
Budgeted Classification-based Policy Iteration

Victor Gabillon

To cite this version:

Victor Gabillon. Budgeted Classification-based Policy Iteration. Machine Learning [stat.ML].
Universite Lille 1, 2014. English. <tel-01297386>

HAL Id: tel-01297386

https://tel.archives-ouvertes.fr/tel-01297386

Submitted on 4 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01297386

Université des Sciences et des Technologies de Lille
École Doctorale Sciences Pour l’Ingénieur

Thèse de Doctorat

préparée au sein du , UMR 8022 Lille 1/CNRS

et du centre de recherche Lille - Nord Europe

Spécialité : Informatique

présentée par
Victor GABILLON

algorithmes budgétisés d’itération sur
les politiques obtenues par classification

sous la direction de Mohammad GHAVAMZADEH

Soutenue publiquement à Villeneuve d’Ascq, le 12 juin 2014 devant le jury composé de :

M. Peter AUER Université de Leoben Rapporteur
M. Olivier CAPPÉ Télécom ParisTech Examinateur
M. Mohammad GHAVAMZADEH Inria Lille & Adobe Directeur
M. Shie MANNOR Technion Rapporteur
M. Philippe PREUX Université Lille 3 Directeur
M. Csaba SZEPESVÁRI Université de l’Alberta Examinateur

Résumé court en français : Cette thèse étudie une classe d’algorithmes
d’apprentissage par renforcement (RL), appelée « itération sur les politiques obtenues
par classification » (CBPI). Contrairement aux méthodes standards de RL, CBPI
n’utilise pas de représentation explicite de la fonction valeur. CBPI réalise des déroulés
(des trajectoires) et estime la fonction action-valeur de la politique courante pour un
nombre limité d’états et d’actions. En utilisant un ensemble d’apprentissage con-
struit à partir de ces estimations, la politique gloutonne est apprise comme le produit
d’un classificateur. La politique ainsi produite à chaque itération de l’algorithme,
n’est plus définie par une fonction valeur (approximée), mais par un classificateur.
Dans cette thèse, nous proposons de nouveaux algorithmes qui améliorent les perfor-
mances des méthodes CBPI existantes, spécialement lorsque le nombre d’interactions
avec l’environnement est limité. Nos améliorations se portent sur les deux limitations
de CBPI suivantes : 1) les déroulés utilisés pour estimer les fonctions action-valeur
doivent être tronqués et leur nombre est limité, créant un compromis entre le biais et
la variance dans ces estimations, et 2) les déroulés sont répartis de manière uniforme
entre les états déroulés et les actions disponibles, alors qu’une stratégie plus évoluée
pourrait garantir un ensemble d’apprentissage plus précis. Nous proposons des algo-
rithmes CBPI qui répondent à ces limitations, respectivement : 1) en utilisant une
approximation de la fonction valeur pour améliorer la précision (en équilibrant biais et
variance) des estimations, et 2) en échantillonnant de manière adaptative les déroulés
parmi les paires d’état-action.

English title: Budgeted Classification-based Policy Iteration

Short english abstract: This dissertation is motivated by the study of a class
of reinforcement learning (RL) algorithms, called classification-based policy iteration
(CBPI). Contrary to the standard RL methods, CBPI do not use an explicit repre-
sentation for value function. Instead, they use rollouts and estimate the action-value
function of the current policy at a collection of states. Using a training set built
from these rollout estimates, the greedy policy is learned as the output of a classifier.
Thus, the policy generated at each iteration of the algorithm, is no longer defined by
a (approximated) value function, but instead by a classifier. In this thesis, we propose
new algorithms that improve the performance of the existing CBPI methods, especially
when they have a fixed budget of interaction with the environment. Our improvements
are based on the following two shortcomings of the existing CBPI algorithms: 1) The
rollouts that are used to estimate the action-value functions should be truncated and
their number is limited, and thus, we have to deal with bias-variance tradeoff in esti-
mating the rollouts, and 2) The rollouts are allocated uniformly over the states in the
rollout set and the available actions, while a smarter allocation strategy could guaran-
tee a more accurate training set for the classifier. We propose CBPI algorithms that
address these issues, respectively, by: 1) the use of a value function approximation to
improve the accuracy (balancing the bias and variance) of the rollout estimates, and
2) adaptively sampling the rollouts over the state-action pairs.

Mots clés: apprentissage automatique, prise de décision (statistique), algorithmes,
intelligence artificielle, échantillonnage adaptatif (statistique), jeux de bandits, appren-
tissage par renforcement.

Key words: machine learning, decision-making, algorithm, artificial intelligence,
adaptive sampling, bandit games, reinforcement learning.

Acknowledgement &
Remerciements

Merci à tous pour m’avoir aidé à arriver au bout de cette thèse. Une grande partie de
ce manuscrit repose sur votre travail et vos idées.

Mohammad, I have been really lucky to have you as my advisor. Thank you for
being so constantly patient and supportive of me. All your advices and directions
proved to lead for the best. I hope I have taken from you a bit of your vision and
your rigour. Alessandro, working with you has been a real pleasure. I hope we will
still continue to work together. Bruno, merci pour toutes les supers idées que tu
as partagées avec moi, j’ai vraiment beaucoup appris grâce à toi, et merci pour ta
gentillesse. Thanks to you Brano for the wonderful internship and all the support you
gave me, I hope I managed to bring back with me a bit of your energy and inspiration.
Thanks to my other co-authors, Matthieu, Boris, Sébastien, Brian, Zheng, and Muthu
for all your help.

Thanks to Peter Auer, Shie Mannor, Olivier Cappé and Csaba Szepesvári for ac-
cepting to be part of my committee, especially to Peter and Shie who agreed to review
this dissertation. It is a great honour for me.

Thanks to Christos Dimitrakakis who generously shared his code with me that I
used as a base for my experiments. And huge thanks to you Sertan, without all your
help, your advices and your ideas, a lot of the results in this dissertation would not
exist.

Merci à toute l’équipe pour toute votre aide et votre sympathie : Hachem, Alexan-
dra, Manuel, Odalric, Jean-François, Rémi C., Daniil, Nathan, Olivier N., Olivier P.,
Romaric, Marta, Adrien, Gergely, Gunnar, Balázs, Pierre, Michal, Prashanth, Tomáš,
Amir, Raphael, Ronald, Sergio, Gabriel, Yasin, Matthew, Mohammad G. A., Sami,
Lucian ainsi qu’Amélie et Sandrine. Et mersi Azal !!

Merci à tous ceux qui m’ont permis de me lancer dans la recherche. Merci à Jean-
Pierre Delmas pour avoir guidé mes premiers pas ainsi qu’à Wojciech Pieczynski et
Françoise Prêteux pour leurs conseils et leurs aides précieuses. Merci à Christophe
Chailloux pour cette mémorable première expérience de recherche à l’étranger et pour
tes conseils. Merci à Rémi Munos d’avoir suscité en moi la joie de faire du RL et de
m’avoir permis de rejoindre son équipe. Merci à Jérémie Mary et Philippe Preux pour
avoir encadré mon premier véritable travail de recherche, pour vos conseils et votre
soutien qui a continué bien au delà du stage. Merci encore à vous deux et à Marc
Tommasi, Dominique Gonzalez et Éric Wegrzynowski pour avoir guidé mes premiers
pas dans l’enseignement.

Un gros bisous à toute ma famille pour leurs encouragements et leur soutien!
Merci à la plateforme d’essai Grid’5000, soutenue entre autres par l’INRIA, le

CNRS, RENATER et plusieurs universités (voir https://www.grid5000.fr), qui m’a

IV

permis de réaliser la plupart des expériences rapportées dans cette dissertation sur
leurs grilles d’ordinateurs.

Merci à l’INRIA pour le soutien financier et logistique ainsi qu’au ministère de la
recherche et de l’enseignement supérieur et au conseil régional du Nord-Pas de Calais
pour leur soutien financier.

Abstract.

This dissertation is motivated by the study of a relatively recent class of approxi-
mate dynamic programming (ADP) or reinforcement learning (RL) algorithms, called
classification-based policy iteration (CBPI). CBPI is a class of ADP/RL algorithms
that, contrary to the standard ADP/RL methods, do not use an explicit represen-
tation for value function. Instead, they use rollouts and estimate the action-value
function of the current policy at a collection of states, called the rollout set. They
then build a training set that consists of the states in the rollout set paired with their
greedy actions (the action with the highest estimated value function). Using this train-
ing set, the greedy policy (with respect to the current policy) is learned as the output
of a classifier. Thus, the policy generated at each iteration of the algorithm, is no
longer defined by a (approximated) value function, but instead by a classifier. Given
the structure of the CBPI algorithms, it is natural to think that they should perform
better than their value function-based counterparts in problems in which the policies
are simpler to represent, and thus to learn, than their corresponding value functions.

In this thesis, we propose new algorithms that improve the performance of the
existing CBPI methods, especially when they have a fixed budget of interaction with the
environment (or fixed number of question from the generative model of the problem).
Our improvements are based on the following two shortcomings of the existing CBPI
algorithms that play a crucial role in case of limited budget: 1) The rollouts that are
used to estimate the action-value functions should be truncated, and thus, we have
to deal with bias-variance tradeoff in estimating the rollouts (large bias and small
variance for short, and small bias and large variance for long rollouts), and 2) The
rollouts are allocated uniformly over the states in the rollout set and the available
actions, while a smarter allocation strategy could guarantee a more accurate training
set for the classifier, and as a result, a better performance for the overall algorithm.
We propose CBPI algorithms that address these issues, respectively, by: 1) the use
of a value function approximation to improve the accuracy (balancing the bias and
variance) of the rollout estimates, an idea similar to that of the actor-critic algorithms,
and 2) adaptively (rather than uniformly) sampling the rollouts over the state-action
pairs.

To address the bias-variance tradeoff in the rollout estimates, our idea is to esti-
mate each action-value function as a combination of a truncated rollout and a value
function approximator, called the critic, that approximates the value at the state at
which the rollout is truncated. If the quality of the critic is good, we can rely on
it and shorten the rollouts, which in turn, reduces both the bias and variance of the
estimates. The variance is reduced because the rollouts become shorter, and the bias
is reduced as long as the critic provides a better estimate than truncation, i.e., re-
placing the value at the truncated state with zero. Using this idea, we present a new
CBPI algorithm, called direct policy iteration with a critic (DPI-Critic), and provide
its finite-sample performance analysis. Our analysis and empirical evaluations in two

VI

benchmark RL problems allow us to characterize how our new approach can improve
the overall performance of the CBPI algorithms by tuning the length of the rollouts
as a function of the quality of the critic. We further explore this idea and propose a
CBPI algorithm that belongs to the class of Approximate Modified Policy Iteration
algorithms (AMPI). Modified Policy Iteration (MPI) generalizes the well-known value
and policy iteration algorithms. Despite its generality, MPI has not been studied and
analyzed in its approximate form. We propose three AMPI algorithms, one belongs to
the class of CBPI methods, and provide their finite-sample performance analysis, the
first reported analysis for this class of ADP algorithms.

Another contribution of this thesis is on the applicability of the CBPI algorithms,
and their potential advantage with respect to their value function-based counterparts.
We apply our proposed AMPI-base CBPI algorithm, called classification-based modified
policy iteration (CBMPI), to the game of Tetris. Tetris is a well-studied and challeng-
ing optimization problem at which ADP/RL algorithms have shown poor performance,
while policy search techniques, mainly based on the cross entropy (CE) method, have
produced controllers with excellent performance. We use the CBMPI algorithm and
learn controllers that achieve better performance than those learned by CE, with con-
siderably fewer number of samples. These are the best (to the best of our knowledge)
controllers for the game of Tetris that have been reported in the literature.

Finally, we address the rollout allocation problem in CBPI by formulating it as the
problem of identifying the best arm(s) (each arm corresponds to an available action)
at each of the bandits (each bandit corresponds to a state in the rollout set) in a multi-
bandit multi-armed setting. In addition to rollout allocation in CBPI, the problem of
multi-bandit best arm(s) identification has application in a number of different domains
such as clinical trials, network optimization, and brain computer interface. In order to
solve this problem, we propose two algorithms, called Gap-based Exploration (GapE)
and Unified Gap-based Exploration (UGapE), that focus on the arms with small gap,
i.e., an arm whose mean is close to the mean of the best arm in the same bandit. For
each algorithm, we prove an upper-bound on its probability of error. These are the
first algorithms with complete analysis for the problem of multi-bandit best arm(s)
identification. We evaluate the performance of our algorithms and compare them
against other allocation strategies in a number of synthetic problems, in a real-word
clinical problem, and in the CBPI’s rollout allocation problem.

Résumé en français

Le problème de la prise de décisions séquentielles dans l’incertain est un problème
de la vie courante. Nous le rencontrons lorsque nous nous rendons au travail depuis
notre maison, lorsque nous jouons (au backgammon, au poker, ou au jeu de Tetris
qui sera utilisé comme terrain d’expérience dans cette thèse), lors de nos recherches
sur internet, ou si nous désirons optimiser les performances de notre entreprise, etc.
Parmi ces problèmes d’intérêt et de prise de décisions séquentielles, nombreux sont
ceux qui peuvent se formuler comme des problèmes d’apprentissage par renforcement
(reinforcement learning, RL). En apprentissage par renforcement, un agent interagit
avec un environnement dynamique, stochastique et qu’il ne connaît que partiellement.
Son but est d’apprendre une stratégie, aussi appelée politique, qui optimise une certaine
mesure de performance à long-terme (le nombre de lignes disparues pour le cas du jeu
de Tetris)

L’apprentissage par renforcement a obtenu de nombreux succès dans des domaines
variés comme pour le jeu de Backgammon (Tesauro, 1994), la gestion automatique
d’une centrale d’appels (Marbach and Tsitsiklis, 1997), la commande de vol d’héli-
coptère (Ng et al., 2004), l’envoi intelligent de catalogues (Simester et al., 2006), et
la gestion de systèmes de dialogues parlés (Pietquin et al., 2011). Malgré ces succès,
il reste des obstacles fondamentaux entravant l’application généralisée des méthodes
d’apprentissage par renforcement aux problèmes complexes du monde réel. En effet,
ces problèmes concrets se caractérisent souvent par les points limitant suivants :

• Le système (l’environnement) considéré est composé de larges espaces d’actions
et d’états, voire même d’espaces de taille infinie. Des techniques d’approximation
sont alors requises afin de représenter les politiques et/ou les fonctions (action-
)valeur (une fonction (action-)valeur est une fonction qui associe à un état du
système un nombre réel qui mesure l’espérance de la performance de la politique
lorsque cet état (et cette action) est pris comme état initial (et comme action
initiale) du système)

• Les données d’apprentissage sont coûteuses. À la différence de l’apprentissage
supervisé, pour lequel de vastes lots de données sont habituellement disponibles
et immédiatement utilisables, en apprentissage par renforcement, les données
d’apprentissage sont produits par l’agent lui-même lors de son interaction avec
le système dynamique (que ce système soit réel soit simulé) et alors même que
l’agent essaie de mieux le contrôler. Dans le cas de systèmes complexes, ceci peut
se traduire par un coût prohibitif pour chaque nouvel échantillon d’apprentissage.

• La nécessité d’un apprentissage en-ligne. L’apprentissage hors-ligne est adéquat
si l’environnement est stationnaire, ce qui n’est que rarement le cas.

• L’observation partielle. Dans de nombreux problèmes, l’état du système n’est pas
complement ou directement observable par l’agent.

VIII

Dans cette thèse, nous nous concentrons sur les deux premières caractéristiques
énoncées ci-dessus dont nous abordons les problématiques dans le contexte d’une classe
d’algorithmes d’apprentissage par renforcement relativement nouvelle, appelée itéra-
tion sur les politiques obtenues par classification (classification-based policy iteration,
CBPI). CBPI est une variante de l’algorithme approximatif d’itération sur les politiques
(approximate policy iteration, API), un algorithme de programmation dynamique (PD),
qui remplace les étapes d’évaluation de la politique (approximant la fonction valeur de
la politique courante sur la totalité de l’espace des états) et d’amélioration de la po-
litique (produisant une nouvelle politique dont les performances sont supérieurs à la
fonction valeur de la politique courante) par une étape d’apprentissage dans un espace
de politique. Plus précisément, l’idée principale est de remplacer l’étape d’évaluation
de la politique par des estimations déroulées (rollout estimates) de la fonction action-
valeur pour un nombre fini d’états, appelé l’ensemble déroulé et pour chaque action
possible ; et de formuler l’étape d’amélioration de la politique comme un problème
de classification. L’ensemble d’apprentissage de ce problème de classification (dans sa
forme la plus simple) est composé, en entrée, par les états de l’ensemble déroulé et, en
sortie, par les actions ayant la fonction valeur estimée la plus grande pour chaque état.

Cette classe d’algorithmes de type API a été introduite par Lagoudakis and Parr
(2003b) et Fern et al. (2004) (voir aussi la version journal Fern et al. 2006), puis définie
plus précisément ainsi qu’analysée de manière complète par Lazaric et al. (2010a). Les
résultats théoriques et empiriques obtenus par les algorithmes CBPI indiquent qu’ils
constituent une alternative aux méthodes API standards se reposant sur des fonctions
valeur (e.g., l’itération sur les politiques à l’aide des moindres carrés Lagoudakis and
Parr 2003a), pouvant même se montrer supérieurs à ces derniers lorsque des politiques
de qualité sont plus faciles à représenter, et par là même à apprendre que leurs fonctions
valeur (e.g., au jeu de Tetris, comme nous le montrerons au Chapitre 4 de cette thèse).

Dans la première partie de cette thèse, aux Chapitres 3 et 4, nous proposons deux
extensions des algorithmes CBPI existants qui améliorent la qualité des estimations
déroulées des fonctions action-valeur, et par conséquent, augmentent les performances
globales de l’algorithme. Pour chacun de ces algorithmes, une analyse des performances
à échantillons finis est produite et une évaluation empirique de leurs performances com-
parées avec des algorithmes similaires est menée. Dans la deuxième partie de la thèse,
Chapter 5, nous proposons des méthodes issues de la littérature sur les bandits afin de
parfaire la stratégie de répartition des déroulés dans les algorithmes CBPI. L’objectif
principal est d’allouer un budget limité de déroulés aux états de l’ensemble déroulé et
aux actions disponibles de manière à obtenir l’ensemble d’apprentissage le plus précis
pour le classificateur. Dans cette dissertation, le problème de répartition des déroulés
pour CBPI est formulé comme une classe de problème de bandits, appelée d’exploration
pure, ou plus spécifiquement, comme un problème de la classe, appelée identifications
des meilleurs bras en contexte multi-bandits. De nouveaux algorithmes sont développés
pour ce problème et soutenus par des garanties théoriques. L’application de nos algo-
rithmes dépasse le problème de la répartition pour CBPI, car cette classe d’algorithmes
de bandits est directement reliée au problème central qu’est l’allocation dynamique des

IX

ressources et qui trouve de nombreux champs d’applications allant du marketing et de
la publicité aux études cliniques et aux réseaux de communications.

Motivation
Prenons le jeu de Tetris comme exemple du problème de la prise de décisions séquen-
tielles dans l’incertain. Comme illustré à la Figure 1.1 visible en page 4, Tetris est un
jeu qui se déroule sur un tableau rectangulaire composé à l’origine de 20 lignes et 10
colonnes, où des pièces composées de quatre briques et pouvant prendre sept formes
différentes chutent depuis le haut du tableau les unes après les autres. Étant donné la
configuration présente du tableau et la nouvelle pièce, qui définissent ensemble l’état
actuel du jeu (du système), le joueur (l’agent) sélectionne une action en décidant à la
fois de la position finale de la nouvelle pièce et de son orientation. Pour chaque ligne
entièrement remplie, une récompense de 1 est reçue, les briques de cette ligne dispa-
raissent et toutes les briques situées au dessus descendent d’une case. La transition
entre les états du système est incertaine car la forme de la nouvelle pièce est tirée aléa-
toirement. L’objectif est de faire disparaître un maximum de lignes de briques avant la
fin du jeu qui advient lorsqu’une pièce dépasse du tableau. Ce jeu a été souvent utilisé
comme un problème d’optimisation de référence dans lequel le but est de concevoir
un contrôleur (une politique) qui maximise la moyenne (sur de multiples parties) du
nombre de lignes disparues (le score). Ce problème d’optimisation est connu pour né-
cessiter d’intense calculs. Il contient un nombre extrêmement grand de configurations
possibles du tableau (environ 2200 ' 1.6 × 1060), et même en considérant le cas où la
séquence des pièces est connue à l’avance, trouver la stratégie qui maximise le score est
un problème NP-difficile (Demaine et al., 2003).

Le jeu de Tetris peut être facilement formulé comme un processus de décision marko-
vien (PDM). Dès lors, on peut tenter de le résoudre à l’aide d’algorithmes de program-
mation dynamique (PD) et d’apprentissage par renforcement (RL) (c’est à dire trouver
un bon contrôleur pour ce jeu). Cependant, de par la taille immense de l’espace des états
dans ce jeu, ces algorithmes ne peuvent être utilisés que dans leur forme approximative.
La plus grande partie des algorithmes de programmation dynamique approximative et
de RL se repose sur des fonctions valeur, c’est à dire, sur l’utilisation d’un espace de
fonctions dans lequel les fonctions valeur sont approximées. La qualité de la solution
produite par ces algorithmes dépend du choix de l’espace de fonctions (de sa capacité
à approximer les fonctions valeur des politiques produites à chaque itération de l’algo-
rithme) et du nombre d’échantillons utilisés pour calculer l’approximation (dans l’es-
pace de fonction) de chaque fonction valeur. Des algorithmes d’ADP et de RL se repo-
sant sur des fonctions valeurs ont été appliqués au jeu de Tetris (Tsitsiklis and Van Roy,
1996, Bertsekas and Ioffe, 1996, Farias and Van Roy, 2006, Scherrer, 2013), mais leurs
performances restent inférieures par plusieurs ordres de grandeurs aux techniques de
«l’état de l’art» qui, elles, cherchent directement dans un espace de politiques en appre-
nant les paramètres des politiques grâce à des outils d’optimisation, comme la méthode
de l’entropie croisée (CE) (Szita and Lőrincz, 2006, Thiéry and Scherrer, 2009b). Ces

X

résultats renforcent la conjecture que le jeu de Tetris est peut être un problème
de RL où les politiques peuvent être plus aisément paramétrées, et donc apprises,
que leurs fonctions valeur associées (par exemple si les politiques sont des fonc-
tions régulières alors que leurs fonctions valeurs sont très bruitées et complexes).
Ils font de Tetris un client naturel pour la classe relativement nouvelle des al-
gorithmes d’ADP, appelée itération sur les politiques obtenues par classification
(CBPI) (Lagoudakis and Parr, 2003b, Fern et al., 2004, 2006, Lazaric et al., 2010a).

Les algorithmes CBPI fonctionnent ainsi : à chaque itération, étant donné une po-
litique courante : 1) un ensemble déroulé est formé en échantillonnant (selon une dis-
tribution sur les états) un certain nombre d’états dans l’espace des états du problème ;
2) pour chaque état dans l’ensemble déroulé et pour chaque action dans l’espace des
actions du problème, un certain nombre de déroulés (de trajectoires) sont exécutés à
partir desquels sont calculées des estimations déroulées des fonctions action-valeur pour
ces paires d’état-action ; 3) un ensemble d’apprentissage est construit à partir (dans sa
forme la plus simple) des états de l’ensemble déroulé comme entrée et des actions pour
lesquelles la fonction actions-valeurs estimée est la plus haute en sortie ; et finalement
4) l’ensemble d’apprentissage est utilisé pour apprendre un classificateur, dont le pro-
duit est une estimation de la politique gloutonne (grossièrement parlant, une politique
dont la performance est au moins aussi bonne que celle de la politique courante) par
rapport à la politique courante. Ce classificateur peut être considéré comme l’espace
des politiques où sont approximées les politiques gloutonnes.

Concernant la précision des estimations de la fonction action-valeur, il est important
de noter que les estimations déroulées des fonctions action-valeur ne sont pas biaisées
(si le déroulé est suffisamment long, c’est à dire constitué d’un grand nombre de pas),
mais qu’elles pâtissent une grande variance (la variance augmente avec la longueur du
déroulé). En découle une question importante : Si l’on fixe un budget pour le nombre
total d’échantillons (de pas) que comprennent l’ensemble des déroulés, comment pro-
duire des estimations précises des fonctions action-valeur dans CBPI ? C’est à cette
question que nous essayons de répondre dans la première partie de la thèse, aux Cha-
pitres 3 et 4. Dans cette partie, nous proposons plusieurs méthodes ayant pour but
de trouver un bon équilibre entre le biais et la variance des estimations et nous les
appuyons avec une analyse théorique ainsi que des résultats empiriques.

Une autre question importante se pose : étant donné un ensemble déroulé, com-
ment répartir un budget fixe de déroulés entre ces états et entre les actions de l’espace
des actions afin d’obtenir un ensemble d’apprentissage précis pour le classificateur ?
Il parait naturel d’imaginer que détecter l’action gloutonne (l’action pour laquelle la
fonction action-valeur estimée est la plus grande) est plus difficile dans certains états
que dans d’autres, et que, par conséquent, la répartition uniforme communément uti-
lisée peut être inefficace. Cette question motive la seconde partie de cette dissertation
(Chapitre 5). Nous abordons cette question en la formulant comme un problème de
bandit à bras multiples, puis en développant des algorithmes de bandits associés à des
garanties théoriques. Ainsi, nos algorithmes ne sont pas limités aux problèmes de ré-
partition des déroulés dans CBPI et peuvent être utilisés dans le cadre plus général, et

XI

de plus large intérêt, qu’est la classe de problèmes appelée l’allocation dynamique des
ressources.

Notre Approche
Comme expliqué ci-dessus, la contrainte sur le budget imposée dans CBPI force à tron-
quer les déroulés après un nombre fini de pas, m. Alors que la variance des estimations
déroulées s’en trouve réduite, le biais ainsi introduit peut potentiellement affecter les
performances globales de l’algorithme. Pour traiter ce compromis biais-variance, nous
proposons tout d’abord (au Chapitre 3) d’utiliser une approximation de la fonction
valeur, appelé critique, qui, associée aux résultats des déroulés, renvoie une estima-
tion des fonctions action-valeur. Plus précisément, la critique renvoie une estimation
de la fonction valeur pour l’état auquel le déroulé a été tronqué. L’algorithme qui im-
plémente cette idée s’appelle itération directe sur les politiques munie d’une critique
(DPI-Critique) par référence à l’algorithme de type CBPI appelé itération directe sur
les politiques (direct policy iteration, DPI) (Lazaric et al., 2010a).

Cette idée est similaire aux principes des algorithmes acteur-critique qui font partie
des premiers algorithmes développer en RL (Barto et al., 1983, Sutton, 1984). Si nous
disposons d’une critique avec un espace de fonctions riche, il est raisonnable de raccour-
cir les déroulés et de donner plus d’importance à la critique, néanmoins, apprendre une
critique dans un espace riche peut nécessiter un nombre conséquent d’échantillons. De
manière similaire, pour des critiques avec un espace plus restreint, les déroulés doivent
être allongés, ce qui augmente la part des échantillons réservée aux déroulés et restreint
encore d’avantage la part réservée à la critique. Enfin, il faut ajouter à cela un autre
compromis provoqué par la limitation du nombre total de pas dans les déroulés. Car
alors, allonger les déroulés pour limiter le biais revient à diminuer le nombre d’états
dans l’ensemble déroulé et ainsi à réduire la précision du classificateur. Notre analyse
théorique et nos résultats expérimentaux pour cet algorithme montrent qu’il est pos-
sible, étant donné le budget total d’échantillons, de trouver un compromis entre la
richesse de la critique, la longueur des déroulés et le nombre d’états déroulés. Et ceci
dans le but d’obtenir la plus grande précision possible dans l’estimation des fonctions
action-valeur pour le budget fixé.

L’idée de réaliser un déroulé de m pas puis de combiner son résultat avec la fonction
valeur de l’état auquel il a été tronqué est similaire à l’application sur cette fonction
valeur de l’opérateur de Bellman à m pas. Cette utilisation de l’opérateur de Bell-
man à m pas est la marque de fabrique de l’algorithme d’itération modifiée sur les
politiques (modified policy iteration, MPI) (Puterman and Shin, 1978) qui généralise
les méthodes classiques d’itération sur les valeurs et sur les politiques pour m = 1 et
m = ∞, respectivement. Dans le Chapitre 4, nous abordons une nouvelle fois notre
problématique en développant une version de MPI où les politiques sont obtenues par
classification, appelé CBMPI, qui utilise un classificateur pour approximer les poli-
tiques en plus de l’utilisation (standard pour MPI) d’une critique. En plus de CBMPI,
nous développons deux algorithmes MPI approximatifs (AMPI), et pour chacun des

XII

algorithmes nous fournissons leur analyse en échantillons finis (la première du genre
pour tous ces algorithmes), et nous évaluons leurs performances et les comparons avec
des méthodes similaires dans le Chapitre 4. L’utilisation de CBMPI nous a permis de
trouver le meilleur contrôleur rapporté pour le jeu de Tetris. Dans nos expériences,
nous montrons que CBMPI obtient (en moyenne) des performances supérieures aux
méthodes d’entropie croisée (qui forment «l’état de l’art» pour ce jeu) tout en utilisant
considérablement moins d’échantillons.

Dans le seconde partie de la thèse, Chapitre 5, nous portons notre attention sur la
deuxième question posée dans la Section 1, comment répartir les déroulés afin d’obte-
nir un ensemble d’apprentissage précis pour le classificateur. La précision de l’ensemble
d’apprentissage dépend de notre capacité à identifier l’action gloutonne (l’action pour
laquelle la fonction action-valeur est la plus élevée) pour les états de l’ensemble déroulé.
Notons qu’à chaque réalisation d’un déroulé pour une paire état-action, un échantillon
aléatoire tiré d’une distribution est observé, dont l’espérance est la valeur de la fonction
action-valeur pour cette paire état-action. Par conséquent, nous pouvons naturellement
considérer qu’il existe, pour chaque état de l’ensemble déroulé, un certain nombre de
distributions inconnues (égal au nombre d’actions possibles dans cet état), et que le
but est de les échantillonner de manière à détecter, le plus rapidement possible, celle
dont l’espérance la plus élevée. Ce problème a été étudié dans le cadre des bandits
à bras multiples sous le nom d’identification du meilleur bras (Maron and Moore,
1993, Bubeck et al., 2009), et plusieurs algorithmes efficaces ont été conçus pour le
résoudre (Audibert et al., 2010). En se conformant à ce cadre, un état de l’ensemble
déroulé devient un bandit ; une action disponible dans un état est un bras de ce ban-
dit ; le tirage d’un bras revient à réaliser un déroulé et à recevoir un échantillon de
la distribution dont l’espérance est la valeur de la fonction action-valeur pour cette
paire état-action ; et l’objectif est de répartir le budget disponible (compté en nombre
de déroulés, ou tirages) de manière à détecter le bras ayant l’espérance la plus haute
avec grande probabilité. Cependant, l’important dans notre cas est d’identifier le plus
précisément possible l’action gloutonne pour tous les états de l’ensemble déroulé et non
pas seulement pour un seul d’entre eux. Il est donc nécessaire d’étendre les algorithmes
de bandits existants pour l’identification du meilleur bras dans un contexte à bandits
multiples. Nous montrons dans le Chapitre 5 que cette extension n’est pas évidente,
ou plutôt que les solutions triviales mènent à des algorithmes peu efficaces. Par la
suite, nous développons un premier algorithme pour l’identification des meilleurs bras
en contexte multi-bandits pourvu de son analyse théorique et montrons ces perfor-
mances dans plusieurs problèmes synthétiques ainsi que sur des données médicales. Le
problème d’identification du meilleur bras, que ce soit pour un brandit simple ou pour
de multiples bandits, n’est pas limité à la répartition des déroulés dans CBPI. Il est
directement lié au problème important de l’allocation dynamique des ressources dont
les nombreux champs d’applications vont du marketing et de la publicité aux études
cliniques et aux réseaux de communications.

De plus cette version du problème possède d’autres applications potentielles telles
que le problème clinique suivant. Soient M groupes de patients, pour lesquels un trai-

XIII

tement doit être sélectionné parmi les Kp options associées à chaque groupe p. Un
groupe peut correspondre à des patients ayant les mêmes marqueurs biologiques ou
génétiques et les options sont des traitements pour une maladie donnée. L’objectif
principal ici est de déterminer une règle qui recommande le meilleur traitement pour
chaque groupe de patients. Ces règles sont généralement construites en utilisant des
données de tests cliniques coûteux à réaliser. En conséquence, il est important de dis-
tribuer les tests intelligemment de manière à ce que la règle ainsi apprise donne de
bons résultats. Comme il peut être plus difficile de trouver le meilleur traitement pour
certains groupes que pour d’autres, la stratégie consistant à tester les patients par ordre
d’arrivée peut ne pas aboutir à de bonnes performances. De la même manière, répar-
tir les traitements uniformément aux différents groupes ne permettra sûrement pas de
découvrir les meilleurs traitements chez certains des groupes. Ce problème peut être
formuler comme une tentative d’identification des meilleurs bras parmi M bandits à
bras multiples. Dans cette formulation, chaque groupe de patients est considéré comme
un bandit à bras multiples, et chaque traitement comme un bras, tester un traitement
sur un patient revient à un tirage de bras, et notre but est de recommander un bras
pour chaque bandit après un nombre donné de tirages (budget). Les résultats peuvent
être évalués par 1) la moyenne sur les bandits de la valeur des bras recommandés, ou
par 2) la probabilité moyenne d’erreur sur les bandits (de ne pas sélectionner le bon
bras), ou encore par 3) la probabilité maximale d’erreur parmi les bandits.

Contributions
Les principales contributions de cette dissertation sont résumées ci-dessous.

Chapitre 3 : Introduction d’une Critique dans les Algorithmes CBPI

• Nous proposons un algorithme, appelé itération directe sur les politiques munie
d’une critique (DPI-Critique), qui ajoute une composante issue de l’approxima-
tion des fonctions valeurs à l’estimation déroulée des fonctions action-valeur dans
les algorithmes CBPI. Plus précisément, DPI-Critique est une extension d’un al-
gorithme CBPI, appelé itération directe sur les politiques (DPI) proposé et ana-
lysé par Lazaric et al. (2010a).

• Nous analysons les performances de l’algorithme DPI-Critique lorsque la critique
est basée sur les méthodes 1) de différence temporelle basée sur les moindres
carrés (LSTD) (Bradtke and Barto, 1996) et 2) de minimisation du résidu de
Bellman (BRM) (Baird, 1995). Dans chaque cas, nous montrons comment les
erreurs produites par l’algorithme à chaque itération se propagent à travers les
itérations et nous fournissons une analyse en échantillons finis de la performance
après K itérations. Les résultats théoriques indiquent qu’à budget fixé, DPI-
Critique peut obtenir de meilleurs performances que DPI, et l’itération sur les
politiques basées sur les moindres carrés (LSPI) (Lagoudakis and Parr, 2003a). Ce

XIV

succès dépend du réglage de plusieurs paramètres dont la longueur des déroulés
et la qualité de la critique.

• Nous évaluons les performances de DPI-Critique et les comparons avec DPI et
LSPI dans les problèmes de la voiture tout terrain et du pendule inversé. Les
résultats empiriques renforcent notre analyse théorique et confirment que DPI-
Critique peut mettre à la fois à profit les déroulés et la critique pour surpasser
DPI et LSPI.

Chapitre 4 : Algorithme Approximatif d’Itération Modifiée sur les Poli-
tiques

• Nous proposons trois variantes d’algorithmes approximatifs MPI (AMPI), appe-
lées AMPI-V, AMPI-Q, et CBMPI, correspondant à trois célèbres algorithmes
de programmation dynamique approximative (ADP), respectivement : itération
ajustée sur les valeurs (Munos and Szepesvári, 2008), Q-itération ajustée (Ernst
et al., 2005, Antos et al., 2007), et itération sur les politiques obtenues par clas-
sification (CBPI). Il convient de signaler que l’implémentation d’AMPI où les
politiques sont obtenues par classification donne une nouvelle vue de cette classe
d’algorithmes, complémentaire avec celle proposée par l’algorithme DPI-Critique,
proposé et analysé au Chapitre 3.

• Nous rapportons la première analyse de propagation d’erreur pour AMPI unifiant
celle des algorithmes approximatifs d’itération sur les politiques et les valeurs.
Nous fournissons aussi l’analyse en échantillon finis de ces trois algorithmes de
type AMPI. Nos résultats indiquent que le paramètre libre de MPI permet de
contrôler la répartition des erreurs (entre l’approximation des fonctions valeur et
celle des politiques) dans la performance finale de l’algorithme CBPI.

• La performance de CBPI et le rôle du paramètre libre sont illustrés dans un large
nombre d’expériences dans le problème de la voiture tout terrain et du jeu de
Tetris. Pour le jeu de Tetris, l’utilisation de CBMPI nous a permis de trouver
un contrôleur ayant les meilleurs performances rapportées dans la littérature (à
notre connaissance). En moyenne, CBMPI obtient des performances supérieures
aux méthodes d’entropie croisée (CE), qui sont les solutions de l’état de l’art
pour le jeu de Tetris, en utilisant considérablement moins d’échantillons.

Chapitre 5 : Identification des Meilleurs Bras dans un Contexte à Bandits
Multiples

• Nous considérons des bandits multiples à bras multiples et étudions le problème
d’identifier le meilleur bras dans chaque bandit sous une contrainte de budget fixe.

XV

Nous proposons deux nouveaux algorithmes pour ce problème, appelés explora-
tion des écarts (GapE) et exploration unifiée des écarts (UGapE), qui généralisent
l’algorithme UCB-E (Audibert et al., 2010) au contexte multi-bandits. Nous dé-
rivons aussi une variante de ces deux algorithmes, appelée GapE-V et UGapE-V,
prenant en compte la variance des bras. Nous étendons l’algorithme UGapE au
cas de l’identification des M meilleurs bras pour une précision donnée ε.

• Pour chaque algorithme proposé, nous dérivons une borne sur la probabilité d’er-
reur. Ces bornes sont les premières à avoir été produites dans le contexte multi-
bandits. Ces résultats supposent la connaissance d’une quantité caractéristique
du problème appelée la complexité. Pour dépasser ce problème, nous proposons
une version adaptative de nos algorithmes dans laquelle la complexité est estimée
en-ligne.

• Nous évaluons les performances des algorithmes proposés en utilisant des don-
nées synthétiques ainsi que des données obtenues grâce à des essais cliniques. Les
résultats empiriques soutiennent nos résultats théoriques en montrant que les al-
gorithmes proposés surpassent les algorithmes de bandits existants n’ayant pas
été conçus pour le contexte multi-bandits. Ils montrent aussi que la version adap-
tative des algorithmes semble capable d’estimer la complexité sans perte globale
de performance, et qu’ainsi les algorithmes peuvent être utilisés en pratique en
toute sérénité.

Contents

Chapter 1 Introduction 1

1 Motivation . 3
2 Our Approach . 5
3 Contributions . 7
4 Outline . 9

Chapter 2 Background and Notations 13
1 Reinforcement Learning . 13

1.1 Markovian Decision Processes and Bellman Operators 14
1.2 Dynamic Programming . 16
1.3 Approximate Dynamic Programming 17

1.3.1 Value Function-based (Regression-based) Policy Iteration 19
1.3.2 Classification-based Policy Iteration 20

2 Multi-Armed Bandit Problems . 23
2.1 Preliminaries . 23
2.2 Cumulative Regret Setting . 25
2.3 Pure Exploration Setting . 26

2.3.1 Simple Regret & Best Arm Identification 27

Chapter 3 Classification-based Policy Iteration with a Critic 33

1 Introduction . 33
2 The DPI-Critic Algorithm . 34
3 Error Propagation . 36
4 Finite-Sample Analysis . 38
5 Experiments . 44
6 Conclusions & Future Work . 50

Chapter 4 Approximate Modified Policy Iteration 57
1 Introduction . 58
2 Approximate MPI Algorithms . 59

2.1 AMPI-V . 59
2.2 AMPI-Q . 60
2.3 Classification-based MPI . 61

3 Error Propagation . 65
4 Finite-Sample Analysis of the Algorithms 71

XVIII Contents

5 Experiments . 74
5.1 Mountain Car . 75
5.2 Tetris . 78

6 Conclusions and Extensions . 89

Chapter 5 Multi-Bandit Best Arm Identification 103
1 Introduction and Motivating Examples 104
2 Problem Formulation . 107
3 Gap-based Exploration Algorithms . 109
4 Theoretical Analysis . 112

4.1 Proof of Theorem 5.2 . 116
4.2 Extensions . 120

5 Numerical Simulations . 126
5.1 Results for GapE and its Variants 126
5.2 Results for UGapE and its Variants 135

6 Summary and Discussion . 139

Chapter 6 Conclusions and Future Work 141

1 Summary . 141
2 Future Work . 142

Bibliography 147

Chapter 1

Introduction

The problem of sequential decision-making under uncertainty arises in everyday life,
when we try to find an answer to questions like how to navigate from home to work,
how to play and win a game (e.g., backgammon, poker, or the game of Tetris that
has been used as an experimental testbed in this thesis), how to retrieve our informa-
tion of interest from the Internet, how to optimize the performance of a factory, etc.
Many interesting sequential decision-making tasks can be formulated as reinforcement
learning (RL) problems. In RL, an agent interacts with a dynamic, stochastic, and
incompletely known environment with the goal of learning a strategy or policy to op-
timize some measure of its long-term performance (e.g., to remove as many lines as
possible in Tetris).

Reinforcement learning has had success in many different domains such as the game
of Backgammon (Tesauro, 1994), call admission control (Marbach and Tsitsiklis, 1997),
helicopter flight control (Ng et al., 2004), catalog mailing (Simester et al., 2006), and
managing spoken dialogue systems (Pietquin et al., 2011). Despite the success of the
RL algorithms in a number of different domains, there remain several fundamental
obstacles hindering the widespread application of the RL methodology to real-world
problems. Such real-world problems are characterized by most, if not all, of the fol-
lowing features:

• Large or even infinite state and/or action spaces. This requires the use of approx-
imation techniques in RL algorithms in order to represent policies and/or value
(action-value) functions, i.e., a function that given a policy, maps each state
(state-action pair) of the system to a real number that represents the expected
performance of the policy when the system starts from that state (state-action
pair).

• Training data are expensive. Unlike supervised learning, where large corpora
of data are usually available and immediately usable, in RL, learning data are
generated by the interaction of the learning agent with the dynamical system
(real or simulated) it attempts to control. For complex systems, this results in a
considerable overhead for each training sample.

• Requirement for online learning. Offline learning is adequate when the environ-
ment is completely stationary, however, this is rarely the case.

• Partial observability. In many problems, the state of the system is not completely
or directly measurable by the agent.

2 Chapter 1. Introduction

In this thesis, we focus on the first two features and try to address their related
issues in the context of a relatively novel class of RL algorithms, called classification-
based policy iteration (CBPI). CBPI is a variant of approximate policy iteration (API),
an approximate dynamic programming (DP) algorithm, that replaces the usual policy
evaluation (approximating the value or action-value function of the current policy over
the entire state or state-action space) and policy improvement (generating a new policy
with an improved performance from the value or action-value function of the current
policy) steps with a learning step in a policy space. To be more precise, the main idea
is to replace the policy evaluation step with the rollout estimates of the action-value
functions of a finite number of states, called the rollout set, and every possible action;
and to cast the policy improvement step as a classification problem. The training set
of this classification problem (in its simplest form) consists of the states in the rollout
set as input and the actions with the highest estimate of action-value function at that
state as output. This class of API algorithms was first introduced by Lagoudakis and
Parr (2003b) and Fern et al. (2004) (and its journal version Fern et al. 2006), and then
defined more precisely and fully analyzed by Lazaric et al. (2010a). The theoretical
and empirical results of using the CBPI algorithms indicate that they can be used as an
alternative to the more standard value function-based API methods (e.g., least-squares
policy iteration Lagoudakis and Parr 2003a), and may be potentially advantageous to
their value function-based counterparts in problems where good policies are easier to
represent, and thus learn, than their value functions (e.g., the game of Tetris, as will
be shown in Chapter 4 of this thesis).

In the first part of this thesis, Chapters 3 and 4, we propose two extensions of the
existing CBPI algorithms that improve the quality of the rollout estimates of the action-
value functions, and as a result, ameliorate the overall performance of the algorithm.
For each of these algorithms, we provide a finite-sample performance analysis and
empirically evaluate its performance and compare it with similar algorithms. In the
second part of the thesis, Chapter 5, we propose methods from the bandits literature to
improve the rollout allocation strategy in the CBPI algorithms. The main objective is
to allocate a fixed budget of rollouts over the states in the rollout set and the available
actions in a way to have the most accurate training set for the classifier. Here we
formulate the problem of rollout allocation in CBPI as a class of bandit problems,
called pure exploration, or more specifically, as a problem in this class, called multi-
bandit best arm identification, and develop new algorithms with theoretical guarantees
for this problem. The application of our proposed algorithms goes beyond the rollout
allocation in CBPI, because this class of bandit algorithms is directly related to the
important problem of adaptive resource allocation that has application in a number of
different fields from marketing and advertisement to clinical studies and communication
networks.

1. Motivation 3

Contents
1 Motivation . 3

2 Our Approach . 5

3 Contributions . 6

4 Outline . 8

1 Motivation
Let us consider the game of Tetris as an example of a sequential decision-making
problem under uncertainty. As shown in Figure 1.1, Tetris is a game played on a board
originally composed of 20 rows and 10 columns, where pieces of 7 different shapes fall
sequentially from the top. Given the current configuration of the board and the new
falling piece that together constitute the current state of the game (system), the player
(agent) selects an action which corresponds to the choice of the position of the falling
piece as well as its rotation. For each filled row (line), a reward of 1 is given, the row
is removed and all the cells above it move one line down. The uncertainty in the state
transition is due to the randomness in the next falling piece. The goal is to remove as
many rows as possible before the game is over, i.e. when the last piece dropped goes
above the upper limit of the board. This game constitutes an interesting optimization
benchmark in which the goal is to find a controller (policy) that maximizes the average
(over multiple games) number of lines removed in a game (score). This optimization
problem is known to be computationally hard. It contains a extremely large number of
board configurations (about 2200 ' 1.6× 1060), and even in the case that the sequence
of pieces is known in advance, finding the strategy to maximize the score is an NP hard
problem (Demaine et al., 2003).

This game can be easily formulated as a Markov decision process (MDP), and
thus, dynamic programming (DP) and reinforcement learning (RL) algorithms can be
used to solve it (i.e., to find a good or an optimal controller for the game). However,
since the problem has a large state space, these algorithms should be used in their
approximate form. Most approximate dynamic programming (ADP) and RL algo-
rithms are value function-based, i.e., use a function space to approximate the value
(action-value) functions. The quality of the solution generated by these algorithms
depends on the choice of the function space (how well it can approximate the value
functions of the policies generated in the iterations of the algorithm) and the number
of samples used to fit a function (in the selected function space) to each value func-
tion. Value function-based ADP and RL algorithms have been applied to the game of
Tetris (Tsitsiklis and Van Roy, 1996, Bertsekas and Ioffe, 1996, Farias and Van Roy,
2006, Scherrer, 2013), but unfortunately their performance has been lower by several
orders of magnitude than the state of the art techniques that search directly in the

4 Chapter 1. Introduction

Current state

Example of 3 possible actions

Example of 3 possible next states

Chosen action

reward +1

Figure 1.1: This figure illustrates the state transition in the game of Tetris. The top
row shows the current state of the game composed of the current configuration of the
board and the falling piece. The second row shows how three different actions affect
the configuration of the board. Notably the second action removes a line from the
board and collects a reward of 1. Finally, the bottom row shows three possible next
states resulted from taking the second action.

space of policies by learning the policy parameters using an optimization black box,
such as the cross entropy (CE) method (Szita and Lőrincz, 2006, Thiéry and Scherrer,
2009b). These results support the conjecture that perhaps the game of Tetris is a RL
problem in which policies are easier to represent, and thus learn, than their correspond-
ing value functions (e.g., the policies are smooth functions while their corresponding
values are very noisy and complex). This makes Tetris a suitable candidate for a
relatively novel class of ADP algorithms, called classification-based policy iteration
(CBPI) (Lagoudakis and Parr, 2003b, Fern et al., 2004, 2006, Lazaric et al., 2010a).

CBPI algorithms work as follows: at each iteration, given the current policy, 1) they
build a rollout set by sampling (using a distribution over states) a number of states

2. Our Approach 5

from the state space of the problem, 2) for each state in the rollout set and each action
in the action space of the problem, they generate a number of rollouts and compute a
rollout estimate of the action-value function at this state-action pair, 3) they construct
a training set with (in its simplest form) the states in the rollout set as input and the
action with the highest estimated action-value function as output, and finally 4) they
use this training set to train a classifier, whose output is an estimate of the greedy
policy (roughly speaking, a policy whose performance is not worse than the current
policy) w.r.t. the current policy. This classifier can be considered as a policy space to
approximate the greedy policy. It is important to note that unlike the standard value
function-based policy iteration methods that use a function space to approximate the
action-value function over the entire state-action space, CBPI estimates the action-
value function only at a finite number of state-action pairs. The performance of the
CBPI algorithms is directly related to 1) the quality of the classifier (the richness
of the selected policy space), 2) the accuracy of the generated training set, which in
turn depends on the accuracy of the action-value function estimates, and finally 3) the
sampling distribution used to generate the rollout set.

Regarding the accuracy of the action-value function estimates, it is important to
note that the rollout estimates of the action-value functions are unbiased (if the rollouts
are long enough, i.e. composed of a large number of steps), but may suffer from high
variance (the variance increases with the length of the rollout). This raises an important
question that: Given a fixed total budget of samples (steps) shared by all the rollouts,
how could we generate accurate action-value function estimates in CBPI? This is the
question that we try to answer in the first part (Chapters 3 and 4) of this dissertation.
In this part, we propose several methods to balance the bias and variance of these
estimates and support them with theoretical analysis as well as empirical evidence.

Another important question is: Given the rollout set, how shall we allocate a fixed
budget of samples (or rollouts) to these states and the actions in the action space in
order to have an accurate training set for the classifier? It is natural to think that it
would be more difficult to detect the greedy action (the action with the highest action-
value function) at some states than the others, and thus, uniform allocation, which is
commonly used, could be wasteful. This question motivates the second part (Chapter 5)
of this thesis. We address this question by formulating the problem as a multi-armed
bandit, and developing bandit algorithms with theoretical guarantees. Therefore, the
resulting algorithms are not restricted to the problem of rollout allocation in CBPI
and can be used in a more general, and an important, class of problems called adaptive
resource allocation.

