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Résumé	
Expression	de	type	sauvage	et	des	variantes	de	

l’Apolipoprotéine	A-I	humaine	chez	Pichia	pastoris	

Les	 lipoprotéines	 de	 haute	 densité	 (High	 Density	 Lipoprotein,	 HDL)	 permet	 de	
réduction	de	risque	de	maladies	cardio-vasculaires	principalement	en	raison	de	leur	
capacité	 à	 éliminer	 le	 cholestérol	 accumulé	 des	 artères	 (via	 transport	 inverse	 du	
cholestérol).	 Les	 effets	 protecteurs	 des	 HDL	 sont	 médiés	 par	 l'apolipoprotéine	 AI	
(ApoA1),	qui	est	le	La	protéine	la	plus	importante	quantitativement	du	HDL.	L’ApoA1	
favorise	 l'efflux	de	 cholestérol	 vers	 le	 foie	pour	 l'excrétion.	Une	augmentation	des	
niveaux	 plasmatiques	 de	 l’ApoA1	 est	 généralement	 acceptée	 d'être	
cardioprotecteur,	ce	qui	en	fait	un	potentiel	thérapeutique.	Deux	variantes	naturelle	
(mutants)	 de	 l’ApoA1,	 Milano	 et	 Paris,	 sont	 caractérisées	 par	 une	 mutation	
ponctuelle	 unique	 a	 permis	 l'introduction	 d'un	 résidu	 cystéine.	 Populations	 avec	
ApoA1-Milano	ont	été	rapportés	d'avoir	un	système	cardiovasculaire,	même	avec	de	
faibles	 niveaux	 de	 plasma	 de	 ApoA1	 et	 HDL.	 Il	 est	 donc	 d'intérêt	 pour	 générer	
recombinante	 de	 type	 sauvage	 et	 des	 variantes	 de	 ApoA1	 humaine	 pour	 des	
applications	 thérapeutiques	 potentielles.	 Dans	 cette	 étude,	 de	 type	 sauvage	
rhApoA1	 a	 été	 produit	 chez	 P.	 pastoris	 et	 purifié	 par	 chromatographie	 en	 mode	
mixte	en	une	seule	étape.	Par	la	suite,	un	processus	intégré	a	été	le	développement	
de	la	production	et	la	récupération	rapide	de	type	sauvage	rhApoA1	chez	P.	pastoris	
par	chromatographie	par	lit	expansée.	En	outre,	 les	variantes	de	l'ApoA1,	Milano	&	
Paris,	ont	été	générées	par	mutagenèse	dirigée	et	ont	été	exprimés	chez	P.	pastoris.	
Les	motifs	 d’adsorption	 de	 rhApoA1-Milano	 et	 rhApoA1-Paris	 ont	 été	 comparés	 à	
celle	de	type	sauvage	ApoA1	et	les	différences	ont	été	discutées.	

Mots	 clés	:	 apolipoprotéine	 a-I	 (ApoA1),	 Pichia	 pastoris,	 ApoA1-Milano	 et	 ApoA1-
Paris,	chromatographie	par	mode-mixte,	HEA	HyperCel,	PPA	HyperCel,	Capto	MMC	
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Abstract	
Expression	of	Wild	Type	and	Variants	of	Human	

Apolipoprotein	A-I	in	Pichia	pastoris	

The	high-density	 lipoprotein	 (HDL)	 complex	helps	 reduce	 the	 risk	of	 cardiovascular	
disorders	mainly	due	to	its	ability	to	remove	accumulated	cholesterol	from	arteries	
via	 reverse	cholesterol	 transport.	These	protective	effects	of	HDL	are	known	 to	be	
mediated	by	Apolipoprotein	A-I	 (ApoA1),	which	 is	 the	major	protein	component	of	
HDL.	 ApoA1	 is	 a	 lipid	 binding	 protein	 and	 promotes	 cholesterol	 efflux	 from	
peripheral	 tissues	 to	 the	 liver	 for	 excretion.	 An	 increase	 in	 the	 plasma	 levels	 of	
ApoA1	 is	 generally	 accepted	 to	 be	 cardioprotective,	 making	 it	 a	 potential	
therapeutic.	 Two	naturally	 occuring	 variants	 of	 ApoA1,	 namely	 the	Milano	&	 Paris	
mutants,	are	characterised	by	a	single	point	mutation	resulting	in	the	introduction	of	
a	 Cysteine	 residue.	 Populations	with	 ApoA1-Milano	 have	 been	 reported	 to	 have	 a	
healthier	 cardiovascular	 system	 even	 with	 low	 plasma	 levels	 of	 ApoA1/HDL.	 It	 is	
hence	of	 interest	to	generate	recombinant	wild	type	and	variants	of	human	ApoA1	
for	potential	therapeutic	applications.	In	this	study,	wild	type	rhApoA1	was	produced	
in	 P.	 pastoris	 and	 purified	 by	 mixed-mode	 chromatgraphy	 in	 a	 single	 step.	
Subsequently,	an	integrated	process	has	been	development	for	the	production	and	
rapid	 recovery	 of	wild	 type	 rhApoA1	 in	 Pichia	 pastoris.	 This	 has	 paved	way	 to	 the	
establishment	 of	 a	 scalable	 integrated	 process	 that	 could	 be	 further	 developed	 to	
industrial	 levels.	 In	 addition,	 the	 cysteine	 variants	 of	 ApoA1,	Milano	&	 Paris,	 have	
been	generated	by	site	directed	mutagenesis	and	have	been	successfully	expressed	
in	P.	pastoris.	The	binding	patterns	of	rhApoA1-Milano	and	rhApoA1-Paris	have	been	
compared	with	that	of	wild-type	ApoA1	and	the	differences	have	been	discussed.	
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R.1. INTRODUCTION	
R.1.1. L’INTRODUCTION	GÉNÉRALE	

Les	 troubles	 métaboliques,	 notamment	 le	 diabète,	 l'athérosclérose	 et	 les	

maladies	 cardiovasculaires	 sont	 les	 principales	 causes	 de	 morbidité	 et	 de	

mortalité	 dans	 les	 pays	 développés	 et	 en	 développement.	 L'obésité	 et	 la	

dyslipidémie	sont	les	principaux	facteurs	de	risque	particulier	dans	les	maladies	

cardiovasculaires	(Miller,	1978).	

	

Il	est	généralement	accepté	que	les	lipoprotéines	de	haute	densité	(High	Density	

Lipoprotein,	 HDL)	 permet	 de	 réduire	 le	 risque	 de	maladies	 cardio-vasculaires,	

car	 il	 se	 déplace	 le	 cholestérol	 au	 foie	 par	 le	 transport	 inverse	 du	 cholestérol	

(Reverse	 Cholesterol	 Transport,	 RCT)	 (Tall,	 Costet,	 &	Wang,	 2002).	 En	 plus,	 le	

HDL	 contribue	 également	 au	 bien-être	 général	 du	 système	 cardio-vasculaire	

grâce	à	ses	propriétés	anti-inflammatoires,	anti-oxydantes	et	anti-thrombotiques	

(Assmann	 &	 Gotto,	 2004).	 On	 pense	 que	 ces	 effets	 protecteurs	 des	 HDL	 être	

médiée	 principalement	 par	 l'apolipoprotéine	 AI	 (ApoA1)	 qui	 est	 le	 composant	

protéique	majeur	des	HDL	(Heinecke,	2010).	

	

R.1.2. TRANSPORT	INVERSE	DU	CHOLESTEROL	

L’ApoA1	favorise	l'efflux	de	cholestérol	des	tissus	vers	le	foie	(Oram,	2003)	(Fig.	

R.1).	 ApoA1	 prend	 cholestérol	 des	 cellules	 à	 travers	 l'ABCA1	 (ATP-Binding	

Cassette	A1)	et	forme	des	particules	de	HDL	naissantes.	Les	particules	HDL	plus	

matures	 lors	 de	 l'activation	 de	 la	 Lécithine-cholestérol	 acyltransférase	 (LCAT)	

qui	convertir	le	cholestérol	à	des	esters	de	cholestérol	(Vanloo	et	al.,	1992).	Ces	

esters	 de	 cholestérol	 de	 HDL	 sont	 échangés	 avec	 des	 triglycérides	 provenant	

d'autres	 lipoprotéines	 (LDL/VLDL)	 par	 l'action	 de	 la	 protéine	 de	 transfert	 des	

esters	 de	 cholestérol	 (Cholesteryl	 Ester	 Transfer	 Protein,	 CETP).	 Le	 transport	

inverse	du	cholestérol	est	complétée	par	le	dépôt	d'esters	de	cholestérol	dans	le	

foie,	soit	directement	par	Scavenging	récepteur	B1	(SR-B1)	ou	par	LDL	et	le	LDL-

récepteur	(Lewis	&	Rader,	2005).	
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Figure	R.1.	Le	mécanisme	de	transport	inverse	de	cholestérol	

On	 sait	 que	 des	 niveaux	 élevés	 dans	 le	 plasma	 de	 l’ApoA1	 contribue	 à	 la	

réduction	des	risques	cardio-vasculaires	chez	les	humains	(Gordon	et	al.,	1989),	

ce	qui	rend	l’ApoA1	du	potentiel	thérapeutique.	En	outre,	deux	variants	naturels	

de	ApoA1	:	ApoA1-Milano	et	ApoA1-Paris	ont	été	signalés	dans	 les	populations	

qui	 ont	 réduit	 risque	 d'athérosclérose	 (Alexander	 et	 al.,	 2009).	 Les	 variantes	

Milano	et	de	Paris	sont	caractérisées	par	des	mutations	ponctuelles	au	R173C	et	

R151C	respectivement.	L’ApoA1	de	 type	sauvage	ne	contient	pas	de	résidus	de	

cystéine,	 et	 donc	 l'introduction	 de	 ces	 mutants	 cystéine	 dans	 leur	 permet	 de	

former	des	homo-dimères	à	liaison	disulfure	sur	le	HDL	(Klon,	Jones,	Segrest,	&	

Harvey,	2000).	

	

R.1.3. LES	OBJECTIVES	

Dans	 ce	 travail,	 nous	 avons	mis	 en	 place	 un	 processus	 simplifié	 pour	 générer	

l’ApoA1	recombinante	chez	Pichia	pastoris	et	de	la	purifier	par	chromatographie	

en	mode	mixte.	

	

Le	 système	 d'expression	 choisi	 pour	 cette	 étude	 est	 la	 levure	 méthylotrophe	

Pichia	 pastoris,	 en	 raison	 d'un	 certain	 nombre	 d'avantages	 qu'elle	 pose	 :	 la	

capacité	d'atteindre	des	niveaux	élevés	d'expression	de	protéines	hétérologues	

(Cereghino	&	 Cregg,	 2000;	 Sreekrishna	 et	 al.,	 1997),	 la	 capacité	 à	 sécréter	 des	

protéines	 hétérologues	 dans	 le	 milieu	 (Brake	 et	 al.,	 1984),	 et	 étant	

«généralement	 considéré	 comme	 sûr"	 (Generally	 Regarded	 As	 Safe,	 GRAS)	

micro-organismes	 (Klein,	 1998).	 La	 surexpression	 de	 protéines	 hétérologues	
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chez	 P.	 pastoris	 est	 atteinte	 par	 le	 promoteur	 AOX1	 qui	 est	 activé	 dans	 des	

conditions	de	carbone	faim	(Daly	&	Hearn,	2005).	

	

Après	 l'expression,	 l’ApoA1	 recombinante	 a	 été	 ensuite	 purifié	 par	

Chromatographie	 en	 mode	 mixte.	 Chromatographie	 par	 mode	 mixte	 ou	

«	multimodal	»	sont	généralement	émis	 l'hypothèse	d'agir	par	une	combinaison	

d'interactions	 électrostatiques	 et	 hydrophobes	 (Chung,	 Freed,	 Holstein,	

McCallum,	&	Cramer,	2010).	

	

Donc,	les	objectifs	suivants	sont	envisagés	dans	ce	travail	de	thèse:	

• Clonage	et	expresion	de	type	sauvage	l’ApoA1	recombinante	(rhApoA1)	dans	P.	

pastoris	X-33	

• Purification	de	rhApoA1	de	la	culture	de	P.	pastoris,	et	scale-up	de	la	purification	

à	 grande	 échelle	 avec	 l’adsorption	 a	 lit	 expansée	 (Expanded	 Bed	 Adsorption,	

EBA)	

• Le	clonage,	l'expression	et	la	purification	de	rhApoA1	chez	P.	pastoris	SMD-1168	

(souche	de	P.	pastoris	déficiente	en	protéase)	

• Génération	de	variantes	de	l’ApoA1:	Milano	(R173C)	et	Paris	(R151C)	

	

R.2. CLONAGE	ET	EXPRESSION	DE	TYPE	SAUVAGE	DE	L’ApoA1	

HUMAINE	RECOMBINANTE	DANS	P.	pastoris	X-33	
R.2.1. MÉTHODES	

La	 séquence	 correspondant	 à	 l’ApoA1	 a	 été	 amplifié	 en	 utilisant	 des	 amorces	

spécifiques	sa	séquence,	et	a	été	clone	dans	le	vecteur	pPICZαA	et	transformé	en	

Pichia	pastoris	X-33	compétente,	en	suite	les	transformants	ont	été	sélectionnés	

la	résistance	à	la	Zéocine™	(jusqu'à	2	mg	/	ml).	

	

Un	étude	préliminaire	d'expression	a	été	réalisée	sur	plusieurs	clones	de	haute	

résistance	sur	les	cultures	en	flasques,	avec	induction	effectuée	en	utilisant	0,5%	

de	méthanol	 chaque	 24h	 pour	 120hrs.	 Par	 la	 suite,	 le	 clone	 exprimant	 le	 plus	

élevé	a	été	en	outre	pour	l'expression	dans	un	bioréacteur	de	2L	dans	conditions	

régulées:	Temp	30°C,	pH	6,0,	15%	saturation	d’oxygène,	induction	avec	0,5%	de	
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méthanol	 chaque	12hrs.	 L'expression	 a	 été	 analysée	par	 SDS-PAGE,	 dot-blot	 et	

Western	blot.	

	

R.2.2. RÉSULTATS	ET	DISCUSSION	

Après	 le	 clonage,	 le	 construit	 (pPICZα-ApoA1)	 a	 été	 soumis	 à	 un	 séquençage	

d'ADN	 et	 a	 été	 vérifiée.	 La	 construit	 ete	 transforme	 par	 électroporation	 dans	

compétentes	 cellules	 de	 Pichia	 pastoris	 X-33,	 un	 certain	 nombre	 de	

transformants	 présentait	 une	 haute	 résistance	 à	 la	 zéocine	 et	 cinq	 d'entre	 eux	

ont	été	repris	pour	les	études	d'expression	sur	les	cultures	en	flacons.	

	

Suite	les	études	sur	les	cultures	en	flacons,	un	clone	a	été	prise	pour	l'expression	

dans	 un	 bioréacteur.	 Une	 colonie	 unique	 a	 été	 inoculée	 et	 cultivée	 dans	 des	

flacons	 à	 déflecteurs	 de	 100mL	 de	 milieu	 de	 glycérol-complexe	 (Buffered	

Complex	Glycerol	Medium,	BMGY)	jusqu'à	ce	que	la	DO	(600	nm)	atteint	de	4	au	

8,	 ce	 qui	 a	 été	 inoculé	 dans	 2	 litres	 d'BMGY	 dans	 un	 BIOSTAT®	 Bplus	 2l	

bioréacteur.	 Les	 paramètres	 ont	 été	 maintenus	 constamment,	 et	 lors	 de	 la	

consommation	 complète	 du	 glycérol	 dans	 le	 milieu,	 une	 phase	 méthanol	 fed-

batch	a	 été	 initiée	par	 l'addition	de	methanol	 toutes	 les	12	heures	 jusqu'à	une	

concentration	 finale	 de	 0,5%	 pour	 120hrs.	 L'expression	 des	 protéines	 a	 été	

vérifiée	par	dot-blot,	SDS-PAGE	et	analyse	western	blot.		

	 	
Figure	 R.2.	 Profil	 (A)	 et	 l’analyse	 SDS-PAGE	 et	western	 blot	 (B)	 de	 l’expression	 de	 rhApoA1	

expression	in	P.	pastoris	X-33.	

	

Après	vérification	de	 l'expression,	 la	milieu	de	P.	pastoris	 contenant	rhApoA1	a	

été	utilisé	pour	les	expériences	de	purification.	

A B 
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R.3. PURIFICATION	DE	TYPE	SAUVAGE	rhApoA1	EXPRIMÉE	CHEZ	

P.	pastoris	X-33	PAR	CHROMATOGRAPHIE	EN	MODE	MIXTE	
R.3.1. MÉTHODES	

Un	certain	nombre	de	méthodes	de	purification	publiés	ont	été	testés	pour	leur	

aptitude	à	récupérer	rhApoA1	exprimée	dans	P.	pastoris	(Feng,	Cai,	Song,	Dong,	

&	 Zhou,	 2006;	Marco	 Aurélio	 Zezzi	 Arruda,	 Lopes,	 Marcelo	 Anselmo	 Oseas	 da	

Silva,	&	Gozzo,	2011).	Ces	méthodes	ont	été	conservés	en	tant	que	méthodes	de	

référence	pour	évaluer	 l'efficacité	des	procédés	de	purification	développé	dans	

cette	étude.	

	

Deux	 méthodes	 de	 chromatographie	 en	 mode	 mixte	 ont	 été	 testés	 pour	 leur	

capacité	 à	 capturer	 rhApoA1	directement	 à	partir	du	milieu	d'expression	de	P.	

pastoris	:	HEA	HyperCel	(Pall	Life	Sciences)	et	Capto	MMC	(GE	Healthcare),	dont	

les	 structures	 sont	 à	 la	Fig.	R.3.	 Les	 conditions	de	 chromatographiques	ont	 été	

établies	 sur	 la	 base	des	 directives	 de	 leur	 fabricant	 respectif,	 et	 les	 différentes	

fractions	 recueillies	 ont	 été	 analysées	 en	 utilisant	 SDS-PAGE	 et	 techniques	

Western	blot.		

	

	 	
Figure	R.3.	Structures	de	ligands	(A)	HEA	HyperCel	et	(B)	Capto™	MMC	

Après	 avoir	 optimisé	 avec	 succès	 conditions	 chromatographiques	 pour	

récupérer	 rhApoA1,	 les	 protéines	 purifiées	 ont	 été	 digérés	 par	 la	 trypsine	 et	

analysées	sur	un-ESI-Q-TOF	LC	spectromètre	de	masse	(modèle	Agilent	G6540A)	

pour	évaluer	la	couverture	de	la	séquence,	afin	de	vérifier	la	protéine	purifiée	.	

	

R.3.2. RÉSULTATS	ET	DISCUSSION	

Des	méthodes	 publiées	 pour	 la	 purification	 de	 l’ApoA1	 ont	 été	 adaptées	 pour	

travailler	avec	de	milieu	de	P.	pastoris.	Après	 les	 trois	procédés	décrits	ont	été	

testés,	leur	efficacité	pour	«	scale-up	»	a	été	évaluée.	Étant	donné	que	toutes	les	

méthodes	 précédemment	 rapportées	 ne	 sont	 pas	 réalisables	 pour	 scale-up,	 il	

était	 impératif	 d'explorer	 d'autres	 procédés	 chromatographiques	 de	 colonnes	

A B 
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efficaces	 qui	 pourraient	 être	 utilisés	 pour	 purifier	 l'rhApoA1	 exprimée	 chez	P.	

pastoris..	

	

R.3.2.1. PURIFICATION	DE	L’ApoA1	AVEC	HEA	HYPERCEL	

La	 résine	 en	 mode	 mixte	 HEA	 HyperCel	 généralement	 activé	 l’adsorption	 et	

l'élution	 de	 protéines	 par	 attraction	 hydrophobe	 et	 répulsion	 électrostatique,	

respectivement.	En	cas	de	rhApoA1,	 l’adsorption	a	été	réalisé	à	pH	neutre	avec	

moins	conductivité	promouvoir	l'attraction	hydrophobe.	Par	la	suite,	le	sel	a	été	

éliminé	et	le	pH	a	été	réduit,	ce	qui	pourrait	avoir	exposé	charges	positives	sur	la	

surface	de	la	protéine	qui	faciliter	élution	par	répulsion	électrostatique.	Le	profil	

de	purification	est	rapporté	dans	Fig.	R.4.	

	

  
Figure	 R.4.	 Purification	 de	 l’rhApoA1	 a	 l’aide	 de	 l’HEA	HyperCel	 :	 (A)	 Chromatogram	 et								

(B)	analyse	de	SDS-PAGE	12%.	

	

Un	désavantage	de	 cette	méthode	 était	 l'emploi	 de	pH	bas	 (4,0)	pour	 éluée	de	

l’ApoA1,	 comme	 il	 est	 connu	 que	 ApoA1	 forme	 amyloïdes	 aux	 basses	 pH.	

(Ramella	et	al.	2012).	

	

R.3.2.2. PURIFICATION	DE	L’ApoA1	AVEC	CAPTO™	MMC	

Le	 ligand	Capto™	MMC	 favorise	 l’adsorption	des	protéines	par	des	 interactions	

hydrophobes,	ioniques	et	thiophiles.	Comme	il	marche	comme	un	échangeur	de	

cations	 faible,	 il	 a	 été	 prévu	 pour	 fonctionner	 d'une	manière	 inverse	 à	 la	 HEA	

HyperCel	 (qui	contient	un	groupe	à	charge	positive).	Comme	 l’adsorption	a	été	

effectuée	 à	 pH	 5,0	 (le	 pH	 du	 milieu	 d'expression	 de	 P.	 pastoris),	 aucun	

prétraitement	 de	 l'échantillon	 était	 nécessaire.	 En	 outre,	 la	 protéine	 liée	 a	 été	

A B 
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élue	à	pH	neutre	(Fig.	R.5),	de	faciliter	le	maintien	de	la	fonctionnalité	maximale.	

Ce	processus	était	plus	compatible	pour	scale-up	et	pour	la	développement	d’un	

procède	industrielle.	

	

  
Figure R.5. Purification	 de	 l’rhApoA1	 a	 l’aide	 de	 Capto	 MMC	 :	 (A)	 Chromatogram,														

(B)	analyse	de	SDS-PAGE	12%	et	(C)	Blot	western 
	

R.3.2.3. COMPARAISON	DES	MÉTHODES	DE	PURIFICATION	AVEC	

MÉTHODES	PUBLIÉES	

Les	 méthodes	 chromatographiques	 développés	 dans	 ce	 travail	 ont	 été	

comparées	 avec	 les	 méthodes	 déjà	 publiées	 pour	 la	 purification	 de	 rhApoA1	

(Tableau	R.1).	

	
Tableau	R.1.	Comparaison	des	méthodes	de	purification	

	
Méthode	de	
purification	

Nombres	
d’étapes	 Rendement	

Purité	
d’rhApoA1	 Reference	

1.	 Extraction	par	
«	Cloud-point	»	avec	
Triton	X-114	

2	 55.97%	 57.1%	
(Marco	Aurélio	
Zezzi	Arruda	et	al.,	
2011)	

2.	 Précipitation	avec	
acétone	froid	 14	 60.00%	 71.9%	 (Feng	et	al.,	2006)	

3.	 Chromatographie	
par	mode	mixte	
(HEA	HyperCel)	

1	 56.25%	 70.2%	 Présente	travail	

4.	 Chromatographie	
par	mode	mixte	
(PPA	HyperCel)	

1	 52.50%	 76.3%	 Présente	travail	

5.	 Chromatographie	
par	mode	mixte	
(CaptoMMC)	

1	 68.89%	 84.0%	 Présente	travail	

	

A B
A 

C 
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Il	 était	 évident	 que	 les	 deux	méthodes	 de	 purification	 développées	 dans	 cette	

étude	ont	été	mieux	par	rapport	aux	méthodes	déjà	publiées.	

	

R.3.2.4. IDENTIFICATION	DE	L’ApoA1	PURIFIÉE	PAR	SPECTROMÉTRIE	DE	

MASSE	

La	 rhApoA1	purifié	 par	 les	 deux	 procédés	 de	 purification	 ont	 été	 digérés	 avec	

trypsine	et	analysée	par	spectrométrie	de	mass	sur	ESI-Q-TOF	MS/MS	(Agilent).	

La	 rhApoA1	 purifié	 par	 des	 deux	 procédés	 montré	 couverture	 de	 séquence	

substantielle	 (~	65%)	avec	 la	séquence	d'ApoA1	humaine	disponible	sur	NCBI.	

Ce	fut	une	validation	globale	des	méthodes	de	purification	utilisées.	Bien	que	la	

protéine	purifiée	a	été	vérifié	pour	être	ApoA1,	le	poids	moléculaire	sur	des	gels	

SDS-PAGE	a	été	 constamment	 inférieur	 (~	25-26kDa)	que	 le	poids	moléculaire	

attendue	(28	kDa).	

	

Cela	a	conduit	à	la	spéculation	sur	une	éventuelle	troncature	de	la	protéine	due	à	

l'activité	de	 la	protéase	de	P.	pastoris.	Pour	vérifier	cette	hypothese,	 le	gène	de	

l’ApoA1	a	ensuite	été	 transformé	en	une	souche	déficiente	de	 la	protéase	de	P.	

pastoris	 (SMD1168)	 et	 a	 induit	 avec	du	méthanol	pour	 exprimer	 rhApoA1.	 Les	

détails	expérimentaux	et	les	résultats	sont	discutés	en	détail	dans	la	section	4.	

	

R.4. CLONAGE,	L'EXPRESSION	ET	LA	PURIFICATION	DE	rhApoA1	

CHEZ	P.	pastoris	SOUCHE	SMD-1168	(DEFICIENTE	EN	PROTEASE)	
Le	 poids	moléculaire	 de	 rhApoA1	 obtenu	 lors	 de	 l'expression	 de	 type	 sauvage	

souche	 P.	 pastoris	 X-33	 a	 été	 constamment	 inférieur	 au	 poids	 moléculaire	

attendu,	au	cours	des	analyses	SDS-PAGE.	Nous	regardé	si	il	y	avait	une	activité	

de	protéase	conduisant	à	cette	troncature	hypothétique,	et	essayé	à	exprimer	la	

rhApoA1	dans	une	souche	déficiente	en	protéase	de	P.	pastoris	 :	SMD1168.	Les	

protéines	 exprimées	 étaient	 comparées	 entre	 les	 deux	 souches,	 de	 conclure	

globalement	si	la	protéine	a	en	effet	été	tronquée.	

	

R.4.1. MÉTHODES	

Compétente	 P.	 pastoris	 SMD1168	 cellules	 ont	 été	 préparés	 et	 la	 construit	

pPICZα-ApoA1	 a	 été	 transformé.	 Les	 transformants	 présentant	 une	 forte	
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résistance	à	la	Zéocine	ont	été	choisis	pour	analyse	de	l'expression.	L'expression	

a	été	effectuée	d'une	manière	similaire	à	celle	de	la	souche	de	type	sauvage	(X-

33).	Les	niveaux	d'expression	ont	été	analysés	par	SDS-PAGE.	

	

Suite	de	 la	production,	 l'rhApoA1	exprimé	de	P.	pastoris	SMD1168	a	été	purifié	

par	chromatographie	en	mode	mixte	avec	de	ligand	Capto™	MMC.	Le	procédé	de	

purification	était	 similaire	que	 la	procédé	developpe	pour	 la	 rhApoA1	exprimé	

sur	le	P.	pastoris	type	sauvage,	et	les	protéines	purifiées	à	partir	de	APOA1	deux	

souches	ont	été	comparées	pour	leur	taille	et	leur	séquence.	

	

R.4.2. RÉSULTATS	ET	DISCUSSION	

L'expression	de	rhApoA1	chez	P.	pastoris	SMD1168	a	été	vérifiée	par	SDS-PAGE.	

Aucune	 différence	 significative	 du	 poids	 moléculaire	 été	 observée	 entre	 la	

rhApoA1	exprimée	par	X-33	et	SMD-1168.	

	

	
Figure	R.6.	Analyse	spectrométrie	en	mass	(ESI-Q-TOF)	de	fractions	contenant	la	rhApoA1	

purifiées	à	partir	P.	pastoris	X-33	et	SMD1168	
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La	profil	de	purification	de	la	rhApoA1	chez	P.	pastoris	SMD1168	à	l'aide	Capto™	

MMC	 a	 été	 similaires	 de	 purification	 profil	 obtenu	 en	 purifiant	 rhApoA1	 de	P.	

pastoris	X-33.	

	

En	 analyse	 par	 spectrométrie	 en	 mass,	 les	 rhApoA1	 purifiée	 à	 partir	 de	 deux	

souches	 des	 P.	 pastoris,	 il	 a	 été	 observé	 qu'il	 n'y	 avait	 pas	 de	 différence	

significative	 entre	 les	 poids	 moléculaires	 des	 deux	 souches	 de	 rhApoA1	 (Fig.	

R.6).	Cela	a	conduit	à	croire	que	la	protéine	était	en	fait	complète	et	intact.	

	

R.5. MISE	A	L'ECHELLE	DE	PRODUCTION	ET	DE	PURIFICATION	DE	

rhApoA1	CHEZ	P.	pastoris	X-33	
R.5.1. MÉTHODES	

Suite	 a	 l’expression	 et	 la	 purification	 de	 rhApoA1	 en	 échelle	 laboratoire,	 les	

études	pour	la	mise	à	 l'échelle	de	la	production	et	 la	purification	de	rhApoA1	a	

été	 envisagé.	 La	 première	 étape	 vers	 l'intensification	 de	 l'expression	 a	 été	

effectuée	dans	un	bioréacteur	de	5l	capacité.	Les	paramètres	de	l’expression	ont	

été	réglés	comme	ils	l'étaient	dans	les	lots	de	bioréacteurs	2l	(voir	section	2.1),	et	

l'expression	des	protéines	ont	été	analysées	par	SDS-PAGE	et	dot-blot.	

