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Résumé: Cette thèse aborde plusieurs problèmes 
fondamentaux des systèmes de communications 
sans fil avec des antennes multiples, dites 
systèmes MIMO (multiple input, multiple 
output). Les contributions se situent aussi bien au 
niveau des algorithmes de réception qu’au 
niveau de la génération du signal à l’émission. 
La plus grande partie de la thèse est dédiée à 
l’étude des algorithmes de réception. Les points 
abordés comprennent la modélisation et 
l’estimation du canal, la détection robuste des 
symboles, et la suppression des interférences. Un 
nouveau modèle de canal est proposé dans le 
chapitre 3 en exploitant les corrélations dans les 
domaines temporel, fréquentiel et spatial, et en 
réduisant l’espace des paramètres aux termes 
dominants. Ce modèle est utilisé pour proposer 
ensuite un estimateur de canal à faible 
complexité et aussi un sélecteur de mots de code 
pour envoyer vers l’émetteur les informations sur 
l’état du canal. Dans le chapitre 4, la réception 
robuste est étudiée pour les systèmes MIMO-
OFDM sans une connaissance parfaite du canal. 
Des récepteurs robustes sont proposés pour les 
cas avec ou sans connaissance statistique du 
canal.  
 

La conception de récepteurs pour les systèmes 
MIMO-OFDM en présence d’interférence est 
étudiée dans le chapitre 5 et des récepteurs 
robustes sont proposés prenant en compte 
séparément l’interférence causée par les ondes 
pilotes et celle causée par les symboles d’une 
part et l’asynchronisme entre le signal et 
l’interférence d’autre part. 
Dans la deuxième partie de la thèse (chapitre 6), 
nous abordons les modulations spatiales qui sont 
particulièrement adaptées aux systèmes MIMO 
dans lesquels le nombre de chaines d’émission 
est inférieur aux nombre d’antennes. 
Remarquant que l’efficacité spectrale de ces 
systèmes reste très faible par rapport à la 
technique de multiplexage spatiale, nous avons 
développé des modulations spatiales améliorées 
(ESM, pour Enhanced Spatial Modulation) qui 
augmentent substantiellement l’efficacité 
spectrale. Ces modulations sont basées sur 
l’introduction de modulations secondaires, 
obtenues par interpolation. La technique ESM 
gagne plusieurs décibels en rapport signal à bruit 
lorsque les constellations du signal sont choisies 
de façon à avoir la même efficacité spectrale que 
dans les modulations spatiales conventionnelles. 

 

 

Title : MIMO Signal Design, Channel Estimation, and Symbol Detection 

Keywords : MIMO system, Signal processing, Wireless communication 

Abstract:  The aim of this thesis is to investigate 
multiple input multiple output (MIMO) 
techniques from the reception algorithms, i.e., 
channel estimation, symbol detection, and 
interference suppression, to the advanced spatial 
modulation (SM) transmission schemes. 
In the reception algorithms, the proposed 
schemes are derived based on the detection 
theory and the statistical analysis, i.e., linear 
regression and Bayesian model comparison, in 
order to deal with the channel uncertainty, i.e., 
fading, correlations, thermal noise, multiple 
interference, and the impact of estimation errors.  

In the transmission schemes, the signal 
constellations are targeted to find a good 
tradeoff between the average transmit energy 
and the minimum Euclidean distance in the 
signal space. The proposed schemes, denoted by 
enhanced spatial modulation (ESM), introduce 
novel modulation/antenna combinations and use 
them as the information bits for transmission.  
The simulation results show that good system 
performance can be achieved with the advanced 
MIMO techniques. Several examples are 
presented in this thesis to provide some insights 
for the MIMO system designs. 
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Chapter 1

Introduction

Multiple-input multiple-output (MIMO) communications currently represent one of the

most dynamic areas of research. Over the past ten years, there has been a surge of research

activities in this field. This is mainly due to an explosive demand for internet access,

driven by wireless data applications on user equipment. Also, the significant progress in

very-large-scale integration (VLSI) technology enabled the implementation of complex

signal processing algorithms and resulted in a small area and low power consumption.

This led to the development of various communications techniques and mathematical

tools in the past decade and the research is still very vibrant in this field.

There are two fundamental issues of wireless MIMO communications that make the

problem challenging. The first one is the effect of channel fading. Fading has a small-scale

effect which is multipath propagation with time-varying channel strengths and large-

scale effects such as path loss and shadowing due to obstacles. The second issue is that

the existence of a large amount of users in cellular networks has driven communication

channels from being noise-limited to interference-limited. Each transmitter–receiver

pair cannot be viewed as an isolated point-to-point link, but wireless users communicate

over the air and there is significant interference between them. The interference can be

between transmitters communicating with a common receiver, between signals from a

single transmitter to multiple receivers or between different transmitter–receiver pairs.

How to deal with channel fading and with interference is central to the design of wireless

communication systems. In particular, we focus on these issues for the single-user MIMO

and the inter-cell interference network.

The single-user MIMO is the simplest MIMO channel model, where one pair of transmitter

and receiver nodes are equipped with multiple antennas and communicate with each
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Fig. 1.1 The single-user MIMO system

Fig. 1.2 The inter-cell interference network

other. In doing so, they have to deal with the wireless channel uncertainty. Variations of

the channel strength over time, frequency, and space makes the issue more challenging.

This system model consisting of multiple dimensions (time, frequency, and space) also

implies a possible solution to improve network performance after the correlation in each

dimension is modeled properly and well exploited.

The inter-cell interference network models the problem where interference appears from

the neighbor cells. Two adjacent base stations have comparable signal strengths near

their cell border, and the cell-edge user in one cell experiences a significant interference

coming from the base station in the neighboring cell. The common approach to cope

with interference is either to avoid it, by using different time and frequency channels,

or to treat it as noise. However, these techniques may be detrimental for the spectrum

efficiency of the network. Advanced design of interference-aware receivers potentially

offer a practical way to deal with interference without sacrificing resources. In such

receivers, the interference can be suppressed or partially canceled with some signal

processing techniques.
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1.1 Objective of the thesis

The traditional design of MIMO systems has focused on increasing the reliability of wire-

less transmission. In this context, channel fading and interference need to be properly

handled. By using some signal processing techniques like channel equalization and in-

terference suppression, advanced receivers in the network can boost the overall system

performance. Recently the MIMO research has shifted more towards achieving an attrac-

tive compromise between area spectral efficiency and energy efficiency. Spectral efficiency

and throughput versus energy efficiency and low complexity are rapidly changing the

topology of operational cellular networks. This shift provides a new point of view that

fading can be viewed as an opportunity to be exploited.

The main objective in this thesis is to provide a treatment of MIMO communications from

both reliability and energy efficiency points of view. In addition to traditional topics such

as channel estimation, symbol detection and interference suppression, a substantial part

of the thesis is devoted to spatial modulation (SM), which is a signal design technique that

aims at achieving low complexity together with energy efficiency. We address advanced

theoretical concepts and their implementation issues. We try to develop an intuitive

understanding of how these concepts are applied in actual wireless systems and show

how they interact with some practical consideration such as channel estimation errors

and different interference structures. Several examples are used in this thesis to provide

insight in the design of efficient wireless MIMO systems.

1.2 Outline of the thesis and publications

The contents of the thesis are as follows:

Chapter 2: MIMO-OFDM wireless communication

In this chapter, we introduce the signal processing flow of MIMO-orthogonal frequency

division multiplexing (OFDM) systems. We start the discussion by a brief overview on

MIMO systems and their advantages in the spatial domain with respect to performance

and system throughput. Then, we describe the basic principle of OFDM systems which

provides the degrees of freedom in the time and frequency domains with low-complexity

equalization and zero intersymbol interference (ISI) across adjacent frequency carriers.
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We outline the benefits of combining the MIMO and OFDM schemes and we give a brief

introduction to both of these techniques.

Chapter 3: Channel modeling and estimation

This chapter presents a novel channel model for wideband spatially-correlated MIMO

systems. The key ideas in developing this model are exploiting the spatial, time and

frequency correlations of the channel taps, and reducing the dimension of the parameter

estimation space by retaining only the dominant terms. The proposed channel model is

useful for many post-channel-estimation applications such as channel state information

(CSI) feedback, precoder design, and channel selection. In particular, we show two

examples based on this channel model: A low-complexity channel estimator and a low-

complexity codeword selector for CSI feedback.

In the first example, we propose the channel estimator that offers the advantage of render-

ing both channel coefficients and the mean angle of departure (AoD) simultaneously. The

proposed channel estimator not only offers fast and accurate estimates and gives mean

square error (MSE) performance improvement, but also provides compact and useful CSI

that leads to other potential post-processing complexity cutbacks.

In the second example, we show a codeword selection scheme that uses the common

structures of the spatial channel model and the codebook used. Specifically, for a discrete

Fourier transform (DFT)-based codebook with arbitrary size, implementation of the

codeword selection can be dramatically simplified by only using a quantization operation

instead of exhaustive search.

The results of this chapter can be found in:

• C. C. Cheng, Y. C. Chen, and Y. T. Su, "Modelling and Estimation of Correlated

MIMO-OFDM Fading Channels," In Proc. IEEE International Conference on Com-

munications (ICC), 5-9 June 2011.

• C. C. Cheng, Y. C. Chen, Y. T. Su, and H. Sari, "Model-based channel estimation and

codeword selection for correlated MIMO channels," In Proc. IEEE Signal Processing

Advances in Wireless Communications (SPAWC), 17-20 June 2012.
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Chapter 4: Robust symbol detection

In this chapter, a robust receiver for MIMO-OFDM systems is proposed. We are interested

in the scenario when only a limited number of pilot symbols in both time and frequency

domains are available. For this scenario, perfect channel state information is impossible

to obtain and the receiver suffers from channel estimation errors.

To overcome this limitation, we first derive the optimal receiver in the sense of performing

jointly channel and data estimation with the perfect channel statistical information. This

scheme is statistically optimal and outperforms the conventional maximum likelihood

(ML) symbol detection in some cases.

Then, we study the case without channel statistical information. In this case, the channel

distribution is unknown and the receiver suffers from statistical information mismatch.

To deal with that, we construct a finite set of covariance matrices and derive an efficient

selection scheme based on Bayesian inference. The proposed detector simply compares a

few models to obtain sufficient information instead of estimating the covariance matrices.

The results of this chapter can be found in:

• C. C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, "Robust MIMO-OFDM detection with

channel estimation errors," in Proc. International Conference on Telecommunica-

tions (ICT), 6-8 May 2013

• C. C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, "Robust MIMO Detection Under

Imperfect CSI Based on Bayesian Model Selection,"IEEE Trans. Wireless Commun.

Lett., vol.2, no.4, pp.375-378, Aug. 2013

Chapter 5: Interference suppression

This chapter examines receiver design for multi-user systems with co-channel interference.

We first focus on the design of an interference suppression strategy, which is robust to

channel estimation errors, co-variance estimation errors, and a timing delay between

desired signal and interfering signal, in particular to handle a mixture of interference in

which pilot symbols and data symbols appear simultaneously.

Then we consider a mechanism to deal with interference in the presence of frequency-

selective fading, where the covariance matrices of the interference can be regarded as a

continuous function across subcarriers. The moving average technique with an adaptive

window length is proposed based on an analysis focusing on the MSE of the covariance
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estimate. These results only require information of the signal-to-noise ratio (SNR) and

signal-to-interference ratio (SIR) and are robust against variations of the power delay

profile of the interfering channel.

Finally, the scalability of a MIMO receiver to handle a growing amount of receive antennas

is considered. In general, more receive antennas result in better interference-suppression

capability. However, as the number of receive antennas increases, the receiver becomes

more complex and loses its scalability. Therefore, a baseband algorithm is proposed

which involves a minimum modification of the existing receiver structure when additional

receive antennas become available.

The results in this chapter can be found in:

• C. C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, "Linear interference suppression with

covariance mismatches in MIMO-OFDM downlink," in Proc. IEEE International

Conference on Communications (ICC), 10-14 June 2014

• C. C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, "Linear Interference Suppression with

Covariance Mismatches in MIMO-OFDM Systems," IEEE Trans. Wireless Commun.,

vol.13, no.12, pp.7086-7097, Dec. 2014

• C. C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, "Moving-Average Based Interference

Suppression on Frequency Selective SIMO Channels," in Proc. IEEE Vehicular Tech-

nology Conference (VTC Spring), 18-21 May 2014

• C. C. Cheng, S. Sezginer, H. Sari, and Y. T. Su, "SINR Enhancement of Interference

Rejection Combining for the MIMO Interference Channel," in Proc. IEEE Vehicular

Technology Conference (VTC Spring), 18-21 May 2014

Chapter 6: Spatial modulation design

In this chapter, we introduce a new SM technique using one or two active antennas and

multiple signal constellations. The proposed technique, which we refer to as enhanced

spatial modulation (ESM), conveys information bits not only by the index(es) of the active

antenna(s), but also by the constellations transmitted from each of them. The main feature

of ESM is that it uses a primary signal constellation during the single active antenna

periods and some other secondary constellations during the periods with two active

transmit antennas. The secondary signal constellations are derived from the primary

constellation by means of geometric interpolation in the signal space.
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Then we go one step further in the interpolation process and derive additional modula-

tions, which leads to a significant increase of the number of active antenna and modula-

tion combinations used. Other variants of the proposed ESM scheme are also provided,

in which the primary modulation is partitioned into two or more subsets, and these

lower-energy subsets are used in a larger number of combinations. We give design exam-

ples using two and four transmit antennas and different levels of quadrature amplitude

modulation (QAM) as the primary modulation, in order to achieve different spectral

efficiencies.

The results of this chapter can be found in:

• C. C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, "Enhanced spatial modulation with

multiple constellations," in Proc. IEEE Black Sea Conference on Communications

and Networking (BlackSeaCom), 27-30 May 2014

• C. C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, "Enhanced spatial modulation with

multiple constellations and two active antennas," in Proc. IEEE Latin-America

Conference on Communications (LATINCOM), 5-7 Nov. 2014

• C. C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, "Enhanced Spatial Modulation with

Multiple Signal Constellations," IEEE Trans. Commun., vol.63, no.6, pp.2237-2248,

June 2015

• C. C. Cheng, H. Sari, S. Sezginer, and Y. T. Su, "New Signal Design for Enhanced

Spatial Modulation with Multiple Constellations," in Proc. IEEE Personal Indoor and

Mobile Radio Communications (PIMRC), Sep. 2015

Chapter 7: General conclusions and perspectives

In the last chapter, our general conclusions are presented. We revisit the motivation

behind our work, summarize the contributions made, and point out future directions.
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Chapter 2

MIMO-OFDM wireless communications

MIMO-OFDM is the leading air interface for wireless local area networks (WLANs), and

fourth-generation (4G) mobile cellular wireless systems. This technique combines MIMO

technology, which multiplies capacity by transmitting different signals over multiple

antennas, and OFDM, which divides a wireless channel into many subchannels to provide

more reliable communications at high speeds.

2.1 MIMO systems

MIMO indicates the presence of multiple transmit antennas (multiple input) and multiple

receive antennas (multiple output). While multiple transmit antennas can be used for

beamforming and multiple receive antennas can be used for diversity, the term MIMO,

the use of multiple antennas at both sides, often refers to the simultaneous transmission

of multiple signals (spatial multiplexing) to multiply spectral efficiency (capacity).

Traditionally, researchers treated multipath propagation as an impairment to be mitigated.

MIMO is the first technology that treats multipath propagation as a phenomenon to

be exploited. MIMO technology realizes a diversity gain and an array gain by coherent

combining, and achieves an additional fundamental gain, spatial multiplexing gain, by

transmitting multiple signals over multiple, co-located antennas [1]. This is accomplished

without the need for additional power or bandwidth.

• Spatial multiplexing yields a linear (in the minimum of the number of transmit

and receive antennas) capacity increase without additional power or bandwidth.

The corresponding gain is available if the scattering environment is rich enough to
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allow the receive antennas to separate out the signals from the different transmit

antennas. Under suitable channel fading conditions, the MIMO channel provides

an additional spatial dimension for communication and yields a degree-of-freedom

gain. These additional degrees of freedom can be exploited by spatially multiplexing

several data streams onto the MIMO channel, and they lead to an increase in the

capacity.

• Diversity gain leads to improved link reliability by making the channel more robust

to fading and by increasing the robustness to co-channel interference. Spatial di-

versity can be obtained by placing multiple antennas at the transmitter (transmit

diversity) and/or the receiver (receive diversity). If the antennas are placed suffi-

ciently far apart, the channel gains between different antenna pairs fade more or

less independently, and independent signal paths are created. By averaging over

multiple independent signal paths, the error probability of the transmission is de-

creased and a diversity gain is obtained. More diversity gains can be provided by

space-time codes without the need of channel knowledge at the transmitter.

• Array gain also called array power gain can be achieved simply by having multiple

receive antennas and coherent combining at the receiver. The effective total received

signal power increases linearly and this improves cellular system capacity. In general,

the array gain can be realized both at the transmitter and the receiver and it requires

channel knowledge for coherent combining.

Due to many advantages both from a theoretical perspective and a hardware implemen-

tation perspective, MIMO has become an essential element of wireless communication

standards and will be one of the main concepts for the next-generation of mobile telecom-

munications standards beyond the current standards.

2.2 OFDM modulation

OFDM is a method of encoding digital data on multiple carrier frequencies. It is a

frequency-division multiplexing scheme with a large number of closely spaced orthogonal

sub-carrier signals which are used to carry parallel data streams. Each sub-carrier is mod-

ulated with a conventional modulation scheme such as QAM or phase-shift keying (PSK)

at a low symbol rate, maintaining total data rates similar to conventional single-carrier

modulation schemes in the same bandwidth.
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Fig. 2.1 The OFDM transmission scheme

Fig. 2.2 The OFDM reception scheme

Traditionally, the biggest obstacle to reliable broadband communications is to deal with

ISI: the delayed replicas of previous symbols interfere with the current symbol. The com-

mon approach for single-carrier systems is using channel-equalization at the receiver,

mitigating ISI to some extent. However, the complexity of the optimal process, ML detec-

tion of transmitted symbols, grows exponentially with the number of channel taps, and it

is typically used only when the number of significant taps is small [2].

• The primary advantage of OFDM over single-carrier schemes is its ability to deal

with ISI without complex equalization filters. Indeed, OFDM being a set of slowly

modulated narrowband signals, it makes the use of a guard interval between symbols

affordable and eliminates ISI efficiently. The insertion of a guard interval, called

cyclic prefix (CP), which is a copy of the last part of the OFDM symbol with a duration

to accommodate the delay spread of the channel, eliminates the overlap between

adjacent symbols and reduces channel equalization to a complex multiplication per

sub-carrier.
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• Another key feature of OFDM is that all the carrier signals are orthogonal to each

other. The orthogonality allows for efficient modulator and demodulator imple-

mentation using the fast Fourier transform (FFT) algorithm on the receiver side,

and inverse FFT on the sender side. This greatly simplifies the design of both the

transmitter and the receiver. Unlike conventional frequency-division multiplexing, a

separate filter for each sub-channel is not required. In OFDM, the equalizer only has

to multiply each detected sub-carrier (Fourier coefficient) in each OFDM symbol by

a complex number.

In fact, OFDM has developed into a popular scheme for wideband digital communication

due to many of its advantages: high spectral efficiency, low-complexity equalization, ro-

bustness against ISI, robustness against co-channel interference, efficient implementation

using FFT, and low sensitivity to time synchronization errors. This scheme will be also

one of the main concepts for the next generation standards of wireless communications.

2.3 MIMO-OFDM systems

MIMO-OFDM is a particularly powerful combination because MIMO does not attempt to

mitigate multipath propagation and OFDM avoids the need for signal equalization. The

signaling schemes used in OFDM-based MIMO systems can be sub-divided into two main

categories, spatial multiplexing and space-time coding.

• In spatial multiplexing of MIMO-OFDM, multiple data streams are transmitted

simultaneously from different transmit antennas in each frequency sub-carrier.

Since all the carrier signals are orthogonal to each other and a CP is inserted be-

tween OFDM blocks, the spatial multiplexing signals have no ISI in both time and

frequency domains. Thus, if these signals arrive at the receiver antenna array with

sufficiently different spatial signatures and the receiver has accurate CSI, it can

separate these streams into parallel channels and decode the transmitted signal.

This scheme boosts the system throughput since that different information can be

transmitted simultaneously over multiple antennas.

• A space–time code (STC) is a method employed to improve the reliability of data

transmission using redundancy across space and time. STCs rely on transmitting

multiple, redundant copies of a data stream across a number of antennas with the

objective that at least some of them survive the physical channel path between

transmission and reception in a good enough state to allow reliable decoding. In
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Fig. 2.3 The MIMO-OFDM transmission scheme

Fig. 2.4 The MIMO-OFDM reception scheme

MIMO-OFDM, STCs can consist of coding across antennas and OFDM time slots,

and there also can be coding across antennas and OFDM frequency sub-carriers in

order to achieve a space diversity gain.

MIMO-OFDM supports high data rates and improves reliability using multiple data

streams and joint coding over the space, time, and frequency domains. It achieves a

great spectral efficiency and, therefore, delivers a high capacity and data throughput.

In the first part of this thesis, from Chapter 3 to Chapter 5, we will place special attention

on the main elements of MIMO-OFDM reception, particularly focusing on two key func-

tions in the receiver: channel estimation and symbol detection. Our goal in this part is to

improve system performance at the receiver side. In Chapter 6, we study MIMO transmis-

sion, mainly investigating SM, a radio frequency (RF) limited system, in which the number

of active transmit (TX) antennas is limited to one or two. The reason is that multiple

analog RF chains are bulky, expensive and power consuming. New signal modulations are

presented in this part in order to achieve better system throughput and reduced hardware

complexity.





Chapter 3

Channel modeling and estimation

In this chapter, we present a MIMO channel model on the basis of the spatial correlation

between different pairs of TX and RX antennas. When the spatial correlation exists, this

channel model can use fewer parameters to obtain CSI compared to the conventional

channel models. This property of parameter reduction is useful for the post-channel-

estimation applications. We will develop two examples of these applications given in the

following; A low-complexity channel estimator and a low-complexity codeword selector

for CSI feedback.

We start with a short introduction of different MIMO channel models. The ideal MIMO

channel model assumes that the environment has rich scatterers and the channels are

statistically independent. In this case, the channel model requires parameters for each

independent channel. Practically, the MIMO channel has spatial correlations [3], which

depend on physical parameters such as antenna spacing, antenna arrangement, and

distributions of scatterers. Antenna correlations reduce the number of equivalent orthog-

onal subchannels [4], but unfortunately they do not reduce the number of parameters for

channel modeling. In contrast, the stochastic MIMO channel models proposed in [5–8]

need more parameters than the ideal MIMO channel model. These models add extra

parameters to represent the impact of different physical parameters on channel statistics.

The motivation of the proposed channel model is to have a compact representation for

CSI with only a few and important parameters. We found that channel statistics require

many parameters to identify precisely. Therefore, the proposed MIMO channel model

requires no information about second-order channel statistics. Spatial, frequency, and

time covariance (or correlation) functions are identified by non-parametric regression.

This representation has fewer parameters than the ideal channel model when the spatial
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correlation exists. This model enables us to develop effective algorithms to identify the

realistic channel responses. The first example is the channel estimation schemes, which

can improve the conventional least squares (LS) scheme and provide a 10-dB gain in the

MSE performance. Then, we present the other example that is to simplify a codeword

selector for closed-loop MIMO systems. The proposed codeword selection (CS) schemes

perform efficiently in terms of computational complexity, because they only need a

quantization operation instead of exhaustive search. The numerical results show that the

proposed CS scheme only degrades around 1-dB the symbol error rate (SER) performance

when a 64-codeword codebook is used.

3.1 System model

We consider an N-subcarrier MIMO-OFDM system with linear arrays of NT transmit and

NR receive antennas (NT ≤ NR ), respectively. The channel is a block fading channel in

which the channel gain matrix remains unchanged within a block of B symbol intervals.

The received signals at the kth subcarrier can be written as

Yt ,k = Ht ,k Xt ,k +Nt ,k , (3.1)

where Yt ,k is the NR ×B receive vector with time index t , Xt ,k is the NT ×B transmit block,

Nt ,k is a zero mean additive white Gaussian noise (AWGN) vector, and Ht ,k is the NR ×NT

matrix.

3.1.1 Spatial channel model

The channel matrix represents the frequency domain channel response of the kth subcar-

rier, which can be rewritten by its time-domain impulses as

Ht ,k =
[

INT ⊗wT
k

]







h11
t . . . h

1NT
t

...
. . .

...

h
NR 1
t . . . h

NR NT
t






,

[

I⊗wT
k

]

H̄t (3.2)

where wk =
[

1,e− j 2πk/N , · · · ,e− j 2(D−1)πk/N
]T

is the kth row of a FFT matrix, ⊗ denotes

the Kronecker product, and h
p,q
t =

[

h
p,q

t ,(0)
,h

p,q

t ,(1)
, · · · ,h

p,q

t ,(D−1)

]T
is a discrete-time MIMO
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channel impulse response with D multi-paths between the pth base station (BS) antenna

and qth mobile station (MS) antenna.

In order to see the spatial correlation in the channel matrix, we further rewrite H̄t by its

vector form as

vec(H̄t ) = vec

([

vec(H̄(0)
t ), vec(H̄(1)

t ) · · · , vec(H̄(D−1)
t )

]T
)

where H̄(d)
t is an NR ×NT time-domain MIMO channel matrix at the dth multi-path, and

each element can be seen as a single-tap frequency non-selective channel. Therefore, the

correlation between the elements of H̄(d)
t is the spatial correlation between the TX and the

RX antennas.

Now, we can apply the spatial-correlated channel model [9]. This model shows that a

correlated MIMO channel matrix at the dth multi-path can be expressed as:

H̄(d)
t =







h11
t ,(d)

. . . h1M
t ,(d)

...
. . .

...

h
NR 1
t ,(d)

. . . h
NR NT

t ,(d)






= QR C(d)

t QT
T (3.3)

where Ct is a complex random coefficient matrix, QR and QT are predefined unitary

matrices. Also, [9] suggested that the average angle of departure (AoD) can be embedded

in the channel model by the alternative representation

H̄(d)
t = QR C(d)

t Q̄T
T W (3.4)

where Q̄T W = QT
T and W is a diagonal matrix with unit modulus entries given as

W = di ag (w1, w2, . . . , wM ) (3.5)

where wi = exp
(

− j 2π
(i−1)ξ

λ
si nφ

)

, and ξ is the distance between neighboring elements at

the base station linear array, λ denotes the wavelength, and φ is AoD information. Note

that the only parameters in this model are C(d)
t and φ.

