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Rudyar Cortes (toujours disponible pour “un cafecito ?”), Marek Zawirski (thanks for all the

(many) opportunities you provide me for slacking off by playing Mario Kart or drinking beers

;-) ) et Anissa Lamani (j’ai eu un immense plaisir à venir te voir au Japon et même si l’on
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son calme quand la solution était indiqué sur l’intranet).
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quelques plaques de chocolat et paquets de fraises tagada ramenés en cours d’algèbre générale et
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Chapter 1

Introduction

We live in a world of data and our daily production of data is growing exponentially. In 2013,

the International Data Corporation (IDC) estimated the size of the Digital Universe at about

4.4 zettabytes (4.4× 1021) and forecasts that it will double every 2 years to reach 44 zettabytes

by 2020 [48]. This trend is known as Big Data. Moreover, the number of connected objects in

the Internet of Things, which refer to everyday life objects with an embedded connectivity to

Internet giving them the ability to transmit data, was reckoned at about 20 billion of devices in

2013 and is expected to reach 32 billion by 2020, accounting for 10 % of the Digital Universe.

These forecasts highlight the fact that our lives are surrounded by data and that this sustainable

trend is going to increase in the following years.

Taking advantage of Big Data is a critical concern for industries like financial services, tech-

nology, healthcare, retailing or energy since it is considered to be one of the most important

driver of value added for the future. Big Data can help firms to make better business in-

telligence decisions, for instance, how to understand their customer consumption habits, how

to optimize their operational and monitoring processes, how to make better pricing decisions,

and many more. Some example of applications using Big Data includes the Facebook Graph

Search tool [19] for advanced multi-criteria search in their user graph which can answer complex

queries for targeting the right customers or recommender systems as used for Youtube [25] or

Netflix [58, 59] where the system recommends personalized sets of videos to users based on their

activity on the website. However, it remains a challenge to be able to structure these data in a

comprehensive way, to process them with a low latency, to extract the appropriate information

efficiently, and to report these results to the final clients or decision makers.

Processing such tremendous amount of data raises important challenges for the system com-

munity. Typical Big Data applications such as large-scale analytical frameworks like MapRe-

duce [26] or Spark [99], databases [40, 61] and web servers [7, 50] have important requirements

in terms of computing and memory capabilities and where responsiveness and throughput are

critical for a enjoyable user experience [76]. These programs are typically parallelized and rely

on server class computer like multicore hardware located inside data centers as a computing

platform. However, parallelisation is a notoriously difficult problem which can prevent leverag-

ing the full computing power of such platforms, especially due to Amdahl’s law [6, 36]. This law

states that the potential speedup improvement obtained by parallelizing a program is limited
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by the sequential portion of this program. Typical sequential portions of a program are called

critical sections: they protect shared data from multiple concurrent accesses and are surrounded

by locks to ensure consistency.

However, because of the complexity of these applications, some critical sections may not be

efficient in all execution configurations. Such critical sections can impede thread progress under

specific conditions, which can drastically degrade the time for the server to process requests.

Developers generally try to find these badly written critical sections during the performance

evaluation phase but it is not always enough to find all of them. There is 3 main reasons to this

situation:

− Difficulty to reproduce a real execution environment: the software will most likely use a

representative dataset of the expected workload for testing. In the best case, developers

will try to simulate the most representative dataset, close as much as possible to real

world conditions, to stress the application. However, this dataset is dependent from the

core business and will be populated by users, thus making it completely unknown prior

to deployment. It could be far from what developers are expecting, in particular if the

software is flexible enough to be used in a wide variety of situations,

− Difficulty to simulate every possible scenarios of execution: the testing workload applied

to the software is generally composed of a mix of predefined set of queries. Users queries

are not predictable in advance and they exposed the software to a wide variety of queries

to process. It is difficult to find out how to stress the software with a workload close to

the one it will experience under practical conditions of use,

− Impossible to test every hardware configuration: developers usually have access to a re-

stricted set of machines for testing. They can’t evaluate applications on a wide set of

architecture and processors where results could vary. Performance can also greatly vary

between different versions of the same operating system or JVM. Sometimes, they also

carry out their tests on their own development machine which is far from a typical server

class computer, made of an important number of cores and memory size. It is not practical

to test all of these combinations and developers end up testing only a subset of architecture,

operating systems, virtual machine, and application version configurations.

For these reasons and despite a thorough testing, it is difficult to simulate all scenarios exhaus-

tively. Therefore, throughput and responsiveness may be hampered in situations that were not

expected by developers during the development phase and that will be discovered while it is de-

ployed in real world conditions, with drastic effects on the customers experience. For instance,

Google’s CEO Marissa Meyers reported at Google I/O conference that an increase in latency of

half a second could lead to a drop of the traffic by 20% [66], leading to less advertising revenues.

Java is regularly used to implement these complex multithreaded applications. It has be-

come one of the most used programming languages thanks to its safety, flexibility, and mature

development environment [91]. Nevertheless, the Java language is notoriously ill-adapted to

multicore architectures. The main concurrency abstraction provided by Java is the synchronized

keyword, which encourages the use of coarse-grained synchronization. Despite efforts made by

the Java community with, for instance, the java.util.concurrent package [62] which aims to offer
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a finer set of abstractions for concurrency control, synchronized blocks are still widely used. For

instance, there is approximately 7410 synchronized blocks located in the Java Class Library of

Java 7. Applications cannot be fine-tuned for execution on a specific multicore configuration,

taking into account, e.g., cache behavior or memory hierarchy, because such features are hidden

by the Java Virtual Machine (JVM). Finally, the training and experience of Java developers

are typically more oriented towards aspects of high-level software structuring, and less towards

low-level synchronization issues.

Additionally, effective profiling of Java server-class applications requires the use of a metric

that reports the slowdown of the server caused by a lock and that takes into account the fact

that server-class applications have long running times with various execution phases. Existing

Java lock profilers report on the average contention for each lock over the entire application

execution in terms of a variety of metrics. These metrics, however, focus on identifying the most

used or contended locks, but do not correlate the results to the progress of the threads, which

makes them unable to indicate whether an identified lock is a bottleneck. For example, on a

classical synchronization pattern such as a fork-join, we have observed that a frequently used or

contended lock does not necessarily impede thread progress. Furthermore, by reporting only an

average over the entire application execution, these lock profilers are not able to identify local

variations due to the properties of the different phases of the application. Localized contention

within a single phase may harm responsiveness, but be masked in the profiling results by a long

overall execution time.

These issues are illustrated by a problem that was reported two years ago in version 1.0.0 of

the distributed NoSQL database Cassandra [61]1. Under a specific setting, with three Cassan-

dra nodes and a replication factor of three, when a node crashes, the latency of Cassandra is

multiplied by twenty. This slowdown is caused by a lock used in the implementation of hinted

handoff2, by which live nodes record their transactions for the purpose of later replay by the

crashed node. The original developers seem not to have tested this specific scenario, or they

tested it but were not able to cause the problem. Moreover, even if the scenario was by chance

executed, current profilers would be unable to identify the cause of the bottleneck if the scenario

was activated during a long run that hides the contention phase.

The research conducted in this thesis investigates the topic of lock profiling. More precisely,

we focused on the problem of performance degradation of server-class applications due to lock

contention, with an emphasis on Java applications running on top of multicore architectures. For

these reasons we have previously highlighted, we have designed a lock profiler with the following

properties:

1. The profiler must use a metric that indicates whether a lock impedes thread progress. The

profiling report for the developers must give a clear insight about the impact that locks

have on application performance, especially in terms of responsiveness and throughput.

This will allow the developer to concentrate his debugging effort on a bug that does really

hamper the application performance,

2. The profiler should recompute this metric periodically, to be sensitive to the different

1https://issues.apache.org/jira/browse/CASSANDRA-3386.
2http://wiki.apache.org/cassandra/HintedHandoff.

https://issues.apache.org/jira/browse/CASSANDRA-3386
http://wiki.apache.org/cassandra/HintedHandoff
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phases of the application. Complex applications servers are stressed by various factors like

an unpredictable environment, several peaks loads at different time of the day, different

mix of queries, and users behavior, all of that being not predictable theoretically. All

these scenarios cannot be foreseen in a testing environment and thus it is not possible to

detect every lock contention problem. A profiler computing and reporting regularly a lock

contention metric will find issues related to users and environment characteristics,

3. The profiler must incur little overhead in order to be used in-vivo. There is a need for an

in-vivo profiler, i.e. a profiler that continuously monitors the application while it is running,

but users will not be willing to use a profiler that degrades drastically their application

behavior. Intuitively, it is also contradictory to slow down an application continuously

for the purpose of finding a potential bug that may hamper application performance.

Therefore, the overhead impact of the profiler must be as limited as possible in order to

be not noticeable by the end user.

In this thesis, we propose a new lock profiler, called Free Lunch, designed around a new

contention metric, critical section pressure (CSP). This metric aims to evaluate the impact of

lock contention on overall thread progress. CSP is defined as the percentage of time spent by

the application threads blocked while acquiring locks during a time interval. This indicates the

percentage of time where threads are unable to make progress, and thus the potential loss in

performance. Free Lunch is especially targeted towards identifying phases of high CSP in-vivo:

the application is sampled continually over several time intervals during which CSP is computed

for each lock. When the CSP of a lock reaches a threshold, Free Lunch reports the identity

of the lock back to developers, along with a call stack reaching a critical section protected by

the incriminated lock, just as applications and operating systems now commonly report back to

developers about crashes and other unexpected situations [38].

In order to make in-vivo profiling acceptable, Free Lunch must incur little overhead. To

reduce the overhead, Free Lunch leverages the internal lock structures of the JVM by extending

them with an additional data structure containing profiling data. These lock structures are

already thread-safe and thus Free Lunch does not require any additional synchronization to

access the profiling data. Free Lunch also injects the process of periodically computing the CSP

into the JVM’s existing periodic lock management operations in order to avoid extra inspections

of threads or monitors. Free Lunch also relies on hardware specific instruction that provide

efficient time management facility, allowing for minimal instrumentation of the code in charge

of locking. As a result, Free Lunch only adds eleven instructions to the lock acquiring function

on an amd64 architecture.

We have implemented Free Lunch in the Hotspot 7 JVM [89]. This implementation only

modifies 420 lines of code, mainly in the locking subsystem, suggesting that it should be easy to

implement in another JVM. We compare Free Lunch with other profilers on a 48-core AMD

Magny-Cours machine in terms of both the performance penalty and the usefulness of the

profiling results. Our key contributions are as follows:

• Theoretically and experimentally, we have found that the lock contention metrics used by

the existing Java lock profilers HPROF [42], JProfiler [52], Yourkit [97], MSDK [69], IBM
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Health Center [41], Java Lock Monitor [67] and Java Lock Analyzer [49] are inappropriate

to identify whether a lock impedes thread progress.

• Free Lunch makes it possible to detect a previously unreported phase with a high CSP in

the log replay subsystem of Cassandra. This issue has remained undetected to Cassandra

developers because it is triggered under a specific scenario and only arise during a short

phase of the run, which makes it difficult to detect with current profilers.

• Free Lunch makes it possible to identify six locks with high CSP in six standard benchmark

applications. Based on these results, we have improved the performance of one of these

applications (Xalan) by 15% by changing only a single line of code. As the lock is only

contended during half of the run, all other profilers largely underestimate its impact on

performance. For the other applications, the information returned by Free Lunch helped

us to verify that the locking behavior either does not hamper enough thread progress to

have a significant impact on application performance or could not easily be improved.

• On the DaCapo 9.12 benchmark suite [12], the SPECjvm2008 benchmark suite [87] and

the SPECjbb2005 benchmark [86], we found that there is no application for which the

average performance overhead of Free Lunch is greater than 6%. This result shows that a

CSP profiler can have an acceptable performance impact for in-vivo profiling.

• The lock profilers compatible with Hotspot, HPROF [42], JProfiler [52] and Yourkit [97],

on the same set of benchmarks incur a performance overhead of up to 4 times, 7 times and

1980 times, respectively, making them unacceptable for in-vivo profiling.

Organization of the document.

The rest of this thesis is organized as follows:

• Chapter 2 introduces locking mechanisms available in Java, the seven lock profilers pre-

sented in this thesis for the evaluation and the state-of-the-art of profiling for parallel

applications. It presents locking features provided by the Java language and its implemen-

tation in a JVM, focusing in particular on the locking subsystem of the OpenJDK Hotspot

JVM [89]. The seven lock profilers evaluated with Free Lunch are presented in details.

The state-of-the-art focuses on lock profilers found in the literature and profilers solving

other performance issues in the context of concurrent applications on multicore hardware.

• Chapter 3 presents the main contributions of the research work presented in this thesis,

namely, a study of the effectiveness of existing metrics at finding lock performance issues,

the Critical Section Pressure metric (CSP) and the Free Lunch profiler. The effectiveness at

finding lock contention issues of lock metrics found in the seven lock profilers are evaluated

against typical synchronization scenarios found in multithreaded applications. Based on

observations made in this study, we design the CSP metric, a new metric that assesses

the impact of lock contention on overall thread progress and its implementation in Free

Lunch, a lock profiler embedded inside Hotspot. Free Lunch profiles Java applications and

reports the CSP continuously during the whole execution while achieving a low overhead.



6

• Chapter 4 presents the evaluation over a set of benchmarks. First, it includes 2 experiments

about overhead: a comparative study of the overhead of Free Lunch versus state-of-the-

art Java lock profilers presented in Section 2.2 and a detailed evaluation of the overhead

costs involved by each feature of Free Lunch. Then, a set of microbenchmarks compares

state-of-the-art Java lock profiler metrics with CSP and a detailed analysis of lock CSP

over a restricted set of applications is presented, including experiments about how CSP is

effective at finding lock contention issues. Finally, a real use case highlights a performance

bug found in Cassandra [61], a scalable and highly available distributed database, proving

that Free Lunch is effective at finding short-lived and critical lock contention issues.

• Finally, Chapter 5 concludes this thesis and draws future perspectives.
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Chapter 2

Background

This chapter describes locking mechanisms in Java, the seven lock profilers analyzed in this

thesis, and the state-of-the-art in profiling for concurrent applications. Section 2.1 introduces

locking features provided by the Java language and its implementation in a JVM with an em-

phasis on the locking subsystem of the OpenJDK Hotspot JVM [89]. Section 2.2 presents in

detail the lock profilers HPROF, JProfiler, Yourkit, Multicore Software Development Kit, Health

Center, Java Lock Monitor, and Java Lock Analyzer used in this thesis for the evaluation in

Chapter 4. Section 2.3 describes recent research done in the field of profiling locks and concurrent

applications on multicore hardware and distributed systems.

2.1 Locking in the Hotspot 7 JVM

The Java language provides synchronized statements and methods ensuring mutual exclusion [39].

Synchronization is done by the way of Java objects, acting as synchronization proxies and be-

ing the parameters of synchronized statements. When speaking of Java locks, the words ’Java

object’ and ’lock’ can be used interchangeably since they refer to the same data structure. Java

locks are re-entrants and can be locked recursively by the lock holder.

2.1.1 Lock data structure

In Java, every object can potentially be used as a lock but only a minority will be used as such,

therefore it is important that synchronization data remains small in order to not waste memory

space. Therefore, the data managing the locking status of the object is directly embedded in

the Java object header. The Figure 2.1 presents the header of a Java object which size is of two

machine word. The first word, calledmark word, contains information related to synchronization.

The second word is a pointer to the data structure representing the object’s class.

There is three different lock algorithms implemented in the Hotspot virtual machine:

• Biased locking (or lock reservation): this algorithm comes from the observation that the

majority of Java objects are locked by at most one thread during their lifetime, therefore

the lock is never locked by more than one thread. A lock reserved for a thread does not

require a write to acquire it,
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Mark word Object class pointer Object fields

0 1 2

Figure 2.1: Java object header.
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Figure 2.2: States of the mark word.
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Call stack
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(a) State before acquiring the lock.

Pointeur 00

Call stack

0 01

Java Object

(b) State after acquiring the lock.

Figure 2.3: Acquiring a lock with the Stack-locking algorithm.

• Stack-locking: this algorithm is used when the lock is shared between several threads but

there is no thread attempting to lock it when it is already held by another one,

• Monitor algorithm: this algorithm is used when several threads try to acquire the same

lock concurrently. This algorithm manages threads blocking while waiting for the lock to

be released.

Algorithm Sharing Contention

Biased locking Not shared Not contended

Stack-locking Shared Not contended

Monitor algorithm Shared Contended

Table 2.1: Use case of lock algorithms in Hotspot.

These lock algorithms are summarized in Table 2.1. The same implementation strategy is

used in other modern JVMs, such as Jikes RVM [3] and VMKit [37]. These three different lock

algorithms need a way to distinguish which one is currently in use. This is the role of the mark

word (see Figure 2.2). The mark word allows the JVM to know the locking status of the object

by associating the lock algorithm in use and the state of the lock (locked or unlocked) with the

tag field.

The present design of the mark word rests on locks such as thin lock [8] and tasuki lock [74]

which have 2 states: the flat state and the inflated state. The flat state is used when one
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101    0 101Thread ID 0 01
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Monitor pointer 10
Reservation

Temporary revocation

of the reservation

Revocation of

the reservation

Acquisition Release

Biased locking Stack-locking Monitor

Lock

contention

DeflationObject

creation

Inflation

Figure 2.4: State-transition diagram of the mark word between lock algorithms.

thread holds the lock or at most one thread tries to acquire it. In this case, there is no other

thread waiting to acquire the lock and the mark word data structure is enough to deal with

synchronization. The lock switches to the inflated state when several threads try to acquire it

concurrently. A data structure, called monitor, more costly in terms of memory space, is then

linked to the object and acts as a surrogate for locking. The monitor helps to deal with access

contention to the lock by managing a queue where threads block while waiting for the lock to

be released.

Figure 2.4 presents the state-transition diagram between the three locking algorithms which

are described in details in the following sections.

2.1.2 Biased locking

Biased locking (or lock reservation) [30] is used when a lock is acquired by at most one thread,

meaning that it is not locked between different threads. This mechanism relies on the observation

that most of Java locks are locked by at most one thread during their lifetime and are never

shared with other threads. The idea is to reserve the lock for a particular thread as long as

there is no other one trying to acquire it, otherwise the reservation is canceled. The reservation

is done with an atomic Compare-and-Swap (CAS) but all subsequent acquisitions only need one

read to ensure that the reservation is still valid. The Hotspot 7 JVM implements a costly lock

reservation revocation protocol since all Java threads must be stopped for that purpose. Other

algorithms that does not require to stop all Java threads exist in the literature [57, 75, 80, 94]

but they are not implemented in Hotspot.

Acquiring the lock reservation

A newly allocated object uses by default the biased locking algorithm. The object is anonymously

reserved: no other thread has yet reserved it and any one can try to do so. The thread sets

atomically its identifier in the object mark word to acquire the reservation. The thread has only

to ensure that it is still owning the lock reservation for subsequent acquisitions. This is done by

checking that the lock is still using biased locking and by checking with a single read that the

thread identifier of the mark word still match its own identifier. The lock reservation holds as
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long as there is no other thread trying to acquire the lock.

Switching from Biased locking to Stack-locking

The thread owning the lock reservation remains the owner of the lock as long as no other thread

tries to acquire it or as long as it does not release the lock reservation by itself. Another thread

trying to acquire the lock triggers the lock reservation revocation and makes the lock switches

to the Stack-locking algorithm. The revocation changes the state of the mark word to indicate

that it is now using the Stack-locking algorithm as it is shown in Figure 2.4.

During the revocation, it is possible that a thread is executing a critical section protected

by a lock for which it holds the reservation. In this case, this lock must remain locked by the

same thread when it is switched to the Stack-locking mechanism, and this thread will use the

corresponding release mechanism for unlocking. In order to know if the a thread is inside a

CS, the Hotspot JVM must stop all Java threads which is a costly operation since no threads

run anymore meanwhile. There are some heuristics in Hotspot [82] to disable temporarily or

definitively biased locking for a particular Java class if their objects often experience revocation.

2.1.3 Stack-locking

Stack-locking is used when several threads lock the same lock in turns: the lock is shared between

them but there is no attempt to lock it while it is already held. Under these conditions, an atomic

CAS is used to modify the ownership of the lock since this instruction is not costly when there

is no contention. A situation of lock contention occurs when a thread tries to acquire a lock

while it is already held by another thread, thus the lock switches to the Monitor algorithm.

Acquire a lock

The lock holder has to ensure 2 things: (i) to indicate to other threads that the lock is owned,

and (ii) to be able to know quickly if a thread owns a lock or not. For that purpose, a memory

space, called lock record, is always allocated for each possible synchronized statement inside a

method on the thread’s call stack (cf. Figure 2.3a). The thread will store the current mark

word inside the lock record when it acquires the lock (cf. Figure 2.3b). This mechanism allows

a thread to know if it owns a lock by verifying that the pointer inside the mark word belongs to

the range of memory address of its own call stack.

Java locks are re-entrants and thus can be acquired recursively. The first locking must be

differentiated of the subsequent ones to ensure to release the lock only for the last unlocking

and not during a recursive one. The thread knows it is a recursive locking when the mark word

already contains a pointer to a lock record in its own call stack, which means that it already

owns the lock. In this case, the thread sets the lock record value to NULL, thus avoiding to

maintain a costly external counter counting the number of recursive acquisitions by checking

instead that the pointer inside the mark word belongs to the range of memory address of the

thread’s call stack.
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Release a lock

The release of the lock is done in a symmetric way. The thread first checks that it is the owner

of the lock and throws an IllegalMonitorStateException if it is not the case. Then, if the value

of the lock record is NULL, it is a recursive release and the thread does not perform any action.