	

À	la	fin	du	lot	de	production,	toute	la	culture	de	P.	pastoris	a	été	passé	à	travers	

une	colonne	équilibrée	directe	CST-I	en	mode	"adsorption	par	 lit	expansé".	Les	

conditions	 de	 tampon	 ont	 été	 maintenues	 comme	 il	 été	 optimisée	 dans	 des	

colonnes	 a	 l’echelle	 laboratoire,	 et	 le	 profil	 a	 été	 surveillée	 par	 l’absorbance	 à	

280	nm.	Les	différentes	fractions	ont	été	recueillies	et	analysées	par	SDS-PAGE.	

	

R.5.2. RÉSULTATS	ET	DISCUSSION	

La	profil	de	production	de	la	rhApoA1	a	ete	suivre	par	SDS-PAGE	et	les	niveaux	

de	production	de	la	rhApoA1	été	comparables	ont	obtenus	dans	le	bioréacteur	de	

2l	 (section	 R.2.2).	 Un	 taux	 d’addition	 de	 méthanol	 plus	 fréquente	 (chaque	 8	

heures)	 assurée	 l’induction	 suffisant	 de	 cellules	 en	 croissance.	 L'examen	

microscopique	 périodiques	 d'échantillons	 a	 vérifié	 l'absence	 de	 contamination	

dans	la	culture.	La	production	en	bioréacteur	était	très	reproductible.	
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Tableau	R.2.	Comparaison	des	échelles	de	l’expression	de	la	rhApoA1	

Paramètre\Échelle	 Flasque	 Bioréacteur	2L	 Bioréacteur	5L	

Volume	de	culture	 150	mL	 1800	mL	 4000	mL	
DO600nm	finale	 27.56	 41.34	 44.71	
pH	d’induction	 6,0	 5,0	 5,0	
Système	de	
tampon	

Phosphate	 phosphate	
+	acide/base	

phosphate	
+	acide/base	

Température	de	
l’induction	

30°C	 28°C	 28°C	

Rendement	de	la	
rhApoA1	

22,4	mg/l	 37,5	mg/l	 43,8	mg/l	

	

Le	profil	chromatographique	de	la	purification	(Fig.	R.7)	en	utilisant	Direct	CST-I	

(la	même	chimie	de	ligand	comme	Capto™	MMC),	était	similaire	à	celle	obtenue	

dans	des	conditions	à	 colonne	paquée	 (Section	R.3.2).	Analyse	par	SDS-PAGE	a	

confirmé	la	capture	de	tous	rhApoA1	du	milieu	à	une	très	haute	concentration.	

	

	
Figure	R.7.	Purification	de	rhApoA1	par	Direct	CST-I	en	mode	«	adsorption	lit	expansee	».	

(A)	 Chromatogramme	et	 (B)	 12%	SDS-PAGE	de	 la	 charge	 (L),	 les	 fractions	non	 retenues	

(FT)	et	éluée	à	pH	7,0	 (fractions	1	 -	4)	et	8,5	 (fractions	5	 -	8).	 (C)	12%	de	 l'analyse	SDS-

PAGE	de	fractions	provenant	Resource	Q	échangeuse	d'ions	de	polissage	étape:	charge	(L),	
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non	retenu	(FT),	et	les	fractions	éluées	à	5%,	15%,	30%	et	100%	de	tampon	d'élution	(20	

mM	de	tampon	phosphate,	pH	7,0,	1M	NaCl).	
	

Quelques	 impuretés	 ont	 été	 éliminées	 par	 une	 deuxième	 étape	 de	

chromatographie	avec	échange	d'anions.	Ce	processus	de	purification	évolutive	

montre	 très	 prometteur	 pour	 la	 production	 industrielle	 à	 grande	 échelle	 de	

rhApoA1.	

	

R.6. GENERATION	DE	VARIANTES	DE	L’ApoA1	:	MILANO	&	PARIS	
Deux	variantes	naturelles	de	l’ApoA1,	Milano	et	Paris,	sont	caractérisés	par	une	

seule	substitution	de	la	pointe	de	l'arginine	à	cystéine	à	positions	différentes.	Ces	

deux	variantes	ont	été	rapportées	chez	des	populations	avec	un	risque	réduit	de	

troubles	 cardio-vasculaires.	 Une	 étude	 comparative	 de	 ces	 variantes	 pourrait	

donner	 une	 meilleure	 idée	 de	 leur	 mécanisme	 d'action,	 et	 aider	 à	 générer	

potentiellement	thérapeutiques.	

	

R.6.1. MÉTHODES	

La	mutagenèse	dirigée	a	été	utilisée	pour	introduire	des	mutations	dans	le	gène	

de	la	rhApoA1.	Les	Milano	(R173C)	et	Paris	(R151C)	variantes	ont	été	générés	en	

utilisant	 des	 amorces	 spécifiques	 de	 la	 séquence	 d'intégrer	 les	 mutations	

souhaitées.	 Les	 constructions	 ont	 été	 ensuite	 transformé	 par	 électroporation	

dans	des	 cellules	 compétentes	de	P.	pastoris	 X-33,	 et	 les	 transformants	ont	 été	

criblés	 pour	 la	 résistance	 à	 la	 Zéocine.	 Quelques	 clones	 ont	 ensuite	 été	 essayé	

pour	 l'expression	 par	 induction	 avec	 du	 méthanol	 en	 cultures	 flacons	 et	 le	

bioréacteur	2L,	et	l'expression	a	été	suivre	par	dot-blot.	

	

Suite	 de	 l'expression,	 des	 expériences	 préliminaires	 de	 purification	 ont	 été	

réalisées	pour	évaluer	les	différences	dans	l’adsorption	des	variantes	de	l’ApoA1	

au	ligand	Capto™	MMC	en	mode	mixte.	

	

R.6.2. RÉSULTATS	ET	DISCUSSION	

Les	 constructions	 de	 l’ApoA1-Milano	 et	 l’ApoA1-Paris	 ont	 été	 générées	 par	

mutagénèse	 dirigée,	 et	 vérifiés	 par	 séquençage	 d'ADN.	 Par	 la	 suite,	 les	
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constructions	 ont	 été	 transformés	 de	 individuellement	 dans	 compétentes	 X-33	

cellules	de	P.	pastoris	et	les	transformants	en	résistante	à	2	mg/mL	Zéocine	ont	

été	sélectionnés	pour	les	études	de	l’expression.	Trois	clones	chacun	de	Milan	et	

de	 Paris	 ont	 été	 testés	 dans	 des	 cultures	 en	 ballon	 agité,	 et	 tous	 ont	 montré	

expression	 réussie	 de	 variantes	 rhApoA1	 (Fig.	 R.8).	 Un	 clone	 de	 chaque	 ont	

ensuite	été	poussée	plus	loin	pour	l'expression	au	niveau	de	bioréacteur	2L.	

	

	

Figure	 R.8.	 Analyse	 «	Dot-Blot	»	 de	

l’expression	 de	 l’ApoA1-Milano	 et	 l’ApoA1-

Paris	surexprimé	chez	P.	pastoris	X-33	

	

Purification	préliminaire	des	deux	variantes	de	l’ApoA1,	Milano	et	Paris	ont	été	

testés	 à	 l'aide	 de	 deux	 supports	 de	 chromatographie	 HEA	 HyperCel	 et	 Capto	

MMC.	 Les	 profils	 d’adsorption	 de	 l’ApoA1-Milano	 et	 l’ApoA1-Paris	 étaient	

significativement	 différents	 de	 l’ApoA1	 type	 sauvage.	 Ce	 permis	 de	 mieux	

comprendre	 les	 changements	 importants	 dans	 la	 structure	 de	 liaison	 induite-

cystéine	à	partir	du	résidu	cystéine	introduit.	

	

R.7. CONCLUSION	
Cette	 thèse	 a	 focalisé	 sur	 la	 génération	 de	 type	 sauvage	 et	 des	 variantes	 de	

l'apolipoprotéine	 AI	 humaine	 chez	 la	 levure	 Pichia	 pastoris.	 La	 méthode	 de	

production	et	de	purification	de	type	sauvage	de	l’ApoA1	était	mise	en	échelle.	La	

purification	de	 l’ApoA1	été	 fait	 par	 l'adsorption	 en	 lit	 expansée	 (Expanded	Bed	

Adsorption,	EBA).	La	comparaison	des	ApoA1	exprimé	en	type	sauvage	P.	pastoris	

X-33	 et	 la	 souche	 protéase	 déficiente	 P.	 pastoris	 SMD1168	 ont	 confirmé	 la	

production	 de	 rhApoA1	 complet.	 Les	 études	 sur	 la	 génération	 de	 variantes	
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Milano	et	Paris	de	ApoA1	ouvre	de	nouvelles	avenues	pour	effectuer	des	études	

comparatives	entre	le	type	sauvage	et	des	mutantes	de	l’ApoA1.	



16 
 

	

Chapter	1	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

General	Introduction	
&	Review	of	Literature	

	
	

	



17 
 

1.1. GENERAL	INTRODUCTION	
1.1.1. CARDIOVASCULAR	DISORDERS	AND	ATHEROSCLEROSIS	

With	 great	 advances	 in	 healthcare,	 the	 major	 causes	 of	 death	 in	 the	

industrialised	world	have	shifted	from	infectious	diseases	to	degenerative	ones	

such	 as	 cardiovascular	 disorders	 (CVD),	 this	 shift	 being	 termed	 as	 “the	

epidemiologic	 transition”	 (Yusuf	 et	 al.	 2001).	 Over	 the	 years,	 studies	 have	

reflected	on	the	migration	of	the	global	burden	of	Ischemic	Heart	Diseases	from	

high-income	 countries	 to	 middle-	 &	 low-income	 countries,	 India	 included	

(Finegold,	 Asaria,	 and	 Francis	 2013).	 Indians	 are	 one	 of	 the	 more	 vulnerable	

populations	 in	 the	world,	 and	 deaths	 due	 to	 CVD/stroke	 is	 very	 high	 due	 to	 a	

number	of	factors,	not	limiting	to	genetic	factors,	lifestyle	habits	and	inadequate	

healthcare	policies	(Reddy	and	Yusuf	1998).	Owing	to	the	rising	number	of	CVD	

cases,	India	is	slated	to	become	the	world’s	CVD	capital	within	the	next	ten	years	

(Gupta	et	al.	2008).	

	

Atherosclerosis	is	one	of	the	major	components	of	CVD,	and	is	characterised	by	

the	hardening	of	arteries	due	to	invasion	and	accumulation	of	macrophages	and	

subsequent	 build-up	 of	 cholesterol,	 lipids	 and	 lipoproteins	 (Epstein	 and	 Ross	

1999).	 Advanced	 stages	 of	 atherosclerosis	 often	 occlude	 blood	 flow	 causing	

several	mortal	 conditions	 such	 as	myocardial	 infarction,	 cardiovascular	 stroke,	

or	form	emboli	that	could	affect	other	tissues.	One	of	the	major	causative	reasons	

for	the	progression	of	atheroma	is	the	dysregulation	of	cholesterol	metabolism	in	

the	body	(Assmann	and	Gotto	2004).	

	

1.1.2. CHOLESTEROL	AND	ITS	METABOLISM	

Cholesterol	 is	 a	 sterol	molecule,	which	 is	 an	 essential	 structural	 component	 of	

higher	 eukaryotic	 cells,	 in	 addition	 to	 being	 a	 precursor	 molecule	 for	 the	

biosynthesis	of	steroid	hormones,	bile	acids,	etc.	(Hanukoglu	1992).	Cholesterol	

molecules	are	used	to	modulate	the	membrane	fluidity	of	cells:	by	varying	their	

concentration	 with	 changes	 in	 temperature.	 The	 structure	 of	 cholesterol	 has	

been	elucidated	in	Fig.	1.1.	
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Figure	1.1.	Structure	of	Cholesterol	(Reproduced	from	Wikipedia	EN:	

http://en.wikipedia.org/wiki/Cholesterol)	
	

The	 cholesterol	molecule	 contains	 a	 hydroxyl	 group	 that	 enables	 it	 to	 interact	

with	the	polar	heads	of	membrane	phospholipids	and	sphingolipids;	whereas	the	

bulky	 steroid	 and	 hydrocarbon	 chain	 sink	 into	 the	membrane	 along	with	 they	

hydrophobic	fatty	acid	chains	of	lipids	(Yeagle	1991).	This	ability	of	cholesterol	

to	 blend	 in	 with	 membrane	 lipids	 enables	 it	 to	 provide	 fluidity	 to	 the	 cell	

membrane	 when	 required.	 In	 addition	 to	 providing	 membrane	 fluidity,	

cholesterol	 is	 also	 a	 precursor	molecule	 for	 the	 synthesis	 of	 steroid	 hormones	

and	bile	acid	(Berg	et	al.	2002).	

	

The	 average	 cholesterol	 intake	 is	 approximately	 400mg	per	 day,	with	 primary	

sources	being	de	novo	biosynthesis	and	diet.	About	50%	of	the	cholesterol	from	

dietary	sources	is	actually	absorbed	(the	balance	is	directly	excreted),	and	hence	

there	 is	 a	 bulk	 production	 through	 biosynthesis	 pathways	 for	 catering	 to	 the	

body’s	cholesterol	requirements	(Lehninger,	Nelson,	and	Cox	2005).	

	

As	cholesterol	is	only	mildly	soluble	in	water,	it	is	primarily	transported	in	blood	

through	protein	carriers	called	lipoproteins,	which	are	complex	structures	with	a	

hydrophilic	 exterior	 (with	 polar	 lipid	 heads	 and	 proteins)	 and	 an	 apolar	 core	

(explained	in	greater	detail	 in	Section	1.2).	Lipoproteins	are	classified	based	on	

their	density,	and	vary	in	protein	compositions	and	functions.	
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1.2. LIPOPROTEINS	
Lipoproteins	are	complex	biological	assemblies	of	lipids	and	proteins	that	enable	

the	 transport	 of	 fatty	 acids	 and	 cholesterol	 through	 water	 inside	 and	 outside	

cells	 (Jonas	 2002).	 The	 proteins	 enable	 the	 emulsification	 of	 lipid	 particles,	

facilitating	the	smooth	movement	of	cholesterol	and	triglycerides	through	blood.	

	

1.2.1. STRUCTURE	AND	CLASSIFICATION	OF	LIPOPROTEINS	

Lipoprotein	 molecules	 vary	 from	 discoidal	 to	 spherical	 forms,	 with	 a	

hydrophobic	core	and	a	hydrophilic	surface	(Jonas	2002).	

As	marked	 in	Fig.	1.2,	 the	proteins	and	 the	hydrophilic	head	of	 lipid	molecules	

form	 the	 polar	 outer	 shell	 encapsulating	 the	 hydrophobic	 core	 made	 of	

cholesterol,	fatty	acids	and	triglycerides.	The	most	important	protein	component	

of	 lipoproteins	 is	 apoproteins.	 Apoproteins	 bind	 to	 lipids	 to	 form	 nascent	

lipoproteins	 (Jackson,	 Morrisett,	 and	 Gotto	 1976).	 There	 are	 a	 number	 of	

apoproteins	 associated	 with	 various	 sizes	 of	 lipoproteins;	 for	 example,	

apolipoprotein	 B	 associates	 with	 LDL	 and	 chylomicrons	 and	 apolipoprotein	 A	

associates	with	HDL.	

	
Figure	1.2.	Lipoprotein	structure	highlighting	components	comprising	hydrophilic	
surface	 (proteins,	 polar	 lipid	 head)	 and	 hydrophobic	 core	 (non-polar	 lipid,	
cholesterol,	 cholesterylester,	 triglycerides	 and	 fatty	 acids),	 reproduced	 from	
(Wasan	et	al.	2008).	
	

Lipoproteins	can	be	classified	based	on	three	different	parameters:	

(i) Based	on	density/size	

(ii) Based	on	electrophoretic	mobility	

(iii) Based	on	nature	of	Apo-	protein	content	
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Among	the	above	classification	methods,	classification	of	 lipoproteins	based	on	

their	density	 is	most	commonly	adopted.	The	density	of	 lipoproteins	decreases	

with	an	increase	in	the	ratio	of	lipids	to	proteins	in	them.	Based	on	the	density	of	

the	 lipoprotein	 molecule,	 they	 are	 classified	 into	 high-density	 lipoproteins	

(HDL),	 low-density	 lipoproteins	 (LDL),	 intermediate-density	 lipoproteins	 (IDL),	

very	 low-density	 lipoproteins	(VLDL)	and	chylomycrons.	The	relative	sizes	and	

densities	of	these	various	lipoproteins	have	been	highlighted	in	Fig.	1.3.	

	

	
Figure	1.3.	Classification	of	lipoproteins	based	on	diameters	(nm)	and	density	

(g/ml).	
	

The	lipoproteins	of	various	densities	play	key	roles	in	cholesterol	metabolism	in	

the	body.	Chylomycron	are	created	from	intestinal	absorption	of	triacylglycerol	

&	other	 lipids,	VLDL/LDL	particles	are	derived	 from	 the	 liver	 for	 the	export	of	

cholesterol,	 and	 HDL	 particles	 are	 formed	 from	 cholesterol	 effluxed	 from	

peripheral	 cells	 such	 as	 macrophages.	 There	 is	 a	 constant	 exchange	 of	

cholesterol,	 cholesterol-esters	 and	 triglycerides	 between	 lipoproteins,	 which	

play	a	key	role	in	regulating	cholesterol	homeostasis.	

		

1.2.2. HIGH-DENSITY	LIPOPROTEINS	(HDL)	

The	 High	 Density	 Lipoprotein,	 or	 HDL,	 is	 the	 densest	 and	 smallest	 of	

lipoproteins.	HDL	particles	range	from	7	to	12nm	in	diameter,	and	from	1.063	to	

1.25	g/ml	in	density	(P.	Barter	et	al.	2003).	
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Table	1.1.	Classification	of	High	Density	Lipoprotein	(HDL)	

S.	
No.	

Parameter	for	
classification	

Sub-populations	
(Tabet	and	Rye	2009)	

1.	 Shape	of	the	
HDL	particle	

	

2.	 Composition	of	
Apolipoproteins	

	

3.	 Size	of	the	HDL	
particle	

	

4.	 Density	of	HDL	
particle	

HDL2:	1.063	<	d	<	1.125	g/ml	
HDL3:	1.125	<	d	<	1.210	g/ml	

5.	 Electrophoretic	
Mobility	

Pre-β	 HDL:	 lipid-poor/lipid-free	 ApoA1	 &	 discoidal	
HDL	
α-HDL:	Spherical	HDL	particles	(HDL2	&	HDL3)	
γ-HDL:	Large	spherical	particles	with	ApoE	

	

Compared	 to	 other	 lipoproteins,	HDLs	have	 the	 highest	 proportion	 of	 proteins	

(>50%)	 relative	 to	 their	 lipid	 content.	 The	 hydrophobic	 core	 of	HDL	 is	mainly	

composed	 of	 cholesterol/cholesterol-esters	 and	 a	 small	 amount	 of	 triglyceride	

(Rifai,	 Warnick,	 and	 Dominiczak	 2000).	 The	 major	 lipid	 composition	 of	 HDL	

includes	phospholipids	(50%),	cholesteryl	esters	(30%),	 free	cholesterol	(10%)	

and	triglycerides	(10%).	

	

One	of	the	key	characteristics	of	HDL	is	their	heterogeneity:	in	size,	density	and	

apolipoprotein	 composition.	 HDLs	 are	 classified	 into	 five	 sub-populations	

according	to	their	size	(row	3,	Table	1.1),	and	two	major	subfractions	based	on	

their	density	(row	4,	Table	1.1).	Furthermore,	 they	are	also	classified	based	on	
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their	apolipoprotein	composition	 into	those	that	contain	only	ApoA1	(A-I	HDL)	

and	ones	that	contain	both	ApoA1	&	ApoA2	(A-I/A-II	HDL),	highlighted	in	row	2	

(Table	1.1).	

	

HDL	 is	 generally	 perceived	 as	 cardio-protective,	 primarily	 due	 to	 its	 role	 in	

Reverse	 Cholesterol	 Transport	 (RCT),	 in	 addition	 to	 anti-oxidant,	 anti-

inflammatory,	anti-apoptotic,	anti-thrombotic	and	anti-platelet	activating	effects	

(Tabet	and	Rye	2009).	

	

1.2.3. REVERSE	CHOLESTEROL	TRANSPORT	(RCT)	

The	process	by	which	cholesterol	 is	moved	 from	peripheral	 tissues	 to	 the	 liver	

for	catabolism	is	known	as	Reverse	Cholesterol	Transport	(RCT,	Fig.	1.4).	RCT	is	

the	major	 cardioprotective	 function	 of	 the	 HDL	 particle	 (Fielding	 and	 Fielding	

1995).	

	
Figure	1.4.	Schematic	of	Reverse	Cholesterol	Transport	(RCT)	

	

Briefly,	either	 lipid-free	ApoA1	or	 lipid-poor	pre-β	HDL	particles	(from	liver	or	

intestine)	 accept	 cholesterol	 from	 macrophages	 through	 the	 effluxor	 ABCA1	

(ATP-Binding	Cassette	A1)	 to	 form	discoidal	HDL	particles.	 This	discoidal	HDL	

particle	accepts	further	cholesterol	and	trigliceride	molecules	to	form	a	spherical	

HDL	 molecule.	 The	 key	 step	 in	 RCT	 is	 the	 activation	 of	 HDL	 by	 Lecithin-

Cholesterol	Acyl	Transferase	(LCAT),	an	enzyme	that	catalyses	the	conversion	of	

cholesterol	to	cholesterylester,	resulting	in	the	maturation	of	HDL	(Vanloo	et	al.	

1992).	From	the	mature	HDL,	 there	are	 two	routes	 for	 the	cholesterol	 to	reach	
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the	liver:	one	directly	through	Scavenging	Receptor	B1	(SR-B1);	second	through	

the	 LDL	 to	 LDL-receptor.	 The	 exchange	 of	

cholesterol/cholsesterylester/triglycerides	 is	 achieved	 by	 the	 action	 of	

Cholesteryl	 Ester	Transfer	Protein	 (CETP),	which	 is	 a	 key	 actor	 in	maintaining	

the	ratio	of	HDL	to	LDL	in	the	blood	(P.	J.	Barter	et	al.	2003).	Once	cholesterol/	

cholesterylester	 reaches	 the	 liver,	 it	 is	 subsequently	converted	 to	bile	acid	and	

excreted	via	feces.	

	

The	RCT	represents	one	of	the	key	pathways	by	which	cholesterol	homeostasis	is	

maintained	 in	 the	body,	 and	a	number	of	 interventions	have	been	proposed	 to	

intervene/enhance	 various	 stages	 of	 this	 pathway,	 which	 will	 be	 discussed	 in	

greater	detail	in	the	following	sub-section.	

	

1.2.4. LIPOPROTEIN	RATIO	&	CARDIOVASCULAR	WELLBEING		

Over	 the	 decades,	 several	 epidemiological	 studies	 have	 demonstrated	 that	

increasing	 levels	 of	 HDL	 are	 inversely	 correlated	 to	 risk	 of	 CHD/CVD	 and	

atherosclerosis	 (Assmann	 and	 Gotto	 2004;	 P.	 Barter	 et	 al.	 2003;	 William	 B.	

Kannel	et	al.	1971).	The	Framingham	Study	was	the	first	to	report	a	correlation	

between	 serum	 cholesterol	 levels	 and	 coronary	 heart	 disease	 risk	 (William	 B.	

Kannel	 et	 al.	 1971),	 classifying	 cardiovascular	 risk	 based	 on	 the	 ratio	 of	 total	

cholesterol	to	HDL-cholesterol	(W.	B.	Kannel	1983).	This	has	been	subsequently	

followed	 by	 numerous	 epidemiological	 and	 clinical	 studies	 across	 the	 globe,	

resulting	 in	 the	 inclusion	 of	 HDL-C	 in	 the	 list	 of	 risk-predictors	 for	

atherosclerosis	 and	 cardiovascular	 disorders	 (Assmann	 and	 Gotto	 2004).	 It	 is	

estimated	 that	 a	 1mg/dl	 increase	 in	 HDL-cholesterol	 correlates	 to	 a	 2-3%	

reduction	in	the	risk	of	cardiovascular	events	(Gordon	et	al.	1989).	

	

On	 the	 other	 hand,	 high	 levels	 of	 LDL	 and	 LDL-C	 (LDL	 cholesterol)	 were	

correlated	with	 an	 increased	 risk	of	 CHD/CVD.	However,	 risk	 factors	based	on	

absolute	values	of	LDL/LDL-C	weren’t	sufficient	to	accurately	predict	disposition	

to	CHD,	especially	for	patients	with	intermediate	risk	(Superko	and	King	2008).	

Subsequently,	 ratios	 of	 total	 cholesterol	 (TC)	 to	 HDL	 cholesterol	 (HDL-C),	 and	

LDL-C	 to	 HDL-C	 were	 considered	 to	 provide	 a	 more	 reliable	 risk	 assessment.	
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Typical	risk	levels	and	target	levels	to	be	achieved	to	bring	down	risk	have	been	

summarised	in	Table	1.2.	

	
Table	1.2.	Risk	categories	and	target	levels	for	CHD	(Millán	et	al.	2009).	

Ratio	
Primary	prevention	 Secondary	prevention	

Risk	level	 Target	 Risk	level	 Target	
Men	 Women	 Men	 Women	 Men	 Women	 Men	 Women	

TC/HDL-C	 >5.0	 >4.5	 <4.5	 <4.0	 >4.0	 >3.5	 <3.5	 <3.0	
LDL-C/HDL-C	 >3.5	 >3.0	 <3.0	 <2.5	 >3.0	 >2.5	 <2.5	 <2.0	
ApoB/ApoA-I	 >1.0	 >0.9	 <0.9	 <0.8	 >0.8	 >0.7	 <0.7	 <0.6	
	

A	key	point	to	note	in	table	1.2	is	the	distinction	between	primary	and	secondary	

prevention	 ratios.	 In	 persons	 without	 established	 CHD,	 risk	 levels	 and	 target	

ratios	 are	 as	 defined	 under	 primary	 prevention.	 Once	 a	 CHD	 event	 has	 taken	

place,	there	is	a	significant	increase	in	cardiovascular	risk,	and	hence	the	target	

levels	 for	 various	 parameters	 are	 much	 lower	 than	 for	 primary	 prevention	

persons	(Grundy	et	al.	1999).	

	

Although	 absolute	 values	 and	 ratios	 of	 various	 lipoproteins	 and	 cholesterol	

prove	 to	 be	 a	 reasonable	 indicator	 for	 cardiovascular	 risk,	 there	 have	 been	

several	 exceptions	 to	 it.	 Some	 studies	 have	 reported	 the	 occurrence	 of	 CVD	 in	

certain	individuals	despite	high	levels	of	HDL	(Manninen	et	al.	1992).	

	

Furthermore,	 reports	 at	 the	 beginning	 of	 this	 millennium	 showcased	 the	

propensity	 of	 HDL	 and	 its	 major	 protein	 component	 apolipoprotein	 A-I	 to	

undergo	oxidation	(Lemin	Zheng	2004;	Panzenböck	et	al.	2000;	Shao	et	al.	2008).	

Oxidised	ApoA1/HDL	 showed	 reduced	 ability	 in	 cholesterol	 binding	 and	 LCAT	

activation.	 In	addition,	 for	several	decades,	studies	have	shown	the	presence	of	

better	 quality	 ApoA1/HDL	 in	 certain	 population,	 through	 naturally	 occurring	

mutations	 (Alexander	 et	 al.	 2009;	 Weisgraber	 et	 al.	 1983).	 This	 brought	 in	 a	

paradigm	 shift	 in	 thinking	 that	 the	mere	 quantity	 of	 HDL	wasn’t	 sufficient	 for	

determining	cardiovascular	risk,	but	the	quality	of	 the	HDL	particle	also	had	to	

be	considered	for	determining	risk.	Subsequently,	a	number	of	diagnostic	targets	

have	been	envisaged,	which	have	been	detailed	in	the	next	section	(Smith	2010).	
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1.3. APOLIPOPROTEIN	A-I	
Human	Apolipoprotein	A-I	(ApoA1)	is	the	major	protein	component	of	the	HDL,	

constituting	about	70%	of	the	total	HDL	protein	(Rogers	et	al.	1997).	In	addition	

to	 providing	 major	 structural	 support	 to	 HDL	 particles,	 it	 also	 plays	 two	

important	functional	roles:	the	extraction	of	cholesterol	from	peripheral	tissues	

by	interacting	with	ABCA1;	and	in	the	activation	of	LCAT,	which	is	a	key	factor	in	

reverse	 cholesterol	 transport	 (Borhani	 et	 al.	 1997).	 This	 section	will	 cover	 all	

aspects	 of	 ApoA1,	 its	 life	 cycle,	 structure,	 variants	 and	 sensitivity	 to	

modifications.	

	

1.3.1. PROTEINS	OF	HDL	

The	 High	 Density	 Lipoprotein	 has	 been	 described	 to	 be	 cardio	 protective	 in	

nature,	primarily	owing	to	 the	positive	effects	exhibited	by	 its	various	proteins	

(Heinecke	 2010).	 In	 addition	 to	 the	major	 protein	 ApoA1,	 other	 HDL	 proteins	

such	as	ApoA2,	ApoD,	ApoE,	paraoxonase	1	(PON1),	are	also	involved	in	various	

functions	of	HDL.	Some	of	the	key	functions	of	the	HDL	enzymes	are	detailed	in	

Table	1.3.	

