �������������

�.� ������� ����

When dataset augmentation is finished, the next step in the data
pipeline is to build a first representation. For each dataset a visual
summary of the log file is displayed. Fig. 3.2 shows a global view of
the ELVis interface after two log files have been imported: an apache
log file and an auth log file.

Figure 3.2: The ELVis interface after two log files have been imported.

The summary view provides the user with the global overview of
a dataset. Figure 3.3 shows the summary view of an apache log file.

Figure 3.3: The summary view of an apache log file in the first iteration of
ELVis.

�.� ������� ���� 63

The name of the file (www-access.log), the type of the log file
(Apache standard) and the number of events (365) are displayed in
the view header at the top. To its right, an information icon allows
the user to obtain more information about the dataset, i. e., a more
verbose description of the format, how the information was obtained
and the size of the dataset. The arrow icon allows the user to reduce
the summary view so as to save space on screen.

The next component is a chart in the upper part of the view which
displays event distribution in the dataset over time. The duration,
start and end times are displayed in corners and the bar chart displays
the evolution of the number of events across time. This provides the
user with a global overview of the considered period as well as of the
distribution of the events to rapidly pick out unusual points in time
during which too many or too few events occurred.

Under the main visualisation, smaller blocks display sparkline sum-
maries for each field of the dataset. The label for the field is displayed
in the bottom right of the block and the content of each block depends
on the type of the field that this block represents. For categorical

fields (such as IP in Fig. 3.3), the number of categories is displayed in
the bottom left and a sparkline type bar chart displays the distribution
of the various values7. In some specific cases, a given categorical

type field may have a single unique value for all the entries in the data-
set. This for instance is the case for our Apache access log where the
fields identid, userid and useragent are all set to a default value in
the log file, i.e, “-”. In this case, the single unique value is displayed
instead of a sparkline visualisation (provided the value fits within the
allotted space). For quantitative type fields (such as size in Fig. 3.3),
a sparkline type line chart displays the evolution of the field across
time with the minimum and maximum displayed in a similar way to
the timestamp type fields for which a user-friendly representation of
the beginning and end date are provided.

These field summary blocks provide valuable insights for the user
in a concise way. First, the user knows at a glance which fields are
available. Second, (s)he can quickly identify which fields might or
might not be relevant to the analysis objectives, e. g., the same value
for this a given field is present in all the entries of the log. Finally, the
summary in each small block can help the user know which intervals
are considered (the timeframe, for instance) and therefore identify an-
omalous values, characteristic trends, etc. Although representations
(variable extents, distributions and sparklines) are chosen automatic-
ally based only on the type of the field, we argue that they are in fact
valuable if not concise [78].

In this section, we presented the summary view which is automatic-
ally generated for imported log files, provided that the correct parser

7 This information is pre-calculated when the dataset is first processed and loaded
(see vertical augmentation of the dataset in Section3.1.3).

64 ��������� �������� �������������

is available. We insist on the fact that when creating a new parser
for a new type of log file, the user never has to choose the repres-
entations used in the summary, and only needs to specify the types
of fields. Consequently, (s)he does not need experience in design or
visualisation. In the next section, we show how the user interacts
with the summary view to obtain details on the various fields and
their characteristics.

�.� ���� ������������

In this section, we describe user interactions with the dataset through
the summary view. We begin by describing how the user chooses the
fields (s)he is interested with. We then explain how representations
are automatically selected according to the types of the selected fields.
Finally, we briefly describe how representations are generated.

�.�.� Selecting fields of interest

As shown in Section3.2, each field of the dataset is presented as a
summary block in the summary view. To interact with the dataset,
the user can select one or more blocks to form a simple subset of the
fields (s)he is currently interested in. A shadow then surrounds these
fields, providing visual feedbacks on the fields that are selected.

In order to obtain a detailed representation of the selected fields,
the user drags them off the summary view and drops them on a free
space of the background of the web page. While this mode of interac-
tion does not display any affordance for discovery by first time users
who have not been briefed, we found that the metaphor of dragging
fields of interest off the summary views to obtain detailed views was
acquired very quickly. Furthermore, given how representations are
placed on the screen, it is very easy for the user to find a free space
without having to go through a complex process.

Once the selected fields are dropped, ELVis automatically selects a
relevant representation for the data. The way this selection is per-
formed is described in the next section.

�.�.� Automated selection of representations

ELVis was designed to assist with the selection of adequate visual-
isations based on context and objectives.

For individuals having no specific skills in visualisation, the selec-
tion of a relevant representation for a dataset is a complex task. Even
if Bertin [5] and Wilkinson [78] have provided fundamental pieces
of work on this topic, one cannot expect security experts to spend
extensive time on selecting a representation for the data they want

�.� ���� ������������ 65

to inspect. As a consequence, ELVis automatically selects a relevant
visualisation given the fields the user wants displayed.

To that end, based on the type of each selected field, ELVis selects a
relevant representation according to the following rules, inspired by
[5], [78]:

• Selecting a single categorical type field which number of unique
values is smaller than eight8, a pie chart is produced.

• Selecting a single categorical type field which number of unique
values is larger than seven, a bar chart is produced.

• Selecting a single quantitative type field produces a detailed
histogram displaying the general distribution of its values.

• Selecting a single geographical type field produces a map with
plotted points and an adjusted view to encompass them.

• Selecting two categorical type values produces a matrix based
adjacency chart for correlation.

• Selecting two quantitative type fields produces a scatter plot
for finding correlations. However, if one of these fields is of
time type, this produces a line chart to display value evolution.

• When any other combination is chosen, ELVis falls back to par-
allel coordinates à la PicViz [71], that is known to be able to
display numerous values and multiple fields.

Concretely, these rules are functions which filter out incompatible
options from the set of available visualisations. Visualisations are
selected based on the selected dimensions and the properties of their
data, and only those which pass at least one of the previous rule are
kept.

The set of representations available in ELVis has deliberately been
kept small. We did not want to take the risk of confusing the user
with many possible representations for a single concept, nor create
very specific and possibly hard to understand representations that
would only appear in very specific cases. One of the objectives of ELVis
is to be extensible to new kinds of log files formats with fields which
may be semantically very different from the ones that are already
available in the tool. It is therefore important that some generic-
enough representations are available to handle these very specific
fields.

The chosen representation is then scaled and configured based on
the values computed during the vertical augmentation for each field.
Finally, the representation is created and displayed on the screen. Fig.

8 We experimentally found that when there are more than seven values in the category,
the pie chart becomes unclear.

66 ��������� �������� �������������

3.4 shows an example of various representations obtained from the
apache log. The pie chart on the upper right shows the proportions
of the various values in the categorical type field status. The adja-
cency matrix on the bottom left displays the relations between the two
categorical type fields statuses and IP, showing which IP caused
which statuses. Finally, the map on the bottom right corner shows
the locations of the values of the geographical type field loc[IP].

Figure 3.4: Multiple representations automatically selected by ELVis based
on the fields chosen by the user. The status field is categorical,
has few values and is represented using a donut chart. When
selected with IP, another categorical type field, a matrix
chart is produced. The IP field has been extended to add a
geographical type loc[IP] field, which when selected produces
a map.

�.�.� Brushing and filtering

Further work on ELVis led to enhancements to the analysis such
as the capacity to interact with the visualisations through brushing
and selection. Corresponding to the last step in the data pipeline
which concerns interaction, these actions are also responsible for the
feedback arcs in the visualisation pipeline. They trigger filtering for

�.� ���� ������������ 67

the related dimensions and updates to the displayed information (Fig.
3.5).

Brushing the timeline for a datasource filters out events outside
the selected time period and focus on those events. Dragging the
selection updates the filter and enables time “scrubbing” and enables
replaying or searching for large scale events.

Selecting single marks in the visualisations filters out events which
are not concerned by the selection and helps people focus on those
combinations of dimensions and values. For instance, in the dimen-
sion summaries each bar is mapped to a value of the corresponding
dimension and its total count. Selecting any bar in a status summary
focuses on the associated status and filters out all data unrelated
with that status.

Figure 3.5: Exploring a dataset through brushing and selection. Datasets
are distinguished by colour and filtering is available for every
visualisation through selection or brushing.

68 ��������� �������� �������������

�.� ��������������

ELVis is implemented for the browser platform with web technolo-
gies such as HTML5, Javascript, CSS and SVG9. The representations
are built using the D3 Javascript library [10] which enables flexible yet
semantically meaningful creation of data visualisations.

The first publicly presented version of ELVis used the third party
D3.chart library from the Miso project [70] which helps define struc-
tures to better build reusable and extensible charts, and Miso Dataset
which aids with parsing and structuring datasets.

Following tests, performance was marked as an important issue
and ELVis clearly needed optimisation. While there were no problems
with handling log files no longer that a few thousand entries, ELVis
took up to a few minutes to handle files containing hundreds of thou-
sands of entries. In a second iteration, Miso Dataset was replaced
by Crossfilter [13] to help speed up the import phase and provide a
means for filtering the stored datasets. Because Crossfilter is an op-
timised OLAP cube for aggregation and filtering data, using it for
storing and accessing the log files also contributed to a responsive
interface with datasets based on slicing and dicing dimensions.

The first version of ELVis was also lacking a mechanism allowing
people to visually filter entries according to specific values in spe-
cific fields. Further work towards implementing selections in the
various detailed views added brushing and zooming capabilities to
help users explore and drill-down into data to truly make use of each
representation. This next iteration of ELVis (Fig 3.5) generated repres-
entations which were synchronised with selections in the other visu-
alisations. This aspect was a strong argument towards limiting the
number of representations in ELVis: each new representation needed
a relevant selection mechanism, which could be difficult to manage
in very complex representations.

