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Glossary 
 

a: Lattice parameter, Å 

A: Geometric surface 

AL: Active layer 

BOR Borohydride oxidation reaction  

BP:  Bipolar plate  

b:  Tafel slope  

Cdl:  Double layer capacitance, C  

CA:  Chronoamperometry 

CB:  Carbon black 

CCE CO2 current efficiency 

CV: Cyclic volammetry 

dElec: Average cristallite size deduced from ECSA estimation, nm 

dhkl:  Distance between two adjacent lattice plans (hkl), Å 

dN: Number-averaged diameter, nm 

dS: Surface-averaged diameter, nm 

dV: Volume-averaged diameter, nm 

dXRD: Average nanoparticle size (XRD) deduced from XRD data, nm 

DEFC:  Direct ethanol fuel cell 

DEMS:  Differential electrochemical mass spectrometry 

Dx:  Diffusion coefficient of x-species, cm
2
 s

-1
 

E:  Electrical potential, V 

E°:  Electrical standard potential, V 

Ea:  Activation energy, J mol
-1

 

ECSA: Electrochemical active surface area, cm
2
 

EG: Ethylene glycol 

EOR:  Ethanol oxidation reaction 

F:  Faraday constant (96485 C mol
-1

) 

FC: Fuel cell 

GC:  Glassy carbon 

GDL:  Gas diffusion layer 

(hkl):  Miller indices 

HOR Hydrogen oxidation reaction 

I:  Current density, A cm
-2

 

ICP-AES:   Inductively coupling plasma – Atomic emission spectroscopy 

mx:  Mass of x-species, g 

Mx:  Molar mass of x-species, g mol
-1

 

MEA:  Membrane electrode assembly  

MSCV Mass spectrometric cyclic voltammetry 
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ne-:  Number of electrons 

ORR Oxygen reduction reaction 

PAFC:  Phosphoric acid fuel cell 

PEMFC:  Proton exchange membrane fuel cell 

PTFE:  Polytetrafluoroethylene 

R:  Perfect gas constant (8.315 J K
-1

) 

RΩ:  Ohmic resistance, Ω 

RHE:  Reversible hydrogen electrode 

SEM:  Scanning electron microscopy 

T:  Temperature, °C 

TEM:  Transmission electron microscopy 

TGA:  Thermogravimetry analysis 

We:  Electrical work, J 

[X]:  Concentration of x-species, mol L
-1

 

Xad:  Adsorbed X-species 

XRD:  X-ray diffraction 

∆Gr°:  Gibbs free energy, J mol
-1

 

∆Hr°:  Standard reaction enthalpy, J mol
-1

 

∆S°:  Standard entropy, J mol
-1

 

δ:  Diffusion layer thickness, cm 

Ɛ:  Yield, % 

η:  Overpotential, V 

λ:  Wavelength, nm 

θ:  Angle, ° 

ν:  Scan rate, mV s
-1
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Chapter I.  

 

Introduction on the Direct Ethanol Fuel Cell 
 

 

A brief summary of the history of fuel cells is broached in this section followed by an 

overview of the fuel cell components and the reactions occurring in the direct ethanol fuel 

cell. 
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I.1. Context 

 

 The depletion of fossil fuel resources and the environmental damages caused by their 

exploitation have recently raised international concerns as can evidence the establishment of 

the Kyoto protocol in 1998. On the one hand, fossil fuels now constitute about 80 % of the 

world energy demand. But their resources are becoming scarcer, thus creating a situation 

where the demand will one day exceed the production [1]. On the other hand, environmental 

damages induced by the exploitation of fossil fuels are already resulting in phenomena such 

as global warming, climate change and local destruction of the ozone layer. The ever-growing 

energy demand calls for a greater effort and new advances in energetics. 

 In that global energetic context, fuel cells (FC) constitute a high prospect as alternative 

power source. Their ability to generate electricity from electrochemical reactions makes them 

exempted from the Carnot cycle limitations. As such, the fuel cell can benefit from higher 

energetic efficiency compared to internal combustion engines or thermal power plants. 

Moreover, the use of hydrogen (ideally of renewable origin) and oxygen as fuel and oxidant 

makes fuel cells the cleanest energy source. 

 Public projects in cooperation with industry partners have started to be implemented 

for the last 5-10 years in order to facilitate the introduction of fuel cells on the market. For 

instance, the Japanese government started in 2009 its Ene-Farm scheme, which consists in 

deploying adapted fuel cell systems for domestic micro combined heat and power (micro-

CHP). As main effect, the scheme permitted selling the largest amount of fuel cell units in the 

world for a single purpose. 20 000 units were sold in 2012, that is to say 90% more than in 

2011, and 500 000 were planned to be sold in 2013. More precisely, 80 % PEMFC and 20 % 

SOFC systems represent so far the fleet distribution. The fuel cells are developed by 

Panasonic in collaboration with Tokyo Gas. A second example is the development of 

hydrogen fuel stations in Europe by the horizon of 2015. It is well known now that 

automakers (Daimler, Ford,  General Motors, Honda, Hyundai-Kia, Renault-Nissan and 

Toyota) will start commercializing fuel cell electric vehicles (FCEV) in Europe, especially in 

Germany, by the horizon of 2015 [2]. But the proper operation of FCEV relies entirely on the 

implementation of hydrogen refilling stations: the largest European project (ca. 40 million €) 

of the sort, HyFive, aims at implementing no more than 110 hydrogen refueling stations 

dispatched in six European cities (Bolzano, Copenhagen, Innsbruck, London, Munich, 

Stuttgart). The project is achieved in cooperation with gas suppliers (OMV, Linde, ITM 

Power, Air products…) and auto manufacturers (BMW, Daimler, Honda, Hyundai and 

Toyota) [3].  

 

 

I.2. Brief history of fuel cells 

 

 After the discovery of the working principle of the fuel cell by C.F. Schönbein in 

1838, the first fuel cell concept was invented by W.R. Grove in 1839, who succeeded in 
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producing electricity from hydrogen oxidation and oxygen reduction at two platinum stripes 

dipped in an sulfuric acid solution. Despite this fundamental (but premature?) discovery, no 

further development for the industry was carried out, as heat conversion systems, combustion 

and steam engines were significantly more performent at that time. 

 The first real fuel cell system was the alkaline fuel cell (AFC) of F.T. Bacon (an 

English mechanical engineer), which generated a usable current density of 13 mA cm
-2 

at 0.89 

V cell voltage. Following developments enabled him to assemble 6 kW stacks for forklifts 

and welding equipment. Alkaline fuel cells were then developed for space applications where 

batteries were found too heavy. They were embarked between 1961 and 1970 for the Apollo 

missions and later in the space shuttles, both for electric power generation and drinkable 

water processing. 

 In parallel W.T. Grubb, engineer at General Electric, developed the first proton 

exchange membrane fuel cell (PEMFC) in 1955. But its performance compared to the AFC 

was modest because of the high degradation rate and low durability of the membrane 

(sulfonated polystyrene). The breakthrough of Dupont in membranes with its Nafion
®
 

ionomer in 1955 attracted once again attention on PEMFC systems and was followed by other 

innovations: elaboration in the 80s of carbon-supported platinum electrocatalysts and the 

combined structuration of composite thin-film electrodes blended by such Pt/C and ionomer 

[4]. 

 Direct alcohol fuel cells (DAFCs) do not have a so long history as the PEMFCs and 

the AFCs. Up to now, only the direct methanol fuel cell (DMFC), among the different 

DAFCs, is commercialized. The advantage of this fuel cell in regards to AFCs or PEMFCs is 

that the oxidation of a methanol molecule can theoretically generate up to 6 e
-
, that is to say 

three times more than hydrogen. As such, DAFCs present very large volumic energy 

densities, combined with an easier fuel storage and transportation. However, numerous 

obstacles hinder their performance such as the fuel (e.g. methanol) cross-over, electrodes 

contamination by carbon monoxide and, above all, the high fuel oxidation activation 

overpotential. K. Kordesch and A. Marko were the first to suggest the direct methanol fuel 

cell in 1951. Nonetheless first applications did not see daylight before the 1960s and a 100 W 

system developed by Esso Research and Engineering for the US army. Since then, multiple 

DMFC systems have been developed over the past 50 years, such as the first DMFC using 

platinum and ruthenium at the anode by Hitachi in 1983 for golf cart application or, more 

recently, a 3kW DMFC for go-cart by Daimler in 2001, or a 100 mW self-breathing DMFC 

for mobile phones and MP3 players from Toshiba in 2004. Lately, a 7 kW DMFC hybrid 

system developed for forklift applications demonstarted 20 000 h of lifetime, well above the 

economic system requirements (10 000 h) [5].  

 A variety of fuel cells has been developed so far, differing from their materials, their 

temperature range, sometimes their electrochemical reactions... They are ranked in five 

different categories according to their type of electrolyte: PEMFC, AFC, PAFC, MCFC and 

SOFC (see Table 1). The DAFC (among which the DMFC) is included in the PEMFC 

category, as the membrane remains the same. 
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 The present work focuses on a special type of PEMFC, which is directly fed with 

ethanol: the direct ethanol fuel cell (DEFC). 

 

Table 1. Classification of fuel cells 

Fuel cell electrolyte 
Operating 

temperature 
Electrode reactions 

PEMFC 
Polymer membrane 

ionomer 
60 - 100 °C 

Anode: H2 → 2 H
+
 + 2 e

-
 

Cathode: ½ O2 + 2 H
+
 + 2 e

-
 → H2O 

    

AFC 
Potassium hydroxide 

aqueous solution 
80 - 200 °C 

Anode: H2 + 2 OH
-
 → 2 H2O + 2 e

-
 

Cathode: ½ O2 + H2O + 2 e
-
 → 2 OH

-
 

    

PAFC 
Phosphoric acid 

gelified solution 
150 - 200 °C  

Anode: H2 → 2 H
+
 + 2 e

-
 

Cathode: ½ O2 + 2 H
+
 + 2 e

-
 → H2O 

    

MCFC 
Lithium/Potassium 

carbonate melts 
600 - 700 °C 

Anode: H2 + CO3
2-

 → H2O + CO2 + 2 e
-
 

Cathode: ½ O2 + CO2 + 2 e
- 
→ CO3

2-
 

    

SOFC 
Yittra stabilized 

zirconium oxide 
800 - 1000 °C 

Anode: H2 + O
2-
→ H2O + 2 e

-
 

Cathode: ½ O2 + 2 e
-
 → O

2-
 

 

 

I.3. Overview of a fuel cell 

 

I.3.1.  Overall operation 

 

 A fuel cell is a power generator which converts chemical energy (contained in the 

fuel) in electrical energy. It is composed of a positive pole (cathode), a negative pole (anode) 

and a membrane (or electrolyte) that separates them. A singular difference with a battery is 

that the fuel is not stored inside the fuel cell, as for the battery, but outside; it is therefore 

regularly (on-time) provided by a continuous flow inward the system. Typical reactants of a 

fuel cell are hydrogen (anodic fuel or reducer) and oxygen (cathodic fuel or oxidant): this 

situation corresponds to the PEMFC. However, in the case of the DEFC, the anodic fuel is 

ethanol. An overview of the working operation of a fuel cell is given in Fig. 1. 
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Fig. 1. Operation scheme of a DEFC [6]. 

 

 

I.3.2.  Fuel cell components 

 

 The unit fuel cell is generally composed of end plates, current collectors, bipolar 

plates, gas diffusion layers, active layers located at each side a membrane (the electrolyte) 

separating the two compartments, as illustrated in Fig. 2. Knowing that this elementary unit 

delivers ca. 1 V or less (this value decreasing when the output current increases), a fuel cell 

must be assembled in series (FC stack). Such stacks needs auxiliaries to operate, e.g. for the 

fuel storage and delivery, the current collection and power management [7]. 

  

 
Fig. 2. Scheme of a unit fuel cell assembly [8]. 
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(a) The bipolar plates (BPs) ensure the uniform gas distribution to the system via a network 

of gas channels. They have to be thermal and electrical conductive and to provide a good 

chemical and mechanical stability. Typical bipolar plates are graphitic or metallic. 

 

(b) The gas diffusion layers (GDLs) guarantee the reactants feeding and products draining 

to/from the electrodes. They also act as current collectors and should stand thermal and 

mechanical constraints. GDLs are made of non-woven carbon fiber paper or woven 

carbon cloth. They are generally coated with polytetrafluoroethylene (PTFE) to improve 

the hydrophobicity and avoid clogging of the pores by water droplets. 

 

(c) The active layers (ALs), directly sputtered or coated on the GDLs (or on the membrane), 

are the location of the electrochemical reactions. Three phases compose each AL:  

 Metallic nanoparticles deposited on an electrical, conductive support (typically 

carbon black) act as catalyst for the electrochemical reactions. 

 A proton conductive ionomer serves as binder for the supported electrocatalytic 

nanoparticles on their carbon support and proton conductors to/from the 

membrane. 

 Pores guarantee the gas supply to/from the electrocatalytic sites. 

The so-called triple contact is reached when the reagent supply, the ionic and 

electronic conduction are ensured simultaneously in the same region of the AL. 

 

(d) The membrane is the element separating the anode from the cathode compartments. As 

such, the reagents integrity (no contamination) and circulation is preserved. In a DEFC, 

the membrane ensures the protons (typically H
+
) transport from the anode to the cathode 

side. Besides, it is an electronic insulator. A typical membrane of the PEMFC is the 

Nafion
®
, a perfluorosulfonated polymer. Indeed, its ability to conduct protons from the 

anode to the cathode via its sulfonic groups at low temperature (< 100°C) makes it unique. 

However, Nafion
®
 becomes dehydrated above 100°C and thus looses its conductivity, 

which makes it improper for use at so “high” temperatures. The association GDL-AL-

membrane is called the membrane-electrode assembly (MEA). 

 

 

I.4. Electrochemical reactions: DEFC 

 

I.4.1.  Anode side 

 

 A fuel cell is an energy converter which directly generates electricity from 

electrochemical reactions. At the anode, ethanol is oxidized to produce CO2 gas, protons and 

a fair amount of electrons in theory (ne- = 12 e
-
): 
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C2H5OH + 3 H2O → 2 CO2 + 12 H
+
 + 12 e

-
 (Ean° = 0.085 V vs. RHE) Eq.I.1     

 

   
 , the standard reaction potential, is calculated from the standard energy of formation of the 

species involved in the reaction: 

 

   
    

        
 

     
  Eq.I.2 

 

with: 

 

       
       (   ) –   

 (      ) –      
 (   ) Eq.I.3 

 

and: 

 

ΔG
f
(H2O(l)) = 237.1 kJ mol

-1
; ΔG

f
(CO2(g)) = 394.4 kJ mol

-1
; ΔG

f
(C2H5OH(l)) = 174.8 kJ mol

-1
 

[9]. 

 

Thus:  

 

   
    

                         

         
                

 

 

I.4.2.  Cathode side 

 

 While the generated electrons circulate through an external circuit and make their way 

to the other side of the cell, the produced protons are transported through the membrane. Both 

protons and electrons then react with O2 gas flowing at the cathode in a reduction reaction 

producing water:  

 

3 O2 + 12 H
+
 + 12 e

-
 → 6 H2O (   

  = 1.229 V vs. RHE)  Eq.I.4 

 

   
  was obtained similarly to    

 , with ne- = 12, ΔG
f
(H2O(l)) = 237.1 kJ mol

-1
, ΔG

f
(O2(g)) = 0 

kJ mol
-1

. 

 

 

I.4.3.  Global reaction 

 

 Hence, the global reaction can be written: 

 

C2H5OH + 3 O2 → 2 CO2 + 3 H2O (    
  = 1.145 V) Eq.I.5 
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  corresponds to the electromotive force of the system at the thermodynamic equilibrium 

and can be obtained as follows: 

 

    
      

       
                         Eq.I.6 

 

The associated Gibbs free energy also equals: 

 

   
         

           
                             Eq.I.7 

 

Besides, the specific energy can be evaluated as follows: 

 

    
    

 

      
  

    

            
                Eq.I.8 

 

with M the molar mass of ethanol. 

 

In comparison, the specific energy of methanol is: We = 6.00 kWh kg
-1 

and the specific energy 

of gasoline is ca. We = 13 kWh kg
-1 

[10]. 

 

 

I.5. Energy efficiency 

 

 The energetic efficiency corresponds to the ratio between the (useful) energy leaving 

the system and the energy going to the system. The energy output is the electricity produced 

during the electrochemical reactions occurring inside the fuel cell system. The energetic 

efficiency of a fuel cell is expressed as the product of three efficiencies: 

 

Ɛ = ƐTh ƐF Ɛv Eq.I.9 

 

ƐTh: thermodynamic efficiency; ƐF: faraday efficiency; ƐV: potential efficiency 

 

 

I.5.1.  Thermodynamic efficiency 

 

 The thermodynamic efficiency is equal to the ratio between Gibbs free energy and the 

standard enthalpy of reaction: 

 

    
   

 

   
   Eq.I.10 
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On the one hand, Gibbs free energy was estimated in section I.5.3:    
                 . 

 

On the other hand, the standard reaction enthalpy is:    
                 . 

 

The reversible yield of the reaction can thus be determined: 

 

    
    

    
        

 

The reversible yield of a DEFC is comparable to the DMFC (ԐTh,DEMFC = 96.6 %) but larger 

than the PEMFC (ԐTh,PEMFC = 83.0 %) [11] (all values determined at 25°C).  

 

In comparison, the yield of combustion engines is limited by the Carnot cycle: 

 

        
    

   
        Eq.I.11 

 

with Tout and Tin the output and input temperature. 

 

 

I.5.2.  Potential efficiency 

 

 However when the system leaves its equilibrium state and starts debiting a current, the 

appearance of an overpotential at the anode (ηa > 0) and cathode side (ηc < 0) is inevitable: 

these overpotentials reflect the kinetics hindrances associated to the electrochemical reactions 

and the mass-transport of their reactants. Moreover, an ohmic resistance implied by the 

electrolyte, the electrodes and their interfaces (RΩ I) has to be added. The resulting potential 

imposed between the anode and the cathode is: 

 

E (I) = E° - ηa - (-ηc) - RΩI Eq.I.12  

 

For the DEFC, it can be considered that ηa = 0.4 V and ηc = 0.2 V for a density current of I = 

100 mA cm
-2

. The real electromotive force can be thus evaluated to ca. E (I) = 0.5 V. 

 

Hence the practical electrical yield becomes: 

 

   
 ( )

    
  

   

     
       Eq.I.13 

 

 

I.5.3.  Faraday yield 
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 On Pt/C electrocatalysts, the actual number of electrons exchanged during the EOR at 

room temperature is not equal to ne- = 12, but can be as small as ne- = 2 (formation of 

acetaldehyde), which can dramatically lower the faraday efficiency: 

 

   
    

     
 

 

  
       Eq.I.14 

 

 

I.5.4.  Overall energy  

 

 In conclusion, the actual efficiency of a DEFC at room temperature can be as low as Ԑ 

= 7 %: 

 

                                       Eq.I.15  

  

 

I.6. Ethanol oxidation reaction 

 

I.6.1.  Problematic 

 

 The use of ethanol as fuel for the anode side of the fuel cell system presents several 

advantages. Indeed, ethanol can be produced from biomass fermentation [12,13], is non-toxic 

and is easy to store: at room temperature and under normal pressure conditions, ethanol is 

stable as liquid and thus can easily be stored in pre-existing infrastructure. In addition, ethanol 

presents, in theory, a high energy density (8 kWh kg
-1

) [14]. 

 Nevertheless, all those advantages do not counterbalance the drawbacks of the DEFC, 

which dramatically hinder its performances: 

 

- Electrocatalyst corrosion: The use of an acidic electrolyte coupled with operating 

temperature above room temperature accelerates the corrosion of the electrocatalyst 

and hence deteriorates the durability of the system. The corrosion operates both on the 

metal nanoparticles and on the carbon support constituting the electrocatalyst. 

Mitigating the degradation of the electrocatalyst is a burning issue and can be 

performed by multiple strategies: for example, modification of the carbon support 

surface by alteration of its physical characteristics (thermal treatment) or by 

addition/removal of chemical groups (chemical treatment). More information on this 

topic can be found in [15]. 

 

- Metal cost and poisoning: The use of platinum is primordial in a DEFC. Indeed, in 

acid medium, platinum demonstrated is one of the pure metals with the highest 

electrocatalytic performances towards the ethanol oxidation reaction (EOR) [16]. 

Besides, platinum is also remarkably corrosion-resistant compared to other metals. 
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Yet, platinum is very costly and its use would therefore hinder the fuel cell 

commercial viability. Moreover, pure platinum electrodes are rapidly poisoned by the 

EOR intermediates such as COad and CHx,ad [17], overall leading to sluggish EOR 

kinetics and low potential efficiency (even with electrodes highly-loaded with Pt 

electrocatalysts). 

 

- Crossover of the membrane: Due to Nafion
®

 hydrophilic proprieties, ethanol can cross 

the membrane and contaminate the cathode side [18]. As a consequence, the presence 

of the alcohol at the cathode sets up a mixed cathodic potential, which results in the 

drop of the PEMFC performances. Ethanol cross-over was however reported slower 

than that of methanol due to its longer carbon chain [19,20]. 

 

- Faraday (and overall system) efficiency: As seen earlier, the faraday efficiency is very 

low considering that incomplete ethanol oxidation can lead to 2 e
-
 (toxic acetaldehyde 

generation) or to 4 e
-
 (acetic acid) instead of a maximum of 12 e

-
. 

Although all those issues are of primary importance, this work will predominantly focus on 

the faraday and potential efficiency issues of EOR, via a survey of the EOR mechanism. 

 

 

I.6.2.  Mechanism of the EOR in acidic medium on platinum 

 

 The EOR is a complex mechanism which can follow different reaction pathways. A 

scheme, issued from [21], summarizes the possible reactions of the EOR (Fig. 3). This 

scheme was chosen because it gives a good overall view of the mechanism on platinum and 

gives as well a good illustration of the complexity of the EOR mechanism. 

 The main EOR pathway, also known as the complete ethanol oxidation reaction, 

involves the generation of 12 electrons and the production of CO2 as final reaction product 

(see Eq. I.1). This reaction, which generates up to 12 electrons, can obviously not happen in a 

single step. On the contrary, it is a kinetically slow electrochemical reaction [22–24], which is 

divided in a succession of elemental reactions which require the participation of different 

reaction intermediates. Some steps are more difficult to operate than others. Among them, the 

cleavage of the C-C bond of the ethanol molecule accounts as the most difficult one [22,25–

27]. 

 Due to this difficulty, the ethanol electrooxidation operates through easier parallel 

pathways leading to other reaction products. In this way, the EOR may proceed partially, 

yielding a number of electrons below the maximum 12 electrons. These incomplete reactions 

can produce, on the one hand, acetaldehyde (with 2 electrons exchanged during the 

electrooxidation reaction) and, on the other hand, acetic acid (4 electrons) [22,26–28]. 
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 In any case, the first step of the EOR mechanism involves the dehydrogenation of the 

ethanol molecule leading to the formation of acetaldehyde (Eq.I.17). Two electrons are 

produced during the process
(*)

: 

 

CH3CH2OHad → CH3CHOad + 2 H
+ 

+ 2 e
-
  Eq.I.16 

 
(*)

: The notation used in (Eq.I.17) and in the following equations (in this section only) is 

consciously wrong and is used for the reader’s comprehension in order to match with the 

notations used in Fig. 3.  

 

 In the complete ethanol oxidation pathway, the adsorbed acetaldehyde dissociates into 

COad- and CHx,ad-species (Eq.I.18): 

 

CH3CHOad → COad + CHx,ad + (4-x) H
+
 + (4-x) e

-
   Eq.I.17 

 

 The parallel formation of COad- and CHx,ad-species can also be obtained through the 

direct dissociative adsorption of ethanol: 

 

CH3CH2OHad → COad + CHx,ad + (6-x) H
+
 + (6-x) e

-
   Eq.I.18 

 

 Then, adsorbed CHx-species react with water to give COad: 

 

CHx,ad + H2O →  COad + (2+x) H
+
 + (2+x) e

-  
Eq.I.19 

 

 

 The CO2 generation is finally achieved by the oxidation of COad-species with water: 

 

COad + H2O → CO2 + 2 H
+
 + 2 e

-  
Eq.I.20 

 

 

 Hence, two different pathways can lead to the formation of CO2 and to the creation of 

12 e
-
: 

 

- Eq.I.17 → Eq.I.18; Eq.I.20 → Eq.I.21 

 

- Eq.I.19 → Eq.I.20 → Eq.I.21 

  

 However, these two pathways require splitting the C-C bond, which is a process of 

high activation energy. As such, other pathways, more energetically feasible, are favored 

during the EOR.  

 



Chapter I. Introduction on the Direct Ethanol Fuel Cell 

 

 

 

 

 

25 

 

 The most encountered one is the direct release of adsorbed acetaldehyde in the 

solution (Eq.I.22) without further oxidation:  

 

 CH3CHOad → CH3CHOsol  Eq.I.21 

 

 This pathway is also the most unwished one as it only implies the production of two 

electrons. Acetaldehyde toxicity and suspected carcinogenicity makes it even more undesired. 

 

 Another competitive pathway is the further oxidation of acetaldehyde with adsorbed 

OH-species into acetic acid (Eq.I.23): 

 

CH3CHOad + H2O → CH3COOH + 2 H
+ 

+ 2 e
- 

Eq.I.22 

 

 According to Lai et al., the reaction could occur either by direct reaction of adsorbed 

acetaldehyde with hydroxide species to form an intermediate adsorbed acetate species or by 

aqueous acetaldehyde hydrolysis reaction which further produces 1,1-ethane-diol as reaction 

intermediate [21]. 

 Although this pathway generating acetic acid (4e
-
) offers a much higher faradaic 

efficiency than acetaldehyde formation (2e
-
), it does not allow a full exploitation of ethanol. 

 

 
Fig. 3. Scheme of the ethanol oxidation reaction [21]. 

 

I.6.3.  Ethanol adsorption modes 
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 According to Iwasita and Pastor [29], ethanol adsorption on the Pt electrocatalyst 

surface forms four different adsorbates represented in Fig. 4: 

 

- (a) Pt-CO (33 %) and Pt-CHx  

 

- (b) Pt-OCH2-CH3 (32 %)  

 

- (c) Pt-COCH3 (29 %) 

 

- (d) (Pt)2=COH-CH3 (5 %) 

 

 As demonstrated in this FTIR and DEMS study using labeled carbon 

(
12

CH3
13

CH2OH), almost all 
13

C remains on the Pt surface after four successive reductions 

between ca. E = 0.35 and 0 V vs. RHE while half of the 
12

C are reduced in methane (the other 

half remaining at the electrode surface). It was interpreted from these results that the methane 

generation is favored by the adsorption mode (–CO-CH3) whereas (–OCH2-CH3) was stable 

during the reduction scans. 

 

 
Fig. 4. Adsorption modes of ethanol adsorbates on Pt. 

 

 

I.6.4.  Ethanol dehydrogenation 

 

 The ethanol dehydrogenation is the first step of the EOR and also one of the most 

crucial ones. Indeed, this reaction controls acetaldehyde production that is to say the 

formation of the main product of the EOR at room temperature on platinum electrocatalysts 

[22,23,30–32]. As written in section I.5., the EOR initiates thermodynamically at potentials as 

low as E = 0.085 V vs. RHE. However, no current is witnessed below ca. E = 0.3 V vs. RHE 

on platinum [31,33–36]. Besides, the reaction do not only suffers overpotentials over 200 mV 

but also slow kinetics until ca. E = 0.6 V vs. RHE [22–24].  
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 The causes of this high overpotential are not certain. Some studies attribute this high 

overpotential to a blockage of the electrocatalytic surface by adsorbed hydrogen species 

[37,38], similarly to what is also observed for methanol [39]. Bergamaski et al. highlighted 

the appearance of a new peak during a cyclic voltammetry after introduction of ethanol at E = 

0.05 V vs. RHE which was ascribed to ethanol dehydrogenation [39]. The addition of a 

second transition metal (rhodium) to platinum enabled a negative shift of this reaction 

initiation. More conclusive, Wang et al. discovered that ethanol dissociative adsorption was 

hindered in the HUPD region compared to higher potentials (E = 0.31 V vs. RHE). Besides the 

hindrance by Had-species, the EOR is also impeded by the electrocatalyst surface poisoning by 

C2- and CO-adsorbates, which do not start oxidizing below the potential onset of the Pt-

oxides formation [40].  

 

 

I.6.5.  C-C bond splitting 

 

 As mentioned in section I.15.1, the C-C bond splitting is considered as the most 

difficult step of the EOR on platinum and thus as the main obstacle to the complete EOR into 

CO2. The low amount of CO2 generated during the EOR at room temperature is the main 

illustration of this challenging reaction. 

 IR-studies [22,26,27] revealed by means of semi-quantitative techniques that CO2 

constitutes a minor EOR product compared to acetaldehyde and acetic acid. Besides, 

quantitative studies using on-line differential electrochemical mass spectrometry (DEMS) 

demonstrated that CO2 current efficiency (CCE) values are relatively low on Pt/C [30,32,41]: 

Wang et al., Cantane et al. and Bergamaski et al. found out a CCE closed to 2.7 % [30], 3.5 % 

[32] and 8% [41] respectively in 0.1 M EtOH on Pt/C electrocatalysts. 

 These observations are supported by on-line DEMS studies with associated activation 

energy (Ea) estimations for the recorded EOR and for the sole complete EOR to CO2 (m/z = 

22) [23,42,43]. The C-C bond breaking has also been investigated by means of DFT 

calculations [25,44,45]. Wang et al. found that the C-C bond breaking step has the highest 

energetic barrier in comparison to the other ethanol electrooxidation reaction steps (C-O and 

C-H bond dissociation steps) on the investigated Pt(111) and Pt (211) surfaces [25]. 

 

 

I.6.6.  CO-stripping  

 

 Carbon monoxide oxidation has been the subject of a significant amount of 

publications [46–57]. The topic is of importance as CO traces present in reformed H2 gas used 

as fuel at the anode (of a classical PEMFC) is a constant source of contamination of the Pt 

electrocatalyst, intolerant to CO, which results in the fuel cell sinking performances [50,58–

60]. CO is also encountered in direct alcohol fuel cells (DAFC) as a strongly adsorbed 

reaction intermediate. The problem is inherent in PEMFCs and DAFCs (in the present case, 
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DEFCs), where the practical operating low temperatures and potentials hinder the 

electrooxidation of strongly adsorbed carbon monoxide. 

 

 The CO oxidation reaction likely operates through a Langmuir-Hinshelwood 

mechanism, i.e. with the participation of two adsorbed species, where the adsorbed CO reacts 

with adsorbed hydroxide (issued from water dissociative adsorption): 

 

H2O → OHad + H
+
 + e

- 
Eq.I.23 

 

COad + OHad → CO2 + H
+
 + e

-
  Eq.I.24  

 

Although its standard potential is located at around E = - 0.1 V vs. RHE, the reaction is 

limited by water dissociation (Eq.I.24), which initiates at ca. E = 0.6 V vs. RHE on Pt 

electrocatalysts. This reaction is the rate determining step of carbon monoxide oxidation and 

highly depends on the electrocatalyst structure [56,57,61]. 

 

 

I.6.7.  Acetaldehyde oxidation reaction 

 

 The acetaldehyde oxidation reaction (AOR) has been seldom reviewed in the literature 

in comparison to the EOR [26,62–66]. Yet, its study is of high interest. Indeed, acetaldehyde 

is a C2-species with one of the simplest structure and, as such, can be considered as a model 

molecule for the study on the C-C bond cleavage. Moreover, acetaldehyde has been 

repeatedly reported as the major product of the ethanol oxidation reaction [22,23,30–32]. 

Therefore, the AOR study may also help understanding the processes occurring during the 

EOR.  

  

 

 The following mechanism summarizing the different pathways and reactions 

constituting the AOR on platinum in acid medium is adapted from the one proposed by Farias 

et al. [66]: 

 

CH3CHOsol → COad + CHx,ad + (4-x) H
+
 + (4-x) e

- 
Eq.I.25 

 

COad + H2Oad → CO2 + 2 H
+ 

+ 2 e
-  

Eq.I.26 

 

CHx,ad + 2 H2Oad → CO2 + (x+4) H
+
 + (x+4) e

-
  Eq.I.27 

 

CH3CHOsol + H2Oad →CH3COOHaq + 2 H
+
 + 2 e

-  
Eq.I.28 
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 As it can be seen, this AOR mechanism is very similar to the one in section I.15.1 for 

the EOR. Like the latter, the electrooxidation of bulk acetaldehyde leads to the production of 

either acetic acid or CO2 as reaction products. Besides, similarly to the EOR [22], low 

acetaldehyde concentrations favor the pathway leading to CO2. Moreover, the AOR and the 

EOR seem to have the same onset potential (ca. 0.4 V vs. RHE in [21,22,66]). 

 However, the AOR contrasts on some points with the EOR. The onset potential of the 

acetic acid formation (corresponding to Eq.I.24) is located at slightly higher potentials than 

with the EOR. Moreover, this reaction is more favored than during the EOR. 

 

 A comparison between the AOR and EOR mechanism may also give information on 

the nature of the improvement operated on the latter due to the addition of a transition metal 

alloyed to platinum, in other words, which step of the EOR has been facilitated or not: ethanol 

dehydrogenation, C-C bond breaking… 

 

 

I.6.8.  Acetic acid or ethyl acetate 

 

 One uncertainty concerning the EOR relies in the formation of one of the reaction 

products: acetic acid. 

 On the one hand, according mainly to IR-studies, acetic acid would be the third 

reaction product besides CO2 and acetaldehyde [26,27,67–69]. The simultaneous detection of 

bands at ca. 1715, 1400 and 1280 cm
-1 

[68,70], all of them characteristic of acetic acid, could 

only correspond to this molecule (for more details on the identity of these bands, please refer 

to chapter III). 

 On the other hand, mass spectrometric studies preferentially mention ethyl acetate 

(CH3COOCH2CH3) as possible third EOR product [30,32,71]. Wang et al. were among the 

first to propose ethyl acetate as EOR product [71]. They notably used the mass-to-charge 

signal m/z = 73 ([CH3CH(OC2H5)2)
+
]) (which cannot physically be attributed to acetic acid) 

among others to identify the formation of this species. They explained its formation by the 

reaction of freshly produced acetic acid (Eq.I.30) with bulk ethanol: 

 

CH3COOHsol + CH3CH2OHsol → CH3COOCH2CH3 + H2O Eq.I.29 

 

 This reaction does actually not exclude the electrochemical formation of acetic acid 

during the EOR, but suggests that acetic acid is not an EOR final product as it is the case for 

example in the mechanism proposed in section I.15.1, which does not mention the possible 

formation of ethyl acetate.  

 For the sake of clarity, the notion of acetic acid will be preferentially used in the 

present work. Although the latter is not directly detected by mass spectrometry, its presence 

as EOR product was identified by IR-techniques. 
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I.6.9.  Pt-M alloys 

 

 As written earlier, although the highest EOR electroactivity is demonstrated on 

platinum electrocatalysts, the reaction suffers multiple obstacles which hinder its 

performances. One way to overcome these issues is the development of bi- and tri-metallic Pt-

based electrocatalysts. A particular effort has been done during the past decades in order to 

develop multi-metallic electrocatalysts: Pt-Ru/C [33,72–74], Pt-Rh/C [41,75,76], Pt-SnO2/C 

[30,77,78], Pt-Rh-SnO2/C [79,80], Pt-Ir-SnO2/C [81], Pt-Ru-Mo/C [82], Pt-Sn-Mo/C [83]. 

 This work focuses most particularly on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. The 

reasons explaining this choice are given below. 

 

 

I.6.9.1. Pt-SnO2/C 

 

 First and foremost, it has to be precised why the notation "SnO2" instead of "Sn" is 

used throughout the presented work. Higuchi et al. demonstrated using XPS analysis the 

absence of peak assigned to the 3d3/2 and 3d5/2 of Sn
0
, whereas peaks of this doublet could be 

found for Sn
4+

 [84]. In other words, tin does not exist as such, in its zerovalence form, in this 

study, but as oxide. It can be argued that the synthesis method used in this reference is 

different than the one used in this work. Tin state most likely depends on the synthesis 

conditions: an air atmosphere would definitely lead to the formation of tin oxide whereas an 

inert gas environment could hinder this formation. However, although the reduction step of 

the polyol synthesis used in this work occurs under argon, it is believed that the heat treatment 

at 80°C in an air atmosphere and the subsequent use of aqueous electrolytes lead to the 

formation of tin oxide (more details about the synthesis are given in section II.8.). When other 

studies are referred, the notation "SnO2" will be preferred, even though the original notation is 

"Sn". Although blameworthy, this choice was made for the convenience of the readers. 

 

 One peculiar feature of tin oxide is its oxophilic character, i.e. its ability to bring 

adsorbed OH-species to the system at low potentials. For this reason, this metal has largely 

been investigated associated to platinum for the COad-electrooxidation [46,49–51,85,86] and 

for the MOR [85,87–92]. However, its effects on the two reactions were singularly different.  

 On the one hand, large negative potential shifts of the CO electrooxidation in CO-

containing electrolyte and to a minor extent in CO-free electrolyte (CO-stripping 

experimental conditions) were reported on the bi-metallic Pt-SnO2/C compared to Pt/C and 

Pt-Ru/C [50]. According to Wang et al. [85], the competition between OHad and COad 

formation during COad electrooxidation (in a CO containing electrolyte) on Pt-Ru/C results in 

a positive shift versus a COad-stripping (in a CO-free electrolyte) where this competition does 

not take place. On the contrary, Pt-SnO2/C does not suffer from the concurrence between the 

two reactions. This explains the difference in CO-containing electrolytes. In CO-stripping 
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conditions, the higher overpotential on Pt-Ru/C may be due to the initial state of coverage of 

the electrocatalysts: in Pt-Ru/C, platinum and ruthenium are covered by COad-species. On the 

contrary, in Pt-SnO2/C, tin oxide is never covered by COad-species and can provide OHad all 

along the stripping-CV.  

