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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Résumé français

Introduction

La plupart des contrôleurs avancés ont besoin d’une bonne connaissance du

modèle dynamique du robot pour leur mise en œuvre. Le modèle dynamique

du robot peut être développé selon la méthode de Newton-Euler ou la méthode

de Lagrange. Il décrit la dynamique du système en termes de position, vitesse,

l’accélération et force ou couple, ainsi que des paramètres dynamiques. Les

paramètres dynamiques sont des constantes comme la masse, l’inertie, les mo-

ments d’inertie, les paramètres de frottement de chaque articulation du robot,

et le moment d’inertie global des éléments composant la chaîne cinématique du

réducteur. Puisque les paramètres dynamiques sont inconnus, ils doivent d’être

identifiés avant l’opération. De nombreux paramètres ne sont pas mesurables

directement et doivent donc être identifiées à partir de mesures sur le robot

en fonctionnement. Donc, la procédure d’identification des paramètres dy-

namiques est nécessaire. Dans la littérature, plusieurs méthodes ont été pro-

posées pour résoudre ce problème, basée sur l’utilisation les 3 modèles:

• modèle dynamique (Canudas de Wit et al., 1991; Gautier, 1986; Gautier

et al., 2008, 2013; Gautier and Khalil, 1990; Gautier, Khalil, and Restrepo,

1995; Gautier, Vandanjon, et al., 2011; Hollerbach et al., 2008; Khalil and

Dombre, 2004; Khosla et al., 1985; Lu et al., 1993);

• modèle d’énergie (Gautier, 1996; Gautier and Khalil, 1988);

• modèle de puissance (Gautier, 1997).

L’objectif de cette thèse est de développer de nouvelles techniques en iden-

tification des paramètres dynamiques des robots et de les comparer avec les

techniques existantes. Nous proposons de nouvelles techniques sur deux as-

pects: reformuler le modèle du robot en utilisant les fonctions modulatrices;

appliquer les différentiateurs de Jacobi développés récemment pour résoudre le

1



2 Résumé français

problème de dérivation et analyser leur propriétés de filtrage dans le domaine

fréquentiel.

Fonctions modulatrices en identification

Soit l ∈ N∗, T ∈ R∗+, et g une fonction satisfaisant des propriétés suivantes:

(P1) : g ∈ Cl([ta, tb]);
(P2) : g (i)(ta) = g (i)(tb) = 0, pour i = 0,1, ..., l − 1; (1)

avec Cl([ta, tb]) l’ensemble des fonctions qui sont l−fois continûment dérivable

sur la fenêtre de temps [ta, tb] avec l ∈ N∗. La fonction g définit une fonction

modulatrice d’ordre l sur [ta, tb].

Les fonctions modulatrices peuvent être utilisées pour l’identification. Sup-

posons que x(d) est d’ordre d, avec x la variable d’observation et s est un nom-

bre entier. On peut faire diminuer l’ordre de la dérivée x(d) grâce aux fonctions

modulatrices. Par exemple, soit g une fonction modulatrice d’ordre l définie

sur l’intervalle [0,T ], avec l ≥ d. On multiplie g par x(d) et on intègre par partie

le produit g sur la fenêtre de temps [0,T ]. Ce qui permette les dérivées de x

vers les dérivées de g , qui sont analytiquement connues.

∫ T

0
gx(d) = −

∫ T

0
ġx(d−1) = · · · = (−1)d

∫ T

0
g (d)x. (2)

Analyse dans le domaine fréquentiel

Les intégrales (2) sont des intégrales de convolution correspondant à un filtrage

qui peut être analysé dans le domaine fréquentiel.

Dans (Chen et al., 2011; Collado et al., 2009), les auteurs analysent égale-

ment la propriété de différenciation dans le domaine fréquentiel. Le calcul

pratique de
∫

gx se fait sous la forme d’une convolution numérique avec une

période d’échantillonnage Ts, et conduit à une version discrète sous la forme
∑N

i=1 g[i]x[i]. De cette façon, la convolution avec les fonctions modulatrices

peut être analysée comme un filtre à réponse impulsionnelle finie (FIR) dont

les coefficients sont les valeurs g(t).

Les fonctions proposées gℓ(t) sont des fonctions modulatrices d’ordre K sur

l’intervalle [0,T ], avec K l’ordre maximum de dérivation de x à calcule. Les

fonctions g(t) satisfont les deux conditions aux limites: g
(i)
ℓ (0) = 0, et g

(i)
ℓ (T ) = 0,

quand i = 0,1, . . . ,K − 1.
On étude 4 types de fonctions modulatrices:
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(1) Les fonctions modulatrices sinusoïdales (SMF): la valeur de la fonction

sinusoïdale atteint 0 à chaque demi-période, et on propose gℓ(t) = sinℓ(πT t), avec

ℓ ∈ R.
(2) Les fonctions modulatrices de Jacobi (JMF): ce groupe de fonctions est

une combinaison de polynômes de Jacobi qui vaut 0 au début et à la fin de

l’intervalle [0,T ]. Il faut faire attention à ce que l’ordre des fonctions modula-

trices soit supérieur à K − 1 et on propose gℓ(t) = tℓ1(t − T )ℓ2 , avec ℓ1, ℓ2 ∈ R et

ℓ1, ℓ2 > K − 1.
(3) Les fonctions modulatrices de Fourier (FMF): la fonction exponentielle

eix = cosx + i sinx est une fonction périodique qui atteint 1 à chaque période.

Grâce à cette propriété, on peut écrire les fonctions modulatrices de Fourier

sous la forme gℓ(t) = e−iαℓ(e−i
2π
T t − 1)K , où α est paramètre de réglage et ℓ ∈ R.

(4) Les fonctions modulatrices de Harley (HMF): elles sont basées la méth-

ode de Shinbrot et Pearson Fourier fonctions modulatrices, ce groupe de fonc-

tions est donné par :

gℓ(t) =
∑n

j=0 (−1)j












n

j













cas((n+ ℓ − j)ω0t), où ℓ = 0,±1,±2, . . . est entier, ω0 = 2π
T

est la résolution fréquentielle et cas(x) = cosx+ sinx.

Les 4 types de fonctions modulatrices sont analysées d’un point de vue fil-

trage en calculant la forme discrète de la convolution dans laquelle les valeurs

de gℓ(t)ĺéchantillonnée à la période de Ts, sont les coefficients d’un FIR. Par ex-

emple, les diagramme de Bode en amplitude Fig. (1) représentent la réponse

fréquentielle de FIR définie pour le calcul de la dérivée seconde avec les 4 types

de fonctions modulatrices.

Identification en utilisant les fonctions modulatrices et le mod-

èle de puissance

Les fonctionsmodulatrices peuvent être appliquées à l’identification des paramètres

dynamiques des robots, sous la forme d’une convolution avec le modèle de

puissance du robot. Rappelons le modèle de puissance (3) d’un robot avec n

articulations:

q̇T
Γm =

d

dt
(H) + q̇T[diag(q̇)Fv +diag(sign(q̇)Fs +Γoff]. (3)

où q, q̇ sont des vecteurs de la position et de la vitesse, de dimension (n×1), Γm
est le couple de moteur, H est l’énergie totale du robot, H(q, q̇) = E(q, q̇+U(q)

est la somme de l’énergie cinétique de l’articulation E et de l’énergie potentielle

U . H et linéaire par rapport aux parametres inertials K de robot. H(q, q̇) =
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Figure 1 – Diagramme de Bode du filtre FIR correspondant à la dérivation
d’ordre 2 par fonctions modulatrices avec ℓ = 10

h(q, q̇)K, les coefficients de h définissent les fonctions d’énergie. Fvj , Fsj sont

les coefficients de frottement visqueux et de Coulomb de l’articulation j , Γof f j
est un paramètre d’offset (Gautier et al., 2013).

On intègre par partie, l’équation (3) pondérée par des fonctions modulatri-

ces de premier ordre g sur l’intervalle [ta, tb] et :

∫ tb

ta

gq̇T
Γmdt = −

∫ tb

ta

ġhKdt +

∫ tb

ta

gq̇Tdiag(q̇)Fvdt +

∫ tb

ta

tgq̇Tdiag(sign(q̇))Fsdt +

∫ tb

ta

gq̇T
Γoffdt. (4)

Cette équation scalaire correspond aux modèle d’énergie pondéré par g , ce

qui évite le calcul numérique de la dérivée d’ordre 2.

Les fonctions modulatrices sont bien adaptées à ce modèle, puisque nous
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connaissons l’expression analytique de l’énergie h et les dérivées des fonctions

modulatrices. En calculant (4) par différentes fonctions modulatrices gℓ.

On obtient un système linéaire surdéterminé de n×nt ×nm équations:

YE =WE(q, q̇, q̈)X+ ρE, (5)

où nt est le nombre d’intervalles de temps, nm est le nombre de fonctions mod-

ulatrices, ρE est le bruit, YE et WE sont respectivement le vecteur et la matrice

d’observation, qui sont définis comme:

YE =

















































tb1
∫

ta1

g1q̇
T
Γm

...
tbnt
∫

tant

gne q̇
T
Γm

















































,WE =

















































−
tb1
∫

ta1

ġ1h(q, q̇)

...

−
tbnt
∫

tant

ġneh(q, q̇)

















































. (6)

Le système (5) est résolu en utilisant des techniques de moindres carrés.

Differentiateur de Jacobi

Les différentiateurs numériques introduits dans cette partie sont basés sur des

méthodes algébriques. Ils sont d’abord proposés par Fliess et Sira-Ramírez dans

un article récent (Fliess, Mboup, et al., 2003; Fliess and Sira-Ramirez, 2004).

Ces différentiateurs algébriques sont divisés en deux classes: les différentia-

teurs basés sur des modèles et les différentiateurs sans modèle. Les premiers

(Fliess and Sira-Ramrez, 2004; Tian et al., 2008). ont été principalement utilisés

pour les systèmes linéaires. Ils ont été étendus aux différentiateurs sans modèle,

qui peuvent être utilisés pour les systèmes non linéaires et divers problèmes en

traitement du signal. Le premier facteur de différentiation sans modèle a été

introduit dans (Fliess, Join, et al., 2004) en appliquant la méthode algébrique

de développement tronqué en série de Taylor du signal à différentier. Puis,

deux différentiateurs sans modèle ont été étudiés dans (Mboup et al., 2007,

2009a). En outre, il a été montré que le différentiateur causal peut également

être obtenu en projetant le signal sur la base orthogonale de Jacobi. Ensuite, il a

été significativement amélioré en admettant un retard choisi par le concepteur

(Mboup et al., 2007, 2009a). Dans (Liu et al., 2011c), un différenciateur central

de Jacobi a été proposé, pour une utilisation hors ligne.

Les différentiateurs de Jacobi présentent les avantages suivants: leur calcul
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par une intégrale définie sur une fenêtre glissante dans le cas continu, leur

comportement de filtre passe-bande et correspond à une convolution dans le

cas discrèt. En outre, le caractère passe-bande dans les hautes fréquences qui

est robuste par rapport aux bruits (Fliess, 2006). Une étude théorique démon-

tre que les erreurs sont des fonctions fortement non linéaires des paramètres

de conception et que les erreurs sont limitées. D’autre part, quelques travaux

expérimentaux montrent la relation entre les erreurs et les paramètres de con-

ception (Liu et al., 2009a, 2011a, 2012a). Cependant, il n’existe pas encore de

méthode efficace de conception en différentiateur de Jacobi, car les paramètres

sont fortement couplés. Pour résoudre ce problème, j’ai proposé une écriture

du différentiateur Jacobi sous la forme d’un FIR, ce qui permet d’analyser son

comportement fréquentiel et fournit un outil de conception.

On présente ici les différentiateurs causaux de Jacobi, utilisés aussi pour les

différentiateurs centrales de Jacobi. Soit une mesure bruitée xϖ : I → R, xϖ(t) =

x(t) +ϖ(t), où I est un interval ouvert de temps fini R+, x ∈ Cn(I ) avec n ∈ N,

et ϖ est un bruit. L’objectif est d’estimer la dérivée d’ordre n de x en utilisant

xϖ. On applique les polynômes de Jacobi pour calculer le développement série

orthogonale pour estimer la nième dérivée, (Mboup et al., 2007, 2009a).

D’abord, pour tout t0 ∈ I , on introduit Dt0 := {t ∈ R∗+; t0 − t ∈ I}. La définition
du polynôme d’ordre i décalé sur l’intervalle [0,1] est (voir dans(Abramowitz

et al., 1965) pp. 774-775), où µ,κ ∈]− 1,+∞[:

P
(µ,κ)
i (τ) =

i
∑

j=0

(

i +µ

j

)(

i +κ

i − j

)

(τ − 1)i−j τj . (7)

Définissons sur L2([0,1]) un produit scalaire ⟨·, ·⟩(0,1)µ,κ avec la fonction de

poids ŵµ,κ(τ) = (1− τ)µτκ, notons ∀g1, g2 ∈ C[0,1],

⟨

g1, g2
⟩(0,1)
µ,κ =

∫ 1

0
ŵµ,κ(τ)g1(τ)g2(τ)dτ. (8)

Et la norme associée au polynôme orthogonaux décalé de Jacobi d’ordre i est

donnée par: ∥P(µ,κ)
i ∥2µ,κ = 1

2i+µ+κ+1
Γ(µ+i+1)Γ(κ+i+1)
Γ(µ+κ+i+1)Γ(i+1) , où Γ(n) est la fonction Gamma

(voir (Abramowitz et al., 1965) p. 255), avec Γ(n) = (n− 1)!.

Le calcu sous la forme d’un différentiateur causal de Jacobi est présenté en

détail dans (Liu et al., 2012a). Ici, nous donnons l’expression continue analy-

tique du différentiateur causal de Jacobi, qui calcule la nième dérivée à l’instant
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t0, ∀ξ ∈ [0,1],∀t0 ∈ I ,

D
(n)
κ,µ,T ,qx(t0 −Tξ) =

1

(−T )n
∫ 1

0
Qκ,µ,n,q,ξ(τ)x(t0 −Tτ)dτ, (9)

avec µ,κ ∈]− 1,+∞[,

Cκ,µ,n,i =
(µ+κ +2n+2i +1)Γ(κ +µ+2n+ i +1)Γ(n+ i +1)

Γ(κ +n+ i +1)Γ(µ+n+ i +1)
, (10)

Qκ,µ,n,q,ξ(τ) = ŵµ,κ(τ)

q
∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (τ). (11)

Enfin, nous remplaçons x dans (9) par xϖ pour obtenir D
(n)
κ,µ,T ,qx

ϖ(t0 − Tξ)
dans le cas bruité.

L’idée de ce différentiateur est d’utiliser une fenêtre d’intégration glissante

pour estimer la valeur de x(n) pour chaque t0 ∈ I par D
(n)
κ,µ,T ,qx(t0 − Tξ) avec la

valeur fixée ξ ∈ [0,1], l’optimisation de ξ est donnée dans ((Mboup et al., 2007,

2009a)). Si ξ , 0, alors on a un retard de Tξ .

Il dépend d’un ensemble de paramètres:

• κ,µ ∈]− 1,+∞[: les paramètres du polynômes de Jacobi,

• q ∈ N: l’ordre du développement de la série Jacobi tronqué,

• T ∈Dt0 : la longueur de la fenêtre glissante d’intégration,

• ξ ∈ [0,1]: le paramètre de retard Tξ .

L’analyse fréquentielle permet de caractériser le comportement du différen-

tiateurs de Jacobi dans Fig. (2). On compare à un filtre FIR et à un filtre

passe-bande composé d’un filtre passe-bas de Butterworth, suivi d’une dérivée

par différence. Les résultats montrent que le différentiateur causal de Jacobi

présente une phase linéaire au voisinage de la fréquence de coupure avec une

propriété de filtrage passe bas en hautes fréquences intéressantes.

Comparaisons desméthodes d’identificaiton des paramètres

dynamiques des robot

Dans le tableau (1), on rappelle les différentes techniques d’identification en

robotique.

Une étude comparative des méthodes d’identification est réalisée sur un

prototype de robot SCARA sans gravité à deux articulation à entraînement di-

rect développé au laboratoire (IRCCyN) (Presse, 1994) comme indiqué sur Fig.
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Figure 2 – Comparaison des réponses fréquentielles du différentiateur causal
de Jacobi et des filtres classiques

(3). Le modèle dynamique dépend de 4 paramètres inertiels minimaux, et de 4

paramètres de frottement:

X = [ZZ1R, ZZ2, LMX2, LMY2, Fv1, Fs1, Fv2, Fs2], (12)

avec ZZ1R = ZZ1 +M2L
2.

Résultats d’identification

Pour étudier les erreurs systématiques dues à la distorsion des différentes filtres,

on simule le modèle du robot sans bruit avec la valeurs de X en unités SI : X =

[3.5 0.06 0.15 0.1 0.3 0.4 0.2 0.12]. Les résultats sont présentés dans la Fig. (4).

L’erreur systématique sur chaque paramètre, est calculée avec eX̂ir % = 100 ×
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Modèle d’identification Différentiateurs Moindre carré

Modèle dynamique (IDIM) différence & Butterworth OLS 1

Modèle de puissance différentiateurs centrale de Jacobi WLS 2

Modèle d’énergie
Modèle de puissance avec
fonctions modulatrices

Table 1 – méthodes pour l’identification des paramètres dynamiques des robots

Figure 3 – 2R scara planar prototype robot (Lab IRCCyN)
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|Xi−X̂i
Xi |. Les résultats montrent que la méthode avec le différentiateur centré

de Jacobi a moins d’erreurs systématiques plus faibles que les autres. D’autre

part, le modèle de puissance avec les fonctions modulatrices a le résultat le

plus proche des valeurs réelles. Ensuite, on réalise des essais d’identification

Figure 4 – Erreurs systématiques

sur le prototype du robot scara. Les résultats sont indiqués dans la Fig. (5).

L’identification expérimentale montre :

modèle de puissance avec fonctions modulatrices = IDIM-WLS ≥ modèle de

puissance ≥modèle d’énergie ≥ IDIM-OLS .

Conclusion

Ce travail concerne l’identification des paramètres dynamiques des robots. Les

contributions suivantes ont été réalisées:

• Proposition d’un modèle de puissance avec fonctions modulatrices qui

évite la dérivation numérique des fonctions d’énergie.

• Analyser dans le domaine fréquentiel des fonctions modulatrices, qui a

permis de sélectionner les fonctions modulatrices de filtre passe-bande

adapté à l’identification.

• introduction les différentiateurs de Jacobi et analyser pour la première

fois, dans le domaine fréquentiel pour qualifier et quantifier leurs pro-

priétés de filtrage. La majeur de la thèse a permis de comparer les differ-

entiateurs de Jacobi en terme de distorsion et d’établissement des bruits

hautes fréquences.
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• comparaison entre les modèles différents d’identification, dynamic, de

puissance d’énergie, des différentiateurs, des techniques de moindre carré

pour l’identification des robots.

Un problème important dans l’identification des paramètres dynamiques

des robots est de diminuer au maximum l’influence du bruit dans la dériva-

tion des signaux. Dans ce travail, nous proposons des méthodes basées sur des

techniques algébriques: utiliser le modèle de puissance avec les fonctions mod-

ulatrices ce qui supprime le calcul de l’accélération et le calcul de la dérivée

des fonctions d’énergie; appliquer les différentiateurs de Jacobi pour obtenir

une bonne estimation des dérivées d’ordre 2.

Les travaux futurs concernent une validation sur des robots plus complexes,

qui ont un comportement non-linéaire accentué avec un grand nombre de paramètres,

ce qui entraîne des difficultés pour l’identification.
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General Introduction

A robot is a mechanical or virtual artificial agent, usually an electro mechanical

machine that is guided by a computer program or electronic circuitry. As a

word, robot is drawn from an old Church Slavonic word, robota, for "servitude,"

"forced labor" or "drudgery." The word, which also has cognates in German,

Russian, Polish and Czech, was a product of the central European system of

serfdom by which a tenants rent was paid for in forced labor or service.

The first robot can be tracked back to the 4th century BC, when a wooden,

mechanical steam-operated bird called The Pigeon was created by the Greek

mathematician Archytas. While the research into the functionality and po-

tential uses of robots did not grow substantially until the 20th century. Es-

pecially, fully autonomous robots only appeared in the second half of the 20th

century and the robotics subject keeps prosperity and development. More re-

cently, "robots" and the derived term "robotics" have come to represent the most

modern engineering technologies for a myriad of functions ranging from artifi-

cial intelligence experiments and building automobiles to performing delicate

surgical procedures.

Robotics are crossing disciplines of mechanical engineering, electrical engi-

neering and computer science that deals with the design, construction, opera-

tion and application of robots, as well as the computer systems for their control,

sensory feedback and information processing.

With the fast development of robot theory, people gradually became aware

of the geometry and dynamic descriptions of the robot, with better and better

precision in buildingmathematical model. Consequently, most of the advanced

robot control schemes are proposed with application of the robot model, espe-

cially the robot dynamic models, in order to adjust the controller and the in-

crease the control precision. Such control schemes include: computed torque

control; predictive control; passivity control; adaptive control.

It requires a good knowledge of the robot dynamic model before implemen-

tation. Robot dynamic model can be developed from Newton-Euler method or

Lagrange method. It describes the system dynamics in terms of current states,

13
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Ancien Modern Future

Figure 6 – Development of robots

such as position, velocity, acceleration and force/torque, as well the dynamic

parameters. The dynamic parameters are constant at each instant and include

the mass, inertia, first moments, joint friction for each robot link, and moment

of inertia of the rotor and transmission system of actuators. As the key elements

of the robot model, they need to be recognized before operation. However, for

some of them, it is not likely to implement a measurement by the existing tech-

nology. Thus, the identification procedure is necessary and as a long-standing

subject in the robotics.

In this work, we investigate the robot identification issue. The aim is to

identify robot’s dynamic parameters via a measurement of robot trajectory and

torque/force information. Various identification methods have been developed

based on different robot models, differentiation approaches, numerical tools,

sensor feedback information or cross validation using closed loop simulation.

Illustrating results are obtained in the past decades, while there still exist some

challenges in the differentiation problem. In robot applications, the obtained

measurements are usually noisy, whichmakes the derivative estimation process

be ill-posed in the sense that a small error in measurement can induce a large

error in the computed derivatives, specially for high order derivatives. The

poor performance of reconstructing derivatives from the noisy measurement

will directly induce some bias in the identificationmatrix, which results in huge

errors in the identification results. Moreover, the highly nonlinear property of

the robot systems and its large number of dynamic parameters also bring in

difficulty in identification. Therefore, more researches and studies should be
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carried out in this area.

The Project-team Non-A has developed a group of algebraic differentiators,

called Jacobi differentiators. They provide the solution as an explicit integral

formulae associated with finite signal information within a sliding integration

time window. Because of their integration structure, they behave as nature

filtering process and are robust to corrupt noises. Compared to other differ-

entiators, Jacobi differentiators can be implemented immediately without pre-

filtering of the noisy signal due to their integral structure.

Meanwhile based on the algebraic conception, it is possible to transform the

high order differential equation into lower order one. Associated with themod-

ulating functions, the differential equation is rewritten in a simple expression

which could eliminate certain high order terms by using some annihilating in-

tegral operator. The robot identification model can also apply this technique

in order to avoid the terms with joint acceleration, which is usually badly esti-

mated.

Objective of the thesis

The main objective of this thesis is to develop new techniques in robot dynamic

parameters identification methods and compare them with the existing tech-

niques. We propose new approaches in two aspects : reformulate the robot

model using both the algebraic method and modulating functions; apply the

newly developed Jacobi differentiators in robot differentiation problem and

analyse the filtering property in frequency domain. In the end, we discuss if

the detailed identification model is needed for control and based on the alge-

braic method, a simple and fast response adaptive controller is designed.

Outline of the thesis

Chapter 1 gives an overview of the existing approaches for serial robot identi-

fication process. The principle of the identification procedure is based on the

analysis of the ’input/output’ behavior of the robot following some planned

motion and on estimating the parameters value by minimizing the difference

between a function of the real robot variables and its mathematical model. Ac-

cording to the models, the most widely applied approach is based on robot ex-

plicit dynamic model, requiring the joint force/torque, position, velocity and

acceleration information. The other models such as robot energy model and
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robot power model require only the joint force/torque, position and velocity

information. However they need an additional derivative operation on the im-

plicit expression of velocity. As the dynamic parameters are linear with respect

to the models above, most of the identification processes form an overdeter-

mined system by a sequence of measurements and obtain the optimal solution

using the least-square techniques. Besides, a parallel scheme to identify robot

dynamic parameters by minimizing the output error from a closed loop simu-

lation is presented.

Chapter 2 investigates the new identification method. It starts from an alge-

braic point of view, by which the order of differential equation can decrease us-

ing some annihilating operator. Based on this technique, the robot powermodel

is transformed to an energy equation, that does not consider the acceleration

variables and the implicit derivative operation. In this sense, the identification

model avoids using the inaccurate acceleration information and introduce less

errors in the results. Meanwhile, the modulating functions are implemented

during the process. We will analyse their magnitude-frequency response and

show that they have a low-pass filtering property for certain groups of the

modulating functions.

Chapter 3 discusses the differentiation problem in robot identification is-

sues. The principle and analysis of the causal and central Jacobi differentia-

tors are introduced. As well, their frequency domain properties are analysed

via a finite impulse response (FIR) filter point of view, indicating clearly their

differentiation performance. Comparisons with other differentiators are made

both in time domain and frequency domain.

Chapter 4 presents mainly the identification results in simulation and ap-

plication of different approaches, in order to give a clear understanding of the

advantages and draw-backs for each methodology. To be more specific, four

different identification models (dynamic, power, energy identification models,

modulating functions with power model approach), two differentiators (Jacobi

differentiators and central difference with Butterworth filter) and three least

square techniques (Ordinary, Weighted, Iterative least squares techniques) are

compared.

Chapter 5 studies from the control aspect, some new ultra local robot model,

which represents well the robot dynamics. Here "ultra local" means on a small

time window. An adaptive controller is proposed so that by estimating the

states of the simplified model, the corrupt changes of the robot are detected

and updated within a short time window, which offers better dynamic perfor-

mance of the control scheme. Moreover, the estimation model jumps over the
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traditional differentiation problem in robotics, and only needs the joint force/-

torque and position information. In the 2-DOF (degrees of freedom) planar

robot simulation test, the estimation window is reduced to 0.1 second in pres-

ence of noise.

Finally, the thesis is completed with some conclusion and perspectives.
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Chapter1

Overview of the robot identification

problem

Accurate dynamicmodels of robots are required inmost advanced control schemes

formulated in recent literature (Khatib, 1987; Piltan et al., 2012; Slotine et al.,

1987). The precision, performance, stability and robustness of these schemes

depend on, to a large extent, the accuracy of the dynamic parameters. Adap-

tive and robust control scheme can tolerate some error in the dynamic param-

eters, while other schemes designed to achieve perfect feedback linearization,

such as computed torque control, assuming precise knowledge of the dynamic

parameters. In this sense, the precise determination of the dynamic parame-

ters is useful to most schemes and is crucial to some others. Furthermore, the

dynamic parameters are necessary to simulate the robot dynamics.

However, accurate values of the dynamic parameters are typically unknown,

even to the robot manufactures, and the measurement for some of them are

practically not accessible. Thus, the indirect identification approaches are

considered through the analysis of the ’input/output’ behavior of the robot fol-

lowing some planned motion and on estimating the parameters value by min-

imizing the difference between a function of the real robot variables and its

mathematical model. The identification problem turns out to be an optimiza-

tion question which searches for the correct robot model with proper dynamic

parameters.

The following parts present the principle of identification procedures and

the related various techniques. According to the inputs that the identification

model needs, there exists three robot identification models:

• robot dynamic model (Canudas de Wit et al., 1991; Gautier, 1986; Gau-

tier et al., 2008, 2013; Gautier and Khalil, 1990; Gautier, Khalil, and Re-

19
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strepo, 1995; Gautier, Vandanjon, et al., 2011; Hollerbach et al., 2008;

Khalil and Dombre, 2004; Khosla et al., 1985; Lu et al., 1993);

• robot energy model (Gautier, 1996; Gautier and Khalil, 1988);

• robot power model (Gautier, 1997).

The robot dynamic model is the most widely implemented identification

model. It establishes the dynamic equations at individual point along the tra-

jectory. The advantages of this model include that it is easy to create the dy-

namic equations and it has a good excitation in the identification regression

matrix, which means the regression always has a solution. By contrast, the dy-

namic model contains the acceleration variables, which are usually inaccurate

computation using the position measurement. While the robot energy model

and power model avoid using the acceleration data. Instead, the energy model

applies an integral operation on the robot power equation and the power model

make use of the differential equation of the energy part. In the following, we

will present these identification process. Note that for the rest part of the thesis,

we denote the bold mathematical symbols for the vectors or matrix.