�.� ���������������

In order to test ELVis, we used the 2010 Honeynet visualisation chal-
lenge dataset [69]. This dataset contains log files that were gathered
on a real compromised machine.

9 HTML5 is the standard for programming web applications, using the Javascript pro-
gramming language and Cascading style sheets (CSS) for describing application ap-
pearance. Scalable vector graphics (SVG) is the web standard for producing scalable
graphics.

�.� ��������������� 69

�.�.� Exploring logs

ELVis tries to impose as few decisions as possible on the operator,
who can instead rely on experience to freely search for patterns signi-
ficant to the data and systems.

While exploring the log files provided by the honeyviz challenge
using ELVis, we found many interesting patterns, including the one
seen in Fig. 3.6 in which user authentications (successful or not) are
displayed according to time. In this representation, numerous bursts
of authentication attempts made for numerous user names are appar-
ent, with no further attempts for a given user name once the burst is
over. These cascade like patterns of similar bursts indicate that the
attempts are very probably coordinated brute force attacks.

By using the combined aggregations and filters, groups of events
could be isolated and inspected without losing track of the explor-
ation process. Thanks to the the feedback provided by responsive
filtering we were able explore datasets much more naturally [45].

�.�.� Interpretation

During these tests, we observed that most representations that were
automatically generated by ELVis made overall sense. At no point was
there any need for resorting to complex or custom visualisation: once
a specific pattern in a given log file was discovered, users were more
inclined to repeat the process again with simple visualisations rather
than add more fields to the current one. The tests demonstrated that
ELVis is useful to visually explore security log files, allowing people
to quickly notice relevant facts.

However, these results also revealed the limitations of this solution.
First, representations were created only by interacting with the

dataset summaries. While ELVis was not able to perform this task,
a further tool was envisaged which would allow that. Further repres-
entations could also be produced from these initial representations,
making data exploration a progressive drill-down process.

Also, in ELVis, each dataset (i. e., each log file) was isolated from the
others and multiple datasets cannot be combined for exploration even
if more that one have been imported. Enhancements to selections
could enable them to span multiple datasets to correlate between
them and combine information. The same logic applies to the visu-
alisations, which could also foreseeably be combined into composite
visualisations.

These two issues required an entire new approach, which ultimately
led to the development of an new tool based on the same principles
but designed this time around the analytical methods adopted by se-
curity analysts when approaching new data. This tool was designed
to help pursue an analysis from one dataset to another by using

70 ��������� �������� �������������

Figure 3.6: The representation of the fields user and time from the auth.log
file show distinctive access patterns.

�.� ��������������� 71

points of interest shared by both and effectively combining multiple
datasets within one tool, which we present in the next section.

72 ��������� �������� �������������

�.� ����������

This chapter discussed ELVis, the proof of concept for a security-
oriented log visualisation tool that allows security experts to visually
explore numerous types of log files. In order to automatically select
relevant representations, ELVis uses information on the type of each
field. This way, it can produce concise and expressive summary views
for each log file as well as appropriate detailed views for fields selec-
ted by the user. If new types of log files need to be analysed, the user
needs only provide a regular expression for parsing each line of the
log file as well as the type and label for each resulting field.

With this approach, ELVis accomplished its stated objectives:

1. to help security experts to benefit from appropriate visual rep-
resentations of log files without the need for experience in addi-
tional domains such as graphic design.

2. to be as versatile as possible by handling many types of log
files and by being extensible for handling extra formats without
requiring the help of visualisation experts to design new repres-
entations specific to these new types of log files.

Therefore, ELVis allows security experts with no experience of visu-
alisation to benefit from adequate visual representations for their log
files. Security experts can input their knowledge of log formats and
types into the system without having to specify their visual usage or
the outcomes while obtaining valid representations for their log files.

In the next chapter we describe the successor to ELVis. Dubbed
CORGI, this tool inherits the same parsing and visualisation mech-
anisms as ELVis, but with an interface designed for visualising and
comparing multiple datasets. CORGI allows the collection of values
of interest in datasets for future use in reports but also enables the
pursuit of these across datasets, enabling a truly semantic analytical
exploration process.

4 I N V E S T I G AT I V E S E C U R I T Y
V I S U A L I S AT I O N

“Time moves in one direction, memory in another."

— William Gibson

As we discussed in the previous chapter, log files exist in different
formats and contain different information depending on the software
that generated them and what the file describes. ELVis aimed to ex-
plain global trends or detect events that are symptomatic of attacks.
In accordance with the Shneiderman mantra, It is often considered
that the analysis is a drill down process and that the analyst is search-
ing for a specific piece of information. However, even if detecting
each malicious action is fundamental, it is also very important to un-
derstand the relations between security events so as to reconstruct
the global scenario [43]: once the analyst has found an interesting
event, (s)he must be able to discover any other related events, even
if these events are found in different log files generated by differ-
ent sources therefore exhibiting different formats. What are, for ex-
ample, the causal relations between the attacks in different parts of
the system? Having compromised a web server, did the attackers
then perform other malicious actions on the system? If so, what are
the consequences? In reaction to this, we advocate that IT forensics
is an iterative process and that an analyst must be able to easily use
information stored in log files to search for related events in other log
files, even if these are not explicitly related /empha priori.

This chapter presents CORGI, an evolution of ELVis which imple-
ments an iterative process inspired by those used for IT forensics by
allowing the analyst to use the values of interest (s)he finds in a given
dataset to filter events in other datasets, thus implicitly relating these
datasets and helping to traverse multiple datasets meaningfully.

In this chapter, we first explain how CORGI manages log files. Then,
we detail how log files can be efficiently related to each other based
on values of interest. In Section4.2, we describe the representations
and user interactions in CORGI. In Section4.3, we provide some in-
formation about implementation. Finally, in Section4.4 we discuss
case studies and possible improvements.

73

74 ������������� �������� �������������

�.� ��� �����

Inheriting from ELVis, CORGI also uses log files as data sources. In
this section, we first present how log files are organised. We then
present the various operations that can be performed on a dataset
obtained from a log file during an analysis. Finally, we present how
connections can be built between a priori unrelated datasets.

�.�.� Log File Organisation

As stated earlier, while log files exhibit various contents and formats,
they are generally organised in a similar way. A log file is made of
a set of entries, each of which corresponds to an event. These events
are made of a set of fields. Since each entry in a given log file corres-
ponds to an event, we also assume that all the log files used by the
analyst contain a timestamp field which places the event in time. In
consequence, most log files can be seen as a table with as many lines
as events and as many columns as fields, at least one of them being a
timestamp.

Re-using the same approach to typing described in the previous
chapter for ELVis, each field is designated as either categorical, quan-
titative, time or geographical.

Each field also has meaning and can be associated with a semantic
type. The semantic types in CORGI are different from the previous types
in ELVis: they provide information about the nature and meaning of
the field. Currently we have identified many semantic types among
which: IP Address, TCP Port, UDP Port, Timestamp, URL, CVE_ID, Size,
HTTP Method, HTTP Status Code, FTP command, userid, City, Country.
The analyst can create further types according to the current need.
Types should be generic enough to be used in as many log files
as possible while being specific enough to avoid ambiguity. For in-
stance, a Status Code type is too generic since it could encompass
HTTP Status Code and NNTP Status Code, which in fact do not have
the same meaning.

CORGI uses these semantic types to create relations between datasets
through categorical type fields. This aspect will be described in Sec-
tion4.1.3.

�.�.� Operations on a Single Log File

When exploring a log file for forensics purposes, an analyst is
searching for events of interest, events that are of particular relevance
for understanding and reconstructing what happened on the mon-
itored system. Different analysts have different approaches for ex-
ploring the same data [2]. For instance, they do not start by exploring
the same fields. These differences could be explained by the attacks

�.� ��� ����� 75

the analysts have been exposed to recently as well as the contextual
information each of them has been provided with.

While their ways of exploring a given log file are different, all
analysts generally perform sequences of two basic operations: they
choose specific fields to be considered and select events according to
the values exhibited by these fields. In accordance with the termin-
ology used in relational algebra [11], we call these operations projec-
tions and selections. Projections consist in choosing fields of interest (for
instance, HTTP Status Code) so as to focus on the information they
contain. Selections consist in choosing specific values for a given field.
For instance, the analyst chooses all the events in an apache-access

log file for which the HTTP Status Code is equal to 500, 501, 502, 503,
504 or 505 which correspond to types of server errors.

The exploration of a log file can be described as sequences of pro-
jections and selections which lead to events of interest, events which
are considered particularly interesting for the analyst. We should
mention that the differences between the different modi operandi of
the analysts are linked to the order in which these operations are per-
formed. However, if analysts reach the same conclusions, they will
have obtained the same set of events of interest whatever order the
projections/selections were in.

When an analyst obtains a set of events of interest, (s)he can consider
that the values of some of the fields are particularly relevant. We call
them values of interest. For instance, it could be the IP Addresses

of the hosts which caused the events of interest to be logged, the
CVE_IDes of the vulnerabilities which were effectively exploited, etc.
Values of interest are obtained by projecting the events of interest for
a specific field of interest and therefore constitute a set of values the
events of interest take for this field of interest associated with the se-
mantic type of the field.

In the next section, we show how values of interest are used to relate
log files.