 On the other hand, Pt-SnO2/C did not display any enhancement of methanol 

electrooxidation against Pt/C or to a larger extent to Pt-Ru/C [93–95] (even if this affirmation 

is biased by the presence of contradictory results in the literature [46,85,92,96,97]). The 

higher COad coverage of platinum in Pt-SnO2 systems compared to pure Pt or Pt-Ru systems 

evidenced in [85] could justify the phenomenon: the higher COad coverage of Pt on Pt-SnO2/C 

would prevent methanol dehydrogenation (the first step of the MOR mechanism) which 

requires free electroactive sites in order to take place. This would result in higher 

overpotentials than Pt-Ru/C.  

 

 Pt-SnO2/C electrocatalysts has already been thoroughly studied for the EOR in the 

literature [78,98–102]. Comparisons between Pt-SnO2/C and Pt/C revealed a higher EOR 

electroactivity on the former than on the latter [78,84,99–103]. Adding tin to the 

electrocatalyst material leads to a negative shift of the EOR onset potential and also improves 

the selectivity of the ethanol electrooxidation toward acetic acid formation [99–101]. The last 

reaction is favored by tin ability to bring adsorbed OH-species to the system at low potentials.  

 It was also thought that tin oxophilicity could help oxidizing adsorbed CO during the 

alcohol oxidation at lower potential than on Pt/C and could improve the CO2 current 

efficiency. However, no study ever reported so far any improvement of the CCE for Pt-

SnO2/C compared to Pt/C [98,99]. This could be explained by the electrocatalyst inability to 

ease the C-C bond cleavage. 

 

 To go beyond the existing literature, the presented work will focus on Sn particular 

role in Pt-SnO2/C electrocatalysts in the ethanol oxidation reaction. 

 

 

I.6.9.2. Pt-Rh/C 

 

 Pt-Rh/C has been less extensively reviewed than Pt-SnO2/C with respect to COad-

electrooxidation [104–109] and to MOR [110–113]. According to Tokarz et al., COad-

stripping displays a limited negative shift of the oxidation initiation on Pt-Rh/C compared to 

Pt/C [110]. Similarly, in the same study, the methanol electrooxidation presents at slightly 

lower overpotential on Rh/C and Pt-Rh/C against Pt/C [110]. 

 

 Pt-Rh/C has been the subject of more studies in regard to the EOR [32,35,41,75,114]. 

On the one hand, Rh metal demonstrated encouraging performances in the achievement of C-

C bond breaking [115,116] and, consequently, Pt-Rh/C alloys showed promising results in the 

improvement of the selectivity of the EOR toward the CO2 formation [75,114]. Alloying Rh 
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to Pt seems to modify the electronic structure of the latter, leading to a down-shift of the Pt 

5d-band center caused by the interactions in the lattice between Pt and Rh atoms [117]. As a 

result, the adsorption strength of the adsorbates on the electrocatalyst may diminish, therefore 

easing their oxidation. Moreover, the presence of rhodium, which is also an oxophilic metal, 

in the lattice also likely suggests a faster supply in OH-species helping the oxidation of 

adsorbed CO. On the other hand, results on the better electroactivity of Pt-Rh/C compared to 

Pt/C remain controversial. Indeed, Lima et al. [35] and Cantane et al. [32] found a higher 

faradaic current on Pt/C than on Pt-Rh/C or Pt2Rh1/C, whereas Sen Gupta [118] registered 

higher currents on Pt25Rh75/C and Pt75Rh25/C. Similarly, some studies show a higher CCE on 

Pt-Rh/C than on Pt/C [35,114,119], while others demonstrate similar performances regarding 

the C-C bond splitting [32]. The lower EOR onset potential on Pt-Rh/C electrocatalyst 

compared to Pt/C is however generally admitted [32,35,37,114,119,118]. A reason could be 

the better dehydrogenation of the ethanol molecule at low potentials on Pt-Rh/C than on Pt/C 

[37]. 

 In situ FTIR measurements on Rh/C are scarce [115,120] and on Pt-Rh/C even more 

[120]. Tacconi et al. showed that rhodium discriminates ethanol electrooxidation into 

acetaldehyde as main product and, on the opposite, favors the dissociative ethanol adsorption 

and CO2 generation against iridium [115]. Besides, acetaldehyde was proposed as reaction 

intermediate to the formation of acetic acid, but its presence could not be confirmed by FTIR. 

On the contrary, Li et al. found that acetaldehyde was the main reaction product on Rh/C 

against acetic acid on Pt/C in a thin layer configuration [120]. Besides, the EOR on Pt-Rh/C 

did proceed to a higher extent than Pt/C toward the CO2 production. 

 

 An important difference that should be kept in mind between rhodium and tin oxide is 

that the latter does not have any affinity toward CO adsorption while the reaction proceeds 

easily on rhodium. As a result, contrary to rhodium, tin oxide is never blocked by the COad 

formation and can always supply OHad to the system. To that extent, Pt-Rh/C and Pt-SnO2/C 

should be considered as completely different electrocatalysts. 

 To some extent, rhodium can be better compared to ruthenium, as the two metals are 

oxophilic and can be blocked by CO-adsorbates. However, contrary to ruthenium, rhodium 

presents the ability to enhance the cleavage of the C-C bond.  

 

 

I.6.9.3. Pt-Rh-SnO2/C 

 

 Pt-Rh-SnO2/C has first been investigated by Colmati et al. [121]. It was reported that 

the EOR electroactivity was higher at E > 0.45 V vs. RHE on the tri-metallic electrocatalyst 

than on Pt-SnO2/C and Pt/C but lower at E < 0.45 V vs. RHE against Pt-SnO2/C. 

 More recently, Pt-Rh-SnO2/C has been thoroughly studied by means of IR-techniques 

[120,122,123]. Besides, demonstrating a large negative shift of the EOR onset potential as 

well as a higher activity compared to Pt/C and Pt-SnO2/C, the tri-metallic electrocatalyst 
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displays also the best selectivity toward the EOR complete pathway leading to CO2 

generation. The better performances obtained on the electrocatalysts are attributed to: 

 

- ethanol dehydrogenation on platinum. 

 

- the enhanced C-C bond cleavage on rhodium electroactive sites. 

 

- the supply in OH-species guaranteed by tin oxide at low potentials (necessary for the 

oxidation of formed CO-adsorbates into CO2), which in parallel prevent from OH-

species adsorption on platinum and rhodium due to the OH-OH interactions [124]. In 

this way, the rhodium and platinum surface will be free to interact with ethanol 

molecules and be able to ensure their role in the EOR mechanism.  

 

 Based on DTF calculations, the same authors proposed that the complete EOR occurs 

through the formation of a reaction intermediate (CH2CH2Oad) which would favor the CO2 

formation [122]. This mechanism would significantly differ from the EOR mechanism on 

Pt/C presented above [21] which operates via the formation of adsorbed acetaldehyde or the 

direct ethanol dissociative adsorption.  

 

 Finally, Silva-Junior et al. found a higher potentiostatic electroactivity of the EOR at E 

= 0.6 V vs. RHE on Pt-Rh-SnO2/C against Pt91Rh09/C, Pt57Rh23/C and Pt28Rh72/C [125]. 

Based on an FTIR analysis, they attributed the better performances on the tri-metallic 

electrocatalyst to facilitated adsorption and oxidation steps during the EOR. However, they 

did not conclude on the better EOR selectivity toward the CO2 formation, as both CO2 and 

acetic acid generation were qualitatively higher against their Pt-Rh/C electrocatalysts [79]. 

 

 Due to the scarce number of publications on the EOR on Pt-Rh-SnO2/C [120–

123,125,126], and regarding the promising performances of the EOR on the tri-metallic 

electrocatalysts, it has been found of relevance and of interest to study further the EOR on this 

electrocatalyst. 

 

 

I.7. Overview of the investigations carried out in this thesis 

 

 The following investigations have the double objective to examine the performances 

of 20 wt.% carbon supported Pt-, Rh- and SnO2-based electrocatalysts  (Pt/C, Rh/C, Pt-Rh/C, 

Pt-SnO2/C and Pt-Rh-SnO2/C) regarding the EOR, as well as to understand the positive and 

negative impact of each metal on the mechanism of the ethanol electrooxidation. 

 Chapter II is dedicated on the thorough description of the synthesis method employed 

for the preparation of the studied home-made electrocatalysts. The experimental techniques 
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employed to characterize physically and electrochemically the EOR are subsequently 

detailled. 

 Chapter III is separated in two distinct sections. In the first one, some experimental 

parameters, such as the scan rate and the thickness layer, were investigated on 20 wt.% Pt/C 

by means of DEMS and RDE, in order to understand how their variation impacts the EOR. In 

the second section, the EOR was studied on Pt-, Rh- and SnO2-based electrocatalysts by 

means of DEMS and in situ FTIR. The results were confronted to highlight the similarities 

and disparities between the two techniques. 

 In chapter IV, the influence of the presence of H- and OH-adsorbates on the ethanol 

and acetaldehyde electrooxidation has been investigated in order to evaluate their action 

(inhibition/intensification effect) on the reaction initiation and CO2 current efficiency. The 

study was performed on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C, so as to point out 

the role of rhodium or/and tin oxide in the ethanol dehydrogenation and complete 

electrooxidation into CO2.  

 Chapter V presents a study of the stripping of ethanol and acetaldehyde adsorbates in 

an alcohol-free solution on Pt-, Rh- and SnO2-based electrocatalysts in order to give further 

insights into the EOR mechanism on the different electrocatalysts. 

 Chapter VI focuses on the influence of the temperature on the EOR on Pt/C, Pt-Rh/C 

and Pt-Rh-SnO2/C via potentiostatic and potentiodynamic techniques. A special attention is 

drawn on the change in rate determining steps with the increase of the temperature. 

 A conclusion finally summarizes all the different results and discussions of this work 

and some ideas are proposed as possible research perspectives for the future. 
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Chapter II.  

 

Experimental section 
 

 

This chapter summarizes in the first place the preparation of the electrocatalysts used in the 

different sections of this thesis. Detailed information is then provided on the experimental 

techniques used for the physical and electrochemical characterization of the electrocatalysts.  
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II.1.  Synthesis of the carbon-supported electrocatalysts by the polyol method 

 

 The studied carbon-supported electrocatalysts were prepared using a modified polyol 

method. In a typical procedure, 100 mg of 10 or 20 wt. % metal loaded electrocatalysts was 

prepared. The calculated amount of metal precursors, H2PtCl6, RhCl3.xH2O and SnCl2 

(Aldrich), was dissolved in a 20 mL solution containing milli-Q water and ethylene glycol 

(EG) (volume ratio 1:1), prior to the addition of carbon black particles (Vulcan XC-72R, 

Cabot) dispersed in 20 mL of the same mixture (10 mL EG, 10 mL water) by sonication. 20 

mL EG was then added to the solution in order to get in the end a 2:1 EG:water ratio. The pH 

of the whole solution was subsequently adjusted to pH = 12 using a 0.5 M NaOH solution 

(diluted in EG + water (1:1)) and let under vigorous stirring for one hour at ambient 

temperature under argon atmosphere. Thereafter the solution was heated up to 160°C (still 

under argon atmosphere), maintained at this temperature for three hours and cooled down 

overnight in air. The pH of the solution was then fixed to pH = 3 using a 0.5 M H2SO4 

aqueous solution and stirred for 24 h. Finally, the electrocatalyst powder was filtered, washed 

copiously with milli-Q water and dried overnight in an oven at 80°C.  

 

 A considerable advantage of this colloidal method is its high simplicity and the ability 

to control the size of the nanoparticles. 

 The polyol synthesis requires the presence of only one chemical, ethylene glycol, 

which plays the role of the solvent and of the reducing agent. In our procedure, milli-Q water 

was added to the process as it was found that additional water was helping CB dispersion and 

the dissolution of the metal salts. No additional stabilizing agent is needed in the synthesis 

solution to prevent from the possible nanoparticles agglomeration, as it can be found for other 

colloidal syntheses such as the Bönnemann method [127–132] or methods using borohydride  

as reducing agents [111,133–136]. 

 Although this method is well employed [123,137–155], very few studies focused on 

the reactions occurring during the synthesis [148,153–155]. 

 Heating up the synthesis solution to 130°C (ethylene glycol boiling point) engage the 

solvent oxidation into glycolic acid which remains stable in the alkaline solution as glycolate 

anions. The reaction frees one electron per oxidized ethylene glycol molecule which is further 

used in the reduction of the metal salts in zerovalent metal atoms. The stabilization of the 

metal colloids is believed to be carried out by the glycolate anions [143,148].  

 Diverse temperatures from 130°C to 180°C are reported in the literature 

[123,139,143,152] for the synthesis. No accurate control of the temperature is usually 

operated as this factor is believed to be neutral. A home study investigated the effects of the 

temperature during the synthesis on the electrocatalysts state and concluded that this 

parameter does indeed not impact the nanoparticle size or the metal loading [156]. 

Nonetheless, a study from Fievet et al. [155] shows that the particles size decreases with the 

temperature increase. The effects of the temperature were however investigated above 160°C. 

Besides, it must be precised that the particles size in this study was comprised between 0.1 
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and 1 µm i.e. well above the diameters reached here. No similar study on the temperature 

effect on the nanoparticles size was found in the literature. 

 In colloidal synthesis methods in general, the nucleation phase initiates after the metal 

atoms concentration reaches a “supersaturation concentration” during the metal salts 

reduction and should take place in a very short time interval (almost instantaneously) to 

ensure the particles size homogeneity [157]. After the formation of the nuclei, the metal atoms 

concentration drops below a concentration threshold. From this moment, the number of nuclei 

remains constant while they start growing until the consumption of all the zerovalent atoms.  

 The polyol method is no exception and follows the same principle: The first step (the 

reduction of the metal salts resulting in the formation of zerovalent metal atoms) occurs after 

an induction time after the temperature is raised to 160°C (temperature chosen in the 

protocol). Once the metal atoms supersaturation is reached, the nucleation step initiates and 

stops before the nuclei starts growing until consumption of all the metal atoms in the solution. 

These three steps (metal salts reduction, nucleation and nuclei growth) all occur at 160°C. The 

three hours fixed in the protocol (see above) correspond to a sufficient duration for the 

reduction of the metal salts and the growth of the nuclei, and can be found in many studies 

[138,143,144,146]. However, alike the temperature, this parameter varies in the literature 

from two to five hours [142,145]. 

 The adsorption of the formed nanoparticles on the carbon support takes place 

afterward during the overnight cooling step. After the cooling procedure, another step was 

added to the polyol method, which consists of lowering the pH to pH = 3, likewise to the 

protocol in [144] in order to improve the nanoparticles adsorption. Oh et al. investigated the 

effects of the pH on the zeta potential of the carbon support and Pt nanoparticles [144]. They 

found out that, after the synthesis at pH = 12, the zeta potential of the carbon support and the 

metal nanoparticles is negative. However, after the pH adjustment down to pH = 3, the zeta 

potential of the carbon support changes and becomes positive while the zeta potential of the 

nanoparticles remains negative. The authors assumed that the glycolate anions are more 

strongly adsorbed on the nanoparticles than on the carbon support, which would hinder the 

modification of the nanoparticles zeta potential. As a consequence, the authors believed that it 

could help the electrostatic attraction of the nanoparticles with the carbon support and thus 

render their adsorption more homogeneous on the carbon surface. Other publications added 

similar steps in their synthesis protocol but without explaining the reason [123,146]. 

 The gas environment of the synthesis solution is also an influent parameter which 

impacts significantly the yield of the total deposited nanoparticles mass on the carbon support. 

Oh et al. [143] discovered that when the complete synthesis (at 160°C and after at room 

temperature) is carried out in an inert gas atmosphere, the control of the nanoparticles size is 

good but the metal loading on the carbon support poor. On the opposite, an entire process in 

open air results in a good metal loading but in the presence of agglomerates on the carbon 

support. Finally, the optimum result (good particle size control + good metal loading) was 

obtained in inert gas during the three-hour step at 160°C and in open air during the next steps 
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at room temperature. No conclusions were drawn related to the impact of the gas environment 

on the reactions occurring during the synthesis. 

 A significant advantage of the polyol process is the good control on the metal 

nanoparticle size by pH adjustment. The decrease of the nanoparticles size by increasing 

NaOH concentration (and a fortiori the pH) was already reviewed in the literature 

[143,148,154,158]. According to Fievet et al. [154], an increase of the pH by NaOH addition 

in the synthesis solution leads to faster kinetics of the metal salt reduction, which would result 

in the formation of a larger number of nuclei. As a consequence, the nuclei growth would be 

hindered. pH = 12 was chosen for the experiments in the present study in order to hinder the 

formation of agglomerates (and the decrease of the electrocatalyst specific area) which could 

occur at low pH and the formation of too small nanoparticles (and their increased stability on 

the carbon support) at too high pH (for the sake of concision, the impact of the nanoparticles 

size on electrochemical reactions is introduced in section III). 

 This synthesis method was finally chosen among others due principally to its simple 

operability, the use of only one chemical (EG) as reducing and stabilizing agent and the good 

control of the nanoparticle size.  

 

 

II.2.  Physical characterisations 

 

II.2.1. ICP-AES 

 

 Inductively coupled plasma atomic emission spectroscopy (ICP-AES) enables the 

quantitative determination of elemental chemical compounds present in a solution. Two 

distinct elements constitute the ICP-AES: the plasma and the photodetector. 

 The ignition of an argon gas constrained in a strong electromagnetic field results in 

inelastic collisions between argon neutral atoms and ions, which in return gives rise to a stable 

plasma, the temperature of which is in the order of 7000 K. 

 A solution containing the sample is pumped into the ICP device where it is evaporated 

by a nebulizer before being introduced inside the plasma. There, the sample 

molecules/atoms/ions enter in collision with the ions and electrons constituting the plasma 

and break into exited ions which further stabilize after photon emission. The emitted 

radiation, unique for each element, is then analyzed and quantified by a photodetector.  

 The ICP-AES analysis was used to determine the metal-carbon and metal-metal ratio 

in the bi- and tri-metallic electrocatalysts. The device employed for the measurements was a 

iCAP 6300 Thermo. 

 

 

II.2.2. Thermogravimetric analysis 
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 The thermogravimetric analysis (TGA) allows recording continuous material mass 

changes as a function of the temperature during a thermal treatment (the temperature usually 

varies linearly against the time at ca. 5-10 K min
-1

). The pressure and the atmosphere (air, 

inert gas…) in the analysis chamber are also important parameters which impact the profile of 

the material mass evolution. 

 The mass variations of the sample, placed on a micro-balance, are recorded by 

measuring the voltage required to maintain the micro-balance in its initial position. The 

variation of the balance position is determined by a photo-sensor which permits to adjust the 

voltage response of the induction coils located at two extremities of the micro-balance. The 

voltage is then converted to mass during the experiments. 

 Concretely, the metal loading on the carbon support of the synthesized electrocatalysts 

was measured by TGA. Due to the high melting point of the investigated metals (Pt and Rh 

melting point are over 1500°C), only the carbon mass loss can be measured and thus the 

carbon-metal ratio estimated (the maximal temperature reached by the device is ca. 1200°). 

For tin oxide containing electrocatalysts (Pt-SnO2/C, Pt-Rh-SnO2/C), this ratio could not be 

estimated due to tin low melting point (T ≈ 200°C). Thus, the use of ICP-AES was primordial 

for the knowledge of the metal-metal and carbon-metal ratio. The TGA analyses were carried 

out with a Q 5000 from TA Instruments apparatus. 

 

 

II.2.3. Transmission Electron Miscroscopy 

 

 The principle of the transmission electron miscroscopy (TEM) relies in electrons-

atoms interactions. Depending on the TEM mode, information related to the studied sample 

either concerns its topography or its chemical contrast. 

 Primary electrons are generated by a thermo-electronic source, typically a tungsten or 

a LaB6 filament, and expulsed from the anode with an energy up to ca. 200 kV. The beam is 

then directed through a column where its focus is ensured magnetically by the presence of one 

or several condensers, before being finally directed on the sample by the objective lenses. The 

primary electrons pass trough the sample owing to its small thickness (< 100 nm). The 

imaging contrast is ensured by the the thickness of the sample, its chemical composition (in 

this case, between the Pt nanoparticles and the carbon support) and by the sample cristallinity 

(deflection of the inciding electrons on the sample diffraction planes).  

 Other analyses such as the energy dispersive X-ray spectroscopy (X-EDS or EDX) are 

enabled by TEM. The collision of primary electrons with highly energetic electrons of the 

sample atoms can engender the ionization of the latter. The hole in their valence band will be 

replaced by an electron of an upper layer which will in return emit energy in the form of a 

photon. This energy in the X-range will subsequently be detected by a sensor. Information on 

the chemical composition of the sample is thus made possible since each atom has its own X-

ray spectrum.  



Chapter II. Experimental section 

 

 

 

 

 

41 

 

 The preparation of the samples is trouble-free and only consists of dipping a properly-

cleaned copper grid baring a thin carbone membrane inside the studied electrocatalyst 

powder. A Jeol 2010 TEM was employed for this characterization (1.9 Å point-to-point 

resolution at 200 kV). 

 

 
Fig. 5.TEM Scheme [159]. 

 

 Determination of the particle size distribution (PSD) was performed from TEM 

imaging. This evaluation was performed measuring manually the diameter of ca. 400-500 

nanoparticles visualized on ca. 20 different TEM images randomly taken on the sample, 

which usually provides data with sufficient statistics. Those images were photographed in 

four distinct areas of the studied sample (five images per sample area), which themselves 

were shot at × 200 000 magnification.  

 For each sample, the number-averaged (dN), the surface-averaged (ds) and the volume-

averaged diameter (dV) were calculated as follows: 

 

   
∑     

∑  
 Eq.II.1 
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∑     

 

∑     
  Eq.II.2 

 

   
∑     

 

∑     
  Eq.II.3 

 

with ni the number of nanoparticles and di their respective diameter. 

 The knowledge of these three parameters is essential as it enables verifying that the 

surface- (dS) and volume-averaged diameter (dV) match with dElec and dXRD respectively 

(introduced hereafter).  

 

 

II.2.4. X-Ray Diffraction (XRD) 

 

 X-Ray Diffraction (XRD) permits identifying the crystalline structure of the studied 

sample. The XRD analysis was also used to evaluate the volume-average cristallite size and 

the lattice parameter of the corresponding electrocatalysts. 

 The X-radiation originates from the violent collision of electrons, bombarded from a 

tungsten filament, with a copper anode emitting heat and X-rays in the process. More 

precisely, these X-rays correspond to the photons emitted by the electrons from the L shell 

replacing the vacancies let by the electrons from the K shell ejected from their Cu atoms as a 

result of the W filament electrons collision with the copper anode. The electrons from the 

other electron shells (M, N…) emit too-low-energy photons to be functional (they are rapidly 

absorbed in the air). Only the Kα and Kβ X-photons can be detectable at the exit of the X-ray 

tube. A monochromator is placed between the source and the sample in order to select the 

photons with the highest energy (Kα: Kα1 and Kα2).   

 The incident X-photons issued from the source collide the atoms of the sample and are 

diffracted following three conditions: 

- The 1
st
 Snell-Descartes law should be respected: incident and diffracted rays and the line 

perpendicular to the crystallographic planes should be contained in the same plane.  

- The angle (θ) between the incident rays with the crystallographic planes and between the 

diffracted rays with the crystallographic planes (θ') should be equal (θ' = θ). 

- The diffraction angle (θ) should verify Bragg's law (Eq.II.4): 

 

                 Eq.II.4 

 

with λ the wavelength of the incident ray, n the diffraction order and dhkl the distance between 

the crystallographic planes with (hkl) orientation (h, k and l are also known as the Miller 

indices) of the crystalline lattice (see Fig. 6). 
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 Finally, the diffracted X-photons are collected by a detector which also forms a θ 

angle with the crystallographic planes. During the acquisition, the sample support is rotated 

on itself so that the different sample diffraction planes can be detected. 

 A Bruker AXS D8 diffractometer was used to analyze the studied electrocatalysts 

from 2θ = 15° to 90° with a scan rate of ca. 0.74° min
-1

.  

 

 
Fig. 6. X-ray diffraction scheme on the crystallographic (hkl) planes. 

 

 The average cristallite size was estimated using Scherrer’s equation: 

 

      
       

        
  Eq.II.5 

 

with λKα the wavenumber of the incident ray and θmax the angular position and B the width at 

half-maximum of the (111) and of the (220) peaks. 

 The (111) and (220) diffraction peaks were used because of their high intensity. 

Inaccuracies can be found in the determination of B due to the possible overlap of the carbon 

support peak and the Pt (111) diffraction peak. In case of a sample with a large nanoparticle 

size distribution, the average size value can be biased because of the presence of the bigger 

nanoparticles, which impacts the diffraction peaks width. Accurate determination of the 

average size may also render difficult or even impossible in case of exclusive presence of very 

small nanoparticles, which will broaden the diffraction peaks. 

 Discrepancies between dV with dXRD can regularly be witnessed and often reflect the 

formation of heterogeneous nanoparticles (in shape, size…), which can only be observed by 

TEM. Due notably to the weak reflection by small nanoparticles of the incident X-ray beam, 

XRD spectra are more sensitive to the presence of small fractions of larger nanoparticles in 

the sample, which results in the formation of sharper diffraction peaks.  
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II.3.  Electrochemical characterization 

 

II.3.1. Three electrode assembly 

 

 A three electrode assembly was used to carry out electrochemical experiments. The 

system is constituted with a working electrode (WE), a counter electrode (CE) and a reference 

electrode (RE). The electrochemical reactions of interest generally occur at the working 

electrode. The cell voltage is generally measured as the difference between the WE potential 

and the RE potential. The latter should not be polarized so as to provide a reliable comparison 

to the WE and should be located as close as possible from the latter in order to minimize the 

ohmic drop engendered by the electrolyte resistance. Its position should however not interfere 

with the ions/molecules mass-transport. The CE serves only as a current sink. In other words, 

it helps the current flow through the cell. The reactions occurring at the counter electrode are 

usually of no concern (in aqueous electrolyte, it is usually predominantly H2 or O2 evolution). 

 

 

II.3.2. Cyclic voltammetry 

 

 This technique allows measuring the current variation at the working electrode while 

the potential applied at the latter linearly changes vs. time. The cyclic voltammetry starts at an 

initial potential and ends at a final one. The reversible potential marks the scan direction 

switch. The scan rate     
  

  
 indicates the tempo of the potential variation. Typical ν values 

vary from a few mV s
-1

 to a few V s
-1

 but can also go up to a few kV s
-1 

in a study with ultra-

microelectrodes (UME).  

 The measured current is equal to the addition of two distinct terms: If and Idl. The 

faraday current If originates from the electron transfer coming from electrochemical reactions 

occurring at the working electrode. Idl stands for the double layer (or capacitive) current and 

corresponds to the current generated by the capacitive ion charges movement operating at the 

interface electrode/electrolyte when the applied potential varies. Idl can be written as 

followed: 

 

Idl = Cdl A υ Eq.II.6 
 

with A the working electrode surface, ν the scan rate and Cdl the  double layer capacitance. Cdl 

values are approximately 20 μF cm
-2 

for glassy carbon electrodes and can be much higher 

when specific adsorption occurs (i.e. typically for Pt electrodes in the so-called hydrogen and 

oxide regions). The CV is often the first method carried out to electrochemically study a new 

system.  
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II.3.3. Chronoamperometry 

 

 A chronoamperometry is a potentiostatic method which enables measuring the current 

as a function of the time after application of a potential step. Like in a cyclic voltammetry, the 

current response to the step potential accounts for the contribution of a capacitive and a 

faradaic current. The capacitive current, only occurring at short times, corresponds to the 

double layer charging. It decays exponentially with time more or less rapidly depending on 

the values of the double layer capacity Cdl and the solution resistance RΩ.  

 The evolution of the faraday current follows a trend in two steps. At short times, the 

faraday current shrinks due to the concentration gradient sinking with time before the 

establishment of a steady-state value. 

 

 

II.3.4. Rotating Disc Electrode 

  

 The rotating disc electrode (RDE) is a powerful tool used in a three-electrode 

assembly (see II.2.1.) which permits to study reactions limited by mass-transport, under quasi-

stationary conditions, and to access possibly some kinetics parameters (number of exchanged 

electrons during a reaction, diffusion coefficient, kinetic rate constants…) provided by an 

adequate mathematical treatment of the electrochemical data. 

 In RDE, a disc electrode plugged in an insulated Teflon rod rotates at a fixed rotation 

rate on its axis; this creates a vortex, which continously provides reactant by convection to the 

electrocatalyst surface, before dragging it out perpendicular to the electrode surface (see Fig. 

7).  

 In a RDE study, a new term appears in the expression of the limited faraday current, 

which is proportional to the square root of the electrode rotation speed (Levich law - Eq II.7): 

 

Ilim = 0.62 ne- F D
2/3

 C υ
-1/6

 ω
1/2 

Eq.II.7 

 

where Ilim is the limiting current, ne- the number of exchanged electrons, F the Faraday 

constant, D the diffusion coefficient, C the species concentration, υ the kinematic viscosity 

and ω the rotation speed. 
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Fig. 7. Flow profile at a rotating disc electrode (RDE). 

 

 

II.3.5. Evaluation of the electrochemical active surface area 

 

 The electrochemical active surface area (ECSA) is the surface of the metal 

nanoparticles which participates in the electrochemical reactions, i.e. in the transformation of 

chemical energy in electrical energy. The CO stripping enables the ECSA evaluation based on 

the calculation of the charge required to oxidize a carbon monoxide monolayer adsorbed on 

the electrocatalyst surface (for more convenience, the ECSA was noted Am with m the metals 

constituting the different studied electrocatalysts): 

 

    
     

     
 Eq.II.8 

 

with ν the scan rate, QPt Pt specific charge and ACO,m the area of the COad monolayer 

electrooxidation. This area ACO,m is obtained by subtraction of the 1
st
 cycle during which the 

COad monolayer oxidizes and the 2
nd

 cycle (see Fig. 8):  
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Fig. 8. (a) 1

st
 (solid) and 2

nd
 cycle (dash) of a CO stripping CV in 0.5 M H2SO4 in the DEMS 

flow cell and associated (b) substraction of the 1
st
 cycle by the 2

nd
 one. 

 

 Based on the assumption that the nanoparticles have a cubooctahedral shape, their size 

can be evaluated using the following equation: 

 

      
  (   √ )   

       
 Eq.II.9 

 

with Wm the mass of deposited metal nanoparticles and ρm the metals density. 

 

 Inconsistencies between dS and dElec can originate from the non-utilization of some 

nanoparticles, due for example to the presence of non-supported nanoparticles, to large 

nanoparticles/agglomerates, the sole surface of which is electrochemically active (not their 

volume), or also to the presence of surfactants on the electrocatalyst surface blocking the 

active sites of the nanoparticles. 

 

 

II.3.6. Normalization of the current 

 

 The results presented hereafter are normalized either by the ECSA or by the total 

metal mass. The normalization by the ECSA was found more convenient for the comparison 

between the Pt electrocatalysts (in section III). On the contrary, the normalization by the 

metal mass was favored for the comparison between the Pt-based multi-metallic 

electrocatalysts. Indeed, the CO-stripping could suffer some inexactitudes: 

 

- COad quantitative electrooxidation starts at low potentials on Pt-SnO2/C and Pt-Rh 

SnO2/C electrocatalysts (between E = 0.2 and 0.3 V vs. RHE). COad desorption during 

the chronoamperometry step prior the CV is thus possible.  

 

- CO does not adsorb on tin/tin oxide. 



Chapter II. Experimental section 

 

 

 

 

 

48 

 

 

- Overlap of the current originating from the CO-stripping (1
st
 cycle) and the oxide 

formation (2
nd

 cycle) on rhodium and rhodium-containing electrocatalysts is possible.  

 

- Electronic interactions between metals may modify CO adsorption affinity. 

 

 

II.4.  Coupled physical and electrochemical techniques 

 

II.4.1. In situ Fourier Transform InfraRed spectroscopy 

 

 In situ Fourier Transform InfraRed (FTIR) spectroscopy is a technique which enables 

the coupled electrochemical and physical characterization of the electrode/solution interface: 

solution and adsorbed species can be identified via their unique infrared spectrum fingerprint 

under potential control conditions. 

 The principle is based on the absorption of an incident infrared polychromatic beam 

by the studied species present in the solution or adsorbed on the electrocatalysts. The light 

absorbed at punctual wavenumbers corresponds to the energy necessary for the vibration of 

specific dipolar covalent bonds. Thus, the identity of the bonds but, more important, the 

identity of the molecules can be identified. [4000 cm
-1

; 400 cm
-1

] generally corresponds to the 

spectral window for the vibration of molecules in a FTIR. 

 After absorption of the required energy of the incident beam by the different 

molecules adsorbed on the electrocatalyst or present in the solution, the beam is reflected by 

the surface of the working electrode before reaching the detector. The latter then measures the 

light reflected by the sample. The raw data are then converted using the Fourier transform in 

order to give the amount of light absorbed per wavelength (or wavenumber). 

 The nature of the window separating the FTIR compartment from the cell containing 

the studied system influences the range of the infrared spectrum and the amplitude of the 

bands. For example, a ZnSe window permits to have information at low wavenumbers (at 

high wavelengths) from 4000 cm
-1

 to 650 cm
-1

 whereas a CaF2 window can only give access 

to wavelengths until 1000 cm
-1 

(limits are defined by the beam absorption of the window 

itself).  

 The role of the aperture is to settle the intensity of the incident beam. The wider the 

opening, the larger the intensity of the incident beam (and as a consequence the intensity of 

the reflected beam); it should however not exceed a maximum value to avoid the deterioration 

of the detector. 

 Finally, a polarizer is positioned after the transmitter and permits to filter the incident 

beam. It lets only the electromagnetic waves with an electric field perpendicular to the 

metallic wires, constituting the polarizer, go through the grid. As a result, electromagnetic 

waves with a specific orientation can be selected and give more precise information. p- and s-

polarization correspond respectively to electromagnetic waves perpendicular and parallel to 
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the surface of the working electrode. A p-polarization (0° on the polarizer) allows identifying 

the species adsorbed on the electrode but also some species in the solution (depending on 

their orientation), while an s-polarization (90°) enables only the detection of the species 

present in the solution. Indeed, in the case of adsorbed species, the bond linking the atoms 

together is perpendicular to the surface of the working electrode and can only reflect the p-

polarized beam. 

 

 Fig. 9 shows the electrochemical cell adapted for the in situ FTIR experiments. The 

different inlets were employed for the three electrodes as well as for the inert gas (Ar) or CO 

bubbling depending on the electrochemical procedure. A last inlet was used to evacuate the 

gas. The counter electrode was a Pt grid and the reference electrode a RHE. The working 

electrode was either an Au electrode (for the CO-stripping study) or a GC electrode (for the 

EOR study). In order to minimize the infrared beam absorption by the aqueous solution, the 

working electrode was pressed by a glass rod against the CaF2 optical window used for the in 

situ FTIR experiments allowing us to work in a thin layer configuration. 

 Each FTIR spectrum was obtained under p-polarization and acquired during 30 s as an 

average of 256 interferograms. The spectra were recorded every 100 mV from E = 0.25 to 

1.15 V vs. RHE and are represented hereafter as R/RRef, with RRef the spectrum recorded at E 

= 0.15 V vs. RHE. 

 

 
Fig. 9. Standard scheme of an in situ FTIR cell 

 

 

II.4.2. Differential Electrochemical Mass Spectrometry (DEMS) 

 

II.4.2.1. Basics of operation 
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 Mass spectrometry (MS) analysis allows identifying gas and volatile molecules using 

their mass-to-charge signature. A typical mass spectrometer is composed of three 

components: an an ion source, a mass analyzer and a detector. It is connected to a pre-vacuum 

compartment (ca. 8.10
-2

 mbar) via a gas inlet which ensures a constant supply in the studied 

gas phase molecules pumped from the electrochemical cell. 

 In differential electrochemical mass spectrometry (DEMS), the gas inlet is going 

through two vaccum compartments maintained at differential pressures (ca. 10
-3

 mbar and 

then 10
-6

 mbar). This cascade of vaccum enables “ballistic” transport of the gases and very 

low transition times. As a result, the MS detector sees the molecules formed at the working 

electrode less than ca. 0.5 s after their generation (corresponding to on time-detection). 

 The ionization process operates through the collision between electrons and the 

absorbed gas and volatile molecules. Electrons are generated by thermionic emission from a 

heated tungsten filament in a vacuum. The emitted electrons accelerated up to 70 eV collide 

with absorbed gas molecules entering in the ion source chamber in a perpendicular direction 

to the electron beam. The collision results in the ionization of the molecules or/and their 

possible defragmentation(s). 

 Positive ionized molecules are then transported by an extracting diaphragm to a 

quadrupole mass analyzer through a repeller electrode where they are separated according to 

their mass-to-charge ratio (m/z). The qualizer is composed of four cylindrical rods, parallel 

from one another, imposing a variable electrical and magnetic field to the flowing ionized 

molecules. The latter adopts in this environment an ellipsoidal trajectory, the amplitude and 

speed of which depend on the characteristics of the electromagnetic field (parameters E and 

B) as well as the mass-to-charge ratio of the ionized molecules. Because of their singular 

speed and trajectory, each molecule can be sorted according to their mass-to-charge ratio. 

 The detector, located at the end of the mass analyzer, finally records the intensity 

resulting from the impact of the ionized molecules on the surface of the detector. Typical 

mass intensity values vary between 10
-14

 and 10
-5

 A. A maximum of 64 channels enables to 

measure the different mass-to-charge signals that are relevant to the experiment. 

 The dwell time for each signal varies between 0.1 s and 60 s. The longer the detection 

time, the more accurate the precision of the signal; however, a too long detection time can 

also result in a too important delay between the electrochemical and the mass spectrometric 

measurements ruining the interest of the differential pumping. That is why a compromise has 

to be found to get as precise information as possible during the electrochemical 

measurements: in the following studies, eight mass-to-charge signals (see Table 2) were 

studied during 2.5 s overall. A ca. 20 mV delay could be observed between the 

electrochemical and mass spectrometric experiments. 

 The Quadstar software was employed to parameter and run the measurements with the 

QMS 200 mass spectrometer from former Balzers. 