Otherwise, the lock record contains the value of mark word during the first acquisition: the

lock must be definitively released. The value of the mark word contained in the lock record

is replaced atomically in the object mark word. The lock is then free and can be acquired by

another thread.

Switching to the Monitor algorithm

The lock switches to the Monitor algorithm when a thread tries to acquire a lock while it is

already locked by another thread. The thread wanting to acquire the lock will try to transform

it from the flat mode to the inflated mode, thus changing the algorithm currently in use to the

Monitor algorithm. Consequently, the thread will use the release mechanism of the Monitor

algorithm for unlocking. The exact process is described in details in the next section about the

Monitor algorithm.

2.1.4 Monitor algorithm

The Monitor algorithm [29] is used when there is contention: several threads try to acquire the

same lock concurrently (at least one attempt to acquire the lock is done while it is already held).

Having multiple threads trying to acquire the same lock simultaneously raises multiple chal-

lenges. It is useless to let threads try to acquire the lock by spinning for an extensive period of

time, thus wasting CPU time and forbidding other threads to make progress. Therefore, there

is a need for a mechanism to stop threads at some point and to make them wait for the lock to

be released. However, the mark word design can not handle such mechanism by itself due to its

small size. A bigger data structure is required and a way to associate it to the original lock.

Monitor data structure

To address these issues, a data structure, called monitor, is associated to the Java object.

The object stores a pointer to this data structure in the mark word as shown in Figure 2.2

and reciprocally, the monitor stores a pointer to this object in the object variable. This

data structure contains all locking data for synchronization purposes when using the monitor

algorithm. Therefore, this requires a variable to keep the lock owner of the lock ( owner) and

the number of lock recursions ( recursions) in this data structure since there is no space left

in the mark word for these information.

The monitor manages threads stopped due to the lock already owned by a thread and waiting

for it to be released. This is the role of the EntryList linked list that contains threads currently

in this state. The monitor is also in charge to wake up threads after the lock is released. There

is not point to wake up threads when there is already some threads trying to acquire the lock.

In order to detect this situation, the monitor relies on the succ variable which is set regularly

by threads actively trying to acquire the lock.
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The link between the monitor and the Java object is deleted when lock contention is over,

the lock switches back to Stack-locking and the monitor structure is recycled for a further usage.

Here is a summary of the monitor data structure we have presented so far:

• owner: a variable containing the thread ID of the thread owning the lock or NULL if the

lock is unlocked. It is always set by using an atomic CAS,

• recursions: a variable keeping the number of recursions done by the lock owner when it

acquires the lock recursively,

• EntryList: a linked list of blocked threads because the lock was already owned waiting

for it to be released,

• object: a pointer to the Java object associated with the lock,

• succ: a variable containing the identifier of one of the threads trying to acquire the lock

or NULL if there is no threads spinning in order to acquire the lock (either no thread

wants the lock or all threads are already blocked after trying to acquire it for some time).

Switching from Stack-locking to the Monitor algorithm

Inflation consists in modifying the lock data structure to use the Monitor algorithm. This

mechanism is triggered when a thread tries to acquire a lock using the Stack-locking algorithm

while it is already locked by another thread.

The thread failing to obtain the lock will be in charge of switching from the Stack-locking

algorithm to the Monitor algorithm. This is a 3-step process. Firstly, the thread allocates an

empty monitor data structure and initializes its fields. Secondly, the thread will attempt to set

atomically the mark word with the special value INFLATING to notify all other threads that

it is currently initializing a monitor inside the mark word. Lastly, the thread will replace the

value INFLATING of the mark word by the monitor memory address. The thread can fail to

install the INFLATING value to the mark word if the owner of the lock releases it meanwhile or

if another thread tries to inflate the lock at the same time. In this case, the thread tries again

from the start the procedure.

Acquire a monitor

The implementation of the Monitor algorithm has a fast locking acquisition mechanism called

fast-path and a slower one called slow-path. The fast-path manages simple lock acquisition cases

and is written in assembly for a quick execution. The slow-path takes care of more complex

lock acquisitions. It is called when the fast-path fails or directly when a complex locking case

is detected early enough. A monitor is acquired by setting the thread identifier atomically into

the owner variable.

The fast-path permits a quick lock acquisition when the lock is free. It solely consists in

setting the owner variable with the thread identifier. The acquisition can fail due to 2 reasons.

In the first case, the thread already owns the lock, therefore it simply increments the recursions
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variable and resumes its execution. In the second case, another thread already holds the lock,

thus the thread will use the slow-path to acquire it.

The slow-path ensures that lock acquisition remains fast even if several threads are con-

tending to acquire the lock. Previous work has shown that multiple atomic operations done

simultaneously by many cores on the same cache line trigger cache entries invalidation and thus

can saturate the memory interconnect and slow down the application [13]. Therefore, threads

taking the slow-path do some backoff-spinning. Backoff-spinning is a technique that consists in

actively trying to acquire the lock while progressively increasing the time between 2 attempts [1].

This limits contention on the interconnect by reducing the number of simultaneous requests on

the lock cache line. If the thread did not manage to acquire the lock after some time, it stops

spinning, blocks, and is enqueued in the EntryList queue. It remains blocked until the lock

is finally released. Once the thread stops blocking, it resumes its execution and starts the lock

acquisition process back from the start.

The thread also sets regularly his identifier into the succ variable during backoff-spinning

to indicate that it is actively trying to acquire the lock. This is done for the purpose of releasing

the lock efficiently and is explained in the following paragraph.

Release a monitor

The release of the monitor is based on a mechanism called competitive handoff. This mechanism

ensures that the thread which releases the lock checks that at least if one thread is actively trying

to acquire it, otherwise it wakes up only 1 blocked thread waiting to acquire it. This avoids to

wake up a blocked thread if there is already some of them trying to acquire the lock. Therefore,

all blocked threads are not woken up uselessly and do not wast resources.

Before releasing the lock, the thread checks that it is the owner by comparing its identifier

with the owner variable, raising a IllegalMonitorStateException in the opposite case. It also

checks the value of recursions to ensure it is not a recursive exit, in this case, it just decrements

the value, remains the lock owner, and continues its execution.

In all other cases, the thread releases the lock definitively by setting the owner variable to

NULL. The thread is then facing 3 different cases depending on the value of the EntryList

(which contains all threads blocked waiting for the lock to be released) and succ (which indicates

that at least one thread is trying actively to acquire the lock):

• EntryList is empty and succ is NULL: there is neither blocked threads waiting to

acquire the lock nor threads actively trying to acquire it, thus the thread does not have to

do anything,

• succ is not NULL: at least one thread is actively trying to acquire the lock, thus there is

no need to wake up a thread since the active one will end up acquiring the lock,

• EntryList is not empty and succ is NULL: there is at least one blocked thread waiting

for the lock to be released and no thread trying actively to acquire it. The thread will

wake up a thread in the EntryList queue to let it acquire the lock.
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Deflating a monitor/Switching back to Stack-locking

Lock contention can be temporary, therefore it is appropriate to reuse the Stack-locking algo-

rithm at some point because it is more CPU and memory efficient than the Monitor algorithm.

This mechanism is called deflation and consists in removing the link between the monitor and

the Java object and to revert the lock to the Stack-locking algorithm. It is difficult to know

exactly when lock contention is really finished, thus this operation is done speculatively and

regularly by the JVM.

In Hotspot, this operation is done during a Safepoint [83], a specific operation where all Java

threads are stopped for operations like garbage collection or revocation of the lock reservation.

The lock algorithm is reversed back to the Stack-Locking algorithm if the monitor is not currently

locked and if no thread is trying to acquire it. The lock will be inflated again and a fresh monitor

will be associated to the Java object if lock contention is again encountered after deflation.

2.2 Lock profilers

This section present the state-of-the part lock profilers used in this thesis for evaluating lock

contention metrics in Section 3.1 and for the evaluation in Chapter 4. Three of them are designed

for the Hotspot 7 JVM (HPROF [42], JProfiler [52] and Yourkit [97]) and four for the IBM J9

JVM, (Health Center [41], Multicore Software Development Kit [69], Java Lock Monitor from

the Performance Inspector suite [67] and Java Lock Analyzer [49] ).

These profilers make a wide use of the JVMTI interface [55], a set of hooks which permits

the inspection of the internal state and data structures of the JVM. It was developed to replace

the previous JVMPI [54] and JVMDI [54] interfaces. Every profiler suitable for Hotspot use the

JVMTI interface [55] to obtain information from the JVM. On the contrary, profilers suitable

for the IBM J9 JVM are using either the JVMTI interface or a native interface specific to IBM

like in [45] whose specification is not disclosed publicly. Each profiler presentation includes a

detailed output of a profiling session of Xalan from the DaCapo 9.12 benchmark suite [12] except

for Java Lock Monitor and Java Lock Analyzer because we were not able to run them on our

platforms since they are not maintained anymore.

2.2.1 HProf

HProf [42] is an open-source legacy profiler designed by Sun Microsystems and shipped with

many JVM like Hotspot and J9. Releases of J2SE from 1.2 (December 1998) through 1.4

contained a version of HPROF built on the JVMPI interface. The newer JVMTI in J2SE

5.0 (September 2004) replaced both JVMDI [53] and JVMPI, therefore HProf has been fully

rewritten for compliance with this new interface. HProf is provided as a dynamically-linked

shared library.

HProf is able to profile many features of the JVM: heap object allocation by class, CPU

usage (by sampling or by counting time spent and number of entries in a method) by class,

and lock usage. Each allocation or CPU site is associated to a stack trace showing calling-

context-sensitive profiles associated with the observed behaviour. All profiling features rely on
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the JVMTI interface but heap and CPU profiling need additional Byte Code Insertion [10, 11]

to work.

Using HProf for lock monitoring

The HProf agent is directly embedded in the JVM and is started for lock profiling with the

command line $ java −agentlib:hprof=monitor=y java program. The option monitor disables every

other profiling functionality and only enables lock profiling. The profiler report is written in a

human-readable format to the java.hprof.txt file.

The Output 2.1 shows a typical output generated by HProf where some parts have been

shrunk for clarity.

The first part (line 2 to 5) presents a timeline about thread creation and destruction and

about each waiting operation. The creation (line 2) and the destruction (line 5) of each thread

is presented along with its thread ID, thread name, and the group thread to which it belongs.

This part also contains every call to the wait() method. A notification is written to the file (line

3) each time a thread calls wait(), with the class of the object acting as the synchronization

object, the timeout if the thread has to wait until a specified amount of time has elapsed, and

the thread ID of the thread waiting on the object. Once a thread finished to wait, a second

notification is written (line 4) with the class of the object acting as the synchronization object,

the time during which the thread has waited and the thread ID of the waked up thread.

The second part (line 7 to 17) presents a series of trace entries. A trace entry is made of

a Trace number and a stack trace. The Trace number helps to link the results reported in the

third part of the output to a trace entry. The stack trace contains a set of active stack frames

(by default 4 frames) referring to the code path of the application at that particular time. These

information are used later in the third part to link lock statistics to stack traces.

The third part (line 19 to 31) shows the summary of locks statistics about the profiled

application. The last part allows us to compute the Acquiring time of a lock divided by the

Acquiring time of all locks and the Acquiring time of a lock divided by the Elapsed time metrics.

The first line (line 19) displays the amount of time spent in locking operations by all threads with

the current date. Right after is a list of every monitor, ranked by the percentage of time spent

while acquiring a lock divided by the total acquiring time of all locks. Additional information

are presented like the accumulated percentage of time spent acquiring a lock (from the first the

last monitor), the number of time the lock was locked, the Trace number to which the lock is

linked in the second part of the output, and finally the Java class of the lock.

Output 2.1: Profiling output of HPROF

1 . . .

2 THREAD START ( obj =50000472 , id = 200021 , name= ’ ’Thread−18 ’ ’ , group= ’ ’main ’ ’ )

3 WAIT: MONITOR Lorg/dacapo/ xalan /XSLTBench$WorkQueue ; , t imeout=0, thread 200021

4 WAITED: MONITOR Lorg/dacapo/ xalan /XSLTBench$WorkQueue ; , t ime waited=159 , thread 200021

5 THREAD END ( id = 200021)

6 . . .

7 TRACE 300254:

8 org . apache . xml . u t i l s . XMLReaderManager . getXMLReader (XMLReaderManager . java : 8 4 )

9 org . apache . xml . dtm . r e f . DTMManagerDefault . getXMLReader (DTMManagerDefault . java : 610 )

10 org . apache . xml . dtm . r e f . DTMManagerDefault . getDTM(DTMManagerDefault . java : 282 )

11 org . apache . xalan . t rans fo rmer . TransformerImpl . trans form ( TransformerImpl . java : 699 )
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12 . . .

13 TRACE 300271:

14 java . u t i l . Hashtable . get ( Hashtable . java : 433 )

15 org . apache . xalan . templates . TemplateList . getTemplateFast ( TemplateList . java : 508 )

16 org . apache . xalan . templates . ElemApplyTemplates . t rans formSe lectedNodes ( ElemApplyTemplates

→֒ . java : 296 )

17 org . apache . xalan . templates . ElemApplyTemplates . execute ( ElemApplyTemplates . java : 178 )

18 . . .

19 MONITOR TIME BEGIN ( t o t a l = 1 ms) Tue Mar 17 17 : 12 : 49 2015

20 rank s e l f accum count t r a c e monitor

21 1 98.47% 98.47% 549035 300271 java . u t i l . Hashtable ( Java )

22 2 0.40% 98.87% 63 300254 org . apache . xml . u t i l s . XMLReaderManager ( Java )

23 3 0.24% 99.11% 56 300267 org . apache . xml . u t i l s . XMLReaderManager ( Java )

24 4 0.08% 99.19% 19 300224 org . dacapo . harness . DacapoClassLoader ( Java )

25 5 0.07% 99.26% 780 300237 java . u t i l . P rope r t i e s ( Java )

26 6 0.07% 99.32% 262 300279 java . u t i l . P rope r t i e s ( Java )

27 7 0.07% 99.39% 987 300275 org . apache . xpath . axes . I t e r a t o rPoo l ( Java )

28 8 0.04% 99.43% 47 300180 org . dacapo . harness . DacapoClassLoader ( Java )

29 9 0.04% 99.47% 233 300242 java . u t i l . P rope r t i e s ( Java )

30 10 0.04% 99.51% 315 300241 java . u t i l . P rope r t i e s ( Java )

31 11 0.03% 99.54% 613 300305 sun . net .www. p ro to co l . j a r . Ja rF i l eFacto ry ( Java )

32 . . .

33 MONITOR TIME END

2.2.2 JProfiler

JProfiler [52] is a general-purpose, commercial and closed-source profiler for Java developed by

EJ-Technologies since 2001. JProfiler provides a dynamically-linked shared library to link with

the JVM on startup for collecting data, and a user-friendly graphical interface for controlling the

profiling process and analyzing results harvested by the library. There is 3 mode of usage for the

developer: he can use it remotely by establishing a connection with the server and run the GUI

on its own laptop, he can profile an application an application locally but the overhead of using

the GUI on the same computer could bias the results, and finally he can run the application in

headless mode, which means that the JProfiler library will log all events to a file and export it

for a later usage with the GUI. JProfiler also provides addons for analyzing profiling data that

can be integrated into several IDEs like Eclipse [33] or IntelliJ [47].

JProfiler supports CPU, memory profiling, heap memory inspection, thread profiling, garbage

collector profiling, JVM telemetry and monitor profiling. It also gives the ability to setup ded-

icated probes for databases or specific Java frameworks to profile them more efficiently. Locks

from the java.util.concurrent package [62] can also be proifled by JProfiler.

Using JProfiler for lock monitoring

JProfiler is started with the command line $ java −agentpath:˜/jprofiler7/bin/linux−x64/libjprofilerti.

so java program. JProfiler enables many profiling features by default. These features need to be

disable to avoid profiling useless data that are not related to locking, and thus could increase the

application overhead induced by the profiling. This is done by configuring the session settings

with the graphical interface.

A new session is first created by starting JProfiler, then clicking on Start center, then on

the New Session tab and finally by clicking on New session. Figure 2.5 shows the newly opened
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Session settings menu with the Application settings tab. The user has to specify a session

name,the server IP and port for the remote connection in this tab. The Profiling settings tab

presented in the Figure 2.6 permits settings customization such as method call recording or

CPU time measurement. We disable all possible parameters (except for locking) in order to

lower the overhead as much as possible. An estimation of the expected overhead is presented in

the Performance section based on these parameters. The last configuration panel is the Triggers

settings tab presented in Figure 2.7 where the user can create triggers, a defined set of actions

launched when a specific event happens. We create a trigger, launched at the startup of the JVM,

to disable recording, call tracer, probe recording, and probe tracking and also to start monitor

recording. This way, locking events are recorded at the very beginning of the application. After

setting all these parameters, the Session startup tab shown in Figure 2.8 summarizes the choices

of the user before the application starts.

Figure 2.5: JProfiler Session settings tab.

The monitor & locks profiling view provides several information about the locking behavior

of the application. This tab presents the block count (number of times a lock is locked when

a thread tries to acquire it), the block duration (the total duration during when threads have

blocked while trying to acquire the lock), the wait count (the number of times the wait() method

was called on the monitor), and the wait duration (the total wait duration for all threads). In

particular, the Monitor Usage Statistics tab allows us to compute the Acquiring time of a lock
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Figure 2.6: JProfiler Profiling settings tab.

divided by Elapsed time metric. These information are grouped either by monitors (Figure 2.9),

by class of monitors (Figure 2.10), or by threads (Figure 2.11).

Views about the locking behavior summarizing additional data are available:

• Current Locking Graph: this view shows graphically monitors that are currently involved

in a waiting or blocking operation,

• Current Monitors: this view shows monitors that are currently involved in a waiting or

blocking operation with detailed statistics about the locking duration, the object class, the

owning and waiting thread, and the monitor class and ID, as shown in Figure 2.12,

• Locking History Graph: this view visualizes the recorded locking situations in the JVM

by navigating through all locking events,

• Monitor History: this view shows the sequence of waiting and blocking operations on

monitors.
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Figure 2.7: JProfiler Triggers settings tab.

Figure 2.8: JProfiler Session startup tab.
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Figure 2.9: View of Monitor Usage Statistics, grouped by class of monitors, sorted by blocking

duration.

Figure 2.10: View of Monitor Usage Statistics, grouped by monitors, sorted by blocking duration.
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Figure 2.11: View of Monitor Usage Statistics, grouped by threads, sorted by blocking duration.

Figure 2.12: JProfiler view of current locked monitors.
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2.2.3 Yourkit

Yourkit [97] is a general-purpose, commercial and closed-source profiler for Java developed by

the Yourkit company since 2003. Yourkit and JProfiler shares many common characteristics.

Yourkit features a graphical profiling interface with a dynamically-linked shared library for

the JVM, provides a remote, local, and offline profiling mode, and can also be integrated into

several IDEs. Yourkit supports CPU and thread profiling, memory profiling (including garbage

collector), exception profiling, probes, deadlock detection and monitor usage profiling.

Using Yourkit for lock monitoring

Yourkit also profiles several components of the JVM by default at startup as JProfiler does.

Likewise, it is advised to disable the profiling of components other than the locking subsystem

since we are not interested in them and it could increase the overall application overhead. This

is done by giving specific options on the command line of the JVM, which are as follows:

• monitors: this option starts monitor profiling directly at the startup of the Java application

instead of starting it later from the graphical interface,

• disableexceptiontelemetry: this option specifies to not collect exception telemetry. The

exception telemetry helps discovering performance issues and logic errors,

• disablestacktelemetry: this option specifies to not collect thread stack and status informa-

tion shown in Thread view as well as in other telemetry views. This information allows

the graphical interface to connect to the profiled application on demand and discover how

the application behaved in the past,

• disablej2ee: this option specifies to disable J2EE profiling. This profiling inserts additional

Java instructions into the Java bytecode,

• disabletracing: this option specifies to disable CPU tracing. This profiling also inserts

additional Java instructions into the Java bytecode. Thus, only CPU sampling will be

available,

• disablealloc: this option specifies to disable object allocation recording. This profiling also

inserts additional Java instructions into the Java bytecode,

• builtinprobes=none: this option specifies to not register any of the built-in probes on

startup (a predefined set of probes is available in Yourkit to help investigating typical

problems and are ready to use out-of-the-box).

The command line to launch the application is therefore $ java −agentpath:˜/yourkit−12.0.5/bin/

linux−x86−64/libyjpagent.so=monitors,disableexceptiontelemetry,disablestacktelemetry,disablej2ee,disabletracing

,disablealloc,builtinprobes=none java program.

The Monitor Usage view shows statistics about locking and waiting operations acquired

during the application profiling. It is organized in nested levels depending on how is sorted

locking results, which is based on 3 criterion: blocker thread (thread that held the monitor
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preventing the blocked thread from acquiring the lock), Waiting/Blocked thread (thread which

called wait() and thread which failed to immediately acquire the lock), and monitor class (the

Java class of the lock). Figure 2.13 presents results grouped by Blocker thread and then by

Monitor class (a) or Waiting/Blocked thread (b), the Figure 2.14 presents results grouped by

Monitor class and then by Blocker thread (a) or Waiting/Blocked thread (b), and the Figure 2.15

presents results grouped by Waiting/Blocked thread and then by Blocker thread (a) or Monitor

class (b). Each view presents 2 types of information: which and for how long threads were calling

wait(), and which and for how long threads were blocked on attempt to acquire a monitor held

by another thread. A stack trace also presents the calling context that lead the thread to be

waiting or to be blocked on a lock. It allows us to compute the Acquiring time of a lock divided

by Elapsed time metric.
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(a) Grouped by Blocker thread and by Monitor class.