2 Our Approach
As explained above, imposing a budget constraint in CBPI leads to the necessity of
truncating the rollouts after a number of steps m. While this reduces the variance of
the rollout estimates, it introduces a bias that could affect the performance of the whole
algorithm. To address this bias-variance tradeoff, we first propose (in Chapter 3) the

6 Chapter 1. Introduction

use of a value function approximator, called the critic, that together with the outcome
of the rollout return an estimate of the action-value function. To be more precise,
the critic returns an estimate of the value function at the state at which we truncate
the rollout. We call the resulting algorithm direct policy iteration with a critic (DPI-
Critic) after an existing CBPI algorithm called direct policy iteration (DPI) (Lazaric
et al., 2010a). The idea is similar to the actor-critic algorithms that are among the
earliest studied in RL (Barto et al., 1983, Sutton, 1984). If we have a critic with a rich
function space, it makes sense to use short rollouts and rely more on the critic, but on
the other hand, training a rich critic requires a large number of samples. Similarly for
less accurate critics, we need longer rollouts, and thus, more samples for the rollout
part. Our theoretical analysis and empirical results of the proposed algorithm indicate
that it would be possible to find the right balance between the richness of the critic and
the length of the rollouts, given the total budget of samples. This results in the best
possible accuracy of the action-value function estimates, given the available budget.

The idea of running a rollout for m steps and then combining its outcome with the
value function of the state at which it is truncated is similar to applying the m-step
Bellman operator to a given value function. The use of m-step Bellman operator is
the trademark of the modified policy iteration (MPI) algorithm (Puterman and Shin,
1978) that generalizes the well-known value and policy iteration methods for m = 1
and m = ∞, respectively. In Chapter 4, we address our question by developing a
classification-based version of MPI, called CBMPI, that in addition to a value function
approximator (like the standard MPI), uses a classifier to approximate policies. In
addition to CBMPI, we developed two approximate MPI (AMPI) algorithms, and
for all the algorithms, provided their finite-sample performance analysis (the first for
any AMPI algorithm), and evaluated their performance and compared it with similar
methods in Chapter 4. Using CBMPI, we found the best reported controller for the
game of Tetris. In our experiments, we showed that CBMPI achieves (on average) a
performance similar to cross entropy in Tetris (the state of the art in this game) while
using significantly less samples.

In the second part of the thesis, Chapter 5, we turn our attention to the second
question posed in Section 1, how to allocate rollouts in order to have an accurate
training set for the classifier. The accuracy of the training set depends on how successful
we are in detecting the greedy action (the action with the highest action-value function)
at the states in the rollout set. Note that every time we generate a rollout at a state-
action pair, we observe a random sample from a distribution, whose mean is the action-
value function at that state-action pair. Therefore, at each state of the rollout set, it is
natural to think that we have a number of unknown distributions (equal to the number
of possible actions at that state), and the goal is to sample them in a way to detect
the one with the highest mean as fast as possible. This problem has been studied in
the multi-armed bandit framework under the name best arm identification (Maron and
Moore, 1993, Bubeck et al., 2009), and several efficient algorithms have been designed
for it (Audibert et al., 2010). In this view, each state in the rollout set is a bandit;
each available action in that state in an arm; when we pull an arm, we run a rollout

3. Contributions 7

and receive a sample from a distribution whose mean is the action-value function of
that state-action pair; and the goal is to allocate the available budget (defined in terms
of the number of rollouts or pulls) in a way to detect the arm with the largest mean
with high probability. However, what is important for us is to detect, as accurately
as possible, the greedy action at all the states in the rollout set, and not just at one.
Therefore, we need to extend the existing bandit algorithms for best arm identification
to multiple bandits. We show in Chapter 5 that this extension is not straightforward
or, if straightforward, does not lead to efficient algorithms. We then develop the first
algorithms for multi-bandit best arm identification with theoretical guarantees and
show their performance in a number of synthetic problems as well as in a problem with
clinical data. The problem of best arm identification, both in its single and multi-
bandit formulation, is not restricted to the problem of rollout allocation in CBPI. It
is directly related to the important problem of adaptive resource allocation that has
application in a number of different fields from marketing and advertisement to clinical
studies and communication networks. It is also referred to as active learning in multi-
armed bandits and is closely related to the problem of optimal experimental design in
statistics.

Moreover this version of the problem has other potential applications such as in the
following clinical problem. There are M subpopulations, in which one should decide
between Kp options for treating subjects from each subpopulation p. A subpopulation
may correspond to patients with a particular gene biomarker (or other risk categories)
and the treatment options are the available treatments for a disease. The main objective
here is to construct a rule, which recommends the best treatment for each of the
subpopulations. These rules are usually constructed using data from clinical trials
that are generally costly to run. Therefore, it is important to distribute the trial
resources wisely so that the devised rule yields a good performance. Since it may take
significantly more resources to find the best treatment for one subpopulation than for
the others, the common strategy of enrolling patients as they arrive may not yield an
overall good performance. Moreover, applying treatment options uniformly at random
in a subpopulation could not only waste trial resources, but also it might run the risk
of finding a bad treatment for that subpopulation. This problem can be formulated
as the best arm identification over M multi-armed bandits. In this formulation, each
subpopulation is considered as a multi-armed bandit, each treatment as an arm, trying
a medication on a patient as a pull, and we are asked to recommend an arm for each
bandit after a given number of pulls (budget). The evaluation can be based on 1) the
average over the bandits of the reward of the recommended arms, or 2) the average
probability of error over the bandits (not selecting the best arm), or 3) the maximum
probability of error among the bandits.

3 Contributions

The main contributions of this dissertation are summarized below.

8 Chapter 1. Introduction

Chapter 3: Introducing a Critic in the CBPI Algorithms

• We propose an algorithm, called direct policy iteration with a critic (DPI-Critic),
that adds a value function approximation component to the rollout-based action-
value function estimation in the CBPI algorithms. To be more accurate, DPI-
Critic is an extension of a CBPI algorithm, called direct policy iteration (DPI),
proposed and analyzed by Lazaric et al. (2010a).

• We theoretically analyze the performance of the DPI-Critic algorithm where
the critic is based on the 1) least-squares temporal-difference learning
(LSTD) (Bradtke and Barto, 1996) and 2) Bellman residual minimization
(BRM) (Baird, 1995) methods. For each case, we first show how the error at
each iteration of the algorithm propagates through the iterations and then pro-
vide a finite-sample bound on its performance after K iterations. The theoretical
results indicate that given a fixed budget of samples, depending on several factors,
notably the length of the rollouts and the quality of the function approximator,
DPI-Critic may achieve a better performance than DPI and least-squares policy
iteration (LSPI) (Lagoudakis and Parr, 2003a) algorithms.

• We evaluate the performance of DPI-Critic and compare it with DPI and LSPI
in the mountain car and inverted pendulum problems. The empirical results
support our theoretical analysis and confirm that DPI-Critic can take advantage
of both rollouts and critic and outperform DPI and LSPI.

Chapter 4: Approximate Modified Policy Iteration Algorithms

• We propose three variations of the approximate MPI (AMPI) algorithm, called
AMPI-V, AMPI-Q, and CBMPI, that correspond to three well-known approxi-
mate DP (ADP) algorithms: fitted value iteration (Munos and Szepesvári, 2008),
fitted Q-iteration (Ernst et al., 2005, Antos et al., 2007), and classification-
based policy iteration (CBPI), respectively. It is important to note that the
classification-based implementation of AMPI (CBMPI) gives another view on
this class of algorithms to which the DPI-Critic algorithm, proposed and ana-
lyzed in Chapter 3, belongs.

• We report the first error propagation analysis for AMPI that unifies that for ap-
proximate policy and value iteration algorithms. We also provide finite-sample
performance analysis for the three proposed AMPI algorithms. Our results indi-
cate that the free parameter of MPI allows us to control the balance of errors (in
approximating value function and greedy policy) in the final performance of the
CBMPI algorithm.

• The performance of CBMPI and the role of its free parameter are illustrated in
extensive experiments in the mountain car problem and the game of Tetris. It is

4. Outline 9

important to note that in the game of Tetris, CBMPI finds a controller with the
best performance reported in the literature (to the best of our knowledge). On
average, it achieves better performance with respect to the cross entropy method
(CE), the state of the art solution for Tetris, with significantly less number of
samples.

Chapter 5: Multi-bandit Best Arm Identification

• We consider multiple multi-armed bandits and study the problem of identifying
the best arm in each bandit under the fixed budget setting. We propose the
two new algorithms for this problem, called Gap-based Exploration (GapE) and
Unified Gap-based Exploration (UGapE), that are generalization of the UCB-E
algorithm (Audibert et al., 2010) to the multi bandit setting. We also derive a
variation of these two algorithms, called GapE-V and UGapE-V, that take into
account the variance of the arms. We extend the UGapE algorithm to solve the
problem of finding the M -best arms with ε-accuracy.

• For each proposed algorithm, we derive a bound for its probability of error. These
bounds are the first to have been provided for algorithms tackling the multi-
bandit setting. These results hold under the assumption that a quantity called
the complexity of the problem is known. To address this issue, we propose the
adaptive version of our algorithms in which the complexity is estimated online.

• We evaluate the performance of the proposed algorithms using synthetic data
as well as data obtained from clinical trials. The empirical results support our
theoretical findings that the proposed algorithms outperform the existing bandit
algorithms that have not been designed for the multi-bandit setting. They also
show that the adaptive version of the algorithms are able to estimate the com-
plexity without the loss in the global performance, and thus, the algorithms can
be safely used in practice.

4 Outline
In this section, we give an outline of the thesis and describe the topics that are covered
in each chapter.

• In Chapter 2, entitled “Background and Notations”, we provide the background
information and introduce the notations necessary to follow the work presented in
the thesis. Chapter 2 consists of two parts, one related to reinforcement learning
(RL) and one to bandit algorithms (more specifically, to the problem of best arm
identification in multi-armed bandits). In the RL part, after introducing the basic
concepts and notations, we present exact solutions to the RL problem. We then discuss
its approximate solutions, first methods based on approximating the value function and

10 Chapter 1. Introduction

then those that approximate policy. This provides the necessary background to follow
our proposed approach, which is a combination of these two approximation schemes. In
the bandit part, we first review the classical cumulative regret setting before focusing on
the more recent, and also more relevant to our work, the pure exploration framework.
In the latter setting, we explain the best arm identification problem and study it under
two different types of constraint, fixed budget and fixed confidence. Finally, we discuss
how our best arm identification algorithms can be used in the CBPI algorithms.

• In Chapter 3, entitled “Classification-based Policy Iteration with a Critic”, we
present our first extension to the standard CBPI algorithm. The idea is to estimate
the action-value functions as a combination of a truncated rollout and a value function
approximator, called critic, that approximates the value at the state at which the
rollout has been truncated. The role of the critic is to reduce the variance of the
action-value function estimates at the cost of introducing a bias. This could improve
the overall performance of the CBPI algorithm, especially when we are given a fixed
budget of samples. We present a new CBPI algorithm, called direct policy iteration
with a critic (DPI-Critic), and provide its finite-sample performance analysis when
the critic is based on the 1) least-squares temporal-difference learning (LSTD), and
2) Bellman residual minimization (BRM) methods. We then empirically evaluate the
performance of DPI-Critic and compare it with DPI and LSPI in two benchmark RL
problems: mountain car and inverted pendulum.

• In Chapter 4, entitled “Approximate Modified Policy Iteration”, we study the
approximate version of the modified policy iteration (MPI) algorithm (Puterman and
Shin, 1978). In this chapter, we propose three implementations of approximate MPI
(AMPI) that are extensions of well-known approximate DP algorithms. The first two
correspond to the classical fitted-value and fitted-Q iteration algorithms, while the last
one is based on CBPI. We derive the first error propagation analysis for AMPI that
unifies this for approximate policy and value iteration algorithms. We also provide
finite-sample performance bounds for all our AMPI algorithms. Finally, we illustrate
and evaluate the behavior of our proposed algorithms in the mountain car problem as
well as in the game of Tetris.

• In Chapter 5, entitled “Multi-Bandit Best Arm Identification”, we study the
problem of identifying the best arm(s) in each of the bandits in a fixed budget multi-
bandit multi-armed setting with the objective of designing new efficient algorithms.
We first propose two algorithms, called Gap-based Exploration (GapE) and Unified
Gap-based Exploration (UGapE), to solve this problem. Both algorithms focus on the
arms with small gap, i.e., arms whose mean is close to the mean of the best arm in
the same bandit. We then improve upon these algorithms by introducing GapE-V and
UGapE-V, which take into account the variance of the arms in addition to their gaps.
We prove an upper-bound on the probability of error for all these algorithms. These
are the first algorithms proposed to tackle this problem in the literature that come

4. Outline 11

with theoretical guaranties. Since GapE and GapE-V need to tune an exploration
parameter that depends on the complexity of the problem, which is often unknown in
advance, we also introduce variations of these algorithms that estimate this complexity
online. Finally, we evaluate the performance of these algorithms and compare them
to other allocation strategies, first in a number of synthetic problems, second on real-
word clinical data, and finally on the CBPI algorithms’ rollout allocation problem. It
is important to note that the UGapE algorithm allows us to study the link between
the two different settings of the best arm identification problem: fixed budget and fixed
confidence.

• In Chapter 6, we summarize the dissertation and discuss some directions for future
research.

Chapter 2

Background and Notations

In this chapter, we provide a brief overview of the two main components of this dis-
sertation, namely reinforcement learning and multi-armed bandits. For each topic, we
describe the methods and introduce the notation relevant to our work.

Contents
1 Reinforcement Learning . 11

1.1 Markovian Decision Processes and Bellman Operators 11

1.2 Dynamic Programming . 13

1.3 Approximate Dynamic Programming 15

1.3.1 Value Function-based (Regression-based) Policy Iteration 15

1.3.2 Classification-based Policy Iteration 17

2 Multi-Armed Bandit Problems 19

2.1 Preliminaries . 19

2.2 Cumulative Regret Setting . 20

2.3 Pure Exploration Setting . 21

2.3.1 Simple Regret & Best Arm Identification 22

1 Reinforcement Learning
In this section, we first review the basic setting and definitions of reinforcement learning
(RL), then provide an overview of the classical algorithms to solve the RL problem in
both exact and approximate forms, and finally motivate and describe in more detail
the class of RL algorithms of our interest, namely classification-based policy iteration
(CBPI), and highlight the related issues that are studied in this thesis.

Before we start with RL, we introduce some mathematical notation that will be
used in the RL chapters. For a measurable space with domain X , we let P(X) and
B(X ;L) denote the set of probability measures over X , and the space of bounded
measurable functions with domain X and bound 0 < L < ∞, respectively. For a
measure ρ ∈ P(X) and a measurable function f : X → R, we define the `p(ρ)-norm of
f as ||f ||pp,ρ =

∫
|f(x)|pρ(dx).

14 Chapter 2. Background and Notations

Environment

Agent

Figure 2.1: The basic loop of agent/environment interaction in the MDP model.

1.1 Markovian Decision Processes and Bellman Operators

As stated in Chapter 1, in RL, an agent interacts with a dynamic, stochastic, and
incompletely known environment with the objective of optimizing some measure of its
long-term performance. This interaction is often modeled as a Markovian Decision
Process (MDP) (Howard, 1960, Puterman, 1994). A discounted MDPM is a 5-tuple
〈S,A, r, p, γ〉 in which

• The state space S is composed of all the possible states (or situations) of the
system. This space can be either finite or infinite. For example, in the game of
Tetris the state space is typically composed of all the possible configurations of
the board and the falling piece. A generic state is denoted by s and by st if it is
visited at time t.

• The set of actions A contains all the actions available to the agent through
which it can interact with its environment. In this thesis, we assume that the
action space is finite, i.e., |A| < ∞. In Tetris, A contains all the possible ways
that the falling piece can be dropped. A generic action is denoted by a and by
at if it is taken at time t.

• The transition model p(·|s, a) is a distribution over S. It describes the sys-
tem’s dynamics and is the probability distribution over the next state when the
agent takes action a in state s. The main property of such a model is that
the process is Markovian, meaning that the transition probability depends
only on the current state and action and is independent of the states and ac-
tions previously visited and taken by the agent, i.e., at each time t, p(·|st, at) =
p(·|st, at, st−1, at−1, . . . , s0, a0).

• The reward function r : S ×A → R is the reward obtained by the agent when
it takes action a in state s. We assume that the reward is bounded by Rmax.

• γ ∈ (0, 1) is a discount factor.

1. Reinforcement Learning 15

Therefore, the agent’s interaction with the environment can be modeled as a se-
quence of actions and observations, where at each time-step t, the agent observes the
current state of the system st, takes an action at, receives a reward rt = r(st, at), and
the system transits, possibly as a results of the action taken by the agent, to state st+1
(see Figure 2.1).

The agent’s interaction with the environment at each time-step is often guided by a
policy that tells the agent which action to take. A deterministic, stationary, Markovian
policy1 is defined as a mapping from states to actions, i.e., π : S → A. Given a policy
π, the MDPM turns to a Markov chainMπ with the reward rπ(s) = r

(
s, π(s)

)
and

transition probability Pπ(·|s) = P
(
· |s, π(s)

)
.

The main objective in RL is to find (learn) a policy π∗ that by following it the agent
obtains the maximum expected (discounted) sum of rewards. With this objective in
mind, we define the value of policy π in a state s as the expected (discounted) sum of
rewards received by starting at state s and following policy π, i.e.,

vπ(s) = E
[∞∑
t=0

γtrπ(st) | s0 = s, st+1 ∼ Pπ(·|st)
]
. (2.1)

The function vπ defined in Equation 2.1 is called the value function of policy π. Note
that the sum is over an infinite number of terms as we may want to consider infinite
horizon problems. Having the discount factor γ strictly smaller than 1, i.e. γ < 1,
guarantees that the value function vπ is bounded by Vmax = Qmax = Rmax/(1 − γ).
Note that when the problems end in a finite number of steps with probability one (as
in the game of Tetris), the discount factor can be set to one.

Two main questions arise immediately from the above definitions: How to compute
the value function vπ? and How to use vπ to construct a new policy that is better
(not worse) than π? These two questions motivate the following definitions of the
Bellman and greedy operators, which play a key role in the standard RL algorithms
(see Section 1.2):

The Bellman operator Tπ of a policy π takes a function f : S → R as input and
returns the function Tπf : S → R defined as

∀s ∈ S, [Tπf](s) = rπ(s) + γE
[
f(s′) | s′ ∼ Pπ(.|s)

]
,

or in compact form, Tπf = rπ + γPπf . It is known that vπ is the unique fixed-point of
Tπ (see e.g., Bertsekas and Tsitsiklis 1996). Finding vπ can then be done by solving this
fixed-point equation, or, as Tπ is γ-contraction in `∞-norm, by repetitive application
of Tπ to an arbitrary initial function.

Given a function f : S → R, we say that a policy π is greedy with respect to f ,
and write π = G f , if

∀s ∈ S, π(s) = argmax
a∈A

{
r(s, a) + γE

[
f(s′) | s′ ∼ p(.|s, a)

]}
,

1This is the class of policies that is often studied in the RL literature and also considered in this
thesis.

16 Chapter 2. Background and Notations

or equivalently Tπf = maxπ′ [Tπ′f]. The main reason why we are interested in the
greedy operator is that it allows us to compute a new policy π which is guaranteed not
to be worse than the current policy π′, i.e., vπ(s) ≥ vπ

′(s), ∀s ∈ S, as π = G vπ′ . We
may combine the above two operators to obtain a new one, calledBellman optimality
operator T , that takes a value function v as input and directly computes an improved
(not worse) value function, i.e., T : v → maxπ Tπv = TG(v)v.

We denote by π∗ an optimal policy, i.e., a policy with the largest value function,
vπ
∗(s) ≥ vπ(s), ∀s ∈ S and ∀π. On the other hand, we denote by v∗ the optimal value

function that is the unique fixed-point of the Bellman optimality operator, i.e., v∗ = Tv∗

(see e.g., Bertsekas and Tsitsiklis 1996). These operator and value function are called
optimal because π∗ is greedy with respect to v∗ and its value satisfies vπ∗ = v∗.

The last definition is the action-value function of a policy π, Qπ : S × A → R,
that at a state-action pair (s, a) is defined as the expected discounted sum of rewards
received by starting at state s, taking action a, and then following policy π,

Qπ(s, a) = r(s, a)+γE
[
vπ(s′) | s′ ∼ p(.|s, a)

]
= r(s, a)+γE

[
Qπ
(
s′, π(s′)

)
| s′ ∼ p(.|s, a)

]
.

Note that the greedy policy with respect to vπ is simply π(s) = maxaQπ(s, a), ∀s ∈ S.
The main motivation for defining this new quantity comes from the fact that given Q∗,
we can easily compute an optimal policy π∗ as π∗(s) = maxaQ∗(s, a), ∀s ∈ S, while
given v∗, computing an optimal policy requires the application of the greedy operator
to v∗, which in turns requires the knowledge of the system’s dynamics.

1.2 Dynamic Programming

In this section, we provide a brief overview of the classical algorithms that solve the
RL problem exactly. The approximate case will be the subject of Section 1.3. Here we
consider the case where the greedy and Bellman operators can be computed exactly
without any approximation or error. This often requires two assumptions: 1) the
state and action space are small enough that we can compute the value (action-value)
function exactly (these functions can be represented using relatively small tables) and
2) the full knowledge of the transition probability and reward of the environment is
available so that the operators can be computed without any error. Almost all RL
algorithms are instances of one of the two celebrated dynamic programming (DP)
algorithms, policy iteration and value iteration.

• Policy Iteration: In Section 1.1, we introduced the Bellman and greedy operators.
The former allows us to compute the value function of a policy and the latter to
construct a new and improved policy from the value function of the current policy. A
natural idea would be to use these operators in alternation in order to have a sequence
of monotonically improving policies and eventually find an optimal strategy. This
is exactly the basic idea of policy iteration (PI) (Howard, 1960). PI starts with an
arbitrary initial value function v0 and generates a sequence of value-policy pairs by

1. Reinforcement Learning 17

computing, at each iteration k, the value function vk+1 from vk in the following manner:

πk+1 = G vk, (greedy step) (2.2)
vk+1 = (Tπk+1)∞vk. (evaluation step) (2.3)

In the greedy step, the new policy πk+1 is computed by applying the greedy operator
to the current value function vk. In the evaluation step, the value function of the
new policy vk+1 = vπk+1 is computed as the fixed point of the Bellman operator of
policy πk+1, Tπk+1 , by applying this operator infinitely many times (in practice until
convergence) to any value function.

• Value Iteration: The value iteration (VI) (Bellman, 1957) algorithm starts with
an arbitrary value function v0, and at each iteration k, applies the Bellman optimality
operator to the current value function vk, and repeats this process until convergence.

vk+1 = Tvk. (2.4)

Since the Bellman optimality operator is a combination of the greedy and Bellman
operators, VI can be rewritten in the following form that highlights its resemblance to
PI.

πk+1 = G vk (greedy step) (2.5)
vk+1 = (Tπk+1)1vk (evaluation step) (2.6)

• Modified Policy Iteration: This algorithm is a natural generalization of PI and
VI. While PI applies the Bellman operator of the current policy an infinite number of
times (see Equation 2.3) and VI applies it only once (see Equation 2.6), modified policy
iteration (MPI) (Nunen, 1976, Puterman and Shin, 1978) uses a parameter m ≥ 1 and
applies this operator m times,

πk+1 = G vk, (greedy step) (2.7)
vk+1 = (Tπk+1)mvk. (evaluation step) (2.8)

MPI has less computation per iteration than PI (in a manner similar to VI), while
enjoys the faster convergence (in terms of the number of iterations) of PI, as illustrated
in Figure 2.2. MPI is also close to the λ-Policy Iteration (λ-PI) algorithm (Bertsekas
and Ioffe, 1996). In λ-PI, the Equation 2.8 of the MPI update rule is replaced by
vk+1 = (1− λ)∑∞m=0 λ

m(Tπk+1)m+1vk. It can be easily shown that λ-PI in fact updates
the value function vk by computing a geometric average of the MPI updates with weight
λm and parameter m+ 1.

1.3 Approximate Dynamic Programming
In this section, we study a more realistic case, where the Bellman and greedy operators
cannot be computed exactly, and it is only possible to approximate them, hence the

18 Chapter 2. Background and Notations

Policy Iteration

Value Iteration

Modified PI

Figure 2.2: A comparison of the VI, PI, and MPI algorithms in terms of the number
of iterations needed until convergence. To read this figure, note that the space of value
functions has been divided into three areas in which the value functions have the same
greedy policy (π1, π2, and π∗). At each iteration (each iteration has been represented
by an arrow), PI jumps directly from the current value function v to the value function
of the greedy policy with respect to v, while MPI, and even more VI, make only a small
step in this direction.

name approximate dynamic programming (ADP). We further focus only on approximate
policy iteration (API), as this is the class of algorithms considered in this thesis. The
approximation can be due to the fact that either the system’s dynamic is not known
completely or the number of states and actions is so large that the value (action-value)
functions cannot be stored in a relatively small table. In this thesis, we assume that the
system’s dynamic is not completely known, but instead we have access to a generative
model of the environment from which we can sample. Therefore, we often estimate the
value function of a given policy by performing rollouts. A rollout is a trajectory that
starts at the state of interest s (sometimes followed by the action of interest a) and
continues by following a policy π for possibly infinitely many steps. The (discounted)
sum of the rewards observed along this trajectory is called the return of policy π at
state-action pair (s, a),

Rπ(s, a) = r(s, a) +
∞∑
t=1

γtr(st, π(st)), st+1 ∼ p(·|st, π(st)),

and is an unbiased estimate of the action-value function Qπ(s, a), i.e., E[Rπ(s, a)] =
Qπ(s, a).

To deal with the large number of states and/or actions, we use two possible ap-
proximations: 1) an approximation of the value function in a function space F , and
2) an approximation of a greedy policy in a policy space Π. In the next two sections,
we describe API algorithms based on these two types of approximation, called value
function-based (or regression-based) and classification-based policy iteration algorithms,
respectively.

1. Reinforcement Learning 19

Regression

Figure 2.3: The flowchart of the value function-based PI algorithm of Section 1.3.1.

1.3.1 Value Function-based (Regression-based) Policy Iteration

In this section, we give the basic idea of this class of API methods and briefly describe
several such algorithms.

• Linear Approximation: The first step in these algorithms is to define a function
space F to approximate the value functions. A natural and widely-used candidate for F
is the linear space spanned by a relatively (with respect to the size of the state space)
small number of basis functions. We consider a linear architecture with parameters
α ∈ Rd and bounded (by L) basis functions {ϕj}dj=1, ‖ϕj‖∞ ≤ L. We denote by
φ : X → Rd, φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)>
the feature vector, and by F the linear

function space spanned by the features ϕj, i.e.,

F = {fα(·) = φ(·)>α : α ∈ Rd}.

We define the Gram matrix G ∈ Rd×d with respect to a distribution µ over S as

Gij =
∫
S
ϕi(s)ϕj(s)µ(ds), i, j = 1, . . . , d. (2.9)

• Algorithms: Approximate PI (API) has been the focus of a rich literature (see
e.g., Bertsekas and Tsitsiklis 1996, Szepesvári 2010).2 API first finds an approxima-
tion of the value function of the current policy and then generates the next policy as
the greedy policy with respect to this approximation (Bertsekas and Tsitsiklis, 1996,
Munos, 2003, Lagoudakis and Parr, 2003a). A related algorithm is λ-policy itera-
tion (Bertsekas and Ioffe, 1996), which is a rather complicated variation of MPI, as

2Similarly approximate value iteration (AVI) that at each iteration generates the next value func-
tion as the approximation of the application of the Bellman optimality operator to the current value
function (Ernst et al., 2005, Antos et al., 2007, Munos and Szepesvári, 2008)

20 Chapter 2. Background and Notations

discussed in Section 1.2. This algorithm involves computing a fixed-point at each iter-
ation and has been analyzed in its approximate form by Thiéry and Scherrer (2010a)
(see also Scherrer 2013).

Let us now discuss a simple value function-based API algorithm in detail. Fig-
ure 2.3 shows the structure of this algorithm. This is an iterative algorithm in which
at each iteration, 1) a rollout set is generated, D = {s(i)}Ni=1, composed of N states
sampled i.i.d. from some distribution over the states, 2) for each state s(i) ∈ D and
each action a ∈ A, an estimate, Q̂(s(i), a), of the action-value function of the current
policy, Qπ(s(i), a), is computed by performing M rollouts starting from state-action
pair (s(i), a) and following policy π, 3) from these estimates, Q̃ is computed as an
approximation of Qπ, in the function space F , using e.g., the least-squares method,
and finally 4) the new policy is computed as the greedy policy with respect to the
approximate action-value function Q̃, simply as π(s) = argmaxa Q̃(s, a), ∀s ∈ S.

This class of API algorithms can fail if the number of samples is not large enough
and/or the approximation space F is not rich enough. However, there are problems in
which good or optimal value functions are more difficult to represent, and thus, learn
than their corresponding policies. This is the main motivation for introducing a new
class of API algorithms, called classification-based PI, in the next section.

1.3.2 Classification-based Policy Iteration

In Section 1.3.1, the policies were implicitly defined by value functions. That is, the
performance of the algorithms depends on the quality of value function approximation.
An alternative approach would be not to use an explicit approximation for the value
function and instead to learn an approximation of the greedy policy using a policy
space. This is the approach taken by the family of classification-based PI (CBPI)
algorithms, which are the main API methods studied in this dissertation. As discussed
earlier, this approach is expected to work better than the regression-based PI methods
in problems in which good or optimal polices are easier to approximate and learn than
their corresponding value functions. A simple example is the mountain car domain (see
Section 5.1 in Chapter 3 for a detailed description) where the objective is to drive a car
up a hill by accelerating either towards the right or the left. In this domain, the optimal
value function, which takes the position and the velocity of the car as inputs, has a
complex shape (see for instance Example 8.2 in Sutton and Barto (1998)) while there
exists an excellent policy which is simply a linear separator in the position/velocity
space between a region where one should accelerate right (when the velocity is positive)
or accelerating left (otherwise). The CBPI algorithms do not compute the greedy policy
using an explicit approximation of the value (action-value) function but estimate it
as the output of a classifier (the policy space Π is defined by the classifier). CBPI
algorithms were first proposed by Lagoudakis and Parr (2003b) and Fern et al. (2004)
(see also the longer version of this work, Fern et al. 2006). Lazaric et al. (2010a)
introduced an algorithm, called direct policy iteration (DPI), and provided its finite-
sample analysis, the first full analysis of this kind for this class of algorithms. In their
analysis, they theoretically showed the importance of using cost sensitive classification

1. Reinforcement Learning 21

Classification

Figure 2.4: The flowchart of the classification-based PI algorithm of Section 1.3.2.

to estimate the greedy policy.
Figure 2.4 shows the flowchart of a CBPI algorithm. In this algorithm, 1) a rollout

set is built, D′ = {s(i)}N ′i=1, composed of N ′ states sampled i.i.d. from some distribution
over the states, 2) for each state s(i) ∈ D′ and each action a ∈ A, an estimate,
Q̂(s(i), a), of the action-value function of the current policy Qπ(s(i), a), is computed by
performing M rollouts starting from state-action pair (s(i), a) and following policy π,
(so far everything is similar to the algorithm described in Section 1.3.1), now unlike the
algorithm in Section 1.3.1, the rollout estimates are not used in order to approximate
the value (action-value) function over the entire state (state-action) space, but instead
3) they are used to build a training set that is fed to a classifier, whose output is an
approximation of the greedy policy with respect to π. This classifier minimizes the
following cost-sensitive error function:

L̂Π(π) = 1
N ′

N ′∑
i=1

[
max
a∈A

Q̂(s(i), a)− Q̂
(
s(i), π(s(i))

)]
. (2.10)

This error function is the result of the cost-sensitive loss function introduced and ana-
lyzed by Lazaric et al. (2010a). It would be possible to use the following error function
resulted from a 0/1 loss function:

L̂Π(π) = 1
N ′

N ′∑
i=1

[
I{π(s(i)) 6= argmax

a∈A
Q̂(s(i), a)}

]
. (2.11)

The idea of the cost-sensitive loss function is to penalize a suboptimal action relative
to the difference between its action-value function and the action-value function of the
greedy action. This is different from the 0/1 loss function that penalizes all suboptimal
actions equally.

22 Chapter 2. Background and Notations

• Conservative PI: Kakade and Langford (2002) proposed an API algorithm that
at each iteration computes the new policy as a combination of the approximate greedy
policy computed by the classifier and the policies calculated at the previous itera-
tions. A nice property of this algorithm is its monotonically improving behavior which
is different than almost all other ADP methods that converge to a region in general.
However, Ghavamzadeh and Lazaric (2012) recently theoretically compared the conser-
vative PI algorithm with DPI and showed that the desired property of the conservative
PI algorithm does not come for free. They showed that in order to achieve the same
level of accuracy, the conservative PI algorithm requires more iterations, and thus, more
samples than DPI. This indicates that although this algorithm’s conservative update
allows it to have a monotonically improving behavior, it slows down the algorithm and
increases its sample complexity. Furthermore, this algorithm may converge to subop-
timal policies whose performance is not better than those returned by DPI. Finally, it
requires memory to store all the policies generated at the iterations of the algorithm.

• Rollout Allocation: As described above, in standard CBPI, we allocate the
rollouts uniformly over the states in the rollout set D′ and the actions in A. These
rollouts are used to estimate the action-value functions that in turn define the loss
function of the classifier (see Equations 2.10 and 2.11), and ultimately allow us to
approximate the greedy policy. However, one may argue that the uniform allocation
of the rollouts is not the optimal way to achieve this final objective. For example, in
the case of 0/1 loss (Equation 2.11), in order to provide an accurate training set for
the classifier, the objective of the rollouts should be to identify the action with the
highest action-value function at each rollout state. Therefore, instead of allocating the
rollouts uniformly over actions, they should be allocated more to the actions that are
likely to be the best at a particular state. Moreover, the states at which it is more
difficult to detect the best action require more rollout, and thus, uniform allocation over
states may not be optimal. In the case of the cost-sensitive loss (Equation 2.10), it is
not clear at first what a “smart” allocation should be, however, allocating for instance
more rollouts to the state-action pairs whose associated return has large variance would
clearly lead to an improvement over uniform allocation.

The above remarks indicate that we need smarter (than uniform) strategies for
rollout allocation in CBPI. As discussed above, a good allocation should depend on
the unknown values of the state-actions pairs, and thus, it should be adaptive. As we
will discuss in Section 2, the rollout allocation in CBPI can be viewed and cast as an
instance of the multi-armed bandit problem.

• Rollout Truncation and the Bias-Variance Trade-off: In the standard CBPI
formulation, it is assumed that the rollouts are of infinite length (if we do not reach
a terminal state). This assumption causes two problems in practice: 1) the estimates
computed using infinite (long) rollouts are subject to a large variance, as they are
composed of a (discounted) sum of infinitely many random variables, and 2) performing
infinite (long) rollouts is simply impossible, because we only have access to limited

2. Multi-Armed Bandit Problems 23

computation and number of samples. For these reasons, rollouts are usually truncated
after m steps. This is equivalent to assuming that the sum of the rewards is zero
after the m-th step. This introduces a bias in the rollout estimates that grows as we
decrease m. As a result, having long rollouts means less bias and more variance and
having short rollouts is equivalent to having more bias and less variance. This calls for
a bias-variance trade-off and developing methods to find good values for m.

• Rollout Trade-off – Tuning Parameters M,N ′,m, Given a Fixed Budget:
Without any time or sample constraints, we should choose to have large M (more
rollouts to reduce the variance of the estimates), large m (longer rollouts to reduce the
bias of the estimates), and large N ′ (more states to feed to the classifier) in order to
obtain a good performance. Since this is not realistic, we should study how to tune
these parameters under a budget constraint, i.e., a constraint on the number of possible
calls to the generative model B. Although Lazaric et al. (2010a) showed that 1) when
m is fixed, it is theoretically better to setM to 1 and to favor large number of states in
the rollout set (large N ′), and 2) when M is fixed, m should be of order logB

log 1/γ , tuning
these three parameters is non-trivial in general.

In this thesis, we address this rollout trade-off in order to improve the quality
of the training set of the classifier. One approach that we propose is to use a critic
(a value function approximator) in CBPI that provides estimates of the sum of the
rewards that could have been collected after the truncation of the rollouts. The hope
is that using a critic will reduce the bias caused by the truncation of the rollouts and
even permit to control the variance of the rollout estimates as it allows us to rely on
shorter rollouts. As discussed in Chapter 1, the idea of this approach, using separate
representations for policy and value function, is similar to the idea of the actor-critic
algorithms (Barto et al., 1983, Sutton, 1984).

2 Multi-Armed Bandit Problems

In this section, we first review the basic definitions of multi-armed bandits, provide a
brief overview of the classical cumulative regret setting and motivate the pure explo-
ration framework that allows us to tackle the resource allocation problem arises in the
CBPI algorithms.

2.1 Preliminaries

The multi-armed bandit problem is a general framework where a forecaster plays a
repetitive game in which, at every time step t, he chooses a distribution, among K
distributions, to sample from. There are different ways to measure the performance of
the forecaster in this problem that will be discussed in this section. This framework is
used in many resource allocation problems, and thus, fits the problem of rollout allo-

24 Chapter 2. Background and Notations

cation in the classification-based policy iteration (CBPI) algorithms (see the previous
section for more detail).

Before discussing different performance measures in bandits and link it to CBPI, we
introduce the bandit notation used throughout this dissertation. Let A = {1, . . . , K}
be the set of arms such that each arm k ∈ A is characterized by a distribution νk
bounded in [0, b] with mean µk and variance σ2

k. We define the m-max and m-argmax
operators as3

µ(m) = mmax
k∈A

µk and (m) = arg mmax
k∈A

µk ,

where (m) denotes the index of the m-th best arm in A and µ(m) is its corresponding
mean so that µ(1) ≥ µ(2) ≥ . . . ≥ µ(K). We denote by Sm ⊂ A any subset of m arms
(i.e., |Sm| = m < K) and by Sm,∗ the subset of the m best arms (i.e., k ∈ Sm,∗ if
µk ≥ µ(m)). Without loss of generality, we assume that there exists a unique set Sm,∗.
In the following we drop the superscript m and use S∗ = Sm,∗ whenever m is clear from
the context. With a slight abuse of notation we further extend the m-max operator to
an operator returning a set of arms, such that

{µ(1), . . . , µ(m)} = 1..mmax
k∈A

µk and S∗ = arg 1..mmax
k∈A

µk .

For each arm k ∈ A, we define the gap ∆k as

∆k =

µk − µ(m+1) if k ∈ S∗,
µ(m) − µk if k /∈ S∗.

This definition of gap indicates that if k ∈ S∗, ∆k represents the “advantage” of arm k

over the suboptimal arms, and if k /∈ S∗, ∆k denotes how suboptimal arm k is. Note
that we can also write the gap as ∆k = | mmax

i 6=k
µi − µk|. Given an accuracy ε and a

number of arms m, we say that an arm k is (ε,m)-optimal if µk ≥ µ(m) − ε.
The multi-armed bandit problem can be formalized as a game between a stochastic

environment and a forecaster. The distributions {νk} are unknown to the forecaster.
At each round t, the forecaster pulls an arm I(t) ∈ A and observes an independent
sample drawn from the distribution νI(t). Depending on the measure of performance,
the forecaster may want to have an empirical estimate (using the observed samples) of
the expected value or variance of each arm. Let Tk(t) be the number of times that arm k

has been pulled by the end of round t, then the empirical mean and variance of this arm
are calculated as µ̂k(t) = 1

Tk(t)
∑Tk(t)
s=1 Xk(s) and σ̂2

k(t) = 1
Tk(t)−1

∑Tk(t)
s=1

(
Xk(s)− µ̂k(t)

)2
,

where Xk(s) is the s-th sample observed from νk.
In the following two sections, we discuss two formulations of the stochastic bandit

problem. The first formulation corresponds to the classical cumulative regret setting
where the forecaster tries to constantly choose the distribution with the highest mean
(Section 2.2). The second one is the “pure exploration” setting, where the forecaster
uses the exploration phase to find a solution according to which he will be evaluated
at the end of this phase (Section 2.3).

3Ties are broken in an arbitrary but consistent manner.

2. Multi-Armed Bandit Problems 25

2.2 Cumulative Regret Setting
The cumulative regret setting is the standard formulation for multi-armed bandits.
It is motivated by many applications such as the adaptive routing problem. In this
problem, the forecaster needs to choose between K different possible paths to send
messages from A to B in a network. The goal is to use the fastest path as frequently
as possible. However, the time taken by a communication in a path is not fixed as it
depends on several random events such as the global traffic of the network at time t.
Moreover, the forecaster does not know the expected time of each path and needs to
test the paths sufficiently enough in order to have an accurate estimate of this quantity.
The more a path is used the better its time estimate would be. Therefore, at a time
t, the forecaster faces a trade-off between using the path that seems to be the fastest
according to the current estimates (exploitation) and testing other paths to see whether
they are better than that one (exploration). This is called the exploration/exploitation
trade-off. This trade-off is extremely important in sequential decision making under
uncertainty, since often in these problems, the forecaster is repetitively given the choice
between the available options, but information about an option can be gathered only
if it is selected. This problem can have many variants depending on the structure of
the decisions and/or the nature of the feedback given to the forecaster.

In multi-armed bandit theory, the most standard variant is the stochastic case
that corresponds to the case where all the samples generated i.i.d. (independent and
identically distributed) from the K distributions.4 In this formulation, the objective is
to minimize the expected cumulative regret defined as

R(n) = nµ(1) − E
[
n∑
t=1

µI(t)

]
.

This problem was introduced by Robbins (1952). Auer et al. (2002) proposed the UCB
algorithm, a very simple and efficient solution to this problem based on the use of
Upper Confidence Bounds. At each time t, UCB selects the arm with the highest high-
probability upper-bound on its mean. For an arm k, this upper confidence bound is
defined by the index

µ̂k(t) +

√√√√ 2 log(t)
Tk(t− 1) ,

which is composed of the empirical average of the arm, µ̂k(t), plus an exploration term
that is the radius of the confidence interval on the first moment of the distribution
(its mean). This exploration term is derived from the Chernoff-Hoeffding concentra-
tion inequality. While the Chernoff-Hoeffding inequality does not take into account
the higher moments of the distribution, other algorithms based on more advanced
concentration inequalities have been proposed. Audibert et al. (2007) extended the
UCB algorithm with the UCB-V (UCB-Variance) algorithm that takes into account
the variance of the arms. Cappé et al. (2013) extended this approach by using an even
tighter concentration inequality based on the Kullback-Leibler divergence. On the

4Throughout this thesis, we also make the assumption that the samples are i.i.d..

26 Chapter 2. Background and Notations

other hand, Kaufmann et al. (2012) provided a distribution dependent analysis of the
Thomson sampling algorithm, a Bayesian method which has been shown to be efficient
in practice (Chapelle and Li, 2011).

The bandit problem has also been studied where the generated samples from each
arm are not i.i.d., but instead chosen by an adversary (Auer et al., 2003). In this
case, the goal of the forecaster is to limit its expected regret with respect to the best
constant strategy. Another possible way to extent the initial formulation is to consider
cases with an infinite number of arms. The case where no structure is assumed on the
set of arms has been considered by Wang et al. (2008) under a stochastic assumption.
When the bandits are in a linear structure, Abbasi-Yadkori et al. (2011) tackled the
case of stochastic rewards while Dani et al. (2007) tackled the adversarial case.

2.3 Pure Exploration Setting

The pure exploration is a relatively new setting, where the forecaster is only evaluated
at the end of an exploration phase. Contrary to the cumulative regret setting, the
rewards collected before the end of the game are not taken into account. This breaks
the traditional exploration-exploitation trade-off as it seemingly removes the need to
exploit.

This type of scenario happens for instance when a budget is allocated to answer
a particular question about the distributions of the arms. For instance, Antos et al.
(2010) studied the case where a company wants to conduct a sequence of inspections
in order to assess the quality of all its K machines with equal precision. A machine
is seen as an arm and an inspection can be seen as a random sample generated from
an underlying distribution of this arm giving a noisy measurement (estimate) of the
quality of the machine. The more samples (inspections) are collected from a machine
the more precisely its quality is assessed. However, depending on the magnitude of
the noise in the measurements, the quality of some machines can be assessed very
precisely using only a few inspections (in the case of a small noise), while for others
it may require many more measurements (when the noise is large). For example, if
the measure of performance is the maximum expected squared error after n pulls,
maxi∈{1,...,K} E [(µi − µ̂i(n))2], then the optimal allocation that minimizes this error
pulls each arm proportionally to its variance. For this problem, Carpentier et al.
(2011) proposed a new algorithm that pulls at each time step the arm with the highest
upper confidence bound on its variance.

From this common use of upper-bounds, it can be noticed that the pure exploration
strategies look very similar to the ones of the cumulative regret setting that balance
exploration and exploitation. The main difference is that the radius of the confidence
intervals used in the indices of pure exploration algorithms are usually tuned with
respect to the parameters specified by the problem. We now introduce the particular
pure exploration problem that is of our interest for the study of the resource allocation
in CBPI.

2. Multi-Armed Bandit Problems 27

2.3.1 Simple Regret & Best Arm Identification

The problem of best arm(s) identification (Even-Dar et al., 2006, Bubeck et al., 2009,
Audibert et al., 2010) in the stochastic multi-armed bandit setting has recently received
much attention. In this problem, the forecaster is asked to return the best arm(s)
among K at the end of the exploration phase and is evaluated on the quality of the
recommended arm(s). This abstract problem models a wide range of applications.
For instance, let us consider a company that has K different variants of a product and
needs to identify the best one(s) before actually placing it on the market. The company
sets up a testing phase in which the products are tested by potential customers. Each
customer tests one product at a time and gives it a score (a reward). The objective of
the company is to return a product at the end of the test phase which is likely to be
successful once placed on the market (i.e., the best arm identification), and it is not
interested in the scores collected during the test phase (i.e., the cumulative reward).
More formally, the objective in the best arm identification problem is to return m

(ε,m)-optimal arms. This objective has been studied under two different settings,
namely fixed budget and fixed confidence. Before defining these settings, we define the
notion of simple regret for each arm k ∈ A as

rk = µ(m) − µk, (2.12)

and for any set S ⊂ A of m arms, we define the simple regret as

rS = max
k∈S

rk = µ(m) −min
k∈S

µk. (2.13)

We denote by Ω(t) ⊂ A the set of m arms returned by the forecaster at the end of
the exploration phase (when the algorithm stops after t rounds), and by rΩ(t) its corre-
sponding simple regret. Returning m (ε,m)-optimal arms is then equivalent to having
rΩ(t) smaller than ε. Other performance measures can be defined for this problem. In
some applications, returning the wrong arm is considered as an error independently
from its regret, and thus, the objective is to minimize the average probability of error

`(t) = P
(
Ω(t) 6= S∗

)
. (2.14)

This corresponds to the problem of returning m (ε,m)-optimal arms for the particular
case where ε = 0. It is interesting to note the relationship between these two perfor-
mance measures: mink ∆k × `(n) ≤ E[r(n)] ≤ b × `(n), where the expectation in the
regret is with respect to the random samples. As a result, any algorithm minimiz-
ing the probability of error, `(n), also controls the simple regret E[r(n)]. Most of the
algorithms in the literature directly target the problem of minimizing `(n).

• Complexity: The hardness of the best arm identification problem in the fixed
budget and the fixed confidence settings is captured by the quantities H and H defined
as

H =
∑
k

b2

∆2
k

, and H = max
k

k

∆2
(k)
, (2.15)

28 Chapter 2. Background and Notations

in the case where ε = 0. H and H are connected by the following relation:
H ≤ H ≤ H log(K). Intuitively H and H can be interpreted as the total number
of pulls required to discriminate the best arm(s) from the others and will naturally
appear in the theoretical results of most of the considered algorithms.

Given an accuracy ε and a number of arms m to return, we now formalize the two
settings of the (ε,m)-best arm identification problem, fixed budget and fixed confidence.

• Fixed Confidence: In the fixed confidence setting (see e.g., Maron and Moore
1993, Even-Dar et al. 2006), the forecaster tries to minimize the number of rounds
needed to achieve a fixed confidence on the quality of the returned best arm(s). In the
above example, the company keeps enrolling customers in the test until it is, e.g., 95%
confident that the best product has been identified. More precisely, the goal is to design
a forecaster that stops as soon as possible and returns a set of m (ε,m)-optimal arms
with a fixed confidence. We denote by ñ the time when the algorithm stops and by Ω(ñ)
its set of returned arms. Given a confidence level δ, the forecaster has to guarantee
its policy is (m, ε, δ)-correct, meaning that P

[
rΩ(ñ) ≥ ε

]
≤ δ. The performance of the

forecaster is then measured by the number of rounds ñ either in expectation or high
probability.

Maron and Moore (1993) considered a slightly different setting where besides a fixed
confidence the maximum number of rounds is also fixed. They designed an elimination
algorithm for the casem = 1, called Hoeffding Races, based on progressively discarding
the arms that are suboptimal with enough confidence. Mnih et al. (2008) introduced an
improved algorithm, built on the Bernstein concentration inequality, which takes into
account the empirical variance of each arm. Even-Dar et al. (2006) studied the fixed
confidence setting without any budget constraint. They designed several elimination
algorithms and provided the analysis to bound with high probability the stopping time
of these algorithms. Mannor and Tsitsiklis (2004) proved a lower bound showing that
any (m = 1, ε = 0, δ)-correct policy has an expected stopping time at least of order of
H log(1

δ
). Finally, Karnin et al. (2013) proposed an algorithm, called Exponential-Gap,

for which they proved an upper bound on its required number of pulls within a gap of
log log(1

∆min
) of the lower bound of Mannor and Tsitsiklis (2004).

Kalyanakrishnan and Stone (2010) provided different heuristics for the case where
them-best arms must be returned with a given confidence, withm possibly bigger than
1. A thorough theoretical analysis was then provided in Kalyanakrishnan et al. (2012)
for the newly introduced algorithm called LUCB (based on the use of Lower and Upper
Confidence Bounds). Recently, Kaufmann and Kalyanakrishnan (2013) proposed KL-
LUCB, an extension of LUCB, which takes into account the empirical Kullback-Leibler
divergence between the arms in the case of Bernoulli distributions.

• Fixed Budget: In the fixed budget setting (see e.g., Bubeck et al. 2009, Audibert
et al. 2010), the number of rounds of the exploration phase is fixed and is known by
the forecaster, and the objective is to maximize the probability of returning the best

2. Multi-Armed Bandit Problems 29

Parameters: number of rounds n, maximum range b, complexity H
Initialize: Tk(0) = 0, µ̂k(0) = 0 for all arm k ∈ A
for t = 1, 2, . . . , n do

Draw I(t) ∈ arg maxk µ̂k(t− 1) + b
√

n
HTk(t−1)

Observe XI(t)
(
TI(t)(t− 1) + 1

)
∼ νI(t)

Update TI(t)(t) = TI(t)(t− 1) + 1 and µ̂k(t) ∀k of the selected bandit
end for
Return Ω(n) ∈ argmaxk∈A µ̂k(n)

Figure 2.5: The pseudo-code of the UCB Exploration (UCB-E) algorithm.

arm(s). In the above example, the company fixes the length of the test phase before
hand (e.g., enrolls a fixed number of customers) and defines a strategy to choose which
products to show to the testers so that the final selected product is the best with the
highest probability. More precisely, the objective is to design a forecaster capable of
returning a set of m (ε,m)-optimal arms with the largest possible confidence using
a fixed budget of n rounds. More formally, given a budget n, the performance of
the forecaster is measured by the probability δ̃ of not meeting the (ε,m) requirement,
i.e., δ̃ = P

[
rΩ(n) ≥ ε

]
, the smaller δ̃, the better the algorithm.