	
Table	1.3.	HDL	proteins	and	their	major	functions	

S.No.	 Protein	 Function	 Reference	
1.	 Apolipoprotein	A-I	

(ApoA1)	
Main	structural	protein,	lipid	
binding,	ABCA1	binding	for	
cholesterol	efflux,	LCAT	
activation	

(Borhani	et	al.	
1997)	

2.	 Apolipoprotein	A-II	
(ApoA2)	

Enhances	hepatic	lipase	
activity	

	

3.	 Apolipoprotein	D	
(ApoD)	

Associated	with	LCAT,	
progesterone	binding	

	

4.	 Apolipoprotein	E	
(ApoE)	

LDL-receptor	binding	 (Barbier	et	al.	
2006,	2)	

5.	 Apolipoprotein	M	
(ApoM)	

Transport	of	Sphingosine-1	
Phosphate	

	

6.	 Serum	Paraoxonase	
1	(PON1)	

Anti-oxidant	and	anti-
inflammatory	effects	

(Heinecke	
2010)	

	

As	 is	 evident	 from	 Table	 1.3,	 ApoA1	 is	 a	 key	 effector	 of	 major	 protective	

functions	 of	 HDL,	 especially	 in	 reverse	 cholesterol	 transport	 (Fielding	 and	

Fielding	1995).	
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1.3.2. LIFE	CYCLE	OF	ApoA1	

The	overall	life	cycle	of	ApoA1	is	closely	linked	to	that	of	the	HDL	molecule	itself.	

ApoA1	molecules	 are	produced	by	 the	 liver	or	 intestines,	 or	 are	 released	 from	

lipolysed	VLDL	and	chylomicrons	(von	Eckardstein,	Nofer,	and	Assmann	2001).	

These	 free	 ApoA1	 molecules	 accept	 cholesterol	 from	 peripheral	 cells	 through	

ABCA1	 to	 form	 discoidal	 HDL	 molecules.	 They	 move	 through	 the	 RCT	 as	

explained	in	section	1.2.3,	and	are	eventually	cleared	in	the	liver	at	the	end	of	the	

reverse	cholesterol	 transport,	wherein	 they	are	 recycled	 (Fielding	and	Fielding	

1995).	

	

The	ApoA1	protein	is	expressed	as	a	single	polypeptide	chain	of	243	amino	acids,	

with	 a	 24	 amino	 acid	 signal	 peptide	 sequence	 for	 its	 secretion.	 Once	 in	

circulation,	 it	 self-associates	 into	a	4-helix	bundle	 linked	via	 their	hydrophobic	

faces	to	transport	cholesterol,	triglycerides	and	lipids	(Lewis	and	Rader	2005).	

	

1.3.3. STRUCTURE	OF	ApoA1	

ApoA1	 is	 a	28kDa	monomer	 that	 is	 synthesised	by	 the	 liver	 and	 intestine.	The	

first	 crystal	 structure	 of	 ApoA1	 suggested	 a	 horseshoe	 like	 shape,	 constituted	

almost	 entirely	 of	 amphipathic	 α-helix	 that	 is	 punctuated	 by	 kinks	 at	 regular	

intervals	introduced	by	proline	residues	(Borhani	et	al.	1997).	This	amphipathic	

α-helix	 enables	 it	 to	 bind	 with	 lipids	 and	 cholesterol	 through	 its	 hydrophobic	

face	 and	 with	 the	 aqueous	 exterior	 with	 its	 polar	 face	 (Murphy	 2013).	 A	

schematic	 ribbon	 structure	 of	 ApoA1	 based	 on	 its	 crystal	 structure	 (PDB	

Accession	Number	1AV1)	is	shown	below	in	Fig.	1.5.	

	
Figure	1.5.	Ribbon	structure	of	ApoA1	(PDB	accession	#	1AV1).	

	



27 
 

This	 structure	 was	 later	 confirmed	 by	 a	 subsequent	 study,	 revealing	 addition	

details.	 The	 structure	 of	 ApoA1	 further	 showed	 a	 solvent-exposed	 loop	 from	

residues	 159	 to	 180,	 which	 plays	 a	 key	 role	 in	 activation	 of	 LCAT	 (Wu	 et	 al.	

2007).	

	

1.3.4. ApoA1	VARIANTS	

The	 ApoA1	 gene	 has	 been	 well	 documented	 to	 have	 several	 polymorphisms:	

more	 than	 forty	 naturally	 occurring	 variants	 of	 ApoA1	 have	 been	 reported	 in	

literature	(Matsunaga	et	al.	2010).	Some	of	the	variants	have	been	listed	in	Table	

1.4.	

	
Table	1.4.	Variants	of	ApoA1	

S.No.	 ApoA1	
Variant	

Mutation	 Physiological	
Consequence	

Reference	

1.	 Milano	 R173C	 Reduced	HDL	but	
healthy	
cardiovascular	
system	

(Weisgraber	et	
al.	1983)	

2.	 Paris	 R151C	 Reduced	HDL	but	
healthy	
cardiovascular	
system	

(Bruckert	et	al.	
1997)	

3.	 Pisa	 L141R	 Absence	of	HDL	
cholesterol	

(Miccoli	et	al.	
1996)	

4.	 Finland	 K159R	 Hypoalphalipo-
proteinemia	

(Miettinen	et	al.	
1997)	

5.	 Iowa	 G026R	 Amyloidosis	 (Benson	et	al.	
1991)	

6.	 Helsinky	 K107Δ	 Amyloidosis	 (Ramella	et	al.	
2012)	

7.	 Fukuoka	 E110K	 	 (Takada	et	al.	
1990)	

	

Of	the	above	listed	variants,	two	variants,	Milano	and	Paris,	are	characterised	by	

a	single	point	variation	of	Arginine	to	Cysteine	at	173	and	151	respectively	(Klon	

et	al.	2000).	Both	these	variants	have	been	reported	in	populations	where	people	

had	a	healthy	cardiovascular	system	despite	low	HDL	levels	(Rocco	et	al.	2010).	

An	important	point	to	note	is	that	wild	type	ApoA1	contains	no	cysteine	residues,	

and	 hence	 these	 cysteine	 variants	 are	 hypothesised	 to	 be	 more	 stable	 due	 to	

formation	of	homodimers	through	disulphide	bridges	(Klon	et	al.	2000).	Hence,	
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in	 this	 thesis	work,	 special	 focus	 has	 been	 laid	 on	 the	 generation	 of	 these	 two	

ApoA1	cysteine	variants,	to	enable	their	future	applications	in	therapeutic	areas.	

	

1.3.5. MODIFICATIONS	ON	ApoA1	

In	addition	to	naturally	occurring	variations,	ApoA1	is	also	highly	susceptible	to	

modifications	 under	 oxidising	 conditions.	 Myeloperoxidase	 (MPO),	 a	 defensive	

enzyme,	 is	 expressed	 by	 neutrophil	 granulocytes	 to	 fight	 bacterial	 infections	

(Klebanoff	 2005).	 However,	 elevated	 levels	 of	 MPO	 have	 been	 reported	 in	

atherosclerotic	 plaques,	 leading	 to	 a	 number	 of	modifications	 on	 HDL/ApoA1,	

thereby	rendering	them	dysfunctional	(Smith	2010).	Table	1.5	lists	some	of	the	

characterised	 modifications	 on	 ApoA1	 by	 MPO,	 along	 with	 functional	

consequences	that	have	been	reported	so	far.	

	
Table	1.5.	MPO-mediated	modifications	of	ApoA1	and	its	consequences	

S.No	
Type	of	

Modification	

Modified	
amino	acid	
generated	

Residues	
modified	 Mechanism	

Functional	
Consequences	

in	vitro	 Reference	
1.	 Chlorination	

of	tyrosine		
3-chloro	
tyrosine	

Tyr-166		
Tyr-192		

MPO	+	H2O2	
+	Cl-	ion	
generated	
(HOCl)	
hypochloite		

Loss	of	
Cholesterol	
acceptor	
activity		

(Shao	et	
al.	2005)	

2.	 Nitration	of	
tyrosine		

3-nitro	
tyrosine		

Tyr-166	
Tyr-192		

MPO	+	H2O2	
+		NO2	
generated	
(ONOO-)	
peroxynitrite		

Loss	of	LCAT	
activation		

(Shao	et	
al.	2005)	

3.	 Oxidation	of	
Methionine		

Methionine	
sulfoxide		

Met-86	
Met-112	
Met-148		

MPO	+	H2O2	
+	Cl-	ion	
generated	
HOCl	
hypochlorite		

Loss	of	
cholesterol	
acceptor	
activity	
Loss	of	LCAT	
activation		

(Shao	et	
al.	2008)	

4.	 Hydroxylation	
of	tryptophan		

Mono	and	
Dihydroxy	
tryptophans		

Trp-8	
Trp-50	
Trp-72	
Trp-108	

MPO	+	H2O2	
+	Cl-	ion	
generated	
HOCl	
(hypochlorite)		

Loss	of	
Cholesterol	
acceptor	
activity		

(Peng	et	
al.	2008)	

5.	 Carbamylation	
of	lysine	

	 Lys-226		 MPO	+	H2O2	
+	SCN-		
(thiocyanate)		

Generate	
Proatherogenic	
and	pro-
inflammatory	
particles		

(Brubaker	
et	al.	
2006)	
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Among	the	residues	affected	by	MPO-oxidation,	Tryptophan-modifications	have	

been	 shown	 to	 be	 most	 consequential.	 Subsequently,	 an	 MPO-mediated	

oxidation-resistant	mutant	of	ApoA1	was	generated	by	substituting	the	four	Trp	

residues	with	Phe	residues	(Peng	et	al.	2008).	

	

Despite	extensive	studies	on	the	effects	of	oxidation	on	wild	type	ApoA1,	there	is	

yet	not	conclusive	data	to	showcase	the	behaviour	of	ApoA1	variants,	especially	

Milano	&	Paris,	under	oxidative	stress.	It	is	hence	of	extreme	interest	to	generate	

robust	processes	 for	 the	production	of	both	wild	 type	 and	 cysteine	variants	of	

ApoA.	

	

1.3.6. CLINICAL	APPLICATIONS	OF	APOA1	–	DIAGNOSTIC	AND	THERAPEUTIC	

Recent	studies,	based	on	the	sensitivity	of	ApoA1	to	MPO-mediated	modification,	

have	established	oxidised	ApoA1	as	a	diagnostic	target	for	the	early	detection	of	

atherosclerosis.	Antibodies	specific	to	oxidised	residues	on	the	surface	of	ApoA1	

are	 currently	 being	 explored	 for	 use	 in	 the	 early	 diagnosis	 of	 atherosclerosis	

(Nakano	and	Nagata	2003).	

	

High	 levels	 of	 ApoA1	 have	 been	 correlated	 with	 a	 decreased	 risk	 of	

atherosclerosis,	 and	 it	 has	 long	 since	 been	 hypothesised	 that	 elevating	 plasma	

ApoA1	levels	could	lead	to	regression	of	atherosclerosis	(Fazio	and	Linton	2003).	

In	addition	to	the	above	main	function,	ApoA1	has	recently	also	been	suggested	

to	be	used	during	in	other	therapeutic	interventions	like	cancer	therapy	(Su	et	al.	

2010).	 Keeping	 in	 mind	 the	 vast	 diagnostic	 and	 therapeutic	 applications	 of	

ApoA1,	 this	 thesis	 focuses	on	 the	development	of	an	 integrated	process	 for	 the	

generation	of	wild	type	and	variants	of	ApoA1	in	a	suitable	recombinant	protein-

producing	host.	

	

	

1.4. EXPRESSION	HOST	
1.4.1. INTRODUCTION	TO	EXPRESSION	SYSTEMS	

The	 advent	 of	 recombinant	 DNA	 (rDNA)	 technology	 enabled	 the	 industrial	

production	 of	 heterologous	 proteins,	 making	 affordable	 therapeutics	 and	
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reducing	 the	 cost	 of	 several	 diagnostic	 and	 therapeutic	 interventions.	 Human	

insulin	was	 the	 first	 heterologous	 protein	 produced	 in	 the	 laboratory	 in	 1977	

(Porro	et	al.	2011).	Several	expressions	systems	are	currently	being	used	for	the	

expression	 of	 heterologous	 proteins:	 like	 bacterial	 prokaryotic	 expression	

systems	 (by	 far	 E.	 coli)	 and	 eukaryotic	 systems	 (yeast	 and	 mammalian	

expressions	 systems).	 In	 addition,	 plant	 systems	 and	 transgenic	 animals	 are	

being	 studied	 for	 the	 expression	 of	 recombinant	 therapeutics	 despite	 their	

difficulties,	extreme	high-cost	and	ethics	involved	in	their	production.	

	

1.4.2. BACTERIAL	EXPRESSION	SYSTEMS	

The	bacterial	expression	system	Escherichia	coli	is	the	most	exploited	system	for	

the	 expression	 of	 recombinant	 proteins.	 E.	 coli	 is	 favoured	 as	 a	 host	 for	 the	

expression	 of	 heterologous	 proteins	 for	 a	 number	 of	 reasons:	 short	 doubling	

time,	well	established	genome,	ease	of	manipulation,	GRAS	(Generally	Regarded	

As	Safe)	status,	 the	ability	to	scale-up	production	to	 industrial	scale	at	minimal	

costs	(Makrides	1996).	However,	plasmid	instability	and	the	lack	of	complex	post	

translational	modification	machinery	like	glycosylation	limit	their	use	(Porro	et	

al.	2011).	

	

1.4.3. EUKARYOTIC	EXPRESSION	SYSTEMS	

The	 yeasts	 Saccharomyces	 cerevisiae	 and	 Pichia	 pastoris	 have	 been	 developed	

into	 highly	 successful	 systems	 for	 the	 expression	 of	 heterologous	 proteins	

(Cereghino	 and	 Cregg	 2000).	 The	 issue	 of	 plasmid	 instability	 often	 faced	with	

prokaryotic	systems	 is	overcome	 in	eukaryotes	due	 to	stable	 integration	of	 the	

gene	 of	 interest	 into	 the	 host	 genome,	 which	 is	 usually	 achieved	 through	

homologous	recombination.	The	ability	to	grow	yeasts	in	simple,	defined	media	

to	high	cell	densities	and	their	ability	to	perform	post-translational	modifications	

make	them	favourites	 for	 the	expression	of	recombinant	proteins	(Demain	and	

Vaishnav	 2009).	 Nevertheless,	 hyper-mannosylation	 remains	 as	 a	 major	

drawback	while	working	with	proteins	that	require	glycosylation.	As	the	target	

protein	 in	 this	 work	 (ApoA1)	 has	 no	 glycosylation	 sites,	 this	 would	 not	 be	

affected	by	expressing	in	a	lower	eukaryotic	host	like	yeast.	
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1.4.4. Pichia	pastoris	EXPRESSION	SYSTEM	

The	Pichia	pastoris	 expression	 system	serves	as	 a	 suitable	 system	 for	 the	 cost-

effective	 production	 of	 value	 added	 proteins.	 Numerous	 heterologous	 proteins	

have	 been	 successfully	 expressed	 by	 the	 Pichia	 Pastoris	 expression	 system	

(Cereghino	and	Cregg	2000).	The	P.	pastoris	system	is	also	generally	regarded	as	

being	 faster,	easier,	and	 less	expensive	 to	use	 than	expression	systems	derived	

from	 higher	 eukaryotes	 such	 as	 insect	 and	 mammalian	 tissue	 culture	 cell	

systems	and	usually	gives	higher	expression	 levels	 (Klein	1998;	Sreekrishna	et	

al.	1997).	Overexpression	of	heterologous	proteins	 in	P.	pastoris	 is	achieved	by	

the	AOX1	promoter,	which	is	activated	under	carbon	starvation	(Daly	and	Hearn	

2005).	

	

1.4.5. HETEROLOGOUS	 EXPRESSION	 OF	 PROTEINS	 IN	 P.	 pastoris:	 THE	 AOX1	

SYSTEM	

Pichia	pastoris	is	one	of	approximately	a	dozen	yeast	 species	 representing	 four	

different	 genera	 capable	 of	 metabolizing	 methanol.	 The	 methanol	 metabolic	

pathway	 appears	 to	 be	 the	 same	 in	 all	 yeasts	 and	 involves	 a	 unique	 set	 of	

pathway	enzymes.	The	first	step	in	the	metabolism	of	methanol	is	the	oxidation	

of	methanol	 to	 formaldehyde	 in	 the	peroxisome,	generating	hydrogen	peroxide	

in	the	process,	by	the	enzyme	alcohol	oxidase	(AOX).	The	H2O2	produced	by	the	

AOX	 reaction	 is	 metabolised	 by	 catalase	 in	 the	 peroxisome	 (Fig.	 1.6).	 AOX	 is	

strongly	 repressed	by	many	 alternate	 carbon	 sources	 such	 as	 glucose,	 glycerol	

and	 even	 ethanol,	 and	 is	 induced	 by	 carbon	 starvation	 when	 grown	 with	

methanol	as	the	sole	carbon	source.	Although	alcohol	oxidase	is	not	specific	for	

methanol	and	 is	capable	of	oxidizing	other	primary	alcohols,	 the	activity	of	 the	

enzyme	 decreases	 as	 the	 number	 of	 carbons	 in	 the	 alcohol	 increases.	 The	

conversion	 of	 methanol	 to	 formaldehyde	 is	 the	 rate-limiting	 step	 in	 utilizing	

methanol,	due	to	the	poor	affinity	of	AOX	to	O2,	and	is	regulated	by	increasing	the	

amount	of	AOX	enzyme	in	the	cells	(Daly	and	Hearn	2005).	
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Figure	1.6.	Alcohol	oxidase	system.	

	

The	alcohol	oxidase	enzyme	is	encoded	for	by	two	genes:	AOX1	and	AOX2.	Most	

AOX	 in	methanol-grown	Pichia	pastoris	 cells	 is	 coded	 for	 by	 the	AOX1	 gene	 (J.	

Cregg	 et	 al.	 1985).	 Hence,	 transformation	 of	 gene	 of	 interest	 into	 the	 Pichia	

genome	 at	 the	 AOX1	 gene	 provides	 the	 potential	 to	 overexpress	 heterologous	

proteins	(J.	Cregg	et	al.	1985).	

	

As	the	P.	pastoris	expression	vector	does	not	contain	a	yeast	origin	of	replication,	

it	is	essential	for	the	integration	of	the	expression	cassette	into	the	host	genome.	

This	 recombination	 is	 possible	 through	 the	 AOX1	 or	 aox1	 loci	 at	 the	 5’AOX1	

promotor	 region.	 This	 homologous	 recombination	 could	 result	 in	 either	 the	

conservation	 of	 native	 AOX1	 activity	 or	 disruption	 of	 AOX1	 gene,	 resulting	 in	

Mut+	and	MutS	phenotypes,	respectively	(Fig.	1.7).	

	

	
Figure	1.7(a)	Generation	of	Pichia	pastoris	transformants	of	Mut+	phenotype.	
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Figure	1.7(b)	Generation	of	Pichia	pastoris	transformants	of	MutS	phenotype.	

	

Once	 the	 expression	 cassette	 of	 the	 target	 gene	 has	 integrated	 into	 the	 host	

genome,	 expression	 is	 achieved	 through	 carbon	 starvation	 and	 subsequent	

activation	 of	 the	 AOX1	 promotor	 resulting	 in	 the	 expression	 of	 heterologous	

proteins.	

	

	

1.5. GOAL	AND	BROAD	OBJECTIVES	
This	 thesis	 has	 focused	 on	 the	 development	 of	 an	 integrated	 process	 for	 the	

efficient	 generation	 of	 wild	 type	 and	 variants	 of	 human	 apolipoprotein	 A-I	 in	

Pichia	pastoris.	

	

The	 following	 objectives	 outline	 the	 research	 methodology	 that	 has	 been	

envisaged	in	this	thesis	work:	

1. Cloning,	expression	of	wild	type	rhApoA1	in	P.	pastoris	X-33	

2. Purification	of	wild	type	rhApoA1	in	P.	pastoris	X-33	

3. Scale-up	of	expression	&	purification	of	wild	type	rhApoA1	in	P.	pastoris	

X-33	

4. Expression,	 purification	 of	 wild	 type	 rhApoA1	 expressed	 in	 protease-

deficient	 P.	 pastoris	 strain	 SMD-1168	 and	 comparison	 with	 protein	

expressed	with	P.	pastoris	wild	type	strain	X-33	

5. Generation	of	rhApoA1	variants:	Milano	&	Paris	
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Chapter	2	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Generation	of	wild-type	rhApoA1	
in	P.	pastoris	

	
	

2. 	



35 
 

2.1. INTRODUCTION	TO	CLONING	IN	P.	pastoris	
The	methylotrophic	 yeast	Pichia	pastoris	 has	 long	 since	 been	 explored	 for	 the	

heterologous	 expression	 of	 proteins	 through	 the	 alcohol	 oxidase	 promoter	

(Cereghino	and	Cregg	2000).	A	number	of	Pichia	pastoris	expressed	recombinant	

products	like	insulin	and	hepatitis-B	vaccine	have	already	hit	the	Indian	market	

(Shekhar	 2008).	 It	 is	 hence	 a	 very	 suitable	 host	 for	 the	 overexpression	 and	

production	of	recombinant	ApoA1,	as	envisaged	in	this	thesis.	

	

Several	 expression	 vectors	 for	 P.	 pastoris	 are	 commercially	 available	 with	

Invitrogen,	 with	 most	 of	 them	 containing	 a	 unique	 multiple	 cloning	 site,	

resistance	to	the	antibiotic	Zeocin	and	signal	peptides	for	secretory	expression.	

The	 vector	 pPICZα	 is	 one	 of	 the	 widely	 used	 vectors	 containing	 all	 the	 above	

described	features,	and	has	been	used	in	the	present	study	too	(James	M.	Cregg	

et	al.	2009,	13).	The	functioning	of	AOX1	promoter	has	already	been	elucidated	

in	section	1.4.5.	

	

	

2.2. EXPERIMENTAL	
2.2.1. MATERIALS	

The	 construct	 containing	 human	 ApoA1	 gene	 was	 purchased	 from	 Open	

Biosystems	 (EHS1001-5646018).	 Oligonucleotides	 for	 PCR	 amplification	 and	

cloning	 were	 custom-ordered	 from	 Sigma-Aldrich	 (Bangalore,	 India).	 All	

chemicals	and	reagents	for	expression	and	purification	were	from	Sigma-Aldrich	

(Bangalore,	India	or	Lyon,	France)	and	BD	Biosciences	(Le	Pont	de	Claix,	France).	

	

Expression	studies	in	benchtop	bioreactors	were	carried	out	on	Sartorius-Stedim	

Biostat	 B-plus	 bioreactors	 monitored	 by	 MCSF	 Win	 data	 acquisition	 software	

(Sartorius),	DNA	sequencing	was	performed	through	Millegen	(Labège,	France).	

	

The	P.	pastoris	strain	X-33	and	vector	pPICZαA	were	kind	gifts	from	Prof.	Rajan	

R.	 Dighe,	 Department	 of	 Molecular	 Reproduction,	 Development	 and	 Genetics	

(MRDG),	Indian	Institute	of	Science,	Bangalore,	India.	
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2.2.2. CLONING	OF	rhApoA1	GENE	INTO	pPICZαA	

The	 sequence	 corresponding	 to	 human	 ApoA1	 was	 amplified	 by	 Polymerase	

Chain	 Reaction	 using	 the	 primers	 5’ATGAATTCGATGAACCCCCCCAGAGC3'	 and	

5’ATGCGGCCGCTCACTGGGTGTTGAG3’	 to	 introduce	 EcoRI	 and	 NotI	 sites	

respectively	 to	 facilitate	 cloning.	 PCR	 was	 carried	 out	 using	 35	 cycles	 of	

denaturation	 (94°C	 for	 30”),	 annealing	 (56°C	 for	 30”),	 extension	 (72°C	 for	 1’),	

followed	by	a	final	extension	at	72°C	for	10	mins.	The	reverse	primer	introduced	

a	stop	codon	at	the	end	of	the	gene	to	prevent	expression	of	the	optional	hexa-

histidine	 tag	 in	 the	 vector.	 The	 amplified	 fragment	was	 cloned	 into	 the	Pichia	

pastoris	expression	vector	pPICZαA	downstream	of	the	AOX1	promoter	and	the	

resulting	 recombinant	 DNA	 construct	 (pPICZα-ApoA1)	 was	 verified	 by	 DNA	

sequencing	using	AOX1-specific	primers	by	Millegen	(Labège,	France).	

	

2.2.3. TRANSFORMATION	INTO	P.	pastoris	

The	plasmid	pPICZα-ApoA1	was	 linearized	using	PmeI	 and	 electroporated	 into	

competent	Pichia	pastoris	X-33	cells,	as	per	 the	manufacturer’s	 instructions.	To	

the	 transformed	 cells,	 1ml	 ice-cold	 1M	 sorbitol	was	 added,	 and	 the	 cells	were	

allowed	 to	 stand	 at	 30°C	 for	 30	 mins,	 after	 which	 they	 were	 plated	 on	 YPDS	

plates	containing	200µg/ml	Zeocin™	for	selection.	The	plates	were	incubated	at	

30°C	 for	 selection	 of	 transformants,	 and	 clones	 exhibiting	 high	 resistance	 to	

Zeocin™	(up	to	2	mg/ml)	were	taken	 further	 for	genomic	DNA	and	subsequent	

expression	analysis.	

	

2.2.4. COLONY	PCR	ANALYSIS	

In	order	 to	 confirm	 the	 integration	of	 the	 recombinant	DNA	construct	pPICZα-

ApoA1	into	the	Zeocin-resistant	P.	pastoris	clones,	Colony-PCR	was	performed	on	

select	transformed	clones.	The	primers	and	PCR	conditions	were	identical	to	that	

used	 to	amplify	 the	ApoA1	gene	 for	 cloning	 (Section	2.2.2).	Following	PCR,	 the	

various	reactions	were	analysed	by	0.8%	agarose	gel	electrophoresis	and	stained	

with	SYBR	Safe	stain.	
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2.2.5. EXPRESSION	STUDIES	ON	FLASK	CULTURES	

Several	clones	of	Pichia	pastoris	transformed	with	pPICZα-ApoA1	that	exhibited	

high	 resistance	 to	 Zeocin	were	 screened	 in	 shake	 flask	 for	 screening	 for	 high-

levels	of	expression	of	rhApoA1.	

	

From	 the	 YPD	 plate	 containing	 2mg/mL	 Zeocin,	 five	 clones	 were	 selected	 for	

preliminary	 expression	 studies,	 along	 with	 a	 negative	 control	 (Pichia	 pastoris	

transformed	with	just	the	vector	pPICZαA	without	insert).	Single	colonies	of	each	

clone	 were	 inoculated	 independently	 in	 10ml	 BMGY	 containing	 200	 μg/ml	

Zeocin	 as	 a	 preculture.	 	 After	 overnight	 growth	 at	 30°C	 and	 200	 rpm,	 the	

precultures	 were	 inoculated	 into	 140	 ml	 of	 fresh	 BMGY	 (buffered	 glycerol	

complex	media).	After	about	24	hrs,	when	 the	cells	had	grown	 to	a	 reasonable	

quantity	(based	on	their	OD	at	600nm),	they	were	centrifuged	and	resuspended	

in	150	ml	of	BMMY	(buffered	methanol	complex	media).	 Induction	was	carried	

out	for	a	total	of	5	days;	with	methanol	being	replenished	every	24	hrs	at	0.5%.	

At	 the	 end	 of	 the	 induction,	 comparative	 day-wise	 expression	 of	 select	 clones	

along	with	the	control	were	analysed	by	SDS-PAGE	and	Western	blotting.	

	

2.2.6. EXPRESSION	IN	2L	BENCHTOP	BIOREACTOR	

Subsequent	 to	 preliminary	 expression	 studies	 on	 shake	 flasks,	 the	 best	

expressing	clone	was	taken	further	for	scale-up	in	a	2	l	benchtop	bioreactor.	

	

First,	a	single	colony	was	inoculated	and	grown	in	baffled	flasks	containing	100	

ml	of	buffered	glycerol-complex	medium	(BMGY,	100mM	potassium	phosphate	

buffer,	pH	6.0,	13.4	g/L	YNB,	4x10-4	g/L	biotin,	10	g/L	glycerol	and	150	µg/mL	

Zeocin™)	up	to	an	OD	(600nm)	of	4-8,	and	this	was	inoculated	in	2L	of	BMGY	in	a	

BIOSTAT®	Bplus	laboratory	2l	bioreactor	with	a	starting	OD600	of	about	0.3.	The	

temperature	and	pH	were	maintained	at	30°C	and	6.0	respectively,	and	dissolved	

oxygen	 level	 was	 maintained	 at	 15%	 saturation	 by	 regulating	 aeration	 and	

agitation	 in	 a	 cascade	 manner.	 After	 complete	 consumption	 of	 glycerol	 in	 the	

medium	(verified	by	standard	glycerol	assay;	data	not	shown),	a	methanol	 fed-

batch	 phase	 was	 initiated	 by	 adding	 methanol	 every	 12	 hrs	 to	 a	 final	

concentration	of	0.5%.	Samples	were	drawn	every		24	hrs	to	follow	the	growth	
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profile	 and	 protein	 production.	 After	 120	 hrs	 of	 induction,	 the	 culture	 was	

harvested	and	the	cell-free	broth	was	frozen	at	-80°C.	