(b) Grouped by Blocker thread and by Waiting/Blocked thread.

Figure 2.13: Locks statistics for Yourkit, grouped by Blocker thread.
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(a) Grouped by Monitor class and by Blocker thread.

(b) Grouped by Monitor class and by Waiting/Blocked thread.

Figure 2.14: Locks statistics for Yourkit, grouped by Monitor class.
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(a) Grouped by Waiting/Blocked thread and by Blocker thread.

(b) Grouped by Waiting/Blocked thread and by Monitor class.

Figure 2.15: Locks statistics for Yourkit, grouped by Waiting/Blocked thread.
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2.2.4 Health Center

Health Center [97] is a general-purpose, commercial and closed-source profiler for Java developed

by IBM since 2003. It provides two components: a native dynamically-linked shared library

shipped with the J9 JVM which gather profiling data and a graphical tool used to control

the profiling process and analyze harvested data. This analysis tool can be either an Eclipse

perspective or the IBM Support Assistant [44]. Health Center can offers distant profiling support

with control of the profiler process at runtime via socket communication or in headless mode

that logs data in a file later loaded in the graphical tool for analysis. Health Center works only

with for the J9 JVM in order to achieve a low overhead due to very tight coupling with JVM

internals and bypassing of JVMTI interfaces. Health Center supports CPU usage and thread

profiling, garbage collector, class loading, I/O, method, and locking profiling.

Using Health Center for lock monitoring

Health Center is configured through the properties file located in jre/lib/healthcenter.properties.

However, it does not provides the possibility to configure profiling features at a fine-grained

level as in JProfiler or Yourkit where it is possible to disable profiling features that are not

wanted. We choose to run the Health Center in headless mode, thus the command line is $ java −

Xhealthcenter:level=headless java program. The Eclipse addon is deployed into Eclipse by connecting

to the IBM Eclipse addon repository and installing the IBM Monitoring and Diagnostic Tools

for Java - Health Center tool. The file containing the profiled data (with an *.hcd extension) is

then loaded into Eclipse by clicking on File and then Load data.

The Figure 2.16 presents the Locking perspective after loading the data. It brings 3 tabs

together: Monitors, Monitors bar chart, and Analysis and Recommandations.

The Monitors tab presents statistics about all the locks found at runtime in the application.

The description of the metrics is as follows:

• Gets: the total number of times the lock has been taken while it was inflated,

• Slow: the total number of non-recursive lock acquires for which the requesting thread had

to wait for the lock because it was already owned by another thread,

• % miss: the percentage of the total Gets for which the thread trying to enter the lock on

the synchronized code had to block until it could take the lock (%miss = (Slow / Gets) ∗

100),

• Recursive: the total number of recursive acquires. A recursive acquire occurs when the

requesting thread already owns the monitor,

• Average hold time: the average amount of time the lock was held or owned by a thread,

• % util: the amount of time the lock was held divided by the amount of time the out-

put was taken over. The time the output was taken over refers to how long the ap-

plication has been monitored for which is equivalent to the lifetime of the application

(100 ∗ Average hold time ∗ Slow / Application wall time),
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Figure 2.16: Locking view for Health Center.

• Name: The number in brackets is the object address, then follows the object class name

and finally the object ID.

This tab allows us to compute the following metrics: Number of failed acquisitions divided by

the Number of acquisitions (%miss), Number of failed acquisitions divided by the Elapsed time

(Slow ∗ 100 / Elapsed time), and the total time spent in critical section of a lock divided by

the Number of acquisitions (Average hold time).

The Analysis and Recommandations tab gives indications to the developers about potential

candidates to blame for lock contention. A lock issue is detected when one of the metrics

available in the Monitors tab exceeds a certain threshold. Then, this view reports the lock as

problematic, tells the developer to try to optimize it and that doing so may lead to a performance

improvement. The threshold values are unknown to the user and cannot be modified.

The Monitors bar chart shows an histogram of the most contended locks. The height of the

bars represents the Slow lock count and is relative to all the columns in the graph. The color of

each bar is based on the value of the % miss column in the table. The gradient moves from red

(100%), through yellow (50%), to green (0%). A red bar indicates that the thread blocks every

time that the monitor is requested and a green bar indicates a thread that never blocks.

2.2.5 Multicore Software Development Kit

Multicore Software Development Kit (MSDK) [69] is a closed-source Java profiler developed by

the alphaWorks team [4] at IBM since 2006. It focuses on analyzing various concurrency related

problems in applications which arise due to different types of memory and synchronization

errors. MSDK consists of two parts: the msdk.sh command-line tool that executes programs
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with different analysis engines and post-process profiling results, and an Eclipse perspective

that can be used to launch programs and visualize the results. MSDK relies on JVMTI and also

on a proprietary interface with the J9 JVM. For this reason, the lock analysis tool only works

for the J9 JVM, otherwise MSDK is compatible with other JVMs.

Tools provided by MSDK are both static and dynamic analysis tools. Following is the set of

tools included in MSDK:

• Race Detector: a debugging tool used to detect data races in the application code,

• Deadlock Detector: a debugging tool to find deadlocks in the application code,

• Static Concurrent Bugs Detector: a static analysis tool to find various concurrent bugs,

• Orange box Analysis: a tool to debug program crashes by providing the last few read/write

values of variables by each thread,

• Lock Status Report: a tool to debug concurrent applications by providing information

about threads holding locks and threads calling wait() in the code dynamically,

• Synchronization Coverage Analysis: a static analysis tool used to figure out whether the

different synchronization primitives are doing something useful or whether it is redundant,

• MHP Analysis: this tool does a may-happen-in-parallel analysis and provides the state-

ments that can execute in parallel.

Lastly, the Unified Lock Analysis tool profiles every types of locks found in the Java language.

It provides an unified vision of locking by grouping synchronized blocks locks and locks from

the java.util.concurrent package (analyzed by the JUCProfiler tool) into the same report. This

allows the developer to have a global view of the application locking behavior by using a single

tool.

Using MSDK for lock monitoring

The msdk.sh script is used to profile the application with the Unified Lock Analysis tool. The

option −sync on profiles synchronized blocks and the option −juc on profiles java.util.concurrent

locks. The command line to launch the application is thus $ ./bin/msdk.sh −sync on java program.

MSDK generates 3 files when the application stops. For this run, the outcome is grouped

into 3 files named 20150416112124.msdk, thor-20150416112124.dcagent.trace, and MSDKPost-

Analyzer.log, the number in common being the date and time of the benchmark. Then, the

post-processing of these 3 files is done with the same script. The option −post is used for that

purpose and takes in parameter the file thor-20150416112124.dcagent.trace without the exten-

sion, thus giving the command $ bin/msdk.sh −post thor−20100929171822. The final result is finally

written to the thor-20150416112124-Lock.txt file.

The Output 2.2 shows a typical output generated by MSDK shrunk for clarity. The first

part (line 1 to 14) presents general information about the profiled application including MSDK

version, system-wide information, the Java command line used to profile the application and

JVM-specific information (this last information was not available on our system setup).
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The second part (line 14 to 28) is the Java lock monitor report. This part presents lock

statistic about synchronized locks in the Java program. The legend of this part is detailed in the

third part (line 28 to 36). The MON-NAME information was not working on our system and

is therefore not available in this report. It allows us to compute the following metrics: Number

of failed acquisitions divided by the Elapsed time (Slow ∗ 100 / Elapsed time), and the total

time spent in critical section of a lock divided by the Number of acquisitions (HELD-TIME /

ENTER).

The fourth part (line 36 to 41) contains information about java.util.concurrent locks found

in the application. There is no profiling data in this part since JUC profiling was disabled.

The fifth part (line 41 to 101) is the Java monitor contention report. This list is ordered

in 3 sublevels: by Syncpoint, by Monitor and by Threads. Each Syncpoint refers to a location

in the source code and has an ID. This location is presented in details in the sixth part with

the associated Java file name, method, line number, and Java class. Then, for each Syncpoint

entry, there is a list of every Monitor that has been locked at this particular Syncpoint. Each

Monitor has an ID that refers to an entry in the seventh part where the class of the Monitor can

be found. Finally, for each Monitor entry, there is a list of every Thread that has locked this

particular Monitor at this particular Syncpoint. Each Thread is presented with its name, its ID,

the number of lock acquisitions (CT-TIMES), the total duration of locking (CT-DURATION),

the number of call to wait() (WT-TIMES), and the total duration spent in calls to wait() (WT-

DURATION).

The sixth part (line 101 to 108) is about Contention Information. It shows every Syncpoint

in the Java monitor contention report with its associated Java file name, method, line number,

and Java class. The seventh and last part (line 108 to 115) is about Java monitor information.

It lists every Monitor in the Java monitor contention report and its associated Java class.

Output 2.2: Profiling output of MSDK

1 =========================================================================================

2 Mult icore Software Development Tookit Vers ion 2 . 1

3 Reader Vers ion : v2 . 2 . 0 . Bui ld Time : 20101207−1609

4

5 PROPERTIES:

6 Arch : OS: Vers ion : 3.9.0− r e p l i c a t i o n+ Host : amd48c−systeme TimeStamp :

→֒ 93597694055359

7

8 JavaCommandLine :

9 /home/ f l o r i a n / java−r c l / p r o f i l e r s / j 9 /ibm−java−x86 64−71//bin / java −agentpath : / home/ f l o r i a n

→֒ /MSDK/ l i b / libThorAgent . so=traceSyncLock=on , enableJLM=on −Xbootc lasspath /p : / home/

→֒ f l o r i a n /MSDK/ l i b /BCIRuntime . j a r : / home/ f l o r i a n /MSDK/ l i b /PreInstrument . j a r −

→֒ javaagent : / home/ f l o r i a n /MSDK/ l i b /BCIAgent . j a r=cal lStackDepth=10,

→֒ a l l ocat ionStackDepth=10, traceJUC=o f f , msdk . idp=com . ibm .msdk . bc iagent .

→֒ JUCInstrumentDecis ionProvider , msdk . l i b=/home/ f l o r i a n /MSDK/ l i b −cp . : − j a r /home/

→֒ f l o r i a n / java−r c l /benchmarks/dacapo−9.12−bach . j a r −s l a r g e xalan

10

11 JavaFul lVers ion :

12

13

14 =========================================================================================

15 Java Lock Monitor Report

16

17 SPIN2 SLOW ENTER YIELDS REC HELD−TIME MON−NAME
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18 8191008 1402638 2972991 4125206 0 305489225625

19 181209 112 1678 5832 556 103214622

20 166424 639 6810 7102 416 714123416

21 164625 5164 51642 16439 0 1183548818

22 140937 13 2076 4016 0 48569814

23 117452 68 312 3674 61 125556875

24 19217 0 152 558 0 8851772

25 17900 15 19 526 0 5827679

26 16353 0 40 483 16 4717132

27 10356 1 33 303 6 3691277

28 =========================================================================================

29 LEGEND:

30 SPIN2 : Number sp in s be f o r e t h i s monitor became i n f l a t e d

31 REC : Number o f t imes t h i s monitor i s entered by the same thread

32 SLOW : Number o f t imes t h i s monitor i s entered v ia the slow path

33 ENTER : Number o f t imes t h i s monitor i s entered

34 YIELDS : Number o f c a l l s to y i e l d ( ) be f o r e t h i s monitor became i n f l a t e d

35 HELD−TIME : The t o t a l time t h i s monitor i s in he ld s t a t e

36 =========================================================================================

37

38 j . u . c Lock P r o f i l e r Report

39

40 No lock content ion found in us ing Juc

41 =========================================================================================

42 Java Monitor Contention Report

43

44 SYNCPOINT (ID) MONITOR (ID) THREAD (ID) CT−TIMES CT−DURATION WT−TIMES WT−DURATION

45 SyncPoint (435) 1453355 25230828712384 0 0

46 Monitor (48) 1453347 25230803069423 0 0

47 Thread−19 (77) 30642 525931329282 0 0

48 Thread−28 (86) 30635 525729569705 0 0

49 Thread−18 (76) 30595 524691337459 0 0

50 Thread−37 (95) 30587 524694533587 0 0

51 Thread−33 (91) 30579 526604213543 0 0

52 Thread−48 (106) 30544 527340799238 0 0

53 Thread−16 (74) 30514 526139730529 0 0

54 Thread−14 (72) 30495 527390108230 0 0

55 Thread−45 (103) 30484 524932002770 0 0

56 Thread−42 (100) 30450 526878327517 0 0

57 Thread−10 (68) 30446 525114979908 0 0

58 Thread−51 (109) 30440 524078754034 0 0

59 Thread−53 (111) 30431 526478071738 0 0

60 Thread−36 (94) 30392 526235761437 0 0

61 Thread−34 (92) 30368 525587970274 0 0

62 Thread−11 (69) 30364 525966784145 0 0

63 Thread−46 (104) 30334 525159893999 0 0

64 Thread−47 (105) 30332 525089281170 0 0

65 Thread−26 (84) 30328 526083662252 0 0

66 Thread−12 (70) 30328 526301184170 0 0

67 Thread−29 (87) 30318 525625704796 0 0

68 Thread−13 (71) 30317 525637160184 0 0

69 Thread−23 (81) 30309 525196317168 0 0

70 Thread−44 (102) 30288 526928679920 0 0

71 Thread−31 (89) 30286 525937926542 0 0

72 Thread−41 (99) 30269 525801795621 0 0

73 Thread−21 (79) 30267 524487216089 0 0

74 Thread−7 (65) 30264 525383312006 0 0

75 Thread−32 (90) 30262 524486703777 0 0

76 Thread−8 (66) 30230 525180332559 0 0

77 Thread−20 (78) 30229 523930802380 0 0

78 Thread−49 (107) 30224 525890241848 0 0
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79 Thread−17 (75) 30208 525384939266 0 0

80 Thread−27 (85) 30196 525731840652 0 0

81 Thread−52 (110) 30172 524512067912 0 0

82 Thread−25 (83) 30165 525559954364 0 0

83 Thread−38 (96) 30165 525367905346 0 0

84 Thread−39 (97) 30159 526897004611 0 0

85 Thread−50 (108) 30100 526165670705 0 0

86 Thread−22 (80) 30098 526540272937 0 0

87 Thread−40 (98) 30057 525021061457 0 0

88 Thread−30 (88) 30045 525369112680 0 0

89 Thread−54 (112) 29998 525136003820 0 0

90 Thread−24 (82) 29958 524177721905 0 0

91 Thread−15 (73) 29937 525843715814 0 0

92 Thread−9 (67) 29906 525980352991 0 0

93 Thread−43 (101) 29869 525694158448 0 0

94 Thread−35 (93) 29763 526506798638 0 0

95 Monitor (46) 8 25642961 0 0

96 Thread−34 (92) 3 862163 0 0

97 Thread−17 (75) 2 17708275 0 0

98 Thread−31 (89) 1 3303808 0 0

99 Thread−21 (79) 1 3757930 0 0

100 Thread−14 (72) 1 10785 0 0

101 =========================================================================================

102 Contention Informat ion :

103

104 ID JAVA FILE METHOD LINE CLASS

105 . . . . . . . . . . . . . . .

106 SyncPoint435 Hashtable . java get 479 Ljava/ u t i l /Hashtable ;

107 . . . . . . . . . . . . . . .

108 =========================================================================================

109 Java Monitor In format ion :

110

111 ID MONITOR CLASS

112 . . . . . .

113 Monitor48 Ljava/ u t i l /Hashtable ;

114 . . . . . .

115 =========================================================================================

2.2.6 Java Lock Monitor

Java Lock Monitor (JLM) [67] is a closed-source Java profiler included in the Performance

Inspector toolkit [67], a suite of performance analysis tools for Java and C++ applications,

and works for the J9 JVM exclusively. It was developed by IBM from 2003 until July 2010, the

date of the last release, and is no longer maintained. JLM relies on JPROF, a profiling agent

shipped as a dynamic library with the J9 JVM that interfaces with events from either JVMTI

or JVMPI, and with a command line tool to control the profiling process.

JLM focuses on execution and data profiling in different ways. Execution profiling exists in 3

styles: time profiling, callflow profiling, and callstack sampling. On the other hand, data profiling

is done either by heap dump analysis, after which an offline analysis reports information about

the heap, or by simply tracking object allocations and deallocations occuring in every method.
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Using Java Lock Monitor for lock monitoring

The JVM has to be launched with the JPROF profiling agent enabled with one of the 2 following

commands: #java −agentlib:jprof java program or #java −Xrunjprof java program. Then the rtdriver

program connects to the JVM to control the profiling process and start collecting profiling data

on demand. It is possible to start collecting locking data by sending the jlmstart command, to

stop collecting locking data by sending the jlmstop command, and to dump locking data to a file

by sending the jlmdump command. Data are dumped to files named log-jlm.# pppp where # is

a sequence number starting with 1, and pppp is the PID of the Java process.

Output 2.3: Profiling output of Java Lock Monitor

1 JLM Interval Time 28503135251

2

3 System ( Reg i s t e r ed ) Monitors

4 %MISS GETS NONREC SLOW REC TIER2 TIER3 %UTIL AVER−HTM MON−NAME

5 11 91 91 10 0 0 0 1 4550728 JITC Global Compile l o ck

6 0 2466 2217 0 249 0 0 0 1780 Thread queue lock

7 0 752 751 0 1 0 0 0 11160 B inc l a s s l o ck

8 0 701 695 0 6 0 0 0 71449 JITC CHA lock

9 0 286 286 0 0 0 0 0 408679 C la s s l oade r l ock

10 0 131 131 0 0 0 0 0 26877 Heap lock

11 0 61 61 0 0 0 0 0 2188 Sleep lock

12 0 51 50 0 1 0 0 0 718 Monitor Cache lock

13 0 7 7 0 0 0 0 0 608 JNI Global Reference Lock

14 0 5 5 0 0 0 0 0 780 Monitor Reg i s t ry l ock

15 0 0 0 0 0 0 0 0 0 Heap Promotion lock

16 0 0 0 0 0 0 0 0 0 Evacuation Region lock

17 0 0 0 0 0 0 0 0 0 Method t ra c e l ock

18 0 0 0 0 0 0 0 0 0 JNI Pinning lock

19

20 Java ( I n f l a t e d ) Monitors

21

22 %MISS GETS NONREC SLOW REC TIER2 TIER3 %UTIL AVER−HTM MON−NAME

23 33 3 3 1 0 0 0 0 8155 java . lang . Class@7E8EF8/7

→֒ E8F00

24 33 3 3 1 0 0 0 0 8441 java . lang . Class@7E8838/7

→֒ E8840

25 0 3314714 3314714 809 0 0 0 3 278 testobject@104D3150 /104

→֒ D3158

26 0 3580384 3580384 792 0 0 0 4 281 testobject@104D3160 /104

→֒ D3168

27 0 1 1 0 0 0 0 0 735 java . lang . r e f .

→֒ ReferenceQueue$Lock@101BDE50/101BDE58

28 0 1 1 0 0 0 0 0 833 java . lang . r e f .

→֒ Reference$Lock@101BE118 /101BE120

The Output 2.3 shows a typical output generated by JLM when the jlmdump command

is actually entered. The JLM Interval Time variable at the top represents the time interval

between the jlmstart and the jlmdump. This time is expressed generally in cycles but can vary

depending on the hardware platform. The output is then divided in 2 distinct parts with the

system monitors first and the Java monitors then.

The signification of each field in the output is as follows:

• %MISS: the percentage of the total GETS (acquires) where the requesting thread was

blocked waiting on the monitor (%MISS = (SLOW / NONREC) ∗ 100),
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• GETS: the total number of successful acquires (GETS = FAST + SLOW + REC),

• NONREC: the total number of non-recursive acquires. This number includes SLOW gets,

• SLOW: the total number of non-recursive acquires which caused the requesting thread to

block, waiting for the monitor to become unlocked. This number is included in NONREC,

• REC: the total number of recursive acquires. A recursive acquire is one where the request-

ing thread already owns the monitor,

• TIER2: the total number of inner spin loop iterations on platforms that support backoff-

spinning,

• TIER3: the total number of outer thread yield loop iterations on platforms that support

backoff-spinning,

• %UTIL: the monitor hold time divided by JLM Interval Time,

• AVER-HTM: the average amount of time the monitor was held. Recursive acquires are

not included because the monitor is already owned when acquired recursively (AV ER −

HTM = Total hold time / NONREC),

• MON-NAME: the system monitor name for system monitors or the Java class and the

memory address of the object associated with the monitor for Java monitors.

Therefore, as with Health Center, this output allows us to compute the following metrics: Num-

ber of failed acquisitions divided by the Number of acquisitions (%MISS), Number of failed

acquisitions divided by the Elapsed time (SLOW ∗ 100 / Elapsed time), and the total time

spent in critical section of a lock divided by the Number of acquisitions (Average hold time).

There are very few differences between JLM and HealthCenter in terms of the data presented,

as they both gather the data in the same way. HealthCenter however has the added level of

helping to interpret the data thanks to the graphical interface and to alert about potential locks

to blame for lock contention and causing a performance bottleneck.

2.2.7 Java Lock Analyzer

Java Lock Analyzer (JLA) [49] is a lock profiler which provides a real-time and dynamic lock

monitoring on live Java applications for the J9 JVM developed by the alphaWorks team [4] at

IBM from 2003. The project is not supported by IBM anymore since around 2007 and JLA is

not available for download on the IBM website as well.

JLA consists of 2 parts called JLAagent and JLAGui. The JLAagent component is loaded

dynamically by the JVM on startup and gather the lock information on the running application.

The JLAGui is a graphical interface of the lock analysis statistics. JLA can profile applications

locally or remotely. It is also specific to the J9 JVM and is not compatible with any other JVM.