�.�.� Relating Datasets

Log files offer local views of events on specific parts of the mon-
itored system. As such, they allow the detection of malicious actions
that were performed in its own specific context. However, the pur-
pose of forensics is not only to detect unrelated malicious events but
also to reconstruct the global scenario of the attacks which happened
on the system as a whole. To that end, it is important to be able to
relate the various log files. Since our objective is to allow the analyst
to opportunistically use any log file available on the system, we also
designed CORGI to offer him or her the ability to dynamically relate
log files having no explicit a priori relation between them. This is done
using both the values of interest and the Timestamp fields.

76 ������������� �������� �������������

�.�.�.� Relations Based on Values of Interest

Each log entry is made of fields which each have a specific type.
Two log files which exhibit fields of the same type can be related
semantically since they reference objects of the same nature. For in-
stance, relations can be implied between log files that both have IP

Address, TCP Port, HTTP Status Code or CVE_ID fields.
Following the idea that forensics is an iterative process (one dis-

covery leading to another), CORGI relies on values of interest to relate
log files. As stated in the previous section, an analyst who discovers
events of interest can extract values of interest from chosen fields. Be-
cause these values are typed, it is possible to use them for filtering
log files with at least one field of the same type, i. e., to select this
field and only keep entries with values listed in the provided values
of interest. As a result, the new selection only contains events with
values previously defined as being of interest in the first log file.

We should mention that if a log file has more than one field of a
given type, the analyst can apply the filter to any number of them.
For instance, IP Addresses of interest obtained from an apache log
can be used to select the source IP Address field of a snort log file, its
destination IP Address or both. Relations can also be performed on
the same log file. For instance, if some IP Addresses are identified as
victims (Destination IP Address) in a Snort log, it can be interesting
to use these as filters on the Source IP Address of the same Snort log
to discover compromised machines being used as stepping stones to
launch attacks.

As explained, log files are related a posteriori in CORGI during the
analysis: the security operator decides which fields have interesting
values and when to follow these to other log files. Only elements
considered interesting in one log file can be related to other log files
by using them as filters. Using this approach, we avoid combinatorial
explosions which can occur when using natural joins10 between log
files [11]. While enforcing type constraints prevents the analyst from
making mistakes by relating semantically different data, the proposed
mechanism also allows more freedom regarding the possible relations
that can be explored. We strongly believe that the analyst should have
the last word for when it makes sense to relate two log files since (s)he
is better informed on analysis context.

�.�.�.� Relations Based on Time

Time is critical information when reconstructing attack scenarios.
In point of fact, events belonging to the same attack scenario are
linked in one way or another by their time of occurrence. The know-

10 We use the term natural join in the relational algebra sense, i. e., each entry in a log
file is associated with every entry in the other if they have the same value for the
selected fields.

�.� ������������� ��� ���� ����������� 77

ledge that two events are simultaneous or that one happened after
the other is particularly relevant for an analyst.

In log files, time is stored by the Timestamp field. In contrast with
the data types we presented in the previous section, the Timestamp

type is not categorical. Due to clock drifting in the machines and the
time it takes to generate a log entry, two events stored in different log
files and corresponding to the same observed event may not exhibit
the same Timestamp, and two unrelated events may share the same
Timestamp. Modifying Timestamp precision to compensate for this
fact is dangerous: First, it is very difficult to arbitrarily estimate clock
skews and imprecisions. Second, events which are part of an attack
scenario may be spread over long periods. Such is the case with
Advanced Persistant Threats for example.

For these reasons, CORGI uses visual correlation to help the analyst
relate log files in time. As will be shown in more details in Section4.2,
CORGI offers a synthetic representation in which the various log files
are presented on a shared time scale to enable a direct visual correla-
tion allowing analysts to perceive simultaneity and possible causality.

In the following sections, we present and explain our choices for
implementing these concepts.

�.� ������������� ��� ���� �����������

Having explained the conceptual foundation for how CORGI man-
ages datasets, we now describe the interface and the user interactions
we designed to help explore logs using visualisation tools. We first
provide an overview of the interface, then some details about its dif-
ferent areas and how the analyst interacts with them.

�.�.� Overview

The main interface in CORGI (see Fig. 4.1) is divided into 4 panels,
each of which has a specific purpose linked to a step in the explora-
tion process. We describe these panels in a counter-clockwise fashion,
following our general interaction procedure.

In the top left corner, the header panel houses the log import button.
The analyst can either click this button to select log files for importing
or drag and drop these files from a file explorer. When new log
files are imported, they are parsed and appear in the leftmost time
view panel (1) which displays the event time distribution for each log
file. When log files are selected in the time view panel, their fields
appear in the adjacent fields summary view (2), which displays field
distributions using sparkline type bar charts. When more than one

78 ������������� �������� �������������

Figure 4.1: An overview of CORGI, with the import button in the top left
corner, time view (1), field summary view (2), full-sized chart
view (3) and values of interest box (4).

dataset is selected in the time view panel, the fields of every selected
dataset are displayed. The full-sized chart view (3) is the main panel.
It contains all the full-sized charts with axes and labels. Finally, the
values of interest box (4) located in the header panel is designed both
to collect the values of interest discovered during the analysis and to
apply these values of interest as filters for other fields of the same
type.

An analysis using CORGI follows the same path as our tour of
the interface: After the log files have been imported for exploration,
the analyst is first given an overview of these to compare the event
time distribution. (S)he can then obtain more information about the
value distribution for each field and compare these across log files.
If some fields look particularly interesting, (s)he may then explore
them further and select specific values. When values of interest have
been found, the analyst can store them and a new exploration cycle
begins: these values of interest can be used to filter fields with the
same type or new log files can be imported analysis. This design
helps the analyst to avoid losing track of the exploration process and
also removes any constraint on the order in which the log files and
fields are explored.

�.� ������������� ��� ���� ����������� 79

We now provide more details about each of these components in
the following sections.

�.�.� Importing Logs

CORGI uses a modified version of the importation mechanism de-
signed for ELVis. The need for a semantic type for each field is the only
difference with the ELVis log acquisition mechanism.

When importing a set of log files, the first entry of each of them
is tested by each available parser until a match is found, in which
case each entry is parsed and normalised11, each field is mapped
to its descriptors, the events are counted and the log time period is
retrieved.

Each log file is assigned a colour on import which is used in the
entire interface for all visualisations related to this dataset to help
distinguish between files. This helps analysts identify the source of
fields, from which log files values of interest where collected and on
which field(s) they have been applied.

For each imported log file, a new representation is created in the
time view panel.

�.�.� Timeview Panel

The time view panel displays the distribution of events across time
for the imported log files. It is composed of two similar representa-
tions which both visualise the datasets using stacked charts sharing
a scale to enable correlation by time.

The first representations cover a globally encompassing time scale
and use a reduced size horizon chart [30]. The dates are displayed
in a human-friendly format, which first provides the analyst with the
knowledge of the period over which the events have been logged. In
Fig. 4.1 for instance, the auth.log file spans the full period while
the www-access.log and www-media.log files contain events within a
shorted period. In this precise case, this is due to the fact that roll-
overs are different for syslog files and apache log files. However,
the absence of events over a given period could also mean that the
intruder shut the logging system down temporarily, or that parts of
the log file have been erased. The horizon-chart based representation
allows the analyst to notice these patterns immediately.

This representation also provides an overview of the event distri-
bution over time in a way similar to [20]. As such, macro-events such
as DDoS or brute-force attacks for example are detected immediately.
Because the representations of the log files are aligned, visual correla-
tion is much easier: synchronised attacks over multiple systems, ap-

11 While IP addresses often look the same, timestamps for instance exhibit very dif-
ferent formats, e. g., some of them do not contain the year.

80 ������������� �������� �������������

pearing in multiple log files, exhibit vertical alignment patterns while
causally-related events exhibit delayed activity patterns.

While this representation provides the analyst with an interesting
overview of the events, (s)he can also zoom in to obtain more details
about a specific period. A unified brush on the horizon charts allows
for filtering the time period and controls the time scale for the second
set of area charts underneath and enables the detailed inspection of
our global timeline. Additional information about each log file is also
provided: its name, the number of events contained within the selec-
ted time period, and a vertical axis for better evaluating the quantity
of log entries for each period. The horizontal axis located at the top
provides a more detailed timeframe for the selected period.

When the analyst clicks on the representation of a log file, its fields
are displayed in the fields summary view, which we present in the next
section. A second click removes the fields from the field summary view
to avoid overwhelming him or her.

�.�.� Fields Summary View

The field summary view contains a summary chart representation of
all the fields selected in the time view panel. In order to help the
analyst, each field exhibits the same colour as the log file it belongs
to.

The field summary view first informs the analyst about the avail-
able fields in a given log file. The name of each field is provided as
well as the number of distinct values this field exhibits. Finally, the
bar chart displays the distribution of the values for this field. By tak-
ing up little space on the screen, it allows the analyst to easily notice
and compare unusual distributions.

Each chart reacts to the current time filter applied in the time view
panel and updates accordingly. An analyst can therefore inspect the
evolution of the distributions for a given field by brushing and sliding
the selection in the time view panel.

This feature is very effective for detecting massive events happen-
ing on a very short period such as brute-force attacks, DDoS, etc.
In this kind of situation, the distributions of the values in some of
the fields change noticeably in a very short period. For instance, in
the case of a brute force attack against the admin password on a
web service, a single or a few IP addresses will perform a noticeable
share of the requests for a very short time and will therefore be over-
represented, but only for a few minutes. Depending on the size of
the analysed log file and any potential sampling, the share of these
requests could stay undetected. In contrast, when the analyst brushes
the time view panel, (s)he can observe modifications at certain times
in the IP address distributions which require further investigations.