Audibert et al. (2010) proposed two different strategies to solve this problem in
the case where m = 1 and ε = 0. They defined a strategy based on upper confidence
bounds, called UCB-E (see Figure 2.5 for its pseudo-code), which is very similar to the
UCB algorithm explained in Section 2.2. The only difference of UCB-E and UCB is
that the optimal parameterization of its exploration term is related to the length of
the exploration phase n and to the complexity of the problem H. Note that H is not
usually known in advance. The authors proved that the probability of error of UCB-E
was bounded by a term of order nK exp(− n

H
). They also introduced an elimination

algorithm, called Successive Rejects (SR), which divides the budget n in phases and
discards one arm per phase. Contrary to UCB-E, SR is parameter free and do not
require the knowledge of the complexity H. This comes to the cost of a slightly worse
bound of order K2 exp(− n

H log(K)). On the other hand they showed a lower bound of
order exp(− n

H
) for the problem. Finally, their experimental results show that in the

fixed budget setting the algorithms designed specifically for this setting (and especially
UCB-E) largely outperform the Hoeffding Races, which were designed for the fixed
confidence setting.

Karnin et al. (2013) have designed a new version of the SR algorithm that removes
half of the remaining arms at the end of each phase (while the original SR removes
one at a time) with improved and new upper bounds on the probabilities of error of
order log(K) exp(− n

H log(K)). Recently, Wang et al. (2013) extended the SR results
to the problem of m-best arm identification and introduced a new version of the SR
algorithm, called Successive Accepts and Rejects (SAR), that is able to return the set
of m-best arms with high probability.

30 Chapter 2. Background and Notations

• The multi-bandit setting and its use in the CBPI algorithms: Our motiva-
tion for studying the best arm identification problem has been its possible application
in the rollouts allocation problem in the CBPI algorithms (see Section 1.3.2). Typically
at each iteration of CBPI, one uses an exploration phase with a limited budget B in
order to identify the best action (the greedy action) for each state in the rollout set.
Let us first consider one state s from the rollout set and denote by π the policy at the
current iteration. Each action a can be considered as an arm and sampling an arm cor-
responds to performing a rollout with the initial state-action pair (s, a) and following π.
The value obtained from the sampling is the return Rπ(s, a). Moreover, from the MDP
assumption, these returns are i.i.d. with expected value Qπ(s, a). Therefore, identify-
ing the greedy action corresponds to identifying the arm with the highest action-value
function. As a consequence, the problem of allocating the rollouts can be cast perfectly
as a best arm identification problem. However, in the rollout allocation problem, the
objective is to identify the greedy action simultaneously for all of the states in the roll-
out set. Thus, as several bandit problems must be solved in parallel, this gives rise to
a new problem, called multi-bandit best arm identification. Our objective is to study
this new problem under the fixed budget setting. We first argue that trivial extensions
of the existing algorithms for best arm identification are not satisfactory for this prob-
lem. One may first think of extending the Hoeffding Races, an algorithm designed for
the single-bandit with fixed confidence setting, to the multi-bandit with fixed budget
setting. Nevertheless, as shown by Audibert et al. (2010) and more recently by Kauf-
mann and Kalyanakrishnan (2013), this class of algorithms is not efficient in practice
neither in the fixed budget nor in the fixed confidence settings. Note that, a very likely
reason for this is the fact that Hoeffding Races sample uniformly over the arms that
have not been discarded yet. Second, another idea to address the multi-bandit setting
is a naive application of UCB-E in the multi-bandit setting that would pull at each
time step the arm with the highest upper bound over all of the arms from all of the
bandits. Therefore this algorithm would only identify the best arm among all the arms
of all the bandits and not the best arm of each bandit.

In this dissertation, we are interested in designing new algorithms, for the multi-
bandit setting (we also tackle their (m,ε) version). The proposed algorithms, which we
call GapE, are extensions of the UCB-E algorithm. Roughly speaking, GapE algorithms
pull the arm that has the smallest gap, i.e. the smallest difference between its mean and
the mean of the best arm within the same bandit. The hope is that relying on the gap,
a notion that is relative to each bandit, will permit to balance the error simultaneously
in all the bandits at the same time. This hope is confirmed by an analysis providing a
bound, the first provided for an algorithm in the multi-bandit setting, on the probability
of error of GapE algorithms after n pulls. Even though, in a fashion similar to UCB-E,
GapE algorithms assume the knowledge of the complexity of the problem, we show that
their adaptive version (when the complexity is estimated as we progress) behave well in
practice. Moreover, GapE algorithms compare well to the previously proposed multi-
bandit methods (e.g., Deng et al. 2011) as well as to those introduced subsequently to
our work (e.g., Wang et al. 2013). More specifically, Deng et al. (2011) proposed an

2. Multi-Armed Bandit Problems 31

ε-greedy heuristic to the multi-bandit problem with no associated analysis, and Wang
et al. (2013) showed that the SAR algorithm, mentioned above, could be extended, with
provable guarantees, to the problem of simultaneously identifying the m-best arm(s)
in each of the M bandits problems.

Chapter 3

Classification-based Policy Iteration
with a Critic

In this chapter,1 we give our first variant of classification-based policy iteration (CBPI)
algorithms. We study the effect of adding a value function approximation component
(critic) to CBPI algorithms. The idea is to use a critic to approximate the return after
we truncate the rollout trajectories. This allows us to control the bias and variance
of the rollout estimates of the action-value function. Therefore, the introduction of
a critic can improve the accuracy of the rollout estimates, and as a result, enhance
the performance of the CBPI algorithm. We present a new CBPI algorithm, called
direct policy iteration with critic (DPI-Critic), and provide its finite-sample analysis
when the critic is based 1) on the least-squares policy iteration (LSTD) method, and
2) on the Bellman residual minimization (BRM) method. We empirically evaluate the
performance of DPI-Critic and compare it with direct policy iteration (DPI) introduced
in Chapter 2 (Section 1.3.2) and least-squares policy iteration (LSPI) in two benchmark
reinforcement learning problems.

Contents
1 Introduction . 27

2 The DPI-Critic Algorithm . 28

3 Error Propagation . 30

4 Finite-Sample Analysis . 31

5 Experiments . 36

6 Conclusions & Future Work . 41

1 Introduction
As discussed in Section 1.3.2, at each iteration, given the current policy π, classification-
based policy iteration algorithms: 1) replaces the policy evaluation step (approximating
the action-value function over the entire state-action space) with computing rollout
estimates of Qπ over a finite number of states D = {xi}N

′
i=1, called the rollout set, and

1This chapter is an extended version of our ICML paper (Gabillon et al., 2011b).

34 Chapter 3. Classification-based Policy Iteration with a Critic

the entire action space, and 2) casts the policy improvement step as a classification
problem to find a policy in a given hypothesis space that best predicts a greedy action
at every state (see e.g., Lagoudakis and Parr 2003b, Fern et al. 2006, Lazaric et al.
2010a).

As it is suggested by both theoretical and empirical analysis, the performance of
the classification-based approximate policy iteration (API) algorithms is closely related
to the accuracy in estimating a greedy action at each state of the rollout set, which
itself depends on the accuracy of the rollout estimates of the action-values. Thus, it is
quite important to balance the bias and variance of the rollout estimates, Q̂π’s, that
depend on the length m of the rollout trajectories. While the bias in Q̂π (i.e., the
difference between Q̂π and the actual Qπ) decreases as m becomes larger, its variance
(due to the stochasticity in the MDP transitions and rewards) increases with the value
of m. Although the bias and variance of Q̂π estimates may be optimized by the value
of m, when the budget, i.e., the number of calls to the generative model, is limited, it
may not be possible to find an m that guarantees an accurate enough training set. A
particular example of this is the case of goal-based problems where a non-zero reward
is only obtained when a terminal state is reached. In this case, truncating the rollouts
leads to uninformative rollout estimates and prevents from learning.

A possible approach to address this bias/variance problem is to introduce a critic
that provides an approximation of the value function. In this approach, we define each
Q̂π estimate as the average of the values returned by rollouts of size m plus the critic’s
prediction of the return from the time step m on. This allows us to use small values of
m, thus having a small estimation variance, and at the same time, to rely on the value
function approximation provided by the critic to control the bias. The idea is similar
to the actor-critic methods (Barto et al., 1983) in which the variance of the gradient
estimate in the actor is reduced using the critic’s prediction of the value function.

In this chapter, we introduce a new classification-based API algorithm, called DPI-
Critic, by adding a critic to the direct policy iteration (DPI) algorithm (Lazaric et al.,
2010b). We provide finite-sample analysis for our proposed algorithm, DPI-Critic, when
the critic approximates the value function using 1) least-squares temporal-difference
(LSTD) learning algorithm (Bradtke and Barto, 1996), or 2) the Bellman residual
minimization (BRM) (Baird, 1995, Schweitzer and Seidman, 1985). We empirically
evaluate the performance of DPI-Critic and compare it with DPI and LSPI (Lagoudakis
and Parr, 2003a) on two benchmark reinforcement learning (RL) problems: mountain
car and inverted pendulum. The results indicate that DPI-Critic can take advantage
of both its components and improve over DPI and LSPI.

2 The DPI-Critic Algorithm
In this section, we outline the algorithm we propose in this chapter, called Direct

Policy Iteration with a Critic (DPI-Critic), which is an extension of the DPI algo-
rithm (Lazaric et al., 2010b) by adding a critic. As illustrated in Figure 3.1, DPI-Critic
starts with an arbitrary initial policy π0 ∈ Π. At each iteration k, we build a set of N

2. The DPI-Critic Algorithm 35

Input: policy space Π, state distribution µ
Initialize: Let π0 ∈ Π be an arbitrary policy
for k = 0, 1, 2, . . . do

Construct the rollout set D′k = {s(i)}N ′i=1, s
(i) iid∼ µ

• Critic:
Construct the set Dk of N samples (e.g., by following a trajectory or by
using the generative model)
v̂πk ← VF-APPROX(Dk) (critic)
• Rollout:
for all states s(i) ∈ D′k and actions a ∈ A do
for j = 1 to M do

Perform a rollout and return Rj(s(i), a)
end for
Q̂πk(s(i), a) = 1

M

∑M
j=1Rj(s(i), a)

end for
πk+1 ∈ argminπ∈Π L̂Π

k (µ̂;π) (classifier)
end for

Figure 3.1: The pseudo-code of the DPI-Critic algorithm.

samples Dk, called the critic training set. The critic uses Dk in order to compute v̂πk ,
an approximation of the value function of the current policy πk. Then, a new policy
πk+1 is computed from πk, as the best approximation of the greedy policy with respect
to Qπk , by solving a cost-sensitive classification problem. Similarly to DPI, DPI-Critic
is based on the loss function ε′πk(·; π) and expected error LΠ

πk
(µ; π) that are defined as

∀s ∈ S, ε′πk(s; π) = max
a∈A

Qπk(s, a)−Qπk
(
s, π(s)

)
, LΠ

πk
(µ; π) =

∫
S
ε′πk(s; π)µ(ds) .

To simplify the notation we use LΠ
k instead of LΠ

πk
and ε′k instead of ε′πk . In order

to minimize this loss, a rollout set D′k is built by sampling N ′ states i.i.d. from a
distribution µ. For each state s(i) ∈ D′k and each action a ∈ A, M independent
estimates {Rπk

j (s(i), a)}Mj=1 are computed, where

Rπk
j (s(i), a) = Rπk,m

j (s(i), a) + γmv̂πk(s(i,j)
m) , (3.1)

in which Rπk,m
j (s(i), a) is the outcome of a rollout of size m, i.e.,

Rπk,m
j (s(i), a) = r(s(i), a) +

m−1∑
t=1

γtr(s(i,j)
t , πk(s(i,j)

t)) , (3.2)

and v̂πk(s(i,j)
m) is the critic’s estimate of the value function at state s(i,j)

m . In Equation 3.2,
(s(i), s

(i,j)
1 , s

(i,j)
2 , . . . , s(i,j)

m) is the trajectory induced by taking action a at state s(i) and
following the policy πk afterwards, i.e., s(i,j)

1 ∼ p(·|s(i), a) and s(i,j)
t ∼ p

(
·|s(i,j)

t−1 , πk(s
(i,j)
t−1)

)
for t ≥ 2. An estimate of the action-value function of the policy πk is then obtained

36 Chapter 3. Classification-based Policy Iteration with a Critic

by averaging the M estimates as

Q̂πk(s(i), a) = 1
M

M∑
j=1

Rπk
j (s(i), a) . (3.3)

Given the action-value function estimates, the empirical loss and empirical error are
defined as

∀s ∈ S, ε̂′πk(s; π) = max
a∈A

Q̂πk(s, a)− Q̂πk
(
s, π(s)

)
, L̂Π

k (µ̂; π) = 1
N ′

N ′∑
i=1

ε̂′πk(s; π).

(3.4)

Finally, DPI-Critic makes use of a classifier which solves a cost-sensitive classification
problem and returns a policy that minimizes the empirical error L̂Π

k (µ̂; π) over the
policy space Π.

As it can be seen from Equation 3.1, the main difference between DPI-Critic and
DPI is that after m steps DPI rollouts are truncated and the return thereafter is
implicitly set to 0, while in DPI-Critic an approximation of the value function learned
by the critic is used to predict this return. Hence, with a fixed rollout size m, even
if the critic is a rough approximation of the value function, whenever its accuracy is
higher than the implicit prediction of 0 in DPI, the rollouts in DPI-Critic are expected
to be more accurate than those in DPI. Similarly, we expect DPI-Critic to obtain the
same accuracy as DPI with a smaller rollout size, and as a result, a smaller number of
interactions with the generative model. In fact, while in DPI decreasing m leads to a
smaller variance and a larger bias, in DPI-Critic the increase in the bias is controlled by
the critic. Finally, it is worth noting that DPI-Critic still benefits from the advantages
of the classification-based approach to policy iteration compared to value-function-
based API algorithms such as LSPI. This is due to the fact that DPI-Critic still relies
on approximating the policy improvement step, and thus similar to DPI, whenever
approximating good policies is easier than their value functions, DPI-Critic is expected
to perform better than its value-function-based counterparts. Furthermore, while DPI-
Critic only needs a rough approximation of the value function at certain states, value-
function-based API methods, like LSPI, need an accurate approximation of the action-
value function over the entire state-action space, and thus, they usually require more
samples than the critic in DPI-Critic.

In DPI-Critic, the critic may use any value function approximation method in order
to compute v̂πk . However, in this chapter, we first consider critics based on LSTD and
report the theoretical analysis of DPI-Critic with BRM in Appendix B.

3 Error Propagation
In this section, we first show how the expected error is propagated through the it-
erations of DPI-Critic. We then analyze the error between the value function of
the policy obtained by DPI-Critic after K iterations and the optimal value func-
tion in η-norm, where η is a distribution over the states which might be different

3. Error Propagation 37

from the sampling distribution µ. Let Pπ be the transition kernel for policy π,
i.e., Pπ(dy|s) = p

(
dy|s, π(s)

)
. It defines two related operators: a right-linear operator,

Pπ·, which maps any v ∈ Bv(S;Qmax) to (Pπv)(s) =
∫
v(y)Pπ(dy|s), and a left-linear

operator, ·Pπ, that returns (ηPπ)(dy) =
∫
Pπ(dy|s)η(ds) for any distribution η over S.

From the definitions of ε′πk , Tπ, and T , we have ε′πk(πk+1) = Tvπk − Tπk+1v
πk . We

define the operator Ek = (I−γPπk+1)−1, which is well-defined since Pπk+1 is a stochastic
kernel and γ < 1. We are interested in finding an upper bound on the loss lk ∆= v∗−vπk .
We deduce the following pointwise inequalities:

Lemma 3.1. After K iterations of DPI-Critic we have

lK = v∗ − vπK ≤ (γP∗)K(v∗ − vπ0) +
K−1∑
k=0

(γP∗)K−k−1Ekε
′
πk

(πk+1). (3.5)

Proof. See Appendix A.1.

Equation 3.5 shows how the error at each iteration k of DPI-Critic, ε′πk(πk+1), is
propagated through the iterations and appears in the final error of the algorithm,
v∗ − vπK . Since we are interested in bounding the final error in η-norm, which might
be different than the sampling distribution µ, we use one of the following assumptions:

Assumption 1. For any policy π ∈ Π and any non-negative integers t1 and t2, there
exists a constant Cη,µ(t1, t2) < ∞ such that η(P∗)t1(Pπ)t2 ≤ Cη,µ(t1, t2)µ. We define
Cη,µ = (1− γ)2∑∞

t1=0
∑∞
t2=0 γ

t1+t2Cη,µ(t1, t2).

Assumption 2. For any s ∈ S and any a ∈ A, there exist a constant Cµ < ∞ such
that p(·|s, a) ≤ Cµµ(·).

Note that concentrability coefficients similar to Cη,µ and Cµ were previously used
in the `p-analysis of fitted value iteration (Munos, 2007, Munos and Szepesvári, 2008)
and approximate policy iteration (Antos et al., 2008). We now state our main result.

Theorem 3.1. Let Π be a policy space with finite VC-dimension h and πK be the
policy generated by DPI-Critic after K iterations. Let M be the number of rollouts per
state-action and N ′ be the number of samples drawn i.i.d. from a distribution µ over
S at each iteration of DPI-Critic. Then, we have

||lk||1,η ≤
1

1− γ

[
1

(1− γ)Cη,µ||ε
′
πk

(πk+1)||1,µ + 2γKRmax

]
, under Assumption 1

||lk||∞ ≤
1

1− γ

[
1

(1− γ)Cµ||ε
′
πk

(πk+1)||1,µ + 2γKRmax

]
, under Assumption 2

Proof. See Appendix A.1.

38 Chapter 3. Classification-based Policy Iteration with a Critic

4 Finite-Sample Analysis
In this section, we provide a finite-sample analysis and give a bound on the error
incurred at each iteration of DPI-Critic, ε′πk , that appears in the error propagation
analysis (see Theorem 3.1). We study DPI-Critic when the critic uses pathwise-
LSTD (Lazaric et al., 2010c, 2012). In practice, we may use any form of the LSTD
algorithm, however, we restrict ourselves to pathwise-LSTD because it is the only LSTD
algorithm for which there exists a finite-sample analysis. In order to use the existing
finite-sample bounds for pathwise-LSTD, we introduce the following assumptions.

Assumption 3. At each iteration k of DPI-Critic, the critic uses a linear function
space F spanned by d bounded basis functions (see Section 1.3.1 in Chapter 1). A data-
set Dk = {(Si, Ri)}ni=1 is built, where Si’s are obtained by following a single trajectory
generated by a stationary β-mixing process with parameters β̂, b, κ, and a stationary
distribution σk equal to the stationary distribution of the Markov chain induced by
policy πk, and Ri = r

(
Si, πk(Si)

)
.

Assumption 4. The rollout set sampling distribution µ is such that for any policy
π ∈ Π and any action a ∈ A, ρ = µPa(Pπ)m−1 ≤ Cσ, where C < ∞ is a constant
and σ is the stationary distribution of π. The distribution ρ is the distribution induced
by starting at a state sampled from µ, taking action a, and then following policy π for
m− 1 steps.

Before stating the main results of this section, namely Lemma 3.2 and Theorem 3.2,
we report the performance bound for pathwise-LSTD as in Lazaric et al. (2012). Since
all of the following statements are true for any iteration k, in order to simplify the
notation, we drop the dependency of the variables on k.

We may use different function spaces F (linear or non-linear) to approximate the
value function. Here we consider a linear architecture with parameters α ∈ Rd and
bounded (by L) basis functions {ϕj}dj=1, ‖ϕj‖∞ ≤ L as detailed in Section 1.3.1 of
Chapter 2. We denote by φ : X → Rd, φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)>
the feature vector,

and by F the linear function space spanned by the features ϕj, i.e., F = {fα(·) =
φ(·)>α : α ∈ Rd}. Now if we define vk as the truncation (by Vmax) of the solution of
the above linear regression problem, we may bound the evaluation step error εk using
the following lemma.

Proposition 3.1 (Theorem 5 in Lazaric et al. 2012). Let N be the number of
samples collected in D as in Assumption 3 and v̂π be the approximation of the value
function of policy π returned by pathwise-LSTD truncated in the range [−Qmax, Qmax].
Then for any δ > 0, we have

||vπ − v̂π||2,σ ≤ eLSTD =
 2√

1− γ2

(
2
√

2 inf
f∈F
||vπ − f ||2,σ + e2

)
+ 2

1− γe3 + e1

with probability 1− δ (with respect to the samples in D), where

4. Finite-Sample Analysis 39

(1) e1 = 24Qmax

√
2Λ1(N,d,δ/4)

N
max{Λ1(N,d,δ/4)

b
, 1}1/κ, in which Λ1(N, d, δ) =

2(d+ 1) logN + log 4e
δ

+ log+(max{18(6e)2(d+1), β̂}),
(2) e2 = 12(Qmax + L||α∗||)

√
2Λ2(N,δ/4)

N
max{Λ2(N,δ/4)

b
, 1}1/κ, in which Λ2(N, δ) =

log 4e
δ

+ log(max{6, Nβ̂}) and α∗ ∈ argminα∈Rd ||vπk − fα∗ ||2,σ,
(3) ω > 0 is the smallest strictly positive eigenvalue of the Gram matrix with respect
to the distribution σ,
(4) e3 = γQmaxL

√
d
ω

(√
8 log(8d/δ)

N
+ 1

N

)
.

In the following lemma, we derive a bound for the difference between the actual
action-value function of policy π and its estimate computed by DPI-Critic.

Lemma 3.2. Let Assumptions 3 and 4 hold and D′ = {s(i)}N ′i=1 be the rollout set with
s(i) iid∼ µ. Let Qπ be the true action-value function of policy π and Q̂π be its estimate
computed by DPI-Critic using M rollouts of size m (Equations 3.1–3.3). Then for any
δ > 0

max
a∈A

∣∣∣∣ 1
N ′

N ′∑
i=1

[
Qπ(s(i), a)− Q̂π(s(i), a)

]∣∣∣∣ ≤ e′1 + e′2 + e3 + e4,

with probability 1−δ (with respect to the rollout estimates and the samples in the critic
training set D), where

e′1 = (1− γm)Qmax

√
2 log(4|A|/δ)

MN ′
, e′2 = γmQmax

√
2 log(4|A|/δ)

MN ′
,

e3 = 24γmQmax

√√√√2Λ(N ′, d, δ
4|A|M)

N ′
, e4 = 2γm

√
C eLSTD ,

with Λ(N ′, d, δ) = log
(

9e
δ

(12N ′e)2(d+1)
)
.

Proof. We prove the following series of inequalities:

∣∣∣∣ 1
N ′

N ′∑
i=1

[
Qπ(s(i), a)− Q̂π(s(i), a)

]∣∣∣∣
(a)=
∣∣∣∣ 1
MN ′

N ′∑
i=1

M∑
j=1

[
Qπ(s(i), a)−Rπ

j (s(i), a)
]∣∣∣∣

(b)
≤
∣∣∣∣ 1
MN ′

N ′∑
i=1

M∑
j=1

[
Qπ
m(s(i), a)−Rπ,m

j (s(i), a)
]∣∣∣∣+ ∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
v̂π(s(i,j)

m)− Es∼νi [vπ(s)]
]∣∣∣∣

(c)
≤ e′1 +

∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
v̂π(s(i,j)

m)− vπ(s(i,j)
m)

]∣∣∣∣+ ∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
vπ(s(i,j)

m)− Es∼νi [vπ(s)]
]∣∣∣∣

w.p. 1− δ′

40 Chapter 3. Classification-based Policy Iteration with a Critic

(d)
≤ e′1 + e′2 + γm

M

M∑
j=1
||vπ − v̂π||1,ρ̂j w.p. 1− 2δ′

(e)
≤ e′1 + e′2 + γm

M

M∑
j=1
||vπ − v̂π||2,ρ̂j w.p. 1− 2δ′

(f)
≤ e′1 + e′2 + e3 + 2γm||vπ − v̂π||2,ρ w.p. 1− 3δ′
(g)
≤ e′1 + e′2 + e3 + 2γm

√
C||vπ − v̂π||2,σ

(h)
≤ e′1 + e′2 + e3 + 2γm

√
C εLSTD w.p. 1− 4δ′

The statement of the lemma is obtained by setting δ′ = δ/4 and taking a union bound
over actions.
(a) We use Equation 3.3 to replace Q̂π(s(i), a).
(b) We replace Rπ

j (s(i), a) from Equation 3.1 and use the fact that Qπ(s(i), a) =
Qπ
m(s(i), a) + γmEs∼νi [vπ(s)], where Qπ

m(s(i), a) = E
[
r(s(i), a) + ∑m−1

t=1 γtr
(
s

(i)
t , π(s(i)

t)
)]

and νi = δ(s(i))Pa(Pπ)m−1, with δ(·) the Dirac function, is the distribution over states
induced by starting at state s(i), taking action a, and then following the policy π for
m− 1 steps. We split the sum using the triangle inequality.
(c) Using the Chernoff-Hoeffding inequality, with probability 1−δ′ (with respect to the
samples used to build the rollout estimates), we have

∣∣∣∣ 1
MN ′

N ′∑
i=1

M∑
j=1

[
Qπ
m(s(i), a)−Rπ,m

j (s(i), a)
]∣∣∣∣ ≤ e′1 = (1− γm)Qmax

√
2 log(1/δ′)
MN ′

.

(d) Using the Chernoff-Hoeffding inequality, with probability 1−δ′ (with respect to the
last state reached by the rollout trajectories), we have

∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
vπ(s(i,j)

m)− Es∼νi [vπ(s)]
]∣∣∣∣ ≤ e′2 = γmQmax

√
2 log(1/δ′)
MN ′

.

We also use the definition of empirical `1-norm and replace the second term with
||vπ − v̂π||1,ρ̂j , where ρ̂j is the empirical distribution corresponding to the distribution
ρ = µPa(Pπ)m−1. In fact for any 1 ≤ j ≤M , samples s(i,j)

m are i.i.d. from ρ.
(e) We move from `1-norm to `2-norm using the Cauchy-Schwarz inequality.
(f) Note that v̂ is a random variable independent from the samples used to build the
rollout estimates. Using Corollary 12 in Lazaric et al. (2012), we have

||vπ − v̂π||2,ρ̂j ≤ 2||vπ − v̂π||2,ρ + e3(δ′′)

with probability 1 − δ′′ (with respect to the samples in ρ̂j) for any j, and e3(δ′′) =
24Qmax

√
2Λ(N ′,d,δ′′)

N ′
. By taking a union bound over all j’s and setting δ′′ = δ′/M , we

obtain the definition of e3 in the final statement.
(g) Using Assumption 4, we have ||vπ − v̂||2,ρ ≤

√
C||vπ − v̂||2,σ.

(h) We replace ||vπ − v̂||2,σ using Proposition 3.1.

4. Finite-Sample Analysis 41

Using the result of Lemma 3.2, we now prove a performance bound for a single iteration
of DPI-Critic.

Theorem 3.2. Let Π be a policy space with finite VC-dimension h = V C(Π) < ∞
and µ be a distribution over the state space S. Let N ′ be the number of states in D′k
drawn i.i.d. from µ, m be the size of the rollouts, M be the number of rollouts per
state-action pair, and v̂πk be the estimation of the value function returned by the critic.
Let Assumptions 3 and 4 hold and πk+1 ∈ argminπ∈Π L̂Π

k (µ̂; π) be the policy computed
at the k’th iteration of DPI-Critic. Then, for any δ > 0, we have

||ε′k(πk+1)||1,µ = LΠ
k (µ; πk+1) ≤ inf

π∈Π
LΠ
k (µ; π) + 2(e′0 + e′1 + e′2 + e3 + e4), (3.6)

with probability 1− δ, where

e′0 = 16Qmax

√√√√ 2
N ′

(
h log eN

′

m
+ log 32

δ

)
.

The proof follows similar steps as in Lazaric et al. (2010b) and is reported in Ap-
pendix A.2. Plugging this result in Theorem 3.1 leads to the final result of this section,
the finite sample performance bounds of DPI-Critic.

Theorem 3.3. Let

d′ = inf
π∈Π
LΠ
k (µ; π) and dm = inf

f∈F
||vπ − f ||2,σ.

where F is the function space used by the critic and Π is the policy space used by DPI-
Critic. After K iterations, and with probability 1− δ, the expected loss Eµ[lk] = ‖lk‖1,µ
of DPI-Critic satisfy:

||lk||1,η ≤
1

1− γ

[1
1− γCη,µ

(
d′ + 2(e′0 + e′1 + e′2 + e3

+ 2γm
√
C (2√

1− γ2

(
2
√

2dm + e2) + 2
1− γe3 + e1)

)
+ 2γKRmax

]
. (3.7)

Remark 3.1. The terms in the bound of Theorem 3.2 are related to the performance
at each iteration of DPI-Critic. The first term, infπ∈Π LΠ

k (µ; π), is the approximation
error of the policy space Π, i.e., the best approximation of the greedy policy in Π.
Since the classifier relies on a finite number of samples in its training set, it is not
able to recover the optimal approximation and incurs an additional estimation error
e′0 which decreases as O(N ′−1/2). Furthermore, the training set of the classifier is built
according to action-value estimates, whose accuracy is bounded by the remaining
terms. The term e′1 accounts for the variance of the rollout estimates due to the
limited number of rollouts for each state in the rollout set. While it decreases as M
and N ′ increase, it increases with m, because longer rollouts have a larger variance
due to the stochasticity in the MDP dynamics. The terms e′2, e3, and e4 are related
to the bias induced by truncating the rollouts. They all share a factor γm decaying

42 Chapter 3. Classification-based Policy Iteration with a Critic

exponentially with m and are strictly related to the critic’s prediction of the return
from m on. While e3 depends on the specific function approximation algorithm used
by the critic (LSTD in our analysis) just through the dimension d of the function
space F , e4 is strictly related to LSTD’s performance, which depends on the size N
of its training set and the accuracy of its function space, i.e., the approximation error
inff∈F ||vπ − f ||2,σ.

Remark 3.2 (Advantage of using a critic). We now compare the result of Theo-
rem 3.2 with the corresponding result for DPI in Lazaric et al. (2010b), which bounds
the performance as

LΠ
k (µ; πk+1) ≤ inf

π∈Π
LΠ
k (µ; π) + 2(e′0 + e′1 + γmQmax). (3.8)

While the approximation error infπ∈Π LΠ
k (µ; π) and the estimation errors e′0 and e′1 are

the same in Equations 3.6 and 3.8, the difference in the way that these algorithms han-
dle the rollouts after m steps leads to the term γmQmax in DPI and the terms e′2, e3,
and e4 in DPI-Critic. The terms e′2, e3, and e4 have the term γmQmax multiplied by
a factor which decreases with the number of rollout states N ′, the number of rollouts
M , and the size of the critic training set N . For large enough values of N ′ and N , this
multiplicative factor is smaller than 1, thus making e′2 + e3 + e4 smaller than γmQmax
in DPI. Furthermore, since these e values upper bound the difference between quanti-
ties bounded in [−Qmax, Qmax], their values cannot exceed γmQmax. This comparison
supports the idea that introducing a critic could improve the accuracy of the truncated
rollout estimates by reducing the bias with no increase in the variance.

Remark 3.3 (Critic trade-off). Although Theorem 3.2 reveals the potential ad-
vantage of DPI-Critic with respect to DPI, the comparison in Remark 3.2 does not
take into consideration that DPI-Critic uses N samples more than DPI, thus making
the comparison potentially unfair. We now analyze the case where the total budget
(number of calls to the generative model) of DPI-Critic is fixed to B, a constraint
that we will later use in our experiments. The total budget is split into two parts: 1)
BR = B(1 − p) the budget available for the rollout estimates, and 2) BC = Bp = n

the number of samples used by the critic, where p ∈ (0, 1) is the critic ratio of the
total budget. By substituting BR and BC in the bound of Theorem 3.2 and setting
M = 1, we note that for a fixed m, while increasing p increases the estimation error
terms e′0, e′1, e′2, and e3 (the rollout set becomes smaller), it decreases the estimation er-
ror of LSTD e4 (the critic’s training set becomes larger). This trade-off (later referred
to as the critic trade-off) is optimized by a specific value p = p∗ which minimizes
the expected error of DPI-Critic. By comparing the bounds of DPI and DPI-Critic,
we first note that for any fixed p, DPI benefits from a larger number of samples to
build the rollout estimates, thus has smaller estimation errors e′0 and e′1 with respect
to DPI-Critic. However, as pointed out in Remark 3.2, the bias term γmQmax in the
DPI bound is always worse than the corresponding term in the DPI-Critic bound. As
a result, whenever the advantage obtained by relying on the critic is larger than the

4. Finite-Sample Analysis 43

loss in having a smaller number of rollouts, we expect DPI-Critic to outperform DPI.
Whether this is the case depends on a number of factors such as the dimensionality
and the approximation error of the space F , the size of the rollouts m, and the size N ′
of the rollout set.

Remark 3.4 (Reuse of samples). According to Assumption 1 the samples in the
critic’s training set are completely independent from those used in building the rollout
estimates. A more data-efficient version of the algorithm can be devised as follows: We
first simulate all the trajectories used in the computation of the rollouts and use the last
few transitions of each to build the critic’s training set Dk. Then, after the critic (LSTD
or BRM) computes an estimate of the value function using the samples in Dk, the
action-values of the states in the rollout set D′k are estimated as in Equations 3.1–3.3.
This way the function approximation step does not change the total budget. We call
this version of the algorithm Combined DPI-Critic (CDPI-Critic). From a theoretical
point of view, the main problem is that the samples in Dk are no longer drawn from the
stationary distribution σk of the policy under evaluation πk. However, the samples in
Dk are collected at the end of the rollout trajectories of length m obtained by following
πk, and thus, they are drawn from the distribution ρ = µPa(Pπk)m−1 that approaches
σk as m increases. Depending on the mixing rate of the Markov chain induced by
πk, the difference between ρ and σk could be relatively small, thus supporting the
conjecture that CDPI-Critic may achieve a similar performance to DPI-Critic without
the overhead of N independent samples. While we leave a detailed theoretical analysis
of CDPI-Critic as future work, we use it in the experiments of Section 5.

Remark 3.5 (New rollout trade-off). The parameter m in DPI-Critic balances the
errors in evaluating the value function and the policy. Up to constants and logarithmic
factors, the bound in Equation 3.7 has the form

‖lk‖1,η ≤ O

γm
dm +

√
1
N

+ d′ +
√
M |A|m
B

 .
The value function approximation error term, γm

(
dm +

√
1
N

)
, tends to zero for large

values of m. Although this would suggest to have large values for m, when having
a fixed budget B, the size of the rollout set D′ would correspondingly decreases as
N ′ = O(B/m) and would also make the influence of the estimation error of the classifier
bigger (see e′0 in Theorem 3.2), thus decreasing the accuracy of the classifier. This leads
to a new trade-off, similar to the one discussed in Section 1.3.2 of Chapter 1 for DPI,
between long rollouts and the number of states in the rollout sets. However the solution
to this trade-off strictly depends on the capacity of the value function space F . A rich
value function space would lead to solving the trade-off for small values of m. On the
other hand, when the value function space is poor, or when there is no value function
as in the case of DPI, m should be selected in a way to guarantee large enough rollout
sets (parameters N ′), and at the same time, a sufficient number of rollouts (parameter
M).

44 Chapter 3. Classification-based Policy Iteration with a Critic

Figure 3.2: (Left) The Mountain Car (MC) problem in which the car needs to learn
to oscillate back and forth in order to build up enough inertia to reach the top of the
one-dimensional hill. (Right) The Inverted pendulum (IP) is the problem of balancing
a pendulum at the upright position by applying force to the cart it is attached to.

Remark 3.6 (Recent theoretical analysis). Farahmand et al. (2012) analyze a
generic version of CBPI algorithms called CAPI. In CAPI, the policy improvement
uses the cost-sensitive loss of Equation 3.4 while the policy evaluation can be any al-
gorithm that returns an approximation Q̂π of Qπ. CAPI contains therefore the DPI
and the DPI-Critic algorithms. Farahmand et al. (2012) provided a finite sample error
analysis of CAPI, which allows general policy evaluation algorithms, handles non-
parametric policy spaces, and provides a faster convergence rate than existing results.
Note that using nonparametric policies extends our analysis which is limited to policy
spaces with finite VC dimension. They also provide a new error propagation result
for classification-based RL algorithms that shows that the errors at the later iterations
play a more important role in the quality of the final policy. Faster rates of convergence
than existing results are obtained thanks to the use the notion of local Rademacher
complexity. They also benefit from the notion of action-gap regularity of the problem
which means that choosing the right action at each state may not require a precise
estimate of the action-value function.

5 Experiments
In this section, we report the empirical evaluation of DPI-Critic with LSTD critic and
compare it to DPI (built on truncated rollouts) and LSPI (built on value function
approximation). In the experiments we show that DPI-Critic, by combining truncated
rollouts and function approximation, can improve over DPI and LSPI.

5.1 Setting
We consider two standard goal-based RL problems, namely,Mountain Car and Inverted
pendulum, described below.

• Mountain Car (MC) is the problem of driving a car up to the top of a one-
dimensional hill (see Figure 3.2). The car is not powerful enough to accelerate
directly up the hill, and thus, it must learn to oscillate back and forth to build

5. Experiments 45

up enough inertia. There are three possible actions: forward (+1), reverse (−1),
and stay (0). The reward is −1 for all the states but the goal state at the top of
the hill, where the episode ends with a reward 0. The discount factor is set to
γ = 0.99. Each state s consists of the pair (x, ẋ) where x is the position of the
car and ẋ is its velocity. We use the formulation described in Dimitrakakis and
Lagoudakis (2008) with uniform noise in [−1, 1] added to the actions.

• Inverted Pendulum (IP) is the problem of balancing a pendulum at the upright
position by applying force to the cart it is attached to. There are three possible
actions: left (−50N), right (+50N), and stay (0N), with uniform noise in [−10, 10]
added to them. The reward is 0 as long as the pendulum is above the horizontal
line. The episode ends with reward −1 when the pendulum goes below the
horizontal line. The discount factor is set to 0.95. We use the formulation
described in Lagoudakis and Parr (2003a) and use the same feature space and
the same strategy to collect samples.

The value function is approximated using a linear space spanned by a set of radial
basis functions (RBFs) evenly distributed over the state space plus a constant offset.
More precisely, we uniformly divide the 2-dimensional state space into a number of
regions and place a Gaussian function at the center of each of them. We set the
standard deviation of the Gaussian functions to the width of a region. The function
space to approximate the action-value function in LSPI is obtained by replicating the
state-features for each action. The critic training set is built using one-step transitions
from states drawn from a uniform distribution over the state space, while LSPI is
trained off-policy using samples from a random policy. In the IP problem, we use
the same implementation, features, and critic’s training set as in Lagoudakis and Parr
(2003a) with γ = 0.95.

In both domains, the function space to approximate the action-value function
in LSPI is obtained by replicating the state-features for each action as suggested
in Lagoudakis and Parr (2003a). Similarly to Dimitrakakis and Lagoudakis (2008),
the policy space Π (classifier) is defined by a multi-layer perceptron with 10 hidden
units, and is trained using stochastic gradient descent with a learning rate of 0.5 for 400
iterations.2 In the experiments, instead of directly solving the cost-sensitive multi-class
classification step as in Figure 3.1, we minimize the classification error. In fact, the
classification error is an upper-bound on the empirical error defined by Equation 3.4.
Finally, the rollout set is sampled uniformly over the state space.

Each DPI-based algorithm is run with the same fixed budget B per iteration. As
discussed in Remark 3.4, DPI-Critic splits the budget into a rollout budget BR =
B(1− p) and a critic budget BC = Bp, where p ∈ (0, 1) is the critic ratio. The rollout
budget is divided into M rollouts of length m for each action in A and each state in
the rollout set D′, i.e., BR = mMN ′|A|. In CDPI-Critic the critic training set Dk
is built using all transitions in the rollout trajectories except the first one. LSPI is

2We noticed that 25 iterations used by Dimitrakakis and Lagoudakis (2008) is not enough for
training the classifier in all cases.

46 Chapter 3. Classification-based Policy Iteration with a Critic

0.0 0.2 0.4 0.6 0.8 1.0

30
40

50
60

70
80

90
10
0

Critic ratio (p)

A
cc
ur
ac
y
pe
rc
en
ta
ge

Rollout size m of DPI−Critic
1 4 6

Figure 3.3: The accuracy of training set in the inverted pendulum problem.

run off-policy (i.e., samples are collected once and reused through the iterations) and
in order to have a fair comparison, its total number of samples equal to B times the
number of iterations (which is 5 in the following experiments).

5.2 Experimental Results
In both MC and IP, the reward function is constant everywhere except at the terminal
state. Thus, rollouts are informative only if their trajectories reach the terminal state.
Although this would suggest to have large values for the rollout size m, the size of
the rollout set would correspondingly decrease as N ′ = O(B/m), leading to a trade-off
(referred to as the rollout trade-off in Remark 3.6). The solution to this trade-off will
strictly depend on the accuracy of the estimate of the return after a rollout is truncated.
Prior to considering the final performance of the algorithms, we also carried out a study
on the role of parameters M , m, in producing accurate estimates of the action-value
function of the states in the rollout set before their usage in the classifier.

5.2.1 Accuracy of the Training Set

Figure 3.3 shows the accuracy of the training set of DPI-Critic with respect to p for
different values of m, in the IP domain. At p = 0 we report the performance of the
DPI algorithm. The accuracy acc is computed as the percentage of the states in the
rollout set at which a true greedy action is correctly identified. Let π be a fixed policy.
With a rollout set containing N ′ states acc is computed as:

acc = 1
N ′

N ′∑
i=1

I{a∗i = âi},

where a∗i ∈ argmaxa∈AQπ(s(i), a) and âi ∈ argmaxa∈A Q̂π(s(i), a) are an actual greedy
action and a greedy action estimated by the algorithm at state s(i) ∈ D′, respectively.

5. Experiments 47

The budget B is set to 2000, N ′ is set to 20, and the values of M are computed as

M(p,m) = B

N ′|A|
× 1− p

m
,

where the first term is a constant and the second one indicates thatM decreases linearly
with p with a coefficient inversely proportional to m. The results are averaged over
1000 runs. The policy π is fixed as follows:

π(θ, θ̇) =

with probability 0.2, random action,
with probability 0.8, left, if 6θ

π/2 > θ̇ ,

right, otherwise .

This policy has an average performance of 20 steps to balance the pendulum.
For m = 1 and p = 0, the rollout size is not long enough to collect any informative

reward (i.e., reaching a terminal state). Therefore, the accuracy of the training set is
almost the same as for a training set in which the greedy action is selected at random
(33% as the domain contains 3 actions). For positive values of p, DPI-Critic adds an
approximation of the value function to the rollout estimates. The benefit obtained by
using the critic increases with the quality of the approximation (i.e., when p increases).
At the same time, when p increases, the number of rollouts M for each rollout state
decreases, thus increasing the variance of rollout estimates. For m = 1, this reduction
has no effect on the accuracy of the training set except when M is forced to be 0
for the values of p close to 1. In fact, when m = 1, the variance is limited to the
variance introduced by the noise in one single transition and even a very small number
of rollouts would be enough to obtain accurate estimates of the action values.

The accuracy of DPI (p = 0) improves with rollout size m = 4 and m = 6. For p
close to 0, the critic has a poor performance which causes the rollouts to be less accurate
than in DPI. On the other hand, when p increases, the value function approximation
is sufficiently accurate to make DPI-Critic improve over the accuracy of DPI. However
for p > 0.5, the accuracy of the training set starts decreasing. Indeed, as m is large,
the variance of Q̂π estimates is bigger than in the case when m = 1. Moreover, for
large values of m, M is small. Therefore, with high variance and a small number of
rollouts M , the Q̂π estimates are likely to be inaccurate.

These results show that the introduction of a critic improves the accuracy of the
training set for a value of p which balances between having a sufficiently accurate
approximation of the critic (p large leads to an accurate critic) and having sufficiently
many rollouts M (p small leads to rollouts with less variance). This still does not
account for the complete critic trade-off since the parameter N ′ is fixed. Indeed, in
order to return a good approximation of the greedy policy, it is essential for the classifier
to both have an accurate training set and a large number of states in the training set.
The impact of the number of states in the training set and the propagation through
iterations of the benefit obtained from the use of critic is studied in the very next
section.

48 Chapter 3. Classification-based Policy Iteration with a Critic

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0
25

0
30

0
35

0

Critic ratio (p)

A
ve

ra
ge

d
st

ep
s

to
 th

e
go

al

CDPI
m=3 N=22

●

LSPI

●

DPI
m=12, N=5

Rollout size m of DPI−Critic
1
2

6
10

20

0.0 0.2 0.4 0.6 0.8 1.0

50
10

0
15

0
20

0
25

0
30

0
35

0

Critic ratio (p)

A
ve

ra
ge

d
st

ep
s

to
 th

e
go

al

CDPI
m=5, N=13

●

LSPI
●

DPI
m=12, N=5

Rollout size m of DPI−Critic
1
2

6
10

20

Figure 3.4: Performance of the learned policies in mountain car with a 3× 3 RBF grid
(left) and a 2× 2 RBF grid (right). The total budget B is set to 200. The objective is
to minimize the number of steps to the goal.

5.2.2 Comparison of Final Performances

In Figures 3.4 and 3.5, we report the performance of DPI, DPI-Critic, CDPI-Critic,
and LSPI. In MC, the performance is evaluated as the number of steps-to-go with a
maximum of 300, starting from the bottom of the hill with no initial velocity. In IP,
the performance is the number of balancing steps with a maximum of 3000 steps. The
performance of each run is computed as the best performance over 5 iterations of policy
iteration. The results are averaged over 1000 runs. Although in the graphs we report
the performance of DPI and LSPI at p = 0 and p = 1, respectively, DPI-Critic does
not necessarily tend to the same performance as DPI and LSPI when p approaches 0 or
1. In fact, values of p close to 0 correspond to building a critic with very few samples
(thus affecting the performance of the critic), while values of p close to 1 correspond
to a very small rollout set (thus affecting the performance of the classifier). We tested
the performance of DPI and DPI-Critic on a wide range of parameters (m,M,N ′)
but we only report the performance of the best combination for DPI, and show the
performance of DPI-Critic for the best choice of M (M = 1 was the best choice in all
the experiments) and different values of m.

Figure 3.4 shows the learning results in MC with budget B = 200. In the left
panel, the function space for the critic consists of 9 RBFs distributed over a uniform
grid. Such a space is rich enough for LSPI to learn nearly-optimal policies (about 80
steps to reach the goal). On the other hand, DPI achieves a poor performance of about
150 steps, which is obtained by solving the rollout trade-off at m = 12 and N ′ = 5.
We also report the performance of DPI-Critic for different values of m and p. We
note that, as discussed in Remark 3.4, for a fixed m, there exists an optimal value p∗
which optimizes the critic trade-off. For very small values of p, the critic has a very
small training set and is likely to return a very poor approximation of the return. In
this case, DPI-Critic performs similarly to DPI and the rollout trade-off is achieved by
m = 12, which limits the effect of potentially inaccurate predictions without reducing

5. Experiments 49

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00
30

00

Critic ratio (p)

A
ve

ra
ge

d
ba

la
nc

in
g

st
ep

s

CDPI
m=3, N=111

●
LSPI

●
DPI
m=6, N=55

Rollout size m of DPI−Critic
1
2

6
10

20

Figure 3.5: Performance of the learned policies in inverted pendulum. The budget is
B = 1000. The goal is to keep the pendulum balanced with a maximum of 3000 steps.

too much the size of the rollout set. On the other hand, as p increases the accuracy
of the critic improves as well, and the best choice for m rapidly reduces to 1, which
corresponds to rollouts built almost entirely on the basis of the values returned by the
critic. For m = 1 and p ≈ 0.8, DPI-Critic achieves a slightly better performance than
LSPI. Finally, the horizontal line represents the performance of CDPI-Critic (for the
best choice of m) which improves over DPI without matching the performance of LSPI.

Although this experiment shows that the introduction of a critic in DPI compensates
for the truncation of the rollouts and improves their accuracy, most of this advantage is
due to the quality of F in approximating value functions (LSPI itself is nearly-optimal).
In this case, the results would suggest the use of LSPI rather than any DPI-based
algorithm. In the next experiment, we show that DPI-Critic is able to improve over
both DPI and LSPI when F has a lower accuracy. We define a new space F spanned
by 4 RBFs distributed over a uniform grid. The results are reported in the right panel
of Figure 3.4. The performance of LSPI now worsens to 180 steps. Since the quality of
the critic returned by LSTD in DPI-Critic is worse than in the case of 9 RBFs, m = 1
is no longer the best choice for the rollout trade-off. However, as soon as p > 0.1, the
accuracy of the critic is still higher than the 0 prediction used in DPI, thus leading
to the best size of the rollouts at m = 6 (instead of 12 as in DPI), which guarantees
a large enough number of informative rollouts. At the same time, other effects might
influence the choice of the best size of rollouts m. As it can be noticed, for m = 6 and
p ≈ 0.5, DPI-Critic successfully takes advantage of the critic to improve over DPI, and
at the same time, it achieves a better performance than LSPI. Unlike LSPI, DPI-Critic
computes its action-value estimates by combining informative rollouts and the critic
value function, thus obtaining estimates which cannot be represented by the action-
value function space used by LSPI. Additionally, similarly to DPI, DPI-Critic performs
a policy approximation step which could lead to better policies with respect to those
obtained by LSPI.

Finally, Figure 3.5 displays the results of similar experiments in IP with B = 1000.

50 Chapter 3. Classification-based Policy Iteration with a Critic

In this case, although the function space is not accurate enough for LSPI to learn good
policies, it is helpful in improving the accuracy of the rollouts with respect to DPI.
When p > 0.05, m = 1 is the rollout size which optimizes the rollout trade-off. In fact,
since by following a random policy the pendulum falls after very few steps, rollouts of
length one still allow to collect samples from the terminal state whenever the starting
state is close enough to the horizontal line. Hence, with m = 1 action-values are
estimated as a mix of both informative rollouts and the critic’s prediction, and at
the same time, the classifier is trained on a relatively large training set. Finally, it
is interesting to note that in this case CDPI-Critic obtains the same nearly-optimal
performance as DPI-Critic.

6 Conclusions & Future Work
DPI-Critic adds value function approximation to the classification-based approach to
policy iteration, and more specifically to the DPI algorithm (Lazaric et al., 2010a).
The motivation behind DPI-Critic is two-fold. 1) In some settings (e.g., those with
delayed reward), DPI action-value estimates suffer from either high variance or high
bias (depending on m). Introducing a critic to the computation of the rollouts may
significantly reduce the bias with respect to a simple truncation of the rollouts, which
in turn allows for shorter rollout size and thus lower variance. 2) In value-based
approaches (e.g., LSPI), it is often difficult to design a function space which accurately
approximates action-value functions. In this case, integrating rough approximation of
the value function returned by the critic with the rollouts obtained by direct simulation
of the generative model may improve the accuracy of the function approximation and
lead to better policies.

In Section 4, we theoretically analyzed the performance of DPI-Critic and showed
that depending on several factors (notably the function approximation error), DPI-
Critic may achieve a better performance than DPI. This analysis is also supported by
the experimental results of Section 5, which confirm the capability of DPI-Critic to take
advantage of both rollouts and critic, and improve over both DPI and LSPI. Although
in some settings either DPI or LSPI might still be the better choice, DPI-Critic seems
to be a promising alternative that introduces additional flexibility in the design of the
algorithm.