	

2.2.7. SDS-PAGE	AND	WESTERN	BLOTTING	

Protein	 samples	 were	 analysed	 by	 12%	 SDS-PAGE,	 typically	 under	 reducing	

conditions	 with	 DTT.	 In	 order	 to	 probe	 for	 rhApoA1	 (western	 blotting),	 the	

proteins	 from	 the	 acrylamide	 gel	were	 transferred	 to	 a	 0.45	 µm	nitrocellulose	

membrane	using	Transblot	SD	transfer	apparatus	(Bio-Rad,	France)	according	to	

the	 manufacturer’s	 instructions.	 The	 membrane	 was	 blocked	 with	 PBST	

containing	 3%	 skimmed	 milk,	 and	 probed	 with	 goat	 anti-humanApoA1	

antiserum	 (part	 of	 an	 ApoA1	 immunoturbidometry-based	 detection	 kit,	

Apolipoprotein	A1	 FS,	 Cat.	No.	 17102,	DiaSys,	 France)	 followed	by	 rabbit	 anti-

goat	IgG	conjugated	to	HRP	(Jackson	ImmunoResearch,	PA,	USA),	and	visualised	

by	Opti-4CN	colorimetric	detection	kit	(Bio-Rad,	France).	In	order	to	reduce	the	

background	 generated	 by	 cross-reactivity	 of	 the	 antibodies	 in	 the	 primary	

antiserum	 (goat	 anti-humanApoA1)	 to	 native	 P.	 pastoris	 proteins,	 100	 µg	 of	

lyophilized	P.	pastoris	control	broth	(without	transformation	of	any	vector)	was	

added	to	the	primary	antiserum	solution	during	blotting.	

	

	

2.3. RESULTS	
2.3.1. CLONING	OF	rhApoA1	GENE	IN	pPICZαA	AND	TRANSFORMATION	INTO	

P.	pastoris	

The	gene	corresponding	to	ApoA1	was	amplified	using	the	primers	as	described	

in	 section	 2.2.2.	 After	 amplification,	 the	 PCR	 product	 was	 cloned	 into	 a	 T-A	

cloning	vector	pXcmKn12,	and	subsequently	restriction	digested	using	EcoRI	and	

NotI	 to	 sub-clone	 into	 the	 target	 vector	 pPICZαA.	 The	 resulting	 construct	 was	

transformed	 into	 competent	 E.	 coli	 DH5α	 cells	 and	 selected	 by	 resistance	 to	

50µg/ml	Zeocin.	The	construct	was	verified	for	correct	integration	of	target	gene	

by	 restriction	 digestion	 analysis	 and	 DNA	 sequencing	 using	 AOX1-specific	

primers.	 The	 sequencing	 data	 is	 analysed	 in	 Fig.	 2.1,	 highlighting	 important	

features	of	the	construct.	
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tcaaaaaacaactaattattcgaaacgatgagatttccttcaatttttactgctgtttta  
 S  K  N  N  -  L  F  E  T  M  R  F  P  S  I  F  T  A  V  L   
ttcgcagcatcctccgcattagctgctccagtcaacactacaacagaagatgaaacggca  
 F  A  A  S  S  A  L  A  A  P  V  N  T  T  T  E  D  E  T  A   
caaattccggctgaagctgtcatcggttactcagatttagaaggggatttcgatgttgct  
 Q  I  P  A  E  A  V  I  G  Y  S  D  L  E  G  D  F  D  V  A   
gttttgccattttccaacagcacaaataacgggttattgtttataaatactactattgcc  
 V  L  P  F  S  N  S  T  N  N  G  L  L  F  I  N  T  T  I  A   
agcattgctgctaaagaagaaggggtatctctcgagaaaagagaggctgaagctgaattc  
 S  I  A  A  K  E  E  G  V  S  L  E  K  R  E  A  E  A  E  F   
gatgaacccccccagagcccctgggatcgagtgaaggacctggccactgtgtacgtggat  
 D  E  P  P  Q  S  P  W  D  R  V  K  D  L  A  T  V  Y  V  D   
gtgctcaaagacagcggcagagactatgtgtcccagtttgaaggctccgccttgggaaaa  
 V  L  K  D  S  G  R  D  Y  V  S  Q  F  E  G  S  A  L  G  K   
cagctaaacctaaagctccttgacaactgggacagcgtgacctccaccttcagcaagctg  
 Q  L  N  L  K  L  L  D  N  W  D  S  V  T  S  T  F  S  K  L   
cgcgaacagctcggccctgtgacccaggagttctgggataacctggaaaaggagacagag  
 R  E  Q  L  G  P  V  T  Q  E  F  W  D  N  L  E  K  E  T  E   
ggcctgaggcaggagatgagcaaggatctggaggaggtgaaggccaaggtgcagccctac  
 G  L  R  Q  E  M  S  K  D  L  E  E  V  K  A  K  V  Q  P  Y   
ctggacgacttccagaagaagtggcaggaggagatggagctctaccgccagaaggtggag  
 L  D  D  F  Q  K  K  W  Q  E  E  M  E  L  Y  R  Q  K  V  E   
ccgctgcgcgcagagctccaagagggcgcgcgccagaagctgcacgagctgcaagagaag  
 P  L  R  A  E  L  Q  E  G  A  R  Q  K  L  H  E  L  Q  E  K   
ctgagcccactgggcgaggagatgcgcgaccgcgcgcgcgcccatgtggacgcgctgcgc  
 L  S  P  L  G  E  E  M  R  D  R  A  R  A  H  V  D  A  L  R   
acgcatctggccccctacagcgacgagctgcgccagcgcttggccgcgcgccttgaggct  
 T  H  L  A  P  Y  S  D  E  L  R  Q  R  L  A  A  R  L  E  A   
ctcaaggagaacggcggcgccagactggccgagtaccacgccaaggccaccgagcatctg  
 L  K  E  N  G  G  A  R  L  A  E  Y  H  A  K  A  T  E  H  L   
agcacgctcagcgagaaggccaagcccgcgctcgaggacctccgccaaggcctgctgccc  
 S  T  L  S  E  K  A  K  P  A  L  E  D  L  R  Q  G  L  L  P   
gtgctggagagcttcaaggtcagcttcctgagcgctctcgaggagtacactaagaagctc  
 V  L  E  S  F  K  V  S  F  L  S  A  L  E  E  Y  T  K  K  L   
aacacccagtgagcggccgccagctttctagaacaaaaactcatctcagaagaggatct
g  
 N  T  Q  - 

	
Figure	 2.1.	 DNA	 sequencing	 results	 of	 pPICZα-ApoA1	 highlighting	 the	 α-mating	
factor	signal	sequence,	cloning	sites	(EcoRI	and	NotI)	and	Apolipoprotein	A-I	gene.	
	

The	 resulting	 construct,	 pPICZα-ApoA1	 (Fig.	 2.2)	 contained	 an	 upstream	 α-

mating	 factor	 signal	 sequence	 for	 secretion	 of	 the	 expressed	 recombinant	

protein	followed	by	the	gene	of	interest.	It	also	contained	a	resistance	gene	to	the	

antibiotic	Zeocin,	which	would	act	as	a	selection	marker	upon	transformation	of	

this	construct.	An	important	feature	to	note	is	the	incorporation	of	a	stop	codon	

in	 the	 reverse	 primer	 to	 exclude	 the	 optional	 c-myc	 epitope	 and	hexahistidine	

tag	present	in	the	vector.	This	has	been	done	in	order	to	express	the	protein	as	

close	 as	 possible	 to	 its	 native	 state,	 to	 maintain	 maximum	 activity.	 This	 also	

resulted	in	minimal	inclusion	of	additional	amino	acids,	thereby	eliminating	the	

need	for	additional	digestion	steps	during	downstream	processing.	
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After	verification	by	DNA	sequencing,	the	construct	was	linearised	by	digestion	

with	 the	 restriction	 enzyme	 PmeI,	 and	 subsequently	 electroporated	 into	

competent	 P.	 pastoris	 X-33	 cells	 as	 described	 in	 the	 methods	 section.	

Subsequently,	 transformants	 were	 sequentially	 patched	 on	 to	 YPD	 agar	 plates	

containing	increasing	concentrations	of	Zeocin	up	to	2	mg/ml	(Fig.	2.3).	

	
Figure	2.2.	Schematic	representation	of	pPICZα-ApoA1	construct.	

	

In	addition	to	tolerance	to	2	mg/ml	Zeocin,	all	positive	clones	were	also	checked	

for	the	integration	of	the	complete	ApoA1	gene	into	the	host	genome.	Colony	PCR	

was	performed	on	all	 clones	 resistant	 to	2	mg/ml	Zeocin	using	ApoA1-specific	

primers	 under	 the	 conditions	 as	 detailed	 in	 the	 experimental	 section.	

Subsequently,	 all	 reaction	 mixtures	 were	 subjected	 to	 0.8%	 agarose	 gel	

electrophoresis	(Fig.	2.4),	which	clearly	confirmed	the	presence	of	ApoA1	gene	in	

the	transformed	P.	pastoris	genome.	

	 	
Figure	 2.3.	 Screening	 of	 patched	 colonies	 growing	 on	 (a)	 1	 mg/mL	 and	 (b)	 2	
mg/mL	concentration	of	Zeocin.	After	patching,	the	plates	were	incubated	at	30°C	
for	about	48	hrs	to	check	for	growth.	

A B 
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Figure	2.4.	Colony	PCR	analysis	of	control	(H2O),	plasmids	of	vector	(pZα-H6E)	and	
vector	 containing	 ApoA1	 gene	 (pZα-ApoA1),	 and	 P.	 pastoris	 transformed	 with	
vector	 (Pichia	 Zα-H6E)	 and	 P.	 pastoris	 clones	 from	 the	 YPD-agar	 containing	 2	
mg/ml	Zeocin	(from	Fig.	2.3(b)).	M7	ladder	(SmartLetter	MW-1700-10)	was	from	
Eurogentec	(France).	
	

Five	of	 the	clones	 that	exhibited	maximum	resistance	 to	Zeocin	and	verified	 to	

have	 the	 gene	 incorporated	 into	 the	 genome	 were	 further	 studied	 for	

preliminary	expression	in	shake	flasks.	

	

2.3.2. EXPRESSION	OF	rhApoA1	IN	P.	pastoris	

Five	 clones	 that	 exhibited	 high	 resistance	 to	 Zeocin	 (2	 mg/ml)	 were	

independently	 inoculated	 into	 BMGY	 media	 for	 expression	 studies.	 Induction	

was	carried	out	as	explained	in	the	methods	section.	

	

	 	
Figure	 2.5.	 Comparative	 rhApoA1	 expression	 analysis	 by	 SDS-PAGE	 of	 (a)	 all	
clones	 with	 control	 upon	 harvesting	 (stained	 with	 CBB);	 and	 (b)	 day-wise	
expression	profiles	of	clones	F1	and	control	(stained	by	Silver	staining).	
	

A	 B	
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As	 evident	 in	 figure	 2.5(a),	 all	 screened	 clones	 expressed	 rhApoA1,	 and	 the	

intensity	of	expression	increased	with	the	duration	of	induction	(Fig.	2.5(b)).	The	

negative	control	(P.	pastoris	X-33	transformed	with	the	pPICZαA	vector)	showed	

no	expression	of	rhApoA1,	as	expected.	Upon	the	conclusion	of	this	preliminary	

study,	the	clone	with	highest	rhApoA1	expression	level	(clone	ID	F1)	was	taken	

up	for	further	scale-up	studies.	

	

2.3.3. EXPRESSION	OF	rhApoA1	IN	P.	pastoris	(2	L	BIOREACTOR)	

After	 preliminary	 studies	 on	 the	 expression	 of	 rhApoA1	 in	 shake	 flasks,	

production	was	 carried	out	 in	a	2	 l	benchtop	bioreactor.	The	parameters	were	

maintained	 as	 explained	 in	 Section	 2.2.6,	 yielding	 the	 profile	 in	 Fig.	 2.6.	 The	

temperature	 and	 pH	were	maintained	 in	 real	 time	 by	 various	 controllers,	 and	

cell-growth	and	substrate	metabolism	was	 implied	out	of	 the	dissolved	oxygen	

levels	maintained	by	aeration	and	agitation	systems.		

	 	
Figure	 2.6.	 (a)	 Profile	 and	 (b)	 SDS-PAGE	 &	 Western	 Blotting	 analysis	 of	 rhApoA1	
expression	in	P.	pastoris	X-33.	
	

In	 the	 glycerol	 batch	 phase	 (first	 24	 hrs),	 there	 was	 a	 consistent	 drop	 in	 pO2	

levels	 (red)	until	 it	 reached	set	point	 (15%),	 subsequently,	 the	agitation	 (blue)	

and	 aeration	 (green)	 increased	 to	maintain	 the	 pO2	 levels.	 After	 exhaustion	 of	

substrate,	 the	agitation	decreased	until	set	 low-limit	(200	rpm),	 in	 time	for	 the	

commencement	of	induction	with	methanol	(pink	spikes).	With	every	methanol	

addition	episode	(every	12	hrs),	there	was	a	corresponding	increase	in	agitation	

indicating	 consistent	metabolism.	At	 the	 end	of	 the	production,	 the	 expression	

levels	 were	 verified	 by	 SDS-PAGE	 and	 western	 blotting	 (Fig.	 2.6(b))	 prior	 to	

A B 
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induction	 (UI)	 and	after	5-days	of	 induction	with	0.5%	methanol	 (5d),	 and	 the	

expression	in	the	bioreactor	was	successfully	confirmed.	

	

	

2.4. CONCLUSION	
This	 chapter	 highlights	 the	 cloning	 of	wild	 type	ApoA1	 gene	 in	 the	 expression	

vector	 pPICZαA	 and	 the	 successful	 expression	 of	 rhApoA1	 in	 Pichia	 pastoris.	

Reproducible	 and	 consistent	 expression	 levels	 were	 observed	 in	 shake-flasks	

cultures	 over	 two	 batches,	 paving	 way	 for	 preliminary	 data	 for	 developing	 a	

bioprocess	 for	 production	 of	 rhApoA1	 in	 P.	 pastoris.	 Subsequently,	 the	

production	was	also	reproduced	under	chemostat	conditions	(temperature,	pH,	

pO2	 levels	 maintained),	 and	 the	 expression	 was	 verifiable	 by	 standard	

biochemical	methods	(SDS-PAGE	and	Western	Blotting).	

	

A	 number	 of	 expression	 systems	 have	 been	 explored	 for	 the	 generation	 of	

recombinant	 ApoA1.	 The	 bacterial	 expression	 host	E.	 coli	 has	 been	 previously	

demonstrated	 for	 rhApoA1	 production	 (Panagotopulos	 et	 al.	 2002),	 but	 low	

expression	levels	even	after	codon	optimisation	(Ryan,	Forte,	and	Oda	2003)	and	

intracellular	 expression	 have	 been	 limiting	 factors	 in	 scaling	 up	 production.	P.	

pastoris	is	an	established	system	for	the	heterologous	expression	of	proteins,	in	

producing	several	of	them	at	gram	per	litre	levels	(Klein	1998).	The	ability	of	P.	

pastoris	 to	 secrete	 proteins	 into	 the	 media	 helps	 reduce	 the	 complexity	 in	

downstream	processing	(Brake	et	al.	1984),	especially	when	the	target	protein	is	

being	expressed	in	its	near-native	state	without	any	additional	affinity	tags.	
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Chapter	3	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Purification	of	wild-type	rhApoA1	
expressed	in	P.	pastoris	by	mixed-

mode	chromatography	
	

	

3. 	
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3.1. INTRODUCTION	TO	MIXED-MODE	CHROMATOGRAPHY	
Mixed-mode	 chromatography	 or	 multi-modal	 chromatography	 has	 been	

developed	for	the	rational	use	of	multiple	interactions	in	a	controlled	manner,	in	

contrast	 to	 non-specific	 interactions	 (Pezzini	 et	 al.	 2015).	Mixed-mode	 ligands	

have	been	 in	existence	 for	a	 long	 time,	with	hydroxyapatite	chromatography,	a	

combination	of	ionic	and	metal-affinity	interactions,	possibly	making	it	the	oldest	

form	of	mixed-mode	chromatography	(Gorbunoff	and	Timasheff	1984).	Several	

other	 chromatographic	 methods,	 like	 dye-affinity,	 Histidine	 ligand	 affinity,	

peptide-affinity	 chromatography	 could	 also	 be	 classified	 as	 mixed-mode	 and	

have	been	well	characterised	(Pezzini	et	al.	2014).	Several	mixed-mode	 ligands	

are	available	in	the	market,	and	some	of	them	have	been	listed	below	in	table	3.1.	

	
Table	3.1.	Ligands	for	mixed-mode	chromatography	(Zhao,	Dong,	and	Sun	2009).	

The	ligands	evaluated	in	this	study	have	been	highlighted	in	blue.	

S.No.	 Name	 Structure	 pKa	
Positively	charged	ligands	

1.	 Alkylamine	(n=6:	HEA	
Hypercel,	Pall	Life	Sciences)	 			,	n	=	1–5,	6,	8	

≈10	

2.	 α,ω-Diamino	alkane	
			,	n	=	2–6,	8,	10	

≈10	

3.	 Phenylalkylamine	(n=3:	PPA	
Hypercel,	Pall	Life	Sciences)	

,	n	=	1,	3,	4	

6–7	

4.	 2-Amino-1-phenyl-1,3-
propanediol	

	

9.0	

5.	 N-Benzyl-N-methyl	ethanol	
amine	(Capto™	adhere,	GE	
Healthcare)	

	

–	

6.	 4-Mercapto-ethylpyridine	
(MEP	Hypercel,	Pall	Life	
Sciences)	 	

4.85	

7.	 2-Amino-methylpyridine	

	

pKa1	=	
2.2,	
pKa2	=	
8.5	

8.	 Mercaptomethyl-imidazole	

	

5.3	
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S.No.	 Name	 Structure	 pKa	
9.	 2-Mercapto-benzimidazole	

	

4.1	

10.	 Tryptamine	

	

10.3	

11.	 5-Aminoindole	

	

3.9	

Negatively	charged	ligands	
12.	 Aminoalkyl	carboxyl	acid	

			,	n	=	5,	9	
5.2	

13.	 N-(3-Carboxypropionyl)	
aminodecyl	amine	

	

9.1	

14.	 N-pyromellityl	aminodecyl	
amine	

	

pKa1	=	
2.2,	
pKa2	=	
3.4,	
pKa3	=	
5.4		

15.	 2-Benzamido-4-
mercaptobutanoic	
acid	(Capto™	MMC	and	
Streamline	Direct	CST	I,	GE	
Healthcare)	

	

3.3	

16.	 2-Mercapto-5-benzimidazole	
sulfonic	acid	(MBI	Hypercel,	
Pall	Life	Sciences)	

	

–	

17.	 6-Amino-4-hydroxy-2-
naphtalene	sulfonic	acid	

	

–	

18.	 2,5-Dimercapto-1,3,4-
thiadiazole	

	

6.3	

	

In	 order	 to	 purify	 rhApoA1	 for	 potential	 therapeutic	 application,	 it	 was	

necessary	 to	 device	 a	 purification	 process	 that	 would	 specifically	 capture	

rhApoA1	from	the	P.	pastoris	expression	broth	in	minimal	steps.	In	an	attempt	to	

reduce	the	number	of	processing	steps,	the	ApoA1	gene	was	already	cloned	in	a	

manner	 that	 would	 eliminate	 the	 optional	 hexahistidine	 tag	 present	 in	 the	

pPICZαA	vector,	so	that	the	expressed	protein	(chapter	2)	could	be	obtained	in	

its	near-native	form,	without	the	addition	of	any	affinity	tags.	
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Previous	reports	on	the	overexpression	of	rhApoA1	in	bacteria	have	all	utilized	a	

hexahistidine	tag	(Bergeron	et	al.	1997;	Panagotopulos	et	al.	2002;	Ryan,	Forte,	

and	Oda	2003),	which	was	avoided	in	this	work.	From	other	sources	(plasma,	P.	

pastoris),	a	few	methods	have	been	documented	that	could	prove	useful	for	the	

capture	of	ApoA1	(plasma	or	recombinant)	in	its	native-state	(Feng	et	al.	2006;	

Marco	 Aurélio	 Zezzi	 Arruda	 et	 al.	 2011).	 These	 methods	 have	 also	 been	

investigated	 for	 the	 recovery	 of	 the	 expressed	 rhApoA1	 from	 P.	 pastoris	

expression	broth.	

	

In	 this	 chapter,	 novel	 mixed-mode	 chromatography	 methods	 have	 been	

developed	 to	 recover	 rhApoA1	 from	 P.	 pastoris	 expression	 broth.	 The	 defined	

mixed-mode	 ligands	 HEA	 HyperCel,	 PPA	 HyperCel	 (Pall	 Life	 Sciences)	 and	

CaptoMMC	 (GE	 Healthcare)	 have	 been	 evaluated	 for	 their	 ability	 to	 capture	

rhApoA1	 from	 P.	 pastoris	 expression	 broth	 (highlighted	 in	 rows	 1,	 3	 and	 15,	

respectively).	These	mixed-mode	sorbents	have	been	extensively	 characterised	

in	our	laboratories	(Ranjini	et	al.	2010;	Pezzini	et	al.	2014;	Pezzini	et	al.	2015),	

and	 hence	 were	 explored	 conditions	 for	 the	 capture	 of	 rhApoA1	 from	 the	 P.	

pastoris	expression	broth.	

	

Mixed	 mode	 ligands	 offer	 multiple-types	 of	 interactions,	 such	 as	 ionic,	

hydrophobic	 hydrogen	 bonding,	 and	 the	 balance	 between	 these	 interactions	

allow	new	selectivity	(Zhao,	Dong,	and	Sun	2009).	The	salt	tolerance	afforded	by	

the	hydrophobic	character	reduces	the	need	for	sample	dilution;	and	is	the	key	

reason	for	choosing	mixed	mode	chromatography	for	purifying	rhApoA1.	Below	

20mS/cm,	the	primary	mode	of	interaction	is	electrostatic	and	the	mixed	mode	

ligands	used	in	this	study	have	cation	exchanger	groups	allowing	an	extended	pH	

binding	 range	 compared	 to	 traditional	 ion	 exchangers	 which	 permit	 protein	

adsorption	only	near	the	pI	of	the	target	protein.	

	

In	addition,	the	efficiency	of	these	mixed-mode	ligands	in	the	efficient	capture	of	

rhApoA1	 have	 been	 compared	with	 earlier	 published	methods	 as	 described	 in	

this	section.	
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3.2. EXPERIMENTAL	
3.2.1. MATERIALS	

All	 chromatographic	 experiments	 were	 performed	 on	 AKTA	 chromatographic	

platforms	 (AKTA	 Purifier,	 AKTA	 Explorer,	 AKTA	 FPLC,	 GE	 Healthcare)	 and	

operated	 by	 Unicorn	 software	 (GE	 Healthcare).	 Prepacked	 PRC	 HEA	 Hypercel	

and	 PRC	 PPA	 Hypercel	 columns	 were	 from	 Pall	 Life	 Sciences	 (France),	 and	

prepacked	HiTrap	Capto	MMC,	HiPrep	26/10,	Source	15Q	and	Resource	15RPC	

were	from	GE	Healthcare	(Uppsala	Sweden).	

	

All	 buffers	 and	other	 reagents	were	prepared	using	 analytical	 grade	 chemicals	

from	Sigma	Aldrich	(Bangalore,	India).	

	

3.2.2. EXPERIMENTAL	CONDITIONS	FOR	DERIVED	PURIFICATION	METHODS	

3.2.2.1. PURIFICATION	OF	rhApoA1	BY	CLOUD-POINT	EXTRACTION	

A	 cloud-point	 extraction	 protocol	 was	 derived	 from	 the	 method	 previously	

published	for	recovering	plasma	ApoA1	(Marco	Aurélio	Zezzi	Arruda	et	al.	2011).	

For	 preliminary	 optimisation	 experiments,	 various	 concentrations	 of	 NaCl	 and	

Triton	 X-114	 were	 added	 to	 2	 ml	 of	 P.	 pastoris	 expression	 broth	 containing	

ApoA1	at	4°C.	The	mixture	was	vortexed	and	allowed	to	stand	for	5	mins	at	room	

temperature,	 until	 it	 separated	 into	 a	 dense	 surfactant-poor	 and	 a	 light	

surfactant-rich	phase.	The	solution	was	then	centrifuged	at	1780g	for	10	minutes	

to	clearly	separate	out	the	two	phases,	following	which	the	surfactant	rich	phase	

was	transferred	to	a	fresh	tube.	The	surfactant	rich	phase	was	precipitated	with	

cold-acetone	 to	 eliminate	 the	 detergent	 and	 the	 surfactant	 poor	 phase	 was	

precipitated	with	TCA	followed	by	cold-acetone	washes	to	eliminate	the	salts.	All	

fractions	were	 analysed	 over	 SDS-PAGE	 analysis	 for	 the	 presence	 of	 rhApoA1,	

and	proteins	in	the	surfactant	rich	&	poor	phases	were	estimated	by	Bradford’s	

assay	and	analysed	by	12%	SDS-PAGE	 for	verifying	partitioning.	 Subsequently,	

under	optimised	conditions,	the	strategy	was	scaled-up	for	a	larger	volume	(50	

ml)	of	P.	pastoris	broth.	
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3.2.2.2. PURIFICATION	OF	rhApoA1	BY	COLD-ACETONE	PRECIPITATION	

Purification	 of	 rhApoA1	 from	 P.	 pastoris	 expression	 broth	 was	 carried	 out	 as	

described	 by	 Feng	 et	 al	 (2006).	 Subsequent	 to	 expression	 of	 rhApoA1,	 the	 P.	

pastoris	 culture	was	centrifuged	at	4,000	rpm	for	10	mins	 to	separate	 the	cells	

from	 the	 supernatant.	 Cold	 acetone	 (-20°C)	 was	 added	 to	 20%	 final	

concentration	and	 incubated	at	 -10°C	 for	5hrs.	After	 the	 incubation	period,	 the	

mixture	was	again	centrifuged	at	12,000	rpm	for	20	mins	after	which	the	acetone	

concentration	in	the	supernatant	was	raised	to	40%.	Subsequently,	the	mixture	

was	 again	 incubated	 at	 	 	 	 	 	 	 	 -20°C	 for	 5hrs,	 after	 which	 the	 mixture	 was	

centrifuged	 again.	 The	 pH	 of	 the	 supernatant	was	 adjusted	 to	 5.8,	 after	which	

cold	 acetone	 was	 again	 added	 to	 60%	 and	 centrifuged.	 The	 pellet	 containing	

rhApoA1	was	resuspended	in	phosphate	buffer	(pH	7.4),	desalted	using	a	HiTrap	

Desalting	 column	 (i.d.	 1.6	 cm	x	2.5	 cm,	GE	Healthcare)	 to	 remove	 any	 residual	

salt,	 and	 subjected	 to	 ion	 exchange	 chromatography	 using	 quaternary	 amine	

(Source	15Q,	i.d.	0.5	cm	x	9.5	cm,	GE	Healthcare),	in	phosphate	buffer	at	pH	7.4,	

and	eluted	using	a	salt	gradient	from	0	to	0.5	M	NaCl,	followed	by	a	step	to	1	M	

NaCl.	

	

3.2.2.3. PURIFICATION	OF	rhApoA1	BY	ION-EXCHANGE	CHROMATOGRAPHY	

As	an	improvisation	of	the	published	method	in	section	3.2.2.2	(Feng	et	al.	2006),	

the	P.	pastoris	 expression	broth	 containing	 rhApoA1	was	desalted	 and	directly	

subjected	 to	 ion	 exchange	 chromatography	 to	 evaluate	 if	 the	 cold-acetone	

precipitation	step	could	be	eliminated.	

	

In	 the	 first	 step,	 the	P.	 pastoris	 expression	 broth	was	 desalted	 using	 a	 HiPrep	

26/10	column	(i.d.	2.6	cm	x	10	cm,	GE	Healthcare)	with	50mM	Tris,	pH	8.0	at	a	

flow	rate	of	7	ml/min.	A	method	was	programmed	to	process	10	ml	of	P.	pastoris	

expression	broth	 in	 a	batch,	 yielding	 a	desalted	 fraction	of	 17	ml	 volume.	 Five	

batches	were	performed	and	the	eluted	fractions	were	pooled	for	the	subsequent	

ion	exchange	experiment.	

	

Following	desalting,	the	pooled	fractions	(~70	ml)	were	injected	on	to	a	pH	8.0	

equilibrated	 Source	 15Q	 column	 (i.d.	 0.5	 cm	 x	 9.5	 cm,	 GE	 Healthcare).	 After	
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collecting	the	non-retained	fraction,	the	bound	proteins	were	eluted	in	steps	by	

using	100	mM,	200	mM	and	1	M	NaCl.	

	

Finally,	the	fractions	eluted	with	200	mM	NaCl	were	further	subjected	to	reverse	

phase	 chromatography	 on	 a	 Source	 15RPC	 column	 (i.d.	 0.64	 cm	 x	 10	 cm,	 GE	

Healthcare).	The	column	was	equilibrated	water	+	0.1%	TFA	(buffer	A),	and	the	

following	 gradient	 was	 applied	 with	 acetonitrile	 +	 0.085%	 TFA	 (buffer	 B):	 0-

15%B	over	20CV;	15-25%B	over	20CV;	hold	at	30%B	for	5CV;	hold	at	80%B	for	

5CV;	 and	 hold	 at	 0%B	 for	 5CV.	 Peak	 fractions	were	 collected	 and	 analysed	 by	

SDS-PAGE.	

	

3.2.3. CHROMATOGRAPHIC	CONDITIONS	FOR	NOVEL	PURIFICATION	

METHODS	USING	MIXED-MODE	CHROMATOGRAPHY	

In	 addition	 to	 the	 above-explored	 published	 methods,	 several	 mixed-mode	

chromatography	methods	have	been	investigated	and	optimised	for	the	recovery	

of	rhApoA1	from	P.	pastoris	expression	broth.	