�.� ������������� ��� ���� ����������� 81

To obtain more information about some fields, the analyst can click
on summary representations to trigger the display of full-sized charts.

�.�.� Full-Sized Charts View

The full-sized charts view contains the complete representations of
the fields the analyst selected for exploration in the field summary
view. A full-sized chart (see Fig. 4.2) exhibits the same colour as the
log files it comes from. The values the field takes and the number of
events with this values are provided.

Figure 4.2: The full-sized chart of an HTTP Status code field.

CORGI is based partly on concepts already used in ELVis, such as
generating visualisations based on the types of selected fields.

Representations are automatically selected according to the fields
chosen by the analyst and using the same rules presented in ELVis
(see p.65). For instance, Fig. 4.2 corresponds to the selection of a
single HTTP Status Code which is categorical while Fig. 4.3 shows
the representation produced for the selection of a HTTP Status Code

field and an IP address field, both being categorical in nature. Pie
charts were entirely replaced by bar charts, which are more effective
for comparing and scaling to multiple values.

We should mention that CORGI only combines fields coming from
the same log file into a single representation. Indeed, it would make
no sense to combine different fields coming from different log files
since their values cannot be safely related to shared single event.

Analysts can perform selections on the values of full-sized charts
by clicking on them. The result of this selection is then applied to all
the representations dealing with the same log file. For example, if the
analyst selects the values 500 and 502 in the HTTP Status Code rep-

82 ������������� �������� �������������

Figure 4.3: The full-sized chart of HTTP Status Code and IP fields.

resentation, all the representations for the same log file are modified
to only display the events for which the HTTP Status Code is equal
either to 500 or to 502. For instance, the IP chart only displays IP ad-
dresses linked to requests which generated 500 or 502 HTTP Status

Code.
Additional information and interactions are proposed on the up-

per right of each full-sized representation. First, the names of the
represented fields are displayed. Three small buttons are available:

• The cross button removes the representation. The selections
that were made using it are dismissed.

• The check button keeps this representation as is. If other fields
that belong to the same log file are selected afterward in the
same log file, they will not be added to this representation. It is
however still possible to perform selections on it.

• The flag button collects values of interest.

When values of interest have been found in a chart, the analyst
can click the flag button to collect these. For example, if the analyst
selected 500 and 502 values in the HTTP Status Code and wants to
keep the IP addresses which caused these values to be logged, (s)he
can click on the flag button of the IP field representation. In the
case of two dimensional visualisation such as a matrix chart, selecting
a mark as a value of interest will produce two kinds of values of
interest, one for each dimension. It is of course possible to generate
values of interest for more than one field of the same log file.

In the next section, we show how values of interest are represented
and how the analyst interacts with them.

�.� �������������� 83

�.�.� Values of Interest Box

The values of interest box is located in the upper panel. It contains
the values of interest which have been collected by the analyst. A
given value of interest is represented as follows, left to right:

• The name of the field from which the values of interest were
extracted, colour coded for the log file it came from.

• the semantic type of that field.

• the values of interest, which can be individually toggled.

• the names of the fields the values of interest can be applied to
as filters, colour coded for the datasets they belong to.

Here, Fig. 4.4 shows a set of two values of interest obtained from
the IP field in the blue dataset (in this case, an apache access log
file), with the IP semantic type. It contains two values (208.80.69.69
and 65.88.2.5) and can be applied to the field named IP in the green
log file. This last box is filled, which indicates that the filter is cur-
rently applied, but only for the currently selected address, which is
208.80.69.69.

Figure 4.4: Two IP addresses selected as values of interest.

In order to remember from where these values of interest originate,
the analyst can hover over the value of interest. A tool tip then dis-
plays the selections that led to obtain these values (in this case, HTTP
Status Code = 500 or 502).

Because the values of interest box is located in the upper panel, it
allows the analyst to keep an eye on these values at all times. This
helps to guide the selections that can be performed based on the
values in the various fields of the displayed log files.

After this presentation of the interface and interactions used by
CORGI, we provide details on their implementation and cases studies
in the next section.

�.� ��������������

CORGI is implemented as a web application using HTML5, Javascript,
CSS and SVG. It uses React [57] to manage the user interface and is
built following the Flux application architecture [58].

For effective visual exploration of logs, we consider certain func-
tions essential such as filtering, annotation and support for multiple

84 ������������� �������� �������������

datasets. The user interface for CORGI relies heavily on reactive filter-
ing and synchronisation between elements of the interface. Visualisa-
tion tools often accompany a chart with a similar smaller chart for
context. PortVis [49] displays multiple synchronised time charts to al-
low for simultaneous global and detailed visualisation, as do Muelder
et al. [51]. The time view in CORGI uses the same approach with two
linked time charts, one global and one filtered, in an effort to help to
provide both context and detail in one component simultaneously for
multiple datasets.

When managing an interface composed of many linked compon-
ents synchronised with shared data stores, maintaining a clean ap-
plication state is difficult. One of the fundamental principles of Re-
act and Flux is to build applications around a unidirectional flow of
data. The Flux architecture was proposed by Facebook as alternat-
ive to MVC style architectures for simplifying the task of managing
an application with multiple synchronised views and data stores (Fig
4.5).

Using this foundation helped us build CORGI closer to a data pipeline
model [22], [78].

Figure 4.5: The Flux architecture implements a unidirectional flow of in-
formation. Data stores provide state for views, through which
the user can trigger actions. These are dispatched to the relevant
stores to change the state. These actions can also be issued by
external sources, such as local or remote services.

Visualisations are generated using both D3 [10] and React. As both
of these tools were designed to directly manipulate the DOM12 but
approach this in different ways, control has to be handed from React
to D3 at some point. In our case, most of the SVG markup for our
visualisations is generated by React, using D3 directly for axes and
paths but also to manage layouts and scales.

Fast filtering is implemented using the Crossfilter library [13] which
provides an OLAP server for interfacing with datasets as n-dimensional
data cubes. As CORGI is entirely a client application with no server
counterpart, information storage is limited but performed in memory
and therefore much faster to access.

12 The Document object model (DOM) is a convention for representing and interacting
with objects through HTML5 documents

�.� �������������� 85

As it inherits its log parsing and chart selection capabilities from
ELVis, CORGI can both parse multiple log formats and select charts
automatically ((see listings 3 P.85 and 4 P.86).

282 Corgi.addParser(

283 /(\S+) (\S+) (\S+) \[([^\]]+)\] "([^"]+)" (\S+) (\S+)(?:

"([^"]+)")?(?: "(?:[^"]+)")?/,,!

284 Corgi.mappings[’apache-standard’]

285);

Listing 3: An Apache log file parser, which associates a regular expression
with a field mapping (Fig 3.1, page 59).

86 ������������� �������� �������������

6 Corgi.addMapping(’apache-standard’, [

7 {

8 index: 0,

9 label: ’ip’,

10 type: ’categorical’,

11 semantics: ’ip’

12 }, {

13 index: 1,

14 label: ’identd’,

15 type: ’categorical’,

16 semantics: ’id’

17 }, {

18 index: 2,

19 label: ’userid’,

20 type: ’categorical’,

21 semantics: ’id’

22 }, {

23 index: 3,

24 label: ’time’,

25 type: ’time’,

26 semantics: ’time’,

27 transform: d3.time.format(’%d/%b/%Y:%X %Z’).parse

28 }, {

29 index: 4,

30 label: ’request’,

31 type: ’categorical’,

32 semantics: ’HTTP Request’

33 }, {

34 index: 5,

35 label: ’status’,

36 type: ’categorical’,

37 semantics: ’HTTP Status’

38 }, {

39 index: 6,

40 label: ’size’,

41 type: ’quantitative’,

42 semantics: ’size’,

43 unit: ’bytes’

44 }, {

45 index: 7,

46 label: ’referer’,

47 type: ’categorical’,

48 semantics: ’URL’

49 }, {

50 index: 8,

51 label: ’useragent’,

52 type: ’categorical’,

53 semantics: ’id’

54 }

55])

Listing 4: An Apache field mapping, which associates fields with the results
of parsed log lines.

�.� ��������������� 87

�.� ���������������

We used CORGI to explore the 2012 HoneyNet visualisation Chal-
lenge [69] and the 2012 VAST Challenge [76] datasets.

The 2012 Honeynet visualisation challenge dataset contains log
files that were gathered on a real compromised machine. In this data-
set, there are about 10 different log files: auth.log, dpkg.log, kern.log,
www-access.log, www-error.log, etc.

For this case study, we first inspected the www-access.log and
www-media.log files, both logs from an apache web server, and the
auth.log file, an authentication log for the host. The www-media.log
file logs requests related to media such as images, CSS and Javascript
files, while www-access.log logs main requests. The auth.log file con-
tains different fields: timestamp, host, application, process id and the
authentication message from which we can often extract an action,
a user name and an IP address when the authentication is remote.
Once these files were imported into CORGI, we first noticed inconsist-
encies between the www-media.log and www-access.log files thanks
to the new layout and close proximity of the timelines. There is a
burst of requests in the www-access.log file at a specific time while
there are only a few requests at this same time in the www-media.log
file. There are also two such bursts in the auth.log file, the latter ap-
parently synchronised with one in the www-access.log file.