In order to have a compact formulation, the time-domain correlation also needs to be

modeled. We first arrange the received signals at all subcarriers into a matrix. The stacked

received vector from the 0th subcarrier to the (N −1)th subcarrier can be expressed as

YN ,t =
[

Yt ,0,Yt ,1, · · · ,Yt ,(N−1)

]

. (3.6)
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For the time indexes with an observation window of size L, the received sample vector

from time t to time (t +L−1) can be expressed as:

YL =
[

YN ,t ,YN ,t+1, · · · ,YN ,t+L−1

]

. (3.7)

To arrange the pilot signal matrices, we assume that the same transmit matrix Xt ,k = Xp

is used for all subcarrier indexes k = 1, · · ·N and all time indexes t = 1, · · · ,L. Therefore,

applying vectorization to the stacked version, we have a compact form of the relation

between the TX signal and the RX signal as follows

vec(YL) = X · vec(HL)+NL , (3.8)

where X and HL are defined as

vec(HL) =
[

vec(H̄t )T , vec(H̄t+1)T , · · · , vec(H̄t+L−1)T
]T

X = (IL ⊗A)(IL ⊗XT
p ⊗ INR D )

A =
[

IB NR ⊗wT
0 , · · · ,IB NR ⊗wT

N−1

]T
.

With this representation, we can model the time-domain correlation in the channel matrix

HL by the orthogonal transform with the unitary matrix QL. Recalling the spatial model

with the unitary matrices QT and QR , we have

vec(HL) = [(IL ⊗QT ⊗QR )(QL ⊗ INR NT )⊗ ID ]c̄coe f (3.9)

≈ [(IL ⊗WT QT,KT ⊗QR,KR )(QL,KL ⊗ INR NT )⊗ ID ]ccoe f ,

where we use the unitary matrices QT,KT , QR,KR and QL,KL with ranks KT (≤ NT ), KR (≤ NR )

and KL(≤ L) for QT , Q̄R and QL in order to find the more compact coefficients of vec(HL).

Then, by using the approximation, we decouple the signal part into the product of two

modeling domains - space and time domains

vec(YL) ≈ X(QL,KL ⊗WT QT,KT ⊗QR,KR ⊗ ID )ccoe f +NL

= X(ILQL,KL ⊗WT QT,KT ⊗QR,KR ⊗ ID )ccoe f +NL

= AL

[

(WLXL)T Q̃T,KT ⊗ Q̃R,KR

]

ccoe f +NL (3.10)

where AL = IL ⊗A, XL = IL ⊗Xp , WL = IL ⊗W, Q̃T,KT = QL,KL ⊗QT,KT and Q̃R,KR = QR,KR ⊗ ID .

Note that this model has fewer parameters than the conventional MIMO channel model.

The only unknown parameters are the term ccoe f and the AoD information in WL .
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3.2 Channel estimation

With the proposed channel model, the CSI matrix HL can be obtained by only estimating

ccoe f and WL . The estimation problem is formulated by a LS minimization as follows

arg min
WL ,ccoe f

∥vec(YL)−X · vec(HL)∥2. (3.11)

To solve this problem efficiently, we derive an iterative algorithm for obtaining the solution.

For each iteration, we express the corresponding LS channel estimate from the previous

iteration in terms of WL,opt and ccoe f ,opt .

3.2.1 Phase I: coefficient estimation

The first step is the coefficient estimation. We assume that the AoD matrix in this step is

optimum, i.e., WL = WL,opt . Then, the LS estimate of ccoe f is given by

ĉcoe f = (ZH Z)−1ZH vec(YL) = F (WL,opt ), (3.12)

where Z = AL

[

(WLXL)T Q̃T,KT ⊗ Q̃R,KR

]

. This result is a function of the optimal directional

matrix WL,opt . At the i th iteration, since the optimal directional matrix is not available,

the tentative estimation, ŴL,i−1, replaces WL,opt .

3.2.2 Phase II: direction estimation

The second step is the direction estimation. Similar to the first step, we begin with the

assumption that the optimal coefficient vector is available, i.e., ccoe f = ccoe f ,opt . Define a

new matrix G = Q̃R,KR Ccoe f ,opt Q̃T
T,KT

, where Ccoe f ,opt is a KR D ×KLKT matrix derived by

{

Ccoe f ,opt (i , j ) = ccoe f ,opt (KR D( j −1)+ i )

where 1 ≤ i ≤ KR D,1 ≤ j ≤ KLKT

(3.13)

We rewrite the received matrix in a vector form

vec(YL) = AL vec(GWLXL)+ ῩL (3.14)
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where ῩL represents the sum of the modeling error associated with G and AWGN term

NL . As previously, since the optimal matrix is not available, the tentative estimation, Ĝi−1,

replaces Gopt at the i th iteration.

3.2.3 Algorithm: root-finding method

Since we assume that W is constrained to be a diagonal matrix, i.e., W = di ag (w), then

IL ⊗W = di ag (1L ⊗w) and therefore

vec(YL) = AL vec(G ·di ag (1L ⊗w) ·XL)+ ῩL

= AL[(1BL ⊗G)⊙ (XT
L ⊗1N D )](1L ⊗ INT )w+ ῩL

= Tw+ ῩL (3.15)

The LS estimate of wopt is given by ŵLS = T†vec(YL), where † denotes pseudo-inverse

operation. To improve the estimate and reconstruct a steering vector ŵ, we analogously

define a steering vector

v(θ) = [1, v(θ), . . . , v M−1(θ)]T (3.16)

where v(θ) = exp(− j 2πd
λ si n(θ)). The AoD information φ̂ can be retrieved as

φ̂= arg max
−π≤θ≤π

ℜ{∠(ŵLS)H v(θ)} (3.17)

where ∠ denotes the phase extraction operator defined by

∠([a0e j b0 , a1e j b1 , . . . , ak e j bk ]) = [1,e(b1−b0), . . . ,e(bk−b0)]

for ai
N
i=0

∈ℜN+1 and bi
N
i=0 ∈ [0,2π). Having obtained φ̂, we then convert (3.17) into a root

finding problem. It searches for the root of the correlation polynomial P (z) which is the

closest to the unit circle, i.e.,

{

ẑ = argmi n
z

||z|−1|,

s.t. P (z) =∠(ŵLS)H z−M = 0
(3.18)

and then retrieves the AoD information from ẑ = exp[− j 2πd
λ

si n(φ̂)]. Finally, the direc-

tional matrix is to be reconstructed by ŴL = IL ⊗di ag (ẑ), where ẑ = [1, ẑ, . . . , ẑM−1].
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3.3 Precoding codeword selection

The proposed channel model can be applied to simplify the codeword selection process.

The procedure for codeword selection is that after channel estimation, the receiver selects

a beamforming vector from a given codebook based on the estimated CSI. The selected

vector will be fed back to the BS with the purpose of improving the link quality.

To make it simpler, we only use one OFDM symbol at the time and frequency index (t ,k)

and omit their index. The received symbol vector can be written as

y = HFv x+n, (3.19)

where y is a NR ×1 vector, H is a NR ×NT channel matrix, Fv is NT ×K precoding matrix,

and x is a K ×1 transmitted vector with K independent data streams.

3.3.1 Codebook structure

In order to design an efficient codeword selection algorithm, the codebook structure

plays a key role. It is well known that the DFT-based codebook is suitable for use in the

correlated MIMO channel, due to its perfect-matching to the linear array antenna [10]. As

shown in [11], we generate the codebook set by

Fv = Γ
v−1F1, v = 2, · · · ,V (3.20)

where F1 is an NT ×K matrix consisting of K columns of the NT -point DFT matrix and

Γ = diag(1,e j 2π/V , · · · ,e j 2π(NT −1)/V ) is an NT × NT diagonal matrix. Geometrically, the

construction can be interpreted as rotating an initial vector through the NT -dimensional

complex space by using a diagonal matrix whose elements are the V th roots of unity.

3.3.2 Codeword selection

In order to choose an optimal codeword index v , we follow the minimum singular value

selection criterion (MSV-SC) [12]. That is, when a zero-forcing (ZF) receiver is used, the

optimal codeword Fv can be found using:

v̂ = argmax
v

λmi n{ĤFv } (3.21)
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where Ĥ is the estimated CSI and λmi n denotes the minimum eigenvalue. Recall the

spatial-correlated channel model H = QR CQ̄T
T W. The estimated CSI can be written as

Ĥ = QKR ĈQH
KT

Ŵ, (3.22)

where Ĉ and Ŵ are the estimated coefficient matrix and the AoD information matrix. The

estimation process can be done by the proposed iterative algorithm.

Replace the estimated CSI in (3.21) by the proposed channel estimation in (3.22). An

upper bound of the minimum singular value is derived as follows:

λmi n{ĤFv }
(a)= λK {ĤFv } =λK {QKR ĈQH

KT
ŴΓ

v−1F1}

(b)
≤ λK {ĈQH

KT
ŴΓ

v−1}

(c)= λK {ĈQH
KT

}

(d)
≤ λK {Ĉ} (3.23)

where in (a) we use the assumption that the dimension of Fv is NR ×K , (b) and (d) are

obtained by invoking Lemma 3.31 of [13], (c) follows as both Ŵ and Γ
v−1 are unitary. This

upper bound can be achieved if QKR is a unitary matrix, the model order is the same as

the stream number such as KT = K , and

QH
KT

ŴΓ
v−1F1 = I. (3.24)

Note that finding the optimum index v which achieves (3.24) is much simpler than the

exhaustive search in (3.21). We choose the orthogonal basis QKT = F1 and recall that both

Ŵ and Γ
v−1 are diagonal matrices

Ŵ = diag[1,e− j 2πθ̂, · · · ,e− j 2π(NT −1)θ̂]

Γ
v−1 = diag[1,e j 2π (v−1)

V , · · · ,e
− j 2π(NT −1)(v−1)

V ].

The identity of (3.24) implies ŴΓ
v−1 = I, and therefore we have v = θ̂L+1 that achieves the

upper bound in (3.23). Due to the finite size of the codebook, the quantization v̂ = ⌊θ̂V +1⌉,

where ⌊·⌉ denotes the rounding operation, is necessary to use in the procedure.

In short, CS can be simplified if the channel estimator and the codebook are well struc-

tured. The main idea behind this design is that both the channel estimation and the CS

try to find the same singular vector of CSI. Therefore, if we can properly choose the right
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model for them, some duplicated efforts can be avoided. That is, when the codebook

Fv = Γ
v−1F1 is used and the channel estimate Ĥ = QKR ĈQH

KT
Ŵ is obtained, then CS is

accomplished by the simple operation î = ⌊θ̂V +1⌉.

3.3.3 Non-DFT codebook and model calibration

Finally, it is worth mentioning that, for non-DFT-based codebook systems, QKT ̸= F1, our

scheme can be also applied. We first introduce the chordal distance, dist(·), defined by

dist(Fa ,Fb)
de f=

√
√
√
√K −

K∑

p=1

λ2
p {FH

a Fb}. (3.25)

When QKT ̸= F1, the upper bound (3.23) can be achieved by minimizing the chordal

distance between the subspaces generated by both sides of (3.24)

v̂ = arg min
v∈1,··· ,V

dist(QH
KT

ŴΓ
v−1F1,I)

= arg max
v∈1,··· ,V

K∑

p=1

λ2
p {QH

KT
ŴΓ

v−1F1}

≈ arg max
v∈1,··· ,V

K∑

p=1

λ2
p {FH

1 Γ
vc−1ŴΓ

v−1F1} (3.26)

≤ arg max
v∈1,··· ,V

K∑

p=1

λ2
p {Γvc−1ŴΓ

v−1}

=
⌊

θ̂V +
(v̂c −1)V

Lc
+1

⌉

(3.27)

which indicates that even if QKT ̸= F1, the simplicity of our CS scheme can still be preserved

by using an approximation in (3.26) where the estimator basis QKT is approximated by

QKT ≈ Γ
v̂c−1F1 (3.28)

The required function Γ
v̂c−1 can be found using an off-line calibration process to minimize

the distance between the spaces spanned by the two bases as

v̂c = arg min
vc∈1,··· ,Lc

dist(QKT ,Γvc−1F1) (3.29)
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where Lc should be chosen as large as possible in order to improve the approximation

(calibration) accuracy. As it can be operated off-line, it does not involve extra real-time

computational complexity.

3.4 Performance analysis

We now describe the MSE analysis of the proposed channel estimator. In analyzing the

MSE performance, we optimistically assume that the orthogonal pilot matrix is used and

the directional matrix W is perfect. Therefore

ϵ= E {∥HL − ĤL∥2
F }

= E {∥vec(HL)−ΨΩvec(HLXL +NL∥2
2} (3.30)

where Ψ= AL(WL,opt XL)T Q̃T,KT ⊗ Q̃R,KR and Ω= (ZH Z)−1ZH . As HLXL and NL are statisti-

cally independent, the MSE can be separated into two terms which are contributed by the

modeling error (reduced-rank basis matrices) and AWGN, respectively.

ϵ= ϵh +ϵn

= E {∥vec(HL)−ΨΩvec(HLXL)∥2
2}+E {∥ΨΩvec(NL)∥2

2}

= tr {(I−PH
w )(I−Pw )Rh}+ tr {

N0

B
Pw }

=
χ∑

k=1

λk∥(I−Pw fk )∥2
2 +

N0

B
Ks (3.31)

where

Pw = [WT
L,opt Q̃T,KT (Q̃T

T,KT
Q̃T,KT )−1Q̃T

T,KT
W∗

L,opt ]⊗ Q̃R,KR Q̃T
R,KR

, (3.32)

Rh = E {vec(HL)vec(HL)H } is the channel correlation matrix, fk is Rh ’s eigenvector associ-

ated with the eigenvalue λk , and χ= NR NT LD is the degree of freedom of HL .

Let M be the rank of the dominant signal subspace of the channel covariance matrix

Rh , where 1 < M < χ. We define Ks = KT KR KLD is the compound modeling order. If

Ks is chosen to be smaller than M , there is an under-modeling error contributed by
∑χ

k=1
λk∥(I−Pw fk )∥2

2. This error dominates the mean squared error when the AWGN is

small (high SNR region). On the other hand, the thermal noise can be reduced by using a
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small model order of Ks . This noise-reduction effect dominates the mean squared error

when the AWGN is large (low SNR region).

3.5 Numerical results

The simulation results reported here use an 8×8 MIMO-OFDM system with FFT-size

N = 128 and angle spread (AS) = 2◦. The channel model is based on the 3GPP spatial

channel model (SCM) which generates the channel coefficients according to a set of

selected parameters (e.g., AS, AoD, angle of arrival (AoA), etc.). It is a popular parametric

stochastic model whose spatial cross correlations are functions of the joint distribution of

the AoD at the transmit side and the AoA at the receive side.

We assume that the environment surrounding the MS is rich in scattering with negligible

spatial correlations. Hence, a full rank basis matrix is used to characterize the spatial

correlation at the receive side. Other assumptions and conditions used in our simulation

are: (i ) the antenna spacing at transmit and receive arrays are both 0.5λ, (i i ) an orthogonal

training matrix is used, (i i i ) 10 iterations are used for all simulations (although in most

cases, convergence occurs in less than 3 iterations), and (i v) SNR is defined as (Eb/N0) at

the input of each receive antenna, (v) orthonormal polynomial basis matrices [9] are used

for QT, QR, and QL.

3.5.1 Channel estimation results

The algorithm computes the frequency domain channel response ĤL by substituting

the final result of the estimated coefficient matrix ĉcoe f and that of ŴL into vec(ĤL) =
AL vec(ĜŴL) to compare with the conventional LS solution. The channel is a block fading

channel with an approximated rank of two. Since the BS spatial correlations are high, the

corresponding correlation function lies in a low-dimension subspace so that a small KT is

sufficient to describe the channel.

In Fig. 3.1, we compare the performance of our proposed algorithm for long (ratio=
16/128) and short (ratio= 8/128) CP length systems. Assume the modeling order of channel

taps D is perfectly equal to the CP length. Since a longer channel delay (long CP case)

needs a higher model order D , that degrades noise-reduction ability. Therefore, the short

CP cases (three top lines) have better performance than the one with the long CP (three

bottom lines), but both of them are superior to the conventional LS solution.
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Fig. 3.1 The effect of CP length on the MSE performance in a SCM channel; AS = 2◦ and

fd Ts = 0.02844

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0
 (dB)

N
o

rm
a

liz
e

d
 M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r

 

 

Least Squared

K
T
=2, cp=1/16, K

L
=4

K
T
=3, cp=1/16, K

L
=4

K
T
=4, cp=1/16, K

L
=4

K
T
=5, cp=1/16, K

L
=4

K
T
=6, cp=1/16, K

L
=4

K
T
=7, cp=1/16, K

L
=4

Fig. 3.2 The effect of the model order (KT ) on the MSE performance in a SCM channel;

AS = 2◦ and fd Ts = 0.02844



3.5 Numerical results 29

In Fig. 3.2, considering a time correlated fading environment with an observation window

L = 7, the processing dimension can be drastically reduced when the spatial or time

domain correlation is high enough. We find that an optimal KT exists for any given SNR.

Increasing the model order does not necessarily improve the performance. In contrast,

performance degradation occurs when the modeling order is not large enough to capture

the channel characteristic. Such behavior is consistent with what the performance analysis

has predicted and is similar to those observed in other model-based approaches [7, 8].

Besides, considering a certain level of an acceptable MSE, we can reduce the processing

dimension (KT , KL, D). For example, in a case of KT = 4, KL = 4, and cp=1/16 with

MSE = 10−3, the compression rate is 4
8
× 4

7
× 1

16
≈ 0.018, which means that only 2% of the

coefficients are needed to properly represent the channel response.

3.5.2 Codeword selection results

The performance of the proposed CS algorithm is evaluated by using the SER and the

mean absolute error (MAE). The SER is defined based on [14] as follows

SER
de f= 1−

K∏

k=1

(1−Pk ) (3.33)

where Pk = NeQ
(√

(SNRk d 2
mi n

)/2
)

is the error probability, dmi n is the minimum distance

of the constellation used, Ne represents the average number of nearest neighbors, and

SN Rk denotes the SNR value on the kth data stream. Then, we define the distance of

the error event by MAE. The MAE denotes the average Euclidean distance between the

estimated index and the perfect index defined by

M AE
de f= E

{

|Iper f − Iest |
}

(3.34)

where Iper f is the optimal codeword index that is chosen by perfect CSI, and Iest is the

estimated index by using the proposed CS scheme or exhaustive search with the estimated

CSI.

In Fig. 3.3, we show the SER and MAE performance of our CS algorithm and the con-

ventional one using exhaustive search with a 64-codeword DFT-based codebook. Due

to the high spatial correlations and the use of a linear receiver, the system only provides

a limited number of data streams K . In the SER (left-hand side figure), the two bottom

curves (K = 1) show a very small SER gap (within 1 dB) between the conventional and
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Fig. 3.3 SER and MAE performance of the proposed CS (quantize) and the exhaustive

search (exhaust) algorithms with V = 64.

the proposed scheme. We notice, in the right figure, the MAE of the proposed CS scheme

is less than 1 when the SNR is high. This means that the proposed scheme selects the

codeword index that is almost identical to the perfect codeword index.

3.6 Conclusion

Channel correlation degrades the capacity of MIMO systems, reducing the number of

independent data streams that can be sent. However, we show the fact that exploiting

the correlation can simplify the signal processing and improve the receiver performance.

Two examples are introduced, i.e., the channel estimator and the codeword selector, for a

correlated MIMO-OFDM channel.

The key ideas in developing the proposed channel estimator are exploiting the spatial,

time and frequency correlations of the channel taps, and reducing the dimensionality of

the parameter estimation space by retaining only the dominant terms. Numerical results

show that the proposed algorithms give 10 to 15 dB MSE gain and are most effective when

the AS is small, i.e., when the dimension of the dominant subspace is much smaller than

full channel correlation rank. Not only they offer fast and accurate estimates, give MSE
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performance improvement due to the noise reduction effect, but more importantly, they

also provide compact and useful CSI that leads to feedback channel bandwidth reduction

and other potential post-processing complexity cutbacks.

The proposed CS is one of the examples to show how this compact CSI works. If the DFT-

based codebook is used, the selection process can be simply performed by a rounding

operation on the estimated AoD as the part of the channel estimate. As a result, the use of

the compact CSI reduces computational complexity from an exhaustive search to a simple

rounding operation. Also, the system performance is maintained. The SER loss presented

in the numerical results is less than 1 dB when the 64-codeword DFT-based codebook is

used. Finally, we demonstrate how to generalize this CS scheme to the non-DFT based

codebook. The mismatch between different codebooks can be compensated by a linear

transform (calibration) without the need of extra real-time computational complexity.





Chapter 4

Robust symbol detection

In Chapter 3, different channel estimation schemes were investigated. We found that the

resulting MSE can have a very small value, but it never goes to zero as the SNR increases.

This means that the channel estimation always has some errors, known as the imperfect

CSI, which is not avoidable due to the nature of wireless channel, e.g., fading, thermal

noise, and channel modeling errors.

The impact of imperfect CSI on MIMO symbol detection is the main concern in this

chapter. The first part of our study focuses on the case that the receiver has channel

estimation errors, but the channel distribution information at receiver (CDIR) is perfectly

known. In this case, the statistically optimal solution can be found by the ML criterion

with the given CDIR. Then we further consider the case when the receiver has both

channel estimation errors and imperfect CDIR. In this case, we can guarantee the system

performance by using Bayesian model selection (BMS).

Efforts to enhance MIMO detection against imperfect CSI come from two main fronts:

1) those using space-time coding or channel coding and 2) those proposing improved

sub-optimum detectors.

• Among the former, it is worth citing [15], where a space-time trellis coded optimum

receiver for Rayleigh fading was proposed. This work was later extended to deal

with frequency and spatially selective Rician fading [16]. In both cases, the CSI

uncertainty models, which are channel estimates dependent, are used to modify

the ML criterion. In another approach, Sadough et al. [17] applied a soft-input soft-

output decoder for bit interleaved coded modulation. They suggested a modified
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iterative decoding scheme to reduce the imperfect CSI impact. Unfortunately, their

solutions are suitable for time-flat or slow fading only.

• Among those in search of improved detection algorithms are the modified sphere

decoder [18] and an improved successive interference cancelation scheme [19].

The statistic information of channel estimation errors is used to devise better early

stopping, ordering, regularizing and pre-whitening strategies. Nevertheless, none of

them is designed for use in a time and/or frequency selective environment.

According to the literature survey, we found the need to study the imperfect CSI on a

channel model, including spatial, time, and frequency fading effects. In this case, CSI is

obtained by reference signal assisted estimation for which pilot symbols are periodically

inserted in the data frame. This information is never perfect and estimation errors can

significantly degrade the MIMO receiver performance even if a ML symbol detector is in

place.

4.1 System model

Recall a single-user MIMO-OFDM system with NT TX and NR RX antennas. The received

symbol vector at the t-th time slot and the k-th subcarrier can be written as

ytk = Htk xtk +ntk

= Xtk htk +ntk , (4.1)

where ytk is a NR ×1 symbol vector, Htk is a NR ×NT channel matrix, ntk is a NR ×1

AWGN vector, Xtk = xT
tk
⊗ INR , and htk = vec(Htk ). We assume that ntk ∼ Nc (0,Σn) and

htk ∼Nc (0,Σh).

4.1.1 Pilot symbols

The pilot symbols are represented by Xt ′k ′ , where t ′ and k ′ are the pilot locations shown

in Fig. 4.1. Denoting the set of pilot positions by P and considering only the received

samples yp in the |P | = Np pilot positions, the received pilot symbols are given by

yp = Xp hp +np , p ∈P , (4.2)
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Fig. 4.1 Mapping of the pilot symbols, where R0 and R1 denote the pilot positions.

where yp = [yT
t ′1k ′

1

, · · · ,yT
t ′p k ′

p
]T is a NR Np × 1 symbol vector, hp = [hT

t ′1k ′
1

, · · · ,hT
t ′p k ′

p
]T , and

Xp = di ag (Xt ′1k ′
1
, · · · ,Xt ′p k ′

p
) with di ag (·) as the block diagonalization. We assume the

orthogonality of pilots as XH
p Xp = INT Np , the distribution of the channel vector as hp ∼

Nc (0,Σhp
), and the AWGN vector as np ∼Nc (0,Σnp ).

4.1.2 Channel model

The correlated channel model including space, time, and frequency domain correlations,

known as the triply selective channel, can be found in [20]. However, the model of [20] is

only in the time domain and a DFT process is necessary to simplify our analysis. For this

purpose, we express the MIMO channel impulse response with an effective memory of L

taps as

h̄t = [h̃(1,1)
t , · · · , h̃

(1,NT )
t , · · · , h̃

(NR ,1)
t , · · · , h̃

(NR ,NT )
t ]T ,

where h̃(m,n)
t = [h̃t (1)(m,n), · · · , h̃t (L)(m,n)] denotes the coefficients of the (m,n)th subchan-

nel between the nth transmit and the mth receive antennas at the time index t . The

frequency domain correlation matrices of the above channel can be computed by

Σht1,k1
ht2,k2

= E [vec(Ht1,k1
)vec(Ht2,k2

)H ]

= E [Ωk1
h̄t1 h̄H

t2
Ω

H
k2

] =Ωk1
F(I )ΩH

k2
, (4.3)



36 Robust symbol detection

where Ωki
= INT NR ⊗ [ω(ki−1)0, · · · ,ω(ki−1)(L−1)] is the ki th row of the NF -point DFT matrix,

and the correlation function F(I ) is given by

F(I ) =ΨRx ⊗ΨT x ⊗CI SI · J0

(

2π fd (t1 − t2)Ts

)

(4.4)

where J0(·) is the zero-order Bessel function of the first kind, fd is the maximum Doppler

frequency, ∆t = t1 − t2 is the difference of two time indexes, Ts is the duration of one

OFDM symbol, and CI SI is the covariance matrix of the intersymbol interference. The

matrices ΨRx and ΨT x are the RX and TX correlation matrices, respectively.

4.1.3 Channel estimation errors

To model channel estimation errors, we start with the classical channel estimator for the

correlated fading channels. This approach is called 2D-MMSE channel estimator, which

follows the linear minimum mean square error (LMMSE) criterion given as follows

ĥtk = Ŵtk ĥp

=Σhtk ĥp
Σ
−1

ĥp
ĥp (4.5)

The channel estimation on the pilot positions ĥp is obtained by the LS criterion as ĥp =
X†

p yp with Moore-Penrose pseudoinverse denoted by †. The interpolation matrix Ŵtk is

obtained by the orthogonality principle. That is, E [(htk −Ŵtk ĥp )ĥH
p ] = 0.