	

3.2.3.1. PURIFICATION	OF	rhApoA1	BY	HEA	HYPERCEL	

Prepacked	PRC	HEA	Hypercel	column	(i.d.	0.8	cm	x	10	cm)	was	first	equilibrated	

with	50	mM	Tris	buffer,	pH	7.4,	250	mM	NaCl	(binding	buffer).	Salt	was	added	to	

give	the	buffer	the	same	conductivity	as	the	P.	pastoris	expression	broth.	The	pH	

of	the	load	was	raised	to	7.4	using	10	N	KOH.	After	the	column	was	equilibrated,	

the	 sample	 was	 injected,	 and	 non-retained	 fractions	 were	 collected.	 After	 the	

absorbance	 reached	 baseline	 the	 salt	 in	 the	 buffer	 was	 eliminated,	 through	 a	

linear	gradient	with	50	mM	Tris,	 pH	7.4	over	20	 column	volumes.	Elution	was	

then	carried	out	in	steps	using	50mM	sodium	acetate	buffers	at	pHs	6.0,	5.0,	4.0	

and	3.0.	The	eluted	 fractions	were	analysed	by	SDS-PAGE	and	western	blots	 to	

verify	the	purification	of	rhApoA1.	

	

3.2.3.2. PURIFICATION	OF	rhApoA1	BY	PPA	HYPERCEL	

Pre-packed	PRC	PPA	Hypercel	column	(i.d.	0.8	cm	x	10	cm)	was	first	equilibrated	

with	50	mM	Tris	buffer,	pH	7.4,	250	mM	NaCl	(binding	buffer).	Salt	was	added	to	

give	the	buffer	the	same	conductivity	as	the	P.	pastoris	expression	broth.	The	pH	
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of	the	load	was	raised	to	7.4	using	10	N	KOH.	After	the	column	was	equilibrated,	

the	 sample	 was	 injected,	 and	 non-retained	 fractions	 were	 collected.	 After	 the	

absorbance	 reached	 baseline	 the	 salt	 in	 the	 buffer	 was	 eliminated,	 through	 a	

linear	gradient	with	50	mM	Tris,	 pH	7.4	over	20	 column	volumes.	Elution	was	

then	carried	out	in	steps	using	50mM	sodium	acetate	buffers	at	pHs	6.0,	5.0,	4.0	

and	3.0.	The	eluted	 fractions	were	analysed	by	SDS-PAGE	and	western	blots	 to	

verify	the	purification	of	rhApoA1.	

	

3.2.3.3. PURIFICATION	OF	rhApoA1	BY	CAPTO	MMC	

The	Capto	MMC	column	was	first	equilibrated	with	50	mM	acetate	buffer,	pH	5.0,	

250	mM	NaCl	(binding	buffer).	The	pH	of	the	P.	pastoris	expression	broth	at	the	

end	 of	 the	 fermentation	 batch	 was	 adjusted	 to	 pH	 5.0	 and	 injected	 on	 to	 the	

column.	 The	 non-retained	 flowthrough	 fraction	 was	 collected,	 and	 once	 the	

absorbance	reached	baseline,	the	salt	was	eliminated	over	a	linear	gradient	using	

50mM	acetate	buffer,	pH	5.0	over	20	column	volumes.	Elution	was	then	carried	

out	in	steps	using	50	mM	phosphate	buffer	at	pH	7.0	and	50	mM	Tris	buffer	at	pH	

8.5.	The	eluted	fractions	were	analysed	by	SDS-PAGE	and	western	blots	to	verify	

the	successful	purification	of	the	target	protein	(rhApoA1).	

	

3.2.4. VALIDATION	OF	PURIFIED	rhApoA1:	MASS	SPECTROMETRY	

Structural	characterisation	of	the	purified	rhApoA1	was	carried	out	over	tandem	

mass	spectrometry	using	an	Agilent	G6540A	LC	ESI-Q-TOF	MS/MS.	The	purified	

elution	fractions	were	individually	lyophilized	and	reconstituted	in	100µl	of	6	M	

Urea,								50	mM	Tris-HCl,	pH	8.0.	The	proteins	were	reduced	by	adding	5	µl	of	

200	mM	DTT	in	Tris,	pH	8.0	and	incubating	the	mixture	at	room	temperature	for	

1	hour,	 and	 subsequently	 alkylated	by	 adding	20	µl	 of	 200	mM	 Iodoacetamide	

and	 incubating	 at	 room	 temperature	 (dark)	 for	 1	 hour.	 After	 alkylation,	 the	

protein	mixture	was	diluted	with	Tris,	and	incubated	with	Trypsin	to	a	final	w/w	

ratio	 of	 1:50	 (trypsin:protein)	 and	 incubated	 at	 37°C	 for	 16-20	 hrs.	 After	

trypsinisation,	the	pH	was	reduced	with	formic	acid	and	injected	into	the	Agilent	

G6540A	 LC	 ESI-Q-TOF	 MS/MS.	 The	 data	 obtained	 were	 analysed	 using	 the	

Agilent	Mass	Hunter	software	and	matched	with	the	ApoA1	sequence.	
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3.3. RESULTS	
3.3.1. PURIFICATION	OF	rhApoA1	BY	METHODS	BASED	ON	PUBLISHED	

LITERATURE	

3.3.1.1. PURIFICATION	OF	rhApoA1	BY	CLOUD	POINT	EXTRACTION	

Aliquots	 of	P.	pastoris	 expression	 broth	 (2	ml	 each)	were	 treated	with	 various	

concentrations	 of	 Triton	 X-114	 (2%	 to	 20%)	 and	 NaCl	 (0%	 to	 15%).	 After	

incubation	 at	 room	 temperature	 and	 centrifugation,	 the	 upper	 surfactant	 rich	

phase	 (~	 200	 µl)	 and	 the	 lower	 surfactant	 poor	 phase	 (~1800	 µl)	 were	

separated	and	quantified	for	their	protein	content.	The	partition	coefficient	was	

plotted	 as	 a	 function	 of	 concentration	 of	 Triton	 X-114	 added	 for	 various	

concentrations	of	salt	(Fig.	3.1(a)),	and	all	fractions	were	analysed	by	12%	SDS-

PAGE	analysis	(Fig.	3.1(b)).	

	

	
Figure	3.1.	 Cloud	Point	 Extraction	of	 rhApoA1	 from	P.	pastoris	 expression	broth	
under	various	[Triton	X-114]	&	[NaCl]:	(a)	partition	coefficient	and	(b)	12%	SDS-
PAGE.	

B 

A 
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After	 testing	 various	 concentrations	 of	 Triton	 X-114	 and	 NaCl	 (Fig	 3.1(a)),	

optimum	recovery	of	rhApoA1	was	achieved	at	15%	NaCl	and	5%	Triton	X-114	

(Fig.	3.1(b)	panel	iv,	indicated	by	arrow).	The	combination	of	NaCl	as	electrolyte	

along	with	the	non-ionic	surfactant	Triton	X-114	has	been	shown	to	be	effective	

in	partitioning	hydrophobic	proteins	from	several	sources	(Lopes	et	al.	2007).	In	

this	 case,	 the	 addition	 of	 NaCl	 helped	 achieve	 partitioning	 even	 at	 relatively	

lower	concentrations	(5%	v/v)	of	Triton	X-114.	

	

After	optimising	conditions,	the	extraction	method	was	scaled	up	to	process	50	

ml	of	P.	pastoris	broth	containing	rhApoA1.	As	evident	in	Fig	3.2(a),	the	solution	

clearly	 partitioned	 into	 surfactant	 rich	 (SR)	 &	 surfactant	 poor	 (SP)	 phases	 at	

room	 temperature.	 Furthermore,	 processing	 of	 aliquots	 of	 the	 SR	&	 SP	 phases	

followed	 by	 their	 SDS-PAGE	 analysis	 revealed	 reproducibility	 and	 direct	

scalability	of	the	optimised	conditions	(Fig	3.2(b)).	

	

	 	
Figure	3.2.	Cloud	Point	Extraction	of	rhApoA1	from	50ml	of	P.	pastoris	expression	
broth:	(a)	Partitioning	and	(b)	12%	SDS-PAGE	analysis	
	

Despite	 the	 consistent	 reproducibility,	 eliminating	 the	 detergent	 from	 the	

surfactant	 rich	 phase	 was	 very	 difficult:	 dialysis,	 detergent	 exchange	 with	

CHAPS,	 on-column	 washing	 were	 attempted,	 but	 were	 unsuccessful.	 Washing	

with	 cold	 acetone	 was	 the	 only	 solution	 that	 eliminated	 the	 detergent	 (not	

completely)	 enough	 to	 analyse	 over	 electrophoresis.	 Hence,	 this	 process	 was	

A B 



54 
 

clearly	 not	 suitable	 for	 subsequent	 scaling-up	 to	 larger	 volumes	 and	 potential	

industrial	exploitation.	

	

3.3.1.2. PURIFICATION	OF	rhApoA1	BY	COLD-ACETONE	PRECIPITATION	

Based	on	(Feng	et	al.	2006),	capture	of	rhApoA1	was	attempted	by	cold-acetone	

precipitation,	followed	by	an	ion-exchange	chromatography	polishing	step.	This	

is	 the	 only	 existing	 purification	 report	 available	 for	 the	 recovery	 of	 rhApoA1	

expressed	in	P.	pastoris.	After	three	precipitation	steps	with	cold	acetone	(-10°C)	

for	 5	 h	 each,	 followed	 by	 isoelectric	 precipitation	 and	 polishing	 by	 anion	

exchange	 chromatography,	 rhApoA1	 was	 successfully	 recovered	 from	 the	 P.	

pastoris	expression	broth	(Fig.	3.3(b)).	

	

	

	 	
Figure	3.3.	Purification	of	rhApoA1	by	cold-acetone	precipitation	followed	by	ion	
exchange	 chromatography:	 (a)	 schematic	 of	 the	 method	 followed,	 (b)	
chromatogram	 of	 IEX	 over	 Source	 15Q	 column	 and	 (c)	 SDS-PAGE	 analysis	 of	
various	fractions.	
	

A 

B C
A 
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Precipitation	with	 cold	 acetone	was	highly	 effective	 in	 concentrating	 rhApoA1,	

which	 proved	 to	 be	 a	 useful	 precursor	 step	 to	 final	 polishing	 using	 anion	

exchange	 chromatography.	 Subsequent	 to	 the	 ion-exchange	 step,	 rhApoA1	was	

recovered	 with	 greater	 than	 85%	 purity,	 with	 a	 few	 other	 additional	 higher	

molecular	weight	 bands	 being	 present.	 Though	 this	 process	was	 reproducible,	

utilisation	 of	 high	 concentrations	 of	 cold	 acetone	 (~	 60%	 acetone	 in	 the	 third	

precipitation	step)	coupled	with	extremely	lengthy	incubation	periods	(3	x	5	hrs)	

at	sub-zero	temperatures	(-10°C)	made	this	process	unfeasible	for	scaling-up.	

	

3.3.1.3. PURIFICATION	OF	rhApoA1	BY	ION-EXCHANGE	CHROMATOGRAPHY	

As	an	improvisation	to	the	method	detailed	above	(Section	3.3.1.2),	ion-exchange	

chromatography	 was	 applied	 directly	 to	 desalted	 P.	 pastoris	 expression	 broth	

containing	 rhApoA1.	 The	 purpose	 of	 this	 improvisation	was	 to	 evaluate	 if	 the	

cold	acetone	treatment	could	be	avoided,	thereby	reducing	the	processing	time.	

	

	
Figure	 3.4.	 Purification	 of	 rhApoA1	 by	 ion	 exchange	 chromatography.	 The	 P.	
pastoris	 expression	 broth	 containing	 rhApoA1	was	 first	 desalted	 (a),	 yielding	 a	
salt-free	 fraction	 (X1),	 which	 was	 further	 subjected	 to	 anion	 exchange	
chromatography	(b).	The	elution	fraction	with	200	mM	NaCl	(IEX	#2)	was	further	
polished	by	reverse	phase	chromatography	(c),	to	recover	rhApoA1	as	verified	by	
12%	SDS-PAGE	analysis	(d).	
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In	 the	 first	 step,	 the	 P.	 pastoris	 expression	 broth	 was	 desalted	 to	 remove	 the	

otherwise	high	conductivity	contributed	by	ammonium	sulphate	present	 in	 the	

medium	(BMGY/	BMMY).	After	 initial	optimisation,	a	method	was	programmed	

to	 efficiently	 desalt	 P.	 pastoris	 expression	 broth	 containing	 rhApoA1	 (fraction	

X1)	in	batches	of	10ml,	yielding	a	typical	profile	as	in	Fig.	3.4(a).	

	

This	desalted	P.	pastoris	 broth	 from	5	chromatographic	 runs	were	 then	pooled	

and	subjected	to	ion-exchange	chromatography	on	a	packed	Source	15Q	column	

as	described	 in	 the	experimental	 section.	After	 initial	optimisation,	elution	was	

achieved	 in	 two	 steps	 using	 100	 mM	 and	 200	 mM	 NaCl	 yielding	 the	

Chromatogram	as	 in	Fig.	3.4(b).	The	 fraction	eluted	at	200	mM	NaCl	 (peak	 IEX	

#2)	was	 further	 subjected	 to	 polishing	 by	 reverse-phase	 chromatography	 (Fig	

3.4(c))	to	finally	purify	rhApoA1.	

	

All	 fractions	 from	 various	 steps	 were	 analysed	 by	 12%	 SDS-PAGE,	 which	

revealed	 the	 successful	 purification	 of	 rhApoA1	 (Fig	 3.4(d)).	 The	 purified	

fraction	 (RPC	 #2)	was	 also	 verified	 by	western	 blotting	 using	 polyclonal	 anti-

ApoA1	 antibody.	 The	 eluted	 fraction	 also	 showed	 aggregates	 of	 rhApoA1,	

consistent	 with	 previously	 published	 literature	 (Vitello	 and	 Scanu	 1976).	 This	

method	successfully	circumvented	the	acetone	precipitation	steps,	and	we	were	

able	 to	 recover	 rhApoA1	 with	 an	 overall	 recovery	 of	 33%.	 However,	 long	

processing	 times	 in	 desalting	 and	 limited	 flow-rates	 and	 difficulties	 in	

reproducibility	 of	 the	 RPC	 experiment	 were	 limiting	 factors	 in	 scaling	 this	

purification	scheme.	

	

3.3.2. PURIFICATION	OF	rhApoA1	BY	MIXED-MODE	CHROMATOGRAPHY	

Despite	 a	 number	 of	 functional	 purification	methods	 that	 were	 evaluated	 and	

improvised	in	the	previous	section,	each	technique	showed	severe	limitations	in	

their	 suitability	 for	 scale-up.	 It	 was	 hence	 imperative	 to	 look	 for	 novel	

purification	 approaches	 for	 efficiently	 capturing	 rhApoA1	 from	 the	 P.	 pastoris	

expression	 broth.	 In	 this	 section,	 three	 defined	 mixed-mode	 ligands,	 HEA	
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HyperCel	 (Pall	Life	Sciences),	PPA	HyperCel	 (Pall	Life	Sciences)	and	CaptoMMC	

(HE	Healthcare),	have	been	evaluated	for	their	ability	to	capture	rhApoA1.	

	

3.3.2.1. PURIFICATION	OF	rhApoA1	BY	HEA	HYPERCEL	

The	 ligand	 HEA	 HyperCel	 (Hexylamine)	 has	 been	 well	 documented	 for	 the	

capture	 of	 several	 proteins	 (Ranjini	 et	 al.	 2010;	 Pezzini	 et	 al.	 2014).	 It	 is	

hypothesised	 that	 the	 nature	 of	 interaction	 between	 proteins	 and	 the	 HEA	

HyperCel	ligand	is	a	combination	of	hydrophobic	and	electrostatic.	Equilibration	

is	 typically	 under	 certain	 amount	 of	 conductivity	 to	 promote	 hydrophobic	

attraction	 (Fig	 3.5).	 A	 combination	 of	 salt	 and	 pH	 is	 crucial	 for	 reducing	 this	

hydrophobic	attraction	and	promoting	electrostatic	repulsion	to	elute	the	bound	

protein	(Pezzini	et	al.	2015).	

	

	
Figure	 3.5.	 Hypothetical	 mechanism	 of	 interaction	 of	 target	 protein	 with	 HEA	
HyperCel	ligand.	Binding	is	promoted	by	hydrophobic	attraction	under	relatively	
higher	pH	and	salt	concentrations.	Subsequently,	the	bound	proteins	are	eluted	by	
lowering	 the	 pH	 and	 salt	 concentrations	 which	 in	 turn	 promotes	 electrostatic	
repulsion.	
	

In	 this	 study,	 a	 certain	 amount	 of	 salt	 (250	 mM	 NaCl)	 was	 added	 to	 the	

equilibration	buffer	 to	generate	 the	same	conductivity	as	 that	of	 the	P.	pastoris	

expression	broth,	in	an	attempt	to	reduce	the	number	of	sample	processing	steps	

prior	to	injection.	The	pH	of	the	P.	pastoris	broth	containing	rhApoA1	was	raised	

to	7.4	and	subsequently	injected	on	to	the	column.	After	passing	the	sample,	the	

non-retained	proteins	were	allowed	to	flow	through,	after	which	the	salt	 in	the	

buffer	 was	 eliminated	 in	 a	 linear	 gradient.	 Finally,	 elution	 was	 achieved	 by	

lowering	the	pH	sequentially	(Fig	3.6(a)).	
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Figure	3.6.	Purification	of	rhApoA1	by	HEA	HyperCel.	(A)	Chromatogram	and	(B)	12%	
SDS-PAGE	analysis	of	peak	fractions.	
	

Upon	 12%	 SDS-PAGE	 analysis,	 it	 was	 evident	 that	 the	 bound	 rhApoA1	 was	

recovered	 at	 pH	 4.0	 (fraction	 2a,	 indicated	 by	 the	 arrow).	 Some	 of	 the	 higher	

molecular	 weight	 proteins	 were	 loosely	 bound	 and	 were	 eluted	 at	 pH	 5.0,	

whereas	other	proteins	were	more	strongly	bound	to	the	ligand	and	eluted	out	at	

pH	3.0.	The	method	was	efficient	in	recovering	rhApoA1	with	an	overall	yield	of	

56.25%	(Table	3.2),	and	was	reproducible.	

	

However,	eluting	rhApoA1	at	pH	4.0	was	a	cause	of	concern.	Recent	studies	have	

reported	the	propensity	of	ApoA1	to	form	amyloid	like	structures	at	pHs	4.0	and	

below	(Ramella	et	al.	2012).	It	was	hence	imperative	to	minimise	the	exposure	of	

rhApoA1	to	very	acidic	pHs.	

	

3.3.2.2. PURIFICATION	OF	rhApoA1	by	PPA	HYPERCEL	

The	PPA	HyperCel	ligand	(Pall	Life	Sciences)	is	a	phenyl	propyl	amine	derivative	

(Table	3.1),	and	has	been	demonstrated	 in	 the	efficient	capture	of	a	number	of	

proteins	over	a	wide	pH	range	(Ranjini	et	al.	2010).	

	

In	 this	 study,	 the	 binding	 and	 elution	 conditions	 tested	 for	 purifying	 rhApoA1	

was	similar	to	that	with	HEA	HyperCel.	The	pH	of	the	same	was	adjusted	to	7.4	

and	 loaded	on	 to	 an	 equilibrated	PPA	HyperCel	 column.	After	binding,	 the	 salt	

was	eliminated	through	a	linear	gradient	and	bound	proteins	were	subsequently	

eluted	in	a	step-wise	manner	by	lowering	the	pH,	yielding	the	chromatogram	in	

Fig.	3.7(a).	

A B
A 
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Figure	 3.7.	 Purification	 of	 rhApoA1	 by	 PPA	HyperCel.	 (A)	 Chromatogram	 and	 (B)	 12%	
SDS-PAGE	analysis	of	peak	fractions.	
	

In	 case	of	PPA	HyperCel,	 the	bound	rhApoA1	was	eluted	only	at	pH	3.0,	which	

indicated	much	stronger	binding	than	previously	observed	with	HEA	HyperCel.	A	

few	of	the	strongly	bound	proteins	also	co-eluted	with	rhApoA1	upon	lowering	

the	pH	(lane	3a,	Fig.	3.7(b)).	

	

A	quick	 comparison	 the	 chromatograms	obtained	with	HEA	and	PPA	HyperCel	

resins	 (Fig.	 3.6(a)	 and	 Fig.	 3.7(a))	 would	 reveal	 differences	 in	 binding	

performances.	 Under	 the	 same	 binding	 conditions,	 PPA	 HyperCel	 absorbed	

rhApoA1	with	much	greater	affinity	owing	to	its	greater	hydrophobicity.	ApoA1	

being	 a	 predominantly	 hydrophobic	 protein	 (it	 is	 a	 lipid-binding	 protein)	

exhibits	greater	affinity	to	the	phenyl-derivative	(PPA)	over	the	alkyl-derivative	

(HEA).	 Such	 comparisons	 have	 been	 extensively	 carried	 out	 in	 the	 past	 with	

other	proteins	(Ranjini	et	al.	2010;	Pezzini	et	al.	2014;	Pezzini	et	al.	2015),	and	

the	present	data	is	consistent	with	literature.	

	

In	 this	 work,	 HEA	 and	 PPA	 HyperCel	 ligands	 have	 both	 been	 efficient	 in	

selectively	 capturing	 rhApoA1	 from	 the	 P.	 pastoris	 expression	 broth,	 but	 have	

demonstrated	other	difficulties	 in	handling	of	 the	purified	proteins,	namely	the	

lowering	 of	 pH	 to	 elute	 the	 bound	 protein.	 One	 possible	 solution	 is	 to	 rapidly	

titrate	the	collected	elution	fractions	with	a	concentrated	stock	of	Tris	buffer	at	

pH	8.5	to	raise	the	pH	to	near-neutral	levels.	

	

A B
A 
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3.3.2.3. PURIFICATION	OF	rhApoA1	BY	CAPTO	MMC	

The	 multimodal	 Capto™	 MMC	 ligand	 supports	 binding	 of	 proteins	 through	

hydrophobic,	ionic	and	thiophilic	interactions.	Being	a	weak	cation	exchanger,	it	

was	 expected	 to	 function	 in	 an	 inverse	 manner	 to	 the	 earlier	 tested	 HEA	

Hypercel	 (Section	 3.3.2.1.).	 The	 column	 was	 equilibrated	 as	 described	 in	 the	

experimental	section	(acetate	buffer	at	pH	5.0	containing	250	mM	NaCl),	which	

was	 the	 same	 pH	 and	 conductivity	 as	 that	 of	 the	P.	 pastoris	 expression	 broth.	

Thus	no	sample	pre-treatment	was	required	prior	to	injection	of	the	sample	on	

to	the	column.	This	is	especially	an	added	advantage	when	designing	a	process	of	

industrial	relevance.	

	

Following	 sample	 injection,	 the	 absorbance	 at	 280nm	was	monitored	until	 the	

signal	 reached	 baseline.	 The	 elimination	 of	 salt	 over	 a	 linear	 gradient	 didn’t	

cause	any	proteins	to	unbind,	in	line	with	the	expected	salt-independent	binding	

behaviour	of	Capto™	MMC.	Subsequently,	clear	sharp	peaks	were	observed	when	

the	 pH	 was	 raised	 to	 7.0	 and	 8.5	 in	 steps	 (Fig.	 3.8(a)).	 Any	 strongly	 bound	

proteins	were	then	washed	out	with	0.5M	NaOH	(CIP).	

	

	 	
Figure	 3.8.	 Purification	 of	 rhApoA1	 by	 Capto	MMC.	 (A)	 Chromatogram,	 (B)	 12%	
SDS-PAGE	 analysis	 of	 peak	 fractions	 and	 (C)	 Western	 blot	 analysis	 of	 eluted	
fraction	at	pH	7.0.	
	

All	 collected	 fractions	 were	 analysed	 over	 12%	 SDS-PAGE	 (Fig.	 3.8(b)),	 and	

clearly	 revealed	 complete	 adsorption	 of	 rhApoA1	 under	 the	 given	 binding	

conditions.	The	protein	was	still	bound	after	elimination	of	salt	in	the	buffer,	and	

eluted	by	raising	 the	pH	to	7.0	(lane	E).	 In	addition	 to	 the	predominant	ApoA1	

band	 in	 the	 25	 kDa	 range,	 there	 was	 an	 additional	 band	 at	 roughly	 twice	 the	

A B
A 

C 
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m.wt.	Although	this	band	did	not	provide	a	signal	with	anti-ApoA1	antibodies	in	

western	 blots	 (possibly	 due	 to	 lower	 quantity),	 they	 were	 confirmed	 to	 be	

rhApoA1-dimers	 by	 mass	 spectrometric	 analyses	 (in-gel	 digestion;	 data	 not	

shown).	 To	 sum	 up,	 rhApoA1	 was	 successfully	 purified	 to	 84%	 purity	 using	

Capto™	MMC	in	a	single	step	with	69%	yield.	The	purification	efficiencies	of	both	

purification	methods	have	been	summarized	in	Table	3.2.	

	

Binding	 at	mildly	 acidic	 pH	 (lower	 than	 the	 pI	 of	 rhApoA1)	 is	 consistent	with	

earlier	literature	on	the	Capto™	MMC	ligand.	Being	a	salt-tolerant	ligand,	Capto™	

MMC	 was	 able	 to	 retain	 the	 bound	 protein	 despite	 the	 elimination	 of	

conductivity.	Subsequently,	upon	a	rise	in	pH	(resulting	in	a	reversal	of	charges	

on	the	surface	of	the	target	protein	rhApoA1),	 the	protein	desorbed	and	eluted	

out	in	a	single	sharp	peak.	This	result	was	highly	reproducible	over	several	runs	

and	was	subsequently	scaled-up	to	expanded	bed	mode	(Chapter	4).	

	

3.3.3. COMPARISON	OF	NOVEL	PURIFICATION	METHODS	WITH	PREVIOUSLY	

PUBLISHED	METHODS	

While	 previously	 published	 methods	 discussed	 in	 this	 chapter	 (Section	 3.3.1)	

show	 reasonable	 efficiency	 in	 recovering	 rhApoA1	 from	P.	 pastoris	 expression	

broth,	 their	 efficiency	 in	 recovering	 maximal	 rhApoA1	 in	 minimal	 number	 of	

steps	is	not	suitable	for	further	scaling	up.	The	use	of	Triton	X-114	to	extract	the	

hydrophobic	 rhApoA1	 poses	 serious	 difficulties	 in	 eliminating	 all	 traces	 of	 the	

detergent	 without	 compromising	 on	 protein	 activity;	 precipitation	 with	 cold	

acetone	is	not	pragmatically	feasible	for	industrial	scale-up,	especially	with	large	

quantities	 of	 acetone	 and	 long	 incubation	 times	 that	 are	 required;	 the	

improvised	 ion-exchange	chromatography	method	required	extensive	desalting	

prior	to	treatment,	which	is	again	not	practically	scalable.	

	

The	defined	mixed-mode	ligands	that	have	been	tested	in	this	work,	show	great	

promise	 in	 capturing	 rhApoA1	 directly	 out	 of	 the	P.	 pastoris	 expression	 broth	

with	minimum	 number	 of	 processing	 steps.	 The	 relative	 efficiencies	 of	 all	 the	

methods	that	have	been	compared	are	summarised	below	in	Table	3.2.	
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Table	3.2.	Comparison	of	purification	efficiencies	of	the	various	tested	methods	
S.	
No.	

Purification	Method	
Employed	

Number	
of	Steps	

Yield	 rhApoA1	
purity*	

Reference	

1.	 Cloud-point	extraction	
with	Triton	X-114	 2	 55.97%	 57.1%	

(Marco	Aurélio	
Zezzi	Arruda	et	al.	
2011)	

2.	 Cold-acetone	
precipitation	 14	 60.00%	 71.9%	 (Feng	et	al.	2006)	

3.	 Ion-exchange	
chromatography	 3	 32.45%	 42.6%	 Present	work	

4.	 Mixed-mode	
chromatogr.	(HEA	
HyperCel)	

1	 56.25%	 70.2%	 Present	work	

5.	 Mixed-mode	
chromatogr.	(PPA	
HyperCel)	

1	 52.50%	 76.3%	 Present	work	

6.	 Mixed-mode	
chromatogr.	
(CaptoMMC)	

1	 68.89%	 84.0%	 Present	work	

*Purity	 of	 the	 recovered	 rhApoA1	 described	 based	 on	 densitometric	 analysis	 of	 the	
elution	fraction	on	12%	polyacrylamide	gel.	
	

From	 the	 comparative	data	 above,	 it	was	 evident	 that	 the	mixed-mode	 ligands	

were	more	effective	in	recovering	rhApoA1,	with	Capto	MMC	(row	#	6)	proving	

to	be	most	efficient	in	capturing	rhApoA1	in	a	single	step.	

	

3.3.4. MASS	SPECTROMETRIC	ANALYSIS	OF	PURIFIED	rhApoA1	

The	 elution	 fractions	 from	 the	 HEA	 HyperCel,	 PPA	 HyperCel	 and	 CaptoMMC	

chromatographic	 experiment	 were	 subjected	 to	 in-solution	 digestion	 as	

described	 in	 the	 methods	 section,	 followed	 by	 analysis	 in	 an	 Agilent	 G6540A	

MS/MS	 Q-TOF	 mass	 spectrometer.	 The	 eluted	 fractions	 were	 independently	

subjected	to	trypsinisation	and	MS/MS	analysis.	Upon	analysing	the	results	using	

Agilent	MassHunter	software,	each	of	the	analysed	fractions	showed	at	least	65%	

sequence	 coverage	with	 that	 of	 rhApoA1,	 confirming	 that	 the	 purified	 protein	

was	indeed	rhApoA1.	The	sequence	coverage	and	list	of	identified	peptides	with	

their	scores	are	detailed	in	figure	3.9	and	table	3.3	respectively.	