We first addressed the www-access.log file activity by inspecting
the corresponding HTTP status codes, especially the server errors
(5xx codes). We noticed that only two IP addresses are responsible
for these errors (65.88.2.5 and 208.80.69.69), and marked these IP ad-
dresses accordingly, as values of interest. We then decided to track
them through the three files using the values of interest box. In the
www-access.log file, there are many other requests that did not seem
harmful. Both the IP adresses are present in the www-media.log
file. The second one generates several client errors by requesting a
javascript URL not present on the server. By following these values
of interest to the auth.log dataset, we noticed that there are eight SSH
authentication successes and one failure linked to these IP addresses.
For the second one, there are logged warnings of failed reverse DNS
mappings. Two user names are used in these SSH connections: user1

and user3. These kinds of user names seemed strange on a host, al-
though they could very well be due to the anonymisation process.
We collected these as values of interest to further the exploration of the
logs. Using CORGI, we were able to track activity for both these IP
addresses across all three log files without copying filters or repeating
the same actions for every file.

We had previously explored these log files using ELVis and found
cascade like patterns indicating not only attempts at brute force re-
mote access but also the coordination of these attempts from multiple

88 ������������� �������� �������������

sources. However, as we were unable to easily make links between
the different log files, we were not able to easily use the other logs to
obtain more information about the agents that generated this activity.
CORGI can help collect and track values of interest across multiple logs.
Thanks to these functions, we were able to look for requests in the
Apache logs which generated errors and quickly look for the same
adresses in our authentication logs.

For our second case study, we inspected log files from the 2012

VAST Challenge. The second mini-challenge is made of four log files.
According to the described scenario, these logs come from the com-
puter networks of a regional bank. Two files are 24-hour logs from a
Snort IDS, while the others are firewall logs covering the same period.
Due to performance constraints, we focused our analysis on the IDS
log covering the first 24 hours.

Thanks to value based filtering, we discovered that 9 external IP
addresses were the source of IRC traffic directed towards 314 different
destination IP addresses in the internal network, and marked these 9

IP addresses as values of interest accordingly, referred to as A from now
on. We also discovered 5 IP addresses in the internal network which
are sources of scans of different services on the firewall. Again, we
marked these 5 IP addresses as values of interest, referred to as B from
now on. Our last discovery was more concerning: client hosts in the
internal network scanned the firewall of the bank. We pursued our
exploration by applying the IP addresses in B as a filter for the source
IP address field. This allowed us to know whether they are the source
of other alerts. As this is not the case, we then applied these values
of interest as a filter for the destination IP addresses. This helped us
to check whether these IP addresses were the target of attacks. This
time we found that this is the case for 4 of the 5 IP addresses in B:
these are implicated in the IRC traffic with the 9 source IP addresses
in A. We therefore hypothesised that the hosts in B may have been
part of a botnet controlled via IRC by the hosts in A.

During this use case analysis, we demonstrated how the ability to
filter different field values, mark some as values of interest and use
these values to filter the same dataset helps to conduct a coordinated
exploration of various data files.

�.� ����������

In this chapter we have presented CORGI, a web based tool designed
to help explore multiple log files simultaneously and allow the user
to traverse multiple datasets by following points of interest in the data.
To do this reliably, fields are associated with semantic types which
help discover related fields between log files. CORGI also builds upon
the assistive visualisation capabilities of ELVis and extends several of

�.� ���������� 89

its features to improve the exploration possibilities. The statistical
type system used to match visualisations with selected data subsets
is extended with a semantic system used for log traversal.

Fast filtering is now implemented for any view, and these views are
now react synchronously across datasets following interaction with
stored points of interest. The user interaction is an exploration guided
by points of interest and an interface designed for search cycles with a
drill-down approach. Not only can these points of interest be used to
filter and link multiple logs, they also give an insight on the progres-
sion and results of an analysis, providing the essentials for sharing
sessions and automatically generating reports.

C O N C L U S I O N & F U T U R E
W O R K

“I love deadlines. I like the whooshing sound they
make as they fly by."

— Douglas Adams

We have discussed how visualisation offers a means for people to
understand and manage data produced by information systems. Us-
ing visual representations of the current state and history of these
systems, experts can analyse security information more intuitively
and mitigate issues faster. Data pipelines can help transform the raw
data from systems into data ready for visualisation. Parts of this
data can then be strategically associated with visual variables which,
when combined, give an understandable representation of this sub-
set of information. In order to be well designed, visualisations are
built by taking into account the particularities of human perception.
They adhere to guidelines such as keeping data density high while
restricting distractions to a minimum. The products of all these steps
combined help security experts to better understand and interact with
their data.

A study of visualisation tools produced by researchers helped us
to understand how visualisation assists security operations in the
field. Using scenarios, we identified problems and described per-
sonas which correspond to these problems. This let us define spe-
cialisations of security visualisations towards three complementary
goals: monitoring, analysis and reporting.

The ELVis prototype was designed to simplify security analysis by
contextually and automatically selecting appropriate visualisations
for security experts. To help security experts who need to visualise
security data but who lack training in visualisation, ELVis employs a
design which separates visualisation knowledge from security know-
ledge. Visualisation experts add rules for ELVis to select relevant visu-
alisations for specific data types. Security experts then describe their
security datasources, which can then be matched with suitable visual-
isations. Demonstrating through experimentation that security prac-
titioners could explore security information without prior training in
visualisation confirmed the usefulness of ELVis and the validity of our
approach. ELVis was published and presented at VizSec 2013 [33].

The CORGI prototype re-uses the concepts of its sibling and im-
proves the process of exploring security data. CORGI was designed to
provide an investigation experience and implements tools to help ex-
perts mark and collect points of interest in datasets. These can then be

91

92 ���������� & ������ ����

used to traverse and cross-reference multiple data sources in an ana-
lysis session without needing to leave the workspace. These points
of interest also show promise for sharing sets of critical information
and building reports. CORGI was published and presented at VizSec
2014 [32].

These two prototypes address the issues identified in security visu-
alisation software: tools are often restricted to a single problem or
data source, or require expertise in visualisation. Both ELVis and
CORGI were designed to handle an extensible set of data formats and
suggest relevant representations from an extensible set of visualisa-
tions. Thanks to these prototypes, we are closer now to designing
tools which incorporate elements of monitoring, analysis and report-
ing in ways which let security experts work as close to their problems
as possible while avoiding as many distracting intermediate hurdles
as possible. Both of these prototypes have been tested against re-
cognised security datasets, and have received positive feedback from
security professionals.

These prototypes are offline web applications. They rely on local
log files, a readily available source of security data, and are limited
to the processing capabilities of a web browser. While unrelated to
the problems addressed by both tools, combining this local approach
with a more powerful remote backend would improve both log col-
lection and data processing capacities thanks to scalable distributed
storage and computing. This backend would allow the analysis of
larger datasets spanning multiple systems using more powerful meth-
ods. As a shared resource, this would also open up possibilities for
realtime updates, sharing sessions and even remote collaborative ana-
lysis.

To engineer a natural investigative experience, the design of CORGI
is centred around collecting and linking evidence. One direct side
effect of this approach is a new meta dataset, constructed by the
investigator using human experience and containing meaningful in-
formation about the analysis itself. This additional dataset could be
used to automatically build more meaningful reports which re-use
the information about the path followed by the analyst during the
investigation process. One of the goals for security visualisation tools
is to help practitioners work together. With this combination of mean-
ingful content and related context, collaborating team members could
more easily share updates with each other, and third parties could be
kept up to date thanks to reports generated automatically without
sacrificing meaning. Furthermore, this dataset could also be used
as context for future investigations, providing a reference point for
visualisations and training material for automatic recommendations.

On a last note, this work is centred around people, a deciding factor
in security. Security issues often focus on systems, and because we
concentrate our efforts on solving software and hardware problems,

���������� & ������ ���� 93

we sometimes overlook people who are, after all, the end client. The
most important objectives of security are to not only keep people safe,
but also help them feel legitimately safe, in part through access to
understandable information. Visualisation makes this last goal more
accessible by humanising security information.

A C O D E

Listing 5: The format used for parsing the VAST 2012 firewall logs.

1 Elvis.registerFormat({

2

3 name: ’firewall log’,

4

5 pattern: /([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),

([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),

([^,]+),([^,]+),([^,]+)/,

,!

,!

6

7 fields: [

8 {

9 label: ’time’,

10 type: [’time’],

11 transform: d3.time.format(’%d/%b/%Y %X’).parse

12 }, {

13 label: ’syslog facility’,

14 type: [’categorical’]

15 }, {

16 label: ’operation’,

17 type: [’categorical’]

18 }, {

19 label: ’message code’,

20 type: [’categorical’]

21 }, {

22 label: ’protocol’,

23 type: [’categorical’]

24 }, {

25 label: ’source ip’,

26 type: [’categorical’, ’ip’]

27 }, {

28 label: ’destination ip’,

29 type: [’categorical’, ’ip’]

30 }, {

31 label: ’source hostname’,

32 type: [’categorical’]

33 }, {

34 label: ’destination hostname’,

95

96 ����

35 type: [’categorical’]

36 }, {

37 label: ’source port’,

38 type: [’categorical’]

39 }, {

40 label: ’destination port’,

41 type: [’categorical’]

42 }, {

43 label: ’destination service’,

44 type: [’categorical’]

45 }, {

46 label: ’direction’,

47 type: [’categorical’]

48 }, {

49 label: ’connections built’,

50 type: [’categorical’]

51 }, {

52 label: ’connections torn down’,

53 type: [’categorical’]

54 }

55]

56

57 });

Listing 6: The format used for parsing the VAST 2012 CSV Snort logs.