Possible directions for future work include complete theoretical analysis of CDPI-
Critic and more detailed comparison of DPI-Critic and LSPI. Another direction is
to design new allocation strategies of the rollouts over the states of the rollout set
that would improve the current uniform allocation. Indeed this would permit to use,
for instance, more rollouts to estimate the action-value of the good actions and to
use less rollouts for clear suboptimal actions. Moreover allocating more rollouts on
more “important” states or states where the best action is hard to discriminate from
the others actions could also be an important target. Motivated by these ideas, in
Chapter 5, we study a related problem under the multi-armed bandit setting and
design new candidate strategies. More precisely, we discuss in Section 5.1 of Chapter 5

6. Conclusions & Future Work 51

the applications of these new rollout allocation strategies in the classification-based PI
framework.

Finally, the next chapter will give a new view on the idea developed in this chapter.
Indeed we will see that the introduction of a critic in classification-based PI algorithms
possesses close connections with the standard Modified PI algorithm, an algorithm that
generalizes the well-known Value Iteration and Policy Iteration algorithms. Moreover,
it also serves as an experimental evidence as the usability of classification-based PI
algorithms in practice. Specifically, it is shown that these algorithms happen to be
the first approximate dynamic programming algorithm to perform well in the game of
Tetris.

52 Chapter 3. Classification-based Policy Iteration with a Critic

Appendix

A Proofs of the Main Theorems
In this section we report the proofs of the error propagation (Theorem 3.1) and of the
finite sample analysis (Theorem 3.2).

A.1 Error Propagation Proofs
In this section we bound how the errors propagate through the iterations in DPI-Critic.

Proof of Lemma 3.1. From the definitions of ε′πk , Tπ, and T , we have ε′πk(πk+1) =
Tvπk − Tπk+1v

πk . We deduce the following pointwise inequalities:

vπk − vπk+1 = Tπkv
πk − Tπk+1v

πk + Tπk+1v
πk − Tπk+1v

πk+1

≤ ε′πk(πk+1) + γPπk+1(vπk − vπk+1),

which gives us vπk − vπk+1 ≤ (I − γPπk+1)−1ε′πk(πk+1). We also have

v∗ − vπk+1 = Tv∗ − Tvπk + Tvπk − Tπk+1v
πk + Tπk+1v

πk − Tπk+1v
πk+1

≤ γP∗(v∗ − vπk) + ε′πk(πk+1) + γPπk+1(vπk − vπk+1),

which yields

v∗ − vπk+1 ≤ γP∗(v∗ − vπk) +
[
γPπk+1(I − γPπk+1)−1 + I

]
ε′πk(πk+1)

= γP∗(v∗ − vπk) + (I − γPπk+1)−1ε′πk(πk+1).

Finally, by defining the operator Ek = (I−γPπk+1)−1, which is well-defined since Pπk+1

is a stochastic kernel and γ < 1, and by induction, we obtain

v∗ − vπK ≤ (γP∗)K(v∗ − vπ0) +
K−1∑
k=0

(γP∗)K−k−1Ekε
′
πk

(πk+1).

Proof of Theorem 3.1. We have Cη,µ ≤ Cµ for any η. Thus, if the `1-bound holds for
any η, choosing η to be a Dirac at each state implies that the `∞-bound holds as well.
Hence, we only need to prove the `1-bound. By taking the absolute value point-wise
in Equation 3.5 we obtain

|v∗ − vπK | ≤ (γP∗)K |v∗ − vπ0|+
K−1∑
k=0

(γP∗)K−k−1(I − γPπk+1)−1|ε′πk(πk+1)|.

From the fact that |v∗ − vπ0| ≤ 2
1−γRmax1, and by integrating both sides with respect

to η, and using Assumption 1 we have

||v∗ − vπK ||1,η ≤ γK
2

1− γRmax +
K−1∑
k=0

γK−k−1
∞∑
t=0

γtCη,µ(K − k − 1, t)||ε′πk(πk+1)||1,µ.

The claim follows from the definition of Cη,µ.

B. DPI-Critic with Bellman Residual Minimization 53

A.2 Proof of Theorem 3.2
Since the proof of Theorem 3.2 does not depend on the specific critic employed in
DPI-Critic, we report its proof in the general form where the e terms depend on the
specific Lemma (Lemma 3.2 for LSTD or Lemma 3.3 for BRM) used in the proof.

Proof. The proof follows the same steps as in Theorem 1 in Lazaric et al. (2010a). We
prove the following series of inequalities:

LΠ
k (µ; πk+1)

(a)
≤ LΠ

k (µ̂; πk+1) + e′0 w.p. 1− δ′

= 1
N ′

N ′∑
i=1

[
Qπk(s(i), a∗)−Qπk

(
s(i), πk+1(s(i))

)]
+ e′0

(b)
≤ 1
N ′

N ′∑
i=1

[
Qπk(s(i), a∗)− Q̂πk

(
s(i), πk+1(s(i))

)]
+ e′0 + e′1 + e′2 + e3 + e4 w.p. 1− 2δ′

(c)
≤ 1
N ′

N ′∑
i=1

[
Qπk(s(i), a∗)− Q̂πk

(
s(i), π∗(s(i))

)]
+ e′0 + e′1 + e′2 + e3 + e4

(d)
≤ 1
N ′

N ′∑
i=1

[
Qπk(s(i), a∗)−Qπk

(
s(i), π∗(s(i))

)]
+ e′0 + 2(e′1 + e′2 + e3 + e4) w.p. 1− 3δ′

= LΠ
k (µ̂; π∗) + e′0 + 2(e′1 + e′2 + e3 + e4)

(e)
≤ LΠ

k (µ; π∗) + 2(e′0 + e′1 + e′2 + e3 + e4) w.p. 1− 4δ′

The statement of the theorem follows by δ′ = δ/4.
(a) It is an immediate application of Lemma 1 in Lazaric et al. (2010a).
(b) This is the result of Lemma 3.2 (Lemma 3.3 for BRM).
(c) From the definition of πk+1 in the DPI-Critic algorithm we have

πk+1 ∈ argmin
π∈Π

L̂Π
k (µ̂; π) = argmax

π∈Π

1
N ′

N ′∑
i=1

Q̂πk
(
s(i), π(s(i))

)
,

thus, − 1
N ′
∑N ′

i=1 Q̂
πk
(
s(i), π(s(i))

)
can be maximized by replacing πk+1 with any other

policy particularly with π∗ ∈ argminπ∈Π LΠ
k (µ; π).

(d)-(e) These steps follow from Lemma 3.2 and Lemma 1 in Lazaric et al. (2010a).

B DPI-Critic with Bellman Residual Minimization
In this section we bound the performance of each iteration of DPI-Critic when Bellman
Residual Minimization (BRM) is used to train the critic.

Assumption 5. At each iteration k of DPI-Critic, the critic uses a linear function
space spanned by d bounded basis functions (see Section 1.3.1 in Chapter 1). A data-set
Dk =

{
(Si, Ri, Yi, Y

′
i)
}n
i=1

is built, where Si ∼ τ, Ri = r
(
Si, πk(Si)

)
, and Yi and Y ′i are

two independent states drawn from Pπk(·|Si). Note that here in BRM (unlike LSTD)
the sampling distribution τ can be any distribution over the state space.

54 Chapter 3. Classification-based Policy Iteration with a Critic

Assumption 6. The rollout set sampling distribution µ is such that for any policy
π ∈ Π and any action a ∈ A, ρ = µPa(Pπ)m−1 ≤ Cτ , where C <∞ is a constant. The
distribution ρ is a distribution induced by starting at a state sampled from µ, taking
action a, and then following policy π for m− 1 steps.

We first report the performance bound for BRM.

Proposition 3.2. (Theorem 7 in Maillard et al. 2010) Let N samples be collected as in
Assumption 5 and v̂π be the approximation returned by BRM using the linear function
space F as defined in Section 1.3.1 in Chapter 1. Then for any δ > 0, we have

||vπ−v̂π||2,τ ≤ eBRM = (3.9)

||(I − γPπ)−1||τ

(I + γ||Pπ||τ inf
f∈F
||vπ − f ||2,τ + c

(2d log(2) + 6 log(64|A|/δ)
n

)1/4

with probability 1− δ, where (1) c = 12[2
ξ
(1 + γ)2L2 + 1]Rmax,

(2) ξ = ω
||(I−γPπ)−1||2 ,

(3) ω > 0 is the smallest strictly positive eigenvalue of the Gram matrix with respect
to the distribution τ .

In the following lemma, we bound the difference between the actual action-value
function and the one estimated by DPI-Critic.

Lemma 3.3. Let Assumptions 5 and 6 hold and {s(i)}N ′i=1 be the rollout set with s(i) iid∼ µ.
Let Qπ be the true action-value function of policy π and Q̂π be its estimation computed
by DPI-Critic using M rollouts with rollout size m. Then for any δ > 0, we have

max
a∈A

∣∣∣∣ 1
N ′

N ′∑
i=1

[
Qπ(s(i), a)− Q̂π(s(i), a)

]∣∣∣∣ ≤ e′1 + e′2 + e3 + e4,

with probability 1 − δ (with respect to the random rollout estimates and the random
samples in the critic’s training set Dk), where

e′1 = (1− γm)Qmax

√
2 log(4|A|/δ)

MN ′
, e′2 = γmQmax

√
2 log(4|A|/δ)

MN ′
,

e3 = 12γmB

√√√√2Λ(N ′, d, δ
4|A|M)

N ′
, e4 = 2γm

√
C eBRM,

with

Λ(N ′, d, δ) = 2(d+ 1) log(N ′) + log e
δ

+ log
(
9(12e)2(d+1)

)
,

B = Qmax

(
1 + 2(1− γ2)L2||(I − γPπk)−1||2τ

ω

)
.

B. DPI-Critic with Bellman Residual Minimization 55

Proof. We prove the following series of inequalities:

∣∣∣ 1
N ′

N ′∑
i=1

[Qπ(s(i), a)− Q̂π(s(i), a)]
∣∣∣

(a)=
∣∣∣∣ 1
MN ′

N ′∑
i=1

M∑
j=1

[Qπ(s(i), a)−Rπ
j (s(i), a)]

∣∣∣∣
(b)
≤
∣∣∣∣ 1
MN ′

N ′∑
i=1

M∑
j=1

[Qπ
m(s(i), a)−Rπ,m

j (s(i), a)]
∣∣∣∣+ ∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
v̂π(s(i,j)

m)− Es∼νi [vπ(s)]
]∣∣∣∣

(c)
≤ e′1 +

∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
v̂π(s(i,j)

m)− vπ(s(i,j)
m)

]∣∣∣∣+ ∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
vπ(s(i,j)

m)− Es∼νi [vπ(s)]
]∣∣∣∣

w.p. 1− δ′

(d)
≤ e′1 + e′2 + γm

M

M∑
j=1
||vπ − v̂π||1,ρ̂j w.p. 1− 2δ′

(e)
≤ e′1 + e′2 + γm

M

M∑
j=1
||vπ − v̂π||2,ρ̂j w.p. 1− 2δ′

(f)
≤ e′1 + e′2 + e3 + 2γm||vπ − v̂π||2,ρ w.p. 1− 3δ′
(g)
≤ e′1 + e′2 + e3 + 2γm

√
C ||vπ − v̂π||2,τ

(h)
≤ e′1 + e′2 + e3 + 2γm

√
C eBRM w.p. 1− 4δ′

The statement of the lemma is obtained by setting δ′ = δ/4, by taking the union
bound over actions.

(a) We use Equation 3.3 to replace Q̂π(s(i), a).
(b) We replace Rπ

j (s(i), a) from Equation 3.1 and use the fact that Qπ(s(i), a) =
Qπ
m(s(i), a) + γmEs∼νi [vπ(s)], where Qπ

m(s(i), a) = E
[
r(s(i), a) + ∑m−1

t=1 γtr
(
s

(i)
t , π(s(i)

t)
)]

and νi = I(s(i))Pa(Pπ)m−1 is the distribution over states induced by starting at state
s(i), taking action a, and then following the policy π for m− 1 steps. We split the sum
using the triangle inequality.
(c) Using the Chernoff-Hoeffding inequality, with probability 1−δ′ (with respect to the
random samples used to build the rollout estimates), we have

∣∣∣∣ 1
MN ′

N ′∑
i=1

M∑
j=1

[Qπ
m(s(i), a)−Rπ,m

j (s(i), a)]
∣∣∣∣ ≤ e′1 = (1− γm)Qmax

√
2 log(1/δ′)
MN ′

.

(d) Using the Chernoff-Hoeffding inequality, with probability 1−δ′ (with respect to the
last state achieved by the rollouts trajectories), we have

∣∣∣∣ γmMN ′

N ′∑
i=1

M∑
j=1

[
vπ(s(i,j)

m)− Es∼νi [vπ(s)]
]∣∣∣∣ ≤ e′2 = γmQmax

√
2 log(1/δ′)
MN ′

.

56 Chapter 3. Classification-based Policy Iteration with a Critic

We also use the definition of empirical `1-norm and replace the second term with
||vπ − v̂π||1,ρ̂j , where ρ̂j is the empirical distribution corresponding to the distribution
ρ = µPa(Pπ)m−1. In fact for any 1 ≤ j ≤M , the samples s(i,j)

m are i.i.d. from ρ.
(e) We move from `1-norm to `2-norm: for any s ∈ Rn, using the Cauchy-Schwarz
inequality, we obtain

||s||1,ρ̂ = 1
N

N∑
i=1
|s(i)| ≤

√√√√ N∑
i=1

1
N

√√√√ N∑
i=1

1
N
|s(i)|2 = ||s||2,ρ̂.

(f) We note that v̂ is a random variable independent from the samples used to build
the rollout estimates. Thus, applying Corollary 12 in Lazaric et al. (2012), for any j
we have

||vπ − v̂π||2,ρ̂j ≤ 2||vπ − v̂π||2,ρ + e3(δ′′)

with probability 1−δ′′ (with respect to the samples in ρ̂j) and e3(δ′′) = 12B
√

2Λ(N ′,d,δ′′)
N ′

.
Using the upper bound on the solutions returned by BRM, when the number of samples
N is large enough, then with high probability (see Corollary 5 in Maillard et al. 2010
for details)

B = Qmax

(
1 + 2(1− γ2)L2||(I − γPπk)−1||2τ

ω

)
.

Finally, by taking a union bound over all j’s and setting δ′′ = δ′/M , we obtain the
definition of e3 in the final statement. (g) Using Assumption 6, we have ||vπ − v̂||2,ρ ≤√
C||vπ − v̂||2,τ .

(h) Here, we simply replace ||vπ − v̂||2,τ with the bound in Proposition 3.2.

Chapter 4

Approximate Modified Policy
Iteration

In this chapter,1 we study the approximate version of the modified policy iteration
(MPI) algorithm (Puterman and Shin, 1978). As discussed in Section 1.2 of Chap-
ter 1, MPI is a dynamic programming (DP) algorithm that contains the two celebrated
policy and value iteration methods. Despite its generality, MPI has not been thor-
oughly studied, especially its approximation form which is used when the state and/or
action spaces are large or infinite. In this chapter, we propose three implementations
of approximate MPI (AMPI) that are extensions of the well-known approximate DP
algorithms. The first two correspond to fitted-value iteration and fitted-Q iteration,
and the last one is a classification-based DP algorithm. We first provide error propa-
gation analysis for AMPI that unifies those for approximate policy and value iteration
algorithms. We then develop the finite-sample performance analysis of our proposed
AMPI algorithms, which highlights the influence of their free parameters. Finally, we
illustrate and evaluate the behavior of the new algorithms in the Mountain Car and
Tetris problems.

Contents
1 Introduction . 47
2 Approximate MPI Algorithms 48

2.1 AMPI-V . 48
2.2 AMPI-Q . 49
2.3 Classification-based MPI . 50
2.4 Possible Approaches to Reuse the Samples 53

3 Error Propagation . 54
4 Finite-Sample Analysis of the Algorithms 59
5 Experiments . 61

5.1 Mountain Car . 61
5.2 Tetris . 64

6 Conclusions and Extensions . 73

1This chapter is an extended version of our ICML (Scherrer et al., 2012) and NIPS (Gabillon et al.,
2013) papers, which has also been submitted to JMLR (Scherrer et al., 2014).

58 Chapter 4. Approximate Modified Policy Iteration

1 Introduction
The aim of this chapter is to show that, similar to its exact form, approximate MPI
(AMPI), discussed in Section 1.2 of Chapter 1, may represent an interesting alterna-
tive to AVI and API algorithms. In problems with large state and/or action spaces,
approximate versions of VI (AVI) and PI (API) have been the focus of a rich literature
(see e.g., Bertsekas and Tsitsiklis 1996, Szepesvári 2010). Approximate VI (AVI) gen-
erates the next value function as the approximation of the application of the Bellman
optimality operator to the current value (Ernst et al., 2005, Antos et al., 2007, Munos
and Szepesvári, 2008). On the other hand, approximate PI (API) first finds an approx-
imation of the value of the current policy and then generates the next policy as greedy
w.r.t. this approximation (Bertsekas and Tsitsiklis, 1996, Munos, 2003, Lagoudakis
and Parr, 2003a). Another related algorithm is λ-policy iteration (Bertsekas and Ioffe,
1996), which is a rather complicated variation of MPI. It involves computing a fixed-
point at each iteration, and thus, suffers from some of the drawbacks of this class of PI
algorithms. The approximate λ-policy iteration algorithm has been analyzed by Thiéry
and Scherrer (2010a) (see also Scherrer 2013).

In this chapter, we propose three implementations of AMPI (Section 2) that gen-
eralize the AVI implementations of Ernst et al. (2005), Antos et al. (2007), Munos and
Szepesvári (2008) and the classification-based API algorithms of Lagoudakis and Parr
(2003b), Fern et al. (2006), Lazaric et al. (2010a) as well as the DPI-Critic algorithm
(Gabillon et al., 2011b) proposed and analyzed in Chapter 3. We then provide an error
propagation analysis for AMPI (Section 3), which shows how the `p-norm of its perfor-
mance loss can be controlled by the error at each iteration of the algorithm. We show
that the error propagation analysis of AMPI is more involved than that of AVI and
API. This is due to the fact that neither the contraction nor monotonicity arguments,
that the error propagation analysis of these two algorithms rely on, hold for AMPI. The
analysis of this section unifies those for AVI and API and is applied to the AMPI imple-
mentations presented in Section 2. In Section 4, we provide finite sample performance
analysis for the three algorithms of Section 2. The analysis of the classification-based
implementation of MPI (CBMPI) reveals results similar to those for DPI-Critic, which
indicate that the parameter m allows us to balance the estimation error of the classifier
with the overall quality of the value function approximation, and plays a similar role as
the length of the rollouts in DPI-Critic. Finally, we evaluate the proposed algorithms
and compare them with several existing methods in the classic Mountain Car problem
as well as in the challenging game of Tetris in Section 5. In fact, the game of Tetris is
a domain were all the results reported for ADP methods are worse by several orders
of magnitude than the state of the art approach, which is based on the cross entropy
method (Rubinstein and Kroese, 2004). Those ADP methods were uniquely based on
approximating the value function while the cross entropy method directly searches in
the policy space. Therefore, we conjecture that an ADP that searches in the policy
space could finally perform well in the game of Tetris. To test this conjecture we used
CBMPI, an algorithm that performs an approximate greedy step with the use of a
classifier that searches in fixed policy space.

2. Approximate MPI Algorithms 59

2 Approximate MPI Algorithms

In this section, we describe three approximate MPI (AMPI) algorithms. These algo-
rithms rely on a function space F to approximate value functions, and in the third
algorithm, also on a policy space Π to represent greedy policies. In what follows, we
describe the iteration k of these iterative algorithms.

2.1 AMPI-V

The first and simplest AMPI algorithm presented in this chapter called AMPI-V. Fig-
ure 4.1 contains the pseudocode of this algorithm. In AMPI-V, we assume that the
values vk are represented in a function space F ⊆ R|S|. In any state s, the action
πk+1(s) that is greedy w.r.t. vk can be estimated as follows:

πk+1(s) = arg max
a∈A

1
M

M∑
j=1

(
r(j)
a + γvk(s(j)

a)
)
, (4.1)

where ∀a ∈ A and 1 ≤ j ≤ M , r(j)
a and s(j)

a are samples of rewards and next states
when action a is taken in state s. Thus, approximating the greedy action in a state s
requires M |A| samples. The algorithm works as follows. We samples N states from a
distribution µ on S, and build a rollout set Dk = {s(i)}Ni=1, s(i) ∼ µ. From each state
s(i) ∈ Dk, we generate a rollout of size m, i.e.,

(
s(i), a

(i)
0 , r

(i)
0 , s

(i)
1 , . . . , a

(i)
m−1, r

(i)
m−1, s

(i)
m

)
,

where a(i)
t is the action suggested by πk+1 in state s(i)

t , computed using Equation 4.1,
and r(i)

t and s(i)
t+1 are the reward and next state induced by this choice of action. For

each s(i), we then compute a rollout estimate

v̂k+1(s(i)) =
m−1∑
t=0

γtr
(i)
t + γmvk(s(i)

m), (4.2)

which is an unbiased estimate of
[
(Tπk+1)mvk

]
(s(i)). Finally, vk+1 is computed as the

best fit in F to these estimates, i.e., it is a function v ∈ F that minimizes the empirical
error

L̂Fk (µ̂; v) = 1
N

N∑
i=1

(
v̂k+1(s(i))− v(s(i))

)2
, (4.3)

with the goal of minimizing the true error

LFk (µ; v) =
∣∣∣∣∣∣∣∣[(Tπk+1)mvk

]
− v

∣∣∣∣∣∣∣∣2
2,µ

=
∫ ([

(Tπk+1)mvk
]
(s)− v(s)

)2
µ(ds).

Each iteration of AMPI-V requires N rollouts of size m, and in each rollout, each
of the |A| actions needs M samples to compute Equation 4.1. This gives a to-
tal of Nm(M |A| + 1) transition samples. Note that the fitted value iteration algo-
rithm (Munos and Szepesvári, 2008) is a special case of AMPI-V when m = 1.

60 Chapter 4. Approximate Modified Policy Iteration

Input: Value function space F , state distribution µ
Initialize: Let v0 ∈ F be an arbitrary value function
for k = 0, 1, . . . do

• Perform rollouts:
Construct the rollout set Dk = {s(i)}Ni=1, s

(i) iid∼ µ

for all states s(i) ∈ Dk do
Perform a rollout (using Equation 4.1 for each action)
v̂k+1(s(i)) =

∑m−1
t=0 γtr

(i)
t + γmvk(s

(i)
m)

end for
• Approximate value function:
vk+1 ∈ argmin

v∈F
L̂Fk (µ̂; v) (regression) (see Equation 4.3)

end for

Figure 4.1: The pseudo-code of the AMPI-V algorithm.

2.2 AMPI-Q
In AMPI-Q, we replace the value function v : S → R with the action-value function
Q : S × A → R. Figure 4.2 contains the pseudocode of this algorithm. The Bellman
operator for a policy π at a state-action pair (s, a) can then be written as

[TπQ](s, a) = E
[
r(s, a) + γQ(s′, π(s′)) | s′ ∼ p(·|s, a)

]
,

and the greedy operator is defined as

π = GQ ⇐⇒ ∀s π(s) = arg max
a∈A

Q(s, a).

In AMPI-Q, action-value functions Qk are represented in a function space F ⊆ R|S×A|,
and the greedy action w.r.t. Qk at a state s, i.e., πk+1(s), is computed as

πk+1(s) ∈ arg max
a∈A

Qk(s, a). (4.4)

The evaluation step is similar to that of AMPI-V, with the difference that now we work
with state-action pairs. We sample N state-action pairs from a distribution µ on S×A
and build a rollout set Dk = {(s(i), a(i))}Ni=1, (s(i), a(i)) ∼ µ. For each (s(i), a(i)) ∈ Dk,
we generate a rollout of size m, i.e.,

(
s(i), a(i), r

(i)
0 , s

(i)
1 , a

(i)
1 , · · · , s(i)

m , a
(i)
m

)
, where the first

action is a(i), a(i)
t for t ≥ 1 is the action suggested by πk+1 in state s(i)

t computed using
Equation 4.4, and r(i)

t and s(i)
t+1 are the reward and next state induced by this choice of

action. For each (s(i), a(i)) ∈ Dk, we then compute the rollout estimate

Q̂k+1(s(i), a(i)) =
m−1∑
t=0

γtr
(i)
t + γmQk(s(i)

m , a
(i)
m),

which is an unbiased estimate of
[
(Tπk+1)mQk

]
(s(i), a(i)). Finally, Qk+1 is the best fit

to these estimates in F , i.e., it is a function Q ∈ F that minimizes the empirical error

L̂Fk (µ̂;Q) = 1
N

N∑
i=1

(
Q̂k+1(s(i), a(i))−Q(s(i), a(i))

)2
, (4.5)

2. Approximate MPI Algorithms 61

Input: Value function space F , state distribution µ
Initialize: Let Q0 ∈ F be an arbitrary value function
for k = 0, 1, . . . do

• Perform rollouts:
Construct the rollout set Dk = {(s(i), a(i)}Ni=1, (s(i), a(i)) iid∼ µ

for all states (s(i), a(i)) ∈ Dk do
Perform a rollout (using Equation 4.4 for each action)
Q̂k+1(s(i), a(i)) =

∑m−1
t=0 γtr

(i)
t + γmQk(s

(i)
m , a

(i)
m),

end for
• Approximate action-value function:
Qk+1 ∈ argmin

Q∈F
L̂Fk (µ̂;Q) (regression) (see Equation 4.5)

end for

Figure 4.2: The pseudo-code of the AMPI-Q algorithm.

with the goal of minimizing the true error

LFk (µ;Q) =
∣∣∣∣∣∣∣∣[(Tπk+1)mQk

]
−Q

∣∣∣∣∣∣∣∣2
2,µ

=
∫ ([

(Tπk+1)mQk

]
(s, a)−Q(s, a)

)2
µ(dsda).

Each iteration of AMPI-Q requires Nm samples, which is less than that for AMPI-V.
However, it uses a hypothesis space on state-action pairs instead of states (a larger
space than that used by AMPI-V). Note that the fitted-Q iteration algorithm (Ernst
et al., 2005, Antos et al., 2007) is a special case of AMPI-Q when m = 1.

2.3 Classification-based MPI
The third AMPI algorithm presented in this chapter, called classification-based

MPI (CBMPI), uses an explicit representation for the policies πk, in addition to the
one used for the value functions vk. The idea is similar to the classification-based
PI algorithms (Lagoudakis and Parr, 2003b, Fern et al., 2006, Lazaric et al., 2010a)
discussed in Section 1.3.2 of Chapter 2 and also the DPI-Critic algorithm, introduced
in Chapter 3. In the classification-based policy iteration algorithms, at each iteration,
we search for the greedy policy in a policy space Π (defined by a classifier) instead of
computing it from the estimated value or action-value function (like in AMPI-V and
AMPI-Q).
In order to describe CBMPI, we first rewrite the MPI formulation (Equations 2.7
and 2.8) as

vk = (Tπk)mvk−1 (evaluation step) (4.6)
πk+1 = G

[
(Tπk)mvk−1

]
(greedy step) (4.7)

Note that in the new formulation both vk and πk+1 are functions of (Tπk)mvk−1. CBMPI
is an approximate version of this new formulation. As described in Figure 4.3, CBMPI

62 Chapter 4. Approximate Modified Policy Iteration

Input: Value function space F , policy space Π, state distribution µ
Initialize: Let π1 ∈ Π be an arbitrary policy and v0 ∈ F an arbitrary value function
for k = 1, 2, . . . do

• Perform rollouts:
Construct the rollout set Dk = {s(i)}Ni=1, s

(i) iid∼ µ

for all states s(i) ∈ Dk do
Perform a rollout and return v̂k(s(i)) (using Equation 4.8)

end for
Construct the rollout set D′k = {s(i)}N ′i=1, s

(i) iid∼ µ

for all states s(i) ∈ D′k and actions a ∈ A do
for j = 1 to M do

Perform a rollout and return Rjk(s(i), a) (using Equation 4.13)
end for
Q̂k(s(i), a) = 1

M

∑M
j=1R

j
k(s(i), a)

end for
• Approximate value function:
vk ∈ argmin

v∈F
L̂Fk (µ̂; v) (regression) (see Equation 4.9)

• Approximate greedy policy:
πk+1 ∈ argmin

π∈Π
L̂Π
k (µ̂;π) (classification) (see Equation 4.14)

end for

Figure 4.3: The pseudo-code of the CBMPI algorithm.

begins with arbitrary initial policy π1 ∈ Π and value function v0 ∈ F .2 At each
iteration k, a new value function vk is built as the best approximation of the m-
step Bellman operator (Tπk)mvk−1 in F (evaluation step). This is done by solving
a regression problem whose target function is (Tπk)mvk−1. To set up the regression
problem, we build a rollout set Dk by sampling N states i.i.d. from a distribution µ.3
For each state s(i) ∈ Dk, we generate a rollout

(
s(i), a

(i)
0 , r

(i)
0 , s

(i)
1 , . . . , a

(i)
m−1, r

(i)
m−1, s

(i)
m

)
of

size m, where a(i)
t = πk(s(i)

t), and r(i)
t and s(i)

t+1 are the reward and next state induced
by this choice of action. From this rollout, we compute an unbiased estimate v̂k(s(i))
of
[
(Tπk)mvk−1

]
(s(i)) as in Equation 4.2:

v̂k(s(i)) =
m−1∑
t=0

γtr
(i)
t + γmvk−1(s(i)

m), (4.8)

and use it to build a training set
{(
s(i), v̂k(s(i))

)}N
i=1

. This training set is then used
by the regressor to compute vk as an estimate of (Tπk)mvk−1. Similar to the AMPI-V

2Note that the function space F and policy space Π are automatically defined by the choice of the
regressor and classifier, respectively.

3Here we used the same sampling distribution µ for both regressor and classifier, but in general
different distributions may be used for these two components of the algorithm.

2. Approximate MPI Algorithms 63

algorithm, the regressor here finds a function v ∈ F that minimizes the empirical error

L̂Fk (µ̂; v) = 1
N

N∑
i=1

(
v̂k(s(i))− v(s(i))

)2
, (4.9)

with the goal of minimizing the true error

LFk (µ; v) =
∣∣∣∣∣∣∣∣[(Tπk)mvk−1

]
− v

∣∣∣∣∣∣∣∣2
2,µ

=
∫ ([

(Tπk)mvk−1
]
(s)− v(s)

)2
µ(ds).

In a very similar manner as in DPI-Critic (see Equation 3.4), the greedy step at iteration
k computes the policy πk+1 as the best approximation of G

[
(Tπk)mvk−1

]
by solving a

cost-sensitive classification problem. From the definition of a greedy policy, if π =
G
[
(Tπk)mvk−1

]
, for each s ∈ S, we have[

Tπ(Tπk)mvk−1
]
(s) = max

a∈A

[
Ta(Tπk)mvk−1

]
(s). (4.10)

By defining Qk(s, a) =
[
Ta(Tπk)mvk−1

]
(s), we may rewrite Equation 4.10 as

Qk

(
s, π(s)

)
= max

a∈A
Qk(s, a). (4.11)

The cost-sensitive error function used by CBMPI is of the form

LΠ
πk,vk−1

(µ; π) =
∫ [

max
a∈A

Qk(s, a)−Qk

(
s, π(s)

)]
µ(ds). (4.12)

To simplify notation we use LΠ
k instead of LΠ

πk,vk−1
. Note that here we deliberately use

the same notations as in the DPI-Critic chapter in order to highlight the similarities
between DPI-Critic and CBMPI. To set up this cost-sensitive classification problem,
we build a rollout set D′k by sampling N ′ states i.i.d. from a distribution µ. For each
state s(i) ∈ D′k and each action a ∈ A, we build M independent rollouts of size m+ 1,
i.e.,4 (

s(i), a, r
(i,j)
0 , s

(i,j)
1 , a

(i,j)
1 , . . . , a(i,j)

m , r(i,j)
m , s

(i,j)
m+1

)M
j=1
,

where for t ≥ 1, a(i,j)
t = πk(s(i,j)

t), and r
(i,j)
t and s

(i,j)
t+1 are the reward and next state

induced by this choice of action. From these rollouts, we compute an unbiased estimate
of Qk(s(i), a) as Q̂k(s(i), a) = 1

M

∑M
j=1R

j
k(s(i), a) where

Rj
k(s(i), a) =

m∑
t=0

γtr
(i,j)
t + γm+1vk−1(s(i,j)

m+1). (4.13)

Given the outcome of the rollouts, CBMPI uses a cost-sensitive classifier to return a
policy πk+1 that minimizes the following empirical error

L̂Π
k (µ̂; π) = 1

N ′

N ′∑
i=1

[
max
a∈A

Q̂k(s(i), a)− Q̂k

(
s(i), π(s(i))

)]
, (4.14)

4We may implement CBMPI more sample efficient by reusing the rollouts generated for the greedy
step in the evaluation step, but this makes the analysis of the algorithm more complicated.

64 Chapter 4. Approximate Modified Policy Iteration

with the goal of minimizing the true error LΠ
k (µ; π) defined by Equation 4.12.

Each iteration of CBMPI requires Nm + M |A|N ′(m + 1) (or M |A|N ′(m + 1) in
case we reuse the rollouts, see Footnote 3) transition samples. Note that when m tends
to ∞, we recover the DPI algorithm proposed and analyzed by Lazaric et al. (2010a).

Remark 4.1 (Comparison between CBMPI and DPI-Critic). The DPI-Critic
algorithm, described in Chapter 3, and CBMPI are similar algorithms. They are both
CBPI algorithms with the use of a critic which compensates for the bias coming from
the truncation of the rollouts. Moreover, as they both compute the successive greedy
policies by minimizing similar losses (see Equations 3.4 and 4.14), their corresponding
theoretical guarantees have the same shape. Here, we highlight some of their differ-
ences. 1) They do not belong to the same class of algorithms: DPI-Critic is typically
a PI algorithm while CBMPI belongs to the wider class of MPI algorithms, and thus,
their analyses are different. 2) Their different ways of building the critic may result in
different behavior in practice. Upon convergence, both critics are expected to converge
to v∗. However, when building the critic, the target function of DPI-Critic is vπk while
the target function of CBMPI is (Tπk)mvk−1. Therefore, we have noticed in our ex-
periments that the value function approximation built in CBMPI, which follows a VI
procedure, takes more iterations to converge to a good approximation of v∗ than the
value function built in our implementation of DPI-Critic, which solves a fixed-point
problem, namely using LSTD. This phenomenon highly depends on the parameter m,
the shape of v∗, and on the choice of v0. Another difference between the two algo-
rithms is that, in DPI-Critic, the critic is built exclusively on fresh new samples at
each iteration while in CBMPI, the iterative procedure of VI builds the new critic
based on the new samples plus the previous critic. In goal-based problems such as in
Mountain Car (MC) and Inverted Pendulum (IP) (see Section 5 of Chapter 3), where
the associated reward function is only informative at terminal states, it is critical to
observe transitions to the terminal states in order to build a non trivial value function
approximation. If those are not observed in one iteration, DPI-Critic is more prone to
compute poor rollout estimates and fail to compute the greedy policy while CBMPI,
which reuses its previous critic, is likely to be more stable in that respect.

2.4 Possible Approaches to Reuse the Samples

In all the proposed AMPI algorithms, we generate fresh samples for the rollouts, and
even for the starting states, at each iteration. This results in high sample complexity for
these algorithms. In this section, we propose two possible approaches to circumvent this
problem and to keep the number of samples independent of the number of iterations.
One approach would be to use a fixed set of starting samples (s(i)) or (s(i), a(i)) for all
iterations, and think of a tree of depth m that contains all the possible outcomes of
m-steps choices of actions (this tree contains |A|m leaves). This is in a way reminiscent
of the work by Kearns et al. (2000). Using this tree, all the trajectories with the same
actions share the same samples. In practice, it is not necessarily to build the entire

3. Error Propagation 65

depth m tree, it is only needed to add a branch when the desired action does not
belong to the tree. Using this approach, the sample complexity of the algorithm no
longer depends on the number of iterations. For example, we may only need NM |A|m
transitions for the CBMPI algorithm. We may also consider the case where we do not
have access to a generative model of the system, and all we have is a set of trajectories
of size m generated by a behavior policy πb that is assumed to choose all actions a in
each state s with a positive probability (i.e., πb(a|s) > 0, ∀s, ∀a) (Precup et al., 2000,
2001). In this case, one may still compute an unbiased estimate of the application
of (Tπ)m operator to value and action-value functions. For instance, given a m-step
sample trajectory (s, a0, r0, s1, . . . , sm, am) generated by πb, an unbiased estimate of
[(Tπ)mv](s) may be computed as (assuming that the distribution µ has the following
factored form p(s, a0|µ) = p(s)πb(a0|s) at state s)

y =
m−1∑
t=0

αtγ
trt + αmγ

mv(sm), where αt =
t∏

j=1

1aj=π(sj)

πb(aj|sj)

is an importance sampling correction factor that can be computed along the trajectory.
However, this process may significantly increase the variance of such an estimate, and
thus, require many more samples.

3 Error Propagation
In this section, we derive a general formulation for propagation of error through the
iterations of an AMPI algorithm. The line of analysis for error propagation is different
in VI and PI algorithms. VI analysis is based on the fact that this algorithm computes
the fixed point of the Bellman optimality operator, and this operator is a γ-contraction
in max-norm (Bertsekas and Tsitsiklis, 1996, Munos, 2007). On the other hand, it can
be shown that the operator by which PI updates the value from one iteration to the
next is not a contraction in max-norm in general. Unfortunately, we can show that the
same property holds for MPI when it does not reduce to VI (i.e., for m > 1).

Proposition 4.1. If m > 1, there exists no norm for which the operator that MPI
uses to update the values from one iteration to the next is a contraction.

Proof. Consider a deterministic MDP with two states {s1, s2}, two actions
{change, stay}, rewards r(s1) = 0, r(s2) = 1, and transitions Pch(s2|s1) = Pch(s1|s2) =
Pst(s1|s1) = Pst(s2|s2) = 1. Consider two value functions v = (ε, 0) and v′ = (0, ε)
with ε > 0. Their corresponding greedy policies are π = (st, ch) and π′ = (ch, st),

and the next iterates of v and v′ can be computed as (Tπ)mv =
(

γmε

1 + γmε

)
and

(Tπ′)mv′ =
(γ−γm

1−γ + γmε
1−γm
1−γ + γmε

)
. Thus, (Tπ′)mv′ − (Tπ)mv =

(γ−γm
1−γ
γ−γm
1−γ

)
, while v′ − v =

(
−ε
ε

)
.

Since ε can be arbitrarily small, the norm of (Tπ′)mv′− (Tπ)mv can be arbitrarily larger
than the norm of v − v′ as long as m > 1.

66 Chapter 4. Approximate Modified Policy Iteration

We also know that the analysis of PI usually relies on the fact that the sequence of
the generated values is non-decreasing (Bertsekas and Tsitsiklis, 1996, Munos, 2003).
Unfortunately, it can be easily shown that for m finite, the value functions generated
by MPI may decrease (it suffices to take a very high initial value). It can be seen from
what we just described and from Proposition 4.1 that for m 6= 1 and∞, MPI is neither
contracting nor non-decreasing, and thus, a new proof is needed for the propagation of
error in this algorithm.

To study error propagation in AMPI, we introduce an abstract algorithmic model
that accounts for potential errors. AMPI starts with an arbitrary value v0 and at each
iteration k ≥ 1 computes the greedy policy w.r.t. vk−1 with some error ε′k, called the
greedy step error. Thus, we write the new policy πk as

πk = Ĝε′
k
vk−1. (4.15)

Equation 4.15 means that for any policy π′, we have Tπ′vk−1 ≤ Tπkvk−1 + ε′k. AMPI
then generates the new value function vk with some error εk, called the evaluation step
error

vk = (Tπk)mvk−1 + εk. (4.16)
Before showing how these two errors are propagated through the iterations of AMPI,
let us first define them in the context of each of the algorithms presented in Section 2
separately.

AMPI-V: εk is the error in fitting the value function vk. This error can be further
decomposed into two parts: the one related to the approximation power of F and the
one due to the finite number of samples/rollouts. ε′k is the error due to using a finite
number of samples M for estimating the greedy actions.

AMPI-Q: ε′k = 0 and εk is the error in fitting the state-action value function Qk.

CBMPI: This algorithm iterates as follows:

vk = (Tπk)mvk−1 + εk , πk+1 = Ĝε′
k+1

[(Tπk)mvk−1] .

Unfortunately, this does not exactly match with the model described in Equations 4.15
and 4.16. By introducing the auxiliary variable wk ∆= (Tπk)mvk−1, we have vk = wk+εk,
and thus, we may write

πk+1 = Ĝε′
k+1

[wk] . (4.17)
Using vk−1 = wk−1 + εk−1, we have

wk = (Tπk)mvk−1 = (Tπk)m(wk−1 + εk−1) = (Tπk)mwk−1 + (γPπk)mεk−1. (4.18)

Now, Equations 4.17 and 4.18 exactly match Equations 4.15 and 4.16 by replacing vk
with wk and εk with (γPπk)mεk−1.

The rest of this section is devoted to show how the errors εk and ε′k propagate
through the iterations of an AMPI algorithm. We only outline the main arguments that

3. Error Propagation 67

will lead to the performance bound of Theorem 4.1 and report most proofs in Sections A
to D. Here we follow the line of analysis developed by Thiéry and Scherrer (2010c).
The results are obtained using the following three quantities:
1) The distance between the optimal value function and the value before approximation
at the kth iteration: dk ∆= v∗ − (Tπk)mvk−1 = v∗ − (vk − εk).
2) The shift between the value before approximation and the value of the policy at the
kth iteration: sk ∆= (Tπk)mvk−1 − vπk = (vk − εk)− vπk .
3) The Bellman residual at the kth iteration: bk ∆= vk − Tπk+1vk.

We are interested in finding an upper bound on the loss lk ∆= v∗ − vπk = dk + sk.
To do so, we will upper bound dk and sk, which requires a bound on the Bellman
residual bk. More precisely, the core of our analysis is to prove the following point-wise
inequalities for our three quantities of interest.

Lemma 4.1. Let k ≥ 1, xk ∆= (I − γPπk)εk + ε′k+1 and yk
∆= −γPπ∗εk + ε′k+1. We have:

bk ≤ (γPπk)mbk−1 + xk,

dk+1 ≤ γPπ∗dk + yk +
m−1∑
j=1

(γPπk+1)jbk,

sk = (γPπk)m(I − γPπk)−1bk−1.

Proof. See Section A.

Since the stochastic kernels are non-negative, the bounds in Lemma 4.1 indicate
that the loss lk will be bounded if the errors εk and ε′k are controlled. In fact, if we
define ε as a uniform upper-bound on the errors |εk| and |ε′k|, the first inequality in
Lemma 4.1 implies that bk ≤ O(ε), and as a result, the second and third inequalities
gives us dk ≤ O(ε) and sk ≤ O(ε). This means that the loss will also satisfy lk ≤ O(ε).

Our bound for the loss lk is the result of careful expansion and combination of
the three inequalities in Lemma 4.1. Before we state this result, we introduce some
notations that will ease our formulation.

Definition 4.1. For a positive integer n, we define Pn as the set of transition kernels
that are defined as follows:

1) for any set of n policies {π1, . . . , πn}, (γPπ1)(γPπ2) . . . (γPπn) ∈ Pn,
2) for any α ∈ (0, 1) and (P1, P2) ∈ Pn × Pn, αP1 + (1− α)P2 ∈ Pn.

Furthermore, we use the somewhat abusive notation Γn for denoting any element of Pn.
For example, if we write a transition kernel P as P = α1Γi +α2ΓjΓk = α1Γi +α2Γj+k,
it should be read as there exist P1 ∈ Pi, P2 ∈ Pj, P3 ∈ Pk, and P4 ∈ Pk+j such that
P = α1P1 + α2P2P3 = α1P1 + α2P4.

Using the notation in Definition 4.1, we now derive a point-wise bound on the loss.

Lemma 4.2. After k iterations, the losses of AMPI-V and AMPI-Q satisfy

lk ≤ 2
k−1∑
i=1

∞∑
j=i

Γj|εk−i|+
k−1∑
i=0

∞∑
j=i

Γj|ε′k−i|+ h(k),

68 Chapter 4. Approximate Modified Policy Iteration

while the loss of CBMPI satisfies

lk ≤ 2
k−2∑
i=1

∞∑
j=i+m

Γj|εk−i−1|+
k−1∑
i=0

∞∑
j=i

Γj|ε′k−i|+ h(k),

where h(k) ∆= 2∑∞j=k Γj|d0| or h(k) ∆= 2∑∞j=k Γj|b0|.

Proof. See Appendix B.

Remark 4.2. A close look at the existing point-wise error bounds for AVI (Munos,
2007, Lemma 4.1) and API (Munos, 2003, Corollary 10) shows that they do not consider
error in the greedy step (i.e., ε′k = 0) and that they have the following form:

lim supk→∞lk ≤ 2 lim supk→∞
k−1∑
i=1

∞∑
j=i

Γj|εk−i|.

This indicates that the bound in Lemma 4.2 not only unifies the analysis of AVI and
API, but it generalizes them to the case of error in the greedy step and to a finite
horizon k. Moreover, our bound suggests that the way the errors are propagated in
the whole family of algorithms VI/PI/MPI does not depend on m at the level of the
abstraction suggested by Definition 4.1.5

The next step is to show how the point-wise bound of Lemma 4.2 can turn to a
bound in weighted `p-norm, which for any function f : S → R and any distribution
µ on S is defined as ‖f‖p,µ ∆=

[∫
|f(x)|pµ(dx)

]1/p
. Munos (2003, 2007), Munos and

Szepesvári (2008), and the recent work of Farahmand et al. (2010), which provides the
most refined bounds for API and AVI, show how to do this process through quantities,
called concentrability coefficients, that measure how a distribution over states may
concentrate through the dynamics of the MDP. We now state a lemma that generalizes
the analysis of Farahmand et al. (2010) to a larger class of concentrability coefficients.
We will discuss the potential advantage of this new class in Remark 4.5. We will also
show through the proofs of Theorems 4.1 and 4.3, how the result of Lemma 4.3 provides
us with a flexible tool for turning point-wise bounds into `p-norm bounds. Theorem 4.3
in Section D provides an alternative bound for the loss of AMPI, which in analogy with
the results of Farahmand et al. (2010) shows that the last iterations have the highest
impact on the loss (the influence exponentially decreases towards the initial iterations).

Lemma 4.3. Let I and (Ji)i∈I be sets of positive integers, {I1, . . . , In} be a partition
of I, and f and (gi)i∈I be functions satisfying

|f | ≤
∑
i∈I

∑
j∈Ji

Γj|gi| =
n∑
l=1

∑
i∈Il

∑
j∈Ji

Γj|gi|.

5Note however that the dependence on m will reappear if we make explicit what is hidden in Γj

terms.

3. Error Propagation 69

Then for all p, q and q′ such that 1
q

+ 1
q′

= 1, and for all distributions ρ and µ, we have

‖f‖p,ρ ≤
n∑
l=1

(
Cq(l)

)1/p
sup
i∈Il
‖gi‖pq′,µ

∑
i∈Il

∑
j∈Ji

γj,

with the following concentrability coefficients

Cq(l) ∆=
∑
i∈Il

∑
j∈Ji γ

jcq(j)∑
i∈Il

∑
j∈Ji γ

j
,

with the Radon-Nikodym derivative based quantity

cq(j) ∆= max
π1,··· ,πj

∥∥∥∥∥d(ρPπ1Pπ2 · · ·Pπj)
dµ

∥∥∥∥∥
q,µ

. (4.19)

Proof. See Appendix C.

We now derive a `p-norm bound for the loss of the AMPI algorithm by applying
Lemma 4.3 to the point-wise bound of Lemma 4.2.

Theorem 4.1. Let ρ and µ be distributions over states. Let p, q, and q′ be such that
1
q

+ 1
q′

= 1. After k iterations, the loss of AMPI satisfies

‖lk‖p,ρ ≤
2(γ − γk)

(
C1,k,0
q

) 1
p

(1− γ)2 sup
1≤j≤k−1

‖εj‖pq′,µ +
(1− γk)

(
C0,k,0
q

) 1
p

(1− γ)2 sup
1≤j≤k

‖ε′j‖pq′,µ + g(k),

(4.20)
while the loss of CBMPI satisfies

‖lk‖p,ρ ≤
2γm(γ − γk−1)

(
C2,k,m
q

) 1
p

(1− γ)2 sup
1≤j≤k−2

‖εj‖pq′,µ+
(1− γk)

(
C1,k,0
q

) 1
p

(1− γ)2 sup
1≤j≤k

‖ε′j‖pq′,µ+g(k),

(4.21)
where for all q, l, k and d, the concentrability coefficients Cl,k,dq are defined as

Cl,k,dq
∆= (1− γ)2

γl − γk
k−1∑
i=l

∞∑
j=i

γjcq(j + d),

with cq(j) given by Equation 4.19, and g(k) is defined as

g(k) ∆= 2γk
1− γ

(
Ck,k+1,0
q

) 1
p min

(
‖d0‖pq′,µ, ‖b0‖pq′,µ

)
.

Proof. See Appendix D.

70 Chapter 4. Approximate Modified Policy Iteration

Remark 4.3. When p tends to infinity, the first bound of Theorem 4.1 reduces to

‖lk‖∞ ≤
2(γ − γk)
(1− γ)2 sup

1≤j≤k−1
‖εj‖∞ + 1− γk

(1− γ)2 sup
1≤j≤k

‖ε′j‖∞ + 2γk
1− γ min(‖d0‖∞, ‖b0‖∞).

(4.22)

When k goes to infinity, Equation 4.22 gives us a generalization of the API (m = ∞)
bound of Bertsekas and Tsitsiklis (1996, Proposition 6.2), i.e.,

lim sup
k→∞

‖lk‖∞ ≤
2γ sup1≤j≤k−1 ‖εj‖∞ + sup1≤j≤k ‖ε′j‖∞

(1− γ)2 .

Moreover, since our point-wise analysis generalizes those of API and AVI (as noted
in Remark 4.2), the `p-bound of Equation 4.20 unifies and generalizes those for
API (Munos, 2003) and AVI (Munos, 2007).

Remark 4.4. The arguments we developed globally follow those originally developed
for λ-policy iteration (Scherrer, 2013). With respect to that work, our proof is signifi-
cantly simpler thanks to the use of the notation Γn (Definition 4.1) and the fact that
the AMPI scheme is itself much simpler than λ-policy iteration. Moreover, the results
are deeper since we consider a possible error in the greedy step and more general con-
centration coefficients. Canbolat and Rothblum (2012) recently (and independently)
developed an analysis of an approximate form of MPI. While Canbolat and Rothblum
(2012) only consider the error in the greedy step, our work is more general since it takes
into account both this error and the error in the value update. Note that it is required
to consider both sources of error for the analysis of CBMPI. Moreover, Canbolat and
Rothblum (2012) provide bounds when the errors are controlled in max-norm, while we
consider the more general `p-norm. At a more technical level, Theorem 2 in Canbolat
and Rothblum (2012) bounds the norm of the distance v∗− vk while we bound the loss
v∗ − vπk . Finally, if we derive a bound on the loss (using e.g., Theorem 1 in Canbolat
and Rothblum 2012), this leads to a bound on the loss that is looser than ours. In
particular, this does not allow to recover the standard bounds for AVI/API, as we
managed to obtain here (c.f., Remark 4.3).