1.1 Inverse dynamic identification model with LS

Inverse dynamic identification model with LS method, also named IDIM-LS,

is the most applied identification model for robot identification. In order to

construct it, first we need to deduce the inverse dynamic model. The dynamics

of a rigid robot composed of n moving links calculates the motor torque vector

Γm as a function of the state variables and their derivatives. It can be deduced

from the following Lagrangian formulation:

Γm =
d

dt

(

∂L

∂q̇

)

− ∂L

∂q
+Γf, (1.1)

where q, q̇ are the (n×1) vectors of generalized joint positions and velocities, L

is the Lagrangian of the system defined as the difference between the kinetic

energy E(q, q̇) and the potential energy U(q). E = 1
2 q̇

TM(q)q̇, where M(q) is

the (n × n) robot inertia matrix. Γf is the friction torque which is usually mod-

elled at non zero velocity as Γf j = Fsjsign(q̇j ) + Fvj q̇j + Γof f j , where q̇j is the

velocity of joint j , sign(x) denotes the sign function. Fvj , Fsj are the viscous and

Coulomb friction coefficients of joint j , Γof f j is an offset parameter which is the

dis-symmetry of the Coulomb friction with respect to the sign of the velocity
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and is due to the current amplifier offset which supplies the motor (Gautier et

al., 2013).

Develop Eq. (1.1) by replacing L with E −U , and it becomes the inverse

dynamic model:

Γm =M(q)q̈+C(q, q̇)q̇+Q(q) +Γf, (1.2)

where q̈ is the n × 1 vector of joint acceleration, M(q) is the n × n symmetric

and positive definite inertia matrix, C(q, q̇)q̇ is the n × 1 vector of Coriolis and

centrifugal torques, Q(q) is the n× 1 vector of gravity torques.

The inverse dynamic model is linear with respect to a set of standard dy-

namic parameters Xs, because E, U and Γf are linear with respect to the dy-

namic parameters (Gautier, 1990). Thus, the model (1.2) can be rewritten as:

Γm =Ds(q, q̇, q̈)Xs =

Ns
∑

i=1

DsiXsi , (1.3)

whereNs is the total number of the dynamic standard parameters,Ds is a n×Ns

matrix, and Dsi is the ith column of Ds, Xsi is the ith element of Xs. Xs is the

vector of standard dynamic parameters:

Xs =
[

X1
s
T
X2
s
T · · · Xn

s
T
]

,

with X
j
s
T
is the dynamic parameters of joint and link j :

X
j
s = [XXj XYj XZj YYj YZj ZZj MXj MYj MZj Mj IAjFvj Fsj Γof f j ]

T ,

where XXj XYj XZj YYj YZj ZZj are the six components of the inertia matrix

of link j ; MXj MYj MZj are the three components of the first moments; Mj

is the mass of link j , IAj is the total inertia moment for rotor actuator and

gears of actuator j ; Fvj , Fsj , Γof f j are the viscous, Coulomb and offset friction

parameters of joint j .

According to (Gautier and Khalil, 1990; Mayeda et al., 1990), the set of

standard dynamic parameters can be simplified into a set of base inertial pa-

rameters, which are the minimum parameters that can be used to describe the

robot dynamics. These base parameters are obtained from the standard inertial

dynamic parameters by eliminating those that have no effect on the dynamic

model and by regrouping those in linear relations. In (Gautier, 1991), symbolic

and numerical solutions are presented for any open or closed chain robot ma-
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nipulator to get a minimal dynamic model:

Γm =D(q, q̇, q̈)X, (1.4)

where X is the Nb × 1 vector of base parameters.

1.1.1 Case study: the 2R scara planar prototype robot of IRC-

CyN

To illustrate the construction of robot dynamic model, here we present a two

joint scara planar robot, called 2R robot for short. As shown in Fig. 1.1, the

robot geometry is described in table (1.1) using themodifiedDenavit andHarten-

berg notation (DHM) method, with

• j denotes the j th joint,

• σj denotes the type of joint, 0 for revolute joint, 1 for prismatic joint,

• αj is the angle between zj−1 and zj about xj−1,

• dj is the distance between zj−1 and zj along xj−1,

• θj is the angle between xj−1 and xj about zj ,

• rj is the distance between xj−1 and xj along zj ,

• q1 and q2 are joint position for joint 1 and joint 2 respectively,

• L is the length of the first robot link, L2 is the length of the second robot

link.

j σ α d θ r
0 0 0 0 q1 0
1 0 0 L q2 0

Table 1.1 – Modified Denavit and Hartenberg notation presentation of 2R scara
planar robot

Before regrouped into base parameters, there exist 11 standard inertia pa-

rameters for each joint, such as in table (1.2):

Notice the special geometric configuration and apply the regrouping rule

(Gautier, 1990) on the 2R robot, and it can be concluded as:
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(a) 2R scara planar robot

(b) Frame and joint variables

Figure 1.1 – DHM frame of 2R scara planar robot
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XXj XYj XZj YYj YZj ZZj MXj MYj MZj Mj IAj

Table 1.2 – Standard inertia parameters of 2R scara planar robot

• joint 1 and joint 2 are direct drive so that the link 1 and 2 are attached to

the rotors of motor 1 and 2. Then, the inertia moment ZZ1 and ZZ2 are

the inertia moment of links plus the inertia moment of rotors IA1 and IA2

respectively, so that in the following IAj = 0;

• joint 2 is revolute: YY2, MZ2, M2 can be regrouped with other dynamic

parameters of link 2 and 1;

• the axe of joint 2 is parallel to that of joint 1 : XX2, XY2, XZ2, YZ2 can be

eliminated;

• joint 1 is revolute, and the axe is along the gravity direction: only the

inertia parameter ZZ1 is considered;

• for joint 1, ZZ1 is grouped with M2 using the following relation ZZ1R =

ZZ1 +M2L
2.

It is shown in table 1.3 that there exist five base inertia parameters for 2R scara

planar robot.

j XXj XYj XZj YYj YZj ZZj MXj MYj MZj Mj IAj

1 0 0 0 0 0 ZZ1R 0 0 0 0 0
2 0 0 0 0 0 ZZ2 MX2 MY2 0 0 0

Table 1.3 – Base parameters of 2R direct drive scara planar robot

In order to compute the Lagrangian formulation, we need to calculate the

kinetic energy E(q, q̇) and the potential energy U(q). Because the robot is mov-

ing in a horizontal plan, the potential energy keeps constant, which means the

n × 1 vector of gravity torques Q(q) is null. The kinetic energy calculates from

the following relation

E =
1

2
ZZ2(q̇1 + q̇2)

2 +
1

2
ZZ1Rq̇

2
1

+LMX2q̇1 cos(q2)(q̇1 + q̇2)−LMY2q̇1 sin(q2)(q̇1 + q̇2). (1.5)

The symmetric (2 × 2) inertia matrix M(q) can be deduced from the kinetic

energy

E =
1

2
q̇TM(q)q̇. (1.6)



1.1. Inverse dynamic identification model with LS 25

From equation 1.5 and 1.6 we can calculate

M(1,1) = ZZ1R +ZZ2 +2LMX2 cos(q2)− 2LMY2 sin(q2),

M(1,2) = ZZ2 +LMX2 cos(q2)−LMY2 sin(q2),

M(2,1) =M(1,2),

M(2,2) = ZZ2. (1.7)

The n×nmatrix of Coriolis and centrifugal torques C(q, q̇) comes fromM(q)

and E, which is given as

C(i, j) =
n

∑

k=1

ci,jk q̇k ,

ci,jk =
1

2

[

∂M(i, j)

∂qk
+
∂M(i, k)

∂qj
− ∂M(j,k)

∂qi

]

. (1.8)

After calculation, we have the explicit form

C(1,1) = −q̇2(LMY2 cos(q2) + LMX2 sin(q2)),

C(1,2) = −(q̇1 + q̇2)(LMY2 cos(q2) + LMX2 sin(q2)),

C(2,1) = q̇1(LMY2 cos(q2) + LMX2 sin(q2))

C(2,2) = 0. (1.9)

For friction, because it has two links, the friction torque can be given as

Γf (1) = Fv1q̇1 +Fs1sign(q̇1) + Γof f 1,

Γf (2) = Fv2q̇2 +Fs2sign(q̇2) + Γof f 2. (1.10)

In all, we have the explicit expression of M(q), C(q, q̇), Q(q) and Γf, which

are all elements of the robot dynamic model. Moreover, because the link length

L is unknown and it appears together with MX2 and MY2, thus we can group

it into LMX2 and LMY2, where LMX2 = L×MX2, LMY2 = L×MY2. Finally, the

base dynamic parameters of the 2R scara planar robot can be presented as

X2R = [ZZ1R, ZZ2, LMX2, LMY2, Fv1, Fs1, Γof f 1, Fv2, Fs2, Γof f 2], (1.11)

Corresponding to the mathematical model, the experimental works are car-

ried out a two joints planar direct drive prototype robot manufactured in the

laboratory (IRCCyN) (Presse, 1994) as shown in Fig. (1.2), without gravity ef-

fect. The description of geometry is the same as in Fig. (1.1) and table (1.1).
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Figure 1.2 – 2R scara planar prototype robot (Lab IRCCyN)
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The robot is directly driven by two DC permanent magnet motors supplied

by PWM choppers. Recall the base dynamic parameters (1.11) of the 2R scara

planar robot model, while in the prototype case we assume (the effect of fric-

tion offset parameter Γof f are negligible) the dynamic model depends on eight

minimal dynamic parameters, including four friction parameters:

X = [ZZ1R, ZZ2, LMX2, LMY2, Fv1, Fs1, Fv2, Fs2], (1.12)

with ZZ1R = ZZ1 +M2L
2.

The robot motion is driven by a PD controller with a reference of a succes-

sive point to point trajectories using the 5th order polynomial trajectory genera-

tor. The joint position q and torque Γm are collected at a 100 Hz sampling rate,

where each torque Γm is calculated as

Γmj = GT jVT j ,

with GT j the drive chain gain which is considered as a constant in the fre-

quency range of the robot dynamics. This trajectory has been calculated in

order to obtain a good condition number (see in 1.1.4) of the observation ma-

trix (Cond(W ) = 290).

1.1.2 IDIM-LS

The inverse dynamic identification model is based on the measured or esti-

mated data of Γm, q, q̇, q̈, which are collected during robot tracking of reference

trajectories.

The principle is to establish the identification model (1.4) at a sufficient

number of samples ti , with i = 1, . . . , ns, satisfying n × ns ≫ Nb, in order to get

an over-determined linear system of n×ns equations:

Y =W(q, q̇, q̈)X+ ρ, (1.13)

where ρ is a noise, Y andW are the vector of torques and the observationmatrix,

respectively, which are defined as follows:

Y =

























Γm(1)
...

Γm(ns)

























,W =

























D(1)
...

D(ns)

























. (1.14)

Take the 2R scara planar prototype robot referred in (1.1.1) for example, at
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each sampling instant, we build the dynamic equivalence equation:

Γm =D(q, q̇, q̈)X, (1.15)

where Γm =













Γm1

Γm2













, and Γm1, Γm2 are joint torques respectively, D(q, q̇, q̈) is a

n×Nb observation matrix, which has the following expression

D(1,1) = q̈1,

D(1,2) = q̈1 + q̈2,

D(1,3) = (2q̈1 + q̈2)cos(q2)− q̇2(q̇2 +2q̇1)sin(q2),

D(1,4) = −(2q̈1 + q̈2)sin(q2)− q̇2(q̇2 +2q̇1)cos(q2),

D(1,5) = q̇1,

D(1,6) = sign(q̇1),

D(1,7) = 0,

D(1,8) = 0,

D(2,1) = 0,

D(2,2) = q̈1 + q̈2,

D(2,3) = q̈1 cos(q2) + q̇1q̇1 sin(q2),

D(2,4) = −q̈1 sin(q2) + q̇1q̇1 cos(q2),

D(2,5) = 0,

D(2,6) = 0,

D(2,7) = q̇2,

D(2,8) = sign(q̇2). (1.16)

(1.17)

1.1.3 Identifiability of the dynamic parameters

The dynamic parameters are divided into three groups: fully identifiable, iden-

tifiable in linear combinations and completely unidentifiable. Consequently,

the observation matrix W corresponding to this set of dynamic parameters

could be rank deficient, with the fact that some columns of W are linearly de-

pendent with respect to whatever q, q̇, q̈. In order to obtain a unique solution, a

set of independent identifiable parameters, called base dynamic parameters or

minimum dynamic parameters, need to be determined. The selection of base
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or minimum dynamic parameters will regroup those are linearly dependent

and will eliminate those who have no effect on the dynamic model.

In (Khalil and Dombre, 2004), the authors present both the symbolic meth-

ods and numerical methods to determine the base dynamic parameters. Fur-

thermore, a robotic software named SYMORO+ developed by laboratory IRC-

CyN is proposed to resolve base dynamic parameters, and it has been open-

source since 2014 (Khalil, Vijayalingam, et al., 2014) 1 . Actually, the determi-

nation of the base dynamic parameters is a prerequisite for identification pro-

cedure. It should be noted that the grouped values can be directly computed

from the identification model, and reconstruct the robot dynamics with these

grouped parameters.

Figure 1.3 – SYMORO+ software

1.1.4 Excitation of the trajectory

The trajectory used in the identification should be carefully selected, in order

to improve the least-squares estimation performance, such as convergence rate

and the noise immunity. Some techniques are applied to choose the optimal

trajectory, namely persistently exciting trajectory.

1https://github.com/symoro/symoro.
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Persistently excitation condition (PE condition) A function ω : R+→ R
n is

persistently excitating if there exist T , δ1,δ2 > 0 such that

δ1In ≤
∫ t+T

t
ω(τ)Tω(τ)dτ ≤ δ2In, (1.18)

holds for all t ≥ 0, where In is the identity matrix of order n.

This criterion can be applied to verify if the trajectory is well excited. As

stated in (Antonelli et al., 1999; Gautier and Khalil, 1992), two schemes are

usually used:

• calculation of a trajectory satisfying some optimization criteria (Gautier

and Poignet, 2001; Gautier and Khalil, 1992; Presse and Gautier, 1993;

Swevers, Ganseman, et al., 1997; Swevers, Verdonck, et al., 2007);

• utilization of the sequential sets of special motions, where each motion

will excite certain dynamic parameters. As certain parameters are already

identified with respect to the global problem, the exciting trajectory is

easier to find.

Physically, finding this constraint is equivalent to finding an optimal trajec-

tory that can excite most the identified parameters. Several criteria have been

proposed in literature (Presse and Gautier, 1993; Siciliano et al., 2008). For ex-

ample, here we minimize the condition number and maximizing the smallest

singular value of the observation matrix W as in (Antonelli et al., 1999). Since

the optimum trajectory will be executed on the manipulator, parameterizing

the optimal trajectory is also an important step. Two most common types are

the quintic polynomial trajectory (Antonelli et al., 1999) and periodic trajectory

(Swevers, Verdonck, et al., 2007). The former is suitable for most of industrial

manipulators which only accepts simple velocity command while the later tar-

gets the open-architecture controller which allows user to program an arbitrary

trajectory. Here we consider the periodic trajectory as formulated in equation

1.19, which can be parameterized as a sum of finite Fourier series:

qi(t) = qi0 +
N
∑

j=1

[aij sin(jωf t)− bij cos(jωf t)], (1.19)

q̇i(t) =
N
∑

j=1

[aij jωf cos(jωf t) + bij jωf sin(jωf t)], (1.20)

q̈i(t) =
N
∑

j=1

[−aij(jωf )
2 sin(jωf t) + bij(jωf )

2 cos(jωf t)], (1.21)
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where i denotes the ith robot joint, ωf is the fundamental frequency of the ex-

citation trajectory and should not excite the un-modelled dynamics of the ma-

nipulator. Then, the problem of finding the optimal trajectory becomes deter-

mining the coefficients qi0, aij , bij which minimize the following cost function

(Presse and Gautier, 1993):

f (qi(t)) = λ1cond(W) +λ2
1

σmin(W)
, (1.22)

where the scalar λ1 and λ2 represent the relative weights between the condition

number of the observation matrix cond(W) and inverse of the minimum singu-

lar value 1
σmin(W)

. Note that the condition number of the observation matrix 2 is

defined as

cond(W) =
σmax(W)

σmin(W)
. (1.23)

The condition numbermeasures how change in input is propagated to change

in output. It has the following relation

∥∆X∥
∥X∥ ≤ con(W)

∥∆W∥
∥W∥ . (1.24)

1.1.5 Data processing for the inverse dynamic identification

model

In real application, the measurements or estimations of Γm, q, q̇, q̈ are cor-

rupted with noise. Thus, the matrices Y and W are perturbed and the LS so-

lution leads to a bias estimation. Because the matrix W(q, q̇, q̈) are highly non

linear, it is not possible to get the analytical expression of the bias and the vari-

ance. To tackle this problem, two filtering processes should be applied:

• data filtering to decrease noise effect,

• closed loop identification for the tracking the persistently excited trajec-

tories.

(q, q̇, q̈) must be pre-filtered by a low-pass filter Fq(s), with s the derivative

operator in order to eliminate high frequency noise. Usually, q̇, q̈ are processed

using the product sFq and s2Fq on the position respectively. In practice, this

2The optimization problem consists of determining the trajectory, which provides a condi-
tion number of W that is close to 1;
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process can be carried out using a central difference algorithm to obtain the

time derivative. The optimal filter Fq(s) should have a flat amplitude response

without phase shift in the range [0 ωc], where the cutoff frequency ωc > (10 ×
ωdyn), with ωdyn is the bandwidth of the joint position closed loop (Gautier,

1997). Meanwhile, the torque Γm is perturbed by high frequency torque ripple

from joint drive chain in the closed loop control. Hence, it has to be filtered.

Then, Γm and D(qfq , q̇fq , q̈fq) are both filtered and down-sampled through a

decimate filter composed of a low-pass filter Fp(s), where its cutoff frequency

ωfp is approximated by 5 ×ωdyn. The decimate rate nd can be calculated with

nd = ωc
2ωf p

for a FIR filter and nd = 0.8 × ωc
2ωf p

for an IIR filter, where ωc is the

control rate.

Then, the new filtered linear system is obtained:

Yfp =Wfp(qfq, q̇fq, q̈fq)X+ ρfp. (1.25)

Finally, we solve the LS problem via:

X̂ =W+
fp(qfq, q̇fq, q̈fq)Yfp. (1.26)

1.1.6 Resolution of the inverse dynamic identification model

The identification handbooks provide a large variety of deterministic and stochas-

tic methods to estimate X from the previous system of equations. Most of the

schemes solves X by the maximum likelihood approach (Olsen et al., 2002;

Swevers, Ganseman, et al., 1997) or the least squares (LS) methods. To our

knowledge, good experimental results have been obtained by ordinary LSmeth-

ods, such as those based on the SVD (singular value decomposition) or QR de-

composition.

The LS methods minimize the Euclidean length of the residual vector X̂ =

min∥WX−Y∥, which obtains the optimal solution X̂ =W+Y, where

W+ = (WTW+)−1WT is the pseudo-inverse matrix ofW. IfW is of full rank, the

LS solution X̂ is unique. The rank deficiency of W can come from two aspects:

• structural rank deficiency which is solved by considering the minimal set

of parameters;

• data rank deficiency due to a bad choice of noisy samples (q, q̇), which

needs to satisfy the persistently excitation condition by a good planning

of trajectories (Presse and Gautier, 1993).
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It should be noted that the LS estimation is biased because the observation

matrix W is random, and because W and ρ are realization of random and cor-

related variables. Furthermore, the elements of the matrix W are nonlinear

functions in q, q̇ and q̈, which leads one to assume some statistical properties

of the noise in order to evaluate the quality of the estimation process (bias and

standard deviation). In the following, we give some variables to verify the ac-

curacy of the values obtained using appropriate validation procedures.

Standard deviations σX̂i
are estimated using classical and simple results

from statistics, assuming the matrix W to be a deterministic one, and ρ is

assumed to be a vector of unobserved zero mean independent identically dis-

tributed (iid) biases, with a standard deviation σρ such thatCρρ = E(ρTρ) = σ2
ρ Ir ,

where E is the expectation operator. The variance-covariance matrix of the esti-

mation error and standard deviations can be calculated by (de Larminat P et al.,

1977):

CX̂X̂ = E[(X− X̂)(X− X̂)T ] = σ2
ρ (W

TW)−1,

where σX̂i
=

√

CX̂X̂ii is the diagonal coefficient of CX̂X̂.

This interpretation has been proposed by Raucent (Raucent, 1990), but we

should be careful with the results obtained because the corresponding assump-

tions are not verified.

An unbiased estimation of σρ is used to get the relative standard deviation

σX̂ri by the expression:

σ̂2
ρ =
||Y −W X̂||2

r − c , %σX̂ri = 100× σX̂i
X̂i

,

where r is the total number of equations and c is the number of unknown pa-

rameters.

The relative standard deviation can be used as a criterion to measure the

quality of the identification value for each parameters. For example, if the rela-

tive standard deviation of a parameters is greater than ten times the minimum

relative standard deviation value, this parameter can be regarded as poorly

identified.

1.1.7 Numerical tools and evaluation

The solution to the LS problem Y =WX+ ρ mainly depends on the quality of

the observation matrix W, the rank and condition number.

The condition number of the observation matrix is an effective tool to give a

good prediction of the observability of the parameters Driels et al., 1990. The
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optimal identification configuration provide a a condition number of the obser-

vation matrix close to 1. As a results, the condition number can be regarded

as a criterion to optimize the reference trajectory in order to well excite the

observability.

For decomposition of the observation matrix, there exist two methods asso-

ciated with the LS techniques:

• Singular Value Decomposition (SVD) (Maciejewski et al., 1989),

• QR decomposition (Golub et al., 2012).

This two methods work well and can deal with rank deficient case.

Meanwhile, with different LS techniques, we can obtain different optimal

solutions. In this work, we mainly focus on the three approaches:

• Ordinary LS (OLS),

• Weighted LS (WLS),

• Iterative LS (ILS) (Fong et al., 2011; Paige et al., 1982).

The OLS technique is the most widely applied one, which is the optimal

linear unbiased estimator when the errors are of homogeneous variance and

uncorrelated. The WLS technique is an improvement of the OLS, which by

adding weight coefficients to different region, it has focusing accuracy at reli-

able region and discount the imprecision at the unreliable region. The ILS is

a technique more reliable when the observation matrix is ill-conditioned. The

numerical techniques discussed above will be presented in appendix.

1.2 Energy model identification

The dynamic model identification is obligatory to access the joint acceleration

data, whose estimation value usually has relatively larger error compared to

the estimation of joint position and velocity. In order to avoid this, the energy

model is proposed first in (Gautier, 1990), which states that the total mechan-

ical energy applied to the robot is equal to the sum of penitential and kinetic

energy contained in the system. This model has several advantages:

• the dynamic parameters are linear with respect to the model, and the

corresponding base dynamic parameters are the same as those of the dy-

namic model;
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• the computation of the observation matrix is easier than dynamic model;

• the optimization for the exciting trajectory is easier than for the dynamic

model.

Denote the total energy of the system also termed Hamiltonian by H =

E(q, q̇) +U(q). According to the energy theory, we have the following relation:

dH = (Γm −Γf)T q̇dt. (1.27)

The energy version comes from the integration of 1.27

∫ tb

ta

(Γm −Γf)T q̇dt =H(tb)−H(ta) = ∆H, (1.28)

where ta, tb are time instants. Furthermore, the energy item H can be reformu-

lated as:

H = [h1 . . . hn]

























K1
...

Kn

























= hK, (1.29)

where Kj is the vector of the base parameters of link j , and hj is the vector of

energy functions.

Meanwhile, the friction torque Γf is linear in friction parameters. Hence, the

energy equation is linear in the dynamic parameters and it yields the energy

identification model:

∫ tb

ta

Γm
T q̇dt = [∆h ∆fv ∆fs ∆γoff]
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, (1.30)

with ∆h = h(tb)−h(ta), ∆fvj =
∫ tb
ta
q̇j

2dt, ∆fsj =
∫ tb
ta
q̇jsign(q̇j )dt, ∆γof f j =

∫ tb
ta
q̇jdt,

∆fv = [∆fv1 . . . ∆fvn], ∆fs = [∆fs1 . . . ∆fsn], ∆γof f = [∆γof f 1 . . . ∆γof f n].

Collecting the corresponding (Γm,q, q̇) at a sufficient number of intervals

[ta(i), tb(i)], we obtain a linear overdetermined system of r equations with respect

to the base dynamic parameters. Similar to the dynamic model, the energy

identification model writes as:

Ye(Γm, q̇) =We(q, q̇)X+ ρe, (1.31)
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where

Ye =

























ye(1)
...

ye(r)

























, We =

























∆h(1) ∆fv(1) ∆fs(1) ∆γoff(1)
...

...
...

...

∆h(r) ∆fv(r) ∆fs(r) ∆γoff(r)

























,

∆h(i) = h[(q, q̇)b(i)]−h[(q, q̇)a(i)], y(i) =
∫ tb(i)

ta(i)

Γm
T q̇dt,

(q, q̇)a(i) = [q(ta(i)), q̇(ta(i))], (q, q̇)b(i) = [q(tb(i)), q̇(tb(i))].

From the 1.31, the identification for X is a least squares problem.

It should be noticed that this formulation needs a lower resampling of the

energy function h at times ta(i), tb(i). More precisely the function h calculated

at the acquisition rateωc (or control rate) must be low-pass filtered with Fp(s) in

order to avoid aliasing. So it is easier and natural to define the sampling times

ta(i) and tb(i) from the decimate procedure with the ratio nd , which results in

choosing ta(i) and tb(i) with a constant value tb(i) − ta(i) = nd ∗ 2π/ωc. And

the parallel decimate procedure Fp(s) is applied on the energy model (Gautier,

1996, 1997).

To illustrate the procedure, we construct the energy model on the 2R scara

planar robot. Recall the kinetic energy E(q, q̇) in equation 1.5, since the po-

tential energy U(q) is constant in this case, the Hamiltonian energy equals to

kinetic energy

H =
1

2
ZZ2(q̇1+q̇2)

2+
1

2
ZZ1Rq̇

2
1+LMX2q̇1 cos(q2)(q̇1+q̇2)−LMY2q̇1 sin(q2)(q̇1+q̇2).

(1.32)

With the same base parameters X2R, it is easy to specify the energy identifica-

tion model 1.31 with

We(i,1) =
1

2
q̇21 |

tb(i)
ta(i)

,

We(i,2) =
1

2
(q̇1 + q̇2)

2 |
tb(i)
ta(i)

,

We(i,3) = cos(q2)q̇1(q̇1 + q̇2) |
tb(i)
ta(i)

,

We(i,4) = −sin(q2)q̇1(q̇1 + q̇2) |
tb(i)
ta(i)

,
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We(i,5) =

∫ tb(i)

ta(i)

q̇1
2dt,

We(i,6) =

∫ tb(i)

ta(i)

q̇1sign(q̇1)dt,

We(i,7) =

∫ tb(i)

ta(i)

q̇2
2dt,

We(i,8) =

∫ tb(i)

ta(i)

q̇2sign(q̇2)dt,

Ye(i) =

∫ tb(i)

ta(i)

(Γm1q̇1 + Γm2q̇2)dt.

1.3 Power model identification

The robot powermodel also does not consider the joint acceleration data. Com-

pared to robot energy model, it is more robust with respect to low-frequency

noise. As shown in energy model, the integration appeared in equation 1.30

is actually infinite-gain filter at zero frequency. This causes an offset due to

the small low-frequency errors, which can produce a large error. Instead, the

power model use the differential equation form in order to overcome this prob-

lem. The power of the system at instant t writes as:

q̇T
Γm =

d

dt
(H) + q̇T[diag(q̇)Fv +diag(sign(q̇)Fs +Γoff]. (1.33)

Since H = hK, the power model estimates the dynamic parameters X =

[K,Fv,Fs,Γoff] in a linear equation:

Yp(Γm, q̇) =Wp(q, q̇)X+ ρp, (1.34)

where

Yp =

























yp(1)
...

yp(r)

























, Wp =

























d
dt (h(1)) W2p(1) W3p(1) W4p(1)
...

...
...