1 Elvis.registerFormat({

2

3 name: ’snort log’,

4

5 pattern: /([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),([^,]+),

([^,]+),([^,]+),(?:(\S+) TTL:(\d+) TOS:(\S+) ID:(\S+)

IpLen:(\d+) DgmLen:(\d+) (.*))?,(?:(\S+) Seq: (\S+)

Ack: (\S+) Win: (\S+) TcpLen: (\d+))?,(.*)/,

,!

,!

,!

6

7 fields: [

8 {

9 label: ’time’,

10 type: [’time’],

11 transform: d3.time.format(’%m/%e/%Y %H:%M’).parse

12 }, {

13 label: ’source ip’,

14 type: [’categorical’, ’ip’]

15 }, {

16 label: ’source port’,

17 type: [’categorical’]

���� 97

18 }, {

19 label: ’destination ip’,

20 type: [’categorical’, ’ip’]

21 }, {

22 label: ’destination port’,

23 type: [’categorical’]

24 }, {

25 label: ’classification’,

26 type: [’categorical’]

27 }, {

28 label: ’priority’,

29 type: [’categorical’]

30 }, {

31 label: ’label’,

32 type: [’categorical’]

33 }, {

34 label: ’protocol’,

35 type: [’categorical’]

36 }, {

37 label: ’ttl’,

38 type: [’quantitative’]

39 }, {

40 label: ’TOS’,

41 type: [’categorical’]

42 }, {

43 label: ’ID’,

44 type: [’categorical’]

45 }, {

46 label: ’ip len’,

47 type: [’quantitative’]

48 }, {

49 label: ’dgm len’,

50 type: [’quantitative’]

51 }, {

52 label: ’packet info’,

53 type: [’categorical’]

54 }, {

55 label: ’packet info 2’,

56 type: [’categorical’]

57 }, {

58 label: ’sequence number’,

59 type: [’categorical’]

60 }, {

61 label: ’ack’,

62 type: [’categorical’]

63 }, {

98 ����

64 label: ’windows’,

65 type: [’categorical’]

66 }, {

67 label: ’tcp length’,

68 type: [’quantitative’]

69 }, {

70 label: ’xref’,

71 type: [’categorical’]

72 }

73]

74

75 });

A C R O N Y M S

IDS Intrusion Detection Systems .2

NIDS Network Intrusion Detection Systems . 3

HIDS Host Intrusion Detection Systems . 3

AIDS Application Intrusion Detection Systems . 3

ELVis Extensible log visualisation
CORGI Combination, Organisation and Reconstruction using Graphical

Interactions
DOM Document object model . 84

HTML Hypertext markup language
CSS Cascading style sheets . 68

SVG Scalable vector graphics . 68

D3 Data Driven Documents

99

B I B L I O G R A P H Y

[1] K. Abdullah and C. Lee, ‘IDS RainStorm: Visualizing IDS
Alarms’, in Proceedings of VizSEC’05, 2005, pp. 1–10 (cit. on
pp. 27, 29, 57).

[2] A. D. Amico and K. Whitley, ‘The Real Work of Computer Net-
work Defense Analysts The Analysis Roles and Processes that
Transform’, pp. 19–37, (cit. on pp. 55, 74).

[3] A. Analysis, ‘Analyst ’ s Notebook 8 Increase the depth of intel-
ligence for effective resource utilization.’, (cit. on p. 42).

[4] R. Anderson, Security Engineering: A Guide to Building Depend-
able Distributed Systems, 1st ed. Wiley, 2001, isbn: 0471389226.
[Online]. Available: http : / / www . citeulike . org / user /

thomasmuh/article/116315 (cit. on p. 2).

[5] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Uni-
versity of Wisconsin Press, isbn: 0299090604. [Online]. Avail-
able: http : / / www . citeulike . org / user / MoritzStefaner /

article/258824 (cit. on pp. 10, 11, 64, 65).

[6] D. M. Best, A. Endert and D. Kidwell, ‘7 key challenges for
visualization in cyber network defense’, in Proceedings of the El-
eventh Workshop on Visualization for Cyber Security, ser. VizSec
’14, Paris, France: ACM, 2014, pp. 33–40, isbn: 978-1-4503-2826-
5. doi: 10.1145/2671491.2671497. [Online]. Available: http:
//doi.acm.org/10.1145/2671491.2671497 (cit. on p. 5).

[7] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G.
Kadoda, M. Kutar, M. J. Loomes, C. L. Nehaniv, M. Petre, C.
Roast, C. Roe, A. Wong and R. M. Young, ‘Cognitive Dimen-
sions of Notations: Design tools for cognitive technology.’, Tech-
nology, CT ’01, vol. 2001, no. Lnai 2117, M. Beynon, C. Nehaniv
and K. Dautenhahn, Eds., pp. 325–341, 2001. [Online]. Available:
http://discovery.ucl.ac.uk/103930/ (cit. on p. 19).

[8] A. Blackwell, ‘Cognitive Dimensions of Notations: Understand-
ing the Ergonomics of Diagram Use’, Diagrammatic Representa-
tion and Inference, vol. 5223, pp. 5–8, 2008. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87730-1_4 (cit. on
p. 19).

[9] Blare IDS Blare/Introduction. [Online]. Available: http://www.
rennes.supelec.fr/blare/ (cit. on p. 3).

101

http://www.citeulike.org/user/thomasmuh/article/116315
http://www.citeulike.org/user/thomasmuh/article/116315
http://www.citeulike.org/user/MoritzStefaner/article/258824
http://www.citeulike.org/user/MoritzStefaner/article/258824
http://dx.doi.org/10.1145/2671491.2671497
http://doi.acm.org/10.1145/2671491.2671497
http://doi.acm.org/10.1145/2671491.2671497
http://discovery.ucl.ac.uk/103930/
http://dx.doi.org/10.1007/978-3-540-87730-1_4
http://www.rennes.supelec.fr/blare/
http://www.rennes.supelec.fr/blare/

102 ������������

[10] M. Bostock, V. Ogievetsky and J. Heer, ‘D3: Data-Driven Doc-
uments.’, IEEE transactions on visualization and computer graph-
ics, vol. 17, no. 12, pp. 2301–9, Dec. 2011, issn: 1941-0506. doi:
10.1109/TVCG.2011.185. [Online]. Available: http://www.ncbi.
nlm.nih.gov/pubmed/22034350 (cit. on pp. 68, 84).

[11] E. F. Codd, ‘A Relational Model of Data for Large Shared Data
Banks’, Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970,
issn: 0001-0782. doi: 10.1145/362384.362685. [Online]. Avail-
able: http://doi.acm.org/10.1145/362384.362685 (cit. on
pp. 75, 76).

[12] J. B. Colombe and G. Stephens, ‘Statistical Profiling and Visual-
ization for Detection of Malicious Insider Attacks on Computer
Networks’, pp. 138–142, 2004 (cit. on p. 27).

[13] Crossfilter. Fast Multidimensional Filtering for Coordinated Views,
http://square.github.io/crossfilter/ (cit. on pp. 68, 84).

[14] M. Daniel, S. Bohn, A. Wynne and A. William, ‘Real-Time Visu-
alization of Network Behaviors for Situational Awareness’, 2010

(cit. on pp. 36, 37).

[15] H. Debar, M. Dacier and A. Wespi, ‘Towards a Taxonomy of
Intrusion-Detection Systems’, Computer Networks: Special Issue
on Computer Network Security, vol. 31, no. 9, pp. 805–822, 1999,
issn: 1389-1286. [Online]. Available: http://www.citeulike.
org/user/missiongiraffe/article/99836 (cit. on p. 3).

[16] S. G. Eick, M. C. Nelson and J. D. Schmidt, ‘Graphical analysis
of computer log files’, Commun. ACM, vol. 37, no. 12, pp. 50–
56, Dec. 1994, issn: 0001-0782. doi: 10.1145/198366.198378.
[Online]. Available: http://doi.acm.org/10.1145/198366.
198378 (cit. on pp. 45, 49, 55).

[17] S. Engle and S. Whalen, ‘Visualizing distributed memory com-
putations with hive plots’, Proceedings of the Ninth International
Symposium on Visualization for Cyber Security - VizSec ’12, pp. 56–
63, 2012. doi: 10.1145/2379690.2379698. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2379690.2379698

(cit. on p. 23).

[18] Executive Insight | Think Quarterly by Google. [Online]. Available:
http://www.thinkwithgoogle.co.uk/intl/en_uk/quarterly/

data/executive-insight-guy-laurence-ceo-vodafone.html

(cit. on p. 4).

[19] G. A. Fink, P. Muessig and C. North, ‘Visual Correlation of Host
Processes and Network Traffic’, no. 0106, pp. 11–19, 2005 (cit. on
pp. 45, 47).

http://dx.doi.org/10.1109/TVCG.2011.185
http://www.ncbi.nlm.nih.gov/pubmed/22034350
http://www.ncbi.nlm.nih.gov/pubmed/22034350
http://dx.doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
http://www.citeulike.org/user/missiongiraffe/article/99836
http://www.citeulike.org/user/missiongiraffe/article/99836
http://dx.doi.org/10.1145/198366.198378
http://doi.acm.org/10.1145/198366.198378
http://doi.acm.org/10.1145/198366.198378
http://dx.doi.org/10.1145/2379690.2379698
http://dl.acm.org/citation.cfm?doid=2379690.2379698
http://www.thinkwithgoogle.co.uk/intl/en_uk/quarterly/data/executive-insight-guy-laurence-ceo-vodafone.html
http://www.thinkwithgoogle.co.uk/intl/en_uk/quarterly/data/executive-insight-guy-laurence-ceo-vodafone.html

������������ 103

[20] F. Fischer, F. Mansmann and D. A. Keim, ‘Real-Time Visual Ana-
lytics for Event Data Streams’, in Proc. of the 2012 ACM Sym-
posium on Applied Computing, ser. SAC ’12, ACM, 2012 (cit. on
p. 79).

