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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01295686v2


 

 

 

 

UNIVERSITÉ D’ORLÉANS 
 

 

 
 

ÉCOLE DOCTORALE  
ENERGIE, MATERIAUX, SCIENCES DE LA TERRE ET DE L’UNIVERS  

 

LABORATOIRES 

BRGM (Bureau de Recherches Géologiques et Minières) 

et ISTO (Institut des Sciences de la Terre d’Orléans) 

 

THÈSE présentée par : 

Claudio TROVATO 
 

soutenue le : 15 Décembre 2015 
 

pour obtenir le grade de : Docteur de l’Université d’Orléans 

Discipline/Spécialité : Géophysique/Volcano Sismologie 
 

Séismes à Longue Période (LP) sur le Mt. Etna 

(Italie): inversion du tenseur des moments et 

incertitudes liées à leur interprétation 

 
THÈSE dirigée par : 

Claudio TROVATO   Thésard, BRGM/ISTO 
 
RAPPORTEURS : 

François BEAUDUCEL  Physicien, IPGP 
Eugenio PRIVITERA   Directeur de Recherche, INGV 

_________________________________________________________________ 
MEMBRES DU JURY : 

 
Hideo AOCHI Ingénieur, BRGM, Directeur de thèse 
Francois BEAUDUCEL Physicien, IPGP, rapporteur 
Michael PICHAVANT Directeur de Recherche, ISTO, Président du jury 
Eugenio PRIVITERA Directeur de Recherche, INGV, rapporteur 
Bruno SCAILLET Directeur de Recherche, ISTO, Co-directeur de thèse 
Martin VALLEE Physicien-Adjoint, IPGP, examinateur



 

 

 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Claudio TROVATO 
 

                                                                                 

                                                    

                                                                                                                 

                                                                                                                

                                                                                                                

                                                                                                                   

                                                           , dans des conditions de transition entre le ductile et le 

                                                                                                                 

                                                                                                            

                                                                                                   

                                                                                                        

                                                                                                          

                                                                                                                 

                                                                                                             

                                        . 

                                                                                                               

                                                                                              . Ensuite, je 

décr                                                                                                             

                                                                                                         

                                                                                                             

volcan Mt. Etna, Italie. 

                                                                                                               

                                                                                                               

                                                                                                              

                                (S4) est construit dans le but de re                                         

                                                                                                            

                                                                                                                   

                                                                                                               

                                                                                                           

                                                                                                         

                                                                                                          

                                                                        . 

                                                                                                                 

                                                                                                     (Institu   

                                                                                                              

                                                                                                                 

verticales, elles peuven                                                                                      

                                                                                                               

                                                                                                                 

                                                                                                         

                                               . Je conclus en donnant des pers                                 

                                                                . Etna. 

 

    -                                                                                                            

de vitesse ; fonctions de Green ; sismologie. 



 

 

Long Period (LP) seismic signals on Mt. Etna volcano (Italy): moment tensor 

inversion and uncertainties in the source model interpretation 

 

Abstract: Long-period (LP) seismic events are abundantly recorded during rest and unrest periods at many 

volcanoes worldwide. However, their source mechanism is still poorly understood. Models which have been 

proposed so far to explain their origin are: 1) the resonance of a fluid-filled cavity triggered by fluid instabilities 

or the brittle failure of magma; 2) slow-rupture earthquakes occurring in the low consolidated materials 

composing the shallow portion of the volcanic edifice. Nowadays the main tool used to get insights into their 

nature is moment tensor (MT) inversion. MT inversions carried out in the past years focused mainly on the 

understanding of the physical origin of LP events and often supposed a relative simple geological structure of the 

medium. Recent studies highlighted the strong influence of shallow unconsolidated materials on the retrieved 

MT solutions and the importance of considering geological inhomogeneity in the inversion process. The 

principal aim of this thesis is to gain a better understanding of the source processes that generate LP events and 

to quantify the uncertainties related to the MT inversion process. 

I first give an exhaustive review of the MT inversion and all the decomposition techniques which can lead to 

accurate interpretations of the LP events. I further develop the source description and try to relate the MT 

solution to directly construable physical quantities such as the pressure and the volume variation occurring at the 

source. Once the MT inversion and its decomposition are well established I focus on the LP seismicity recorded 

at Mt. Etna volcano (Italy). 

Mt. Etna volcano is one of the most active and studied volcanoes in the world and shows an intense seismic 

         w                                                     k                                    w      

propagation (EFISPEC3D) and I build four structural models of Mt. Etna with increased geological complexity. 

For the fourth model (S4), I use the best geological and geophysical information in my possession to reproduce 

as closely as possible the real structural model of Mt. Etna. Model S4 is used to reproduce the synthetic case of a 

vertical tensile crack embedded at different depths below the summit craters. Further, I perform MT inversion 

w                                                                      The results show the importance of 

inc        w                                                                                        O      

opposite, complex models of the volcano which do not corresponds to reality can lead to significant errors and to 

the misinterpretation of the source solution.  

Then I apply the lessons learned through the synthetic test to the MT inversion of some real events recorded on 

Mt Etna in 2009, 2010 and 2013. First, the ability of the MT tensor inversion in retrieving the correct solution is 

checked again for the permanent station network deployed by INGV (Instituto Nazionale di Geofisica e 

Vulcanologia). The synthetic test highlights that the station network is able to correctly retrieve the original 

source mechanism. However, the limited number of summit stations could negatively influence the retrieved 

source mechanism in case of vertical tensile crack sources. I work on the three sets of LP events recorded during 

different states of the volcanic activity. MT inversion is performed for the three sets of events and the solutions 

are interpreted independently. The results of my analyses suggest that the classic                   resonance of 

a fluid-filled cavity hardly matches with the retrieved MT solutions, and therefore support an alternative source 

model of slow rupture of the weak shallow unconsolidated volcanic materials. I finish by giving some 

perspectives of the future trends in the field of volcano seismology.  

Keywords: moment tensor inversion; long period events; synthetic test;                               G    ’  

functions; volcano; seismology;  
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Résumé en français 

 

Chapitre 1 

 

 e premier chapitre introduit E ISPEC3  ( e Martin, 2010, 2011), un code de calcul 

num rique pour la mod lisation de la propagation des ondes sismiques.  e fais d’abord 

un r sum  de la th orie de la propagation des ondes en milieu  lastique et des principes 

d’utilisation du code. E ISPEC3   tant con u pour la mod lisation des s ismes en milieu 

tectonique, le code a d   tre modi   et test  pour v ri er sa capacit    mod liser 

correctement la propagation d’ondes en milieu volcanique.  e d cris ensuite les 

 quations permettant la mod lisation des sources volcaniques et leur impl mentation 

dans E ISPEC3 .  ’e ectue un premier test synth tique pour v ri er leur impl mentation 

correcte et  e compare mes r sultats avec un code au   l ments  nis. En n,  ’e ectue un 

dernier test synth tique pour v ri er la mod lisation correcte d’une topographie 

complexe, comme attendue en contexte volcanique.  es tests donnant des r sultats 

satisfaisants, E ISPEC3  sera utilis  pour mod liser les ondes s ismiques en milieu 

volcanique tout au long de la th se. 

 

Chapitre 2 

 

 e deu i me chapitre est consacr  au  s ismes longue p riode (LP), objets de cette 

 tude.  ans une premi re partie  e d cris les di  rents types de s ismes volcaniques, puis 

 e porte mon attention vers les s ismes  P.  es s ismes  P sont caract ris s par un 

contenu basse fr quence (0.1 - 2 Hz) et ne montrent pas de claires arriv es des ondes -P 

et -S. Il est donc impossible de les analyser comme de classiques s ismes tectoniques. Ils 

sont souvent interpr t s comme  tant g n r s par l’interaction entre ga   uides et les 

roches environnantes. Plus pr cis ment, une perturbation dans le  uide pourrait g n rer 

une onde de surface se propageant   l’interface entre le  uide et la roche.  a fr quence 

propre de r sonance de la fracture atteinte, des ondes   longue p riode se propageraient 

dans le milieu.  e m canisme engendrant cette r sonance n’est pas encore bien compris 

au ourd’hui. Un nouveau mod le r cent suppose que les s ismes  P sont g n r s par la 
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d formation   la limite ductile fragile des s diments peu consolid s   la surface des 

volcans. 

Une fois rappel s les principau  mod les utilis s pour e pliquer les s ismes  P,  e 

d cris la technique de l’inversion du tenseur des moments, qui est la plus utilis e pour 

essayer de comprendre leur m canisme   la source.  e d cris ensuite toutes les m thodes 

de d composition du tenseur des moments. En n,  ’essaye de relier le tenseur des 

moments   des grandeurs physiques, comme la pression et le changement volumique de 

la source lors de l’interaction des ga  fluides avec les roches. Ceci est fait en confrontant 

di  rentes approches issues de la litt rature avec une solution analytique, le modèle de 

Mogi (1958). 