It was not possible to run JLA on the latest J9 JVM since the development of JLA has been

stopped several years ago, thus making them not compatible together anymore. JLA has since

been superseded by HealthCenter and MSDK.
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Using JLA for lock monitoring

The JVMmust load the JLAagent at startup for profiling, this is done with the command#java −

Dcom.sun.management.config.file=JLAtiagent.properties −agentlib:JLAtiagent −cp .;JLAagent.jar java program

. The JLAtiagent.properties property file allows the developer to specify options for the remote

JVM connection like using SSH to communicate or the remote port of connection.

The first view of the graphical interface of JLA presents information similar to the Monitors

bar chart of Health Center, namely an histogram of the most contended locks. The height of

each column is calculated on the value of the SLOW lock count and is relative to all the columns

in the graph. The colour of each bar is based on the %MISS value with a gradient going from

red (100%), through yellow(50%) and finally onto green (0%). A red bar indicates that the

thread blocks every time the monitor is requested whereas a green bar indicated the thread

never blocks.

The second view of the interface shows the same information as JLM presented earlier (GETS,

NONREC, SLOW, NONREC, REC, TIER2, TIER3, %UTIL, AVER-HTM, and MONITOR

NAME). Therefore, as with JLM and Health Center, it is possible to compute the Number

of failed acquisitions divided by the Number of acquisitions metric (%miss), the Number of

failed acquisitions divided by the Elapsed time metric (Slow ∗ 100 / Elapsed time), and

the total time spent in critical section of a lock divided by the Number of acquisitions metric

(Average hold time).

2.3 Related work

This section presents state-of-the-art of profiling in the context of concurrent applications run-

ning on multicore hardware. The first part describes lock profilers found in the literature other

than the 7 locks profilers presented previously. The second part presents profilers tailored to

solve problems typically found in parallel applications on multicore architectures other than lock

contention issues.

2.3.1 Lock profilers in the literature

Inoue et al. [45] have proposed a sampling-based profiler relying on Hardware Performance

Monitor that collect object creation and lock activity profiles. The profiler uses a dedicated

instruction, called ProbeNOP, inserted in the Java code by the JIT compiler at runtime with the

Oprofile driver, an interface to set the HPM-related special purpose registers. The profiler will

sample this specific instruction on a regular basis, depending on the sampling rate. A sample is

collected by a sampling-handler that records information about the address of the Java object

used for locking and the calling method. This approach achieves a low overhead of less than 2.2

% but since it uses the same metric as Health Center, it suffers from the same limitations.

For C applications, Mutrace [70] and the profiler used in RCL [64] profiles locks from the

POSIX API. Mutrace reports metrics similar to what is found in Health Center. The RCL

profiler uses the total time to acquire the lock (blocking time included), execute the critical

section itself, and release the lock as a metric to know if a lock can benefit from RCL. These

profilers also have the same limitations of the metrics presented in Section 3.1.
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WAIT [5] is a sampling-based tool that diagnoses various performance issues in running

server-class applications in order to understand the cause of thread idleness. To measure lock

usage, WAIT counts the number of threads blocked while acquiring a lock. The performance

impact is proportional to the rate of sampling, which ranges from unnoticeable (1 sample every

1000 seconds) to 59% (1 sample per second). WAIT incurs more overhead than Free Lunch once

the sampling rate reaches 1 sample every 20 seconds (8%). As several samples are needed to

make sure that the lock contention is sustained, it is likely to miss short lock usage phases like

the ones with high CSP we found in Cassandra or Xalan.

Xian et al. [95] propose to dynamically detect lock contention induced by the OS on Java

applications at runtime. Their approach segregates threads that contend for the same lock on

the same core and ensures that a lock owner is allowed to run as long as it owns the lock.

Therefore, it avoids lock contention induced by OS activities such as thread preemption. This

approach is complementary to ours because it focuses on lock contention induced by the OS,

whereas Free Lunch focuses on lock contention induced by applications.

Lockmeter [14] is a tool that targets spinlock profiling for the Linux kernel. Like, e.g.,

Java Lock Monitor [67], Lockmeter reports the time spent in the critical section protected by

a spinlock divided by the elapsed time. As shown in Section 3.1, this metric does not report a

useful value on some synchronization patterns.

HPCToolkit [88] is a sampling-based profiler designed for high performance computing. The

authors define a new metric called Blame shifting : this metric attributes idleness incurred by

threads waiting to acquire a lock directly to the calling context of the lock holder. A common

point in this work and Free Lunch is to require an auxiliary data structure to store profiling data.

However, unlike in Java where a data structure is automatically created when lock contention

is encountered, there is no dual-representation locks [8] (flat and inflated) in C applications.

HPCToolkit therefore defines a protocol to associate and to maintain a data structure in order to

monitor a lock. Once monitored, a lock remains in inflated mode, which could be a performance

issue in Java where the lock goes back to flat mode if no contention is experienced after some

time. As a consequence of the metric design, HPCToolkit needs an atomic addition at every

sample (to compute the delay for acquiring the lock by each thread) and a Compare-And-

Swap for lock release (for blaming the thread holding the lock). Free Lunch does not require any

additional synchronisation or memory barrier to the baseline lock implementation. Nevertheless,

the overhead of HPCToolkit manages to remain below 5 %. This metric is complementary to

Free Lunch in the sense that HPCToolkit attributes lock contention to threads whereas Free

Lunch measures lock-related CSP.

Java.util.concurrent is a Java API that provides lock-free data structures. JUCProfiler

(which is part of MSDK [69]) and JProfiler [52] are able to profile such libraries. Free Lunch

does not currently provide this type of profiling.

Finally, HaLock [43] is a hardware-assisted lock profiler. It relies on a specific hardware

component that tracks memory accesses in order to detect heavily used locks. This technique

achieves low overhead but requires dedicated hardware.
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2.3.2 Other profilers for parallel applications

Capacity planning [68] is a technique used to identify where applications have to be optimized.

For that purpose, it breaks down an application into tasks and is able to tell if and how optimizing

them can lead to a performance improvement. The authors observe that a critical section can

act as bottleneck for many reasons, not all of which are related to the synchronization pattern.

For example, if too many threads are running, the owner of a lock can often be scheduled out

by the operating system, making the lock appear as a bottleneck. Capacity planning needs

inference rules provided by application experts to be able to cut the application into tasks and

to correlate the observations to the source code. On the contrary, Free Lunch focuses on legacy

code and does not require any help from the programmer to identify the locks that impede

thread progress. Free Lunch thus has a larger applicability, but it only provides raw data, it

could be used as a building block for capacity planning.

COZ [20] is a profiler that indicates exactly where programmers should focus their optimiza-

tion efforts. It relies on casual profiling, a technique that virtually speedup fragments of code

by slowing down all other code running concurrently. Developers just need to insert progress

points in the source code where some useful unit of work is completed. COZ runs several perfor-

mance experiments during a program’s execution where selected fragments of code are virtually

speedup. The profiler returns the whole application speedup due to the impact of optimizing a

particular code fragment by a specific percentage. Free Lunch and COZ approaches are com-

plementary: a developer can use Free Lunch to detect a lock contention problem and then use

COZ to evaluate the application speedup he can expect from improving the incriminated lock.

Bottle Graphs [32] is a profiling tool that is able to graphically illustrate the parallelism of

an application. The degree of parallelism is mainly defined as the time where threads are not

suspended divided by their execution time. Bottle Graphs reports a macroscopic view of the

parallelism of an application, which makes it useful in understanding whether the parallelism

of the application could be enhanced and in identifying how each thread contributes to the

processing. Free Lunch is complementary to Bottle Graphs, as it is able to indicate whether a

lack of parallelism comes from lock usage.

Kalibera et al. [56] analyze communication patterns of shared Java objects and define new

kind of concurrency metrics that they apply to the DaCapo benchmark suite [12]. They evaluate

locking behavior by counting the number of monitor acquisitions and the global locking rate of

the application, along with the pattern by which these objects are accessed by threads. This

work is complementary to ours, in that it gives a global view of shared-object behavior whereas

Free Lunch provides detailed information about CSP for each lock.

Limit [28] provides a lightweight interface to on-chip performance counters. Indeed, the

elapsed time obtained using rdtsc can be inaccurate when a thread is scheduled out or migrated

on a multicore machine. Limit solves this issue by using a dedicated kernel module. In Free

Lunch, we do not want to exclude the scheduled out time, and thus we do not need the former

feature of Limit. In case of migration, as stated in Section 3.3.1, we have observed that the drift

between the CPUs is not significant.

Memprof [60] and Carrefour [21] focus on optimizing memory accesses on Non-Uniform Mem-

ory Architecture (NUMA) hardware. Congestion on memory controllers and interconnects on
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NUMA systems is a source of application slowdown. Carrefour implements in-kernel memory

management algorithms that dynamically profile applications by gathering various metrics about

the application memory behavior. Based on these data, it applies several memory placement

algorithms to lower memory traffic congestion. Memprof identifies typical memory access pat-

terns harmful for NUMA architecture by building temporal flows of memory access between

threads and objects. It pinpoints the offending fragment of code and helps developers to easily

modify the source code in order to reduce remote data accesses. These works focus on memory

placement issues for NUMA hardware whereas Free Lunch finds lock contention issues. All of

these tools are suitable to belong to a standard toolbox to find performance problems on NUMA

multicore hardware.

DProf [78] and Sheriff [63] aims to find cache related performance issues. DProf associates

the cache miss costs and reasons to data types and presents its results with several comprehen-

sive views to developers. It is able to differentiate caches misses causes and allow developers

to apply the proper solution to solve these problems. Sheriff focuses on detecting false shar-

ing between threads by transforming them into OS processes and leveraging the OS memory

protection mechanism with the Sheriff framework. A first tool, Sheriff-Detect, reports with no

false positives instances of false sharing by comparing updates within the same cache lines by

different threads. A second tool, Sheriff-Protect, eliminates false sharing by delaying concur-

rent updates to a conflicting cache line to the next synchronization, even with the absence of

the source code. These tools are appropriate to detect issues about cache induced performance

issues in multithreaded applications and like Memprof, Carrefour, and Free Lunch, are suitable

to belong to a standard toolbox to find performance problems on NUMA multicore hardware.

There is many profilers dedicated to High Performance Computing (HPC). Most performance

analysis approaches consist in tracing the application behavior (using tools like Tau [85], Vampir-

Trace [71], EZTrace [34, 92, 93], or Extrae [35]): calls to a predefined set of functions (typically,

MPI or OpenMP primitives) are recorded in a trace file. The resulting execution traces can

be analyzed post-mortem in order to find the application bottlenecks [9, 18, 46, 73, 79, 84, 90].

This can be done manually by the application developper using a trace visualization software

(for instance Vampir [73], ViTE [18] or Intel Trace Analyzer and Collector [46]). A basic ap-

proach towards automatic analysis of execution traces have also been implemented recently in

multiple tools: for instance, Scalasca [90] or Periscope [9] search through a collection of typical

inefficient patterns of events related to MPI communications or through a collection of typical

OpenMP synchronization problems. Thus, while many performance analysis tools exist for HPC

applications, most of them are MPI-centric and the employed techniques can only be applied to

HPC applications. The automatic detection of performance bottlenecks with such tools is based

on databases of classical HPC performance problems, such as MPI synchronization, OpenMP

concurrency, cache usage, etc. These profilers are dedicated to profiling HPC applications while

Free Lunch is dedicated to profiling lock issues in Java applications.

Other approaches investigated recently consist in analyzing system logs [2, 15, 17, 72, 81, 100].

This allows developers to pinpoint issues that involve multiple layers of the software stack with

a very coarse granularity. For example, these approaches can help detecting that there is a

bottleneck within the network infrastructure, or within a given machine or in a macro-scale

software component. Free Lunch works at a fine granularity in order to precisely pinpoint the
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offending code fragment.
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Chapter 3

The Free Lunch profiler

This chapter presents a survey of lock metrics of lock profilers presented in the previous chapter,

the Critical Section Pressure metric, and the Free Lunch profiler. Section 3.1 discusses the

limitations of the metrics of the seven state-of-the-art Java lock profilers of which we are aware

in the context of Java server profiling. This study influences directly the idea of the CSP metric

and consequently, the design and the implementation of Free Lunch. Section 3.2 presents the

definition of the Critical Section Pressure metric and how it assesses the impact of locks on

thread progress, and the way the computation frequency of the CSP was defined. Section 3.3

describes the implementation of the Free Lunch profiler in the Hotspot JVM. In particular, it

focuses on the times composing the CSP, how to gather them, and how to minimize the overhead

when collecting and storing them.

3.1 Lock contention metrics

In this section, we study the metrics used by the seven state-of-the-art profilers presented in

Section 2.2. These profilers focus on ordering the locks, from the most contended to the least

contended, using a variety of metrics. However, none of these metrics are correlated to the

progress of threads, and thus they do not indicate which locks actually hamper responsiveness

in the context of a server.

In the rest of this section, we illustrate this limitation using two classical scenarios for synchro-

nizing threads, (generalized) ping-pong and fork-join, which idealize typical execution patterns

performed by servers. We demonstrate that each of the metrics is unable to report whether a

lock impedes thread progress for at least one of the scenarios.

3.1.1 Synchronization scenarios

The generalized ping-pong scenario, presented in Figure 3.1, models a server with different kinds

of threads, that execute different parts of the server. Two threads, called the ping-pong threads,

execute an infinite loop in mutual exclusion. On each loop iteration, a ping-pong thread acquires

a lock, performs some processing, and releases the lock. The remaining threads do not take the

lock. For example, the two ping-pong threads could take charge of the writes of dirty objects

to persistent storage, while the other threads take charge of the logic of the server. In this
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generalized ping-pong scenario, the progress of the two threads running in mutual exclusion is

severely impacted by the lock, such that at any given time only one of them can run. On the

other hand, the lock does not impede the progress of the other threads, and overall, the lock

does not impede the progress of the application if it uses many other threads. In order to assess

if thread progress of the server is impeded by the lock, we would thus like the value of a lock

profiling metric to decrease as the number of threads increases.

lock held

blocked

Thread 1

Thread 2

0 5
time

…

processing

10 15

Thread n

Thread 3
…

Figure 3.1: A generalized ping-pong scenario.

In the fork-join scenario shown in Figure 3.2, a master thread distributes work to worker

threads and waits for the result. The scenario involves the monitor methods wait(), which waits

on a condition variable, notifyAll(), which wakes all threads waiting on a condition variable,

and notify(), which wakes a single thread waiting on a condition variable. The three methods

must be called with the monitor lock held. The wait() method additionally releases the lock

before suspending the thread, and reacquires the lock when the thread is reawakened.

The workers alternate between performing processing in parallel (narrow solid lines) and

waiting to be awakened by the master (red and green thick lines and dashed lines). While the

Java specification does not define an order in which threads waiting on a condition variable

are awakened, to simplify our analysis, we assume that threads are awakened in FIFO order,

meaning that notify() wakes the thread that has waited the longest on the condition variable.

We also suppose that the processing phase takes the same time for each worker.

Initially, the master holds the lock and the workers are waiting, having previously invoked

the wait() method. At time 0, the master wakes the workers using notifyAll(). Each worker

receives the notification at time 1. According to the semantics of wait(), each worker then has

to reacquire the lock before continuing. Thus, all workers block at time 1 while waiting for the

master to release the lock. At time 2, the master releases the lock by invoking wait(). This

leads to a cascade of lock acquisitions among the workers, at times 2-5, with each worker holding

the lock for only one time unit. The workers then perform their processing in parallel. When

each worker completes its processing, it again enters the critical section, at times 8, 9, 10, and

11, respectively, to be able to invoke wait() (times 9-14), to wait for the master. This entails



43

acquiring the lock, and then releasing it via the wait() method. Finally, when the fourth worker

completes its processing (time 11), it acquires the lock and uses notify() to wake the master

(time 12). At time 13, the master must reacquire the lock, which is currently held by the fourth

worker. The fourth worker releases the lock when it invokes wait() (time 14), unblocking the

master and starting the entire scenario again.
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Figure 3.2: A fork-join scenario.

In this scenario, all of the workers are repeatedly blocked on the same lock, while trying to

reacquire the lock in the wait() method. If the processing time of the workers is small, the

workers are unable to progress during long periods of time as compared to the time of a cycle,

while it is the opposite if the processing time is large. A metric should reflect this trade-off.

3.1.2 Analysis of the metrics

We now analyse the metrics proposed by the seven profilers on the two synchronization scenarios.

Our analysis focuses on the ability of the metric to indicate whether the threads are unable to

progress, as our primary concern is to identify whether a lock hampers the responsiveness of

a server. Table 3.1 presents the metrics and summarizes our analysis. Overall, we see that

although some tools provide metrics that report values that scale with the impact on thread

progress in some scenarios, in each case there is at least one scenario on which the result does

not indicate thread progress, and the user has no way to know which metric value to take into

account. In Section 4, we confirm this analysis using experiments.

Metrics based on the number of failed acquisitions. Several profilers propose metrics

based on the number of failed lock acquisitions, i.e., the number of times when the lock acquisition
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method detects that the lock is already held. The idea behind these metrics is that the probability

of a lock acquisition failing increases with contention.

JLM, JLA and Health Center report the number of failed acquisitions divided by the total

number of acquisitions. With the fork-join scenario (see Figure 3.2), the result is 5/9, with 4

failed acquisitions by the workers at time 2, 4 successful acquisitions by the workers at times 8,

9, 10 and 11, respectively, and 1 failed acquisition by the master at time 13. This result is a

constant and does not reflect that the synchronization only impedes thread progress when the

processing time is small.

The same profilers also report the absolute number of failed acquisitions. From this informa-

tion, we can deduce the rate of failed acquisitions over time by dividing it by the time elapsed

during the application run. For the generalized ping-pong scenario, after each round of process-

ing, which takes place with the lock held, the two ping-pong threads are trying to acquire the

lock and one of them will fail. The number of fails per time unit is thus equal to one divided by

the time of the processing function (the narrow green rectangle in Figure 3.1). The number of

fails per time unit is thus not related to the number of threads, but to the processing time. It

is thus inadequate to indicate whether threads are unable to progress.

Thus, the number of failed acquisitions does not seem to indicate whether many threads are

blocked by the lock. It is useful to understand which lock is the most contended, but a highly

contended lock does not inevitably impede thread progress.

Metrics based on the critical section time. Other widely used metrics are based on the

time spent by the application in the critical sections associated with a lock. The idea behind

these metrics is that if a lock is a bottleneck, an application will spend most of its time in critical

sections.

JLM, JLA and Health Center use this metric as well. They report the amount of time spent

by the application in the critical sections associated to a given lock divided by the number of

acquisitions of that lock, i.e., the average critical section time. On the generalized ping-pong

scenario (see Figure 3.1), regardless of the number of threads, the average time spent in critical

sections (the duration of the green thick line) remains the same. The metric is thus unable to

indicate whether the lock impedes thread progress.

We conclude that the time spent in critical sections does not necessarily indicate whether

many threads are blocked. It is only useful to understand which critical sections take the longest

time, but long critical sections do not necessarily impede thread progress.

Metrics based on the acquiring time. HPROF, JProfiler and Yourkit report the time

spent by the application in acquiring each lock. During the acquiring time, threads are unable

to execute, which makes acquiring time an interesting indicator of thread progress.

To provide a meaningful measure of thread progress, the acquiring time has to be related to

the overall execution time of the threads. However, JProfiler and Yourkit only report the elapsed

time of the application (difference between the start time and the end time), which does not

take into account the execution times of the individual threads. Without knowing the number

of threads, which can evolve during the execution, it is not possible to determine whether the

lock is a bottleneck. For example, on the generalized ping-pong scenario, the metric indicates
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Table 3.1: Ability of the metrics to assess the thread progress.

Contention metric
Scenario

Profilers
ping-pong fork-join

# failed acquisitions /
+ -

JLM, JLA,

# of acquisitions Health Center

# failed acquisitions /
- -

JLM, JLA, MSDK,

Elapsed time Health Center

Total CS time of a lock /
- +

JLM, JLA, MSDK,

# of acquisitions Health Center

Acquiring time of a lock /
- - HPROF

Acquiring time of all locks

Acquiring time of a lock /
- -

HPROF, JProfiler,

Elapsed time Yourkit

that 100% of the elapsed time is spent in acquiring the lock (large red lines), regardless of the

number of threads.

HPROF also reports the acquiring time of each lock divided by the total time spent by the

application in acquiring any lock. This metric is useful to identify the most problematic locks,

but is unable to indicate whether a lock actually impedes thread progress. In the ping-pong

scenario, for example, the metric again indicates that 100% of the acquiring time is spent in

the only lock. The metric is thus not related to the number of threads and is unable to identify

whether the lock impede the threads’ progress.

3.2 Design

The goal of Free Lunch is to identify the locks that most impede thread progress, and to regularly

measure the impact of locks on thread progress over time. We now describe our design decisions

with respect to the definition of our contention metric, the duration of the measurement interval,

the information that Free Lunch reports to the developer, and the limitations of our design.