[21] S. Foresti and J. Agutter, ‘VisAlert : From Idea to Product’,
pp. 159–174, (cit. on pp. 23, 33, 34, 52).

[22] B. Fry, Visualizing Data: Exploring and Explaining Data with
the Processing Environment. O’Reilly Media, 2008, p. 384, isbn:
0596514557 (cit. on pp. 8, 84).

[23] J. Glanfield, S. Brooks, T. Taylor, D. Paterson, C. Smith, C. Gates
and J. Mchugh, ‘OverFlow : An Overview Visualization for Net-
work Analysis’, pp. 11–19, 2009 (cit. on pp. 33, 35).

[24] E. Godefroy, E. Totel, M. Hurfin and F. Majorczyk, ‘Automatic
generation of correlation rules to detect complex attack scen-
arios’, in 10th International Conference on Information Assurance
and Security, IAS 2014, Okinawa, Japan, November 28-30, 2014,
2014, pp. 23–28. doi: 10.1109/ISIAS.2014.7064615. [Online].
Available: http://dx.doi.org/10.1109/ISIAS.2014.7064615
(cit. on p. 4).

[25] J. R. Goodall and W. G. Lutters, ‘Preserving the Big Picture :
Visual Network Traffic Analysis with TNV’, pp. 47–54, (cit. on
pp. 44, 46, 57).

[26] T. R. G. Green, ‘Cognitive dimensions of notations’, Proceed-
ings of the fifth conference of the British Computer Society, Human-
Computer Interaction Specialist Group on People and computers V,
pp. 443–460, 1989 (cit. on p. 19).

[27] L. Harrison, A. Lu and W. Wang, ‘Interactive Detection of Net-
work Anomalies via Coordinated Multiple Views’, 2010 (cit. on
pp. 42, 44).

[28] C. G. Healey, ‘Perception in Visualization’, 2006 (cit. on p. 13).

[29] C. G. Healey, K. S. Booth and J. T. Enns, ‘High-speed visual
estimation using preattentive processing’, ACM Transactions on
Computer-Human Interaction, vol. 3, no. 2, pp. 107–135, Jun. 1996,
issn: 10730516. doi: 10.1145/230562.230563. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?doid=230562.
230563 (cit. on p. 14).

[30] J. Heer, N. Kong and M. Agrawala, ‘Sizing the Horizon : The
Effects of Chart Size and Layering on the Graphical Perception
of Time Series Visualizations’, (cit. on p. 79).

[31] Hive Plots - Linear Layout for Network Visualization - Visually In-
terpreting Network Structure and Content Made Possible. [Online].
Available: http://www.hiveplot.net/ (cit. on p. 23).

http://dx.doi.org/10.1109/ISIAS.2014.7064615
http://dx.doi.org/10.1109/ISIAS.2014.7064615
http://dx.doi.org/10.1145/230562.230563
http://portal.acm.org/citation.cfm?doid=230562.230563
http://portal.acm.org/citation.cfm?doid=230562.230563
http://www.hiveplot.net/

104 ������������

[32] C. Humphries, N. Prigent, C. Bidan and F. Majorczyk, ‘Corgi:
combination, organization and reconstruction through graph-
ical interactions’, in Proceedings of the Eleventh Workshop on Visu-
alization for Cyber Security, ser. VizSec ’14, Paris, France: ACM,
2014, pp. 57–64, isbn: 978-1-4503-2826-5. doi: 10.1145/2671491.
2671494. [Online]. Available: http://doi.acm.org/10.1145/
2671491.2671494 (cit. on pp. 6, 92).

[33] C. Humphries, N. Prigent, C. Bidan and F. Majorczyk, ‘ELVIS:
Extensible Log VISualization.’, in Visualization for Cyber Security,
VizSec ’13, Atlanta, GA, USA, October 14, 2013, 2013, pp. 9–16.
doi: 10.1145/2517957.2517959. [Online]. Available: http://
doi.acm.org/10.1145/2517957.2517959 (cit. on pp. 5, 91).

[34] ‘Inappropriate Content Visualization – Mark II | fifth.sentinel
on WordPress.com’, Tech. Rep. [Online]. Available: http : / /

5thsentinel . wordpress . com / 2009 / 10 / 19 / inappropriate -

content-visualization-mark-ii/ (cit. on pp. 23, 24).

[35] D. Inoue, ‘DAEDALUS-VIZ : Novel Real-time 3D Visualization
for Darknet Monitoring-based Alert System’, pp. 72–79, 2012

(cit. on pp. 38, 40).

[36] B. Irwin and J. V. Riel, ‘Using InetVis to Evaluate Snort and Bro
Scan’, (cit. on p. 32).

[37] C. Kintzel, J. Fuchs and F. Mansmann, ‘Monitoring Large IP
Spaces with ClockView’, (cit. on pp. 37, 39, 56).

[38] H. Koike, ‘Visualizing Cyber Attacks using IP Matrix’, pp. 91–
98, 2005 (cit. on pp. 27, 30, 31).

[39] H. Koike and K. Ohno, ‘SnortView : Visualization System of
Snort Logs’, pp. 143–147, 2004 (cit. on p. 55).

[40] K. Lakkaraju, E. S. Ave and A. J. Lee, ‘NVisionIP : NetFlow
Visualizations of System State for Security Situational Aware-
ness’, pp. 65–72, (cit. on pp. 42, 43).

[41] K. Lakkaraju, A. Slagell, W. Yurcik and S. North, ‘Closing-the-
Loop in NVisionIP : Integrating Discovery and Search in Secur-
ity Visualizations’, pp. 75–82, 2005 (cit. on p. 52).

[42] C. P. Lee and J. A. Copeland, ‘FlowTag : A Collaborative Attack-
Analysis , Reporting , and Sharing Tool for Security Research-
ers’, pp. 103–107, 2006 (cit. on pp. 51, 52).

[43] H. C. Lee, T. Palmbach, M. T. Miller and C. Y. Lee, Henry Lee’s
crime scene handbook. Business Weekly publications, 2003, isbn:
9789867747976. [Online]. Available: http://books.google.fr/
books?id=rJh7nQEACAAJ (cit. on p. 73).

[44] W. Lian, F. Monrose and J. Mchugh, ‘Traffic Classification Using
Visual Motifs : An Empirical Evaluation’, 2010 (cit. on pp. 30,
31).

http://dx.doi.org/10.1145/2671491.2671494
http://dx.doi.org/10.1145/2671491.2671494
http://doi.acm.org/10.1145/2671491.2671494
http://doi.acm.org/10.1145/2671491.2671494
http://dx.doi.org/10.1145/2517957.2517959
http://doi.acm.org/10.1145/2517957.2517959
http://doi.acm.org/10.1145/2517957.2517959
http://5thsentinel.wordpress.com/2009/10/19/inappropriate-content-visualization-mark-ii/
http://5thsentinel.wordpress.com/2009/10/19/inappropriate-content-visualization-mark-ii/
http://5thsentinel.wordpress.com/2009/10/19/inappropriate-content-visualization-mark-ii/
http://books.google.fr/books?id=rJh7nQEACAAJ
http://books.google.fr/books?id=rJh7nQEACAAJ

������������ 105

[45] Z. Liu and J. Heer, ‘The effects of interactive latency on explor-
atory visual analysis’, 2014 (cit. on p. 69).

[46] Y. Livnat, J. Agutter, S. Moon and S. Foresti, ‘Visual correlation
for situational awareness’, IEEE Symposium on Information Visu-
alization, 2005. INFOVIS 2005., vol. 1, pp. 95–102, doi: 10.1109/
INFVIS.2005.1532134. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1532134 (cit.
on pp. 23, 33, 34, 52).

[47] Y. Livnat, J. Agutter, S. Moon, R. F. Erbacher and S. Foresti, ‘A
Visualization Paradigm for Network Intrusion Detection’, no.
June, pp. 17–19, 2005 (cit. on pp. 33, 34, 52).

[48] J. Mackinlay, ‘Automating the design of graphical presentations
of relational information’, ACM Transactions on Graphics, vol. 5,
no. 2, pp. 110–141, Apr. 1986, issn: 07300301. doi: 10.1145/
22949.22950. [Online]. Available: http://www.citeulike.org/
user/Yanno/article/989920 (cit. on pp. 10, 12).

[49] J. Mcpherson, P. Krystosk and L. Livermore, ‘PortVis : A Tool
for Port-Based Detection of Security Events’, pp. 73–81, 2004

(cit. on pp. 27, 28, 30, 31, 84).

[50] A. Mordvintsev, C. Olah and M. Tyka, ‘Inceptionism: going
deeper into neural networks’, Technical report, Google Inc.,
2015. Google Research Blog, bit. ly/1BkXP09, Tech. Rep., 2015

(cit. on p. 15).

[51] C. Muelder, ‘A Visualization Methodology for Characterization
of Network Scans Workshop on Visualization for Computer Se-
curity’, pp. 29–38, 2005 (cit. on p. 84).

[52] D. Norman, ‘The design of everyday things. 1990’, Currency and
Doubleday, New York, (cit. on p. 17).