 

Chapitre 3 

 

 ans le troisi me chapitre,  e d cris le conte te g ologique du volcan de cette  tude, 

le Mt. Etna en Italie. Je commence par une introduction sur l’histoire g ologique du 

volcan suivie par le conte te tectonique dans lequel le volcan s’inscrit et  e poursuis par 

une description de la morphologie actuelle des crat res sommitau . Le chapitre se 

termine par une présentation e haustive des r cents travau  e ectu s sur l’Etna pour 

l interpr tation des s ismes  P. 

 

Chapitre 4 

 

 ans le quatri me chapitre,  e reproduis un travail original soumis   Geophysical 

Journal International (GJI). 

   tude porte sur l’analyse de l’in uence du mod le de vitesse sur les r sultats de 

l’inversion du tenseur des moments des s ismes  P.  ’analyse est e ectu e gr ce   des 

tests synth tiques bas s sur quatre mod les de vitesse du volcan avec comple it  

croissante. Ensuite, je calcule la r ponse du milieu   une fonction impulsive (fonctions de 

Green) pour les trois mod les les plus simples.  e quatri me mod le, et le plus comple e, 

est utilis  pour cr er des donn es synth tiques pour des sources volcaniques (LP avec 

une variation volumique).  ’utilise ensuite les fonctions de Green pour le probl me 

inverse.  e but est de v ri er quantitativement si des mod les de vitesse plus comple es 
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donnent de meilleures solutions apr s inversion du m canisme de la source. Le test 

synth tique montre qu’a outer des comple it s, qui ne sont pas forc ment r elles, 

complique la solution.   l inverse, des mod les de vitesse trop simples (homog nes) ne 

sont pas  ables non plus.  es r sultats montrent que les basses vitesses sismiques 

rencontr es dans les s diments peu consolid s   la surface peuvent fortement in uencer 

le processus d’inversion.  onc, connaissant leur pr sence, une couche en surface   basse 

vitesse devrait tou ours  tre inclue dans les calculs du mod le g ologique avant inversion. 

Parmi les autres consid rations que  e peu  faire : i) plus les sources sont super cielles, 

plus des erreurs sont introduites dans le processus d’inversion dues au  inhomog n it s 

structurelles ; ii) les solutions qui montrent les meilleurs a ustements entre les signau  

observ s et les signau  calcul s ne correspondent pas   la meilleure solution ; iii) des 

composantes non voulues (comme des composantes de cisaillements) sont introduites 

dans la solution lorsque le mod le de vitesse ne correspond pas   la r alit . 

 

Chapitre 5 

 

 ans ce derni re chapitre,  ’utilise les informations acquises gr ce au  tests 

synth tiques du chapitre pr c dent et  ’e ectue l’inversion du tenseur des moments pour 

des s ismes   longue p riode enregistr s sur le volcan Etna, pendant di  rents  tats 

d’activit  du volcan.  e choisis des  v nements enregistr s pendant une e usion de lave, 

des  v nements enregistr s pendant une p riode o  le volcan e p rimente 

principalement un comportement e plosif et un  v nement reli  directement   une 

grande e plosion du crat re  occa  uova, associ e   une forte manifestation en surface. 

 ’e ectue d’abord des tests synth tiques comme dans le chapitre pr c dent, pour tester 

la capacit  du r seau de stations utilis    reproduire la solution initiale du m canisme de 

source. Ensuite,  ’analyse les  v nements r els avec les techniques e pliqu es dans le 

deu i me chapitre et  e donne une interpr tation du m canisme de source possible pour 

chacun des ensembles de donn es, ind pendamment.  es r sultats montrent que le 

mod le classique de r sonance d’une fracture remplie de ga  ou de  uides ne peut pas 

e pliquer enti rement la nature des signau  analys s et  e sugg re que d’autres mod les 

de source doivent  tre e plor s. 
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Conclusions 

 

 ans ce travail de th se  ’ai e plor  l une des principales m thodes pour l’ tude de 

s ismes   longue p riode, l’inversion du tenseur des moments. Gr ce au  tests 

synth tiques, les incertitudes reli es au mod le de vitesse du volcan choisi peuvent  tre 

minimis es.  ’impossibilit  de mod liser parfaitement le conte te g ologique du volcan 

introduit tou ours des erreurs dans la solution que les tests synth tiques peuvent aider   

discriminer. Tandis que les mod les de vitesse peuvent  tre a n s, l’application au cas 

r el du Mt. Etna montre que le mod le de source souvent utilis  pour e pliquer les 

s ismes   longue p riode n’est pas compl tement adapt  au cas consid r .  e sugg re 

donc des mod les de source alternatifs propos s r cemment en litt rature.  e conclus en 

proposant des perspectives pour l’ tude des s ismes   longue p riode ainsi que des 

suggestions pour les tendances futures dans le domaine de la sismologie volcanique. 
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Introduction 
 

 

Volcanology is a multidisciplinary science, bringing together different fields such as 

geology, geochemistry and geophysics. Small and Naumann, (2001) estimated that almost 

9% of the 1990’s world population lived within 100 km of any of historically active 

volcanoes. Thus, the main aim of volcanology is to understand the complex behavior of 

volcanoes in order to forecast eruptions and to quantify the vulnerability of the 

populations exposed in front of the natural hazard related to volcanoes.  

Among the different areas, volcano seismology is a science about seismic signals 

originating on volcanoes and associated to volcanic activity.  Zobin, (2012) clearly defined 

the field of volcano seismology as: “The study of the origin of these (seismic) signals, their 

spatial-temporal distributions, their relationships with volcanic processes and using them as 

an instrument to investigate the volcano deep structure and to predict a volcanic eruption 

together create the subject of volcanic seismology”. Since some pioneering works at the 

beginning of the 20th century (Zobin, 2012, and references therein) it became clear that 

volcanoes show a variety of seismic signals which often differ from classical tectonic 

earthquakes. In the late 1960s and early 1970s the appearance of portable instruments 

opened new horizons in the field of volcano seismology, but It was in the 1980s when 

broadband instruments highlighted the occurrence of different volcanic signals and their 

importance in the framework of early warning (Wassermann, 2011). The emergence of 

portable broadband seismic instrumentations was accompanied by the development of 

new analysis techniques which highlighted the role played by magmatic and 

hydrothermal fluids in the generation of seismic waves. In particular, seismic events with 

low (long period, LP) and very low (very long period, VLP) frequency contents are 

thought to be related with the dynamics of magmatic and hydrothermal fluids inside 

volcanoes (Chouet, 1996).  

Among the different signals, LP events have been often observed preceding or 

accompanying volcanic eruptions (e.g. Aiuppa et al., 2010; Budi-Santoso et al., 2013; 

Fehler, 1982; Jousset et al., 2013; Matoza et al., 2009; Neuberg et al., 2000; Varley et al., 



  Introduction 

2 

 

2010). LP events are generally thought to be associated with the resonance of fluid-filled 

conduits (Chouet, 1986, 1988). However, a physical, united model explaining the 

mechanism which could trigger such a resonance is still missing. Many attempts have 

been done in the recent years to explain the excitation mechanism of LP events, for 

instance (Chouet and Matoza, 2013): a) sudden pressure drop in a fracture with discharge 

of the fluid from the resonator, thus generating the LP waveforms (e.g. Chouet, 1992; 

Kumagai et al., 2005; Nakano et al., 2003); b) dome growth (Morgan et al., 2008; Neuberg 

et al., 2000); c) brittle failure of melt in the conduit (Goto, 1999; Neuberg et al., 2006); d) 

magmatic fragmentation, degassing and explosions (Chouet and Matoza, 2013 and 

references therein); e) self-sustaining oscillations within magma flow channels (Julian, 

1994). Recently, Bean et al., (2014) developed the work of Harrington and Brodsky, (2007) 

and proposed a new model for explaining shallow volcanic LP seismicity. In their model 

the LP source is interpreted in terms of low-stress fracturing instead of fluid-driven 

mechanisms. In this context LP seismicity would represent a marker of the deformation 

of the upper portion of the volcanic edifice. 

The main difficulties encountered in the understanding of the LP events come from 

their intrinsic nature. LP events usually show no P-wave and S-wave arrivals and a very 

emergent signal onset, thus avoiding the use of classical seismology location techniques. 

Moreover, volcanoes are characterized by very complex geology and strong topographic 

gradients which heavily affect ray path trajectories. These considerations taken together 

have led to the development of new advanced techniques able to tackle the complicate 

behavior of LP events. 

The source mechanism of LP events is quantitatively estimated via full-waveforms 

moment tensor (MT) inversion. MT inversions are usually conducted under the point -

source assumption and many authors have successfully applied this technique to LP 

signals observed on many volcanoes in the world (e.g. Davi et al., 2010; De Barros et al., 

2011; Jousset et al., 2004, 2013; Kumagai, 2002a; Kumagai et al., 2005; Lokmer et al., 2007; 

Nakano, 2005; Nakano et al., 2003). MT representation is a powerful tool because it is not 

restricted to classic shear faulting, but can express both tensile and rotational 

components occurring at the source. Coupled with single forces, MT inversion is also able 

to take in account of mass (fluid/gas, magma) movements which are intuitively expected 
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in volcanic environments. 