For the 2D-MMSE estimator, the channel estimation errors can be modeled as:

etk = htk − ĥtk . (4.6)

The error vector comes from the estimated CSI of the pilot symbols ĥp and also from the

interpolation matrix Ŵtk . Now, we can briefly evaluate its impact on the symbol detection.

The received signal can be reformulated as follows:

ytk = Xtk (ĥtk +etk )+ntk

= Xtk Ŵtk ĥp + (Xtk etk +ntk ) . (4.7)

To decode the transmit symbol Xtk , the noise term, including both Xtk etk and ntk , needs

to be taken into account. Obviously Xtk etk is more harmful than ntk because it is related

to the transmitted symbol Xtk . This problem would be more serious when the orthogonal
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space time block code (orthogonal space time block code (OSTBC)) is used. A simple

example of NT ×2 OSTBC is given by

[y11,y21] =[X11Ŵ11,X21Ŵ21]ĥp

+ [X11e11,X21e21]+ [n11,n21] (4.8)

In this case, the channel estimation errors result in a strong and correlated noise term

[X11e11,X21e21], which will degrade the performance of a MIMO symbol detector.

4.2 Symbol detection with perfect CDIR

For comparison purposes, we first review the conventional approach without considering

imperfect CSI, referred to as the mismatched receiver. Omitting the time and frequency

index (t ,k), the resulting outputs of the mismatched receiver are given by

X̂MR = argmin
X∈X

∥y−Xĥ∥2. (4.9)

The mismatched receiver decodes symbols by using the channel estimate in the perfect

CSI decision metric. We treat this receiver as the performance benchmark.

4.2.1 Robust ML receiver

The main idea of the robust ML receiver (RMLR) is to model the uncertainty of the chan-

nel estimation results. Assume hp and np are independent of each other, the channel

estimation on the pilots, ĥp , is computed as:

ĥp = X†
p yp = hp +XH

p np

∼Nc (0,Σhp
+Σnp ). (4.10)

Using (4.5), the channel estimation errors etk in (4.7) are shown as follows:

e = h− ĥ = h−Σ
H

hĥp
Σ
−1

ĥp
ĥp

∼Nc (0,Σh −Σ
H

hĥp
Σ
−1

ĥp
Σhĥp

), (4.11)
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where Σĥp
= E [ĥp ĥH

p ] is given in (4.10), and Σhĥp
= E [h(hp +XH

p np )H ] = Σhhp
. Thus, we

have the conditional probability of the received signal in (4.7) as follows:

P (y|X, ĥp ) ∼Nc (XŴĥp ,Σn +XΣeXH ), (4.12)

where Σe = E [eeH ] is defined in (4.11). The RMLR decodes the transmitted codeword X by

maximizing the conditional probability (4.12) with the channel estimation results ĥp . The

resulting output of the RMLR can be defined as

X̂RML = argmaxln
X∈X

P (X|y, ĥp )

= argmaxln
X∈X

P (y|X, ĥp )

= argmin
X∈X

(∥y−Xĥ∥2
Σy

+ lndet (Σy)), (4.13)

where the notation is defined as ∥Φ∥2
Ψ
= Φ

H
Ψ

−1
Φ. The correlation function Σy = Σn +

XΣH
hhp

(Σhp
+Σnp /Np )−1

Σhhp
XH is based on (4.10), (4.11) and (4.12). Note that the RMLR is

a modified version of the mismatched receiver with a weighting matrix Σy, which provides

more freedom to change the decoding metric according to the uncertainty of the channel

estimation results.

4.2.2 Optimal receiver

The optimal receiver (OPT) decodes the transmitted codeword Xtk by jointly processing

the received signal ytk and the received pilots yp . This scheme performs symbol detec-

tion directly without the channel estimation process. The OPT is optimal if there is no

modelling errors from the interpolation matrix Wtk .

Assume that the perfect channel response at the (t ,k)th positions htk can be constructed

by linear interpolation of those at the pilot positions hp with negligible error

htk = Wtk hp , (4.14)

where the interpolation matrix Wtk is obtained by applying the orthogonality principle,

E [(htk −Wtk hp )hH
p ] = 0, i.e., Wtk =Σhtk hp

Σ
−1
hp

.

The OPT performs ML detection that maximizes the conditional probability on the trans-

mit matrix X given the following matrices: the received signal y, the received pilot signal
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yp , and the pilot signal Xp . The resulting output of OPT can be written as

X̂OPT = argmaxln
X∈X

P (X|Xp ,yp ,y)

= argmaxln
X∈X

Ehp
[P (y|X,hp )P (yp |Xp ,hp )]

= argmin
X∈X

(−BH A−1B+ ln det (A)), (4.15)

where the matrices A and B are defined as:

B = WH XH
Σ
−1
n y+XH

p Σ
−1
np

yp ,

A = WH XH
Σ
−1
n XW+XH

p Σ
−1
np

Xp +Σ
−1
hp

.

The result in (4.15) can be obtained when the required CDIR is given. That includes

the interpolation matrix W, the correlation matrices of AWGN Σn (also Σnp ), and the

correlation matrix of CSI on the pilot positions Σhp
. In other words, the OPT scheme

exploits all information related to CSI and the transmitted symbol in order to directly

perform the symbol detection without the procedures of channel estimation and imperfect

CSI modeling.

4.2.3 OSTBC-MIMO systems

For a MIMO-OFDM system with OSTBC, the NT ×Nd encoded codeword X̄d ,k at the kth

sub-carrier can be written as X̄d ,k = (x1k , · · · ,xNd k ), and the received codeword yd ,k at the

kth sub-carrier is obtained as







y1k

...

yNd k






=







H1k 0

. . .

0 HNd k







X̄d ,k +







n1k

...

nNd k







.

In the derivation of the decoding metric, we rearrange the matrices and obtain the follow-

ing equivalent equation:

yd ,k = Xd ,k hd ,k +nd ,k , (4.16)

where we define that yd ,k = vec(y1k , · · · ,yN dk ), nd ,k = vec(n1k , · · · ,nN dk ), Xd ,k = di ag (xT
1k
⊗

INR , · · · ,xT
Nd k

⊗ INR ), and hd ,k = vec(h1k , · · · ,hNd k ). According to the previous definition

and omitting the frequency index k, we can write the mismatched receiver output by the
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following expression:

X̂d ,M M = argmin
Xd∈Xd

∥yd −Xd ĥd∥2. (4.17)

where ĥd = vec(Ŵ1ĥp , · · · ,ŴNd
ĥp ) is the cascade of the channel estimation vectors. Next,

we have the resulting output of the RMLR as

X̂d ,RML = argmaxln
Xd∈Xd

P (Xd |yd , ĥp )

= argmin
Xd∈Xd

(∥yd −Xd ĥd∥2
Σyd

+ lndet (Σyd
)). (4.18)

whereΣyd
=Σnd

+XdΣed
XH

d
, Σed

= E [ed eH
d

] =Σhd
−ΣH

hd hp
Σ
−1

ĥp
Σhd hp

, and ed = vec(e1, · · · ,eNd
).

Finally, the OPT output is obtained by

X̂d ,OPT = argmaxln
Xd∈Xd

P (Xd |Xp ,yp ,yd )

= argmin
Xd∈Xd

(−BH
d A−1

d Bd + ln det (Ad )), (4.19)

where the details are shown as follows:

Wd =Σ
H
hd hp

Σ
−1

ĥp
,

Bd = WH
d XH

d Σ
−1
nd

yd +XH
p Σ

−1
np

yp ,

Ad = WH
d XH

d Σ
−1
nd

Xd Wd +XH
p Σ

−1
np

Xp +Σ
−1
hp

.

The presented equations show that the proposed schemes can be applied to OSTBC

MIMO-OFDM systems by simply replacing the symbol notations by their cascaded forms.

4.3 Symbol detection with imperfect CDIR

The main focus of this section is to deal with the imperfect covariance matrices used in

the proposed receiver. Recall that the OPT scheme is as follows

X̂OPT = argmin
X∈X

(−BH A−1B+ ln det (A)). (4.20)

This scheme is optimum over an arbitrarily correlated Rayleigh fading MIMO channel

when the perfect CDIR is available. In practice, it is difficult for a receiver to reliably

estimate the correlation matrices, Σhhp
, Σhp

, and N0 with only limited observations.
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4.3.1 Correlation model set

In order to obtain CDIR, the sample covariance matrix is the most commonly used esti-

mator of a covariance matrix. However, it is highly unstable for large covariance matrices

with a limited number of observations. Instead of using the sample mean and the sample

variance [16], we apply the triply selective channel model to generate the correlation ma-

trices Σhp
and Σhhp

. For simplicity, we assume that N0 can be accurately estimated. The

ranges of the parameters are known as fd ∈ [0, fmax] and nL ∈ [1,ncp ]. Then we discretize

these ranges into KM levels and define the model set as:

Mi =
{

Σ
(i )
hp

,Σ(i )
hhp

}

, i = 1, · · · ,KM ,

where i denotes the index of different covariance matrices. However, finding a good model

set Mi for triply selective channels is not obvious.

One alternative for designing a model set is to use different propagation channel models

defined in the long-term evolution (LTE) specification [21]. Three different delay profiles

are representative of low, medium, and high delay spread environment. These are: (i)

extended pedestrian A model (EPA), (ii) extended vehicular A model (EVA) and (iii) ex-

tended typical urban model (ETU). A brief description of our proposed model set is as

follows: The receiver makes no attempt to estimate the parameters such as fd and nL , and

assumes the model set is

Mi ,F {delay spread, spatial correlation, speed}

M1 =F {ETU ,High,300 km/hr}

M2 =F {EV A,Medium,150 km/hr}

M3 =F {EPA,Low,10 km/hr},

where F is the function to generate the correlation matrices. For instance, given the

sampling time, ∆t = 0.065µs and carrier frequency 2 GHz, the model M2 can be obtained

according to the triply selective model shown in eqn. (4.4), where

ΨRx =
[

1 0.9

0.9 1

]

, ΨT x =
[

1 0.3

0.3 1

]

,

CI SI = di ag ([1,0.712, · · · ,0.024])39×39, and fd = 278 H z based on 150 km/hr speed and 2

GHz carrier frequency.
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4.3.2 Bayesian model selection

An efficient model selection can be derived by invoking the BMS approach [22]. This

approach maximizes the conditional probability P (Mi |y), which is equivalent to picking

up the model with the highest evidence. The BMS is derived as follows

M̂i = argmaxln
i=1,··· ,KM

P (y|Mi )

= argmaxln
i=1,··· ,KM

∑

X∈X
P (y|X,Mi )

≈ argmaxln
i=1,··· ,KM

P (y|X̂i ,Mi ) (4.21)

= argminmin
i=1,··· ,KM ,Xi∈X

(

−BH
i A−1

i Bi + lndet(Ai )
)

,

where (4.21) is obtained by using the Laplace approximation P (y|X,Mi ) = δ(y|X− X̂i ,Mi).

δ(·) denotes the Dirac delta function. X̂i is the conditional ML estimate by given Mi. The

rest of the notations are defined as:

Ai = Wi
H Xi

H XiWi/N0 +XH
p Xp /N0 +

(

Σ
(i )
hp

)−1
, (4.22)

Bi = Wi
H Xi

H y/N0 +XH
p yp /N0, (4.23)

and Wi =Σ
(i )
hhp

(

Σ
(i )
hp

)−1
. This scheme actually runs KM times of the OPT scheme to find the

best covariance matrices from the KM candidates.

Finally, in the case we have more samples either in the frequency domain or in the time

domain, the model selection results can be improved without complicated computation.

Assuming that we have nw independent observations, the BMS can be rewritten as

M̂i = argmax
Xi∈X,i=1,··· ,KM

nw∑

j=1

lnP (y
( j )

tk
|X( j )

i
,Mi ), (4.24)

where y
( j )

tk
is a NR ×1 complex vector that denotes the j th observation, i.e, the j th received

symbol at the (t ,k)th time-frequency slot.

Obviously, if we assume the channel characteristics are stable, then nw should be as

large as possible. In contrast, when considering mobility and practical implementation,

a moving average design would be more appropriate. In this case, nw should be chosen

according to the coherent time information.
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4.4 Numerical results

Consider the MIMO-OFDM system with NT = 2 transmit and NR = 2 receive antennas with

the configuration parameters from LTE specifications [21]. The system parameters are

given by the frequency division duplexing (FDD) radio frame with normal CP, FFT-size of

NF = 128, and 2 GHz center frequency. The detection and channel estimation algorithms

are performed in one subframe defined by 14 time slots and 12 subcarriers, which is also

shown in Fig. 4.1. The discrete-time MIMO fading channel is generated according to [20]

as follows:

h̄t (k) = (Ψ1/2
Rx ⊗Ψ

1/2
T x ⊗C1/2

I SI ) ·Φ(k), (4.25)

where (·)1/2 is the square root of the matrix. We also define that Φ(k) is an (NT NR L)×1

vector, whose elements are zero-mean and uncorrelated flat Rayleigh fading, and

E
[

Φ(k1) ·ΦH (k2)
]

= J0

(

2π fd (k1 −k2)Ts

)

· INT NR L . (4.26)

The correlation coefficient matrices can be calculated by the formulas in [20] under certain

parameters. For example, if the transmit and receive antennas are spaced by 12λ and 0.5λ,

where λ is the wavelength, the AoA is 90◦, and the AS is 10◦, then we get α = 0.215 and

β=−0.304 such that the spatial correlations are given by

ΨT x =
[

1.000 0.215

0.215 1.000

]

, ΨRx =
[

1.0000 −0.304

−0.304 1.0000

]

.

The power delay profile is exponentially decaying, and the elements c(l1, l2) of the matrix

CI SI are obtained from [20]. Having the above matrices, we can now compare the different

receivers under the following assumptions: 1) without OSTBC, 2) with OSTBC, and 3) with

imperfect CDIR.

4.4.1 Without OSTBC

We present some numerical examples to illustrate the performance of the proposed

algorithms without OSTBC. The covariance matrix of the noise term is defined as

Σn =
N0

1+ρ

[

1 ρ

ρ 1

]

. (4.27)
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Fig. 4.2 BER vs. SNR for different detection algorithms with ρ = 0.
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Fig. 4.3 BER vs. SNR for different detection algorithms with ρ = 0.9.

In Fig. 4.2, we consider ρ = 0 and compare different algorithms in terms of bit error rate

(BER) for different SNR levels. The results show that there is only a slight improvement by
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using the RMLR and the OPT compared to the mismatched receiver. Since the OPT can

be seen as the optimum approach given full CDIR and pilot information, these results

imply that there is almost no performance loss by using the mismatched receiver under

imperfect CSI.

Fig. 4.3 shows the BER performance of different schemes when ρ = 0.9. The resulting

curves show that there is a 4 dB gain by using the RMLR and the OPT compared to the

mismatched receiver at BER = 10−3. The improvement mainly comes from considering

the correlation matrix Σn and its impact on both channel estimation and symbol detection.

Besides, we found that the RMLR and the OPT come to the same BER performance even

though they are derived from different criteria. Indeed, it can be proved that both decision

metrics tend to be equivalent in the high SNR region.

4.4.2 With OSTBC

Consider an OSTBC proposed by [23] with ρ = 0. We study the pairwise error probability

(PEP) performance corresponding to a pair of codewords given as follows:

X̄1 = STC (2,1,3,1,0,1,3,1,0,1,1,0,1,3)

X̄2 = STC (2,1,3,3,3,3,3,1,0,1,1,0,1,3), (4.28)

where we define the inner space-time encoding function

STC (m1, · · · ,mNd
) =

(

s1 −s∗2 · · · sNd−1 −s∗Nd

s2 s∗1 · · · sNd
s∗Nd−1

)

and sk = exp( j (2mk +1)π/4). Here (·)∗ denotes the conjugate operator. These two code-

words represent a worst-case minimum distance error event [23].

Figs. 4.4 and 4.5 illustrate the PEP performance for different number of pilots (Np = 12

and Np = 8). The curves show that RMLR and OPT gain from 1 dB to 2 dB as the Np

ranges from 12 to 8. This means RMLR and OPT can improve more when the CSI quality

is decreased, i.e., decreasing the number of pilots.

To show the impact of the CSI quality on the error performance, Fig. 4.6 shows the PEP

performance when we reduce the power of pilots by half. It can be noticed that the curves

show a 4 dB improvement with respect to the mismatched receiver when the PEP is 10−3.
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Fig. 4.4 BER vs. SNR for different detection algorithms with Np = 12.
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Fig. 4.5 BER vs. SNR for different detection algorithms with Np = 8.

This picture might imply that there is more gain of the proposed receivers with respect to

the mismatched receiver, when the CSI quality keeps decreasing.
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Fig. 4.6 BER vs. SNR for different detection algorithms with Np = 12 and reducing the pilot

power by half.

4.4.3 With imperfect CDIR

Fig. 4.7 illustrates the BER performance for different approaches under imperfect CDIR.

The BER performance of the proposed scheme is lower- and upper-bounded by that

achieved by the perfect CDIR and the worst-case curve. The worst-case curve denotes that

the receiver uses the covariance matrices M1 to optimize the worst case-channel instead

of performing model selection. Two selection curves represent the performance using the

proposed model selection schemes and different numbers of observations (nw = 1 and

nw = 4). Two other cases, perfect CDIR, and ML detection with perfect CSI, are provided

for reference purposes. The proposed selection scheme offers an approximately 7 dB gain

with respect to the worst-case curve at BER = 10−3 when nw = 1. Increasing nw to 4 and

using (4.24), we obtain an additional 3 dB gain at BER = 10−4.

4.5 Conclusion

In this chapter, we considered the effect of imperfect CSI for MIMO-OFDM systems. Two

kinds of robust detection strategies have been proposed: 1) RMLR which performs ML
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Fig. 4.7 BER performance of various receivers as a function of SNR when the channel is

parameterized by α= 0.215,β=−0.304,EVA, f d = 100 Hz.

detection with the uncertainty of channel estimation; 2) the OPT performing the tasks

of channel estimation and symbol detection jointly. Numerical results show that these

two different criteria come to the same results in terms of the PEP and BER performance.

Both of them are better receiver schemes than the conventional mismatched receiver,

especially with spatially colored noise and OSTBC, and a limited number of pilots.

In the case of imperfect CDIR, we derived an efficient detection algorithm based on the

Bayesian inference. Instead of estimating the covariance matrices, the proposed detector

simply compares a few correlation models to obtain sufficient information. Numerical

results show that the proposed detector performance is as close as 1 dB to the optimum

performance in the presence of imperfect CDIR.



Chapter 5

Interference suppression

In Chapter 4, we have investigated different symbol detection schemes under the as-

sumption of imperfect CSI due to the channel correlations and AWGN. In Chapter 5,

the presence of interference is also taken into account, and its impact on both channel

estimation and symbol detection is investigated.

Research interest in interference cancellation techniques increased considerably over

the past two decades with an upsurge of activities. The main reason was the growing

demands on mobile networks to support data applications at higher throughput and

spectral efficiencies. This has driven the need to develop a frequency reuse technique

in which the BSs, or so called the eNodeBs (eNBs), can transmit on all available time-

frequency resource blocks simultaneously. This promising technique relies heavily on its

interference mitigation capability. An overview of interference coordination techniques

was given in [24], in which viable existing approaches were reviewed, including advanced

MIMO receiver processing techniques and iterative decoding algorithms.

The principle of spatial interference rejection in MIMO systems can be found in the

seminal works in GSM systems such as [25], where the co-channel interference (CCI) is

modeled as a spatial and temporal colored Gaussian noise process. The colored noise

assumption leads to the spatial whitening scheme, denoted by interference rejection

combining (IRC) [26, 27]. In this scheme, the receiver suppresses the interfering signal

statistically instead of decoding it. In [28], it is shown that the IRC receiver provides

a spectral efficiency gain up to 24% as compared to the conventional receivers in the

system-level evaluations.
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In this chapter, we investigate IRC-like receivers in interference limited scenarios. First,

we develop efficient schemes, which take into account the channel estimation errors

and the errors in covariance estimation. These schemes will focus on different kinds of

interference caused by the pilot and the data signals, and suppress them with different

strategies. Second, we present a study to show how to estimate the covariance matrix

when the interfering signal arrives from a frequency selective channel. In this case, the

covariance matrix needs to be estimated by a moving average filter with the optimum

number of taps. Finally, we aim at improving the dimensional scalability of IRC-like

receivers when additional RX antennas are available. These contributions are organized

in three parts:

• In the first part, we consider a two-user interference channel for MIMO-OFDM sys-

tems. The main idea is to take into account the difference between the interfering

pilots and the interfering data signal in terms of their covariance matrices. Assum-

ing the interference and the desired signal are based on the frame format of the

LTE standard [21], we derive three novel receiver structures based on LMMSE and

successive interference cancellation (SIC) criteria to improve the BER performance.

• In the second part, we focus on interference from frequency-selective channels. A

major difficulty in this case is the accurate estimation of the covariance matrices of

interference, which may require knowledge of interference parameters. A similar

work can be found in [29], where the proposed covariance estimator is a moving

average scheme which chooses 11 taps intuitively. Our contribution is finding the

optimal window size (number of taps) of the moving average in a theoretical way.

• In the third part, we propose a scheme that enables the original IRC to use additional

RX antennas. A similar work can be found in [30] where the authors combine the

IRC with antenna selection. We aim at providing an efficient scheme that jointly

processes the received signal by the linear combining. The proposed algorithms

are based on CSI and the signal-to-interference-plus-noise ratio (SINR) value from

the original IRC equalizer and can provide improvement with a slight complexity

increase.
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5.1 Interference with covariance mismatches

In the first part of Chapter 5, we start by introducing a general system model and deriving

a one-dimensional model for algorithm derivation.

5.1.1 System model

For a two-user interference channel, the received waveform of the user equipment (UE)

can be expressed as

ytk = Htk pxtk +αH̄tk p̄x̄tk +ztk ∈ C
NR , (5.1)

where at each time-frequency index (t ,k), Htk , H̄tk are the serving channel matrix and

the interfering channel matrix of size NR ×NT , respectively, ytk is the NR dimensional

received signal vector, xtk , x̄tk are the transmitted symbols, p, p̄ are the NT dimensional

precoding vectors, ztk is the NR dimensional AWGN vector, and α2 represents the power

of interference. To simplify our discussion, each node is equipped with two antennas,

i.e., NR = 2 and NT = 2.1 We further assume that the entries of z are independent and

identically distributed (i.i.d.) Gaussian variables of the form Nc (0, N0). Probability density

functions of channel matrices Htk , H̄tk are assumed to be vec(H) ∼Nc (0,I) and vec(H̄) ∼
Nc (0,I), respectively. The precoding vectors p and p̄ are chosen from the LTE codebook

set P [21], e.g.,

P =
1
p

2
·
{[

1

1

]

,

[

1

−1

]

,

[

1

i

]

,

[

1

−i

]}

. (5.2)

The data-pilot format of the LTE specification is shown in Fig.5.1, where two resource

blocks2 with non-overlapping pilots are considered between the serving evolved node B

(eNB) and the interfering eNB.

A one-dimensional model is derived with the following assumption. Assume that the

channel is static over the time and frequency spans within one RB, the pilot number is

Np = 16 and the number of data symbols is Nd = 152. Since the pilot symbols from two

eNBs are not placed at the same time-frequency locations, the received signal is subjected

to interference with different statistics.

Figs. 5.1 and 5.2 depict a typical relative desired and interfering signal pattern where,

without loss of generality, we place the serving pilot symbols at the beginning of the frame

1Extensions to different numbers of antennas are straightforward.
2Resource block (RB) is defined by a square with 14 time slots and 12 subcarriers.
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Fig. 5.1 Mapping of the serving and interfering pilot symbols, where R0 and R1 indicate

the pilot positions.

and the interfering pilot symbols at the end. These two figures suggest that we divide the

received samples in a typical frame into four intervals, giving

Yp = HXp +αH̄p̄X̄d1 +Zp ∈C
2×16 (5.3)

Yd1 = HpX1 +αH̄p̄X̄d2 +Zd1 ∈C
2×(152−16) (5.4)

Yd2 = HpX2 +αH̄X̄p1 +Zd2 ∈C
2×8 (5.5)

Yd3 = HpX3 +αH̄X̄p2 +Zd3 ∈C
2×8 (5.6)

where Yp ,Yd1,Yd2,Yd3 are the received signal matrices, Xp is the serving pilot matrix,

X1,X2,X3 are the serving data matrices, X̄d1, X̄d2 are the interfering data matrices, X̄p1, X̄p2

are the interfering pilot matrices, while Zp ,Zd1,Zd2,Zd3 represent AWGN. Note that during

the two intervals specified by (5.3) and (5.4), the covariance of interference plus noise is

the same. The above model assumes a synchronous network scenario, i.e., all UEs are

synchronized with a universal clock such that both the desired and interfering downlink

signals arrive at the desired UE simultaneously. We will show that the proposed receivers

work in the asynchronous case as well.

In LTE, pilots from a multi-antenna transmitter are transmitted in a time division manner,

i.e., when a pilot signal is transmitted by one of the antennas, the other antennas remain

silent to avoid self-interference. We further assume that the pilot signal is not spatially

precoded so that the matrix products of the pilot signal are

X̄p1X̄H
p1 =

Ep Np

2

[

1 0

0 0

]

(5.7)
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Fig. 5.2 The one-dimensional model which arranges pilot and data symbols.

X̄p2X̄H
p2 =

Ep Np

2

[

0 0

0 1

]

, (5.8)

where X̄p1 is the transmitted pilot signal from the first antenna and X̄p2 is from the second

antenna. The pilot energy is denoted by Ep and the data energy is Ed . We further define

the SNR and SIR as SNR = 1/N0 and SIR = α−2 under the unity energy assumption, i.e.,

Ed = Ep = 1.