Remark 4.5. We can balance the influence of the concentrability coefficients (the
bigger the q, the higher the influence) and the difficulty of controlling the errors (the
bigger the q′, the greater the difficulty in controlling the `pq′-norms) by tuning the
parameters q and q′, given the condition that 1

q
+ 1

q′
= 1. This potential leverage is an

improvement over the existing bounds and concentrability results that only consider
specific values of these two parameters: q =∞ and q′ = 1 in Munos (2007) and Munos
and Szepesvári (2008), and q = q′ = 2 in Farahmand et al. (2010).

Remark 4.6. Interestingly, our loss bound for AMPI does not “directly” depend on
m (although as we will discuss in the next section, it actually does depend “indi-
rectly” through εk). For CBMPI, the parameter m controls the influence of the value

4. Finite-Sample Analysis of the Algorithms 71

function approximator, cancelling it out in the limit when m tends to infinity (see
Equation 4.21). Assuming a fixed budget of sample transitions, increasing m reduces
the number of rollouts used by the classifier and thus worsens its quality. In such a
situation, m allows to make a trade-off between the estimation errors of the classifier
and the overall value function approximation.

Remark 4.7. The result that we have just stated means the following: if one can
control the errors εk and ε′k, then the performance loss is also controlled. The main
limitation of this result is that in general, even if we consider that there is no sampling
noise (N =∞ for all algorithms and M =∞ for AMPI-V), the error εk of the evalua-
tion step may grow arbitrarily and can make the algorithm diverge. The fundamental
reason is that the composition of the approximation and the Bellman operator Tπ is not
necessarily contracting. A simple well-known pathological example is due to Tsitsiklis
and Van Roy (1997) and involves a two-state uncontrolled MDP and a linear projec-
tion on a 1-dimensional space (that contains the real value function). Increasing the
parameter m of the algorithm makes the operator Tπ more contracting and in principle
can address this issue. For instance, if we consider that we have a state space of finite
size |S|, and take the uniform distribution µ, it can be easily seen that for any v and
v′, we have

‖(Tπ)mv − (Tπ)mv′‖2,µ = γm‖(Pπ)m(v − v′)‖2,µ

≤ γm‖(Pπ)m‖2,µ‖v − v′‖2,µ

≤ γm
√
|S|‖v − v′‖2,µ.

In other words, Tπ is contracting w.r.t. the µ-weighted norm as soon as m > log |S|
2 log 1

γ

. In
particular it is sufficient for m to be exponentially smaller than the state space size to
solve this potential divergence problem.

4 Finite-Sample Analysis of the Algorithms
In this section, we first show how the error terms εk and ε′k appeared in Theorem 4.1
(Equations 4.20 and 4.21) are bounded in each of the three proposed algorithms, and
then use the obtained results and derive finite-sample performance bounds for these
algorithms. We first bound the evaluation step error εk. In AMPI-V and CBMPI, the
evaluation step at each iteration k is a regression problem with the target (Tπk)mvk−1

and a training set of the form
{(
s(i), v̂k(s(i))

)}N
i=1

in which the states s(i) are i.i.d. sam-
ples from the distribution µ and v̂k(s(i))’s are unbiased estimates of the target com-
puted using Equation 4.2. The situation is the same for AMPI-Q, except everything
is in terms of action-value function Qk instead of value function vk. Therefore, in the
following we only show how to bound εk in AMPI-V and CBMPI, the extension to
AMPI-Q is straightforward.

We may use different function spaces F (linear or non-linear) to approximate the
value function. Here we consider a linear architecture with parameters α ∈ Rd and

72 Chapter 4. Approximate Modified Policy Iteration

bounded (by L) basis functions {ϕj}dj=1, ‖ϕj‖∞ ≤ L as detailed in Section 1.3.1 of
Chapter 2. Now if we define vk as the truncation (by Vmax) of the solution of the
above linear regression problem, we may bound the evaluation step error εk using the
following lemma.

Lemma 4.4 (Evaluation step error). Consider the linear regression setting de-
scribed above, then we have

‖εk‖2,µ ≤ 4 inf
f∈F
‖(Tπk)mvk−1 − f‖2,µ + e1(N, δ) + e2(N, δ),

with probability at least 1− δ, where

e1(N, δ) = 32Vmax

√
2
N

log
(27(12e2N)2(d+1)

δ

)
,

e2(N, δ) = 24
(
Vmax + ‖α∗‖2 · sup

x
‖φ(x)‖2

)√ 2
N

log 9
δ
,

and α∗ is such that fα∗ is the best approximation (w.r.t. µ) of the target function
(Tπk)mvk−1 in F .

Proof. See Appendix E.

After we showed how to bound the evaluation step error εk for the proposed algo-
rithms, we now turn our attention to bounding the greedy step error ε′k, that contrary
to the evaluation step error, varies more significantly across the algorithms. While the
greedy step error equals to zero in AMPI-Q, it is based on sampling in AMPI-V, and
depends on a classifier in CBMPI. We first consider the simpler case of AMPI-V.

For any ε > 0 and state s, when an action is identified as approximately optimal
through Equation 4.1, the distance between the estimates 1

M

∑M
j=1 r

(j)
a +γvk(s(j)

a) for all
actions a and their expected value E[r(s0, a) + γvk(s1)|s0 = s, a0 = a] can be proved to
be smaller than ε

2 with high-probability through Hoeffding’s inequality, which implies
that the error ε′k(s) is bounded by ε. In AMPI-V, one needs to estimate approximately
optimal action along several rollouts, which leads to the following bound.

Lemma 4.5 (Greedy step error of AMPI-V). The greedy step error ε′k in the
AMPI-V algorithm is bounded at each state s ∈ S, with probability at least 1− δ, as

|ε′k(s)| ≤ 2γVmax

√
2 log(2|A|/δ)

M
= e′0(M, δ).

Proof. See Appendix F.

We now show how to bound ε′k in CBMPI. From the definitions of ε′k (Equation 4.17)
and LΠ

k (µ; π) (Equation 4.12), it is easy to see that ‖ε′k‖1,µ = LΠ
k−1(µ; πk). This is

because

ε′k(s) = max
a∈A

[
Ta(Tπk−1)mvk−2

]
(s)−

[
Tπk(Tπk−1)mvk−2

]
(s) (see Equation 4.10)

= max
a∈A

Qk−1(s, a)−Qk−1
(
s, πk(s)

)
= LΠ

k−1(µ; πk). (see Equations 4.11 and 4.12)

4. Finite-Sample Analysis of the Algorithms 73

Lemma 4.6 (Greedy step error of CBMPI). Let Π be a policy space with finite
VC-dimension h = V C(Π) and µ be a distribution over the state space S. Let N ′ be
the number of states in D′k−1 drawn i.i.d. from µ, M be the number of rollouts per
state-action pair used in the estimation of Q̂k−1, and πk ∈ argminπ∈Π L̂Π

k−1(µ̂, π) be the
policy computed at iteration k − 1 of CBMPI. Then, for any δ > 0, we have

‖ε′k‖1,µ = LΠ
k−1(µ; πk) ≤ inf

π∈Π
LΠ
k−1(µ; π) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
,

with probability at least 1− δ, where

e′1(N ′, δ) = 16Qmax

√
2
N ′

(
h log eN

′

h
+ log 32

δ

)
,

e′2(N ′,M, δ) = 8Qmax

√
2

MN ′

(
h log eMN ′

h
+ log 32

δ

)
.

Proof. See Appendix G.

From Lemma 4.4, we have a bound on ‖εk‖2,µ for all the three algorithms. Since
‖εk‖1,µ ≤ ‖εk‖2,µ, we also have a bound on ‖εk‖1,µ for all the algorithms. On the other
hand, from Lemma 4.6 , we have a bound on ‖ε′k‖1,µ for the CMBPI algorithm. This
means that for CBMPI, we can control the RHS of Equation 4.21 in `1-norm, which
in the context of Theorem 4.1 means p = 1, q′ = 1, and q = ∞. Since ε′k is zero for
AMPI-Q and can be bounded point-wise for AMPI-V (Lemma 4.5), we can control the
RHS of Equation 4.20 in both `1 and `2-norms. Controlling the RHS of Equation 4.20
in `1-norm means p = 1, q′ = 1, and q = ∞ in the context of Theorem 4.1, while
controlling it in `2-norm means either p = 2, q′ = 1, and q =∞, or p = 1, q′ = 2, and
q = 2. This leads to the main result of this section, finite sample performance bounds
for the three proposed algorithms.

Theorem 4.2. Let

d′ = sup
g∈F ,π′

inf
π∈Π
LΠ
π′,g(µ; π) and dm = sup

g∈F ,π
inf
f∈F
‖(Tπ)mg − f‖2,µ

where F is the function space used by the algorithms and Π is the policy space used by
CBMPI. With the notations of Theorem 4.1 and Lemmas 4.4-4.6, after k iterations,
and with probability 1 − δ, the expected loss Eµ[lk] = ‖lk‖1,µ of the proposed AMPI
algorithms satisfy:6

AMPI-V: ‖lk‖1,µ ≤
2(γ − γk)C1,k,0

∞
(1− γ)2

(
dm + e1(N, δ

k
) + e2(N, δ

k
)
)

+ (1− γk)C0,k,0
∞

(1− γ)2 e′0(M,
δ

k
) + g(k),

6As mentioned above, the bounds of AMPI-V and AMPI-Q may also be written with (p = 2, q′ =
1, q =∞), and (p = 1, q′ = 2, q = 2).

74 Chapter 4. Approximate Modified Policy Iteration

AMPI-Q: ‖lk‖1,µ ≤
2(γ − γk)C1,k,0

∞
(1− γ)2

(
dm + e1(N, δ

k
) + e2(N, δ

k
)
)

+ g(k),

CBMPI: ‖lk‖1,µ ≤
2γm(γ − γk−1)C2,k,m

∞
(1− γ)2

(
dm + e1(N, δ2k) + e2(N, δ2k)

)

+ (1− γk)C1,k,0
∞

(1− γ)2

(
d′ + e′1(N ′, δ2k) + e′2(N ′,M,

δ

2k)
)

+ g(k).

Remark 4.8. The CBMPI bound in Theorem 4.2 allows us to restate Remark 4.6.
Assume that we have a fixed budget B = Nm+N ′M |A|(m+1) that we equally divide
over the classifier and regressor. Note that the budget is measured in terms of the
number of call to the generative model. Then up to constants and logarithmic factors,
the bound has the form

‖lk‖1,µ ≤ O

γm (dm +
√
m

B

)
+ d′ +

√
M |A|m
B

 .
This shows a trade-off in tuning the parameter m: a large value of m makes the
influence of the regressor’s error (both approximation and estimation errors) smaller,
but at the same time makes the influence of the estimation error of the classifier bigger,
in the final error. Note that we recover here the same trade-off as the one discussed
for DPI-Critic in Remark 3.6 of Chapter 3 to which is added the fact the number of
states in D, N , also decreases with m, N = O(B/m).

5 Experiments
For our experiments, we evaluate CBMPI in two different domains: 1) the Mountain
Car problem and 2) the more challenging game of Tetris. In several experiments, we
compare the performance of CBMPI with the DPI algorithm (Lazaric et al., 2010a),
which is basically CBMPI without value function approximation. Hence, comparing
DPI and CBMPI allows us to highlight the role of the value function approximation.

As discussed in Remark 4.6, the parameterm in CBMPI balances between the errors
in evaluating the value function and the policy. We follow in this Section the same
methodology as the one followed in the experiments run for DPI-Critic in Section 5
of Chapter 3. As discussed in Remark 3.6 of Chapter 3, one of the objectives of our
experiments is to show the role of the parameters M,N,N ′, and m in the performance
of CBMPI. However, since we almost always obtained our best results with M = 1, we
only focus on the parameters m and N in our experiments. Moreover, as mentioned
in Footnote 3, we implement a more sample efficient version of CBMPI by reusing the
rollouts generated for the classifier in the regressor. More precisely, at each iteration k,
for each state s(i) ∈ D′k and each action a ∈ A, we generate one rollout of length m+1,
i.e.,

(
s(i), a, r

(i)
0 , s

(i)
1 , a

(i)
1 , . . . , a

(i)
m , r

(i)
m , s

(i)
m+1

)
. We then take the rollout of action πk(s(i)),

select its last m steps, i.e.,
(
s

(i)
1 , a

(i)
1 , . . . , a

(i)
m , r

(i)
m , s

(i)
m+1

)
(note that all the actions here

5. Experiments 75

have been taken according to the current policy πk), use it to estimate the value function
v̂k(s(i)

1), and add it to the training set of the regressor. This process guarantees to have
N = N ′.

In each experiment, we run the algorithms with the same budget B per iteration.
The budget B is the number of next state samples generated by the generative model
of the system at each iteration. In DPI and CBMPI, we generate a rollout of length
m+ 1 for each state in D′ and each action in A, so, B = (m+ 1)N |A|. In AMPI-Q, we
generate one rollout of length m for each state-action pair in D, and thus, B = mN .

5.1 Mountain Car

In this section, we report the empirical evaluation of CBMPI and AMPI-Q and compare
it to DPI and LSPI (Lagoudakis and Parr, 2003a) in the MC problem. In our experi-
ments, we show that CBMPI, by combining policy and value function approximation,
can improve over AMPI-Q, DPI, and LSPI.

5.1.1 Problem Setting

Mountain Car is the problem of driving a car up to the top of a one-dimensional
hill (see Figure 3.2). In MC, the setting is similar to the one already described in
Section 5.1. We only report in the following some implementation elements that differ
from Section 5.1. Here, the range of the uniform noise added to the actions is [−0.2, 0.2].
We recall also that each state s consists of the pair (x, ẋ) where x is the position of the
car and ẋ is its velocity.

The policy space Π (classifier) is defined by a regularized support vector classifier
(C-SVC) using the LIBSVM implementation by Chang and Lin (2011). We use the
RBF kernel exp(−|u − v|2) and set the cost parameter C = 1000. As discussed in
Section 5.1, we again minimize the classification error instead of directly solving the
cost-sensitive multi-class classification step as in Figure 4.3.

In our MC experiments, the policies learned by the algorithms are evaluated by
the number of steps-to-go (average number of steps to reach the goal with a maximum
of 300) averaged over 4, 000 independent trials. More precisely, we define the possible
starting configurations (positions and velocities) of the car by placing a 20×20 uniform
grid over the state space, and run the policy 10 times from each possible initial config-
uration. The performance of each algorithm is represented by a learning curve whose
value at each iteration is the average number of steps-to-go of the policies learned by
the algorithm at that iteration in 1000 separate runs of the algorithm.

We tested the performance of DPI, CBMPI, and AMPI-Q on a wide range of pa-
rameters (m,M,N), but only report their performance for the best choice of M (as
mentioned earlier, M = 1 was the best choice in all the experiments) and different
values of m.

76 Chapter 4. Approximate Modified Policy Iteration

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Iterations

A
ve

ra
ge

d
st

ep
s

to
 th

e
go

al

LSPI

Rollout size m of DPI

1
2

6
10

20

(a) Performance of DPI (for different values of m)
and LSPI.

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Iterations

A
ve

ra
ge

d
st

ep
s

to
 th

e
go

al

Rollout size m of CBMPI

1
2

6
10

20

(b) Performance of CBMPI for different values of
m.

0 10 20 30 40 50

0
50

10
0

15
0

20
0

25
0

30
0

Iterations

A
ve

ra
ge

d
st

ep
s

to
th

e
go

al

Rollout size m of AMPI−Q

1
2

3
4

10

(c) Performance of AMPI-Q for different values of
m.

Figure 4.4: Performance of the policies learned by (a) DPI and LSPI, (b) CBMPI,
and (c) AMPI-Q algorithms in the Mountain Car (MC) problem, when we use a 3× 3
RBF grid to approximate the value function. The results are averaged over 1, 000 runs.
The total budget B is set to 4, 000 per iteration.

5. Experiments 77

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Iterations

A
ve

ra
ge

d
st

ep
s

to
 th

e
go

al

LSPI

Rollout size m of CBMPI

1
2

6
10

20

(a) Performance of CBMPI (for different values of
m) and LSPI.

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Iterations

A
ve

ra
ge

d
st

ep
s

to
 th

e
go

al

Rollout size m of AMPI−Q

1
2

6
10

20

(b) Performance of AMPI-Q for different values of
m.

Figure 4.5: Performance of the policies learned by (a) CBMPI and LSPI and (b)
AMPI-Q algorithms in the Mountain Car (MC) problem, when we use a 2 × 2 RBF
grid to approximate the value function. The results are averaged over 1, 000 runs. The
total budget B is set to 4, 000 per iteration.

5.1.2 Experimental Results

Figure 4.4 shows the learning curves of DPI, CBMPI, AMPI-Q, and LSPI algorithms
with budget B = 4, 000 per iteration and the function space F composed of a 3 × 3
RBF grid. We notice from the results that this space is rich enough to provide a
good approximation for the value function components (e.g., in CBMPI, for (Tπ)mvk−1
defined by Equation 4.16). Therefore, LSPI and DPI obtain the best and worst results
with about 50 and 160 steps to reach the goal, respectively. The best DPI results are
obtained with the large value of m = 20. DPI performs better for large values of m
because the reward function is constant everywhere except at the goal, and thus, a
DPI rollout is only informative if it reaches there. We also report the performance of
CBMPI and AMPI-Q for different values of m. The value function approximation is so
accurate that CBMPI and AMPI-Q achieve performance similar to LSPI for m < 20.
However when m is large (m = 20), the performance of these algorithms is worse,
because in this case, the rollout set does not have enough elements (N small) to learn
the greedy policy and value function well. Note that as we increase m (up to m = 10),
CBMPI and AMPI-Q converge faster to a good policy.

Although this experiment shows that the use of a critic in CBMPI compensates
for the truncation of the rollouts (CBMPI performs better than DPI), most of this
advantage is due to the richness of the function space F (LSPI and AMPI-Q perform
as well as CBMPI – LSPI even converges faster). Therefore, it seems that it would
be more efficient to use LSPI instead of CBMPI in this case. In the next experiment,
we study the performance of these algorithms when the function space F is less rich,
composed of a 2 × 2 RBF grid. The results are reported in Figure 4.5. Now, the

78 Chapter 4. Approximate Modified Policy Iteration

Figure 4.6: A screen-shot of the game of Tetris and the seven pieces (shapes) used in
the game.

performance of LSPI and AMPI-Q (for the best value of m = 1) degrades to 75 and 70
steps, respectively. Although F is not rich, it still helps CBMPI to outperform DPI. We
notice the effect of (weaker) F in CBMPI when we observe that it no longer converges
to its best performance (about 50 steps) for small values of m = 1 and m = 2. Note
that CMBPI outperforms all the other algorithms for m = 10 (and even for m = 6),
while still has a sub-optimal performance for m = 20, mainly due to the fact that the
rollout set would be too small in this case.

Finally, by comparing the results of CBMPI on the 2 × 2 and 3 × 3 RBF grids,
one can observe that CBMPI converges faster when the RBF grid is smaller. This is
due to the fact that the RBF in the 2 × 2 case are more spread out that in the 3 × 3
case which permits the value function estimates in the value iteration procedure to
propagate more quickly.

5.2 Tetris

Tetris is a popular video game created by Alexey Pajitnov in 1985. The game is played
on a grid originally composed of 20 rows and 10 columns, where pieces of 7 different
shapes fall from the top (see Figure 4.6). The player has to choose where to place
each falling piece by moving it horizontally and rotating it. When a row is filled, it is
removed and all the cells above it move one line down. The goal is to remove as many
rows as possible before the game is over, i.e., when there is no space available at the top
of the grid for the new piece. Here, we consider the variation of the game in which the
player knows only the current falling piece, and not the next several coming pieces. This
game constitutes an interesting optimization benchmark in which the goal is to find a
controller (policy) that maximizes the average (over multiple games) number of lines
removed in a game (score).7 This optimization problem is known to be computationally
hard. It contains a huge number of board configurations (about 2200 ' 1.6×1060), and
even in the case that the sequence of pieces is known in advance, finding the strategy
to maximize the score is an NP hard problem Demaine et al. (2003).

Approximate dynamic programming (ADP) and reinforcement learning (RL) al-
gorithms have been used in Tetris. These algorithms formulate Tetris as a MDP in

7Note that this number is finite because it was shown that Tetris is a game that ends with proba-
bility one Burgiel (1997).

5. Experiments 79

which the state is defined by the current board configuration plus the falling piece, the
actions are the possible orientations of the piece and the possible locations that it can
be placed on the board,8 and the reward is defined such that maximizing the expected
sum of rewards from each state coincides with maximizing the score from that state.
Since the state space is large in Tetris, these methods use value function approximation
schemes (often linear approximation) and try to tune the value function parameters
(weights) from game simulations. The first application of ADP in Tetris seems to be by
Tsitsiklis and Van Roy (1996). They used the approximate value iteration algorithm
with two state features: the board height and the number of holes in the board, and
obtained a low score of 30 to 40. Bertsekas and Ioffe (1996) proposed the λ-Policy
Iteration (λ-PI) algorithm (a generalization of value and policy iteration) and applied
it to Tetris. They approximated the value function as a linear combination of a more
elaborate set of 22 features and reported the score of 3, 200 lines averaged over 100
games. The exact same empirical study was revisited recently by Scherrer (2013), who
corrected an implementation bug in Bertsekas and Ioffe (1996), and reported more
stable learning curves and the score of 4, 000 lines. At least three other ADP and RL
papers have used the same set of features, we call them the “Bertsekas features”, in
the game of Tetris. Kakade (2001) applied a natural policy gradient method to Tetris
and reported a score of about 6, 800 lines, without specifying over how many games
this number was averaged. Farias and Van Roy (2006) applied a linear programming
algorithm to the game and achieved the score of 4, 700 lines averaged over 90 games.
Furmston and Barber (2012) proposed an approximate Newton method to search in
a policy space and were able to obtain a score of about 14, 000. However, since they
have not reported the details of their experiments, it is not clear whether their result
is statistically significant.

Despite all the above applications of ADP in Tetris (and possibly more), for a long
time, the best Tetris controller was the one designed by Dellacherie (Fahey, 2003).
He used a heuristic evaluation function to give a score to each possible strategy (in
a way similar to value function in ADP), and eventually returned the one with the
highest score. Dellacherie’s evaluation function is made of 6 high-quality features with
weights chosen by hand, and achieved a score of about 5, 000, 000 lines (Thiéry and
Scherrer, 2009a). Szita and Lőrincz (2006) used the “Bertsekas features” and opti-
mized the weights by running a black box optimizer based on the cross entropy (CE)
method (Rubinstein and Kroese, 2004). They reported the score of 350, 000 lines av-
eraged over 30 games, outperforming the ADP and RL approaches that used the same
features. More recently, Thiéry and Scherrer (2009b) selected a set of 9 features (in-
cluding those of Dellacherie’s) and optimized the weights with the CE method. This
led to the best publicly known controller (to the best of our knowledge) with the score
of around 35, 000, 000 lines.

Due to the high variance of the score and its sensitivity to some implementation
details (Thiéry and Scherrer, 2009a), it is difficult to have a precise evaluation of Tetris

8The total number of actions at a state depends on the shape of the falling piece, with the maximum
of 34 actions in a state, i.e., |A| ≤ 34.

80 Chapter 4. Approximate Modified Policy Iteration

controllers. However, our brief tour d’horizon of the literature, and in particular the
work by Szita and Lőrincz (2006) (optimizing the “Bertsekas features” by CE), indicate
that ADP algorithms, even with relatively good features, have performed extremely
worse than the methods that directly search in the space of policies (such as CE and
genetic algorithms). It is important to note that most of these ADP methods are value
function based algorithms that first define a value function representation (space) and
then search in this space for a good function, which later gives us a policy.

The main motivation of our experiments comes from the above observation. This
observation makes us conjecture that Tetris is a game whose policy space is easier to
represent, and as a result to search in, than its value function space. Therefore, in
order to obtain a good performance with ADP algorithms in this game, we should use
those ADP methods that search in a policy space, instead of the more traditional ones
that search in a value function space.

In this section, we put our conjecture to test by applying CBMPI to the game
of Tetris, and compare its performance with the CE method and the λ-PI algorithm.
The choice of CE and λ-PI is because the former has achieved the best known results
in Tetris and the latter’s performance is among the best reported for value function
based ADP algorithms. Our extensive experimental results show that for the first
time an ADP algorithm, namely CBMPI, obtains the best results reported in the
literature for Tetris in both small 10 × 10 and large 10 × 20 boards. The CBMPI’s
results outperform those achieved by the CE method in the large board, and moreover
CBMPI uses considerably fewer (almost 1/6) samples (call to the generative model of
the game) than CE.

5.2.1 Algorithms and Experimental Setup

In this section, we briefly describe the algorithms used in our experiments: the cross
entropy (CE) method, our particular implementation of CBMPI, and its slight variation
DPI. We refer the readers to Scherrer (2013) for λ-PI. We begin by defining some terms
and notations. A state s in Tetris consists of two components: the description of the
board b and the type of the falling piece. All controllers rely on an evaluation function
that gives a value to each possible action at a given state. Then, the controller chooses
the action with the highest value. In ADP, algorithms aim at tuning the weights such
that the evaluation function approximates well the optimal expected future score from
each state. Since the total number of states is large in Tetris, the evaluation function
f is usually defined as a linear combination of a set of features φ, i.e., f(·) = φ(·)θ9.
We can think of the parameter vector θ as a policy (controller) whose performance

9Their exist alternatives to this use of a linear evalution function. For instance, every action to be
taken can be computed using a Monte-Carlo tree search. This approach has been applied recently to
the game of Tetris (Cai et al., 2011). While this is a promising line of research, the results reported
in their paper are only comparing the number of games won over a benchmark policy rather than in
terms of the averaged lines removed thus making it hard to compare to other policies. Moreover the
Monte-Carlo approach is expected to require more computation at every step of the game compared
to the evaluation of the linear evaluation function.

5. Experiments 81

is specified by the corresponding evaluation function f(·) = φ(·)θ. The features used
in Tetris for a state-action pair (s, a) may depend on the description of the board b′

resulted from taking action a in state s, e.g., the maximum height of b′. Computing such
features requires the knowledge of the game’s dynamics, which is known in Tetris. We
use the following sets of features, plus a constant offset feature, in our experiments:10

(i) Bertsekas Features: First introduced by Bertsekas and Tsitsiklis (1996), this
set of 22 features has been mainly used in the ADP/RL community and consists
of: the number of holes in the board, the height of each column, the difference in
height between two consecutive columns, and the maximum height of the board.

(ii) Dellacherie-Thiery (D-T) Features: This set consists of the six features of
Dellacherie (Fahey, 2003), i.e., the landing height of the falling piece, the number
of eroded piece cells, the row transitions, the column transitions, the number of
holes, and the number of board wells; plus 3 additional features proposed in Thiéry
and Scherrer (2009b), i.e., the hole depth, the number of rows with holes, and the
pattern diversity feature. Note that the best policies reported in the literature
have been learned using this set of features.

(iii) RBF Height Features: These new 5 features are defined as exp(−|c−ih/4|
2

2(h/5)2), i =
0, . . . , 4, where c is the average height of the columns and h = 10 or 20 is the
total number of rows in the board.

The Cross Entropy (CE) Method: CE (see Rubinstein and Kroese (2004))
is an iterative method whose goal is to optimize a function f parameterized by a
vector θ ∈ Θ by direct search in the parameter space Θ. This technique has been
used to solve RL problems by directly optimizing the performance of a parama-
trized policy (Mannor et al., 2003). For the case of the game of Tetris, Figure 4.7
contains the pseudo-code of the CE algorithm used in our experiments (Szita and
Lőrincz, 2006, Thiéry and Scherrer, 2009b). At each iteration k, we sample n

parameter vectors {θi}ni=1 from a multivariate Gaussian distribution N (µ,σ2I).
At the beginning, the parameters of this Gaussian have been set to cover a wide
region of Θ. For each parameter θi, we play G games and calculate the average
number of rows removed by this controller (an estimate of the evaluation function).
We then select bζnc of these parameters with the highest score, θ′1, . . . , θ′bζnc, and
use them to update the mean µ and variance σ2 of the Gaussian distribution, as
shown in Figure 4.7. This updated Gaussian is used to sample the n parameters
at the next iteration. The goal of this update is to sample more parameters from
the promising parts of Θ at the next iteration, and eventually converge to a global
maximum of f . In our experiments, in the pseudo-code of Figure 4.7, we set ζ = 0.1
and η = 4, the best parameters reported in Thiéry and Scherrer (2009b). We also
set n = 1, 000 and G = 10 in the small board and n = 100 and G = 1 in the large board.

10For a precise definition of the features, see Thiéry and Scherrer (2009a) or the documentation of
their code (Thiéry and Scherrer, 2010b). Note that the constant offset feature has no incidence when
modelling policies while it plays a role to approximate the value functions.

82 Chapter 4. Approximate Modified Policy Iteration

Input: parameter space Θ, number of parameter vectors n, proportion ζ ≤
1, noise η
Initialize: Set the mean and variance parameters µ = 0̄ and σ2 = 100I (I
is the identity matrix)
for k = 1, 2, . . . do

Generate a random sample of n parameter vectors {θi}ni=1 ∼ N (µ,σ2I)
For each θi, play G games and calculate the average number of rows
removed (score) by the controller
Select bζnc parameters with the highest score θ′1, . . . , θ′bζnc
Update µ and σ: µ(j) = 1

bζnc
∑bζnc
i=1 θ′i(j) and σ2(j) =

1
bζnc

∑bζnc
i=1 [θ′i(j)− µ(j)]2 + η

end for

Figure 4.7: The pseudo-code of the cross-entropy (CE) method used in our experiments.

Our Implementation of CBMPI (& DPI): We use the algorithm whose pseudo-
code is shown in Figure 4.3. We sample the rollout states from the trajectories gener-
ated by a very good policy for Tetris, namely the DU controller (Thiéry and Scherrer,
2009b) (the choice of the sampling distribution µ in Figure 4.3). Since the DU policy
is good, this rollout set is biased towards boards with small height. We noticed from
our experiments that the performance can be significantly improved if we use boards
with different heights in the rollout sets. This means that better performance can be
achieved with more uniform sampling distribution, which is consistent with what we
can learn from the CBMPI and DPI performance bounds. We set the initial value
function parameter to α = 0̄ and select the initial policy π1 (policy parameter β) ran-
domly. We also set the CMA-ES parameters (classifier parameters) to ζ = 0.5, η = 0,
and n equal to 15 times the number of features. Finally, we set the discount factor
γ = 1.

• Regressor: We use linear function approximation for the value function,
i.e., v̂k(s(i)) = φ(s(i))α, where φ(·) and α are the feature and weight vectors, and
minimize the empirical error L̂Fk (µ̂; v) using the standard least-squares method.

• Classifier: The training set of the classifier is of size N with s(i) ∈ D′k as
input and

(
maxa Q̂k(s(i), a)− Q̂k(s(i), a1), . . . ,maxa Q̂k(s(i), a)− Q̂k(s(i), a|A|)

)
as

output. We use the policies of the form πβ(s) ∈ argmaxa ψ(s, a)β, where ψ is the
policy feature vector (possibly different from the value function feature vector φ)
and β ∈ B is the policy parameter vector. Contrarily to the previous use of a
surrogate classification error in the MC problem, we compute here the next policy
πk+1 by directly minimizing the empirical error L̂Π

k (µ̂; πβ), defined by (4.14). To
do so, we use the covariance matrix adaptation evolution strategy (CMA-ES)
algorithm (Hansen and Ostermeier, 2001). In order to evaluate a policy β ∈ B
in CMA-ES, we only need to compute L̂Π

k (µ̂; πβ), and given the training set,

5. Experiments 83

this procedure does not require any simulation of the game. This is in contrary
with policy evaluation in CE that requires playing several games, and it is the
main reason that we obtain the same performance as CE with CBMPI with 1/6
number of samples when learning on large (10× 20) board.

Remark 4.9 (on the use of the cross entropy optimizer). In our implementation
of the cross entropy optimizer for Tetris, the parameter space of the policies, Θ, is Rd,
where d is the number of features and thus also the size of the weight vector θ. However,
a policy defined by its weight vector θ is exactly the same as the policy defined by the
weight vector αθ for any α ∈ R. Therefore, the parameter space could be restricted to
d− 1 dimensions. For instance one could adopt an hyper-spherical coordinate system
for Rd where, as a consequence, the radial coordinate would have no influence on the
policy. In fact, by fixing the radial coordinate to 1, the parameter space Θ would be
defined as a d − 1-sphere. Then, to adapt the CE method, we now need to sample
from a Gaussian distribution defined over a d − 1-sphere. This distribution is the
Von Mises–Fisher distribution. We did not explore this technique in this work but
conjecture that it could make the convergence of cross entropy quicker in the game of
Tetris as it removes one dimension in the policy search task.

Goschin et al. (2013) showed that the standard version of CE that selects at each
iteration, as explained above, the top ρN controllers is subject to select controllers that
do not have the best expected performance but rather the ones whose performances
have the highest quantile (most likely because of a large variance). Goschin et al.
(2013) designed the Proportional CE method for a simplified version of Tetris that
only considers the tetrominos with S or Z shapes where the new Gaussian distribution
is fit using all the controllers tested (ρ = 1) but weighting them proportionally to
their performance. Proportional CE was showed to have better stability and superior
expected performance that the standard CE in the simplified game of Tetris. Our
experiments were conducted with the standard version of CE, and therefore it would
be of interest to also compute the performance of Proportional CE in the original game
of Tetris.

5.2.2 Experimental Results

In our Tetris experiments, the policies learned by the algorithms are evaluated by
their score (average number of rows removed in a game started with an empty board)
averaged over 200 games in the small 10 × 10 board and over 20 games in the large
10× 20 board (since the game takes much more time to complete in the large board).
The performance of each algorithm is represented by a learning curve whose value at
each iteration is the average score of the policies learned by the algorithm at that
iteration in 100 separate runs of the algorithm. The curves are wrapped in their
confidence intervals that are computed as three times the standard deviation of the
estimation of the performance at each iteration. In addition to their score, we also
evaluate the algorithms by the number of samples they use. In particular, we show
that CBMPI/DPI use 6 times less samples than CE in the large board. As discussed

84 Chapter 4. Approximate Modified Policy Iteration

in Section 5.2.1, this is due the fact that although the classifier in CBMPI/DPI uses a
direct search in the space of policies (for the greedy policy), it evaluates each candidate
policy using the empirical error of Equation 4.14, and thus, does not require any
simulation of the game (other than those used to estimate the Q̂k’s in its training
set). In fact, the budget B of CBMPI/DPI is fixed in advance by the number of
rollouts NM and the rollout’s length m as B = (m + 1)NM |A|. In contrary, CE
evaluates a candidate policy by playing several games, a process that can be extremely
costly (sample-wise), especially for good policies in the large board.

We first run the algorithms on the small board to study the role of their parameters
and to select the best features and parameters, and then use the selected features and
parameters and apply the algorithms to the large board. Finally, we compare the best
policies found in our experiments with the best controllers reported in the literature
(Tables 4.1 and 4.2).

Small (10 × 10) Board

Here we run the algorithms with two different feature sets: Dellacherie-Thiery (D-T)
and Bertsekas, and report their results.

D-T Features: Figure 4.8 shows the learning curves of CE, λ-PI, DPI, and CBMPI
algorithms. Here we use D-T features plus constant offset for the evaluation function
in CE, the value function in λ-PI, and the policy in DPI and CBMPI. We ran CBMPI
with different choices of features for the value function and “D-T plus Bertsekas plus the
5 RBF features and constant offset” achieved the best performance (Figure 4.8(d)).11

The budget of CBMPI and DPI is set to B = 8, 000, 000 per iteration. The CE method
reaches the score 3000 after 10 iterations using an average budget B = 65, 000, 000.
λ-PI with the best value of λ only manages to score 400. In Figure 4.8(c), we report
the performance of DPI for different values of m. DPI achieves its best performance for
m = 5 and m = 10 by removing 3, 400 lines on average. As explained in Section 5.1,
having short rollouts (m = 1) in DPI leads to poor action-value estimates Q̂, while
having too long rollouts (m = 20) decreases the size of the training set of the classifier
N . CBMPI outperforms the other algorithms, including CE, by reaching the score of
4, 300 form = 2. This value ofm = 2 corresponds to N = 8000000

(2+1)×34 ≈ 78, 000. Note that
unlike DPI, CBMPI achieves good performance with very short rollouts m = 1. This
indicates that CBMPI is able to approximate the value function well, and as a result,
build a more accurate training set for its classifier than DPI. However, used directly
as controllers, those value functions only remove around 400 lines. This suggests that
the D-T features are more suitable to represent the policies than the value functions
in Tetris.

This also suggests that the difference in term of performance between CBMPI and
the standard value function based ADP methods as λ-PI is in how the greedy policy is

11Note that we use D-T+5 features only for the value function of CBMPI, and thus, we have a fair
comparison between CBMPI and DPI. To have a fair comparison with λ-PI, we ran this algorithm with
D-T+5 features, and it only raised its performance to 800, still far from the CBMPI’s performance.

5. Experiments 85

5 10 15 20

0
10

00
20

00
30

00
40

00

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed

CE

(a) The cross-entropy (CE) method.

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed
Parameter λ

0
0.4

0.7
0.9

(b) λ-PI with λ = {0, 0.4, 0.7, 0.9}.

2 4 6 8 10

0
10

00
20

00
30

00
40

00

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed

Rollout size m of DPI

1
2

5
10

20

(c) DPI with budget B = 8, 000, 000 per iteration
and m = {1, 2, 5, 10, 20}.

2 4 6 8 10

0
10

00
20

00
30

00
40

00

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed

Rollout size m of CBMPI

1
2

5
10

20

(d) CBMPI with budget B = 8, 000, 000 per iter-
ation and m = {1, 2, 5, 10, 20}.

Figure 4.8: Learning curves and confidence intervals of CE, λ-PI, DPI, and CBMPI
algorithms using the 9 Dellacherie-Thiery (D-T) features on the small 10 × 10 board.
The results are averaged over 100 runs of the algorithms.

86 Chapter 4. Approximate Modified Policy Iteration

computed. Specifically, at each iteration CBMPI algorithms obtain the entire greedy
policy as the output of a classifier which uses all the action-value function estimates
over the entire rollout set, while in the standard methods, at every given state, the
required action from the greedy policy is individually calculated based on some local
values given by the approximation of the value function of the current policy.

The results of Figure 4.8 show that an ADP algorithm, namely CBMPI, outper-
forms the CE method using a similar budget (80 vs. 65 millions after 10 iterations).
Note that CBMPI takes less iterations to converge than CE. More generally Figure 4.8
confirms the superiority of the policy search and classification-based PI methods to
value function based ADP algorithms (λ-PI). Despite this improvement, the good re-
sults obtained by DPI in Tetris indicate that with small rollout horizons like m = 5,
one has already fairly accurate action value estimates in order to detect greedy actions
accurately (at each iteration).
Bertsekas Features: Figure 4.9(a)-(c) show the performance of CE, λ-PI, DPI, and
CBMPI algorithms. Here all the approximations in the algorithms are with the
Bertsekas features plus constant offset. CE achieves the score 500 after about 60
iterations and outperforms λ-PI with score 350. It is clear that the Bertsekas features
lead to much weaker results than those obtained by the D-T features (Figure 4.8) for
all the algorithms. We may conclude then that the D-T features are more suitable
than the Bertsekas features to represent both value functions and policies in Tetris. In
DPI and CBMPI, we managed to obtain results similar to CE, only after multiplying
the per iteration budget B used in the D-T experiments by 10. Indeed, CBMPI
and DPI need more samples to solve the classification and regression problems in
this 22-dimensions weight vector space than with the 9 D-T features. Moreover, in
the classifier, the minimization of the empirical error through the CE method (see
Equation 4.9) was converging most of the times to a local minimum. To solve this
issue, we run multiple times the minimization problem with different starting points
and small initial covariance matrices for the Gaussian distribution in order to force
local exploration of different parts of the weight vector areas. However, CBMPI and
CE use the same number of samples, 150, 000, 000, when they converge after 2 and 60
iterations, respectively (see Figure 4.9). Note that DPI and CBMPI obtain the same
performance, which means that the use of a value function approximation by CBMPI
does not lead to a significant performance improvement over DPI. At the end, we tried
several values of m in this setting among which m = 10 achieved the best performance
for both DPI and CBMPI.

Large (10 × 20) Board

We now use the best parameters and features in the small board experiments,
run CE, DPI, and CBMPI algorithms in the large board, and report their results
in Figure 4.10(left). We also report the results of λ-PI in the large board in Fig-
ure 4.10(right). The per iteration budget of DPI and CBMPI is set to B = 32, 000, 000.
While λ-PI with per iteration budget 620, 000, at its best, achieves the score of 2, 500,
DPI and CBMPI, with m = 10, reach the scores of 12, 000, 000 and 27, 000, 000 after

5. Experiments 87

0 50 100 150

0
10

0
20

0
30

0
40

0
50

0
60

0

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed

CE

(a) The cross-entropy (CE) method.

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed
Parameter λ

0
0.4

0.7
0.9

(b) λ-PI with λ = {0, 0.4, 0.7, 0.9}.

2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0
60

0

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed

Rollout size m=10

DPI CBMPI

(c) DPI (dash-dotted line) & CBMPI (dash line)
with budget B = 80, 000, 000 per iteration and
m = 10.

Figure 4.9: (a)-(c) Learning curves and confidence intervals of CE, λ-PI, DPI, and
CBMPI algorithms using the 22 Bertsekas features on the small 10× 10 board.

88 Chapter 4. Approximate Modified Policy Iteration

1 2 3 4 5 6 7 8
Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed
 (

 ×
 1

06)
0

10
20

Rollout size m of CBMPI

5 10

Rollout size m of DPI

5 10

CE

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00
50

00
60

00

Iterations

A
ve

ra
ge

d
lin

es
 r

em
ov

ed

Parameter λ
0
0.4

0.7
0.9

Figure 4.10: Learning curves and confidence intervals of CBMPI, DPI and CE (left),
and λ-PI (right) using the 9 features listed in Table 4.2 on the large 10 × 20 board.
The total budget B of CBMPI and DPI is set to 32,000,000 per iteration.

3 and 7 iterations, respectively. CE does not match the performances of CBMPI
with the score of 20, 000, 000 after 8 iterations, moreover this is achieved with almost
6 times more samples: after 8 iterations, CBMPI and CE use 256, 000, 000 and
1, 700, 000, 000 samples, respectively.

Comparison of the best policies

So far the reported scores for each algorithm was averaged over the policies learned
in 100 separate runs. Here we select the best policies observed in our all experiments
and compute their scores more accurately by averaging over 10, 000 games. We then
compare these results with the best policies reported in the literature, i.e., DU and
BDU (Thiéry and Scherrer, 2009b) in both small and large boards in Table 4.1. The
DT-10 and DT-20 policies, whose weights and features are given in Table 4.212, are
policies learned by CBMPI with D-T features in the small and large boards, respec-
tively. As shown in Table 4.1, DT-10 removes 5, 000 lines and outperforms DU, BDU,
and DT-20 in the small board. Note that DT-10 is the only policy among these four
that has been learned in the small board. In the large board, DT-20 obtains the score
of 51, 000, 000 and not only outperforms the other three policies, but also achieves the
best reported result in the literature (to the best of our knowledge).

Note that learning with the 10× 10 board and the 10× 20 board are two different
problems as DT-10 outperforms DT-20 in the former while it is the opposite in the

12Note that in the standard code by Thiéry and Scherrer (2010b), there exist two versions of the
feature “board wells” numbered 6 and −6. In our experiments, we used both versions of the feature.
The −6 feature was used in CBMPI in Gabillon et al. (2013) as it is the more computationally efficient
of the two. Here it is still the one with which we found the DT-10 and the DT 20. The 6 feature was
used in Gabillon et al. (2013) for CE and is now used also here for most of the reported curves for
CBMPI. Indeed, we realize that better performance could be obtained with the 6 feature and that
our previous comparison, in Gabillon et al. (2013), were in favour of CE.

6. Conclusions and Extensions 89

latter.

Boards \ Policies DU BDU DT-10 DT-20
Small (10× 10) board 3800 4200 5000 4300
Large (10× 20) board 31, 000, 000 36, 000, 000 29, 000, 000 51, 000, 000

Table 4.1: Average (over 10, 000 games) score of DU, BDU, DT-10, and DT-20 policies.
The 99%-confidence intervals around these average scores have radiuses equal to 3% of
the average scores.

feature weight feature weight
landing height -2.18 -2.68 column transitions -3.31 -6.32

eroded piece cells 2.42 1.38 holes 0.95 2.03
row transitions -2.17 -2.41 board wells -2.22 -2.71
hole depth -0.81 -0.43 rows w/ holes -9.65 -9.48
diversity 1.27 0.89 z z z

Table 4.2: The weights of the 9 Dellacherie-Thiery features in DT-10 (left) and DT-20
(right) policies.

6 Conclusions and Extensions
In this chapter, we studied a dynamic programming algorithm, called modified policy
iteration (MPI), that despite its generality that contains the celebrated policy and
value iteration methods, has not been thoroughly investigated in the literature. We
proposed three approximate MPI (AMPI) algorithms that are extensions of the well-
known ADP algorithms: fitted-value iteration, fitted-Q iteration, and classification-
based policy iteration. Interestingly, the classification-based implementation of AMPI
permits to give a new version and a broader framework to the DPI-Critic algorithm
introduced in Chapter 3. We reported an error propagation analysis for AMPI that
unifies those for approximate policy and value iteration. We also provided a finite-
sample analysis for the classification-based implementation of AMPI (CBMPI), whose
analysis is more general than the other presented AMPI methods. Our results indicate
that the parameter of MPI allows us to control the balance of errors (in value function
approximation and estimation of the greedy policy) in the final performance of CBMPI.
The role of this parameter is illustrated in extensive experiments.

Remarkably, in the game of Tetris, a game that has always been challenging for
approximate dynamic programming (ADP), our results showed that for the first time
an ADP algorithm (CBMPI) performed extremely well in both small 10×10 and large
10 × 20 boards. Previously, the cross entropy (CE) methods which are much simpler
black box optimization methods, had surprisingly produced controllers far superior
to those learned by the ADP algorithms. We showed that CBMPI, a policy-based

90 Chapter 4. Approximate Modified Policy Iteration

ADP, achieved better performance, even with considerably fewer samples in the large
board, than the state-of-the-art CE methods. In particular, the best policy learned
by CBMPI obtained the performance of 51, 000, 000 lines on average, a new record in
the large board of Tetris. In the Tetris literature, a third policy-based approach has
been used, namely the policy gradient algorithms. A closer look reveals that their poor
results are mostly due to their use of features known to be bad to represent the policies
(the Bertsekas features). To have a more complete comparison, those algorithms,
and especially the recent approach by Furmston and Barber (2012), should be tested
using the Dellacherie features. On the CBMPI side, plans to improve the results
include making the policy updates asynchronous (to speed-up the learning process),
and considering larger policy spaces with possibly stochastic and/or non-stationary
policies in a similar fashion to Scherrer and Lesner (2012). Finally, this work leaves
open the question of understanding why value function-based ADP algorithms fail at
the game of Tetris. We conjecture that this could be addressed by going beyond the
standard linear architecture of the value function and leave it as an interesting future
work.

Also for future work, extension of CBMPI to problems with continuous action
space is an interesting direction to pursue. In another direction, our empirical results
in Tetris have given yet another evidence in showing how critical the choice of the
rollout set distribution can be. In the line of the work by Rexakis and Lagoudakis
(2012), more effort should be put in designing algorithms where a “good” rollout set
distribution is learned. In fact, we tried to address the related problem of allocating
non uniformly the rollouts over the states of the rollout set and the actions in A to
improve the performance of the classification-based policy iteration algorithms. This
actually motivated the bandit problem studied in the following chapter (see also the
related paragraph in Section 5.1 of Chapter 5).

To continue with future work, we might also consider different and more general
implementations of the cost-sensitive classifier to learn the policies. Indeed in our
experiments so far, we either replaced the cost-sensitive classifier by a classifier mini-
mizing a 0-1 loss or, in the specific case of the game of Tetris, we cast the classification
problem as an optimization problem where policies are not learnt directly but through
evaluation functions. The design of a multi-class cost-sensitive classifier is an open
problem for most of the standard classification technique as SVM (Masnadi-Shirazi
et al., 2012), Multiboost (Benbouzid et al., 2012) etc... Yet, recent advances due to
Pires et al. (2013) might give us the necessary new tools to implement a general and
efficient cost-sensitive classifier.

A. Proof of Lemma 4.1 91

Appendix

In the following appendices, the proof of Lemmas 4.1 to 4.6 and Theorem 4.1 are
provided.

A Proof of Lemma 4.1
Before we start, we recall the following definitions:

bk = vk − Tπk+1vk,

dk = v∗ − (Tπk)mvk−1 = v∗ − (vk − εk),
sk = (Tπk)mvk−1 − vπk = (vk − εk)− vπk .

Bounding bk

bk = vk − Tπk+1vk = vk − Tπkvk + Tπkvk − Tπk+1vk
(a)
≤ vk − Tπkvk + ε′k+1

= vk − εk − Tπkvk + γPπkεk + εk − γPπkεk + ε′k+1
(b)= vk − εk − Tπk(vk − εk) + (I − γPπk)εk + ε′k+1. (4.23)

Using the definition of xk, i.e.,

xk
∆= (I − γPπk)εk + ε′k+1, (4.24)

we may write Equation 4.23 as

bk ≤ vk − εk − Tπk(vk − εk) + xk
(c)= (Tπk)mvk−1 − Tπk(Tπk)mvk−1 + xk

= (Tπk)mvk−1 − (Tπk)m(Tπkvk−1) + xk

= (γPπk)m(vk−1 − Tπkvk−1) + xk = (γPπk)mbk−1 + xk. (4.25)

(a) From the definition of ε′k+1, we have ∀π′ Tπ′vk ≤ Tπk+1vk+ε′k+1, thus this inequality
holds also for π′ = πk.
(b) This step is due to the fact that for every v and v′, we have Tπk(v + v′) = Tπkv +
γPπkv

′.
(c) This is from the definition of εk, i.e., vk = (Tπk)mvk−1 + εk.

Bounding dk

dk+1 = v∗ − (Tπk+1)mvk = Tπ∗v
∗ − Tπ∗vk + Tπ∗vk − Tπk+1vk + Tπk+1vk − (Tπk+1)mvk

(a)
≤ γPπ∗(v∗ − vk) + ε′k+1 + gk+1 = γPπ∗(v∗ − vk) + γPπ∗εk − γPπ∗εk + ε′k+1 + gk+1
(b)= γPπ∗

(
v∗ − (vk − εk)

)
+ yk + gk+1 = γPπ∗dk + yk + gk+1

(c)= γPπ∗dk + yk +
m−1∑
j=1

(γPπk+1)jbk. (4.26)

92 Chapter 4. Approximate Modified Policy Iteration

(a) This step is from the definition of ε′k+1 (see step (a) in bounding bk) and by defining
gk+1 as follows:

gk+1
∆= Tπk+1vk − (Tπk+1)mvk. (4.27)

(b) This is from the definition of yk, i.e.,

yk
∆= −γPπ∗εk + ε′k+1. (4.28)

(c) This step comes from rewriting gk+1 as

gk+1 = Tπk+1vk − (Tπk+1)mvk =
m−1∑
j=1

[
(Tπk+1)jvk − (Tπk+1)j+1vk

]
(4.29)

=
m−1∑
j=1

[
(Tπk+1)jvk − (Tπk+1)j(Tπk+1vk)

]
=

m−1∑
j=1

(γPπk+1)j(vk − Tπk+1vk) (4.30)

=
m−1∑
j=1

(γPπk+1)jbk.