 

Table 2. Studied molecules and associated mass-to-charge signals. 
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m/z 

signals 
Molecules  Formula  Detected ions  

Dwell time 

/ s 

2 Dihydrogen H2 [H2]
+
 0.1 

15 
Ethanol, acetaldehyde, 

methane 

CH3CH2OH, 

CH3CHO, CH4 
[CH3

+
] 0.1 

22 Carbon dioxide CO2 [CO2
++

] 1 

29 Ethanol, acetaldehyde 
CH3CH2OH, 

CH3CHO  
[CHO

+
] 0.1 

30 Ethane CH3CH3 [CH3CH3
+
] 0.1 

44 
Ethanol, acetaldehyde, 

carbon dioxide 

CH3CH2OH, 

CH3CHO, CO2 
[CO2

+
], [CH3CHO

+
] 0.1 

60 Acetic acid CH3COOH [CH3COOH
+
] 0.5 

61 Ethyl acetate CH3COOCH2CH3 [CH3CH2OO
+
] 0.5 

 

 A flow cell setup is exploited for the purpose of in situ differential electrochemical 

mass spectrometry (DEMS) measurements. The geometry of the polychlortrifluorethylene 

(PCTFE) cell represented in Fig. 10 is the one of a wall-jet cell with one inlet for the studied 

solutions and two outlets, one for the reference electrode and one for the counter electrode. 

The solution is fed to the cell under a constant flow rate (the latter was always maintained 

between ca. 1.9 and 2.3 mL min
-1

) in order to prevent any current fluctuation during the 

electrochemical measurements. The reference hydrogen electrode (RHE) is located in a 

compartment containing the electrolyte solution (0.5 M H2SO4), while the platinum wire 

counter electrode is positioned at the cell outlet. Finally, the working electrode is constituted 

of a hydrophobic Gore-Tex membrane (60 µm thickness, 0.02 µm mean pore size, 50 % 

porosity) on which an inert gold thin layer (ca. 75 nm) is sputtered in order to render the 

membrane electrically conductive.  

Gas phase molecules coming from the flowing solution and produced during the 

electrochemical reactions are pumped to the pre-pump compartment through a glass frit 

located below the working electrode. 

 With the cell directly in contact to the mass spectrometer without any capillary 

intermediates, the delay time between the electrochemical measurements and the mass 

spectrometry signals can be minimized. 
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Fig. 10. Scheme of the electrochemical DEMS flow cell [160]. 

 

 

II.4.2.2. MS calibration 

 

 In order to quantify the amount of CO2 produced during the EOR and detected by the 

DEMS, a calibration of the mass-to-charge signal m/z = 22 regarding the corresponding 

faraday current has to be achieved [161]. For that purpose, the CO stripping is used as a 

calibration reaction, as it involves the sole production of CO2 from a known COad monolayer 

(Eq. I.18): 

 

COads + H2O → CO2 + 2 H
+
 + 2 e

-  
Eq.II.10 

 

 The mass to charge signal m/z = 22 is the only signal in the present experimental 

conditions (oxidation of ethanol) that can be ascribed solely to the production of CO2 (doubly 

ionized [CO2
++

]). Indeed, the signal m/z = 44 (ionized [CO2
+
]) is compromised by the 

presence of acetaldehyde (ionized [CH3CHO
+
]), a known by-product of the EOR. 

 Eq.II.11 correlates the ionic current for the mass to charge signal m/z = 22 and the 

faradaic current:  

 

   
  

            

     
   Eq.II.11 

 

where Im/z=22,co is the ionic charge of the mass-to-charge signal m/z = 22, If,co the faradaic 

charge, 2 the number of electrons exchanged during the electrooxidation of adsorbed CO in 

CO2 and     
  the calibration constant of the signal m/z = 22. The current value of the CO-

stripping peak and of the signal m/z = 22 peak were used to determine    
 . The latter was 

then checked with two or three other (faraday and ionic) current values in the ascending part 
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of the CO-stripping. The 20 mV delay between the electrochemical and mass spectrometric 

measurements was taken into account for the choice of these values (Fig. 11): 

 

 
Fig. 11.    

  calibration using a CO-stripping CV in 0.5 M H2SO4 on Pt/C and its associated 

mass-to-charge signal m/z = 22. 

 

 The CO2 current efficiency (CCE) can then be deduced using the faradaic and ionic 

current values obtained during the ethanol oxidation (see Fig. 12): 

 

      
 

   
 

       

  
    Eq.II.12 

 

 with 6 the number of electrons exchanged for the production of one CO2 molecule. 
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Fig. 12. EOR CCE calculation at E = 0.7 V vs. RHE in 0.5 M H2SO4 + 0.1 M EtOH. 

 

 For the study on the stripping of organic species (see section V), a calibration was 

required to estimate the number of electrons exchanged during the reactions producing CO2 as 

final product. Both mass-to-charge signals m/z = 22 and m/z = 44 could be used for this 

purpose (no acetaldehyde or ethyl acetate emission during stripping-CVs), but the signal m/z 

= 44 was favored as the latter had a better signal-to-noise ratio and thus could enable a more 

accurate determination of the number of exchange per CO2 molecule. The calibration was 

carried out using charges (Qf,CO and Qm/z = 44,CO) instead of currents (If,CO and Im/z = 22,CO), in 

Eq. II.11. The number of exchanged electrons per CO2 molecule could then be deduced using 

the faraday ionic charge values obtained during the stripping of ethanol and acetaldehyde 

adsorbates: 
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  Eq.II.13 

 

with Qf the faradaic charge and Qm/z=44 the ionic charge of the signal m/z = 44 from the 

ethanol or acetaldehyde adsorbates oxidation. 

 

 

II.5.  Conclusions  

 

 Different physical, electrochemical and coupled (physical-electrochemical) 

characterization techniques were described in this section. These methods were employed 

throughthout the thesis to characterize the electrocatalysts developed for the EOR study. 

 The polyol method was chosen in order to synthesize the Pt-based electrocatalysts due 

to the advantages offered by this method: easy applicability, use of only one chemical which 

plays both the role of the reducing and stabilizing agent and control of the nanoparticles size.  

 The electrocatalysts were then physically characterized by TGA or/and ICP-AES so as 

to accurately determine the metal-carbon and metal-metal ratio. TEM imaging revealed how 

well the dispersion of the nanoparticles operated on the carbon support and enabled the 

determination of the particle size distribution. XRD gave information on the crystalinity of the 

synthesized electrocatalysts. 

 The described electrochemical techniques were used throughout the presented work in 

order to highlight how efficient the different electrocatalysts are regarding the EOR and how 

they impact on the reaction.  

 Finally, the two coupled techniques (in situ FTIR and DEMS) are used combined with 

the electrochemical characterization in order to better understand and additionally give 

physical proves of the phenomena occurring during the multi-step/multi-pathway ethanol 

electrooxidation. 
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Chapter III.  

 

Ethanol Oxidation Reaction (EOR) investigation on Pt/C, Rh/C, 

and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and 

FTIR study 
 

 

The aim of this section is to identify the changes in the EOR mechanism and in the product 

distribution induced by the variation of some experimental factors and the use of different 

electrocatalysts. To that purpose, a first study was carried out on the influence of the scan rate 

and of the thickness layer of a 20 wt.% Pt/C electrocatalyst on the EOR by means of DEMS 

and RDE. A combined DEMS and in situ FTIR investigation of the EOR was then performed 

on 20 wt.% Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C, Pt-Rh-SnO2/C electrocatalysts. Above all, the 

state of the art on Pt-based multi-metallic electrocatalysts is thoroughly recalled and a special 

emphasis is given on the effects induced by the addition of rhodium and tin to platinum in the 

electrocatalyst composition. The results obtained by means of DEMS and in situ FTIR are 

subsequently displayed and meticulously addressed in view of the present knowledge on the 

field.  
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III.1. Influence of the Pt/C electrode structure on the EOR 

 

III.1.1. Introduction 

 

 Investigating the effect of the electrocatalytic surface structure on the EOR 

mechanism, a surface sensitive mechanism, can allow its better understanding. For example, 

studies on monocrystalline electrocatalysts give precious information on the different EOR 

pathways [34,45,162–170]. It was found that the C-C bond cleavage occurs mainly on surface 

steps [163,164,166], whereas no influence of the terrace was observed [164]. Besides, the 

increase of the step density seems to result in an increase of the EOR electroactivity [163], 

which can be paralleled to the faster CO-oxidation kinetics at the defects of agglomerated 

Pt/C nanoparticles [57]. Colmati et al. discovered that the effect of the steps on the EOR could 

be separated in two potential regions: one below and one above E = 0.7 V vs. RHE [164]. 

Using FTIR techniques, they found that both the C-C bond breaking and COad 

electrooxidation are enhanced at low potentials, whereas a competition with acetaldehyde and 

acetic acid formation takes place at high potentials. 

 Although information brought by these studies is of high interest, monocrytals are not 

representative of the practical electrocatalysts used in fuel cell applications. Investigating the 

EOR on polycrystalline and carbon-supported nanoparticle electrocatalysts appears thus as a 

necessity. Despite the growing interest in direct ethanol fuel cells, a very low amount of 

studies exists on the effect of the structure of such electrocatalysts on the EOR 

[35,42,158,171–173]. According to Perez et al., Pt nanoparticles size of ca. 2.5 nm are 

considered offering a good compromise between their geometric features (smaller crystallites 

have a large electrochemical surface area, a positive effect, but a decreased stability, a 

negative effect) and their oxophilicity (smaller Pt nanoparticles exhibit more oxophilic 

surfaces than larger ones) to get optimal EOR performances. On the contrary, Li et al. found 

the highest EOR specific activity on their smallest Pt nanoparticles (ca. 1.7 nm) against 

nanoparticles of ca. 2.4 and 4.0 nm [158]. Gomes et al. investigated the presence of 

agglomerates and small nanoparticles in electrocatalyst of constant mean particle size: they 

observed a higher EOR peak in presence of large nanoparticles but determined lower CCE 

with the same sample [173]. The effect of the loading was also investigated by Chumillas et 

al. who recorded lower EOR electroactivity at higher Pt loadings. They attributed these results 

to a lowered diffusion of the reactants in the internal parts of the electrocatalyst layer with 

increase of the metal loading [171]. Finally, the investigation on the influence of the 

electrocatalyst thickness on the EOR brought out the rise of the CO2 current efficiency with 

the increase of the electrocatalyst thickness [42], an effect which is expected for complex and 

multiple-step reactions, such as the CO electrooxidation [174], ORR [175,176] and BOR 

[177,178]. 
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III.1.2. Physical characterization 

 

 The metal loadings of the four Pt/C electrocatalysts, determined by TGA, ranged from 

18.7 wt.% to 22 wt.%. A representation of their XRD-pattern is displayed in Fig. 13. 

 

 
Fig. 13. XRD pattern of the carbon supported Pt/C electrocatalysts prepared by Polyol method 

at pH = 12.3, 11.7, 11.3 and 10.7. 

 

 

III.1.3. Effect of the mass-transport  

 

 The influence of the mass-transport on the potentiodynamic ethanol electrooxidation 

was investigated by means of RDE. Fig. 14 displays cyclic voltammetries in 0.5 M H2SO4 + 

0.1 EtOH on Pt/C at different rotation speeds: ω = 0, 100, 225, 400, 900, 1600, 2500 rpm. 

Three separate current rises are attributed to the EOR: the first one between E = 0.3 and 1 V 

vs. RHE, a second one at E > 1.1 V vs. RHE and a last one located between E = 0.8 and 0.4 V 

vs. RHE during the cathodic scan. 

 It can be observed that the current between E = 0.3 and 0.85 V vs. RHE increases 

together with the rise of the rotation speed. The reactions occurring in this potential range are 

mass-transport limited. Besides, the potential of the peak current (Ip,a1) shifts toward lower 

values with the rise of the rotation speed. This phenomenon, also observed for formic acid and 

formaldehyde, is however opposite to the methanol oxidation reaction (MOR) [179]: the 

different behavior of the methanol electrooxidation is attributed to an enhancement of the 

formaldehyde formation over the CO2 production in increased mass-transport conditions, 

which thus induce a reduction of the number of exchanged electrons.  

 Interestingly, a non-linear dependence of the peak curren t between E = 0.3 and 1 V 

vs. RHE (Ip,a1) and between E = 0.8 and 0.4 V vs. RHE (Ip,c) against the square root of the 

rotation speed is observed in Fig. 14b. This result was expected and illustrates the complexity 

of the ethanol electrooxidation (inducing slow kinetics), which is a multi-step reaction 
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yielding up to 12 electrons. In particular, the reaction rate may not only depend on the access 

to bulk reactant (linear behavior of the “limiting current” vs. ω
1/2

, Levich equation) but also to 

the formation/desorption/poisoning of adsorbed species, therefore giving this peculiar 

behavior (quasi-absence of limiting current, presence of multiple peaks with 

activation/inhibition regions). 

 The oxidation current at E > 1.1 V vs. RHE does not observe the same tendency. 

Besides a rise of the peak current between ω = 0 and 100 rpm, the current remains quasi-

constant independently of the electrode rotation. Actually, it reaches a threshold at 100 rpm 

which does not vary with increasing rotation speeds. This trend shows that the reaction 

occurring in this potential region is independent on the electrolyte mass-transport and likely 

corresponds to the electrooxidation of ethanol adsorbates which cannot oxidize between E = 

0.3 and 0.9 V vs. RHE. Indeed, it is hardly believable that some new species adsorbed at E = 

1.1 V vs. RHE on the fully blocked electrocatalyst surface (mostly by OH-adsorbates but also 

by ethanol adsorbates formed at lower potential values). The presence of strong ethanol 

adsorbates oxidizing only at E > 0.9 V vs. RHE has been demonstrated in [17,38,72]. 

 

 
Fig. 14. (a) CV in 0.5 M H2SO4 + 0.1 EtOH on Pt/C (metal loading: 9.9 μg) on a RDE at 

different rotation speeds: 0, 100, 225, 400, 900, 1600, 2500 rpm; Evolution of the peak 

current between (b) E = 0.3 and 1 V vs. RHE (Ip,a1)  and between (c) E = 0.8 and 0.4 V vs. 

RHE (Ip,c) against the rotation speed; v = 10 mV s
-1

; T = 25°C. 
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III.1.4. Influence of the electrocatalyst thickness 

 

III.1.4.1. Thickness determination 

 

 The electrocatalyst thickness (L) was evaluated assuming a uniform deposition on the 

electrode surface and following the relation proposed by Gloaguen et al. [180]: 

 
γ

𝐿
 (   θ) ρ 𝑚 𝑆       Eq. III.1 

 

with L the electrocatalyst thickness, γ the ECSA / geometric area ratio, θ the Nafion volume 

fraction (in the present experiments, θ = 0.42), ρ the electrocatalyst powder density (ρ = 2.2 g 

cm
-3

), m the electroactive mass fraction in the electrocatalyst powder (m = 20 wt. %) and S the 

specific electrocatalyst area (ECSA / metal mass ratio). Table 3 summarizes the parameters 

used for the determination of the thickness. 

 

Table 3. Structural parameters of the electrocatalyst 

Metal loading / μg ECSA / cm
2
 Specific area (S) / m

2
 g

-1
 Thickness (L) / μm  

19.8 9.79 49.4 10.8 

14.9 6.67 44.9 8.1 

9.9 4.79 48.4 5.4 

4.95 2.52 50.1 2.7 

 

 

III.1.4.2. Effect of the thickness on the EOR 

 

III.1.4.2.1. DEMS 

 

 Fig. 15 shows the potentiodynamic EOR in 0.5 M H2SO4 + 0.1 M EtOH and the 

corresponding mass-to-charge signals m/z = 29, 22 and 61 on the same Pt/C electrocatalyst 

with a different thickness layer: 10.8, 8.1, 5.4 and 2.7 μm.  

 Fig. 15a shows that the intensity of the peak current at ca. E = 0.8 V vs. RHE rises 

with the decrease of the electrocatalyst thickness; Ip (L = 2.7) > Ip (L = 5.4) > Ip (L = 8.1) > Ip 

(L = 10.8). The same tendency can be seen in Fig. 15b where the CVs are normalized by the 

ECSA, which discards any experimental uncertainties (the normalization by the ECSA was 

kept in Fig. 15c and Fig. 15d). In Fig. 15c, the mass-to-charge signal m/z = 29 follows the 

same trend and shows that the higher currents is due to a higher acetaldehyde formation. 

Looking at the normalized mass-to-charge signal m/z = 22 displayed in Fig. 15d, the amount 

of CO2 generated during the EOR remains almost unchanged depending on the electrocatalyst 
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thickness. As a consequence, the lower faraday currents reported in Fig. 15a and Fig. 15b on 

thicker electrocatalysts combined to the similar CO2 generation reported in Fig. 15d shows 

qualitatively that the amount of ethanol oxidizing completely into CO2 is higher on thicker 

electrocatalysts.  

 

 

 
Fig. 15. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH on Pt/C (L = 2.7, 5.4, 8.1 and 10.8 

µm) normalized by the (a) metal loading and (b) ECSA and corresponding MSCV for mass-

to-charge ratio (c) m/z = 29 and (d) m/z = 22 (normalized by the ECSA); v = 10 mV s
-1

; T = 

25°C. 

 

 To confirm this tendency, the CO2 current efficiency (CCE) was evaluated to quantify 

the amount of ethanol oxidizing completely into CO2. Fig. 16 displays the evolution of the 

CCE versus the electrocatalyst thickness (Fig. 16a) and the applied potential (Fig. 16b). First 

and foremost, independently of the thickness, it can be seen that the highest CCE is reached 

for each thickness either at E = 0.6 V vs. RHE. At E > 0.6 V vs. RHE, the CO2 generation 

starts shrinking. It can be assumed that above a certain potential, the ever-growing presence of 

OH-adsorbates and of remaining ethanol adsorbates discriminate the CO2 formation over 

other simpler and faster reactions (acetaldehyde or acetic acid formation). 

 When comparing the CCE values obtained for different electrocatalyst thicknesses in 

Fig. 16a, the CCE is clearly increasing when the thickness gets larger. A similar trend was 
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found by Rao et al. during their MEA tests [42]. An improvement of the CCE due to the rise 

of the residence time with the electrocatalysts thickness is likely suggested by these results. 

Moreover, it is suggested that a longer residence time of the reaction products, and more 

particularly of acetaldehyde (which constitutes most of the produced species during the EOR), 

would favor the re-adsorption of the latter on the electrocatalyst surface which would oxidize 

to give CO2. 

 It can finally be observed that although the complete ethanol electrooxidation is 

favored in thicker electrocatalysts, the current produced during the cyclic voltammetry does 

not increase, but actually decreases. This behavior, which could appear contradictory in regard 

to the number of electrons exchanged during the complete EOR to CO2 (12 e
-
) compared to 

the incomplete EOR (up to 4 e
-
), can be explained by a weaker utilization of the 

electrocatalyst and more particularly by a hindered mass-transport of the electrolyte in the 

internal part of the electrocatalyst. Chumillas et al. found a similar trend for the formic acid 

electrooxidation and interpreted the lower electrooactivity to the dreadful mass-transport 

inside the electrocatalyst thickness [171].  

 However, this behavior can also be interpreted kinetically. The production of CO2 

coming from desorbed/re-adsorbed acetaldehyde (from the ethanol dehydrogenation step) is a 

kinetically slow reaction which occupies at least one electrocatalytic site. In comparison, 

ethanol dehydrogenation into acetaldehyde should be a kinetically fast reaction. As such, even 

if one adsorbed acetaldehyde molecule generates 10 electrons in the reaction leading to CO2, 

the fast kinetics of the ethanol dehydrogenation may enable more than one ethanol molecule 

to dehydrogenate and deliver, in the end, more current per Pt electrocatalytic sites per unit of 

time. This assumption is supported by the fact that, when acetaldehyde re-adsorbs, the 

molecule oxidation leads to the generation of either CO2 (ca. at E > 0.6 V vs. RHE) or acetic 

acid (ca. at E > 0.9 V vs. RHE). The last reaction is not only limited by the number of 

exchanged electrons (2 e
-
 for acetic acid formation instead of 10 e

- 
for CO2 formation - see Eq. 

I.26 to Eq. I.29), but also by its high overpotentiel (the reaction starts at ca. E > 0.9 V vs. 

RHE). Finally, acetaldehyde re-adsorption may lead to more CO2 production and to higher 

CCE values (see Fig. 16), but it may also contaminate the electrocatalyst surface, hinder the 

ethanol dehydrogenation and in fine impede the current generation (in other words, the Pt 

sites turnover frequency of ethanol oxidation into acetaldehyde may exceed by a large extent 

that of acethyaldehyde into further oxidized products, such as CO2). 
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Fig. 16. Evolution of the EOR CO2 current efficiency (CCE) against (a) the electrocatalyst 

thickness and (b) the applied potential calculated from cyclic voltammetries run in 0.5 M 

H2SO4 + 0.1 M EtOH (represented in Fig. 15a) and corresponding MSCVs (Fig. 15b) on Pt/C. 

 

 

III.1.4.2.2. RDE 

 

 Fig. 17 displays comparative RDE CVs carried out in 0.5 M H2SO4 + 0.1 M EtOH on 

the same Pt/C electrocatalyst with various layer thicknesses (L = 10.8, 8.1, 5.4 and 2.7 μm) at 

different rotation speeds: ω = 0 rpm (Fig. 17a), 400 rpm (Fig. 17b) and 2500 rpm (Fig. 17c). 

Similarly to what was observed in the DEMS study, the current seems to drop against the rise 

of the thickness of the electrocatalyst layer, although the difference is not as marked as in Fig. 

15. More specifically, the peak current values are almost the same for thickness layers 

between L = 2.7 and 8.1 μm, but are distinctly lower for L = 10.8 μm. This observation is 

confirmed in Fig. 18, which displays the evolution of the peak current against the square root 

of the rotation speed. Besides, the peak current values during the anodic and cathodic scan 

seem to be more sensitive to the effect of the mass-transport at low thickness layers than at 

high ones, which induce a larger gap of the peak current between the layer at L = 10.8 μm and 

the other three at ω = 2500 rpm. This tendency shows that the lower EOR electroactivity in 

the thickest layer of electrocatalyst may not be due to some mass-transport limitation inside 

the thick layer (as it was proposed for the DEMS study). On the contrary, the increase of the 

rotation speed, which quickens the supply of bulk ethanol to the electrocatalyst surface, may 

intensify the poisoning of the electrocatalyst. Indeed, the enhancement of the mass-transport 

will help supply fresh bulk ethanol species to the electrocatalytic sites freed during the 

electrooxidation reactions. However, as the ethanol dehydrogenation is enhanced due to the 

better mass-transport conditions, it will also accelerate the re-adsorption of acetaldehyde, 

which slowly produces CO2 and which block during this time Pt sites for other ethanol 

dehydrogenation reactions. Yet, as seen in the previous section, thick layers of electrocatalyst 

are believed to promote the re-adsorption/oxidation of acetaldehyde into CO2. As such, the 



Chapter III. Ethanol Oxidation Reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based 

bi- and tri-metallic electrocatalysts: a DEMS and FTIR study 

 

 

 

 

 

65 

 

acceleration of the scan rate enhances more ethanol dehydrogenation on thin catalyst layers 

whereas it will favor the poisoning on thick layers. 

 

 
Fig. 17. CV in 0.5 M H2SO4 + 0.1 EtOH on Pt/C (L = 2.7, 5.4, 8.1 and 10.8 µm) on a RDE at 

different rotation speeds: ω = (a) 0, (b) 400 and (c) 2500 rpm; v = 10 mV s
-1

; T = 25°C. 

 

 

 
Fig. 18. Evolution of the peak current between (a) E = 0.3 and 1 V vs. RHE and (b) E = 0.8 

and 0.4 V vs. RHE against the rotation speed. 
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 Chronoamperometries were also carried out at E = 0.7 V vs. RHE in order to verify if 

the trend observed in potentiodynamic conditions is the same in potentiostatic ones. This 

potential was chosen as the CCE is quite high and the CO2 formation happens quantitatively 

(according to the DEMS study). Fig. 19 shows the CAs run at ω = 0, 100, 225, 400, 900, 1600 

and 2500 rpm on Pt/C at different thickness layers: L = 2.7, 5.4, 8.1 and 10.8 μm. Regarding 

the results obtained in potentiodynamic conditions, a constant rise of the current against the 

increase of the RDE rotation, as well as against the decrease of the thickness layer would have 

been expected. However, as it can be more clearly viewed in Fig. 20, which describes the 

evolution of the current recorded at the end of the CA (tf = 630 s) at E = 0.7 V vs. RHE, no 

such trend is observed. Indeed, unlike the cyclic voltammograms where the highest currents 

were reached on the thinnest electrocatalyst, the highest current values are obtained on the 

thickest electrocatalyst under the potentiostatic conditions. Moreover, the rotation speed at 

which the maximum current is reached on each electrocatalyst is dependent on the layer 

thickness: the maximum current is reached at ω = 100, 225, 900, 1600 rpm for the layers 

thickness of L = 2.7, 5.4, 8.1 and 10.8 μm respectively.  

 More precisely, the evolution of the current against the rotation speed can be separated 

in two regions: a first one, at low rotation speeds, where the current is in an ascending phase, 

and a second one at higher rotation speeds, where the current slowly decreases or stabilizes. 

The limits of the first region, defined by the maximal current value, depend highly on the 

electrocatalyst thickness and shifts to higher rotation speeds versus the increase of the 

thickness layer: at L = 2.7 μm, the highest current value is reached at ω = 100 rpm against ω = 

1600 rpm at L = 10.8 μm. Similarly, the amplitude of the current increase, in this first rotation 

speed region, is also dependent on the electrocatalyst thickness layer: the thicker the layer, the 

larger the current rise. In the second rotation speed region, the current decreases steeper for 

the lowest thickness layers and more slowly for the thickest layers. This tendency 

demonstrates that the thicker the electrocatalyst layer, the more positive the current response 

to the improved mass-transport conditions. In this case and contrary to what was observed 

under potentiodynamic conditions (RDE and DEMS), it can be assumed that, while the 

enhanced mass-transport of the electrolyte (by rotation of the disc-electrode) improved its 

supply inside the electrocatalyst thickness, the potentiostatic conditions favored ethanol 

complete oxidation into CO2. Indeed, E = 0.7 V vs. RHE corresponds to a potential at which 

the CCE is quite high and the CO2 formation happens quantitatively. However, although this 

explanation could justify the rise of the current, when the rotation speed increases for the 

thickest layer of electrocatalyst, it does not take into account the drop of the current by faster 

rotation speed for the thinnest electrocatalysts. For this reason, results in Fig. 19 and Fig. 20 

are tentatively attributed to the enhanced poisoning of the thiner layers, a poisoning which is 

(independently of the thickness of the electrocatalyst) intensified when the rotation speed 

rises, i.e. when the experimental conditions become stationnary.  

 Unfortunately, the opposite behaviors between the cyclic voltammograms (Fig. 15 and 

Fig. 17), where the thicker layers of electrocatalyst demonstrated more dramatic poisoning, 
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and the chronoamperograms (Fig. 19), where the thinner layers were the most poisoned, could 

not be rationalized to date.  

 

 
Fig. 19. CA on a RDE at different rotation speeds (ω = 0, 100, 225, 400, 900, 1600 and 2500 

rpm) in 0.5 M H2SO4 + 0.1 EtOH on Pt/C at different thickness layers:  L = (a) 2.7, (b) 5.4, (c) 

8.1 and (d) 10.8 µm; v = 10 mV s
-1

; T = 25°C. 

 

 

 
Fig. 20. Evolution of the potentiostatic current (CA at E = 0.7 V vs. RHE) recorded at tf = 630 

s against the rotation speed. 
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III.1.5.  Effect of the scan rate 

 

III.1.5.1.  CO-stripping CVs 

 

 Fig. 21 compares substracted CO-stripping CVs in 0.5 M H2SO4 at υ = 2, 5 and 10 

mVs
-1

. The CVs have been amplified in order to take into account the influence of the scan 

rate on the current [181].  The rise of the sweep rate from υ = 2 mV s
-1

 to 10 mV s
-1

 results in 

a positive shift of the CO-stripping onset and peak potential, in agreement with the literature 

[181–183]. Moreover, a similar trend was found in Fig. 21c by use of the mass-to-charge ratio 

m/z = 22 (ascribed to CO2). According to Maillard et al., the onset potential of the CO-

stripping at υ = 2 mV s
-1

 is close to the equilibrium potential of the OHad formation [181]. 

However, as the scan rate increases and the reactions take place deeper in non-stationary 

conditions, the onset potential, which is believed to be controlled by COad + OHad 

interactions, shifts positively due to the low mobility of the COad on Pt surface, and more 

particularly Pt terraces.  

 Besides the potential onset, a sharper soar of the ascending current can also be 

observed in Fig. 21a and Fig. 21b at low scan rates giving the CO-stripping ascending and 

descending part a more symmetric profile. The apparent slower kinetics at υ = 10 mV s
-1

 

against υ = 2 mV s
-1

 can be induced by the slow diffusion of the COad on the Pt surface, as the 

latter is believed to limit the reaction kinetics of the CO-stripping reaction [181], or by the 

limiting water dissociation [184].  
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Fig. 21. Substracted (a) non-amplified and (b) amplified CO-stripping CVs in 0.5 M H2SO4 

on Pt/C (metal loading: 9.9 μg) and corresponding (c) non-amplified and (d) amplified 

MSCVs for mass-to-charge ratio m/z = 22 multiplied by a number indicated in brackets; T = 

25°C. 

 

 

III.1.5.2. EOR CVs 

 

 Fig. 22 displays cyclic voltammograms of the EOR performed at different scan rates: ν 

= 2, 5 and 10 mV s
-1

 on Pt/C. A usual increase of the peak current, as well as a positive shift 

of the peaks potential, at ca. E = 0.86 V vs. RHE and E = 1.3 V vs. RHE against the scan rate 

can be observed in Fig. 22a. The associated mass-to-charge signals m/z = 29 (acetaldehyde) 

and m/z = 22 (CO2) are represented in Fig. 22b and Fig. 22c. The feature of the signal m/z = 

29 is similar to the CV in Fig. 22a, showing that the generated current mainly corresponds to 

ethanol dehydrogenation into acetaldehyde. The signal m/z = 22 represented in Fig. 22c seems 

also to depend on the scan rate. The dashed line centered on the ionic peak current at ν = 5 

mV s
-1

 helps discerning a shift of the peak current toward lower potentials with the decrease 

of the scan rate: the peak potential is located at ca. E = 0.65, 0.70 and 0.71 V vs. RHE at ν = 

2, 5 and 10 mV s
-1

 respectively. This trend shows that the CO2 generation gets hindered at 

lower potential when the experimental conditions are quasi-stationary. This hindrance is likely 
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caused by the adsorption of poisoning species which occupy the electrocatalytic sites and 

prevent from the dissociative ethanol adsorption, mandatory for any CO2 generation. The low 

scan rate would give them more time to block the electrocatalystic surface at lower potential 

than in non-stationary conditions. These adsorbates are most probably ethanol adsorbates and 

hydroxide species. The behavior of the CO2 production during the EOR contrasts with the 

electrooxidation of adsorbed CO using the mass-to-charge signal m/z = 22. Indeed, although 

the peak potential of the CO2 generation depends on the scan rate similarly to the CO-

stripping, the extent of the shift is much lower in the case of the EOR and finds other causes: 

The CO-stripping peak current is attributed to a lack of COad-species at the electrocatalyst 

surface (progressive consumption on the COad monolayer, half of it being removed at the CO-

stripping peak) whereas the CO2 peak of the EOR in Fig. 22c is likely due to the poisoning of 

the surface by ethanol and hydroxide adsorbates. Besides, the positive shift of the CO-

stripping initiation with the rise of the scan rate is attributed to CO slow mobility, while the 

onset potential of the CO2 formation during the EOR (Fig. 22c) seems to remain constant. 

This independence of the reaction initiation against the scan rate shows that the reaction is not 

limited by CO mobility (like in a CO-stripping), but probably by the C-C bond cleavage or 

the supply in hydroxide species. 

 An interesting trend can be noticed when comparing the two peak currents of the 

anodic sweep at ca. E = 0.86 V vs. RHE and E = 1.3 V vs. RHE. Indeed, the ratio Ip,a1 / Ip,a2 

decreases with the rise of the scan rate: Ip,a1 / Ip,a2 = 2.03, 1.62 and 1.38 at υ = 2, 5 and 10 mV 

s
-1

 respectively. This relative evolution of the two peak currents against the scan rate is 

assigned to a lower increase of Ip,a1 than to a larger one of Ip,a2 with the rise of the scan rate 

and is rather explained by slow reaction kinetics than a slow species diffusion. The first 

reason is privileged, as a scan rate of ν = 10 mV s
-1

 still allows quasi-stationnary conditions 

and should be slow enough to avoid mass-transport limitations by diffusion. Moreover, as the 

current issued from ethanol complete electrooxidation into CO2 represents a larger part of the 

total current at ν = 10 mV s
-1

 than at ν = 2 mV s
-1 

(see CCE values in Fig. 23), the slow 

kinetics of the reaction should be responsible for the lower increase of Ip,a1, when the scan rate 

rises. 
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Fig. 22. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH on Pt/C and corresponding MSCV 

for mass-to-charge ratio (b) m/z = 29 and (c) m/z = 22; at v = 2, 5 and 10 mV s
-1

; T = 25°C. 

 

 The evolution of the CCE against the potential is represented in Fig. 23. The drop of 

the CCE versus the rise of the applied potential has already been observed in Fig. 16b and was 

attributed to the growing contamination of the electrocatalyst surface by ethanol and 

hydroxide adsorbates, which hinders the dissociative adsorption of ethanol. The maximal 

value obtained at E = 0.6 V vs. RHE is very similar for each scan rate, which rules out its 

influence (at least between υ = 2, 5 and 10 mV s
-1

) on this value. This result contrasts with 

what was expected. Indeed, ethanol adsorbates stripping studies have shown that the C-C 

bond breaking can occur at potentials as low as E = 0.05 V vs. RHE [38,185] (more details in 

section V). As such, a longer time between E = 0.07 (CV initial potential) and E = 0.6 V vs. 

RHE (CO2 generation initiation), induced by a slower scan rate of the CV, was expected to 

enhance ethanol dissociative adsorption and boost the amount of CO-like adsorbates at the 

electrocatalyst surface at the beginning of the CO2 generation. At E ≥ 0.7 V vs. RHE, the 

degree at which the CCE decreases against the potential is rather different depending on the 

sweep rate: the CCE at E = 0.7 V vs. RHE is twice lower at υ = 2 mV s
-1

 (CCE = 0.09) than at 

υ = 10 mV s
-1 

(CCE = 0.18). This is explained by the blockage of the electrocatalyst surface at 

lower potentials by the mentioned poisoning adsorbates due to the lower scan sweep, which 

gives more time to the process to operate. 

 Finally, it would have been of interest to lead this study at higher scan rates, to see 

wether the trend observed under quasi-stationary conditions were confirmed under non-
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stationary ones. However, higher scan rates would have led to longer delays between the CVs 

and MSCVs and would have corrupted the reliability of the results. 

 

 
Fig. 23. CO2 current efficiency (CCE) values calculated from cyclic voltammetries run in 0.5 

M H2SO4 + 0.1 M EtOH (represented in Fig. 22a) at ν = 2, 5 and 10 mV s
-1

 and corresponding 

MSCVs (Fig. 22b) on Pt/C. 

 

 

III.1.6. Discussions 

 

 As particularly seen in this investigation, the potentiodynamic electrooxidation of 

ethanol (in 0.5 M H2SO4 + 0.1 M EtOH) presents two different oxidation regions during the 

positive scan: one between ca. E = 0.4 and 1.1 V vs. RHE and a second one between E = 1.1 

and 1.5 V vs. RHE. In most studies present in the literature, the attention is paid on the first 

oxidation, as this is of higher interest for fuel cell applications (it gives an idea of the DEFC 

performances and of the work still to accomplish to reduce the anodic overpotential). 

However, almost no discussion was undertaken about this second oxidation at high potential 

[186]. Its study is of importance as it suggests the presence of “strong ethanol adsorbates” on 

the electrocatalyst surface, which cannot oxidize at lower potentials, as it is suspected from 

the results in Fig. 14, which shows a quasi non-dependence of the reaction on mass-transport 

effects. An attempt to identify the reaction occurring at E > 1.1 V vs. RHE and the species 

involved in this reaction will be undertaken.  

 As observed in Fig. 15 and in the literature [32,71,98,99], the main reaction products 

detected by mass spectrometry during the second oxidation of the anodic scan correspond to 

acetaldehyde and ethyl acetate (CO2 does not seem to be produced or, at least, not 

quantitatively). Their formation is however not evidenced during ethanol adsorbates 

stripping-CVs [38,185]. If the adsorbates were indeed the same between the EOR CVs and 

adsorbates stripping-CVs, this would suggest that the adsorbates react with bulk ethanol to 

produce acetaldehyde and ethyl acetate. A possibility would be that ethyl acetate (m/z = 61) is 

formed through a one-step reaction: 
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“Strong adsorbate” + CH3CH2OHsol → CH3COOCH2CH3,sol Eq. III.2 

 

 This assumption suggests that the volatile species observed with the signals m/z = 15, 

29, 44 (detected simulatenously to m/z = 61, at least at high potential) correspond to the 

fragments of ethyl acetate only. This is not in contradiction with the ethyl acetate MS 

spectrum shown in [187], although the signal m/z = 44 is very low on the spectrum in 

comparison to the other signals.  

 A second possibility is that Eq. III.2 takes place in two steps, via the formation of 

acetic acid (as the latter is detected by IR-techniques – see section I.6.3) which further reacts 

with bulk ethanol (Eq. III.3 - Eq. III.4) and, simultaneously, acetaldehyde formation and 

further reaction, once in the solution, with ethanol to produce ethyl acetate (Eq. III.5 - Eq. 