In this thesis I focus my attention on the designing of a MT inversion and on the 

uncertainties related to the understanding of the source mechanism of volcanic LP 

seismicity. In the first chapter I recall the fundamentals of the equation of motion with a 

special regard to numerical modelling and the verification tests which will be utilized 

during the whole work of this thesis.  

In the 2nd chapter I give a brief review of the different types of volcano seismic signals 

and then summarize all the source models proposed in the past years for explaining the 

LP seismicity. Further, I provide a complete description of the MT inversion technique, the 

decomposition of the MT and the principal tools used to get insights into the source 

process. The MT inversion solution is not directly related to any real physical mechanism. 

Thus I develop a classical seismological problem (Mogi, 1958) and I try to relate the MT to 

the volume variation of an equivalent sphere or crack source. Mogi, (1958) proposed an 

analytical solution to relate the pressure variation of a sphere embedded in a 

homogeneous half-space to the static deformation recorded at the surface. Many 

approaches are present in literature to relate the MT to a certain value of pressure. The 

different approaches are tested numerically and compared with the Mogi, (1958) 

analytical solution.  

Once the MT inversion and its decomposition are well established, I focus my 

attention (chapter 4) on the uncertainties derived by the choice of a particular velocity 

model on the retrieved MT solutions. For this purpose, I build four different velocity 

models of Mt. Etna volcano (Italy) with increased geological complexity and I perform 

synthetic tests. Mt. Etna is one of the most studied volcanoes in the world, thus several 

many descriptions of the geological and tectonic context are available. Hence, I rely on 

geological (Branca et al., 2009, 2011a; Romano et al., 1979) and geophysical (Cauchie and 

Saccorotti, 2013; Chiarabba et al., 2000; Cristiano et al., 2010; Patane et al., 2002) 

descriptions of the volcano in order to reproduce as well as possible the structural 

complexity of Mt. Etna. The synthetic tests allow for testing many different issues related 

to the MT inversion process, in particular: 1) role of the shallow unconsolidated materials; 

2) reliability of the solutions and considerations on the “best fit” (between observed and 

retrieved data) approach; 3) number of receivers and their distribution; 4) complexity of 
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the velocity model and reliability of the source mechanism interpretation.  

The work presented in chapter 4 (influence of the velocity structure on the MT 

inversion) corresponds to a paper submitted to Geophysical Journal International (GJI).  

The lessons learned toward the synthetic tests are then applied (chapter 5) to 

different LP events recorded on Mt. Etna volcano. I take three sets of LP signals recorded 

during different states of activity of the volcano. The events are studied through MT 

inversion and each set of events is interpreted independently. The uncertainties 

highlighted during the synthetic tests are encountered again in this chapter, but I try to 

interpret the obtained solutions even under limited information.  

I conclude giving some perspectives for the future trends in the field of volcano 

seismology. 
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Chapter 1 

Implementation of volcanic sources in 

EFISPEC3D 
 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter I provide the basic theory of the elastodynamics and seismology behind a 

Spectral Element Method (code EFISPEC3D@BRGM; De Martin, 2010, 2011). Then I describe 

the practical aspects of its utilization for this thesis purposes by showing some classical 

problems. I present two verification tests comparing my results with the calculations 

brought by finite difference simulations. First, I verify the correct implementation of the 

three fundamental modes of the volcanic sources (isotropic, cylinder, opening crack) in the 

EFISPEC3D. Hence, I carry out a numerical test on the waves propagation under a synthetic 

Gaussian hill reproducing and comparing the results with the test case brought by Ohminato 

and Chouet, (1997).  
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1.1 Introduction 
 

The analytical and semi-analytical solutions of the elastic deformation and the elastic 

wave equations for some simple problems, including seismic sources, can be found in 

literature since more than 100 years (Aki and Richards, 2002; Lamb, 1904). However, such 

solutions are generally limited to simple structures, such as homogeneous mediums or 1D 

stratified layers with flat free surface. On the other hand, many numerical techniques 

have been developed and applied since 1970s to treat the wave propagation problems in 

a complex 3D heterogeneous medium. The most widely used numerical approaches are 

based on two different techniques: finite difference (FD) and finite element (FE) 

methods. In this work I focus my attention on a particular class of FE methods, the 

Spectral Element Method (SEM). For comparison,  

 

 the Finite Difference Method (FDM) (Virieux, 1986) is the most popular 

method solving step by step the differential equations. The structural grids are 

usually used. The implementation is easy but there are problems on numerical 

dispersion and on treating boundary conditions;   

 

 the Pseudo-Spectral Method (Carcione and Wang, 1993), which solves the 

differential equations by decomposing space variables using a chosen set of 

test and trial functions (in a certain space of the model) in order to obtain 

smooth solutions. It is thus difficult to implement boundary conditions and 

problems can arise in the treatment of strong heterogeneities;  

 

 the Finite Elements Method (FEM) (Zienkiewicz, 1989a, 1989b) which solves 

the differential equations by constructing a global system of equations over 

the model domain and finding the solutions based upon low-order 

approximations polynomials. This method is very powerful to treat complex 

equations and geometries, but includes a numerical dispersion in the case few 

nodes per minimal wavelength are present; 

 



Chapter 1  EFISPEC3D 

7 

 

 the Spectral Elements method (SEM) (De Martin, 2010; Festa, 2004; 

Komatisch, 1999, 2007; Priolo, 1994): basically a finite element method, but 

locally in an element the solution is decomposed by basic spectral functions 

and solved explicitly. This can be seen as a subclass of FEM and combines the 

advantages of FEM and the flexibility and the accuracy of spectral methods.   

 

The Spectral Element Method was introduced the first time almost 30 years ago in 

the context of computational fluid dynamics (Patera, 1984; Yoon, 1996). Since the late 

1990s this method has been adopted to solve for the elastic wave equation (Azaïez et al., 

1993; De Martin, 2010; Festa, 2004; Komatisch, 1999; Komatitsch, 1996; Schuberth, 2003). 

Compared to the classical FEM, the higher degree polynomials used for the 

approximation of the solution allow for an increased numerical stability (Komatitsch, 

1996). Like the FEM, meshing is flexible, allowing taking in account complex topographies 

and curved interfaces.  This is very important in seismology and especially in 

volcano/seismology where surface heterogeneities strongly influence the recorded 

waveforms. 

In this first section I present the basics of elastic wave propagation as well as the 

source description particular to the volcanic context. Then I will show some numerical 

tests using the code EFISPEC3D for validating its use in modeling wave propagation in a 

volcanic context. 

 

1.2 Wave Propagation in an Elastic Medium 
 

I briefly review the basic formulation of the elastic wave propagation. The notations 

are principally based on the classical textbook of Aki and Richards, (2002). In any material, 

strain is defined in a Cartesian coordinate system (x1, x2, x3) by the derivatives of the 

displacement field as 
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(1) 

 

where     is the ij-th component of the strain tensor and    is the i-th component of 

displacement. A comma between subscripts is used for a spatial derivative (e.g. 

              . Traction is the force across any plane in the medium so that it is written 

as 

 

            

(2) 

  

where     is the i-th component of the traction vector acting on the plane for which    is 

the j-th component of the normal vector.  

For any volume (V) with its surface (S) in the medium, the equilibrium for the 

momentum rate and applied forces (traction and body force) is:  

 

  

  
    

  

   

          
 

         
 

 
 

(3) 

 

where   is the bulk density of the medium and f represents the body force.  

  y applying the Gauss’s divergence theorem, I rewrite the surface integration by 

volume integration:   

 

 
       
 

           
 

           
 

 
 

(4) 

  

Thus I get  

 

 
                      

 

 
 

(5) 

 

where     is the i-th component of the second time-derivative of the displacement, namely 
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acceleration. Equation (5) should be satisfied for any volume V, hence I obtain the 

equation of motion:  

                  

(6) 

 

In linear elastic medium, the constitutive relation between stress and strain is 

generali ed by Hooke’s law as 

 

                

(7) 

  

where        are material constants (elastic coefficients) of fourth-order tensor (34 = 81 

constants). In an isotropic medium, the number of independent coefficients reduces only 

to two  

                                    

(8) 

 

where λ and µ are known as the Lamé moduli and     is a Kronecker’s delta function. The 

constitutive relation  (7) becomes 

 

                      

(9) 

 

and the equation of motion in Equation  (6) becomes 

 

                              

(10) 

 

As stated before, both Lamé’s coefficients are enough to define the physical 

properties of an elastic linear medium, but they are not directly related to any physical 

parameter easily measurable. To define Lamé’s coefficients in a numerical simulation I 



Chapter 1  EFISPEC3D 

10 

 

take advantage of the definition of the compressional and transversal speed of waves in 

the considered medium plus the material density as 

 

 

     
    

 
 

 

(11) 

 

 
     

 

 
 

 

(12) 

 

where Vp and Vs are the compressional and transversal wave velocities respectively and ρ 

is the material density. 