3.2.1 Critical Section Pressure metric

In designing a metric that can reflect thread progress, we first observe that a thread is unable

to progress while it blocks during a lock acquisition. However, taking into account only this

acquiring time is not sufficient: we have seen that HPROF, YourKit and JProfiler also use the

acquiring time, but the resulting metrics are unable to indicate if the lock actually impedes

thread progress (see Table 3.1). Our proposal is to relate the acquiring time to the accumulated

running time of the threads by defining the CSP of a lock as the ratio of i) the time spent by

the threads in acquiring the lock and ii) the cumulated running time of these threads.
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To make this definition precise, we need to define the running time and the acquiring time

of a thread, considering, in particular, how to account for cases where the thread is blocked

or scheduled out for various reasons. Specifically, we exclude from the running time the time

where a thread waits on a condition variable, as typically, in Java programs, a thread waits on a

condition variable when it does not have anything to do. This observation is especially true for

a server that defines a large pool of threads to handle requests, but where normally only a small

portion of the threads are active at any given time. The waiting time is thus not essential to

the computation of the application and including it would drastically reduce the CSP, making

difficult the identification of phases in which threads do not progress. In contrast, we include

in the running times the time where a thread is blocked for other reasons. For example, let us

consider an application that spends most of its time in I/O outside any critical section, and that

only rarely blocks to acquire a lock. If we do not consider the I/O time, we will report a high

CSP, even though the lock is not the bottleneck. Likewise, if we consider the opposite scenario

with an application that spends much time blocked in I/O while a lock is held, not counting

the I/O time would lead to an underestimated CSP. Finally, we include the scheduled-out time

in both the acquiring time and the running time. The probability of being scheduled out while

acquiring a lock is the same as the probability of being scheduled out at any other time in the

execution, and thus has no impact on the ratio between the acquiring time and the accumulated

running time.

As a consequence of our definition, if the CSP becomes large, it means that the threads of

the application are not able to execute for long periods of time because they are blocked on the

lock. For the generalized ping-pong scenario (Figure 3.1), in the case where there are only the

two ping-pong threads, Free Lunch reports a CSP of 50% because each thread is blocked 50% of

the time (large red rectangles). This CSP measurement is satisfactory because it indicates that

only half of threads execute at any given time. If we consider more threads, the accumulated

running time of the threads will increase, and thus the CSP will decrease. For example, with

48 other threads, Free Lunch will report that the application spends only 2% of its time in

lock acquisition, reflecting the fact that the lock does not prevent application progress. For the

fork-join scenario (Figure 3.2), Free Lunch will report a CSP equal to the sum of the times spent

while blocked (large red rectangles) divided by the sum of the running times of the threads. As

expected, the Free Lunch metric increases when the processing time of the workers decreases,

thus indicating that the threads spend more time blocked because of the lock.

3.2.2 Measurement interval

In order to identify the phases of high CSP of an application, Free Lunch computes the CSP of

each lock over a measurement interval. Calibrating the duration of the measurement interval has

to take two contradictory constraints into account. On the one hand, the measurement interval

has to be small enough to identify the phases of an application. If the measurement interval is

large as compared to the duration of a phase in which there is a high CSP, the measured CSP

will be negligible and Free Lunch will be unable to identify the high CSP phase. On the other

hand, if the measurement interval is too small, the presence of a few blocked threads during the

interval can result in a high CSP value, even if there is little pressure on critical sections. In
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this case, Free Lunch will identify a lot of phases of very high CSP, hiding the actual high CSP

phases with a lot of false positive reports.
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Figure 3.3: CSP depending on the minimal measurement interval for the Xalan application.

We have tested a range of intervals on the Xalan application from the DaCapo 9.12 bench-

mark suite. This application is an XSLT parser transforming XML documents into HTML.

Xalan exhibits a high CSP phase in the second half of its execution caused by a lot of synchro-

nized accesses to a hash table. Figure 3.3 reports the evolution of the CSP over time. With a

very small measurement interval of 10ms, the CSP varies a lot between successive measurement

points. In this case, the lock bounces back and forth from being contended (high points) to

being less contended (low points). At the other extreme, when the measurement interval is

approximately equal to the execution time (13s), the CSP is averaged over the whole run, hiding

the phases. With a measurement interval of 1s, we can observe that (i) the application has a

high CSP during the second half of the run with a value that reaches 64%, (ii) the CSP remains

relatively stable between two measurement intervals.

Based on the above experiments, we conclude that 1s is a good compromise, as this mea-

surement interval is large enough to stabilize the CSP value. Moreover, if a high CSP phase is

shorter than 1s, it is likely that the user will not notice any degradation in responsiveness.

3.2.3 Free Lunch reports

To further help developers identify the source of high CSP, Free Lunch reports not only the

identity of the affected locks, but also, for each lock, an execution path that led to its acquisition.
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Free Lunch obtains this information by traversing the runtime stack. As traversing the runtime

stack is expensive, we have decided to record only a single stack trace, the one that leads to

the execution of the acquire operation that causes the monitor to be inflated for the first time.

Previous work [5] and our experience in analyzing the Java programs described in Section 4.3.2

shows that only a single call stack is generally sufficient to understand why a lock impedes thread

progress.

3.2.4 Limitations of our design

A limitation of our design is that Free Lunch only takes into account lock acquisition time as

being detrimental to thread progress. Thus, it may report a low CSP in a case where locks are

rarely used but many threads are prevented from progressing due to ad hoc synchronization [96]

or lock-free algorithms [62].

Furthermore, Free Lunch has no application-specific information about the role of the indi-

vidual threads, and thus assumes that all threads are equally important to the notion of progress.

For example, in the generalized ping-pong scenario, it may be that the two ping pong threads

control output to the user, and the remaining threads perform computations whose results will

be ultimately discarded, if the ping pong threads cannot output them sufficiently quickly. A low

CSP for this scenario would not reflect the user experience.

3.3 Implementation

This section presents the implementation details of Free Lunch in the Hotspot 7 JVM for an

amd64 architecture. We first describe how Free Lunch measures the different times required to

compute the CSP. Then, we present how Free Lunch efficiently collects the relevant information.

Finally, we present some limitations of our implementation.

3.3.1 Time measurement

Free Lunch has to compute the cumulated time spent by all the threads on acquiring each lock

and the cumulated running time of all the threads (see Figure 3.4). Below, we describe how Free

Lunch computes these times.

Acquiring time. The acquiring time is the time spent by a thread in acquiring the lock. It

is computed on a per lock basis. For this, we have modified the JVM lock acquisition method

to record the time before and the time after an acquisition in local variables. A challenge is

then where to store this information for further computation. Indeed, we have found that one of

the causes of the high runtime overhead of HPROF (see Section 4.1.2) is the use of a map that

associates each Java object to its profiling data. As was for example proposed in RaceTrack [98],

Free Lunch avoids this cost by storing the profiling data directly in the structure that represents

the profiled entity. Technically, Free Lunch records the acquiring time in a field added to the

monitor structure of the JVM. A thread updates this value with its locally calculated acquiring

time only when it has already acquired the lock, making it unnecessary to introduce another

lock to protect this information.
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Figure 3.4: Time periods relevant to the CSP computation.

To accurately obtain a representation of the current time, Free Lunch uses the x86 instruction

rdtsc, which retrieves the number of elapsed cycles since the last processor restart. The rdtsc

instruction is not completely reliable: it is synchronized among all cores of a single CPU, but

not between CPUs. However, we have empirically observed that the drift between CPUs is

negligible as compared to the time scales we consider. A second issue with rdtsc is that,

as most x86 architectures support instruction reordering, there is, in principle, a danger that

the order of rdtsc and the lock acquisition operation could be interchanged. To address this

issue, general-purpose profilers that use rdtsc, such as PAPI [31], introduce an additional costly

instruction to prevent reordering. Fortunately, a Java lock acquisition triggers a full memory

barrier [65], across which the x86 architecture never reorders instructions, and thus no such

additional instruction is needed.

In summary, obtaining the current time when requesting a lock requires the execution of four

x86 assembly instructions including rdtsc and registering the time in a local variable. Obtaining

the current time after acquiring the lock, computing the elapsed lock acquisition time, and storing

it in the lock structure require the execution of seven x86 assembly instructions.

A potential limitation of our strategy of storing the acquiring time in the monitor structure is

that this structure is only present for inflated monitors. Free Lunch thus collects no information

when the monitor is deflated. Acquiring a flat lock, however, does not block the thread, and

thus not counting the acquiring time in this case does not change the result.

Computation of running time. As presented in Section 3.2.1, our notion of running time

does not include wait time on condition variables, but does include time when threads are

scheduled out and blocked. As such, it does not correspond to the time provided by standard

system tools. For this reason, we have chosen to measure the running time directly in the Java

virtual machine. In practice, there are two ways for a thread to wait on a condition variable:

either by calling the wait() method on a monitor, or by calling the park() method from the

sun.misc.Unsafe class. To exclude the waiting times, Free Lunch records the current time
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just before and after a call to one of these functions, and stores their difference in a thread-

local variable. At the end of the measurement interval, Free Lunch computes the running time

of the thread by subtracting this waiting time from the time where the thread exists in the

measurement interval.

3.3.2 CSP computation

Free Lunch computes the CSP at the end of each measurement interval. For this, Free Lunch

has to visit all of the threads to sum up their running times. Additionally, Free Lunch has to

visit all of the monitor structures to retrieve the lock acquiring time. For each lock, the CSP is

then computed by dividing the sum of the acquiring times by the sum of the running times.

To avoid introducing a new visit to each of the threads and monitors, Free Lunch leverages

the visits already performed by the JVM during the optimized lock algorithm presented in

Section 2.1. The JVM regularly inspects each of the locks to possibly deflate them, and this

inspection requires that all Java application threads be suspended. Since suspending the threads

already requires a full traversal of the threads, Free Lunch leverages this traversal to compute

the accumulated running times. Free Lunch also leverages the traversal of all the monitors

performed during the deflation phase to compute their CSP.

Our design makes the measurement interval approximate because Free Lunch only computes

the CSP during the next deflation phase after the end of the measurement interval. Deflation is

performed when Hotspot suspends the application to collect memory, deoptimize the code of a

method or redefine a class. After the initial bootstrap phase, however, collecting memory is often

the only one of these operations that is regularly performed. This may incur a significant delay

in the case of an application that rarely allocates memory. To address this issue, we have added

an option to Free Lunch that forces Hotspot to regularly suspend the application, according to

the measurement interval.1 For most of our evaluated applications, however, we have observed

that a deflation phase is performed roughly every few tens of milliseconds, which is negligible as

compared to our measurement interval of one second.

3.3.3 Limitations of our implementation

Storing profiling data inside the monitor data structure in Hotspot 7 is not completely reliable,

because deflation can break the association between a Java object and its monitor structure at

any time, causing the data to be lost. Thus, Free Lunch manages a map that associates every

Java object memory address to its associated monitor. During deflation, Free Lunch adds the

current monitor to that map. When the lock becomes contended again, the inflation mechanism

checks this map to see if a monitor was previously associated with the Java object being inflated.

This map is only accessed during inflation and deflation, which are rare events, typically far less

frequent than lock acquisition.

Our solution to keep the association between a Java object memory address and its associated

monitor is, however, not sufficient in the case of a copying collector [51]. Such a collector can

move the object to a different address while the monitor is deflated. In this case, Free Lunch

1We have used this option for the experiment presented in Figure 3.3.
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will be unable to find the old monitor. A solution could be to update the map when an object

is copied during the collection. We have not implemented this solution because we think that

it would lead to a huge slowdown of the garbage collector, as every object would have to be

checked.

We have, however, observed that having a deflation of the monitor followed by a copy of

the object and then a new inflation of the monitor within a single phase is extremely rare in

practice. Indeed, a monitor is deflated when it is no longer contended and thus a deflation will

mostly happen between high CSP phases. As a consequence, the identification of a high CSP

phase is not altered by this phenomenon. In the case of multiple CSP phases for a single lock,

the developer can, however, receive multiple high CSP phase reports indicating different locks.

We do not think that this is an issue, because the developer will easily see from the code that

all of the reports relate to a single lock.
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Chapter 4

Performance evaluation

We now evaluate the performance of Free Lunch as compared to the existing profilers for Open-

JDK: the version of HPROF shipped with OpenJDK version 7, Yourkit 12.0.5 and JProfiler

8.0. As Free Lunch is implemented in Hotspot, we do not compare it with the four profilers

for the IBM J9 VM because Hotspot and the IBM J9 VM have incomparable performance. We

first compare the overhead of Free Lunch to that of the other profilers, and then study the cost

of the individual design choices of Free Lunch. We also present an experimental study of lock

metrics on typical synchronization scenarios, an analysis of lock CSP for a set of more than 30

applications and a case study of a lock contention issue found in the Cassandra database. All

of our experiments were performed on a 48-core 2.2GHz AMD Magny-Cours machine having

256GB of RAM. The system runs a Linux 3.2.0 64-bit kernel from Ubuntu 12.04.

4.1 Profiler overhead

We compare the overhead of Free Lunch to that of HPROF, Yourkit and JProfiler running in

lock profiling mode, on the 11 applications from the DaCapo 9.12 benchmark suite [12], the 19

applications from the SPECjvm2008 benchmark suite [87], and the SPECjbb2005 benchmark

[86]. For DaCapo, we run each application 20 times with 10 iterations, and take the average

execution time of the last iteration on each run. For SPECjvm2008, we set up each application

to run a warmup of 120s followed by 20 iterations of 240s each. For SPECjbb2005, we run

20 times an experiment that uses 48 warehouses and runs for 240s with a warmup of 120s.

For SPECjvm2008 and SPECjbb2005, we report the average rate of operations completed per

minute. Note that some of the benchmarks cannot be run with some of the profilers: H2 does

not run with Yourkit, Tradebeans does not run with Yourkit, and Avrora and Derby do not run

with HPROF.

4.1.1 Overall performance results

Figure 4.1 presents the overhead incurred by each of the profilers, as compared to the baseline

Hotspot JVM with no profiling, and the standard deviation around this overhead. The results

are presented in two ways due to their wide variations. Figure 4.1.a presents the complete
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results, on a logarithmic scale, while Figure 4.1.b focuses on the case between 20% speedup and

60% slowdown.

Figure 4.1.a shows that the overhead of HPROF can be up to 4 times, that of Yourkit up

to 1980 times and that of JProfiler up to 7 times. Figure 4.1.b shows that for all applications,

the average overhead of Free Lunch is always below 6%. For some of the applications, using a

profiler seems to increase the performance. These results are not conclusive because of the large

standard deviation.

In a multicore setting, as we have here, a common source of large overhead is scalability issues.

In order to evaluate the impact of scalability on profiling, we perform additional experiments,

using HPROF, which has the least maximum overhead of the existing profilers. We compare

HPROF to Hotspot without profiling on the Xalan benchmark in two configurations: 2 threads

on 2 cores, and 48 threads on 2 cores. In both cases, the overhead caused by the profiler is

around 1%, showing that when the number of cores is small the number of threads has only a

marginal impact on profiler performance. Then, we perform the same tests on Xalan with 48

threads on 48 cores. In this case, Xalan runs 4 times slower. These results suggest that, at least

in the case of HPROF, the overhead mainly depends on the number of cores.

4.1.2 Detailed analysis of HPROF

We now examine the design of HPROF in more detail, to identify the design decisions that lead

to poor scalability. Xalan is the application for which HPROF introduces the most overhead. On

this application, we have found that the main issue, amounting to roughly 90% of the overhead,

is in the use of locks, in supporting general-purpose profiling and in implementing a map from

objects to profiling data.

Supporting general-purpose profiling. HPROF, like the other existing profilers, is imple-

mented outside the JVM, relying on JVMTI [55], a standard Java interface that provides data

about the state of the JVM. To use JVMTI, a profiler registers two event handlers through the

JVMTI API: one that is called before a thread is suspended because it tries to acquire a lock

that is already held, and another that is called after the thread has acquired the lock.

When the JVM terminates, HPROF has to dump a coherent view of the collected data. As

HPROF is a general-purpose profiler, some event handlers may collect multiple types of infor-

mation. To ensure that the dumped information is consistent, HPROF requires that no handler

be executing while the dump is being prepared. HPROF addresses this issue by continuously

keeping track of how many threads are currently executing any JVMTI event handler, and by

only dumping the profiling data when this counter is zero. HPROF protects this counter with

a single lock that is acquired twice on each fired event, once to increment the counter and once

to decrement it.

To measure the cost of the management of this counter, we have performed an experiment

using a version of HPROF in which we have removed all of the code in the JVMTI handlers

except that relating to the counter and its lock. This experiment shows that the lock acquisition

and release operations account for roughly 60% of the overhead of HPROF on Xalan, making

this lock a bottleneck at high core count. Note that Free Lunch does not incur this cost because
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(a) Overhead on execution time with a logarithmic scale.
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(b) Overhead on execution time, limited to between 80% and 160% (zoom of (a)).

Figure 4.1: Overhead on execution time compared to baseline.
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it only supports lock profiling, and a lock operation cannot take place concurrently with the

termination of the JVM.

Mapping objects to profiling data. HPROF collects lock profiling information in terms

of the top four stack frames leading to a lock acquisition or release event and the class of the

locked object. For this, on each lock acquisition or release event, HPROF:

1. Obtains the top four stack frames by invoking a function of the JVM;

2. Obtains the class of the object involved in the lock operation by invoking a function of the

JVM;

3. Computes an identifier based on these stack frames and the class;

4. Accesses a global map to retrieve and possibly add the profiling entry associated to the

identifier;

5. Accumulates the acquiring time in the profiling entry.

We have evaluated the costs of these different steps, and found that roughly 30% of the

overhead of HPROF on Xalan is caused by the access to the map (step 4), and 10% is caused

by the other steps. This large overhead during map access is caused by the use of a lock to

protect the access to the map, which becomes the second bottleneck at high core count. In

contrast, Free Lunch does not incur this overhead because it directly stores the profiling data in

the monitor structure of Hotspot, and thus does not require a map and the associated lock to

retrieve the profiling entries.

4.2 Free Lunch overhead

We have seen that Free Lunch does not incur the major overheads of HPROF due to their

different locking strategies. However, there are other differences in the features of Free Lunch

and HPROF that may impact performance. In order to understand the performance impact of

these feature differences, we require a baseline that does not include the high locking overhead

identified in HPROF in the previous section. Thus, we first create OptHPROF, a lock profiler

that collects the same information as HPROF, but that eliminates almost all of HPROF’s locking

overhead, and then we compare the performance impact of adding the specific features of Free

Lunch to OptHPROF, one by one.

4.2.1 OptHPROF

To make our baseline, OptHPROF, for comparison with Free Lunch, we remove the two main

bottlenecks presented in Section 4.1.2. First, we simply eliminate the lock that protects the

shared counter. As previously noted, this counter is not needed in a lock profiler. Second,

for the map that associates an object to its profiling data, we have implemented an optimized

version that uses a fine-grain locking scheme, inspired by the lock-free implementation of hash

maps found in java.util.concurrent [62].
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Figure 4.2: Overhead on execution time compared to baseline.

The key observation behind our map implementation is that the profiling data accumulates

across the entire execution of the application, and thus no information is ever removed. We

represent the map as a hash table, implemented as a non-resizable array of linked lists, where

each list holds the set of entries with the same hash code. A read involves retrieving the list

associated with the desired profiling entry and searching for the entry in this list. Because the

array is not resizable and because no profiling entry is ever removed, a list, whenever obtained,

always contains valid entries. Thus, there is no need to acquire a lock when a thread reads

the map. A write may involve adding a new entry to the map. The new entry is placed at

the beginning of the associated list. Doing so requires taking a lock on the relevant list, to

ensure that two colliding profiling entries are not added at the same time. As in Free Lunch,

profiling data are recorded in a profiling entry after the lock associated with the profiling entry

is acquired, and thus no additional locking is required.

The map itself is mostly accessed for reads: a write is only required the first time a profiling

entry is added to the map, which is much less frequent than adding new profiling information

to an existing entry. Likewise, it is rare that two threads need to access the same profiling entry

at the same time. Thus, the locks found in OptHPROF are not likely to be contended, allowing

OptHPROF to scale with the profiled application.

Figure 4.2 reports the overhead of OptHPROF on Avrora, H2, PMD, Sunflow, Tomcat,

Tradebeans, Xalan and Xml.Validation, which are the applications that are most slowed down

by HPROF. By eliminating the counter lock and by using a more scalable map data structure,

the worst-case overhead of OptHPROF is 18.3% with Tomcat, which approaches the worst-case

overhead of Free Lunch, of 6%.

4.2.2 Free Lunch features

The main features of Free Lunch that are not found in OptHPROF, and thus that are not found

in HPROF, are as follows:

• Metric: Free Lunch supports profiling of phases, and thus computes its metric at regular

intervals, while OptHPROF computes its metric only at the end of the run. Furthermore,
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Experiment Metric Stack trace Out-VM Data structure

HPROF HPROF Each acquisition Yes Not optimized

OptHPROF HPROF Each acquisition Yes Optimized

OptHPROF-CSP CSP Each acquisition Yes Optimized

OptHPROF-CSP-Obj CSP First acquisition Yes Optimized

Free Lunch CSP First acquisition No Optimized

Table 4.1: Experiments conducted to understand Free Lunch.

OptHPROF only reports the acquisition time of a lock divided by the total acquisition

time of any lock, while Free Lunch reports the CSP, i.e., the acquisition time of a lock

divided by the accumulated running time of the threads of the application.

• Profiling granularity: Free Lunch indexes profiling information at the object level,

while OptHPROF indexes profiling information by the object’s class and the top four

stack frames at the time of the lock operation. OptHPROF’s strategy makes it possible to

identify the critical section in which a problem is observed, and the context in which that

critical section was reached, but it risks conflating information from multiple objects of the

same class, and hiding locking issues that are dispersed across multiple critical sections. In

contrast, Free Lunch only collects a stack trace at the first contended acquisition of a given

object’s lock, which may not be the critical section in which contention occurs, but unifies

all of the profiling information about a given object within the current time interval.

• Integration with the JVM: Free Lunch directly reuses the internal representation of a

monitor inside the JVM to store the profiling data, while OptHPROF is independent of

the JVM and has to access an external map for each lock operation.

We evaluate each of these differences in terms of the set of experiments described in Table 4.1.