III.6):  

 

“Strong adsorbate” + OHad → CH3COOHsol Eq. III.3 

 

CH3COOHsol + CH3CH2OHsol → CH3COOCH2CH3,sol Eq. III.4 

 

“Strong adsorbate” + OHad → CH3CHOsol Eq. III.5 

 

CH3CHOsol + CH3CH2OHsol → CH3COOCH2CH3,sol  Eq. III.6 

 

 If acetic acid and acetaldehyde are indeed produced at high potentials (before being 

consumed in the solution), their formation reaction (Eq. III.3 and Eq. III.5 respectively) 

should be realizable in stripping conditions (OHad is solely required). Yet, no ethyl acetate and 

no acetaldehyde are detected during the stripping-CVs, which could discard Eq. III.3 to Eq. 

III.6. However, a possible diffusion and re-organisation of the ethanol adsorbates on the 

electrocatalyst surface during the potentiostatic step in 0.5 M H2SO4 preceeding the stripping-

CV (more details on the experimental protocol in section V and in [38,185]) is not excluded 

and could result in the existence of different ethanol adsorbates between the potentiodynamic 

ethanol electrooxidation and the ethanol adsorbates stripping-CVs. 

 Although the characterization techniques (DEMS, RDE) used in this work do not 

allow a proper identification of such “strong ethanol adsorbate(s)”, this topic will be discussed 

in the light of the literature and particularly of a study from Iwasita et al. [29]. 

 As written in section I.6.3, Iwasita et al. [29] proposed four different ethanol 

adsorbates which were illustrated in Fig. 4. As (=CHOH-CH3) ((d) in Fig. 4) represents only 5 

% of the overall ethanol adsorbates, this adsorbate will not be considered as candidate for the 

“strong ethanol adsorbate(s)”. 

 Among the three other candidates, it is hardly believable that an adsorption by an O-

atom ((b) in Fig. 4) leads to any acetaldehyde formation during the EOR at 0.3 < E < 0.9 V vs. 
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RHE. Indeed, the bonds Pt-O and O-C prevent the formation of the double bond C=O 

characteristic of the acetaldehyde. It is more likely that an adsorption by the C-atom generates 

acetaldehyde: (-CO-CH3) would be a good candidate ((c) in Fig. 4). The adsorption by the C-

atom would make ethyl acetate generation easier: the sole OHad presence at proximity of the 

adsorbed molecule would be necessary for the reaction. Regarding the O-atom 

electronegativity, it is also conceivable that the adsorption by the O-atom is more stable than 

by a C-atom. Moreover, the ethyl group in (–OCH2-CH3) is also relatively stable. As such, it 

is conceivable that (–OCH2-CH3) oxidizes at higher potentials than (-CO-CH3) and that it 

corresponds to the “strong ethanol adsorbate” in Eq. III.3 to Eq. III.6. The relative stability of 

the (–OCH2-CH3) adsorption mode is believed to grow always more unstable with the 

potential rise and to start reacting at E > 1.1 V vs. RHE in order to produce ethyl acetate (as 

seen in Eq. III.7): 

 

-OCH2CH3 + CH3CH2OH → CH3COOCH2CH3  Eq. III.7 

 

 Finally, the formation of acetaldehyde at E > 1.1 V vs. RHE as proposed in Eq. III.5 

seems unlikely because of the reasons stated earlier: the bond Pt-O and O-C hinder the 

formation of the acetaldehyde double bond characteristic. A one-step production of ethyl 

acetate (Eq. III.2) is believed to take place, but a formation in two steps via an intermediate 

acetic acid generation (Eq. III.3 and Eq. III.4) is not discarded. 

 

 

III.1.7. Conclusions 

 

 The influence of Pt electrocatalysts structure, and more specifically the thickness, on 

the EOR was investigated. In parallel, the effects of the mass-transport by RDE (convection) 

and of the scan rate (diffusion) on the EOR were studied. 

 The nanoparticle average diameters were estimated by XRD and CO-stripping (TEM 

could not be performed to verify these figures). The electrocatalyst thickness estimation 

completed the physical characterisation.   

 The study of the electrocatalyst thickness reveals qualitatively and quantitatively that a 

larger amount of ethanol oxidizes completely into CO2 in thicker layers of electrocatalyst. A 

longer residence time likely enhances the further adsorption and electrooxidation of produced 

acetaldehyde into CO2. However, the generated faraday current decreases with the rise of the 

layer thickness which is believed to be due more to a stronger gradual poisoning of the thick 

layers than to a non-optimized utilization of the electrocatalyst.  

 The variation of the scan rate showed a contamination of the electrocatalyst surface 

enhanced at low scan rate, which hinders dramatically the CO2 formation. Comparisons 

between the CO-stripping and the EOR showed that the reactions were likely limited by 

different phenomena.  
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III.2. Effect of Rh- and Sn- addition on the Pt-based electrocatalyst on the EOR 

 

III.2.1. Physical characterization 

 

 Representative XRD spectra of the carbon-supported Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C 

and Pt-Rh-SnO2/C electrocatalysts are displayed in Fig. 24. The sharpness of Pt/C and Pt-Rh-

SnO2/C patterns show well crystallized nanoparticles. The diffraction peaks of Pt/C at ca. 40, 

46.5, 67.8, 82, 86 are assigned respectively to the (111), (200), (220), (311), (222) planes, 

characteristic of a face-centered cubic (fcc) structure. Rh/C and Pt-based bi- and tri-metallic 

electrocatalysts were also found to crystallize in the fcc structure. An evaluation of the 

average particle size was carried out using the Scherrer’s law on the (111) diffraction peak. 

The lattice parameters and the average particle sizes are summarized in Table 4. 

 Pt/C and Rh/C are loaded at 20 wt. % and 21.1 wt. %, respectively, as revealed by 

TGA. ICP-AES analyses showed the presence of 17.07 wt.% Pt and 7.46 wt.% Rh for Pt-

Rh/C (24.5 wt.% Pt1Rh0.8/C), 15.01 wt.% Pt and 2.69 wt.% SnO2 for Pt-SnO2/C (17.7 wt.% 

Pt1(SnO2)0.8/C) and 13.38 wt.% Pt, 4.03 wt.% Rh and 2.73 wt.% SnO2 for Pt-Rh-SnO2/C 

(20.14 wt.% Pt1Rh0.58(SnO2)0.35/C). 

 The electrocatalysts morphology and the particle size distribution (PSD) were further 

characterized by TEM. Fig. 25 displays a uniform dispersion of relatively small nanoparticles 

on the carbon support for most of the electrocatalysts. Yet, the TEM investigation on Pt-

SnO2/C revealed the presence of larger nanoparticles. The associated PSD histograms in Fig. 

25 reveal a narrow particle size distribution with a very similar mean particle size for the 

electrocatalysts (from 2.1 to 2.4 nm), except for Pt-SnO2/C (3.3 nm). The presence of some 

agglomerates was observed on Pt-Rh/C and to a larger extent on Pt-SnO2/C. 

 The surface-averaged diameter ds estimated from the PSD histograms can be 

compared to the mean particle size (dElec) calculated from the electrochemically active surface 

area (A) estimated from the charge of CO-stripping (Eq.2.9).  

 Table 4 points out a good correspondence between the TEM and XRD mean particle 

diameter, dV and dXRD respectively, for Rh/C, Pt-Rh/C and Pt-Rh-SnO2/C whereas the 

presence of agglomerates on Pt/C and Pt-SnO2/C explains the discrepancies. The same reason 

can explain the inconsistency between dElec and ds values for Pt/C and the multi-metallic 

electrocatalysts. Moreover, for the latter, an alloy effect may have impacted COad 

adsorption/electrooxidation and the resulting electrochemical active surface area (ECSA). 

More specifically, the ECSA from Pt-SnO2/C and Pt-Rh-SnO2/C may be underestimated (and 

thus dElec overestimated) due to COad electrooxidation probably occurring during the 

chronoamperometry at Ead = 0.15 V vs. RHE preceding the CV. 
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Table 4. Structural proprieties of Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C 

electrocatalysts obtained by XRD and TEM. 

Electrocatalyst 
Effective composition 

by ICP-AES 

a / 

Å 

dXRD / 

nm 

dElec / 

nm 

dN / 

nm 

dS / 

nm 

dV / 

nm 

Pt/C - 3.93 6.2 4.8 2.3 2.6 2.9 

Rh/C - 3.84 2.9 3.8 2.1 2.4 2.7 

Pt-Rh/C Pt1Rh0.8/C 3.91 3.2 4.2 2.3 3.3 3.9 

Pt-SnO2/C Pt1(SnO2)0.3/C 3.97 4.8 9.4 3.3 5.8 7.8 

Pt-Rh-SnO2/C Pt1Rh0.58(SnO2)0.35/C 3.91 3.3 4.8 2.4 2.6 2.8 

a: lattice parameter; dXRD : mean nanoparticle size (XRD); dElec: electrochemical mean particle 

size;  dN: number-averaged diameter (TEM); dS: surface-averaged diameter (TEM); dV: 

volume-averaged diameter (TEM) 

 

 
Fig. 24. XRD pattern of carbon supported 20 wt.% Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-

Rh-SnO2/C electrocatalysts prepared by Polyol method. 

 

 

(a) 
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(b) 

(c) 

(d) 

(e) 
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Fig. 25. Typical TEM images at × 200 000 magnification and associated particle size 

distribution of the (a) Pt/C, (b) Rh/C, (c) Pt-Rh/C, (d) Pt-SnO2/C and (e) Pt-Rh-SnO2/C 

electrocatalysts. 

 

 

III.2.2. CV in base electrolyte 

 

 Fig. 26 presents cyclic voltammograms in supporting electrolyte (0.5 M H2SO4) on 

Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. The usual features of the so-called 

hydrogen and oxygen regions of Pt-based electrodes can be observed. On the one hand, the 

oxide region on Rh- and Sn-based electrocatalysts, i.e. on Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-

Rh-SnO2/C, starts at much lower potentials than on Pt/C (E = 0.8 V vs. RHE). The lower 

onset potential for the former electrocatalysts versus Pt/C may be ascribed to the oxophylic 

character of rhodium and tin. Electronic interactions between Pt and the non-noble metals 

may also modify the electronic structure of Pt and, as a consequence, favor its affinity toward 

water dissociation. The oxide reduction also starts at lower potentials on Rh- and Sn-based 

electrocatalysts, showing the higher oxides stability on the electrocatalysts. On the other hand, 

the hydrogen starts adsorbing at lower potential on Pt-Rh-based bi- and tri-metallic 

electrocatalysts than on Pt/C (E = 0.06 V vs. RHE). As it can be seen in Fig. 26, this 

phenomenon can be attributed to the lower adsorption potential of a hydrogen monolayer on 

Rh/C (E = 0.03 V vs. RHE); in other words, H-adsorbates seem less stable at Rh-containing 

surfaces than at Pt surfaces, because Rh may modify the electronic structure of Pt in the 

multi-metallic electrocatalysts. Likewise, it can be seen that the oxidation peak corresponding 

to adsorbed hydrogen oxidation on Pt/C is located at ca. E = 0.13 and 0.21 V vs. RHE (the H-

desorption occurs in two peaks on Pt/C) versus E = 0.13 V vs. RHE on Pt-Rh/C, Pt-SnO2/C 

and Pt-Rh-SnO2/C. On Rh/C, the surface dehydrogenation even operates at E = 0.09 V vs. 

RHE. 
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Fig. 26. CV in 0.5 M H2SO4 on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C 

electrocatalysts; v = 10 mV s
-1

; T = 25°C. 

 

 

III.2.3. CO stripping CV 

 

III.2.3.1. On-line DEMS 

 

 Fig. 27 displays the CO-stripping voltammograms recorded on Pt/C, Rh/C, Pt-Rh/C, 

Pt-SnO2/C and Pt-Rh-SnO2/C. A first comparison between Pt/C and Rh/C shows that the CO-

stripping initiates at lower potentials on the latter than on the former: the supply in OH-

adsorbates proceeds at lower potential on Rh/C than on Pt/C (see Fig. 26), which may ease 

COad electrooxidation into CO2. 

 The electrooxidation of CO adsorbates on Rh/C (E = 0.56 V vs. RHE), Pt-Rh/C (E = 

0.58 V vs. RHE), Pt-SnO2/C (E = 0.25 V vs. RHE) and Pt-Rh-SnO2/C (E = 0.30 V vs. RHE) 

initiates at lower potential than on Pt/C (E = 0.65 V vs. RHE). The presence of tin and 

rhodium, two oxophilic metals, in the lattice of the bi- and tri-metallic electrocatalysts likely 

suggests a faster (more efficient at low potential) supply in OHad-species, that helps the 

oxidation of adsorbed CO (bi-functional mechanism, often mentioned for CO and methanol 

oxidation reactions [188]). Besides, their presence possibly induces a ligand effect on the 
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electronic structure of Pt. This is in agreement with the fact that water dissociation into 

adsorbed OH-species starts at lower potentials on Pt-Rh-SnO2/C and Pt-Rh/C than on Pt/C. 

Besides, alloying Rh and Sn with Pt presumably leads to a down-shift of the Pt 5d-band 

center caused by the interactions in the lattice between Pt and Rh atoms [189]. This 

phenomenon would result in a weaker adsorption of CO on Pt atoms of the alloy and thus in 

the acceleration of the kinetics on Pt-Rh/C. 

 

 
Fig. 27. (a) CO-stripping CV in 0.5 M H2SO4 in and (b) corresponding MSCV for mass to 

charge ratio m/z = 22 on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C; v = 10 mV s
-1

; 

T = 25°C. 

 

 

III.2.3.2. In situ FTIR 

 

 Fig. 28 shows typical IR-spectra features of a COad monolayer electrooxidation on 

Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C recorded between E = 0.25 and 1.15 V vs. 

RHE (in any case, the reference spectrum was obtained at E = 0.15 V vs. RHE). The band at 

2343 cm
-1

 which signals CO2 formation is attributed to the O-C-O asymmetric stretching 

mode [190]. Two additional bands are usually observed during a CO-stripping: linearly 

bonded COL (C-O) and bridge-bounded COB (C=O). These bands are regularly located at ca. 



Chapter III. Ethanol Oxidation Reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based 

bi- and tri-metallic electrocatalysts: a DEMS and FTIR study 

 

 

 

 

 

81 

 

2055 cm
-1

 and 1820-1840 cm
-1

 respectively on platinum [191–195]. The appearance of these 

bands corresponds to the initiation of the electrooxidation of the COad monolayer into CO2. 

As it can be seen in Fig. 28, the COB is hardly visible in the IR-spectrum of Pt/C. A favored 

adsorption of on-top CO on Pt/C could rationalize the quasi-absence of band between 1820 

and 1840 cm
-1

. An additional explanation could be that water H-O-H bending mode [196] 

overlaps the COB band. The latter can however be guessed at E = 0.85 and 0.95 V vs. RHE 

centered at 1830 cm
-1

. On the contrary, COL and COB bands can be perfectly observed on 

Rh/C despite the superimposition with the water band. It seems qualitatively that the ratio 

between on-top and two-fold bridge COad is more balanced than on Pt/C. On Pt-Rh/C and Pt-

SnO2/C, the COB is probably ascribed to the broad band between 1900 and 1750-1700 cm
-1

. 

Pt-Rh-SnO2/C presents a COL band of particularly low intensity compared to the other 

electrocatalysts. It can be assumed that COL low band intensity is due to the lower COad 

coverage on Pt-Rh-SnO2/C (50 at.% Pt) than on the other electrocatalysts. Pt-SnO2/C has 

three Pt atoms for one Sn atom and Pt-Rh/C has one Pt atom for one Rh atom, but CO adsorbs 

on both platinum and rhodium metals contrary to tin oxide. Silva-Junior et al. observed a 

similar phenomenon on Pt-Rh-SnO2/C compared to Pt-Rh/C [125]. 

 When comparing the position of the COL bands on Pt/C and Rh/C, it can be noticed 

that the band position on the latter (at 2015 cm
-1

) is located at much lower wavenumbers than 

on Pt/C (at 2055 cm
-1

). This behavior is analog with ruthenium which displays a COL band at 

similar wavenumbers (at ca. 2010 cm
-1

) [197,198]. The lower band frequency can indicate a 

stronger CO adsorption on the Rh/C surface in comparison to Pt/C. As for the bi- and tri-

metallic electrocatalysts, the COL band from Pt-Rh/C (at 2041 cm
-1

) and Pt-Rh-SnO2/C (at 

2046 cm
-1

) is red-shifted against Pt/C while the band from Pt-SnO2/C (at 2056 cm
-1

) has the 

same position as Pt/C. These results tend to show that Rh modifies the electronic structure of 

Pt: alloying Rh with Pt presumably leads to a down-shift of the Pt 5d-band center caused by 

the interactions in the lattice between Pt and Rh atoms [189] and lower COad adsorption 

strength on the electrocatalyst. On the contrary, SnO2 does not modify Pt electronic structure 

and seems only to provide hydroxide species at low potentials in a so-called bi-functional 

mechanism. 
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Fig. 28. In situ infrared spectra recorded during CO stripping in 0.5 M H2SO4 on (a) Pt/C, (b) 

Rh/C, (c) Pt-Rh/C, (d) Pt-SnO2/C and (e) Pt-Rh-SnO2/C; T = 25°C. 

 

 It is generally possible to distinguish IR-bands of adsorbed species from solution 

species by observing the shift of the band position against the potential. This shift of the band 

frequency with the potential increase can be rationalized by two phenomena [199]: the 

influence of the potential increase on the electrical field applied on the working electrode and 

its adsorbates, also commonly called the Stark effect [200,201]; the effect of the adsorbates 

spread on the working electrode surface with increasing potential altering the adsorbates 

vibrations frequency, also called the dipole-dipole coupling effect [199,202], or changing the 
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chemical bond between the adsorbates and the electrocatalyst, known as the chemical shift 

effect [203]. Fig. 29 illustrates this potential change with the variation of the applied potential 

on the different electrocatalysts. However, a Stark effect would induce a shift of the frequency 

toward more positive frequency values. The observed red-shift is therefore most likely due to 

dipole-dipole coupling interactions: as the COad-coverage decreases with the potential 

increase, the lateral interactions between the CO-adsorbates drop, thus inducing a red-shift of 

the frequency of the C-O stretch mode [52,204,205]. 

 

 
Fig. 29. Variation of the COL band wavenumber versus potential, measured during the CO 

stripping in 0.5 M H2SO4 on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C; T = 25°C. 

 

 The charge of the CO2 band at 2343 cm
-1

 was calculated by integration of the area 

under the band between 2300 and 2400 cm
-1

, normalized by the obtained highest charge and 

further plotted against the applied potential for each electrocatalyst (Fig. 30). A large shift of 

the COad stripping initiation can be observed on Pt-SnO2/C (E = 0.45 V vs. RHE) and Pt-Rh-

SnO2/C (E = 0.35 V vs. RHE) compared to Pt/C (E = 0.65 V vs. RHE). COad electrooxidation 

is also favored on Rh/C but no striking difference can be reported between Pt/C and Pt-Rh/C. 

The COad electrooxidation at more negative potentials on Pt-SnO2/C and Pt-Rh-SnO2/C is 

ascribed to SnO2 oxophylic character, which supplies OH-species at low potentials on the 

electrocatalyst surface helping the oxidation of the adsorbed CO as well as a ligand effect 

operated on Pt electronic structure (bi-functional mechanism, often mentioned for CO and 

methanol oxidation reactions [188]).  
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Fig. 30. (a) CO stripping in 0.5 M H2SO4 - CO2 band intensity against potentials on Pt/C, 

Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C; T = 25°C. 

 

 

III.2.4. Comparison of the in situ FTIR and on-line DEMS measurements 

 

 A comparison between the in situ FTIR and on-line DEMS results is displayed in Fig. 

31 in order to check the correlation (or not!) between the results obtained in the two very 

different experimental conditions: thin layer versus flow configuration. To that goal, the 

evolution of the CO2 band at 2343 cm
-1

 (shown in Fig. 30) was plotted in parallel to the CO-

striping CVs and their associated MS signal m/z = 22 represented in Fig. 27. One aim of such 

comparison is to identify whether the reaction intermediates and products detected by FTIR 

play a role in the potentiodynamic current evolution.  

 Looking at the potential onset of the stripping CVs, symbolized approximately by the 

dash line, it seems to be always located where the CO2 band starts to be detected in the 

spectra for all electrocatalysts. An exception maybe for Pt-SnO2/C can be observed in Fig. 31. 

Indeed, the onset potential of the CO-stripping is apparently located at slightly lower 

potentials in the CV than the potential at which first appears the CO2 IR-band. Possible mass-

transport limitation of the OH
-
-species at the surface of the working electrode seems to be 

excluded, as this phenomenon is not observed for the other electrocatalysts. A possible 

explanation could be given based on the physical morphology of this electrocatalyst. Indeed, 

the presence of agglomerates was noticed in section III.2.1. It can be reasonably proposed that 

the presence of these larger nanoparticles impacted on the negative shift of the CO-striping in 

the CV. A lower proportion of tin oxide species in the electrocatalyst analyzed by FTIR could 

also shift positively the CO-stripping initiation and thus the appearance of the band at ca. 

2340 cm
-1

. However, besides this particular case, the correspondence between the onset 

potentials of the CO-stripping with the potentials of the CO2 band first appearance makes the 

procedure quite reliable for a more complicated reaction like the EOR. 
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 Another location in the stripping-CVs which could be of interest is the CO-stripping 

peak (symbolized by the second dash line, at upper potential). Fig. 31 shows that the potential 

of the current maximum recorded during the CV does not match with the maximum obtained 

during the IR-analysis. This phenomenon is attributed to the thin cavity configuration during 

the IR-measurements which traps and accumulates the CO2 produced during the CO-stripping 

and which thus results in an amplification of the CO2 band. As a consequence, the peak of the 

potentiodynamic CO-stripping which corresponds to a limitation by the COad presence on the 

electrocatalyst surface should not be confused with the maximum of the CO2 band intensity. 
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Fig. 31. CO-stripping CV in 0.5 M H2SO4, corresponding MS signal m/z = 22 and CO2 band 

intensity (from Fig. 30) on (a) Pt/C, (b) Rh/C, (c) Pt-Rh/C, (d) Pt-SnO2/C and (e) Pt-Rh-

SnO2/C; v = 10 mV s
-1

; T = 25°C. 
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III.2.5. Ethanol electrooxidation 

 

III.2.5.1. EOR on Pt/C studied by in situ FTIR 

 

 Fig. 32a shows FTIR-spectra between 2500 cm
-1

 and 1000 cm
-1

 during 

chronoamperometries run between E = 0.25 and 1.15 V vs. RHE by 100 mV step in 0.5 M 

H2SO4 + 1 M EtOH on Pt/C. Down-going bands corresponds to the species production in the 

thin layer between the working electrode and the optical window compared to the reference 

spectrum (recorded at E = 0.15 V vs. RHE), while up-going bands represent the species 

consumption/depletion. 

 One dominant positive band located at 1640 cm
-1

 is present in all spectra and increases 

together with the applied potential. This band is assigned to water H-O-H bending mode 

[196]. The associated water band at 3185 cm
-1

 (not represented here) corresponds to 

interfacial water O-H stretching mode [196]. The particularly broad positive band at ca. 1200 

cm
-1

 is attributed to the doubly degenerate stretch mode of bisulfate anions [206–210]. This 

feature has already been largely evidenced in the literature for mono- and polycrystalline 

electrodes [200,206,207,209–212]. It is interesting to notice that the water band at 1640 cm
-1

 

and HSO4
-
 band at 1200 cm

-1
 shows an intense rise against the potential. The products of the 

ethanol electrooxidation (acetaldehyde, acetic acid, CO2) formed in the thin cavity likely 

causes the electrolyte depletion thus resulting in a larger increase of the water and bisulfate 

anions bands. Other positive bands can be observed at 1454 cm
-1

 and 1085 cm
-1

 on the spectra 

which correspond to ethanol depletion from the thin layer. Two other bands detected at 2908 

cm
-1

 and 2983 cm
-1

  (not shown here) are ascribed to ethanol asymmetric CH2 and CH3 

vibrations respectively [67]. Finally, a broad positive band centered at ca. 1915 cm
-1

 appears 

in Fig. 32a in the medium potential region (E > 0.5 V vs. RHE) on all studied electrocatalysts. 

This band is similar to the one at 1920 cm
-1

 on Pt (100), which Watanabe et al. ascribed to 

asymmetric bridge-bond species in a CO-stripping study [191]. The authors excluded the 

dipole-dipole interactions which could not explain the large difference with the usual reported 

COB band at ca. 1820-1840 cm
-1 

against this band at ca. 1915 cm
-1

. Although this band is 

visible on other in situ FTIR EOR studies [22,78,82,125,213], the authors did not describe it. 

 Negative-going bands also compose the spectra features in Fig. 32a. These bands 

correspond to the formation of reaction intermediates and products, either adsorbed or present 

in solution in the thin cavity. The bands at 2343 cm
-1

 and 2055 cm
-1 

are the same as in section 

III.4.2 and represent CO2 formation and linearly bonded COL [191–195]. Unfortunately, the 

last band could hardly be detected in our experimental conditions. Their presence were 

however confirmed between E = 0.35 and 0.75 V vs. RHE on most of the electrocatalysts. 

Bands at 1280 cm
-1

, 1400 cm
-1

 and 1715 cm
-1

 are characteristic of aqueous acetic acid 

formation [68,70]. They are respectively ascribed to the coupled OH deformation [68] and C-

O stretching from -COOH [68,70], to C-O symmetric stretching of adsorbed CH3COO
-
 

[68,70,214] and C=O stretching mode from -COOH or -CHO [70,190]. Acetaldehyde 
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characteristic bands are usually found at 933 cm
-1

 (C-C-O asymmetric stretch [26,215] or 

symmetrical C-C stretch [216]), 1355 cm
-1

 (double band - CH3 symmetric deformation 

[68,216]), 1120 cm
-1

 (C-H wagging vibration [68,216]) and 1715 cm
-1

 (stretching mode of 

carbonyl groups [190]). The feature at 933 cm
-1 

was not observable with the present operating 

conditions, because the CaF2 optical window absorbing the incident light below 1000 cm
-1

. 

The band at 1715 cm
-1

 ascribed to C=O stretching mode of carbonyl species, in this case 

acetic acid and acetaldehyde, can generally not be distinguished due to the high proximity of 

their bands (less than 5 cm
-1

) too close from the FTIR spectra resolution (4 cm
-1

). In parallel 

to the band at 1715 cm
-1

, the formation of acetates can be seen with a band at 1560-1580 cm
-1

 

[67]. A summary of the bands positions is given in Table 5. 

 

Table 5. Band assignment of the EOR products 

Frequency (cm
-1

) Species References 

2343 C-C-O asymmetric stretching [190] 

2055 C-O stretching [191–195] 

1915 C=O asymmetric stretching?? [191] 

1715 C=O stretching from -COOH or -CHO [70,190] 

1400 C-O symmetric stretching of adsorbed CH3COO
-
 [68,70,214] 

1355 CH3 symmetric deformation [68,216] 

1280 OH deformation + C-O stretching from -COOH [68,70] 

1120 C-H wagging vibration [68,216] 

930 
O-C-O asymmetric stretching / symmetrical C-C 

stretching 

[26,215] / 

[216] 

 

 Fig. 32b shows the evolution of the bands at 2343 cm
-1

, 1915 cm
-1

, 1715 cm
-1

, 1400 

cm
-1

 and 1355 cm
-1

 versus potential on Pt/C. This graph shows more clearly at which 

potential the reactions occur, but does not allow a quantitative evaluation of the products 

generation. CO2 formation (band at 2343 cm
-1

) can be observed starting at ca. E = 0.55 - 0.65 

V vs. RHE while acetic acid (1400 cm
-1

) and acetaldehyde (1355 cm
-1

) seem to initiate at the 

same time between E = 0.35 and 0.45 V vs. RHE. The detection of acetic acid at so low 

potentials puts into question the veracity of the equation Eq.I.23. Indeed, adsorbed hydroxide 

species necessary for the acetic acid formation from acetaldehyde are not quantitatively 

present on the platinum surface before E = 0.55 - 0.65 V vs. RHE (onset potential of the CO2 

formation in Fig. 32b). Assumptions that acetic acid formation does not operate through 

adsorbed acetaldehyde electrooxidation can be found in the literature [217]. 
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Fig. 32. (a) In situ infrared spectra recorded in 0.5M H2SO4 + 1M EtOH on Pt/C at room 

temperature and (b) band intensities evolution (at 2343, 1915, 1715, 1400 and 1355 cm
-1

) 

against the applied potential; Rref = 0.15 V vs. RHE. Potential range: E = 0.25 and 1.15 V vs. 

RHE; Potential step: E = 0.1 V. 

 

 

III.2.5.2. Comparison with on-line DEMS measurements 

 

 A direct comparison is carried out in this section between the in situ FTIR 

measurements on Pt/C in section III.5.1 and an on-line DEMS study during a cyclic 

voltammetry in 0.5 M + 0.1 M EtOH (only the positive scan is shown here). The IR-bands at 

1355 cm
-1

 (acetaldehyde), 2343 cm
-1 

(CO2) and 1400 cm
-1

 (acetic acid) were compared 

respectively to the mass-to-charge signals m/z = 29 (Fig. 33b), m/z = 22 (Fig. 33c) and m/z = 

61 (Fig. 33d) and to the CV profile in Fig. 33a. 

 The graph is separated in three different regions according to the profile of the cyclic 

voltammetry. The first one, between E = 0.37 and 0.58 V vs. RHE corresponds without 

ambiguity to the initiation of acetaldehyde and acetic acid formation according to the mass-to-

charge signals m/z = 29 (Fig. 33b) and m/z = 61 (Fig. 33d) respectively. Moreover, these 

reactions are confirmed by the bands at 1355 cm
-1

 and 1400 cm
-1

 corresponding respectively 
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to the same species. The apparent slow kinetics of the reactions is edifying. At this point, no 

CO2 is generated.  

 The second potential region between E = 0.58 and 0.79 V vs. RHE is characterized by 

the formation of CO2 (signal m/z = 22) which competes with acetaldehyde and acetic acid 

formation. The peak of the signal m/z = 22 matches well with the current threshold in the 

EOR CV at E = 0.75 - 0.79 V vs. RHE. The band at 2340 cm
-1 

appears between E = 0.55 - 

0.65 V vs. RHE which is not in contradiction with the CV and MSCV. The relative flat shape 

of the bands at 1350 cm
-1

 and 1400 cm
-1

 contrasts significantly with the sharp soar of the 

signals m/z = 29 (Fig. 33b) and m/z = 61 (Fig. 33d) which both fit closely the shape of the CV. 

More particularly, both signals present a current threshold at E = 0.75 V vs. RHE similarly to 

the signal m/z = 22. 

 The third potential region between E = 0.79 and 1.08 V vs. RHE corresponds to the 

maximum current reached during the EOR followed by the current decrease which starts at 

ca. E = 0.84 V vs. RHE. According to the mass-to-charge signal m/z = 29, the further ethanol 

electrooxidation, after the threshold noticed in the second potential region, corresponds to the 

sole formation of acetaldehyde. Indeed, the signals m/z = 22 and m/z = 61 started plummeting 

in the second potential region after E = 0.75 V vs. RHE. An inconsistency is found again in 

this potential region with the IR-bands characteristic of acetaldehyde (Fig. 33b), acetic acid 

(Fig. 33d) and, contrary to the second potential region, CO2 (Fig. 33c) which all increase 

quasi-monotonously with the potential while the current is already decreasing.  

 Three different phenomena (or a combination of them) are suggested to explain this 

continuous rise in the third potential region: 

 

- A first explanation would be the same as the one accounted for the CO-stripping 

experiments: the accumulation of products in the solution results in an increase of the 

three bands conversely to the evolution of the faraday current. However, here, no 

threshold is found before E > 1.05 V vs. RHE in Fig. 33b and Fig. 33d for 

acetaldehyde and acetic acid. This reason alone does not seem to fully justify the 

bands evolution.  

 

- Then, it seems that the EOR processes in the third potential region without being 

limited by the ever growing presence of OH-adsorbates at the electrocatalyst surface 

(like in Fig. 33a) which prevents bulk ethanol from oxidizing. It can be supposed that 

the thin layer configuration limits greatly the "contamination" by the OH-species of 

the electrocatalyst surface due to the lack of support electrolyte. Indeed, the large 

water depletion from the thin layer illustrated by the large band centered at 1640 cm
-1

 

could suggest that not enough OH-species are present in the thin layer to cover the 

entire electrocatalyst surface (although the amount of electrocatalyst on the GC 

electrode is pretty low too). 
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- Finally, the influence of the ethanol concentration which is different in both mass 

spectrometric and infrared experiments could be at stake to explain these differences. 

However, the concentration (up to 1 M ethanol, at least) does not seem to change the 

profile of the CV, but only to shift positively the EOR [22]. Hence, the concentration 

alone cannot elucidate the continuous rise of the three bands characteristic for 

acetaldehyde, CO2 and acetic acid but could be part of the explanation for the bands 

shape.  

 

 A fourth potential region of the EOR could have been defined at E > 1.08 V vs. RHE. 

It would have corresponded to ethanol strong adsorbates electrooxidation (as evidenced in 

section III.1). Yet, the study of this fourth potential region was beyond the scope of this in situ 

FTIR investigation.  

 

 Finally, the great similitudes between the evolution of the bands at 1355 and 1400 cm
-1

 

against the applied potential is rather intriguing and makes believe that they could be ascribed 

to the same species. However, such assumption would be contradictory with three decades of 

infrared analysis…  
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Fig. 33. (a) EOR cyclic voltammetry (in 0.5 M H2SO4 + 0.1 M EtOH) and corresponding 

MSCV associated with EOR infrared bands (from Fig. 32b): (b) m/z = 29 + 1355 cm
-1

, (c) m/z 

= 22 + 2343 cm
-1 

and (d) m/z = 61 + 1400 cm
-1 

on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 

III.2.5.3.  In situ FTIR - EOR on Pt- and Rh-based electrocatalysts 

 

 Fig. 34 shows FTIR-spectra recorded between 2500 cm
-1

 and 1000 cm
-1

 during 

chronoamperometries run between E = 0.25 and 1.15 V vs. RHE by 100 mV step in 0.5 M 

H2SO4 + 0.1 M EtOH on Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C electrocatalysts. 
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Fig. 34. In situ infrared spectra recorded in 0.5M H2SO4 + 0.1M EtOH on (a) Rh/C, (b) Pt-

Rh/C, (c) Pt-SnO2/C and (d) Pt-Rh-SnO2/C at room temperature; Rref = 0.15 V vs. RHE. 

Potential range: E = 0.25 and 1.15 V vs. RHE; Potential step: E = 0.1 V. 

 

 Fig. 35 shows the evolution of the bands at 2343 cm
-1

, 1915 cm
-1

, 1715 cm
-1

, 1400 cm
-

1
 and 1355 cm

-1
 versus potential on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. The 

evolution of Pt/C bands already shown in Fig. 32b was added in Fig. 35 for the sake of 

comparison with the other electrocatalysts. It can be seen first that CO2 generation on Pt-Rh/C 

and Pt-Rh-SnO2/C starts at lower potentials (E = 0.55 V vs. RHE) than on the other 

electrocatalysts (E = 0.65 V vs. RHE). These results differ from the COad stripping 

experiments, where Pt-SnO2/C and Pt-Rh-SnO2/C displayed the lowest COad electrooxidation 

onsets. The fact that Pt-Rh/C and Pt-Rh-SnO2/C showed the lowest CO2 generation initiation 

demonstrates that rhodium eases the C-C bond cleavage at low potentials and thus allows the 

complete electrooxidation of ethanol compared to Pt/C or Pt-SnO2/C. Providing OH-species 

at low potentials, as does Pt-SnO2/C, may be necessary to oxidize COad formed from ethanol 

dissociative adsorption, but is not sufficient to facilitate CO2 generation.  

 When comparing the different bands with one another, it can be noticed that Pt-Rh-

SnO2/C displays the highest CO2 band intensity relatively to the other bands ascribed to 

acetaldehyde and acetic acid formation, followed by Rh/C and Pt-Rh/C. These results suggest 

that CO2 formation is favored on Rh-based electrocatalysts and, above all, on Pt-Rh-SnO2/C. 
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While Rh helps the cleavage of the C-C bond, SnO2 provides OH-species at low potential and 

frees rhodium (and platinum) from the hydroxide adsorbates. As it can be seen in Fig. 35, the 

addition of tin oxide to Pt does not seem to improve the electrocatalyst ability to break the C-

C bond. On the contrary, the large intensity of the bands 1715 cm
-1

 and 1355 cm
-1

 tends to 

show that acetaldehyde formation was favored on the Pt-SnO2/C electrocatalyst. This result is 

a bit contradictory with the literature [99,101,213] where acetic acid formation was found to 

be favored on Pt-SnO2/C. The presence of large nanoparticles of Pt-SnO2/C could explain the 

divergence of results between this study and the rest of the literature. Conversely, CO2 

formation is slightly promoted on Pt-Rh/C versus Pt/C, alike the DEMS results reported in the 

previous section and in the literature [35,218]. Besides, acetic acid formation seems also 

hindered on the bi-metallic electrocatalyst. 
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Fig. 35. Evolution of band intensities (at 2343, 1915, 1715, 1400, 1355 cm

-1
) against applied 

potential on (a) Pt/C (b) Rh/C, (c) Pt-Rh/C, (d) Pt-SnO2/C and (e) Pt-Rh-SnO2/C. 

 

 

III.2.5.4. Comparison in situ FTIR and on-line DEMS measurements 

 

 A similar comparison than in Fig. 33 between the EOR CV and corresponding mass-

to-charge signals m/z = 29, m/z = 22 and m/z = 61 to the evolution against the potential of the 

IR-bands at 1355 cm
-1

 (acetaldehyde), 2343 cm
-1 

(CO2) and 1400 cm
-1

 (acetic acid) is 

displayed in Fig. 36 on Rh/C, Pt-Rh/C and Pt-SnO2/C and Pt-Rh-SnO2/C. The signal m/z = 61 

of Rh/C is not displayed in Fig. 36A as it remained flat during the CV showing the absence of 

acetic acid formation during the CV. As represented in Fig. 33, the three potential regions are 

defined by the different dashed lines. Table 6 summarizes their onset potentials (including 

Pt/C).  