[53] A. Oliner, A. Ganapathi and W. Xu, ‘Advances and challenges
in log analysis’, Communications of the ACM, vol. 55, no. 2,
pp. 55–61, 2012, issn: 00010782. doi: 10.1145/2076450.2076466
(cit. on p. 55).

[54] J. Pearlman and P. Rheingans, ‘Visualizing Network Security
Events Using Compound Glyphs from a Service-Oriented’, (cit.
on pp. 37, 40).

[55] S. Ranjan, ‘BGP Eye : A New Visualization Tool for Real-time
Detection and Analysis of BGP Anomalies’, pp. 81–90, 2003 (cit.
on pp. 42, 45).

[56] J. Rasmussen, K. Ehrlich, S. Ross, S. Kirk, D. Gruen and J. Pat-
terson, ‘Nimble Cybersecurity Incident Management through
Visualization and Defensible Recommendations’, 2010 (cit. on
p. 34).

http://dx.doi.org/10.1109/INFVIS.2005.1532134
http://dx.doi.org/10.1109/INFVIS.2005.1532134
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1532134
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1532134
http://dx.doi.org/10.1145/22949.22950
http://dx.doi.org/10.1145/22949.22950
http://www.citeulike.org/user/Yanno/article/989920
http://www.citeulike.org/user/Yanno/article/989920
http://dx.doi.org/10.1145/2076450.2076466

106 ������������

[57] React - A JavaScript library for building user interfaces,
http://facebook.github.io/react/ (cit. on p. 83).

[58] React | Flux Application Architecture,
http://facebook.github.io/react/docs/flux-overview.html (cit. on
p. 83).

[59] Realsecure server sensor. [Online]. Available: http://www- 935.
ibm.com/services/in/en/it-services/realsecure-server-

sensor.html (cit. on p. 27).

[60] F. Roveta and P. Milano, ‘BURN : Baring Unknown Rogue Net-
works’, (cit. on pp. 46, 50).

[61] B. Schwartz, The Paradox of Choice: Why More Is Less. Ecco, 2003,
p. 288, isbn: 0060005688 (cit. on p. 54).

[62] E. Segel and J. Heer, ‘Narrative visualization: telling stories
with data.’, IEEE transactions on visualization and computer graph-
ics, vol. 16, no. 6, pp. 1139–48, 2010, issn: 1077-2626. doi: 10.
1109/TVCG.2010.179. [Online]. Available: http://www.ncbi.
nlm.nih.gov/pubmed/20975152 (cit. on p. 9).

[63] B. Shneiderman, ‘The Eyes Have It : A Task by Data Type Tax-
onomy The Eyes Have It : A Task by Data Type Taxonomy for
Information Visualizations’, 1996 (cit. on p. 9).

[64] SIDAN’s webpage. [Online]. Available: http : / / www . rennes .

supelec.fr/ren/rd/cidre/tools/sidan/ (cit. on p. 3).

[65] ‘Snort’, Tech. Rep., Jan. 2013 (cit. on p. 3).

[66] J. Stoll, D. Mccolgin, M. Gregory, V. Crow and W. K. Edwards,
‘Adapting Personas for Use in Security Visualization Design’,
(cit. on p. 24).

[67] T. Taylor, S. Brooks, J. Mchugh, P. By and J. Work, ‘NetBytes
Viewer : An Entity-based Netflow Visualization Utility for
Identifying Intrusive Behavior’, pp. 101–114, (cit. on p. 56).

[68] T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks and
J. McHugh, ‘FloVis: Flow Visualization System’, 2009 Cyberse-
curity Applications Technology Conference for Homeland Security,
pp. 186–198, 2009. doi: 10.1109/CATCH.2009.18. [Online]. Avail-
able: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4804443 (cit. on p. 56).

[69] The Honeynet Project, Forensic Challenge 10 - "Attack Visualiz-
ation" | The Honeynet Project, http://www.honeynet.org/node/781
(cit. on pp. 56, 68, 87).

[70] The Miso Project, The Miso Project :: d3.chart,
http://misoproject.com/d3-chart/ (cit. on p. 68).

[71] S. Tricaud, ‘Picviz: Finding a Needle in a Haystack.’, in Proceed-
ings of the First UNSENIX Workshop on the Analysis of System Logs
(WASL), 2008 (cit. on pp. 45, 48, 55, 65).

http://www-935.ibm.com/services/in/en/it-services/realsecure-server-sensor.html
http://www-935.ibm.com/services/in/en/it-services/realsecure-server-sensor.html
http://www-935.ibm.com/services/in/en/it-services/realsecure-server-sensor.html
http://dx.doi.org/10.1109/TVCG.2010.179
http://dx.doi.org/10.1109/TVCG.2010.179
http://www.ncbi.nlm.nih.gov/pubmed/20975152
http://www.ncbi.nlm.nih.gov/pubmed/20975152
http://www.rennes.supelec.fr/ren/rd/cidre/tools/sidan/
http://www.rennes.supelec.fr/ren/rd/cidre/tools/sidan/
http://dx.doi.org/10.1109/CATCH.2009.18
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804443
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4804443

������������ 107

[72] E. R. Tufte, Beautiful Evidence. Graphis Pr, 2006, isbn:
0961392177. [Online]. Available: http://www.citeulike.org/
user/anovstrup/article/7296772 (cit. on pp. 5, 17, 36).

[73] ——, ‘Envisioning Information’, Taxon, vol. 40, no. 1, p. 159, Feb.
1991, issn: 00400262. doi: 10.2307/1222963. [Online]. Available:
http://www.jstor.org/stable/1222963?origin=crossref%

20http://www.citeulike.org/user/cmalek/article/227115

(cit. on p. 17).

[74] ——, The Visual Display of Quantitative Information. Graphics
Press, 2001, p. 200, isbn: 0961392142 (cit. on pp. 17, 18, 56).

[75] ——, Visual Explanations: Images and Quantities, Evidence and Nar-
rative. Graphics Press, 1997, p. 156, isbn: 0961392126. [Online].
Available: http://www.sudoc.abes.fr/DB=2.1/SRCH?IKT=12&
TRM=008134480 (cit. on pp. 17, 55, 56).

[76] Visual Analytics Community. (2012). VAST Challenge 2012,
[Online]. Available: http : / / www . vacommunity . org / VAST +

Challenge+2012 (cit. on p. 87).

[77] C. Wagner, A. Dulaunoy, S. A. Ses and T. Engel, ‘PeekKernel-
Flows : Peeking into IP flows’, pp. 1–5, 2010 (cit. on p. 56).

[78] L. Wilkinson, The Grammar of Graphics. Springer, 1999, p. 408,
isbn: 0-387-98774-6. [Online]. Available: http : / / www . sudoc .

abes.fr/DB=2.1/SRCH?IKT=12&TRM=071620559 (cit. on pp. 7, 8,
63–65, 84).

[79] C. V. Wright, F. Monrose and G. M. Masson, ‘Using Visual Mo-
tifs to Classify Encrypted Traffic’, pp. 41–50, 2003 (cit. on pp. 30,
31).

[80] T. H. Yu, B. W. Fuller, J. H. Bannick, L. M. Rossey and R. K. Cun-
ningham, ‘Integrated Environment Management for Informa-
tion Operations Testbeds’, pp. 67–83, (cit. on pp. 37, 38).

 VU : VU :

 Le Directeur de Thèse Le Responsable de l'École Doctorale
 (Nom et Prénom)

 VU pour autorisation de soutenance

 Rennes, le

Le Président de l'Université de Rennes 1

 Guy CATHELINEAU

 VU après soutenance pour autorisation de publication :

 Le Président de Jury,
 (Nom et Prénom)

	Dedication
	Summary
	Abstract
	Acknowledgements
	Contents
	Introduction
	1 The State of Visualisation
	1.1 Data Transformation
	1.2 Visual Mapping
	1.3 Perception
	1.4 Design
	1.4.1 Guidelines for effective visual representations
	1.4.2 Cognitive dimensions of notations

	1.5 Conclusion

	2 Visualisation for Security
	2.1 Visualisation for Monitoring
	2.1.1 Familiar patterns
	2.1.2 Situational awareness
	2.1.3 Responding to scale

	2.2 Visualisation for Analysis
	2.2.1 Search processes
	2.2.2 Scene reconstruction

	2.3 Visualisation for Reporting
	2.3.1 Collaboration
	2.3.2 Communication

	2.4 Conclusion

	3 Assistive security visualisation
	3.1 Log management
	3.1.1 Log file organisation
	3.1.2 Log file acquisition
	3.1.3 Log file augmentation

	3.2 Summary view
	3.3 User interactions
	3.3.1 Selecting fields of interest
	3.3.2 Automated selection of representations
	3.3.3 Brushing and filtering

	3.4 Implementation
	3.5 Experimentation
	3.5.1 Exploring logs
	3.5.2 Interpretation

	3.6 Conclusion

	4 Investigative security visualisation
	4.1 Log Files
	4.1.1 Log File Organisation
	4.1.2 Operations on a Single Log File
	4.1.3 Relating Datasets
	4.1.3.1 Relations Based on Values of Interest
	4.1.3.2 Relations Based on Time

	4.2 Visualisation and User Interaction
	4.2.1 Overview
	4.2.2 Importing Logs
	4.2.3 Timeview Panel
	4.2.4 Fields Summary View
	4.2.5 Full-Sized Charts View
	4.2.6 Values of Interest Box

	4.3 Implementation
	4.4 Experimentation
	4.5 Conclusion

	Conclusion & future work
	A Code
	Acronyms
	Bibliography