In order to obtain a unique solution by integration of the elastodynamic equation  

(10) in the reference domain, initial and boundary conditions have to be specified (Festa, 

2004; Komatitsch, 1997). Seismic waves naturally propagate in infinite mediums, but in a 

numerical calculation the medium is naturally limited due to the memory capacity of the 

machine used for computation. I can distinguish between a physical boarder (the free 

surface) and numerical boarders which delimitate the medium artificially and where I 

have to define absorbing boundary conditions (Komatitsch, 1997). In EFISPEC3D 

absorbing boundaries are treated with Classical P1 paraxial approximation (Stacey, 1988) 

to prevent reflections and to guarantee stability in the numerical simulations.  

 

1.3 Source description 
 

Initial conditions concern the knowledge of the displacement at the initial time (τ) 

everywhere in the domain of study. An excitation source can be introduced in the 

medium by a punctual force or by a system of forces where compressional and rotational 

moments act simultaneously (Komatitsch, 1997). The temporal dependence of the source 

can be represented by any signal characterized by a limited frequency band. In this study 

the source time function used in each simulation will vary following the purposes of each 

section, a better description of each source time function used will be given along the 
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text. Here I present the classic theory beyond the source implementation and the special 

formulation for volcanic sources.       

According to the representation theorem of the elasticity (e.g. Aki and Richards, 

2002), the displacement field    at any point x at time t in the medium is written as   

 

 
            

 

   

                  
 

   
                    

 

  
 

(13) 

 

where        is the displacement discontinuity between upper and lower interfaces of the 

surface   in the source region,    is the normal vector of the interface (from lower to 

upper),   is a position on the surface  ,     represents the Green function and       is the 

elastic coefficient like outlined in Equation  (8). Thus, the source terms are grouped in the 

form of a tensor 

 

                    

(14) 

 

or 

 

 
                    

 

  
 

(15) 

 

The former is called moment tensor density (N/m) and the latter is moment tensor 

(Nm). The convolution is then often written simply  

 

 
         

    

   
 

 

(16) 

 

The above formulation is valid not only for shear faulting but also for tensile faulting.  

The code EFISPEC3D was initially developed for simulating regional earthquakes, namely 

implemented only with the formulation of shear faulting (double-couple sources) (De 
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Martin, 2010, 2011). Now I further implement different types of sources.  

 

1.3.1 Volume change 

 

In the volcanic context, it is supposed that earthquakes are due not only to tectonic 

faulting processes, but also to some volume changes or material movement. Such 

processes are considered as some tensile response of the volcanic conduit to magma 

injection and gas movements, deflation/inflation of fluid/filled cracks and explosions. 

Traditionally, three basic geometries, cracks, pipes or spheres, are often used. These 

geometries are represented in the form of non-double couple moment tensors and based 

on the point source assumption. The moment tensor is represented by a 3 x 3 matrix 

where the diagonal components are the so-called dipoles and represent a tensile 

movement, while the six others components correspond to double couple forces and 

represent the deviatory (shear) part of the process (Figure 1). Each moment tensor can be 

understood by a couple force composed by two forces acting in the opposite direction. In 

the following, I briefly present the formulation of the moment tensor components for 

three fundamental models (Figure 2) often used in volcanology.   

 

 

Figure 1 - Illustration of the nine force couples contained in the moment tensor after (Krieger, 2011). On the top, Mxx, Mxy, 
Mxz from left to right. Then Myx, Myy, Myz in the middle and Mzx, Mzy and Mzz at the bottom.   
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1.3.2 Explosion source 

 

 An isotropic volume change (Figure 2c) of a small sphere is expected to only have the 

isotropic diagonal components in the moment tensor. Approximated at a point an 

isotropic source can be expressed as 

 

                

              

 

(17) 

 

this formulation is obtained from Eshelby, (1957), or I can also evaluate Equation  (13). 

 

Figure 2 - Definition of source coordinates and geometry for three fundamental models. a) Tensile crack opening in the 

direction v = u and defined by the angles φ and θ; b) radial expansion of a pipe; c) radial expansion of a sphere. 

 

Supposing a sphere of radius r, on which normal displacement is applied isotropically, 

the displacement and normal vector have the following vector components in standard 

spherical coordinates (φ,θ)  

 

 
     

        
        
    

  
 

(18) 

 

where φ and θ take (0, 2π) and (0, π) respectively. Considering                and the 

range of integral of Equation (15) only for a semi-sphere (e.g. θ takes (0, π/2) instead of 
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(0, π)), I can write the moment tensor in the following: 

 

 
            

  

 

                
      

   

 

 
 

(19) 

 

Then for Mxx, I can evaluate, following Equation (8) for the elastic coefficients, 

 

            
  

 

                
      

   

 

 

 

                           
         

  

 

   

 

 

 

         
  

 

            
   

 

        
  

 

                          
   

 

 

 

                 
   

          
 

 
  

 

 
      

 

  

  
 

  
      

 

 
     

 

   

 

 

                       
 

  
 
 

 
  

 

 
                   

 

 
           

 

 
  
 

 
  

 

(20) 

 

and 
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(21) 

 

 Other components are written in the same manner. With respect to the original 

volume of this explosion source    
 

 
   , I describe the volume change as 

 

           

(22) 

 

where    
 

 
   . Thus, I can obtain 

 

 

         
   

 

 
 

 
 

 

 

   
 

 
 

 

 

 
 

   
 

 
 
   

(23) 

 

1.3.3 Tensile Crack 

 

 Let us think a tensile crack whose geometry is defined by a normal vector (φ, θ), 

(0 ≤ φ ≤ 2π) and (0 ≤ θ ≤ π/2), as shown in Figure 2a. In the case where a discontinuity 

takes place in the perpendicular direction to the crack plane (tensile mechanism), its 

direction is the same as the normal vector, 

 

 
     

        
        
    

  
 

(24) 

 

Following the definition of moment tensor Mpq of Equation (15) supposing a uniform 

tensile continuity on a small fault plane A and representing a seismic moment M0 ≈ µA[u], 

I can write down in the following,  
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(25) 
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(30) 

 

Thus, when taking M0 = µΔV, I can write the entire moment tensor for a crack as, 

 

 

           

                 

                
              

  

                

                 
              

  

              
              

           
  

 

(31) 

 

1.3.4 Pipe 

 

 The last mechanism I consider for representing a volcanic source is straight pipe 

geometry. Let us think a cylinder whose cross-section is expressed by the same geometry 

as the crack plane (Figure 2b). The axis of the cylinder is the same as the normal vector of 

Equation  (15). A normal displacement u along the cylindrical boundary and the normal 

vector of the cylindrical boundary can be written as 

 

 
     

                          
                          

          

  
 

(32) 

  

where δ expresses the circumference of the pipe cross-section (0 ≤ δ ≤ π). If I integrate 

over the circumference of the pipe δ for a unit pipe length, Equation (15) becomes 

 

 
                    

 

                     
 

 

 
 

(33) 

 

and all the six independent components of the moment tensor can be written as 
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(39) 

 

The volume change par unit length of a tube is given by 

 

                 

(40) 

 

and the whole moment tensor is summarized as 

 

      

   

                       

                  
                

  

                  

                       

                

  

                
                

           
  

 

(41) 

 

 In literature of volcanology different definitions are adopted for the geometrical 

reference system (Chouet, 1996; De Barros et al., 2011; Kumagai et al., 2010; Nakano, 

2005) so that a careful attention is needed for the comparison.  

 

1.4 Tests and comparisons 
  

The EFISPEC3D code has been verified through different numerical tests on the wave 

propagation radiated from a shear faulting process (De Martin, 2010, 2011). In this section 

I show some numerical tests on the newly implemented volcanic sources for some 
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classical simple problems. The seismic signals recorded in and around a volcano show a 

large band of frequencies and this because their origin shows different physical 

processes, involving some volume change in the source area. I will first verify the 

implementation of the tensile sources presented in Section 1.3 by comparing my results 

with a finite difference simulation. I will then consider a classical problem in volcano-

seismology brought by Ohminato and Chouet, (1997) to test the ability of EFISPEC3D in 

reproducing seismic signals in strong topography gradient environments (typical of 

volcanic contexts). 

 

1.4.1 Test of tensile sources implementation 

 

 The mathematical implementation of the tensile sources described in section (1.3) 

will be tested by comparing our results for an oriented crack and an oriented pipe source 

with those obtained from a FDM code. I will proceed by describing the simulation input 

parameters followed by a graphical comparison of results. The parameters concerning 

the medium properties and source orientation have been taken constant for both 

simulations. The only change is in the chosen mechanism, and will be outlined.  