	



63 
 

	
Figure	3.9.	Sequence	coverage	of	rhApoA1	identified	by	trypsinisation	followed	by	
ESI-MS/MS	
	

Table	3.3.	Peptides	identified	by	ESI-MS/MS	analysis	of	trypsinised	rhApoA1	

RT	 Mass	 Volume	 Sequence	 Seq	Loc	 Tgt	mass	 Δppm	
7.803	 1501.6410	 840101	 EFDEPPQSPWDR	 A(1-12)	 1501.6474	 -4.27	
7.032	 1426.6506	 112539	 KWQEEMELYR	 A(109-118)	 1426.6551	 -3.15	
7.580	 1410.6537	 746003	 KWQEEMELYR	 A(109-118)	 1410.6602	 -4.60	
7.421	 1298.5511	 105151	 WQEEMELYR	 A(110-118)	 1298.5601	 -6.99	
7.933	 1282.5579	 523138	 WQEEMELYR	 A(110-118)	 1282.5652	 -5.72	
6.139	 868.5083	 358149	 QKVEPLR	 A(119-125)	 868.5131	 -5.44	
6.830	 1722.9331	 3165594	 QKVEPLRAELQEGAR	 A(119-133)	 1722.9377	 -2.65	
6.439	 612.3543	 85412	 VEPLR	 A(121-125)	 612.3595	 -8.45	
7.100	 1466.7790	 1286701	 VEPLRAELQEGAR	 A(121-133)	 1466.7842	 -3.52	
6.045	 872.4314	 629248	 AELQEGAR	 A(126-133)	 872.4352	 -4.35	
5.873	 1151.6273	 2036858	 QKLHELQEK	 A(134-142)	 1151.6299	 -2.25	
6.008	 1151.6228	 33092	 QKLHELQEK	 A(134-142)	 1151.6299	 -6.12	
6.021	 895.4723	 511582	 LHELQEK	 A(136-142)	 895.4763	 -4.53	
6.157	 895.4713	 18084	 LHELQEK	 A(136-142)	 895.4763	 -5.60	
7.025	 1046.5024	 141347	 LSPLGEEMR	 A(143-151)	 1046.5067	 -4.06	
6.729	 1317.6277	 294618	 LSPLGEEMRDR	 A(143-153)	 1317.6347	 -5.29	
5.940	 1007.5575	 50517	 ARAHVDALR	 A(154-162)	 1007.5625	 -4.91	
6.140	 780.4229	 1904486	 AHVDALR	 A(156-162)	 780.4242	 -1.71	
7.059	 1300.6379	 2800555	 THLAPYSDELR	 A(163-173)	 1300.6412	 -2.50	
5.399	 429.2688	 720624	 LAAR	 A(176-179)	 429.2700	 -2.67	
7.761	 1814.8367	 1041027	 DSGRDYVSQFEGSALGK	 A(26-42)	 1814.8435	 -3.77	
8.044	 1399.6581	 1325726	 DYVSQFEGSALGK	 A(30-42)	 1399.6620	 -2.73	
8.501	 1611.7716	 1078052	 LLDNWDSVTSTFSK	 A(48-61)	 1611.7781	 -4.02	
8.568	 2201.1047	 1745984	 LREQLGPVTQEFWDNLEK	 A(62-79)	 2201.1117	 -3.18	
8.940	 2886.4404	 830148	 LREQLGPVTQEFWDNLEKETEGL

R	
A(62-85)	 2886.4512	 -3.74	

8.813	 1931.9205	 1018736	 EQLGPVTQEFWDNLEK	 A(64-79)	 1931.9265	 -3.13	
9.166	 2617.2561	 743511	 EQLGPVTQEFWDNLEKETEGLR	 A(64-85)	 2617.2660	 -3.80	
9.283	 3220.5189	 870910	 EQLGPVTQEFWDNLEKETEGLR

QEMSK	
A(64-90)	 3220.5347	 -4.89	

6.076	 703.3473	 374034	 ETEGLR	 A(80-85)	 703.3501	 -3.90	
6.444	 1306.6131	 606019	 ETEGLRQEMSK	 A(80-90)	 1306.6187	 -4.32	
7.436	 2019.9696	 620866	 ETEGLRQEMSKDLEEVK	 A(80-96)	 2019.9783	 -4.28	
3.007	 621.2742	 95057	 QEMSK	 A(86-90)	 621.2792	 -8.14	
6.711	 1334.6305	 217153	 QEMSKDLEEVK	 A(86-96)	 1334.6388	 -6.18	
6.617	 731.3692	 1813372	 DLEEVK	 A(91-96)	 731.3701	 -1.33	
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6.283	 930.4967	 36583	 DLEEVKAK	 A(91-98)	 930.5022	 -5.90	
7.386	 1450.7386	 181580	 AKVQPYLDDFQK	 A(97-108)	 1450.7456	 -4.86	
7.722	 1251.6099	 1769877	 VQPYLDDFQK	 A(99-108)	 1251.6136	 -2.89	
7.346	 1379.7035	 1334726	 VQPYLDDFQKK	 A(99-109)	 1379.7085	 -3.68	

	

Although	extensive	sequence	coverage	was	observed	in	the	MS	analysis	(greater	

than	65%),	there	were	no	tryptic	peptide	matches	in	the	last	60	amino	acids	at	

the	 C-terminal,	 which	 hinted	 towards	 a	 possible	 truncation	 in	 the	 expressed	

protein.		

	

Furthermore,	 MALDI-TOF	 analysis	 (Fig.	 3.10)	 of	 intact	 undigested	 purified	

rhApoA1	 revealed	 a	 lower	 molecular	 mass	 observed	 (21.99	 kDa)	 than	 the	

expected	molecular	mass	of	28.3	kDa.	

	

	
Figure	3.10.	MALDI-TOF	spectrum	of	intact	purified	rhApoA1	from	P.	pastoris	X-33	

	

Suspecting	proteolytic	activity	by	P.	pastoris,	 the	expression	of	 the	protein	was	

also	 subsequently	 studied	 on	 a	 protease-deficient	 strain	 of	 P.	 pastoris	 (strain	

SMD1168)	 to	 compare	 the	 completeness	 of	 the	 proteins	 expressed	 by	 the	 two	

strains	(Chapter	4).	

	

	

3.4. CONCLUSION	
In	 this	 chapter,	 a	number	of	novel	purification	 strategies	have	been	elucidated	

and	 experimented	 to	 recover	 rhApoA1	 from	 P.	 pastoris	 expression	 broth,	 and	

have	 been	 compared	 with	 methods	 that	 have	 previously	 been	 published	 in	
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literature.	The	comparative	data	clearly	highlight	the	benefits	and	efficiencies	of	

the	mixed-mode	chromatography	based	novel	purification	methods	in	capturing	

rhApoA1	from	the	P.	pastoris	expression	broth,	and	their	industrial	applicability.	

Among	the	three	resins	supported,	Capto	MMC	showed	most	promise	and	ease	of	

application	 in	 the	 single-step	 recovery	 of	 rhApoA1,	 with	 zero	 pretreatment	 of	

Pichia	 pastoris	 expression	 broth.	 Subsequently,	 this	 purification	 method	 has	

been	 scaled-up	 (detailed	 in	 Chapter	 4),	 and	 enabled	 the	 development	 of	 an	

integrated	process.	

	

Mass	 spectrometric	 identification	of	 the	purified	 rhApoA1	molecule	 revealed	 a	

possible	truncation	in	the	C-terminal	region	of	the	protein.	It	was	hypothesised	

that	 the	 truncation	 (if	 existent)	would	 have	 been	due	 to	 proteolytic	 activity	 of	

proteases	 secreted	 by	 P.	 pastoris	 into	 the	 medium.	 In	 order	 to	 verify	 this	

hypothesis,	an	additional	comparative	study	was	carried	out,	by	expressing	the	

rhApoA1	 protein	 in	 a	 protease-deficient	 strain	 of	 P.	 pastoris:	 SMD	 1168.	 This	

comparative	study	has	been	further	discussed	in	Chapter	4	of	this	thesis.	
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Chapter	4	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Cloning,	Expression	&	Purification	of	
rhApoA1	in	P.	pastoris	protease	
deficient	strain	SMD-1168	

	
	

4. 	
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4.1. INTRODUCTION	TO	STRAINS	OF	P.	pastoris	
Pichia	pastoris	is	a	versatile	microorganism	that	is	being	widely	exploited	for	the	

overexpression	 of	 recombinant	 proteins.	 Different	 proteins	 demand	 different	

phenotypes	 and	 features	 in	 the	 host.	 Common	 P.	 pastoris	 strains	 used	 in	 the	

heterologous	expression	of	proteins	are	listed	below	in	Table	4.1.	

	
Table	4.1.	Commonly	employed	strains	of	P.	pastoris	with	phenotypes	and	

applications	

S.No.	 Strain	 Genotype	 Application	
1.	 X-33	 Wild	type	 Selection	 of	 Zeocin™-resistant	 expression	

vectors	
	

2.	 GS115	 his4	 Selection	of	vectors	containing	HIS4	
	

3.	 KM71	 his4,	aox1::ARG4,	arg4	 Selection	of	 expression	vectors	 containing	HIS4	
to	generate	Muts	phenotype	

4.	 KM71H	 aox1::ARG4,	arg4	 Selection	 of	 Zeocin™-resistant	 expression	
vectors	to	generate	Muts	phenotype	

5.	 SMD1168	 his4,	pep4	 Selection	of	 expression	vectors	 containing	HIS4	
to	generate	strains	without	protease	A	activity	

6.	 SMD1168H	 pep4	 Selection	 of	 Zeocin™-resistant	 expression	
vectors	 to	 generate	 strains	 without	 protease	 A	
activity	

7.	 SuperMan5	 och1-,	HIS+	 GlycoSwitch®	strain,	Man5	N-linked	
oligosaccharide	structures	

8.	 SuperMan5	 och1-,	his-	 GlycoSwitch®	strain,	Man5	N-linked	
oligosaccharide	structures	(histidine	auxotroph)	

	

X-33	is	the	primary	wild	type	strain,	which	is	most	widely	used	for	applications	

that	don’t	 involve	any	glycosylation.	The	GS115	 strain	 is	obtained	by	knocking	

out	 his4	 gene,	 which	 enables	 a	 second	 level	 of	 selection	 on	 these	 strains	 in	

addition	 to	 the	 antibiotic	 resistance.	 KM71	 strains	 generate	 Muts	 phenotypes	

upon	 transformation	 with	 an	 AOX1-promoter	 containing	 vector,	 which	 is	

suitable	 for	 high-density	 fermentations	 for	 the	 production	 of	 recombinant	

proteins	that	aren’t	sensitive	to	proteolytic	degradation.	On	the	other	hand,	the	

SMD1168	 strains	 are	 protease	 A	 knockouts,	 which	 enable	 the	 expression	 of	

proteins	that	are	sensitive	to	proteolytic	degradation.	In	addition,	there	are	new	

strains	 based	 on	 the	 GlycoSwitch®	 technology,	which	 enable	 the	 expression	 of	

proteins	with	humanised-glycosylation	patterns	(Jacobs	et	al.	2008).	
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4.1.1. PROTEASE	DEFICIENT	STRAINS	OF	P.	pastoris	

Certain	 foreign	 proteins	 are	 unstable	 in	 the	 medium	 upon	 secretion	 by	 P.	

pastoris,	 primarily	 due	 to	 protease	 activity.	 In	 most	 cases,	 this	 degradation	 is	

attributed	 to	major	vacuolar	proteases,	which	 is	more	prominent	 in	bioreactor	

cultures	 (J.	M.	 Cregg	 et	 al.	 2000).	 Protease	deficient	 strains,	 such	 as	 SMD1168,	

have	 been	 successfully	 employed	 in	 the	 production	 of	 protease-sensitive	

proteins	 (Cereghino	 and	Cregg	2000).	 In	 this	 chapter,	 the	protease	deficient	P.	

pastoris	strain	SMD-1168	has	been	tested	to	confirm	the	possible	degradation	of	

rhApoA1	that	has	been	discussed	in	Chapter	3.	

	

	

4.2. EXPERIMENTAL	
4.2.1. MATERIALS	

Protease	deficient	strain	of	P.	pastoris	(SMD-1168)	was	a	kind	gift	from	Dr.	Saroj	

Mishra,	 Professor,	 Department	 of	 Biochemical	 Engineering	 &	 Biotechnology,	

Indian	Institute	of	Technology	Delhi.	

	

The	transformation	of	ApoA1	gene	 into	competent	SMD-1168	cells	was	carried	

out	using	an	Eppendorf	Multiporator	(Eppendorf	AG,	Germany),	under	the	yeast	

module.	 All	 buffers	 and	 reagents	 were	 made	 from	 analytical	 grade	 reagents	

either	 from	Sigma-Aldrich	 (Bangalore,	 India),	Sisco	Research	Limited	 (Mumbai,	

India)	or	HiMedia	(Mumbai,	India).	

	

4.2.2. TRANSFORMATION	OF	ApoA1	GENE	INTO	COMPETENT	P.	pastoris	SMD-

1168	

Preparation	of	competent	SMD-1168	cells:	A	single	colony	of	SMD-1168	was	

inoculated	 in	 10	 ml	 of	 YPD,	 and	 incubated	 overnight	 at	 30ºC,	 200	 rpm.	

Subsequently,	the	culture	was	added	to	90ml	of	fresh	YPD	and	incubated	at	30ºC,	

200	rpm	for	 	 	 	 	 	 	 	4-5	hrs	until	 the	OD600	reached	0.8	 to	1.2.	The	cultures	were	

centrifuged	at	room	temperature,	5000	rpm,	10	mins,	and	resuspended	in	20	ml	

of	YPD.	To	this	culture,	400	µl	of	 filter	sterilised	1	M	HEPES,	pH	8.0	was	added	

(final	concentration	20	mM)	and	500	µl	of	1	M	DTT	was	added,	and	mixed	well	

by	shaking	at	30ºC,	50-70	rpm	for	20	mins.	20	ml	of	 ice-cold	sterile	water	was	
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then	added	 to	 the	 culture,	 and	 then	 centrifuged	at	4ºC,	5000	 rpm	 for	10	mins.	

The	pellet	was	resulspended	in	20	ml	of	ice-cold	1	M	sorbitol,	and	centrifuged	at	

4ºC,	5000	rpm	for	10	mins.	The	pellet	was	again	resuspended	in	~100-200	µl	of	

Sorbitol	yielding	approximately	500-600	µl	of	competent	SMD-1168	cells.	

	

Transformation	 of	 ApoA1	 gene	 into	 competent	 SMD-1168	 cells:	 100	 µl	 of	

competent	SMD-1168	cells	were	taken	in	a	fresh	1.5	ml	microcentrifuge	tube,	to	

which	approximately	1	µg	of	PmeI-linearised	pPICZα-ApoA1	plasmid	was	added	

and	were	incubated	in	ice	for	10	mins.	The	contents	were	then	transferred	to	a	

sterile	 pre-chilled	 0.2	 mm	 electroporation	 cuvette,	 and	 pulsed	 using	 a	

Multiporator	(Eppendorf)	in	the	yeast	module	at	1500	V	with	a	time	constant	(τ)	

of	5	ms.	After	the	electroporation,	900	µl	of	 ice-cold	1	M	Sorbitol	was	added	to	

the	 culture,	 and	 200	 µl	 was	 spread	 on	 YPD	 agar	 plates	 containing	 100	 µg/ml	

Zeocin.	

	

Screening	of	positive	transformants:	All	colonies	growing	on	the	transformed	

plate	were	replica-plated	on	increasing	concentrations	of	Zeocin	up	to	2	mg/ml.	

The	best	growing	clones	were	then	selected	for	expression	studies.	

	

Verification	of	ApoA1	gene	in	the	yeast	genomic	DNA:	The	integration	of	the	

ApoA1	gene	 into	the	P.	pastoris	genome	was	verified	by	colony	PCR	analysis	as	

described	in	Section	2.2.4.	After	the	colony	PCR	run,	the	samples	were	subjected	

to	 0.8%	 agarose	 gel	 electrophoresis	 and	 subsequently	 stained	 with	 Ethidium	

Bromide.	

	

4.2.3. EXPRESSION	OF	rhApoA1	IN	P.	pastoris	SMD-1168	

The	 expression	 of	 rhApoA1	 in	 SMD-1168	was	 carried	 out	 by	 a	 modified	Muts	

expression	protocol.	Briefly,	a	single	colony	was	inoculated	in	10ml	of	BMGY	and	

was	 grown	 overnight	 at	 30ºC,	 220	 rpm	 until	 the	 OD600	 reached	 10-11,	 and	

inoculated	 into	100	ml	of	BMGY	 to	 reach	a	 starting	OD600	of	~0.3.	This	 culture	

was	grown	for	2	days	at	30ºC,	250	rpm	for	biomass	to	gain	and	then	centrifuged	

at	 4ºC,	 5000	 rpm	 for	 	 5	mins.	 The	 pellet	was	 then	weighed	 (x	 gms)	 and	 then	

resuspended	 in	 equal	 volume	 (x	 ml)	 of	 BMMY	 medium.	 Induction	 was	 then	
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carried	 out	 with	 1%	 methanol	 being	 replenished	 every	 24	 hrs	 supplemented	

with	0.1x	YP.	After	 the	expression,	 the	samples	drawn	at	period	 intervals	were	

analysed	by	12%	SDS-PAGE.	

	

4.2.4. PURIFICATION	OF	rhApoA1	BY	MIXED-MODE	CHROMATOGRAPHY	

Purification	 rhApoA1	 expressed	 in	 SMD-1168	 was	 carried	 out	 similar	 to	 that	

optimised	with	 rhApoA1	 expressed	 in	 X-33.	 The	 Capto	MMC	 column	was	 first	

equilibrated	with	50	mM	acetate	buffer,	pH	5.0,	250	mM	NaCl	(binding	buffer).	

The	pH	of	the	P.	pastoris	expression	broth	at	the	end	of	induction	was	adjusted	to	

pH	5.0	and	 injected	on	 to	 the	column	(~10	ml	of	P.	pastoris	 expression	broth).	

The	non-retained	flow	through	fraction	was	collected,	and	once	the	absorbance	

reached	 baseline,	 the	 salt	 was	 eliminated	 over	 a	 linear	 gradient	 using	 50	mM	

acetate	buffer,	pH	5.0	over	20	column	volumes.	Elution	was	then	carried	out	 in	

steps	using	50	mM	phosphate	buffer	at	pH	7.0	and	50	mM	Tris	buffer	at	pH	8.5.	

The	eluted	fractions	were	analysed	by	SDS-PAGE	and	western	blots	to	verify	the	

successful	purification	of	the	target	protein	(rhApoA1).	

	

4.2.5. COMPARISON	OF	rhApoA1	EXPRESSED	IN	VARIOUS	P.	pastoris	STRAINS	

The	 intact	 masses	 of	 rhApoA1	 expressed	 by	 the	 two	 different	 strains	 of	 P.	

pastoris	 (X-33	 and	 SMD-1168)	 were	 compared	 by	 SDS-PAGE	 as	 well	 as	 mass	

spectrometry.	Purified	rhApoA1	fractions	were	measured	by	Agilent	6540	UHD	

Q-TOF	 mass	 spectrometer	 and	 analysed	 by	 Agilent	 Mass	 Hunter	 software	 to	

deconvolute	and	obtain	intact	mass	of	the	measured	fragments.	

	

	

4.3. RESULTS	
4.3.1. TRANSFORMATION	OF	pPICZα-ApoA1	AND	SELECTION	OF	RESISTANT	

CLONES	

The	 construct	 pPICZα-ApoA1	 was	 linearised	 with	 PmeI	 and	 transformed	 into	

competent	SMD-1168	strains	as	described	in	the	methods	section	(Section	4.2.1).	

Subsequently,	several	colonies	that	exhibited	resistance	to	Zeocin	were	screened	

with	Zeocin	concentrations	of	500	µg/ml,	1	mg/ml	and	2	mg/ml	(Fig.	4.1).	
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A:	YPD-Zeocin	(500	

µg/ml)	

	
B:	YPD-Zeocin	(1	mg/ml)	

	
C:	YPD-Zeocin	(2	mg/ml)	

Figure	4.1.	Replica	plating	of	SMD-1168	cells	transformed	with	ApoA1	gene	at	
various	concentrations	of	Zeocin	

	

Five	of	 the	 fastest	growing	clones	exhibiting	 resistance	 to	2mg/ml	 (Fig.	4.1(c))	

were	further	verified	by	colony	PCR	using	ApoA1	gene-specific	primers,	as	was	

done	 earlier	 (Section	 2.3.1).	 Upon	 PCR	 and	 subsequent	 agarose	 gel	

electrophoresis	 (0.8%	 gel),	 all	 colonies	 tested	 positive	 for	 the	 integration	 of	

ApoA1	gene	into	the	host	genome	(Fig.	4.2).	

	

	

Figure	4.2.	Colony-PCR	analysis	of	
cell	control	(CC),	vector	control	
(VC),	and	five	SMD-1168-ApoA1	
clones	(#12,	#16,	#23,	#27,	#48).	
	

	

After	 screening	 by	 colony	 PCR,	 one	 of	 the	 clones	 (#23)	was	 taken	 further	 for	

expression	studies	(Section	4.3.2).	

	

4.3.2. EXPRESSION	OF	rhApoA1	IN	P.	pastoris	SMD-1168	

Expression	 of	 rhApoA1	 in	 SMD-1168	was	 carried	 out	 as	 described	 in	methods	

section	 (Section	 4.2.3).	 The	 OD600	 of	 the	 cells	 were	 periodically	 checked	 for	

monitoring	 growth,	 and	 samples	 drawn	 every	 24hrs	were	 analysed	 over	 12%	
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SDS-PAGE	 (Fig.	 4.3)	 and	 stained	 with	 coomassie	 blue,	 which	 unequivocally	

demonstrated	the	successful	expression	of	rhApoA1	in	SMD-1168.	

	

	
Figure	 4.3.	 Expression	 of	 rhApoA1	 on	 SMD1168:	 lanes	 correspond	 to	
Marker	 (M),	 reduced	 IgG	 as	 reference	 marker	 (IgG),	 ref.	 rhApoA1	
produced	 in	 in	X-33	(+),	non-induced	(0)	&	 induced	samples	 from	1-5	
days,	 host	 transformed	with	 just	 vector	 (V)	 and	 just	host	 (H)	 induced	
for	5	days	

	

As	 is	 evident	 from	 Fig.	 4.3,	 there	was	 a	 consistent	 increase	 in	 intensity	 of	 the	

band	 corresponding	 to	 rhApoA1	 with	 increasing	 duration	 of	 induction.	

Furthermore,	rhApoA1	expressed	and	purified	from	X-33	was	run	as	a	reference	

protein	to	check	for	any	apparent	differences	in	molecular	weight.	A	priori,	there	

didn’t	 seem	 to	 be	 a	 significant	 electrophoretic	 difference	 in	 molecular	 weight	

between	the	rhApoA1	expressed	in	X-33	and	SMD-1168.	Nevertheless,	 in	order	

to	 unequivocally	 confirm	 the	 difference	 in	 size	 of	 the	 expressed	 rhApoA1	

molecule,	they	were	also	analysed	by	mass	spectrometry	(Section	4.3.4).	

	

4.3.3. PURIFICATION	OF	rhApoA1	BY	MIXED-MODE	CHROMATOGRAPHY	

Upon	 successful	 expression	 of	 rhApoA1,	 ~15	 ml	 of	 the	 expression	 broth	 was	

subjected	to	mixed-mode	chromatography	using	CaptoMMC,	as	described	in	the	

experimental	section	(Section	4.2.4).	
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Figure	 4.4.	 Purification	 of	 rhApoA1	 expressed	 in	 P.	 pastoris	 SMD-1168	 by	
CaptoMMC.	 (A)	 Chromatogram	and	 (B)	12%	SDS-PAGE	analysis	 of	 load	 (L),	 non-
retained	 (FT),	 and	elution	 fractions	 at	pHs	7.0	&	8.5.	 Plasma	derived	ApoA1	 (P)	
and	 rhApoA1	 expressed	 in	 P.	 pastoris	 X-33	 (Ref)	 were	 added	 as	 controls	 for	
comparing	m.wt.	
	

The	purification	profile	 (Fig.	4.4(a))	was	 identical	 to	 that	obtained	earlier	with	

rhApoA1	 being	 purified	 from	 P.	 pastoris	 X-33.	 12%	 SDS-PAGE	 analysis	 (Fig.	

4.4(b))	 again	 indicated	 towards	 no	 significant	 difference	 in	 molecular	 weight	

between	 rhApoA1	 expressed	 in	 SMD-1168	 and	 X-33	 strains	 of	 P.	 pastoris	 and	

ApoA1	recovered	from	plasma	(lane	P).	

	

4.3.4. COMPARISON	OF	rhApoA1	EXPRESSED	IN	X-33	AND	SMD-1168	

In	 order	 to	 unequivocally	 conclude	 on	 any	 potential	 truncation	 in	 rhApoA1	

expressed	 in	 P.	 pastoris,	 the	 proteins	 expressed	 in	 different	 strains	 were	

compared	by	mass	spectrometry.	

	

Purified	fractions	containing	rhApoA1	obtained	from	P.	pastoris	X-33	and	SMD-

1168	were	analysed	by	6540	UHD	Q-TOF	mass	spectrometer	(Agilent)	and	major	

species	found	in	both	samples	were	compared	(Fig.	4.5).	The	major	species	in	the	

purified	rhApoA1	fraction	 from	X-33	(22862.24	Da)	was	nearly	 identical	 to	 the	

major	species	 in	 the	purified	rhApoA1	 fraction	 from	SMD-1168	(22869.30	Da).	

This	 clearly	 showcased	 that	 that	 was	 no	 significant	 difference	 in	 molecular	

weight	between	the	rhApoA1	proteins	expressed	in	P.	pastoris	strains	X-33	and	

SMD-1168.	

A B 
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Figure	4.5.	ESI-Q-TOF	analysis	of	purified	rhApoA1	fractions	from	P.	pastoris	X-33	
and	SMD-1168	
	

Subsequently,	 the	 intact	 mass	 of	 rhApoA1	 expressed	 in	 P.	 pastoris	 X-33	 was	

measured	 by	 MALDI-TOF	 mass	 spectrometry	 (Fig	 4.6(a)),	 and	 compared	 to	

ApoA1	 recovered	 from	 plasma	 previously	 reported	 in	 literature	 (Feng	 et	 al.	

2006).	

	

	 	
Figure	4.6.	MALDI-TOF	mass	spectrometric	analysis	of	(A)	rhApoA1	
expressed	in	P.	pastoris	X-33	and	(B)	plasma	ApoA1	(Feng	et	al.	2006)	

	

A B 
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The	 MALDI-TOF	 profile	 of	 rhApoA1	 from	 X-33	 (Fig.	 4.6(a))	 showed	 a	 major	

species	at	21995.8	Da,	which	was	nearly	identical	to	the	major	species	reported	

earlier	 for	 plasma	ApoA1	 (22420.83	Da,	 Fig.	 4.6(b)).	 Based	on	 the	 above	mass	

spectrometric	 comparisons,	 it	 was	 conclusive	 that	 there	 wasn’t	 a	 significant	

difference	 in	 molecular	 mass	 between	 plasma	 and	 recombinant	 ApoA1	

expressed	in	P.	pastoris	X-33	and	SMD-1168	strains.	

	

	

4.4. CONCLUSION	
Truncation	 of	 recombinant	 proteins	 expressed	 in	P.	pastoris	 due	 to	 proteolytic	

activity	 has	 been	 reported	 earlier	 in	 literature	 (J.	M.	 Cregg	 et	 al.	 2000).	 In	 the	

present	work,	potential	truncation	was	hypothesised	owing	to	consistent	lower	

molecular	weight	demonstrated	by	polyacrylamide	gel	electrophoresis	(Chapter	

3).	Electrophoretic	and	mass	spectrometric	comparison	of	rhApoA1	expressed	in	

X-33	with	that	expressed	in	SMD-1168	as	well	as	plasma-derived	ApoA1	clearly	

showcased	no	significance	difference	in	molecular	weight,	indirectly	confirming	

absence	of	any	truncation	in	the	expressed	recombinant	protein.	
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Chapter	5	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Scale-up	of	production	and	
purification	of	rhApoA1	
using	P.	pastoris	X-33	

	
	

5. 	
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5.1. INTRODUCTION	TO	SCALE-UP	OF	INDUSTRIAL	PROCESSES	
Any	bioprocess	needs	to	be	adequately	scaled	up	to	make	it	industrially	viable.	A	

typical	 bioprocess	 for	 the	 generation	 of	 recombinant	 therapeutics	 involves	

development	 of	 a	 stable	 strain	 expressing	 the	 target	 protein,	 followed	 by	 its	

production	 and	 subsequent	 purification.	 Scaling-up	 is	 typically	 carried	 out	 at	

both	 fermentation	 and	 downstream	 processing	 steps,	 with	 appropriate	

optimisation	in	order	to	maximise	yield	(Fig.	5.1).	