...
d
dt (h(r)) W2p(r) W3p(r) W4p(r)

























,

yp(i)q̇
T(i)Γm(i), W2p(i) = q̇T(i)diag(q̇(i)),

W3p(i) = q̇T(i)diag(sign(q̇(i))), W4p(i) = q̇T(i).
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As we did for the filtered dynamic model, we process the columns Y, X2p,

X3p and X4p using a low-pass filter Fp(s), while the columns of h are filtered

by sFp(s). In practice, this process can be carried out using a central difference

algorithm to obtain the time derivative of h, then, by using a decimation process

Fp(s) to filter all the model. Sufficient numbers of sampling data are needed in

order to obtain a linear overdetermined system of r equations with respect to

the base dynamic parameters. More precisely, with a 2R scara planar robot, we

have

Wp(i,1) =
d

dt
(
1

2
q̇21(i)),

Wp(i,2) =
d

dt
(
1

2
(q̇1(i) + q̇2(i))

2),

Wp(i,3) =
d

dt
(cos(q2)q̇1(i)(q̇1(i) + q̇2(i))),

Wp(i,4) =
d

dt
(−sin(q2(i))q̇1(i)(q̇1(i) + q̇2(i))),

Wp(i,5) = q̇1(i)
2,

Wp(i,6) = q̇1(i)sign(q̇1(i)),

Wp(i,7) = q̇2
2(i),

Wp(i,8) = q̇2(i)sign(q̇2(i)),

Yp(i) = Γm1(i)q̇1(i) + Γm2(i)q̇2(i).

1.4 Closed-loop output error identification (CLOE)

In (Gautier et al., 2013), the authors propose a new approach called DIDIM

(Direct and Inverse Dynamic Identification Models technique), which re-

quires only the joint force/torque measurement. It is a closed-loop output error

method where the usual joint position output in CLOE method is replaced by

the joint force/torque. It is based on a closed-loop simulation of the robot us-

ing the direct dynamic model, the same structure of the control law, and the

same reference trajectory for both the actual and the simulated robot. And the

optimization is to minimize the 2-norm of the error between the actual force/-

torque and the simulated force/torque.

The identification scheme is illustrated in Fig. (1.4). Tracking the reference

trajectory (q,q̇r , q̈r), the actual closed loop of robot produces the force/torque

τ. The simulated closed loop robot implements the same control law to get the

output force/torque τddm, with joint position feedback qddm computed from
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the direct dynamic model. Finally, the output error are minimized by optimiz-

ing the model dynamic parameters. This is a nonlinear least-squares problem

which is dramatically simplified using the inverse dynamic model to obtain an

analytical expression of the simulated force/torque.

Compared to the inverse dynamic identification model (IDIM) procedure,

first of all, DIDIM has the advantage that it is still robust with respect to low

sampling rate measurement. And DIDIM does not need well tuned band-pass

filtering to calculate the velocity and acceleration. While IDIM will behave

poor because of the amplitude distortion in the estimation of q̇, q̈, with a central

difference of q which is sampled at too low frequency.

Figure 1.4 – DIDIM identification scheme

1.5 Payload Identification

When a payload is fixed on the terminal link of the robot, the robot dynamics

is actual a combination of the payload dynamics and robot dynamics without

charge. In order to identify the payload dynamics, there exist four approaches

based on robot dynamic model, which are specified in (Khalil, Gautier, et al.,

2007):
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• identify the payload with dynamic parameters estimated without pay-

load;

• identify globally both the robot parameters and the payload;

• compare the difference of dynamic parameters of robot identified without

and with payload;

• use the difference between the joint torques before and after loading the

robot on the same trajectory.

To have a conception on payload identification, we explain the first method

mentioned above. Assume that X is already identified when the robot is with-

out payload. By developing the dynamic model of the robot with payload, the

identification model becomes as:

YT =WE(q, q̇, q̈)X+WL(q, q̇, q̈)XL + ρ, (1.35)

where

YT : vector of force/torque when robot is with payload,

WE : the observation matrix of robot dynamic parameters without payload,

X : the base dynamic parameters of the robot without payload,

XL : the 10× 1 vector of the inertial parameters of the payload,

WL : the observation matrix corresponding to the load inertial parameters.

Thus, the load inertial parameters are estimated from (1.35) via:

X̂L = (WL)
+(YT −WX). (1.36)

1.6 Problems in robot identification

Previously, we present different identification models, where the regressors

give the unique and accurate solution in presence of no disturbances. While

in real applications, there always exist some errors in the sampling and filter-

ing procedures. As known, a small noise in the measurement can induce large

error in the derivatives, especially for high order derivatives. Thus, the joint

velocity and acceleration can be inaccurately estimated if the noise component

is not well filtered. Besides, the robot identification model are highly nonlinear

with respect to the joint position, velocity and acceleration, so that the small

error part can be amplified and cause large bias in the final results.
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In order to obstacle this problem, intuitively we need to avoid using the

derivatives containing large noise or provide the derivation with more preci-

sion. Starting from this point, in chapter 2 we will present the identification

method based on power model and modulating functions, which allows the

elimination of the joint acceleration term, the guaranty of the rank efficiency

of the observation matrix and the low-pass filtering effect on the observation

matrix; in chapter 3, we will emphasize the differentiation techniques and dis-

cuss the newly developed algebraic Jacobi differentiators, by analysing their

frequency magnitude response.
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Chapter2

Robot identification using power

model and modulating functions

In order to avoid using noisy computation of acceleration data, the energy

model and power model are considered as approaches to describe the robot

dynamics for identification purpose. However the energy model computes one

scalar equation from a period of time, thus in some sense it will lose some diver-

sity in information of the observation matrix and in consequence decrease the

identifiability. The power model applies a derivative operation on the energy

terms and in fact it still contains the second order derivation.

Inspired by algebraicmethod, modulating functions are combinedwith robot

power model to replace the derivative operator in the power model by an inte-

gral. In (Co and Ydstie, 1990; Daniel-Berhe et al., 1998; Preisig et al., 1993),

authors also applied modulating functions in system identification. Integra-

tion with modulating functions can decrease the order of a differential system

and is in nature a filtering process. These make this transformation interesting

in several applications, in particular for parameter identification propose.

There are several advantages of modulating functions: first it avoids the

computation of acceleration; then it replaces the derivative operation by an in-

tegration operation with modulating functions, which have a nature low-pass

filtering; lastly by selecting different parametrization of modulating functions

and choosing different integral intervals, the identifiability property can be re-

covered.

For years many authors have focused on the choice of different modulating

functions types because they have different performances with respect to noise.

They are looking for certain kind of modulating functions which is adapted in

particular application. Several groups are listed here, such as sinusoid modu-

43



44CHAPTER 2. Robot identification using powermodel andmodulating functions

lating functions, polynomial modulating functions, Hermite functions (Jordan

et al., 1986), Fourier modulating functions (Pearson et al., 1985), Hartley mod-

ulating functions (Unbehauen et al., 1997), (Fedele and Coluccio, 2010) and

spline-type functions (Fedele, Picardi, et al., 2009).

In the following part, we will introduce the modulating functions and their

applications on decreasing the order of differential equations. Furthermore,

analysis on frequency magnitude response is done with respect to different

groups of modulating functions, so that certain groups are chosen for the identi-

fication procedure. At the end, two robot identification applications are carried

out with this type of identification model.

2.1 Modulating functions

Let l ∈ N∗, T ∈ R∗+, and g be a function satisfying the following properties:

(P1) : g ∈ Cl([ta, tb]);
(P2) : g (i)(ta) = 0, f or i = 0,1, ..., l − 1;
(P3) : g (i)(tb) = 0, f or i = 0,1, ..., l − 1, (2.1)

where Cl([ta, tb]) refers to the set of functions being l−times continuously differ-

entiable on [ta, tb] with l ∈ N∗. Then g is called lth order modulating function

on [ta, tb].

Modulating functions transform a differential expression into a sequence of

algebraic equations using noisy data signals. Their filtering property makes

this method interesting in several real processes.

For example, assume that a relation has variable x(s) of differential order s,

where x is the observe variable. We would like to use only the observed vari-

able and have to change the relation involving x(s) "descending" its order of

derivation. For this, we choose g a lth order modulating function on time inter-

val [0,T ] where l ≥ s. Multiply g with x(s) and multi-integrate them on [0,T ].

By partial integration, the variable x(s) decreases its order to x and modulating

function g increases its order to g (s) which is analytically known.

∫ T

0
gx(s) = −

∫ T

0
ġx(s−1) = · · · = (−1)s

∫ T

0
g (s)x. (2.2)
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2.2 Studies of modulating functions

From the above example, the modulating functions allows to transform a differ-

ential expression into a sequence of algebraic equations. Moreover, the modu-

lating functions method annihilates the effects of initial conditions and allows

the direct use of noisy data signals (Co and Ungarala, 1997). From the filtering

aspect modulating functions have low pass filtering property. These features

make the modulating functions method desirable for use in several real pro-

cesses.

2.2.1 Frequency Analysis

Frequency domain property of a modulating function can be analysed consid-

ering the integration operator as a filtering process. In (Chen et al., 2011; Col-

lado et al., 2009), the authors also analyze the differentiator frequency domain

property. In real computation, the numerical convolution
∫

gx is actually a dis-

crete operation with at sampling time interval T s, which calculates the sum

of discrete points of a signal x associated with the modulating function g . In

discrete version it writes as
∑N

i=1 g[i]x[i] with interval T s. In this way the modu-

lating functions can be discretized as a list of weighting coefficients. Moreover

these weighting coefficients can be regarded as coefficients of a finite impulse

response (FIR) filter with respect to a discrete system with sampling time T s.

By studying the frequency domain behavior of the FIR filter, we can extend the

results to integration effect with modulating functions. In the following part

we look at several modulating functions and discuss their filtering property in

order to give some clue in the choice for applications.

The proposed functions gℓ(t) are K order modulating functions on interval

[0,T ], with K the order desired to decrease. They satisfy the two-point bound-

ary conditions, g
(i)
ℓ (0) = 0, and g

(i)
ℓ (T ) = 0, when i = 0,1, . . . ,K − 1.

(1) Sinusoid based modulating functions (SMF): the sinusoid function value

reaches 0 per half period, according to this property, propose gℓ(t) = sinℓ(πT t),

with ℓ ∈ R.
(2) Jacobi modulating functions (JMF): this group of functions are a com-

bination of Jacobi polynomials which equal to 0 at each end of interval. Re-

member the order of each polynomial is larger than K − 1 and propose gℓ(t) =

tℓ1(t −T )ℓ2 , with ℓ1, ℓ2 ∈ R and ℓ1, ℓ2 > K − 1.
(3) Fourier modulating functions (FMF): as known complex exponential

function eix = cosx + i sinx is a periodic function which reaches 1 per period.
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Based on this, the fouriermodulating functions can be written as gℓ(t) = e−iαℓ(e−i
2π
T t−

1)K , where α is a tuning parameter and ℓ ∈ R.
(4) Harley modulating functions (HMF): based on Shinbrot’s method of mo-

ment functionals and Pearson Fourier modulating functions, this group of mod-

ulating functions are given: gℓ(t) =
∑n

j=0 (−1)j












n

j













cas((n+ ℓ − j)ω0t), where ℓ =

0,±1,±2, . . . is integer, ω0 =
2π
T is the resolving frequency, cas(x) = cosx + sinx.

The integration effect with modulating functions can be analysed via FIR

filtering point of view. Suppose the system sampling time is T s and extract

modulating function value gℓ(i) every T s second as the coefficient of FIR filter.

Then use bode plot to get the frequency contribution to magnitude of the modu-

lating function. For example, take into account the second order derivatives of

modulating functions, with system sampling time 1 millisecond, time window

0.1 second, and draw their bode plots.

From figure (2.1), the frequency-magnitude response shows that for the

groups of JMF and SMF, the filtering property of modulating functions are sim-

ilar as band-pass filter, because the high frequency component of the signal

contributes in a attenuation way to output and frequency higher than 150 Hz

is considered to be cut off, as well at low frequency there is attenuation. When

noise occurs at high frequency part of the signal, computation of integration

using these modulating functions is robust to noise. From another aspect, the

discrete version of a definite integral is the product of integrators with time

step on the time interval [ta, tb]. Because the time step is of low frequency, the

integral is also low-pass.

While for the groups of FMF and HMF, the band-pass area occurs at high

frequency. It turns out that they enlarge the high frequency contribution to in-

tegration. Especially HMF can be regarded as a high pass FIR filter because it

attenuates greatly the low frequency contribution to magnitude. This property

makes these two groups of modulating functions not suitable in normal appli-

cations. In the next section, the estimation process considers only the groups

of JMF and SMF modulating functions.

In conclusion, integrationwithmodulating functions is an effective approach

to decrease the order of input model. As well it has certain filtering property.

Compared to filter techniques, it is causal and it has no phase shift because it

calculates a scalar. The integration coefficients can be computed off-line so that

it can be implemented easily and instantly for on-line applications. These ad-

vantages make modulating functions method interesting, but still it has draw-

back such as it has less excitation in the identifiability compared to the method
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Figure 2.1 – Bode plot of second order derivatives of modulating functions
when ℓ = 10
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treating each points of the interval as an independent equation, because the

modulating function approach combines all into one scalar.

2.2.2 Configuration Choice

Integration with modulating functions is actually a band-pass filtering proce-

dure. If the sampling time is fixed, the effect depends on two choices: the type

of modulating functions and the integration time window.

We have discussed in the previous section, how are the inherent properties

of different modulating functions. Indeed, they are all pass-band filter and

their pass band locates in different area under same situation.

In other aspect, it should be noticed that if we enlarge the time window

of integration, which means more sampling points, the band-pass area will

be shifted to lower frequency, meanwhile the magnitude response will be in-

creased. This can be easily understood as time window enlarges, the integration

value increases.

From the above, we can make strategy how to tune the configuration for the

purpose of filtering. Assume sampling time is already known, the first step is to

fix the type of modulating functions to be used. If the cut-off frequency is low,

we choose JMF and SMF. The second step is fix the integration time window,

which need to be instructed by drawing and analysing the magnitude bode

plot. The principle is that the pass band shift to lower frequency as integration

time window increases.

2.2.3 An introducing example with one joint robot with grav-

ity effect

Let us consider a simple one joint robot model with gravity torque and with

current position q driven by a torque τ. Its classical dynamic model is given by:

ZZq̈ +Fv q̇ +MXsin(q̇) = τ. (2.3)

Divide equation (2.3) by the constant ZZ , then we have the equation of a pen-

dulum:

q̈ +αq̇ + β sin(q) = γτ, (2.4)

with α = Fv
ZZ , β = MX

ZZ , γ = 1
ZZ . The purpose is to recover on-line the three

dynamic parameters α, β, γ described in this model only by using themeasured

position and the known applied torque. The estimation is carried out with
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modulating-like functions. At time instant t, the estimation make use of the

data from time interval [t −T ,t], where T is the time window length. Consider

a modulating-like function gℓ(v) =
(v−t+T )ℓ

ℓ! , which has the property that ġℓ(v) =

gℓ−1(v) and gℓ is null at time t − T . Multiply (2.4) by gℓ(v) and perform an

integration by part on interval [t −T ,t], it leads to the following relation:

gℓ(t)q̇(t)− gℓ−1(t)q(t) +α

[

gℓ(t)q(t)−
∫ t

t−T
gℓ−1(t)q(t)dt

]

+β

∫ t

t−T
gℓ(t)sin(q(t))dt −γ

∫ t

t−T
gℓ(t)γ(t)dt = −

∫ t

t−T
gℓ−2(t)q(t)dt. (2.5)

Take Xp = [q̇(t)+αq(t), q(t),α,β,γ]T as unknown, thus it requires at least 5 equa-

tions to find them. And it can be noticed that this relation (2.5) is a scalar

equation. Thus it need additional data to form multi-equations, which can be

realized by replacing ℓ by a sequence of Np elements of ℓi where ℓi ∈ R and

ℓi ≥ 2. After setting a sequence of ℓi the list of equations are expressed as:

A(t,q,τ)













































q̇(t) +αq(t)

q(t)

α

β

γ













































= B(t,q), (2.6)

where A(t,q,τ) is a Np × 5 observation matrix and the i-th line of A(t,q,τ) is

given by

[

gℓi (t),−gℓi−1(t), −
∫ t

t−T gℓi−1(t)q(t)dt,
∫ t

t−T gℓi (t)sin(q(t))dt, −
∫ t

t−T gℓi (t)γ(t)dt
]

=Ai(t,q,τ) (2.7)

and the i-th element of vector B(t,q) is given by Bi(t,q) = −
∫ t

t−T gℓi−2(t)q(t)dt.

This forms the general over-determined linear system AXp = B, which can

be resolved by least square approaches. Tests are done in simulation, the mea-

sured signal q̃(ti) is simulated as a composition of an additive white Gaus-

sian noise ω(ti) and the current trajectory q(ti). The noise level is described

as uniform distributed noise of signal to noise ratio 30 dB (SNR, i.e. SNR =

10log10(
∑ |q̃(ti )|
∑ |ω(ti )| )). Take ℓ = 2 + i

100 , i = 1,2, ...,1800 and sliding time window

length T = 4 second.

The estimation result is shown in Fig (2.2,2.3). The average estimation of

dynamic parameters α, β, γ are 1.966, 3.0572 and 1.4666, with errors 0.034,
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Figure 2.2 – Estimationwhen q is of SNR= 30dB, with ℓ = 2+ i
100 , i = 1,2, ...,1800

and T=4s

0.0572 and 0.05333. Meanwhile the observed pendulum velocity fits quit well

the reference one. The advantages of this method include: all estimations come

from only the position and torque data, as well the state velocity is observed; the

estimation is carried out without pre-filtering of the noisy position nor torque

data. This is because that integration associated this special kind of modulating-

like functions has a nature effect of filtering property, which makes the imple-

mentation simpler.

In conclusion, for pendulum case we utilize the measured angle position

from a certain time window to estimate not only the dynamic parameters, but

also the angle velocity and filtered joint position at time t. The estimation gives

good result with a time window of 4 seconds. With a large sequence of ℓ, the

estimator forms an over-determined observation matrix and can be solved by

least square techniques. Meanwhile results show that this estimator is robust
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Figure 2.3 – Zoomed estimation when q is of SNR= 30dB, with ℓ = 2+ i
100 , i =

1,2, ...,1800 and T=4s
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with respect to noise. But the drawback of this method lies on the fact that the

estimation is out of precision before it acquires enough sampling data.

2.2.4 An introducing examplewith one joint robotwithout grav-

ity effect

Consider a simple one revolute joint robot described by:

ZZq̈ +Fv q̇ +Fcsign(q̇) = τ, (2.8)

where ZZ (kg ·m2) is the inertial parameter, Fv (N/(m/s)) and Fc (N) are the

viscous and Coulomb friction parameters respectively.

The purpose is to recover in real time the three dynamic parameters ZZ , Fv ,

Fc described in this model only by using the measured angular position q and

the known applied torque. At time instant t, the estimation make use of the

data from time interval [t −T ,t], where T is the time window length. Consider

a second order combination of Jacobi modulating functions gℓ(v)

gℓ1(v) =
(

v − t +T

T

)ℓ (v − t
T

)ℓ

,

gℓ2(v) =
(

v − t +T

T

)ℓ (v − t
T

)ℓ+1

,

gℓ3(v) =
(

v − t +T

T

)ℓ (v − t
T

)ℓ+2

, (2.9)

where v ∈ [t − T ,t] and ℓ = {ℓ ∈ N|ℓ = 10,11, . . . ,20}. Multiplying (2.8) by the

combination of modulating functions gℓ(v) and perform an integration by part

on interval [t −T ,t] and its half interval, it gives

ZZ

∫ t

t−T
gℓ−2(t)q(t)dt −Fv

∫ t

t−T
gℓ−1(t)q(t)dt +Fc

∫ t

t−T
gℓ(t)sign(q̇)dt

=

∫ t

t−T
gℓ(t)τdt. (2.10)

Take Xp = [ZZ,Fv ,Fc]
T as unknown, thus it requires at least 3 equations to

find them. Notice that this relation is a scalar equation, and by replacing ℓ by

a sequence of integers ℓi . After developing a sequence of N1R elements ℓi , a list

of equations are expressed as:

A(t,q, q̇)[ZZ,Fv ,Fc] = B(t,τ), (2.11)
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where A(t,q, q̇) is of dimension N1R × 3 and the i-th line of A(t,q, q̇) is given by

Ai(t,q, q̇) = [

∫ t

t−T
gℓi−2(t)q(t)dt, −

∫ t

t−T
gℓi−1(t)q(t)dt,

∫ t

t−T
gℓi (t)sign(q̇)dt],

and the i-th element of vector B(t,τ) is given by B(t,τ) =
∫ t

t−T gℓi (t)τdt.

A simulation test is carried out with measurement in joint position and

torque associated with a normally disturbed random noise whose signal to

noise ratio (SNR) is 30 dB. In the off-line identification case, the data are col-

lected with sampling time Ts = 1 millisecond. Because the modulating func-

tion with power model identification method turns vector equations into scalar

equations, in that sense the observation loses some information. In order to en-

sure the full rank and good condition number of the observation matrix, the es-

timation time window length should be set relatively long, here we set Test = 20

seconds. The inverse dynamic identification model with LS technique method

(IDIM-LS) is applied to make a comparison. In the both identification model,

the joint position are pre-filtered using a fourth order low-pass Butterworth fil-

ter with cut-off frequency at 2 Hz. The joint velocity and acceleration are com-

puted from the filtered joint position by means of Euler central difference algo-

rithm of the low-pass filtered position. The Euler central difference is the finite

difference method. Assume a discrete signal sequence [x[1], · · · ,x[i], · · · ,x[N ]],

with sampling time Tsamp, the first order derivative is obtained with Euler cen-

tral difference

ẋ[1] =
x[2]− x[1]

Tsamp
,

ẋ[i] =
x[i +1]− x[i − 1]

2Tsamp
, 1 < i < N

ẋ[N ] =
x[N ]− x[N − 1]

Tsamp
. (2.12)

In dynamic identification model, the data are down-sampled through a dec-

imate filter at 10 Hz. The estimation results are obtained with the same ref-

erence trajectory and several identifications are processed off-line with time

window Test = 20 seconds. The average value and variance with respect to real

value are shown in table (2.1).

In conclusion, for one joint robot case we utilize only the measured joint

position and the computed joint velocity from a certain time window to esti-

mate the dynamic parameters. The estimation gives good off-line identification

result with respect to noise. With a large sequence of ℓ, the estimator forms
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Parameters Real Modulating IDIM-LS Variance Variance
Modulating IDIM-LS

ZZ 3 3.0013 3.0018 0.0204 0.0263
Fv 0.4 0.3940 0.4185 0.0354 0.0483
Fc 0.5 0.5053 0.4736 0.0366 0.0667

Table 2.1 – Identification results of 1R robot using IDIM-LS and modulating
functions identification approaches

an over-determined observation matrix and can be solved by least square tech-

niques. Compared to IDIM-LS, the modulating approach has good or even bet-

ter performance in off-line identification. The drawback of this method lies on

the fact that the condition number of the observation matrix is relatively larger

than that of IDIM-LS method, and the sampling rate should not be too low in

order to reduce the integration error.

2.2.5 General case

The idea of solving this kind of differential system is to increase the order of

input value by partial integration with modulating functions. For a general

system
Nt
∑

i=0

αifi(θ,θ
(1), ...,θ(n)) = γ, (2.13)

where Nt is the number of terms, n is the highest order of derivative of θ, αi

are constant parameters, θ(i) is i-th order of derivative of θ and fi is a general

function. Now suppose a family of modulating functions gℓ(v) satisfying

g
(i)
ℓ (0) = g

(i)
ℓ (t) = 0, i ≤ n. (2.14)

Then, multiply gℓ(v) with the general system formulation and do integration on

the interval [0, t]. When the function fi(θ,θ
(1), ...,θ(n)) is analytically integrable,

one can perform integration by part according to partial integration theory us-

ing (2.14)

∫ t

0
αigℓfi(θ,θ

(1), ...,θ(n))dv = −
∫ t

0
αig

(1)
ℓ f

[1]
i (θ,θ(1), ...,θ(n−1))dv, (2.15)

where f
[1]
i (θ,θ(1), ...,θ(n−1)) is the analytical form of first time integral function

of

fi(θ,θ
(1), ...,θ(n)).
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In a similar way, if fi(θ,θ
(1), ...,θ(n)) is K times integrable, the highest order

derivative of θ can be degraded to (n − K)-th order, which avoids using noisy

high order derivatives. With this method, there is no need to access high or-

der values and it can be numerically more precise, thus gives better estimation

result. Finally in the K times integrable case, (2.15) can be written as a counter-

part of

∫ t

0
αigℓfi(θ,θ

(1), ...,θ(n))dv = (−1)k
∫ t

0
αig

(k)
ℓ f

[k]
i (θ,θ(1), ...,θ(n−k))dv. (2.16)

2.3 Identificationwithmodulating functions and power

model

Recall the robot power model (1.33):

q̇T
Γm =

d

dt
(H) + q̇T[diag(q̇)Fv +diag(sign(q̇)Fs +Γoff]. (2.17)

Integrate both sides of equation (1.33) with a first order modulating func-

tion g on the time interval [ta, tb] and apply integration by part which leads

to:

∫ t

t−T
gq̇T

Γmdt = −
∫ t

t−T
ġhKdt +

∫ t

t−T
gq̇Tdiag(q̇)Fvdt +

∫ t

t−T
gq̇Tdiag(sign(q̇))Fsdt +

∫ t

t−T
gq̇T

Γoffdt.(2.18)

This equation presents an energy balance and is a scalar equation. The mod-

ulating functions are well adapted in this model, because we know the ana-

lytical expression of the energy part h and the derivatives of the modulating

functions. In order to identify multi-unknowns, we need to construct more

equations whose number is equal to or larger than that of the base dynamic

parameters. The construction process is considered as choices of different mod-

ulating functions g and with different parametrization.

With the above procedures, we obtain an over-determined linear system of

n×nt ×nm equations similar as (1.13):

YE =WE(q, q̇, q̈)X+ ρE, (2.19)

where nt is the number of intervals, nm is the number of the modulating func-
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tions, ρE is the noise, YE andWE are the vector of integrals and the observation

matrix, respectively, which are defined as follows:

YE =

















































tb1
∫

ta1

g1q̇
T
Γm

...
tbnt
∫

tant

gne q̇
T
Γm
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−
tb1
∫

ta1
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−
tbnt
∫

tant

ġneh(q, q̇)

















































. (2.20)

The system (2.19) can be solved using the different LS techniques which are

discussed in appendix.

2.3.1 Simulation on 2R robot

This simulation part utilizes the robotmodel described in chapter (1.1.1). There

are eight minimal dynamic parameters X and recall (1.12)

X = [ZZ1R, ZZ2, LMX2, LMY2, Fv1, Fs1, Fv2, Fs2],

The simulation tests are running with value X which is all in SI Units: X =

[3.5 0.06 0.12 0.005 0.05 0.5 0.01 0.1]. And the sampling rateωc = 2π×100 rad/s.
In off-line identification, the estimation time window Test is set to be 20 sec-

onds. A reference trajectory is selected using a fifth order polynomial trajectory.

We can see that the estimated friction parameters are more disturbed, be-

cause Fv q̇ is small in value in the robot model, and Fs is not well excited with

polynomial trajectory, instead it can be excited with trapezoid velocity in the

trajectory. Meanwhile, it is because the friction parameters are in term with

velocity data whose estimation has more bias with respect to real value. For ex-

ample, the viscous friction parameters correspond to term q̇2, where the errors

are in the order of noise square and have great influence on these parameters.

To carry out the estimation, apply the same combination of Jacobi modu-

lating functions gℓ(v) described in (2.9), with v ∈ [t − T ,t] and ℓ = {ℓ ∈ N|ℓ =

10,11, . . . ,20}. Here we use QR factorization method to solve the least square

problem. Notice that similar as the decimate procedure composed of a low-

pass filter Fp(s) in the IDIM-LS technique, the modulating function with power

model approach also needs a lower resampling procedure. As discussed in

(Gautier, 1997), the decimate rate nd = 0.8 × ωc
2ωf p

for an IIR filter. Here, we

take nd = 10.

As discussed in chapter (1.2), the selection of definite integration time inter-
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val [ta(i), tb(i)] is actually a decimate procedure with the ratio nd , which results

in choosing ta(i) and tb(i) with a constant value tb(i) − ta(i) = nd ∗ 2π/ωc. In

the same way, the decimate procedure Fp(s) is applied on the modulating func-

tion with power model approach. With ne = 5000 samples and sampling rate

ωc = 2π × 100 rad/s, tb(i)− ta(i) = 0.1s.