 

1.4.1.1 Model setting 

 

 The model volume is 20 km x 20 km x 20 km with the flat ground surface at z = 0 

km. I suppose a homogeneous half-space with Vp = 4000 m/s, Vs = 2000 m/s and density ρ 

= 2600 kg/m3. For all the simulations the source is located at 1000 m of depth, namely at 

(0, 0, -1000 m). I choose a source orientation with φ=30° and θ=80° for a tensile crack and 

a pipe (see Section 1.3). I assume a Ricker function as source time function (Equation  

(42), next section 1.4.2) with rise time of 0.66 s and time shift of 2 s and assume the 

maximum value of the seismic moment to be equivalent to Mw = 2.5. I record velocity 

time histories (in m/s) on the ground surface in nine points whose coordinates are in the 

following: 

 

1. -8000.0    2000.0   0.0   



Chapter 1  EFISPEC3D 

22 

 

2. -6000.0    2000.0   0.0   

3. -4000.0    2000.0   0.0   

4. -2000.0    2000.0   0.0   

5. 0.0       2000.0   0.0   

6. 2000.0    2000.0   0.0   

7. 4000.0    2000.0   0.0   

8. 6000.0    2000.0   0.0   

9. 8000.0    2000.0   0.0   

 

I calculate for a total duration of 16 seconds with a time step increment of 0.001 s. To 

obtain enough numerical accuracy, I mesh the volume by hexahedral elements with a 

minimal edge of 153.22 m after refining the first shallow 1000 m below the free-surface. 

For the deeper part, the elements are coarser in order to fasten the speed of the 

simulation (maximal edge = 208 m). The total number of elements was 98304 and 

parallelizing the calculus on 16 CPUs the time taken for performing the computation was 

of 41 minutes on the local server (AMD Abu Dhabi at 1.6 GHz).  

 

1.4.1.2 Results 

 

Figure 3 and Figure 4 show the comparison of the results for a tensile crack and a 

pipe respectively. The results are compared with the calculations brought by a finite 

difference method under the same source and model parameters. The good agreement 

in amplitude and phases corresponding to the P- and S-waves at all the receivers for both 

source types assures that the implementation of the volcanic sources is correct. Some 

differences are found, for example, at station 5 at around t = 2 s, when P- and S-wave 

phases are not separated yet. A similar difference is observed at station 6 (U-D 

component). Those differences could be due to the intrinsic numerical dispersion of the 

numerical methods, but for the future applications of our interest, such difference will 

not be significant. 
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Figure 3 – Synthetic ground motion (three components velocity) for a tensile crack case at nine stations aligned by number. 
Red curves show the results of the SEM calculations, and black one show the FDM results. 
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Figure 4 – Synthetic ground motion (three components velocity) for a pipe source for nine stations. SEM calculations in red 
and FDM in black. 
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1.4.2 Test of a Gaussian-Hill case  

 

1.4.2.1 Model setting 

 

 I perform the second test by comparing my results with those of Ohminato and 

Chouet, (1997), who use a Finite-Difference-Method to carry out a wave propagation 

simulation in a 3D homogenous medium with a surface topography of Gaussian shape 

(Figure 5). The model space is (-3500 m, 3500 m) in the X-direction (EW), (-3500 m, 3500 

m) in the Y-direction (NS) and (-4000 m, 1000 m) in the Z-direction (UD). The surface 

topography (z) is a Gaussian function with a height of 1000 m at the model center which 

becomes gradually z = 0 toward the far end of the model. The medium is supposed to be 

homogeneous with Vp = 3000 m/s, Vs = 1500 m/s and density ρ = 1200 Kg/m3. An isotropic 

explosion source is assumed with a moment tensor of M0 = 7.96 1011 Nm. The source time 

function is given by the multiplication between the constant M0 and a Ricker function in 

the form 

 

 
          

         

       
   

             
 

(42) 

 

where a is the amplitude, tp is the time period and ts is the time shift, and it is assumed 

that a = 1, tp = 0.66 s and ts = 2 s. The focal depth is fixed at z = 427 m (-800 m , 0, 427 m) 

near the surface of the volcanic body slope. The seismograms are compared in the 

following six stations on the ground surface (x-, y- and z- coordinates) 

 

1. (-2400 m, 1300 m,  0.58 m) 

2. (-1600 m, 1300 m,  14.26 m)  

3. (-800 m,  1300 m,  97.29 m) 

4. (  0.0 m,  1300 m,   184.51 m)  

5. ( 800 m,  1300 m,   97.29 m) 

6. (1600 m, 1300  m,  14.26 m) 
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I mesh the domain (Figure 5) with hexahedral elements with a minimal edge of 38.46 

m. Refining is applied to the first 1000 m below the ground surface. The element edge 

becomes coarser at depth (maximal edge = 153 m). I calculate for a duration of 15 seconds 

with a time step increment of 5 10-4 s. The total number of elements was 115072 and 

parallelizing the calculus on 16 CPUs the time taken for performing the computation was 

of 21 minutes on the local server (AMD Abu Dhabi at 1.6 GHz).  

 

1.4.2.2 Results 

 

  The synthetic displacements computed for all the six stations with the code 

EFISPEC3D and those from Ohminato and Chouet, (1997) are compared in Figure 6.  

Amplitudes in my simulation are normalized in respect to station number 3, as the 

solutions presented in Ohminato and Chouet, (1997) were already normalized. The waves 

are affected due to the irregular topography, especially in the latter part of seismograms 

and in the wave field beyond the irregularity (Stations 5 and 6). The overall shape of the 

synthetics is globally similar, especially for the first wave packet (direct wave), and this 

verifies our numerical simulation. Some differences in amplitude and in phase are found 

in the second part of the seismograms, especially in Stations 5 and 6 where the influence 

of topography is strong. A further mesh refining is performed in order to assure the 

precision of my result (minimal edge of elements 18.5 m, total number of elements 

787059, calculus parallelized on 64 CPUs performed in 9 hours and 38 minutes). Figure 6 

and Figure 9 show the comparison between the two simulations (fine and coarse) 

performed by EFISPEC3D and Ohminato results. As the two simulations performed with 

EFISPEC3D show any difference (Figure 7 and Figure 8), I can consider that my solution is 

precise enough and well converged. It is thus considered that the difference between 

EFISPEC3D and Ohminato solution originates from the difference of the numerical 

implementation. As there is no analytical solution, it is impossible to verify further. 

However it is necessary to keep in mind that there might be some difference when using 

different numerical schemes.    
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Figure 5 – Model volume meshed by Cubit with a Gaussian-shape hill. 
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Figure 6 – Comparison of synthetic ground motions between the SEM (in red) and FDM (in black) simulations in a Gaussian 
hill topography. 



Chapter 1  EFISPEC3D 

29 

 

 

 

Figure 7 – Comparison of synthetics ground motion (displacement) for station number 3 in the Gaussian-Hill topography. 

The test has been performed with EFISPEC3D for both simulations with a fine (red dashed line) and a coarser (blue dashed 

line) meshing scheme. 

 

 

Figure 8 – Comparison of synthetics ground motion (displacement) for station number 5 in the Gaussian-Hill topography. 
The test has been performed with EFISPEC3D for both simulations with a fine (red dashed line) and a coarser (blue dashed 
line) meshing scheme. 
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Figure 9 – Comparison of results between the SEM and FDM simulation like Figure 6 with a finer meshing scheme, the 
results are equivalents to the coarser meshing scheme.
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Chapter 2 

Source models and characterization of 

Long-Period events 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this chapter I provide a description of volcano seismicity observed on volcanoes with a 

special regard to long-period events. A review of the seismic signals recorded on volcanoes is 

given in the first part, follows a detailed description of long-period activity on volcanoes 

worldwide and the main accepted theories beyond their physical explanation. The third part 

is focused on the mathematical theory beyond moment tensor inversion, a recognized tool 

for describing the physical behavior of the source of long period events. I show the main 

tools used to determine the physical mechanism at the origin of the long-period activity. I 

end up by comparing numerical results with an analytical solution (the Mogi problem) for 

the determination of the volume of materials involved in the source process. 
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2.1 Volcano Seismicity 
 

Volcanic eruptions are among the most severe natural hazards and it is since the 

beginning of 20th century that scientists made observation on the signals preceding or 

accompanying an eruption. It is since the 1960s and 1970s that the availability for more 

portable and sensitive instruments has led to modern volcano seismology, but it’s only 

since the 1980s, with the widespread of broadband instruments, that scientists could 

start investigate deeply the physical mechanism beyond volcanic seismic signals 

generation.  The main goal of volcano seismology is to understand the origin process of 

volcanic seismic signals. Seismic signals recorded on volcanoes represent the elastic 

response of the volcanic edifice to the action of forces related to either rock’s failure, or 

to rapid pressure changes due to mass movements (gas, magma) occurring at depth 

(Chouet and Matoza, 2013 and references therein). Defining the source mechanism of 

these signals would improve our understanding of the volcanic activity leading to better 

early warning and hazard assessment.  