 On the one hand, confronting the IR- and MS-results demonstrates the reasonable 

accordance between the two techniques. Indeed, the values corresponding to the beginning of 

the first and second potentials region (beginning of ethanol dehydrogenation and CO2 

generation) evaluated with the signals m/z = 22 and m/z = 29 correlate to the potential values 

of the bands appearance at 2343 cm
-1

 and at 1355 cm
-1

. An exception could be noticed 

however for acetaldehyde band, which appears 200 mV higher compared to the rise of the 

signal m/z = 29 on Pt-Rh/C (Fig. 36B).  

 On the other hand, the bands evolution seems to be shifted toward positively in regard 

to the mass spectrometric signals. This observation seems however true on Rh/C (Fig. 36A), 

Pt-Rh/C (in Fig. 36B) and Pt-Rh-SnO2/C, but not on Pt-SnO2/C, for which acetaldehyde and 

acetic acid bands demonstrate an opposite behavior. This positive shift compared to the MS 

signals, which seems also present in Fig. 33 for Pt/C, could be ascribed to the discriminating 

mass-transport conditions in the thin layer configuration which hinder the replenishment of 

the electrolyte and, more particularly, of the ethanol molecules and of the OH
-
-species, 

necessary for CO2 and acetic acid formation.  
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 In all three Pt-based electrocatalysts and, similarly to Pt/C, the evolution of the CO2 

band at 2343 cm
-1 

is almost linear and keep increasing at the same rate without showing any 

hindrance at high potentials, as it could be expected when looking at the CVs. On the 

contrary, the formation of a threshold indicating that much less CO2 is produced during the 

CV can be observed for Rh/C at high potentials in Fig. 36A. This observation is supported by 

the signal m/z = 22: the CO2 formation starts decreasing between 60 mV and 100 mV earlier 

than on the Pt-based electrocatalysts at E = 0.69 V vs. RHE (see Table 6). It is assumed that 

the massive adsorption of OH-adsorbates on rhodium surface could stop ethanol 

electrooxidation at lower potentials than on the Pt-based electrocatalysts (because it leaves no 

free sites for ethanol adsorption).  
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Fig. 36. (a) EOR cyclic voltammetry (in 0.5 M H2SO4 + 0.1 M EtOH) on (A) Rh/C, (B) Pt-

Rh/C, (C) Pt-SnO2/C and (D) Pt-Rh-SnO2/C and corresponding MSCVs associated with EOR 

IR-bands (from Fig. 35): (b) m/z = 29 + 1355 cm
-1

, (c) m/z = 22 + 2343 cm
-1 

and (d) m/z = 61 

+ 1400 cm
-1 

on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 

Table 6. Onset potential values of the three defined potential regions highlighted in Fig. 33 

and Fig. 36 on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C during the 

potentiodynamic EOR recorded after a CA at Ead = 0.05 V vs. RHE. 

 Pt/C Rh/C Pt-Rh/C Pt-SnO2/C 
Pt-Rh-

SnO2/C 

Potential 

region onset 
E / V vs. RHE 

(1) 0.36 0.28 0.35 0.29 0.34 

(2) 0.59 0.56 0.53 0.60 0.55 
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(3) 0.79 0.69 0.75 0.75 0.77 

 

 

 The variations of the CO2 current efficiency (CCE) against the potential is represented 

in Fig. 37. The CCE values were determined from potendiodynamic voltammetries and the 

corresponding mass-to-charge signal m/z = 22 between E = 0.5 and 0.9 V vs. RHE (0.1 V 

step) on Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C according to the procedure detailed in 

section II.7.1. Among the studied electrocatalysts, Pt-Rh-SnO2/C demonstrates the highest 

CO2 current efficiency on the whole potential range, while Pt/C and Pt-SnO2/C displayed the 

lowest values in the potential range E = 0.6 - 0.7 V vs. RHE. Fig. 37 confirms quantitatively 

the qualitative comparison done in Fig. 35 which showed that the complete EOR was favored 

on Pt-Rh-SnO2/C. A more detailed description of Fig. 37 is done in section IV.  

 

 
Fig. 37. (a) EOR CO2 current efficiency (CCE) values calculated from cyclic voltammetries 

run in 0.5 M H2SO4 + 0.1 M EtOH (represented in Fig. 33 and Fig. 36) and corresponding 

MSCVs (in Fig. 33 and Fig. 36) on Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. 

 

 

III.2.6. Conclusions on the addition of transition metals to platinum 

 

 The influence of the addition of rhodium and tin oxide to platinum was investigated in 

regard to the potentiodynamic ethanol electrooxidation by on-line differential electrochemical 

mass spectrometry (DEMS) and in situ Fourier transform infrared (FTIR) spectroscopy. To 

that purpose, the study was carried out on home-made Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and 

Pt-Rh-SnO2/C characterized by ICP-AES, XRD and TEM. The three main products of the 

EOR: acetaldehyde, acetic acid and CO2, were detected using the mass-to-charge signals m/z 

= 29, 22 and 61 and the IR-bands at 1355, 1400 and 2343 cm
-1

 respectively.    

 A modification of the hydrogen and oxygen region on platinum was induced by the 

addition of rhodium and tin oxide. These changes were explained by rhodium and, to a larger 

extent, tin oxide oxophilic character, as well as an enhanced dehydrogenation on Pt-Rh/C, Pt-
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SnO2/C and Pt-Rh-SnO2/C. The initiation at lower potentials of the CO-stripping on the bi- 

and tri-metallic electrocatalysts in regard to Pt/C was evidenced by in situ FTIR and DEMS 

analyses: it was explained by the enhanced OHad-supply at low potentials on the 

electrocatalyst, thanks to the oxophilic tin oxide and rhodium moieties. A possible 

modification of platinum electronic configuration is also considered.  

 The in situ FTIR study revealed that the complete ethanol electrooxidation to CO2 was 

intensified on Pt-Rh-SnO2/C compared to the other electrocatalysts. This information was 

confirmed by a DEMS investigation which showed a slight shift of the EOR initiation on Pt-

SnO2/C and Pt-Rh-SnO2/C and an enhanced CCE on Pt-Rh-SnO2/C and, to a lower extent, on 

Pt-Rh/C, especially at “low” potential values (E < 0.8 V vs. RHE). While Rh promotes the 

cleavage of the C-C bond, SnO2 provides OH-species at low potential and frees rhodium (and 

platinum) from the hydroxide adsorbates. 

 

 

  

 



Chapter IV. Influence of H- and OH-adsorbates on the ethanol oxidation reaction – A DEMS 

Study 

 

 

 

 

 

100 

 

 

 

 

  



Chapter IV. Influence of H- and OH-adsorbates on the ethanol oxidation reaction – A DEMS 

Study 

 

 

 

 

 

101 

 

 

 

 

 

 

 

 

 

 

Chapter IV. 

  

Influence of H- and OH-adsorbates on the ethanol oxidation 

reaction – A DEMS Study 
 

 

This chapter presents a DEMS investigation on the role of pre-adsorbed H- and OH-

adsorbates on the EOR on 20 wt.% Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C, Pt-Rh-SnO2/C 

electrocatalysts. Previous studies on the influence of adsorbates on the ethanol 

electrooxidation are initially reviewed. Afterward, the results are introduced and further 

discussed regarding the EOR response after the pre-adsorption process. The objective of this 

investigation was to highlight the possible hindrance and enhancement of the EOR performed 

by the hydrogen and hydroxide adsorbates respectively on Pt/C and to examine whether a 

similar phenomenon was observed on the bi- and tri-metallic electrocatalysts. 
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IV.1. Influence of adsorbates on the oxidation of organic molecules 

 

 The influence of the presence of water adsorbates (Had, OHad) on the electrocatalyst 

surface on the initiation or even on the mechanism of oxidation of organic species has rarely 

been reviewed to date. On the one hand, studies on methanol and ethanol adsorbates 

electrooxidation demonstrated that their adsorption on the electrocatalyst is hindered in the 

UPD-region by the presence of hydrogen adsorbates [38,72,219–221]. On the other hand, it 

was observed that Had-species enhances formic acid adsorption [222]. In all cases, OHad-

species were reported to boost the electrooxidation of organic species [220,222]. According to 

Bagotzky et al., the adsorption of organic species in the hydrogen region is maximal when the 

adsorption process requires a hydrogenation reaction (formic acid) whereas it is minimal 

when the adsorption proceeds through a dehydrogenation reaction [220]. However, although 

these studies demonstrated the impact of Had- and OHad-species on the electrocatalyst 

coverage in organic species, no MOR or EOR study highlighting the impact of these water 

adsorbates on the initiation or on the kinetics of the methanol or ethanol electrooxidation was 

found in the literature. 

 In the present study, the influence of pre-adsorbed hydrogen and hydroxide species on 

the ethanol oxidation reaction (EOR) has been investigated on home-made model EOR 

electrocatalysts (Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C). The Had- and OHad-

adsorbates were formed by potentiostatic hold at Ead = 0.05 and 1 V vs. RHE, whereas “water 

adsorbates-free” surfaces were prepared by potentiostatic hold at Ead = 0.3 V vs. RHE. The 

home-made model electrocatalysts were firstly characterized by thermogravimetric analysis 

(TGA), inductively coupled plasma atomic emission spectrometry (ICP-AES), powder X-ray 

diffraction (XRD) and transmission electron microscopy (TEM) to determine the metal-to-

carbon ratio and metal crystallite/nanoparticles size and distribution on the carbon support. 

The EOR was thoroughly studied by on-line differential electrochemical mass spectrometry 

(DEMS) using the mass-to-charge signals m/z = 22, m/z = 29 and m/z = 61, which are 

representative to CO2, acetaldehyde and acetic acid formation respectively. The CO2 current 

efficiency (CCE) during the electrooxidation reactions was determined after calibration of the 

mass-to-charge signal m/z = 22 according to the procedure detailed in section II.4.2.2.  

 

 

IV.2. Hydrogen and hydroxide adsorption procedure 

 

 Adsorption of hydrogen and hydroxide species on the electrocatalysts surface was 

carried out by applying the desired potential (Ead = 0.05 and 1 V vs. RHE respectively) to the 

working electrode through a 8 min-long chronoamperometry, while the 0.5 M H2SO4 

supporting electrolyte was flowing to the working electrode. The solution was then switched 

to 0.5 M H2SO4 + 0.1 M EtOH during 4 min so as to allow a stabilization of the ionic baseline 

for the studied mass-to-charge signals before the following CVs started (see Fig. 38). For the 
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sake of comparison, CVs carried out after a CA at Ead = 0.3 V vs. RHE were also investigated, 

as this potential is located in the so-called double layer region, which should prevent any 

hydrogen or hydroxide adsorption (adsorbate-free electrode).  

 

 
Fig. 38. Potential vs. time representation of (A) the adsorbates adsorption in 0.5 M H2SO4 

(represented here at Ead = 0.05 V vs. RHE), (B) the solution change in 0.5 M H2SO4 + 0.1 M 

EtOH and (C) the potentiodynamic ethanol oxidation reaction starting at E = 0.2 V vs. RHE. 

 

 

IV.3. Potentiodynamic ethanol oxidation reaction 

 

IV.3.1. On Pt/C 

 

 Fig. 39 presents a comparative study of the first scan of the potentiodynamic 

voltammograms obtained after a CA at Ead = 0.05, 0.3 and 1 V vs. RHE. Apparent faster EOR 

kinetics can be observed during the CV recorded after the CA at Ead = 1 V vs. RHE compared 

to the CV run after the CA at Ead = 0.05 V vs. RHE. Also the associated ionic signals m/z = 29 

(Fig. 39b), m/z = 22 (Fig. 39c) and m/z = 61 (Fig. 39d) present a shift toward negative 

potentials after the CA at Ead = 1 V vs. RHE. Clearly, the OHad-species adsorption during the 

chronoamperometry at Ead = 1 V vs. RHE enhanced ethanol oxidation to acetaldehyde at 

lower potentials. On the contrary, H-adsorbates formed at Ead = 0.05 V vs. RHE do inhibit the 

reaction. Similarly, CO2 (Fig. 39c) and acetic acid (Fig. 39d) production are also shifted 

negatively with the presence of OH-adsorbates. Moreover, it seems that ethanol complete 

electrooxidation into CO2 is slightly hindered (in terms of amount produced) and that the 

mechanism leading to acetic acid as end-product is slightly favored. The result is not 

surprising as the OHad species required for the EOR and in particular for acetic acid 

production are provided during the CA at Ead = 1 V vs. RHE; in that sense the electrode pre-

oxidation facilitates acetic acid formation at lower potentials. These results are in agreement 

with the literature, as it was demonstrated that Pt-SnO2/C electrocatalysts do not favor ethanol 
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complete oxidation into CO2, although tin oxide brings hydroxide species at the 

electrocatalyst surface at lower potentials [30,98,101]. Interestingly, it can also be seen that 

the acetic acid formation starts at potentials as low as the acetaldehyde production, which 

could signify that adsorbed acetaldehyde is not required as reaction intermediate to generate 

acetic acid, as it is often proposed in the literature [21,22]. Finally, the backward scans are in 

all cases superposed, demonstrating that the pre-formation of such adsorbates cannot maintain 

durable EOR performance alteration. In all cases, the behavior monitored at E = 0.3 V vs. 

RHE is intermediate between the other two, suggesting that Had do inhibit the EOR whereas 

OHad do favor the reaction.  

 

 
Fig. 39. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH after adsorption at Ead = 0.05 

(solid), 0.3 (dots) and 1 V vs. RHE (dash) and corresponding MSCV for mass-to-charge ratio 

(b) m/z = 29, (c) m/z = 22 and (d) m/z = 61 on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 This observation is further confirmed in Fig. 40 which displays the two first cycles of 

a representative potentiodynamic ethanol electrooxidation on Pt/C and their associated mass-

to-charge signals m/z = 29, m/z = 22 and m/z = 61 obtained after a chronoamperometry at Ead 

= 0.05 (Fig. 40a) and 1 V vs. RHE (Fig. 40b). Although ethanol electrooxidation initiates at 

the same potential (ca. E = 0.4 V vs. RHE) during the first and second scan, the ethanol 

oxidation reaction kinetics during the first positive scan is faster than during the following 
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one, after OH-species adsorption during the CA at Ead = 1 V vs. RHE in 0.5 M H2SO4 (Fig. 

40b). On the contrary, the hydrogen adsorption during the chronoamperometry at Ead = 0.05 V 

vs. RHE seems to hinder ethanol electrooxidation kinetics, as the first scan is delayed 

compared to the second one (Fig. 40a). According to the literature [35,37,119], the presence 

of adsorbed hydrogen hinders ethanol adsorption on the electrocatalyst surface, thereby 

explaining the slower reaction rate during the first scan of the cyclic voltammetry in Fig. 40a. 

On the opposite, OHad likely enhances the adsorption/oxidation of organic molecules [223]. 

 

 
Fig. 40. (solid) First and (dash) second scan of the potentiodynamic EOR in 0.5 M H2SO4 + 

0.1 M EtOH after adsorption at Ead = (a) 0.05 and (b) 1 V vs. RHE and corresponding MSCV 

for mass-to-charge ratio m/z = 44, m/z = 22 and m/z = 61 on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 

IV.3.2. On Rh/C 

 

 Fig. 41 compares cyclic voltammograms in 0.5 M H2SO4 + 0.1 M EtOH on Rh/C 

preceded by chronoamperometries carried out at Ead = 0.05, 0.3 and 1 V vs. RHE. The EOR 

activity is intensified after hydrogen adsorption on the electrocatalyst surface (seen for Ead = 

0.05 V vs. RHE), although it remains very low in comparison to Pt/C. The EOR CVs for the 

two other adsorption potential values are inhibited by OH adsorption, OHad being very stable 
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on rhodium surface (the OH reduction peak is located at ca. E = 0.33 V vs. RHE versus E = 

0.75 V vs. RHE on Pt/C – see Fig. 26) [224,225]. This observation is confirmed by the weak 

signals reported after Ead = 0.3 and 1 V vs. RHE for the mass-to-charge signal m/z = 29 and 22 

in Fig. 41b and Fig. 41c respectively. It can be noticed from the CV preceded by the CA at Ead 

= 1 V vs. RHE that, although rhodium provides OH-species at low potentials, the EOR 

insignificantly proceeds to the generation of acetaldehyde (m/z = 29) and CO2 (m/z = 22) and 

does not yield to acetic acid (m/z = 61 - not shown here). This behavior is contradictory with 

that of Pt/C. One assumption could be that ethanol can hardly displace OH-adsorbates on 

Rh/C surfaces (similarly to sulfate adsorbates [224,226]), conversely to what occurs on Pt/C 

and, as a consequence, cannot benefit from the electrocatalyst surface composition a priori 

favorable to acetic acid formation. Moreover, ethanol dissociative adsorption leading to CO2 

formation requires free electrocatalytic sites, which is, in our set of experiments, only 

encountered after the chronoamperometry carried out at Ead = 0.05 V vs. RHE (surface pre-

reduction).  

 

 

 
Fig. 41. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH after adsorption at Ead = 0.05 

(solid), 0.3 (dots) and 1 V vs. RHE (dash) and corresponding MSCV for mass-to-charge ratio 

(b) m/z = 29, (c) m/z = 22 on Rh/C; v = 10 mV s
-1

; T = 25°C. 
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 Further information can be obtained in Fig. 42 by comparing the first and second cycle 

of the potentiodynamic ethanol oxidation reaction on Rh/C preceded by hydrogen adsorption 

at Ead = 0.05 V vs. RHE. As shown in Fig. 42a, the second cycle is very similar to the CV 

obtained after adsorption at Ead = 1 V vs. RHE (shown in Fig. 41a). In Fig. 42b, the mass-to-

charge signal m/z = 22 discloses a high CO2 production (starting at ca. E = 0.56 V vs. RHE) 

during the first cycle compared to the second one where almost no CO2 was detected.  

 The mass-to-charge signal m/z = 29 gives further information on the mechanism that 

operates during the two cycles. During the first cycle, quasi no acetaldehyde is detected (Fig. 

42c) while, during the second one, a small but noticed amount of acetaldehyde emerged 

during the cyclic voltammetry. It seems that, during the first cycle, the EOR proceeds almost 

solely through its complete oxidation pathway leading to CO2 formation and produces neither 

acetaldehyde nor acetic acid. On the contrary, a small amount of acetaldehyde and near-zero 

CO2 could be detected during the second scan, similarly to the first scan of the CVs preceded 

by a chronoamperometry at Ead = 0.3 and 1 V vs. RHE (Fig. 41). It can therefore be assumed 

that the presence of OH-adsorbates on the Rh/C surface inhibits considerably the complete 

EOR leading to CO2 (by impeding ethanol adsorption) and even slightly encourages 

acetaldehyde formation (ethanol dissociative adsorption is no longer possible due to the 

overwhelming OH-adsorbates on rhodium surface). Finally, a large rise of the signal m/z = 29 

is observed at high potential (E > 1.2 V vs. RHE, Fig. 42c), which can only correspond to 

acetaldehyde formation (a similar increase was obtained with signal m/z = 15 ([CH3
+
]) not 

shown here). This acetaldehyde formation is expected to come from the oxidation of C2-

species, only possible at high potential [185,227]. 
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Fig. 42. (solid) First and (dash) second scan of the (a) potentiodynamic EOR in 0.5 M H2SO4 

+ 0.1 M EtOH after adsorption at Ead = 0.05 V vs. RHE and corresponding MSCV for mass-

to-charge ratio (b) m/z = 22 and (c) m/z = 29 on Rh/C; v = 10 mV s
-1

; T = 25°C. 

 

 

IV.3.3. On Pt based bi- and tri-metallic electrocatalysts 

 

 In Fig. 43, a particular attention is paid to the influence of the different 

chronoamperometries achieved prior to the cyclic voltammetries in 0.5 M H2SO4 + 0.1 M 

EtOH on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. On Pt-Rh/C, they obviously do not impact 

much the reaction initiation (Fig. 43a). As platinum and rhodium have opposite behaviors 

regarding the strength of H- and OH-adsorbates, the lack of adsorbate effect could be imputed 

to a combined effect of Pt and Rh metals lowering the stability of OHad and Had on Pt-Rh/C 

and thus easing their displacement by ethanol molecules. Similarly, the EOR on Pt-Rh-

SnO2/C (Fig. 43c) does not seem much influenced by the adsorbates. However, as for Pt/C, 

the EOR kinetics on Pt-SnO2/C (Fig. 43b) is significantly hindered by hydrogen adsorbates. 

This is an indirect evidence that tin oxide does not help the surface dehydrogenation, and that 

such composite electrocatalyst likely operates through a bifunctional mechanism: Pt adsorbs 

ethanol and dehydrogenates it, whereas SnO2 “only” provides OHad species (at lower potential 

than Pt). 

 During the negative scan, the initiation of the ethanol electrooxidation on Pt-Rh/C and 

Pt-Rh-SnO2/C occurs at lower potential after the CA at Ead = 1 V vs. RHE compared to the 

CVs obtained after Ead = 0.05 and 0.3 V vs. RHE. This may reflect the higher stability of the 

OH-adsorbates on Rh surface or on Pt modified surface (electronic interactions between 

platinum and rhodium) which could impede ethanol electrooxidation. On the contrary, the 

EOR on Pt-SnO2/C remains unchanged, even though hydroxide adsorbates are more stable on 

tin oxide. This can be interpreted by the fact that ethanol does not adsorb on SnO2, which is 

just an oxophilic source of OHad-species as stated above. 
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Fig. 43. CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH after adsorption at Ead = 0.05 (solid), 

0.3 (dots) and 1 V vs. RHE (dash) on (a) Pt-Rh/C, (b) Pt-SnO2/C and (c) Pt-Rh-SnO2/C; v = 

10 mV s
-1

; T = 25°C. 

 

 

IV.4. EOR comparative study between the electrocatalysts 

 

 Fig. 44 compares the EOR after a chronoamperometry at Ead = 0.05 V vs. RHE on 

Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. The ethanol electrooxidation on Rh/C is ignored 

as the reaction electroactivity was too low in comparison to the other electrocatalysts. As 

shown in the inset of Fig. 44, the EOR initiates on all electrocatalysts at ca. E = 0.35 V vs. 

RHE. Nonetheless, a higher reaction electroactivity (normalized by the total metal mass) was 

recorded on Pt-Rh-SnO2/C and on Pt-SnO2/C compared to Pt/C until E = 0.62 V vs. RHE. 

Such faster current increase during the EOR at very low potential values can be explained by 

faster ethanol dehydrogenation kinetics (2 e
-
) or by an enhanced ethanol electrooxidation 

toward acetic acid (4 e
-
) or CO2 (12 e

-
).  

 Conversely, Pt/C clearly surpasses all the multi-metallic electrocatalysts at E > 0.62 V 

vs. RHE. Pt lower metal content in Pt-SnO2/C (see Table 4) and Pt-Rh-SnO2/C compared to 

Pt/C (which is the most electroactive pure metal in acid medium) could explain the larger 
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peak current at E = 0.88 V vs. RHE on the latter  (the current is normalized to the total mass 

of metal). However, this explanation does not work for Pt-Rh/C, the Pt:Rh ratio of which is 

almost 1:1. Although the EOR activity is not very large on Rh alone (Fig. 41) compared to Pt 

(Fig. 39), the EOR on Pt-Rh/C exhibits currents as high as on Pt/C. This could be due to an 

alloy effect between the two metals and to a facilitation of the C-C bound breaking in the 

presence of Rh. 

 

 
Fig. 44. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH after CA at Ead = 0.05 V vs. RHE 

on Pt/C (solid), Pt-Rh/C (dash), Pt-SnO2/C (dots) and Pt-Rh-SnO2/C (short dots); v = 10 mV 

s
-1

; T = 25°C. 

 

 Regarding the mass-to-charge signals m/z = 22, 29 and 61 (Fig. 45), acetaldehyde 

formation (m/z = 29) starts at ca. E = 0.27 V vs. RHE on Pt-Rh/C and E = 0.24 V vs. RHE on 

Pt-SnO2/C and Pt-Rh-SnO2/C versus E = 0.31 V vs. RHE on Pt/C. This observation agrees 

with the larger dehydrogenation on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C highlighted in Fig. 

26. These values are slightly lower than those depicting the faraday current onset, due to the 

non-quantitative formation of acetaldehyde which generates a too low current to be 

observable in Fig. 45. Acetic acid formation starts shortly after ca. E = 0.35 V vs. RHE on Pt-

Rh-SnO2/C and E = 0.32 V vs. RHE on Pt-Rh/C and Pt/C. Pt-SnO2/C seems to ease acetic 

acid formation better than the other electrocatalysts at low potential (onset at ca. E = 0.28 V 

vs. RHE), because the SnO2 moiety is capable to easily provide OHad-species to the 

acetaldehyde adsorbed at the Pt moiety. However, at higher potential, acetic acid formation 

seems more enhanced on Pt-Rh/C electrocatalyst. Conversely to the literature [30,101], our 

synthesized Pt-SnO2/C electrocatalyst does not seem to favor the pathway leading to acetic 

acid formation compared to Pt/C. PtSnO2/C peculiar physical structure (presence of larger 

nanoparticles and agglomerates) could explain these divergent results. Unfortunately, the few 

existing studies focused on the nanoparticles size effect [35,172] do not give evidence of a 

clear influence of the nanoparticles size on the EOR pathway (even less is known about the 

influence of agglomerates, except regarding CO oxidation [57,197]). Finally, CO2 generation 
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seems slightly shifted negatively on Pt-based bi- and tri-metallic electrocatalysts compared to 

Pt/C. Indeed, CO2 could be detected at potentials as low as E = 0.54 V vs. RHE on Pt-Rh-

SnO2/C versus E = 0.58 V vs. RHE on Pt-Rh/C and E = 0.61 V vs. RHE on Pt/C. CO2 was 

also generated during the negative scan on Pt-SnO2/C. Ionic (m/z = 22, 29 and 61) reaction 

onsets of all studied electrocatalysts (comprised Rh/C) are summarized in Table 7. 

 

 
Fig. 45. CV of the EOR in 0.5 M H2SO4 + 0.1 M EtOH after adsorption at Ead = 0.05 on (a) 

Pt/C, (b) Pt-Rh/C, (c) Pt-SnO2/C and (d) Pt-Rh-SnO2/C and corresponding MSCV for mass-

to-charge ratio m/z = 29, m/z = 22 and m/z = 61; v = 10 mV s
-1

; T = 25°C. 

 

 

Table 7. Onset potential values of the mass-to-charge signals m/z = 22, 29 and 61 measured 

on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C during the potentiodynamic EOR 

recorded after a CA at Ead = 0.05 V vs. RHE. 

 Pt/C Rh/C Pt-Rh/C Pt-SnO2/C 
Pt-Rh-

SnO2/C 

m/z E / V vs. RHE 

29 0.31 0.27 0.27 0.24 0.24 

22 0.61 0.56 0.58 0.59 0.54 

61 0.35 - 0.33 0.28 0.35 
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IV.5. CO2 current efficiency 

 

 The CO2 current efficiency (CCE) was determined from potendiodynamic 

voltammetries and the corresponding mass-to-charge signal m/z = 22 between E = 0.5 and 0.9 

V vs. RHE (0.1 V step) on Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. Regarding the 

previous results of Fig. 45, the chronoamperometries at Ead = 0.05, 0.3 and 1 V vs. RHE do 

impact the EOR and more specifically the CO2 production. Consequently, the CCE variation 

versus the potential was evaluated after chronoamperometries at Ead = 0.05, 0.3 and 1 V vs. 

RHE.  

 It can be noticed in Fig. 46 that the CCE evolution can be separated in two steps for all 

electrocatalysts: a first ascending phase between E = 0.6 and ca. 0.7 - 0.8 V vs. RHE 

(depending on the previous CA) where the CCE increases against the potential; a second one 

at E > 0.7 - 0.8 V vs. RHE where the CCE decays. The CCE rise in the first potential region 

can reasonably be explained by the growing adsorption of OH-adsorbates that facilitates the 

oxidation of adsorbed CO. A second reason could be the improved C-C bond breaking ability 

gained by the electrocatalyst with the potential increase (although previous studies reported 

ethanol dissociative adsorption at potentials as low as E = 0.05 V vs. RHE [185,227]). On the 

contrary, in the second potential region (E > 0.7 - 0.8 V vs. RHE), CO2 generation is more and 

more hindered as the potential increases. It is believed that above a certain potential, the 

presence of adsorbates on the electrocatalyst surface prevents ethanol dissociative adsorption 

and a fortiori CO2 generation. These adsorbates are supposedly OHad and ethanol 

intermediates [17,29] and are believed to sterically impede the ethanol dissociative 

adsorption. Fig. 46c shows the relative lower CCE values obtained when the potentiodynamic 

voltammetry is preceded by the CA at Ead = 1 V vs. RHE in comparison to the CVs preceded 

by the CA at Ead = 0.05 and 0.3 V vs. RHE. It is supposed that adsorbed hydroxide species did 

not have time to desorb completely from the electrocatalyst surface at the beginning of the 

CV and that the remaining OHad-species hinder ethanol dissociative adsorption and thus CO2 

generation. An accumulation of ethanol adsorbates on the electrocatalyst surface could also 

prevent ethanol dissociative adsorption (which likely requires more than two free neighboring 

electrocatalytic sites). This explanation is supported by the oxidation of CHx- and C2-

adsorbates only at potentials as high as E = 0.9 V vs. RHE [185]. Identifying these ethanol 

adsorbates would require a thorough IR analysis and is beyond the scope of this study.  

 Among the studied electrocatalysts, Pt-Rh-SnO2/C demonstrates the highest CO2 

current efficiency in all three protocols, while Pt/C and Pt-SnO2/C displayed the lowest 

values. A higher CO2 generation on Pt-Rh-SnO2/C than on PtSnO2/C evaluated by infrared 

techniques is also reported in the literature [123]. Low CCE values on Pt/C and Pt-SnO2/C are 

also supported in the literature in other DEMS studies [30,98].  

 The influence of the chronoamperometries at Ead = 0.05, 0.3 and 1 V vs. RHE in 0.5 M 

H2SO4 run before the potentiodynamic voltammetries on the CO2 current efficiency is 

compared in Fig. 46a, Fig. 46b and Fig. 46c respectively. For each Pt-based electrocatalysts, 
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the CCE values are generally lower after the chronoamperometry at Ead = 1 V vs. RHE, 

illustrating the observation done with Fig. 45. Although adsorbed OH-species are necessary to 

oxidize COad, a large coverage of the electrocatalyst surface by the OH-adsorbates may hinder 

COad formation coming from adsorbed acetaldehyde or direct ethanol dissociative adsorption. 

The CA at Ead = 0.3 V vs. RHE seems to enhance CO2 production during the following cyclic 

voltammetry. Although the original goal of this chronoamperometry was to start the cyclic 

voltammetry without any adsorbates at the electrocatalyst surface, the mandatory change of 

solution during the last four minutes of the CA may have, on the contrary, provoked ethanol 

dissociative adsorption into COad before the beginning of the CV. These COad-species then 

likely oxidized as soon as hydroxide molecules started adsorbing on the electrocatalyst 

surface. That could explain the higher CCE values in Fig. 46b and also why CO2 generation 

starts at potentials as low as E = 0.5 V vs. RHE on Pt-Rh-SnO2/C, which also corresponds to 

the beginning of OHad formation on the tri-metallic electrocatalyst (see Fig. 77). 

 

 

 
Fig. 46. Potentiodynamic EOR CO2 current efficiency (CCE) values deduced from cyclic 

voltammetries in 0.5 M H2SO4 + 0.1 M EtOH on Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C 

preceded by CA at Ead = (a) 0.05, (b) 0.3 and (c) 1 V vs. RHE. 
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IV.6. Zoom on the CA at Ead = 0.05 V vs. RHE 

 

IV.6.1.  On Pt/C and Rh/C 

  

 The aim of this section is to demonstrate the difficulty for ethanol to displace adsorbed 

hydrogen species on Pt/C conversely to Rh/C. To that purpose, the presented figures show the 

evolution of the potential (left y-axis) and of the mass-to-charge signals (right y-axis) m/z = 

29 ([CHO
+
]) and m/z = 2 ([H2

+
]) against the time during the chronoamperometry carried out at 

Ead = 0.05 V vs. RHE, followed by the voltamperogram in 0.5 M H2SO4 + 0.1 M EtOH 

(similarly to Fig. 38 but with the additional evolution of the MSCVs m/z = 2 and m/z = 29). 

The particularly interesting information here relies in the behavior of the signal m/z = 2 after 

the solution switch from 0.5 M H2SO4 to 0.5 M H2SO4 + 0.1 M EtOH after the first eight 

minutes of the CA. The mass-to-charge signal m/z = 29 (ascribed to ethanol) is used to 

evidence the solution switch after the first eight minutes of CA. As observed in Fig. 48a and 

Fig. 48b, the appearance of this signal is slightly delayed (which explains the non 

superposition of the vertical dashed line with the signal m/z = 29). This delay corresponds to 

the time required by the solution to flow in the capillaries, reach the electrochemical cell and 

be pumped inside the mass spectrometer. 

 First and foremost, the first decrease of the mass-to-charge signal m/z = 2 during the 

first eight minutes of the CA corresponds to a "normal" hydrogen generation response to the 

potential step from Ead = 1 to 0.05 V vs. RHE (a first CA not shown in Fig. 47 was carried out 

at Ead = 1 V vs. RHE in 0.5 M H2SO4 during 30 s to clean the electrocatalyst surface from 

potentially residual ethanol adsorbates coming from a previous CV in 0.5 M H2SO4 + 0.1 M 

EtOH). Contrary to the first step of the CA similar on Pt/C and Rh/C, the second step differs 

significantly on the two electrocatalysts: on Pt/C (Fig. 47a), the initial ionic (m/z = 2) current 

drop during the first eight minutes of the CA is followed by a slight rise/stabilization of the 

current appearing simultaneously to the signal m/z = 29, and may sign that a low amount of 

acetaldehyde is formed from ethanol dehydrogenation on Pt/C at Ead = 0.05 V vs. RHE (a by-

product of this reaction being H2). But the high constant ionic (m/z = 2) current recorded on 

Pt/C is more believed to illustrate H2 steady formation and thus ethanol difficulty to adsorb on 

the electrocatalyst. On the contrary, a further ionic (m/z = 2) current shrinkage is recorded on 

Rh/C (Fig. 47b). The latter phenomenon on Rh/C can be explained by the ethanol adsorption 

taking place quantitatively on the electrocatalyst surface which blocks rhodium electroactive 

sites and hinders dramatically the hydrogen generation. 
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Fig. 47. Evolution of the potential and mass-to-charge ratio signals m/z = 2 and m/z = 29 vs. 

time on (a) Pt/C and (b) Rh/C during three consecutive steps: (A) hydrogen adsorption in 0.5 

M H2SO4 at Ead = 0.05 V vs. RHE, (B) the solution change in 0.5 M H2SO4 + 0.1 M EtOH 

and (C) the potentiodynamic ethanol oxidation reaction starting at E = 0.2 V vs. RHE. 

 

 

IV.6.2. On Pt-based multi-metallic electrocatalysts 

 

 Like on Pt/C, the hydrogen generation does not seem impeded by the solution switch 

to 0.5 M H2SO4 + 0.1 M EtOH operated during the chronoamperometry at ca. Ead = 0.05 V vs. 

RHE on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C (as shown in Fig. 48 for Pt-Rh-SnO2/C). The 

low increase/stabilization of the mass-to-charge signal m/z = 2 during step (B), similar to that 

of Pt/C (Fig. 47a), demonstrates once more that ethanol likely dehydrogetates into 

acetaldehyde forming in the process H2, as by product.  
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Fig. 48. Evolution of the potential and mass-to-charge ratio signals m/z = 2 and m/z = 29 vs. 

time on Pt-Rh-SnO2/C during three consecutive steps: (A) hydrogen adsorption in 0.5 M 

H2SO4 at Ead = 0.07 V vs. RHE, (B) the solution change in 0.5 M H2SO4 + 0.1 M EtOH and 

(C) the potentiodynamic ethanol oxidation reaction starting at E = 0.2 V vs. RHE. 

 

 

IV.7. Potentiodynamic acetaldehyde oxidation reaction 

 

IV.7.1. On Pt/C 

 

 Fig. 49 presents a comparative study of the first scan of the potentiodynamic 

voltammetries obtained after a CA at Ead = 0.05, 0.3 and 1 V vs. RHE in 0.5 M H2SO4 + 0.1 

M acetaldehyde. Similarly to the EOR, an initiation at lower potentials can be observed 

during the CV recorded after the CA at Ead = 1 V vs. RHE compared to the one run after the 

CA at Ead = 0.05 V vs. RHE. Moreover, the related mass-to-charge signals m/z = 22 (Fig. 49b) 

and m/z = 60 (Fig. 49c) display a negative shift after the CA at Ead = 1 V vs. RHE. This 

behavior, comparable to the EOR, differs maybe only by the significant proximity of the CVs 

preceded by the CAs at Ead = 0.3 and Ead = 1 V vs. RHE. This proximity shows that it may not 

be so much the presence of OH-adsorbates that shifts negatively the AOR initiation, but the 

absence of H-adsorbates (which is the case after both surface treatment at Ead = 0.3 and Ead = 

1 V vs. RHE). Indeed, the results strikingly show that H-adsorbates formed at Ead = 0.05 V vs. 

RHE do inhibit the reaction at low potential. Likewise, CO2 (Fig. 49b) and acetic acid (Fig. 

49c) production are also shifted positively in the presence of H-adsorbates. The positive shift 

of the reactions initiation is likely imputed to a positive shift of the adsorption of hydroxide 

species required for the generation of CO2 and acetic acid.  
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Fig. 49. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M acetaldehyde after adsorption at Ead = 

0.05 (solid), 0.3 (dots) and 1 V vs. RHE (dash) and corresponding MSCV for mass-to-charge 

ratio (b) m/z = 22 and (c) m/z = 60 on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 Fig. 50 shows the two first cycles of a representative potentiodynamic acetaldehyde 

electrooxidation on Pt/C and their associated mass-to-charge signals m/z = 22 and m/z = 60 

obtained after a chronoamperometry at Ead = 0.05 (Fig. 40a) and 1 V vs. RHE (Fig. 40b). 

Hydrogen adsorbates formation during the chronoamperometry at Ead = 0.05 V vs. RHE 

obviously impedes the AOR initiation in a similar manner than it was observed with the EOR. 