The joint position and torque data are pre-filtered using a forward-backward

Butterworth with a cutoff frequency ωf q = 0.8ωc/2
5 . Then, the joint velocity is

computed using Euler central difference algorithm.

In order show the systematic error caused by the modulating functions with

power model approach and the filtering procedure, we carry out the simulation

without noise in the measurement. The results are shown in table (2.2), where

real parameters values X, the identified values X̂ and the relative standard de-

viation σX̂ri % are presented. The results prove that modulating functions with

power model has small systematic error.

Parameters Real X̂ σX̂ri %
ZZ1R 3.5 3.5005 0.0782
Fv1 0.05 0.0499 0.0989
Fs1 0.5 0.5001 0.0300
ZZ2 0.06 0.0600 0.0260
LMX2 0.12 0.1200 0.0211
LMY2 0.005 0.0050 0.0315
Fv2 0.01 0. 0.0100 0.0226
Fs2 0.1 0.0999 0.0315

Table 2.2 – Systematic error in simulation using modulating functions with
power model approach

2.3.2 Identification on 2R prototype robot

The experimental work is done on the two revolute joints planar prototype

robot described in chapter (1.1.1). The joint position q and the current refer-

ence VT (the control input) are collected at a 100 Hz sample rate. The measure-

ment joint position is shown in Fig. (2.4) and the motor torques are presented

in Fig. (2.5).

Similar as the simulation, the modulating functions chooses a combination

of Jacobi modulating functions gℓ(v) described in (2.9), with v ∈ [t−T ,t] and ℓ =

{ℓ ∈ N|ℓ = 10,11, . . . ,20}. The decimate procedure composed of a low-pass filter

Fp(s) with nd = 10 is implemented in IDIM-OLS. For modulating functions with



58CHAPTER 2. Robot identification using powermodel andmodulating functions

0 5 10 15 20 25 30

−10

−5

0

5

Time (s)

Jo
in

t 
p

o
si

ti
o

n

 

 

Joint 1

Joint 2

Figure 2.4 – Measured joint position of 2R prototype scara planar robot

power model approach, the selection of definite integration time interval [ta(i),

tb(i)] can be chosen as tb(i) − ta(i) = 0.5s, taking the filtering purpose and the

numbers of points in integration with modulating functions into a compromise.

The joint position and torque data are pre-filtered using a 12 order forward-

backward Butterworth with a cutoff frequency ωf q = 0.8ωc/2
5 . Then, the joint

velocity is computed using Euler central difference algorithm.

Once the identification model is built, the estimation of minimal dynamic

parameters X̂ is solved by OLS method. Standard deviations σX̂i
are estimated

using classical and simple results from statistics, considering the matrix W to

be a deterministic one, and ρ to be a zero mean additive independent noise,

with standard deviation σρ that Cρρ = E(ρTρ) = σ2
ρ Ir , where E is the expectation

operator. The variance-covariance matrix of the estimation error and standard

deviations can be calculated by:

CX̂X̂ = E[(X̂− X̂)(X̂− X̂)T ] = σ2
ρ (W

TW)−1,

where σ2
X̂i

= CX̂X̂ii , the diagonal coefficient of CX̂X̂.

An unbiased estimation of σρ is used to get the relative standard deviation

σX̂ri by the expression:

σ̂2
ρ =
||Y −W X̂||2

r − c , %σX̂ri = 100× σX̂i
X̂i

,
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Figure 2.5 – Joint torque of 2R prototype scara planar robot

where r is the total number of equations and c is the number of unknown pa-

rameters.

To make the results more clear, a comparison is done with IDIM-OLS tech-

nique on the same trajectory, and the identification results are shown in ta-

ble(2.3). Because the numbers of equations are different, the comparison in the

residue norm ∥Y −W X̂∥ is meaningless. Instead, we compare in the relative

residue norm ∥Y−W X̂∥
∥Y∥ , where the modulating functions with power model ap-

proach has better relative residue norm than IDIM-OLS method. Meanwhile,

according to the relative standard deviation σX̂ri % results, the results obtained

by the modulating functions with power model are better than those of IDIM-

OLS method. Thus, we can conclude that the modulating functions with power

model approach behaves better than IDIM-OLS method in this 2R prototype

scara robot case.

2.3.3 Simulation of payload dynamic parameters on 4R robot

The 4R robot model are constructed in the modified Denavit and Hartenberg

notation (DHM) frame described in table (2.4), and the direct dynamic model

and inverse dynamic model are computed using the software SYMORO intro-

duced in chapter (1.1.3).

We consider the payload identification from the power point of view, with
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IDIM-OLS Modulating & power model

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4836 0.0332 0.4765 3.4452 0.0187 0.2713
Fv1 0.2460 0.0895 18.1825 0.1484 0.0663 22.3353
Fs1 0.4330 0.0491 5.6677 0.5696 0.0749 6.5788
ZZ2 0.0596 0.0041 3.4481 0.0648 0.0007 0.5726
MX2 0.1253 0.0027 1.0865 0.1199 0.0020 0.8143
MY2 0.0006 0.0026 218.2929 0.0033 0.0011 16.5420
Fv2 0.0139 0.0153 55.0943 0.0187 0.0026 7.0349
Fs2 0.1274 0.0438 17.2103 0.1016 0.0159 7.8086

∥Y −W X̂∥ 4.9148 8.8995
∥Y−W X̂∥
∥Y∥ 0.0905 0.0699

∥Y−W X̂∥
∥√r−c∥ 0.2168 0.1864

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 62.1104 0.7561

Nb equation 522 2288
Cond(W) 38.5368 178.7265

Table 2.3 – Comparison between IDIM-OLS and modulating function using
power model method, 2R prototype robot

j σ α d θ r
0 0 0 0 q1 0
1 0 −π2 0 q2 0
2 0 0 L2 q3 0
3 0 0 L3 q4 0

Table 2.4 – DHM configuration of 4R scara planar robot

application of the modulating functions. Assume the robot dynamic parame-

ters are already identified before loading. Then the robot power model has an

additional term of the payload energy :

q̇T
Γm =

d

dt
(H) +

d

dt
(Hp) + q̇T[diag(q̇)Fv +diag(sign(q̇)Fs +Γoff], (2.21)

where d
dt (Hp) is the Hamiltonian energy of the payload. In a similar way, inte-

grate both sides of equation (1.33) with a first order modulating function g on

the time interval [ta, tb] and apply integration by part which leads to:

∫ t

t−T
ġhpXpdt = −

∫ t

t−T
gq̇T

Γmdt −
∫ t

t−T
ġhKdt +

∫ t

t−T
gq̇Tdiag(q̇)Fvdt

+

∫ t

t−T
gq̇Tdiag(sign(q̇))Fsdt +

∫ t

t−T
gq̇T

Γoffdt, (2.22)
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moreover, hp is the vector of energy functions corresponding to payload, Xp is

the payload dynamic parameters.

This gives linear formulation of the identification model, because Xp is con-

stant. And it only depends on the joint force/torque, position and velocity

information, which is more practical to implement.

The simulations are running with a four revolute joints robot model , assum-

ing that the dynamic parameters of the robot X have already been identified

without carrying a payload. When a payload is fixed on the terminal link of

the robot, we assume that the payload has influence on the last joint link and

causes the variation of the dynamic parameters of last joint by:

∆X = [∆XX ∆XY ∆XZ ∆YY ∆YZ ∆ZZ ∆MX ∆MY ∆MZ ∆M].

δX = needs to be identified in order to update the controller. In simulation, we

assume that ∆X = [0.2, 0.3, 0.2, 0.2, 0.1, 0.3, 0.1, 0.5, 0.4, 2], which is all in SI

Units.

With known robot dynamic parameters, the robot is installed with the un-

known payload at instant t = 0. The robot is driven by a computed torque PID

controller with the known robot dynamic parameters. The robot motion fol-

lows a successive point to point reference trajectory using a classical 5th order

polynomial trajectory generator.

Themeasurements of joint position is the superposition of real joint position

and a normally disturbed random noise whose signal to noise ratio (SNR) is 30

dB, with sampling time Ts = 1millisecond. The off-line estimation timewindow

length Test for identification of the payload dynamics is set as 10 seconds, in

order to ensure good rank and condition number of the observation matrix.

As discussed in subsection (2.2.1), we implement the sinusoid based and

Jacobi polynomial based modulating functions because they have better atten-

uation on the high frequency noise. The Jacobi modulating functions gℓ(v) de-

scribed in (2.9), with v ∈ [t −T ,t] and ℓ = {ℓ ∈ N|ℓ = 10,11, . . . ,20}. The sinusoid
based modulating functions are gℓ(v) = sinℓ

(

π
T (v − t +T )

)

, with ℓ = {ℓ ∈ N|ℓ =

10,11, . . . ,20}.
The integrals definite are selected in simulation with T = nd ∗2π/ωc. We set

the sampling frequency ωc = 1000 Hz and nd = 10, thus the definite integral

length T = 0.01s.

The joint velocity is computed using Euler central difference from the fil-

tered joint position q. The filter is a eighth order forward-backward Butter-

worth filter with cutoff frquency 2.5 Hz. The joint torque is also filtered with
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Figure 2.6 –Measurement with normally disturbed random noise of SNR=30dB
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cutoff frequency 10 Hz. The simulated measurement of joint position and

torque are shown in figure (2.6) and the identification results are listed in table

(2.5).

[ta, tb] with configuration Z1

Parameters Real Modulating IDIM-OLS IDIM+M
∆XX 0.2000 0.2137 0.1961 0.2138
∆XY 0.3000 0.2992 0.3118 0.2991
∆XZ 0.2000 0.2534 0.2078 0.2474
∆YY 0.2000 0.1656 0.2199 0.1757
∆YZ 0.1000 0.0898 0.1085 0.0923
∆ZZ 0.3000 0.2434 0.2905 0.2494
∆MX 0.1000 0.0566 0.0953 0.0635
∆MY 0.5000 0.4713 0.4854 0.4739
∆MZ 0.4000 0.3796 0.4003 0.3824
∆M 2.0000 2.0085 1.9862 2.0069

Table 2.5 – Comparison between IDIM-OLS and modulating functions identi-
fication approaches

2.4 Conclusion

The modulating function approach is an extension of the robot energy identifi-

cation method. Compared to the energy model, the integration with different

groups of modulating function will ensure the condition number and rank effi-

ciency of the observation matrix. Compared to robot dynamic model, the terms

containing joint acceleration disappear because of the integration, so that only

joint position, velocity and joint force/torque are required. Once the joint ve-

locities are well estimated, this modulating function with power model method

can give a good estimation of dynamic parameters. While the friction parame-

ters are difficult to estimate because they are less important in the model and

sensitive to noise. In the end, several simulation tests show that the identifi-

cation model with power model and modulating functions is an efficient iden-

tification approach. And the experimental identification on the 2R prototype

robot shows that the modulating functions with power model method has bet-

ter precision than IDIM-OLS method.

In the fourth chapter, comparisons are done among all robot identification

models. It will prove that the modulating functions with robot power model

method is a robust identification approach.
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Chapter3

Differentiation in parameters

identification of robots

3.1 Introduction

The robot identification issues have been widely studied in the past decades,

but there still exist several open questions. One of them concerns with estimat-

ing the derivatives of an unknown signal from its discrete, potentially using

noisy measurement. The numerical differentiation is ill-posed in the sense that

a small error in the measurement can produce a large error in the estimated

derivatives, specially in the case of high order derivatives. Therefore, various

numerical methods have been developed to obtain stable algorithms which are

robust against additive noises. They mainly fall into the following categories:

• the finite difference methods (Khan et al., 2000; Qu, 1996; Rahul et al.,

2006; Ramm et al., 2001),

• the Savitzky Golay methods (Barak, 1995; Diop, Grizzle, Moraal, et al.,

1994; Gorry, 1990a; Savitzky et al., 1964a)

• the wavelet differentiation methods (Diop, Grizzle, and Chaplais, 2000;

Leung et al., 1998; Nie et al., 2002; Shao and Ma, 2003; Shao, Pang, et al.,

2000)

• the Fourier transform methods (Dou et al., 2010; Fu et al., 2010; Kaup-

pinen et al., 1981; Qian, Fu, and Feng, 2006; Qian, Fu, Xiong, et al., 2006;

Yang, 2008)

• the mollification methods (Hao et al., 1995; Murio et al., 1998; Murio,

1993),

65
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• the Tikhonov regularization methods (Cullum, 1971; Hanke et al., 2001;

Nakamura et al., 2008; Wang, Jia, et al., 2002; Wei et al., 2005),

• the algebraic methods (Liu et al., 2009b, 2011b,d, 2012a; Mboup, 2007;

Mboup et al., 2009b),

• the differentiation by integration methods (Lanczos, 1956; Rangarajana

et al., 2005; Wang and Wen, 2010), i.e. using the Lanczos generalized

derivatives.

• observer design in the control literature (Chitour, 2002; Levant, 1998,

2003; Polyakov et al., 2014).

The numerical differentiators discussed in this chapter are based on alge-

braic methods. They are rooted in a recent algebraic parametric method intro-

duced by Fliess and Sira-Ramírez (Fliess, Mboup, et al., 2003; Fliess and Sira-

Ramirez, 2004). These algebraic differentiators are divided into two classes:

model-based differentiators and model-free differentiators. The formers were

obtained by applying the algebraic method to a differential equation which de-

fines a class of linear systems (Fliess and Sira-Ramrez, 2004; Tian et al., 2008).

Hence, they were mainly used for linear systems. However they have been

extended to the model-free differentiators, which can be used for nonlinear

systems and various problem in signal processing. The first model-free dif-

ferentiator was introduced in (Fliess, Join, et al., 2004) by applying the alge-

braic method to the truncated Taylor series expansion of the signal to differen-

tiate. Then, two model-free differentiators were studied in (Mboup et al., 2007,

2009a), where the so-called Jacobi differentiator is the most used. Moreover, it

was shown that the causal Jacobi differentiator can also be obtained by taking

the truncated Jacobi orthogonal series expansion of the signal to be differen-

tiated. Then, it was significantly improved by admitting a known time delay

chosen by the designer (Mboup et al., 2007, 2009a). In (Liu et al., 2011c), a

central Jacobi differentiator was proposed, which is devoted to off-line applica-

tions.

The Jacobi differentiator is a non-asymptotic differentiator and has the fol-

lowing advantages. First it is given by an integral formula in the continuous

case, which can be considered as a low-pass filter and corresponds to a convo-

lution in the discrete case. Thus, estimations at different instants can be ob-

tained using a sliding integration window of finite length. Moreover it shows

robust properties with respect to corrupting noises (Fliess, 2006). Regarding

to error analysis of Jacobi differentiator, theoretical works have been done to
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demonstrate that the errors are highly nonlinear functions of the designing pa-

rameters and the errors are bounded. As well some experimental works show

the relation between the error and the designing parameters (Liu et al., 2009a,

2011a, 2012a). However there does not exist yet an effective approach to design

the Jacobi differentiator because the parameters are highly coupled. To inves-

tigate, this chapter will consider from a FIR filter point of view, to show the

cut-off property of the Jacobi differentiator regarding to magnitude frequency

response.

In this section, we will construct high order precise numerical derivative

differentiators of a smooth functions from an algebraic framework. For this,

we consider two cases. In the first case, we use the sampling data given before

the point at which the derivative value we want to estimate. The such obtained

estimator is called causal differentiator. In the second case, the point at which

the derivative value we want to estimate is the middle point of the time window

used for data. Hence, we get central differentiator, used for off-line purpose.

3.1.1 A motivating example

The classical numerical differentiation methods, generated from an interpolat-

ing polynomial (see (Anderssen et al., 1998; Brown et al., 1992)) or a least-

squares polynomial (see (Gorry, 1990b; Savitzky et al., 1964b)), is used to ap-

proximate a function, the derivatives of which we want to estimate. Then, the

derivatives of this polynomial is closely linked to the coefficients of this poly-

nomial. From these, in the recent papers (Mboup et al., 2007, 2009a), a new

algebraic parametric differentiation method is presented where an elimination

technique such as the one introduced in (Herceg et al., 1986) was used to calcu-

late the effective coefficients.

We begin with a simple example to demonstrate the principle of algebraic

parametric technique. Let p(t) = a0 + a1t be a first order polynomial defined

on R
+, where a0 and a1 are unknown. The aim is to calculate the first order

derivative of p(t), through an elimination technique on the operational domain.

Applying the Laplace transform to tα ,α ∈ R, the operational expression writes

as p̂ = a0
s + a1

s2
, where p̂ is the Laplace transform of p(t). Then, by multiplying

both sides by s, we get sp̂ = a0 +
a1
s . Thus, we can annihilate the polynomial

coefficient a0 by deriving with respect to s:

sp̂(1) + p̂ = − 1
s2
a1. (3.1)
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As in (3.1), it only remains p̂ and a1 in the operational domain. It is necessary

to return to time domain in order to calculate a1 by using knowledge of p(t).

Considering that the inverse Laplace transform of sp̂(1) contains the derivative

of p̂ which is unknown, we need multiply both sides of (3.1) by s−2, in order

to construct the correct inverse Laplace form. Finally, we obtain the analytical

solution of a1 which only depends on p(t):

a1 =
3!

t3

∫ t

0
(2τ − t)p(τ)dτ, t > 0. (3.2)

From the previous computations, we define the following differential oper-

ator:

Π0,0 =
1

s2
· d
ds
· s, (3.3)

which allows to annihilate the lower order coefficient a0 and calculate the deriva-

tive by an integral. From these property, we call such differentiator integral

annihilator, and this method differentiation by integration. In practice, this

kind of differentiator is actually a band-pass filtering procedure, where its dif-

ferentiation property annihilates the low frequency contribution and the in-

tegration by definite integrals is in nature low-pass filtering, thus only band

frequency is passed.

We can extend the previous polynomial function to higher order straightfor-

wardly. Inspired by this, we can estimate derivatives of a given smooth function,

by taking a suitable truncated Taylor series expansion around a given instant

and by applying some integration technique to annihilate the undesired coeffi-

cients. In the following part, we present in detail the recently developed Jacobi

differentiators.

3.2 Causal Jacobi differentiator

Consider a noisy measurement xϖ : I → R, xϖ(t) = x(t) +ϖ(t), where I is a finite

time open interval of R+, x ∈ Cn(I ) with n ∈ N, and ϖ is an additive corrupt-

ing noise. The objective is to estimate the nth order derivative of x using xϖ.

Contrary to (Rangarajana et al., 2005) where the nth order Legendre polyno-

mials were used, we apply the Jacobi polynomials to get the truncated Jacobi

orthogonal series to estimate the nth order derivative, which were introduced

in (Mboup et al., 2007, 2009a).

First, for any t0 ∈ I , we introduce the set Dt0 := {t ∈ R∗+; t0 − t ∈ I}. Define the
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ith order shifted Jacobi orthogonal polynomial on interval [0,1] as follows (see

(Abramowitz et al., 1965) pp. 774-775), with parameters µ,κ ∈]− 1,+∞[:

P
(µ,κ)
i (τ) =

i
∑

j=0

(

i +µ

j

)(

i +κ

i − j

)

(τ − 1)i−j τj . (3.4)

Define the L2([0,1]) scalar product ⟨·, ·⟩(0,1)µ,κ with the associated weight func-

tion ŵµ,κ(τ) = (1− τ)µτκ, let us denote ∀g1, g2 ∈ C[0,1],

⟨

g1, g2
⟩(0,1)
µ,κ =

∫ 1

0
ŵµ,κ(τ)g1(τ)g2(τ)dτ. (3.5)

Hence the associated norm for the ith order shifted Jacobi orthogonal polyno-

mial is given as: ∥P(µ,κ)
i ∥2µ,κ = 1

2i+µ+κ+1
Γ(µ+i+1)Γ(κ+i+1)
Γ(µ+κ+i+1)Γ(i+1) , where Γ(n) is the classical

Gamma function (see (Abramowitz et al., 1965) p. 255), with Γ(n) = (n− 1)!.
The derivation of causal Jacobi differentiator is discussed in detail in (Liu

et al., 2012a), and a general demonstration are done in appendix A.2. Here,

we give the analytical continuous expression of the causal Jacobi differentiator,

which calculates the nth derivative at instant t0, ∀ξ ∈ [0,1],∀t0 ∈ I ,

D
(n)
κ,µ,T ,qx(t0 −Tξ) =

1

(−T )n
∫ 1

0
Qκ,µ,n,q,ξ(τ)x(t0 −Tτ)dτ, (3.6)

with µ,κ ∈]− 1,+∞[,

Cκ,µ,n,i =
(µ+κ +2n+2i +1)Γ(κ +µ+2n+ i +1)Γ(n+ i +1)

Γ(κ +n+ i +1)Γ(µ+n+ i +1)
, (3.7)

Qκ,µ,n,q,ξ(τ) = ŵµ,κ(τ)

q
∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (τ). (3.8)

Finally, we substitute x in (3.6) by xϖ so as to obtain the causal Jacobi differ-

entiator D
(n)
κ,µ,T ,qx

ϖ(t0 −Tξ) in noisy case.

Different from the existing polynomial approaches, the idea of the causal

Jacobi differentiator is to use a sliding integration window to estimate the value

of x(n) at each t0 ∈ I by D
(n)
κ,µ,T ,qx(t0 − Tξ) with a fixed value of ξ ∈ [0,1] 1 (see

(Mboup et al., 2007, 2009a)). If ξ , 0, then it produces a delay of value Tξ .

It is clear that for each t0 ∈ I , the causal Jacobi differentiator D
(n)
κ,µ,T ,qx

ϖ(t0 −
Tξ) depends on a set of design parameters, except for the order of the desired

1According to (Mboup et al., 2009a), an optimal value of ξ is given, we discuss in chapter
(3.2.1)



70 CHAPTER 3. Differentiation in parameters identification of robots

derivative n:

• κ,µ ∈]− 1,+∞[: the parameters of Jacobi polynomials,

• q ∈ N: the order of truncated Jacobi series expansion,

• T ∈Dt0 : the length of the sliding integration window,

• ξ ∈ [0,1]: the parameter of time-delay Tξ .

3.2.1 Error Analysis in Time Domain

The estimation error of the causal Jacobi differentiator can be decomposed in

the continuous case as follows:

D
(n)
κ,µ,T ,qx

ϖ(t0 −Tξ)− x(n)(t0)

=
(

D
(n)
κ,µ,T ,qx(t0)− x(n)(t0 −Tξ)

)

+
(

D
(n)
κ,µ,T ,qx

ϖ(t0 −Tξ)−D
(n)
κ,µ,T ,qx(t0 −Tξ)

)

+
(

D
(n)
κ,µ,T ,qx(t0 −Tξ)−D

(n)
κ,µ,T ,qx(t0)

)

= eRn
(t0;κ,µ,T ,q) + eϖ(t0;n,κ,µ,T ,q) + eh(t0;n,κ,µ,T ,q). (3.9)

1)Noise error contributions eϖ(t0;n,κ,µ,T ,q): in continuous case, consider the

noise errors due to the two following categories of noises.

• Integrable noises: In this case the noise is assumed to be a bounded and inte-

grable function on I , which can be divided into two parts (Fliess, Mboup, et al.,

2003): the first part is a (n−1)th order polynomial, considered as a structured per-
turbation, and the seconded part is a high frequency perturbation, considered

as an unstructured noise.

An error bound based on the integral formula given in (3.6) was proposed in

(Liu, 2011) (p. 90) for this kind of noise errors. Moreover, it was shown that the

Jacobi differentiatorD
(n)
κ,µ,T ,qx

ϖ(t0−Tξ) can eliminate a (n−1)th order structured
perturbation.

• Non-independent stochastic process noises: consider in this case a class of

continuous stochastic processes with finite secondmoments, whose mean value

function and covariance kernel are continuous functions (Parzen, 1999), such

as Brownian motion and Poisson process.

Since a stochastic process usually is not bounded, the Bienaymé-Chebyshev

inequality was used to give error bounds by calculating the mean value and the

variance of the associated noise error (Liu et al., 2011a).

2) Truncated term error eRn
(t0;κ,µ,T ,q): Using the Taylor series expansion of x

at t0, an error bound for the amplitude error was provided in (Liu et al., 2012b),

where the (n+ q +1)th order derivative of x was assumed to be bounded on I .
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3) Delay error eh(t0;n,κ,µ,T ,q): Instead of giving an error bound for the delay

error, existing studies were based on how to chose ξ and on how to reduce the

delay Tξ if ξ , 0.

• On the one hand, according to (Mboup et al., 2009a), we can take ξ = ξ
(n)
κ,µ,q in

D
(n)
κ,µ,T ,qx

ϖ(t0 − Tξ), where ξ
(n)
κ,µ,q is the smallest root of P

(µ+n,κ+n)
q+1 . This choice of

ξ significantly improved the Jacobi differentiator by admitting the time-delay

Tξ . Indeed, it was shown in (Mboup et al., 2009a) that eh(t0;n,κ,µ,T ,q,ξ
(n)
κ,µ,q) <

eh(t0;n,κ,µ,T ,q +1,0) < eh(t0;n,κ,µ,T ,q,0).

• On the other hand, ξ
(n)
κ,µ,q depends on three design parameters. The influence

of q is given by the classical orthogonal polynomial theory. The influence of κ

and µ was studied in (Liu et al., 2011a).

• Another choice of ξ is to take ξ = 0.5 (this case corresponds to the central

Jacobi differentiator, see (Liu, 2011; Liu et al., 2011c)). It is the optimal value

of ξ which minimizes the noise error contribution. However, the time-delay is

equal to 0.5T . Hence, this case is only considered for off-line applications.

Finally, by numerically2 calculating the noise error bound, the amplitude

error bound and the time-delay, we can know their behaviors with respect to

different design parameters. Then, we can deduce the influence of these design

parameters on each source of errors. We summarize the obtained results in Ta-

ble (3.1) (see (Liu, 2011; Liu et al., 2011a) for more details), where the notations

a ↑, b ↗ and c ↘ mean that if we increase the value for the parameter a then

the error b increases and the error c decreases. Consequently, it is interesting to

take negative values of κ to reduce both the truncated term error and the noise

error contribution (see (Liu et al., 2011a) for more details).

Meanwhile, in discrete case, the integral formula of the causal Jacobi dif-

ferentiator should be approximated by taking a numerical integration method,

which implies a numerical error. Compared to Simpson’s integration rule, it

indicates the trapezoidal integration rule is the optimal numerical integration

method to reduce the noise error contribution. In the following part, we con-

sider in discrete case and study the frequency domain property.

3.2.2 Frequency Domain Analysis

Inspired by (Chen et al., 2011), we investigate the frequency response. Seen

from equation (3.6), the causal Jacobi differentiator is a combination of inte-

grals with measurement in [t0−T ,t0]. The discrete version Jacobi differentiator

2It is very difficult to analytically study the behavior of each error bound due to their com-
plex expressions.
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Noise error Truncated error Time-delay
κ ↑ ↗ ↗ ↗
µ ↑ ↗ ↘ ↘
q ↑ ↗ ↘ ↘
T ↑ ↘ ↗ ↗

Table 3.1 – Influence of design parameters onD
(n)
κ,µ,T ,qx(t0−Tξ

(n)
κ,µ,q) in continuous

case.

writes as the sum of a list of weighting coefficients associated with measure-

ment. In this sense, the Jacobi differentiator can be seen as a FIR filter applied

to a discrete system with sampling time Ts. By studying the frequency domain

behavior of the FIR filter, we can investigate the filtering and differential prop-

erties of the Jacobi differentiator. After extracting the weighting coefficients, we

can draw the bode plot of Jacobi differentiator, as a digital filter with sampling

time Ts.

Given a signal that is the sum of three sinusoidal waves with amplitude 1

and frequency 4 Hz, 9 Hz, 15 Hz respectively. To get the second order deriva-

tive, the causal Jacobi differentiator is applied, with comparison of two on-line

approaches: Euler causal difference with a traditional FIR filter and a forward

Butterworth filter.

FIR filters can be designed as a linear-phase filter (but they do not have to

be), where their coefficients are symmetrical around the centre coefficient (Mc-

Clellan et al., 1973). Linear-phase means all frequency components are shifted

in time by the same amount, where no distortion happens with frequency dur-

ing the filtering process. When the order of linear-phase FIR filter is Nf , the

delay T∆FIR =
Nf −1
2Fs

, where Fs is the sampling frequency. Butterworth filter is

an IIR filter and referred to as a maximally flat magnitude filter. It is widely

used in off-line case with a zero phase forward-backward filtering process. So

comparison with Butterworth filter technique is interesting.