Bounding sk With some slight abuse of notation, we have

vπk = (Tπk)∞vk

and thus:

sk = (Tπk)mvk−1 − vπk
(a)= (Tπk)mvk−1 − (Tπk)∞vk−1 = (Tπk)mvk−1 − (Tπk)m(Tπk)∞vk−1

= (γPπk)m
(
vk−1 − (Tπk)∞vk−1

)
= (γPπk)m

∞∑
j=0

[
(Tπk)jvk−1 − (Tπk)j+1vk−1

]

= (γPπk)m
(∞∑
j=0

[
(Tπk)jvk−1 − (Tπk)jTπkvk−1

]
= (γPπk)m

(∞∑
j=0

(γPπk)j
)

(vk−1 − Tπkvk−1)

= (γPπk)m(I − γPπk)−1(vk−1 − Tπkvk−1) = (γPπk)m(I − γPπk)−1bk. (4.31)

(a) For any v, we have vπk = (Tπk)∞v. This step follows by setting v = vk−1, i.e., vπk =
(Tπk)∞vk−1.

B Proof of Lemma 4.2
We begin by focusing our analysis on AMPI. Here we are interested in bounding the
loss lk = v∗ − vπk = dk + sk.

By induction, from Equations 4.25 and 4.26, we obtain

bk ≤
k∑
i=1

Γm(k−i)xi + Γmkb0, (4.32)

B. Proof of Lemma 4.2 93

dk ≤
k−1∑
j=0

Γk−1−j
(
yj +

m−1∑
l=1

Γlbj
)

+ Γkd0. (4.33)

in which we have used the notation introduced in Definition 4.1. In Equation 4.33, we
also used the fact that from Equation 4.29, we may write gk+1 = ∑m−1

j=1 Γjbk. Moreover,
we may rewrite Equation 4.31 as

sk = Γm
∞∑
j=0

Γjbk−1 =
∞∑
j=0

Γm+jbk−1. (4.34)

Bounding lk From Equations 4.32 and 4.33, we may write

dk ≤
k−1∑
j=0

Γk−1−j

yj +
m−1∑
l=1

Γl
(j∑
i=1

Γm(j−i)xi + Γmjb0

)+ Γkd0

=
k∑
i=1

Γi−1yk−i +
k−1∑
j=0

m−1∑
l=1

j∑
i=1

Γk−1−j+l+m(j−i)xi + zk, (4.35)

where we used the following definition

zk
∆=

k−1∑
j=0

m−1∑
l=1

Γk−1+l+j(m−1)b0 + Γkd0 =
mk−1∑
i=k

Γib0 + Γkd0.

The triple sum involved in Equation 4.35 may be written as
k−1∑
j=0

m−1∑
l=1

j∑
i=1

Γk−1−j+l+m(j−i)xi =
k−1∑
i=1

k−1∑
j=i

m−1∑
l=1

Γk−1+l+j(m−1)−mixi =
k−1∑
i=1

mk−1∑
j=mi+k−i

Γj−mixi

=
k−1∑
i=1

m(k−i)−1∑
j=k−i

Γjxi =
k−1∑
i=1

mi−1∑
j=i

Γjxk−i. (4.36)

Using Equation 4.36, we may write Equation 4.35 as

dk ≤
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

mi−1∑
j=i

Γjxk−i + zk. (4.37)

Similarly, from Equations 4.34 and 4.32, we have

sk ≤
∞∑
j=0

Γm+j
(k−1∑
i=1

Γm(k−1−i)xi + Γm(k−1)b0

)

=
∞∑
j=0

(k−1∑
i=1

Γm+j+m(k−1−i)xi + Γm+j+m(k−1)b0

)

=
k−1∑
i=1

∞∑
j=0

Γj+m(k−i)xi +
∞∑
j=0

Γj+mkb0 =
k−1∑
i=1

∞∑
j=0

Γj+mixk−i +
∞∑

j=mk
Γjb0

=
k−1∑
i=1

∞∑
j=mi

Γjxk−i + z′k, (4.38)

94 Chapter 4. Approximate Modified Policy Iteration

where we used the following definition

z′k
∆=

∞∑
j=mk

Γjb0.

Finally, using the bounds in Equations 4.37 and 4.38, we obtain the following bound
on the loss

lk ≤ dk + sk ≤
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

(mi−1∑
j=i

Γj +
∞∑

j=mi
Γj
)
xk−i + zk + z′k

=
k∑
i=1

Γi−1yk−i +
k−1∑
i=1

∞∑
j=i

Γjxk−i + ηk, (4.39)

where we used the following definition

ηk
∆= zk + z′k =

∞∑
j=k

Γjb0 + Γkd0. (4.40)

Note that we have the following relation between b0 and d0

b0 = v0−Tπ1v0 = v0−v∗+Tπ∗v∗−Tπ∗v0 +Tπ∗v0−Tπ1v0 ≤ (I−γPπ∗)(−d0)+ε′1, (4.41)

In Equation 4.41, we used the fact that v∗ = Tπ∗v
∗, ε0 = 0, and Tπ∗v0−Tπ1v0 ≤ ε′1 (this

is because the policy π1 is ε′1-greedy w.r.t. v0). As a result, we may write |ηk| either as

|ηk| ≤
∞∑
j=k

Γj
[
(I − γPπ∗)|d0|+ |ε′1|

]
+ Γk|d0|

≤
∞∑
j=k

Γj
[
(I + Γ1)|d0|+ |ε′1|

]
+ Γk|d0| = 2

∞∑
j=k

Γj|d0|+
∞∑
j=k

Γj|ε′1|, (4.42)

or using the fact that from Equation 4.41, we have d0 ≤ (I − γPπ∗)−1(−b0 + ε′1), as

|ηk| ≤
∞∑
j=k

Γj|b0|+ Γk
∞∑
j=0

(γPπ∗)j
(
|b0|+ |ε′1|

)

=
∞∑
j=k

Γj|b0|+ Γk
∞∑
j=0

Γj
(
|b0|+ |ε′1|

)
= 2

∞∑
j=k

Γj|b0|+
∞∑
j=k

Γj|ε′1|. (4.43)

C. Proof of Lemma 4.3 95

Now, using the definitions of xk and yk in Equations 4.24 and 4.28, the bound on |ηk|
in Equation 4.42 or 4.43, and the fact that ε0 = 0, we obtain

|lk| ≤
k∑
i=1

Γi−1
[
Γ1|εk−i|+ |ε′k−i+1|

]
+

k−1∑
i=1

∞∑
j=i

Γj
[
(I + Γ1)|εk−i|+ |ε′k−i+1|

]
+ |ηk|

=
k−1∑
i=1

(
Γi +

∞∑
j=i

(Γj + Γj+1)
)
|εk−i|+ Γk|ε0| (4.44)

+
k−1∑
i=1

(
Γi−1 +

∞∑
j=i

Γj
)
|ε′k−i+1|+ Γk−1|ε′1|+

∞∑
j=k

Γj|ε′1|+ h(k)

= 2
k−1∑
i=1

∞∑
j=i

Γj|εk−i|+
k−1∑
i=1

∞∑
j=i−1

Γj|ε′k−i+1|+
∞∑

j=k−1
Γj|ε′1|+ h(k)

= 2
k−1∑
i=1

∞∑
j=i

Γj|εk−i|+
k−1∑
i=0

∞∑
j=i

Γj|ε′k−i|+ h(k), (4.45)

where we used the following definition

h(k) ∆= 2
∞∑
j=k

Γj|d0|, or h(k) ∆= 2
∞∑
j=k

Γj|b0|.

We end this proof by adapting the error propagation to CBMPI. As expressed by
Equations 4.17 and 4.18 in Section 3, an analysis of CBMPI can be deduced from that
we have just done by replacing vk with the auxiliary variable wk = (Tπk)mvk−1 and εk
with (γPπk)mεk−1 = Γmεk−1. Therefore, using the fact that ε0 = 0, we can rewrite the
bound of Equation 4.45 for CBMPI as follows:

lk ≤ 2
k−1∑
i=1

∞∑
j=i

Γj+m|εk−i−1|+
k−1∑
i=0

∞∑
j=i

Γj|ε′k−i|+ h(k)

= 2
k−2∑
i=1

∞∑
j=m+i

Γj|εk−i−1|+
k−1∑
i=0

∞∑
j=i

Γj|ε′k−i|+ h(k). (4.46)

C Proof of Lemma 4.3

For any integer t and vector z, the definition of Γt and Hölder’s inequality imply that

ρΓt|z| =
∥∥∥Γt|z|∥∥∥

1,ρ
≤ γtcq(t)‖z‖q′,µ = γtcq(t)

(
µ|z|q′

) 1
q′ . (4.47)

We define

K
∆=

n∑
l=1

ξl

∑
i∈Il

∑
j∈Ji

γj

 ,

96 Chapter 4. Approximate Modified Policy Iteration

where {ξl}nl=1 is a set of non-negative numbers that we will specify later. We now have

‖f‖pp,ρ = ρ|f |p

≤ Kpρ

(∑n
l=1

∑
i∈Il

∑
j∈Ji Γj|gi|

K

)p
= Kpρ

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji Γj

(
|gi|
ξl

)
K

p

(a)
≤ Kpρ

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji Γj

(
|gi|
ξl

)p
K

= Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji ρΓj

(
|gi|
ξl

)p
K

(b)
≤ Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji γ

jcq(j)
(
µ
(
|gi|
ξl

)pq′) 1
q′

K

= Kp

∑n
l=1 ξl

∑
i∈Il

∑
j∈Ji γ

jcq(j)
(
‖gi‖pq′,µ

ξl

)p
K

≤ Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

jcq(j)
)(supi∈Il ‖gi‖pq′,µ

ξl

)p
K

(c)= Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

j
)
Cq(l)

(
supi∈Il ‖gi‖pq′,µ

ξl

)p
K

,

where (a) results from Jensen’s inequality, (b) from Equation 4.47, and (c) from the
definition of Cq(l). Now, by setting ξl =

(
Cq(l)

)1/p
supi∈Il ‖gi‖pq′,µ, we obtain

‖f‖pp,ρ ≤ Kp

∑n
l=1 ξl

(∑
i∈Il

∑
j∈Ji γ

j
)

K
= Kp,

where the last step follows from the definition of K.

D Proof of Theorem 4.1 & Another Bounds on the
Loss

Proof. We only detail the proof for AMPI (the proof being similar for CBMPI). We
define I = {1, 2, · · · , 2k}, the partition I = {I1, I2, I3} as I1 = {1, . . . , k − 1}, I2 =
{k, . . . , 2k − 1}, and I3 = {2k}, and for each i ∈ I

gi =

2εk−i if 1 ≤ i ≤ k − 1,
ε′k−(i−k) if k ≤ i ≤ 2k − 1,
2d0 (or 2b0) if i = 2k,

and

Ji =

{i, i+ 1, · · · } if 1 ≤ i ≤ k − 1,
{i− k, i− k + 1, · · · } if k ≤ i ≤ 2k − 1,
{k, k + 1, · · · } if i = 2k.

Note that here we have divided the terms in the point-wise bound of Lemma 4.2 into
three groups: the evaluation error terms {εj}k−1

j=1 , the greedy step error terms {ε′j}kj=1,

E. Proof of Lemma 4.4 97

Figure 4.11: The vectors used in the proof.

and finally the residual term h(k). With the above definitions and the fact that the
loss lk is non-negative, Lemma 4.2 may be rewritten as

|lk| ≤
3∑
l=1

∑
i∈Il

∑
j∈Ji

Γj|gi|.

The result follows by applying Lemma 4.3 and noticing that∑k−1
i=i0

∑∞
j=i γ

j = γi0−γk
(1−γ)2 .

Here in order to show the flexibility of Lemma 4.3, we group the terms differently
and derive an alternative `p-bound for the loss of AMPI and CBMPI. In analogy with
the results of Farahmand et al. (2010), this new bound shows that the last iterations
have the highest influence on the loss (the influence exponentially decreases towards
the initial iterations).

Theorem 4.3. With the notations of Theorem 4.1, after k iterations, the loss of AMPI
satisfies

‖lk‖p,ρ ≤ 2
k−1∑
i=1

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖εk−i‖pq′,µ +

k−1∑
i=0

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖ε′k−i‖pq′,µ + g(k).

while the loss of CBMPI satisfies

‖lk‖p,ρ ≤ 2γm
k−2∑
i=1

γi

1− γ
(
Ci,i+1,m
q

) 1
p ‖εk−i−1‖pq′,µ+

k−1∑
i=0

γi

1− γ
(
Ci,i+1,0
q

) 1
p ‖ε′k−i‖pq′,µ+g(k).

Proof. Again, we only detail the proof for AMPI (the proof being similar for CBMPI).
We define I, (gi) and (Ji) as in the proof of Theorem 4.1. We then make as many
groups as terms, i.e., for each n ∈ {1, 2, . . . , 2k − 1}, we define In = {n}. The result
follows by application of Lemma 4.3.

E Proof of Lemma 4.4
Let us define two N -dimensional vectors z =([

(Tπk)mvk−1
]
(s(1)), . . . ,

[
(Tπk)mvk−1

]
(s(N))

)>
and y =

(
v̂k(s(1)), . . . , v̂k(s(N))

)>
and their orthogonal projections onto the vector space FN as ẑ = Π̂z and

98 Chapter 4. Approximate Modified Policy Iteration

ŷ = Π̂y =
(
ṽk(s(1)), . . . , ṽk(s(N))

)>
, where ṽk is the result of linear regression and its

truncation (by Vmax) is vk, i.e., vk = T(ṽk) (see Figure 4.11). What we are interested
is to find a bound on the regression error ‖z − ŷ‖ (the difference between the target
function z and the result of the regression ŷ). We may decompose this error as

‖z − ŷ‖N ≤ ‖ẑ − ŷ‖N + ‖z − ẑ‖N = ‖ξ̂‖N + ‖z − ẑ‖N , (4.48)

where ξ̂ = ẑ− ŷ is the projected noise (estimation error) ξ̂ = Π̂ξ, with the noise vector
ξ = z − y defined as ξi =

[
(Tπk)mvk−1

]
(s(i)) − v̂k(s(i)). It is easy to see that noise is

zero mean, i.e., E[ξi] = 0 and is bounded by 2Vmax, i.e., |ξi| ≤ 2Vmax. We may write
the estimation error as

‖ẑ − ŷ‖2
N = ‖ξ̂‖2

N = 〈ξ̂, ξ̂〉 = 〈ξ, ξ̂〉,

where the last equality follows from the fact that ξ̂ is the orthogonal projection of ξ.
Since ξ̂ ∈ Fn, let fα ∈ F be any function whose values at {s(i)}Ni=1 equals to {ξi}Ni=1.
By application of a variation of Pollard’s inequality (Györfi et al., 2002), we obtain

〈ξ, ξ̂〉 = 1
N

N∑
i=1

ξifα(s(i)) ≤ 4Vmax‖ξ̂‖N

√√√√ 2
N

log
(

3(9e2N)d+1

δ′

)
,

with probability at least 1− δ′. Thus, we have

‖ẑ − ŷ‖N = ‖ξ̂‖N ≤ 4Vmax

√√√√ 2
N

log
(

3(9e2N)d+1

δ′

)
. (4.49)

From Equations 4.48 and 4.49, we have

‖(Tπk)mvk−1 − ṽk‖µ̂ ≤ ‖(Tπk)mvk−1 − Π̂(Tπk)mvk−1‖µ̂ + 4Vmax

√√√√ 2
N

log
(

3(9e2N)d+1

δ′

)
,

(4.50)
where µ̂ is the empirical norm induced from the N i.i.d. samples from µ.

Now in order to obtain a random design bound, we first define fα̂∗ ∈ F as fα̂∗(s
(i)) =[

Π̂(Tπk)mvk−1
]
(s(i)), and then define fα∗ = Π(Tπk)mvk−1 that is the best approximation

(w.r.t. µ) of the target function (Tπk)mvk−1 in F . Since fα̂∗ is the minimizer of the
empirical loss, any function in F different than fα̂∗ has a bigger empirical loss, thus we
have

‖fα̂∗ − (Tπk)mvk−1‖µ̂ ≤ ‖fα∗ − (Tπk)mvk−1‖µ̂ ≤ 2‖fα∗ − (Tπk)mvk−1‖µ

+ 12
(
Vmax + ‖α∗‖2 sup

x
‖φ(x)‖2

)√ 2
N

log 3
δ′
, (4.51)

with probability at least 1− δ′, where the second inequality is the application of a vari-
ation of Theorem 11.2 in the book by Györfi et al., (2002) with ‖fα∗− (Tπk)mvk−1‖∞ ≤

F. Proof of Lemma 4.5 99

Vmax + ‖α∗‖2 supx ‖φ(x)‖2. Similarly, we can write the left-hand-side of Equation 4.50
as

2‖(Tπk)mvk−1 − ṽk‖µ̂ ≥ 2‖(Tπk)mvk−1 − T(ṽk)‖µ̂ (4.52)

≥ ‖(Tπk)mvk−1 − T(ṽk)‖µ − 24Vmax

√
2
N

Λ(N, d, δ′), (4.53)

with probability at least 1 − δ′, where Λ(N, d, δ′) = 2(d + 1) logN + log e
δ′

+
log

(
9(12e)2(d+1)

)
. Putting together Equations 4.50, 4.51, and 4.52 and using the fact

that T(ṽk) = vk, we obtain

‖ηk‖2,µ = ‖(Tπk)mvk−1 − vk‖µ ≤ 2
2‖(Tπk)mvk−1 − fα∗‖µ

+ 12
(
Vmax + ‖α∗‖2 sup

x
‖φ(x)‖2

)√ 2
N

log 3
δ′

+ 4Vmax

√√√√ 2
N

log
(

3(9e2N)d+1

δ′

)
+ 24Vmax

√
2
N

Λ(N, d, δ′) .

The result follows by setting δ = 3δ′ and some simplification.

F Proof of Lemma 4.5
Proof. For each s ∈ S, we may write

|ε′k(s)|
(a)= max

a∈A

(
Tavk−1

)
(s)−

(
Tπkvk−1

)
(s)

(b)
≤ max

a∈A

(
Tavk−1

)
(s)−

(
T̂πkvk−1

)
(s) + γVmax

√
2 log(1/δ′)

M
w.p. 1− δ′

(c)= max
a∈A

(
Tavk−1

)
(s)−max

a′∈A

(
T̂a′vk−1

)
(s) + γVmax

√
2 log(1/δ′)

M
w.p. 1− δ′

(d)
≤ max

a∈A

[(
Tavk−1

)
(s)−

(
T̂avk−1

)
(s)
]

+ γVmax

√
2 log(1/δ′)

M
w.p. 1− δ′

(e)
≤ γVmax

√
2 log(|A|/δ′)

M
+ γVmax

√
2 log(1/δ′)

M
w.p. 1− 2δ′

≤ 2γVmax

√
2 log(|A|/δ′)

M
. w.p. 1− 2δ′

(a) This is from the definition of the greedy step error ε′k.

(b) Here we use a Chernoff-Hoeffding bound and replace(
Tπkvk−1

)
(s) = r

(
s, πk(s)

)
+ γ

∫
P
(
ds′|s, πk(s)

)
vk−1(s′)

100 Chapter 4. Approximate Modified Policy Iteration

with its empirical version
(
T̂πkvk−1

)
(s) = r

(
s, πk(s)

)
+ γ

M

M∑
j=1

v(s′(j)), {s′(j)}Mj=1
i.i.d.∼ P

(
· |s, πk(s)

)
.

We have(
T̂πkvk−1

)
(s)−

(
Tπkvk−1

)
(s) = γ

(1
M

M∑
j=1

v(s′(j))− Es′∼P (·|s,πk(s))
[
vk−1(s′)

])

≤ γVmax

√
2 log(1/δ)

M
w.p. 1− δ′.

(c) This step is from the definition of πk in the AMPI-V algorithm (Equation 4.1).

(d) This step is algebra, replacing two maximums with one.
(e) Finally, this step is another Chernoff-Hoeffding bound similar to Step (b) plus a
union bound over actions

max
a∈A

[(
Tavk−1

)
(s)−

(
T̂avk−1

)
(s)
]
≤ γVmax

√
2 log(|A|/δ′)

M
w.p. 1− δ′.

G Proof of Lemma 4.6
The proof of this lemma is similar to the proof of Theorem 1 in Lazaric et al. (2010a).
Before stating the proof, we report the following two lemmas that are used in the proof.

Lemma 4.7. Let Π be a policy space with finite VC-dimension h = V C(Π) <∞ and
N ′ be the number of states in the rollout set D′k−1 drawn i.i.d. from the state distribution
µ. Then we have

PD′
k−1

[
sup
π∈Π

∣∣∣∣LΠ
k−1(µ̂; π)− LΠ

k−1(µ; π)
∣∣∣∣ > ε

]
≤ δ ,

with ε = 16Qmax

√
2
N ′

(
h log eN ′

h
+ log 8

δ

)
.

Proof. This is a restatement of Lemma 1 in Lazaric et al. (2010a).

Lemma 4.8. Let Π be a policy space with finite VC-dimension h = V C(Π) < ∞
and s(1), . . . , s(N ′) be an arbitrary sequence of states. At each state we simulate M
independent rollouts of the form , then we have

P

sup
π∈Π

∣∣∣∣ 1
N ′

N ′∑
i=1

1
M

M∑
j=1

Rj
k−1

(
s(i,j), π(s(i,j))

)
− 1
N ′

N ′∑
i=1

Qk−1
(
s(i,j), π(s(i,j))

)∣∣∣∣ > ε

 ≤ δ ,

with ε = 8Qmax

√
2

MN ′

(
h log eMN ′

h
+ log 8

δ

)
.

G. Proof of Lemma 4.6 101

Proof. The proof is similar to the one for Lemma 4.7.

Proof. (Lemma 4.6) Let a∗(·) ∈ argmaxa∈AQk−1(·, a) be the greedy action. To
simplify the notation, we remove the dependency of a∗ on states and use a∗ instead of
a∗(s(i)) in the following. We prove the following series of inequalities:

LΠ
k−1(µ; πk)

(a)
≤ LΠ

k−1(µ̂; πk) + e′1(N ′, δ) w.p. 1− δ′

= 1
N ′

N ′∑
i=1

[
Qk−1(s(i), a∗)−Qk−1

(
s(i), πk(s(i))

)]
+ e′1(N ′, δ)

(b)
≤ 1
N ′

N ′∑
i=1

[
Qk−1(s(i), a∗)− Q̂k−1

(
s(i), πk(s(i))

)]
+ e′1(N ′, δ) + e′2(N ′,M, δ) w.p. 1− 2δ′

(c)
≤ 1
N ′

N ′∑
i=1

[
Qk−1(s(i), a∗)− Q̂k−1

(
s(i), π∗(s(i))

)]
+ e′1(N ′, δ) + e′2(N ′,M, δ)

≤ 1
N ′

N ′∑
i=1

[
Qk−1(s(i), a∗)−Qk−1

(
s(i), π∗(s(i))

)]
+ e′1(N ′, δ) + 2e′2(N ′,M, δ) w.p. 1− 3δ′

= LΠ
k−1(µ̂; π∗) + e′1(N ′, δ) + 2e′2(N ′,M, δ)

≤ LΠ
k−1(µ; π∗) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
w.p. 1− 4δ′

= inf
π∈Π
LΠ
k−1(µ; π) + 2

(
e′1(N ′, δ) + e′2(N ′,M, δ)

)
.

The statement of the theorem is obtained by δ′ = δ/4.

(a) This follows from Lemma 4.7.
(b) Here we introduce the estimated action-value function Q̂k−1 by bounding

sup
π∈Π

[
1
N ′

N ′∑
i=1

Q̂k−1
(
s(i), π(s(i))

)
− 1
N ′

N ′∑
i=1

Qk−1
(
s(i), π(s(i))

)]

using Lemma 4.8.
(c) From the definition of πk in CBMPI, we have

πk ∈ argmin
π∈Π

L̂Π
k−1(µ̂; π) = argmax

π∈Π

1
N ′

N ′∑
i=1

Q̂k−1
(
s(i), π(s(i))

)
,

thus, −1/N ′∑N ′

i=1 Q̂k−1
(
s(i), πk(s(i))

)
can be maximized by replacing πk with any other

policy, particularly with

π∗ ∈ argmin
π∈Π

∫
S

(
max
a∈A

Qk−1(s, a)−Qk−1
(
s, π(s)

))
µ(ds).

Chapter 5

Multi-Bandit Best Arm
Identification

In this chapter,1 we study the problem of identifying the best arm in each of the ban-
dits in a multi-bandit multi-armed problem, in both fixed budget and fixed confidence
settings. We first propose two algorithms, called Gap-based Exploration (GapE) and
Unified Gap-based Exploration (UGapE), that are both based on the idea of selecting
the arm whose mean is close to the mean of the best arm in the same bandit (i.e., small
gap). We then introduce an algorithm, called GapE-V (respectively UGapE-V), which
takes into account the variance of the arms in addition to their gap. We prove an
upper-bound on the probability of error for all these algorithms. Since in the fixed
budget setting, GapE and GapE-V need to tune an exploration parameter that de-
pends on the complexity of the problem and is often unknown in advance, we also
introduce variations of these algorithms that estimate this complexity online. Finally,
we evaluate the performance of these algorithms and compare them to other alloca-
tion strategies, in a number of synthetic problems, using real-word clinical data, and
finally in the rollout allocation step of the classification-based policy iteration (CBPI)
algorithms (see the discussion in Section 1.3.2 of Chapter 2).

Contents
1 Introduction and Motivating Examples 85

2 Problem Formulation . 88

3 Gap-based Exploration Algorithms 89

4 Theoretical Analysis . 92

4.1 Proof of Theorem 5.2 . 95

4.2 Extensions . 99

5 Numerical Simulations . 103

5.1 Results for GapE and its Variants 104

5.2 Results for UGapE and its Variants 111

6 Summary and Discussion . 113

1The chapter is an extended version of our two NIPS publications (Gabillon et al., 2011a, 2012).

104 Chapter 5. Multi-Bandit Best Arm Identification

1 Introduction and Motivating Examples

We begin by giving several examples to motivate the study of the multi-bandit multi-
armed setting. Consider a clinical problem with M subpopulations, in which one
should decide between Kp options for treating subjects from each subpopulation p. A
subpopulation may correspond to patients with a particular gene biomarker (or other
risk categories) and the treatment options are the available treatments for a disease.
The main objective here is to construct a rule, which recommends the best treatment
for each of the subpopulations. These rules are usually constructed using data from
clinical trials that are generally costly to run. Therefore, it is important to distribute
the trial resources wisely so that the devised rule yields a good performance. Since it
may take significantly more resources to find the best treatment for one subpopulation
than for the others, the common strategy of enrolling patients as they arrive may not
yield an overall good performance. Moreover, applying treatment options uniformly
at random in a subpopulation could not only waste trial resources, but also it might
run the risk of finding a bad treatment for that subpopulation. This problem can be
formulated as the best arm identification (Audibert et al., 2010) over M multi-armed
bandits, which in turn can be seen as the problem of pure exploration (Bubeck et al.,
2009) over multiple bandits. In this formulation, each subpopulation is considered as
a multi-armed bandit, each treatment as an arm, trying a medication on a patient as
a pull, and we are asked to recommend an arm for each bandit after a given number
of pulls (budget). The evaluation can be based on 1) the average over the bandits
of the reward of the recommended arms, or 2) the average probability of error (not
selecting the best arm), or 3) the maximum probability of error. Note that this setting
is different from the standard multi-armed bandit problem in which the goal is to
maximize the cumulative sum of rewards (see e.g., Robbins 1952, Auer et al. 2002).

The second example is the popular problem of online advertisement, where a com-
pany uses a testing phase before deploying its advertisement system. This problem can
also be formulated as above, where each bandit is a subpopulation of Internet users
(e.g., young, old, single, married), each arm is a category of advertisements, and each
pull is to show an advertisement to a user. Here the goal is to actively learn a rule,
which recommends the best (the one with the highest chance to be clicked on) category
of advertisements for each of the subpopulations.

Another example is the following brain-computer interface (BCI) problem. A com-
puter has to guess a letter chosen by a user. The computer arranges the letters in a
matrix displayed to the user as shown in Figure 5.1. At each time step, the computer
chooses either a row or a column and asks the user if the chosen letter belongs to it.
The answer is obtained by recording noisy brain activity signals. This problem can
be formalized as a two-bandit best arm identification problem where the bandits are
“rows” and “columns”. In this problem, the right measure of performance is exactly
the maximum probability of error, since doing a mistake in either row or column would
lead to choose the wrong letter.

Finally, the problem that motivated us to study multi-bandit best arm identifi-

1. Introduction and Motivating Examples 105

A ?

BrainComputer

B
U
K
W

N
Z
H
F

V
P
G
L

O
M

T

B N V O
U Z P M
K H G
W F L T

B

K
W

N

H
F

V

G
L

O

T

Figure 5.1: The BCI problem in which the goal is to design a strategy of repetitively
flashing rows and columns of a grid of letters in order to identify the letter chosen by
the user.

cation, namely the rollout allocation problem in Classification-based Policy Iteration
(CBPI) algorithms (see Section 1.3.2 of Chapter 2 for a detailed description). In this
problem, the goal is to identify the best action (arm) in each of the states (bandit) in
the rollout set. We will discuss this application in more details in Section 5.1.

The problem of best arm(s) identification (Even-Dar et al., 2006, Bubeck et al.,
2009, Audibert et al., 2010) in stochastic multi-armed bandit has recently received
much attention. In this problem, during an exploration phase, a forecaster repeatedly
selects an arm and observes a sample drawn from the reward distribution of this arm,
and when the exploration phase ends, it is asked to return the arm(s) with the highest
mean value(s). Unlike the standard (cumulative regret) setting, where the goal is to
maximize the cumulative sum of rewards obtained by the forecaster (see e.g., Robbins
1952, Auer et al. 2002), in this setting the forecaster is evaluated on the quality of the
arm(s) it returns at the end of the exploration phase. As discussed in Section 2.3.1 of
Chapter 2, the problem of best arm(s) identification has been studied in two distinct
settings in the literature. In the fixed budget setting (see e.g., Bubeck et al. 2009,
Audibert et al. 2010), the number of rounds of the exploration phase is fixed and is
known by the forecaster, and the objective is to maximize the probability of returning
the best arm(s). In the fixed confidence setting (see e.g., Maron and Moore 1993,
Even-Dar et al. 2006), the forecaster aims to minimize the number of rounds needed
to achieve a fixed confidence about the quality of the returned arm(s).

We first became interested in studying the multi-bandit best arm identification
problem in the fixed budget setting. Audibert et al. (2010) proposed two algorithms
for the fixed budget setting: 1) a highly exploring strategy based on upper confidence
bounds, called upper confidence bound – exploration (UCB-E), in which the optimal
value of its parameter depends on some measure of the complexity of the problem
that is unknown in advance, and 2) a parameter-free method based on progressively
rejecting the arms that seem to be sub-optimal, called Successive Rejects (SR). They
showed that both algorithms are nearly optimal since their probability of returning

106 Chapter 5. Multi-Bandit Best Arm Identification

the wrong arm decreases exponentially. However, UCB-E and SR are designed for the
single-bandit problem, and we argue that their trivial extensions are not good enough
(sub-optimal) for the multi-bandit scenario. A naive application of UCB-E (or SR) in
the multi-bandit setting would pull more the arms with the highest estimated mean
over all of the arms of all the bandits. Therefore, the resulting algorithm would only
identify the best arm in all the bandits and not the best arm in each bandit. Another
approach is to extend the Hoeffding Races algorithm, first introduced by Maron and
Moore (1993) in the fixed confidence setting, to the multi-bandit case with fixed budget.
Nevertheless, as shown by Audibert et al. (2010) and more recently by Kaufmann and
Kalyanakrishnan (2013), Hoeffding Races belong to the family of the uniform sampling
strategies (strategies that sample uniformly over the arms that have not been discarded
yet) that are not efficient, neither in the fixed budget nor in the fixed confidence setting,
compared to the adaptive sampling strategies (that typically sample the arms according
to an index measuring how “important” is to sample each arm). Therefore, with the
objective to design efficient index-based strategies, we propose to extend the UCB-E
algorithm to the multi-bandit scenario under both fixed budget and fixed confidence
settings. Moreover, we address the case where the m best arms (with m ≥ 1) must be
identified (a problem also studied in the fixed confidence setting by Kalyanakrishnan
and Stone 2010) and the case where it is sufficient to identify an arm whose mean is
ε-close to the one of the best arm. Note that prior to our work, the multi-bandit setting
was only studied by Deng et al. (2011), who proposed an active learning algorithm based
on an ε-greedy heuristic, but did not provide any theoretical analysis for the algorithm
and only empirically evaluated its performance. After our work, Wang et al. (2013)
also studied the multi-bandit setting and the problem of m-best arm identification,
and proposed a new version of Successive Rejects, called SAR (with accept and reject),
that is able to return the set of the m-best arms with high probability.

We propose two algorithms, called Gap-based Exploration (GapE) and Unified
GapE (UGapE). The allocation strategy implemented by (U)GapE focuses on the
gap of the arms, i.e., the difference between the mean of the arm and the mean of
the best arm in that bandit. We also propose the (U)GapE-variance algorithm, with
the abbreviation (U)GapE-V, that extends this approach by taking into account the
variance of the arms. For all the algorithms, in the fixed budget setting, we prove an
upper-bound on the probability of error that decreases exponentially with the budget.
This bound is the first theoretical guarantee proved in the multi-bandit setting. Since in
the fixed budget, both (U)GapE and (U)GapE-V need to tune an exploration parameter
that depends on the complexity of the problem, which is rarely known in advance,
we also introduce their adaptive version that learns this complexity on-line. Finally,
we evaluate the performance of these algorithms and compare them with Uniform
and Uniform+UCB-E strategies on a number of synthetic problems. Our empirical
results indicate that 1) (U)GapE and (U)GapE-V have a better performance than
Uniform and Uniform+UCB-E, and 2) the adaptive version of these algorithms match
the performance of their non-adaptive counterparts. Finally we apply our strategies
to some of the problems that motivated our interest. We show that our strategies

2. Problem Formulation 107

1

μ1

σ1

Figure 5.2: Graphical notations: this figure shows how we illustrate the mean and
variance of an arm indexed as arm 1.

outperform the heuristic proposed by Deng et al. (2011) in a real world clinical problem.
The application to the CBPI algorithms’ rollout allocation problem is also discussed.

2 Problem Formulation
In this section, we first introduce the notation used throughout the chapter. We also
formally introduce the multi-bandit (ε,m)-best arm identification problem.

Let M be the number of bandits. For simplicity and without loss of generality, let
K be the number of arms for each bandit. We use indices p and q for the bandits
and k, i, and j for the arms. Let A = {1, . . . , K} be the set of indices of the arms in
each bandit such that each arm k ∈ A of bandit p is characterized by a distribution
νpk bounded in [0, b] with mean µpk and variance σ2

pk. In Figure 5.2, we show how
we graphically illustrate the mean and variance of an arm. This will help us later
to graphically represent the complexities of the bandit problems used as illustrative
examples or in the experiments.

We define the m-max and m-argmax operators as2

µp(m) = mmax
k∈A

µpk and (m)p = arg mmax
k∈A

µpk ,

where (m)p denotes the index of the m-th best arm in A for bandit p and µp(m) is its
corresponding mean so that µp(1) ≥ µp(2) ≥ . . . ≥ µp(K). We denote by Spm ⊂ A any
subset of m arms of bandit p (i.e., |Spm| = m < K) and by Spm,∗ the subset of the m
best arms of bandit p (i.e., k ∈ Spm,∗ iif µpk ≥ µp(m)). Without loss of generality, we
assume that there exists, for any bandit p, a unique set Spm,∗. In the following we drop
the superscript m and use Sp = Spm and Sp,∗ = Spm,∗ whenever m is clear from the
context. With a slight abuse of notation we further extend the m-max operator to an
operator returning a set of arms, such that

{µp(1), . . . , µp(m)} = 1..mmax
k∈A

µpk and Sp,∗ = arg 1..mmax
k∈A

µpk .

Finally in each bandit p, we define the gap for the k-th arm as ∆pk = | mmax
j 6=k

µpj − µpk|.

2Ties are broken in an arbitrary but consistent manner.

108 Chapter 5. Multi-Bandit Best Arm Identification

Given an accuracy ε and a number of arms m, we say that an arm k in bandit p
is (ε,m)-optimal if µpk ≥ µp(m) − ε. Thus, we define the multi-bandit (ε,m)-best arm
identification problem as the problem of finding a set S of m (ε,m)-optimal arms in
each of the M bandits. Once again, for simplicity and without loss of generality, the
parameter m is the same for all the bandits. The clinical trial problem described in
Section 1 is an (ε = 0,m = 1)-multi-bandit best arm identification problem, which can
be formalized as a game between a stochastic bandit environment and a forecaster. The
distributions {νpk} are unknown to the forecaster. At each round t, the forecaster pulls
an arm I(t) ∈ A in bandit q(t) and observes an independent sample drawn from the
distribution νq(t),I(t) independent from the past. The forecaster estimates the expected
value of each arm by computing the average of the samples observed over time. Let
Tpk(t) be the number of times that arm k of bandit p has been pulled by the end of
round t, then the mean of this arm is estimated as µ̂pk(t) = 1

Tpk(t)
∑Tpk(t)
s=1 Xpk(s), where

Xpk(s) is the s-th sample observed from νpk. Given the previous definitions, we define
the estimated gaps as ∆̂pk(t) = | mmax

j 6=k
µ̂pj(t)− µ̂pk(t)|. For any arm k ∈ A in bandit p,

we define the notion of arm simple regret as

rpk = µp(m) − µpk, (5.1)

and for any set S ⊂ A of m arms in bandit p, we define the simple regret as

rS = max
k∈S

rpk = µp(m) −min
k∈S

µpk. (5.2)

We denote by Ωp(t) ⊂ A the set of m arms of bandit p returned by the forecaster at the
end of the exploration phase (when the algorithm stops after t rounds), and by rΩp(t)
its corresponding simple regret. Returning m (ε,m)-optimal arms is then equivalent to
having rΩp(t) smaller than ε. Finally, we can define the total regret incurred over all
the bandits as,

r(t) = 1
M

M∑
p=1

rΩp(t).

As discussed in the introduction, other performance measures can be defined for this
problem. In some applications, returning the wrong arm is considered as an error inde-
pendently from its regret, and thus, the objective is to minimize the average probability
of error

e(t) = 1
M

M∑
p=1

ep(t) = 1
M

M∑
p=1

P
(
rΩp(t) ≥ ε

)
.

Finally, in problems similar to the brain computer interface, a reasonable objective is
to return the correct letter, which requires the identification of both the correct column
and the correct row, and not just to have a small average probability of error (averaged
other row and column in the BCI case). In this case, the global performance of the
forecaster can be measured as

`(t) = max
p
`p(t) = max

p
P
(
rΩp(t) ≥ ε

)
.

3. Gap-based Exploration Algorithms 109

Parameters: number of rounds n, exploration parameter a, maximum range b
Initialize: Tpk(0) = 0, ∆̂pk(0) = 0 for all bandit-arm pairs (p, k)
for t = 1, 2, . . . , n do

Compute Bpk(t) = −∆̂pk(t− 1) + βpk(t− 1) for all bandit-arm pairs (p, k)
Draw (q(t), I(t)) ∈ arg maxp,k Bpk(t)
Observe Xq(t),I(t)

(
Tq(t),I(t)(t− 1) + 1

)
∼ νq(t),I(t)

Update Tq(t),I(t)(t) = Tq(t),I(t)(t − 1) + 1 and ∆̂q(t)k(t) ∀k of the selected
bandit q(t)

end for
Return Jp(n) ∈ argmaxk∈{1,...,K} µ̂pk(n), ∀p ∈ {1 . . .M}

Figure 5.3: The pseudo-code of the gap-based Exploration (GapE) algorithm.

It is interesting to note the relationship between these three performance measures:
when ε = 0, minp ∆p× e(t) ≤ Er(t) ≤ b× e(t) ≤ b× `(t), where the expectation in the
regret is with respect to the random samples. As a result, any algorithm minimizing
the worst case probability of error, `(t), also controls the average probability of error,
e(t), and the simple regret Er(t). Note that the algorithms introduced in this chapter
directly target the problem of minimizing `(t).

3 Gap-based Exploration Algorithms

In this section, we describe two gap-based exploration algorithms (GapE and UGapEb)
and show how they are implemented in the fixed-budget setting. While GapE, the first
algorithm (with theoretical analysis) proposed for the multi-bandit case, aims at solving
the multi-bandit (ε,m)-best arm identification problem for ε = 0 and m = 1, UGapEb
addresses the general case of ε and m.

• The GapE algorithm: Figure 5.3 contains the pseudo-code of the gap-based
exploration (GapE) algorithm. At each time step t, the algorithm relies on the obser-
vations up to time t − 1 to build an index Bpk(t) for each bandit-arm pair, and then
selects the pair (q(t), I(t)) with the highest index. The index Bpk consists of two terms.
The first term is the negative of the estimated gap for arm k in bandit p. Similarly to
other upper-confidence bound (UCB) methods (Auer et al., 2002), the second part, the
confidence interval βk(t−1),3 is an exploration term which forces the algorithm to pull
arms that have been less explored. As a result, the algorithm tends to pull arms with
small estimated gap and small number of pulls. The exploration parameter a tunes
the level of exploration of the algorithm, and as it is shown by the theoretical analysis
of Section 4, its optimal value depends on the complexity of the problem (see Section 4
for further discussion). At the end of round n, the forecaster returns for each bandit p

3Its shape will be discussed in more detail later in this section.

110 Chapter 5. Multi-Bandit Best Arm Identification

UGapEb(ε,m, n, a)

Parameters: accuracy ε, number of
arms m, budget n, exploration pa-
rameter a
Initialize: Pull each bandit-arm pair
(p, k) once, update µ̂pk(MK) and set
Tpk(MK) = 1
SAMP
for t = MK + 1, . . . , n do

SELECT-ARM (t)
end for
SAMP
Return Ω(n) = arg min

J(t)
BJ(t)(t)

SELECT-ARM(t)
Compute Bpk(t) for each bandit-arm pair
(p, k).
Identify in each bandit p, the set of m arms,
Jp(t) ∈ arg

1..m
min
k∈A

Bpk(t).
Select the bandit q(t) = max

p∈{1,...,M}
BJp(t)(t)

Pull the arm I(t) = argmax
k∈{lt,ut}

βk(t− 1)

Observe Xq(t),I(t)
(
Tq(t),I(t)(t − 1) + 1

)
∼

νq(t),I(t)
Update µ̂q(t),I(t)(t) and Tq(t),I(t)(t)

Figure 5.4: The pseudo-code for the UGapE algorithm in the fixed-budget setting
(UGapEb) (left) and UGapE’s arm-selection strategy (right).

the arm with the highest estimated mean, i.e., Jp(n) = argmaxk µ̂pk(n).

• The UGapEb algorithm: The unified gap-based exploration (UGapE) is a
meta-algorithm designed to be implemented in both fixed-budget and fixed-confidence
settings. In this section, we focus on the fixed budget setting, the UGapEb algorithm,
whose pseudo-code is shown in Figure 5.4. At each time step t, UGapEb uses the arm-
selection strategy, SELECT-ARM (see the left panel of Figure 5.4), an arm-selection
strategy that also used by the fixed confidence variant of UGapE, the UGapEc algo-
rithm.

At each time step t, UGapE first uses the observations up to time t−1 and computes
an index for each bandit-arm pair (p, k),

Bpk(t) = mmax
i 6=k

Upi(t)− Lpk(t) (5.3)

where, ∀t, ∀k ∈ A, ∀p ∈ {1, . . . ,M},

Upk(t) = µ̂pk(t− 1) + βpk(t− 1) , Lpk(t) = µ̂pk(t− 1)− βpk(t− 1). (5.4)

In Equation 5.4, βpk(t − 1) is a confidence interval,4 and Upk(t) and Lpk(t) are high
probability upper and lower bounds on the mean of arm k of bandit p, µpk, after t− 1
rounds. Note that the parameter a is used in the definition of the confidence interval
βpk, whose shape strictly depends on the concentration bound used by the algorithm.
This will be discussed in more details latter in this section. From Equation 5.4, we
may see that the index Bpk(t) is an upper-bound on the simple regret rpk of the kth

4To be more precise, βpk(t− 1) is the width of a confidence interval or a confidence radius.

3. Gap-based Exploration Algorithms 111

arm of bandit p (see Equation 5.1). We also define an index for a set Sp as BSp(t) =
maxi∈Sp Bpi(t). Similarly to the arm index, BS is also defined in order to upper-bound
the simple regret rSp with high probability (see Lemma 5.1).

After computing the arm indices, UGapE finds a set of m arms Jp(t) in each bandit
p with minimum upper-bound on their simple regrets, i.e., Jp(t) = arg

1..m
min
k∈A

Bpk(t).

Therefore, we can define BJp(t)(t) =
m

min
k∈A

Bpk(t) as the upper bound on the simple regret
of the set of arms Jp(t) for each bandit p. UGapE then selects q(t), the bandit with
maximal upper bound on its simple regret, i.e., q(t) = max

p∈{1,...,M}
BJp(t)(t), to explore

it. From Jq(t)(t), it computes two arm indices ut = argmaxj /∈Jq(t)(t) Uj(t) and lt =
argmini∈Jq(t)(t) Li(t), where in both cases the tie is broken in favor of the arm with the
largest uncertainty β(t − 1). Arms lt and ut are the worst possible arm among those
in J(t) and the best possible arm left outside Jq(t)(t), respectively, and together they
represent how bad the choice of Jq(t)(t) could be. Finally, the algorithm selects and
pulls the arm I(t) as the arm with the larger β(t−1) among ut and lt, observes a sample
Xq(t),I(t)

(
Tq(t),I(t)(t − 1) + 1

)
from the distribution νq(t),I(t), and updates the empirical

mean µ̂q(t),I(t)(t) and the number of pulls Tq(t),I(t)(t) of the selected arm I(t) in bandit
q(t). UGapEb returns, for each bandit p, the set of arms Jp(t) with the smallest index,
i.e., Ωp(n) = arg minJp(t) BJp(t)(t), t ∈ {1, . . . , n}.

Note that our approach can be easily modified to tackle the problem of finding the
set of (mp, εp)-optimal arms in each bandit p, where the difference with respect to the
previous version is that now ε and m depend on p. For this case, it is sufficient to
select the bandit with maximal value of the quantity BJp(t)(t)− εp at each time t. This
quantity is the difference between the upper-bound on the simple regret of bandit p
and its maximum accepted simple regret.

• Discussion on GapE and UGapEb: In GapE and UGapEb, βpk is the radius
of the confidence interval. It can be derived for instance from the Chernoff-Hoeffding
bound as

βpk(t− 1) = b

√
a

Tpk(t− 1) . (5.5)

In Section 4, we discuss how the parameter a can be tuned and we show that a should
be tuned as a function of n and ε in UGapEb. Defining the confidence interval in a
general form βpk(t− 1) allows us to easily extend the algorithm by taking into account
different (higher) moments of the arms (see Section 4.2.2 for the case of variance, where
βpk(t− 1) is obtained from the Bernstein inequality).

The indices used by GapE and UGapEb for an arm k in bandit p are both based
on the estimation of the negative estimated gap (−∆̂pk). While the index of GapE
adds an exploratory term only related to arm k, UGapE also considers an exploratory
term related to the other arms in bandit p that allows us to define ∆̂pk (either ut if
k ∈ Jp(t) or lt if k /∈ Jp(t)). GapE and UGapEb are conceptually similar algorithms.
In fact, UGapE should be seen as an updated version of GapE, where the index can
be understood as a high-probability upper bound on the simple regret incurred with

112 Chapter 5. Multi-Bandit Best Arm Identification

respect to arm k (as proved in Lemma 5.1). Therefore, this greatly simplifies our
analysis of UGapE with respect to the one of GapE. Moreover, UGapE is similar to
the algorithm called LUCB (Kalyanakrishnan et al., 2012). They only differ in the
definition of J(t) and the fact that UGapE pulls the arm with the largest radius of
the confidence interval among ut and lt while LUCB pulls both together. As shown in
the Section 4.2.2, this latter difference permits UGapE-V (the version of GapE that
takes into account the variance) to have better results in the case when the arms have
different variances. LUCB was proposed to solve the best arm identification problem
in single-bandit under the fixed confidence setting and with m ≥ 1 and ε ≥ 0. In
this chapter, we detail our analysis of UGapE in the multi-bandit case for both fixed
budget and fixed confidence settings. The proof technique gives a simplified view on
the GapE type of algorithms and is original as it is based on this new argument that
the indices used by UGapE are upper bounds on the simple regret.

As Figures 5.3 and 5.4 indicate, both algorithms resembles the UCB-E algorithm
(see Figure 2.5 in Audibert et al. 2010 for its pseudocode) designed to solve the pure
exploration problem in the single-bandit setting with ε = 0 and m = 1. Nonetheless,
the use of the negative estimated gap, −∆̂pk, instead of the estimated mean, µ̂pk, (used
by UCB-E) is crucial in the multi-bandit setting. In the single-bandit problem with
m = 1, since the best and second best arms have the same gap (∆p(1) = mink 6=(1)p ∆pk),
GapE and UGapE consider them equivalent and tend to pull them the same number
of times, while UCB-E tends to pull the best arm more often than the second best
one. Despite this difference, the performance of both approaches in predicting the best
arm after n pulls would be the same. This is due to the fact that the probability of
error depends on the capability of the algorithm to distinguish between the optimal
and sub-optimal arms, and this is not affected by a different allocation over the best
and second best arms as long as the number of pulls allocated to that pair is large
enough with respect to their gap. Despite this similarity, the two approaches become
completely different in the multi-bandit case. In this case, if we run UCB-E on all the
MK arms, it tends to pull more the arm with the highest mean over all the bandits,
i.e., k∗ = arg maxm,k µmk. As a result, it would be accurate in predicting the best
arm k∗ over bandits, but may have an arbitrarily bad performance in predicting the
best arm for each bandit, and thus, may incur a large error `(n). On the other hand,
GapE and UGapEb focus on the arms with the smallest gaps. This way, they assign
more pulls to bandits, whose optimal arms are difficult to identify (i.e., bandits with
arms with small gaps), and as will be shown in the next section, they achieve a high
probability in identifying the best arm in each bandit.

4 Theoretical Analysis
In this section, we present high probability upper-bounds on the performance of GapE
and UGapEb, introduced in Section 3. Our main focus is on the analysis of UGapEb.
This analysis consists of two parts: the arm-selection strategy that will be discussed
in Section 4.1.1 and the final performance bound for UGapEb that is the subject of

4. Theoretical Analysis 113

Section 4.1.2.
We define the complexity of the problem as

Hε =
M∑
p=1

K∑
i=1

b2

max(∆pi+ε
2 , ε)2

. (5.6)

Note that although the complexity has an explicit dependence on ε, it also depends
on the number of arms m through the definition of the gaps ∆pi, thus making it a
complexity measure for the overall (ε, m) best arm identification problem.