Each experiment involves creating a variant of OptHPROF that mimics Free Lunch in one or

more of the above aspects, Figure 4.2 reports the overhead introduced by each of the variants,

along with the standard deviation on 5 runs, with the same applications Avrora, H2, PMD,

Sunflow, Tomcat, Tradebeans, Xalan and Xml.Validation. We now analyze the implementations

of the above variants and their results in detail.

OptHPROF-CSP: using phases and the CSP instead of the HPROF’s metric. To

implement OptHPROF-CSP, we modify the implementation of OptHPROF to periodically com-

pute the CSP rather than computing HPROF’s metric once at the end of the run. Several issues

must be addressed. First, the CSP is computed in terms of the lock acquisition time and the

running time. Of these, only the lock acquisition time is already computed by OptHPROF. To

compute the running time, we extend OptHPROF to intercept the calls to the wait functions and

to the thread creation and destruction functions through JVMTI events. Finally, OptHPROF-

CSP cannot piggy-back on the garbage collector, as done by Free Lunch, to compute the CSP
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periodically, because GC events are not made available via JVMTI. Instead, OptHPROF-CSP

defines a thread, woken up every second, to perform the computation.

As presented in Figure 4.2, regularly computing the CSP instead of computing the HPROF

metric at the end of the run does not introduce a significant overhead. In the worst case,

regularly computing the CSP increases the overhead by 1.5% and, in the best case, it reduces

the overhead by 2.7%. Thus, neither the choice of which of these metrics to compute nor the

frequency of the computation has an impact on performance.

OptHPROF-CSP-Obj: profiling granularity. To implement OptHPROF-CSP-Obj, we

modify the implementation of OptHPROF-CSP to index the profiling entries by object rather

than by class and stack frames. For this, we use the internal hashcode embedded in any Java

object as the profiling entry identifier. To further simulate the behavior of Free Lunch, we also

extend OptHPROF-CSP to record a full stack trace at the first acquisition of each lock.

As presented in Figure 4.2, we can see that, except for Xalan, recording a full stack trace at

the first lock acquisition or systematically recording the first four frames at each lock acquisition

does not have a significant impact on the performance. In the best case, OptHPROF-CSP-

Obj increases the performance by 2.8% and in the worst case, except for Xalan, it reduces the

performance by 1.6%.

For Xalan, however, not recording the stack frames at each lock acquisition adds a significant

overhead of 17%. This result is unexpected because computing a hashcode only consists of

reading the object header, which should take less time than recording four stack frames. Indeed,

we have measured that, on average, OptHPROF-CSP adds an overhead of roughly 50,000 cycles

before each lock acquisition on Xalan, while OptHPROF-CSP-Obj only adds an overhead of

roughly 2,500 cycles.

To better understand this result, we have conducted another experiment, in which we explore

the impact of changing the delay before the lock acquisition on the performance of Xalan. Start-

ing from the implementation of OptHPROF-CSP, we replace the JVMTI handler code before the

lock acquisition by a delay of varying length, leaving the JVMTI handler code of OptHPROF-

CSP after the lock acquisition unchanged. Figure 4.3 reports the overhead caused by the varying

delay as compared to an execution of Xalan without any instrumentation (baseline). We first

observe that the instrumentation of OptHPROF-CSP after the lock acquisition slows down the

application by roughly 30%. Subsequently, the impact of the delay varies greatly in the zones

marked A, B, and C in the graph. In zone A, from a delay of 1 cycle to a delay of 50,000 cycles,

the overhead slightly decreases as the delay increases. This counterintuitive result is due to the

fact that spinlocks and POSIX locks, which are used by Java to implement synchronization, sat-

urate the memory buses when many threads try to acquire a lock simultaneously [64]. Increasing

the delay gradually reduces the contention on the memory buses and the resulting performance

improvement outweighs our introduced delay. In zone B, from a delay of 50,000 cycles to a

delay of 106 cycles, the problem of memory bus saturation is reduced significantly, leading to a

huge reduction in the overall overhead induced by the delay and indeed an improvement over

the performance of Xalan without profiling, which itself suffers from saturation of the memory

buses. Finally, in zone C, the buses are no longer saturated and the overhead increases linearly

with the delay, as expected.
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Figure 4.3: Overhead of Xalan with a varying delay before lock acquisition.

In our context, by not recording the first four stack frames, we reduce the delay between

two lock acquisitions, which further saturates the buses, and thus leads to worse performance.

It should be noted that in the case of OptHPROF-CSP, the code executed before each lock

acquisition may involve cache misses, while the wait introduced in the above experiment does

not. The cycle count thresholds separating zones A, B, and C are thus not exactly comparable.

Free Lunch: integration with the JVM. OptHPROF-CSP-Obj is a profiler that has

essentially the same functionality as Free Lunch, but is implemented outside of the JVM. By

comparing it with Free Lunch, we can thus identify the benefit of leveraging the internal monitor

structure of the JVM to store the profiling data.

As presented in Figure 4.2, leveraging the internal data structures of the JVM significantly

decreases the overhead caused by the use of a profiler, especially on Tomcat, Tradebeans and

Xalan, the three applications that are the most slowed down by OptHPROF-CSP-Obj. For

Tomcat, the overhead decreases from 15.7% with OptHPROF-CSP-Obj to 1.3% with Free Lunch,

for Tradebeans from 3.5% to less than 0.1%, and for Xalan from 30.5% to less than 0.1%.

4.3 Using Free Lunch to analyze applications

We now experimentally validate our analysis of the metrics presented in Section 3.1 and report

our results when using Free Lunch to analyze the lock behavior of the applications considered in

Section 4 as well as Cassandra 1.0.0 [61]. All evaluations are performed on the machine described

in Section 4.
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Contention metric 2 threads 48 threads Profiler

CSP 49.9% 2.1% Free Lunch

Acquiring time of a lock /
99% 99% HPROF

Acquiring time of all locks

Acquiring time of a lock /
96.7% 96.7% JProfiler

Elapsed time

Total CS time of a lock /
2.4ms 2.4ms MSDK

# of acquisitions

Table 4.2: Evaluation of contention metrics on the ping-pong micro-benchmark.

4.3.1 Micro-benchmarks

We instantiate the scenarios described in Section 3.1 into micro-benchmarks and use them to

compare the ability of the CSP metric and the other metrics to indicate the impact of locks on

thread progress.

We first consider the ping-pong micro-benchmark, instantiating the micro-benchmark such

that each ping-pong thread spends 1ms in the critical section on each iteration. We execute the

micro-benchmark for 30s, with 2 and 48 threads. The results are presented in Table 4.2.

For this micro-benchmark, we first study the profilers that rely on the acquiring time. On

the ping-pong scenario, for both 2 and 48 threads, HPROF reports that 99% of the acquiring

time of any lock is spent to acquire the ping-pong lock and 1% is spent to acquire internal

locks of the Java library during the bootstrap of the application. Thus, as anticipated by our

theoretical study, the result reported by HPROF does not change with the number of threads.

JProfiler reports the time spent in acquiring each lock and the elapsed time of the application:

the acquiring time equals 96.7% of the elapsed time with 2 or 48 threads. This result also

confirms our theoretical analysis. Thus, neither of these metrics decreases when the number of

threads increases. On the other hand, Free Lunch reports a CSP of 49.9% with 2 threads and a

CSP of 2.1% with 48 threads. Thus, it correctly indicates when the lock impedes the progress

of threads.

We next study the profilers that rely on the critical section time. MSDK’s metric divides

this time by the total number of acquisitions. On the ping-pong micro-benchmark, it reports

a value of 2.4ms with both 2 and 48 threads (see Table 4.2). Thus, again, as predicted by our

theoretical analysis, the result does not decrease when the number of threads increases.

We then turn to the fork-join micro-benchmark. We also execute this micro-benchmark for

30s, with 1 master thread and 47 worker threads. We vary the processing time of the workers

from 50ms to 700ms. The results are presented in Figure 4.4.

For this micro-benchmark, we compare Free Lunch with Health Center, which relies on the

number of failed acquisitions. As shown in Figure 4.4, the CSP reported by Free Lunch decreases

with the processing time of the workers. On the other hand, the number of failures divided by
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Figure 4.4: Comparison of the Free Lunch CSP metric and the Health Center metric on the

fork-join micro-benchmark.

the number of acquisitions reported by Health Center oscillates between 7 and 23%, depending

on the processing time, and does not decrease when the processing time increases. This result

corresponds to the theoretical study presented in Section 3.1: the number of failures divided by

the number of acquisitions is not related to the processing time of the workers, and thus the

progress of the threads. Notice that according to our theoretical study, Health Center should

report a constant value of 5/9 (56%). That value does not account for the fact that the Linux

scheduler has to elect the workers when they are woken up by the master. This election time

avoids lock acquisition failures when a thread is elected after the already awakened threads have

released their lock. On the other hand, as a condition variable may not wake up the waiting

threads in FIFO order, some failed acquisitions can occur during the join phase.

4.3.2 Analysis of lock CSP

This section presents a detailed analysis of the CSP of the locks used by the applications

from the DaCapo 9.12 benchmark suite [12], the SPECjvm2008 [87] benchmark suite, and the

SPECjbb2005 [86] benchmark. We first consider the case where the measurement interval is

equal to the running time of the application, giving the average CSP over the whole run. Ta-

ble 4.3 lists the locks with an average CSP greater than 5% in this case. Figure 4.5 then presents

the evolution of the CSP of the same locks with a measurement interval of 1s. Note that the

average CSP over the whole run (Table 4.3) is not equal to the average of the CSPs of each

individual measurement interval (Figure 4.5), because of changes in the number of threads in

each measurement interval. For example, a high CSP with only two running threads during a

measurement interval becomes negligible when averaged over two measurement intervals if many

threads are running in the second interval. The remainder of this section analyzes in detail these

CSP values.
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Benchmark Java class of the object with highest CSP CSP

H2 org.h2.engine.Database 62.3%

Avrora java.lang.Class 48.4%

PMD org.dacapo.harness.DacapoClassLoader 25.4%

Xalan java.util.Hashtable 20.4%

Sunflow org.sunflow.core.Geometry 6.2%

Tradebeans org.h2.engine.Database 6.0%

Table 4.3: CSP averaged during the whole run.

H2 is an in-memory database. The lock associated with an org.h2.Database object has an

average CSP of 62.3%. H2 uses this lock to ensure that client requests are processed sequentially;

thus, the more clients send requests to the database, the more clients try to acquire the lock.

As shown in Figure 4.5, H2 exhibits 3 distinct phases. The first phase (from 0s to 16s) presents

no CSP at all: in this phase the main thread of the application populates the database, thus

no CSP occurs for accessing the database. The second phase (from 16s to 79s) shows a CSP

between 92% and 96%: clients are sending requests to the database, thus inducing contention

on the database lock. The CSP decreases at the end of the phase, going from 92% to 0%, when

clients have finished their requests to the database. The purpose of the last phase (from 79s to

the end) is to revert the database back to its original state, which is again done only by the main

thread and thus induces no CSP. This application is inherently not scalable because requests

are processed sequentially. Deep modifications would be required to improve performance.

Avrora is a simulation and analysis framework. The lock associated with a java.lang.-

Class object has an average CSP of 48.4%. Avrora uses this lock to serialize its output to the

terminal. As shown in Figure 4.5, Avrora exhibits a high CSP phase, from 2.3s to the end of

the application, where application threads write results to a file. There seems to be no simple

solution to remove this lock because interleaving outputs from different threads would lead to

an inconsistent result.

PMD is a source code analyzer. The lock associated with an org.dacapo.harness.DacapoClassLoader

object has an average CSP of 25.4%. This object is used to load new classes during execution.

As shown in Figure 4.5, a high CSP phase begins at 2s and terminates at 5.7s, while the appli-

cation terminates at 9.2s. During the high CSP phase, PMD stresses the class loader because

all the threads are trying to load the same classes. Removing this bottleneck is likely to be hard

because the classes have to be loaded serially.

Xalan is a XSLT parser transforming XML documents into HTML. The lock associated with

a java.util.Hashtable object has an average CSP of 20.4%. java.util.Hashtable uses this

lock to ensure mutual exclusion on each access to the hashtable, leading to a bottleneck. As

shown in Figure 4.5, during a first phase (from 0s to 6.8s) only one thread fills the hashtable,

and therefore the CSP is negligible. However, during the second phase (from 6.8s to the end of
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Figure 4.5: CSP with a measurement interval of 1s.

application), all the threads of the application are accessing the hashtable, increasing the CSP

up to 64.3%. This high CSP phase is underestimated when the CSP is averaged over the whole

run, making it difficult to identify without separating phases. We reimplemented the hash table

using java.util.concurrent.ConcurrentHashMap, which does not rely on locks. This change

required modifying a single line of code, and improved the baseline application execution time

by 15%. This analysis shows that the information generated by Free Lunch can help developers

in practice.

Sunflow is an image rendering application. The lock associated with an org.sunflow.-

core.Geometry object has an average CSP of 6.2%. As shown in Figure 4.5, Sunflow exhibits a

moderate CSP peak at the beginning of its execution. This occurs during the tesselation of 3D
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objects, which must be done in mutual exclusion. Since the number of 3D objects is small as

compared to the number of threads, many threads block, waiting for the tesselation to complete.

Improving the performance would require parallelizing tessalation computation.

Tradebeans simulates an online stock trading system, and includes H2 to store persistent

data. The lock associated with an org.h2.Database object has an average CSP of 6.0%. This

lock is also the bottleneck reported in the H2 application. As shown in Figure 4.5, a phase with

a small CSP starts at 13.4s and persists until the application terminates. As already explained,

deep modifications would be required in H2 to improve performance.

4.3.3 Cassandra

Cassandra [61] is a distributed on-disk NoSQL database, with an architecture based on Google’s

BigTable [16] and Amazon’s Dynamo [27] databases. It provides no single point of failure, and

is meant to be scalable and highly available. Data are partitioned and replicated over the nodes.

Durability in Cassandra is ensured by the use of a commit log where it records all modifications.

As exploring the whole commit log to answer a request is expensive, Cassandra also has a cache

of the state of the database. This cache is partially stored to disk and partially stored in memory.

After a crash, a node has to rebuild this cache before answering client requests. For this purpose,

it rebuilds the cache that was stored in memory by replaying the modifications from the commit

log.

A Cassandra developer reported a lock performance issue in Cassandra 1.0.0.1 During this

phase, the latency was multiplied by twenty. The issue was observed on a configuration where

the database is deployed on three nodes with a replication factor of three, and consistency is

ensured by a quorum agreement of two replicas. No further information about the configuration

is provided. As a result, we were unable to reproduce this problem.

Although we were not able to reproduce the previously reported problem, we were able to

use Free Lunch to detect a phase with a high CSP in Cassandra 1.0.0. Using the configuration

described above, we created a 10Gb database and then used the YCSB [77] benchmark to stress

Cassandra with an update-heavy workload including 50% reads and 50% updates. After 5.5

minutes, we simulated a crash by halting a node and immediately restarting it. During the

recovery, Free Lunch reports a high CSP phase of around 50%, with a peak at 52%. The

high CSP phase takes place during the commit log replay, which takes 11.4s. Coincidentally,

the critical section involved is the same one that caused the previously reported problem in

Cassandra 1.0.0. Outside this phase, the CSP for the lock is near 0%. The duration of the high

CSP phase is proportional to the size of the log replay, which itself is proportional to the number

of modifications before the crash. This result shows that Free Lunch is able to accurately identify

variations in CSP during phases in large Java servers. This phase is hidden by other profilers

because a Cassandra server has a long running time of many days.

This experiment also illustrates the difficulty of producing and reproducing CSP issues.

Indeed, the particular tested scenario is complex to deploy and involves a server crash, which

is relatively unusual. For this reason, we think that the probability of encountering the issue

1See https://issues.apache.org/jira/browse/CASSANDRA-3385 and https://issues.apache.org/jira/

browse/CASSANDRA-3386.

https://issues.apache.org/jira/browse/CASSANDRA-3385
https://issues.apache.org/jira/browse/CASSANDRA-3386
https://issues.apache.org/jira/browse/CASSANDRA-3386
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during in-vitro testing is small, and thus in-vivo profiling is essential.
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Chapter 5

Conclusion

This thesis has presented Free Lunch, a new lock profiler especially designed to identify phases of

high lock contention in-vivo. The role of Free Lunch is to identify locks that hamper application

responsiveness and throughput, with an emphasis on servers class applications that typically

leverage multicore hardware and for which these properties are crucial. We introduce a novel

metric called Critical Section Pressure (CSP) that evaluates the lack of thread progress due

to synchronization issues. The CSP is defined by the percentage of time spent by the threads

in acquiring the lock over the cumulated running time of these threads. The CSP metric is

implemented inside Free Lunch and helps to report back to developers the percentage of time

during which threads are blocked and unable to make progress due to a lock. Free Lunch is

also designed to compute regularly the CSP metric in order to detect phases of lock contention

that may arise unexpectedly due to various external factors difficult to reproduce in-vitro. Free

Lunch is designed in a way that limits the profiling overhead to what is acceptable for in-vivo

profiling. The key idea in the implementation is that Free Lunch is embedded within the JVM,

leveraging direct access to the locking subsystem and internal data structures in a flexible way

and using an efficient time management facility. This approach is done detrimental to portability,

nevertheless, Free Lunch is only 420 lines of code long which should be easy to implement in

another JVM.

Free Lunch is evaluated on applications coming from the DaCapo 9.12, SPECjvm2008 and

SPECjbb2005 benchmark suites, and the Cassandra database with a workload from YCSB for

a total of 32 applications. The hardware used for these experimentation is a server with four

AMD Opteron processors for a total of 48 cores at a 2.2GHz frequency, having 256GB of RAM

and running a Linux 3.2.0 64-bit kernel from Ubuntu 12.04. We identified phases of high CSP

in six applications. Some of these phases are hidden when using existing profilers, which shows

that Free Lunch can identify new bottlenecks and reports them back to the developer. Thanks

to these reports, we were able to improve the performance of the Xalan application by 15% by

modifying a single line of code. We also found a phase of high CSP in the Cassandra database.

This high CSP phase happens during the replay of the commit log, performed during the recovery

of a crashed node in order to return to a steady state. We studied existing metrics of state-

of-the-art lock profilers theoretically and empirically against synchronization scenarios typically

encountered in multithreaded applications. We found that these metrics do not return insightful
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results to help developers to highlight locks that are harmful for the application. We evaluated

Free Lunch on more than thirty applications and shown that it never degrades the performance

by more than 6%. This result shows that Free Lunch could be used in-vivo to detect phases

where a lock impede the threads’ progress with scenarios that would otherwise not necessarily

be tested by a developer in-vitro. We provide a detailed analysis of overhead costs associated

with each design choice in HPROF to help understand the origin of its overhead. Then starting

with baseline HPROF, we gradually improve it until we reach the Free Lunch final design.

Future work

Future work for Free Lunch will focused around addressing its limitations about the precision

CSP computation and extending it to different locking mechanisms.

Free Lunch has no application-specific information about the role of the individual threads,

and thus assumes that all threads are equally important to the notion of progress. For example,

in the generalized ping-pong scenario, it may be that the two ping-pong threads control output

to the user, and the remaining threads perform computations whose results will be ultimately

discarded, if the ping-pong threads cannot output them sufficiently quickly for instance. A

low CSP for this scenario would not reflect the user experience. It would require to have a

deeper knowledge of application architecture to differentiate threads according to the task they

perform and vary the importance of blocking time for the CSP computation accordingly. To

achieve that, it could be possible to leverage techniques like category analysis as it is done for

the WAIT tool [5] and for Capacity planning [68].

A limitation of our design is that Free Lunch only takes into account lock acquisition time

as being detrimental to thread progress. However, Free Lunch does not record every situation

where threads are prevented from progressing. Such situations include ad hoc synchroniza-

tion [96] where developers write their own synchronization mechanism and bypass those offered

by programming languages or locking APIs such as POSIX. In Java, apart from the synchro-

nized keyword, threads could synchronize with volatile variables, lock-free algorithms or data

structures [62].

Free Lunch exclusively considers synchronized blocks and methods for locking. Programs

now make extensive use of the java.util.concurrent package [62] but Free Lunch does not profile

it yet. To the best of our knowledge, only JProfiler and JUCProfiler (a tool from MSDK) has

the ability to profile these locks. A similar work to what we have done on synchronized blocks

could be carried on, namely to see if existing j.u.c metrics give insightful data for finding lock

issues, assessing these metrics on similar micro-benchmarks and real applications, evaluating the

overhead of these profilers to see if it is suitable for in-vivo profiling, and if needed, designing a

better profiler for these locks. For Hotspot, the implementation will raise new challenges since it

is a different locking subsystem, split between pure Java code in the JCL and C++ code located

inside the JVM, as opposed to synchronized blocks which are completely implemented inside

the JVM.
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Later works that cite Free Lunch

Following the publication that presented the work around Free Lunch (in OOPSLA ’14 [24]

and ComPAS ’13 [22], as well as the INRIA research report [23], the EuroSys 2012 Doctoral

Workshop and a poster for the EIT ICT Labs Symposium on Future Cloud Computing in

2014), Free Lunch has been cited by Curtsinger et al. [20] in a work-in-progress paper that

introduces casual profiling, an approach to identify exactly where programmers should focus

their optimization efforts by virtually speeding up lines of code and quantifying its impact on

throughput and latency.
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Appendix A

French summary of the thesis
Synthèse du rapport de thèse en français

Following the rules of the Université Pierre et Marie Curie, this appendix is a short summary

of the thesis, written in French. Afin de suivre les règles de l’université Pierre et Marie Curie,

cette annexe contient une synthèse du rapport de thèse en français.