Classical literature classifies volcanic seismic signals in four main classes of events 

(Chouet, 2003a; McNutt, 2005): high frequency events, long-period events, very long-period 

events and tremor (Figure 10). Those terms simply describe the appearance and frequency 

content of the signal, but nowadays also imply a certain characteristically source 

mechanism.  

 

2.2.1 High frequency events 

 

High frequency (>5Hz) events (also called volcano tectonic events, VT) are generated 

by brittle fracture. The process beyond their generation is well understood as they share 

many similarities with classical regional earthquakes: shear failure caused by stress build 

up and resulting in slip on a fault on a plane. They are characterized by clear P-waves and 

S-waves arrivals and are studied towards focal mechanisms and stress tensor inversions. 

They often occur in swarms and can be related to uprising magma or relaxation phase of 

the volcanic edifice. Recently a new class of VT events, denominated VT-B, has been 

observed sharing some similarities with lower frequency events (Wassermann, 2011). 
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They are usually shallow, with slightly lower frequency (1-10 Hz) content and with 

emergent P-waves. They are of difficult interpretation and little is known about their real 

origin.   

 

 

Figure 10 – Waveforms and spectrograms of VT earthquake, volcanic tremor, LP event and VLP event recorded on Mt. 
Etna. The tick red line plotted over the VLP waveform shows the signal low pass filtered below 0.15 Hz. Figure 
reproduced after Patanè, (2011) 

 

2.1.2 Long-Period (LP) events 

  

Long Period (LP) events are characterized by a narrow frequency band (usually 

comprised between 0.1 and 2 Hz) and show an emergent onset with no clear P-waves and 

S-waves arrivals. They show different shapes and vary a lot between different volcanoes 

worldwide (Figure 11). For instance only few events per year are recorded at Piton de la 

Fournaise (Zecevic et al., 2013) while on Etna (Saccorotti et al., 2007) and Turrialba (Eyre 

et al., 2013) hundreds of events can be recorded per day. In many cases their activity can 

be sustained over time, with the repetition of events which share similar waveforms (De 

Barros et al., 2011; Eyre et al., 2013). LP events are thought to be caused by fluid processes 

that are still not well understood. The main effort of the scientific community is to 
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quantify the quantity of gas or magma involved in their generation in order to get more 

insight on the behavior of the internal plumbing system of volcanoes where they occur. 

Nowadays many models have been proposed to explain their source mechanism. A more 

comprehensive review of the source processes of LP events is presented in the next 

section (2.2). 

 

 

Figure 11 - Typical signatures for long-period signals at different volcanoes. From top to bottom is clear the different length 
of the harmonic coda. Figure reproduced after Chouet, (2003a)  

 

2.1.3 Very-Long-Period (VLP) events 

 

Very Long Period (VLP) events are characterized by very low frequency (0.01-0.1 Hz) 

content. They are often recorder in the very shallow part of the volcanic edifice (< 2 km) 

and due to their long wavelengths they suffer of little path distortion, which facilitates 

their analysis. Unlike LPs they are often interpreted as generated by inertial forces 

associated with perturbations in the flow of magma and gases through conduits (Chouet 

and Matoza, 2013).  For instance, Chouet et al., (2005) interpreted VLP events recorded at 

Popocatépetl Volcano, Mexico, as originated by gas movements at the intersection of 
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two structures represented by a sill and a dike. A significant mass movement originated in 

the in the sill triggering a mass movement response in the dike.  A similar structure was 

also imaged by Dawson, (2011) at Augustine Volcano, Alaska. VLP events were also 

recorded accompanying explosions during eruptions at Redbout Volcano, Alaska (Haney 

et al., 2013) and interpreted as a sill structure acting as magma storage at a depth of 1.4 

km below the crater. A single sill structure was also inferred by Ohminato, (1998) for VLPs 

recorded at Kilauea Volcano, Hawaii, while VLPs recorded during explosions at Stromboli 

Volcano where interpreted by Chouet, (2003b) in terms of upward migration of gas slugs 

in the shallow conduit prior to eruptions.   

 

2.1.4 Volcanic Tremor 

 

Volcanic tremor is a sustained signal, lasting from several minutes to several days-

months, observed during quiescent or eruptive stages (Konstantinou, 2003). It shows 

strong similarities in the frequency content (0.1 – 5 Hz) with LP events. The similarity in 

the spectral content leads to hypothesize its origin as an overlapping of a sequence of LP 

events (Chouet and Matoza, 2013 and references therein).  

 

2.2 Source models for LP signals  
 

As stated before, LP signals are of difficult interpretations and since their first 

observations many models have been proposed to explain their source mechanism and 

behavior. 

 

2.2.1 The crack model 

 

Since the late 1970s, when the first low frequency signals were recorded and 

analyzed on volcanoes, some authors started questioning about some oscillatory 

characteristics intrinsically present in the LP records. Aki, (1977) was the first author 

invoking a source model which involved fluids driven in a crack structure. He proposed a 

mechanism for volcanic tremor recorded at Kilauea, Hawaii, consisting in the vibration of 
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cracks caused by the opening of channels in response to excess magmatic pressure. 

Lately, in the 1980s in occasion of the eruption of Mt. St. Helen, Fehler, (1982) interpreted 

some LPs as originated from excitation of a fixed cavity situated under the active crater. 

Some models based on the resonance of a fluid filled cavity started to be proposed and 

investigated through numerical modeling for different geometries of the resonator: a 

pipe (Chouet, 1985), spheres (Crosson, 1985) and cracks (Chouet, 1986).  The main feature 

of these models was the presence of the so called “crack wave”, a very slow wave 

propagating along the crack boundary in the fluid. Ferrazzini and Aki, (1987) studied 

analytically the behavior of this wave arguing that reflections of this wave at the crack 

tips could be a reasonable source of radiations in case of finite cracks. They established 

that the crack wave velocity is slower than the acoustic velocity of the fluid at all 

wavelengths. Thus the resonance of the fluid reservoir depends on its geometry and on 

the physical properties of the fluid and the surrounding solid. Chouet, (1986) established 

that the excitation modes of a crack depend on the position of the pressure transient, the 

crack dimensions, the impedance contrast (between fluid and solid) and the crack 

stiffness. The crack stiffness is dependent on the bulk modulus of the fluid so that the 

involved fluid should play an important role on the oscillatory behavior of the resonator.  

The viscosity of the fluid decreases the amplitude of the main spectral peaks and reduces 

the duration of the radiated signals.  

The crack model explains how the characteristics oscillations observed in LP signals 

could be produced, but the trigger mechanism is still unknown. Many volcanic processes 

could be involved such as: a) dome growth, as seen in Montserrat (Neuberg et al., 2000) 

or at Mount St. Helens (Morgan et al., 2008); b) hydrothermal processes from meteoric 

waters and heat source interaction (Eyre et al., 2013; Kumagai, 2002a; Syahbana et al., 

2014); c) magmatic fragmentation, degassing and explosions (Chouet and Matoza, 2013, 

and references therein); d) brittle failure of the melt itself in the conduit (Goto, 1999; 

Neuberg et al., 2006); e) self-sustained oscillation within magma flow channels (Julian, 

1994). Chouet and Matoza, (2013) gave an exhaustive description of the state of the art of 

all the possible trigger mechanisms for LP events. I refer to their paper and give a general 

overview of all the possible (and still in debate) source models.  
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2.2.2 Self-sustained oscillations 

 

Julian, (1994) proposed a model for the generation of tremor based on the coupling 

between fluid and solid. In his model an increase in the flow speed leads to a decrease in 

fluid pressure by the Bernulli effect. The result is that the walls of the channel move 

inward constricting the flow which increases its pressure and the channel walls open 

again. Balmforth et al., (2005) e tended  ulian’s study to include the dynamic behavior of 

the fluid and the elasticity of the surrounding walls. They concluded that magma itself is 

unlikely to generate flow-induced oscillation, but that rapid flow through fractured rocks 

of fluids exsolved from magma may. They obtained a critical value for flow speed 

required for the generation of this so called “roll wave instability”. Rust et al., (2008) 

investigated the conditions for roll wave instability and concluded that roll waves are 

unlikely in geological context because they require high flow and speeds, but they also 

pointed out that could occur in the flow of hot, high pressure fluids such as H2O- and CO2-

rich fluids.  