On the opposite, as noticed for Fig. 49, OH-adsorbates do not seem to enhance acetaldehyde 

electrooxidation. The comparison between the first and second cycle of the CV shows that the 

initiation potential of the AOR remains constant (contrary to what was observed in Fig. 40b 

for the EOR). On the contrary, higher faraday and ionic (m/z = 22 and m/z = 60) currents are 

even reported during the second cycle compared to the first one. A consistent explanation 

would be that the OHad-species, like the Had-species, block the Pt sites for acetaldehyde 

adsorption/oxidation. As the hydroxile species are also used during the AOR initiation to form 

CO2, the onset potential or the reaction would not be mechanically shifted toward positive 

potential as it is the case with Had-species. Another explanantion based on the "history" of the 
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electrode could rationalize the present results. Indeed, as shown later in chapter V, some 

acetaldehyde "strong adsorbates" do not react during the first potentiodynamic scan, but only 

during the second one. The presence of more acetaldehyde adsorbates at the beginning of the 

second scan could explain the higher currents registered during the latter than during the first 

sweep.  

 

 
Fig. 50. (solid) First and (dash) second scan of the potentiodynamic acetaldehyde in 0.5 M 

H2SO4 + 0.1 M acetaldehyde after adsorption at Ead = (a) 0.05 and (b) 1 V vs. RHE and 

corresponding MSCV for mass-to-charge ratio m/z = 22 and m/z = 60 on Pt/C; v = 10 mV s
-1

; 

T = 25°C. 
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IV.7.2. On Rh/C 

 

 Fig. 51 displays potendiodynamic voltamperograms in 0.5 M H2SO4 + 0.1 M 

acetaldehyde on Rh/C preceded by CAs run at Ead = 0.05 and 1 V vs. RHE in 0.5 M H2SO4. 

The results presented hereafter could not be repeated (by lack of time) and their interpretation 

is thus subjected to precaution. 

 Conversely to the EOR on Rh/C, the AOR activity does not differ significantly 

between the CVs obtained after hydrogen adsorption (seen for Ead = 0.05 V vs. RHE) and 

OHad formation (at Ead = 1 V vs. RHE) on the electrocatalyst surface: the reaction onsets are 

similar and only a slightly steeper rise in current can be observed for Ead = 0.05 V vs. RHE. 

This observation is rather surprising as it was explained before that OH-adsorbates are very 

stable on rhodium electroactive surface. Yet, these results can be rationalized by an easier 

displacement of the OH-adsorbates by acetaldehyde molecules. The good superposition 

between the first and second cycle of the CV and MSCV from the signal m/z = 22 in Fig. 51b 

defends this assumption. 

 

 
Fig. 51. (solid) First and (dash) second scan of the potentiodynamic acetaldehyde in 0.5 M 

H2SO4 + 0.1 M acetaldehyde after adsorption at Ead = (a) 0.05 and (b) 1 V vs. RHE and 

corresponding MSCV for mass-to-charge ratio m/z = 22 on Rh/C; v = 10 mV s
-1

; T = 25°C. 
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IV.7.3. On Pt-based electrocatalysts 

 

 The influence of H- and OH-adsorbates on the potentiodynamic AOR was also studied 

on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C. Fig. 52 and Fig. 53 show the results obtained on 

Pt-Rh/C and Pt-Rh-SnO2/C respectively. A slight negative shift was recorded on Pt-Rh/C for 

the cyclic voltammetry carried out after OH-adsorption (Ead = 1 V vs. RHE) compared to the 

one run after the CA at Ead = 0.05 V vs. RHE. This is confirmed with the corresponding 

MSCV of the signal m/z = 22 showing a similar small negative shift of the CO2 production. 

On the opposite, the mass-to-charge signal m/z = 60 does not seem to be influenced by the 

surface treatment. As reported on Pt/C but contrary to Pt-Rh/C, the hydrogen adsorption 

seems to hinder intensively the AOR initiation on Pt-Rh-SnO2/C (similar results were 

obtained on Pt-SnO2/C, not shown here). Contrary to the EOR, the addition of rhodium to 

platinum is not sufficient to counter-balance the hindrance of the AOR initiation by hydrogen 

adsorbates but does inhibit their effect. As seen in section IV.3, the addition of SnO2 to Pt 

does not favor the electrocatalyst surface dehydrogenation. 
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Fig. 52. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M acetaldehyde after adsorption at Ead = 

0.05 (solid), 0.3 (dots) and 1 V vs. RHE (dash) and corresponding MSCV for mass-to-charge 

ratio (b) m/z = 22 and (c) m/z = 60 on Pt-Rh/C; v = 10 mV s
-1

; T = 25°C. 

 

 

 

 
Fig. 53. (a) CV of the EOR in 0.5 M H2SO4 + 0.1 M acetaldehyde after adsorption at Ead = 

0.05 (solid), 0.3 (dots) and 1 V vs. RHE (dash) and corresponding MSCV for mass-to-charge 

ratio (b) m/z = 22 and (c) m/z = 60 on Pt-Rh-SnO2/C; v = 10 mV s
-1

; T = 25°C. 

 

 

IV.8. Acetaldehyde potentiostatic adsorption at Ead = 0.05 V vs. RHE 

 

 A similar representation of the potential and mass-to-charge signals m/z = 2 and m/z = 

29 evolution against the time than those in section IV.5 and IV.6 can be found in Fig. 54 for 

Pt/C and Pt-SnO2/C. These two graphs can be distinguished from those previously introduced 

for the ethanol adsorption by the larger ionic current values (right y-axis) of the signal m/z = 

29 obtained with the acetaldehyde solution. As previously explained, the signal m/z = 29 is 

ascribed to the fragment [CHO
+
] which can originate from both ethanol and acetaldehyde. 

However, as acetaldehyde presents a relative higher volatility compared to ethanol, at equal 

solution concentrations, more acetaldehyde is pumped in the mass spectrometer chamber than 
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ethanol, which induces larger ionic current values. Another difference remains in the quasi-

stability of the signals m/z = 29 during the CVs (part (C) in Fig. 54) due to the absence of 

further acetaldehyde production contrary to the EOR.  

 Fig. 54a and Fig. 54b show that after the solution switch from 0.5 M H2SO4 to 0.5 M 

H2SO4 + 0.1 M acetaldehyde, contrary to what was observed in Fig. 47a and Fig. 48 with 

ethanol on Pt-based electrocatalysts, hydrogen generation shrinks markedly on Pt/C and Pt-

SnO2/C (similar results were obtained for Pt-Rh/C and Pt-Rh-SnO2/C). This suggests that 

acetaldehyde adsorption does occur quantitatively at potentials as low as Ead = 0.05 V vs. 

RHE on these electrocatalysts, contrary to ethanol. These two figures are contradictory with 

the interpretation of the results presented in section IV.6, which stated that the hindrance of 

the AOR initiation is caused by the hydrogen adsorbates. On the opposite, it seems in Fig. 54 

that the electrocatalyst coverage by hydrogen species is markedly low at the beginning of the 

CV. The only explanation satisfying the results displayed in section IV.6 and in Fig. 54 is that 

the shift toward positive potentials of the AOR initiation is not due to hydrogen adsorbates. 

No explanation has been found until now to rationalize this behavior. 
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Fig. 54. Evolution of the potential and mass-to-charge ratio signals m/z = 2 and m/z = 29 vs. 

time on (a) Pt/C and (b) Pt-SnO2/C during three consecutive steps: (A) hydrogen adsorption in 

0.5 M H2SO4 at Ead = 0.05 V vs. RHE, (B) the solution change in 0.5 M H2SO4 + 0.1 M 

acetaldehyde and (C) the potentiodynamic ethanol oxidation reaction starting at E = 0.2 V vs. 

RHE. 

 

 

IV.9. Conclusions 

 

 The influence of the presence of H- and OH-adsorbates on the potentiodynamic 

ethanol electrooxidation was studied on home-made Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-

Rh-SnO2/C by on-line differential electrochemical mass spectrometry (DEMS) in a flow cell 

system. Prior to the cyclic voltammetries, a chronoamperometry at Ead = 0.05 and 1 V vs. 

RHE was applied in order to adsorb these species. For the sake of comparison, another 

adsorption potential was chosen at Ead = 0.3 V vs. RHE, in the double layer region. The three 

main products of the ethanol oxidation reaction (EOR), acetaldehyde, acetic acid and CO2, 

were detected using the mass-to-charge signals m/z = 29, 61 and 22, respectively. 

 The comparison of the first and second cycle of the CVs on Pt/C revealed a kinetics 

slow-down during the first scan following the CA at Ead = 0.05 V vs. RHE, whereas a shift 

toward negative potentials was observed after the CA at Ead = 1 V vs. RHE. These results 

were interpreted by the hindrance of the ethanol adsorption/electrooxidation due to Had and by 

an easier replacement of OH-adsorbates by ethanol molecules.  

 Results on Rh/C were opposite to platinum. The EOR did proceed almost entirely 

through its complete pathway toward CO2 after hydrogen adsorption, while the activity was 

significantly lowered during the second scan of the CV preceded by the CA at Ead = 0.05 V 

vs. RHE. A low EOR activity was also reported after the CA at Ead = 0.3 and 1 V vs. RHE. 

The high OHad stability on Rh/C likely prevents their displacement by bulk ethanol molecules 

and thus their electrooxidation. 
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 As for Pt/C, the EOR on Pt-SnO2/C was hindered by H-adsorbates while the EOR on 

Pt-Rh/C and Pt-Rh-SnO2/C did not show much influence of the adsorbates. The last result 

was explained by Pt and Rh opposite behaviors. The comparison between the electrocatalysts 

revealed a slightly lower EOR onset potential on Pt-SnO2/C and Pt-Rh-O2/C than on Pt/C, 

which was corresponding to ethanol better dehydrogenation into acetaldehyde. CO2 

generation was detected at lower potentials on Pt-Rh-SnO2/C than on the other 

electrocatalysts. The CO2 currency efficiency (CCE) was finally determined for each 

electrocatalyst and demonstrated higher values on Pt-Rh-SnO2/C, regardless of the adsorption 

process preceding the cyclic voltammetries. 

 The potentiodynamic AOR study revealed a similar or even more dramatic hindrance 

of the oxidation reaction on Pt/C compared to EOR after the CA at Ead = 0.05 V vs. RHE. On 

the contrary, the AOR on Rh/C was not impeded as much as the EOR after the potentiostatic 

treatment at Ead = 1 V vs. RHE. These results suggest that acetaldehyde can more easily 

displace the OH-adsorbates than ethanol on Rh surfaces.  

 Finally, The representation versus time of the mass-to-charge ratio m/z = 2 gives 

further insight on the ability of both organic molecules to displace the hydrogen adsorbates: 

ethanol is unable to dislodge Had significantly on Pt/C (but can partially dehydrogenize and 

form H2 as by-product), whereas this operation is successfully performed on Rh/C. 

Acetaldehyde can dehydrogenize quantitatively the electrocatalysts surface and that, 

independently of the electrocatalyst nature. These last results seem however in contradiction 

with the positive shift reported in the CV at Ead = 0.05 V vs. RHE. More work would be 

necessary to unveil the remaining blur. 
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Chapter V. 

  

Mass spectrometric investigation of ethanol and acetaldehyde 

adsorbates electrooxidation on Pt- and Rh-based electrocatalysts 
 

 

This chapter aims at further understanding the EOR mechanism by means of ethanol and 

acetaldehyde stripping. A DEMS investigation is presented on the electrooxidation of ethanol 

and acetaldehyde adsorbates on home-made 20 wt.% Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2 and Pt-

Rh-SnO2/C. In the first place, a detailed overview of the literature is broached in this section. 

The results are then introduced and further analyzed in the light of pre-existing studies on this 

topic.  
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V.1.  Ethanol and acetaldehyde adsorbates electrooxidation  

 

 Knowing the complexity in the interfacial processes taking place during bulk ethanol 

and acetaldehyde electrooxidation reaction, insight into these reactions may firstly be 

provided by studying the electrooxidation of adsorbed ethanol and acetaldehyde molecules on 

the surface of the electrocatalyst. Despite the apparent simplicity of the method, previous 

publications on the topic did yield divergent results regarding the nature of the ethanol 

adsorbates on Pt electrocatalysts [29,64,115,116,227–233]. According to Willsau et al. [229] 

the cleavage of the C-C bond of the ethanol molecule only occurs at high potentials during the 

potentiodynamic sweep following the adsorption process. It was also reported by Pastor and 

Iwasita [29] that more than 60 % of the adsorbates formed at Ead = 0.3 V vs. RHE are C2-

species. On the contrary, Gootzen et al. [230] as well as Schmiemann et al. [231] proposed 

that ethanol adsorbs dissociatively into CO and CHx. With regards to acetaldehyde, Wang et 

al. reported that the main adsorbate is CO which oxidizes at ca. E = 0.3 V vs. RHE while 

adsorbed C2-species only constitute a small part of the adsorbed species [227]. The influence 

of the adsorption potential on the amount of ethanol and acetaldehyde adsorbates on bulk 

platinum and Pt/C was also evidenced in acidic [64,227,234] and alkaline [235] media. 

 The electrooxidation of ethanol or/and acetaldehyde adsorbates on other metals than Pt 

is scarce in the literature [116,232]. Mendez et al. investigated the reaction on rhodium [116] 

and found that the nature of the organic adsorbates seemed to be the same as on platinum. 

Besides, the authors noted the absence of ethane conversely to previous results on Pt [29,64]. 

An enhanced dehydrogenation of the ethanol molecule and an accentuated C-C bond breaking 

on rhodium compared to platinum were proposed. The only Pt-based bi-metallic 

electrocatalyst investigated in regard to the ethanol adsorbates stripping is Pt-Ru/C [232]. 

Conversely to Rh, no ethanol adsorbates could be observed on pure ruthenium surface. 

Besides, ethanol adsorbates stripping on Pt-Ru/C led to a smaller ethane production than on 

Pt/C. A slight negative shift of the onset potential of the CO-like adsorbates electrooxidation 

was also perceived on Pt-Ru/C against Pt/C.  

 This investigation is focused on the electrooxidation of ethanol and acetaldehyde 

adsorbates after their potentiostatic adsorption at distinct potentials on home-made 20 wt.% 

Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C electrocatalysts (their physical 

characterization can be found in section III). On-line differential electrochemical mass 

spectrometry (DEMS) was performed on thin-film electrodes in a flow cell system in order to 

identify and quantify the nature of the different adsorbates that are formed during the CAs in 

ethanol or acetaldehyde containing solutions and are oxidized (or reduced) during the 

following potentiodynamic sweep. The number of exchanged electrons per produced CO2 

molecule during the electrooxidation reactions was determined on Pt/C only, after calibration 

of the mass-to-charge signals m/z = 22 and m/z = 44. The ionic signals m/z = 15 and m/z = 30 

were also respectively used to detect methane and ethane formation qualitatively. Finally, the 

influence of the adsorption potential on the adsorbates distribution was tentatively unveiled. 
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V.2. Ethanol and acetaldehyde adsorbates formation 

 

 Prior to the potentiodynamic stripping of ethanol and acetaldehyde adsorbates, a 

solution containing either bulk ethanol (0.5 M H2SO4 + 0.1 M EtOH) or bulk acetaldehyde 

(0.5 M H2SO4 + 0.1 M acetaldehyde) was kept flowing through the cell containing the 

working electrode during 8 min at fixed potential, allowing a maximum coverage at the 

electrocatalyst surface by the adsorbates. The solution was then switched to pure 0.5 M 

H2SO4 in order to flush the non-adsorbed organic residues. This operation lasted 20 min. In 

order to study the influence of the adsorption potential on the distribution of adsorbates at the 

surface of the electrocatalyst, the adsorption of ethanol and acetaldehyde was carried out at 

various potential values: Ead = 0.05, 0.15, 0.3 and 0.5 V vs. RHE. Two different types of 

cyclic voltammetry procedures were recorded per adsorption potential in order to elucidate 

the influence of the reduction of adsorbed CHx on the shape of the oxidation curves. While 

one CV started with a positive sweep from the initial potential at E = 0.2 V vs. RHE up to E = 

1.5 V vs. RHE, before going back down to E = 0.05 V vs. RHE for 2 cycles, the other one 

initiated with a reduction sweep from the starting potential down to E = 0.05 V vs. RHE 

before the oxidation sweep to the higher vertex potential of E = 1.5 V vs. RHE (see Fig. 55). 

The notation “dir” (direct) and “indir” (indirect) will be used in the present text and in the 

figures to distinguish the CVs starting with a first oxidation (Fig. 55a) and reduction sweep 

(Fig. 55b) respectively.  

 The relative electrocatalyst surface coverage by the ethanol and acetaldehyde 

adsorbates was calculated using faraday and mass spectrometric data: 

 

      
    

     
     Eq. V.1 

 

  
   

  
  

   
     Eq. V.2 

 

with      and       the faraday charges corresponding to the electrooxidation reactions of 

ethanol (and acetaldehyde) adsorbates and to the stripping of a saturated COad  monolayer 

respectively and   
   and    

   the ionic charges of the mass-to-charge signal m/z = 44 of the 

same reactions respectively. 

 The experiments were repeated three times on different days for the sake of 

reproducibility. The adsorbates surface coverage values presented hereafter are reproducible 

within ± 0.1; therefore, the results will be discussed qualitatively more than quantitatively. 
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Fig. 55. Potential vs. time representation of (A) the adsorbates adsorption in 0.5 M H2SO4 + 

0.1 M EtOH (represented here at Ead = 0.5 V vs. RHE), (B) the flush of the solution in 0.5 M 

H2SO4 and (C) the adsorbates electrooxidation starting at E = 0.2 V vs. RHE with a first (a) 

positive (hereafter noted “direct”) and (b) negative (hereafter noted “indirect”) sweep. 

 

 

V.3. On Pt/C 

 

V.3.1.  Ethanol adsorbates stripping 

 

 Fig. 56 shows cyclic voltammetries ran with a direct oxidative scan from E = 0.2 V vs. 

RHE after the adsorption at different adsorption potentials (see experimental section). Two 

oxidation regions can be identified: one at low potential (between ca. E = 0.5 and 0.8 V vs. 

RHE) which corresponds to the oxidation of adsorbed CO-like species and the other at high 

potential (E > 0.9 V vs. RHE), which starts in the hydroxide adsorption region and 

corresponds to the oxidation of strongly adsorbed species. As shown in Fig. 56, the maximum 

faraday charge corresponding to the oxidation between ca. E = 0.5 and 0.8 V vs. RHE is 

obtained upon adsorption at Ead = 0.3 V vs. RHE. This result is not surprising as this potential 

is located in the double layer region where the electrocatalyst surface is free of any hydrogen 

or hydroxide adsorbates (see chapter IV). Besides that, this voltammogram displays a pre-

peak between ca. E = 0.45 and 0.55 V vs. RHE not observable on the others. The 

voltammogram acquired after an adsorption process at Ead = 0.15 V vs. RHE also 

demonstrates a quite large oxidation peak around E = 0.7 V vs. RHE: at Ead = 0.15 V vs. RHE, 

i.e. at the positive limit of the hydrogen region, adsorbed hydrogen species are oxidized, 

leaving an essentially free Pt surface for the adsorption of ethanol, which adsorbates are 

subsequently oxidized at higher potential. On the contrary, at Ead = 0.05 V vs. RHE, ethanol 

adsorption takes place in the hydrogen adsorption region, resulting in smaller ethanol 

coverage and therefore smaller ethanol stripping peak. The ethanol adsorption is however not 

completely inhibited at Ead = 0.05 V vs. RHE; one reason could be that ethanol enables the 

cleavage of the Pt-H bonds (or the displacement of Had), but this result is contradictory with 
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[227] and chapter IV. Finally, the stripping CV resulting from ethanol adsorption at Ead = 0.5 

V vs. RHE shows limited coulometry in the oxidation peak between E = 0.5 and 0.9 V vs. 

RHE, evidencing that some of the adsorbates were already oxidized during the adsorption 

step. 

 Fig. 56b and Fig. 56c shows the corresponding mass-to-charge signals m/z = 22 and 

m/z = 44. Besides a quasi-similar onset potential (at E = 0.55 V vs. RHE) for the CO2 

generation, it can be noticed that no pre-peak is observed on those two figures for the 

electrooxidation of ethanol adsorbates after adsorption at Ead = 0.3 V vs. RHE, although a pre-

peak was found for the faradaic current (Fig. 56a). This indicates that the oxidation reaction 

corresponding to the pre-peak does not involve the generation CO2, but would rather 

correspond to another product not detectable by the mass spectrometer. Cases et al. recorded a 

similar pre-peak on a Pt(111) surface after an adsorption of ethanol at Ead = 0.2 V vs. RHE 

[162]. They attributed this pre-peak to a residue acting independently from the species 

oxidized during the following oxidation at ca. E = 0.55 V vs. RHE. On the contrary, Lai and 

Koper gave convincing evidences that this pre-peak could be ascribed to the oxidation of 

CHx,ad-species to COad [21]. 

 

 
Fig. 56. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at Ead = 0.05 (solid), 0.15 (dash), 0.3 (short dash) and 0.5 V vs. RHE (dots) and corresponding 
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MSCV for mass-to-charge ratio (b) m/z = 44 and (c) m/z = 22 on Pt/C; v = 10 mV s
-1

; T = 

25°C. 

 

 Fig. 57 shows indirect cyclic voltammetries ran first with a reduction scan from E = 

0.2 V vs. RHE down to E = 0.05 V vs. RHE followed by a positive scan as in Fig. 56. A 

similar pattern of the oxidation taking place between ca. E = 0.5 to 0.8 V vs. RHE can be 

observed in comparison to the results in Fig. 56. Moreover, as it can be seen in Fig. 58, the 

relative coverage of the electrocatalyst surface (adsorbates oxidation charge normalized by 

CO stripping charge) by ethanol adsorbates does not significantly differ in the two cases. If 

CHx-adsorbates were indeed oxidizing into COad in the potential range E = 0.5 - 0.8 V vs. 

RHE, a decrease of the surface coverage would have been expected after the reduction of the 

CHx,ad-species between E = 0.2 and 0.05 V vs. RHE. Moreover, the pre-peak observed after 

the adsorption step at Ead = 0.3 V vs. RHE is once again observed in Fig. 57, suggesting that 

the CHx,ad reduction operating during the first negative scan did not have a significant impact 

on this pre-peak. Fig. 59 shows more clearly the comparison between the two 

potentiodynamic curves obtained after adsorption at Ead = 0.3 V vs. RHE. A slight decrease of 

this pre-peak is witnessed after the reduction of the CHx,ad-species, but this does not consist of 

sufficient evidence to prove that adsorbed CHx do oxidize into COad at these potentials. In 

order to clearly identify if this reaction corresponds to the pre-peak, it would be necessary to 

carry out not one but several cycles between E = 0.05 and 0.2 V vs. RHE in order to 

completely reduce CHx-adsorbates, as it can be found in the literature [64,227]. 
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Fig. 57. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 with a first 

reduction scan after adsorption at Ead = 0.05 (solid), 0.15 (dash), 0.3 (short dash) and 0.5 V vs. 

RHE (dots) and corresponding MSCV for mass-to-charge ratio (b) m/z = 44 and (c) m/z = 22 

on Pt/C; v =  10 mV s
-1

; T = 25°C. 
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Fig. 58. Relative coverage of the Pt/C surface by ethanol adsorbates adsorbed at Ead =  0.05, 

0.15, 0.3 and 0.5 V vs. RHE deduced from (a) faraday charges and (b) ionic charges from the 

mass-to-charge signal m/z = 44. 
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Fig. 59. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at Ead = 0.3 V vs. RHE (black) without and (red) with a first reduction scan and the 

corresponding MSCV for mass-to-charge ratio (b) m/z = 44 on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 The number of transferred electrons per CO2 molecule corresponding to the oxidation 

occurring between E = 0.5 and 0.8 V vs. RHE were calculated using Eq.II.13 and summarized 

in Table 8. It seems that whatever the adsorption potential, the number of exchanged electrons 

remains the same (≈ two electrons) and could only be ascribed to the oxidation of adsorbed 

CO, coming from ethanol dissociative adsorption, into CO2.  

 

Table 8. Number of electrons exchanged per CO2 molecule during the electrooxidation of 

ethanol adsorbates between ca. E = 0.5 and 0.8 V vs. RHE and at E > 0.9 V vs. RHE 

without
(d)

 and with
(i)

 a first reduction scan.  

 0.5 – 0.8 V vs. RHE > 0.9 V vs. RHE 

Ead / V vs. RHE ne-
dir

 ne-
indir

 ne-
dir

 ne-
indir

 

0.05 2.2 2.1 8.0 8.2 

0.15 2.0 2.1 7.3 6.3 

0.3 2.2 2.0 5.8 5.4 

0.5 1.8 1.9 4.6 6.1 
dir

: without first reduction scan 
indir

: with first reduction scan 

 

 Interestingly, the adsorption potential also seems to impact the oxidation at high 

potential (E > 0.9 V vs. RHE). Indeed, as it can be observed in Fig. 58a, the coverage of the 

Pt/C surface by ethanol “strong absorbates” seems to increase with the rise of the adsorption 

potential, e.g. especially after adsorption at Ead = 0.3 and 0.5 V vs. RHE. For the sake of 

clarity, it can be seen in Fig. 60 the first and second cycle of the curves corresponding to the 

ethanol adsorbates electrooxidation after adsorption at Ead = 0.15 and 0.5 V vs. RHE. The 
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oxidation occurring after E = 0.9 V vs. RHE looks larger after adsorption at Ead = 0.5 V vs. 

RHE. This could be enlighten by the fact that after adsorption at Ead = 0.5 V vs. RHE, the 

adsorbed species oxidizing at lower potentials are already destabilized (and therefore desorb 

or (partially) oxidize during the adsorption step), freeing some Pt/C sites for “strongly 

adsorbed” species that oxidize only at high potential (E > 0.9 V vs. RHE). 

 

 
Fig. 60. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at (black) Ead = 0.15 V vs. RHE and (red) Ead = 0.5 V vs.RHE and the corresponding MSCV 

for mass-to-charge ratio (b) m/z = 44 on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 Fig. 61 shows a comparison between two CV of electrooxidation of ethanol adsorbates 

formed at Ead = 0.5 V vs. RHE started either directly with a positive scan (dir) or after a 

negative scan (indir). It is clearly apparent that the oxidation current at high potentials is 

smaller in the latter case. This demonstrates that CHx,ad oxidation into adsorbed CO-like 

species (COad, COHad) corresponds to this larger oxidation current monitored at high potential 

in the “direct” (dir) CV, whereas an initial negative sweep down to E = 0.05 V vs. RHE 

reduces CHx,ad and suppress such high-potential oxidation current. Similar results are obtained 
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with an adsorption process at Ead = 0.3 V vs. RHE, but not at Ead = 0.15 V vs. RHE and Ead = 

0.05 V vs. RHE; this can be rationalized by the fact that low adsorption potentials promote the 

“in situ” reduction of CHx,ad-species (during the adsorption process) or simply forbid their 

formation. The CV of Fig. 60, relative to an adsorption potential of Ead = 0.15 V vs. RHE, is a 

clear example of this scenario. This phenomenon is finally summarized in Fig. 58, where 

higher coverage values at high potentials were recorded after adsorption at Ead = 0.5 V vs. 

RHE. Similar results can also be found in the literature for alkaline solutions [236]. 

 

 

 
Fig. 61. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at Ead = 0.5 V vs. RHE without a first reduction scan (black) and with a first reduction scan 

(red) and the corresponding MSCV for mass-to-charge ratio (b) m/z = 44 on Pt/C ; v = 10 mV 

s
-1

; T = 25°C. 

 

 The number of electrons calculated for the “high-potential oxidation” at E > 0.9 V vs. 

RHE (see Table 8) is significantly higher than for the “low-potential oxidation” (0.5 < E < 0.8 

V vs. RHE). As seen before, the oxidation of adsorbed CHx-species seems to contribute 
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appreciably to this oxidation, in a process that firstly yields CO (Eq.V.3) and then CO2 

(Eq.V.4), in a maximum 7 electron-process overall (i.e. for x = 3: CH3,ad): 

 

CHx,ad + H2O → COad + (2+x) H
+
 + (2+x) e

-
  Eq. V.3  

 

COad + 2 OH
-
 → CO2 + H2O + 2 e

-
   Eq. V.4  

 

 Nonetheless, this reaction may not be the only one taking place at E > 0.9 V vs. RHE. 

When comparing the coverage values in Fig. 58a and Fig. 58b deduced from the calculated 

faraday and ionic charges, the relative part of adsorbed species oxidizing in CO2 (Fig. 58b) is 

low compared to the overall adsorbed species oxidizing at high potentials (Fig. 58a). That 

suggests that another parallel mechanism could occur in this potential range, which does not 

involve CO2 production.  

 The distribution of ethanol adsorbates on the Pt/C surface was not only assessed from 

the faraday charges (Fig. 58a) but also from the associated mass-to-charge signals m/z = 22 

and m/z = 44 charges (Fig. 58b). The coverage values correspond to the species oxidizing in 

the potential range [0.5 V vs. RHE; 0.8 V vs. RHE] and for E > 0.9 V vs. RHE. It can be seen 

in both figures that, whatever the adsorption potential, the coverage of the electrocatalyst in 

ethanol adsorbates never reaches the charge obtained in a CO stripping CV. It can be assumed 

that, after an adsorption at Ead = 0.05 V vs. RHE and to a lesser extent at Ead = 0.15 V vs. 

RHE, the adsorbates besides COad, CHx,ad and C2-species are hydrogen adsorbates. Then, it 

could be reasonably supposed that part of the adsorbed CO already starts oxidizing when the 

adsorption occurs at Ead = 0.3 V vs. RHE. When the adsorption occurs at Ead = 0.5 V vs. RHE, 

most of the CO-like adsorbates are expected to oxidize during the 20 minutes in 0.5 M H2SO4 

electrolyte following the adsorption in the ethanol containing solution and preceding the 

potentiodynamic voltammetry. Regardless of the adsorption potential, a larger steric effect of 

ethanol species compared to CO could explain that even at an optimal adsorption potential 

(0.15 V vs. RHE < Ead < 0.3 V vs. RHE), the ethanol adsorbates coverage never reaches CO 

coverage. 

 When comparing Fig. 58a and Fig. 58b, ethanol adsorbates coverage values deduced 

from the faraday and ion charges (m/z = 44) seem to correlate between E = 0.5 and 0.8 vs. 

RHE. Nonetheless, divergent results regarding the Pt/C coverage by strong adsorbates appear 

at high potentials, between the coverage values obtained with the calculated faraday and ionic 

charges from the mass-to-charge signal m/z = 44. Indeed, the ionic normalized charge values 

are 3-4 times lower than faraday ones. This may be indicative that two reactions (at least) are 

simultaneously occurring at high potentials: a minor one generating CO2 and a major one (or 

more), the products of which are not detectable by mass spectrometry. These formed reaction 

intermediates/products are supposed to completely desorb from the electrocatalyst surface 

between E = 0.9 and 1.5 V vs. RHE, as nothing could be then detected by mass spectrometry 
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during the following negative and positive scan. This topic will be further discussed in the 

next section. 

 

 

V.3.2.  Acetaldehyde adsorbates stripping 

 

 The influence of the adsorption potential of bulk acetaldehyde on the profile of the 

stripping CV can be seen in Fig. 62. The largest oxidation occurring between E = 0.5 and 0.9 

V vs. RHE corresponds to an acetaldehyde adsorption at Ead = 0.15 V vs. RHE. This 

observation is supported in Fig. 63 by the relative coverage values in acetaldehyde adsorbates: 

a slightly higher coverage is monitored when the adsorption takes place at Ead = 0.15 V vs. 

RHE. Similarly, when the CV starts with a negative scan (Fig. 64), the highest peak is also 

observed after adsorption at Ead = 0.15 V vs. RHE. In both set of experiments, the oxidation 

charge between E = 0.5 and 0.8 V vs. RHE corresponding to the oxidation of adsorbates 

formed at Ead = 0.5 V vs. RHE decreased drastically.  

 

 
Fig. 62. (a) CV of the electrooxidation of acetaldehyde adsorbates in 0.5 M H2SO4 after 

adsorption at Ead = 0.05 (solid), 0.15 (dash), 0.3 (short dash) and 0.5 V vs. RHE (dots) and 

corresponding MSCV for mass-to-charge ratio (b) m/z = 44 and (c) m/z = 22 on Pt/C; v = 10 

mV s
-1

; T = 25°C. 
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Fig. 63. Relative coverage of the Pt/C surface by acetaldehyde adsorbates adsorbed at Ead = 

0.05, 0.15, 0.3 and 0.5 V vs.RHE deduced from (a) faraday charges and (b) ionic charges 

from the mass-to-charge signal m/z = 44. 

 

 As it can be seen in Table 9, the oxidation of acetaldehyde adsorbates between ca. E = 

0.5 and 0.8 V vs. RHE generates around two electrons, whatever the adsorption potential. 

These results, similar to the stripping of ethanol adsorbates, match with the electrooxidation 

of COad-species into CO2 in this potential region. 

 

Table 9. Number of electrons exchanged per CO2 molecule during the electrooxidation of 

acetaldehyde adsorbates between ca. 0.5 and 0.8 V vs. RHE and at E > 0.9 V vs. RHE 

without
(d)

 and with
(i)

 a first reduction scan.  

 0.5 - 0.8 V vs. RHE > 0.9 V vs. RHE 

Ead / V vs. RHE ne-
dir

 ne-
indir

 ne-
dir

 ne-
indir

 

0.05 2.2 2.5 8.1 7.2 

0.15 2.0 2.1 8.1 6.9 

0.3 2.5 2.4 4.4 4.8 
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0.5 2.0 2.1 6.2 6.0 
dir

: without first reduction scan 
indir

: with first reduction scan 

 

 
Fig. 64. (a) CV of the electrooxidation of acetaldehyde adsorbates in 0.5 M H2SO4 after 

adsorption at Ead = 0.05 (solid), 0.15 (dash), 0.3 (short dash) and 0.5 V vs. RHE (dots) and 

corresponding MSCV for mass-to-charge ratio (b) m/z = 44 and (c) m/z = 22 on Pt/C; v = 10 

mV s
-1

; T = 25°C. 

 

 The coverage values of acetaldehyde adsorbates oxidizing at higher potentials (E > 0.9 

V vs. RHE) are also displayed in Fig. 63. Like the ethanol adsorbates oxidation, the highest 

coverage in strong adsorbates corresponds to an adsorption at Ead = 0.5 V vs. RHE. It could be 

conjectured that COad-species are rapidly replaced by strong adsorbates during the adsorption 

at Ead = 0.5 V vs. RHE, yielding a larger oxidation current at high potential during the 

following potentiodynamic sweep. 

 As seen in Fig. 65, the “high potential oxidation” charge of a stripping CV following 

an adsorption step at Ead = 0.5 V vs. RHE and starting with an oxidation scan is much higher 

than when starting with a reduction scan. Like the ethanol adsorbates oxidation, the reduction 

of adsorbed CHx-species during the initial negative scan impacts considerably the “high 
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potential oxidation” charge. This suggests again that CHx,ad-species do oxidize at high 

potentials. Although slight variations are observed in the potential range [0.5 V vs. RHE; 0.9 

V vs. RHE] between the two CV of Fig. 65, no distinct evidence of CHx-adsorbates oxidation 

between E = 0.5 and 0.9 V vs. RHE could be claimed. 

 

 

 
Fig. 65. (a) CV of the electrooxidation of acetaldehyde adsorbates in 0.5 M H2SO4 after 

adsorption at Ead = 0.5 V vs. RHE (black) without and (red) with a first reduction scan and the 

corresponding MSCV for mass-to-charge ratio (b) m/z = 44 on Pt/C; v = 10 mV s
-1

; T = 25°C. 

 

 Fig. 66b shows the change of the signal m/z = 15 vs. potential during an acetaldehyde 

adsorbates stripping CV after an adsorption step at Ead = 0.05 V vs. RHE and starting by a 

reduction scan. The signal does not fluctuate at low potential during the first reduction scan, 

showing the absence of reduction of adsorbed CHx-species into methane. This result was 

expected as CHx,ad-species that possibly form during the adsorption step can constantly reduce 

in methane at an adsorption potential of Ead = 0.05 V vs. RHE [227]. However, after the first 

cycle, the second reduction scan shows evidence of methane production, thus proving the 

formation of adsorbed CHx,ad-species during the two scans. As the first oxidation at ca. E = 
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0.5 V vs. RHE mainly corresponds to CO-electrooxidation into CO2, there is a high 

probability that CHx,ad formation occurs at E > 0.9 V vs. RHE from the cleavage of adsorbed 

C2-species. Similarly, in Fig. 66c, the signal m/z = 30 does not fluctuate during the initial 

reduction scan, which shows the absence of ethane generation from adsorbed C2-species. 

However, although the signal m/z = 30 presents a low signal/noise ratio, the second reduction 

scan clearly illustrates ethane production, hence attesting a modification in the nature of the 

adsorbed C2-species operating most likely during the preceding oxidation scan at high 

potential. These two phenomena, which were not evidenced with ethanol adsorbates, also 

show that acetaldehyde adsorbates are much more strongly adsorbed than ethanol strong 

adsorbates and can remain at the surface of the electrocatalyst at potentials as high as E = 1.5 

V vs. RHE. 
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Fig. 66. (a) CV and related MSCV of the electrooxidation of acetaldehyde adsorbates in 0.5 

M H2SO4 after adsorption at Ead = 0.05 V vs. RHE with a first reduction scan for the mass-to-

charge ratio (b) m/z = 15 and (c) m/z = 30 on Pt/C; (solid) 1
st
 and (dash) 2

nd
 cycle; v = 10 mV 

s
-1

; T = 25°C. 

 

 

V.3.3. Discussion 

 

 A comparison between the adsorption of ethanol and acetaldehyde adsorbates is 

broached in this section. 