In this work, the goal is to find the linear combination of the received signal for decoding

the data of interest (X1,X2,X3). Assuming the CSI from the serving eNB and the interfering

eNB are given, the covariance matrices of the received signal Yd1,Yd2,Yd3 are as follows:

ΣYd1
= E

[

Yd1|h, h̄, X̄p1, X̄p2

]

= hhH + h̄h̄H +N0I (5.9)

ΣYd2
= hhH + Ψ̄p1 +N0I (5.10)

ΣYd3
= hhH + Ψ̄p2 +N0I, (5.11)

where h = Hp and h̄ =αH̄p̄ are the equivalent channel vectors. The covariance matrices

of size 2×2 are given by

Ψ̄p1 =α2H̄

[

1 0

0 0

]

H̄H (5.12)

Ψ̄p2 =α2H̄

[

0 0

0 1

]

H̄H . (5.13)

In this case, the conventional IRC (which treats interference as a single Gaussian process)

naturally leads to limited system performance.
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5.1.2 IRC with diagonal loading

Treating interference as Gaussian noise, the linear combining based on LMMSE criterion

has the following form,






X̂1 = hH (ΣYd1
)−1Yd1

X̂2 = hH (ΣYd2
)−1Yd2

X̂3 = hH (ΣYd3
)−1Yd3

(5.14)

where X̂1, X̂2, X̂3 are the estimates of the desired symbols X1, X2, X3. In practice, we

substitute the channel and covariance estimations into this theoretical form. The serving

channel is assumed to be estimated by the LS estimator:

Ĥ =
1

N
Yp XH

p , (5.15)

and the estimated channel vector ĥ = Ĥp is obtained by the given precoding vector p. The

covariance matrices are estimated by the sample covariance:

Σ̂Yd1
= ĥĥH +

1

Np
V̂V̂H (5.16)

Σ̂Yd2
=

2

Np
Yd2YH

d2

Σ̂Yd3
=

2

Np
Yd3YH

d3

where V̂ = Yp −ĤXp is the residual matrix. Note that we use V̂ instead of the received signal

matrix Yd1 because the former has smaller estimation errors (see Appendix A.1). Using

the estimated results in (5.14), the resulting output of IRC with diagonal loading (IRC-DL)

is given by






X̂1,dl = ĥH (Σ̂Yd1
)−1Yd1

X̂2,dl = ĥH (Σ̂Yd2
+νI)−1Yd2

X̂3,dl = ĥH (Σ̂Yd3
+νI)−1Yd3,

(5.17)

where ν is the diagonal loading value to compensate sample covariance errors. This

method is often used in the robust beamforming design for its simplicity [29, 31, 32].

5.1.3 LS with compensation

If the interfering pilot signal is perfectly known at the UE receiver, we can cancel interfer-

ence to further improve the system performance [2]. We rewrite that part of the received
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signal with interfering pilot, Yd2, Yd3, as

Y′
p = hXd1 + h̄X̄p +Z′

p ∈C
2×Np , (5.18)

where the received matrix Y′
p = [Yd2,Yd3] is related to the interfering pilot symbols, Xd1 =

[X2,X3] denotes the serving data matrix, X̄p = [X̄p1, X̄p2] denotes the interfering pilot

matrix, and Z′
p = [Zd2,Zd3] is the AWGN matrix. A simple LS channel estimator for both

serving and interfering channels is thus given by

Ĥ = Yp XH
p /Np = H+E (5.19)

Ĥb = Y′
p X̄H

p /Np =αH̄+ Ē, (5.20)

where Ĥ is the estimate of the serving channel matrix, Ĥb is the estimate of the interfering

channel matrix, and the channel estimation errors are given by

E = h̄X̄d1XH
p /Np +Zp XH

p /Np

Ē = hXd1X̄H
p /Np +Z′

p X̄H
p /Np .

Once the interfering channel estimation is available, we regenerate the received pilot signal

via the product of the channel estimate and the given pilot signal as ĤbX̄p . Therefore, the

residual matrix of pilot cancellation is obtained as follows:

V̂b = Y′
p − ĤbX̄p

= hXd1 − ĒX̄p +Z′
p ∈C

2×Np . (5.21)

Considering the channel estimation errors on both the serving and interfering channels,

we derive the decoding metrics of LS with compensation (LS-C) based on the conditional

LMMSE criterion as

X̂d1,l s = wH
l s V̂b (5.22)

where we define

wH
l s = argmin

wH
E
[

∥Xd1 −wH V̂b∥2 | ĥ, ĥb

]

= E
[

Xd1V̂H
b | ĥ, ĥb

]

E
[

V̂bV̂H
b | ĥ, ĥb

]−1

= ĥH

(
N 2

p (ĥĥH )

N 2
p −1

+
Np (ĥbĥH

b
)

N 2
p −1

+N0I

)−1

,
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and ĥb = p̄Ĥb is the equivalent interfering channel vector.3

This result is more complicated than the conventional solution that ignores channel

estimation errors. Especially, the LS-C requires the precoding vector p̄ to obtain the term

of ĥb , which is difficult to obtain in practice. Therefore, an alternative way is derived by

using the covariance of the residual matrix. To see this, we first notice that the conditional

covariance matrix of V̂ is

Σv , E
[

V̂V̂H | ĥ, ĥb

]

=
N 2

p

N 2
p −1

ĥbĥH
b +

Np

N 2
p −1

ĥĥH +N0I. (5.23)

This covariance matrix Σv also has the term ĥbĥH
b

. Substituting the covariance matrix Σv

for the term of ĥbĥH
b

, we have

wH
l s = ĥH

(

ĥĥH +
1

Np
Σv +

Np −1

Np
N0I

)−1

, (5.24)

which does not depend on the precoding vector p̄. This information can be estimated by

the sample covariance estimation as follows

Σ̂v =
1

Np
V̂V̂H .

The resulting output of LS-C becomes

{

X̂1, l s = ĥH (Σ̂Yd1
)−1Yd1

X̂d1,l s = ŵH
l s

V̂b .
(5.25)

where ŵl s is obtained by using the sample covariance estimation Σ̂v in the theoretical

combining vector wl s .

5.1.4 LMMSE with compensation

If perfect SIR is available, we can improve the estimated results of the interfering channel

by using the LMMSE channel estimator

vec(Ĥb,lm) = X̄H
pc (α2X̄pc X̄H

pc + Σ̂vbc )−1y′
p , (5.26)

3More details can be found in Appendix A.2.
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where y′
p = vec(Y′

p ) is the vectorized form of the received matrix, Σ̂vbc = I⊗ (V̂bV̂H
b

/Np )

is the residual matrix, and X̄pc = X̄T
p ⊗ I is the interfering pilot matrix. Replacing the LS

channel estimates by the LMMSE channel estimates, we have the resulting output of

LMMSE with compensation (LMMSE-C)

{

X̂1, l m = ĥH (Σ̂Yd1
)−1Yd1

X̂d1,l m = ŵH
l s

V̂b,l m ,
(5.27)

where V̂b,lm = Y′
p − Ĥb,lmX̄p is the residual matrix of the LMMSE estimate.

5.1.5 Analysis and interpretation

In this section, we try to answer three basic questions: 1) what is the optimum receiver? 2)

what is the performance loss of a conventional IRC receiver? and 3) what is the impact of

different propagation delays of serving and interfering eNBs?

Optimal receiver (OPT)

We begin by answering the first question of optimal detection of the desired signal x ∈ X1

in the presence of interference. The optimal receiver performs ML detection given the

following information: the pilot symbols, the received vector y ∈ Yd1, precoding vectors,

SNR and SIR. Mathematically, the OPT is given by

x̂ = argmax
x

log P (x|y,Yp ,Y′
p ,Xp , X̄p ,α, N0,p, p̄)

= argmax
x

log
∑

Xd1

∑

X̄d1

∑

x̄

exp(bH
Σ
−1A−1b)

det(A)
, (5.28)

where we apply the Gaussian integral [23] on the conditional probability to obtain the

result.4 We also define the parameters as follows:

A = I2NT NR +Σ

((

X X
H /N0

)T ⊗ INR

)

(5.29)

b =Σvec(Y X
H /N0) (5.30)

X =
[

Xp Xd1 px

pX̄d1 p̄X̄p p̄x̄

]

(5.31)

4See Appendix A.3 for more details
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Y =
(

Yp ,Y′
p ,y

)

(5.32)

Σ=
[

1 0

0 α2

]

⊗ INT NR . (5.33)

The computational load of the OPT is heavy due to the multiple summations over all

candidate transmitted signals Xd1, X̄d1 and x̄. This formulation implies that we decode

(compute all candidates) X̄d1 and Xd1 for better CSI estimates; and then decode x̄ and x

to achieve maximum likelihood detection.

For comparison purposes, we compute the OPT under the assumption that the interfering

symbols X̄d1 and the serving symbols Xd1 can be decoded perfectly, i.e., both serving and

interfering pilots are interference free. In this case, the resulting detector reduces to

x̂opt = argmax
x

log
∑

x̄

exp(bH
Σ
−1A−1b)

det(A)
. (5.34)

The associated performance will be used as a benchmark for assessing the performance

of the proposed algorithms. Note that the log-sum-exp operation can be computed by

using the scheme proposed in [33].

The OPT not only provides a performance benchmark, but also helps our understanding

of the two-user interference channel. We summarize our observations as follows:

• All interfering symbols X̄d1, X̄d2, and X̄p should be decoded and subtracted in a

decoding metric. Therefore, both the serving channel H and the interfering channel

αH̄ need to be estimated.

• Good quality of CSI is difficult to obtain because both the pilot symbols Xp and

X̄p interfere with the data symbols. These data symbols cannot be decoded and

subtracted easily. Therefore, one has to compensate for the channel estimation

errors associated with H and H̄.

Moreover, it is worth noting that all information on the interfering signal is useful, but

only some information can be obtained easily, e.g., the SIR value and the positions and

the sequences of the interfering pilot symbols. This information is fully exploited in the

proposed schemes, i.e., IRC-DL, LS-C, and LMMSE-C.
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SINR analysis of IRC

We first consider the conventional IRC scheme [34] which treats interference as a station-

ary Gaussian process. The IRC detector is

X̂i r c = ĥH (ĥĥH + V̂V̂H /Np )−1Yd , (5.35)

where X̂i r c is the estimate of the transmitted data matrices (X1,X2,X3) and Yd is the re-

ceived matrix that Yd = (Yd1,Yd2,Yd3). Unlike the proposed detectors, this scheme de-

codes X2 and X3 with incorrect covariance matrices. The covariance mismatch leads

to

SINRx1 =β2/(β(1−β)) (5.36)

SINRx2 =β2/(β(1−β)+ψ1)

SINRx3 =β2/(β(1−β)+ψ2).

where β2 is the desired signal power and ψ1, ψ2 are the residual interference terms due

to the covariance mismatch.5 If the data energy is much larger than the the noise energy

Ed ≫ N0, one can show that ψ1 > 0, ψ2 > 0, and

ψ1,ψ2 ∝ (SNR)2 ·α2 ·
Ep

Ed

. (5.37)

Hence, the IRC scheme suffers from mismatch-induced performance degradation when

1) SNR is high, 2) a strong interference is present, and 3) the pilot-to-data power ratio

is high, i.e.,
Ep

Ed
≫ 1. It is worth mentioning the special case when the interfering eNB

transmits no data, but pilot symbols only. In this case, we have Ed = 0 such that
Ep

Ed
=∞.

This happens in several inter-cell interference coordination (ICIC) approaches [24] and

causes significant performance degradation of an IRC receiver.

The asynchronous case

Suppose the length of the DFT window is NF , the length of the CP is Ncp , the maximum

channel delay spread is NL, and the timing difference between two received signals is

denoted by τ as shown in Fig. 5.3. All of these parameters are given in terms of the number

5See Appendix A.4
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CP FFT Window

D

Desired

Interfering

Channel Impulses

Fig. 5.3 An example of an asynchronous interference

of OFDM samples. We should consider two ranges for the propagation delay τ: 1) those

causing no ISI and 2) those which lead to ISI, which are shown in the following.

Case without ISI: The first subset of delays τ ∈ {0, · · · , Ncp − NL} does not destroy or-

thogonality and only introduces a phase rotation in each subcarrier [35]. Assuming the

channels are non-selective, the received signal at the (tk)th slot is

y = hx +e
− j 2πkτ

NF h̄x̄ +z, (5.38)

where 0 < τ≤ Ncp −NL. Note that the phase rotation exp(− j 2πkτ/NF ) is unknown and

degrades the interfering channel estimate. On the other hand, since the phase rotation

is a function of subcarrier index k instead of time and space, there is no impact on the

spatial covariance matrix, i.e., the covariance matrix of y has no extra distortion due to the

timing delay τ, given as follows

Σy = hhH + h̄h̄H +N0I, (5.39)

Recall that IRC-DL only needs to estimate the covariance matrix without estimating the

interfering channel, but both LS-C and LMMSE-C need to estimate the interfering channel.

Therefore, we can expect that IRC-DL will perform better than LS-C and LMMSE-C.

Case with ISI: If the delay τ is outside the above range, orthogonality among the subcar-

riers is destroyed. Mathematically, we have

y = hx +κe
− j 2πkτ

NF h̄x̄ +αI
tk
τ +z,
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for τ < 0 or τ > Ncp −NL, where κ ≈ (NF −∆(τ))/NF , ∆(τ) is a positive value related to

delay τ, and I
tk
τ is the ISI term. The impact on the covariance matrices is shown as:

Σy = hhH +κ2h̄h̄H +α2var(I tk
τ )+N0I

≈ hhH + (1−
∆(τ)

NF
)2h̄h̄H

+α2

(

2
∆(τ)

NF
−

(
∆(τ)

NF

)2)

I+N0I. (5.40)

The ISI term I
tk
τ is approximated by Gaussian noise as in [36]. In this case, the delay τ

degrades the interfering channel estimation by introducing the unknown phase rotation

and the distortion term of αI
tk
τ . For the covariance estimation, the delay τ has no impact

on the estimate because the covariance matrix Σy is not a function of time or frequency,

i.e., without the index t and the index k after the approximation. Therefore, a similar

conclusion can be made that IRC-DL will perform better than LS-C and LMMSE-C, and

more gains will be obtained compared to the result in the ISI-free case.

Finally, the performance of the proposed schemes will be evaluated in the numerical

section.

5.2 Interference on frequency selective channels

In the second part of this chapter, we consider a two-user interference network on fre-

quency selective channels. Referring to the system model shown in (5.1), the received

signal at the time index t can be written as follows

yk = hk xk + h̄k x̄k +zk ∈C
NR , (5.41)

where we omit the time index t , and the subcarrier index is denoted by k = 1, · · · , NF .

We also define hk ∈ C
NR and h̄k ∈ C

NR are the serving and interfering channel vectors.

The frequency selectivity is modelled by the DFT matrix with the time-domain channel

impulse response as:

(hk )p =Fk

[

ap

0NF−L

]

= Fk ap , (5.42)

where (hk )p ∈C denotes the p-th element of the channel vector hk , Fk ∈C
1×NF denotes

the kth row of the NF × NF DFT matrix, Fk ∈ C
1×L represents the first L entries of Fk

and ap ∈C
L×1 is the time-domain channel impulse response. Similarly, the interfering
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channel is modelled by the DFT basis with coefficients (h̄k )p = Fk āp , where āp denotes

the L-tap impulse response of the interfering channel.

We denote the comb-type pilot symbols and the data symbols by using the index of

subcarriers with the index sets P and D as follows

{

k ∈P , if mod(k,np ) = 1

k ∈D, else,
(5.43)

where mod(·) denotes the modulus, np is the distance between two continuous pilots

in the frequency domain, P is the set of pilot indexes, and D is the set of data indexes.

Note that the comb-type pilots in the set P is applied for the covariance estimation of

interference plus noise.

Suppose the symbols of interest xk are obtained after the linear processing wk as: x̂k =
wH

k
yk . To find the optimal combination w, we first introduce the SINR as the measurement.

Assuming transmitted symbols with unit power E[xxH ] = E[x̄ x̄H ] = 1, we have the SINR

formulation as follows:

SINRk =
|wH

k
hk |2

wH
k

Rk wk

, (5.44)

where Rk = h̄k h̄H
k
+N0I ∈C

NR×NR represents the covariance matrix of interference plus

noise, which is unknown and needs to be estimated at the UE receiver.

Suppose the serving channel hk and the noise variance N0 can be accurately estimated.

The optimal wk and Rk that maximizes the metric of SINRk can be written as follows:

max
wk ,Rk

SINRk (5.45)

subject to wH
k hk = 1, Rk ∈ ν̄,

where we assume Rk belongs to the convex subset ν̄ of Hermitian positive definite matrices

of size NR ×NR to guarantee that the estimated result is a valid covariance matrix.

5.2.1 Moving-average estimator

Assume that the covariance matrix Rk is estimated by using the sample covariance via the

closest pilot symbols in the index set P as:

R̂k =
1

N

∑

m∈P

v̂m v̂H
m , (5.46)
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where v̂m = ym −hm xm ∈C
NR for m ∈P is the estimated interference plus noise and N is

the number of pilots in the moving-average window. We define the estimation errors by

Rk , R̂k +∆k where ∆k ∈C
NR×NR denotes sample covariance errors.

Lemma 5.2.1. The entry-wise mean and variance of the sample covariance errors are

obtained as follows:

E[(∆k )pq ] =
(

h̄k h̄H
k −

1

N

∑

m∈P

(

h̄mh̄H
m

)

)

pq

var [(∆k )pq ] ≈
1

N 2

(

∑

m∈P

|(h̄mh̄H
m)pq |2Ψ+N0(Φ)pq +N N 2

0

)

where (Φ)pq =
∑

m∈P

(

|(h̄m)p |2 +|(h̄m)q |2
)

and Ψ is a function of the modulation type of

interfering signal x̄k given by

Ψ=







0 , PSK

0.32 , 16 QAM

0.3810 , 64 QAM

(5.47)

Proof. See Appendix A.5.

We found that the variance of the sample covariance errors relies on the following param-

eters of interference: selectivity of the channel, modulation type, interference strength,

and the moving-average window size N . Clearly, more selectivity and higher modulation

increase estimation errors. However, the window size N is a trade-off between the selec-

tivity of the interfering channel and the strength of interference plus noise.

Lemma 5.2.2. Suppose the power delay profile of the interfering channel is given by the

equal power assumption (the worst-case assumption) as āp ∼ Nc (0, (α2/L)I). Then, the

MSE of the sample covariance estimation R̂k is obtained by

E[∥∆k∥2
F ] =

∑

p,q

(

α4

L2
ΥΥ

H +
2α2N0

N
+

N 2
0

N
+Ψ

′
)

,

where

Υ,
(

(FH
k )T ⊗Fk

)

−
1

N

∑

m∈P

(

(FH
m)T ⊗Fm

)

(5.48)
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Ψ
′ ,

{

2 ·α4
Ψ/N , p = q

α4
Ψ/N , p ̸= q

(5.49)

Proof. See Appendix A.6.

Once the power delay profile and the modulation are given, the MSE of sample covariance

errors can be obtained by using Lemma 2. However, this information is not always

available, and an alternative way is as follows: Suppose the length of the channel impulse

response L and the modulation function Ψ can be upper bounded, that is

L ≤ Lw , and Ψ≤Ψw . (5.50)

Given these bounds, our proposed selection scheme is

Nw = argmin
N

max
L,Ψ

E∥∆k∥2
F

= argmin
N

∑

p,q

(

α4

L2
w

ΥwΥ
H
w +

2α2N0

N
+

N 2
0

N
+Ψ

′
w

)

,

where Lw is equal to the CP length ncp . Υw is obtained by using L = ncp , and Ψ
′
w corre-

sponds to a 64-QAM interfering signal (Ψ= 0.3810). Note that this metric only relies on the

SIR and SNR information, which is available in practice. After the covariance estimation,

the linear combination wk can be obtained by solving the worst-case problem. Assume

the matrix norm of the covariance estimate is upper bounded by a positive value ϵk . We

can have the solution by the following lemma.

Lemma 5.2.3. For the following max-min problem:

argmax
wk

min
∆k

SINR(wk ) (5.51)

subject to wH
k hk = 1, ∥∆k∥ ≤ ϵk , (5.52)

the solution of wk is given by:

w∗
k = (hk hH

k + R̂k +ϵk I)−1hk . (5.53)

Proof. See Appendix A.7.

This result is equivalent to the IRC (that is based on the LMMSE) with regularization or the

so called diagonal loading. The proper upper-bound value ϵk can be chosen by the inverse
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condition number (ratio of the largest to the smallest singular value) of the covariance

estimate [29].

Finally, the performance of the proposed estimator will be evaluated in the numerical

results section.

5.3 Interference suppression with additional antennas

In the third part of this chapter, we consider the scheme that enables an IRC receiver to use

more RX antennas. Recall the system model shown in (5.1), and add another interfering

eNB in this network. The received signal can be characterized by the following equation

y′ = h′
1x1 +

3∑

i=2

h′
i xi +z′ ∈C

NR , (5.54)

where x1 ∈C and h′
1 = H′

1p′
1 ∈C

NR are the serving data symbol and the serving channel

response. xi and h′
i
=α′

i
H′

i
p′

i
for i = 2,3 are the interfering data symbol and the interfering

channel vector, respectively. The desired symbol x1 is decoded by using the IRC receiver,

that is

x̂1 = h
′H
1 (h′

1h
′H
1 +Σ

′
v )−1y′ , IRC(y′), (5.55)

where Σ
′
v = h′

2h
′H
2 +h′

3h
′H
3 +N0I denotes the covariance of the interference plus AWGN.

Assume that the numbers of TX and RX antennas are NT = NR = 2 at each node. In

this case, if there is no CSI at the transmitter side, the receiver may not have enough RX

antennas to efficiently suppress the interference. This necessitates the investigation of

efficient schemes to use more antennas. Therefore, suppose we have added some RX

antennas that can provide a larger dimensional received signal ȳ ∈C
Na as:

ȳ = h̄1x1 +
3∑

i=2

h̄i xi + z̄, (5.56)

where we assume the number of the added antennas Na = 2, the intended channel

h̄1 = H̄1p̄1 ∈ C
Na , the interfering channel vector h̄i = ᾱi H̄i p̄i ∈ C

Na for i = 2,3, and the

AWGN vectors z̄ ∈C
Na . The proposed architecture is shown in Fig. 5.5.

In the figure, our goal is to find the optimal combination of the signal y′ and the signal ȳ

to reduce the dimension (from four signal streams to two signal streams) for the original
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Fig. 5.4 The MIMO interference channel with two antennas on each node transmitting

one data stream and sharing the same bandwidth.

Fig. 5.5 Proposed receiver structure with extra receive antennas and pre-processing W on

the original IRC receiver

IRC receiver. The optimal combination denoted by W can be found based on the SINR

maximization as follows:

Ŵ = argmax
W

SINR(IRC(u1)), (5.57)

where W is an (Na +NR )×NR pre-processing matrix for the dimension reduction, and the

resulting output u1 ∈C
NR is given by

u1 = WH

[

y′

ȳ

]

,WH

(

h1x1 +
3∑

i=2

hi xi +z

)

(5.58)

where hi = αi Hi pi , Hi ∈ C
(NR+Na )×NR for i = 1,2,3 are the stack forms of the channel

matrices, and z ∈C
NR+Na is the stack form of AWGN vectors of all receive antennas.
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5.3.1 Performance enhancement with channel estimates feedback

Suppose IRC has perfect channel estimation and perfect covariance estimation for a

two-stream signal. We first derive the resulting output SINR 6

SINR(IRC(u1)) = hH
1 W(WH

Σv W)−1WH h1 (5.59)

where Σv = h2hH
2 +h3hH

3 +N0I is the covariance of the interference plus AWGN. Using this

result, the SINR maximization can be rewritten as

max
W

hH
1 W(WH

Σv W)−1WH h1 (5.60)

subject to W ̸= 0

Since the pre-processing W is in a matrix form, the optimal solution is not trivial. An

alternative solution we found is by omitting the precoding vector p1 (note that h1 = H1p1)

and then separately maximizing the diagonal terms of the matrix. Mathematically, we

reformulate the optimization problem as follows:

max
W

[

HH
1 W(WH

Σv W)−1WH H1

]

k (5.61)

subject to W ̸= 0

where k = 1,2 is the index of the diagonal terms of the matrix. In this formulation, the

closed-form solution can be obtained by

ŴH = HH
1 Σ

−1
y , (5.62)

where Σy = h1hH
1 +Σv is the covariance matrix of the received signal from all antennas

(more details can be found in Appendix A.9).

In order to obtain H1, we need the channel estimates from the original IRC. However the

original channel estimator of IRC is only designed for a two-stream signal instead of a

four-stream signal. Therefore, sequential feedback is needed in order to obtain sufficient

CSI. We define two initial pre-processing matrices as:

W00 =
[

I2

02×2

]

, W01 =
[

02×2

I2

]

. (5.63)

6See Appendix A.8
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Similar to the antenna switching scheme, the IRC receiver estimates the partial CSI se-

quentially, i.e., using W00 for the first two rows of H1 then using W01 for the last rows of H1

in order to obtain a complete matrix of H1.

5.3.2 Performance enhancement with SINR feedback

If the CSI feedback is unavailable, the performance can still be improved by using the

SINR information. In this section, we propose a blind learning scheme which maximizes

the output SINR based on a pre-determined unitary codebook as follows: Suppose the

2-stream IRC can provide accurate SINR. We can apply exhaustive search in the solution

set W based on the Grassmannian packing [37].

Using the Cholesky decomposition Σv = BBH , we rewrite the SINR maximization as

Ŵ = argmax
W

hH
1 W(WHBB

H
W)−1WH h1 (5.64)

≈ argmax
W

tr
(

WH W ·
(

WH BBH W
)−1

)

, (5.65)

= argmax
W

tr
((

WH BBH W
)−1

)

(5.66)

≤ argmin
W

λ2
mi n

(

WH B
)

(5.67)

where tr(·) denotes the trace operation of the matrix, and λ2
mi n

(·) denotes the smallest

singular value. λ2
mi n

(

WH B
)

= N0 implies that the preprocessor W is able to suppress all

interference and leave AWGN only. The equality holds if W is Wun = ŪH
b

, where Ūb is

the (Nr +Na −1)th and (Nr +Na)th columns of Ub corresponding to the two minimum

singular values. In other words, the optimal unquantized solution is given by Wun = Ūb .

The optimal quantized codebook W can be found by the minimization of the average loss

from the unquantized solution (see Appendix A.10)

W = argmin
W ′

E

[

min
W j∈W ′

d2
pr o j (WH

j ,Ūb)

]

. (5.68)

Note that this is an equivalent problem to that of [38]. Therefore, we can apply the

codebook design criterion of the Grassmannian subspace packing [37].
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Fig. 5.6 BER vs. SNR in the strong interference region, SIR = 0 dB.

5.4 Numerical results

5.4.1 Interference with covariance mismatches

To evaluate the proposed schemes, we start with a constant channel which is time invariant

and frequency non-selective during Np +Nd intervals (within one RB). The data format

follows the LTE FDD specifications [21] where we define Np = 16, and Nd = 152. The

data of interest (X1,X2,X3) are modulated with Gray-coded 4-QAM. The interfering data

matrices (X̄d1, X̄d2) are modulated with Gray-coded 16-QAM. In what follows, we compare

the performance of the conventional schemes: LMMSE (which treats interference as

AWGN), IRC, and the proposed approaches: IRC-DL, LS-C, LMMSE-C, and OPT.