 

2.2.3 Magmatic-hydrothermal interactions 

 

Magmatic-hydrothermal fluids interactions are one of the first trigger mechanisms 

proposed for LP events generation (Chouet, 1985). LP seismicity could be generated via 

boiling and depressurization of ground water (Leet, 1988; Matoza and Chouet, 2010), 

cyclic collapse and recharge of pressurized hydrothermal cracks (Arciniega-Ceballos et al., 

2012; Matoza and Chouet, 2010; Matoza et al., 2009; Nakano, 2005; Ohminato et al., 2006; 

Waite et al., 2008) or unsteady chocking of a supersonic flow of magmatic steam (Chouet 

et al., 1994; Morrissey and Chouet, 1997). An example of intensive study of the magmatic-

hydrothermal interactions comes from the Kusatso-Shirane Volcano, Japan. This andesitic 

stratovolcano is surrounded by one of the major hot-spring regions in Japan and LP 

events have frequently been observed (Fujita et al., 1995; Hamada et al., 1976). The first 

LP analyses performed (Kumagai, 2002a; Nakano et al., 1998) pointed to the resonance of 

a crack filled with hydrothermal fluids. Nakano et al., (1998) used the Sompi method (Hori 

et al., 1989; Kumazawa et al., 1990) to determine the complex frequencies. Thus they 
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were able to recover a coefficient Q which is function of the resonator geometry and the 

density of the fluid. Hence Kumagai, (2002a) analyzed a sequence of 35 events recorded 

on Kusatso-Shirane and was able to infer possible changes in the fluid composition in the 

LP resonator. Lately Nakano et al., (2003) performed waveform inversion pointing to the 

existence of a sub-horizontal crack repeatedly excited at ~300 m depth. They proposed a 

conceptual model for LP generation (Figure 12) based on the increasing of the steam 

pressure inside the crack due to the underlying magmatic body. A rapid release of this 

pressure would cause depressurization of the fluid filled crack, triggering its resonance 

 

Figure 12 – Schematic view of the source process of LP events at Kusatsu-Shirane Volcano as imagined by Nakano et al., 
(2003) after waveform inversion. Figure reproduced after Chouet and Matoza, (2013) 

 

which generates harmonics, slowly decaying LP codas. Similar observations linking LP 

events to magmatic-hydrothermal interactions have been done on a variety of volcanoes 

including, Kilauea (Almendros et al., 2002; Kumagai et al., 2005; Saccorotti et al., 2001), 

Redoubt (Chouet et al., 1994; Morrissey and Chouet, 1997; Stephens and Chouet, 2001), 

Mount St. Helens (Matoza and Chouet, 2010; Matoza et al., 2009; Waite et al., 2008), 

Popocateptl (Arciniega-Ceballos et al., 2012), Satsuma-Iwokima (Ohminato, 2006), Ontake 

(Nakamichi et al., 2009), Aso Volcano (Kaneshima et al., 1996; Kawakatsu et al., 2000), 

Campi Flegrei ( ’Auria et al., 2011) and Vulcano (Alparone et al., 2010).  
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2.2.4 Magmatic degassing 

 

Magmatic degassing has been recognized as trigger mechanism of LP events at many 

volcanoes worldwide. During the 1991-1992 eruptive crisis at Galeras Volcano, Colombia, 

Cruz and Chouet, (1997) recognized a correlation between the explosive pulses and the 

occurrence of LP events and identified a possible crack source mechanism. Davi et al., 

(2010, 2012) analyzed towards moment tensor inversion some LP signals recorded on 

Arenal Volcano. Despite the poor network coverage they were able to recover a moment 

tensor with dominant isotropic components, as would be expected for an isotropic 

explosion source. Long-period activity is also connected to explosions at Colima Volcano, 

Mexico (Varley et al., 2010; Zobin et al., 2008) and related to degassing processes at 

Stromboli and Kilauea volcanoes (Chouet, 2003b; Chouet and Dawson, 2011; Ohminato et 

al., 1998). In these cases a common interpretation is based on the oscillation of the 

terminal part of the conduit system induced either by the chocking of the flow or the 

explosive jet recoil. Palo et al., (2009) imaged for Colima Vulcano a pressure step 

occurring at depth in the conduit which excites the conduit itself to resonance followed 

by an upward migration of the source. Another common models relate the 

decompression-induced degassing and the volatile growth to the increasing pressure in 

the ascending magma as observed at Tungurahua Volcano (Molina et al., 2008) and at 

Montserrat (Rowe et al., 2004). The models proposed for magmatic degassing and 

magmatic-hydrothermal interactions are very similar and contemporary analysis of other 

geophysical or geochemical signals could help understanding the source mechanism. 

 

2.2.5 Brittle failure of melt 

 

Experimental and numerical studies have recently showed that highly viscous melts 

can exhibit solid–like brittle behavior (Alidibirov and Dingwell, 1996; Dingwell, 1996; 

Ichihara and Rubin, 2010; Webb and Dingwell, 1990) in conditions realizable in magma 

conduits (Collier and Neuberg, 2006; Gonnermann and Manga, 2007; Hale, 2007; Papale, 

1999; Thomas and Neuberg, 2012). The process is related to non-Newtonian behavior of 
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different melt compositions which could experience a transition from viscous-fluid-like to 

solid-like mechanical behavior (Webb and Dingwell, 1990). Field observations in Iceland 

(Tuffen and Dingwell, 2005; Tuffen et al., 2003) revealed veins formed in young rhyolitic 

conduits filled of fragments of magma and broken phenocrystals interpreted as linked to 

faulting and volcano seismicity. Hybrid-volcanic events (mixed Low/High frequency 

content) could be generated by such a process. The brittle behavior of part of melt and 

crystals could result in shear-failure and trigger the resonance of the fluid filled crack 

generating the LP signal (Neuberg et al., 2006) and so the hybrid event.  

Brittle failure of melt for generating LP/hybrid events is a newly topic of increased 

interest. Its better understanding could provide links between seismicity, extrusion 

dynamics, magma movement in conduits and also link to ground deformation and tilt 

(Green and Neuberg, 2006; Neuberg et al., 2006; Voight et al., 1999).  

 

2.2.6 Solid lava dome extrusion 

 

This model for the generation of shallow volcanic seismic events doesn’t take in 

account for a classical fluid filled resonator, but it is referred to a completely different 

process invoked to explain shallow volcanic seismicity. The eruption of Mount St. Helens 

in 2004-2008 was characterized by a very regular shallow seismicity with slowly evolving 

waveforms (Morgan et al., 2008) and for their regular nature these events were termed 

drumbeats (Morgan et al., 2008). Iverson, (2008) and Iverson et al., (2006) proposed a 

mechanical model for those drumbeats events generation. They supposed the existence 

of a solid plug pulled upward by a constant flux of molten (bubbly) magma at depth in 

the conduit (Figure 13). Each seismic event would correspond to stick-slip motion of the 

lava plug. This stick-slip motion would occur on the margins of the lava plug where 

extrusion is resisted by friction forces.  Power and Lalla, (2010) recognized this drumbeats 

style seismicity in occasion of the 1986 dome building phase and 2006 effusive phase of 

Augustine, Alaska, but they did not relate this seismicity to be directly caused by the 

emplacement of lava dome at the volcano’s summit.  
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Figure 13 – Cartoon illustrating the conceptual stick-slip model of Iverson, (2008) and Iverson et al., (2006). A constant flux 
of magma pushes on a rigid plug of solidified magma at the top of the conduit. Earthquakes result from increment slip 
along the plug margins. Figure reproduced after Chouet and Matoza, (2013) and Iverson et al., (2006).  

 

2.2.7 Slow-rupture earthquakes 

 

Recently, Bean et al., (2014) proposed a new model for explaining shallow LP 

seismicity. They analyzed the pulse-like nature of some LP events recorded on volcanoes. 

For instance, in occasion of the 2008-2009 eruption of Mt. Etna (De Barros et al., 2009, 

2011), they recognized that, while summit stations recorded pulse-like low-frequency 

signals, the same records on further stations appeared as classical resonating LP signals.  

They attributed the apparent resonance of these low-frequency seismic events caused by 

propagation effects and not being source related. They supported this new theory with 
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some laboratory experiments where they recognized that the corner frequency of LP 

events does not scale with events size (supposing that fixed crack geometry and stiffness 

are necessary conditions for resonance). They showed an example from 2004 field 

campaign on Mt. Etna where the corner frequency of events scales with moment 

magnitude and attributed those events as caused by dry failure. Their model 

hypothesizes that these LP events are consequence of failure in materials close to the 

brittle-ductile transition. The brittle-ductile transition in shallow volcanic material is not 

supposed to be related to high temperature and pressure, but to the low friction angles 

of the unconsolidated shallow volcanic deposits.  