We simulate the measurement of the signal by superimposing an uniformly

distributed random noise of amplitude 0.3 and a sinusoidal noise of ampli-

tude 0.2 with frequency 200 Hz on the signal. The sampling frequency is

1 millisecond. To derive such a signal, the causal Jacobi differentiator is set

with κ = 2, µ = 2, q = 2 and the sliding integration window T = 0.054 sec-

ond. In this configuration, the causal Jacobi differentiator causes a delay of

T∆causal = Tξ = 0.0189s. Allowing the same amount of delay as causal Jacobi

differentiator, Nf = 38.8 but the FIR filter order Nf should be integer thus set

Nf = 39, with cutoff frequency at 25 Hz. A well tuned forward Butterworth fil-
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ter configuration is of order 4 with cutoff frequency at 25 Hz. Then the filtered

data is derived by Euler causal difference with transfer function H(z) = 1−z−2
2Ts

.
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Figure 3.1 – Estimated acceleration with causal Jacobi differentiators

The derivative estimation for acceleration are shown in Fig. (3.1). In the

middle figure, the causal Jacobi differentiator and causal difference with lin-

ear phase FIR filter are applied allowing the same amount delay analytically

known. While the causal difference with Butterworth filter does not guarantee

the linear phase property. The original acceleration with black line is computed

without noise using the analytical form. As well, in the third figure, the esti-

mations are shifted to right time line in order to compare. The results show

that causal Jacobi differentiator is better than FIR filter, and presents a good

precision similar to the Butterworth forward filter with Euler causal difference

approaches. They are robust to different noises.

The frequency domain analysis is shown in Fig. (3.2). In Fig (3.2(a)) the

magnitude frequency response plot, the FIR filter with Euler causal difference

method has the fastest descent in the beginning of the unwanted frequency,

but in high frequency part the magnitude response is not attenuated. The But-

terworth filter with Euler causal difference method forward has the smoothest

descent and cuts off completely the high frequency component. Comparatively

the causal Jacobi differentor has an intermediate behavior, because it has better

descending rate than FIR filter method and less attenuation in high frequency

part than Butterworth forward filter method. From Fig (3.2(b)) the phase fre-
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Figure 3.2 – Bode plot of second order causal Jacobi differentiators

quency response, the causal Jacobi differentiator presents a good linear-phase

property as FIR filter method. The FIR filter method and causal Jacobi differen-

tiator allows quite the same amount of delay, which is indicated in figure that

they have the similar slope of curve. Compared to FIR filter, causal Jacobi dif-

ferentiator can induce delay in smaller scale such as 0.1 millisecond. While the

forward Butterworth filter method has a phase distortion, which makes it less

interesting in on-line case.

To investigate influence of parametrization in causal Jacobi differentiator,

we analyse in the bode plot as shown in Fig. (3.3).

1) κ mainly influences the low frequency contribution. A good selection



3.2. Causal Jacobi differentiator 75

10
−1

10
0

10
1

10
2

10
3

−20

0

20

40

60

80

100

120

140

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

bode plot of 2 order derivative of Jacobi estimator

Frequency  (Hz)

10
−1

10
0

10
1

10
2

10
3

10
4

−20

0

20

40

60

80

100

120

140

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

Bode Diagram

Frequency  (rad/sec)

mu=−0.3

mu=0

mu=0.1

mu=4

ideal

k=−0.3

k=0

k=0.94

k=4

ideal

10
−1

10
0

10
1

10
2

10
3

−20

0

20

40

60

80

100

120

140

M
a

g
n

it
u

d
e

 (
d

B
)

 

 

bode plot of 2 order derivative of Jacobi estimator

Frequency  (Hz)

10
−1

10
0

10
1

10
2

10
3

10
4

0

50

100

150

200

M
a

g
n

it
u

d
e

 (
d

B
)

 

 

Bode Diagram

Frequency  (rad/sec)

T=0.025

T=0.05

T=0.1

T=0.2

ideal

q=2

q=4

q=8

q=12

ideal

Figure 3.3 – Causal Jacobi differentiator parameters influence on bode plot
when Ts = 0.001s
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of κ can ensure the low frequency response close to 0. As κ increases, the

descending behaviors of the causal Jacobi differentiators vary. It can be found

that around κ = 0.94, it has a fast descending of magnitude frequency response.

Besides, the cutoff point is slightly pushed to higher frequency when κ increase.

2) µ is related to descending rate in the high frequency part. When µ in-

crease, high frequency response descends faster but low frequency response

will increase largely. As µ goes up, similarly the cutoff point slightly moves to

higher frequency.

3) q affects the truncated term error. When q increase, the cutoff frequency

area largely moves to higher frequency but it causes bias in low frequency re-

sponse. In most cases, q = 2 is the best trade-off condition.

4) T is the sliding integration window and when the sampling time Ts is

fixed. When sampling time is fixed, it represents the points required for causal

Jacobi differentiator. As T increase, the cutoff frequency largely moves to lower

frequency and it presents a robust differentiator property at low frequency.

Conclusion: compared to the time domain error analysis given in table

(3.1), the frequency domain analysis gives the corresponding explications. As

µ,q increase, the cutoff point of causal Jacobi differentiator moves to higher

frequency, which means it estimates with more frequency component, for one

part, it should enlarge the high frequency noise error; for other part, more fre-

quency components in the truncated expansion of original signal are utilized

so that the truncated error should be decreased. By contrast, as T increases, the

situation is opposite. For µ,q,T , the frequency domain analysis fits well with

time domain analysis.

While for κ, the effect is not obvious because as κ goes up, the behaviors in

frequency domain vary without monotony and their behaviors are similar (as

shown in Fig. (3.3(a))). From the figure, there should be an optimal κ, and we

can conclude that κ has small influence on differentiator performance.

From the previous analysis, the causal Jacobi differentiator is regarded as a

low-pass differentiator. The low-pass property is inherent because it considers

the signal as a certain order polynomial in a small time window and uses the

truncations to estimate the derivatives. Compared to other online differentia-

tors, its frequency magnitude response performance behaves less robust but

it has good linearity in phase and the exact time delay Tξ can be analytically

computed.
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3.3 Central Jacobi Differentiator

The central Jacobi differentiator can be regarded as a special case of the causal

Jacobi differentiator by admitting ξ = 0.5. Recall the causal Jacobi differentiator

(3.6):

D
(n)
κ,µ,T ,qx(t0 −Tξ) =

1

(−T )n
∫ 1

0
Qκ,µ,n,q,ξ (ξ)x(t0 −Tτ)dτ.

When ξ = 0.5, D
(n)
κ,µ,T ,qx(t0 − 0.5T ) estimates the nth order derivatives at instant

t0 − 0.5T , using the data collected from the interval [t0 − T ,t0]. Replace t0 by

t0 +0.5T , and it becomes the central Jacobi differentiator:

D
(n)
κ,µ,T ,qx(t0) =

1

(−T )n
∫ 1

0
Qκ,µ,n,q,0.5(τ)x(t0 +0.5T −Tτ)dτ, (3.10)

which estimates the nth order derivatives at instant t0, with a symmetric sam-

pling of causal and anti-causal data from the interval [t0 − T
2 , t0 +

T
2 ].

3.3.1 Another access to central Jacobi differentiator

In the above, we discuss how to get central Jacobi differentiator with obtained

causal Jacobi differentiator. Here, we consider from a base of central Jacobi

orthogonal polynomial, to prove the validity of the central Jacobi differentiator.

First introduce the central Jacobi orthogonal polynomial defined on [−1,1]
as follows: (see (Abramowitz et al., 1965)):

P
(µ,κ)
i (τ) =

i
∑

j=0

(

i +µ

j

)(

i +κ

i − j

)

(

τ − 1
2

)i−j (τ +1

2

)j

, (3.11)

with µ,κ ∈]− 1,+∞[. Let us denote ⟨·, ·⟩(−1,1)µ,κ as a L2([−1,1]) scalar product with

the associated weight functionwµ,κ(τ) = (1−τ)µ(1+τ)κ. Then, we have ∀g1, g2 ∈
C[−1,1],

⟨

g1, g2
⟩(−1,1)
µ,κ =

∫ 1

−1
wµ,κ(τ)g1(τ)g2(τ)dτ. (3.12)

And the associated norm is given as:

∥P(µ,κ)
i ∥2µ,κ =

2µ+κ+1

2i +µ+κ +1

Γ(µ+ i +1)Γ(κ + i +1)

Γ(µ+κ + i +1)Γ(i +1)
. (3.13)

For any t0 ∈ I , introduce the set D
′
t0
= {t ∈ R∗+|[t0 − t, t0 + t] ∈ I}, and suppose

h ∈D ′t0 . Let x still be a smooth function in Cn(I ). According to (Liu et al., 2011c),



78 CHAPTER 3. Differentiation in parameters identification of robots

the central Jacobi differentiator D
(n)
κ,µ,h,qx(t0) can be formulated using the above

notations (for more details a general demonstration are listed in appendix A.3).

D
(n)
κ,µ,h,qx(t0) =

1

hn

∫ 1

−1
Oκ,µ,n,q(τ)x(t0 + hτ)dτ, (3.14)

where 2h is entire sliding time window,

ρn,κ,µ(τ) =
2−(n+κ+µ+1)n!Γ(2n+κ +µ+2)

Γ(n+κ +1)Γ(n+µ+1)
, (3.15)

Oκ,µ,n,q(τ) =

q
∑

i=0

P
µ+n,κ+n
i (0)

i
∑

j=0

(−1)i+j
(

i

j

)

2i +κ +µ+2n+1

i +κ +µ+2n+1
ρn,κ+i−j,µ+j(τ).

(3.16)

Finally, x is substituted in (3.14) by xϖ in order to obtain the central Jacobi

differentiator D
(n)
κ,µ,h,qx

ϖ(t0) in noisy case. Because the the central Jacobi differ-

entiator depends on the causal and anti-causal data, so the the length of the

sliding integration window of central Jacobi differentiator T = 2h. Similarly the

central Jacobi differentiator depends on the same design parameters as causal

Jacobi differentiator.

• κ,µ ∈]− 1,+∞[: the parameters of Jacobi polynomials,

• q ∈ N: the order of truncated Jacobi series expansion,

• h ∈Dt0 : half length of the sliding integration window.

3.3.2 Error Analysis in Time Domain

The estimation error of the central Jacobi differentiator can be decomposed in

continuous case as follows:

D
(n)
κ,µ,h,qx

ϖ(t0)− x(n)(t0) =
(

D
(n)
κ,µ,h,qx − x(n)(t0)

)

+
(

D
(n)
κ,µ,h,qx

ϖ(t0)−D
(n)
κ,µ,h,qx(t0)

)

= eϖ(t0;n,κ,µ,h,q) + eRn
(t0;κ,µ,h,q).

(3.17)

where eϖ(t0;n,κ,µ,h,q) and eRn
(t0;κ,µ,h,q) refer to the noise error contribution

and the truncated term error respectively. Corresponding error bounds have

been provided in (Liu et al., 2011c). Finally, by numerically calculating these

error bounds, their behaviors with respect to different design parameters can be

known. Then, the influence of these design parameters on each source of errors

can be deduced. The obtained results are summarized in Table (3.2) (see (Liu,
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2011; Liu et al., 2011c) for more details). According to Table (3.2), the design

parameters’ influence on different errors is not the same. Thus, a compromise

among these parameters should be taken.

Noise error contribution Truncated error

κ ↑ ↗ ↘
µ ↑ ↗ ↘
q ↑ ↗ ↘
h ↑ ↘ ↗

Table 3.2 – Influence of design parameters on D
(n)
κ,µ,h,qx(t0) in continuous case.

3.3.3 Error Analysis in Frequency Domain

The central Jacobi differentiator can also be considered as a FIR filter. After

extracting the weighting coefficients, we can draw its magnitude frequency re-

sponse plot, as a digital filter with sampling time Ts. Central Jacobi differentia-

tor utilizes the non-causal data which means it is off-line differentiator.

Given the same signal mentioned in causal Jacobi case, the central Jacobi

differentiator is applied to get the second order derivative. To compare, the Eu-

ler central difference methods with a forward-backward Butterworth filter are

discussed. The forward-backward Butterworth filter is a zero phase IIR filter

and referred to as a maximally flat magnitude filter. It is widely used in various

applications so comparison with Butterworth filter technique is interesting.

In the noise-free case, both differentiators get the precise estimation. With

noise case, we simulate the measurement of the signal by superimposing to-

gether on the signal a normally distributed random noise of amplitude 0.2, a

200 Hz high frequency sinusoidal wave of amplitude 0.2 and a Poisson dis-

tributed random noise with mean parameter λ = 0.1 of amplitude 0.2. The

sampling frequency is 1 millisecond. In order to estimate the derivatives of the

original signal , the central Jacobi differentiator is applied by taking κ = µ = 12,

q = 6 and the sliding integration window T = 0.21 second. A well tuned for-

ward Butterworth filter configuration is of order 6 with cutoff frequency at 25

Hz. The forward-backward process is done by adding poles in the denominator

of transfer function with negative values.

The estimation errors in velocity and acceleration are shown in Fig. 3.4.

The result shows that central Jacobi differentiator can be accurate and robust

as Euler central differentiation with a well tuned Butterworth filter. It can be
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Figure 3.4 – Derivative errors in velocity and acceleration with central Jacobi
differentiator
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Figure 3.6 – Phase response of second order central Jacobi differentiators

seen that the estimation errors for the central Jacobi differentiator is larger at

the beginning and the end, because there is not enough data for the estimation.

In frequency domain, the magnitude bode plots of second order derivative

are shown in Fig. 3.5. The black line presents the ideal case with transfer func-

tion H(s) = s2 in continuous time. The Jacobi differentiator and Euler differen-

tiation with Butterworth filter are in discrete case. Notice the cutoff frequency

of Butterworth filter is at 25 Hz. Under 15 Hz, the magnitude frequency re-

sponse follows quite well the ideal curve for both Jacobi differentiator and But-

terworth method. Above 15 Hz, the magnitude frequency response begins to

descend rapidly, especially for the Jacobi differentiator. This means that the Ja-

cobi differentiator has a better cutoff property and the unexpected frequency is

attenuated quickly to 0 magnitude response. From the phase bode plot shown

in Fig. (3.6), both differentiators have the good phase linear-phase property

at low frequency. Above the cutoff frequency 25 Hz, central Jacobi differen-

tiator has several jumps of 180 degrees in phase, and has disturbance in high

frequency above 100 Hz, where the magnitude response is much attenuated so

that the phase distortion does not make much influence. The distortion may

come from numerical error when calculating the coefficients of central Jacobi

differentiator.

From the magnitude bode plot, we can analyze in Fig. (3.7) the influence of

parametrization in central Jacobi differentiator.

1) κ = µ, these parameters are chosen to be identical because this configura-

tion reduce the truncated term error (Liu et al., 2011c). They have two aspects

of influence. When the value increases, the descending period will be short-
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ened and the unwanted frequency-magnitude response drops fast to 0; on the

other hand it will affect the numerical integration error, which mainly causes a

bias at 0 Hz frequency-magnitude response.

2) q affects the truncated term error. When q increase, at low frequency

part the magnitude response remains the same but at high frequency part, the

cutoff frequency increase and the drop rate of descending period remains the

same. This means the functioning area is enlarged.

3) T is the sliding integration window and when the sampling time Ts is

fixed, it represents the points taken for Jacobi differentiator. When T increase,

the cutoff frequency will move to lower frequency and the numerical integra-

tion error is reduced, which presents a robust differentiator property at low

frequency.

Conclusion: the frequency domain analysis corresponds well with time do-

main error analysis described in table (3.2). For parameters κ = µ,q, as their

values increase, the cutoff point moves to high frequency, which indicates noise

error will enlarge and truncated error decreases. In the opposite way, it works

with parameter T .

From the previous analysis, the Jacobi differentiator is regarded as a low-

pass differentiator. The low-pass property is inherent because it considers the

signal as a certain order polynomial in a small time window and uses the trun-

cations to estimate the derivatives. From an empirical point of view, the Ja-

cobi differentiation functioning frequency is less than 10% of the sampling fre-

quency. Compared to Euler central differentiation with Butterworth filter, it

requires more data thus it is more robust with respect to noise, and its descend-

ing period is shorter.

In practice, there are several parameters to tune, which make the regulation

difficult to apply. Here we give a general rule to select these parameters. As

causal and central Jacobi are similar, we discuss the central case. From the

discussion above, κ, µ, q, T all have influence on the filtering property. First, q

is easier to choose according to the order of derivative we want to compute. For

example, q = 2 if we want acceleration. Second, it is a good choice to select κ = µ

and fix the value. Normally, the value can be chosen within ]−1,10[. Then, last
we select the time window T , which is more important, because it has direct

influence on the pass frequency of the Jacobi differentiator. The analyse can be

done by drawing bode plot.
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3.4 Dynamic parameters identification of 2R robot

In this part, we apply the causal and central Jacobi differentiators in robot iden-

tification issue. Here the IDIM-LS model is implemented. First we consider the

simulation test. The simulation tests use the 2R robot model described in chap-

ter (1.1.1), without considering the friction offset parameter Γof f . The eight

minimal dynamic parameters X are

X = [ZZ1R ZZ2 LMX2 LMY2 Fv1 Fs1 Fv2 Fs2].

3.4.1 Iterative learning identification and computed torque con-

trol

Iterative learning control is an efficient method to compensate the variation of

system dynamics during the operation. Lots of researches are dedicated to this

subject, such as in (Bao et al., 1996; Bristow et al., 2006; Bukkems et al., 2005;

Wang, Gao, et al., 2009). Moreover, in recent literature (Gautier, Jubien, et al.,

2013) presented the structure of iterative learning identification and computed

torque control (IDIM-ILIC) in robot issues, where the computed torque control

uses a proportional-Derivative (PD) controller and the IDIM is calculated with

noise-free data from the trajectory generator. With noise-free data, it avoids

using the noisy derivatives of the actual joint position measurement.

Here, we consider the iterative estimation of the robot dynamic parame-

ters and apply IDIM-ILIC in on-line application, where the robot dynamic pa-

rameters are periodically calculated over a moving time window to update the

inverse dynamic model of the computed torque controller. And different from

(Gautier, Jubien, et al., 2013), we implement a Proportional-Integral-Derivative

control for errors in the controller and IDIM is calculated from measurements.

The IDIM-ILIC scheme is shown in Fig. (3.8). The feedback velocity q̇computed

is obtained using the backward difference algorithm of the measured joint po-

sition qmeasure, in order to ensure real time feedback.

The CTC computes the force/torque control input τ, which is defined such

that:

τ = M̂(qmeasure)w+ N̂(qmeasure, q̇derivative), (3.18)

where qmeasure is the measurement of robot joint position, q̇derivative is the joint

velocity calculated from joint position measurement, M̂(qmeasure) is the estima-

tion of symmetric and positive definite inertia matrix, and N̂(qmeasure, q̇derivative)
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Figure 3.8 – IDIM-ILIC scheme

is the estimations of the Coriolis, centrifugal and gravity force/torque,

N̂(qmeasure, q̇derivative) = C(qmeasure, q̇derivative)q̇derivative +Q(qmeasure) +Γf

The control input w is dominated by the desired reference acceleration, plus a

Proportional-Integral-Derivative control input of errors, where

w = q̈ref +Kpe+Kd ė+Ki

∫

e,

with e = qref −qmeasure and ė = q̇ref − q̇derivative. Kp, Ki , Kd are positive diagonal

matrices of proportional, integral and derivative gains.

Then, the closed-loop system response is determined by the following error

equation:

M̂(qmeasure)(ë+Kpe+Kd ė+Ki

∫

e)

=M(qmeasure)q̈derivative +N(qmeasure, q̇derivative)

−M̂(qmeasure)q̈derivative − N̂(qmeasure, q̇derivative), (3.19)

with ë = q̈ref − q̈derivative.

Assume the right part of the equation is 0, which means without modelling

error nor error on the measurement or parameter value, the error equation

(3.19) becomes

ë+Kpe+Kd ė+Ki

∫

e = 0. (3.20)

The solution e is the free response of a third order differential equation if we
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take the derivative operation on (3.20):

e(3) +Kd ë+Kpė+Kie = 0. (3.21)

The method for selection of gains are presented in appendix (A.4). The error

dynamics depend on the tuning gains. Usually, these gains are selected high

enough to get fast dynamics and good robustness to error modelling. While

unfortunately, the perfect model assumption is implausible in practice. In fact,

the values of parameters are not perfectly known and there are always small

errors in the model. Thus, the assumption that right part of (3.19) tends 0 may

not hold.

As specified in (Gautier, Jubien, et al., 2013), for strong nonlinear system

such as robots, it is impossible to analyse the errors effects. However, we can

make some well founded approximations. As shown in (Gautier et al., 2013),

the crucial component for the right part is M(qmeasure)q̈derivative − M̂(qmeasure)q̈.

For the vectors of centrifugal and friction force/torque N and N̂ can be con-

sidered as a perturbation. Then, in order to show the error e is bounded, we

consider in the one degree of freedom case, where there is only one parameter

M , which leads to:

e(3) +Kd ë+Kpė+Kie = (α − 1)q̈derivative, withα =
M

M̂
. (3.22)

Thus, with α close to 1, with proper gains and because q̈derivative is bounded,

e is bounded. Consequently, we need a robust identification of the inertia pa-

rameters and accurate modelling.

3.4.2 On-line Identification

The simulation runs with X all in SI Units:

X = [3.5 0.06 0.12 0.005 0.05 0.5 0.01 0.1]

.

The on-line dynamic parameters identification is implemented with IDIM-

ILIC, 2R robot simulation model and causal Jacobi differentiator. Here, the

gains are selected identical for both joints with Kp1 = 49, Kp2 = 580, Kd1 = 31,

Kd2 = 46, Ki1 = 30, Ki2 = 3000 (see appendix A.4). The reference trajectory is

composed of a successive point to point trajectories using a classical 5th order

polynomial trajectory generator. The simulation is noise free in the measure-
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ment. The IDIM-LS is carried out every 3 seconds with estimation time win-

dow Test = 4.5s, where the estimation window should be large in order to ensure

good excitation in the observationmatrix and get robust estimation. For the pre-

vious 4.5 seconds the dynamic parameters initial condition is set as ZZ1R = 1,

ZZ2 = 0.5 and the others equal to 0. The feedback velocity is calculated using

two steps backward difference of the current measured position.

With causal Jacobi differentiator, the parametrization are chosen as κ = 0.94,

µ = 0, q = 2 and T = 0.1s for estimating joint position and torque with delay

0.035s, T = 0.5s for estimating joint velocity with delay 0.183s, T = 0.9s for

estimating joint acceleration with delay 0.339s. The joint position, velocity, ac-

celeration and torque are shifted to the same time-line using the known time

delay. In Fig. (3.9) it shows the identification results. From the simulation re-

sults, the IDIM-LS keeps robustness after the first period of sampling. Tracking

error is shown in Fig. (3.10), as well the computed torque is shown in Fig. (3.11).

During the robot motion, for the first 6 second, the robot is driven with initial

condition, where the controller induces larger error; while aftre 6 second, the

estimation are carried out and the tracking error in joint position is less than

0.02 radians and the estimation error is less than 0.05.
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Figure 3.9 – IDIM-ILIC identification results

3.4.3 Non stationary inertial parameter

This part simulates the abrupt change of inertial parameter. The initial dy-

namic parameters are set to be the same values as those in the previous section.

At instant t = 9s, ZZ1R changes from 3.9 to 8. The online estimation result is

shown in Fig. ()3.12). Notice that from t = 9s to t = 14s, there exists a delay of

estimation time window T before getting the correction estimation. This delay
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Figure 3.10 – IDIM-ILIC tracking error with simulation
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Figure 3.11 – IDIM-ILIC computed torque with simulation

is necessary because it needs enough data to re-estimate the changed param-

eters. During this transition period all the estimated inertial parameters are

varying smoothly to the correct value. During the robot motion, the tracking

error in joint position is shown in Fig. (3.13). It can be found, at each iteration,

the updating of the parameters will induce a perturbation, resulting in an error

in the control.

3.4.4 Offline Identification

The experimental work is done on the two revolute joints planar prototype

robot described in chapter (1.1.1). Recall the filtering procedure in chapter

(1.1.5), the joint position and torque are pre-filtered to eliminate high frequency

noise differentiation. In order to get the filtered q, q̇ and q̈, set κ = µ = 2, q = 2
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Figure 3.12 – Estimation in ZZ1R, ZZ2, LMX2, LMY2 with variation of ZZ1R
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Figure 3.13 – IDIM-ILIC tracking error with simulation and variation of ZZ1R

and T = 0.16s for filtering joint position and torque, T = 0.24s for estimating

joint velocity, T = 0.28s for estimating joint acceleration with central Jacobi

differentiator. For comparison, also use a low-pass Butterworth filter to elim-

inate the noise, whose cutoff frequency ωf q > 10 ×ωdyn according to the rule

of thumb (Gautier, 1996), then apply the Euler central difference algorithm

to obtain the time derivative. For the decimate procedure with low-pass filter

Fp(s), the decimate ratio nd can be calculated with nd =
ωc

2ωf p
for a FIR filter and

nd = 0.8× ωc
2ωf p

for an IIR filter, whereωc is the control rate. Takeωc = 100×ωdyn

and ωFp = 5×ωdyn, which gives a value of nd around 10 for decimation. Then,

by using matlab function we implement the decimation on all the model. In Fig.

(3.14) it shows the velocity and acceleration estimation of the real trajectory.

Identification results given in table (3.3) are quite similar for both methods.
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Figure 3.14 – 2R prototype robot trajectory and estimation of velocities, accel-
eration of q1

Actually compared to central difference with Butterworth filter approach, the

Jacobi differentiator method presents a better precision in identification results

on error norm and relative error norm. When the trajectory is not of high fre-

quency, the central Jacobi differentiator is a robust differentiator to get high

order derivatives.

3.5 Dynamic parameters identification of EMPS

In the previous section, we discussed the application of causal and central Ja-

cobi differentiators on the 2R scara planar robot. To extend, we look for their

applications on an EMPS (which is a high-precision linear Electro-Mechanical

Positioning System). In (Alexandre Janot et al., 2011), the authors presented

several identification approaches and applied central difference associated with

low-pass Butterworth filter technique to obtain the derivatives of EMPS, mean-

while a decimate procedure is implemented on all the models. This application

deals with the estimation of high order derivatives, which can be 3th or 4th or-

der, using measured position data. In this sense, it is a good test to examine the

robustness of differentiators. Thus, we implement the central Jacobi differen-

tiator during the identification procedure and compare it with the approaches

of difference using forward-backward Butterworth filter. In this part, we first

introduce the EMPS model and the identification methods, then carry out the
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Jacobi Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4776 0.0332 0.4770 3.4836 0.0332 0.4765
Fv1 0.1955 0.0894 22.8746 0.2460 0.0895 18.1825
Fs1 0.4310 0.0491 5.6951 0.4330 0.0491 5.6677
ZZ2 0.0593 0.0041 3.4640 0.0596 0.0041 3.4481
LMX2 0.1253 0.0027 1.0848 0.1253 0.0027 1.0865
LMY2 0.0007 0.0026 190.1596 0.0006 0.0026 218.2929
Fv2 0.0131 0.0153 58.6218 0.0139 0.0153 55.0943
Fs2 0.1269 0.0438 17.2724 0.1274 0.0438 17.2103

number of equations= 522
cond(W ) = 38 for both cases

Table 3.3 – Comparison of experimental identification with 2R prototype robot,
IDIM-OLS

experimental works to make a comparison.

3.5.1 Presentation of EMPS

An EMPS machine is presented in Fig. (3.15). It is a standard configuration of

a drive system for prismatic joint of robots or machine tools. It is connected

to a dSPACE digital control system for easy control and data acquisition using

Matlab and Simulink software.

Figure 3.15 – EMPS prototype system

The system is composed of several main components:

• A Maxon DC motor equipped with an incremental encoder. This DC mo-

tor is position controlled with a PD controller.

• A Star high-precision low-friction ball screw drive positioning unit. An

incremental encoder at its extremity supplies information about the an-

gular position of the screw. - A load in translation.

• An accelerometer placed on the load supplies information about the load

acceleration.
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A brief configuration is presented in Fig. (3.16).

Figure 3.16 – EMPS components

All variables and parameters are given in ISO units on the load side.

3.5.2 Inverse dynamic model of EMPS

When the connection between the motor and the load is fixed, we can express

the system dynamics in (3.23) with one inertia parameter and frictions. The

inverse dynamic model describes the motor torque by function of the state and

derivatives as

τ1 = ZZ1Rq̈1 +Fv1Rq̇1 +Fs1Rsign(q̇1), (3.23)

where q1, q̇1, q̈1 are respectively the motor position, velocity and acceleration;

τ1 is the motor torque; ZZ1R is the total inertia, Fv1R and Fs1R are the total

viscous and Coulomb friction parameters.