 Both ethanol and acetaldehyde adsorbates electrooxidation show the same 

potentiodynamic pattern, revealing two different oxidation regions, respectively occurring 

between E = 0.5 and 0.8 V vs. RHE and at E > 0.9 V vs. RHE. The first reaction in the middle 

potential region undoubtedly corresponds to COad electrooxidation into CO2  

[29,166,233,234]. This assertation is also supported by the calculation of the number of 

exchanged electrons (see Table 8 and Table 9). The oxidation of CHx,ad-species in COad during 

the pre-peak observed in the present study at E = 0.45 V vs. RHE after an adsorption at Ead = 

0.3 V vs. RHE, brought to light in [21], could not be certified, although some slight variation 

of this pre-peak between the cyclic voltammetries conducted with and without a first 

reduction scan were observed during the stripping of ethanol adsorbates. 

 It could be established from the present potentiodynamic results that CHx,ad-species, or 

at least a part of them  (e.g. those which do not oxidize into COad in the pre-peak mentioned 

above), do oxidize at high potential (E > 0.9 V vs. RHE), most likely into COad. The 

difference between the cyclic voltammetries carried out with and without a reduction scan 

provides a clear proof of it. Moreover, it was demonstrated in Fig. 66 that, in the case of 

acetaldehyde adsorbates oxidation, C2-species do oxidize into CHx,ad at high potential in 

parallel to the oxidation of adsorbed CHx-species into COad. In addition, it was evidenced in 

Fig. 66c that the (same?) C2-species are modifying their structure at E > 0.9 V vs. RHE 
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without cleaving their C-C bond, which results in ethane generation during the following 

reduction scan. Unfortunately, these concurrent reactions could not be confirmed with ethanol 

adsorbates oxidation in this study. Yet, Wang et al. demonstrated that a similar process occurs 

with ethanol adsorbates [227]: a CV carried out until E = 0.85 V vs. RHE displayed a larger 

methane production during the following reduction scan than during the reduction scan 

initiated at the beginning of the CV. It shows that there are indeed adsorbed C2-species at least 

until potential as high as E = 0.85 V vs. RHE. It can be assumed that the C-C bond cleavage 

of these C2-adsorbates takes place as the CO-like adsorbates oxidizes between E = 0.5 and 0.8 

V vs. RHE and that the stability of these C2-adsorbates is only ensured by the full coverage of 

the neighbor electroactive sites by COad. When the latter start oxidizing, the C2-adsorbates 

split into CHx,a, and COad (COad further oxidizing into CO2). Unveiling the nature of these C2-

species can hardly be discussed here and would require additional evidences, e.g. using 

Fourier Transform InfraRed (FTIR) spectroscopy. However, the ethoxi-species suggested in 

[29] could be a good candidate. Within the accuracy of our determination, the oxidation of 

CHx,ad into CO and furthermore into CO2 could give rise to a significant number of electrons 

(up to 7 e
-
 per CHx,ad).  

 In terms of adsorbate coverage values, Fig. 58 and Fig. 63 point towards a higher 

coverage of the electrocatalyst surface by the acetaldehyde adsorbates, whatever the 

adsorption potential. This behavior also observed by Wang et al. was imputed to the higher 

polarity of the acetaldehyde molecule, that eases its adsorption on Pt/C as well as its 

dissociation into COad [63,227]. Regarding the present results, the higher polarity of the 

acetaldehyde molecule could explain the stronger binding of its adsorbates to the Pt/C surface, 

which literally “stick” to the electrocatalyst after incursion up to E = 1.5 V vs. RHE as well as 

the higher coverage in total acetaldehyde adsorbates. However, the higher COad coverage 

could be a consequence of the latter and not from a higher dissociation power of the 

acetaldehyde molecule. 

 The distribution of ethanol and acetaldehyde adsorbates was seen to depend on the 

adsorption potential. At Ead = 0.05 V vs. RHE, bulk acetaldehyde and ethanol adsorption 

seems slightly inhibited by Had but still manage to adsorb and dissociate into COad at the 

surface of the Pt/C electrocatalyst. Dissociation into CHx,ad and then reduction in methane 

during the cyclic voltammetry following the adsorption process was not observable with the 

signal m/z = 15. This may be due to the low adsorption potential (Ead = 0.05 V vs. RHE) 

favoring the on-time reduction of just formed CHx,ad in methane during the adsorption step. In 

the middle of the Hupd region, at Ead = 0.15 V vs. RHE, the inhibition from adsorbed hydrogen 

species gets weaker, allowing increased coverage in ethanol and acetaldehyde adsorbates. In 

the latter case, the oxidation peak is even maximal. At Ead = 0.3 V vs. RHE, the adsorption 

potential is located in the double layer region, thus explaining the largest oxidation of carbon 

monoxide issued from the ethanol adsorption. However, the fact that the COad 

electrooxidation is already declining after acetaldehyde adsorption at Ead = 0.3 V vs. RHE 

may indicate the partial desorption of these molecules during the adsorption step. In parallel, 
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the electrooxidation of strong adsorbates at high potentials (E > 0.9 V vs. RHE) is 

intensifying. This phenomenon is supposed to be greatly due to the rise in CHx,ad coverage, the 

species presumably oxidizing into COad and then CO2 as it can be seen when comparing the 

difference of coverage values between the cyclic voltammetries beginning without and with a 

first reduction scan in Fig. 58a and Fig. 63a. Finally, at Ead = 0.5 V vs. RHE, the COad 

coverage on Pt/C is shrinking, because the desorption/oxidation of COad already occurs during 

the adsorption process at such “high” potential. The electrooxidation of strong adsorbates is 

therefore larger, the latter benefiting from the Pt sites freed by the desorbed/oxidized COad-

species. 

 

 

V.4.  On Rh/C 

 

 The adsorption/electrooxidation of ethanol adsorbates has also been studied on Rh/C 

following the same protocol (detailed in section VI.1). Unfortunately, due to time constraints, 

the experiments have only been partially accomplished on the electrocatalyst: solely one 

direct stripping-CV, after the CA at Ead = 0.3 V vs. RHE, was carried out directly (without a 

first reduction scan from 0.2 to 0.05 V vs. RHE). Moreover, the results presented hereafter 

have not been repeated. As a consequence, the following interpretation of the results must be 

done with care. 

 Fig. 67 shows the different cyclic voltammetries run in 0.5 M H2SO4 after ethanol 

adsorbates adsorption in a 0.5 M H2SO4 + 0.1 M EtOH solution at Ead = 0.05, 0.15, 0.3 and 

0.5 V vs. RHE. The highest peak was recorded during the CV preceded by the CA at Ead = 

0.05 V vs. RHE and then shrinks together with the increase of the potential applied during the 

CAs. The corresponding mass-to-charge signal m/z = 44 (shown in Fig. 67b) supports this 

observation by displaying the largest CO2 generation during the same CV. These results tend 

to demonstrate that ethanol adsorbates formation is eased at low potentials in the HUPD region. 

In opposition to Pt/C, the ethanol molecules may be able to dislocate Had-species on Rh/C 

although its adsorption strength is similar on rhodium and platinum [237] (HUPD is more 

weakly bounded to Rh than to Pt, as seen in the previous chapters). At higher adsorption 

potentials (Ead = 0.3 and 0.5 V vs. RHE), ethanol adsorption can be hindered by OHad 

formation, species that are strongly adsorbed on rhodium [63]. Besides, COad 

desorption/oxidation during the CA could already occur at these potentials. Finally, the 

competitive adsorption of ethanol with the sulfate anions (SO4
2-

, HSO4
-
) could also hinder 

ethanol adsorption at potentials between E = 0.2 and 0.5 V vs. RHE [116]. Indeed, according 

to Horanyl et al. and Zelenay et al., sulfate anions are strongly adsorbed on the rhodium 

surface [224,226] in this potential region. 

 At E > 1.2 V. vs. RHE, a large rise of the signal m/z = 44 is recorded in Fig. 67. This 

peak can be ascribed either to a CO2 generation from the ethanol adsorbates electrooxidation 
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or/and to the carbon support corrosion. The distinction between the two reactions is not 

possible with the present data.  

 Finally, an interesting feature appears during the second negative scan in Fig. 67, 

which contrasts with the MSCVs obtained for the ethanol adsorbates electrooxidation on Pt/C 

(Fig. 57b): a reductive CO2 formation is detected in the potential region between E = 0.15 and 

0.4 V vs. RHE. This feature already reported in the literature [63] shows that some organic 

adsorbates still remain on the electrocatalyst surface after the first positive sweep. It can be 

assumed that they correspond to the adsorbates having partially oxidized into CO2 during the 

previous positive scan at high potential (if the observed reaction is indeed CO2 formation 

from ethanol adsorbates electrooxidation). To finish with, it can be noticed that this reductive 

CO2 formation occurs simultaneously to OH-adsorbates reduction (see Fig. 26 and Fig. 67a).  

 

 
Fig. 67. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at Ead = 0.05 (solid), 0.15 (dash), 0.3 (short dash) and 0.5 V vs. RHE (dots) and corresponding 

MSCV for mass-to-charge ratio (b) m/z = 44 and on Rh/C; v = 10 mV s
-1

; T = 25°C. 

 

 Fig. 68 displays the first and second cycles of the cyclic voltammetry following the 

CA at Ead = 0.3 V vs. RHE. Fig. 68a illustrates the difficulty to dissociate in two potential 

regions the adsorbates electrooxidation reactions, as it could be done for the ethanol 

adsorbates electrooxidation on Pt/C. In Fig. 68b, the good superposition of the first and 

second cycles in the very high potential region tends to show that the reaction at E > 1.2 V vs. 

RHE matches with the carbon support degradation. The absence of oxidative and reductive 

CO2 formation during the second sweep evidences the complete adsorbates electrooxidation 

during the first scan. Then, the comparison between Fig. 68a and Fig. 68b shows that the 

faraday negative current (Fig. 68a) between 0.15 and 0.4 V vs. RHE mostly corresponds to 

OHad reduction: superposition of the first and second cycle of the CV (Fig. 68a) whereas the 

CO2 is produced reductively solely during the first scan (Fig. 68b). Finally, a weak methane 

formation (ascribed to the signal m/z = 15 - in Fig. 68c) was detected during the first reduction 

scan of the CV, while no ethane generation (m/z = 30 - in Fig. 68d) could be noticed. 

Although the amount of methane is sensibly low (the peak is barely twice higher than the 
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noise), its presence suggests that the nature of the adsorbates is similar on Rh/C and Pt/C. The 

cyclic voltammetry represented in Fig. 68a and obtained after the CA at Ead = 0.3 V vs. RHE 

was the only one demonstrating methane production. This result differs on Pt/C where two 

CVs, carried out after CA at Ead = 0.3 and 0.5 V vs. RHE, could demonstrate methane 

production. The difference may be explained by the strong OH-species adsorption at Ead = 0.5 

V vs. RHE on Rh/C inhibiting ethanol adsorbates adsorption and thus methane production.  

 

 

 
Fig. 68. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at Ead = 0.3 V vs. RHE with a first reduction scan and the corresponding MSCV for mass-to-

charge ratio (b) m/z = 44, (c) m/z = 15 and (d) m/z = 30 on Rh/C; v = 10 mV s
-1

; T = 25°C. 

 

 

V.5.  On Pt-based electrocatalysts 

 

V.5.1.  Ethanol adsorbates stripping 

  

 The electrooxidation of ethanol adsorbates has also been carried out on Pt-Rh/C, Pt-

SnO2/C and Pt-Rh-SnO2/C and was compared to Pt/C and Rh/C. Fig. 69 compares the CVs 

performed after a CA at Ead = 0.3 V vs. RHE on the different electrocatalysts. The pre-peak 

observed for Pt/C in section VI.2 is apparent on Pt-Rh/C and maybe to a certain extent on Pt-
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SnO2/C too. However, no pre-peak is observable on Rh/C and the CV of Pt-Rh-SnO2/C does 

not allow drawing any conclusion on the presence of this pre-peak. The related MSCV of the 

mass-to-charge m/z = 44 (Fig. 69b) shows a slight shift of the CO2 generation onset on Pt-

Rh/C (E = 0.47 V vs. RHE), Pt-SnO2/C (E = 0.50 V vs. RHE) and Pt-Rh-SnO2/C (E = 0.48 V 

vs. RHE) against Pt/C (E = 0.52 V vs. RHE). Besides, more than half of the charge from the 

CO2 formation is located on the left-side of the dashed line for Pt-Rh/C and Pt-SnO2/C. This 

information illustrates the rather small shift of the CO-like adsorbates in CO2.  

 

 
Fig. 69. (a) CV of the electrooxidation of ethanol adsorbates in 0.5 M H2SO4 after adsorption 

at Ead = 0.3 V vs. RHE and the corresponding MSCV for mass-to-charge ratio (b) m/z = 44 on 

Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C; v = 10 mV s
-1

; T = 25°C. 

 

 The electrocatalyst relative surface coverage by ethanol adsorbates has been 

investigated on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C and has been compared to Pt/C. As the 

results on Rh/C were not repeated, no quantification of the relative coverage of the 

electrocatalyst surface has been accomplished. Fig. 70 shows the coverage by CO-like 

adsorbates deduced from the calculated faraday (Fig. 70a) and ionic (m/z = 44) charges (Fig. 

70b). 

 First and foremost, it can be noticed the good proximity between the charge values 

deduced from the faraday and spectrometric measurements. A maximum coverage is reached 
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on Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C at Ead = 0.15 V vs. RHE against Ead = 0.3 V vs. 

RHE on Pt/C. It can be deduced that the ethanol adsorption is eased at quite low potential (Ead 

= 0.15 V vs. RHE) on the bi-and tri-metallic electrocatalysts versus Pt/C. However, these 

results can be tempered by the fact that the coverage in ethanol coverage on the bi- and tri-

metallic electrocatalysts is more or less the same than on Pt/C at lower adsorption potential 

(Ead = 0.05 V vs. RHE).  

 

 
Fig. 70. Relative coverage of Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C electroactive 

surface by ethanol CO-like adsorbates (oxidizing at 0.4 V < E < 0.9 V vs. RHE) adsorbed at 

Ead = 0.05, 0.15, 0.3 and 0.5 V vs.RHE deduced from (a) faraday charges and (b) ionic 

charges from the mass-to-charge signal m/z = 44. 

 

 Fig. 71 shows the relative coverage of the “strong adsorbates” oxidizing only at E > 

0.9 V vs. RHE. While at high adsorption potentials (Ead = 0.5 V vs. RHE) the coverage values 

are quite similar between the electrocatalysts, a larger discrepancy of the coverage values is 

obtained after adsorption at low adsorption potentials (Ead = 0.05 and 0.15 V vs. RHE). Pt-

SnO2/C demonstrates at Ead = 0.05 and 0.15 V vs. RHE the largest coverage in ethanol strong 

adsorbates and to some extent Pt-Rh-SnO2/C at Ead = 0.3 V vs. RHE. However regarding the 

values uncertainty (± 0.1), it was found wiser not to speculate on a hypothetical higher 
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adsorption on an apparent higher electrocatalyst coverage by “strong adsorbates” on Pt-

SnO2/C at low adsorption potentials. 

  

 

 
Fig. 71. Relative coverage of Pt/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C electroactive 

surface by “strong ethanol adsorbates” (oxidizing at E > 0.9 V vs. RHE) adsorbed at Ead = 

0.05, 0.15, 0.3 and 0.5 V vs. RHE deduced from faraday charges. 

 

 

V.5.2. Acetaldehyde adsorbates stripping 

 

 Fig. 72 shows comparative acetaldehyde adsorbates stripping-CVs between Pt/C, Pt-

Rh/C and Pt-Rh-SnO2/C after Ead = 0.3 (Fig. 72a) and 0.05 V vs. RHE (Fig. 72b). No 

experiment was carried out on Rh/C and Pt-SnO2/C. The CVs obtained after Ead = 0.3 V vs. 

RHE are rather similar with one another. The presence of rhodium in Pt-Rh/C does not seem 

to help the oxidation of CO-like species (the results are even showing the opposite), whereas 

the combined addition of rhodium and tin oxide in Pt-Rh-SnO2/C seems to help this oxidation 

reaction at low potentials (it is believed that tin oxide alone is responsible for CO2 easier 

generation from COad, Rh probably easing the C-C bond splitting): the onset potential is 

located at ca. E = 0.4 V vs. RHE on Pt-Rh-SnO2/C against E = 0.45 V vs. RHE for the 

initiation of the pre-peak on Pt/C. At Ead = 0.05 V vs. RHE (Fig. 72b), the differences between 

the electrocatalysts is more significant. The CO-like adsorbates start oxidizing on Pt-Rh/C and 

Pt-Rh-SnO2/C at potentials lower than on Pt/C. This behavior is attributed to the shift toward 

positive potentials of COad electrooxidation on Pt/C. Indeed, the dashed line centered on Pt/C 

shifts from E = 0.70 V vs. RHE in Fig. 72a to E = 0.77 V vs. RHE in Fig. 72b. These facts are 

supported by the associated mass-to-charge signals m/z = 44 in Fig. 72c and Fig. 72d. 

Moreover, it can be observed that the CO-like adsorbates stripping peak on Pt/C and Pt-Rh/C 

is more spread on the potential scale in Fig. 72b than in Fig. 72a thus showing that the 

oxidation occurs at a slower rate after the CV at Ead = 0.05 V vs. RHE. This small shift and 

possible slower COad oxidation kinetics could be due to the presence of hydrogen adsorbates 
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formed at Ead = 0.05 V vs. RHE, which could inhibit hydroxide species adsorption, necessary 

for COad oxidation into CO2.  
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Fig. 72. (a) CV of the electrooxidation of acetaldehyde adsorbates in 0.5 M H2SO4 after 

adsorption at Ead = (a) 0.3 and (b) 0.05 V vs. RHE and (c, d) the corresponding MSCV for 

mass-to-charge ratio m/z = 44 on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C; v = 10 mV s
-1

; T = 25°C. 

 

 The relative electrocatalyst coverage by acetaldehyde CO-like adsorbates is shown in 

Fig. 73. The profile of the curves is quite similar on Pt/C and Pt-Rh/C with a maximum 

coverage reached at Ead = 0.15 V vs. RHE. Yet, the fact that the coverage decreases sharply at 

Ead = 0.3 V vs. RHE on Pt-Rh/C, whereas a small plateau is formed on Pt/C between Ead = 

0.15 and Ead = 0.3 V vs. RHE, indicates that the maximum COad-species coverage may be 

reached at lower potential on Pt-Rh/C than on Pt/C. In contrast to the two electrocatalysts, the 

maximum coverage is already reached at Ead = 0.05 V vs. RHE on Pt-Rh-SnO2/C. It seems 

that the combined effect of Rh and SnO2 addidition eases the adsorption of the CO-like 

adsorbates at low potentials and/or eases their electrooxidation at lower potentials (which 

would result in their electrooxidation/desorption during the CA and thus would lead to lower 

coverage values). The last explanation is supported by the CO-stripping results (Fig. 27) 

which evidences the lower onset potential on Pt-Rh-SnO2/C compared to Pt/C and Pt-Rh/C. 

 

 
Fig. 73. Relative coverage of Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C electroactive surface by 

acetaldehyde CO-like adsorbates adsorbed at Ead = 0.05, 0.15, 0.3 and 0.5 V vs.RHE deduced 

from (a) faraday charges and (b) ionic charges from the mass-to-charge signal m/z = 44. 
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 The relative coverage by acetaldehyde “strong adsorbates” is presented in Fig. 74. No 

difference is observed between the three electrocatalysts, which all present the same tendency. 

 Alike Pt/C, the slight increase at Ead = 0.3 and 0.5 V vs. RHE can be explained by the 

freeing of the electrocatalytic sites by CO-like adsorbates that already desorbs from the 

surface during the CA at these potentials. The slightly higher values at Ead = 0.05 V vs. RHE 

could be assigned to a favored acetaldehyde non-dissociative adsorption due to the presence 

of hydrogen adsorbates on the electrocatalyst, which would result in an increase of non-active 

C2-adsorbates as their presence was demonstrated in Fig. 66.  

 

 
Fig. 74. Relative coverage of Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C electroactive surface by 

“strong acetalehyde adsorbates” (oxidizing at E > 0.9 V vs. RHE) adsorbed at Ead = 0.05, 

0.15, 0.3 and 0.5 V vs. RHE deduced from faraday charges. 

 

  

V.6. Conclusions 

 

Investigating ethanol and acetaldehyde adsorption on the different electrocatalysts allowed the 

understanding of both the EOR mechanism and the improvement brought by each component 

of the electrocatalysts. 

Adsorption of bulk ethanol and acetaldehyde, followed by the potentiodymanic stripping 

of their adsorbates, has been performed at Ead = 0.05, 0.15, 0.3 and 0.5 V vs. RHE and was 

studied by on-line DEMS. The aim of this study was to give further insights into the 

intermediates and products of the bulk ethanol and acetaldehyde electrooxidation and in their 

distribution on the Pt/C surface. It also enabled to evaluate the effect of the addition of 

rhodium or/and tin oxide in the Pt-based electrocatalysts on the adsorbates stripping.  

The potentiodynamic electrooxidation of ethanol and acetaldehyde adsorbates could be 

separated in two potential regions. On the one hand, between E = 0.5 and 0.8 V vs. RHE, the 

prevailing reaction appears to be a COad electrooxidation in CO2. A pre-peak between ca. E = 

0.45 and 0.55 V vs. RHE was formed after adsorbates adsorption at Ead = 0.3 V vs. RHE, 
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which may correspond to the oxidation of adsorbed CHx-species into COad. Nonetheless, this 

reaction could not be evidenced based on the present experiments. On the other hand, at E > 

0.9 V vs. RHE, the oxidation of adsorbed CHx-species into CO2 occurs in parallel to the 

oxidation of C2-species into CHx,ad. The latter reaction could however only be identified for 

the acetaldehyde adsorbates electrooxidation. 

The number of exchanged electrons was in each potential region calculated after 

calibration of the mass-to-charge signals m/z = 22 and m/z = 44. The electrooxidation of COad 

into CO2 between E = 0.5 and 0.8 V vs. RHE, already known in the literature, was confirmed 

by the calculation of the number of exchanged electrons (2 e
-
). The reaction taking place at 

high potential (E > 0.9 V vs. RHE) was found to generate between 4 and 8 electrons 

depending on the adsorption potential and could correspond to the oxidation of CHx,ad in CO2 

(up to 7 e
-
). 

COad-species constitute the main bulk ethanol and acetaldehyde adsorbates after their 

adsorption at Ead = 0.05, 0.15 and 0.3 V vs. RHE. For Ead > 0.3 V vs. RHE, stronger 

adsorbates (CHx,ad, C2-adsorbates) start taking more Pt/C electroactive sites before becoming 

predominant at Ead = 0.5 V vs. RHE. 

The largest ethanol CO-like adsorbates oxidation peak was found for Ead = 0.05 V vs. 

RHE on Rh/C. Rhodium higher dehydrogenation ability could explain this result. No charge 

calculation was carried out on the electrocatalyst. The operation is rendered difficult due to a 

possible overlap of the two adsorbates oxidation regions, as reported previously on Pt/C. 

The COad maximal oxidation charge reaches a maximum at lower potential on the Pt-

based electrocatalysts than on Pt/C, both for acetaldehyde and ethanol adsorbates. 

Unfortunately, no potential onset shift toward lower potentials of the ethanol originated COad 

stripping could be identified. On the contrary, the initiation of acetaldehyde CO-like 

adsorbates oxidation reaction occurred at lower potentials on Pt-Rh/C and Pt-Rh-SnO2/C than 

on Pt/C after adsorption at Ead = 0.05 V vs. RHE (the result was more biased at Ead = 0.3 V vs. 

RHE).  
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Chapter VI. 

  

Influence of the temperature for the ethanol oxidation reaction 

(EOR) on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C 
 

 

This chapter focuses on the influence of the temperature on the EOR mechanism on Pt/C, Pt-

Rh/C and Pt-Rh-SnO2/C. The first part will consist of an overview of the existing literature on 

the temperature effect on the ethanol electrooxidation on Pt and Pt-based electrocatalysts. 

Then, the experimental investigation will be broached. The results presented hereafter were 

obtained in a three-electrode setup with our polyol-made 10 wt.% electrocatalysts. A thorough 

analysis of these results is finally carried out in order to understand how the EOR mechanism 

is modified by increasing the temperature. 
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VI.1. Influence of the temperature on the EOR 

 

 Like most complex electrochemical reactions, the EOR is a temperature-dependent 

reaction [35,43,238–242]. Lima et al. recorded shifts of the EOR onset potential as well as of 

the CO2 generation initiation on Pt/C and Pt-Rh/C with the increase of the temperature from 

25°C to 60°C [35]. They ascribed the CO2 generation at lower potentials at higher 

temperatures to the larger water activation and a lower Pt-CO bond strength when the 

temperature increases (up to 60°C). They also observed that the EOR onset shift between 

25°C and 60°C was higher on Pt-Rh/C than on Pt/C, this result being explained by an 

enhanced bi-functional mechanism on the bimetallic electrocatalyst. Similarly, Behm et al. 

demonstrated that the CO2 generation starts at lower potentials when the temperature 

increases [43]. According to the authors, the CCE increases together with the temperature: at 

the maximum investigated temperature (100°C), the maximum CCE equals ca. 45 % at ca. E 

= 0.5 V vs. RHE compared to barely 10 % at temperatures below 60°C. A thermal activation 

of the COad electrooxidation explains the CO2 generation at lower potentials, while the ease of 

the C-C bond breaking justifies the rise of the CCE values. Moreover, calculations of apparent 

activation energies revealed a slight decrease of the rate determining step (rds) with the 

potential rise. On the contrary, the rds at a given potential is unchanged whatever the 

temperature in the range 25°C - 100°C (the nature of the rds was not surveyed in this study). 

Conversely, Mahapatra et al. observed  that the activation energy soars together with the 

potential in the temperature range 20°C-80°C [240]. By a brief comparison of the literature 

[43,77,240,243], the estimation of activation energy values brings conflicting results between 

the different studies. The importance of the experimental conditions in the determination of 

these values therefore appears primordial. 

 The aim of this chapter is precisely to investigate the influence of the temperature on 

the electrocatalytic EOR activity of bi-metallic Pt-Rh/C and tri-metallic Pt-Rh-SnO2/C 

electrocatalysts, and to compare these with that of Pt/C. Potentiostatic and potentiodynamic 

studies were achieved on the 10 wt.% electrocatalysts, all prepared by a modified polyol 

method. A thorough potentiostatic study on the EOR kinetics was carried out by means of 

Tafel plots at 25°C, 40°C and 70°C. Steady-state EOR apparent activation energies were 

finally calculated in the potential range E = 0.4 – 0.7 V vs. RHE. 

 

 

VI.2. Physical characterization  

 

 Fig. 75 displays representative XRD spectra of the 10 wt.% carbon-supported 

electrocatalysts. The sharpness of Pt/C and Pt-Rh-SnO2/C patterns corresponds to well-

crystallized nanoparticles in the fcc structure. More particularly, the sharp diffraction pattern 

of Pt/C could be related to a large average cristallite size, but the TEM data of Fig. 75 show 

that it is most probably caused by the presence of a few large or agglomerated nanoparticles. 
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The XRD pattern of Pt-Rh/C does not agree with a perfectly crystalline structure (in other 

words, Pt-Rh/C is either amorphous or with very small crystallites; this issue will be clarified 

below). An evaluation of the average cristallite size was carried out using the Scherrer’s law 

on the (111) diffraction peak, as summarized in Table 10, together with the phases lattice 

parameters. It is wise stating that these 10 wt.% electrocatalysts were prepared prior to those 

characterized in chapter III, IV and V. At that time, the polyol method, and more specifically 

the dissolution of the rhodium salt (RhCl3), was not optimally controlled (the mass of 

rhodium salt introduced in the synthesis solution was 50 wt.% higher than the optimal mass 

corresponding to a 10 wt.% metal loading) 

 The composition of Pt/C was determined by TGA: the synthesis indeed yield 10 wt.% 

electrocatalysts. ICP-AES measurements revealed the presence of 5.14 wt.% Pt and 4.95 

wt.% Rh for Pt-Rh/C (10.1 wt.% Pt1Rh1.6/C) and 5.34 wt.% Pt, 2.21 wt.% Rh and 0.94 wt.% 

Sn for Pt-Rh-SnO2/C (8.49 wt.% Pt1Rh0.79(SnO2)0.14/C). 

 

Table 10. Structural proprieties of Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C electrocatalysts obtained 

by XRD and TEM  

Electrocatalyst 
Effective composition 

by ICP-AES 

a / 

Å 

dXRD / 

nm 

dElec / 

nm 

dN / 

nm 

dS / 

nm 

dV / 

nm 

Pt/C - 3.91 10 4.9 2.5 5.5 8.2 

Pt-Rh/C Pt1Rh1.6 3.88 1.2 2.0 2.4 2.6 2.8 

Pt-Rh-SnO2/C Pt1Rh0.79(SnO2)0.14 3.91 3.3 6.2 3.2 3.5 3.7 

a: lattice parameter; dXRD : mean nanoparticle size (XRD); dElec: electrochemical mean particle 

size;  dN: number-averaged diameter (TEM); dS: surface-averaged diameter (TEM); dV: 

volume-averaged diameter (TEM) 

 

 
Fig. 75. XRD pattern of 10wt.% carbon supported Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C 

electrocatalysts prepared by the polyol method. 

 

 The electrocatalysts morphology and the particle size distribution (PSD) were further 

characterized by TEM. As seen in Fig. 76 and similarly to what was observed for the other 

electrocatalysts in Fig. 25, a uniform dispersion of relatively small nanoparticles on the 
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carbon support was obtained for all synthesized electrocatalyst compositions. The associated 

histograms in Fig. 76 reveal a narrow particle size distribution with a very similar mean 

particle size. The presence of some agglomerates was nonetheless observed on Pt/C. 

 Table 10 points out a discrepancy for the volume-averaged TEM diameter dV and the 

mean crystallite size determined by XRD, dXRD, both for Pt/C and Pt-Rh/C electrocatalysts; 

on the one hand, Pt/C suffers the presence of large particles and/or agglomerates, while, on 

the other hand, the smaller size extracted from the XRD data for Pt-Rh/C may be ascribed to 

an imperfect crystallization of the nanoparticles in these samples. In complement, dElec is in 

accordance with dS for Pt/C and Pt-Rh/C but not for Pt-Rh-SnO2/C. The inconsistency 

between dElec and dS values was also observed in Table 4 for the tri-metallic electrocatalyst 

and was explained by an underestimation of the ECSA. 
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Fig. 76. Typical TEM images and associated particle size distribution of the 10 wt. % (a) 

Pt/C, (b) Pt-Rh/C and (c) Pt-Rh-SnO2/C electrocatalysts. 

 

 

VI.3. CVs in supporting electrolyte  

 

 Fig. 77 compares cyclic voltammograms on Pt/C (Fig. 77a), Pt-Rh/C (Fig. 77b) and 

Pt-Rh-SnO2/C (Fig. 77c) obtained in supporting electrolyte (0.5 M H2SO4) at 25°C, 40°C and 

70°C. The CVs at room temperature were already described in Fig. 26 on the 20 wt.% 

electrocatalysts, and, as such, will not be thoroughly detailled here. The usual features of the 

so-called oxygen region of Pt-based electrodes can be observed. In Fig. 77, at room 

temperature, the Pt oxide region (i.e. the region of water dissociation) initiates at E = 0.55 V 
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vs. RHE on Pt/C versus E = 0.44 V vs. RHE on Pt-Rh/C and E = 0.40 V vs. RHE on Pt-Rh-

SnO2/C. The usual features of the hydrogen region cannot be properly distinguished at room 

temperature (Fig. 77) due to the quite high value of the low-vertex potential (E = 0.1 V vs. 

RHE) chosen for this set of experiments. Only the initiation of hydrogen adsorption is clearly 

observable on the three electrocatalysts. 

 Fig. 77 reveals the metal oxide formation and water dissociation are greatly amplified 

for all electrocatalysts as the temperature increases to 40°C and 70°C; however, the onset 

potential of the process remains more or less the same. Faster water dissociation kinetics and 

place-exchange (on the electrocatalyst surface) could explain the current increase. Similarly, 

during the negative scan, the rise of the temperature intensifies extremely the oxide reduction 

current (in proportion to its increase in the positive scan) but does not impact the peak 

potential for Pt/C and Pt-Rh/C, which likely shows that the temperature does not influence the 

stability of the oxides at the surface of the two electrocatalysts. On the contrary, the shift 

toward positive potential of the oxide reduction peak on Pt-Rh-SnO2/C could be attributed to 

the oxides lower stability on the electrocatalysts and especially on SnO2. The rise of the 

temperature to 40°C and 70°C in Fig. 77a also generates a positive shift of the hydrogen 

adsorption on the Pt/C electrocatalyst (this observation on Pt/C could not be confirmed on Pt-

Rh/C and Pt-Rh-SnO2/C).  
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Fig. 77. CV in 0.5 M H2SO4 on (a) Pt/C, (b) Pt-Rh/C and (c) Pt-Rh-SnO2/C at T =  25°C 

(full), 40°C (dash) and 70°C (dots); v = 10 mV s
-1

. 

 

 

VI.4. COad monolayer electrooxidation 

 

 Fig. 78 displays comparative CO-stripping voltammograms at 25°C, 40°C and 70°C 

on Pt/C (Fig. 78a), Pt-Rh/C (Fig. 78b) and Pt-Rh-SnO2/C (Fig. 78c). Similarly to Fig. 27, the 

CO-stripping initiates at lower potential on Pt-Rh-SnO2/C and Pt-Rh/C than on Pt/C (see 

onset values summarized in Table 11). The effect of the temperature rise is the same on the 

three electrocatalysts: the CO-stripping potential onset shifts negatively with the increase of 

the temperature from 25°C to 70°C. Two effects can rationalize this observation: (i) it can be 

assumed that a rise of the temperature destabilizes COad species thus lowering the M-CO 

(with M = Pt and Rh) adsorption strength; (ii) the easier generation of OHad-species (water 

dissociation is enhanced at higher temperature, which enables higher electrocatalyst coverage 

in OHad species at low potential) could also contribute to the COad electrooxidation lower 

onset potential.  

 

 
Fig. 78. CO-stripping CV in 0.5 M H2SO4 on (a) Pt/C, (b) Pt-Rh/C and (c) Pt-Rh-SnO2/C; T = 

25°C (full), 40°C (dash) and 70°C (dots); v = 10 mV s
-1

. 
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Table 11. Values of the CO-stripping onset potential measured on Pt/C, Pt-Rh/C and Pt-Rh-

SnO2/C at 25°C, 40°C and 70°C. 

 Pt/C Pt-Rh/C Pt-Rh-SnO2/C 

T / °C E / V vs. RHE 

25 0.65 0.58 0.53 

40 0.60 0.63 0.50 

70 0.56 0.52 0.45 

 

 

VI.5.  Potentiodynamic EOR 

 

 Fig. 79 displays representative cyclic voltammograms relative to the EOR at 25°C, 

40°C and 70°C on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C. Like in Fig. 44, limited differences can 

be observed at room temperature between the EOR onset potentials of the three 

electrocatalysts: a lower potential onset of ca. 50 mV on Pt-Rh/C and 20 mV on Pt-Rh-

SnO2/C can be witnessed compared to Pt/C. However, the influence of the temperature plays 

a major role in the distinction of the EOR performances on the three electrocatalysts. Indeed, 

the EOR potential onset shifts negatively with the rise of the temperature from 25°C to 40°C 

and 70°C: the reaction overpotential on Pt/C falls from E = 0.64 V vs. RHE at 25°C to E = 

0.53 V vs. RHE at 40°C and E = 0.49 V vs. RHE at 70°C. This shift may illustrate the 

enhancement of bulk ethanol adsorption/oxidation at low potentials with the rise of the 

temperature. The EOR overpotential shrinks even more drastically on Pt-Rh/C (from E = 0.59 

to 0.45 V vs. RHE) and Pt-Rh-SnO2/C (from E = 0.62 to 0.37 V vs. RHE) (all values are 

summarized in Table 12).  

 The influence of the temperature rise on the EOR is also evidenced during the 

backward (negative) scan on the three electrocatalysts (Fig. 79): the EOR starts at slightly 

more positive potentials and the kinetics speeds intensively up on the three electrocatalysts 

when the temperature increases. This observation can be rationalized by two combined 

effects: on the one hand, the faster oxide reduction frees the electrocatalysts surface more 

rapidly for the EOR and enables a faster initiation of the reaction; on the other hand, an 

enhancement of the reactions occurs during the EOR (ethanol dehydrogenation and acetic 

acid formation - see chapter III and IV). 
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Fig. 79. CV in 0.5 M H2SO4 + 0.1 M EtOH of the EOR on (a) Pt/C, (b) Pt-Rh/C and (c) Pt-

Rh-SnO2/C; T = 25°C (solid), 40°C (dash) and 70°C (dots); v = 10 mV s
-1

. 

 

Table 12. EOR onset on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C at 25°C, 40°C and 70°C. 

 Pt/C Pt-Rh/C Pt-Rh-SnO2/C 

T / °C E / V vs. RHE 

25 0.64 0.59 0.62 

40 0.53 0.45 0.45 

70 0.49 0.42 0.37 

 

 

VI.6. Tafel plot 

 

 The Tafel plots in Fig. 80 have been reconstructed from successive 900 s-long 

potentiostatic polarizations (not represented here) between E = 0.4 and 0.7 V vs. RHE (0.1 V 

step) carried out in 0.5 M H2SO4 + 0.1 M EtOH at 25°C, 40°C and 70°C on Pt/C, Pt-Rh/C and 

Pt-Rh-SnO2/C. The faraday current values of the Tafel plots were recorded at the end of each 

potential step. Table 13 summarizes the EOR Tafel slope values calculated using the four 

faraday current values between E = 0.4 and 0.7 V vs. RHE on Pt/C and Pt-Rh/C but using 

only the three first values for Pt-Rh-SnO2/C. Indeed, it seems that the EOR is diffusion-
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limited at lower potentials (from ca. E = 0.7 V vs. RHE) on Pt-Rh-SnO2/C than on the other 

two electrocatalysts. The larger values estimation errors on Pt-Rh-SnO2/C may be imputed to 

the proximity of the mass-transport limitation region with the potential values at which the 

chronoamperometries were carried out. 