A.1 Introduction

Nous vivons dans un monde de données et notre production journalière de données augmente de

façon exponentielle. En 2013, le consortium International Data Corporation (IDC) a estimé la

taille de l’Univers Digital à environ 4,4 zettaoctets (4.4× 1021) et prévoit qu’il doublera tous les

2 ans pour atteindre 44 zettaoctets en 2020 [48]. Cette tendance est connue sous le nom de Big

Data. De plus, le nombre d’objets connectés dans l’Internet des Objets, qui désigne les objets

de la vie courante dotés d’une connexion à Internet leur donnant la possibilité de transmettre

des données, a été estimé à environ 20 milliards d’appareils en 2013 et est prévu d’atteindre 32

milliards d’ici 2020, comptant pour 10 % de l’Univers Digital. Ces prévisions soulignent le fait

que les données sont omniprésentes dans notre vie et que cette tendance va s’accentuer dans les

années à venir.

Tirer profit des Big Data est un problème majeur pour des industries travaillant dans la

finance, la technologie, la santé, la distribution ou l’énergie car cette technologie est considérée

comme l’un des plus important vecteur de création de valeur pour l’avenir. Les Big Data peuvent

aider les entreprises à prendre de meilleures décisions, par exemple, comprendre les habitudes de

consommation de leurs clients, optimiser leurs processus opérationnels et de contrôle, pour pren-

dre de meilleurs décisions pour le prix de vente de leurs produits et beaucoup d’autres. Quelques

exemples d’applications utilisant les Big Data incluent l’outil Facebook Graph Search [19] qui

permet d’effectuer des recherches multicritères avancées dans leur graphe d’utilisateurs afin de

répondre à des requêtes complexes pour cibler les clients désirés ou les systèmes de recomman-

dations utilisé par Youtube [25] ou Netflix [58, 59] où le système recommande des ensembles de

vidéos personnalisés aux utilisateurs, basés sur leur activité sur le site. Cependant, cela reste

un challenge de pouvoir structurer ces données de façon compréhensive, de les traiter avec une
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faible latence, d’en extraire les informations appropriées et de reporter ces résultats aux clients.

Traiter ces énormes masses de données soulève d’importants challenges pour la communauté

système. Les applications typiques de Big Data telles que les systèmes d’analyse à grande échelle

comme MapReduce [26] ou Spark [99], les bases de données [40, 61] et les serveurs web [7, 50] ont

d’importants besoins en terme de calculs et de mémoire et le temps de réponse et le débit sont

critiques pour une expérience utilisateur optimale [76]. Ces programmes sont habituellement

parallélisés et utilisent des serveurs multicœurs situés dans des data-centers comme plateforme

de calcul. Cependant, la parallélisation des programmes est un problème notoirement difficile qui

peut empêcher de tirer parti de toute la puissance de calcul de telles plateformes, en particulier

à cause de la loi d’Amdahl [6, 36]. Cette loi stipule que le potentiel d’accélération obtenu en

parallélisant un programme est limité par la partie séquentielle du programme. Les portions

séquentielles d’un programme sont appelées les sections critiques: elles protègent les données

partagées des multiples accès concurrents et sont entourés de verrous pour assurer la cohérence

des données.

Cependant à cause de la complexité de ces applications, il se peut que certaines sections

critiques ne soient pas efficientes dans toutes les configurations d’exécution. Ces sections critiques

peuvent entraver l’avancement des threads dans des conditions spécifiques et peuvent dégrader de

façon drastique le temps que met le serveur pour traiter les requêtes. Les développeurs essayent

généralement de trouver ces sections critiques problématiques pendant la phase d’évaluation des

performances mais cela ne permet pas toujours de toutes les identifier. Cela est dû à 3 principales

raisons:

− La difficulté à reproduire un environnement d’exécution réel: le logiciel utilise très prob-

ablement un jeu de données représentatif de la charge de travail attendue pour les tests.

Dans le meilleur des cas, les développeurs essayeront de simuler le jeu de données le plus

représentatif, aussi proche que possible des conditions réelles d’utilisation, afin de tester

l’application. Cependant, ce jeu de données est dépendant du cœur de métier utilisant

le logiciel et sera ultimement généré par les utilisateurs, il est donc complètement in-

connu avant le déploiement. Il est possible qu’il soit complètement différent de ce que les

développeurs avaient envisagé, en particulier si le logiciel est assez flexible pour être utilisé

dans une large variété de situations,

− La difficulté à reproduire tous les scénarios possibles d’exécutions: la charge de travail de

test appliquée au logiciel est généralement composé d’un mélange de requêtes prédéfinies.

Les requêtes des utilisateurs ne sont pas prévisibles à l’avance et elles exposent le logi-

ciel à une multitude de requêtes différentes à traiter. Il est difficile de savoir comment

stresser l’application avec une charge de travail proche de celle qu’elle rencontrera dans

des conditions réelles d’utilisation,

− Impossibilité de tester toutes les configurations matérielles possibles: les développeurs ont

généralement accès à un ensemble restreint de machines pour leurs tests. Ils ne peu-

vent pas évaluer les applications sur un large ensemble d’architectures et de processeurs

où les résultats pourraient varier. Les performances peuvent aussi beaucoup varier en-

tre différentes versions du même système d’exploitation ou de la machine virtuelle Java.
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Parfois, ils testent leurs applications sur leur propre machine qui est loin de ressembler

à un serveur avec un nombre important de cœurs et beaucoup de mémoire. Il n’est pas

réaliste de tester toutes ces combinaisons et les développeurs finissent par tester seulement

un sous-ensemble des architectures, des systèmes d’exploitation, des machines virtuelles et

des différentes versions d’une application existantes.

Pour ces raisons et malgré des tests rigoureux, il est difficile de simuler tous les scénarios de

façon exhaustive. Par conséquent, le débit et le temps de réponse peuvent être dégradés dans des

situations qui n’étaient pas prévues par les développeurs pendant la phase de développement et

qui seront découvertes au moment du déploiement dans des conditions réelles d’utilisation, avec

des conséquences dommageables pour l’expérience utilisateur. Par exemple, la PDG de Google

Marissa Meyers a signalé à la conférence Google I/O qu’une augmentation du temps de réponse

d’une demi-seconde pouvait mener à une baisse de trafic de 20% [66], entrâınant ainsi une baisse

des revenus publicitaires.

Java est régulièrement utilisé pour implémenter ces applications multithreadés complexes.

Ce langage est devenu l’un des plus utilisé grâce à sa sécurité, sa flexibilité et son environnement

de développement mature [91]. Néanmoins, le langage Java est connu pour ne pas être adapté

aux architectures multicœurs. La principale abstraction du langage pour gérer la concurrence

est le mot-clé synchronized qui encourage l’utilisation de synchronisation à gros-grain. En dépit

des efforts fait par la communauté Java avec par exemple, le package java.util.concurrent [62]

qui a pour but d’offrir un ensemble d’abstractions à grain-fin pour le contrôle de la concurrence,

les blocks synchronized restent très largement utilisés. Par exemple, il y a approximativement

7410 blocks synchronized situés dans la Java Class Library de Java 7. Les applications ne

peuvent pas être optimisées finement pour être exécutées sur du matériel multicœurs spécifique,

en prenant en compte par exemple le comportement des caches ou la hiérarchie mémoire car

ces fonctionnalitées sont cachées par la machine virtuelle Java (JVM). Enfin, la formation et

l’expérience des développeurs Java sont habituellement orientées vers des aspects logiciels de

haut-niveau plutôt que vers des problèmes de synchronisation de bas-niveau.

De plus, un profilage effectif des applications Java pour serveur requiert l’utilisation d’une

métrique qui reporte la dégradation des performances du serveur causée par un verrou et qui

prend en compte le fait que ces applications ont un long temps d’exécution avec de multiples

phases. Les logiciels de profilage de verrous pour Java reportent la contention moyenne pour

chaque verrou par rapport à la durée totale d’exécution de l’application en utilisant de multiples

métriques. Ces métriques se concentrent cependant sur l’identification des verrous les plus

utilisés ou les plus contendus mais ne corrèlent pas ce résultat à l’avancement des threads, ce

qui les rend incapables d’indiquer si un verrou représente un goulot d’étranglement ou non.

Par exemple, sur un schéma de synchronisation classique tel que le fork-join, nous avons observé

qu’un verrou fréquemment utilisé ou contendu n’entrave pas systématiquement l’avancement des

threads. De plus, en reportant uniquement une moyenne par rapport à la durée totale d’exécution

de l’application, ces profilers de verrous ne sont pas capables d’identifier les variations locales

dues aux propriétés des différentes phases de l’application. Un verrou contendu pendant une

phase peut nuire au temps de réponse mais il peut être masqué dans les résultats du profilage

par une longue durée d’exécution de l’application.
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Ces problématiques sont illustrées par un rapport de bug reporté 2 ans plus tôt dans la

version 1.0.0 de la base de données distribuée NoSQL Cassandra [61]1. Dans une configuration

particulière, avec 3 nœuds et un facteur de réplication de 3, le temps de réponse de Cassandra

est multiplié par 20 lorsqu’un nœud ne répond plus. Ce ralentissement est causé par un verrou

utilisé dans l’implémentation du hinted handoff2, un mécanisme qui enregistrent les transactions

des nœuds dans le but de les rejouer plus tard lorsqu’un nœud revient en ligne après une panne.

Il semble que les développeurs n’aient pas pensé à tester ce scénario spécifique ou qu’ils l’aient

testé mais qu’ils n’aient pas été capable de reproduire le problème. De plus, même si ce scénario

avait été exécuté, les profilers de verrous actuels auraient été incapable d’identifier la cause du

goulot d’étranglement si le scénario avait été activé pendant une longue durée d’exécution qui

aurait masqué la phase de contention.

Les recherches conduites dans cette thèse se concentrent sur la thématique du profilage de

verrous et plus précisément, sur le problème de la dégradation des performances des applications

Java pour serveurs due aux verrous sur des architectures multicœurs. Pour les raisons présentées

précédemment, nous avons conçu un profiler de verrous doté des propriétés suivantes:

1. Le profiler doit utiliser une métrique qui indique si un verrou entrave l’avancement des

threads. Le rapport du profilage à l’intention du développeur doit donner un aperçu clair

et précis à propos de l’impact que les verrous ont sur la performance des applications, en

particulier en terme de temps de réponse et de débit. Cela permettra au développeur de

concentrer ses efforts de débogage sur un problème qui diminue réellement les performances

de l’application,

2. Le profiler doit recalculer cette métrique périodiquement afin d’être sensible aux différentes

phases d’une application. Les applications de type serveur sont complexes et leur com-

portement est dépendant de nombreux facteurs tels que un environnement imprévisible,

des pics de charge à plusieurs moments dans la journée, une large variété de requêtes et

le comportement des clients, tout cela n’étant pas prévisible théoriquement. Tous ces scé-

narios ne peuvent pas être anticipés dans un environnement de test et par conséquent, il

est difficile de détecter tous les problèmes de verrous. Un profiler calculant et reportant

régulièrement une métrique évaluant la contention des verrous permettra de trouver les

problèmes liés aux particularités des clients et de l’environnement,

3. Le profiler doit induire un faible surcoût d’exécution pour être utilisé in-vivo. Un pro-

filer in-vivo surveille continuellement l’application pendant son exécution. Cependant les

utilisateurs ne sont pas prêts à à utiliser un profiler qui dégrade les performances de leur ap-

plication de façon drastique. Intuitivement, il est également contradictoire de ralentir une

application continuellement dans le but de trouver un hypothétique problème qui réduirait

les performances de l’application. Par conséquent, le surcoût d’exécution du profiler doit

être aussi limité que possible afin que ce ne soit pas détectable par le client final.

Dans cette thèse, nous proposons un nouveau profiler, appelé Free Lunch, conçu autour

d’une nouvelle métrique, la Critical Section Pressure (CSP). Cette métrique a pour but d’évaluer

1https://issues.apache.org/jira/browse/CASSANDRA-3386.
2http://wiki.apache.org/cassandra/HintedHandoff.

https://issues.apache.org/jira/browse/CASSANDRA-3386
http://wiki.apache.org/cassandra/HintedHandoff
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l’impact de la contention des verrous sur l’avancement global des threads. La CSP est définie

comme étant le pourcentage de temps passé par les threads de l’application à être bloqués en ten-

tant d’acquérir un verrou pendant un intervalle de temps, ce qui indique le pourcentage de temps

où les threads sont incapables de progresser et la perte potentielle de performance. Free Lunch

est conçu spécifiquement pour identifier des phases où la CSP est élevée in-vivo: l’application

est échantillonnée continuellement sur plusieurs intervalles de temps pendant lesquels la CSP est

calculée pour chaque verrou. Quand la CSP d’un verrou atteint un seuil prédéfini, Free Lunch

reporte l’identité du verrou aux développeurs avec une trace d’appels menant à la section critique

protégée par le verrou, comme pour les applications et les systèmes d’applications qui retournent

des rapports d’erreurs aux développeurs lors d’une panne ou d’une situation inattendue [38].

Afin de faire en sorte que le profilage in-vivo soit acceptable, Free Lunch doit induire un

faible surcoût d’exécution. Pour réduire le surcoût d’exécution, Free Lunch tire parti des struc-

tures de données des verrous internes à la JVM en leurs ajoutant une structure de données

additionnelle contenant les données de profilage. Ces structures de verrous sont déjà protégées

de la concurrence d’accès et donc Free Lunch ne nécessite aucune synchronisation additionnelle

pour accéder aux données de profilage. Free Lunch ajoute le calcul périodique de la CSP dans

le système de gestion des verrous de la JVM afin d’éviter des inspections supplémentaires des

threads ou des verrous. Free Lunch repose également sur des instructions matérielles spécifiques

fournissant des fonctionnalitées de gestion du temps efficace permettant une instrumentation

minimale du code en charge du verrouillage. Grâce à cela, Free Lunch ajoute seulement 11

instructions assembleurs dans la fonction d’acquisition des verrous sur une architecture amd64.

Nous avons implémenté Free Lunch dans la JVM Hotspot 7 [89]. Cette implémentation

modifie seulement 420 lignes de code, majoritairement dans le sous-système de gestion du ver-

rouillage, ce qui laisse penser qu’il devrait être aisé de l’implémenter dans une autre JVM. Nous

comparons Free Lunch avec d’autres profilers sur une machine AMD Magny-Cours de 48 cœurs

en terme de performance et d’utilité des résultats du profilage. Nos principales contributions

sont les suivantes:

• Théoriquement et expérimentalement, nous avons trouvé que les métriques pour évaluer

la contention des verrous utilisé par les profilers Java existants HPROF [42], JProfiler [52],

Yourkit [97], MSDK [69], IBM Health Center [41], Java Lock Monitor [67] et Java Lock

Analyzer [49] sont inappropriées pour identifier si un verrou entrave l’avancement des

threads.

• Free Lunch permet de détecter une phase précédemment non signalée avec une CSP élevée

dans le sous-système de rejeu des transactions de Cassandra. Ce problème est resté invisible

aux développeurs de Cassandra car il est déclenché par un scénario particulier et survient

uniquement pendant une courte période durant l’exécution, ce qui le rend difficile à détecter

avec les profilers existants.

• Free Lunch a permis d’identifier 6 verrous ayant une CSP élevée dans 6 applications

provenant de benchmarks standards. À partir de ces résultats, nous avons amélioré les per-

formances de l’une de ces applications (Xalan) de 15 % en changeant une seule ligne de code.

Comme le verrou est contendu seulement pendant la moitié du temps total d’exécution de
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Table A.1: Capacité des métriques à évaluer l’avancement des threads.

Métriques
Scenario

Profilers
ping-pong fork-join

# acquisitions échouées /
+ -

JLM, JLA,

# acquisitions Health Center

# acquisitions échouées /
- -

JLM, JLA, MSDK,

Temps d’exécution Health Center

Temps total en section critique /
- +

JLM, JLA, MSDK,

# acquisitions Health Center

Temps d’acquisition d’un verrou /
- - HPROF

Temps d’acquisition de tous les verrous

Temps d’acquisition d’un verrou /
- -

HPROF, JProfiler,

Temps d’exécution Yourkit

l’application, les autres profilers sous-estiment largement son impact sur les performances.

Pour les autres applications, les informations retournées par Free Lunch nous ont aidés à

vérifier que le comportement de verrouillage n’entravait pas assez l’avancement des threads

pour avoir un impact significatif sur les performances de l’application ou bien que la section

critique en question ne pouvait pas être facilement modifiée.

• Dans la suite de benchmarks DaCapo 9.12 [12], la suite de benchmarks SPECjvm2008 [87]

et le benchmark SPECjbb2005 [86], nous avons trouvé qu’il n’y a aucune application pour

laquelle le surcoût d’exécution moyen de Free Lunch était plus important que 6 %. Ce

résultat montre qu’un profiler mesurant la CSP peut avoir des performances acceptables

pour du profilage in-vivo.

• Les profilers de verrous compatibles avec Hotspot, HPROF [42], JProfiler [52] and Yourkit

[97] induisent un surcoût d’exécution d’au maximum 4 fois, 7 fois et 1980 fois respective-

ment sur le même ensembles de benchmarks. Ces performances sont inaceptables pour du

profilage in-vivo.

A.2 Conception du profiler Free Lunch

Le but de Free Lunch est d’identifier les verrous qui entravent le plus l’avancement des threads

et de régulièrement mesurer l’impact des verrous sur l’avancement des threads au fil du temps.

Nous décrivons dans cette section nos choix en ce qui concerne le design de Free Lunch par

rapport à la définition de notre métrique, la durée de l’intervalle de mesure, les informations que

Free Lunch reporte au développeur et les limitations de notre design.

A.2.1 La métrique Critical Section Pressure

En concevant une métrique dont le but est d’évaluer l’avancement des threads, nous observons

tout d’abord qu’un thread est incapable de progresser quand il bloque pendant l’acquisition d’un
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verrou. Cependant, prendre en compte seulement ce temps d’acquisition n’est pas suffisant:

HPROF, Yourkit et JProfiler utilisent également le temps d’acquisition mais que les métriques

qui en résultent sont incapables d’indiquer si un verrou entrave réellement l’avancement des

threads (voir Table A.1). Notre proposition est de relier le temps d’acquisition d’un verrou au

temps d’exécution cumulé des threads en définissant la CSP d’un verrou comme le ratio i) du

temps passé par les threads à acquérir le verrou et ii) du temps d’exécution cumulé de tous les

threads.

Afin de rendre cette définition plus précise, nous avons besoin de définir le temps d’exécution

et le temps d’acquisition d’un thread, en considérant en particulier comment prendre en compte

les cas où le thread est bloqué ou préempté pour des raisons diverses. Le temps où un thread

attend sur une variable conditionnelle est exclu du temps d’exécution, par exemple comme

dans les programmes Java où un thread attend sur une variable conditionnelle quand il n’a

rien à faire. Cette observation est particulièrement vraie pour un serveur qui crée un large

ensemble de threads pour traiter des requêtes mais où seule une faible portion de ces threads

sont actifs à un moment donné. Ce temps d’attente n’est par conséquent pas essentiel pour

le calcul de l’application et le prendre en compte réduirait drastiquement la CSP et rendrait

difficile l’identification des phases pendant lesquelles les threads ne progressent pas. Par contre,

le temps où un thread est bloqué pour d’autres raisons est inclus dans le temps d’exécution. Par

exemple, considérons une application qui passe la majeure partie de son temps à faire des E/S

en dehors de toute section critique et qui bloque rarement pour acquérir un verrou. Si le temps

d’E/S n’est pas considéré, la CSP reportée sera élevée, même si le verrou n’est pas le goulot

d’étranglement. De la même manière, dans un scénario opposé avec une application qui passe

beaucoup de temps bloqué dans des E/S pendant qu’un verrou est détenu, ne pas compter les

E/S pourrait mener à sous-estimer la CSP. Pour finir, le temps où les threads sont préemptés

est inclus dans le temps d’acquisition et le temps d’exécution. La probabilité d’être préempté

pendant l’acquisition d’un verrou est la même que la probabilité d’être préempté à n’importe

quel autre moment pendant l’exécution, par conséquent, cela n’a pas d’impact sur le ratio entre

le temps d’acquisition et le temps d’exécution cumulé des threads.

A.2.2 Intervalle de mesure

Afin d’identifier les phases de CSP élevée d’une application, Free Lunch calcule la CSP de chaque

verrou pendant un intervalle de mesure. La calibration de la durée de cet intervalle de mesure

doit prendre en compte 2 contraintes opposées. D’un côté, l’intervalle de mesure doit être assez

court pour permettre d’identifier les phases d’une application. Si l’intervalle de mesure est long

comparé à la durée d’une phase pendant laquelle il y a une CSP élevée, la CSP mesurée sera

négligeable et Free Lunch sera incapable d’identifier cette phase de CSP élevée. Mais d’un autre

côté, si l’intervalle de mesure est trop court, la présence de quelques threads bloqués durant

l’intervalle peut donner une CSP élevée même s’il y a peu de pression sur les sections critique.

Dans ce cas, Free Lunch identifiera de nombreuses phases avec une CSP élevée, masquant les

véritables phases ayant une CSP élevée en reportant de nombreux faux-positifs.