Fig. 5.6 shows the BER performance of different SNRs at SIR = 0 dB. These curves show

that the proposed IRC-DL, LS-C, and LMMSE-C schemes have better performance than

the conventional IRC and LMMSE schemes. The curve of IRC-DL shows the performance

gain by suppressing interference with the proper covariance matrices. The curves of LS-C

and LMMSE-C show the benefit of decoding the interfering pilot symbols. Besides, OPT

shows the possible further improvement if we can decode the interfering data symbols

and further improve the channel estimation on both serving and interfering channels.
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Fig. 5.7 BER vs. SIR in the high SNR region, SNR = 30 dB

Fig. 5.7 shows the BER performance of different SIRs at SNR = 30 dB. These curves

demonstrate the advantage of using LMMSE-C compared to LS-C. Note that there is

an error floor shown in the LS-C curve. This is due to the fact that an accurate CSI of

the interfering channel is difficult to obtain without the correct SIR information. This

performance can be improved by using LMMSE-C with the SIR information.

Fig. 5.8 shows a special case in which the interfering eNB only transmits the pilot symbols

without sending the data symbols. In this case, the IRC receiver cannot improve the

system performance compared to the LMMSE receiver. In contrast, the proposed schemes

can still outperform the LMMSE. This result supports our SINR analysis in which the

performance loss of IRC is proportional to the pilot-data power ratio Ep /Ed .

For triply selective channels, we assume that the serving channel distribution information

(CDI) is perfectly known but the interfering CDI is unknown. The system parameters are

given as follows: normal CP NC P = 72, DFT-size NF = 1024, and 2 GHz carrier frequency.

All of these parameters are given in terms of OFDM samples. The discrete-time MIMO

fading channel is generated using the triply selective channel [39]. In what follows, we

denote CDI on both channels by (serving CDI/ interfering CDI) and the UE receiver

performs the data detection by the proposed scheme but replacing the serving channel
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Fig. 5.8 BER vs. SIR for SNR = 30 dB; no interfering data symbols.

estimator by the 2D-minimum mean square error (MMSE) channel estimator instead of

the LS channel estimator.

Fig. 5.9 shows the BER performance for SNR = 30 dB on triply selective channels. The CDI

of both channels is given by: maximum Doppler frequency fd = 10 Hz, the power delay

profiles CI SI is EPA as defined in LTE specification [21], and no spatial correlation for ΨT x

and ΨRx . In these slow fading and slightly selective assumptions, the resulting curves are

similar to the one shown in Fig. 5.7. However, some performance gains are missing in the

strong interference region, e.g., in the case of SIR = -15 dB, the LS-C has BER = 10−3 over

the constant channel shown in Fig. 5.7, but the same scheme only achieves BER = 10−2

over the triply selective channel shown in Fig. 5.9. This is due to the fact that the proposed

schemes are optimized for the constant channel for its simplicity.

Fig. 5.10 illustrates the asynchronous case on triply selective channels. The CDI of both

channels is given as: 10 Hz of the Doppler frequency, the EPA as the power delay profile,

and no spatial correlation between antennas. According to EPA, the maximal channel

delay spread is given by NL = 7. Therefore, the maximal delay of ISI-free region is τ= 65

shown by the dashed line. These results show different impacts of the timing delay on the

proposed schemes. As the delay increases, the LS-C and the LMMSE-C will gain less and

less over the conventional IRC. We can find that there is almost no performance gain after



72 Interference suppression

−15 −10 −5 0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR = 30 dB, 4/16 QAM, EPA/ EPA

SIR [dB]

B
E

R

 

 

LMMSE

IRC

IRC−DL

LS−C

LMMSE−C

Fig. 5.9 BER vs. SIR with triply selective channels: fd = 10/10 Hz, EPA/ EPA, in the high

SNR region, SNR = 30 dB.
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channels: fd = 10/10 Hz, EPA/ EPA.
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τ> 50. In contrast, the IRC-DL can maintain the same performance gain in the ISI-free

region and degrades very slowly in the ISI region.

5.4.2 Interference on frequency selective channels

We generate OFDM symbols with the following parameters: number of subcarriers NF =
1024, central frequency of 2 GHz, normal cyclic prefix of nC P = 72 OFDM samples, number

of receive antennas NR = 2, and distance between two pilots np = 6. Transmitted data

symbols xk and x̄k are modulated with Gray-coded 16-QAM, and the pilot symbols are

modulated with QPSK. The time-domain channel impulse response is assumed to be block

fading, i.e., flat in one OFDM symbol and i.i.d. between different OFDM symbols, and their

power delay profiles are defined by the ETU model according to the LTE specifications

[21]. The data of interest is decoded by the linear receivers as follows:

LMMSE: x̂k = hH
k (hk hH

k +N0I)−1yk , (5.69)

OPT: x̂k = hH
k (hk hH

k +Rk )−1yk , (5.70)

Others: x̂k = hH
k (hk hH

k + R̂k +ϵk I)−1yk , (5.71)

where LMMSE denotes the interference non-aware scheme (which treats interference

as AWGN), OPT denotes the optimal result as a benchmark, and Others denote the sup-

pression schemes with different window sizes for covariance estimation R̂k . We further

compare two possible ways to select the pilots index m for the covariance estimation 1)

block partitions (BL), and 2) moving average (MA). The BL is to separate the symbol frame

into several non-overlapped clusters and the MA is to separate the symbol frame into

overlapped clusters instead. In both schemes, the number which appears in the acronym

(see Fig. 5.11) designates the number of pilot symbols available within the window for

covariance estimation.

Fig. 5.12 validates Lemma 2 for SIR = 0 dB. We plot the MSE with different window sizes,

MA-2 and MA-4. Note that the variance of Lemma 1 is obtained by ignoring partial terms

related to AWGN. However, the closed-form analysis precisely matches the numerical

results even for SNR = 0 dB. These curves also illustrate the impact on different SNR levels,

i.e., a longer window is required at low SNR.

Fig. 5.13 shows the BER performance for SIR = 0 dB with the ETU model (the length of the

channel impulse response is around 39 OFDM samples) on both serving and interfering

channels. We show different approaches where IRC uses all available pilots without
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Fig. 5.12 Approximation of MSE in Lemma 2 with 64 QAM and L = ncp

partition, MA-2 uses 2 pilots within a sliding window, BL-6 uses 6 pilots in a block window,

and Selection denotes the proposed window selection scheme with MA. First of all, these

curves show that the MA schemes outperform the BL schemes. Second, we found that

using a longer window is not always the best option, e.g., MA-2 outperforms MA-6 due

to using a smaller window size. Finally, our proposed scheme can provide the correct

window size (i.e., N = 2) at different SNR values.

Fig. 5.14 shows the BER performance for different interference levels and SNR = 15 dB.

These curves indicate that the proposed scheme can always find the optimal window size,

e.g., as SIR increases, the selected size starts from a small window N = 2 to a large window

N = 8. Note that there is a crossing point at SI R = SN R = 15 dB. Before this point SI R < 15
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Fig. 5.13 System performance for SIR = 0 dB with different SNR values
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Fig. 5.14 System performance for SNR = 15 dB with different SIR values

dB, the window selector must use a small size (N = 2) to suppress the strong interference

over the frequency-selective channel. On the contrary, after the point SI R > 15 dB, the

selector turns to use a large window (N = 8) to suppress AWGN.
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Fig. 5.15 BER vs. SNR for SIR = 0 dB; with three users, two antennas, and transmitting one

data stream from each user.

5.4.3 Interference suppression with additional antennas

Consider a three-user downlink MIMO channel with block fading. The transmitted data

symbol and the interfering symbols xi for i = 1,2,3 are modulated with Gray-coded 16-

QAM. The precoding vectors pi for i = 1,2,3 are selected randomly. We compare the

following approaches: i) LMMSE denotes the interference non-aware receiver (which

treats interference as AWGN), ii) IRC is the conventional IRC with the 2-stream detector,

iii) CSI feedback is the proposed scheme using 4 receive antennas and the preprocessor,

and iv) Proposed SINR (3,4,6) bits are given with the Grassmannian codebook [37].

Fig. 5.15 reports the BER performance vs. SNR in the presence of strong interference (SIR

= 0 dB). We first show the conventional approaches, i.e., LMMSE and IRC, which are unable

to suppress the interference due to the lack of RX antennas. Second, the blind learning

algorithms, i.e., SINR 3 bits 4 bits and 6 bits, result in different improvements according

to different codebook sizes. Finally, the Proposed CSI feedback scheme outperforms the

conventional schemes and the blind learning schemes by using the additional training

phrase shown in (5.63) to obtain full CSI.

Fig. 5.16 shows the BER curves at SNR = 20 dB for different SIR values in order to show the

impact of different interference levels. As in the previous figure, the proposed solutions
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Fig. 5.16 BER vs. SIR for SNR = 20 dB; with three users, two antennas, and transmitting

one data stream from each user.

show improvements compared to the conventional schemes. Moreover, we can expect

more improvements for the SINR scheme with a larger codebook size, e.g., 8 bits and 10

bits, in the strong interference region.

Finally, we need to point out that the proposed scheme can be applied for different kinds

of receivers. The general idea is to create an equivalent channel matrix for the original

receiver. For example, we generate a 2×2 equivalent channel matrix for the original IRC

receiver by using 4 physical antennas and linear combining. This equivalent 2×2 channel

matrix enhances SINR by exploiting some information from the original IRC.

5.5 Conclusion

This study considers interference suppression schemes for MIMO-OFDM systems. In

such systems, the statistical property of interference impacts its suppression schemes.

The main concern in this chapter is how to properly estimate the statistical information

and how to update this information in an efficient way.

In the first part of our study, some novel schemes have been derived by the LMMSE

and the SIC criteria, which are based on using the pilot-data structure of interference.
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Numerical results have demonstrated that separately handling the interfering pilot and

data signals allows substantial improvements, which also clearly reveal the importance of

judicious exploitation of the structure and statistics of interfering signal (such as those

from neighboring cells).

The numerical results include flat and triply selective channels with/without timing delays

of arrival signals. In the synchronous case, we find that the proposed LMMSE-C provides

better performance than the other schemes. This scheme is based on the SIC criterion

that decodes interfering pilots by estimating the interfering channel. In the asynchronous

case, since estimating the interfering channel becomes difficult, the proposed IRC-DL

based on the LMMSE criterion provides reliable and stable performance. This scheme

only estimates the distinct statistical properties based on the pilot-data structure, treating

interference as noise without decoding it.

In the second part, we focus on interference over a frequency selective channel. The

interference suppression scheme becomes challenging because of the trade-off between

handling the channel selectivity and AWGN. We first make an analysis of means and vari-

ances of covariance estimation errors, and then derive the closed-form MSE of covariance

estimation. Based on the analysis results, we proposed a window-size selection scheme

which only depends on the knowledge of SIR and SNR. Numerical results demonstrate

that the selection scheme can find the optimal window size for different SIRs.

Finally, to improve IRC in its dimensional scalability, we propose two approaches to scale

the number of RX antennas in order to provide extra spatial diversity. The proposed

schemes maximize the resulting SINR by the CSI or the SINR feedback from the original

receiver. Numerical results are presented, confirming the performance improvements by

exploiting the additional spatial dimension in the presence of interference.



Chapter 6

Spatial Modulation Design

MIMO technologies are now commonplace in wireless communications systems in order

to increase throughput, performance, or both. The basic principle of these technologies

is well described in Chapter 2, and the proposed reception schemes can be found in

Chapter 3, Chapter 4, and Chapter 5. The main limitation of MIMO systems is related to

their implementation complexity, which increases with the number of antennas. In some

MIMO systems, cost and energy consumption considerations lead to the implementation

of a smaller number of RF chains in the transmitter than the number of TX antennas. This

is often the case in mobile and fixed user equipment, because the number of antennas is

dictated by the performance requirements of the downlink signal, and cost and energy

consumption limitations may not allow the implementation of as many RF chains.

When the number of RF chains in the transmitter is smaller than the number of TX

antennas, we essentially have two options to exploit the inherent antenna redundancy:

The classic approach is to use antenna switching to improve system performance. Indeed,

if the channels are known at the transmitter side, the antennas corresponding to the best

channels can be selected for transmission. This is called switching diversity, and it is

well known that this technique can approach the performance of optimum diversity [40].

The second approach, which is called SM, does not aim at creating diversity. Instead,

the active antenna indices in this technique are used to transmit information. The first

papers on SM considered a single active antenna [41–43]. In that simple case, selection of

1 out of NT TX antennas requires log2(NT ) bits, assuming that NT is an integer power of 2.

Next, m information bits are used to transmit one symbol from that antenna, assuming

that the signal constellation has M = 2m points. In summary, such a scheme transmits

m + log2(NT ) bits per channel use (bpcu). The SM technique was simplified in [44] by
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using only the spatial constellation diagram (the index of the active antenna) to transmit

information bits. This scheme is known as space-shift keying (SSK). Further work on

SM and SSK generalized these techniques by relaxing the single RF-chain constraint and

allowing more than one antenna to transmit simultaneously. The resulting schemes

are known as generalized SM (GSM) [45–48] and generalized SSK (GSSK) [49–51] in the

literature. Further work on the subject introduced space-time block codes to improve

system performance as in conventional MIMO systems. Examples of this type of work can

be found in [52–54].

In terms of spectral efficiency, it should be noted that SM is quite poor compared to spatial

multiplexing (SMX) that is commonly used in wireless communications standards. SMX

consists of transmitting independent data streams from all TX antennas simultaneously

[2]. For example, with 2 TX antennas, conventional SM (with one RF chain) transmits

m+1 bpcu, whereas SMX transmits 2m bpcu (where m is the number of bits per symbol of

the constellation used). Similarly, with 4 TX antennas, SM transmits m +2 bpcu, whereas

SMX transmits 4m bpcu. This inherent throughput loss of conventional SM is the main

motivation for this work to introduce a new SM scheme, which we refer to as ESM.

ESM was devised by combining several ideas. The first one is to transmit symbols from

a primary constellation when a single TX antenna is activated and to transmit symbols

from a secondary constellation when two TX antennas are activated. The second idea is to

define a set of secondary constellations whose size is half of the primary constellation size

in order to transmit the same number of bits during the single active antenna periods and

the two active antenna periods. The third idea is to design the secondary constellations

through geometric interpolation in the signal space in such a way as to maximize the

minimum Euclidean distance between transmitted signal vectors.

The concept of using multiple signal constellations is the basic deviation of ESM from

conventional MIMO schemes including single-RF SM and GSM. Here, instead of the

active antenna index, or the indices of active antennas, information bits are transmitted

by antenna and constellation combinations. The number of those combinations is the

double or the quadruple of the number of active antenna indices (or index combinations)

in conventional SM systems, and this increases the number of bits transmitted per channel

use by 1 or 2, when the signal constellation of conventional SM is used as a primary

constellation in ESM. Alternatively, when the signal constellations are selected in such a

way that ESM operates at the same spectral efficiency as conventional SM, ESM achieves

higher performance.
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6.1 System model

For a MIMO system, the received signal can be expressed as:

y = Hx+n, (6.1)

where H is the NR ×NT channel matrix, NR denotes the number of receive antennas,NT

is the number of transmit antennas, x is the NT ×1 transmitted symbol vector, and n

designates the AWGN. Assume that the entries of the channel matrix H are i.i.d. complex

circularly symmetric Gaussian variables of the form Nc (0,1) and the entries of AWGN,

n, are i.i.d. Gaussian noise of the form Nc (0, N0). The transmit energy is E[xH x] = Es ,

and the average SNR is defined as SNR = Es/N0. Note that the main difference between

SM and conventional MIMO is that in the former not all transmit antennas are activated

simultaneously, which means that there are some zero elements in the transmit symbol

vector x to present the silent TX elements.

6.1.1 A brief review of SMX and conventional SM

For SMX with NT transmit antennas, the transmitted symbol vector x can be written as:

x ∈













C

...

C













=C
NT , (6.2)

where the entries C represent the complex signal constellation used. When this MIMO

scheme uses a signal constellation with M = 2m points, it transmits mNT bits per channel

use, and the total energy per transmitted symbol vector is NT times the average energy

per symbol of the signal constellation.

In conventional SM with NT TX antennas (out of which only one antenna is active at a

time), the transmitted symbol vectors x are of the form:

x ∈













C

0
...

·
0







,







0

C

0
...

0







, · · · ,







0
...

·
0

C













, (6.3)
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where, as previously, the entry C denotes the symbol constellation used, and the zero

entries correspond to the silent TX elements. Assuming that this scheme uses a signal

constellation with M = 2m points, a total of m +⌊log2(NT )⌋ information bits are sent per

channel use: ⌊log2(NT )⌋ bits select the index of the active antenna and m bits select a

particular symbol from the signal constellation to be transmitted from that antenna. For

example, with the QPSK signal constellation, SM transmits 3 bpcu when NT = 2, and it

transmits 4 bpcu when NT = 4. Note that the corresponding numbers for SMX are 4 bpcu

with NT = 2 and 8 bpcu with NT = 4.

Clearly, when both transmission schemes use the same signal constellation, SM transmits

significantly less information than SMX, and this motivated us to search for an enhanced

SM scheme that increases the transmitted data rate. In the following section, we describe

the general principle and the construction of the introduced ESM scheme for NT = 2 and

NT = 4 before outlining its generalizations to a higher number of antennas. In terms of

signal constellations, we start with QPSK as primary modulation, and then we describe

ESM designs using 16QAM and 64QAM.

6.2 ESM with multiple signal constellations

6.2.1 ESM-QPSK

With two TX antennas and QPSK as primary modulation, the transmitted signal vector in

our proposed ESM technique is of the form:

x ∈
{{

C4

0

}

,

{

0

C4

}

,

{

B
0
2

B
0
2

}

,

{

B
1
2

B
1
2

}}

, (6.4)

where C4 denotes the QPSK signal constellation used as primary constellation, and B
0
2

and B
1
2 represent two secondary signal constellations given by B

0
2 = {±1} and B 1

2 = {±i }.

Clearly, the first two elements in the signal space given by (6.4) are those of conventional

SM with QPSK signal constellation and they correspond to the transmission of a QPSK

symbol from the first and the second antenna, respectively. The third and the fourth signal

elements correspond to the simultaneous transmission of symbols from both antennas,

but those symbols take their values from a secondary constellation, which carries only 1

bit. The purpose of this is to have the same number of transmitted bits as with the first and

the second elements of the signal space. We refer to the secondary signal constellations
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Fig. 6.1 The constellations used: The crosses represent QPSK and the circles (resp. squares)

represent the BPSK0 (resp. BPSK1) signal constellation.

as BPSK0 and BPSK1, respectively. The three signal constellations used in this design are

shown in Fig. 6.1, and the four antenna constellation combinations, which respectively

determine the four signal space elements in (6.4), are illustrated in Table 6.1. This scheme

transmits 4 bpcu, because selection of one combination out of four requires two bits, and

two other bits are required to select either a QPSK symbol, or two symbols from one of the

secondary constellations (BPSK0, BPSK1). Compared to conventional SM with the same

modulation and number of TX antennas, we have thus increased the number of bits per

channel use by one.

Two main features of the proposed ESM scheme are very evident from the description

above: The first is the increased number of combinations compared to conventional SM

by the inclusion of a set of secondary modulations in addition to the primary modulation.

The second feature is that the size of the secondary modulations is exactly half of the

primary modulation size and therefore the number of transmitted bits is the same for all

combinations. At this point, it is important to describe a third feature, which is related to

the derivation of the secondary signal constellations. The principal criterion in this deriva-

tion is to maximize the minimum Euclidean distance between the three constellations

involved without increasing the transmitted signal energy.

As evidenced from Fig. 6.1, the minimum Euclidean distance is the same for all three

signal constellations used in the design. It is given by δ0 = 2. Obviously, δ0 is also the
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Table 6.1 ESM-QPSK with 2 TX antennas

TX1 TX2

C1 QPSK 0

C2 0 QPSK

C3 BPSK0 BPSK0

C4 BPSK1 BPSK1

Table 6.2 ESM-QPSK with 4 TX antennas

TX1 TX2 TX3 TX4

C1 QPSK 0 0 0

C2 0 QPSK 0 0

C3 0 0 QPSK 0

C4 0 0 0 QPSK

C5 BPSK0 BPSK0 0 0

C6 BPSK0 0 BPSK0 0

C7 BPSK0 0 0 BPSK0

C8 0 BPSK0 BPSK0 0

C9 0 BPSK0 0 BPSK0

C10 0 0 BPSK0 BPSK0

C11 BPSK1 BPSK1 0 0

C12 BPSK1 0 BPSK1 0

C13 BPSK1 0 0 BPSK1

C14 0 BPSK1 BPSK1 0

C15 0 BPSK1 0 BPSK1

C16 0 0 BPSK1 BPSK1
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minimum distance between two signal vectors corresponding to the same combination.

Next, δ0 is also the minimum distance between a signal vector from combination C1 and a

signal vector from combination C2. The same applies to the minimum distance between

a signal vector from combination C3 and a vector from combination C4. However, the

distance between a signal vector from C 1∪C 2 and a signal vector from C 3∪C 4 is δ0/
p

2.

This is the minimum distance of the entire signal space, but this 3-dB reduction of the

minimum Euclidean distance is limited to ESM which uses QPSK as primary modulation.

The ESM designs described in the following subsections with 16QAM and 64QAM as

primary modulations do not have such a problem.

As indicated earlier, with NT = 4 and the QPSK signal constellation, conventional SM

transmits 4 bpcu, because two bits determine the active antenna index and two other

bits determine a QPSK symbol to be transmitted from that antenna. In this case, our

ESM uses 16 combinations of active antennas and constellations transmitted from these

antennas, which are shown in Table 6.2. The first four combinations in this table are

those of conventional SM. They simply correspond to the transmission of a QPSK symbol

from one of the four TX antennas. Next, we have 6 combinations for transmission of

two simultaneous BPSK0 symbols from two TX antennas, and as many combinations

for simultaneous transmission of two BPSK1 symbols. Therefore, ESM transmits 6 bpcu,

compared to the 4 bpcu capacity of conventional SM: 4 information bits are needed to

select one of those 16 combinations, and 2 bits are used to select a QPSK symbol, or a pair

of BPSK0 symbols, or a pair of BPSK1 symbols.

6.2.2 ESM-16QAM

Conventional SM with 16QAM modulation and 2 TX antennas consists of selecting one of

the two TX antennas using one information bit and transmitting a 16QAM symbol from

that antenna. The throughput is 5 bpcu.

For ESM, we use the following constellation combinations, which provide 6 bpcu trans-

mission:

x ∈
{{

C16

0

}

,

{

0

C16

}

,

{

Q
0
4

Q
0
4

}

,

{

Q
1
4

Q
1
4

}}

, (6.5)

where C16 denotes the 16QAM signal constellation used as primary modulation, and Q
0
4

and Q
1
4 represent two reduced-size signal constellations defined as Q

0
4 = {±1±i } and Q

1
4 =

{±1,±i }. We refer to the secondary signal constellations as QPSK0 and QPSK1, respectively.



86 Spatial Modulation Design

Real

-4 -2 0 2 4

Im
a
g

-4

-3

-2

-1

0

1

2

3

4

Fig. 6.2 The constellations used: The crosses represent 16QAM and the circles (resp.

squares) represent the QPSK0 (resp. QPSK1) signal constellations.

These constellations are shown in Fig. 6.2. The antenna/modulation combinations used

in ESM are those of Table 6.1, when QPSK, BPSK0 and BPSK1 are replaced by 16QAM,

QPSK0 and QPSK1, respectively.

It should be noted that the average transmit energy in the proposed ESM scheme is

slightly larger than in the corresponding conventional SM scheme. Indeed, conventional

SM transmits one 16QAM symbol from the selected active antenna, and the average

transmit energy is Es = 10. This also holds for the first two combinations in ESM. But the

third combination of ESM transmits two QPSK0 symbols and the corresponding average

energy is 16. Finally, the fourth combination transmits two QPSK1 symbols and the

corresponding average energy is 8. Therefore, the overall average energy is Es = 11, which

represents a 0.4 dB increase with respect to conventional SM.

The design methodology of the secondary modulations used in ESM-16QAM follows the

same rules as in ESM-QPSK. More specifically, their size is half of the size of the primary

modulation, so that transmitting two symbols in parallel from a secondary modulation

corresponds to the same number of bits per channel use as the transmission of a symbol

from a primary modulation. Next, the points of the QPSK0 and QPSK1 constellations are

placed at the centers of the square grid representing the original 16QAM constellation in

order to maximize the minimum Euclidean distance between symbol vectors belonging

to combinations based on the primary modulation and those belonging to combinations
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red circles represent the 8APK0/8APK1 signal constellations.

that are based on the secondary modulations. It can be easily verified by hand that the

minimum distance δ0 of the 16QAM modulation is also the minimum distance of the

signal vector space in this design.

Extension of ESM-16QAM to the 4-TX case follows the same process as with ESM-QPSK,

i.e., by substituting in Table 6.2 16QAM, QPSK0, and QPSK1 for QPSK, BPSK0, and BPSK1,

respectively. Using 16QAM and 4 TX antennas, ESM transmits 8 bpcu, and the resulting

scheme is denoted 4TX8b. This is to be compared to the 6 bpcu spectral efficiency of

conventional SM with the same number of TX antennas and the 16QAM modulation.

6.2.3 ESM-64QAM

To achieve higher throughputs, we now describe ESM schemes using higher-level signal

constellations. The design process is similar to that with the previous constellations, but

here we have more degrees of freedom, and we will describe two different ESM schemes

using 64QAM as primary modulation and two TX antennas. The first one of those, referred

to as 2TX8b, is based on the following signal space:

x ∈
{{

C64

0

}

,

{

0

C64

}

,

{

A
0

8

A
0

8

}

,

{

A
1

8

A
1

8

}}

,S2T X 8b , (6.6)
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where C64 denotes the 64QAM signal constellation used as primary modulation, and

A
0

8 and A
1

8 represent two different secondary signal constellations of 8 points each.

The secondary signal constellations are respectively given by A
0

8 = {±2±2i ,±4i ,±4} and

A
1

8 = {±2,±2i ,4+2i ,−4−2i ,2−4i ,−2+4i }. These constellations are referred to as 8-level

amplitude-phase-keying (8APK)0 and 8APK1, respectively, and the resulting ESM scheme

is referred to as 2TX8b, because it transmits 8 bpcu. It can be verified that the average

transmit signal energy in this ESM scheme is Es = 33. The constellations used are shown

in Fig. 6.3, where the signal points in 8APK0 and 8APK1 are placed close to the origin

with the purpose of average energy reduction. The combinations are the same as those

of Table 6.1 when QPSK, BPSK0 and BPSK1 are replaced by 64QAM, 8APK0 and 8APK1,

respectively.