	

	
Figure	5.1.	Development	of	biopharmaceutical	product	(Thiry	and	Cingolani	

2002)	
	

Various	parameters	need	to	be	optimised	during	the	process	of	scaling-up:	

• Production/fermentation	level:	culturing	conditions,	feed	rate,	bioreactor	

size	

• Purification	level:	sample	pretreatment,	chromatography	characteristics	

	

5.1.1. SCALE-UP	OF	EXPRESSION	OF	RECOMBINANT	PROTEINS	

A	 vast	 majority	 of	 industrial	 processes	 using	 genetically	 modified	

microorganisms	 to	 overexpress	 recombinant	 proteins	 use	 one	 of	 the	 three	

species:	Escherichia	coli,	Saccharomyces	cerevisiae	and	Pichia	pastoris	(Thiry	and	
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Cingolani	2002).	All	three	microorganisms	showcase	their	relative	advantages	in	

terms	 of	 production	 levels,	 post-translational	 modifications,	 secretion	

capabilities,	etc.	 In	this	work,	the	methylotrophic	yeast	Pichia	pastoris	has	been	

exploited	for	the	expression	of	rhApoA1.	

	

During	 scale-up,	 the	 primary	 aim	 is	 in	 increasing	 the	 size	 and	 volume	 of	

expression,	in	addition	to	optimising	culture	conditions	to	maximise	yield	of	the	

heterologous	 protein.	 Temperature,	 pH	 and	 dissolved	 oxygen	 are	 parameters	

that	 are	 typically	 optimised	 during	 expression	 and	 scale-up	 of	 production	 of	

recombinant	proteins	(Lerner-Marmarosh	et	al.	1999).	A	reduction	in	induction	

temperature	 and	 pH	 conditions	 helps	 enhance	 the	 amount	 of	 recombinant	

protein	 produced	 by	 reducing	 protease	 activity.	 In	 the	 present	 study,	 the	

temperature	 of	 induction	 and	 pH	 of	 the	medium	have	 been	 optimised	 to	 28°C	

and	5.0,	and	the	corresponding	increase	in	yield	have	been	discussed.	

	

5.1.2. SCALE-UP	OF	PURIFICATION	SYSTEMS	

Industrial	 downstream	 processing	 of	 therapeutic	 proteins	 typically	 involves	 a	

clarification	 or	 pretreatment	 step	 followed	 by	 a	 preparative	 capture	

chromatography	 purification	 step	 and	 further	 polishing	 to	 derive	 the	 final	

purified	 protein,	 prior	 to	 filtration	 and	 formulation	 (Rathore	 and	 Velayudhan	

2002).	 Important	 factors	 that	 dictate	 the	 efficiency	 of	 a	 scaled-up	 purification	

process	are	listed	below	(Garcia,	Prazeres,	and	Cabral	2003):	

• Quality	of	gel	material:	affinity	for	the	target	protein,	physical	&	chemical	

stability,	non-biodegradability,	inertness	to	the	product,	incompressibility	

• Quality	of	sample	to	be	chromatographed	(free	of	particles	that	could	clog	

columns)	

• Reduction/Elimination	of	protease	activity	that	could	affect	target	protein	

• Foaming	due	to	tensioactive	agents	

	

Sample	 pretreatment	 is	 especially	 important	 to	 ensure	 reproducibility	 of	 the	

process	and	reusability	of	the	chromatographic	resin.	Alternate	chromatographic	

approaches	 like	 fluidised	beds	or	 expanded	beds	 could	 also	be	 employed	used	

for	 reducing	 the	 number	 of	 pretreatment,	 which	 in	 turn	 would	 reduce	 the	
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number	 of	 processing	 steps	 and	 in	 establishing	 a	 continuous	 process	 (Hjorth	

1997).	

	

5.1.3. EXPANDED-BED	ADSORPTION	FOR	THE	PURIFICATION	OF	PROTEINS	

Expanded	 bed	 adsorption	 (EBA)	 allows	 clarification	 and	 capture	 of	 target	

protein	in	a	single	step.	In	an	expanded	bed,	a	particulate	adsorbent	in	a	column	

is	 allowed	 to	 rise	 from	 its	 settled	 state	 by	 applying	 an	 upward	 flow,	 and	 the	

sample	is	injected	from	below	(Noubhani	et	al.	2002).	Provided	that	the	physical	

properties	of	the	beads	are	significantly	different	from	those	of	the	particulates	

in	 the	 feedstock,	 the	 particulates	 can	 pass	 freely	 through	 the	 voids	 in	 the	 bed	

without	becoming	trapped	(Mattiasson	and	Nandakumar	2000).	This	eliminates	

the	 need	 for	 pre-clarification	 of	 crude	 feedstock	 before	 application	 to	 packed	

beds	using	centrifugal	or	 filtration	techniques	and	also	permits	 the	recovery	of	

particulate	bioproducts	using	column	purification	techniques.	Fig.	5.2	illustrates	

the	underlying	principle	behind	EBA.	

	

	
Figure	 5.2.	 Resin	 bed	 status	 throughout	 the	 steps	 of	 an	 EBA	 chromatography	
experiment.	Arrows	indicate	direction	of	feed	flow.	Cleaning	in	place	(not	shown)	
is	 the	 last	 step	 and	 is	 done	 in	 expanded-bed	 mode,	 similar	 to	 expansion	 and	
equilibration	 of	 the	 adsorbent.	 Reproduced	 from	 Amersham	 Biosciences	
Handbook.	
	

The	particle	size	and	sedimentation	velocity	play	an	 important	role	 in	 tailoring	

the	 chromatographic	 characteristics	 of	 an	 adsorbent	 for	 use	 in	 expanded	 bed	

adsorption.	 EBA	 adsorbents	 like	 Streamline	 (GE	 Healthcare)	 are	 based	 on	 a	
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composite	 particle	 containing	 an	 inert	 core	material	 that	 is	 surrounded	 by	 an	

organic	 shell,	 enabling	 them	 to	 have	 a	 high	 sedimentation	 velocity	 at	 a	

reasonable	 particle	 size.	 Typically,	 by	 altering	 the	 particle	 composition,	 a	

Gaussian	 like	distribution	of	particle	size	and	particle	density	 is	achieved	 in	an	

expanded	bed.	

	

Fluidisation	of	particles	occurs	when	particles	are	pushed	upwards	in	a	column	

at	 a	 velocity	 corresponding	 to	 their	 sedimentation	 velocity.	 The	 degree	 of	

expansion	of	the	bed	is	controlled	by	a	number	of	factors:	the	size	and	density	of	

the	 adsorbent	 beads,	 the	 linear	 flow	 velocity	 of	 the	 mobile	 phase,	 and	 the	

viscosity	 of	 the	 mobile	 phase.	 The	 bed	 is	 usually	 expanded	 to	 2-3	 times	 the	

packed-bed	height.	The	absolute	value	 for	 the	degree	of	expansion	depends	on	

liquid	 density	 and	 viscosity.	 An	 increase	 in	 the	 viscosity	 of	 the	 buffer	 system	

causes	 an	 increase	 in	 the	 degree	 of	 expansion	 (Mattiasson	 and	 Nandakumar	

2000).	 Several	 recombinant	 proteins	 have	 been	 successfully	 purified	 by	 this	

method	(Chase	1998;	Hjorth	1997;	Lamotte	et	al.	1999).	

	

	

5.2. EXPERIMENTAL	
5.2.1. MATERIALS	

Scale-up	 expression	 studies	 in	 benchtop	 bioreactors	 were	 carried	 out	 on	

Sartorius-Stedim	 Biostat	 B-plus	 bioreactors	 (5l)	monitored	 by	MCSF	Win	 data	

acquisition	 software	 (Sartorius).	 The	 Expanded	 Bed	 Adsorption	 experiments	

were	 carried	 out	 using	 Direct	 CST-1	 resin	 (GE	 Healthcare,	 Uppsala,	 Sweden)	

loaded	on	a	Streamline	25	housing	(i.d.	2.5cm	x	100cm,	GE	Healthcare,	Uppsala,	

Sweden)	controlled	and	monitored	by	Unicorn	software	(GE	Healthcare,	Uppsala,	

Sweden).	

	

5.2.2. SCALE-UP	OF	PRODUCTION	OF	rhApoA1	TO	5L	BENCH-TOP	

BIOREACTOR	

After	 initial	batches	of	bioreactor	studies	on	2l	benchtop	reactors,	 the	clone	F1	

was	further	for	scaled-up	for	production	in	a	5l	benchtop	bioreactor.	
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First,	 a	 single	 colony	 was	 inoculated	 and	 grown	 in	 baffled	 flasks	 containing	

100ml	 of	 buffered	 glycerol-complex	 medium	 (BMGY,	 100mM	 potassium	

phosphate	buffer,	pH	6.0,	13.4g/L	YNB,	4x10-4g/L	biotin,	10g/L	glycerol	and	150	

µg/mL	Zeocin™)	up	 to	an	OD	(600nm)	of	4-8,	and	 this	was	 inoculated	 in	4L	of	

BMGY	 in	 a	 BIOSTAT®	 Bplus	 laboratory	 5l	 bioreactor	 with	 a	 starting	 OD600	 of	

about	 0.3.	 The	 temperature	 and	 pH	 were	 maintained	 at	 30°C	 and	 6.0	

respectively,	 and	 dissolved	 oxygen	 level	was	maintained	 at	 15%	 saturation	 by	

regulating	 aeration	 and	 agitation	 in	 a	 cascade	 manner.	 After	 complete	

consumption	of	glycerol	in	the	medium	(verified	by	standard	glycerol	assay;	data	

not	shown),	a	methanol	fed-batch	phase	was	initiated	by	adding	methanol	every	

8hrs	to	a	final	concentration	of	0.5%.	Samples	were	drawn	every	24hrs	to	follow	

the	growth	profile	and	protein	production.	After	120hrs	of	induction,	the	culture	

was	harvested	and	directly	chromatographed	over	an	equilibrated	Direct	CST-1	

column	 in	 Expanded	 Bed	 mode	 (Section	 5.2.3).	 The	 expression	 of	 the	

recombinant	 protein	 was	 also	 monitored	 by	 SDS-PAGE	 and	 Western	 Blot	

analysis	with	samples	drawn	periodically	(every	24hrs)	from	the	bioreactor.	

	

5.2.3. PURIFICATION	OF	rhApoA1	BY	DIRECT	CST-I	IN	EXPANDED-BED	MODE	

Once	 favourable	 conditions	 were	 achieved	 for	 the	 recovery	 of	 rhApoA1	 using	

Capto™	 MMC	 (Section	 3.3.2.3),	 scale-up	 of	 purification	 was	 carried	 out	 in	

Expanded	 Bed	mode	 using	 Direct	 CST-1	 (GE	 Healthcare),	 which	 has	 the	 same	

chemistry	 as	 Capto™	 MMC.	 The	 buffer	 conditions	 were	 as	 optimised	 in	

preliminary	 experiments.	 The	 column	 was	 equilibrated	 using	 50mM	 acetate	

buffer,	pH	5.0	and	expanded	by	sequentially	increasing	flow-rate.	The	expression	

culture	at	the	end	of	a	fermentation	batch	(containing	cells)	was	directly	injected	

on	to	the	expanded	column	to	capture	our	target	protein.	Once	binding	and	wash	

steps	were	completed,	the	column	was	allowed	to	settle	and	elution	was	carried	

out	in	downward	flow	using	the	same	elution	buffers.	The	various	fractions	were	

analysed	by	SDS-PAGE	and	western	blots	to	verify	the	presence	of	rhApoA1.	

	

As	 a	 polishing	 step,	 the	 elution	 fractions	 from	 the	 EBA	 chromatographic	 run	

were	 subjected	 to	 ion-exchange	 chromatography	 using	 Resource	 Q	 anion-

exchange	 column	 (GE	 Healthcare).	 The	 column	 was	 equilibrated	 with	 20mM	
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phosphate	 buffer,	 pH	 7.0,	 after	 which	 the	 sample	 (fraction	 #2	 from	 EBA	

experiment)	 was	 injected	 on	 to	 the	 column.	 After	 the	 absorbance	 at	 280nm	

reached	baseline,	elution	was	carried	out	in	steps	containing	5%,	15%	and	30%	

of	 20mM	 phosphate	 buffer,	 pH	 7.0,	 1M	 NaCl.	 All	 collected	 fractions	 were	

analysed	by	12%	SDS-PAGE.	

	

	

5.3. RESULTS	
5.3.1. SCALED-UP	EXPRESSION	OF	rhApoA1	

Production	 of	 rhApoA1	 in	 5l	 benchtop	 bioreactor	 was	 carried	 out	 under	

conditions	 similar	 to	 that	 that	 were	 the	 maintained	 with	 the	 2l	 benchtop	

bioreactor	(Section	2.3.3).	Briefly,	an	appropriate	volume	of	preculture	in	BMGY	

containing	200µg/ml	Zeocin	was	 inoculated	 into	a	sterile	bioreactor	containing	

BMGY	medium	to	a	starting	OD600	of	0.3.	For	the	first	24hrs,	cells	were	allowed	to	

grow	in	the	biomass	accumulation	phase	in	glycerol-containing	medium	(BMGY).	

Once	all	glycerol	was	exhausted,	the	pH	of	the	medium	was	lowered	to	5.0,	and	

the	 induction	 phase	was	 commenced	with	methanol	 being	 fed	 every	 8hrs	 to	 a	

final	 concentration	of	0.5%	(Fig.	 5.2,	 turquoise	 curve).	This	 ensured	 consistent	

replenishment	 of	 methanol	 and	 continued	 production	 of	 the	 target	 protein	

(rhApoA1).	

	
Figure	5.3.	Expression	profile	of	rhApoA1	production	in	5l	benchtop	bioreactor.	
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As	monitored	with	the	2l	bioreactor	production	batch,	 the	pH	and	temperature	

were	maintained	in	real	time,	using	sterile	concentrated	reservoirs	of	acid/base	

and	 heating	 jacket	 respectively.	 From	 Fig.	 5.3,	 it	 is	 evident	 that	 the	 cells	were	

consistently	 metabolising	 the	 substrate	 supplied,	 inferable	 from	 the	 curves	

corresponding	to	pO2	levels	(red)	and	agitation	(blue).	An	increase	in	amount	of	

base	 added	 to	 the	 bioreactor	 (yellow)	 is	 also	 an	 indication	 of	 secretion	 of	

proteins	into	the	culture	lowering	the	pH.	

	

During	the	production,	samples	were	drawn	at	various	time	points	to	check	for	

glycerol	 consumption,	 target	 protein	 secretion,	 consistent	 growth	 and	possible	

contamination.	OD600	 values	 of	 samples	 drawn	 at	 various	 time	points	 revealed	

good	biomass	accumulation	in	the	glycerol	phase,	and	stable	growth	throughout	

the	induction	period	(Fig.	5.4).	

	

	
Figure	5.4.	Optical	Density	(600nm)	profile	of	samples	drawn	at	various	time	

points.	
	

Furthermore,	microscopic	examination	revealed	stable	budding	of	yeast	cells	up	

to	 the	 5th	 day	 of	 production	 (Fig.	 5.5)	 and	 the	 absence	 of	 any	 contamination.	

After	 the	 completion	 of	 the	 production	 batch,	 samples	 drawn	 at	 various	 time	

points	 were	 analysed	 by	 SDS-PAGE,	 which	 revealed	 consistent	 expression	 of	

rhApoA1	(Fig.	5.6),	as	observed	earlier	with	the	2l	bioreactor	run.	
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!
	

Figure	 5.5.	 Microscopic	
examination	of	budding	yeast	cells	
(transformed	 P.	 pastoris	 X-33)	 at	
40x	magnification.	

	

	
Figure	 5.6.	 SDS-PAGE	 analysis	 of	
non-induced	 (UI)	 and	 samples	
drawn	 at	 72h,	 96h,	 and	 120h	 of	
induction	 (3d,	 4d	 and	 5d,	
respectively).	Band	corresponding	
to	rhApoA1	indicated	by	arrow.	

	

The	expression	profiles	of	 shake	 flask	cultures	were	compared	with	bioreactor	

studies	 (Table	 5.1),	 and	 the	 chemostat	 conditions	 clearly	 enabled	 the	

achievement	of	nearly	twice	the	biomass	(greater	OD600)	and	protein	yield	(43.8	

mg/l	of	production).	

	
Table	5.1.	Comparison	of	production	parameters	at	various	scales	of	expression	

Parameter\Scale	 Flask	 2l	Bioreactor	 5l	Bioreactor	

Volume	of	culture	 150	ml	 1800	ml	 4000	ml	

Harvesting	OD600	 27.56	 41.34	 44.71	

Induction	pH	 6.0	 5.0	 5.0	

Buffering	system	 phosphate	
buffer	

phosphate	buffer	
+	acid/base	

phosphate	buffer	
+	acid/base	

Induction	
temperature	 30°C	 28°C	 28°C	

rhApoA1	yield	 22.4	mg/l	 37.5	mg/l	 43.8	mg/l	

	

The	 entire	 culture	 from	 the	 4l	 production	 batch	was	 utilised	 for	 one	 batch	 of	

purification	in	Expanded	Bed	Adsorption	(Section	5.3.2).	
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5.3.2. PURIFICATION	OF	rhApoA1	BY	DIRECT	CST-I	

In	 order	 to	 test	 the	 industrial	 applicability	 of	 this	 purification	 method,	 an	

Expanded	 Bed	 Adsorption	 resin:	 Direct	 CST	 I,	 was	 tested	 for	 its	 efficiency	 in	

capturing	 rhApoA1	 from	a	 crude	 feed	 containing	P.	pastoris	 cells	 directly	 from	

the	bioreactor.	The	Direct	CST	I	 ligand	has	the	exact	same	chemistry	of	Capto™	

MMC,	 and	 has	 earlier	 been	 characterised	 using	 BSA	 and	 Myoglobin	 as	 model	

proteins	(Li	et	al.	2006).	

	

Expanded	bed	 adsorption	 enables	 the	 direct	 affinity	 capture	 of	 target	 proteins	

from	crude	samples.	 In	our	case,	about	4	 litres	of	unclarified	P.	pastoris	culture	

(after	 a	 production	 batch	 in	 a	 benchtop	 bioreactor	 with	 120hrs	 of	 induction,	

section	 5.3.1)	was	 injected	 to	 an	 expanded	Direct	 CST	 I	 column.	 After	 the	 cell	

culture	was	 completely	passed	 through	 and	 the	 absorbance	 at	 280nm	 reached	

baseline	 (washing	 completion),	 the	 flow	 was	 stopped	 and	 the	 column	 was	

allowed	 to	 settle.	 Subsequently,	 the	 salt	 was	 eliminated	 and	 pH	was	 raised	 to	

elute	 bound	 proteins	 as	 earlier	 optimised	 in	 the	 packed	 column	 experiments	

with	CaptoMMC	(Section	3.3.2.3).		

	

The	 chromatographic	 profile	 (Fig.	 5.7a)	 was	 similar	 to	 that	 obtained	 with	 the	

packed	1ml	HiTrap	Capto™	MMC	column	(Fig.	3.8a).	As	expected,	the	peak	eluted	

at	 pH	 7.0	 predominantly	 contained	 rhApoA1	 (79%	 as	 quantified	 from	 the	 gel;	

Fig.	 5.7b).	 There	 were	 still	 small	 amounts	 of	 other	 contaminating	 proteins	

(higher	m.wt.),	which	needed	to	be	eliminated.	

	

An	 additional	 ion-exchange	 polishing	 step	 with	 Resource	 Q	 anionic	 exchanger	

column	 (GE	Healthcare)	was	 introduced.	 The	polishing	 step	was	 effective	with	

20mM	sodium	phosphate	buffer	(Fig.	5.7c),	when	rhApoA1	was	eluted	with	just	

50mM	NaCl.	At	300mM	NaCl,	other	contaminating	proteins	co-eluted	along	with	

rhApoA1	and	its	dimer.	

	



86 
 

	
Figure	5.7.	Purification	of	rhApoA1	by	Direct	CST-1	 in	Expanded	Bed	Adsorption	
mode.	 (A)	Chromatogram	and	12%	SDS-PAGE	of	 load	 (L),	non-retained	 (FT)	and	
eluted	 fractions	 at	 pHs	 7.0	 (fractions	 1	 –	 4)	 and	 8.5	 (fractions	 5	 –	 8).	 (B)	
Chromatogram	 and	 12%	 SDS-PAGE	 analysis	 of	 fractions	 from	 Resource	 Q	 ion-
exchange	polishing	step:	 load	(L),	non-retained	(FT),	and	eluted	 fractions	at	5%,	
15%,	30%	and	100%	of	elution	buffer	(20mM	phosphate	buffer,	pH	7.0,	1M	NaCl).	
	
Table	5.2.	Comparison	of	purification	efficiencies	of	packed	column	&	EBA	modes	

Scale	
Purification	
method	 Column	size	

rhApoA1	content	
(mg)	

Yield	(%)	
Purity	of	
rhApoA1*	Load	 Elution	

Packed	
column	

Mixed-mode	
HEA	HyperCel™	

5ml	prepacked	
column	 2.24	 1.26	 56.25	 70.2	

Packed	
column	

Mixed-mode	
Capto	MMC™	

1ml	prepacked	
column	 2.21	 1.51	 68.89	 84.0	

Scaled-
up:	
EBA	
(2	
steps)	

Mixed-mode	
Direct	CST	I	

118ml	settled-
bed	volume	 113.48	 84.77	 74.69	 79.0	

Anion	exchange	
Resource	Q	

1ml	prepacked	
column	 	 	 	 96.2	

*Purity	of	the	recovered	rhApoA1	described	based	on	densitometric	analysis	of	SDS-PAGE.	

	

Overall,	 about	 136	mg	 of	 rhApoA1	was	 successfully	 purified	 in	 a	 single	 Direct	

CST	I	Expanded	Bed	Adsorption	experiment	from	approximately	4l	of	unclarified	
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expression	culture	to	greater	than	96%	purity	upon	polishing	with	Resource	Q.	

The	 purification	 efficiencies	 of	 packed-column	 and	 expanded-bed	modes	were	

compared	(Table	5.2),	and	the	scale-up	was	shown	to	be	effective.	

	

The	 scale-up	 of	 purification	 of	 rhApoA1	 using	 Direct	 CST-I	 in	 expanded	 bed	

adsorption	 mode	 was	 unequivocally	 established,	 and	 this	 paved	 way	 to	 the	

development	 of	 an	 integrated	 process	 (Section	 5.3.3)	 for	 the	 production	 and	

rapid	one-step	capture	of	rhApoA1	expressed	in	P.	pastoris.	

	

5.3.3. DEVELOPMENT	OF	AN	INTEGRATED	PROCESS	FOR	THE	PRODUCTION	&	

PURIFICATION	OF	rhApoA1	

For	 any	 production/purification	 process	 to	 be	 industrially	 viable,	 the	 focus	 is	

always	 on	 minimising	 the	 number	 of	 processing	 steps	 while	 maximising	

recovery/yield.	 In	 this	 study,	 the	 rhApoA1	 has	 been	 expressed	 without	 the	

addition	 of	 any	 affinity	 tag	 so	 that	 it	 may	 be	 generated	 close	 to	 its	 native	

conditions.	 The	 application	 of	 Expanded	 Bed	 Adsorption	 sorbent	 Direct	 CST-I	

enables	 the	development	of	an	 integrated	process	 (Fig.	5.8)	 to	directly	 capture	

the	expressed	 rhApoA1	protein	 straight	out	of	 the	bioreactor	without	any	pre-

treatment	or	clarification.	

	

	
Figure	 5.8.	 Integrated	 process	 for	 the	 direct	 purification	 of	 rhApoA1	 from	
bioreactor	using	Direct	CST-I	in	Expanded	Bed	Adsorption	mode.	
	

Briefly,	 the	process	 involves	 the	direct	pumping	of	 the	crude	culture	 feed	 from	

the	bioreactor	on	to	an	expanded	Direct	CST-I	column	(Fig.	5.8).	During	binding,	

valve	V1	is	in	upward	flow	position	(as	indicated	in	the	figure),	valve	V2	is	closed	
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and	 the	 non-retained	 and	 wash	 fractions	 flow	 through	 out	 by	 valve	 V3.	

Subsequently,	after	all	binding	and	wash	is	complete,	the	bed	is	allowed	to	settle,	

and	 the	position	of	valve	V1	 is	 changed	 to	downward	 flow,	valve	V2	 is	opened	

and	Valve	V3	 is	 closed,	 permitting	 the	 eluted	 rhApoA1	protein	 to	 be	 collected.	

This	process	could	be	further	scaled	to	higher	industrial	levels,	maintaining	the	

same	parameters.	

	

	

5.4. CONCLUSION	
Scale-up	 in	 downstream	 processing	 is	 always	 a	 major	 challenge	 in	 the	 global	

biopharma	 industry.	 While	 technology	 for	 the	 scaling	 up	 of	 production	 of	

recombinant	 proteins	 in	 microbes	 has	 advanced	 by	 major	 scales,	 protein	

purification	 is	 still	 a	 bottleneck,	 which	 contributes	 to	 over	 80%	 of	 the	 drug	

manufacturing	 cost	 (OECD	 report).	 Thus,	 any	 improvement	 in	 the	 purification	

process	has	a	direct	impact	on	the	cost-effective	production	of	high	added	value	

proteins.	

	

This	chapter	has	successfully	demonstrated	the	effective	scale-up	of	production	

(to	5l	benchtop	bioreactor)	and	purification	(in	expanded	bed	adsorption	mode)	

of	rhApoA1	from	P.	pastoris.	The	adaptation	of	the	purification	process	to	work	

in	expanded	bed	mode	provides	ample	scope	for	incorporation	into	an	industrial	

process	 for	 the	 direct	 capture	 of	 rhApoA1	 directly	 from	 the	 production	 feed,	

without	any	sample	pretreatment/clarification.	
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Chapter	6	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Generation	of	ApoA1	variants:	
Milano	&	Paris	

	
	

6. 	
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6.1. INTRODUCTION	TO	VARIANTS	OF	ApoA1	
Over	 50	 naturally	 occurring	 mutations	 in	 ApoA1	 have	 been	 reported	 with	 a	

natural	 missense	 or	 in-frame	 deletion	 mutations,	 resulting	 in	 reduced	 HDL-C	

levels	and	in	certain	cases	amyloidosis	(Matsunaga	et	al.	2010).	The	documented	

variations	with	 their	 reported	pathophysiological	 effects	 have	been	detailed	 in	

Fig.	6.1.	

	

	
Figure	6.1.	Naturally	occurring	ApoA1	missense	mutations	or	in-frame	deletions	

classified	according	to	their	pathophysiological	outcomes.	
	

Several	of	these	mutations	have	been	earlier	discussed	briefly	in	Section	1.3.4.	In	

this	chapter,	the	focus	is	on	the	Cysteine	variants	(Milano	&	Paris)	of	ApoA1.	

	

6.1.1. IMPORTANCE	OF	ApoA1	MUTANTS:	MILANO	AND	PARIS	

ApoA1Milano	 and	 ApoA1Paris	 are	 both	 characterised	 by	 a	 single	 Arginine	 to	

Cysteine	 mutation	 at	 positions	 173	 and	 151	 respectively.	 Both	 variants	 have	

been	 reported	 in	 populations	with	 reduced	HDL-C	 levels	 but	 at	 the	 same	 time	

with	 reduced	 incidents	 of	 cardiovascular	 disorders.	 Wild	 type	 ApoA1	 has	 no	
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Cysteine	 residues	 in	 its	 amino	 acid	 sequence	 (Brewer	 Jr.	 et	 al.	 1978).	 The	

introduction	 of	 Cysteine	 in	 these	 two	 variants	 is	 hypothesised	 to	 increase	

stability	 of	 the	 resultant	 HDL	 molecule	 owing	 to	 homodimerization	 of	 ApoA1	

(Klon	et	al.	2000).	

	

6.1.2. STRUCTURAL	CHANGES	DUE	TO	POINT	MUTATION	AND	POTENTIAL	

IMPACT	ON	FUNCTION	

A	few	studies	have	investigated	the	effects	of	a	single	point	Arginine	to	Cysteine	

mutation	 in	ApoA1.	An	 in	vivo	 evaluation	of	ApoA1Milano	 revealed	 that	both	 the	

loss	 of	 Arginine	 as	 well	 as	 the	 addition	 of	 Cysteine	 contribute	 to	 its	 altered	

function	(Alexander	et	al.	2009).	Arginine-173	of	wild	type	ApoA1	is	potentially	

involved	in	an	inter-helical	salt	bridge	with	Glutamate-169,	which	is	disrupted	in	

the	Milano	variant,	 thereby	destabilising	 the	helix	bundle	 in	 turn	modifying	 its	

lipid	 binding	 characteristics.	 However,	 the	 exact	 mechanism	 by	 which	 the	

Cysteine	variants	are	of	better	quality	isn’t	yet	clear.	Hence,	in	this	thesis	work,	

the	 two	 variants,	 ApoA1Milano	 and	 ApoA1Paris	were	 generated	 to	 support	 future	

functional	studies	to	better	elucidate	the	mechanism	of	action	of	these	variants.	

	

	

6.2. EXPERIMENTAL	
6.2.1. MATERIALS	

Custom	 oligonucleotides	 for	 introducing	 site	 directed	 mutagenesis	 were	

synthesised	 from	 Eurogentec	 (Agners,	 France).	 Competent	 E.	 coli	 DH5α	 cells	

(NEB5α)	 were	 purchased	 from	 New	 England	 Biolabs	 (Évry,	 France).	 All	 other	

chemicals	 for	 buffers	 and	 reagents	 were	 from	 Sigma-Aldrich	 (Saint-Quentin	

Fallavier,	France).	