Nous avons testé plusieurs durées pour l’intervalle de mesure en utilisant l’application Xalan

de la suite de benchmarks DaCapo 9.12. Cette application est un parser XSLT transformant des
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Figure A.1: CSP en fonction de l’intervalle minimal de mesure pour l’application Xalan.

documents XML en HTML. Xalan présente une phase avec une CSP élevée pendant la deuxième

moitié de son exécution causée par de nombreux accès concurrents à une table de hachage

protégée par un verrou. La Figure A.1 reporte l’évolution de la CSP pendant l’exécution. Avec

un intervalle de mesure court de 10 ms., la CSP varie beaucoup entre les points de mesure

successifs. Dans ce cas, le verrou va et vient entre un état contendu (avec une CSP élevée)

et un état peu contendu (avec une CSP faible). À l’opposé, quand l’intervalle de mesure est

approximativement égal au temps d’exécution (13 sec.), la CSP est moyennée sur la durée totale

d’exécution ce qui masque les phases. Avec un intervalle de mesure de 1 sec., nous observons

que (i) l’application a une CSP élevée pendant la deuxième moitié de l’exécution avec une valeur

atteignant 64 % et que (ii) la CSP reste relativement stable entre 2 intervalles de mesure.

À partir de cette expérimentation, nous concluons qu’une seconde est un bon compromis car

cet intervalle de mesure est assez long pour stabiliser la valeur de la CSP. De plus, si une phase

avec une CSP élevée est plus courte qu’une seconde, il est possible que l’utilisateur ne remarque

aucune dégradation du temps de réponse.

A.2.3 Rapport reporté par Free Lunch

Pour pouvoir aider efficacement les développeurs à identifier la cause d’une CSP élevée, Free

Lunch reporte non seulement l’identité du verrou affecté mais également une trace d’appels

menant à son acquisition. Free Lunch obtient cette information en traversant la pile d’exécution.

Étant donné que traverser la pile d’exécution est coûteux, nous avons décidé d’enregistrer une
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unique trace d’appels, celle menant à la première acquisition du verrou alors que celui-ci est déjà

verrouillé par un autre thread. Des travaux précédents [5] et notre expérience dans l’analyse des

programmes Java décrite dans la Section 4.3.2 montre qu’une seule trace d’appels est générale-

ment suffisante pour comprendre pourquoi un verrou entrave l’avancement des threads.

A.2.4 Limitations de notre design

Une limitation de notre design est que Free Lunch prend uniquement en compte le temps

d’acquisition des verrous comme étant un problème pour l’avancement des threads. De plus,

il pourrait reporter une CSP faible dans le cas où les verrous sont rarement utilisés mais où

beaucoup de threads ne peuvent progresser à cause de schémas de synchronisation ad-hoc [96]

ou d’utilisation d’algorithmes non-bloquants [62].

De plus, Free Lunch n’a pas d’informations spécifiques provenant des applications à propos

du rôle des threads. Par conséquent, il suppose que tous les threads sont aussi importants

les uns que les autres pour la notion d’avancement. Par exemple, il se peut que 2 threads

acquérant à tour de rôle un verrou contrôlent l’envoi du résultat vers l’utilisateur tandis que

les threads restants effectuent des calculs dont les résultats seront au final inutilisés si les 2

threads ne peuvent pas les envoyer suffisamment rapidement. Une CSP faible pour ce scénario

ne traduirait pas correctement l’expérience utilisateur.

A.3 Évaluation

Nous évaluons maintenant la performance de Free Lunch comparée aux profilers existants pour

OpenJDK: la version de HPROF livré avec OpenJDK version 7, Yourkit 12.0.5 et JProfiler 8.0.

Comme Free Lunch est implémenté dans Hotspot, nous ne le comparons pas avec les 4 autres

profilers pour la JVM J9 d’IBM car Hotspot et J9 ont des performances non comparables.

Nous comparons d’abord le surcoût d’exécution de Free Lunch par rapport à celui des autres

profilers. Nous présentons ensuite une analyse de profilage pour un ensemble de plus de 30

applications et pour un cas d’étude sur un bug de performance trouvé dans la base de données

Cassandra. Ce résumé n’inclut pas l’étude du coût de chaque choix de conception de Free Lunch

ni l’étude expérimentale des métriques des profilers existants dans des scénarios typiques de

synchronisation. Toutes nos expérimentations ont été effectuées sur un serveur doté de 48 cœurs

AMD Magny-Cours cadencés à 2.2Ghz avec 256 Go de mémoire vive. Le système tourne sous

le noyau Linux version 3.2.0 64-bit provenant de la distribution Ubuntu 12.04.

A.3.1 Surcoût d’exécution des profilers

Nous comparons le surcoût d’exécution de Free Lunch avec celui de HPROF, Yourkit et JProfiler

en utilisant leur mode de profilage pour verrous sur les 11 applications de la suite de benchmarks

DaCapo 9.12 [12], les 19 applications de la suite de benchmarks SPECjvm2008 [87] et le bench-

mark SPECjbb2005 [86]. Pour DaCapo, nous effectuons 20 exécutions de chaque application,

avec 10 itérations par exécution, et prenons la moyenne du temps d’exécution de la dernière

itération pour chaque exécution. Pour SPECjvm2008, nous configurons chaque application afin
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qu’elle exécute 120 sec. du benchmark pour ne pas prendre en compte le temps d’initialisation

de la JVM, suivi de 20 itérations de 240 sec. chacune. Pour SPECjbb2005, nous exécutons 20

fois une expérience qui utilise 48 “warehouses” et s’exécute pendant 240 sec., avec au préalable

120 sec. d’exécution du benchmark afin de ne pas prendre en compte le temps d’initialisation

de la JVM. Pour SPECjvm2008 et SPECjbb2005, nous reportons le taux moyen d’opérations

complétées par minute. Nous notons que quelques benchmarks n’ont pas pu être exécutés par

certains profilers: H2 ne fonctionne pas avec Yourkit, Tradebeans ne fonctionne pas avec Yourkit,

et Avrora et Derby ne fonctionnent pas avec HPROF.

La Figure A.2 présente le surcoût d’exécution induit par chaque profiler par rapport à la

version originale d’Hotspot sans profilage, ainsi que l’écart-type autour de cette valeur. Les

résultats sont présentés de 2 manières différentes à cause de leurs variations importantes. La

Figure A.2.a présente les résultats complets sur une échelle logarithmique, tandis que la Figure

A.2.b présente les résultats compris entre une accélération de 20 % et un ralentissement de 60

%.

La Figure A.2.a montre que le surcoût d’exécution de HPROF peut aller jusqu’à 4 fois, celui

de Yourkit jusqu’à 1980 fois et celui de JProfiler jusqu’à 7 fois. La Figure A.2.b montre que

pour toutes les applications, le surcoût d’exécution moyen de Free Lunch est toujours inférieur

à 6 %. Pour quelques applications, l’utilisation du profiler semble améliorer les performances.

Ces résultats ne sont pas concluants à cause d’un écart-type important.

Dans une configuration multicœurs comme ici, une des sources fréquentes de surcoût d’exécution

est le problème de passage à l’échelle. Afin d’évaluer l’impact du passage à l’échelle du profilage,

nous réalisons des expérimentations additionnelles avec HPROF, le profiler ayant le plus faible

surcoût d’exécution maximum des profilers testés. Nous comparons HPROF à Hotspot sans le

profilage sur le benchmark Xalan dans 2 configurations: l’une avec 2 threads sur 2 cœurs et

l’autre avec 48 threads sur 2 cœurs. Dans les 2 cas, le surcoût d’exécution causé par le profiler

est situé autour de 2 %, ce qui prouve que quand le nombre de cœurs est faible, le nombre de

threads a un impact marginal sur les performances du profiler. Ensuite, nous effectuons ce même

test avec Xalan et 48 threads sur 48 cœurs. Dans ce cas, Xalan termine en 4 fois plus de temps.

Ces résultats suggèrent que, au moins dans le cas de HPROF, le surcoût d’exécution dépend

principalement du nombre de cœurs.

A.3.2 Utilisation de Free Lunch pour analyser des applications

A.3.2.1 Analyse de la CSP

Cette section présente une analyse détaillée de la CSP des verrous utilisés par les applications

de la suite de benchmarks DaCapo 9.12 [12], de la suite de benchmarks SPECjvm2008 [87] et

du benchmark SPECjbb2005 [86]. Nous considérons d’abord le cas où l’intervalle de mesure est

égal au temps d’exécution de l’application, ce qui représente la CSP moyenne de l’exécution.

La Table A.2 liste les verrous ayant une CSP moyenne d’au moins 5 %. Ensuite, la Figure A.3

présente l’évolution de la CSP de ces mêmes verrous avec un intervalle de mesure d’une seconde.

Notons que la CSP moyenne pendant toute la durée de l’exécution (Table A.2) n’est pas égale à

la moyenne des CSPs de chaque intervalle de mesure individuel (Figure A.3) à cause du nombre

de threads fluctuant entre dans chaque intervalle. Par exemple, une CSP élevée avec seulement 2
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(a) Surcoût d’exécution des profilers sur une échelle logarithmique.
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(b) Surcoût d’exécution des profilers, limité à des valeurs entre 80% et 160% (zoom de (a)).

Figure A.2: Surcoût d’exécution des profilers.
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threads s’exécutant pendant un intervalle de mesure devient négligeable quand elle est moyenné

sur 2 intervalles de mesure avec plusieurs threads s’exécutant dans le deuxième intervalle. Le

reste de cette section analyse en détail la CSP de ces verrous.

Benchmark Classe Java de l’objet avec la CSP la + élevée CSP

H2 org.h2.engine.Database 62.3%

Avrora java.lang.Class 48.4%

PMD org.dacapo.harness.DacapoClassLoader 25.4%

Xalan java.util.Hashtable 20.4%

Sunflow org.sunflow.core.Geometry 6.2%

Tradebeans org.h2.engine.Database 6.0%

Table A.2: CSP moyenne pendant l’exécution complète.

H2 est une base de données en mémoire. Le verrou associé avec l’objet org.h2.Database a

une CSP moyenne de 62,3 %. H2 utilise ce verrou pour assurer que les requêtes des clients sont

traitées séquentiellement, par conséquent, plus il y a de clients envoyant des requêtes à la base

de données, plus les clients essayeront d’acquérir le verrou. Comme présenté dans la Figure A.3,

H2 présente 3 phases distinctes. La première phase (de 0 sec. à 16 sec.) présente une CSP

inexistante: dans cette phase, le thread principal de l’application remplit la base de données,

par conséquent aucun verrou n’est contendu lors de l’accès à la base de données. La seconde

phase (de 16 sec. à 79 sec.) présente une CSP entre 92 % et 96 %: les clients envoient les requêtes

à la base de données, ce qui induit de la contention sur le verrou de la base de données. La CSP

diminue à la fin de cette phase, passant de 92 % à 0 % quand les clients terminent leur requêtes

à la base de données. Le but de cette dernière phase (de 79 sec. à la fin) est de revenir à l’état

original de la base de données, ce qui est également effectué uniquement par le thread principal

qui par conséquent n’induit pas de CSP. Cette application est fondamentalement impossible

à faire passer à l’échelle car les requêtes sont traitées séquentiellement. Il serait nécessaire

d’effectuer de profondes modifications de l’application pour améliorer les performances.

Avrora est un système de simulation et d’analyse. Le verrou associé avec l’objet java.-

lang.Class a une CSP moyenne de 48,4 %. Avrora utilise ce verrou pour assurer la cohérence

lors de l’obtention du résultat final. Comme présenté dans la Figure A.3, Avrora présente une

phase de CSP élevée (de 2,3 sec. à la fin) où les threads applicatifs écrivent le résultat dans un

fichier. Il semble qu’il n’y ait pas de solution simple pour enlever ce verrou car l’entrelacement

des résultats des différents threads mènerait à un résultat incohérent.

PMD est un analyseur de code source. Le verrou associé avec l’objet org.dacapo.harness.-

DacapoClassLoader a une CSP moyenne de 25,4 %. Cet objet est utilisé pour charger les nou-

velles classes dynamiquement pendant l’exécution. Comme présenté dans la Figure A.3, une

phase avec une CSP élevée démarre à 2 sec. et s’achève à 5,7 sec. alors que l’application se

termine à 9,2 sec.. Pendant cette phase de CSP élevée, PMD stimule le chargeur de classe car

tous les threads essayent de charger les mêmes classes. Il est probable que supprimer ce goulot
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Figure A.3: CSP avec un intervalle de mesure d’une seconde.

d’étranglement soit complexe car les classes doivent impérativement être chargées séquentielle-

ment.

Xalan est un parser XSLT transformant les documents XML en documents HTML. Le ver-

rou associé avec l’objet java.util.Hashtable a une CSP moyenne de 20,4 %. java.util.-

Hashtable utilise ce verrou pour assurer l’exclusion mutuelle sur chaque accès à la table de

hachage, ce qui mène à un goulot d’étranglement. Comme présenté dans la Figure A.3, un seul

thread remplit la table de hachage pendant la première phase (de 0 sec. à 6,8 sec.) et par con-

séquent la CSP est négligeable. Cependant au cours de la deuxième phase (de 6,8 sec. à la fin),

tous les threads de l’application accèdent la table de hachage, ce qui augmente la CSP jusqu’à

64,3 %. Cette CSP élevée est sous-estimée quand celle-ci est moyennée sur toute la durée de
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l’exécution, ce qui rend son identification difficile sans la séparation en phases. Nous avons réim-

plémenté cette table de hachage en utilisant une java.util.concurrent.ConcurrentHashMap

qui n’utilise pas de verrou global. Ce changement requiert la modification d’une seule ligne de

code et améliore le temps d’exécution de l’application de 15 %. Cette analyse montre que cette

information générée par Free Lunch peut en pratique aider les développeurs.

Sunflow est une application de rendu d’image. Le verrou associé avec l’objet org.sunflow.-

core.Geometry a une CSP moyenne de 5,8 %. Comme présenté dans la Figure A.3, Sunflow

affiche un pic de CSP modéré au début de son exécution. Cela apparâıt pendant la tesselation

des objets 3D qui est effectuée en exclusion mutuelle. Comme le nombre d’objets 3D est faible

comparé au nombre de threads, de nombreux threads bloquent en attendant que la tesselation

soit terminée. Afin d’améliorer les performances, il serait préférable de paralléliser le calcul de

la tesselation.

Tradebeans simule un système de transactions d’actions en ligne qui inclut H2 pour stocker

les données persistantes. Le verrou associé avec l’objet org.h2.Database a une CSP moyenne de

6,0 %. Ce verrou est également le goulot d’étranglement reporté dans l’application H2. Comme

présenté dans la Figure A.3, une phase avec une CSP faible débute à 13,4 sec. et persiste jusqu’à

ce que l’application se termine. Comme expliqué précédemment, de profondes modifications

d’H2 seraient nécessaires afin d’améliorer les performances.

A.3.2.2 Cassandra

Cassandra [61] est une base de données distribuées NoSQL avec une architecture basée sur

BigTable [16] et Dynamo [27]. Elle ne contient pas de point individuel de défaillance et est

conçue pour passer à l’échelle; les données sont partitionnées et répliquées sur les nœuds. La

durabilité est assurée par l’utilisation d’un journal des transactions validées qui enregistre toutes

les modifications. Comme explorer ce journal pour répondre à une requête est coûteux, Cas-

sandra maintient également un cache contenant l’état de la base de données. Ce cache est

partiellement stocké sur disque et en mémoire. Après une panne, un nœud doit reconstruire

ce cache avant de répondre aux requêtes des clients. Pour cela, il reconstruit le cache qui était

stocké en mémoire en rejouant les transactions depuis le journal des transactions validées.

Un des développeurs de Cassandra a reporté un problème de performance dû à un verrou

dans la version 1.0.0 de Cassandra3. Pendant cette phase, le temps de réponse était multiplié

par 20. Ce problème a été observé sur une configuration où la base de données était déployée

sur 3 nœuds avec un facteur de réplication de 3 et où la cohérence des données était assurée

par un quorum avec 2 réplicas. Aucune autre information à propos de la configuration n’a été

fournie. Par conséquent, nous avons été incapable de reproduire ce problème.

Bien que nous n’ayons pas été capable de reproduire ce problème, nous avons pu utiliser

Free Lunch pour détecter une phase avec une CSP élevée dans Cassandra 1.0.0. En utilisant la

configuration décrite précédemment, nous avons créé une base de donnée de 10 Go et utilisé le

benchmark YCSB [77] pour stresser Cassandra avec un workload constitué de 50 % de lectures et

de 50 % de mises-à-jour. Après 5 minutes 30 secondes, nous avons simulé une panne en stoppant

3See https://issues.apache.org/jira/browse/CASSANDRA-3385 and https://issues.apache.org/jira/

browse/CASSANDRA-3386.

https://issues.apache.org/jira/browse/CASSANDRA-3385
https://issues.apache.org/jira/browse/CASSANDRA-3386
https://issues.apache.org/jira/browse/CASSANDRA-3386
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un nœud et en le redémarrant immédiatement après. Pendant la reprise, Free Lunch reporte

une phase de CSP élevée d’environ 50 % avec un pic à 52 %. La phase de CSP élevée survient

pendant le rejeu du journal des transactions validées et dure 11,4 sec.. Par chance, la section

critique impliquée est la même que celle qui a causé le problème rapporté par le développeur

dans la version 1.0.0 de Cassandra. En dehors de cette phase, la CSP pour ce verrou est proche

de 0 %. La durée de cette phase de CSP élevée est proportionnelle à la taille du journal des

transactions validées qui est elle-même proportionelle au nombre des modifications avant la

panne. Ce résultat montre que Free Lunch est capable d’identifier précisément les variations de

CSP pendant les phases dans des applications Java complexes. Cette phase est masqué par les

autres profilers car les nœuds Cassandra ont généralement des temps d’exécutions de plusieurs

jours.

Cette expérimentation illustre également la difficulté à produire et reproduire des problèmes

de contention de verrous. En effet, ce scénario de test particulier est complexe à déployer et

implique une panne de serveur, ce qui est relativement inhabituel. Pour cette raison, nous

pensons que la probabilité de rencontrer ce problème pendant un test in-vitro est faible et que

par conséquent, le profilage in-vivo est essentiel.

A.4 Conclusion

Cette thèse a présenté Free Lunch, un nouveau profiler de verrous conçu spécifiquement pour

identifier les phases de contention élevées des verrous in-vivo. Le rôle de Free Lunch est

d’identifier les verrous qui ralentissent le temps de réponse et le débit de l’application, en insis-

tant sur les applications de type serveur qui utilisent généralement des plateformes multicœurs

et pour lesquelles ces propriétés sont cruciales. Nous introduisons une nouvelle métrique appelée

Critical Section Pressure (CSP) qui évalue le manque d’avancement des threads à cause de prob-

lèmes de synchronisation. La CSP est définie par le pourcentage de temps passé par les threads

à acquérir un verrou par rapport au temps d’exécution cumulé de tous les threads. La métrique

CSP est implémentée dans Free Lunch et aide à reporter aux développeurs le pourcentage de

temps pendant lequel les threads sont bloqués et incapable de progresser à cause d’un verrou.

Free Lunch est également conçu pour calculer régulièrement la métrique CSP afin de détecter

les phases de contention des verrous qui pourraient survenir de manière imprévue à cause de

divers facteurs externes difficile à reproduire in-vitro. Free Lunch est conçu de façon à limiter

le surcoût d’exécution à ce qui est acceptable pour du profilage in-vivo. L’idée principale de

l’implémentation est que Free Lunch est directement intégré à l’intérieur de la JVM, tirant parti

d’un accès direct au sous-système de verrouillage et aux structures de données internes de façon

efficace, et utilisant des primitives de gestion du temps optimisées. Cette approche est effectuée

au détriment de la portabilité, cependant, Free Lunch est constitué de seulement 420 lignes de

code ce qui devrait le rendre facile à implémenter dans une autre JVM

Free Lunch est évalué sur des applications provenant des suites de benchmarks de DaCapo

9.12, SPECjvm2008 et SPECjbb2005 et de la base de données Cassandra avec un workload de

YCSB pour un total de 32 applications. Le matériel utilisé pour ces expérimentations est un

serveur avec 4 processeurs AMD Opteron pour un total de 48 cœurs cadencés à une fréquence de
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2,2 Ghz et 256 Go de mémoire vive. Le système tourne sous le noyau Linux version 3.2.0 64-bit

provenant de la distribution Ubuntu 12.04. Nous avons identifié des phases de CSP élevée dans 6

applications. Certaines de ces phases sont masquées lors de l’utilisation de profilers existants, ce

qui montre que Free Lunch est capable d’identifier des nouveaux types de goulot d’étranglement

et de les reporter aux développeurs. Grâce à ces rapports, nous avons été capable d’améliorer les

performances de l’application Xalan de 15 % en modifiant une seule ligne de code. Nous avons

également trouvé une phase de CSP élevée dans la base de données Cassandra. Cette phase

de CSP élevée survient pendant le rejeu du journal des transactions validées, effectué pendant

la reprise après une panne d’un des nœuds afin de retourner dans un état cohérent. Nous

avons étudié les métriques existantes des profilers de verrous faisant partie de l’état-de-l’art

théoriquement et empiriquement sur des scénarios de synchronisation rencontrés typiquement

dans des applications multithreadées. Nous avons trouvé que ces métriques ne renvoient pas

de résultats pertinents pouvant aider les développeurs à détecter les verrous qui ralentissent le

plus l’application. Nous avons évalué Free Lunch sur plus de 30 applications et montré qu’il ne

dégrade jamais les performance de plus de 6 %. Ce résultat montre que Free Lunch peut être

utilisé in-vivo pour détecter les phases où un verrou entrave l’avancement des threads dans des

scénarios qui ne seraient pas nécessairement testés par un développeur in-vitro. Nous fournissons

également une analyse détaillée des surcoûts d’exécution associés avec chaque choix de conception

dans HPROF afin de comprendre l’origine de son surcoût d’exécution. Ensuite en partant de

la version originale de HPROF, nous l’avons graduellement améliorée afin d’atteindre le design

final de Free Lunch.
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