We first report an upper-bound on the probability of error `(n) for the GapE algo-
rithm.

Theorem 5.1. For m = 1 and ε = 0, if we run GapE with parameter 0 < a ≤ 16
9
n−MK
H0

,
then its probability of error satisfies

`(n) ≤ P
(
∃p : Jp(n) 6= S∗p

)
≤ 2MKn exp(− a

64),

in particular for a = 16
9
n−MK
H0

, we have `(n) ≤ 2MKn exp(− 1
36
n−MK
H0

).

We do not report the proof of this theorem in the thesis and refer the reader to Gabillon
et al. (2011a). This is mainly because of the similarity between the proofs of GapE
and UGapEb and the fact that GapE’s proof is tedious compared to that of UGapEb.
The main reason in turn for the latter is that the index of an arm in UGapEb is an
upper bound on the regret associated with that arm, a property used extensively by
the corresponding analysis, while the indices used in GapE does not possess the same
property.

We now report a high probability bound on the regret of UGapEb:

Theorem 5.2. If we run UGapEb with parameter 0 < a ≤ n−K
4Hε , its simple regret rΩp(n)

satisfies in each bandit p

δ̃ = P
(
rΩp(n) ≥ ε

)
≤ 2MKn exp(−2a),

in particular for a = n−K
4Hε , we have P

(
rΩp(n) ≥ ε

)
≤ 2MKn exp(−1

2
n−MK
H0

).

Comparing the results of Theorems 5.1 and 5.2, it is easy to see that the bound on the
performance of UGapEb generalizes the one for GapE to the (m, ε)-best arm identifi-
cation, in addition to improving some numerical constants.

Remark 5.1 (The complexity terms). Theorems 5.1 and 5.2 indicate that the
probability of success of GapE and UGapE are directly related to the complexity Hε

defined by Equation 5.6. Hε captures the intrinsic difficulty of the (ε,m)-best arm(s)
identification problem. Furthermore, note that this definition generalizes existing no-
tions of complexity. For example, for ε = 0 and m = 1, we recover the complexity used
in the definition of UCB-E (Audibert et al., 2010) for the fixed budget setting. Let

114 Chapter 5. Multi-Bandit Best Arm Identification

us analyze Hε in the general case of ε > 0. We define the complexity of a single arm
i ∈ A in bandit p, Hε,pi = b2/max(∆pi+ε

2 , ε)2. When the gap ∆pi is smaller than the
desired accuracy ε, i.e., ∆pi ≤ ε, then the complexity reduces to Hε,pi = 1/ε2. In fact,
the algorithm can stop as soon as the desired accuracy ε is achieved, which means that
there is no need to exactly discriminate between arm i and the set of m best arms. On
the other hand, when ∆pi > ε, the complexity becomes Hε,pi = 4b2/(∆pi + ε)2. This
shows that when the desired accuracy is smaller than the gap, the complexity of the
problem is smaller than the case of ε = 0, for which we have H0,pi = 4b2/∆2

pi.

Remark 5.2 (Analysis of the bounds). If the time horizon (budget) n is known in
advance, it would be possible to set the exploration parameter a as a linear function of n,
and as a result, the probabilities of error of GapE and UGapEb decrease exponentially
with the time horizon. The other interesting aspect of the bound is the complexity
term Hε appearing in the optimal value of the exploration parameter a (i.e., a = 4

9
n−K
H0

for GapE and a = n−K
4Hε for UGapEb). In all the following remarks, for simplicity, we

consider ε = 0 and drop the dependencies on ε for H. If we denote by Hpk = b2/∆2
pk,

the complexity of arm k in bandit p, it is clear from the definition of H that each
arm has an additive impact on the overall complexity of the multi-bandit problem.
Moreover, if we define the complexity of each bandit p as Hp = ∑

k b
2/∆2

pk (similar to
the definition of complexity for UCB-E in Audibert et al. 2010), the GapE and UGapEb
complexities may be rewritten as H = ∑

pHp. This means that the complexity of GapE
and UGapEb is simply the sum of the complexities of all the bandits.

Remark 5.3 (Comparison with the static allocation strategy). The main ob-
jective of GapE and UGapEb is to trade-off between allocating pulls according to the
gaps (more precisely, according to the complexities Hpk) and the exploration needed to
improve the accuracy of their estimates. If the gaps were known in advance, a nearly-
optimal static allocation strategy assigns to each bandit-arm pair a number of pulls
proportional to its complexity. Let us consider a strategy that pulls each arm a fixed
number of times over the horizon n. The probability of error for this strategy may be
bounded as

`Static(n) ≤ P
(
∃p : Jp(n) 6= S∗p

)
≤

M∑
p=1

P
(
Jp(n) 6= S∗p

)
≤

M∑
p=1

∑
k 6=S∗p

P
(
µ̂p(m)(n) ≤ µ̂pk(n)

)

≤
M∑
p=1

∑
k 6=S∗p

exp
(
− Tpk(n)

∆2
pk

b2

)
=

M∑
p=1

∑
k 6=S∗p

exp
(
− Tpk(n)H−1

pk

)
. (5.7)

Given the constraint ∑pk Tpk(n) = n, the allocation minimizing the last term in Equa-
tion 5.7 is T ∗pk(n) = nHpk/H. We refer to this static allocation strategy as Static-
Gap. Although this is not necessarily the optimal static strategy (T ∗pk(n) only mini-
mizes an upper-bound), this allocation guarantees a probability of error smaller than
MK exp(−n/H). Theorem 5.1 and Theorem 5.2 show that for n large enough, both
GapE and UGapE achieve the same performance as the static allocation StaticGap.

Remark 5.4 (Comparison with SAR). Here we compare the bounds reported in
Theorems 5.1 and 5.2 with the performance of the SAR algorithm (Wang et al., 2013).

4. Theoretical Analysis 115

SAR is an extension of the Successive Rejects algorithm (Audibert et al., 2010) to the
multi-bandit setting. The budget n is divided into MK− 1 phases. At the end of each
phase, the arm with the biggest estimated gap is stopped from being pulled. During
each phase all the remaining arms are pulled uniformly. The probability of error `(n)
of SAR may be bounded as

`SAR(n) ≤ exp
(
O
(−n
Hlog(MK)

))
,

where H = max
i∈{1,...,MK}

i
∆2

(i)
, with the gaps of all the arms in all the bandits ordered as

∆2
(1) ≤ ∆2

(2) ≤ . . . ≤ ∆2
(MK). As H ≤ H ≤ H log(2K), the theoretical results of SAR

are slightly worse than those of (U)GapEb by a logarithmic factor in the exponent.
On the other hand, the advantage of SAR is that it does not require the knowledge
of the complexity, and thus, is parameter-free. In terms of practical comparison, note
that experiments comparing GapE to SAR are reported in Wang et al. (2013), where
they concluded that GapE outperforms SAR when the exploration parameter of GapE
is well-tuned.

Remark 5.5 (Comparison with other allocation strategies). At the end of Sec-
tion 3, we discussed the difference between GapE, UGapEb and UCB-E. Here we
compare the bounds reported in Theorems 5.1 and 5.2 with the performance of the
Uniform and the combined Uniform+UCB-E allocation strategies. In Uniform, the
total budget n is uniformly split over all the bandits and arms. As a result, each
bandit-arm pair is pulled Tpk(n) = n/(MK) times. Using the same derivation as in
Remark 5.3, the probability of error `(n) for this strategy may be bounded as

`Unif(n) ≤
M∑
p=1

∑
k 6=S∗p

exp
(
− n

MK

∆2
pk

b2

)
≤MK exp

(
− n

MK maxp,kHpk

)
.

In the Uniform+UCB-E allocation strategy, i.e., a two-level algorithm that first selects
a bandit uniformly and then pulls arms within each bandit using UCB-E, the total
number of pulls for each bandit p is ∑k Tpk(n) = n/M , while the number of pulls
Tpk(n) over the arms in bandit p is determined by UCB-E. Thus, the probability of
error of this strategy may be bounded as

`Unif+UCB-E(n) ≤
M∑
p=1

2nK exp
(
− n/M −K

18Hp

)
≤ 2nMK exp

(
− n/M −K

18 maxpHp

)
,

where the first inequality follows from Theorem 1 in Audibert et al. (2010) (recall that
Hp = ∑

k b
2/∆2

pk). Let b = 1 (i.e., all the arms have distributions bounded in [0, 1]),
up to constants and multiplicative factors in front of the exponentials, and if n is large
enough compared to M and K (so as to approximate n/M −K and n−K by n), the
probability of error for the four algorithms (the one of UGapEb is similar to the one

116 Chapter 5. Multi-Bandit Best Arm Identification

of GapE) may be bounded as

`Unif(n) ≤ exp
(
O
(−n/MK

max
p,k

Hpk

))
, `U+UCBE(n) ≤ exp

(
O
(−n/M

max
p
Hp

))
,

`UGapEb(n) ' `GapE(n) ≤ exp
(
O
(−n∑
p,k
Hpk

))
.

By comparing the arguments of the exponential terms, we have the trivial sequence
of inequalities MK maxp,kHpk ≥ M maxp

∑
kHpk ≥

∑
p,kHpk, which implies that the

upper bound on the probability of error of GapE and UGapEb are usually significantly
smaller. This relationship, which is confirmed by the experiments reported in Section 5,
shows that GapE and UGapEb are able to adapt to the complexity H of the overall
multi-bandit problem better than the other two allocation strategies. In fact, while
the performance of the Uniform strategy depends on the most complex arm over the
bandits and the strategy Unif+UCB-E is affected by the most complex bandit, the
performance of GapE and UGapEb depends on the sum of the complexities of all the
arms involved in the problem.

4.1 Proof of Theorem 5.2
Before moving to the detailed analysis, we define additional notation used in the anal-
ysis. We first define event E as

E =
{
∀k ∈ A, ∀p ∈ {1, . . . ,M}, ∀t ∈ {1, . . . , n},

∣∣∣µ̂pk(t)− µpk∣∣∣ < βpk(t)
}
. (5.8)

Note that event E plays an important role in the sequel, i.e., when E holds, we have
that for any arm k ∈ A in any bandit p and at any time t, Lpk(t) ≤ µpk ≤ Upk(t).

4.1.1 Analysis of the Arm-Selection Strategy

Here we report lower (Lemma 5.1) and upper (Lemma 5.4) bounds for indices BS on
event E , which show their connection with the regret and gaps. We also report two
technical lemmas used in the proofs (Lemmas 5.2 and 5.3 and Corollary 5.1). We first
prove that for any bandit p, any set S 6= S∗p , and any time t ∈ {1, . . . , n}, the index
BS(t) is an upper-bound on the simple regret of this set rS.

Lemma 5.1. On event E, in any bandit p, for any set S 6= S∗p , and any time t ∈
{1, . . . , n}, we have BS(t) ≥ rS.

Proof. On event E , in any bandit p, for any arm i /∈ S∗p , and at each time t ∈ {1, . . . , n},
we may write

Bpi(t) = mmax
j 6=i

Upj(t)− Lpi(t) = mmax
j 6=i

(
µ̂pj(t− 1) + βpj(t− 1)

)
−
(
µ̂pi(t− 1)− βpi(t− 1)

)
≥ mmax

j 6=i
µpj − µpi = µ(m) − µpi = rpi . (5.9)

4. Theoretical Analysis 117

Using Equation 5.9, we have

BS(t) = max
i∈S

Bpi(t) ≥ max
i∈(S−S∗p)

Bpi(t) ≥ max
i∈(S−S∗p)

rpi = rS,

where the last passage follows from the fact that rpi ≤ 0 for any i ∈ S∗p .

We define B(t) for each time t ∈ {1, . . . , n} as

B(t) = Uut(t)− Llt(t) = max
j /∈J(t)

Uj(t)− min
i∈J(t)

Li(t), (5.10)

and prove the following lemma for this quantity.

Lemma 5.2. For each t ∈ {1, . . . , n} and for all bandit p, we have BJp(t)(t) ≤ B(t).

Proof. We first focus on the bandit in which an arm is pulled at time t, q(t). For
t ∈ {1, . . . , n}, we may write

BJq(t)(t)(t) = max
i∈Jq(t)(t)

(
mmax
j 6=i

Uq(t)j(t)− Lq(t)i(t)
)
≤ max

i∈Jq(t)(t)

mmax
j 6=i

Uq(t)j(t)− min
i∈Jq(t)(t)

Lq(t)i(t)

(a)
≤ max

j /∈Jq(t)(t)
Uq(t)j(t)− min

i∈J(t)
Lq(t)i(t) = Uut(t)− Llt(t) = B(t).

(a) Let set Z = maxi∈Jq(t)(t)
mmax
j 6=i

Uq(t)j(t) and define Ŝ(t) = arg 1..mmax
i∈A

Uq(t)i(t)

to be the set of m arms with the largest U(t). If Jq(t)(t) = Ŝ(t) then
Z = Uq(t)(m+1)(t) = maxj /∈Jq(t)(t) Uq(t)j(t), and if J − q(t)(t) 6= Ŝ(t) then
Z = Uq(t)(m)(t) ≤ maxj /∈Jq(t)(t) Uq(t)j(t).

Finally, we have by definition that for all bandit p, BJq(t)(t)(t) ≥ BJp(t)(t).

Lemma 5.3. At each time t ∈ {1, . . . , n}, we have that5

if ut is pulled, Lut(t) ≤ Llt(t) (5.11)
if lt is pulled, Uut(t) ≤ Ult(t). (5.12)

Proof. We consider the following two cases:

Case 1. µ̂ut(t−1) ≤ µ̂lt(t−1): If we pull ut, by definition we have βut(t−1) ≥ βlt(t−1),
and thus, Equation 5.11 holds. A similar reasoning gives Equation 5.12 when lt is
pulled.

Case 2. µ̂ut(t− 1) > µ̂lt(t− 1): We consider the following two sub-cases:

Case 2.1. ut is pulled: We prove this case by contradiction. Let us assume that
5We recently noticed that our analysis could be also applied to the LUCB algorithm (Kalyanakr-

ishnan et al., 2012), an algorithm with similar structure to UGapE. In fact, this lemma becomes even
simpler to prove for the LUCB algorithm.

118 Chapter 5. Multi-Bandit Best Arm Identification

Lut(t) > Llt(t). Since arm ut is pulled, by definition we have βut(t − 1) ≥ βlt(t − 1),
and thus, Uut(t) > Ult(t). From this, it is easy to see that mmax

j 6=lt
Uq(t)j(t) ≥

mmax
j 6=ut

Uq(t)j(t).
Using these results, we may write

But(t) = mmax
j 6=ut

Uq(t)j(t)− Lut(t) <
mmax
j 6=lt

Uq(t)j(t)− Llt(t) = Blt(t).

Since ut /∈ J(t) and lt ∈ Jq(t)(t) and Jq(t)(t) collects all the arms with the smallest
Bq(t)i values in bandit q(t), we have But(t) ≥ Blt(t) by definition. This contradicts the
previous statement, and thus, Equation 5.11 holds.

Case 2.2. lt is pulled: With a similar reasoning to Case 2.1. and by contra-
diction, we can show that Equation 5.12 holds in this case.

Corollary 5.1. If arm k is pulled at time t ∈ {1, . . . , n}, then we have B(t) ≤
2βpk(t− 1).

Proof. The proof is a direct application of Lemma 5.3. We know that the pulled arm
k in bandit p is either ut or lt. If k = ut, we have

B(t) = Uut(t)− Llt(t)
(a)
≤ Uut(t)− Lut(t) = 2βut(t− 1) = 2βq(t)k(t− 1),

where (a) is from Equation 5.11 in Lemma 5.3. Similarly if k = lt, we have

B(t) = Uut(t)− Llt(t)
(b)
≤ Ult(t)− Llt(t) = 2βlt(t− 1) = 2βq(t)k(t− 1),

where (b) is from Equation 5.12 in Lemma 5.3.

Lemma 5.4. On event E, if arm k ∈ {lt, ut} is pulled at time t ∈ {1, . . . , n}, we have

BJq(t)(t)(t) ≤ min
(
0,−∆q(t)k + 2βq(t)k(t− 1)

)
+ 2βq(t)k(t− 1). (5.13)

Proof. We first prove the statement for B(t) = Uut(t)− Llt(t), i.e.,

B(t) ≤ min
(
0,−∆q(t)k + 2βq(t)k(t− 1)

)
+ 2βq(t)k(t− 1). (5.14)

We consider the following cases:
Case 1. k = ut:
Case 1.1. ut ∈ S∗q(t): Since by definition ut /∈ Jq(t)(t), there exists an arm j /∈ S∗q(t)
such that j ∈ Jq(t)(t). Now we may write

µq(t)(m+1) ≥ µq(t)j
(a)
≥ Lq(t)j(t)

(b)
≥ Llt(t)

(c)
≥ Lut(t) = µ̂q(t)k(t− 1)− βq(t)k(t− 1)

(d)
≥ µq(t)k − 2βq(t)k(t− 1) (5.15)

(a) and (d) hold because of event E , (b) follows from the fact that j ∈ Jq(t)(t) and
from the definition of lt, and (c) is the result of Lemma 5.3. From Equation 5.15, we
may deduce that −∆q(t)k + 2βq(t)k(t − 1) ≥ 0, which together with Corollary 5.1 give

4. Theoretical Analysis 119

us the desired result (Equation 5.14).

Case 1.2. ut /∈ S∗q(t):
Case 1.2.1. lt ∈ S∗q(t): In this case, we may write

B(t) = Uut(t)− Llt(t)
(a)
≤ µut + 2βut(t− 1)− µlt + 2βlt(t− 1)

(b)
≤ µut + 2βut(t− 1)− µq(t)(m) + 2βlt(t− 1)

(c)
≤ −∆ut + 4βut(t− 1) (5.16)

(a) holds because of event E , (b) is from the fact that lt ∈ S∗q(t), and (c) is because ut
is pulled, and thus, βut(t− 1) ≥ βlt(t− 1). The final result follows from Equation 5.16
and Corollary 5.1.

Case 1.2.2. lt /∈ S∗q(t): Since lt /∈ S∗q(t) and the fact that by definition lt ∈ Jq(t)(t),
there exists an arm j ∈ S∗q(t) such that j /∈ Jq(t)(t). Now we may write

µut + 2βut(t− 1)
(a)
≥ Uut(t)

(b)
≥ Uq(t)j(t)

(c)
≥ µj

(d)
≥ µq(t)(m) (5.17)

(a) and (c) hold because of event E , (b) is from the definition of ut and the fact that
j /∈ Jq(t)(t), and (d) holds because j ∈ S∗q(t). From Equation 5.17, we may deduce
that −∆ut + 2βut(t− 1) ≥ 0, which together with Corollary 5.1 give us the final result
(Equation 5.14).

With similar arguments and cases, we prove the result of Equation 5.14 for
k = lt. The final statement of the lemma (Equation 5.13) follows directly from
BJq(t)(t)(t) ≥ B(t) as shown in Lemma 5.2.

Using Lemmas 5.1 and 5.4, we define an upper and a lower bounds on BJq(t)(t) in
terms of quantities related to the regret of Jq(t)(t). Lemma 5.1 confirms the intuition
that the B-values upper-bound the regret of the corresponding set of arms (with high
probability). Unfortunately, this is not enough to claim that selecting Jp(t) in bandit p
as the set of arms with smallest B-values actually correspond to arms with small regret,
since BJp(t) could be an arbitrary loose bound on the regret. Lemma 5.4 provides this
complementary guarantee specifically for the set Jq(t)(t), in the form of an upper-
bound on BJq(t)(t) with respect to the gap of k ∈ {ut, lt}. This implies that as the
algorithm runs, the choice of Jq(t)(t) becomes more and more accurate since BJq(t)(t)
is constrained between rJq(t)(t) and a quantity (Equation 5.13) that gets smaller and
smaller, thus implying that selecting the arms with the smaller B-value, i.e., the set
Jq(t)(t), corresponds to those which actually have the smallest regret, i.e., the arms in
S∗q(t). Moreover, this observation will be true among all the bandits as the UGapEb
algorithm always select the bandit with the highest B index. These arguments will be
implicitly at the basis of the proof of the following theorem.

120 Chapter 5. Multi-Bandit Best Arm Identification

4.1.2 Proof of the Regret Bound

Here we prove an upper-bound on the simple-regret of UGapEb. From the definition
of the confidence interval βpi(t) in Equation 5.5 and a union bound, we have that
P(E) ≥ 1−2Kn exp(−2a).6 We now have all the tools needed to prove the performance
of UGapEb for the multi-bandit m (ε,m)-best arm identification problem.

Proof. The proof is by contradiction. We assume that their exist a bandit p for which
rΩp(n) > ε on event E and consider the following two steps:

Step 1: Here we show that on event E , we have the following upper-bound on the
number of pulls of any arm i ∈ A:

Tpi(n) < 4ab2

max
(

∆pi+ε
2 , ε

)2 + 1. (5.18)

Let tpi be the last time that arm i in bandit p is pulled. If arm i has been pulled only
during the initialization phase, Tpi(n) = 1 and Equation 5.18 trivially holds. If i has
been selected by SELECT-ARM, then we have

min
(
−∆pi + 2βpi(tpi − 1), 0

)
+ 2βpi(tpi − 1)

(a)
≥ B(tpi)

(b)
≥ BJ(tpi)(tpi)

(c)
≥ BΩ(n)(t`p)

(d)
> ε,

(5.19)
where t`p ∈ {1, . . . , n} is the time such that Ωp(n) = J(t`p). (a) and (b) are the results
of Lemmas 5.4 and 5.2, (c) is by the definition of Ωp(n), and (d) holds because using
Lemma 5.1, we know that if the algorithm suffers a simple regret rΩp(n) > ε (as assumed
at the beginning of the proof), then ∀t = 1, . . . , n+ 1, BΩp(n)(t) > ε. By the definition
of ti, we know Tpi(n) = Tpi(ti− 1) + 1. Using this fact, the definition of βpi(ti− 1), and
Equation 5.19, it is straightforward to show that Equation 5.18 holds.

Step 2: We know that ∑M
p=1

∑K
i=1 Tpi(n) = n. Using Equation 5.18, we have∑M

p=1
∑K
i=1

4ab2

max
(

∆pi+ε
2 ,ε

)2 +K > n on event E . It is easy to see that by selecting a ≤ n−K
4Hε ,

the left-hand-side of this inequality will be smaller than or equal to n, which is a con-
tradiction. Thus, we conclude that rΩp(n) ≤ ε on event E . The final result follows from
the probability of event E defined at the beginning of this section.

4.2 Extensions

In this section, we propose variants of the UGapE and GapE algorithms with the
objective of extending their applicability and improving their performance.

6The extension to a confidence interval that takes into account the variance of the arms is discussed
in Section 4.2.2

4. Theoretical Analysis 121

4.2.1 Extension to the Fixed-Confidence Setting

Here we give a variant of the UGapE algorithm, called UGapEc, for the fixed confidence
setting. The pseudo-code of UGapEc is displayed in Figure 5.5. This algorithm is
mainly based on the same sampling routine as UGapEb defined in the left panel of
Figure 5.4. Therefore, its analysis will also mainly reuse the results from the analysis
of the sampling routine reported in Section 4.1.1.

There are two more points that need to be discussed on UGapEc in comparison
with UGapEb. 1) While UGapEc defines the set of returned arms for bandit p as
Ωp(t) = Jp(t), UGapEb returns the set of arms Jp(t) with the smallest index, i.e.,
Ωp(n) = arg minJ(t) BJp(t)(t), t ∈ {1, . . . , n}. 2) UGapEc stops (we refer to the number
of rounds before stopping as ñ) when BJp(ñ+1)(ñ+ 1) is less than the given accuracy ε
for all bandits p, i.e., when even the mth worst upper-bound on the arm simple regret
among all the arms in the selected set Jp(ñ + 1) is smaller than ε in all the bandits.
This guarantees that the simple regret (see Equation 5.2) of the set returned by the
algorithm, Ωp(ñ) = J(ñ+ 1), to be smaller than ε with probability larger than 1− δ.

UGapEc (ε,m, δ, c)
Parameters: accuracy ε, number of arms m, confidence level δ, exploration pa-
rameter c
Initialize: Pull each arm k once in each bandit p, update µ̂pk(MK), set Tpk(MK) =
1 and t←MK + 1
SAMP
while ∃p : BJp(t)(t) ≥ ε do

SELECT-ARM (t)
t← t+ 1

end while
SAMP
For all bandit p, return Ωp(t) = Jp(t)

Figure 5.5: The pseudo-code of UGapEc, the UGapE algorithm in the fixed-confidence
setting.

Since the setting considered by the algorithm is fixed-confidence, we do not consider
a fixed stopping time n. Therefore, similar to event E , we define event Ec as

Ec =
{
∀k ∈ A, ∀p ∈ {1, . . . ,M}, ∀t ∈ {1, . . . ,+∞},

∣∣∣µ̂pk(t)− µpk∣∣∣ < βpk(t)
}
, (5.20)

where βpi(t) takes the following form,

βpi(t− 1) = b

√√√√c log 4MK(t−1)3

δ

Tpi(t− 1) . (5.21)

From the definition of the confidence interval βpi(t) in Equation 5.5 and a union bound
on Tpk(t) ∈ {0, . . . , t}, t = 1, . . . ,∞, we have that P(Ec) ≥ 1− δ. In the next theorem,
we prove an upper-bound on the simple-regret of UGapEc.

122 Chapter 5. Multi-Bandit Best Arm Identification

Theorem 5.3. The UGapEc algorithm stops after ñ rounds and returns a set of m
arms in each bandit p, Ωp(ñ), that for each bandit p satisfies

P
(
rΩp(ñ+1) ≤ ε ∧ ñ ≤ N

)
≥ 1− δ,

where N = K +O(Hε log HεMK
δ

) and c has been set to its optimal value 1/2.

Proof. We first prove the bound on the simple regret of UGapEc. Using Lemma 5.1, we
have that on event Ec, for each bandit p, the simple regret of UGapEc upon stopping
satisfies BJp(ñ+1)(ñ + 1) = BΩp(ñ+1)(ñ + 1) ≥ rΩp(ñ+1). As a result, on event Ec, the
regret of UGapEc cannot be bigger than ε, because then it contradicts the stopping
condition of the algorithm, i.e., BJp(ñ+1)(ñ + 1) < ε for each bandit p. Therefore, we
have P

(
rΩp(ñ+1) ≤ ε

)
≥ 1− δ for all bandits. Now we prove the bound for the sample

complexity of UGapEc. Similar to the proof of Theorem 5.2, we consider the following
two steps:

Step 1: Here we show that on event Ec, we have the following upper-bound on the
number of pulls of any arm i ∈ A in bandit p:

Tpi(ñ) ≤ 2b2 log(4MK(ñ− 1)3/δ)
max

(
∆pi+ε

2 , ε
)2 + 1. (5.22)

Let tpi be the last time that arm i is pulled in bandit p. If arm i in bandit p has
been pulled only during the initialization phase, Tpi(ñ) = 1 and Equation 5.22 trivially
holds. If i in p has been selected by SELECT-ARM, then we have BJp(tpi)(tpi) ≥ ε.
Now using Lemma 5.4, we may write

BJp(tpi)(tpi) ≤ min
(
0,−∆pi + 2βpi(tpi − 1)

)
+ 2βpi(tpi − 1). (5.23)

We can prove Equation 5.22 by plugging in the value of βpi(tpi − 1) from Equation 5.5
and solving Equation 5.23 for Tpi(tpi) taking into account that Tpi(tpi−1)+1 = Tpi(tpi).

Step 2: We know that ∑M
p=1

∑K
i=1 Tpi(ñ) = ñ. Using Equation 5.22, on event Ec, we

have 2Hε log
(
MK(ñ−1)3/δ

)
+MK ≥ ñ. Using Lemma 8 in Antos et al. (2010) solves

this inequality and gives us ñ ≤ N .

Theorem 5.3 indicates that similar to UGapEb, both the probability of success
and sample complexity of UGapEc are directly related to the complexity Hε defined
by Equation 5.6. Furthermore, note that this definition generalizes existing notions
of complexity. For example, for ε = 0 and m = 1, we recover the complexity defined
by Even-Dar et al. (2006) for the fixed accuracy setting. Moreover, the analysis reported
here suggests that the performance of an upper confidence bound based algorithm such
as UGapE is characterized by the same notion of complexity in both fixed budget and
fixed confidence settings. Thus, whenever the complexity is known, it is possible to
exploit the theoretical analysis (bounds on the performance) to easily switch from one

4. Theoretical Analysis 123

setting to another. For example, as also suggested in Section 5.4 of Kalyanakrishnan
(2011), if the complexity H is known, an algorithm like UGapEc can be adapted to run
in the fixed budget setting by inverting the bound on its sample complexity. This would
lead to an algorithm similar to UGapEb, with similar performance. A more intuitive
way to see the link between the fixed confidence setting and the fixed budget setting
with known complexity is to look at the “good” static allocation associated with these
two settings. As derived in Equation 5.7, the number of pulls of the static allocation
in the fixed budget setting is T ∗pk(n) ≈ nHpk/H for arm k in bandit p. Similarly one
can derive the static allocation in the fixed confidence setting for the same arm as
T ∗pk(n) ≈ Hpk log(1

δ
). Hence, when the complexity H of the problem is known, one

can turn an algorithm designed to mimic the “good” static allocation in the fixed
confidence setting to an algorithm designed to mimic the “good” static allocation in
the fixed budget setting by selecting the targeted accuracy so that log(1

δ
) ≈ n/H. On

the other hand, it is an open question whether it is possible to find an “equivalence”
between the two settings when the complexity is not known.

Note that contrary to this unifying approach, Karnin et al. (2013) have recently
designed new algorithms for each setting separately (tackling the fixed budget setting
without knowledge of the complexity) with improved, and almost optimal, new upper
bounds on the probability of error of the proposed algorithms.

4.2.2 GapE-Variance and UGapE-Variance

In this section, we extend UGapE algorithms so that they take into account the vari-
ance of the arms and show how the resulting algorithms improve upon some previous
approaches that were also taking the variance into account. As discussed in Section 3,
UGapE pulls arms according to their B index, which is a high probability upper-bound
on their simple regret. This gives us the flexibility of using any high probability bound
in the definition of index in UGapE and to extend the algorithm. As discussed ear-
lier, the algorithm and analysis (for both settings) are also modular enough to allow
such extension. One natural extension, similar to the extension of UCB proposed by
Audibert et al. (2007) for the cumulative regret setting, is to replace the Chernoff-
Hoeffding bounds of Equation 5.5 with the following Bernstein bounds in order to take
into account the variances of the arms:

UGapEb-V: βpk(t) =

√√√√2a σ̂2
pk(t)

Tpk(t)
+ (7/3)ab
Tpk(t)− 1 ,

UGapEc-V: βpk(t) =

√√√√2c log Kt3

δ
σ̂2
pk(t)

Tpk(t)
+

(7/3)bc log Kt3

δ

Tpk(t)− 1 ,

where σ̂2
pk(t) = 1

Tpk(t)−1
∑Tpk(t)
s=1

(
Xpk(s) − µ̂pk(t)

)2
is the estimated variance of arm k

of bandit p at the end of round t. We call the resulting algorithm UGapE-variance
(UGapE-V). Using Theorem 11 in Maurer and Pontil (2009), it is easy to show that
Theorems 5.2 and 5.3, bounding the simple regret of the fixed budget and fixed confi-
dence settings, still hold (without major change in their proofs) with a new definition

124 Chapter 5. Multi-Bandit Best Arm Identification

(a) Not taking into account the vari-
ance

1 1 2

Bandit 2: easy

2

Bandit 1: hard

(b) Taking into account the variance

Figure 5.6: On the importance of taking the variance into account. We consider a
problem with two bandits both composed of two arms (M = 2, K = 2). In Bandit 1,
the gap between the two arms is larger than in Bandit 2. On the left panel (a), if we
do not take into account the variances of the arms, we will conclude that Bandit 1 is
simpler to solve than Bandit 2. If it happens, as illustrated on the right panel (b), that
the variance of the arms of Bandit 1 are way larger than the variance of the arms of
Bandit 2, we would conclude, on the contrary, that Bandit 1 is more complex to solve
that Bandit 2. Therefore in this example, an algorithm taking into account the gaps
but not the variances would allocate most of its pulls to the simpler bandit and would
subsequently perform poorly.

of complexity, i.e.,

Hσ
ε =

M∑
p=1

K∑
i=1

(
σi +

√
(13/3)b∆pi

)2

max
(

∆pi+ε
2 , ε

)2 . (5.24)

This variance-complexity Hσ
ε is expected to better capture the complexity of the arms

and to be smaller than Hε defined by Equation 5.6, whenever the variances of the arms
are small compared to the range b of the distribution. Figure 5.6 gives an example
where taking the variance into account is crucial.

Mnih et al. (2008) proposed the Bernstein Races, a family of best arm identification
algorithms based on the Bernstein inequality for the fixed confidence setting. The
term bounding the number of pulls of a sub-optimal arm i in bandit p in their analysis
is of the form (σ2

p(1) + σ2
pi)/∆2

pi, where σ2
p(1) is the variance of the best arm. This

causes Bernstein Races to allocate the pulls equally over the arms, when the task is to
discriminate between two arms (K = 2), while intuitively the arms should be pulled
proportionally to their variances. On the other hand, UGapEc-V is able to handle
this case properly (i.e., to pull the arms proportionally to their variances), because its
bound on the number of pulls of a sub-optimal arm i in bandit p is of the form σ2

pi/∆2
pi

(see the definition ofHσ
ε in Equation 5.24). In Section 5.2.1, we report numerical results

showing that UGapEc-V has better performance than Bernstein Race when variance
of the optimal arm is larger than those of the sub-optimal arms.

A very similar variance extension can be proposed for GapE resulting in the GapE-

4. Theoretical Analysis 125

Variance (GapE-V) algorithm with the price of a separate and tedious proof (see Gabil-
lon et al. 2011a). Naturally, the variance complexity of GapE is the same as the one
of UGapEb for the case ε = 0, but with worse numerical constants.

4.2.3 Higher-Order Moments

After considering the extension using variance estimates, a natural extension is to build
algorithms taking into account higher-order moments. In fact, when considering all the
moments of a distribution, the natural quantity for discriminating between the arms
is related to the Kullback-Leibler (KL) divergence. The KL divergence between two
continuous distributions ν1 and ν2, DKL(ν1‖ν2), is defined as follows:

DKL(ν1‖ν2) =
∫ ∞
−∞

ln
(
ν1(x)
ν2(x)

)
ν1(x) dx. (5.25)

Intuitively, DKL(ν1‖ν2) is a measure of the information loss when ν2 is used to ap-
proximate ν1 and is related to the number of pulls needed to discriminate between
ν1 and ν2. Note that the KL divergence is not symmetric. The KL divergence has
been used in the analysis and design of various algorithms for the classical (cumulative
regret) bandit problem (Honda and Takemura, 2011, Kaufmann et al., 2012, Cappé
et al., 2013). Recently, Kaufmann and Kalyanakrishnan (2013) proposed KL-LUCB,
an extension of LUCB (Kalyanakrishnan et al., 2012), which takes into account the
empirical KL divergence between the arms in the case of Bernoulli distributions. More
precisely, they considered the Chernoff information, d∗(ν1, ν2), a symmetric version of
the KL divergence for two Bernoulli distributions ν1 and ν2, that is defined as

d∗(ν1, ν2) = KL(ν∗, ν1) = KL(ν∗, ν2), (5.26)

where ν∗ is the unique Bernoulli distribution such that KL(ν∗, ν1) = KL(ν∗, ν2).

4.2.4 Adaptive Algorithms in the Fixed Budget Setting

In the fixed budget setting, a drawback of GapE, GapE-V, UGapEb, and UGapEb-V is
that the exploration parameter a should be tuned according to the complexities Hε and
Hσ
ε of the multi-bandit problem, which are rarely known in advance. Let us consider

for simplicity the case ε = 0 and drop the dependency in ε. A straightforward solution
to this issue is to move to an adaptive version of these algorithms by substituting H
and Hσ with suitable estimates Ĥ and Ĥσ. At each step t of the adaptive (U)GapE

126 Chapter 5. Multi-Bandit Best Arm Identification

and (U)GapE-V algorithms, we estimate these complexities as

Ĥ(t) =
∑
p,k

b2

UCB∆pk
(t)2 ,

Ĥσ(t) =
∑
p,k

(
LCBσpk(t) +

√
LCBσpk(t)2 + (16/3)b× UCB∆pk

(t)
)2

UCB∆pk
(t)2 ,

where UCB∆pk
(t) = ∆̂pk(t− 1) +

√
1

2Tpk(t− 1)

and LCBσpk(t) = max
(

0, σ̂pk(t− 1)−
√

2
Tpk(t− 1)− 1

)
.

Similar to the adaptive version of UCB-E in Audibert et al. (2010), Ĥ and Ĥσ are
lower-confidence bounds on the true complexities H and Hσ. Note that the (U)GapE
and (U)GapE-V bounds written for the optimal value of a indicate an inverse relation
between the complexity and exploration. By using a lower-bound on the true H and
Hσ, the algorithms tend to explore arms more uniformly and this allows them to
increase the accuracy of their estimated complexities. Although we do not analyze
these algorithms, we empirically show in Section 5 that they are in fact able to match
the performance of the non-adaptive (U)GapE and (U)GapE-V algorithms.

5 Numerical Simulations
In this section, we report numerical simulations of the gap-based algorithms presented
in this chapter, (U)GapE and (U)GapE-V, and their adaptive versions A-(U)GapE and
A-(U)GapE-V. The first set of experiments only involves GapE and its variants. We
display the advantages of the gap-based algorithms over different baseline methods and
discuss their performance on clinical data and in the CBPI rollout allocation problem.
We then report the results of the generic algorithm UGapE in both fixed confidence
and fixed budget settings. In the fixed budget setting, we highlight that UGapEb
and GapE have similar performance, and in the fixed confidence setting, we show that
UGapEc outperforms the existing baseline algorithms.

5.1 Results for GapE and its Variants
In this section, we report numerical simulations of GapE and GapE-V, and their adap-
tive versions A-GapE and A-GapE-V. First we compare them using synthetic problems
with Unif and Unif+UCB-E algorithms introduced in Section. 4. The results of our
experiments indicate that 1) GapE successfully adapts its allocation strategy to the
complexity of each bandit and outperforms the uniform allocation strategies, 2) the
use of the empirical variance in GapE-V can significantly improve the performance
over GapE, and 3) the adaptive versions of GapE and GapE-V that estimate the com-
plexities H and Hσ online attain the same performance as the basic algorithms, which

5. Numerical Simulations 127

receive H and Hσ as an input.7 We highlight the advantage of the dynamic allocation
strategies other the static allocation strategies in practice. Finally, additional experi-
ments are run to discuss the applicability of the GapE algorithms on real-world clinical
data and on the CBPI rollout allocation problem.

• Experimental Setting for the Synthetic Problems: We use the following
seven problems in our experiments. Note that b = 1 and that a Rademacher
distribution with parameters (x, y) takes value x or y with probability 1/2. We remind
the reader that GapE only deals with the special case m = 1 and ε = 0.

◦ Problem 1. n = 700, M = 2, K = 4. The arms have Bernoulli distributions with
parameters: bandit 1 : (0.5, 0.45, 0.4, 0.3), bandit 2 : (0.5, 0.3, 0.2, 0.1).

◦ Problem 2. n = 1000, M = 2, K = 4. The arms have Rademacher distributions
with parameters (x, y): bandit 1 : {(0, 1.0), (0.45, 0.45), (0.25, 0.65), (0, 0.9)} and in
bandit 2 : {(0.4, 0.6), (0.45, 0.45), (0.35, 0.55), (0.25, 0.65)}.

◦ Problem 3. n = 1400, M = 4, K = 4. The arms have Rademacher distribu-
tions with parameters (x, y): bandit 1 : {(0.4, 0.85), (0.25, 0.9), (0.2, 0.95), (0.1, 1.0)},
bandit 2 : {(0.0, 1.0), (0.0, 0.8), (0.0, 0.5), (0.3, 0.4)}, bandit 3 : {(0.4, 1.0), (0.0, 0.5),
(0.1, 0.5), (0.2, 0.5)}, and bandit 4 : {(0.0, 1.0), (0.0, 0.8), (0.45, 0.45), (0.45, 0.45)}.

◦ Problem 4. n = 400, M = 4, K = 4. The arms have Rademacher distri-
butions with the following parameters (x, y): bandit 1 :

{
(0.15, 0.55), (0.25, 0.5),

(0.15, 0.2), (0.75, 0.8)
}
, bandit 2 :

{
(0.25, 0.45), (0.45, 0.85), (0.2, 0.8), (0.2, 0.8)

}
, bandit

3 :
{

(0.5, 1.0), (0.6, 0.75), (0.5, 0.6), (0.2, 0.4)
}
, bandit 4 :

{
(0, 0.9), (0, 0.5), (0.5, 0.5),

(0.3, 0.85)
}
.

◦ Problem 5. n = 700, M = 3, K = 3. The arms have Rademacher distributions with
the following parameters (x, y): bandit 1 :

{
(0.65, 1.0), (0.35, 0.95), (0.15, 0.6)

}
, bandit

2 :
{

(0.3, 0.5), (0.5, 0.6), (0.3, 0.6)
}
, bandit 3 :

{
(0.0, 0.45), (0.3, 0.9), (0.55, 0.6)

}
.

◦ Problem 6. n = 1500, M = 10, K = 4. The arms have Rademacher dis-
tributions with the following parameters (x, y): bandit 1 :

{
(0.9, 0.9), (0.5, 0.7),

(0, 0.55), (0.15, 0.25)
}
, bandit 2 :

{
(0.15, 0.60), (0.35, 0.75), (0.4, 0.85),

(0.15, 0.65)
}
, bandit 3 :

{
(0.4, 0.55), (0.05, 0.85), (0, 0.45), (0.2, 0.25)

}
,

bandit 4 :
{

(0.85, 1.0), (0.15, 0.35), (0.2, 0.4), (0.15, 0.9)
}
, ban-

dit 5 :
{

(0.25, 0.75), (0.15, 0.75), (0.9, 0.95), (0.4, 0.95)
}
, bandit 6 :{

(0.45, 0.65), (0.85, 1.0), (0.4, 0.8), (0.2, 0.9)
}
, bandit 7 :

{
(0, 0.85), (0.3, 0.5), (0.4, 1.0),

7We drop the dependency in ε in the complexity terms when discussing the GapE results.

128 Chapter 5. Multi-Bandit Best Arm Identification

ere Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

Uniform + UCBE

4 8 16 32

GapE

●

●

●

●

2 4 8 16

Adapt GapE

●
●

●

●

1/8 1/4 1/2 1

H ≈ 900Bandit 1: H ≈ 70Bandit 2:

Figure 5.7: Problem 1: Comparison between GapE, adaptive GapE, and the uniform
strategies. Maximum probability of error of the algorithms (left) and the graphical
illustration of the problem (right).

ere Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

GapE

●

● ● ●

8 16 32 64

GapE−V

2 4 8 16

Adapt GapE−V

1/4 1/2 1 2

H ≈ 1600 H ≈ 1600
Hσ ≈ 1400 σ ≈ 600

Bandit 1: Bandit 2:
H

Figure 5.8: Problem 2: Comparison between GapE, GapE-V, and adaptive GapE-V
algorithms. Maximum probability of error of the algorithms (left) and the graphical
illustration of the problem (right).

(0.35, 0.4)
}
, bandit 8 :

{
(0.55, 0.85), (0.35, 0.75), (0.35, 0.5), (0.25, 1.0)

}
,

bandit 9 :
{

(0.4, 0.6), (0.55, 0.95), (0.15, 0.6), (0.1, 0.8)
}
, bandit 10 :{

(0.05, 0.3), (0.8, 0.85), (0.2, 0.75), (0.2, 0.75)
}
.

◦ Problem 7. n = 3000, M = 4, K = 4. The four bandits are identical and the arms
have Bernoulli distributions with the following means: (0.5, 0.45, 0.4, 0.3).

• Experimental Results for the Synthetic Problems: All the algorithms, ex-
cept the uniform allocation, have an exploration parameter a. The theoretical analysis
suggests that a should be proportional to n

H
. Although a could be optimized accord-

ing to the bound, since the constants in the analysis are not accurate, we will run

5. Numerical Simulations 129

the algorithms with a = η n
H
, where η is a parameter which is empirically tuned (in

the experiments we report four different values of η). If H correctly defines the com-
plexity of the exploration problem (i.e., the number of samples to find the best arms
with high probability), η should simply correct the inaccuracy of the constants in the
analysis, and thus, the range of its nearly-optimal values should be constant across
different problems. In Unif+UCB-E, UCB-E is run with the budget of n/M and the
same parameter η for all the bandits. Finally, we set n ' Hσ, since we expect Hσ to
roughly capture the number of pulls necessary to solve the pure exploration problem
with high probability. In the following figures, we report the performance l(n), i.e., the
probability to identify the best arm in all the bandits after n rounds, of the gap-based
algorithms as well as Unif and Unif+UCB-E strategies. The results are averaged over
105 runs and the error bars correspond to three times the estimated standard deviation.
In all the figures the performance of Unif is reported as a horizontal dashed line.

The left panel of Figure 5.7 displays the performance of Unif+UCB-E, GapE, and
A-GapE in Problem 1. As expected, Unif+UCB-E has a better performance (23.9%
probability of error) than Unif (29.4% probability of error), since it adapts the allo-
cation within each bandit so as to pull more often the nearly-optimal arms. However,
the two bandit problems are not equally difficult. In fact, their complexities are very
different (H1 ' 925 and H2 ' 67), and thus, much less samples are needed to identify
the best arm in the second bandit than in the first one. Unlike Unif+UCB-E, GapE
adapts its allocation strategy to the complexities of the bandits (on average only 19%
of the pulls are allocated to the second bandit), and at the same time to the arm
complexities within each bandit (in the first bandit the averaged allocation of GapE
is (37%, 36%, 20%, 7%)). As a result, GapE has a probability of error of 15.7%, which
represents a significant improvement over Unif+UCB-E.

The left panel of Figure 5.8 compares the performance of GapE, GapE-V, and
A-GapE-V in Problem 2. In this problem, all the gaps are equal (∆pk = 0.05), and
thus, all the arms (and bandits) have the same complexity Hpk = 400. As a result,
GapE tends to implement a nearly uniform allocation, which results in a small differ-
ence between Unif and GapE (28% and 25% accuracy, respectively). The reason why
GapE is still able to improve over Unif may be explained by the difference between
static and dynamic allocation strategies and it is further investigated in the upcoming
“Twin Bandits” paragraph. Unlike the gaps, the variance of the arms is extremely
heterogeneous. In fact, the variance of the arms of bandit 1 is bigger than in bandit
2, thus making it harder to solve. This difference is captured by the definition of Hσ

(Hσ
1 ' 1400 > Hσ

2 ' 600). Note also that Hσ ≤ H. As discussed in Section 4.2.2,
since GapE-V takes into account the empirical variance of the arms, it is able to adapt
to the complexity Hσ

pk of each bandit-arm pair and to focus more on uncertain arms.
GapE-V improves the final accuracy by almost 10% with respect to GapE.

From both Figures 5.7 and 5.8, we also notice that the adaptive algorithms achieve
similar performance to their non-adaptive counterparts. Finally, we notice that a good
choice of parameter η for GapE-V is always close to 2 and 4 (see also the upcoming
additional experiments), while GapE needs η to be tuned more carefully, particularly

130 Chapter 5. Multi-Bandit Best Arm Identification

Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

Unif + UCBE

4 8 16 32

Unif + A UCBE

1 2 4 8

Unif + UCBE−V

2 4 8 16

Unif + A UCBE−V

1/4 1/2 1 2

GapE

●
●

●

●

4 8 16 32

A GapE

●

●
●

●

1/4 1/2 1 2

GapE−V

1/2 1 2 4

A GapE−V

1/4 1/2 1 2

Figure 5.9: Performance of the algorithms in Problem 3.

Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
1

0.
2

0.
3

0.
4

Unif + UCBE

2 4 8 16

Unif + A UCBE

1/8 1/4 1/2 1

Unif + UCBE−V

1 2 4 8

Unif + A UCBE−V

1/8 1/4 1/2 1

GapE

●

● ●
●

1 2 4 8

A GapE

● ● ●
●

1/8 1/4 1/2 1

GapE−V

1 2 4 8

A GapE−V

1/8 1/4 1/2 1

Figure 5.10: Performances of all the algorithms in Problem 4.

in Problem 2 where the large values of η try to compensate the fact that H does not
successfully capture the real complexity of the problem. This further strengthens the
intuition that Hσ is a more accurate measure of the complexity for the multi-bandit
pure exploration problem.

While Problems 1 and 2 are relatively simple, we report the results of the more
complicated Problems 3, 4, 5, and 6 in Figures 5.9, 5.10, 5.11, and 5.12, respectively.
The experiments are designed so that the complexity with respect to the variance of
each bandit and within each bandit is strongly heterogeneous. In fact, in these prob-
lems, we randomly generated the parameters x and y of the Rademacher distributions.
In order to test the robustness of the algorithms we design problems where the number
of arms varies from 9 to 40. In these experiment, we also introduce UCBE-V that
extends UCB-E by taking into account the empirical variance similarly to GapE-V.
The results mostly confirm those reported before. In fact, in all these problems, all
the gap-based algorithms outperform the Unif+UCB-E algorithm. Furthermore, it can
be noticed that taking into account the variance leads to an extra improvement of the
performance. In these experiments, we again notice that GapE-V has its best perfor-
mance when the exploration parameter η is in the interval [2 − 4]. This strengthens

5. Numerical Simulations 131

Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Unif + UCBE

1/2 1 2 4

Unif + A UCBE

1 2 4 8

Unif + UCBE−V

4 8 16 32

Unif + A UCBE−V

1/4 1/2 1 2

GapE

●

● ●
●

1 2 4 8

A GapE

● ● ● ●

1/321/16 1/8 1/4

GapE−V

1/2 1 2 4

A GapE−V

1/16 1/8 1/4 1/2

Figure 5.11: Performances of all the algorithms in Problem 5.

Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
1

0.
2

0.
3

0.
4

0.
5

Unif + UCBE

4 8 16 32

Unif + A UCBE

1 2 4 8

Unif + UCBE−V

1/2 1 2 4

Unif + A UCBE−V

1/321/16 1/8 1/4

GapE

●

● ●

●

1 2 4 8

A GapE

●
● ●

●

1/321/16 1/8 1/4

GapE−V

1/2 1 2 4

A GapE−V

1/16 1/8 1/4 1/2

Figure 5.12: Performances of all the algorithms in Problem 6.

132 Chapter 5. Multi-Bandit Best Arm Identification

Parameter η

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

0.
30

0.
35

0.
40

0.
45

0.
50

Uniform + UCBE

2 4 8 16

GapE

●

●
●

●

2 4 8 16

Figure 5.13: Problem 7: The benefit of adaptive allocation over the bandits in the twin
bandits problem.

the claim that the complexity Hσ is a good measure of the complexity for any given
problem. Moreover, this makes the algorithms easy to use as it provides an easy way
to tune the exploration parameter η .