 The rise of the temperature does not seem to impact much the rate determining step of 

the EOR on Pt/C and Pt-Rh/C in the studied temperature range. Indeed, the Tafel slope values 

remain quasi identical when the temperature increases from 25°C to 70°C. Several DEMS 

studies have already reported low CO2 current efficiency (CCE) on Pt/C or Pt-Rh/C at room 

temperature, which illustrates the difficulty to break the C-C bond on these electrocatalysts 

[32,35,43]. As a matter of fact, the overall faraday current mainly corresponds to the 

dehydrogenation of the ethanol molecule into acetaldehyde (2 e
-
) and into acetic acid 

formation (4 e
-
) from the reaction between adsorbed acetaldehyde and OHad-species. It can 

thus be supposed that the rate determining step on Pt/C and Pt-Rh/C at room temperature is 

either controlled by ethanol dehydrogenation or by acetic acid formation, or by a combination 

of both.  

 The Tafel slope values for Pt-Rh-SnO2/C are much higher than for Pt-Rh/C and Pt/C at 

each temperature (Table 13), which tends to demonstrate that the EOR rate limiting step 

differs for Pt-Rh-SnO2/C compared to Pt-Rh/C and Pt/C (thus excluding the ethanol 

dehydrogenation or the acetic acid formation as rds). Therefore, the EOR could be controlled 

by the C-C bond breaking, as supported by the larger contribution of the complete ethanol 

electrooxidation into CO2 to the overall faraday current on Pt-Rh-SnO2/C (see chapiter III and 

IV). As the C-C bond breaking is a highly energetic reaction, it may further explain the larger 

EOR Tafel slope values for the tri-metallic electrocatalyst. Conversely to Pt/C and Pt-Rh/C, 

the EOR on Pt-Rh-SnO2/C seems also dependent on the temperature. The significant drop of 

the Tafel slope values from 420 mV dec
-1

 (at 25°C) to 320 mV dec
-1

 (at 40°C) can either 

suggest a change in the reactions kinetics or a change in the rate determining step. The 

amplitude of the drop makes the latter more likely. But the large estimation error renders the 

conlusions purely hypothetical. The variation of the Tafel slope values from 320 mV dec
-1

 (at 

40°C) to 350 mV dec
-1 

(at 70°C) is also imputed to the experimental uncertainties.  
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Fig. 80. Tafel plots of potentiostatic currents recorded after 900 s at potentials from 0.4 to 0.7 

V vs. RHE (0.1 V step) in 0.5 M H2SO4 + 0.1 M EtOH on (a) Pt/C, (b) Pt-Rh/C and (c) Pt-Rh-

SnO2/C at 25°C, 40°C and 70°C. 

 

 

Table 13. EOR Tafel slope values for Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C at 25°C, 40°C and 

70°C, derived from the Tafel plots of Fig. 80. 

 Pt/C Pt-Rh/C Pt-Rh-SnO2/C 

T / °C E / mV dec
-1 

25 170 ± 10 180 ± 10 420 ± 20 

40 160 ± 10 170 ± 10 320 ± 20 

70 160 ± 10 190 ± 10 350 ± 30 

 

 

VI.7. Apparent activation energy 

 

 Fig. 81 shows the Arrhenius plots of the EOR on Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C 

deduced from the steady-state current recorded after 900 s at potentials comprised between E 

= 0.4 and 0.7 V vs. RHE at 25°C, 40°C and 70°C. The corresponding apparent activation 

energy Ea was calculated for each electrocatalyst at each studied potential (E = 0.4, 0.5, 0.6 
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and 0.7 V vs. RHE) and summarized in Table 14 (Ea estimation error is ± 2 kJ mol
-1

). A clear 

linear decrease against 1/T can be seen in Fig. 81, which demonstrates that only one rate 

determining step proceeds at each potential in the studied temperature range. This observation 

is however biased at E = 0.4 V vs. RHE on Pt-Rh/C and Pt-Rh-SnO2/C, where the linear 

behavior is not as clear as at the other potentials.  

 At each potential over the studied temperature range, the apparent activation energy is 

larger on Pt/C (19 ≤ Ea ≤ 28 kJ mol
-1

) than on Pt-Rh/C (13 ≤ Ea ≤ 20 kJ mol
-1

) and to a larger 

extent on Pt-Rh-SnO2/C (13 ≤ Ea ≤ 15 kJ mol
-1

) (Table 14). Regarding the complexity of the 

EOR mechanism and without any present physical evidences on the reaction intermediates 

and products, interpreting the obtained Ea values can only remain purely hypothetic. The 

multiplicity of existing apparent activation energy values in the literature [42,43,77] and the 

dependence of these values on the experimental conditions make any quantitative comparison 

extremely difficult. However, a somehow reasonable qualitative analysis can still be done. 

 Considering the fluctuation of the apparent activation energy of the ethanol oxidation 

with the potential on Pt/C, it can be assumed that the nature of the rate determining step is 

potential-dependent. Except at E = 0.7 V vs. RHE, the apparent activation energies obtained 

for the EOR on Pt-Rh/C follow the same trend than on Pt/C. The lower values obtained on the 

bi-metallic electrocatalyst compared to Pt/C could sign that the energy barrier shrinks due to a 

more facile dehydrogenation of the ethanol molecule [35,119]. On the contrary, the apparent 

EOR activation energy on Pt-Rh-SnO2/C seems to remain constant between E = 0.4 and 0.7 V 

vs. RHE, which could signify that the rate determining step remains the same in the studied 

potential range. The low values of Ea tend to exclude the C-C bond splitting as possible rds, 

while they suggest ethanol dehydrogenation and acetic acid formations as more probable 

candidates. 
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Fig. 81. Arrhenius plots of the of potentiostatic currents recorded after 900 s at potentials 

from E = 0.4 to 0.7 V vs. RHE (0.1 V step) in 0.5 M H2SO4 + 0.1 M EtOH on (a) Pt/C, (b) Pt-

Rh/C and (c) Pt-Rh-SnO2/C. 

 

Table 14. Apparent activation energies for the ethanol oxidaton reaction on Pt/C, Pt-Rh/C and 

Pt-Rh-SnO2/C deduced from the steaty-state current values recorded after 900 s at E = 0.4, 

0.5, 0.6 and 0.7 V vs. RHE at 25°C, 40°C and 70°C. 

 Pt/C Pt-Rh/C Pt-Rh-SnO2/C 

E / V vs. RHE Ea / kJ mol
-1

 

0.4 19 ± 2 15 ± 2 13 ± 2 

0.5 28 ± 2 20 ± 2 15 ± 2 

0.6 25 ± 2 13 ± 2 14 ± 2 

0.7 20 ± 2 15 ± 2 13 ± 2 

 

 

VI.8. Conclusions 

 

 This study on the influence of the temperature was carried out on  10 wt.% Pt/C, Pt-

Rh/C and Pt-Rh-SnO2/C electrocatalysts synthesized for the sake of this study. 

  Cyclic voltammetries in supporting electrolyte demonstrated the large amplification 

of the water dissociation reaction with the rise of the temperature on the three electrocatalysts, 

but no shift toward lower potential values of the reaction onset was recorded. On the contrary, 

the CO-stripping study revealed that COad oxidation activates at lower potentials with the 

temperature rise, which was mainly imputed to the weakening of the metal-CO bond on the 

three electrocatalysts. Besides, a shift of the EOR initiation toward low potentials is observed 

when the temperature increases: the onset potential shift was about 150, 170 and 250 mV on 

Pt/C, Pt-Rh/C and Pt-Rh-SnO2/C respectively between 25°C and 70°C. 

 A study on steady-state Tafel slopes and apparent activation energies Ea was also 

carried out in 0.5 M H2SO4 + 0.1 M EtOH between E = 0.4 and 0.7 V vs. RHE in the 

temperature range 25 - 70°C. Contrary to Pt/C and Pt-Rh/C electrocatalysts, which both 
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present a similar Tafel behavior at each temperature, the larger Tafel slope values monitored 

for Pt-Rh-SnO2/C were ascribed to different rate determining steps and to a larger dependence 

to the temperature. The study of the EOR apparent activation energy revealed a higher 

influence of the applied potential on the rds for Pt/C than for Pt-Rh/C and Pt-Rh-SnO2/C. The 

latter exhibits very similar activation energies between E = 0.4 and 0.7 V vs. RHE, which 

could sign the presence of a unique rate determining step on the studied potential range. 
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Discussion: Potendiodynamic EOR mechanism in acidic medium 

on Pt 
 

 To summarize the main results obtained in this work, a potentiodynamic EOR 

mechanism on Pt (in 0.5 M H2SO4 + 0.1 M EtOH) is proposed between E = 0.05 and 1.5 V vs. 

RHE, taking into account the adsorption modes from [29]: 

 

1- E = 0.05 – 0.55 V vs. RHE  

 

 The non-dissociative ethanol adsorption followed by the molecule hydrogenation into 

acetaldehyde initiates at ca. E = 0.3 V vs. RHE (see Table 7 - m/z = 29) according to the 

reaction:  

 

 
 

 The reaction of the acetyl adsorbate with aqueous hydrogen species is not excluded, 

but was not represented here.  

 It is believed that, parallel to this reaction, ethanol adsorbs to form two other 

adsorbates generating either two electrons (dissociative adsorption by C-atom) or one electron 

(adsorption by O-atom). But due to a stronger adsorption force or/and to the lack of OHad on 

the electrocatalyst surface in this potential region, the adsorbates do not oxidize and block 

their electroactive sites:  

 



Discussion, conclusions and prospects 

 

 

 

 

 

173 

 

 
 

And 

 
 At ca. E = 0.35 V vs. RHE, ethyl acetate starts being detected by mass spectrometry 

(see Table 7 - m/z = 61). The proximity between acetaldehyde generation (m/z = 29) and the 

rise of the signal m/z = 61 is believed to be due to the direct formation of ethyl acetate from 

the ethanol adsorbates (its formation only requires ethanol in the solution): 
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 The difference of onset potentials between the two signals recorded in section IV 

could be explained by the fact that ethyl acetate is a much bigger molecule than ethanol and 

that its diffusion through the Gore-Tex membrane may be a slow process. 

 Another possible mechanism is the formation of acetic acid, which reacts with ethanol 

in the solution to form ethyl acetate as soon as the molecule leaves the electrocatalyst surface:  

 

 
 

 However, the fact that the mass-to-charge signal m/z = 60 remains flat between E = 

0.05 and 0.6 V vs. RHE, while the signal m/z = 61 varies significantly tends to exclude the 

formation of acetic acid in this potential range (see Annex 2). Besides, at E = 0.35 V vs. RHE, 

quasi no OHad is present on the electrocatalyst surface which shall thus impede this reaction. 

 

 

2- E = 0.55 – 1.1 V vs. RHE 

 

 CO2 generation starts at ca. E = 0.55 – 0.6 V vs. RHE with the formation of OH-

adsorbates necessary for the reaction: 
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 The low ethanol complete electrooxidation into CO2 is often interpreted by the 

necessity to lower the dissociation energy of the C-C bond energy. The high energy required 

to cleave this bond should however not be interpreted by a potential threshold below which 

the dissociation cannot proceed, but more by the time it requires to dissociate on the 

electrocatalyst surface. Indeed, as seen in section VI, the dissociative adsorption can occur at 

potentials as low as E = 0.05 V vs. RHE. Performing a chronoamperometry in an ethanol 

solution at low potentials before starting the CV is an easy procedure which could give time 

to ethanol dissociative adsorption to take place and thus could raise the CCE. 

 In any case, lowering C-C dissociation energy is primordial. Reducing this energy 

would permit to balance acetaldehyde, ethyl acetate and CO2 production. 

 

 

3- E = 1.1 – 1.5 V vs. RHE 

  

 A second current rise starts at ca. E = 1.1 V vs. RHE. As discussed earlier, this current 

increase corresponds to the oxidation of strong adsorbates which are believed to be adsorbed 

by the O-atom. This reaction would generate directly ethyl acetate:  
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 The intermediate acetaldehyde formation seems excluded due to the discriminating 

adsorption by the O-atom which hinders acetaldehyde formation: 

 

 
 

 

4- E = 1.5 – 0.05 V vs. RHE 

 

 During the reduction scan, OHad desorption/reduction at ca. E = 0.85 V vs. RHE frees 

Pt sites for ethanol adsorption/oxidation. The low or absence of CO2 formation is due to the 

high amount of adsorbates at the electrocatalyst surface, which blocks ethanol dissociative 

adsorption. But the fact that CO2 is in some cases detected during the reduction scan (see 

section III) shows that the adsorption by the C-atom can take place. Thus, it could lead to the 

same reactions as those occurring during the anodic scan between E = 0.05 – 0.55 V vs. RHE. 
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On the opposite, the adsorption by the O-atom is probable, but could be hindered by the 

presence of the OH-adsorbates which form an electronegative charged layer on the 

electrocatalyst (which could favor the adsorption by the electropositive C-atom). 
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Conclusions 
 

 The state of the art of the direct ethanol fuel cell (DEFC) does not permit any 

commercialization of this technology in the short-term. Its anodic reaction, the ethanol 

oxidation reaction is a slow process, which still requires overcoming several issues among 

which the high reaction overpotential and associated slow reaction kinetics. This thesis 

focused on the understanding of the EOR mechanism in acidic medium and of the enhanced 

performances demonstrated in previous studies on the carbon supported Pt-Rh-based 

electrocatalysts versus Pt/C. 

 

 This work primarily investigated the EOR on Pt/C and the influence of this 

electrocatalytic material structure (nanoparticles size and electrocatalyst layer thickness) on 

the products distribution. The results revealed that the complete ethanol electrooxidation is 

promoted by thicker electrocatalyst layers. The longer residence time of the reaction 

intermediates indeed favors the re-adsorption of the reaction intermediates and particularly of 

acetaldehyde, which can further oxidize. 

 A comparison between Pt/C with Pt-based Rh- and/or SnO2-containing 

electrocatalysts was then performed to highlight the drawbacks/advantages from these multi-

metallic electrocatalysts. The EOR onset potential was slightly shifted toward negative 

potentials on all studied bi- and tri-metallic electrocatalysts against Pt/C, which was 

illustrated by acetaldehyde earlier formation. Unfortunately, the intensified ethyl acetate 

formation on Pt-SnO2/C, expected from previous results of the literature [30,78,100], could 

not be confirmed in this work. On the opposite, acetaldehyde was found to be the main 

reaction product. This raises the issue of the structural impact of the electrocatalysts on the 

EOR preferred pathway. Pt-Rh/C and, above all, Pt-Rh-SnO2/C demonstrated the highest CO2 

current efficiency values, confirming rhodium superior ability in the C-C bond cleavage. Tin 

oxide oxophilic character guarantees the supply in OH-species to the electrocatalyst surface 

enabling CO2 generation from adsorbed COad at lower potentials than on Pt-Rh/C or Pt/C. 

 

 In a second approach, the influence of the presence of water adsorbates (Had and OHad) 

on the electrocatalysts surface was studied to evaluate their impact on the different 

steps/pathways of the EOR mechanism. The results highlighted the hindrance of ethanol 

adsorption due to hydrogen adsorbates on the electrocatalyst. Unlike tin oxide, the addition of 

rhodium seems to ease ethanol adsorption/dehydrogenation in the presence of adsorbed 

hydrogen. The AOR study supported these conclusions. The ethanol complete 

electrooxidation seemed slightly promoted after a CA at Ead = 0.3 V vs. RHE. Ethanol 

dissociative adsorption may have been promoted during the last step of the potentiostatic 

process prior to the CV, which could have led to the presence of adsorbed CO on the 

electrocatalysts surface and could be at the origin of the larger CCE values. 

 The limits of the protocol used in this thesis are based on the uncertainty concerning 

the state of the electrocatalyst surface coverage. Although Had presence on the electrocatalyst 
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is convincing, thanks to the proofs of H2 generation (brought by the mass-to-charge signals 

m/z = 2) until the very beginning of the CV, no such information could be brought for OHad-

species. Most importantly, the presence of unwished ethanol adsorbates before the CV can be 

presumed.   

 

 The ethanol adsorbates stripping investigation revealed the presence of two types of 

adsorbates: CO-like adsorbates oxidizing in a medium potential region [E = 0.5 - 0.9 V vs. 

RHE) and "strong adsorbates" at E > 0.9 V vs. RHE. The identity of the latter is not clear yet. 

One certainty is that they are behind methane production occurring at low potentials, and thus, 

could be CHx,ad species. The applied protocol could unfortunately not unveil the doubt 

concerning the presence of C2-adsorbates on the electrocatalyst. 

 The acetaldehyde adsorbates electrooxidation presents a similar CV pattern than 

ethanol adsorbates. One notable difference though relies in the discovery of the presence of 

C2-adsorbates, which only activate after a first oxidation sweep. This phenomenon, not 

reported so far in the literature could be the object of further research: adapting the studied 

electrochemical window and reducing more thoroughly the presumed CHx-adsorbates behind 

methane generation, could be ways to improve our understanding on that topic. 

 The study on the multi-metallic electrocatalysts did show a higher surface coverage by 

ethanol and acetaldehyde adsorbates than on Pt/C at lower adsorption potentials in the HUPD 

region, which was explained by an eased displacement of the Had-species by the organic 

molecules for such complex Pt surfaces. 

 

 Finally, the study of the ethanol electrooxidation at different temperatures revealed a 

large negative shift of the reaction in the studied temperature range on all the electrocatalysts. 

Pt-Rh-SnO2/C was apparently more sensitive to the temperature than Pt-Rh/C and Pt/C, as the 

current recorded on the latter was the largest up to E = 0.6 V vs. RHE. It was also assumed 

regarding the Tafel plots and activation energy calculation that all electrocatalysts were 

probably not subject to the same rate determining step. Besides this study, this chapter 

brought important information on the beneficial role of the temperature in the EOR 

electrocatalysis. However, the interpretation of the observed phenomena remains conjectural 

without lack of physical evidences. 
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Perspectives 
 

 This work provided interesting results regarding the ethanol electrooxidation on Pt-

Rh-SnO2/C and especially concerning the enhanced ability of this tri-metallic electrocatalyst 

to split ethanol C-C bond against Pt/C or Pt-SnO2/C. However, it should not be forgotten that 

the finality beyond such works concerns the viability of a fuel cell as power source. As such, 

further research is still mandatory to nurse the hope that the DEFC can one day be 

commercialized and that it will not remain forever a research topic (even though very 

interesting!). Some burning issues concerning the anodic electrocatalyst need to be solved. 

 To start with, the enhanced performances demonstrated in this work particularly at 

operating temperatures (70°C) do not suffice to justify the use of rhodium as co-metal 

associated with platinum, as the former is even more expensive as the latter (and presumably 

less stable).  

 Then, MEA tests should be conducted to confirm the results mentioned earlier. These 

measurements are essential as they are much closer from the real operating conditions of a 

fuel cell, and could benefit from longer residence time of reaction intermediates in “real 

electrodes”. 

 Above all, the question of durability of a Pt-Rh-SnO2/C electrocatalyst has never been 

broached in this work. A study of the degradation rate and mechanism of such complex 

electrocatalyst should be achieved, if MEA tests of this electrocatalyst were conclusive. 

 

 About the EOR mechanism itself and from a fundamental prospective, more attention 

on the identity of the adsorbates oxidizing at high potentials (E > 0.9 V vs. RHE) should be 

carried out. Their behavior should also be more investigated at elevated temperatures (T > 

60°C), as they constitute a real poison for the electrocatalyst (much more than COad). If so, a 

way to efficiently remove them in DEFC systems shall be investigated too. 

 The notion of time broached in this thesis (with the study on the influence of the scan 

rate), which is of importance redarging the slow kinetics of the C-C bond breaking, could be 

more deeply investigated: a potentiostatic study at low potentials coupled with in situ FTIR 

could help see the formation rate of COad…  

 Besides the CCE, the slow kinetics at low potentials is a real issue that could not be 

drastically improved by the addition of transition metals. Therefore, higher operational 

temperature in DEFC applications may be a short-term option, but then, the materials 

durability shall be checked. 

 It is hardly possible to discuss on the adsorption strength of the adsorbates on the 

different electrocatalysts without physical evidences: XPS analyses could give some insights 

on the nature of the effect of the metals associated to platinum and notably inform why they 

are positive. 
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 Investigating different Pt nanoparticles structures could be worth its weight of gold. 

More studies could be for example focused on the influence of the nanoparticles size and 

shape on the different EOR pathways. 

  An EOR investigation on monocrystals combined with infrared techniques 

(FTIR, Raman…) would give new understandings on the EOR and, more specifically, on the 

electroactive sites and configurations where ethanol and its oxidation intermediates 

preferentially adsorb.  

 Active electrocatalysts supports (TiO2, WOx…) could modify the ethanol adsorbates 

adsorption energy or, for example, dehydrogenize efficiently the Pt metal surface… 

 The influence of the anions present in the electrolyte on the EOR and more 

specifically on the ethanol adsorption has not been studied [244], and this also would be 

worth a study. 

 

This list is almost limitless and shows how long (and tortuous) the route to successful 

EOR in PEMFC is. Nevertheless, whatever the expected difficulties, I confess my interest to 

continue the work in the future as a part of the research community. 

 

 

 



Appendix. Electrooxidation of ethanol at room temperature on carbon-supported Pt and Rh-

containing catalysts: a DEMS study 

 

 

 

 

 

182 

 

 

  



Appendix. Electrooxidation of ethanol at room temperature on carbon-supported Pt and Rh-

containing catalysts: a DEMS study 

 

 

 

 

 

183 

 

 

 

 

 

 

 

 

 

 

Appendix. 

 

Electrooxidation of ethanol at room temperature on carbon-

supported Pt and Rh-containing catalysts: a DEMS study 
 

 

This annex introduces to a preliminary DEMS investigation on the EOR on 10 wt.% Pt/C and 

Pt-Rh/C electrocatalysts. The results presented hereafter highlight the better C-C bond 

cleavage on Pt-Rh/C versus Pt/C and are further commented in the light of pre-existing 

studies on the topic. 
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A1. CV in supporting electrolyte 

 

 Fig. 82 compares the cyclic voltammograms on Pt/C, Rh/C and Pt-Rh/C acquired at 10 

mV s
-1 

in 0.5 M H2SO4 (physical characterization of the electrocatalysts can be found in 

section V.1.). The usual features of the hydrogen and oxygen region can be observed. The 

water dissociation initiates at 0.5 V vs. RHE on Pt-Rh/C versus 0.6 V vs. RHE on Rh/C and 

Pt/C. The water dissociation may operate at lower potential on Pt-Rh/C than on Pt/C because 

of rhodium oxophilic character. It also suggests that interactions between the two metals may 

impact the Pt electronic structure (unfortunately, the XRD data does not enable asserting this 

observation). During the negative scan, a shift toward lower potential was recorded on Rh/C 

and Pt-Rh/C compared to Pt/C for the reduction of the metal oxides reduction peak. This 

indicates that oxides are more stable on Rh-containing than on the Pt surface.[119] A second 

bump can even be observed on Pt-Rh/C which may correspond to the desorption/reduction of 

carbon oxide groups. Though not observable in Fig. 82, the same kind of feature was recorded 

on Pt/C[172] excluding therefore a possible distinctive metal oxides reduction on Pt and Rh 

nanoparticles. 

 

 
Fig. 82. Typical TEM images and associated particle size distribution of (a) Pt/C, (b) Rh/C, 

(c) Pt-Rh/C. 

 

 

A2. CO stripping 

 

 A comparison of the CO stripping voltammograms obtained on Pt/C, Rh/C and Pt-

Rh/C at 10 mV s
-1

 is shown in Fig. 83a. The CO stripping onset potential on Pt-Rh/C is 

located below those on Rh/C and Pt/C. Faster kinetics can as well be observed on the 

bimetallic electrocatalyst and on Rh/C than on Pt/C. It can be deduced that a ligand effect of 

Rh is operated on the Pt electronic structure. More precisely alloying Rh with Pt presumably 

leads to a down-shift of the Pt 5d-band center caused by the interactions in the lattice between 
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Pt and Rh atoms.[189] This phenomenon would result in a weaker adsorption of CO on Pt 

atoms of the alloy and thus in the acceleration of the kinetics on Pt-Rh/C. The presence of 

rhodium, which is an oxophilic metal, in the lattice also likely suggests a faster supply in OH
-
 

species helping the oxidation of the adsorbed CO (bi-functional mechanism, often mentioned 

for CO and methanol oxidation reactions[188]). 

 Cyclic voltammograms on Pt/C and Pt-Rh/C in Fig. 83b and corresponding mass 

spectrometric signals m/z = 44 and m/z = 22, respectively displayed in Fig. 83c and Fig. 83d, 

show the good correlation between the faradaic and ionic currents. In order to quantify the 

CO2 generation during the EOR, the calibration of the signal m/z = 22 was performed using 

the results presented in Fig. 83d. No mass spectrometric study on Rh/C was operated as the 

EOR activity on the latter is negligible.  

 

 

 
Fig. 83. CO-stripping CV in 0.5 M H2SO4 in (a) static and (b) flow electrolyte and 

corresponding MSCV for mass to charge ratio (c) m/z = 44 and (d) m/z = 22 of the CO 

stripping on (solid) Pt/C and (dash) Pt-Rh/C; v = 10 mV s
-1

; T = 25°C. 

 

A3. Potentiodynamic ethanol oxidation 
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 Fig. 84a displays representative cyclic voltammograms relative to the EOR on Pt/C 

and Pt-Rh/C. Results on Rh/C are not shown in this part because of the negligible ethanol 

oxidation activity. A lower ethanol oxidation overpotential of ca. 0.1 V is witnessed for Pt-

Rh/C compared to Pt/C. As a result, the performances on Pt-Rh/C seem slightly better than on 

Pt/C in the potential range up to 0.7 V vs. RHE. Moreover,  Fig. 84a, Fig. 84b and Fig. 84c 

demonstrate a simultaneous increase of the faradaic and ionic currents of the mass to charge 

signals m/z = 44 ([CH3CHO
+
]) and m/z = 15  ([CH3

+
]), corresponding to CHx ionization and 

to [CH3CHO
+
] defragmentation in [CH3

+
]; this indicates that the faradaic current rise is 

mainly due to the oxidation of ethanol into acetaldehyde and not to major CO2 production (the 

mass to charge signals m/z = 22 remains very small in comparison to the others). This 

observation is however valid only up to 0.5 V vs. RHE. Indeed, a rise of the signal m/z = 22 

can then be observed in Fig. 84d from 0.5 V vs. RHE and 0.6 V vs. RHE on Pt-Rh/C and Pt/C 

respectively which illustrates the higher contribution of the total ethanol oxidation into CO2 in 

the faraday current. When comparing this contribution between both electrocatalysts, the total 

oxidation of ethanol into CO2 seems not only to start earlier on Pt-Rh/C than on Pt/C but also 

apparently in larger extent which illustrates an ease of the C-C bond cleavage with the 

addition of rhodium in the electrocatalyst. The enhancement of the faraday current due to the 

total ethanol oxidation into CO2 (taking place from 0.5-0.6 V vs. RHE during the positive 

scan only) can also be noticed with the large height difference between the peaks from the 

positive and negative scan of the faraday current (Fig. 84a) which contrasts with the lower 

difference observed between the peaks of the ionic current from the signal m/z = 15 (Fig. 

84b). Indeed, the CO2 generation during the positive scan of the potentiodynamic 

voltammetry, which does not contribute to the ionic current from the signal m/z = 15, is at the 

origin of the amplification of the height difference between the faraday peaks from the 

positive and negative scan. 

 In Fig. 84, a different behavior on Pt/C and Pt-Rh/C can also be noticed when 

comparing the EOR peaks of the positive and negative scans. Indeed in agreement with the 

literature,[21,22,217] the negative peak corresponding to the EOR on Pt/C is almost always 

larger than the one obtained during the positive scan. However, in the case of Pt-Rh/C, the 

peak obtained during the negative scan is smaller than the one of the positive scan. Moreover, 

no change in the signal m/z = 22 is detected for both electrocatalysts during the negative scan. 

That suggests that the total oxidation of ethanol into CO2 on Pt-Rh/C does occur during the 

positive scan but not during the negative scan. In addition, the current is lower during the 

negative scan on Pt-Rh/C because the ethanol oxidation onset is at lower potential. The reason 

for this may be the electrocatalyst surface blocking by OH
-
 species. Indeed as it was written 

earlier, the reduction of the adsorbed oxygen species on the electrocatalyst surface occurs at 

lower potential on Pt-Rh/C because of the presence of Rh. The peak is then obtained more or 

less at the same time on Pt/C and Pt-Rh/C probably because of the electrocatalyst surface 

blocking by C2-species, mainly acetaldehyde. 
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 Observing the signal m/z = 15 ([CH3
+
]) in Fig. 84b gives important information on the 

presence of CHx species, although the presence of acetaldehyde for the same signal 

(defragmentation of this molecule into [CH3
+
]) corrupts the certainty of the interpretation. As 

can be seen at very low potential, in the hydrogen adsorption-desorption region, an increase of 

the ionic current is recorded during the negative scan followed by a decrease during the next 

positive scan; this is observed whatever the electrocatalyst. This phenomenon, already 

reported in the literature,[245] does not occur with the signal m/z = 29 (not presented here) 

corresponding mainly to the defragmentation of acetaldehyde molecule in [CHO
+
]. That 

means that [CH3
+
] certainly come from methane generation originated from the reduction of 

adsorbed CHx species. The latter may result from the dissociative adsorption from a C2-

species, most likely acetaldehyde, occurring either during the negative scan or the previous 

positive scan. Assuming that detected CHx,ad comes from the dissociative adsorption of a C2-

species during the negative scan, there should also be some trace of adsorbed CO. 

Unfortunately this cannot be confirmed by DEMS measurements. An infrared study (FTIR, 

Raman…) could possibly enable to confirm the presence of COad in the hydrogen region, 

which would give an indication about the moment of the formation of CHx,ad. 

 The quantification of the ionic current of the signal m/z = 22 was then performed at 

each potential. Fig. 85 shows the evolution of the CO2 current efficiency (CCE) together with 

the faradaic current and the ionic current of the signal m/z =22 on Pt/C and Pt-Rh/C. A 

maximal CCE of ca. 25% is reached at around 0.8 V vs. RHE on Pt-Rh/C while on Pt/C the 

CCE remains below 10 %. Though, the signal m/z =22 was noisy and could be source of 

uncertainties, the repeatability of the results on Pt-Rh/C was confirmed. As for Pt/C, the CCE 

varied between 5 and 10 % depending on the experiments, but never went above this value.  

 Though these results show undoubtedly a much higher production of CO2 at room 

temperature on Pt-Rh/C than on Pt/C, the evolution of the faradaic current does not seem to 

be larger on the bimetallic electrocatalyst. On the contrary, it even seems that the kinetics is 

slightly lower on Pt-Rh/C than on Pt/C (the EOR peak obtained on Pt/C is somehow larger). 

This result is not contradictory with the literature;[35,75,119,118] indeed, as ethanol barely 

adsorbs on rhodium,[120] and knowing the Pt mass content in Pt/C is twice larger than in Pt-

Rh/C, the higher production of CO2 and thus of electrons on Pt-Rh/C does not compensate the 

supposedly higher production of acetaldehyde on Pt/C.  
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Fig. 84. (a) CV in 0.5 M H2SO4 + 0.1 M EtOH and MSCV for mass to charge ratio (b) m/z = 

15, (c) m/z = 44 and (d) m/z = 22 of the EOR on (solid) Pt/C and (dash) Pt-Rh/C; v = 10 mV 

s
-1

; T = 25°C. 

 

 
Fig. 85. EOR CV in 0.5 M H2SO4 + 0.1 M EtOH, MSCV for mass to charge ratio m/z = 22 

and (line + symbol) CCE of the EOR on (left) Pt/C and (right) Pt-Rh/C. 

 

 

A4. Potentiostatic ethanol oxidation 
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 Fig. 86 exhibits the near-Tafel behavior of the two electrocatalysts in the potential 

range from 0.4 V vs. RHE to 0.7 V vs. RHE. It most likely corresponds to the adsorption of 

ethanol followed by its dehydrogenization into acetaldehyde. Indeed, it is admitted that the 

faradaic current generated during the EOR on Pt/C comes mainly from the dehydrogenation 

of ethanol that is to say from its oxidation into acetaldehyde (2 electrons). The formation of 

acetic acid (4 electrons) and the complete oxidation of ethanol into CO2 (12 electrons) does 

not (or barely) occur at room temperature on Pt/C catalysts. As for the Pt-Rh/C, the total 

ethanol oxidation into CO2 accounts for a maximal 20 % (at 0.7 V vs. RHE) of the overall 

ethanol oxidation and does not occur before 0.5 V vs. RHE according to the present DEMS 

results and before 0.4 V vs. RHE according to [35]. For this reason, it is assumed that the 

observed behavior for Pt-Rh/C mainly corresponds to the oxidation of ethanol in 

acetaldehyde. Thus, the difference of Tafel slope values could show a higher kinetics of the 

ethanol oxidation into acetaldehyde on Pt/C than on Pt-Rh/C. Huang et al.[246] obtained the 

same kind of results with other Pt-based electrocatalysts at low potential. The possible 

modification of the Pt electronic structure by Rh in Pt-Rh/C might have induced a slowdown 

of the ethanol dehydrogenation kinetics. Nevertheless, if the CO2 production on Pt-Rh/C has 

any impact on its Tafel slope, it will logically reduce its inclination; as the CO2 production 

implies the production of 12 e
-
 and is thus very slow compared to the formation of 

acetaldehyde.  

 

 
Fig. 86. Tafel plots of potentiostatic EOR currents (after 5 min) on (a) Pt/C and (b) Pt-Rh/C 

electrocatalysts in 0.5 M H2SO4 + 0.1 M EtOH at room temperature. 
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 Pt/C, Rh/C and Pt-Rh/C electrocatalysts were all synthesized by a modified polyol 

method. Their chemical composition was characterized by TGA, ICP-AES, XRD and TEM. 

A uniform dispersion of the metal nanoparticles on the carbon support as well as a narrow 

particle size distribution was reported. The presence of agglomerates on Pt/C could however 

be noticed. 

 The potentiostatic study of the EOR on Pt/C and Pt-Rh/C revealed higher kinetics in 

the potential range from E = 0.4 V vs. RHE to E =  0.7 V vs. RHE on Pt/C compared to Pt-

Rh/C, though the EOR onset on Pt-Rh/C shifted toward lower potentials compared to Pt/C. 

This could be explained by the faster dehydrogenation of ethanol on Pt/C or by the sluggish 

CO2 formation on Pt-Rh/C.  

 DEMS results showed a production of CHx species at low potential on Pt/C and Pt-

Rh/C coming from the dissociative adsorption of acetaldehyde during the negative scan. COad 

is supposed to be also produced but a specific infrared study would be required to ascertain 

this assumption. A higher production of CO2 during the ethanol oxidation was recorded on Pt-

Rh/C than on Pt/C. That illustrates the good ability of Rh alloyed with Pt to break the C-C 

bond. After calibration of the signal m/z = 22, the CO2 current efficiency (CCE) was 

quantified on both electrocatalysts. Pt-Rh/C exhibited a CCE up to 25 % of the faradaic 

current while the CCE on Pt/C was below 10 %. Nonetheless the faradaic peak current on 

Pt/C was still higher than on Pt-Rh/C. The lower amount of platinum in Pt-Rh/C could 

explain this phenomenon. However at practical potentials for fuel cells (E = 0.4 V vs. RHE - 

0.6 V vs. RHE), Pt-Rh/C still represents a better activity than Pt/C. The addition of a third 

element may help getting better electrocatalytic performances. 
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Titre : Etude mécanistique de la réaction d’oxydation de 

l’éthanol sur électrocatalyseurs à base de Pt, Rh, SnO2 sur 

support carboné en milieu acide 

 

 L’étude du mécanisme de la réaction d’oxydation de l’éthanol 

(EOR) a été réalisée sur des électrocatalyseurs bi- et tri-métalliques 

à base de Pt, Rh et SnO2 sur support carboné à l’aide de méthodes 

électrochimiques couplées (DEMS, in situ FTIR). Deux 

importantes problématiques de l’EOR ont été abordées: la 

déshydrogénation de la molécule d’éthanol et la cassure de sa 

liaison C-C. 

 L’investigation de certains paramètres expérimentaux, comme 

l’épaisseur de la couche d’électrocatalyseur, a permis de démontrer 

q'une couche active épaisse conduit à une meilleure 

électrooxydation plus complète de l’éthanol en CO2, mais 

également que l’empoisonnement de l'électrocatalyseur par de très 

forts adsorbats advient dans l'épaisseur de couche active. 

 Les performances de chaque électrocatalyseur ont été comparées 

entre elles et ont mis en évidence une meilleure sélectivité de 

l’EOR sur Pt-Rh-SnO2/C, ainsi que l’engendrement de courants 

plus élevés à bas potentiel à température ambiante. La tendance est 

amplifiée à température plus élevée (T = 60 °C).  

 

Mots clés : electrocatalyse ; réaction d’oxydation de l'éthanol ; 

cassure de la liaison C-C ; synthèse polyol ; pile à combustible 

 

 

Title: Mechanistic study of the ethanol oxidation reaction on 

carbon supported Pt-, Rh- and SnO2-based electrocatalysts in 

acidic medium 

 

 The study of the ethanol oxidation reaction (EOR) mechanism 

was performed on carbon supported bi- and tri-metallic Pt-, Rh-, 

SnO2-based electrocatalysts via electrochemical coupled techniques 

(DEMS, in situ FTIR). Two of the most important issues related to 

the EOR have been broached: the dehydrogenation of the ethanol 

molecule and its C-C bond breaking. 

 The investigation of some experimental parameters, such as the 

thickness of the electrocatalyst layer, enabled demonstrating the 

better complete ethanol electrooxidation into CO2 for large 

electrocatalysts layers, combined to the enhanced poisoning effect 

inside the catalyst layer by very strong adsorbates. 

 The performances of each electrocatalyst were compared and 

evidenced an improved selectivity of the EOR on Pt-Rh-SnO2/C, as 

well as the generation of higher currents at low potential at room 

temperature. The tendency was amplified at elevated temperatures 

(T = 60 °C). 

 

Keywords: electrocatalysis; ethanol oxidation reaction; C-C bond 

cleavage; polyol synthesis; fuel cell 