When the connection is flexible, the mechanical system can be modelled

with two inertias, a spring and a structural damping, as shown in Fig. (3.17).

The inverse dynamic model can be obtained from the Newton-Euler equations

(Khalil and Dombre, 2004):

τ1 = ZZ1q̈1 +Fv1q̇1 +Fs1sign(q̇1)−K12q2 +Fof f ,

0 = ZZ2q̈12 +Fv2q̇12 +Fs2sign(q̇12) +K12q2, (3.24)

where q1, q̇1, q̈1, τ1 are the same as in the fixed case; q12, q̇12, q̈12 are respectively

the load position, velocity and acceleration; q2, q̈2, q̈2 are respectively the elas-

tic relative position velocity and acceleration, with q12 = q1 + q2, q̇12 = q̇1 + q̇2,

q̇12 = q̇1 + q̇2; ZZ1 is the motor inertia, Fv1 and Fs1 are respectively the viscous

and Coulomb motor friction parameters; ZZ2 is the load inertia, Fv2 and Fs2
are respectively the viscous and Coulomb load friction parameters; K12 is the

stiffness and Fof f is offset coefficient. Moreover, the flexible inverse dynamic
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Figure 3.17 – EMPS modeling and DHM frames

model can be formulated as

Γ =M(q)q̈+C(q, q̇)q̇+Kq+B, (3.25)

with

q =













q1
q2













, q̇ =













q̇1
q̇2













, q̈ =
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0
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ZZ1 0
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,

N(q, q̇) =













Fv1q̇1 +Fs1sign(q̇1)

Fv2q̇12 +Fs2sign(q̇12)













, K =













K12 −K12

−K12 K12













, B =













Fof f
0













.

Then, the dynamic model can be rewritten as a linear relation with respect

to the dynamic parameters as follows:

Γ =DSTDXSTD, (3.26)

with 8 parameters to be identified called standard parameters

XSTD =
[

ZZ1, Fv1, Fs1, K12, Fof f , ZZ2, Fv2, Fs2
]T

,

DSTD =













q̈1 q̇1 sign(q̇1) −q2 1 0 0 0

0 0 0 q2 0 q̈12 q̇12 sign(q̇12)













.

Moreover, the direct dynamic model of EMPS is described by:

M(q)q̈ = Γ−C(q, q̇)q̇−Kq−B. (3.27)



94 CHAPTER 3. Differentiation in parameters identification of robots

3.5.3 Identification model using motor and load positions

This is the idealistic case, where we have access to joint position measurement

andmotor torque. Thus, the minimal model corresponds to the standardmodel

is given in (3.26) as:

D1 =DSTD, X1 = XSTD and Γ1 = Γ. (3.28)

3.5.4 Identificationmodelwith onlymotor position and torque

This is the common case in the industrial application where onlymotor position

and torque are known. The flexible load position q2 need to be expressed in

terms of q1 and its derivatives. We remove Fv2 and Fs2 from the inverse dynamic

model because Fv2 is poorly identified and Fs2 is not linear function. Then, the

rewritten inverse dynamic model is given as:

τ1 = ZZ1q̈1 +Fv1q̇1 +Fs1sign(q̇1)−K12q2 +Fof f , (3.29)

0 = ZZ2q̈12 ++K12q2. (3.30)

We can resolve q2, q̇2 and q̈2 in function of motor position q1 from equation

(3.29):

q2 =
1

ZZ2

(

−τ1 +ZZ1q̈1 +Fv1q̇1 +Fs1sign(q̇1) +Fof f
)

q̇2 =
1

ZZ2

(

−τ̇1 +ZZ1q
(3)
1 +Fv1q̈1

)

, sign(q̇1) is not dif f erentiable

q̈2 =
1

ZZ2

(

−τ̈1 +ZZ1q
(4)
1 +Fv1q

(3)
1

)

. (3.31)

Rewrite equation (3.30) using the above expressions:

0 = ZZ1q̈1 +ZZ2

(

− τ̈1
K12

+
ZZ1

K12
q
(4)
1 +

Fv1
K12

q
(3)
1

)

+K12

(

τ1
K12

+
ZZ1

K12
q̈1 +

Fv1
K12

q̇1 +
Fs1
K12

sign(q̇1) +
Fof f

K12

)

. (3.32)

Then we have:

Γ2 = τ1, D2 =
(

−τ̈1 q
(4)
1 q

(3)
1 q̈1 q̇1 sign(q̇1) 1

)

,

X2 = (o1 o2 o3 o4 o5 o6 o7)
T . (3.33)
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with

o1 =
ZZ2

K12
, o2

ZZ1 ·ZZ2

K12
, o3 =

ZZ2 ·Fv1
K12

,

o4 = (ZZ1 +ZZ2), o5 = Fv1, o6 = Fs1, o7 = Fof f .

Finally, the dynamic parameters are calculated from the complete form:

ZZ1 = o2/o1, ZZ2 = o4 −ZZ1, (3.34)

Fv1 = o5, Fs1 = o6, (3.35)

K12 = ZZ2/o1,Fof f = o7. (3.36)

We will apply the OLS technique on the two identification model, where

derivatives are computed by central Jacobi differentiator, as well as central dif-

ference associated forward-backward Butterworth filter in order to make a com-

parison.

3.5.5 Data acquisition

The comparison is carried out in the differentiator part. On one hand, time

derivatives are estimated using the central Jacobi differentiator; on the other

hand, time derivatives are estimated by means of a band pass filtering of the

position. This band-pass filtering is obtained with the product of a low-pass

forward-backward Butterworth filter and from a derivative filter obtained by

Euler central difference algorithm, which in all denotes no phase shift. The

magnitude of the frequency response is given by:

|H(jω)| = 1

(1+ (
jω

ωbutter
)2nbutter )

, (3.37)

where nbutter is the filter order and ωbutter is the cutoff frequency of the filter.

nbutter is fixed according to the maximum derivatives order in the identification

model. The cutoff frequency ωbutter of the low-pass filter must be chosen to

avoid any magnitude distortion on the filtered signals in the range [0,ωdyn]

defined by the dynamics to be identified. More details about filtering can be

found in (Pham et al., 2002, 2001).

To eliminate high frequency noises and torque ripples, a parallel decimation

is performed on all identification model. This low-pass decimate filter resam-

ples each signal at a lower rate. It keeps one sample over dn because no infor-

mation is contained in the range [ωdyn,ωs/2], where ωs is sampling frequency.

Details about data decimation can be found in (Gautier, 1997).
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Motor and load positions are measured by means of high precision encoders

working in quadrature count mode and with an accuracy of 100000 counts per

revolution. The sample acquisition frequency for joint position and current ref-

erence (drive force) is 1 kHz. We calculate the motor torque using the relation:

τ1 = Gτvτ , (3.38)

where vτ is the current reference of the amplifier current loop, and Gτ is the

gain of the joint drive chain, which is taken as a constant in the frequency range

of the robot because of the large bandwidth (700 Hz) of the current loop.

The first natural frequency, is of 30 Hz. This was verified with appropriate

mechanical experiments such as blocked output test (see (Janot et al., 2007)).

The cutoff frequency of the Butterworth filter is fixed at 60s Hz and the dec-

imate ratio nd = 10. It should be noticed in the region where the reference

trajectory reaches the pulse, the data is not considered.

The system is position controlled with a PD controller, the bandwidth of

the closed loop is tuned at 30 Hz to identify the dynamic parameters. Exciting

trajectories consist of trapezoidal velocity with pulses, such that trapezoidal ve-

locity excites very well inertia and friction parameters while pulses excite flexi-

bility. We have condition number of observation matrix is around 30, implying

that the dynamic parameters are well excited and can be identified (Gautier

and Khalil, 1992; Presse and Gautier, 1993) with a good accuracy.

3.5.6 Experimental Validation

• identification model using motor and load positions: with themodel described

in (3.26), the maximum derivative order is 2. According to (Pham et al., 2001),

the order of Butterworth filter nbutter = 4, which is a combination of an order

4 forward Butterworth filter and and order 4 backward one. For central Jacobi

differentiator, we take µ = κ = 2 and q = 2, for the estimation time window, we

take 0.1s, 0.2s, 0.24s for derivatives of order 0, 1, 2 respectively. With the same

reference trajectory and configuration as first identification method, we solve

the LS problem Y = WX + ρ. Estimated value, standard deviation σX̂, relative

standard deviation σX̂r , relative norm of the residue
∥(Y−WXest)∥

∥Y∥ are shown in ta-

ble (3.4). Cross tests validations have been performed. They consist in simulat-

ing the EMPS with the identified values and in integrating the direct dynamic

model (3.27). In Fig. (3.18), we can see for both methods, the estimated torque

follows closely the measured one.

• Identification model using motor position and torque: with themodel described
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Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %

ZZ1R 71.4 0.46 0.32 72.0 0.46 0.32
Fv1 72.3 2.78 1.93 96.8 2.86 1.48
Fs1 8.70 0.27 1.56 8.83 0.28 1.56
ZZ2 34.4 0.43 0.63 34.1 0.43 0.64
Fv2 89.7 0.26 1.26 100 2.32 1.16
Fs2 10.8 0.22 1.02 10.6 0.22 1.03
K12 7.52 105 8750 0.58 7.45 105 8790 0.59
Fof f −7.09 0.01 0.70 0.125 0.01 0.70

∥(Y−WXest)∥
∥Y∥ 0.0591 0.0597

number of equations= 4734

Table 3.4 – Results with identification model using motor and load positions

in (3.33), the maximum derivative order is 4. According to (Pham et al., 2001),

the order of Butterworth filter nbutter = 6. For central Jacobi differentiator, we

take µ = κ = 2 and q = 2; for the joint position, 2,3,4 order derivatives, we take

sliding time window of 0.1s, 0.2s, 0.24s, 0.4s, 0.52s respectively; for the first,

second order derivatives of torque, we take sliding time window of 0.16s, 0.32s

respectively. Estimated value, standard deviation σX̂, relative standard devia-

tion σX̂r , relative norm of the residue
∥(Y−WXest)∥

∥Y∥ are shown in table (3.5). After

resolution, the identified model parameters are given in table (3.6). The cross

validation is also given in Fig. (3.19). It can be found from the results, that

the identification results using central Jacobi have smaller relative norm of the

residue compared to that using difference with Butterworth filter. This means

that the simulated force fits better to the real one.

Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %

o1 4.59 10−5 6.82 10−7 0.74 4.53 10−5 6.98 10−7 0.77
o2 3.12 10−3 3.39 10−5 0.54 3.17 10−3 3.57 10−5 0.56
o3 −2.20 10−2 3.74 10−3 8.50 −2.60 10−2 3.90 10−3 7.49
o4 1.06 102 0.244 0.11 1.06 102 0.25 0.12
o5 1.91 102 2.63 0.69 1.97 102 2.52 0.64
o6 19.4 0.22 0.56 19.4 0.23 0.59
o7 −5.84 0.09 0.77 −5.84 0.09 0.80

∥(Y−WXest)∥
∥Y∥ 0.0386525 0.0401961

number of equations= 2367

Table 3.5 – Results with identification model using motor position and torque
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(b) Cross validation with Butterworth approach

Figure 3.18 – Cross validation with identification model using motor and load
positions

3.5.7 Comparison between two identificationmodelwith EMPS

The errors force with cross validation of these two identification methods are

presented in Fig. (3.20). From the figure, we can see the identification models

using motor and load positions have relatively more errors in cross validation

than those using only motor position and torque. Comparing only the factor

relative norm of the residue
∥(Y−WXest)∥

∥Y∥ , the identification model using only mo-

tor position and torque with central Jacobi differentiators presents the smallest

values, which means the model is well built and the parameters are well identi-

fied to correspond the real measurement.

Meanwhile, we can see that with the same identification model, the one us-
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Parameters Central Jacobi Difference + Butterworth
ZZ1 68.0 69.9
Fv1 191.1 197.0
Fs1 19.4 19.4
ZZ2 38.4 36.1
K12 8.37 105 7.96 105

Fof f −5.84 −5.84

Table 3.6 – Identified parameters with identification model using motor posi-
tion and torque

ing central Jacobi differentiators has small residue with cross validation. This

proves the robustness of the central Jacobi differentiators in off-line applica-

tions.

In conclusion, the central Jacobi differentiator is an efficient off-line high or-

der derivatives differentiator. Compared to central difference with Butterworth

filter, it has the same or even better performance with proper parametrization.

Tests on simulation and EMPS prove that it can be applied in real application.

3.6 Conclusion

In this chapter, the recently developed Jacobi differentiators are analysed in

both time domain and frequency domain. The frequency domain property cor-

responds well with time domain analysis. The important fact is that via the

frequency analysis, we can evaluate the Jacobi differentiator performance from

the bode plot, which for the first time brings to the user a criterion or mea-

surement to design the differentiator. Furthermore, by the frequency analysis,

Jacobi differentiator is able to make a comparison with the other differentiators,

such as difference with filtered data approaches.

Jacobi differentiators are in nature a low-pass differentiators and compar-

isons are done to prove that Jacobi differentiators presents accuracy with good

linear phase property. Meanwhile in discrete case, the computation of Jacobi

differentiators always induce a numerical error when dealing with integration,

which causes bias dealing with low frequency signal. Thus, the elimination of

deviation is necessary. In the end, several robotic identification tests are done

with Jacobi differentiators, which show their performances in applications.
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(b) Cross validation with Butterworth approach

Figure 3.19 – Cross validation with identification model using only motor posi-
tion and torque
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(b) Cross validation error with identification model using only motor position and torque
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(c) Zoomed cross validation error with identification model using motor and load positions

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

8

10

Sample number

E
rr

o
r 

F
o
rc

e 
(N

)

 

 
Central Jacobi with only motor position and torque

BW+Difference with only motor position and torque

(d) Zoomed cross validation error with identification model using only motor position and
torque

Figure 3.20 – Cross validation error with two identification model
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Chapter4

Comparison of different

identification techniques

Recall in the previous chapters that for series robot identification issues, there

exist different techniques mainly fall into three categories

• robot identification model,

• differentiation methods,

• least square techniques.

It should be noticed that different numerical decomposition tools, such as in-

verse, pseudo-inverse, QR factorization or SVD decomposition, can make dif-

ference when the observation matrix is of rank deficiency or near singularity.

When the observation matrix has full rank and have good condition number,

their performances are the same in precision of results. Thus, here we do not

compare them. For the other techniques, we show in this chapter the compari-

son of the corresponding identification results. In the following table (4.1), we

conclude the existing identification methods.

Identification models Differentiators LS techniques
dynamic model difference & Butterworth OLS
power model causal Jacobi differentiator WLS
energy model central Jacobi differentiator ILS
power model &

modulating function

Table 4.1 – Different identification approaches

103
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Four robot identification model: in the following part, we will apply four

identificationmodel: dynamic identificationmodel, energy identificationmodel,

power identification model, identification based on modulating functions with

power model. The implementation procedures are discussed in chapter 1.

Three least square techniques: in each identification model, we will apply

different LS techniques: OLS, WLS, ILS (see appendix).

Two differentiators: the central difference with forward-backward Butter-

worth filter is a zero phase off-line differentiator, which is widely used in vari-

ous applications; the central Jacobi differentiator is a recently developed alge-

braic differentiator which is robust to noise and also applied off-line. Thus, the

comparison between these two differentiators are interesting.

.

4.1 Tests on 2R scara planar robot

Simulation tests are carried out at sampling rate ωc = 2π × 100 rad/s, using the

robot model described in chapter (1.1.1), without considering the friction offset

parameter Γof f . There are eight base dynamic parameters to be identified:

X = [ZZ1R ZZ2 LMX2 LMY2 Fv1 Fs1 Fv2 Fs2],

using the measured joint position and torque. The simulation tests are running

with value X all in SI Units: X = [3.5 0.06 0.15 0.1 0.3 0.4 0.2 0.12]. The refer-

ence trajectory is generated point to point using a classic 5th order polynomial

trajectory generator, where a successive 30 points are chosen within interval

[−π,π], which offers au total ne = 5000 sampling points.

4.1.1 Simulation for 2R robot identification

The following tests are carried with the same condition. OLS, ILS are imple-

mented in every cases. For ILS, the regularizing parameter λ = 0.001, the stop-

ping error tolerance is 10−8 and maximum iteration is 108 times.

WLS is applied only with dynamic identification model, because other mod-

els have only one dimensional information that cannot be weighted. WLS tech-

nique is applied so that certain regions of the observation are valued more im-

portant or less important in the regression, according to their deviation. Here,

weights are given to dynamic equations for each joint respectively, where their

value is the inverse of the standard deviation σ
j
ρ. with j the joint number. We
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can regroup the dynamic identification model (1.15) by putting the terms con-

cerning the same torque together, and it is easily obtained in the form
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X, (4.1)

where Γmj is theNs×1 torque observation for joint j ,Dji is theNs×1 observation

element of parameter Xi in the torque dynamic equation of joint j . Then, we

can calculate the standard deviation

σ
j
ρ =
∥Yj −ΦXj∥√

r − c
, (4.2)

where
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with r is the total number of equations, c is the number of unknown parameters,

ns is the number of sampling points.

Then, the weights 1

σ
j
ρ

are adding to the corresponding part in (4.1), then the

dynamic identification model becomes
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X. (4.3)

Considering the band-pass filtering, the Euler difference algorithm with

forward-backward Butterworth filter is of order 12 with cutoff frequency ωf q =

0.8ωc/2
5 = 8 Hz, where the forward or backward Butterworth filter is the same

order 6 with opposite poles in the transfer function. The joint position and

torque data are pre-filtered, then the joint velocity and acceleration are com-

puted using Euler central difference algorithm.

For the selection of band-pass filtering using the central Jacobi differentia-

tor, the cutoff frequency should be regulated at 8 Hz as the Butterworth filter.

As mentioned in chapter 3, we can analyse the central Jacobi differentiator in

frequency domain, and the cutoff property is easily shown. For tuning the pa-

rameters, we fix κ = µ = 2, q = 2, then the only parameters tunable is the time

window T . After several plots, we choose the best T as shown in Fig. (4.1) and
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set T = 0.16s for filtering joint position and torque, T = 0.24s for joint veloc-

ity and T = 0.28s for joint acceleration. From the analysis in chapter 3, if we

increase the estimation time window, the cutoff frequency will move to low fre-

quency. It should be noticed that there are bad estimation of the derivatives in

the beginning and the end of the trajectory. In case the wrong estimation, we

remove the estimation of the first and last 2s.

Then, for IDIM-LS, power identification model, a low-pass filtering deci-

mate procedure is implemented with decimate ratio nd = 10.

Definite integrals [ta, tb] are considered in the robot energy identification

model and modulating function using power identification model. The rules

for selection of integrals are presented in chapter (1.2), where the decimate pro-

cedure with the ratio nd is equivalent to integration definite with tb(i)− ta(i) =
nd ∗2π/ωc. Because the sampling frequency ωc = 2π×100 rad/s and nd is set to

10, thus the definite integral tb(i)− ta(i) = 0.01s. While for modulating function

using power identification model, the definite integral [ta, tb] can be selected

larger because modulating functions with integration change the filtering prop-

erty. Thus, we test two type of integrals for modulating function using power

identification model, the first with tb(i) − ta(i) = 0.01s, and the second with

tb(i)− ta(i) = 0.5 plus tb(i)− ta(i) = 1.

In the modulating function based approach, we implement the Jacobi modu-

lating functions described in (2.9) with ℓ = {ℓ ∈ N|ℓ = 10,11, . . . ,20} and sinusoid

based modulating functions gℓ(t) = sinℓ
(

π
T t

)

with ℓ = {ℓ ∈ N|ℓ = 10,11, . . . ,20} .
In the following part, we present the simulation results.

4.1.2 Filtering systematic error

First we carry out the simulation test without considering the measurement

noise, in order to investigate the systematic error due to the filtering imple-

mentation. The results are shown in table (4.2) with band-pass filter of central

difference with Butterworth filter, and in table (4.3) with the central Jacobi dif-

ferentiator. In order to see the systematic error for each parameter, we define

eX̂ir %= 100× |Xi−X̂i
Xi |.

The conclusion can be drawn in two aspects:

• comparing the band-pass filters, we find that the central Jacobi differentia-

tor approach obtains smaller systematic error than those of the band-pass

filter of central difference with Butterworth filter;

• comparing the identification model, form the relative error |X−X̂X |%, we

see that energy identification model has the smallest systematic error, as
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Figure 4.1 – Bode plot cutoff frequency at 8 Hz of band-pass filtering for posi-
iton, velocity and acceleration
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well the modulating function with power model has larger relative error

because there are more variation caused by modulating functions, while

for the other three methods, the errors are relatively larger.

Difference + Butterworth
IDIM-OLS IDIM-WLS Power

Parameters X X̂ eX̂ir}% X̂ eX̂ir % X̂ eX̂ir %
ZZ1R 3.5000 3.5015 0.0431 3.5015 0.0425 3.5009 0.0271
Fv1 0.0500 0.0854 70.8051 0.0853 70.6945 0.0483 -3.4186
Fs1 0.5000 0.4278 -14.4479 0.4278 -14.4397 0.5036 0.7106
ZZ2 0.0600 0.0602 0.4056 0.0600 0.0762 0.0600 -0.0560
LMX2 0.1200 0.1201 0.0461 0.1203 0.2619 0.1201 0.0896
LMY2 0.0050 0.0052 3.4312 0.0049 -1.5058 0.0052 4.1414
Fv2 0.0100 0.0143 43.2609 0.0144 44.1980 0.0104 4.1441
Fs2 0.1000 0.0896 -10.4330 0.0894 -10.6053 0.0982 -1.7738

|X−X̂X |% 0.8494 0.8529 0.0705

Energy Modulating&Power(1)1 Modulating&Power(2)

Parameters X X̂ eX̂ir % X̂ eX̂ir % X̂ eX̂ir %
ZZ1R 3.5000 3.5000 0.0013 3.5005 0.0134 3.5004 0.0119
Fv1 0.0500 0.0500 -0.0597 0.0499 -0.2168 0.0500 -0.0512
Fs1 0.5000 0.5001 0.0142 0.5001 0.0154 0.5001 0.0159
ZZ2 0.0600 0.0600 0.0504 0.0600 0.0627 0.0600 0.0548
LMX2 0.1200 0.1199 -0.0462 0.1200 -0.0088 0.1200 -0.0080
LMY2 0.0050 0.0050 -0.2241 0.0050 -0.2173 0.0050 -0.2457
Fv2 0.0100 0.0100 0.0263 0.0100 0.1180 0.0100 0.3561
Fs2 0.1000 0.1000 -0.0082 0.0999 -0.0534 0.0999 -0.1183

|X−X̂X |% 0.0024 0.0034 0.0046

Table 4.2 – Filtering systematic error of central difference with Butterworth
filter

4.1.3 Identification results on 2R prototype robot

In this part, the experimental data are acquired from a 2R scara planar pro-

totype robot manufactured in the laboratory (IRCCyN) described in chapter

(1.1.1). The joint position q and the current reference VT (the control input)

are collected at a 100 Hz sample rate while the robot is tracking a fifth order

polynomial trajectory. This trajectory has been calculated in order to obtain a

good condition number. This means that it is an exciting trajectory taking the

whole trajectory all over at the time of the test. All methods are performed us-

ing the same joint position q and torque Γm, where each torque Γm is calculated

11 with tb(i)− ta(i) = 0.01s, 2 with tb(i)− ta(i) = 0.5 plus tb(i)− ta(i) = 1.
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Central Jacobi differentiator
IDIM-OLS IDIM-WLS Power

Parameters X X̂ eX̂ir % X̂ eX̂ir % X̂ eX̂ir %
ZZ1R 3.5000 3.4994 -0.0185 3.4994 -0.0169 3.4991 -0.0243
Fv1 0.0500 0.0293 -41.3506 0.0293 -41.4265 0.0483 -3.4650
Fs1 0.5000 0.4290 -14.1965 0.4290 -14.1910 0.5037 0.7360
ZZ2 0.0600 0.0602 0.3534 0.0600 -0.0165 0.0599 -0.1137
LMX2 0.1200 0.1199 -0.0920 0.1201 0.0811 0.1200 0.0207
LMY2 0.0050 0.0052 3.1983 0.0050 -0.5698 0.0052 4.2329
Fv2 0.0100 0.0133 32.7090 0.0133 33.4821 0.0104 4.0420
Fs2 0.1000 0.0893 -10.7227 0.0891 -10.8555 0.0983 -1.7399

|X−X̂X |% 0.5574 0.5619 0.0706
Energy Modulating&Power(1) Modulating&Power(2)

Parameters X X̂ eX̂ir % X̂ eX̂ir % X̂ eX̂ir %
ZZ1R 3.5000 3.4982 -0.0501 3.4987 -0.0382 3.4986 -0.0398
Fv1 0.0500 0.0499 -0.1140 0.0499 -0.2043 0.0500 -0.0363
Fs1 0.5000 0.5002 0.0410 0.5001 0.0237 0.5001 0.0149
ZZ2 0.0600 0.0600 -0.0095 0.0600 -0.0024 0.0600 -0.0040
LMX2 0.1200 0.1199 -0.1137 0.1199 -0.0749 0.1199 -0.0718
LMY2 0.0050 0.0050 -0.1093 0.0050 -0.0786 0.0050 -0.1836
Fv2 0.0100 0.0100 -0.0599 0.0100 -0.0346 0.0100 -0.4543
Fs2 0.1000 0.1000 0.0192 0.1000 0.0087 0.1001 0.1272

|X−X̂X |% 0.0021 0.0024 0.0051

Table 4.3 – Filtering systematic error of central Jacobi differentiator

as

Γmj = GT jVT j ,

where GT j is the drive chain gain which is considered as a constant in the fre-

quency range of the robot dynamics. The measurement joint position is shown

in Fig. (2.4) and the motor torques are presented in Fig. (2.5). Note that all the

identification methods are implemented with the same data.

Similarly as in the simulation, the joint position and torque data are pre-

filtered using a 12 order forward-backward Butterworth with a cutoff frequency

ωf q = 0.8ωc/2
5 = 2π × 8 rad/s or 8 Hz. Then, the joint velocity and acceleration

are computed using Euler central difference algorithm.

To compare, the central Jacobi differentiator is with configuration that κ =

µ = 2, q = 2 and T = 0.16s for filtering joint position and torque, T = 0.24s

for joint velocity and T = 0.28s for joint acceleration. Notice that in case the

bad estimation in the beginning and the end due to the lack of information, we

remove the related data for the first and last 2s.
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For dynamic and power identification model, the data are down-sampled

through a decimate filter at 4 Hz, with decimate rate nd = 10, in order to

avoid aliasing (Gautier, 1997). For energy identification model and the mod-

ulating functions with power model approach, the procedure equivalent to

decimate procedure is implemented, so that the integrals are selected with

tb(i)− ta(i) = nd ∗ 2π/ωc. Because the sampling frequency ωc = 2 ∗ pi × 100 rad/s

and nd is set to 10, thus the definite integral tb(i) − ta(i) = 0.01s. While we try

a second configuration tb(i) − ta(i) = 0.5s plus tb(i) − ta(i) = 1s for modulating

functions with power model approach, because integrals associated with mod-

ulating functions can change the low-pass filtering property.

In the modulating function based approach, we implement again the Ja-

cobi modulating functions described in (2.9) with ℓ = {ℓ ∈ N|ℓ = 10,11, . . . ,20}
and sinusoid based modulating functions gℓ(t) = sinℓ

(

π
T t

)

with ℓ = {ℓ ∈ N|ℓ =

10,11, . . . ,20}.
Finally, identification results are listed in table (4.4, 4.5, 4.6, 4.7, 4.8), 4.9.

Since the real values of dynamic parameters of the prototype robot are un-

known, we list the results with residue norm ∥Y −W X̂∥, relative residue norm
∥Y−W X̂∥
∥Y∥ , root mean square of residue ∥Y−W X̂∥

∥√r−c∥ , maximum relative residue norm

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

), and their condition numbers. Among them, the relative residue

norm ∥Y−W X̂∥
∥Y∥ represent more the model error.

It should be noticed that ILS technique has the same precision with OLS

technique, thus here we do not list the results. From the results, the IDIM-OLS

and power identification model have the better condition number for the ob-

servation matrix. Compared to inertia parameters, the friction parameters are

less identified, since their values are small and their relative standard deviation

σX̂r % are relatively large. This come from the fact that viscous friction param-

eters are small and have little influence on the dynamic model; and Coulomb

friction parameters need to be excited with trapezoid velocity in the trajectory.