Another ESM scheme based on two TX antennas and 64QAM as primary modulation is

the 2TX9b scheme in which the transmitted signal vector x takes its values from the signal

space given below:

x ∈
{

S2T X 8b ,

{

A
2

8

A
2

8

}

,

{

A
3

8

A
3

8

}{

A
4

8

A
4

8

}

,

{

A
5

8

A
5

8

}}

, (6.7)

In addition to the signal space of 2TX8b, this one includes 4 other combinations. They

correspond to the transmission in parallel of two symbols taking their values from one of

4 other secondary constellations. So, in summary, compared to 2TX8b this design doubles

the number of combinations and involves 6 secondary constellations instead of 2. We

denote the 4 secondary signal constellations used in this design as 8APK2, 8APK3, 8APK4,

and 8APK5, respectively. These signal constellations are shown in Fig. 6.4. A simple

inspection indicates that the average transmit signal energy in this scheme is Es = 59.5.

The 8 combinations of TX antenna and the constellations transmitted from them are

explicitly shown in Table 6.3.

Extension of 2TX8b to 4 TX antennas is straightforward. We simply replace QPSK, BPSK0,

and BPSK1 in Table 6.2 by 64QAM, 8APK0, and 8APK1, respectively. The resulting scheme

is referred to as 4TX10b, because it transmits 10 bpcu. However, extension of 2TX9b to 4 TX

antennas is not straightforward. In 4TX11b, there are 32 combinations of the antennas and

constellations requiring 5 bits for combination selection, and each combination transmits

6 bits, leading to a throughput of 11 bpcu. Note that we have 40 combinations if we

follow the same extension as in 4TX10b, which is more than what is required. From those,

we choose 32 combinations as follows: C 1−C 4 with 64QAM transmitted from a single

antenna, C 5−C 10 with 8APK0 transmitted from two antennas, C 11−C 16 with 8APK1,
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Fig. 6.4 The crosses are 64QAM, the heavy/empty circles are the 8APK0/8APK1,

the heavy/empty squares are the 8APK2/8APK3, and the heavy/empty triangles are

8APK4/8APK5 signal constellations.

C 17−C 22 with 8APK2, C 23−C 28 with 8APK3, C 29−C 30 with 8APK4, and C 31−C 32

with 8APK5. Note that the 8APK4 and 8APK5 signal constellations whose average energy

is higher than the other signal constellations are only used in two combinations each,

whereas the 8APK0-8APK3 constellations are used in 6 combinations each. The purpose

of this is to limit the average transmit energy. The resulting average signal energy is 51.75.

6.2.4 Generalizations

In the previous subsections, we described ESM using primary modulations from QPSK to

64QAM, for a number of transmit antennas NT = 2 and NT = 4. Since our reference was

conventional SM with a single active antenna (NA = 1), the primary modulation was used

for transmission from a single antenna, and the (half-size) secondary modulations were

used for simultaneous transmission from two antennas.

First, generalization of the proposed technique to NT > 4 is straightforward. The number

of combinations to select one active antenna out of NT transmit antennas is NT . For

convenience, we consider the number of transmit antennas NT to be an integer power

of 2. In this case, selection of one transmit antenna in conventional SM requires exactly

log2(NT ) bits. Like conventional SM, ESM features NT combinations with one active

transmit antenna. But ESM also features C
NT

2 = NT (NT −1)/2 active antenna combinations
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Table 6.3 ESM-64QAM with 2 TX antennas and 9 bpcu

TX1 TX2

C1 64QAM 0

C2 0 64QAM

C3 8APK0 8APK0

C4 8APK1 8APK1

C5 8APK2 8APK2

C6 8APK3 8APK3

C7 8APK4 8APK4

C8 8APK5 8APK5

for transmitting two symbols in parallel from the first secondary modulation. It also

involves as many combinations for transmitting two symbols from the other secondary

modulation. Therefore, the total number of active antennas and modulation combinations

in ESM is NT +C
NT

2 +C
NT

2 = N 2
T . Selection of one combination out of N 2

T requires 2log2(NT )

bits. In other words, the number of bits required to select one combination is the double

of that in the case of conventional SM. For example, with NT = 8, the number of bits for

active antenna selection in conventional SM is 3, and the number of bits for selection of a

particular antenna and modulation combination is 6 in ESM.

Generalization to larger numbers of active antennas (NA > 1) is quite simple. Consider

a GSM system with NT transmit antennas, two of which are active (NA = 2). The total

number of antenna combinations is C
NT

2 , but note that this number is not an integer

power of 2. For addressing the active antenna combinations with an integer number of

bits, the number of combinations used in GSM is the largest integer power of 2 that is

smaller than C
NT

2 . In the simplest case, the signal vector space L in the corresponding

ESM system is composed of 3 subspaces: L = L1 ∪L2 ∪L3. The first one is the signal vector

space of GSM, in which the number of combinations is given above (card(L1) =C
NT

2 ). The

second subspace L2 corresponds to the simultaneous transmission of 4 symbols using 4

active antennas and the first secondary modulation. The number of combinations in this

subspace is C
NT

4 = NT (NT −1)(NT −2)(NT −3)/24. The third subspace L3 corresponds to

the transmission of 4 symbols using 4 active antennas and the other secondary modulation.

The number of combinations in this subspace is the same as the number of combinations

in the second subspace. Therefore, the total number of combinations in this ESM scheme
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is given by

card(L) =C
NT

2 +C
NT

4 +C
NT

4 (6.8)

For NT = 8, card(L) = 28(1+5) = 168. The largest integer power of 2 that is smaller than

this number is 128. We therefore include 128 combinations in the signal space, which

require 7 bits for selection of a particular combination. The corresponding numbers in

GSM are 16 combinations and 4 address bits.

In fact, the signal space can be expanded by realizing that when 4 transmit antennas are

simultaneously active, 2 of them can transmit symbols from the first secondary constella-

tion while the other 2 antennas transmit symbols from the other secondary constellation.

This expansion does not involve any reduction of the minimum distance. The additional

number of combinations corresponding to this signal space expansion is given by

card(L4) =C
NT

2 C
NT −2
2 (6.9)

For NT = 8, card(L4) = 420, and therefore the addition of this subspace leads to card(L) =
588. The integer power of 2 that is immediately below this number being 512, 512 com-

binations are included in the signal space and the number of bits needed to select a

particular combination is 9. This ESM scheme increases the number of address bits by 5.

Further expansions of the signal space are possible by transmitting from one antenna a

symbol taken from the primary constellation and transmitting in parallel two symbols

from a secondary constellation. It can be easily verified that those expansions do not

reduce the minimum Euclidean distance of the signal space, and therefore, the asymptotic

performance at high SNR must be essentially the same.

6.2.5 Performance analysis

When the CSI is perfectly known at the receiver, the ML decoder estimates the transmitted

symbol vector according to:

x̂ = argmin
x∈X

∥y−Hx∥2, (6.10)

where X denotes the constellation of the normalized transmitted symbols, and the mini-

mization is performed over all possible transmitted symbol vectors. We define the PEP as

the probability that the ML decoder decodes a symbol vector x′ instead of the transmitted
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symbol vector x. The average PEP (APEP) can be computed by using the union bound as

APEP ≤
1

|X|
∑

x∈X

∑

x′∈X
PEP (x → x′). (6.11)

For Rayleigh fading channels, the PEP is given by [55]:

PEP (x → x′)

= EH

[

Q

(√

Es ·γx→x ′

2N0

)]

=
1

π

∫π
2

0
Lγs→s′

(
Es

4N0 sin2(θ)

)

dθ

=
(

1−µ

2

)NR NR−1∑

k=0

C
NR−1+k
k

(
1+µ

2

)k

, (6.12)

where Q(·) denotes the Gaussian Q-function, γx→x ′ = ∥Hx−Hx′∥2 represents a random

variable with the chi-squared distribution, Lγx→x′ is the moment-generating function

(MGF) of γx→x ′ , µ =
p

Es ·τ/(4N0 +τ), and τ = ∥x− x′∥2. At high SNR, the asymptotic

system performance is determined by the worst-case PEP, which corresponds to the

minimum value of the squared Euclidean distance between symbol vectors in the signal

space:

L2
mi n = min

x̸=x′
∥x−x′∥2 (6.13)

To analyze asymptotic performance (at high SNR), it is instructive to compare the different

MIMO schemes at hand (SMX, SM, and ESM) in terms of the squared minimum Euclidean

distance between transmit symbol vectors divided by their required transmit energy,

denoted as
L2

mi n

Es
. The comparisons were made at identical spectral efficiency and the

results are represented in Table 6.4. The first part of the table corresponds to MIMO

schemes with 2 TX antennas, and the second part corresponds to schemes with 4 TX

antennas. Different columns correspond to different spectral efficiencies. Labeling of the

MIMO schemes in this table is based on the number of TX antennas and the number of

bits per channel use. For instance, 4TX8b means 4 TX antennas and 8 bpcu.

The normalized squared minimum Euclidean distances which appear in this table are

given in the form of a fraction or using a decimal representation. The reason is that

some of the considered schemes use the 8PSK signal constellation, and the distance is

best expressed using decimal representation in this case. In contrast, fractional number
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Table 6.4 The normalized minimum squared Euclidean distance,
L2

mi n

Es

2TX4b 2TX6b 2TX8b 2TX9b

SM 0.5858 4/20 4/82 4/170

SMX 4/4 0.2929 4/20 4/30

ESM 2/2 0.3636 4/33 4/59.5

QSM 2/2 2/10 2/42 2/82

4TX6b 4TX8b 4TX10b 4TX11b

SM 4/10 4/42 4/170 4/330

SMX(2TX) 0.2929 4/20 4/40 4/62

ESM 2/2 4/11.5 4/28.5 4/51.75

QSM 2/2 2/10 2/42 2/82

representation of the distances is more convenient for the schemes based on QAM signal

constellations, and this holds for most cases which appear in the table. In all schemes

using QAM signal constellations, the comparison in terms of squared minimum distances

is rather straightforward. For example, the average transmit signal vector energy in the

2TX8b case are 82 for SM, 20 for SMX, 33 for ESM, and 42 for Quadrature SM (QSM)[56],

respectively (when the minimum distance is set to 2 in all of the signal constellations).

Therefore, the normalized squared minimum Euclidean distances are 4/82, 4/20, 4/33,

and 2/42, respectively, when the transmitted average signal energy is normalized by 1.

These values appear in the 2TX8b column of the table. Note that SMX is restricted to

two active antennas, because our assumption is that the number of RF chains is limited

to 2 as in the proposed ESM schemes. The conventional SM schemes considered here

actually involve a single RF chain, because the number of active antennas is 1. As for

QSM, the number of active antennas is 2 as in ESM, but the authors of [56] claim that

this technique can be implemented using a single RF chain. Comparing the distances

displayed in Table 6.4, we can see that ESM has a significantly larger L2
mi n

than SM in all

cases. It also has a larger L2
mi n

than QSM except in the trivial case where ESM uses QPSK

as primary modulation (the 2TX4b and 2TX6b cases in the table). Finally, ESM provides a

larger L2
mi n

than SMX in the 4-TX cases due to restricting the system to 2 RF chains. These

results indicate that ESM reduces the worst-case PEP compared to SM, SMX, and QSM

and leads to the best system performance in most cases.
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In terms of worst-case PEP, the gain of a scheme with a normalized squared minimum

distance of
L2

mi n

Es
over a scheme with a squared minimum distance of

L̄2
mi n

Ēs
is given by:

G = 10log10

(

L2
mi n

L̄2
mi n

×
Ēs

Es

)

(6.14)

For example, the expected gain of ESM over conventional SM in the case of 2TX4b is given

by:

GSM ,ESM = 10log10 (1/0.5858) = 2.32 dB

Note that with QPSK as primary modulation, bit mapping is important in ESM, because

the squared minimum distance in the signal space arises between symbol vectors that

belong to different combinations, e.g., between C1 and C3 in Table 6.1 and between C1

and C5 in Table 6.2, and this distance is smaller than the minimum distance of QPSK. In

this case, separately labeling the signal constellations and the active antennas patterns

is not optimum for ESM. However, this is an isolated case, and the Euclidean distance is

preserved with higher level modulations, e.g., with 16QAM as primary modulation and

QPSK0/QPSK1 as secondary modulations.

6.2.6 Receiver complexity analysis

In this section, we show that in addition to improving performance over conventional

SM, the proposed ESM also reduces the complexity of the ML decoder. Reduction of the

receiver complexity will be demonstrated by explicitly evaluating the respective complexi-

ties of SM and ESM in the 4TX8b case before summarizing the complexity figures of the

two transmission schemes for different spectral efficiencies. In this analysis, we define

complexity as the number of complex multiplications required per ML decoder decision

For 4TX8b SM, the ML decoder needs to compute wi j = y−hi s j , where hi with i = 1,2, · · · ,4

denotes the i -th column of the channel matrix H, and s j with j = 1,2, · · · ,64 denotes a

64QAM symbol. This step involves 256 complex multiplications. Next, it needs to compute

the squared modulus of each one of the wi j terms, and this step involves another 256

complex multiplications. In other words, the total number of complex multiplications in

this scheme is 512 per channel use.

In the case of 4TX8b ESM, we need to consider separately 3 groups of antenna and con-

stellation combinations. First, in combinations C1 - C4, a 16QAM symbol is transmitted

from one of the 4 TX antennas. For those combinations, the ML decoder needs to com-
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Table 6.5 Receiver Complexity (NR = 1)

2TX4b 2TX6b 2TX8b 2TX9b

SM 32 128 512 1024

ESM 32 112 416 836

4TX6b 4TX8b 4TX10b 4TX11b

SM 128 512 2048 4096

ESM 96 352 1344 2912

pute wi j = y−hi s j , with i = 1,2,3,4 and j = 1,2, · · · ,16, and this involves 64 complex

multiplications. Next, in combinations C5 - C10, two QPSK0 symbols are transmitted

from two active antennas. For those combinations, the ML decoder needs to compute

wi j kl = y−hi s0
j
−hk s0

l
, with i ,k = 1,2,3,4 and where s0

j
and s0

l
( j , l = 1,2,3,4) denote two

symbols taken from the Q0
4 signal constellation. The number of complex multiplications

involved in this step is only 16. Finally, in combinations C11 - C16, two QPSK1 symbols

are transmitted from two active antennas. For those combinations, the ML decoder needs

to compute wi j kl = y−hi s1
j
−hk s1

l
, with i ,k = 1,2,3,4 and where s1

j
and s1

l
( j , l = 1,2,3,4)

denote two symbols taken from the Q1
4 signal constellation. Here, the number of complex

multiplications is also 16. So, the total number of complex multiplications involved in the

steps above is 96, although the number of wi j and wi j kl values computed is 256 (64 values

corresponding to combinations C1 - C4, 96 values corresponding to combinations C5 -

C10, and 96 values corresponding to combinations C11 - C16). Next, the decoder needs to

compute the squared modulus of all wi j and wi j kl values to determine the 256 metrics

involved. So, the total number of complex multiplications per decoding step in the ML

decoder is 352, which is significantly smaller than the corresponding number in SM. In

this particular case, the decoder complexity reduction with respect to conventional SM is

31.2%.

The complexity analysis reported above for the 4TX8b case was also made for all SM

and ESM schemes and the results are reported in Table 6.5. The results indicate that

ESM significantly reduces the ML decoder complexity compared to conventional SM,

particularly in the case of 4 TX antennas. Note that in the 4TX10b case, the ML decoder

complexity of ESM is 34.4% smaller than that of conventional SM.
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6.3 ESM with two active antennas

In this section, the ESM concept was modified by restricting two active antennas to

transmit simultaneously, which will provide an increased spectral efficiency. Before

describing our proposed ESM schemes, we first briefly describe the baseline multistream

SM (MSM) scheme [57], which will be used as basis for comparisons.

MSM with 4 TX antennas (NT = 4) out of which two are active and transmitting 16QAM

symbols can be described using the following signal space representation:

MSM: x ∈
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, (6.15)

where the entry P16 denotes the 16QAM signal constellation and the zero entries cor-

respond to the silent TX elements. In this example, MSM achieves a throughput of 10

bits channel per use (bpcu): Indeed, 2 information bits are assigned to select one of four

combinations of the active TX antennas and 8 bits select two particular symbols from the

signal constellation P16 to be transmitted from those antennas. The total energy per trans-

mitted symbol vector in this example is Emsm = 20, because the energy corresponding to

the transmission of each 16QAM symbol is 10.

6.3.1 ESM-Type1

For the same spectral efficiency as the MSM scheme described above, the transmitted

symbol vectors in ESM-Type1 are given by:

ESM-Type1: x ∈
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, (6.16)

In this case, we have a total of 8 antenna and constellation combinations: As in MSM,

there are 4 active antenna combinations, but while one of the active antennas transmits

a symbol from the primary 16QAM constellation, the other antenna transmits a symbol

from a secondary constellation referred to as S8. Both of these signal constellations are
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Fig. 6.5 The constellations used in ESM-Type1: The blue crosses represent 16QAM, and

the red circles represent constellation S8.

shown in Fig. 6.5, and the antenna/modulation combinations are shown in Table 6.6. The

secondary signal constellation S8 has the following mathematical representation:

S8 = {±2±2i ,±2,±2i }.

Similar to MSM, this design achieves 10 bpcu despite the fact that one of the antennas

transmits symbols from a reduced-size signal constellation. Indeed, the two symbols

transmitted in parallel from the two active TX antennas convey 7 bpcu only, but the

number of antenna constellation combinations (pairs of indexes along with the assigned

signal constellations) is 8, and therefore 3 bits must be assigned to select one of these

combinations.

A simple inspection indicates that the energy per symbol for the S8 constellation is ES8 = 6

and since the average energy per 16QAM symbol is E16Q AM = 10, the total energy per

transmitted symbol vector in this scheme is

EESM−T y pe1 = 16.

This means that in terms of total transmit energy, ESM-Type1 saves 20% (approx. 1 dB)

compared to MSM. The final remark to make at this point is that the S8 constellation in

the proposed scheme is designed in such a way as not to reduce minimum Euclidean
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Table 6.6 The antenna/modulation combinations used in ESM-Type1

Tx1 Tx2 Tx3 Tx4

C1 16QAM S8 0 0

C2 16QAM 0 0 S8

C3 0 16QAM S8 0

C4 0 0 16QAM S8

C5 S8 16QAM 0 0

C6 S8 0 0 16QAM

C7 0 S8 16QAM 0

C8 0 0 S8 16QAM

distance between transmitted symbol vectors compared to MSM, as can be easily verified

by making a simple exhaustive search.

6.3.2 ESM-Type2

By using a primary constellation and a reduced-size secondary constellation, ESM-Type1

reduced the total transmit energy to some extent. This idea can be further extended using

more than two constellations. We will now describe an ESM scheme that is based on

first discarding the corner points of the 16QAM signal constellation and then partitioning

the resulting 12-point constellation into two subsets, one with 8 points denoted P8 and

another one with 4 points denoted Q4. This scheme will be referred to as ESM-Type2. The

constellations used in this ESM scheme are depicted in Fig. 6.6. Mathematically, the P8

and Q4 constellations can be represented as follows:

P8 = {±1± i ,3+ i ,1−3i ,−3− i ,−1+3i }

Q4 = {1+3i ,3− i ,−1−3i ,−3+ i }.

A simple inspection reveals that the average energy is 6 for the P8 constellation and 10

for the Q4 constellation. Clearly, constellation P8 must be used more frequently than

constellation Q4 in order to reduce average transmitted energy. The design procedure is

described in the following. The transmitted symbol vectors belong to a symbol space L,
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which can be written as:

ESM-Type2: x ∈ L = {L1,L2,L3,L4}, (6.17)

where each L j∈{1,2,3,4} subspace is defined by a set of active antenna combinations and

associated signal constellations. The first three subspaces are defined as:
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Different subspaces use different antenna combinations, but in all of these three subspaces

one active antenna transmits symbols from the P8 signal constellation, and the other

active antenna transmits symbols from the S8 constellation. Note that 6 information bits

are conveyed by the transmitted symbols, and 2 information bits are used to select one

antenna combination in each subspace. Also, 2 prefix bits select a particular L j subspace,

and hence the total number of bits per channel use is 10.

The fourth signal subspace L4 is given by:

L4 =
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(6.18)

In this subspace, one of the active antennas transmits a symbol from the S8 constellation,

while the other antenna transmits a symbol from the Q4 signal constellation. The two

symbols convey 5 information bits, but here we need 3 information bits to select one

antenna combination out of 8, and together with the 2 prefix bits assigned to the L4

subspace the number of bits per channel use is 10 as in the other cases.

In subspaces L1, L2, and L3, the average transmitted energy is 12, because both of the

constellations used have an average energy of 6. In contrast, the average transmitted

energy is 16 in L4, because constellation Q4 has an average energy of 10. Therefore, the

average total energy per transmitted symbol vector is given by:

EESM−T y pe2 =
3

4
×12+

1

4
×16 = 13.
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Fig. 6.6 The constellations used in ESM-Type2: The blue crosses represent P8, the red

circles represent S8, and the black stars represent Q4.

This indicates that ESM-Type2 saves approximately 35% in terms of total energy transmit-

ted (13 instead of 20), which reads approximately 1.9 dB gain in the decibel scale.

6.3.3 ESM-Type3

By using a primary constellation and a reduced-size secondary constellation, the ESM

scheme described above reduced the total transmit energy to some extent. This idea

can be extended to using more than two constellations in the design and defining the

constellations through two interpolation steps instead of one. The design is based on the

ESM-Type2 signal constellations shown in Fig. 6.6 and two additional 8-point constella-

tions T8 and F8 that are obtained through a second geometric interpolation step between

the points of the ESM-Type2 constellations. The T8 and F8 constellations are defined as

T8 = {Tc ∪T4∪T2} and F8 = {Fc ∪F4∪F2} using the six constellations shown in Fig. 6.7 and

mathematically defined as follows:

Tc = {±i }, T4 = {±2± i }, T2 = {±3i }

Fc = {±1}, F4 = {±1±2i }, F2 = {±3}.

Note that the minimum Euclidean distance between the points of anyone of these four

constellations (P8,S8,T8,F8) is δ0 = 2. Next, the minimum distance between the P8 and



6.3 ESM with two active antennas 101

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Fig. 6.7 The constellations used in ESM-Type3: The yellow constellations are those used

in ESM-Type2, the green pluses represent Tc, the pink triangles represent Fc , the green

points represent T4, the pink squares represent F4, the green crosses represent T2, and the

pink diamonds denote F2.

S8 constellations (resp. the T8 and F8 constellations) is (δ0/
p

2). This can be easily seen

by checking Figs. 6.6 and 6.7. Finally, the minimum distance between a point taken from

P8 ∪S8 and a point taken from T8 ∪F8 is (δ0/2). Since the number of active antennas is

limited to 2, a particular care must be exercised to preserve a minimum distance of δ0 = 2

in the signal space.

More specifically, the use of different constellations cannot be made independently from

a channel use to the next. Instead, the antenna and constellation combinations must

be jointly defined over a block of two consecutive channel uses. The minimum distance

can be preserved in the following two cases: In the first case, the P8 and S8 constellations

(resp. the T8 and F8 constellations) are employed during both channel uses. In the second

case, the P8 and S8 constellations are used during the first channel use, and the T8 and F8

constellations are used during the second channel use, or vice versa. In this work, we take

the second approach, because the number of bits transmitted per block is not constant in

the first.

For presenting our ESM-Type3 scheme, we first extend the system model by stacking two

consecutive received signal vectors. Assuming slow-fading channels essentially constant

over two consecutive channel uses, then the transmitted and received signals are related
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by the following equation:

Y = HX+N, (6.19)

where Y = [y1,y2] denotes the NR × 2 received signal matrix, X = [x1,x2] is the NT × 2

transmitted matrix, N is the NR ×2 AWGN matrix, and the subscript k ∈ {1,2} denotes the

time index of the symbol vector.

For ESM-Type3, the transmitted symbol matrix X belongs to the following signal subsets:

ESM-Type3: X ∈ {S1,S2}, (6.20)

where

S1 = {x1 ∈SPS ,x2 ∈ST F } (6.21)

S2 = {x1 ∈ST F ,x2 ∈SPS}.

In this representation, SPS denotes the set of symbol vectors based on the primary and the

secondary constellations, and ST F denotes the set of symbol vectors based on the third

and the fourth constellations. The transmitted symbol vector takes its values from the

set SPS during the first channel use in the block and from the set ST F during the second

channel use, or vice versa. From the 20 bits per NT ×2 symbol matrix, 1 bit selects subset

S1 or subset S2. Next, 10 bits select a vector from SPS and 9 bits select a vector from ST F ,

and these two vectors are transmitted in the order determined by the first bit.

The details of the proposed design process are presented as follows. First, the set of symbol

vectors SPS is actually the signal space of ESM-Type2 described in the previous section. A

signal vector is therefore of the form:

SPS : x ∈ {L1,L2,L3,L4}, (6.22)

where the subsets L1 −L4 are given by eqn. (6.18). As shown in the previous section, this

scheme transmits 10 bits per channel use, and the average total energy per transmitted

symbol vector is Es = 13. Next, the set of symbol vectors ST F is based on the third and the

fourth constellations T8 and F8, but symbol vectors in ST F only transmit 9 bpcu instead

of the 10 bpcu transmitted in the case of SPS . The set ST F is constructed by the union L′

of four subsets as:

ST F : x ∈ L′ = {L′
1,L′

2,L′
3,L′

4}, (6.23)
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where each set is corresponding to different antenna combinations and associated signal

constellations. The first subset is defined as:

L′
1 =
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(6.24)

, {L1|P8 → T8,S8 → F8} .

Subset L′
1 has the same antenna combinations as L1 shown in eq. (6.18), but instead of

P8 and S8, it uses the T8 and F8 constellations. The L′
1 subset can transmit 8 bits: 2 bits

select one of the four combinations of active TX antennas and associated constellations,

3 bits select a symbol from the T8 constellation, and 3 bits select a symbol from the F8

constellation. The other three subsets L′
2 −L′

4 are defined as follows:

L′
2 = {L4|P4 → T4,S8 → F4}, (6.25)

L′
3 = {L4|P4 → T4,S8 → F2}

L′
4 = {L4|P4 → T2,S8 → F4}

This representation indicates that the combinations of active antennas in subset L′
2 are

the same as those in L4 shown in eq. (6.18), but here constellation P4 is replaced by

constellation T4 and constellation S8 is replaced by constellation F4. Similarly, subset L′
3 is

obtained from L4 by substituting constellation T4 for P4 and substituting F2 for S8. Finally,

subset L′
4 is obtained from L′

4 by substituting constellation T2 for P4 and constellation F4

for S8.