One remark about Problem 6 (see Figure 5.11) is that in this problem we notice
that Unif+UCB-E performs worse than Uniform. In bandit 3, the gap between arm
2 and arm 3 is very small (= 0.025). Therefore, the complexity H of this bandit is
high, H3 ' 3000. However the variance of arm 3 in bandit 3 is really small, thus
making H not representative of the true hardness of this problem. The budget n in
this experiment is set to 700, and as a result, the budget allocated to the bandit 3 in
Unif+UCBE is 233. This budget is small with respect to the complexity H, and thus,
the exploration term of UCB-E will be small and almost no exploration will be done in
this bandit. This leads Unif+UCB-E to perform worse than Unif. Note that when the
exploration parameter η tends to infinity, UCB-E becomes equivalent to the Uniform
algorithm. Hence, one can still recover the performance of the Uniform algorithm by
setting η � 1.

• The Twin Bandits (static vs dynamic allocations): In this paragraph, we
consider the Problem 7. Since in this problem the bandits are identical, it seems in-
tuitive to uniformly allocate the budget over the bandits. Hence, we would expect
GapE and Unif+UCB-E to have the same performance in this problem. However,
Figure 5.13 shows that GapE performs significantly better than Unif+UCB-E. This
suggests that dynamic allocation strategies (GapE) might outperform static allocation
strategies (Unif+UCB-E). A possible explanation would be that GapE is able to adapt
to the actual observations. For example, it could happen in one bandit that the empir-
ical mean of the best arm is bigger than its true value, while the empirical means of the
sub-optimal arms are smaller than their true values. This means that for this specific
realization, the estimated potential simple regret in this bandit is small and the bandit
is considered to be easier than what it is. The opposite may happen in another bandit,
thus, making it harder than what it is. In this case, more pulls should be allocated

5. Numerical Simulations 133

to the second bandit because this is where an error of identification is the most likely
to happen in this particular realization. Since GapE adapts, in most of the cases, to
the observations of each realization of the problem, it seems to successfully adapt to
the specific “empirical” hardness of the bandits and to obtain a better performance
than an allocation that statically chooses the number of pulls on the basis of the gaps.
This result shows a potential advantage of dynamic strategies with respect to static
strategies and it asks for a more thorough investigation. Moreover, this phenomenon
is also probably related (among others) to the observation that, in practice, adaptive
sampling (index-based) algorithms are more efficient than uniform sampling (with re-
jection/acceptance techniques) algorithms, as briefly mentioned in the introduction of
this chapter.

• Clinical Data: In this paragraph we compare the performance of GapE to Min-
MaxPics, one of the algorithms designed by Deng et al. (2011) for the multi-bandit
best arm identification problem. MinMaxPics computes at time t an empirical esti-
mation of a “good” static allocation based on the samples collected until time t. This
computation is similar the one reported in Remark 5.3. Then MinMaxPics tries to
mimic this empirical static allocation with probability 1− ε or explore at random with
probability ε.

Among the reported experiments of their paper, one is based on real world medical
data (extracted from Keller et al. (2000)). There, the goal is to find, for three different
groups of people (subpopulations with different history of alcoholism), the best of two
treatments to cure their depression. The problem is therefore a problem with 3 bandits
composed each of two arms.

We report the performances of GapE, MinMaxPics with ε ∈ {.1, .2, .5}, the uniform
strategy and the population sampling strategy in Figure 5.14. Population sampling cor-
respond to the case where no active selection of patient can be accomplished and those
are sampled according to their probability of appearance at the hospital. Figure 5.14
displays the performance in terms of the maximum probability of error with respect
to the number of patient tested. The main observation is that GapE outperforms
MinMaxPics by a large margin. As the variances in this experiment were not very
heterogeneous, GapE-V was not implemented.

• Application in Rollout Allocation in Classification-based Policy Iteration
Algorithms: Our first objective when designing the gap-based algorithms for the
best arm identification problem was to apply them to the problem of rollout allocation
in classification-based policy iteration (CBPI) algorithms in reinforcement (see Chap-
ters 1, 3, and 4). In this problem, a set of N ′ states, called the rollout set D = {s(i)}N ′i=1,
a finite set of actions A, and a current policy π are given. The goal is to compute the
greedy policy with respect to policy π. For each state s(i) ∈ D and action a ∈ A, a
rollout can be performed whose return is an estimate, Q̂(s(i), a), of the action-value
function Q(s(i), a). A policy is then computed as the one in the policy space Π with

134 Chapter 5. Multi-Bandit Best Arm Identification

0 100 200 300 400 500 600 700

0.
00

0.
05

0.
10

0.
15

Loss vs. Budget

Budget

M
ax

im
um

 p
ro

ba
bi

lit
y

of
 e

rr
or

Uniform
Population−Sampling
MinMaxPics, ε=0.1
MinMaxPics, ε=0.2
MinMaxPics, ε=0.5
Adaptive GapE

Figure 5.14: Performances of GapE and MinMaxPics in the medical experiment.

minimal cost-sensitive error L̂Π(π′) defined as

L̂Π(π′) = 1
N ′

N ′∑
i=1

[
max
a∈A

Q̂(s(i), a)− Q̂
(
s(i), π′(s(i))

)]
. (5.27)

The minimization of Equation 5.27 urges to compute a policy π′ that recom-
mends at each state s(i) of the rollout set, an action whose empirical action-value
Q̂
(
s(i), π′(s(i))

)
is not far from the action with the highest empirical action-value at

s(i), i.e., maxa∈A Q̂(s(i), a). The standard procedure up until now in the literature has
been to uniformly allocate the rollouts over the states in D and the actions in A. It
is however sub-optimal to allocate the same number of rollouts to the actions with
different action-values. One may think that it would be more efficient, once the actions
clearly sub-optimal have been discovered, to focus the effort to discriminate between
the actions that are likely to be the best. This leads to a best arm identification prob-
lem formulation. Moreover, another intuition is that if discriminating the best action
in one state is easier than in another, more effort should be allocated to the latter
state.

This is why we reformulated the problem of finding the best rollout allocation in
order to find a policy close to the greedy policy in Equation 5.27 into the surrogate
problem where the objective is to identify the greedy action (arm) in each of the states
(bandit) in a training set. This is the formulation which led us to the design of GapE,
and later UGapE. The results of our experiments, partially reported in Gabillon et al.
(2010), are somehow deceptive. They first confirm the intuition that a non-uniform
allocation of the rollouts among the actions indeed permits to improve the overall
performance of the rollout classification-based RL algorithm. On the contrary, when

5. Numerical Simulations 135

trying to improve the uniform allocation over states, all our efforts with either GapE or
its variants failed to bring a significant improvement. The main reason why is not clear
to us. Maybe the considered domains of RL (Mountain car and Inverted pendulum) are
such that they flatten the benefit of our new approaches. Another important issue may
be our formulation of the problem in term of a multi-bandit problem with the objective
of minimizing the probability of error while the initial objective was to minimize the
cost sensitive loss of the classifier. In this formulation, we argued that one should
focus on the states where the best action is the hardest to discriminate (where actions
have similar action-values), but one can argue that, in fact those states are not that
critical in the CBPI application because, by definition, a mistake there would result in
a very small loss in term of action-value. We believe that this phenomenon shadows
the interest of sampling non uniformly in the CBPI framework. However, it may be of
interest to use an allocation strategy whose target is to minimize, in each bandit, the
simple regret rather than the probability of error. Indeed, minimizing the sum of the
simple regret over the bandits (states) would correspond exactly with the objective of
minimizing the cost-sensitive loss. Designing specific allocation strategies that target
the simple regret minimization is nonetheless still an open problem and is left as an
interesting future work. More generally, this problem may need another formulation.
An interesting direction of research would be to build on or to study the applicability
of recent active learning algorithms proposed for cost-sensitive multi-label prediction
(Agarwal, 2013) as it would match the use of cost-sensitive classification in CBPI (see
Chapter 3 and Chapter 4).

Finally, this rollout allocation problem has connections with the problem of finding
a distribution generating the rollout states that improves the efficiency of the CBPI
algorithm (this problem can in fact also be encountered in a large number of batch RL
algorithms). Indeed, if there was a good heuristic for defining such a distribution, it
could also be used to help the rollout allocation focus more on the more “important”
states. However, this problem is known to be a hard problem and is still open. This
maybe gives another possible explanation for the lack of positive results in our rollout
allocation problem.

5.2 Results for UGapE and its Variants
In this section, we compare UGapE and UGapE-V to the state-of-the-art algorithms
in the fixed budget and fixed confidence settings in the single-bandit M = 1 scenario.
The objectives are to show that 1) UGapEb has the same performance as GapE in
practice (in the fixed budget setting) and 2) the expected improvement of UGapEc-V
other the Bernstein Races (see Section 4.2.2) are noticeable in practice (in the fixed
confidence setting).

5.2.1 Fixed Confidence Setting

Experimental setting. We define the following two problems, where (x, y) represents
a uniform distribution in [x, y]:

136 Chapter 5. Multi-Bandit Best Arm Identification

Sampling complexity w.r.t. confidence

Averaged sampling complexity

C
o
n
fi
d
e
n
c
e
 p

a
ra

m
e
te

r
 δ

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

1000 2000 3000 4000

UGapEc, c=0.02

Bernstein Race, c=0.02

Hoeffding Race, c=0.05

Sampling complexity w.r.t. confidence

Averaged sampling complexity

C
o
n
fi
d
e
n
c
e
 p

a
ra

m
e
te

r
 δ

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

500 1000 1500

UGapEc, c=0.02

Bernstein Race, c=0.02

Hoeffding Race, c=0.05

Figure 5.15: Comparison between UGapEc-V, Bernstein Races, and Hoeffding Races
algorithms on Problem 8 (left) and Problem 9 (right).

◦ Problem 8. K = 5 arms with parameters(
(0, 1), (0.4, 0.5), (0.4, 0.5), (0.4, 0.5), (0.4, 0.5)

)
.

◦ Problem 9. K = 5 arms with parameters
(
(0, 1), (0, 0.8), (0, 0.8), (0, 0.6), (0, 0.6)

)
.

We compare UGapEc-V with the Bernstein and Hoeffding Races algorithms. All
the algorithms have an exploration parameter c that we empirically tune. For each
algorithm and each confidence parameter δ, we compute the average sample complexity
over 1000 runs for different values of c ∈ {1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. For
each algorithm, we only consider the results corresponding to the value of c for which
the required confidence level δ is satisfied, i.e., the values of c for which the algorithm
satisfies P[rΩ(ñ) > ε = 0] ≤ δ, for all the values of δ considered in the experiment.
Finally in Figure 5.15, for each algorithm, we report the results for the value of c with
the smallest sample complexity.

In the left panel of Figure 5.15, we report the results for Problem 8 with m = 1
and ε = 0. In this problem, the optimal arm has significantly higher variance than
the other arms. This problem has been designed to highlight the difference between
the three algorithms and to illustrate the advantage of UGapEc-V over the Racing

5. Numerical Simulations 137

UGapE-V

η

UCBE

2 4 8 16

UCBE-V UGapEGapE UGapE-V

1 2 41 2 4 8

GapE−V

1 2 4 8 1 2 41 2 4

...

Figure 5.16: Comparison between UCB-E, UCBE-V, GapE, GapE-V, UGapE, and
UGapE-V algorithms in Problem 10.

algorithms, as discussed in Section 4.2.2. Since the sub-optimal arms have the same
mean and variance, the analysis of Bernstein and Hoeffding Races suggests that all the
arms, including the best one, should be pulled the same number of times. However,
since the Bernstein Races takes into account the variance, it has a tighter bound and
the stopping condition is met earlier than in Hoeffding Races. For example, for δ = 0.1,
Bernstein Races has an expected sample complexity of 1181 pulls, while the Hoeffding
Races stops after 1342 pulls on average. On the other hand, as expected from the
theoretical analysis (see Section 4.2.2), UGapEc-V stops after only 719 pulls. Note
that UGapEc-V distributes the number of pulls on average as (72%,7%,7%,7%,7%)
over the arms. This indicates that the algorithm successfully adapts to the variance of
the arms. The parameter c for which the algorithms have a minimal sample complexity
are c = 0.02 for Bernstein Races and UGapEc-V and c = 0.05 for Hoeffding Races.
Finally, in the right panel of Figure 5.15, we show the results for Problem 9. Although
unlike Problem 8, this problem has not been specifically designed to illustrate the
advantage of UGapEc over the Racing algorithms, UGapEc-V still outperforms the
Racing algorithms.

5.2.2 Fixed Budget Setting

In this section, we compare UGapEb with the state-of-the-art fixed budget algorithms:
UCBE, UCBE-V, GapE, and GapE-V in the single-bandit scenario M = 1. Since
all these algorithms share a very similar structure, we expect them to have similar

138 Chapter 5. Multi-Bandit Best Arm Identification

UGapE-V

η

UCBE

2 4 8 16

UCBE-V UGapEGapE UGapE-V

1 2 41 2 4 8

GapE−V

1 2 4 8 1 2 4 8 1 2 4 8

...

Figure 5.17: Comparison between UCB-E, UCBE-V, GapE, GapE-V, UGapEb, and
UGapEb-V algorithms in Problem 11.

performance. All the algorithms have an exploration parameter a. The theoretical
analysis suggests that a should be proportional to n

H
. Although a could be optimized

according to the bound, since the constants in the analysis are not accurate, we will
run the algorithms with a = η n

H
, where η is a parameter that is empirically tuned (in

the experiments we use four different values of η). The results are averaged over 1000
runs and the error bars correspond to three times the estimated standard deviation.

Experimental setting. We use the following two problems in our experiments:

◦ Problem 10. n = 2000, K = 20. The arms have Bernoulli distribution, the best
arm has a mean of 1/2 and the sub-optimal arms have a mean of 0.4.

◦ Problem 11. n = 4000, K = 15. The arms have Bernoulli distribution with
parameters µi = 0.5− 0.025(i− 1), i ∈ {1, . . . , 15}.

Note that b = 1 in these problems. In Figures 5.16 and 5.17, we report the per-
formance, calculated as the probability to identify the best arm after n rounds, of
UCB-E, UCBE-V, GapE, GapE-V, UGapEb, and UGapEb-V algorithms. The results
indicate that the best performance of each algorithm is achieved for similar values of
the parameter η. As expected, all the algorithms achieve similar performance, no one
has clear advantage over the others. Investigating the allocation over the budget n

6. Summary and Discussion 139

over arms, we also notice that for all the algorithms the number of pulls is inversely
proportional to the gaps. We also expect that UGapEb perform very similarly to GapE
in the multi-bandit scenario.

6 Summary and Discussion
In this chapter, we studied the problem of multi-bandit best arm identification. We
introduced two gap-based exploration algorithms, called GapE and UGapE, and for
each algorithm, proved an upper-bound on its probability of error. These are the
first theoretical results reported in the multi-bandit setting. We also extended our
proposed algorithms to take into account the variance of the arms, and proved upper-
bounds for the probability of error of the resulting algorithms. Moreover, we introduced
adaptive versions of these algorithms that estimate the complexity of the problem
online. The numerical simulations in synthetic problems and in a clinical problem
confirmed the theoretical findings that (U)GapE and (U)GapE-V outperform other
allocation strategies, and that their adaptive counterparts are able to estimate the
complexity without worsening the global performance.

Concerning the application to the rollout allocation problem in the CBPI algo-
rithms, the results are not satisfactory and required further investigation. On one
hand, this particular problem seems to be linked to the hard problem of designing
a “good” rollout set distribution. On the other hand, to better address the rollout
allocation problem, it might be of interest to to design algorithms that minimize the
simple regret and not the probability of error.

Although (U)GapE does not know the gaps, experimental results indicate that
it can outperform the static allocation strategy, which knows the gaps in advance.
This suggests that an adaptive strategy could perform better than a static one. This
observation asks for further investigation. Although this investigation may not lead to
major changes in the theoretical bounds, understanding this phenomenon could help
us to design more efficient algorithms.

We also outlined the link between fixed confidence and fixed budget settings when
the complexity of the problem is known to the forecaster. Recovering the same results
when ignoring the complexity is an interesting open problem.

Chapter 6

Conclusions and Future Work

This chapter provides a summary of methods and algorithms presented in this thesis,
and highlights some open questions that lay ground for future work.

1 Summary
This thesis has been motivated by the study of a relatively novel class of reinforcement
learning (RL) algorithms called Classification-based Policy Iteration (CBPI). CBPI
algorithms were introduced as a new class of RL algorithms that, contrary to the
standard RL algorithms, do not use an explicit representation for value function ap-
proximation. Instead, value functions are estimated using rollouts in order to build a
training set that consists of states paired with their recommended actions. Using this
training set, the greedy policy is then learned as the output of a classifier. Therefore,
the policies are no longer defined by their value functions but by the classifier. This
observation raises the expectation that CBPI algorithms would perform better than
their value function-based counterparts in problems where the policies are simpler to
represent than their associated value functions. This thesis stands in part as a novel
and strong empirical evidence that the CBPI approach can perform well in such chal-
lenging domains such as in the game of Tetris, where standard RL and approximate
dynamic programming (ADP) techniques perform poorly. Moreover, we proposed new
CBPI methods with better performance than the original algorithms in this class, espe-
cially in terms of the number samples (number of interactions with the environment or
number of samples generated by the generative model of the system). Our new CBPI
algorithms are based on two ideas: 1) improving the quality of the rollout estimates
with the help of a value function approximator (in addition to the rollout estimates)
and 2) sampling adaptively (rather than uniformly) the rollouts over the state-action
pairs, which in turn leads to more accurate rollout estimates at state-action pairs that
are more crucial to learn the greedy policy. Finally, we proposed a formulation of the
CBPI algorithms that allows us to understand them as part of the broader class of
ADP methods, namely Approximate Modified Policy Iteration (AMPI) algorithms.

In Chapter 3, we presented our first extension of the standard CBPI algorithms. The
idea is to estimate the action-value functions as a combination of a truncated rollout
and a value function approximator, called the critic, that approximates the value of
the state at which the rollout has been truncated. The role of the critic is to reduce
the variance of the action-value function estimates at the cost of introducing a bias.
We presented a new CBPI algorithm, called direct policy iteration with a critic (DPI-
Critic), and provided its finite-sample performance analysis when the critic is based

142 Chapter 6. Conclusions and Future Work

on the 1) least-squares temporal-difference learning (LSTD), and 2) Bellman residual
minimization (BRM) methods. The reported performance bound and our subsequent
empirical evaluations in two benchmark RL problems show how our approach can
improve the overall performance of the CBPI algorithms, especially when we are given
a fixed budget of samples.

In Chapter 4, we studied the approximate version of the modified policy iteration
(MPI) algorithm (Puterman and Shin, 1978). We proposed and studied three approx-
imate modified policy iteration (AMPI) algorithms, of which two correspond to the
well-known ADP methods: fitted-value iteration and fitted-Q iteration, and one be-
longs to the class of CBPI algorithms. We derived the first error propagation analysis
for the AMPI algorithms that unifies this for approximate policy and value iteration
methods. We also provided finite-sample performance bounds for our three AMPI algo-
rithms. Finally, we evaluated the behavior of the proposed algorithms in the mountain
car problem as well as in the game of Tetris. Remarkably, we observed that in Tetris,
our classification-based MPI (CBMPI) algorithm outperforms existing ADP methods
by a large margin, and even obtain better results than the state-of-the-art methods,
while using a considerably smaller number of samples.

In Chapter 5, we studied the problem of identifying the best arm(s) in each of the
bandits in a multi-bandit multi-armed setting. The initial motivation for this study was
the rollout allocation problem in the CBPI algorithms. We showed that this problem
can be seen as a multi-bandit problem, for which no theory had been developed. Since
the problem of multi-bandit best arm identification has other potential applications in
various domains, such as clinical trials and brain computer interface, we studied it as a
stand-alone problem. In order to solve the problem, we first proposed two algorithms,
called Gap-based Exploration (GapE) and Unified Gap-based Exploration (UGapE),
both focus on the arms with small gap, i.e., arms whose means are close to the mean
of the best arm in the same bandit. We then improved upon these algorithms by
introducing GapE-V and UGapE-V, which take into account the variance of the arms
in addition to their gaps. We proved an upper-bound on the probability of error for all
these algorithms. Since GapE and GapE-V need to tune an exploration parameter that
depends on the complexity of the problem, which is often unknown a priori, we also
introduced variations of these algorithms that estimate this complexity online. Finally,
we evaluated the performance of our algorithms and compared them against other
allocation strategies in a number of synthetic problems as well as a real-world clinical
problem. We also evaluated the resulting algorithms in the rollout allocation problem
in the CBPI algorithms. Unfortunately, the CBPI results were relatively disappointing,
and thus, the problem requires further investigation.

2 Future Work

This work opens ground for a number of exciting and interesting research directions
which are briefly outlined below.

2. Future Work 143

2.1 Implementation of Cost-Sensitive Classifiers for CBPI

The use of a cost-sensitive classifier plays a key role in the CBPI algorithms. How-
ever in our experiments, we did not implement it in its original formulation. In the
experiments reported in Chapter 3, the loss minimized was the 0-1 loss instead of
the cost-sensitive loss. For the experiments in the game of Tetris, we minimized the
cost-sensitive loss. This was done by using an optimization technique namely the
cross entropy method. Nevertheless, instead of representing and learning the policies
as mappings from states to actions, the policies were indirectly represented by eval-
uation functions which are mappings from state-action pair to a real values (as the
value functions are). This use of evaluation functions somehow brings CBPI methods
close to regression-based (value-based) methods, though the loss used to learn them
in both cases are different. Therefore it would be interesting to implement multi-class
cost-sensitive classifiers that directly learn policies rather than evaluation functions.
However, the design of multi-class cost-sensitive classifier is a challenging problem for
most of the standard and popular classification techniques such as SVM (Masnadi-
Shirazi et al., 2012) and Multiboost (Benbouzid et al., 2012). Recently, Pires et al.
(2013) have provided some results on multi-class cost-sensitive classification that may
be useful in the CBPI algorithms.

2.2 Adaptive Sampling of the Rollout Set and the Rollouts in
CBPI

One of the initial objectives of this thesis was to design adaptive allocation strategies
for the rollout in the CBPI algorithms. Our idea was to cast this problem as a pure
exploration bandit problem and obtain better results, but unfortunately, we were not
able to fulfill this objective in this dissertation. One possible reason is that the strate-
gies designed for the bandit problem aim to minimize the probability of the incorrect
identification of the best arm (greedy action) in any of the states of the rollout set.
Therefore, if in one state of the rollout set, two actions have extremely close action-
value functions, the strategies will use many rollouts to discriminate between the two
actions in this particular state and deprive the other rollout states. However, this is
not the behavior we expect. It would be more natural to try to minimize the simple re-
gret over all the rollout states, because in this case, discriminating between two actions
with close action-value functions would not be seen as a priority, as the potential simple
regret to incur is small. This CBPI rollout allocation problem shows that minimizing
the simple regret can be a different objective from minimizing the probability of error
as these two objectives require different sampling approaches. However, to the best
of our knowledge, strategies to directly minimize the simple regret have not yet been
considered. Instead, minimizing the probability of error has been used as a surrogate
1) since the probability of error is both an upper bound and a lower bound on the
simple regret (up to constants depending on the gaps) and therefore minimizing one
permits to guarantee that the other one is relatively small and 2) because asymptoti-
cally (when n, the number of pulls tends to infinity), both minimizing the probability

144 Chapter 6. Conclusions and Future Work

of error or the simple regret are equivalent (the static allocations derived from the
Chernoff-Hoeffding bound are the same). These observations call for the investigation
of novel strategies that aim directly at minimizing the simple regret.

Finally, this rollout allocation problem has connections with the problem of finding
a distribution generating the rollout states that improves the efficiency of the CBPI
algorithm (this problem can in fact also be encountered in a large number of batch RL
algorithms). Indeed, if there was a good heuristic for defining such a distribution, it
could also be used to help the rollout allocation focus more on the more “important”
states. However, this problem is known to be difficult and is still open. Perhaps,
this serves as yet another possible explanation for the lack of positive results in our
rollout allocation problem. An interesting direction of research would be to build
upon, or to study the applicability of, recent active learning algorithms proposed for
cost-sensitive multi-label prediction (Agarwal, 2013) as it would match the use of cost-
sensitive classification in CBPI (see Chapter 3 and Chapter 4). Another interesting
reference is the work by Rexakis and Lagoudakis (2012) where a heuristic is proposed
in order to sample the states of the rollout set in the CBPI framework. This strategy
is based on the use of an SVM classifier.

2.3 Tetris

The performance of CBMPI in the game of Tetris is encouraging. While there still exist
some technical issues in the code to be addressed in order to make CBMPI perform
even better in Tetris, here, we report some possible algorithmic modifications that may,
in addition, lead to improving the performance of CBMPI in Tetris. We also discuss
how the comparison with other competing methods should be modified.

On the CBMPI side, a possible approach to improve the performance would be
to make the policy updates asynchronous. The goal here would be to speed up the
learning process (in terms of the number of samples used) by only renewing a limited
portion of the training set at each iteration. One may also consider larger policy spaces
with possibly stochastic and/or non-stationary policies in a fashion similar to Scherrer
and Lesner (2012).

Another class of policy search methods that have been applied to Tetris are policy
gradient algorithms that have not performed as well as CBMPI in this game. A closer
look reveals that their poor results are probably due to their use of the features that
have not shown good performance in the game of Tetris (the Bertsekas features). In
order to have a more thorough comparison, these algorithms, and especially the re-
cent approach of Furmston and Barber (2012), should be tested using the Dellacherie
features. Moreover, in order to conduct a fair comparison, we should evaluate the per-
formance of the new variation of the cross entropy algorithms introduced by Goschin
et al. (2013) and discussed in Section 5.2.1 of Chapter 4, in the original version of
Tetris.

Finally, this work leaves open the question of understanding why value function-
based ADP algorithms fail in the game of Tetris. We conjecture that this could be ad-

2. Future Work 145

dressed by going beyond the standard linear value function architecture. In particular,
one may use the Poisson model for value function, whose variance grows exponentially
with the height of the board. On the same issue, the piecewise-linear models depending
on the height of the board, or even Gaussian process regression tools may prove useful.

2.4 Improvements in the Best Arm Identification Problem
Our approach to the best arm identification problems have been motivated both by
practical efficiency and theoretical guarantees. There is room for improvement in both
fronts. On the practical side, looking at the fixed budget setting, GapE has good per-
formance but needs its parameter to be tuned, while Successive Rejects is parameter
free with the cost of a slightly diminished performance. It would be of interest to
design new efficient strategies for the best arm identification problem that are both
efficient and parameter free. An interesting direction of research is to consider ap-
proaches inspired by Thompson sampling strategies in the cumulative regret setting.
Indeed, these methods have been shown to have strong theoretical guarantees (Kauf-
mann et al., 2012) and to be extremely efficient in practice (Chapelle and Li, 2011).
On the theoretical side, in the fixed budget setting, there still exists a gap between
the existing lower and upper bounds in the case where the complexity is unknown to
the forecaster. Matching the two would allows us to have a better idea of what the
right measure of complexity is for this setting and to see if it corresponds to the same
measure of complexity as in the fixed confidence setting. In this case, there would be
a strong evidence that a common sampling routine may be designed for both settings
that leads to optimal bounds in each case. Also on the theoretical side, it would be
of interest to characterize why, as noticed in some of our experiments, dynamic alloca-
tions significantly outperform static allocations while our current analysis expect them
to have similar performance.

Another direction is to change the objective as motivated in Section 2.2 of this
chapter. It would be interesting to design strategies that directly attempt to minimize
the simple regret rather than the probability of error. Finally, the best arm identifica-
tion problem could be extended to combinatorial spaces. An example of such a setting
is a stochastic shortest path problem in a graph where the time taken in each edge
would be modeled by a distribution. The goal would then be to identify the shortest
path using n pulls, where at each pull the forecaster could only collect a sample from
one chosen edge (and not the whole path).

Bibliography

Y. Abbasi-Yadkori, D. Pál, and Cs. Szepesvári. Improved Algorithms for Linear
Stochastic Bandits. In Proceedings of the Advances in Neural Information Processing
Systems 25, pages 2312–2320, 2011. (→ page 26.)

A. Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In
Proceedings of the Thirtieth International Conference on Machine Learning, 2013.
(→ pages 135 and 144.)

A. Antos, R. Munos, and Cs. Szepesvári. Fitted Q-iteration in continuous action-space
MDPs. In Proceedings of the Advances in Neural Information Processing Systems
21, pages 9–16, 2007. (→ pages XIV, 8, 19, 58, and 61.)

A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine
Learning Journal, 71:89–129, 2008. (→ page 37.)

A. Antos, V. Grover, and Cs. Szepesvári. Active Learning in Heteroscedastic Noise.
Theoretical Computer Science, 411(29-30):2712–2728, 2010. (→ pages 26 and 122.)

J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Tuning Bandit Algorithms in Stochastic
Environments. In Proceedings of the Eighteenth International Conference on Algo-
rithmic Learning Theory, pages 150–165, 2007. (→ pages 25 and 123.)

J.-Y. Audibert, S. Bubeck, and R. Munos. Best Arm Identification in Multi-Armed
Bandits. In Proceedings of the Twenty-Third Conference on Learning Theory, pages
41–53, 2010. (→ pages XII, XV, 6, 9, 27, 28, 29, 30, 104, 105, 106, 112, 113, 114,
115, and 126.)

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-armed ban-
dit problem. Machine Learning, 47:235–256, 2002. (→ pages 25, 104, 105, and 109.)

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The Nonstochastic Multiarmed
Bandit Problem. SIAM Journal on Computing, 32(1):48–77, Jan. 2003. (→ page 26.)

L. Baird. Residual algorithms: Reinforcement learning with function approximation.
In Proceedings of the Twelfth International Conference on Machine Learning, pages
30–37. Morgan Kaufmann, 1995. (→ pages XIII, 8, and 34.)

A. Barto, R. Sutton, and C. Anderson. Neuron-Like Elements that can Solve Difficult
Learning Control Problems. IEEE Transaction on Systems, Man and Cybernetics,
13:835–846, 1983. (→ pages XI, 6, 23, and 34.)

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957. (→ page 17.)

148 Bibliography

D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl. MULTI-
BOOST: A Multi-purpose Boosting Package. Journal Machine Learning Research,
13:549–553, Mar. 2012. (→ pages 90 and 143.)

D. Bertsekas and S. Ioffe. Temporal Differences-Based Policy Iteration and Applications
in Neuro-Dynamic Programming. Technical report, MIT, 1996. (→ pages IX, 3, 17,
19, 58, and 79.)

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.
(→ pages 15, 16, 19, 58, 65, 66, 70, and 81.)

S. Bradtke and A. Barto. Linear Least-Squares Algorithms for Temporal Difference
Learning. Journal of Machine Learning, 22:33–57, 1996. (→ pages XIII, 8, and 34.)

S. Bubeck, R. Munos, and G. Stoltz. Pure Exploration in Multi-Armed Bandit Prob-
lems. In Proceedings of the Twentieth International Conference on Algorithmic
Learning Theory, pages 23–37, 2009. (→ pages XII, 6, 27, 28, 104, and 105.)

H. Burgiel. How to Lose at Tetris. Mathematical Gazette, 81:194–200, 1997.
(→ page 78.)

Z. Cai, D. Zhang, and B. Nebel. Playing tetris using bandit-based Monte-Carlo plan-
ning. In AISB Symposium: AI and Games, 2011. (→ page 80.)

P. Canbolat and U. Rothblum. (Approximate) iterated successive approximations algo-
rithm for sequential decision processes. Annals of Operations Research, pages 1–12,
2012. (→ page 70.)

O. Cappé, A. Garivier, O. Maillard, R. Munos, and G. Stoltz. Kullback-leibler upper
confidence bounds for optimal sequential allocation. Annals of Statistics, 41(3):
1516–1541, 2013. (→ pages 25 and 125.)

A. Carpentier, A. Lazaric, M. Ghavamzadeh, R. Munos, and P. Auer. Upper-
Confidence-Bound Algorithms for Active Learning in Multi-armed Bandits. In Pro-
ceedings of the Twenty-Second International Conference on Algorithmic Learning
Theory, pages 189–203, 2011. (→ page 26.)

C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, May 2011.
(→ page 75.)

O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In Proceedings of
the Advances in Neural Information Processing Systems 25, pages 2249–2257, 2011.
(→ pages 26 and 145.)

V. Dani, T. Hayes, and S. Kakade. The Price of Bandit Information for Online Opti-
mization. In Proceedings of the Advances in Neural Information Processing Systems
21, 2007. (→ page 26.)

Bibliography 149

E. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is Hard, Even to Approx-
imate. In Proceedings of the Ninth International Computing and Combinatorics
Conference, pages 351–363, 2003. (→ pages IX, 3, and 78.)

K. Deng, J. Pineau, and S. Murphy. Active Learning for Personalizing Treatment. In
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning,
2011. (→ pages 30, 106, 107, and 133.)

C. Dimitrakakis and M. Lagoudakis. Rollout Sampling Approximate Policy Iteration.
Machine Learning Journal, 72(3):157–171, 2008. (→ page 45.)

D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learn-
ing. Journal of Machine Learning Research, 6:503–556, 2005. (→ pages XIV, 8, 19,
58, and 61.)

E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. Journal of Machine
Learning Research, 7:1079–1105, 2006. (→ pages 27, 28, 105, and 122.)

C. Fahey. Tetris AI, Computer plays Tetris, 2003. http://colinfahey.com/tetris/
tetris.html. (→ pages 79 and 81.)

A.-M. Farahmand, R. Munos, and Cs. Szepesvári. Error Propagation for Approximate
Policy and Value Iteration. In Proceedings of the Advances in Neural Information
Processing Systems 24, pages 568–576, 2010. (→ pages 68, 70, and 97.)

A.-M. Farahmand, D. Precup, and M. Ghavamzadeh. Generalized Classification-based
Approximate Policy Iteration. In Proceedings of the European Workshop on Rein-
forcement Learning (EWRL), pages 1–11, June 2012. (→ page 44.)

V. Farias and B. Van Roy. Tetris: A Study of Randomized Constraint Sampling.
Springer-Verlag, 2006. (→ pages IX, 3, and 79.)

A. Fern, S. Yoon, and R. Givan. Approximate policy iteration with a policy language
bias. In Proceedings of the Advances in Neural Information Processing Systems 18,
2004. (→ pages VIII, X, 2, 4, and 20.)

A. Fern, S. Yoon, and R. Givan. Approximate Policy Iteration with a Policy Language
Bias: Solving Relational Markov Decision Processes. Journal of Artificial Intelligence
Research, 25:75–118, 2006. (→ pages VIII, X, 2, 4, 20, 34, 58, and 61.)

T. Furmston and D. Barber. A Unifying Perspective of Parametric Policy Search
Methods for Markov Decision Processes. In Proceedings of the Advances in Neu-
ral Information Processing Systems 26, pages 2726–2734, 2012. (→ pages 79, 90,
and 144.)

V. Gabillon, A. Lazaric, and M. Ghavamzadeh. Rollout Allocation Strategies for
Classification-based Policy Iteration. In Workshop on Reinforcement Learning and
Search in Very Large Spaces, 2010. (→ page 134.)

http://colinfahey.com/tetris/tetris.html
http://colinfahey.com/tetris/tetris.html

150 Bibliography

V. Gabillon, M. Ghavamzadeh, A. Lazaric, and S. Bubeck. Multi-Bandit Best Arm
Identification. In Proceedings of the Advances in Neural Information Processing
Systems 25, pages 2222–2230, 2011a. (→ pages 103, 113, and 125.)

V. Gabillon, A. Lazaric, M. Ghavamzadeh, and B. Scherrer. Classification-based Policy
Iteration with a Critic. In Proceedings of the Twenty-Eighth International Conference
on Machine Learning, pages 1049–1056, 2011b. (→ pages 33 and 58.)

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best Arm Identification: A Unified
Approach to Fixed Budget and Fixed Confidence. In Proceedings of the Advances in
Neural Information Processing Systems 26, pages 3221–3229, 2012. (→ page 103.)

V. Gabillon, M. Ghavamzadeh, and B. Scherrer. Approximate Dynamic Programming
Finally Performs Well in the Game of Tetris. In Proceedings of the Advances in
Neural Information Processing Systems 27, 2013. (→ pages 57 and 88.)

M. Ghavamzadeh and A. Lazaric. Conservative and Greedy Approaches to
Classification-Based Policy Iteration. In Proceedings of the Twenty-Sixth AAAI Con-
ference on Artificial Intelligence, 2012. (→ page 22.)

S. Goschin, A. Weinstein, and M. Littman. The Cross-Entropy Method Optimizes
for Quantiles. In Proceedings of the Thirtieth International Conference on Machine
Learning, pages 1193–1201, 2013. (→ pages 83 and 144.)

N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in Evolution
Strategies. Evolutionary Computation, 9:159–195, 2001. (→ page 82.)

J. Honda and A. Takemura. An asymptotically optimal policy for finite support mod-
els in the multiarmed bandit problem. Machine Learning, 85(3):361–391, 2011.
(→ page 125.)

R. Howard. Dynamic Programming and Markov Processes. The MIT Press, Cambridge,
MA, 1960. (→ pages 14 and 16.)

S. Kakade. A natural policy gradient. In Proceedings of the Advances in Neural Infor-
mation Processing Systems 15, pages 1531–1538, 2001. (→ page 79.)

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learn-
ing. In Proceedings of the 19th International Conference on Machine Learning, pages
267–274, 2002. (→ page 22.)

S. Kalyanakrishnan. Learning Methods for Sequential Decision Making with Imperfect
Representations. PhD thesis, Department of Computer Science, The University of
Texas at Austin, Austin, Texas, USA, December 2011. Published as UT Austin
Computer Science Technical Report TR-11-41. (→ page 123.)

S. Kalyanakrishnan and P. Stone. Efficient Selection of Multiple Bandit Arms: Theory
and Practice. In Proceedings of the Twenty-Seventh International Conference on
Machine Learning, pages 511–518, 2010. (→ pages 28 and 106.)

Bibliography 151

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC Subset Selection in Stochas-
tic Multi-armed Bandits. In Proceedings of the Twentieth International Conference
on Machine Learning, 2012. (→ pages 28, 112, 117, and 125.)

Z. Karnin, T. Koren, and O. Somekh. Almost Optimal Exploration in Multi-Armed
Bandits. In Proceedings of the Thirtieth International Conference on Machine Learn-
ing, 2013. (→ pages 28, 29, and 123.)

É. Kaufmann and S. Kalyanakrishnan. Information complexity in bandit subset se-
lection. In Proceedings of the Twenty-Sixth Conference on Learning Theory, pages
228–251, 2013. (→ pages 28, 30, 106, and 125.)

É. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically op-
timal finite-time analysis. In Proceedings of the Twenty-Fourth International Con-
ference on Algorithmic Learning Theory, pages 199–213, 2012. (→ pages 26, 125,
and 145.)

M. Kearns, Y. Mansour, and A. Ng. Approximate Planning in Large POMDPs via
Reusable Trajectories. In Proceedings of the Advances in Neural Information Pro-
cessing Systems 14, pages 1001–1007. MIT Press, 2000. (→ page 64.)

M. Keller, J. McCullough, D. Klein, B. Arnow, D. Dunner, A. Gelenberg, J. Markowitz,
C. Nemeroff, J. Russell, and M. Thase. A comparison of nefazodone, the cognitive
behavioral-analysis system of psychotherapy, and their combination for the treatment
of chronic depression. New England Journal of Medicine, 342(20):1462–1470, 2000.
(→ page 133.)

M. Lagoudakis and R. Parr. Least-Squares Policy Iteration. Journal of Machine Learn-
ing Research, 4:1107–1149, 2003a. (→ pages VIII, XIII, 2, 8, 19, 34, 45, 58, and 75.)

M. Lagoudakis and R. Parr. Reinforcement Learning as Classification: Leveraging
Modern Classifiers. In Proceedings of the Twentieth International Conference on
Machine Learning, pages 424–431, 2003b. (→ pages VIII, X, 2, 4, 20, 34, 58, and 61.)

A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a Classification-based Policy
Iteration Algorithm. In Proceedings of the Twenty-Seventh International Conference
on Machine Learning, pages 607–614, 2010a. (→ pages VIII, X, XI, XIII, 2, 4, 6, 8,
20, 21, 23, 34, 50, 53, 58, 61, 64, 74, and 100.)

A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a Classification-based Policy
Iteration Algorithm. Technical Report 00482065, INRIA, 2010b. (→ pages 34, 41,
and 42.)

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-Sample Analysis of LSTD. In
Proceedings of the Twenty-Seventh International Conference on Machine Learning,
pages 615–622, 2010c. (→ page 38.)

152 Bibliography

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-Sample Analysis of Least-
Squares Policy Iteration. Journal of Machine Learning Research, 13:3041–3074, 2012.
(→ pages 38, 40, and 56.)

O. Maillard, R. Munos, A. Lazaric, and M. Ghavamzadeh. Finite-Sample Analysis of
Bellman Residual Minimization. In Proceedings of the Second Asian Conference on
Machine Learning, 2010. (→ pages 54 and 56.)

S. Mannor and J. Tsitsiklis. The Sample Complexity of Exploration in the Multi-
Armed Bandit Problem. Journal of Machine Learning Research, 5:623–648, 2004.
(→ page 28.)

S. Mannor, R. Rubinstein, and Y. Gat. The Cross Entropy method for Fast Policy
Search. In In Proceedings of the Twentieth International Conference on Machine
Learning, pages 512–519. Morgan Kaufmann, 2003. (→ page 81.)

P. Marbach and J. Tsitsiklis. A Neuro-Dynamic Programming Approach to Call Ad-
mission Control in Integrated Service Networks: The Single Link Case. Technical
report, Decision Syst. Rep. LIDS-P-2402, Massachusetts Institute of Technology,
1997. (→ pages VII and 1.)

O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for
classification and function approximation. In Proceedings of the Advances in Neural
Information Processing Systems 7, 1993. (→ pages XII, 6, 28, 105, and 106.)

H. Masnadi-Shirazi, N. Vasconcelos, and A. Iranmehr. Cost-Sensitive Support Vector
Machines. CoRR, abs/1212.0975, 2012. (→ pages 90 and 143.)

A. Maurer and M. Pontil. Empirical Bernstein Bounds and Sample-Variance Penal-
ization. In Proceedings of the Twenty-Second Conference on Learning Theory, 2009.
(→ page 123.)

V. Mnih, Cs. Szepesvári, and J.-Y. Audibert. Empirical Bernstein stopping. In Pro-
ceedings of the Twenty-Fifth International Conference on Machine Learning, pages
672–679, 2008. (→ pages 28 and 124.)

R. Munos. Error Bounds for Approximate Policy Iteration. In Proceedings of the
Twentieth International Conference on Machine Learning, pages 560–567, 2003.
(→ pages 19, 58, 66, 68, and 70.)

R. Munos. Performance Bounds in Lp-norm for Approximate Value Iteration. SIAM
Journal on Control and Optimization, 46(2):541–561, 2007. (→ pages 37, 65, 68,
and 70.)

R. Munos and Cs. Szepesvári. Finite-Time Bounds for Fitted Value Iteration. Journal
of Machine Learning Research, 9:815–857, 2008. (→ pages XIV, 8, 19, 37, 58, 59,
68, and 70.)

Bibliography 153

A. Ng, H. J. Kim, M. Jordan, and S. Sastry. Inverted autonomous helicopter flight via
reinforcement learning. In International Symposium on Experimental Robotics. MIT
Press, 2004. (→ pages VII and 1.)

J. Nunen. A set of successive approximation methods for discounted markovian decision
problems. Zeitschrift für Operations Research, 20(5):203–208, 1976. (→ page 17.)

O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-Buet. Sample-Efficient Batch
Reinforcement Learning for Dialogue Management Optimization. ACM Transactions
on Speech and Language Processing, 7(3):7:1–7:21, May 2011. (→ pages VII and 1.)

B. Pires, M. Ghavamzadeh, and Cs. Szepesvári. Cost-sensitive Multiclass Classification
Risk Bounds. In Proceedings of the Thirtieth International Conference on Machine
Learning, 2013. (→ pages 90 and 143.)

D. Precup, R. Sutton, and S. Singh. Eligibility Traces for Off-Policy Policy Evaluation.
In Proceedings of the Seventeenth International Conference on Machine Learning,
pages 759–766, 2000. (→ page 65.)

D. Precup, R. Sutton, and S. Dasgupta. Off-Policy Temporal Difference Learning with
Function Approximation. In Proceedings of the Eighteenth International Conference
on Machine Learning, pages 417–424, 2001. (→ page 65.)

M. Puterman. Markov Decision Processes. Wiley, New York, 1994. (→ page 14.)

M. Puterman and M. Shin. Modified Policy Iteration Algorithms for Discounted
Markov Decision Problems. Management Science, 24(11), 1978. (→ pages XI, 6,
10, 17, 57, and 142.)

I. Rexakis and M. Lagoudakis. Directed Policy Search Using Relevance Vector Ma-
chines. In IEEE Twenty-Fourth International Conference on Tools with Artificial
Intelligence, pages 25–32, 2012. (→ pages 90 and 144.)

H. Robbins. Some Aspects of the Sequential Design of Experiments. Bulletin of the
American Mathematics Society, 58:527–535, 1952. (→ pages 25, 104, and 105.)

R. Rubinstein and D. Kroese. The Cross-Entropy Method: A Unified Approach to Com-
binatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer-
Verlag, 2004. (→ pages 58, 79, and 81.)

B. Scherrer. Performance Bounds for λ-Policy Iteration and Application to the Game
of Tetris. Journal of Machine Learning Research, 14:1175–1221, 2013. (→ pages IX,
3, 20, 58, 70, 79, and 80.)

B. Scherrer and B. Lesner. On the Use of Non-Stationary Policies for Station-
ary Infinite-Horizon Markov Decision Processes. In NIPS, pages 1835–1843, 2012.
(→ pages 90 and 144.)

154 Bibliography

B. Scherrer, M. Ghavamzadeh, V. Gabillon, and M. Geist. Approximate Modified
Policy Iteration. In Proceedings of the Twenty Ninth International Conference on
Machine Learning, pages 1207–1214, 2012. (→ page 57.)

B. Scherrer, M. Ghavamzadeh, V. Gabillon, B. Lesner, and M. Geist. Approximate
Modified Policy Iteration. Submitted to Journal of Machine Learning Research, 2014.
(→ page 57.)

P. Schweitzer and A. Seidman. Generalized polynomial approximations in markovian
decision processes. Journal of Mathematical Analysis and Applications, 110:568–582,
1985. (→ page 34.)

D. I. Simester, P. Sun, and J. Tsitsiklis. Dynamic Catalog Mailing Policies. Manage-
ment Science, 52(5):683–696, May 2006. (→ pages VII and 1.)

R. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, Univer-
sity of Massachusetts Amherst, 1984. (→ pages XI, 6, and 23.)

R. Sutton and A. Barto. Reinforcement Learning, An introduction. BradFord Book.
The MIT Press, 1998. (→ page 20.)

Cs. Szepesvári. Reinforcement Learning Algorithms for MDPs. In Wiley Encyclopedia
of Operations Research. Wiley, 2010. (→ pages 19 and 58.)

I. Szita and A. Lőrincz. Learning Tetris Using the Noisy Cross-Entropy Method. Neural
Computation, 18(12):2936–2941, 2006. (→ pages IX, 4, 79, 80, and 81.)

G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215–219, 1994. (→ pages VII and 1.)

C. Thiéry and B. Scherrer. Building Controllers for Tetris. International Com-
puter Games Association Journal, 32:3–11, 2009a. URL http://hal.inria.fr/
inria-00418954. (→ pages 79 and 81.)

C. Thiéry and B. Scherrer. Improvements on Learning Tetris with Cross Entropy.
International Computer Games Association Journal, 32, 2009b. URL http://hal.
inria.fr/inria-00418930. (→ pages IX, 4, 79, 81, 82, and 88.)

C. Thiéry and B. Scherrer. Least-Squares λ-Policy Iteration: Bias-Variance Trade-off
in Control Problems. In Proceedings of the Twenty-Seventh International Conference
on Machine Learning, pages 1071–1078, 2010a. (→ pages 20 and 58.)

C. Thiéry and B. Scherrer. MDPTetris features documentation, 2010b. http:
//mdptetris.gforge.inria.fr/doc/feature_functions_8h.html. (→ pages 81
and 88.)

C. Thiéry and B. Scherrer. Performance Bound for Approximate Optimistic Policy
Iteration. Technical report, INRIA, 2010c. (→ page 67.)

http://hal.inria.fr/inria-00418954
http://hal.inria.fr/inria-00418954
http://hal.inria.fr/inria-00418930
http://hal.inria.fr/inria-00418930
http://mdptetris.gforge.inria.fr/doc/feature_functions_8h.html
http://mdptetris.gforge.inria.fr/doc/feature_functions_8h.html

Bibliography 155

J. Tsitsiklis and B. Van Roy. Feature-Based Methods for Large Scale Dynamic Pro-
gramming. Machine Learning, 22:59–94, 1996. (→ pages IX, 3, and 79.)

J. Tsitsiklis and B. Van Roy. An Analysis of Temporal-Difference Learning with Func-
tion Approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.
(→ page 71.)

T. Wang, N. Viswanathan, and S. Bubeck. Multiple Identifications in Multi-Armed
Bandits. In Proceedings of the Thirtiethth International Conference on Machine
Learning, volume 28, pages 258–265, 2013. (→ pages 29, 30, 31, 106, 114, and 115.)

Y. Wang, J.-Y. Audibert, and R. Munos. Algorithms for Infinitely Many-Armed Ban-
dits. In NIPS, pages 1729–1736, 2008. (→ page 26.)

156 Bibliography

	Chapter Introduction
	3
	Motivation
	Our Approach
	Contributions
	Outline

	Chapter Background and Notations
	Reinforcement Learning
	Markovian Decision Processes and Bellman Operators
	Dynamic Programming
	Approximate Dynamic Programming
	Value Function-based (Regression-based) Policy Iteration
	Classification-based Policy Iteration

	Multi-Armed Bandit Problems
	Preliminaries
	Cumulative Regret Setting
	Pure Exploration Setting
	Simple Regret & Best Arm Identification

	Chapter Classification-based Policy Iteration with a Critic
	1

	0
	Chapter Approximate Modified Policy Iteration
	2
	Introduction
	Approximate MPI Algorithms
	AMPI-V
	AMPI-Q
	Classification-based MPI
	Possible Approaches to Reuse the Samples

	Error Propagation
	Finite-Sample Analysis of the Algorithms
	Experiments
	Mountain Car
	Tetris

	Conclusions and Extensions
	0
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Theorem 4.1 & Another Bounds on the Loss
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.6

	2

	Chapter Multi-Bandit Best Arm Identification
	2
	Introduction and Motivating Examples
	Problem Formulation
	Gap-based Exploration Algorithms
	Theoretical Analysis
	Proof of Theorem 5.2
	Extensions

	Numerical Simulations
	Results for GapE and its Variants
	Results for UGapE and its Variants

	Summary and Discussion

	Chapter Conclusions and Future Work
	1
	Summary
	Future Work
	Implementation of Cost-Sensitive Classifiers for CBPI
	Adaptive Sampling of the Rollout Set and the Rollouts in CBPI
	Tetris
	Improvements in the Best Arm Identification Problem

	Bibliography