Conclusion can be drawn as :

Firstly, modulating functions using power model method with definite inte-

gral tb(i) − ta(i) = 0.5s,1s has very small relative standard deviation σX̂r % for

each dynamic parameters, and small relative residue norm ∥Y−W X̂∥
∥Y∥ . Although

its condition number is relative lager, it can be regarded as the best identifi-

cation method. When with definite integral tb(i) − ta(i) = 0.01s, the relative

residue norm ∥Y−W X̂∥
∥Y∥ becomes large. In general, for modulating functions us-

ing power model method, the relative standard deviation is much improved

than the other methods, especially in the inertia dynamic parameters. In this
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sense, it is the best identification methods among all the techniques.

Secondly, although not as good as the modulating functions using power

model method, the IDIM-WLS obtains also small relative residue norm ∥Y−W X̂∥
∥Y∥ ,

but the relative standard deviation σX̂r % of each parameters are higher. Con-

sidering these two elements, IDIM-WLS is the good solution.

While the energy and power identification model also presents small rela-

tive residue norm, its relative standard deviations ∥Y−W X̂∥
∥Y∥ are high than IDIM-

WLS. And IDIM-OLS has the worst performance except that IDIM-OLS has the

best condition number of the observation matrix.

For differentiators, the results using central Jacobi differentiator are rela-

tively better than using central difference with Butterworth filter, or at least

they are similar. The results show central Jacobi differentiator is a robust off-

line differentiator.

So, with the prototype 2R scara planar robot, the experimental works prove

that:

modulating function with power model ≥ IDIM-WLS ≥ power identification

model ≥ energy identification model ≥ IDIM-OLS .

4.2 Conclusion

From the comparison of different identification techniques, we have the follow-

ing conclusion:

• comparing the identification models, themodulating functionwith powermodel

method and IDIM-WLS are the best solution; secondly the power model and

energy identification model; while IDIM-OLS has largest error in the relative

standard deviation ∥Y−W X̂∥
∥Y∥ ;

• comparing the differentiators, the central Jacobi differentiator is a robust off-

line differentiator, which has the better or same performance than band-pass

filtering of central difference with Butterworth filter approach;

• comparing the LS techniques, WLS offers better solution than OLS and ILS,

but WLS only can be applied in IDIM and power identification model, besides,

OLS and ILS have the same solution when the observation matrix has full rank.
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Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4776 0.0332 0.4770 3.4836 0.0332 0.4765
Fv1 0.1955 0.0894 22.8746 0.2460 0.0895 18.1825
Fs1 0.4310 0.0491 5.6951 0.4330 0.0491 5.6677
ZZ2 0.0593 0.0041 3.4640 0.0596 0.0041 3.4481
LMX2 0.1253 0.0027 1.0848 0.1253 0.0027 1.0865
LMY2 0.0007 0.0026 190.1596 0.0006 0.0026 218.2929
Fv2 0.0131 0.0153 58.6218 0.0139 0.0153 55.0943
Fs2 0.1269 0.0438 17.2724 0.1274 0.0438 17.2103

∥Y −W X̂∥ 4.9152 4.9148
∥Y−W X̂∥
∥Y∥ 0.0905 0.0905

∥Y−W X̂∥√
r−c 0.2168 0.2168

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 127.5344 62.1104

Nb equation 522 522
Cond(W) 38.5679 38.5368

Table 4.4 – Results with IDIM-OLS, 2R prototype robot

Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4702 0.0459 0.6618 3.4766 0.0460 0.6609
Fv1 0.1969 0.1240 31.4964 0.2503 0.1240 24.7741
Fs1 0.4320 0.0684 7.9145 0.4325 0.0683 7.9006
ZZ2 0.0628 0.0005 0.4093 0.0628 0.0005 0.4063
LMX2 0.1250 0.0026 1.0248 0.1253 0.0026 1.0193
LMY2 0.0030 0.0028 47.3083 0.0029 0.0028 48.5163
Fv2 0.0131 0.0014 5.4010 0.0140 0.0014 5.0296
Fs2 0.1261 0.0040 1.5983 0.1266 0.0040 1.5812

∥Y −W X̂∥ 22.6716 22.6604
∥Y−W X̂∥
∥Y∥ 0.0655 0.0651

∥Y−W X̂∥√
r−c 1.0000 0.9995

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 114.4855 27.2200

Nb equation 522 522
Cond(W) 268.2370 269.9631

Table 4.5 – Results with IDIM-WLS, 2R prototype robot
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Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4459 0.0517 0.7498 3.4482 0.0523 0.7581
Fv1 0.2273 0.1815 39.9232 0.2309 0.1836 39.7542
Fs1 0.4651 0.2014 21.6476 0.4607 0.2035 22.0882
ZZ2 0.0642 0.0018 1.4373 0.0642 0.0019 1.4525
LMX2 0.1261 0.0032 1.2691 0.1260 0.0032 1.2846
LMY2 0.0016 0.0029 88.8326 0.0014 0.0029 102.2334
Fv2 0.0170 0.0068 19.9722 0.0170 0.0069 20.1323
Fs2 0.1143 0.0404 17.6803 0.1141 0.0408 17.8885

∥Y −W X̂∥ 2.7419 2.7695
∥Y−W X̂∥
∥Y∥ 0.0613 0.0620

∥Y−W X̂∥√
r−c 0.1724 0.1741

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 131.2531 6.6362

Nb equation 261 261
Cond(W) 181.4647 181.3684

Table 4.6 – Results with power identification model, OLS, 2R prototype robot

Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4346 0.0554 0.8070 3.4333 0.0570 0.8301
Fv1 0.2413 0.1947 40.3448 0.2369 0.2004 42.2891
Fs1 0.4497 0.2163 24.0532 0.4529 0.2225 24.5573
ZZ2 0.0643 0.0020 1.5335 0.0644 0.0020 1.5761
LMX2 0.1257 0.0035 1.3789 0.1256 0.0036 1.4211
LMY2 0.0015 0.0032 107.6274 0.0014 0.0032 117.3415
Fv2 0.0167 0.0073 21.7823 0.0169 0.0075 22.0881
Fs2 0.1167 0.0434 18.5825 0.1156 0.0446 19.2806

∥Y −W X̂∥ 0.2919 0.2999
∥Y−W X̂∥
∥Y∥ 0.0656 0.0675

∥Y−W X̂∥√
r−c 0.0184 0.0189

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 40.6304 21.3571

Nb equation 260 260
Cond(W) 182.3196 182.2672

Table 4.7 – Results with energy identification model method, OLS, 2R proto-
type robot
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Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.3767 0.0100 0.1478 3.3897 0.0105 0.1542
Fv1 0.3854 0.0354 4.5960 0.3040 0.0370 6.0833
Fs1 0.3436 0.0394 5.7277 0.3860 0.0410 5.3142
ZZ2 0.0655 0.0004 0.2740 0.0651 0.0004 0.2878
LMX2 0.1251 0.0006 0.2511 0.1250 0.0007 0.2616
LMY2 0.0014 0.0006 19.8856 0.0009 0.0006 34.1670
Fv2 0.0166 0.0013 3.9917 0.0161 0.0014 4.2923
Fs2 0.1244 0.0079 3.1757 0.1253 0.0082 3.2828

∥Y −W X̂∥ 24.0450 25.0002
∥Y−W X̂∥
∥Y∥ 0.0809 0.0843

∥Y−W X̂∥√
r−c 0.2249 0.2338

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 94.9759 112.0807

Nb equation 11440 11440
Cond(W) 181.0155 181.2747

Table 4.8 – Results with modulating function using power model method, OLS,
2R prototype robot

Central Jacobi Difference + Butterworth

Parameters X̂ 2σX̂ σX̂r % X̂ 2σX̂ σX̂r %
ZZ1R 3.4517 0.0144 0.2091 3.4513 0.0149 0.2152
Fv1 0.2362 0.0527 11.1535 0.2334 0.0542 11.6167
Fs1 0.4699 0.0598 6.3585 0.4715 0.0614 6.5160
ZZ2 0.0643 0.0005 0.4096 0.0644 0.0005 0.4208
LMX2 0.1210 0.0011 0.4666 0.1209 0.0012 0.4806
LMY2 0.0040 0.0008 10.6176 0.0035 0.0009 12.2959
Fv2 0.0155 0.0020 6.4041 0.0154 0.0020 6.6560
Fs2 0.1173 0.0121 5.1544 0.1177 0.0124 5.2783

∥Y −W X̂∥ 10.0353 10.3118
∥Y−W X̂∥
∥Y∥ 0.0613 0.0630

∥Y−W X̂∥√
r−c 0.1715 0.1762

max(

∣

∣

∣

∣

∣

(Y−W X̂)j
Yj

∣

∣

∣

∣

∣

) 15.3945 11.5327

Nb equation 3432 3432
Cond(W) 205.2649 205.2168

Table 4.9 – Results with modulating function using power model method, OLS,
2R prototype robot with tb(i)− ta(i) = 0.5s,1s



Chapter5

Simplified model with real time

estimation

In all the questions discussed above, the accurate dynamic models are needed

for control issue. While some inconveniences come with the accurate identifi-

cation:

• it requires modelling the robot dynamics and identifying the unknown

parameters in the model, which is an extra work;

• the building of dynamic models are theoretical and there always exist

some bias compared to the ideal case, resulting in inaccuracy;

• in order to accurately identify of the parameters, identification proce-

dures are usually carried out over a long time window, and need a suf-

ficient information from the sampling data, in this sense, the traditional

identification approaches respond not fast enough to corrupt change of

the system dynamics.

From control point of view, we can compromise between the estimation ac-

curacy for the system dynamics and the estimation time. In order to get fast re-

sponse with respect to corrupt dynamic changes, here we proposes a real time

estimation iterative learning structure for robot manipulators without know-

ing the dynamic model of the system, as well it is robust to corrupt payload

change and initial conditions. The interesting point of this method is that it es-

timate the parameters in short time window. It considers a simplified model to

describe the robot dynamics, instead of the explicit dynamic model, commonly

used for the simplicity of identification model. The simplification allows to re-

duce the number of parameters to be updated. Moreover the simplified model

115



116 CHAPTER 5. Simplified model with real time estimation

should represent the current system dynamics, which can be ensured by a real

time estimation of the model states. In this case, the corrupt change of payload

will be detected within short time window such as 0.1 second, and the system

dynamics will be adjusted quickly to real values. Modulating functions tech-

niques are also applied in the real time estimation process, to decrease the or-

der of input via integration by part method, which avoids using joint velocities

and accelerations. Based on filtering property of modulating functions, groups

of modulating functions are selected in order to eliminate the high frequency

noise influence. In the end, simulation results on a two degrees of freedom

planar robot prove the efficiency of the control structure.

5.1 Introduction

Iterative learning control is an efficient method for on-line robot application.

Lots of researches are dedicated to this iterative learning subject, such as in

(Bao et al., 1996; Bristow et al., 2006; Bukkems et al., 2005; Wang, Gao, et al.,

2009). In recent literature (Gautier, Jubien, et al., 2013) presented the structure

of iterative learning identification and computed torque control (IDIM-ILIC) in

robot issues. It estimates or adjusts on-line the dynamic parameter values and

constructs the computed torque with the updated parameters.

However thesemethods are somehow based on the awareness of robotmodel

and the identification of the model parameters, which is complex and hard

to implement in real time. Starting from an algebraic point of view, we pro-

posed an extremely simplified model to represent the manipulator’s dynamics,

where the model parameters are time-varying. The number of parameters to

be updated in this model is small. This gives simplicity to robot model and

advantages in parameters updating process, because with simpler structure, it

requires less time consumption to get robust estimation. The validity of the

simplifiedmodel is ensured by real time parameters estimation, where the time-

varying parameters are approximated as constant or linear varying component

in short time interval, according to their dynamics. The reconstruction of sys-

tem dynamics is ensured once the estimation time is reduced to 0.1s as it is

tested in simulation of sampling frequency 100 Hz, so that it allows the es-

timation responds quickly to the dynamics variation and makes the iterative

learning control robust to corrupt change and initial conditions.

In the estimation process we utilize modulating function approach to avoid

using joint velocities and accelerations. Commonly these two derivatives are

computed from joint position, which causes problem in robot identification
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process because small error in measurement can induce large error in the com-

puted derivatives, specially for high order derivatives. Thus it is better to use

only joint position. The modulating function property plays an important role

in reducing the order of inputs in the estimation model as in (Liu, Laleg-Kirati,

et al., 2013). The modulating function identification theories are proposed in

several literatures, while in robotics identification field, the modulating func-

tion identification application is new and can be found in (Guo et al., 2014).

There exist all kinds of modulating functions, we will study their filtering prop-

erty and select certain groups of modulating functions which have low-pass

filtering property.

This chapter is organized as follows: section 2 deduces the simplified robot

model from the robot explicit dynamic model and presents the design of the

adaptive controller; section 3 gives precise description on real time estimation

of model parameters using modulating functions; in section 4 simulation is

carried out with a two degrees of freedom planar robot model, the simulation

result shows that the adaptive control structure has good tracking precision

and is robust to high frequency noise, corrupt change of system dynamics and

initial conditions; and in last section it comes to a conclusion.

5.2 Simplified model and iterative learning control

In this section, we first provide the rigid-body dynamic model of manipulator

and change it to a simplified model with time-varying parameters. Then an

iterative learning controller is designed for this model.

Recall thee general form of the inverse dynamic model (1.2):

τ =M(q)q̈+C(q, q̇)q̇+Q(q) + τf,

The analytical expression of the inverse dynamic model is complex and the

unknown dynamic parameters are numerous. This brings difficulty to estima-

tion because it need rich measurements to well identify each value of the pa-

rameters, where some of them usually are coupled and need long time to iden-

tify. Here, we propose a simplified model with fewer parameters to reconstruct

system dynamics:

τ =M(t)q̈+N(t), (5.1)

where M(t) = M(q(t)) is a n × n symmetric and positive definite inertia matrix,

andN(t) is a n×1 vector contains other components of the manipulator dynam-
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ics. The simplicity holds under condition that model parameters M(t) and N(t)

are considered time-varying.

5.2.1 Controller design

Given the reference trajectories qref(t), q̇ref(t) and q̈ref(t) of position, veloc-

ity and acceleration respectively, without knowing the robot model, derive an

adaptive control law for the actuator torques, and a real time estimation scheme

for the adaptive components, such that the manipulator joint position q(t) pre-

cisely tracks qref(t) after an initial adaptation process. In order to design such

a controller, we use the following controller:

τ =M(t)

(

q̈ref −λd ė−λpe−λi

∫ T

0
e

)

+N(t), (5.2)

with proper gains λp, λi and λd (diagonal matrix, see chapter (A.4)), it is suf-

ficient to asymptotically stabilize the tracking error e = q−qref for the system

modelled by (5.1).

At instant t, we can replace the computed motor torque τ in equation (5.2)

by robot model (5.1), and it deduces a state equation for tracking error e

M(t)

(

ë+λd ė+λpe+λi

∫ T

0
e

)

= 0. (5.3)

SinceM(t) is always invertible (positive definite), the state equation becomes

ë+λd ė+λpe+λi

∫ T

0
e = 0. (5.4)

Derive equation (5.4) with respect to time and we get a third order differen-

tial equation

e(3) +λd ë+λpė+λie = 0. (5.5)

The asymptotically stability and convergence rate of tracking error e can be

ensured and are tunable by selecting the gains (see appendix A.4) λp, λi and λd

.

M(t) and N(t) should be estimated as M and N within small time interval,

which will be discussed in the next section. This control scheme is easy to im-

plement for robot manipulators without knowing the dynamic model of the

robot, and simplicity in the model contributes to realize real time estimation.

In return real time estimation offers quick response to variation of system dy-

namics as well as the initial conditions. Fig. (5.1) shows the structure of the
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modulating functions based iterative learning controller.

τ

ref ref refq q qɺ ɺɺ e e e∫ɺ
( ref dτ λ= −M q eɺɺ ɺ

mesure computedq qɺ

M N
measure measureqτ

)p iλ λ− − +∫e e N

Figure 5.1 – Structure of iterative learning controller with real time estimation

5.3 Real time estimation

According to the model description (5.1), the conventional estimation approach

needs the joint torques τ and accelerations q̈. Usually τ are calculated from

the current reference of the amplifier current loop and the gain of each joint

drive chain. And q̈ are computed from discrete joint position measurement

via robot sensor, whose sampling rate must be large enough to avoid high

frequency noise aliasing the bandwidth of the joint position closed loop, see

(Gautier, 1996). But reconstruction of high order derivatives from noisy data is

long standing problem because noise component will be enlarged exponentially

with increasing order during the numerical computation.

Above all, we propose a modulating functions based structure regarding

to the simplified model, where only the joint position data is needed in the

estimation process. Meanwhile, the integration with definite integrals is actual

a low-pass filtering, which attenuates the high frequency noise influence.

5.3.1 Estimation model

Recall the simplified model (5.1). To update the parameters we need to dis-

cretize them. Regarding to small time window, we assume that M(t) and N(t)

are approximated as a constant M and a linear relation N = N0 +N1t. More

precisely, the inertia matrix M(t) is a function of q which can be considered

constant in short time interval; while the vector N(t) is a quadratic functions of

q and q̇ whose variation cannot be ignored even in small time interval. In this

case it can be treated as linear component. Thus the model rewrites as:

τ =Mq̈+N0 +N1t. (5.6)
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In this case these parameters can be update in real time to reconstruct system

dynamics. The number of parameters is greatly reduced so that for a n-link

manipulator, the simplified model contains n2+5n
2 parameters. With respect

to the 2R scara planar robot, the simplified model contains 7 parameters to

identify, while the IDIM contains 8 minimal parameters.

Then, modulating functions are applied to decrease the order of input vari-

ables. Let g be a kth order modulating function on [0,T ] where k ≥ 2. Multiply

g with acceleration q̈ and integrate on [0,T ]. By partial integration, input q̈

decrease its order to position input q and modulating function g increase to g̈

which is analytically known (because g(0) = g(T ) = ġ(0) = ġ(T ) = 0). Recall the

property (5.7):

∫ T

0
gq̈ =

∫ T

0
ġq̇ =

∫ T

0
g̈q.

Multiply equation (5.6) by modulating function g and integrate on [0,T ], using

equation (5.7) we formulate the estimation model as:

∫ T

0
gτ =M

∫ T

0
g̈q+N0

∫ T

0
g +N1

∫ T

0
gt (5.7)

Notice that equation (5.7) contains n equations. To solve the unknowns it

need additional data from multi-equations whose number must not be smaller

than that of the unknowns. This can be realized by adding a variable ℓ to

modulating function g where ℓ ∈ R, and a combination of different group of

modulating functions. With enough sequence of ℓ, the estimator forms an over-

determined observation matrix and it can be solved by least square techniques.

Finally we get the linear estimation model

∫ T

0
gℓτ =

[∫ T

0
g̈ℓq

∫ T

0
gℓ

∫ T

0
gℓt

]

[

M N0 N1

]

. (5.8)

These scalar equations give an overdetermined system which is linear with

respect to unknown parametersXs = [M N0 N1], or can be expressed asB =AXs.

This kind of problem can be solved by minimizing the Euclidian length of the

residual vector min
Xs

||AXs − B||, which gives a unique optimal X̂s as solution.

There exists a lot of least square (LS) techniques such as OLS, WLS, ILS and

so on, and we apply the OLS.
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5.4 Simulation

This simulation part utilizes the robot model described in chapter (1.1.1), with-

out considering the friction offset parameter Γof f . Thus, there are eightminimal

dynamic parameters X and recall (1.12)

X = [ZZ1R, ZZ2, LMX2, LMY2, Fv1, Fs1, Fv2, Fs2].

The simulation tests are running with value X which is all in SI Units: X =

[3.5 0.06 0.12 0.005 0.05 0.5 0.01 0.1].

Recall the robot energy model in chapter (1.2) and the we calculate each

component as:

H(1,1) = ZZ1R +ZZ2 +2(C2LMX2 − S2LMY2),

H(1,2) = ZZ2 + (C2LMX2 − S2LMY2),

H(2,2) = ZZ2,

C(1,1) = −q̇2(C2LMY2 + S2LMX2),

C(1,2) = −(q̇1 + q̇2)(C2LMY2 + S2LMX2),

C(2,1) = q̇1(C2LMY2 + S2LMX2),

C(2,2) = 0,

Q = 0,

τf(1) = FV1q̇1 +FC1sign(q̇1),

τf(2) = FV2q̇1 +FC2sign(q̇2),

with C1 = cos(q1) and C2 = cos(q2).

Consider the simplified robot model (5.1), we have

M(t) =H(q), N(t) = C(q, q̇)q̇+Q(q) + τf.

And M and N are to be estimated at instant t which is approximately equal to

the value of M(t) and N(t). The simulation task is to track the desired trajec-

tories using the proposed adaptive control and real time estimation associated

with JMF modulating functions. The modulating set is a combination of JMF

gℓ(v):

gℓ1(v) =
(

v − t +T

T

)ℓ (v − t
T

)ℓ

,

gℓ2(v) =
(

v − t +T

T

)ℓ (v − t
T

)ℓ+1

,

(5.9)

where v ∈ [t −T ,t] and ℓ = {ℓ ∈ N|ℓ = 10,11, . . . ,30} for JMF.
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The trajectories are defined from point to point and between each two points

the joint position, velocity, acceleration trajectories are planned as high order

polynomials, which can offer good excitation. The simulation sampling fre-

quency is 1000 Hz. First we investigate the noise free case in the simulation.

The gains are selected with λp1 = 49, λp2 = 580, λd1 = 31, λd2 = 46, λi1 = 30,

λi2 = 3000 (see appendix A.4). In the feedback loop, the joint position feedback

considers the current joint position measurement; the joint velocity feedback is

computed using one step backward difference algorithm with the joint position

measurement; the integration feedback is the integration of the error position.

In order to test the controller, we update M and N by their real value and we

show the reference trajectories for joint position and velocity in Fig (5.2) and the

computed torque in Fig. (5.3). The tracking error is less than 6 · 10−1 radiance

from the simulation.

5.4.1 Simulation results with real time estimation

In the estimation process we bound the estimation increase step in order to

attenuate the influence the wrong estimation due to the ill excitation at some

points. We use QR factorization method to solve the least square problem. The

estimation time window can be as small as 0.1s with adaptation frequency of

100 Hz, because the computation is small and can be implemented real time.

Using the above configuration, the simulation results are good with tracking

error less than 0.02. And estimation value of M and N are floating around the

real value. The estimation time is 0.1 second so that the time varying parame-

ters M(t) and N (t) can be estimated. From the Fig. (5.7) it can be found that M

is quasi constant but N is varying fast with respect to estimation window. The

estimated N are reconstructed from two estimation N0 and N1. The proposed

simplified model which consider M is constant and N = N0 +N1t is a linear

component is reasonable from this result and it can be extended to common

manipulator applications because most of their trajectories dynamic properties

are similar as those in this case. The computed torque using the estimation of

M and N is given in Fig. (5.4).

5.4.2 Results Robust To Variation Payload

In real applications, sometimes the payload changes during the manipulator

operation. Adjusting them on-line is necessary for robust control. This itera-

tive learning adaptive controller is a solution to variation of system dynamics,

and in our case the real time estimation ensures the quick response to corrupt
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Figure 5.2 – Reference trajectory

change. In simulation, at instant t = 2s, ZZ1R changes from 3.5 to 5, and at

instant t = 5s, ZZ1R changes from 5 to 4. This can simulate the corrupt change

of payload. Apply the adaptive control, and result is good with tracking error

less than 0.02. The estimation ofM can be found in Fig. (5.8). Notice that there

is a delay of about 0.5s before getting the correct estimation of M . This delay

is caused by the bounded estimation increase step and the estimation window

0.1s, as well it needs some time to recover from variation of system dynamics

to re-estimate the changed parameter. During this transition period, the esti-

mated parameters are varying smoothly to the correct value. The computed

torque is shown in Fig. (5.5).

However, the real time estimation depends on the reference trajectory dy-
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Figure 5.3 – Computed torque with updation of accurate M and N
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Figure 5.4 – Computed torque in normal tracking task

namics. To illustrate this, we consider from two aspects by:

• reducing the dynamics of the reference trajectory by ten times, by regu-

lating the maximum velocity and maximum acceleration;

• increasing the dynamics of the reference trajectory by ten times.

When the reference trajectory dynamics reduce, the robot motion becomes

slower locally, which meansM(t) and N (t) is varying slowly. In this case, small

time estimation window does not offer advantages because trivial trajectory

contains less information for estimation. Thus, in this case, the estimation win-

dow is enlarged two times in order to have a good estimation.

When the reference trajectory dynamics increase, it is more difficult to ap-

ply the real time estimation, because of the conflict between the requisition for

enough sampling data and the estimation time window. In this case, the esti-
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Figure 5.5 – Computed torque when ZZ1R varies
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Figure 5.6 – Computed torque in normal tracking task with noise

mation time window should be reduced in order to ensure the assumption that

M is constant and N is a linear segment locally in the estimation window. But

with less sampling data, the estimation is hard to implemented.

5.4.3 Simulation with noise

We simulate the measured joint position and joint torques with high frequency

normally distributed random noise (low frequency part is filtered), the signal

to noise ratio is 30dB. Notice that we apply the modulating functions based

approach without pre-filtering of the measurement. In this case, the noise in-

fluence in the feedback derivative and in the estimation part are non-negligible

so that with the previous configuration of gains, the controller obtains large

bias in the tracking error. In order to overcome this, we select high gains for

the error regulation: with ω1 = ω2 = 20 rad/s, ξ1 = ξ2 = 0.8, T1 = T2 = 30 s−1,
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which gives λp1 = λp2 = 1360, λd1 = λd2 = 62, λi1 = λi2 = 12000. The estimated

parameters and tracking error are given in Fig. (5.9), where the tracking error

is bounded less than 0.04 radiance. The computed torque is shown in Fig. (5.6),

where there exist more disturbance in the computed torque.

5.5 Conclusion

We propose an iterative learning control structure associated with a robust real

time estimation module for robot manipulator tracking task. The robot IDIM

is replaced by a simplified differential model, which reduces largely the num-

ber of parameters to be estimated and decreases the complexity of estimation

process. With the simple structure, the estimation time is sharply reduced

which means it can be real time estimation and it responds faster to varia-

tion of system dynamics. Meanwhile modulating function approach is consid-

ered in estimation process. Modulating functions allow to decrease the order

of model input via integration. This can avoid the numerical computation of

high order derivatives of measured signal, where noise usually induces large

error in derivatives calculation. Finally, only the joint position and joint torque

are needed in the estimation . The contribution to investigate the frequency

domain response of different modulating functions is discussed in chapter 2.

The selected modulating functions have a low pass filtering property. This

gives simplicity to estimation module because it is not necessary to pre-process

the signal to filter the noise component. And compared to to common filter,

the modulating function approach needs only the causal data and calculates a

scalar without considering phase shift.

But it should be noticed that the modulating function method will lower

the identifiability of the parameters because it loses excitation by combining

vectors to scalar. And when noise is aliased with signal, modulating functions

is sensitive to noise and usually enlarge the noise contribution. For future, ex-

perimental work should be carried out on robot manipulator and test should

be applied on robot with more links. At the same time, different approaches

should be investigated in the real time estimation process in order to deal with

more kinds of noise.

At the end, the simulation results show that the estimation can be done in

short time and the tracking error is small with respect to the corrupt change in

the dynamic parameters.

However, there exist some limits of this method:
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• First, because it reconstruct the local system dynamics, thus the data ac-

quisition frequency should be high enough in order to ensure the identifi-

ability of the real time estimation. In the simulation case, we set sampling

frequency of 1000 Hz, which offers 100 sampling data within the estima-

tion time window 0.1s, which is good for estimation. While in practice,

when system sampling frequency is low which means with less data, this

estimation procedure is lack of accuracy.

• Second, the real time estimation procedure relies on the reference trajec-

tory dynamics, where the estimation time window should be properly se-

lected according to the reference trajectory dynamics. For example, if the

bandwidth of the reference trajectory is high, the estimation time win-

dow should be reduced in order to satisfy the local assumption that M is

constant, N is linear segment, which gives difficulty to estimation proce-

dure; instead, if the bandwidth is low, the estimation time window can be

selected larger because trivial data can not offer good estimation.

• Third, for complex mechanical systems, some parameters of the simpli-

fied model become un-identifiable, with increase of the dimension of M

and N .

• Fourth, the computed torques are not as smooth as those generated with

off-line identified parameters.