The signal subset L′
2 transmits 7 bits per symbol vector: 3 bits are needed to select one of

the 8 combinations, 2 bits to select a symbol from T4, and 2 bits to select a symbol from

F4. Next, since the L′
3 subset is derived from L′

2 by substituting F2 for F4, it transmits 6 bits

per symbol vector. Again, 3 bits select one of the 8 combinations, and then 1 bit selects

a symbol from F2, and 2 bits select a symbol from T4. Similarly, since the L′
4 subset is

derived from L′
2 by substituting T2 for T4, it also transmits 6 bits per symbol vector. Here,

3 bits select one of the 8 combinations, 1 bit selects a symbol from T2, and 2 bits select a

symbol from F4.

The discussion above indicates that the number of bits transmitted per symbol vector is

not uniform across the L′
1 −L′

4 subsets. The implication of this is that the prefix of these

subsets in ST F must have a variable number of bits. Subset L′
1 must have a 1-bit prefix,
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subset L′
2 must have a 2-bit prefix, and subsets L′

3 and L′
4 must have a 3-bit prefix. With

these variable-length prefixes, it can be seen that all symbol vectors in ST F carry 9 bits.

At this point, it is important to clarify the difference between the construction of the L′
1

subset and that of the L′
2 −L′

4 subsets included in ST F . Notice that the innermost points

of the T8 and F8 constellations, namely Tc and Fc , are only used in the first subset L′
1.

These points cannot be used in L′
2, because otherwise the minimum Euclidean distance

in the signal space would be δ0/
p

2, which is 3 dB smaller than the minimum Euclidean

distance in SPS . This is the case, for instance, between the symbol vectors [1, i ,0,0] ∈ L′
1

and [1,0, i ,0] ∈ L′
2. Similarly, the innermost points are not allowed in the subsets L′

3 and

L′
4 in order to preserve the minimum Euclidean distance. As a result, the signal vectors

in ST F carry only 9 bits, while the signal vectors in SPS carry 10 bits. The average total

energy per transmitted symbol vector from ST F is Es = 11.

Since the signal vector sets in SPS and ST F are used with the same probability, the average

energy of the transmitted signal vectors in ESM-Type3 is

EESM−T y pe3 =
1

2
(13+11) = 12

This represents a 2.2 dB SNR gain over MSM, and a 0.4 dB gain over the ESM-Type2.

6.3.4 ESM with 64QAM as primary modulation

In order to achieve higher throughputs, we now describe ESM schemes that are equivalent

to MSM with 64QAM in terms of spectral efficiency. In all of them, the number of transmit

antennas is 4, two of which are active, and the spectral efficiency is 14 bpcu. The design

process is similar to that in the previous subsections, but here we have more degrees of

freedom due to the fact that the primary modulation has a larger number of constella-

tion points. As previously, we will describe here three ESM schemes, starting with the

description of the baseline MSM with 64QAM, which we use as reference.

For MSM with 4 TX antennas (NT = 4) and 14 bpcu, the transmitted symbol vector can be

written as:
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, (6.26)
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where P64 denotes the 64QAM symbols. The number of antenna combinations being four,

2 bits must be assigned for selection of a particular combination. Next, the transmitted

64QAM symbols convey 12 information bits, and therefore the spectral efficiency is 14

bpcu. The total average energy per transmitted symbol vector in this scheme is EMSM = 84,

because each 64QAM symbol has an average energy of 42.

ESM-Type1 with 14 bpcu

In this scheme, the transmitted symbol vectors can be represented as:
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The symbol transmitted from the antenna with index m takes its values from 64QAM

which is the primary modulation, and the symbol transmitted from the antenna with

index n ̸= m takes its values from the secondary modulation that is denoted by S32. These

signal constellations are shown in Fig. 6.8, where the entries of the secondary modulation

are given by:

S32 =







S8,±4,±4i ,±6,±6i

±4±2i ,±4±4i ,±2±4i

2+6i ,6−2i ,−6+2i ,−2−6i


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

.

The S32 constellation is obtained through geometric interpolation between the points of

the primary constellation with the constraint of transmitting minimum energy.

In this ESM scheme, the transmitted symbol pair conveys 11 bits only (because the S32

symbols carry 5 bits), but the number of combinations is 8 and so 3 bits must be assigned

to selection of a particular combination. Therefore, the spectral efficiency is 14 bpcu as in

the baseline MSM. As for the total energy per transmitted symbol vector, it is given by:

EESM−T y pe1 = 64,

because the transmitted symbol vector includes one 64QAM symbol with (E64Q AM = 42)

and one S32 symbol (ES32 = 22). Consequently, ESM-Type1 reduces the transmitted
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Fig. 6.8 The constellations used in ESM-Type1 with 14 bpcu: The blue crosses represent

64QAM, and the red circles represent S32.

average energy by approximately 24% compared to MSM. In the decibel scale, this gives a

gain of 1.2 dB.

ESM-Type2 with 14 bpcu

In this scheme, the transmitted symbol vectors are defined by the following set:

ESM-Type2: x ∈
{

L1,L2,L3,L4,L5,L6,L7,L8

}

, (6.28)

where the signal subspaces L1 to L6 are defined as:

L1 =


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, (6.29)

L4 =


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.



6.3 ESM with two active antennas 107

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Fig. 6.9 The constellations used in ESM-Type2 with 14 bpcu: The blue crosses represent

32QAM, the red circles represent S32, the black stars represent R8, and the black squares

represent Q8.

Different L j subspaces correspond to different combinations of active antennas, and in all

cases one of the transmitted symbols takes its values from the 32QAM signal constellation

while the other symbol takes its values from the S32 constellation illustrated in Fig. 6.9.

The other two signal subspaces (L7 and L8) are given by:

L7 =


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, (6.30)

L8 = {L7|P32 → P32,Q8 → R8}.

In subspace L7, one of the transmitted symbols takes its values from 32QAM and the

other takes its values from the Q8 constellation, also illustrated in Fig. 6.9. Finally, In

subspace L8, one of the transmitted symbols takes its values from the S32 constellation,

and the other takes its values from R8 constellation (again, see Fig. 6.9). The Q8 and R8

constellations can be mathematically written as:

Q8 =
{

±8,±8i ,2−6i ,−2+6i ,6+2i ,−6−2i
}

R8 =
{

±7± i ,±1±7i
}

.
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In signal subspaces L1 to L6, symbol selection requires 10 bits (one symbol from the

32QAM constellation and one from S32). Each of these subsets has two antenna constella-

tion combinations, and therefore a single bit is needed to select a particular combination.

In subspaces L7 and L8, symbol selection requires 8 bits, because the R8 and Q8 constella-

tions have only 8 points and their symbols carry 3 bits). But since each of these subspaces

has 8 index combinations, 3 bits are needed to select one of them, and so 11 bits are

needed in total to select a particular combination and the symbols to transmit from each

active antenna, in each of these signal subspaces. Finally, since the signal space includes

8 subspaces, 3 bits must be assigned to selection of a particular subspace, and hence the

described scheme transmits 14 bpcu.

To compute the total energy per transmitted symbol vector, we first evaluate the average

energy of the constellations used in this design: A simple inspection shows that the average

energy is E32Q AM = 20 for 32QAM, ES32 = 22 for S32, EQ8 = 52 for Q8, and ER8 = 50 for R8.

Since the symbols take their values from {32QAM,S32} in 6 out of the 8 subspaces, from

{32QAM,Q8} in one subspace, and from {S32,R8} in the remaining subspace, the average

total transmit energy is given by:

EESM−T y pe2 =
6

8
×42+

1

8
×72+

1

8
×72 = 49.5.

Compared to the baseline MSM scheme, this ESM scheme saves approximately 41% in

terms of transmit energy. This represents a SNR gain of 2.3 dB.

ESM-Type3 with 14 bpcu

In this scheme, the transmitted symbol is represented as:

ESM-Type3: X ∈ {S1,S2}, (6.31)

where we define S1 = {x1 ∈ SPS ,x2 ∈ ST F } and S2 = {x1 ∈ ST F ,x2 ∈ SPS}. Similarly, the

set of symbol vectors SPS is defined as the signal space of ESM-Type2 described in the

previous section. A signal vector is therefore of the form:

SPS : x ∈
{

L1,L2,L3,L4,L5,L6,L7,L8

}

, (6.32)

where the subsets L1 −L8 are given by eqns. (6.29)− (6.30). As shown in the previous

section, this scheme transmits 14 bits per channel use, and the average total energy per

transmitted symbol vector is Es = 49.5.
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Fig. 6.10 The constellations used in ESM-Type3 with 14 bpcu: The yellow constellations

are those of ESM-Type2, the green pluses represent Tc , the pink triangles represent Fc , the

green points represent T16, the pink squares represent F16, the green starts represent T8,

the pink circles denote F8, the green crosses are To , and the pink diamonds are Fo .

Next, the signal set ST F is constructed by the union L′ of four subsets as follows:

ST F : x ∈ L′ = {L′
1,L′

2,L′
3,L′

4}, (6.33)

where each set is corresponding to different antenna combinations and associated signal

constellations. The first subset is defined as:
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(6.34)

The constellations are illustrated in Fig. 6.10, where the T32 and F32 constellations can be

mathematically written as:

T32 = Tc ∪T16 ∪T8 ∪To (6.35)

F32 = Fc ∪F16 ∪F8 ∪Fo .

Specifically, the third constellations are given by Tc = {±i }, T16 = {±2± i ,±2,±3i ,±4±
i ,±3i ,±5i }, T8 = {±2±5i ,±4±3i }, and To = {±6± i ,±7i }. The fourth constellations are
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written as Fc = {±1}, F16 = {±1± 2i ,±3± 2i ,±1± 4i ,±3,±5}, F8 = {±3± 4,±5± 2i }, and

Fo = {±1±6i ,±7}.

The L′
1 subset can transmit 12 bits: 2 bits select one of the four combinations of active TX

antennas and associated constellations, 5 bits select a symbol from the T32 constellation,

and 3 bits select a symbol from the F32 constellation. The other three subsets L′
2 −L′

4 are

defined as follows:
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, (6.36)

L′
3 = {L′

2|T16 → T8,F16 → F16}.

L′
4 = {L′

2|T16 → T16,F16 → F8}.

The T16, F16, T8 and F8 constellations are also shown in Fig. 6.10. This representation

indicates that the combinations of active antennas in subset L′
3 are the same as those

in L′
2, but here constellation F16 is replaced by constellation F8. Similarly, subset L′

4 is

obtained from L′
2 by substituting constellation T8 for T16.

The signal subset L′
2 transmits 11 bits per symbol vector: 3 bits are needed to select one of

the 8 combinations, 4 bits to select a symbol from T16, and 4 bits to select a symbol from

F16. Next, since the L′
3 subset transmits 10 bits per symbol vector. Again, 3 bits select one

of the 8 combinations, and then 3 bit selects a symbol from T8, and 4 bits select a symbol

from T16. Similarly, since the L′
4 subset also transmits 10 bits per symbol vector. Here, 3

bits select one of the 8 combinations, 4 bit selects a symbol from T16, and 3 bits select a

symbol from F8.

The prefix of these subsets in ST F must have a variable number of bits. Subset L′
1 has a

1-bit prefix, subset L′
2 has a 2-bit prefix, and subsets L′

3 and L′
4 have a 3-bit prefix. With

these variable-length prefixes, it can be seen that all symbol vectors in ST F carry 13 bits.

The average total energy per transmitted symbol vector from ST F is Es = 37.5.

The signal vector sets in SPS and ST F are used with the same probability, the average

energy of the transmitted signal vectors in ESM-Type3 is

EESM−T y pe3 =
1

2
(49.5+37.5) = 43.5

This represents a 2.9 dB SNR gain over MSM.
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Table 6.7 Expected gain of the ESM schemes over MSM

10-bpcu 14-bpcu

ESM-Type1 1dB 1.2dB

ESM-Type2 1.9dB 2.3dB

ESM-Type3 2.2dB 2.9dB

6.3.5 Performance and complexity analysis

The minimum Euclidean distance: Assuming the CSI is perfectly known at the receive

side, the ML decoder estimates the transmitted codeword according to:

X̂ = argmin
X∈X

∥Y−HX∥2, (6.37)

where the minimization is performed over all possible transmitted symbol vectors from

the signal codeword space X.

In ML detection using exhaustive search, the receiver computes the Euclidean distance

between the received noisy signal and the set of all possible signal vectors transmitted over

the channel matrix. At high SNR, the receiver performance is dominated by the minimum

squared Euclidean distance over the signal space [58]:

L2
mi n = min∥X−X′∥2. (6.38)

The ESM schemes introduced in this work were designed in such a way as to preserve the

minimum squared Euclidean distance of the primary modulation L2
mi n

= δ2
0. The same

minimum distance being also valid for MSM, comparison of the asymptotic performance

of the different schemes is reduced to comparing their average transmit energy Es . We

therefore define the expected gain G of a scheme over another as the ratio of their average

transmit energies expressed in the dB scale as follows:

G = 10log10

(
Es

E ′
s

)

. (6.39)

For example, the expected gain of ESM-Type3 over MSM with 10 bpcu is 10log10(20/12) =
2.2 dB. The expected asymptotic gains of the proposed ESM schemes over MSM are

reported in Table 6.7.
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Receiver complexity: Defining the receiver complexity as the number of complex multi-

plications required per ML decoder decision, we found that the first two of the proposed

ESM schemes have essentially the same receiver complexity as MSM, while the third has a

50% higher complexity. Using the system model given by eqn. (6.1), the ML decoder needs

to compute 2b decision metrics wk = ∥y−Hxk∥2, where b is the total number of transmit-

ted bits per channel use. This holds for MSM as well as for ESM-Type1 and ESM-Type2.

Obviously, the number of antenna/modulation combinations is higher in ESM-Type2

than in ESM-Type1, which in turn has a higher number of combinations than in MSM, but

as the number of combinations increases, the ESM schemes use smaller constellations,

and the number of the vectors in the signal space remains the same. Computation of each

metric by the decoder involves one norm calculation, which requires a single complex

multiplication. The difference between the three schemes lies in the number of multipli-

cations needed prior to norm calculations. But this number is of second order compared

to the number of metrics, and therefore the receiver complexities of MSM, ESM-Type1,

and ESM-Type2 only differ by a few percent.

A close look at ESM-Type3 reveals that the decoder complexity is more involved than in

the first two ESM schemes, because the ML decoder must jointly decide two consecutive

symbols. For 10 bpcu, the signal space is described by eqn. (6.20). The ML decoder

must search in this space using two consecutive received signal samples y1 and y2 and

computing metrics of the form wk = ∥y1 −Hxi∥2 +∥y2 −Hx j∥2, where xi ∈SPS , x j ∈ST F ,

or xi ∈ST F , x j ∈SPS . The number of norm calculations (and complex multiplications)

per decoder decision is 2× [card(SPS)+card(ST F )], where the sign card(·) indicates the

cardinality of the signal set involved. But since only one decision is made every two

channel uses, the number of norm calculations (and complex multiplications) per channel

use is card(SPS)+ card(ST F ) = 2b +2b−1. This is 50% higher than in the first two ESM

schemes. The number of complex multiplications required before the norm calculations

is essentially the same as in the previous schemes, but as indicated earlier, these numbers

are of second order, and the decoder complexity is essentially given by the number of

norm calculations, and therefore, the ML decoder complexity is approximately 50% higher

in ESM-Type3 than in MSM, ESM-Type1, and ESM-Type2.

But in any case, implementation of the ML decoder using exhaustive search involves a very

high complexity and becomes prohibitive at very high spectral efficiencies in any MIMO

scheme. In practice, the ML decoder can be implemented efficiently using the sphere

decoding (SD) technique. This technique reduces the complexity of the ML decoder by

shrinking the search space to an acceptable level and counting those combinations that
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lie within a sphere centered on the received signal. The general SD scheme for SM was

described in [59], and it was shown that it significantly reduces computational complexity

with no performance loss. In the simulations section which follows, we use the complex-

valued SD for ESM, which takes the signal space of ESM into account and uses an infinity

search radius to guarantee the ML performance.

6.4 Simulation results

We report here the results of Monte Carlo simulations, which were obtained using Rayleigh

fading MIMO channels with 4 receive antennas (NR = 4) and assuming perfect CSI at the

receiver. We also assume perfect synchronization and rectangular pulse shaping. That

is, we neglect the problems of antenna switching with Nyquist pulse shaping, which may

be challenging in practice. This problem was addressed in some recent papers, which

proposed solutions such as employing a multiple-RF antenna switching architecture [60]

or simply using a large roll-off factor in the pulse shaping filters to ensure that the energy

is concentrated in a short period of time [61].

6.4.1 ESM with multiple signal constellations

In the simulations, symbol vectors were randomly generated and transmitted over the

channel, ML detection was performed using the received noisy signal samples, and symbol

vector error events were counted. The obtained symbol vector error rate (SVER) was

used to compare the respective performances of conventional SM and ESM. Unlike BER

performance evaluation, the SVER does not need to define the bit mapping, and the

simulations are much quicker. In the first part of the simulations, we compared the BER

and the SVER performance results of SM, SMX, and ESM in the 2TX4b case.

The BER results are reported in Fig. 6.11. The constellation used in each scheme is given

in the legend. For example, SM uses 8PSK and is denoted SM-8PSK, SMX uses 4QAM

and is denoted SMX-4QAM, and finally ESM uses 4QAM as primary modulation, and it

is denoted ESM-4QAM. These results show that ESM gains 1.5 dB over conventional SM

and gives the same performance as SMX at BER = 10−4. Next, the SVER performance

of the 3 MIMO schemes at hand was evaluated, and the results are given in Fig. 6.12.

Comparison of Fig. 6.11 and Fig. 6.12 shows that the gains in terms of SVER performance

perfectly match those given in terms of BER. On the basis of this observation, SVER
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Fig. 6.11 BER performance of 2TX4b.
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Fig. 6.12 SVER performance of 2TX4b.

performance evaluations were used in all subsequent comparisons of the MIMO schemes

under investigation, because they are simpler to evaluate than BER performance and they

provide very accurate performance comparisons.
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Fig. 6.13 SVER performance of 2TX6b.

The SVER curves corresponding to 2TX6b are presented in Fig. 6.13. As predicted by

the L2
mi n

analysis, the simulation results confirm that ESM outperforms all other MIMO

schemes at hand. Specifically, ESM gains more than 1 dB over SMX, 2 dB over QSM, and

close to 3 dB over SM at SV ER = 10−3. In this figure, we also give the analytic bound of

ESM obtained using (6.11) to show its tightness in the high SNR region.

Next, in Fig. 6.14, we show the SVER performance of 2TX8b schemes in which ESM uses

64QAM as primary modulation. The results indicate that ESM gains around 4 dB over

QSM and 5 dB over SM, but loses close to 1 dB with respect to SMX at SV ER = 10−3. The

average SNR loss of ESM with respect to SMX is mainly due to the fact that combinations

C 1−C 2 use the 64QAM signal constellation while SMX uses 16QAM in that case.

In Fig. 6.15, the SVER curves of 2TX9b show that ESM gains around 4 dB over QSM and

6 dB over SM and has about 0.8 dB loss compared to SMX at SV ER = 10−3. Again, the

average SNR loss of ESM with respect to SMX can be attributed to the use of 64QAM in

combinations C 1−C 2, while SMX uses one 16QAM stream and one 32QAM stream in

parallel to achieve a spectral efficiency of 9 bpcu.

In Fig. 6.16, the SVER curves of 4TX6b show substantial improvements of the SM family

(both SM and ESM) over SMX. Specifically, ESM gains around 3 dB over SM and approxi-

mately 4 dB over SMX at SV ER = 10−3. This means that SM gains about 1 dB over SMX
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Fig. 6.14 SVER performance of 2TX8b.
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Fig. 6.15 SVER performance of 2TX9b.

while using fewer RF chains. Similarly, the SVER curves of 4TX8b are shown in Fig. 6.17,

which indicates that ESM gains around 3 dB over SMX and QSM and approximately 6 dB

over SM at SV ER = 10−3. In other words, SM loses 3 dB over SMX in this case.
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Fig. 6.16 SVER performance of 4TX6b.
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Fig. 6.17 SVER performance of 4TX8b.

Fig. 6.18 shows the SVER performance results of 4TX10b in which ESM uses 64QAM as

primary modulation. Here, ESM gains around 3 dB over SMX, 5 dB over QSM, and more

than 7.5 dB over conventional SM at SV ER = 10−3. Finally, the SVER performances of the
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Fig. 6.18 SVER performance of 4TX10b.
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Fig. 6.19 SVER performance of 4TX11b.

4TX11b schemes are depicted in Fig. 6.19, which shows that ESM gains around 3 dB over

SMX, 5 dB over QSM, and as much as 9 dB over SM at SV ER = 10−2. The substantial gain

of ESM over SM in the 4TX11b case can be explained by the fact that SM requires 512QAM
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Fig. 6.20 Impact of the number of RX antennas.

for transmitting 11 bpcu, while ESM only needs 64QAM as primary modulation to achieve

the same spectral efficiency.

A final investigation in this work concerned the relation between the expected gains

from the minimum distance analysis and the gains achieved with a finite number of RX

antennas. The results are reported in Fig. 6.20. The specific numbers of RX antennas

used here are 2, 4, 8, 16, 32, and 64. The average SNR gains which appear in this figure are

those of ESM over SM. The expected gains corresponding to the 2TX4b and 4TX6b cases

are indicated by the dotted line and the solid line, respectively. The curve with crosses

gives the gain as a function of the number of RX antennas for the 2TX4b case. It shows

that the expected gain of 2.32 dB can be approached when the number of RX antennas

increases. Specifically, the gain is virtually to 2 dB with 8 RX antennas and 2.3 dB with 16

RX antennas. A similar observation can be made for the 4TX6b case. Here, the expected

gain (the solid-line curve) is 4 dB, and the curve with circles, which gives the gain as a

function of the number of RX antennas indicate that the gain achieved with 8 RX antennas

is 3.6 dB and the gain with 16 RX antennas is 3.8 dB.
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Fig. 6.21 CER performance of MSM and ESMs: 4 TX antennas and 8 RX antennas with 10

bpcu.

6.4.2 ESM with two active antennas

In the simulations, the symbol codewords X were randomly generated transmitted over

the channel, the SD was performed using the received noisy signal samples, and error

events X ̸= X′ were counted. The obtained codeword error rate (CER) was used to compare

the respective performances of conventional MSM and the presented ESMs.

Fig. 6.21 gives the Monte-Carlo simulation results of the system performance for 10-

bpcu transmission. These results show that at C ER = 10−3 the presented ESM schemes

achieve SNR gains over MSM of around 0.6 dB, 1.3 dB and 1.8 dB, respectively. In Fig. 6.22,

we report the CER performance of MSM and the proposed ESM schemes providing 14

bpcu. Here, we can see that at C ER = 10−3 the ESM schemes achieve gains of around

0.9 dB, 1.9 dB and 2.2 dB, respectively, over MSM. Note that the gains are higher than

those achieved in the 10 bpcu case. This is due to the fact that the average energy of

the secondary constellations used in our signal design becomes lower (relatively to the

primary constellation) when higher spectral efficiencies are considered.

A final investigation in this work concerned the relation between the expected gains and

the practical gains achieved with a finite number of RX antennas. The results are reported

in Fig. 6.23 for the case of 10 bpcu. The specific numbers of RX antennas used in this
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Fig. 6.22 CER performance of MSM and ESMs: 4 TX antennas and 16 RX antennas with 14

bpcu.

investigation are 2, 4, 8, 16, 32, and 64. The results show that the expected gain can be

approached when the number of RX antennas increases. In fact, 80% of the expected gain

can be achieved with 16 RX antennas.

6.5 Conclusion

In the first part of this chapter, we have introduced an ESM scheme by enabling one or two

active TX antennas and using multiple signal constellations. Compared to conventional

SM, this scheme transmits one or two additional information bits per channel use. On

Rayleigh fading channels, both the closed-form performance analysis and the simulation

results showed that the proposed technique outperforms conventional SM when the

signal constellations are selected so as to have the same number of bits per channel use. It

was found that with two TX antennas ESM potentially gains up to 6 dB over conventional

SM. It was also found that with four TX antennas, ESM leads to higher gains: it gains up

to 9 dB over SM. Moreover, the receiver complexity analysis of ML detection revealed

that while ESM achieves a substantial performance gain over conventional SM, it also

significantly reduces the complexity of the optimum decoder.
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In the second part of the chapter, extending the ESM scheme, we further introduced three

other types of ESM schemes in which two transmit antennas remain systematically active.

In addition to a primary constellation, these schemes use one or more constellations

of reduced size and energy. The reduced size is compensated using a higher number

of antenna/modulation combinations with respect to MSM. The new combinations are

included in such a way as to preserve the Euclidean distance in the signal space while

reducing the average total transmit energy. Using Monte Carlo simulations on Rayleigh

fading channels, it was found that the proposed schemes achieve up to 2.2 dB gain com-

pared to MSM in a 10-bpcu transmission and up to 2.9 dB gain in a 14-bpcu transmission

with two active TX antennas.



Chapter 7

General conclusions and perspectives

In this chapter, we first revisit the motivation behind our work and the contributions we

made, and then present some perspectives about possible future work.

7.1 General comments and conclusions

In this thesis, we investigated three fundamental components of a MIMO-OFDM system:

signal design, channel estimation, and symbol detection, focusing on the issues of antenna

correlation, imperfect CSI, multiple-user interference, computational complexity, and

energy efficiency.

7.1.1 Channel modeling and estimation

In the first part of the thesis (in Chapter 3), we investigated a channel estimator for

MIMO-OFDM systems where the wideband wireless channel has the spatial, time and

frequency correlations. For this correlated channel, we derived a novel channel estimator

that exploits the spatial, time and frequency correlations of the channel taps, and reduces

the dimension of the parameter estimation space by retaining only the dominant terms.

Our analysis showed that the proposed scheme can significantly suppress the impact

of AWGN and therefore provide an improvement of the system performance. The same

conclusion can also be found in our simulations with different channel models.

This channel estimator is useful for many post-channel-estimation applications. The ex-

ample we presented is a codeword selection scheme where a user sends CSI to its serving
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base station by sending an index from a codebook. This codeword selection process can

be dramatically simplified using a quantization operation instead of exhaustive search,

by reusing the resulting output of estimated AoD information from our proposed chan-

nel estimator. Furthermore, we showed that the proposed codeword selection can be

applied to arbitrary codebook structure when a linear transform (calibration) is used to

compensate the mismatch between the desired codebook and the DFT-based codebook.

Our simulations showed that the proposed scheme can achieve the system performance

close to the optimal one with very low computational complexity. This result is especially

useful when we have a very large codebook or a very large number of TX antennas.

7.1.2 Robust symbol detection

The second part of the thesis, including Chapter 4 and Chapter 5, focused on under-

standing the robustness of symbol detection against to imperfect CSI and multiple-user

interference. For this purpose, we first derived the optimal symbol detection under im-

perfect CSI based on the ML criterion. Considering the complexity, we then derived the

linear symbol detection scheme with both imperfect CSI and multiple-user interference

based on the MMSE criterion. Also, our study in this part included sections with practical

considerations such as imperfect CDI, the timing delay of interference, the impact of

the time/frequency selective interfering channel, and scalability in the number of TX

antennas for interference suppression.