	

6.2.2. SITE-DIRECTED	MUTAGENESIS	OF	ApoA1	GENE	TO	GENERATE	MILANO	

&	PARIS	CONSTRUCTS	

Milano	 (R173C)	 and	 Paris	 (R151C)	 mutations	 were	 introduced	 by	 using	 the	

following	sets	of	primers:	

Milano-F:	5'	ACGAGCTGCGCCAGTGCTTGGCCGC	3'	

Milano-R:	5'	GCGGCCAAGCACTGGCGCAGCTCGT	3'	
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Paris-F:	5'	AGATGCGCGACTGCGCGCGCGCCCA	3'	

Paris-R:	5'	TGGGCGCGCGCGCAGTCGCGCATCT	3'	

The	 mutagenesis	 was	 carried	 out	 using	 QuickChange®	 II	 Site-Directed	

Mutagenesis	Kit	 (Agilent	Technologies),	 as	per	 the	manufacturer’s	 instructions.	

Briefly,	 a	 thermal	 cycling	 reaction	 was	 setup	 with	 template	 DNA	 (plasmid	

pPICZα-ApoA1),	 primers	 to	 incorporate	 mutations	 (Milano/Paris,	 as	 case	 may	

be),	10mM	dNTPs	and	high-fidelity	Pfu	DNA	polymerase	and	 then	subjected	 to	

thermal	cycling:	initial	denaturation	at	95ºC	for	30secs,	followed	by	18	cycles	of	

denaturation	 (95ºC,	 30secs),	 annealing	 (55ºC,	 1min),	 extension	 (72ºC,	 5mins).	

Subsequent	 to	 the	 thermal	 cycling,	 the	 template	 strand	 was	 digested	 by	DpnI	

treatment,	and	the	amplified	fragments	were	transformed	into	competentNEB5α	

cells	 and	 plated	 on	 LB-agar	 plates	 containing	 50µg/ml	 Zeocin.	 Plasmids	 were	

then	 isolated	 from	 transformed	E.	coli	 cells	 and	 verified	 for	mutations	by	DNA	

sequencing	(Millegen,	Labège,	France).	

	

6.2.3. TRANSFORMATION	AND	SCREENING	OF	rhApoA1-Milano	&	rhApoA1-

Paris	

After	verification	by	DNA-sequencing,	the	constructs	pPICZα-ApoA1-Milano	and	

pPICZα-ApoA1-Paris	were	linearised	by	digestion	with	PmeI,	and	electroporated	

independently	into	competent	P.	pastoris	X-33	cells	as	described	earlier	(Section	

2.2.3).	Subsequently,	transforments	were	screened	for	their	resistance	to	Zeocin	

up	 to	2mg/ml	and	verified	 for	 integration	by	colony	PCR	analysis	as	described	

earlier	(Section	2.2.4).	

	

6.2.4. FLASK-CULTURE	EXPRESSION	OF	rhApoA1-Milano	&	rh-ApoA1-Paris	

Three	 clones	 each	 of	 rhApoA1-Milano	 and	 rhApoA1-Paris	 were	 screened	 for	

their	 expression	 of	 the	 respective	 rhApoA1	mutant	 proteins.	 Single	 colonies	 of	

each	clone	were	 inoculated	 independently	 in	10ml	BMGY	containing	200μg/ml	

Zeocin	 as	 a	 preculture.	 	 After	 overnight	 growth	 at	 30°C	 and	 200rpm,	 the	

precultures	 were	 inoculated	 into	 140ml	 of	 fresh	 BMGY	 (buffered	 glycerol	

complex	media).	 After	 about	 24hrs,	when	 the	 cells	 had	 grown	 to	 a	 reasonable	

quantity	(based	on	their	OD	at	600nm),	they	were	centrifuged	and	resuspended	

in	150ml	of	BMMY	 (buffered	methanol	 complex	media).	 Induction	was	 carried	
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out	for	a	total	of	5	days;	with	methanol	being	replenished	every	24hrs	at	0.5%.	

At	 the	 end	 of	 the	 induction,	 comparative	 day-wise	 expression	 of	 select	 clones	

along	with	 the	 control	were	 analysed	 by	 dot-blot	 analysis	with	ApoA1-specific	

polyclonal	antibodies.	

	

6.2.5. SCALE-UP	OF	EXPRESSION	IN	2L	BENCHTOP	BIOREACTOR	

One	 clone	 each	 from	 the	 pool	 of	 rhApoA1-Milano	 and	 rhApoA1-Paris	 were	

further	subjected	to	expression	studies	in	a	2l	benchtop	bioreactor.	

	

First,	 a	 single	 colony	 was	 inoculated	 and	 grown	 in	 baffled	 flasks	 containing	

100ml	 of	 buffered	 glycerol-complex	 medium	 (BMGY,	 100mM	 potassium	

phosphate	buffer,	pH	6.0,	13.4g/L	YNB,	4x10-4g/L	biotin,	10g/L	glycerol	and	150	

µg/mL	Zeocin™)	up	 to	an	OD	(600nm)	of	4-8,	and	 this	was	 inoculated	 in	2L	of	

BMGY	 in	 a	 BIOSTAT®	 Bplus	 laboratory	 2l	 bioreactor	 with	 a	 starting	 OD600	 of	

about	 0.3.	 The	 temperature	 and	 pH	 were	 maintained	 at	 30°C	 and	 6.0	

respectively,	 and	 dissolved	 oxygen	 level	was	maintained	 at	 15%	 saturation	 by	

regulating	 aeration	 and	 agitation	 in	 a	 cascade	 manner.	 After	 complete	

consumption	of	glycerol	in	the	medium	(verified	by	standard	glycerol	assay;	data	

not	shown),	a	methanol	fed-batch	phase	was	initiated	by	adding	methanol	every	

12hrs	 to	 a	 final	 concentration	 of	 0.5%.	 Samples	 were	 drawn	 every	 24hrs	 to	

follow	 the	 growth	 profile	 and	 protein	 production.	 Protein	 production	 was	

monitored	 by	 SDS-PAGE	 analysis.	 After	 120hrs	 of	 induction,	 the	 culture	 was	

harvested	and	the	cell-free	broth	was	frozen	at	-80°C.	

	

6.2.6. PRELIMINARY	PURIFICATION	OF	rhApoA1-Milano	&	rhApoA1-Paris	

Purification	 of	 rhApoA1-Milano	 and	 rhApoA1-Paris	 were	 evaluated	 on	 two	

mixed-mode	 resins:	 HEA	 HyperCel	 (Pall	 Lifesciences)	 and	 CaptoMMC	 (GE	

Healthcare).	The	experimental	conditions	were	similar	to	that	optimised	for	the	

purification	of	wild	type	rhApoA1	(Section	3.3.2).	
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6.3. RESULTS	
6.3.1. GENERATION	OF	rhApoA1-Milano	&	rhApoA1-Paris	

The	 construct	 pPICZα-ApoA1	 was	 subjected	 to	 site-directed	 mutagenesis	 as	

described	in	the	experimental	section,	and	the	resulting	clones	(pPICZα-ApoA1-

Milano	 and	 pPICZα-ApoA1-Paris)	 were	 verified	 by	 DNA	 sequencing.	 Upon	

transformation	 into	 competent	 P.	 pastoris	 X-33	 cells,	 transformants	 were	

screened	for	their	resistance	to	Zeocin	up	to	2mg/ml	(Fig.	6.2).	

	

	 	
Figure	6.2.	 Screening	 of	 transformants	 of	 (a)	 rhApoA1-Milano	 and	 (b)	 rhApoA1-
Paris	on	YPD	plates	containing	2mg/ml	Zeocin.	
	

Clones	that	showed	consistent	resistance	to	2mg/ml	Zeocin	were	further	verified	

for	integration	of	the	mutated	ApoA1	gene	by	colony	PCR	analysis	(Fig.	6.3).	

	 	
Figure	 6.3.	 Colony	 PCR	 analysis	 of	 P.	 pastoris	 transformants	 with	 (a)	 rhApoA1-
Milano	and	(b)	rhApoA1-Paris	constructs	
	

A	 B	
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Three	colonies	each	from	Milano	and	Paris	transformants	were	further	screened	

for	preliminary	expression	studies	in	shake	flasks.	

	

6.3.2. FLASK-CULTURE	EXPRESSION	OF	rhApoA1-Milano	&	rh-ApoA1-Paris	

Three	 colonies	 transformed	 with	 ApoA1-Milano	 gene	 (A7,	 B6,	 E4)	 and	 three	

colonies	 transformed	 with	 ApoA1-Paris	 gene	 (A2,	 B3,	 E1)	 were	 subjected	 to	

preliminary	expression	studies	in	shake	flasks,	along	with	a	vector	transformed	

P.	pastoris	clone	as	a	negative	control	(ZαA)	as	described	in	the	methods	section.	

The	OD600nm	of	cells	were	periodically	monitored	for	growth,	and	samples	drawn	

at	 various	 time	 points	 were	 analysed	 by	 dot-blot	 analysis	 using	 anti-ApoA1	

polyclonal	antibodies.	

	

	

	

	
Figure	6.4.	Growth	profile	(OD600nm)	of	
Milano	&	Paris	clones	on	shake	flask	

cultures	

	 Figure	6.5.	Dot-blot	analysis	
of	Milano	&	Paris	clones	upon	

five	days	of	induction	
	

All	 six	 clones	 exhibited	 consistent	 growth	 as	 evidenced	 by	 the	 absorbance	 at	

600nm	 (Fig.	 6.4).	 Production	 of	 rhApoA1	 variants	 was	 confirmed	 by	 dot-blot	

analysis	 (Fig.	 6.5),	 with	 an	 absence	 of	 signal	 prior	 to	 induction	 and	 with	 a	

constant	rise	 in	 intensity	of	signal	with	 increasing	duration	of	 induction.	There	

was	no	signal	corresponding	to	the	vector-transformed	X-33	cells	(Fig	6.5	–	lane	

C),	verifying	the	specificity	of	the	polyclonal	antibodies	used	for	the	detection	of	

ApoA1	 and	 its	 variants.	 Purified	 wild	 type	 rhApoA1	 (Fig.	 6.5	 –	 position	 ‘+’)	

showed	a	clear	signal,	further	validating	the	obtained	results.	
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6.3.3. SCALE-UP	OF	EXPRESSION	IN	2L	BENCHTOP	BIOREACTOR	

Based	 on	 the	 expression	 profiles	 of	 the	 three	Milano	&	 three	 Paris	 cultures	 in	

shake	 flask	experiments,	 one	 clone	each	 (Milano:	E4	&	Paris:	E1)	were	 further	

scaled-up	 to	be	produced	 in	a	2l	benchtop	bioreactor.	The	culturing	conditions	

and	parameters	were	 similar	 to	 that	optimised	 for	 the	production	of	wild	 type	

rhApoA1,	as	explained	in	methods	(Section	6.2.5).	In	both	cases,	the	temperature	

and	pH	were	maintained	at	30ºC	and	6.0,	 respectively.	Dissolved	oxygen	 levels	

were	maintained	at	15%,	by	a	combination	of	agitation	and	aeration	systems	in	a	

cascading	manner.	After	the	first	24hrs,	and	upon	consumption	of	glycerol	in	the	

medium,	 induction	was	 carried	 out	 by	 addition	 of	 0.5%	methanol	 every	 12%.	

Samples	were	drawn	at	periodic	intervals	for	analysis	by	12%	SDS-PAGE.	

	

	 	
Figure	6.6.	 (a)	 Expression	profile	 and	 (b)	 SDS-PAGE	 analysis	 of	 rhApoA1-Milano	
clone	E4	on	2l	benchtop	bioreactor.	

	

	 	
Figure	6.7.	(a)	Expression	profile	and	(b)	SDS-PAGE	analysis	of	rhApoA1-Paris	
clone	E1	on	2l	benchtop	bioreactor.	
	

The	 rhApoA1-Milano	 clone	 E4	 displayed	 consistent	 growth	 until	 day-3,	 after	

which	 there	 was	 a	 drop	 in	 agitation	 (Fig.	 6.6(a)),	 indicating	 a	 reduced	

A	 B	

B	A	
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metabolism	 of	 cells.	 This	 was	 substantiated	 by	 the	 reduced	 intensity	 of	 band	

upon	 12%	 SDS-PAGE	 analysis	 (Fig.	 6.6(b)),	 hinting	 reduced	 production	 levels	

and	dilution	of	rhApoA1-milano	content	 in	the	medium.	Microscopic	 inspection	

of	the	cells	on	day	5	of	expression	showed	no	contamination,	leading	the	reason	

for	 reduced	 metabolism	 and	 recombinant	 protein	 production	 towards	 other	

possible	factors	(more	rapid	substrate	consumption,	etc).	

	

The	rhApoA1-Paris	 clone	E1,	on	 the	other	hand	displayed	a	model	profile	 (Fig.	

6.7(a)),	with	 complete	 consumption	 of	 substrate	 every	 12hrs,	 indicated	 by	 the	

rise	 in	 agitation	 and	 minor	 increases	 in	 dissolved	 oxygen	 in	 every	 12-hour	

period.	This	was	also	supported	by	the	corresponding	12%	SDS-PAGE	analysis,	

revealing	maximum	production	on	day	4	of	induction	(Fig.	6.7(b)).	

	

The	two	batches	of	production	confirmed	the	successful	scale-up	of	production	

of	 rhApoA1-Milano	and	rhApoA1-Paris.	 Subsequently,	purification	of	 these	 two	

proteins	were	attempted	based	on	optimised	methods	for	wild	type	rhApoA1.	

	

6.3.4. BINDING	PATTERNS	OF	rhApoA1-Milano	

Recovery	of	rhApoA1-Milano	was	first	attempted	with	HEA	HyperCel,	using	the	

conditions	 optimised	 earlier	 for	 wild	 type	 rhApoA1.	 Raising	 the	 pH	 of	 the	 P.	

pastoris	 expression	broth	 containing	 rhApoA1-Milano	 caused	precipitation	of	 a	

fraction	of	the	target	protein	(Fig.	6.8(b),	lane	‘ppt’).	

	

	 	
Figure	6.8.	 Purification	 of	 rhApoA1-Milano	by	HEA	HyperCel.	 (a)	 Chromatogram	
and	(b)	12%	SDS-PAGE	analysis	of	peak	fractions	
	

B A 
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The	 chromatographic	 profile	 obtained	 with	 rhApoA1-Milano	 (Fig.	 6.8(a))	 was	

similar	 to	 that	 of	 wild	 type	 rhApoA1.	 Nevertheless,	 the	 protein	 (rhApoA1-

Milano)	was	more	strongly	bound	and	was	eluted	only	at	pH	3.0	(Fig.	6.8(b),	lane	

A3).	This	stronger	binding	does	indicate	towards	an	altered	conformation	of	the	

folded	rhApoA1-Milano	protein	with	increased	hydrophobicity,	vis-à-vis	its	wild	

type	counterpart.	Although	the	target	protein	was	recovered	in	part	by	elution	at	

pH	3.0,	 there	were	several	other	protein	bands	present	 in	 the	 lane	(Fig.	6.8(b),	

lane	A3)	which	required	further	polishing	prior	to	recovering	the	protein.	

	

Secondly,	 the	mixed	mode	 resin	 CaptoMMC	was	 evaluated	 for	 the	 recovery	 of	

rhAPoA1-Milano.	Binding	for	all	CaptoMMC	experiments	were	at	pH	4.5.	It	is	well	

documented	 that	 both	 pH	 and	 conductive	 strength	 of	 the	 microenvironment	

strongly	dictate	 binding	 to	multi-modal	 ligands	 (Pezzini	 et	 al.	 2015).	Hence,	 in	

this	study,	two	strategies	were	tested	for	the	recovery	of	rhApoA1-Milano	from	

P.	pastoris	expression	broth:	(i)	by	raising	the	pH	while	maintaining	conductivity,	

followed	 by	 a	 rise	 in	 conductivity;	 and	 (ii)	 by	 eliminating	 the	 conductivity,	

followed	by	a	rise	in	pH.	

	

	 	
Figure	6.9.	Purification	of	rhApoA1-Milano	by	CaptoMMC.	(a)	Chromatogram	and	
(b)	12%	SDS-PAGE	analysis	of	 load	 (L),	non-retained	 (FT),	 and	peak	 fractions	at	
pH	7.0	+	250mM	NaCl	(#1),	pH	7.0	+	2M	NaCl	(#2)	&	NaOH	wash	(#3).	
	

By	 the	 first	 approach,	 the	 bound	 rhApoA1-Milano	was	 efficiently	 recovered	by	

raising	 the	 pH	 without	 eliminating	 the	 salt	 (Fig.	 6.9,	 peak	 #1).	 However,	 a	

number	 of	 additional	 bands	were	 present,	which	 required	 further	 polishing	 in	

order	 to	 obtain	 our	 target	 protein	 in	 a	 pure	 form.	 A	 second	 concern	 was	 the	

B A 
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strong	 binding	 of	 a	 population	 of	 rhApoA1-Milano	 to	 the	 resin,	 which	 was	

eliminated	only	upon	regeneration	with	0.5M	NaOH	(Fig.	6.9,	peak	#3).	

	

	 	
Figure	6.10.	Purification	of	rhApoA1-Milano	by	CaptoMMC.	(a)	Chromatogram	and	
(b)	12%	SDS-PAGE	analysis	of	load	(L),	non-retained	(FT),	and	peak	fractions	at	
pH	7.0	(#1),	pH	8.5	(#2)	&	NaOH	wash	(#3).	
	

In	 the	 second	 approach	 (Fig.	 6.10),	 the	 elimination	 of	 salt	 did	 not	 support	 the	

consistent	binding	of	rhApoA1-Milano	to	the	CaptoMMC	resin,	evidenced	by	the	

loss	 of	 certain	 amount	 of	 protein	 in	 the	 non-retained	 fraction	 (Fig.	 6.10(b),	

Fraction	‘FT’).	As	observed	with	the	first	approach,	there	was	a	small	fraction	of	

the	target	protein	which	bound	stronger	to	the	resin,	evidenced	by	a	faint	signal	

in	the	elution	fraction	at	pH	8.5	(Fig.	6.10,	Fraction	#2).	

	

The	 differences	 in	 binding	 patterns	 of	 rhApoA1-Milano	 vis-à-vis	 wild	 type	

rhApoA1	to	both	HEA	HyperCel	and	CaptoMMC	resins	strongly	hint	towards	an	

increased	 hydrophobicity	 of	 rhApoA1-Milano.	 The	 stronger	 binding	 in	 HEA	

HyperCel,	and	the	salt-dependent	binding	with	CaptoMMC	are	both	indicative	of	

hydrophobic	 interactions,	 of	 an	 increased	 strength	 in	 comparison	 to	 the	 wild	

type	rhApoA1	protein.	A	second	factor	to	note	is	the	presence	of	two	populations	

of	 rhApoA1-Milano,	 one	 exhibiting	 weak	 interactions	 with	 CaptoMMC	 and	 the	

other	 of	 relatively	 stronger	 nature.	 It	 would	 be	 of	 interest	 to	 compare	 the	

functional	 activities	 of	 both	 fractions	 of	 rhApoA1-Milano	 to	 better	 understand	

their	 folding-related	 functional	 changes.	 Nevertheless,	 further	 polishing	 is	

required	to	recover	the	rhApoA1-Milano	protein	in	its	purified	form	for	further	

analysis.	
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6.3.5. BINDING	PATTERNS	OF	rhApoA1-Paris	

The	binding	profile	of	rhApoA1-Paris	was	evaluated	on	both	HEA	HyperCel	and	

CaptoMMC	chromatographic	ligands.	

	

	 	
Figure	 6.11.	 Purification	 of	 rhApoA1-Paris	 by	 HEA	HyperCel.	 (a)	 Chromatogram	
and	(b)	12%	SDS-PAGE	analysis	of	load,	non-retained	and	peak	fractions.	
	

As	 observed	 earlier	 with	 rhApoA1-Milano,	 raising	 the	 pH	 of	 the	 P.	 pastoris	

expression	 broth	 containing	 the	 rhAPoA1-Paris	 protein	 formed	 a	 precipitate	

(Fig.	 6.11(b),	 lane	 ‘ppt’),	 containing	 the	 target	 protein.	 However,	 most	 of	 the	

rhApoA1-Paris	present	 in	the	load	was	washed	off	 in	the	non-retained	fraction,	

and	 a	 small	 amount	 of	 bound	 rhApoA1-Paris	 was	 recovered	 at	 pH	 4.0	 (Fig.	

6.11(b),	lane	‘A1’).	

	

	 	
Figure	6.12.	Purification	of	 rhApoA1-Paris	by	CaptoMMC.	 (a)	Chromatogram	and	
(b)	12%	SDS-PAGE	analysis	of	 load	 (L),	non-retained	 (FT),	 and	peak	 fractions	at	
pH	7.0	+	250mM	NaCl	(#1),	pH	7.0	+	2M	NaCl	(#2)	&	NaOH	wash	(#3).	
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Figure	6.13.	Purification	of	 rhApoA1-Paris	by	CaptoMMC.	 (a)	Chromatogram	and	
(b)	12%	SDS-PAGE	analysis	of	 load	 (L),	non-retained	 (FT),	 and	peak	 fractions	at	
pH	5.0	(#1),	pH	7.0	(#2),	pH	8.5	(#3)	&	NaOH	wash	(#4).	
	

While	 evaluating	 CaptoMMC	 for	 the	 capture	 of	 rhApoA1-Paris,	 two	 strategies	

were	envisaged	(similar	to	previous	section).	Binding	was	carried	out	at	pH	4.5,	

with	250mM	NaCl	(moderate	conductivity)	in	all	cases.	The	following	two	elution	

strategies	were	evaluated:	(i)	rise	in	pH	and	subsequently	conductivity;	and	(ii)	

elimination	of	salt	followed	by	a	rise	in	pH.	

	

By	 the	 first	 strategy,	 all	 rhApoA1-Paris	 in	 the	P.	pastoris	 expression	broth	was	

captured	 by	 the	 ligand,	 however,	 with	 varying	 degrees	 of	 binding.	 This	 was	

substantiated	by	the	presence	of	the	bound	rhApoA1-Paris	in	all	elution	fractions	

(Fig.	 6.12(b)).	 Yet	 again,	 numerous	 other	 bands	 were	 present	 in	 each	 elution	

fraction	demanding	further	polishing.	

	

The	alternate	strategy	of	eliminating	salt	and	subsequently	rising	the	pH	proved	

to	 be	 more	 effective	 in	 the	 recovery	 of	 rhApoA1-Paris	 from	 the	 P.	 pastoris	

expression	broth.	The	bound	protein	was	recovered	in	the	elution	step	at	pH	8.5,	

again	indicating	a	stronger	binding	to	CaptoMMC	than	wild	type	rhApoA1.	

	

Despite	 the	 intriguing	chromatographic	profiles	of	 rhApoA1-Paris	on	both	HEA	

HyperCel	 and	 CaptoMMC,	 further	 polishing	 is	 required	 to	 recover	 the	 target	

protein	in	its	pure	form.		
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6.4. CONCLUSION	
In	this	chapter,	the	two	Cysteine	variants	of	ApoA1:	Milano	and	Paris	have	been	

successfully	 generated.	 There	 was	 a	 two-fold	 objective	 in	 producing	 these	

variants:	

(i) Generation	of	reagents	 for	 further	 functional	comparison	with	wild	 type	

ApoA1	

(ii) Setting	up	a	process	for	production	of	rhApoA1-Milano	and/or	rhApoA1-

Paris	for	potential	therapeutic	applications	

	

The	 expression	 profiles	 and	 scale-up	 of	 expression	 of	 the	 two	 recombinant	

variants	were	successful,	 and	similar	 to	 that	obtained	with	wild	 type	rhApoA1.	

Consistent	growth	and	production	was	observed	in	the	case	of	both	variants,	as	

validated	by	dot-blot	and	SDS-PAGE	analyses.	

	

Despite	 minor	 differences	 in	 their	 sequences	 (single	 point	 Cysteine	 variants),	

this	 work	 has	 reported	 a	 significant	 difference	 in	 binding	 profiles	 of	 both	

rhApoA1-Milano	 and	 rhApoA1-Paris	 to	 the	mixed-mode	 ligands	HEA	HyperCel	

and	CaptoMMC.	The	rhApoA1-Milano	exhibited	an	enhanced	hydrophobicity,	as	

evidenced	by	 its	 stronger	 retention	 on	 the	HEA	HyperCel	 ligand.	 Furthermore,	

the	binding	of	all	 three	proteins	–	wild	 type,	Milano	&	Paris	variants	of	ApoA1	

seem	 to	 be	 defined	 by	 local	 interactions	 of	 exposed	 hydrophobic	 pockets	with	

the	mixed-mode	 ligands,	 which	 are	 defined	 by	 the	 pH	 and	 conductivity	 of	 the	

surrounding	conditions.	

	

Both	variants	(rhApoA1-Milano	and	rhApoA1-Paris)	require	further	polishing	to	

recover	them	in	homogeneity	for	future	functional	analyses.	The	bioprocess	for	

the	production	of	these	two	variants	could	pave	way	for	a	more	efficient	method	

for	producing	them	for	eventual	therapeutic	applications.	
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This	 thesis	 has	 worked	 towards	 the	 development	 of	 a	 method	 for	 efficiently	

producing	 wild	 type	 and	 variants	 of	 human	 apolipoprotein	 A-I	 in	 P.	 pastoris.	

Production	of	recombinant	ApoA1	has	been	previously	described	using	different	

systems.	The	bacterial	system	E	coli	presented	the	disadvantage	of	instability	of	

mRNA	 and	 rapid	 degradation	 of	 mature	 ApoA1	 (Isacchi	 et	 al.	 1989).	 Another	

disadvantage	was	 the	 use	 of	 tags	 to	 facilitate	 purification	 steps	 (Schmidt	 et	 al.	

1997;	Bergeron	et	al.	1997):	despite	the	presence	of	these	tags,	the	purification	

steps	 require	 many	 treatment	 such	 as	 cell	 lysis,	 protein	 precipitation	 with	

ammonium	 sulphate,	 delipidation,	 endotoxin	 clearance	 at	 the	 end	 of	 the	

purification,	 in	 addition	 to	 an	 enzymatic	 cleavage	 of	 the	 affinity	 tag.	 In	 some	

cases	 the	 protein	 is	 mainly	 found	 into	 inclusion	 bodies,	 which	 further	

complicates	the	purification	strategy	(Angarita	et	al.	2014).	

	

Another	 reported	 approach	 was	 the	 production	 of	 Apolipoprotein	 A-I	 using	

baculovirus-insect	cell	expression	system	(Moguilevsky	et	al.	1994).	In	this	case,	

it	was	necessary	to	express	 it	 in	the	proapolipoprotein	form	in	order	to	ensure	

the	secretion	of	the	protein.	Without	the	proapoA-I	sequence,	most	of	the	mature	

apolipoprotein	A-I	was	 found	 in	 the	 cytoplasm	 and	 only	 a	 small	 proportion	 of	

ApoA-I	was	secreted	into	the	culture	medium.	

	

The	 production	 of	 Apolipoprotein	 A-I	 has	 also	 been	 evaluated	 in	 Chinese	

Hamster	Ovary	Cells	(Schmidt	et	al.	1997).	However,	typical	yields	were	only	0.5	

to	 1	 µg/mL	 Apolipoprotein	 A-I	 was	 secreted	 by	 CHO	 in	 a	 serum-free	 culture	

medium,	 and	upto	 10	µg/mL	 after	 several	 optimisation.	Higher	 concentrations	

were	also	achieved,	however,	immunoblot	analysis	revealed	a	carboxy-Terminal	

proteolysis.	

	

Few	 studies	 have	 used	 the	 Pichia	 pastoris	 expression	 system	 to	 produce	

apolipoprotein	A-I	(Feng	et	al.	2006).	In	the	present	study,	the	focus	was	on	the	

production	 of	 apolipoprotein	 A-I	 exploiting	 P.	 pastoris’	 ability	 to	 produce	 and	

secrete	 recombinant	 proteins	 with	 high	 yield.	 A	 high	 expressing	 clone	 was	

selected	 after	 screening	 with	 zeocin,	 and	 production	 yields	 of	 20	 mg/L	 was	
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achieved	 upon	 optimization	 of	 methanol	 induction	 phase.	 This	 production	 is	

significantly	higher	than	that	reported	in	CHO	cells.	

	

For	 any	 production/purification	 process	 to	 be	 industrially	 viable,	 the	 focus	 is	

always	 on	 minimising	 the	 number	 of	 processing	 steps	 while	 maximising	

recovery/yield.	 In	 this	 study,	 the	 rhApoA1	 has	 been	 expressed	 without	 the	

addition	 of	 any	 affinity	 tag	 so	 that	 it	 may	 be	 generated	 close	 to	 its	 native	

conditions,	in	turn	reducing	the	number	of	post-processing	steps	like	proteolytic	

cleavage	to	remove	tags,	etc.	

	

Eventually,	a	scalable	 two-step	method	has	been	developed:	using	mixed-mode	

chromatography	to	capture	the	expressed	rhApoA1	in	continuous	mode	without	

any	pre-treatment	or	clarification	followed	by	an	anion	exchange	polishing	step,	

which	 demonstrates	 greater	 advantages	 in	 terms	 of	 efficiency	 and	 number	 of	

processing	steps	in	comparison	to	the	previously	published	12-step	method	with	

lower	scalability	(Feng	et	al.	2006).	

	

In	addition,	two	naturally	occurring	variants	of	rhApoA1	(Milano	and	Paris)	have	

been	 generated	 and	 produced	 in	 2	 litre	 benchtop	 bioreactors.	 Further	

optimisation	and	process	development	is	required	before	scaling	up	to	produce	

them	as	therapeutic	proteins.	

	

After	 the	 generation	 of	 the	 variants	 of	 rhApoA1,	 comprehensive	 comparative	

studies	(biochemical	and	in	vivo)	would	help	understand	better	the	mechanisms	

by	which	the	Milano	and	Paris	variants	are	more	protective.	 In	conclusion,	 this	

thesis	has	worked	towards	setting	a	foundation	for	further	developmental	work	

to	be	done	in	order	to	generate	therapeutic	ApoA1	molecules.	
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