Though it has some drawbacks, this method is still interesting because the

system dynamics are reconstructed in short time interval without large numeri-

cal computation nor joint velocity and acceleration data. Besides, this approach

can be extended to a method to detect system changes.
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Figure 5.7 – Estimated parameters and tracking error in normal tracking task
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Figure 5.9 – Estimation ofM ,N and tracking error in normal tracking task with
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Conclusion

This work is dedicated to the robot identification issues. It has the following

contributions:

• propose themodulating functions with powermodel approach on robot

identification;

• analyse the frequency domain property of integration with modulating

function in order to select good groups of modulating functions for iden-

tification use;

• introduce the Jacobi differentiators and for the first time, analyse in fre-

quency domain to understand their filtering properties, thus evaluation

and comparisons with other differentiators are possible;

• make comparisons among different identification model, differentiators,

LS techniques for robot identification issues and draw conclusion;

• from the simplified model of robot manipulator, we estimate the states

in real time using modulating functions approach for adaptation of states

in the controller.

In chapter 1, it reviews in detail the robot IDIM, energy and power iden-

tification models. In chapter 2, a new identification method is proposed as

modulating functions with power model approach. This methods identify the

dynamic parameters without considering the joint acceleration data. It inte-

grates the power model with modulating functions, and apply integration by

part which can turn the derivative operation into an integration operation ac-

cording to the property of modulating functions. It is a similar approach to

energy identification model, while the variations of the modulating functions

in this method offers better rank efficiency and condition number of the obser-

vation matrix. As well, the integration effect with modulating functions are in-

vestigated in frequency domain so that certain groups of modulating functions

131
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are selected with low-pass filtering property for identification use. Compar-

isons are done on a 2R prototype scara planar robot with IDIM-OLS method,

the modulating functions with power model identification proves better preci-

sion.

In chapter 3, we introduce the Jacobi differentiators. Analysis in both time

domain and frequency domain present the influences of each parameter. Es-

pecially, analysis in frequency domain indicate the cutoff property of the dif-

ferentiator, which make the design of Jacobi differentiators possible. In nature,

Jacobi differentiators are low-pass differentiators because of its integration oper-

ation. Both the causal and central Jacobi differentiators keep good linear phase

property at low frequency. Then, the Jacobi differentiators are applied on the

2R prototype scara planar robot and the EMPS for identification tests. The

results show that they are robust differentiators and can be adopted in applica-

tions.

In chapter 4, we compare the identification approaches in three aspects:

robot identification model, differentiation methods, LS techniques. The tests

are done with 2R scara planar robot simulation model and prototype robot.

The following conclusions are arrived: comparing the identification models,

the modulating function with power model and IDIM-WLSmethod are the best

solution, while energy and power identification model also presents good per-

formance, then IDIM-OLS has relatively larger errors; comparing the differen-

tiators, the central Jacobi differentiator is a robust off-line differentiator, which

has the same or better performance than central difference with Butterworth fil-

ter approach, it should be noticed that both methods are a band-pass filtering

procedure; comparing the LS techniques, WLS offers better solution than OLS

and ILS, but WLS only can be applied in IDIM and power identification model,

besides, OLS and ILS have the same solution when the observation matrix has

full rank.

In chapter 5, we simplified the robot manipulator model and estimate di-

rectly its states in a short time window of 0.1s. The observation use the mod-

ulating functions approaches, where only the joint position and torque data

are required. The estimation is fast so that it can represent the system dynam-

ics and update them in the controller. In the end, the simulation results show

that this control structure presents good estimation of model parameters and

tracking precision.

In all, the robot identification problems exist for long time and the most im-

portant thing is how to eliminate the noise influence. In this work, we propose

some methods based on the algebraic set : use the modulating functions with
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power model approach to remove the noisy computation of acceleration; and

apply the Jacobi differentiators in order to get robust estimation of high order

derivatives.



134 Conclusion



Prospective

The robot identification issues are widely discussed and the identification pro-

cedures are necessary in practice for applications. Thus, it is important to asso-

ciate the identification method with real application. While this work proposes

some solutions based on algebraic point of views, and discusses the applica-

tions on simple mechanical systems. It is more theoretical work and need to be

adapted to robot application.

For future work, interests are listed as:

• the inherent properties of noise should be studied corresponding to real

application;

• extend and apply these algebraic methods on complex robot systems to

test the performance;

• study the case where insufficient excitation is presented;

• reduce the time window and increase the precision for identification.
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AppendixA

Appendix

A.1 Least squares techniques

Seen from the above identification models, the robot identification problems
turn out to be a regression question in the linear formB =AX+ ρ, whereX is the
(Nb×1) base dynamic parameters to be identified, A is the (ns×Nb) observation
matrix, B is the (ns × 1) vector of output data, and ρ is assumed to be (ns ×
Nb) vector of unobserved zero mean independent identically distributed (iid)
disturbances with ρi ∼N(0,σ2).

Different mathematical tools have been developed to solve the LS problems,
including the ordinary LS, weighted LS, iterative LS techniques. And meth-
ods are proposed to decompose the observation matrix, such as SVD and QR
decomposition.

A.1.1 Ordinary LS

In statistics, ordinary least squares (OLS), or called linear least squares, is the
basic method for estimating the unknown parameters in a linear regression
model. The OLS estimator is consistent when the regressors are exogenous and
linearly independent, on other word the regressors should have full column
rank. It is the optimal linear unbiased estimator when the errors are of homo-
geneous variance and are uncorrelated. Under these conditions, the method of
OLS provides minimum-variance mean-unbiased estimation when the errors
have finite variances. It minimizes the 2-norm Euclidean length of the residual
vector:

OLS(X̂) =

ns
∑

i=1

(Bi −AXi)
2. (A.1)

The optimal solution is given in the matrix form:

OLS(X̂) =A+B = (ATA)−1ATB (A.2)
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A.1.2 Weighted LS

The weighted least squares (WLS) is an improvement of the OLS method. OLS
is actually themaximum likelihood estimator under assumption of homoscedas-
ticity, where the regression curve is measured the same precision everywhere,
or in other word the disturbances ρ have constant variance. However when
treating the heteroskedastic problem, where the magnitude of the ρ is not con-
stant, OLS is no longer the maximum likelihood estimate and no longer effi-
cient. Instead the WLS techinique is implemented.

Assume that we have explicit knowledge of different variance disturbances
ρi ∼ N(0,σ2

i ), the weights sequence can be reconstructed such that ωi =
1
σ2
i

,∀i.
It indicates that we assign different weight to each observation, so that observa-
tions with smaller σ2

i are treated as more important.
Compared to OLS, it minimizes the weighted sum of the squares:

WLS(X̂) =

ns
∑

i=1

ωi(Bi − (AX)i)2. (A.3)

In fact, WLS includes OLS as a special case where all the weight coefficients
ωi = 1. We can solve it by the same algebraic method used in OLS method. The
optimization problem has known solution which is better understood in matrix
form. The WLS solution is written as

WLS(X̂) = (ATWA)−1ATWB, (A.4)

where W is diagonal (ns ×ns) matrix with Wi,i = ωi ,∀i.
The WLS method has two advantages regarding to OLS approach:

• Focusing accuracy;

• Discounting of imprecision.

Wemay predict the response for certain values of input, if we give the points
big weights near the reliable region and points elsewhere smaller weights, the
regression will pulled towards matching the data in the reliable region. On
other words, it concerns more about the fitting well where the noise is small,
and expect to fit poorly where the noise is big.

A.1.3 Iterative LS

Here we refer an iterative method LSMR (Fong et al., 2011) for solving linear
systems Y =WX. The LSMR is based on the Golub-kahan bidiagonalization
process. It is analytically equivalent to the MINRES method applied to the nor-
mal equation WTWX =WTY, so that the quantities ∥WTrk∥ are monotonically
decreasing (where rk = YWXk is the residual for the current iterate Xk). It is ob-
served that ∥rk∥ also decreases monotonically, so that compared to LSQR (Paige
et al., 1982) (for which only ∥rk∥ is monotonic) it is safer to terminate LSMR
early.



A.1. Least squares techniques 147

A.1.4 SVD decomposition

The singular value decomposition (SVD) is a factorization of a real or complex
matrix. For a (m×n) real or complex matrixM, it has a factorization of the form
M =U

∑

V⋆ , where U is a (m×m) real or complex unitary matrix,
∑

is a (m×n)
rectangle diagonal matrix with non-negative real numbers on the diagonal and
V⋆ is a (n × n) real or complex unitary matrix (V⋆ is the conjugate transpose
of V). In particular, the diagonals of

∑

ii are called the singular values of M.
In LS problems, SVD are applied when computing the pseudoinverse for the
following threes aspects

• to see if the observation matrix is singular;

• even if not singular, the singular values are used to compute condition
number, which tells how stable the solution will be;

• set singular value 1
∑

ii
to 0, if

∑

ii is near 0, for the purpose to avoid bad

inverse.

A.1.5 QR factorization

The QR factorization is a decomposition of a (m × n) matrix W into a product

W =QR of an (m ×m) orthogonal matrix Q and an (m × n) matrix

[

R
0

]

, where

R is a (n× n) upper triangular matrix. QR decomposition is often used to solve
the linear least squares problem, and is the basis for a particular eigenvalue
algorithm, the QR algorithm.

We can consider the Gram-Schmidt procedure, with the vectors to be con-
sidered in the process as columns of the matrix W. That is,

W = [a1 a2 · · · an]

. Then

u1 = a1, e1 =
u1

∥u1∥
, nonumber (A.5)

u2 = a2 − (a2e1)e1, e2 =
u2

∥u2∥
, nonumber (A.6)

uk+1 = ak+1 − (ak+1e1)e1 − · · · − (ak+1ek)ek, ek+1 =
uk+1

∥uk+1∥
, (A.7)

where ∥∥ is the L2 norm.
From the above, the resulting QR decomposition is

M = [e1 e2 · · · en]





























a1e1 a2e1 · · · ane1
0 a2e2 · · · ane2
...

...
. . .

...
0 0 · · · anen





























=Q

[

R
0

]

(A.8)
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In order to solve the LS problem Y =WX, we have

WTWX =WTY,

RTQTQRX = RTQTY,

RTRX = RTQTY, (QTQ = I)

RX =QTY. (A.9)

Finally, we solve RTRX = RTQTY which has a smaller cost for computation
(compared to other factorization such as Cholesky factorization).

A.2 Causal Jacobi differentiator

Continuing with the definitions in section 3.2, let us recall two useful formula
(Szegö, 1967)

P
(µ,κ)
i (τ)ŵµ,κ(τ) =

(−1)i
i!

d i

dτi
[ŵµ+i,κ+i(τ)] the Rodrigues f ormula,(A.10)

d

dτ
P
(µ,κ)
i (τ) = (i +µ+κ +1)P

(µ+1,κ+1)
i−1 (τ) (A.11)

Let x is a smooth function belong to Cn(I ). Now we define the qth order
truncated Jacobi orthogonal series expansion of the nth order derivative x(n)(t0−
Tξ) by the following operator: ∀ t0 ∈ I

D
(n)
κ,µ,T ,qx(t0 −Tξ) =

q
∑

i=0

⟨

P
(µ+n,κ+n)
i (·),x(n)(t0 −T ·)

⟩(0,1)

µ+n,κ+n

∥P(µ+n,κ+n)
i ∥2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ), (A.12)

We also define the (q + n)th order truncated Jacobi orthogonal series expan-
sion of x(t0 −Tξ) by the following: ∀ t0 ∈ I

D
(0)
κ,µ,T ,qx(t0 −Tξ) =

q+n
∑

i=0

⟨

P
(µ,κ)
i (·),x(t0 −T ·)

⟩(0,1)

µ,κ

∥P(µ,κ)
i ∥2µ,κ

P
(µ,κ)
i (ξ). (A.13)

With fixed value t0, D
(0)
κ,µ,T ,qx(t0 − Tξ) is actually a polynomial which ap-

proximates the function x(t0 − Tξ). In the next part, we will demonstrate that

D
(n)
κ,µ,T ,qx(t0−Tξ) is in fact related to the nth order derivative ofD

(0)
κ,µ,T ,qx(t0−Tξ),

which functions as causal Jacobi differentiator.

Lemma 1. Let xi ∈ C[0,1], then we have ∀ t0 ∈ I

D
(n)
κ,µ,T ,qx(t0 −Tξ) =

1

(−T )n
dn

dξn

[

D
(0)
κ,µ,T ,qx(t0 −Tξ)

]

. (A.14)

Proof of Lemma 1. Applying n times derivations to (A.13) and according to
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(A.11), we obtain

dn

dξn

[

D
(0)
κ,µ,T ,qx(t0 −Tξ)

]

=

q
∑

i=0

⟨

P
(µ,κ)
i+n (·),x(t0 −T ·)

⟩(0,1)

µ,κ

∥P(µ,κ)
i+n ∥2µ,κ

dn

dξn
P
(µ,κ)
i+n (ξ)

=

q
∑

i=0

⟨

P
(µ,κ)
i+n (·),x(t0 −T ·)

⟩(0,1)

µ,κ

∥P(µ,κ)
i+n ∥2µ,κ

Γ(µ+κ +2n+ i +1)

Γ(µ+κ +n+ i +1)
P
(µ+n,κ+n)
i (ξ). (A.15)

Then apply the Rodrigues formula given in (A.10) and take n integration by
part, the result gives

⟨

P
(µ+n,κ+n)
i (·),x(n)(t0 −T ·)

⟩(0,1)

µ+n,κ+n

=

∫ 1

0
ŵµ+n,κ+n(τ)x

(n)(t0 −Tτ)dτ

=

∫ 1

0

(−1)i
i!

ŵ
(i)
µ+n+i,κ+n+i(τ)x

(n)(t0 −Tτ)dτ

=
1

(−T )n
∫ 1

0

(−1)i+n
i!

ŵ
(n+i)
µ+n+i,κ+n+i(τ)x(t0 −Tτ)dτ

=
1

(−T )n
∫ 1

0

(n+ i)!

i!
ŵµ,κ(τ)P

(µ,κ)
n+i (τ)x(t0 −Tτ)dτ. (A.16)

After some calculation by using (3.5) we can obtain

⟨

P
(µ+n,κ+n)
i (·),x(n)(t0 −T ·)

⟩(0,1)

µ+n,κ+n

∥P(µ+n,κ+n)
i ∥2µ+n,κ+n

=

⟨

P
(µ,κ)
i+n (·),x(n)(t0 −T ·)

⟩(0,1)

µ,κ

(−T )n∥P(µ,κ)
n+i ∥2µ,κ

Γ(µ+κ +2n+ i +1)

Γ(µ+κ +n+ i +1)
. (A.17)

Finally, from (A.12), (A.15) and (A.17), we achieve the relation

∀ t0 ∈ I , D
(n)
κ,µ,T ,qx(t0 −Tξ) =

1

(−T )n
dn

dξn

[

D
(0)
κ,µ,T ,qx(t0 −Tξ)

]

. (A.18)

Moreover, after developing (A.18) with (A.15), we have the analytical contin-
uous form of the causal Jacobi differentiator, which calculates the nth derivative
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at instant t0, ∀ξ ∈ [0,1],∀t0 ∈ I ,

D
(n)
κ,µ,T ,qx(t0 −Tξ) =

1

(−T )n
∫ 1

0
Qκ,µ,n,q,ξ(τ)x(t0 −Tτ)dτ, (A.19)

with µ,κ ∈]− 1,+∞[,

Cκ,µ,n,i =
(µ+κ +2n+2i +1)Γ(κ +µ+2n+ i +1)Γ(n+ i +1)

Γ(κ +n+ i +1)Γ(µ+n+ i +1)
, (A.20)

Qκ,µ,n,q,ξ(τ) = ŵµ,κ(τ)

q
∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (τ). (A.21)

�

A.3 Central Jacobi differentiator

Proposition 1. Let x still be a smooth function in Cn(I ), then a family of central
estimators of x(n) can be given as follows

∀t0 ∈ I , D
(n)
h,µ,κx(t0) =

1

hn

∫ 1

−1
ρn,µ,κ(τ)x(t0 + hτ)dτ, , (A.22)

where

ρn,µ,κ(τ) =
2−(n+µ+κ+1)n!

B(n+µ+1,n+κ +1)
P
(µ,κ)
n (τ)wµ,κ(τ)

,

B(n+µ+1,n+κ +1) =
Γ(n+µ+1)Γ(n+κ +1)

Γ(2n+µ+κ +2)
.

Moreover, we have D
(n)
h,µ,κx(t0) = x(n)(t0) +O(h).

Remark 1. In order to compute ρn,µ,κ, we should calculate P
(µ,κ)
n whose computa-

tional complexity is O(n2). Hence, the computational effort of ρn,µ,κ is O(n2).

Proof. By taking the Taylor expansion of x, we obtain for any t0 ∈ Ih that there
exists θ ∈]t0 − h, t0 + h[ such that

x(t0 + hτ) = x(t0) + hτx′(t0) + · · ·+
hnτn

n!
x(n)(t0) +

hn+1τn+1

(n+1)!
x(n+1)(θ). (A.23)

Substituting (A.23) in (A.22), we deduce from the classical orthogonal proper-
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ties of the Jacobi polynomials (see (Szegö, 1967)) that

∫ 1

−1
ρn,µ,κ(τ)τ

m dτ = 0, 0 ≤m < n, (A.24)

∫ 1

−1
ρn,µ,κ(τ)τ

n dτ = (n!). (A.25)

Using (A.23), (A.24) and (A.25), we can conclude that

D
(n)
h,µ,κx(t0) =

1

hn

∫ 1

−1
ρn,µ,κ(τ)x(t0 + hτ)dτ = x(n)(t0) +O(h).

Hence, this proof is completed. �

In fact, we have taken an nth order truncation in the Taylor expansion of x
in Proposition (1) where n is the order of the estimated derivative. Thus, we
call these estimators minimal estimators (see (Mboup et al., 2007, 2009a)).

Recall the central Rodrigues formula with central Jacobi orthogonal polyno-
mial (see (Szegö, 1967))

P
(µ,κ)
n (τ)wµ,κ(τ) =

(−1)n
2nn!

dn

dtn
[wµ+n,κ+n(τ)]. (A.26)

Proposition 2. Let x ∈ Cn(I ), then the minimal estimators of x(t0) given in Proposi-
tion (1) can be also written as follows

∀t0 ∈ Ih, D
(n)
h,µ,κx(t0) =

⟨

P
(µ+n,κ+n)
0 (τ),x(n)(t0 + hτ)

⟩

µ+n,κ+n

∥P(µ+n,κ+n)
0 ∥2µ+n,κ+n

P
(µ+n,κ+n)
0 (0). (A.27)

Moreover, we have

∀t0 ∈ Ih, D
(n)
h,µ,κx(t0) =D

(0)
h,µ+n,κ+nx

(n)(t0). (A.28)

Proof. By using the central Rodrigues formula in (A.22) and applying n times
integrations by parts we get

D
(n)
h,µ,κx(t0) =

1

hn
(−1)n2−(2n+µ+κ+1)

B(n+µ+1,n+κ +1)

∫ 1

−1

dn

dτn
[wµ+n,κ+n(τ)]x(t0 + hτ)dτ

=
2−(2n+µ+κ+1)

B(n+µ+1,n+κ +1)

∫ 1

−1
wµ+n,κ+n(t)x

(n)(t0 + hτ)dτ

=D
(0)
h,µ+n,κ+nx

(n)(t0).

(A.29)

Then, by using P
(µ+n,κ+n)
0 (t) ≡ 1 and ∥P(µ+n,κ+n)

0 ∥2µ+n,κ+n = 22n+µ+κ+1B(n+µ+1,n+κ +1),
we can valid the equation (A.27).

�
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It is shown in Proposition (2) that the minimal estimators of x(n)(t0) given in
Proposition (1) are equal to the value of the 0 order truncated Jacobi orthogonal
series expansion of x(n)(t0 + hξ) at ξ = 0. Let us assume that x ∈ Cn(I ), then we
define now the qth (q ∈ N) order truncated Jacobi orthogonal series of x(n)(t0+hξ)
by the following operator

∀t0 ∈ Ih, D
(n)
h,µ,κ,qx(t0 + hξ) :=

q
∑

i=0

⟨

P
(µ+n,κ+n)
i (·),x(n)(t0 + h·)

⟩

µ+n,κ+n

∥P(µ+n,κ+n)
i ∥2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ).

(A.30)

Take ξ = 0 in (A.30), we obtain a family of estimators of x(n)(t0) with

∀t0 ∈ Ih, D
(n)
h,µ,κ,qx(t0) =

q
∑

i=0

⟨

P
(µ+n,κ+n)
i (·),x(n)(t0 + h·)

⟩

µ+n,κ+n

∥P(µ+n,κ+n)
i ∥2µ+n,κ+n

P
(µ+n,κ+n)
i (0).

(A.31)

To better explain our method, let us recall some well known facts. We con-
sider the subspace of C0([−1,1]), defined by

Hq = span
{

P
(µ+n,κ+n)
0 ,P

(µ+n,κ+n)
1 , · · · ,P(µ+n,κ+n)

q

}

. (A.32)

Equipped with the inner product ⟨·, ·⟩µ+n,κ+n,Hq is clearly a reproducing kernel
Hilbert space (Aronszajn, 1950), with the reproducing kernel

Kq(τ,ξ) =

q
∑

i=0

P
(µ+n,κ+n)
i (τ)P

(µ+n,κ+n)
i (ξ)

∥P(µ+n,κ+n)
i ∥2µ+n,κ+n

. (A.33)

The reproducing property implies that for any function x(n)(t0 + h·) belonging
to C0([−1,1]), we have

⟨

Kq(·,ξ),x(n)(t0 + h·)
⟩

µ+n,κ+n
=D

(n)
h,µ,κ,qx(t0 + hξ), (A.34)

where D
(n)
h,µ,κ,qx(t0+h·) stands for the orthogonal projection of x(n)(t0+h·) onHq.

Thus, the differentiators given in (A.31) can be obtained by taking ξ = 0.

Then the affine differentiators of x(n), which is the central Jacobi differentia-
tors, can be rewritten as (Liu et al., 2011c):

D
(n)
κ,µ,h,qx(t0) =

1

hn

∫ 1

−1
Oκ,µ,n,q(τ)x(t0 + hτ)dτ, (A.35)
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where ρn,κ,µ(τ) =
2−(n+κ+µ+1)n!Γ(2n+κ+µ+2)

Γ(n+κ+1)Γ(n+µ+1) ,

Oκ,µ,n,q(τ) =

q
∑

i=0

P
µ+n,κ+n
i (0)

i
∑

j=0

(−1)i+j
(

i

j

)

2i +κ +µ+2n+1

i +κ +µ+2n+1
ρn,κ+i−j,µ+j(τ).

(A.36)

A.4 Gains selection for third order error equation

For a high order linear differential equation with constant coefficient such as:

any
(n) + an−1y

(n−1) + · · ·+ a2y
(2) + a1y

(1) + a0y = 0, (A.37)

it has a general solution in the form

y = C1y1 +C2y2 + · · ·+Cn−1yn−1 +Cnyn, (A.38)

where y1, y2, . . . , yn−1,yn, are the n linearly independent solutions of the equa-
tion.

A general solution of this equation can be found by solving the differential
equation’s characteristic equation:

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0. (A.39)

This is a polynomial equation of degree n, therefore it has n real or complex
roots. And the solutions can be given in the following law:
• 1: if r is a distinct real root, then y = exprt is a solution;
• 2: if r = λ±µi are distinct complex conjugate roots, then, y = expλt cosµt and
y = expλt sinµt are solutions;
• 3: if r is a real root appearing k times, then y = tert , y = t2ert , y = tk−1ert ,. . . ,
and y = ert are all solutions;
• 4: if r = λ±µi are complex conjugate roots each appears k times, then

y = expλt cosµt, and y = expλt sinµt,

y = t expλt cosµt, and y = t expλt sinµt,

y = t2 expλt cosµt, and y2 = t expλt sinµt,

. . .

y = tk−1 expλt cosµt, and y = tk−1 expλt sinµt

are all solutions.
Recall that the closed-loop system response of each joint j is determined by

the following third order linear differential error equation (3.21):

e
(3)
j +Kdj ëj +Kpj ėj +Kijej = 0.

The aim is to ensure the error e converges exponentially to 0, which requires
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that the roots of characteristic equation have negative real part. First look at the
characteristic equation:

r3 +Kdjr
2 +Kpjr +Kij = 0. (A.40)

We can rewrite the characteristic equation into the product of a second order
system and a first order system:

r2 +ωjξjr +ω2
j = 0; (A.41)

r +Tj = 0. (A.42)

Where, the poles of the second order system is determined by the damping
coefficient ξj and the natural frequency ωj ; the pole of the first order system is
determined by the coefficient Tj . All the poles should be on the left side of the
s-plane in order to keep the error converge. After combining the characteristic
equations of (A.41), we can obtain the gains:

Kpj = 2ξjωjTj +ω2
j ; (A.43)

Kdj = Tj +2ξjωj ; (A.44)

Kij = Tjω
2
j . (A.45)

We can tune the settling time by the choice of ωj , ξj and Tj following: for

the second order system, the settling time tsj is around
3

ξjωj
; for the first order

system, the settling time tsj is around
3
Tj

(Ogata et al., 1970).

In (Gautier et al., 2013), the authors present the way to get the desired nat-
ural frequency ωdi bandwidth of the controller for this prototype robot: ωdi is
chosen according to the driving capacity without saturation of the joint drive.
In the field of motion control, it is known that the bandwidth of the velocity
and position closed-loop are limited by the electro-mechanical cutoff frequency
ωEM of the open-loop transfer function between the velocity and the voltage
control of the electrical motor, including the case of current controlled motor

ωEM = K2
τj /RAj · Jj , f or j = 1,2 (A.46)

where Kτj is the electromagnetic motor torque constant and RAj is the motor
armature resistance. Based on this, the full bandwidth of the prototype scara
robot are given in (Gautier et al., 2013) with ω1 = 1 rad/s and ω2 = 10 rad/s.
Then, we select the damping coefficient ξ1 = ξ2 = 0.8, and the pole for the first
order system T1 = T2 = 30 s−1. Finally we get the gains Kp1 = 49, Kp2 = 580,
Kd1 = 31, Kd2 = 46, Ki1 = 30, Ki2 = 3000.





 

Titre en français :  

Identification et commande en ligne des robots avec utilisation de différentiateurs 

algébriques 

 

Résumé en français : 

Cette thèse traite de l'identification des paramètres dynamiques des robots, en 

s'appuyant sur les méthodes d'identification en robotique, qui utilisent le modèle 

dynamique inverse, ou le modèle de puissance, ou le modèle d'énergie du robot. Ce 

travail revisite le modèle d'énergie en exploitant le caractère intégral des fonctions 

modulatrices appliquées au modèle de puissance du robot. En outre, les procédures 

d'intégration sont analysées dans le domaine fréquentiel, et certains groupes de 

fonctions modulatrices sont sélectionnés afin d'offrir un bon comportement de filtrage. 

Ensuite, un différentiateur algèbrique est proposé, nommé différentiateurs de Jacobi. 

L'analyse est effectuée dans le domaine temporel, et dans le domaine fréquenciel, ce 

qui met en évidence la propriété de filtrage passe bande. Puis, ces différentiateurs sont 

appliqués avec succès à l'identification de robot, ce qui prouve leur bonne 

performance. Les comparaisons entre les différents modèles d'identification, les 

différenciateurs, les techniques des moindres carrés sont présentées et des conclusions 

sont tirées dans le domaine de l'identification de robot.  

 

Mots-clefs : identification de robot, fonctions modulatrices, différentiateur de Jacobi, 

analyse fréquentielle, commande de robot 

 

Titre en anglais : 

Online identification and control of robots using algebraic differentiators 

 

Résumé en anglais : 

This thesis discusses the identification issues of the robot dynamic parameters. 

Starting with the well-known inverse dynamic identification model, power and energy 

identification models for robots, it extends the identification model from an energy 

point of view, by integrating modulating functions with robot power model. This new 

identification model avoids the computation of acceleration data. As well, the 

integration procedures are analyzed in frequency domain so that certain groups of 

modulating functions are selected in order to offer a good low-pass filtering property. 

Then, a recently developed high order algebraic differentiator is proposed and studied, 

named Jacobi differentiators. The analysis are done in both the time domain and in the 

frequency domain, which gives a clear clue about the differentiator filtering property 

and about how to select the differentiator parameters. Comparisons among different 

identification models, differentiators, least square techniques are presented and 

conclusions are drawn in the robot identification issues. 

 

Mots-clefs : robot identification, modulating functions, Jacobi differentiators, 

frequency analysis, control of robot 
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