The first of these methods is the optimal ML detection that decodes the transmitted signal

by jointly processing the received signal and the given pilot signal. This scheme decodes

signal directly without the channel estimation process and guarantees the statically opti-

mal result of symbol detection. In our numerical results, the largest performance gains

can be found when the OSTBC is applied in the MIMO-OFDM systems. We also found

that the CDI estimation is not really sensitive to the system performance and therefore it

can simply be done by using BMS with only few predetermined CDIs.

The second method referred to as the LMMSE detection for the mixture types of inter-

ference, including both pilot and data types of signals. This scheme develops different

strategies for the interfering data symbols and interfering pilot symbols, and the imperfect

CSI in both the serving channel and the interfering channel are taken into account. In

our simulations, the most significant performance gain was found when the interference

is strong, the SNR is high and there is no timing delay. This is because the interfering

pilot signal can be canceled accurately. Moreover, this scheme provides an impressive
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performance gain when the interfering eNB only sends the pilot signal without sending

any data signal.

For selective interfering channels, we developed an adaptive scheme that uses a sliding

window for tracking the variation of interference. We focused on how to adapt the window

size to deal with different types of interference. Based on our simulations, this scheme

only depends on the SIR and SNR values and shows good robustness to power delay

profiles of the channel. On the issue of scalability, we showed two simple schemes to

apply additional TX antennas in order to improve the interference mitigation with slight

complexity increase.

7.1.3 Spatial modulation design

In the third part of the thesis (Chapter 6), we focused on improving the spectral efficiency

for SM systems. We introduced a new SM technique using one or two active antennas

and multiple signal constellations. The proposed technique, which we refer to as ESM,

conveys information bits not only by the index(es) of the active antenna(s), but also by

the constellations transmitted from each of them. In addition to a primary constellation,

these schemes use one or more constellations of reduced size and energy. The reduced

size is compensated using a higher number of antenna/modulation combinations with

respect to MSM. The new combinations are included in such a way as to preserve the

Euclidean distance in the signal space while reducing the average total transmit energy.

In our simulations, it was found that the proposed schemes achieve different levels of

performance gains based on the reduction of the transmit energy. Also, an upper bound

on the performance gain was derived, and it was shown that the bound can be approached

when the number of RX antennas increases.

7.2 Discussion and future work

A Ph.D. thesis is carried out during a finite period of time and, as in any work with a time

constraint, several possible research paths remain unexplored. We shall address some of

them in this section.
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7.2.1 Channel modeling and estimation

The most challenging and compelling extension to this work is the development of finding

the optimal modeling order for the proposed channel estimator.

Different modeling orders make a huge impact on the system performance, which is

shown in Fig. 3.1. In this figure, there is an optimal modeling order for any given SNR;

increasing the modeling order does not necessarily improve the performance. In fact, our

analysis reveals that a small modeling order can reduce the thermal noise. However, if the

modeling order is too small to span the signal subspace, there will be an under-modeling

error that degrades the performance. Therefore, a new technique for a good trade-off

between the thermal noise and the under-modeling error is needed for the current design.

7.2.2 Robust symbol detection

A possible extension to the second part of the thesis is the generalization of the two-

user interference channel to the case where K users interfere with each other. Multiple

interferences, e.g. the K-user interference channel, are more challenging and compelling

for future generation cellular networks. In this model, our schemes can still work, but

might provide less gains as K increases. We show next how to apply our schemes for this

issue.

The idea we have is to focus on suppressing the strongest interference and treating the

rest of interference as AWGN. This procedure turns the K-user interference channel into

the case of two-user interference, and that makes our schemes feasible. A preliminary

result can be shown here for a 3-user interference channel case (see Fig. 7.1), where the

number of RX antennas is given by four; the SINR of the first interference is given as 0 dB,

the second interference has SINR as 6 dB; and assume that serving pilots and interfering

pilots are not overlapped. Although some performance gains can be found in this figure,

we believe that there exists a strategy that can further improve the suppression capability

and, hence, achieve better performance in an efficient way.

7.2.3 Spatial modulation design

There are some attractive problems related to this work, for example, the optimal con-

stellation design and its criterion to achieve the targeted throughput with an arbitrary

number of TX antennas. This issue would fall into the category of high dimensional
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Fig. 7.1 BER vs SNR for the 3-user interference channel

optimization problems, where the constellation would include a signal modulation (i.e„

amplitude-phase modulation), an antenna domain modulation (i.e., space shift keying),

and a constellation type modulation (i.e., the main concept of ESM). A key question is

how to model a feasible optimization problem (i.e., linear or convex types of optimization)

that provides a good balance between the constellation sizes in each domain to maximize

the spectral efficiency.

Another interesting future work is the development of the optimal constellation labeling.

Similar to the optimal constellation design, this issue is also a high dimensional problem,

and apparently its results would be more attractive when the constellation and its labeling

can be jointly optimized. However, achieving these two goals together might be a colossal

task given the complexity each one of them separately has.





Appendix A

Chapter 5

A.1 Covariance estimates in (5.16)

We compare two different ways to estimate the covariance of Yd1: 1) using the residual

matrix V̂ and 2) using the received signal Yd1. Assume that Yd1 and V̂ have the same

symbol length, i.e., Np = Nd −Np , No , and the columns of Yd1 and V̂ are i.i.d. complex

Gaussian vectors. Ignoring channel estimation errors, we conclude that

V̂V̂H ∼WNR (ΣV, No)

Yd1YH
d1 ∼WNR (ΣYd1

, No),

where WNR denotes the complex Wishart matrix [62] with NR degrees of freedom, ΣV =
h̄h̄H +N0I and ΣYd1

= hhH +ΣV are the true covariance matrices. The variances of their

diagonal entries are then given by

var([V̂V̂H ]mm) =
2

N 2
o

[ΣV]2
mm

var([Yd1YH
d1]mm) =

2

N 2
o

[ΣYd1
]2
mm

which are proportional to the covariance estimation errors. Since [ΣV]mm is always smaller

than [ΣYd1
]mm , the estimation errors of V̂ is smaller than that Yd1 in general.
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A.2 Derivation of LS-C in (5.22)

For notational brevity, we ignore the conditional part of a conditional expectation operator,

e.g., E [X | h] = E [X]. The weighting vector of the LS-C is given by

wH
l s

(a)= E
[

Xd1V̂H
b

]

E
[

V̂bV̂H
b

]−1

(b)= E
[

hH
](

E
[

hhH
]

+N0I
)−1

= ĥH

(
N 2

p (ĥĥH )

N 2
p −1

+
Np (ĥbĥH

b
)

N 2
p −1

+N0I

)−1

.

In (a), the two conditional expectations on the RHS are

E
[

Xd1V̂H
b

]

= E

[

Xd1

(

hXd1 − ĒX̄p +Z′
p

)H
]

= Np ·E[hH ]−E

[

Xd1X̄H
p ĒH

]

= Np ·E[hH ]−E

[

Xd1X̄H
p

(
1

Np
X̄p XH

d1hH

)]

=
(

Np −
1

Np
Tr

(

X̄H
p X̄pE[XH

d1Xd1]
))

E[hH ]

= (Np −2) ·E[hH ]

var
[

V̂b

]

= E

[

Np hhH + ĒX̄p X̄H
p ĒH

]

+N0Np I

−2 ·E
[

ĒX̄p XH
d1hH + ĒX̄p Z′H

p

]

= (Np −2) ·
(

E[hhH ]+N0I
)

,

where we have used the following identities,

E[ĒX̄p X̄H
p ĒH ] =

var(hXd1X̄H
p X̄p )+var(Z′

p X̄H
p X̄p )

N 2
p

= 2
(

E[hhH ]+N0I
)

E[ĒX̄p XH
d1hH ] =

1

Np
E[hXd1X̄H

p X̄p XH
d1hH ]

=
1

Np
Tr

(

X̄H
p X̄p ·var(XH

d1)
)

var(hH )

= 2 ·E[hhH ]

E[ĒX̄p Z′H
p ] =

1

Np
var(Z′

p X̄H
p ) = 2N0I.
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In (b), since the entries of the channel estimation error matrix are zero mean, we have

E[h] = ĥ. Invoking the relations

var
(

Ep
)

=
var(hbX̄d1XH

p p)+var(Zp XH
p p)

N 2
p

=
Tr(XH

p ppH Xp ) ·Cov(h̄)+Np N0I

N 2
p

=
1

Np

(

E[h̄h̄H ]+N0I
)

E
[

h̄h̄H
]

= ĥbĥH
b +var

(

Ēp̄H
)

= ĥbĥH
b +

1

Np

(

E
[

hhH
]

+N0INR

)

,

We immediately obtain

E[hhH ] = ĥĥH +var
(

EpH
)

= ĥĥH +
1

Np

(

E
[

h̄h̄H
]

+N0I
)

= ĥĥH +
N0

Np
I

+
1

Np

(

ĥbĥH
b +

1

Np

(

E
[

hhH
]

+N0INR

)
)

=
(

1+
1

N 2
p

+·· ·
)

ĥ1ĥH
1

+
(

1

Np
+

1

N 3
p

+·· ·
)

ĥ2ĥH
2

+
(

1

Np
+

1

N 2
p

+·· ·
)

N0INR

=
N 2

p

N 2
p −1

ĥ1ĥH
1 +

Np

N 2
p −1

ĥ2ĥH
2 +

1

Np −1
N0INR .

Similarly, we can show that the conditional expectations related to the interfering channel

and the residual matrix are given by

E
[

hbhH
b

]

=
N 2

p

N 2
p −1

ĥbĥH
b +

ĥĥH

Np −1
+

N0I

Np −1
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E
[

V̂V̂H
]

=
N 2

p (ĥbĥH
b

)

N 2
p −1

+
Np (ĥĥH )

N 2
p −1

+N0I.

A.3 Derivation of OPT in (5.28)

We first rewrite the system model into a compact form. The received symbol matrices are

given by







Yp = HXp +αH̄p̄X̄d1 +Zp

Y′
p = HpXd1 +αH̄p̄X̄p +Z′

p

y = Hpx +αH̄p̄x̄ +zd1

,

where y ∈C
NR is the vector of Yd1, x is the signal of interest from the data matrix X1 and

zd1 is the AWGN vector. We further define Y , (Yp ,Y′
p ,y), Z = (Zp ,Z′

p ,zd1), H = (H,αH̄)

and

X ,

[

Xp Xd1 px

pX̄d1 p̄X̄p p̄x̄

]

.

Then we can rewrite the received matrices as:

Y =H X +Z .

Since Z is still the circularly symmetric complex Gaussian, we have the conditional

probability P (Y |X ,H ) as follows:

P (Y |X ,H ) =
exp(−∥Y −H X ∥2/N0)

(πN0)NR (2Np+1)
.

We define vec(H ) ∼Nc (0,Σ) because both channel matrices H and H̄ are complex Gaus-

sian matrices. Then taking the average of H by using the Gaussian integral [23], we

have

P (Y |X ) = EH [P (Y |X ,H )]

=
exp(bH

Σ
−1A−1b−∥Y∥2/N0)]

(πN0)(2Np+1)NR det(A)
,
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where

A = I2NT NR +Σ

((

X X
H /N0

)T ⊗ INR

)

b =Σvec(Y X
H /N0)

Σ=
[

1 0

0 α2

]

⊗ INT NR .

Based on this fact, the OPT metric can be expressed as follows:

x̂ = argmax
x

log P (x|y,Yp ,Y′
p ,Xp , X̄p ,α,p, p̄)

= argmax
x

log EXd1,X̄d1,x̄[P (Y |X )]

= argmax
x

log
∑

Xd1

∑

X̄d1

∑

x̄

exp(bH
Σ
−1A−1b)

det(A)

where we apply the law of iterated expectations to add the lacking random variables in the

conditional set.

A.4 SINR analysis of (5.36)

Assuming that perfect channel estimation and perfect covariance estimation are given,

we derive three SINRs, one for each of the transmitted data matrices X1, X2, and X3. First

of all, the resulting output of the conventional IRC on X1 is

x̂1,i r c = wH
i r c yd1

= wH
i r c hx1 +wH

i r c h̄x̄d2 +wH
i r c zd1

,βx1 +ω1

where x̂1,i r c , yd1, x1, x̄d1, and zp are the column elements of X̂1,i r c , Yd1, X1, X̄d2, and Zd1,

respectively. Next, we derive the average power of βx1 and ω1 by their variances,

var(βx1) =β2
Ed

var(ω1) = (β−β2)Ed .
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Therefore, the SINR of X1 is obtained as:

SINRx1 =
var(βx1)

var(ω1)
=

β2

β(1−β)
.

Following the same process, we derive the SINR of X2

x̂2,i r c = wH
i r c yd2 ,βx2 +ω2

and their variances are

var(βx2) =β2
Ed

var(ω2) = wH
i r c (α2

EpΨ̄p1 +N0I)wi r c

= (β−β2)Ed +α2
Ep wH

i r cΨ̄p1wi r c

−Ed wH
i r c h̄h̄H wi r c

, (β−β2)Ed +Epφ1 −Edφ2,

where yd2 and x̂2,i r c are the column of Yd2 and the column of the estimate of X2. Thus, the

SINR of X2 is obtained by

SINRx2 =
β2

β(1−β)+ Ep

Ed
φ1 −φ2

The residual interference (Ep /Ed )φ1 −φ2 is due to the covariance mismatch between the

weighting vector wi r c and the covariance matrix of yd2. To get more insight, we first define

R−1 = h̄h̄H + (N0/Ed )I and then rewrite wH
i r c

as:

wH
i r c = hH (R−

RhhH R

1+hH Rh
).

Substituting this form into φ1 and φ2, we have

φ1 =
hH RΨp1Rh

|1+hH Rh|2
=

|hH Rh̄p1|2

|1+hH Rh|2

= ξ2 ·
∣
∣
∣
∣h

H

[(
N0

Ed

+ h̄H h̄

)

I− h̄h̄H

]

h̄p1

∣
∣
∣
∣

2

= ξ2 ·
∣
∣
∣
∣h

H h̄p1
N0

Ed

+ h̄H h̄hH h̄p1 −hH h̄h̄H h̄p1

∣
∣
∣
∣

2

,
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and

φ2 =
|hH Rh̄|2

|1+hH Rh|2

= ξ2 ·
∣
∣
∣
∣h

H

[(
N0

Ed

+ h̄H h̄

)

I− h̄h̄H

]

h̄

∣
∣
∣
∣

2

= ξ2 ·
∣
∣
∣
∣

N0

Ed

hH h̄

∣
∣
∣
∣

2

,

where Ψ̄p1 = h̄p1h̄H
p1 by the Cholesky decomposition and

ξ=
∣
∣1+hH Rh

∣
∣
−1

∣
∣
∣
∣
∣

N 2
0

E
2
d

+
N0

Ed

· h̄H h̄

∣
∣
∣
∣
∣

−1

=
∣
∣
∣
∣

(
N0

Ed

)2

+
(

N0

Ed

)
(

h̄H h̄+hH h
)
∣
∣
∣
∣

−1

.

To obtain above results, we need to rewrite R by the Sherman-Morrison formula, that is

R =
(

h̄h̄H +
N0

Ed

I

)−1

=
Ed

N0
I−

Ed

N0
h̄h̄H Ed

N0

1+ h̄H (
Ed

N0
)h̄

=
(

N 2
0

E
2
d

+
N0

Ed

h̄H h̄

)−1 [(
N0

Ed

+ h̄H h̄

)

I− h̄h̄H

]

.

Therefore, the residual interference due to the covariance mismatch is obtained as follows:

ψ1 ,
Ep

Ed

φ1 −φ2

=
Ep

Ed
|hH h̄p1|2 −|h̄H h̄|2

1+|h̄H h̄+hH h|2 +2
N0

Ed
(h̄H h̄+hH h)

+
EpEd

Ed N0





2ℜ
[

h̄H
p1h(h̄H h̄hH h̄p1 −hH h̄h̄H h̄p1)

]

1+|h̄H h̄+hH h|2 +2
N0

Ed
(h̄H h̄+hH h)





+
EpE

2
d

Ed N 2
0




|h̄H h̄hH h̄p1 −hH h̄h̄H h̄p1|2

1+|h̄H h̄+hH h|2 +2
N0

Ed
(h̄H h̄+hH h)



 .

Suppose Ed ≫ N0, then we can simplify further,

ψ1 ≈
EpE

2
d

Ed N 2
0

(∣
∣h̄H h̄hH h̄p1 −hH h̄h̄H h̄p1

∣
∣
2

1+|h̄H h̄+hH h|2

)
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=
Ep

Ed

·
(
Ed

N0

)2

·
α6ζ1

α4ζ2 +α4ζ3 +ζ4
≥ 0

∝
Ep

Ed

·SNR2 ·α2

where we have the variable α from the interfering channel vectors h̄ and h̄p1, and {ζ1, ζ2,

ζ3, ζ4} are defined for the rest terms we are not interested in. Finally, The SINR of X3 is

obtained as follows:

SINRx3 =
β2

β(1−β)+ψ2

where ψ2 can be obtained by using h̄p2 from Ψ̄p2 = h̄p2h̄H
p2. Following the same process

of SINRx2 , we can have the same result that ψ2 ∝ (Ep /Ed ) ·SNR2 ·α2.

A.5 Proof of Lemma 5.2.1

The details of the covariance estimation errors are given by

∆k = Rk −
1

N

∑

m∈P

(

v̂m v̂H
)

,∆1 +∆2 −∆3,

Where we separate the whole term into three parts

∆1 , h̄k h̄H
k −

1

N

∑

m∈P

h̄m x̄m x̄H
mh̄H

m

∆2 , N0I−
1

N

∑

m∈P

zmzH
m

∆3 ,
1

N

∑

m∈P

h̄m x̄mzH
m +zm x̄H

mh̄H
m

Take an expectation of the estimation error matrix ∆k

E[(∆k )pq ] =
(

h̄k h̄H
k −

1

N

∑

m∈P

(

h̄mh̄H
m

)

)

pq

The entry-wise variance of ∆k can be obtained by ignoring some cross terms as follows.

var ((∆k )pq ) ≈ var ((∆1)pq )+ var ((∆2)pq )+ var ((∆3)pq )
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The first term is related to the true covariance matrix of interference:

var ((∆1)pq )

=
1

N 2

∑

m∈P

|(h̄mh̄H
m)pq |2 ×







0 , PSK

0.32 , 16 QAM

0.3810 , 64 QAM

The second term is related to AWGN:

var ((∆2)pq )

=
1

N

{

var (|(R((zm)p )+I ((zm)p )|2) p = q

var ((zm)p )var ((zm)H
q ) p ̸= q

= N 2
0 /N

The last term is the mixture of interference and AWGN:

var ((∆3)pq ) =
N0

N 2

∑

m∈P

(

|(h̄m)p |2 +|(h̄m)q |2
)

,

where we have to assume E[x̄m x̄m] = 0. This equity holds if x̄ is modulated with M-QAM

or M-PSK modulation (M ̸= 2).

A.6 Proof of Lemma 5.2.2

Based on the definition of the Frobenius norm, the MSE of ∆k is obtained by the sum of

entry-wise means’ squares and entry-wise variances

E[∥∆k∥2
F ] =

∑

pq

(

var ((∆k )pq )+|E[(∆k )pq ]|2
)

Taking an average of the time-domain channel impulse response, we have the results as

follows:

E
[

|E[(∆k )pq

]

|2]

=Υ ·E
[

vec(āp āq )vec(āp āq )H
]

·ΥH =
α4

L2
ΥΥ

H
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and

E
[

var ((∆k )pq )
]

≈
{ (

2 ·α4
Ψ+2 ·α2N0 +N 2

0

)

/N , p = q
(

α4
Ψ+2 ·α2N0 +N 2

0

)

/N , p ̸= q

where we define

Υ,
(

(FH
k )T ⊗Fk

)

−
1

N

∑

m∈P

(

(FH
m)T ⊗Fm

)

A.7 Proof of Lemma 5.2.3

The original SINR maximization is equivalent to the form with hk hH
k
+Rk instead of Rk

maxSINRk = max
|wH

k
hk |2

wH
k

(hk hH
k
+Rk )wk

,

where the equality holds because it is an increasing function of the SINR. We reform the

problem by substituting the covariance estimation and its estimation errors Rk = R̂k +∆k

argmin
wk

max
∆k

wH
k (hk hH

k + R̂k +∆k )wk

s.t. wH
k hk = 1,∥∆k∥ ≤ ϵk .

Since ∆k is a Hermitian matrix, we have the simplified form

max
∥∆k∥≤ϵk

wH
k ∆k wk = ϵk wH

k wk .

Thus, by defining R∗
k
= hk hH

k
+ R̂k +ϵk I, we have the optimal solution of wk as:

w∗
k = R∗−1

k hk · (hH
k R∗−1

k hk )−1 ≈ R∗−1
k hk

=
(

hk hH
k + R̂k +ϵk I

)−1
hk

Here we omit the immaterial constant.
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A.8 Derivation of SINR in (5.59)

Suppose the perfect CSI and the perfect covariance estimation are given. The signal power

of serving and interfering symbols is defined by E[xH
i

xi ] = 1 for i = 1,2,3. We write the

resulting output of IRC(u1) as follows:

x̂1 , IRC(u1) (A.1)

= g̃H
1 h̃1x1

︸ ︷︷ ︸

,β1x1

+ g̃H
1 h̃2x2 + g̃H

1 h̃3x3 + g̃H z̃
︸ ︷︷ ︸

,ω1

, (A.2)

where h̃1 ,WH H1p1, h̃i ,WHαi Hi pi , for i = 2,3 denote the equivalent channel matrices

after preprocessing of W, g̃H
1 = h̃H

1 (h̃1h̃H
1 + h̃2h̃H

2 + h̃3h̃H
3 +N0WH W)−1, and z̃ = WH z. Next,

we derive the variance of the interference-plus-noise term ω1

σ2
ω1

= g̃H
1 (h̃1h̃H

1 + h̃2h̃H
2 + h̃3h̃H

3 +N0WH W)g̃1

− g̃H
1 (h̃1h̃H

1 )g̃1 =β1(1−β1).

Using the Sherman-Morrison formula and R = (h̃2h̃H
2 + h̃3h̃H

3 +N0WH W)−1, we have

β1 = h̃H
1 (R−1 + h̃1h̃H

1 )h̃1

= h̃H
1

(

R−
Rh̃1h̃H

1 R

1+ h̃H
1 Rh̃1

)

h̃1 =
h̃H

1 Rh̃1

1+ h̃H
1 Rh̃1

.

Finally, the SINR can be shown to be:

SINR(IRC(u1)) = hH
1 W(WH

Σv W)−1WH h1, (A.3)

where Σv = h2hH
2 +h3hH

3 +N0I.

A.9 The optimal pre-processing matrix of (5.62)

The matrix inverse can be derived as:

(WH
Σv W)−1 =

[

wH
1 Σv w1 wH

1 Σv w2

wH
2 Σv w1 wH

2 Σv w2

]−1

(A.4)
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≈
[

1/wH
1 Σv w1 0

0 1/wH
2 Σv w2

]

, (A.5)

where wk ∈C
Nr +Na is the kth column of W and we ignore the cross terms between w1 and

w2. Applying the approximation, i.e., wH
1 Σv w2 ≈ 0, we can rewrite the original problem as

follows:

max
W̸=0

hH
1 W(WH

Σv W)−1WH h1 (A.6)

≈max
wk ̸=0

|hH
1 wk |2

wH
k
Σv wk

, for k = 1,2 (A.7)

=max
wk ̸=0

|hH
1 wk |2

wH
k
Σy wk

, for k = 1,2 (A.8)

where Σy = h1hH
1 +Σv and the equality holds because it is an increasing function of the

SINR. In order to find two meaningful pre-processing w1 and w2, we drop the precoding

vector p1 and find wk with respect to the kth column of H1

max
wk ̸=0

|(H1)H
k

wk |2

wH
k
Σy wk

, for k = 1,2 (A.9)

The problem is equivalent to the following form

argmin
wk

wH
k Σy wk (A.10)

s.t. wH
k (H1)k = 1 (A.11)

The Lag r ang i an L : C Nr +Na ×C →R is defined as

L(wk ,λ) = wH
k Σy wk +

λH

2
(wH

k (H1)k −1)+
λ

2
((H1)H

k wk −1)

We differentiate L(wk ,λ) with respect to wH
k

and λ; setting these partial derivatives equal

to zero, we have

∂L

∂wH
k

=Σy wk +
λ

2
(H1)k → 0

ŵk =−Σ−1
y (H1)k

λ

2
.
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Imposing the constraint (H1)H
k

ŵk = 1, then

λ∗ =−2((H1)H
k Σ

−1
v (H1)k )−1.

Therefore, the optimal solution of wk is given by

ŵk =Σ
−1
y (H1)k · ((H1)H

k Σ
−1
y (H1)k )−1 (A.12)

≈Σ
−1
y (H1)k (A.13)

Here we omit the immaterial constant.

A.10 Optimal codebook of (5.68)

We evaluate the average loss of the quantized solutions by

W = argmin
W ′

EB

[

λ2
mi n(WunB)− min

W j∈W ′
λ2

mi n(W j B)

]

.

This formulation means finding the subset W in order to minimize the average loss

between the unquantized solution Wun and the best quantized solution W j in the set W .

The argument of the average loss can be further derived as follows:

E
[

λ2
mi n(ŪH

b B)
]

−E

[

min
W j

λ2
mi n(W j B)

]

(a)
≤ E

[

λ2
mi n(B)

]

−E

[

min
W j

λ2
mi n(W j ŪbΣ̄b)

]

(b)
≤ E

[

λ2
mi n(B)

]

−E
[

λ2
mi n(B)

]

E

[

min
W j

λ2
mi n(W j Ūb)

]

, E
[

λ2
mi n(B)

]

E

[

min
W j

d2
pr o j (WH

j ,Ūb)

]

,

where (a) follows from zeroing the two largest singular values of B, and Σ̄b denotes the

singular values corresponding to Ūb . In (b), it follows by substituting λmi n for the other

nonzero singular values in (a) and follows from the fact that singular values and singular

vectors of complex normal matrices are independent. The projection distance between

the matrices F1 and F2 is denoted by dpr o j (F1,F2). As a result, the optimal codebook can

be obtained by

W = argmin
W ′

E

[

min
W j∈W ′

d2
pr o j (WH

j ,Ūb)

]

. (A.14)
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Note that we now have an equivalent problem to that treated in [38], that is finding a

quantized codebook which minimizes the subspace distance between the best codeword

and a random matrix.
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