 

2.3 Source characterization 
 

2.3.1 Representation Theorem 

 

As seen in the previous section, seismic waves in a volcano can be set up by sources 

external to the edifice such as eruptions, explosions, pyroclastic flows, landslides and by 

internal sources such as shear failures, opening of pathways associated to fluid transport 

and tractions on conduit surfaces due to viscous fluid flow (Chouet, 1996). In order to 

represent all this possible effects on the displacement field recorded at a point x at a time 

t in the medium, I expand the representation theorem of Equation (13) including body 

forces (Ohminato et al., 1998), according to Aki and Richards, (2002) 

 

 
            

 

   

                             
 

 

     
 

   

                    
 

   
                   

 

                                     

(43) 
 

where the new terms are:          a force applied in the p-direction at a point η within V 

at time τ and               the stress discontinuity at   at time τ. Equation (43) states 
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that the displacement   at a point x is made up from the sum of the contributions due to 

body forces f  throughout V, displacement   on  , and tractions       . For long waves 

(wavelengths much longer than the dimension of the source volume), the whole source 

can be considered as a point source and the force system equivalent to this source is 

localized at a point at the center of the source volume (Chouet, 1996). In the first chapter 

I developed the expression for the displacement   due to a displacement discontinuity 

over the surface   at the source (Equation (16)). Assuming an isotropic medium, the 

contribution from traction discontinuities has the dimension of a force and can be 

expressed as (integrating over  ) 

 

 

  
            

 

 
(44) 

 

so that the contribution to u from the traction discontinuity is given by the convolution 

  
        . Similarly, integrating the body force over the volume V I obtain the 

contribution from the point force as the convolution        . The contributions from 

  
    and    are assumed to originate from different processes, but they can be grouped 

in a single term (Chouet, 1996). Thus the representation theorem for point sources can be 

written as 

 

                                                            (45) 
 

which expresses the nth-component of displacement in terms of nine unknowns, namely, 

the three components of the force F and the six independent components of the 

moment tensor M (Aki and Richards, 2002; Chouet, 1996).  

 

2.3.2 Green’s functions 

 

In the representation theorem (Equation (45)) the force and the moment terms are 

convoluted with Gnp and Gnp,q which represent the nth-component of the corresponding 

medium responses (Green’s functions) and their derivatives, respectively. Green’s 
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functions are computed taking advantage of the reciprocity theorem (Aki and Richards, 

2002; Auger et al., 2006)  

 

                    (46) 
 

where I omit the t (time) term and          expresses the nth-component at r (receiver) 

due to an unit impulse applied in the p-direction at s (source). For the moment 

components I’m looking for the spatial derivative that is 

 

 
            

         

   
 

    
     

                       

   
 

    
     

                        

   
 

  
         

   
 

(47) 
 

Using the expressions outlined above (Equation (46) and (47)), the three 

components of displacement can be calculated at each source node for an impulsive 

force applied in the x, y and z directions at each receiver of the network (Auger et al., 

2006). Thus, for many sources, the number of computations reduces at three times the 

number of receivers.  

 

   2.3.3 Moment Tensor Inversion  

 

The source mechanism for LP events is usually determined by full moment tensor 

inversion (e.g. Auger et al., 2006; De Barros et al., 2011; Chouet, 2003; Eyre et al., 2013; 

Kumagai, 2002b; Ohminato, 1998). Here I show the main equations needed to solve a 

moment tensor inversion for determining the source characteristics.  

In the frequency domain convolution becomes multiplication, thus the 

representation theorem (Equation (45)) can be written as (Menke, 1989) 
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                                           (48) 
 

This equation is solved separately for each frequency and results are then transformed 

again in time domain using an inverse Fourier transform. If I write Equation (48) in matrix 

form 

 

      
(49) 

 

where u is the data matrix, G contains the Green’s functions and m is the moment tensor 

and single forces components. If N is the number of seismograms used in the inversion, 

Equation (49) can be written in explicit form as (Dahm, 2014; Davi et al., 2010) 

 

 

 
 
 
 
 
 
  
  
  
 
 
   
 
 
 
 
 

  

 
 
 
 
 
 
                                       
                                       
                                       
         
         

                                        
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
   
   

   

   
   
   

  
  
   
 
 
 
 
 
 
 
 

 

(50) 
 

The quality of the inversion process is then tested by comparing original and 

calculated data by evaluating the misfit (R) function as 

 

 
  

               

     
 

(51) 
 

where W is a diagonal matrix of the weights of the quality of waveforms. The lowest 

value of misfit R indicates the best solution for m. m is solved by least squares solution as 

(Menke, 1989) 

 

                   
(52) 

 

where superscript T denotes transpose matrix and mest  is the estimated moment tensor 
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matrix. As I don’t make any a priori assumptions about the mechanism, the solution is 

unconstrained and I can solve independently for six moment tensor components (MT-

only) or moment tensor plus three forces (MT+F).  

In case of a crack or a pipe I will extract also information about the orientation of the 

physical source responsible for the recorded signals. I will use the constrained inversion 

description proposed by Lokmer et al., (2007) 

 

          
 
        

(53) 
 

where f is a column vector containing the si  functions of  ame’s constants. I will take 

constant values for the source medium properties (λ and μ) and invert the signals for two 

spherical angles ϕ (strike) and θ (dip). f is independent from frequency so the inversion 

reduces to the search for a unique parameter M0(ω) in the frequency domain. I will 

perform constrained inversion for three different source mechanisms (explosion, crack 

and pipe) following the description proposed in Equations (23),  (31) and (41)  

respectively.  

 

2.3.4 Single Forces 

 

The second term (F) of the representation theorem (Equation (45)) is related to three 

components of single forces (SFs) and is often included in moment tensor (MT) 

inversions (Ohminato et al., 1998). The recovered SFs often have a large amplitude (De 

Barros et al., 2011; Ohminato, 2006) and so their contribution to the solution has been 

questioned by different authors. Theoretical considerations (Takei and Kumazawa, 1994) 

and laboratory experiments (James et al., 2004) showed that SFs can be generated by 

mass transfer or by viscous fluid movement in the volcano and are often interpreted as 

magma upwelling in the conduits (Chouet, 2003b; Ohminato, 2006). However, recent 

interpretations point out that uncertainties in both velocity structure and source location 

can lead to the reconstructions of spurious SFs (Bean et al., 2008; Chouet, 2003b; De 

Barros et al., 2011, 2013; Ohminato et al., 1998). De Barros et al., (2013) investigated the 

role of SFs on the retrieved solution in a synthetic test for different MT inversion 
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scenarios. They stated that spurious SFs are likely to be recovered when the velocity 

model is incorrect. Higher errors arise when a (realistic) shallow low-velocity layer is not 

included in the velocity model and spurious SFs can also be recovered to accommodate 

converted waves generated at layer interfaces.  

More generally, SFs are of difficult interpretation and their role in volcanic conduits is 

still in debate. Even with a high resolution network of stations just above a shallow LP 

source their presence can be unambiguously interpreted. Thus, in my MT inversions, I will 

tend to interpret SFs as accommodating errors in the velocity model and in source 

location (De Barros et al., 2013). 

 

2.3.5 Singular Value Decomposition 

 

Once the unconstrained inversion performed, I end up with nine (three forces + six 

moments) functions in time representing the time history of my source process. The six 

moment tensor functions contain information about the type of source mechanism 

(tensile, double-couple, CLVD, see next section) and its orientation angles. In order to 

extract such information I suppose that the source mechanism is simple enough that the 

geometry of the source can be separated from its time variation, so that the moment 

tensor can be written in the simple form (Madariaga, 2007) 

 

             (54) 
 

where M is a time-invariant tensor that describes the geometry of the source (as outlined 

in Equations  (23),  (31) and (41) and s(t) is the time variation of the moment. The aim is to 

obtain a 3x3 matrix of constant values (the moment tensor) and then perform an 

eigenvalues/eigenvectors decomposition to get information about the source orientation 

and the mechanism type. In order to get M I can apply two methods: a) the first, 

proposed by Chouet, (2003), consists in taking  the maximum peak-to-through amplitude 

of each individual moment function; b) the second, proposed by Vasco, (1989), consists in 

performing a singular value decomposition (hereafter “SVD”) of the moment functions. 

The two methods show results which are roughly equivalents, however, the first method 

lack information about the truthfulness of the assumption that a single source time 
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function is enough to describe the source behavior. Hence, I choose to use the SVD 

method, here a brief review. 

Factors such as source complexity, noise and lateral heterogeneities all introduces 

nonuniqueness in the source time function (hereafter “ST ”). The technique of principal 

component analysis (through SVD) is used to factor the moment tensor into a set of 

orthogonal STFs (Vasco, 1989). SVD is applied to the data matrix M (Joreskog et al., 1976; 

Menke, 1989; Savage, 1988; Vasco, 1989) which is decomposed in three matrices 

 

        (55) 
 

where   (n x m) is a matrix of function weights and U (n x n) and V (m x m) are matrices 

related to the eigendecomposition of M, as U are the eigenvectors of MMT and V are the 

eigenvectors of MTM. For uniqueness, orthogonality conditions are imposed  

 

       
      (56) 

 

where I is the identity matrix and has dimensions n x n and m x m in the first and the 

second case, respectively (Menke, 1989; Savage, 1988). For my purposes, the product  VT 

represents the source-time basis functions, the diagonal of   contains the basis 

coefficients for the basis functions (i.e. how much each function contributes to the main 

solution) and U  are the coefficients of each tensor related to each basis function (i.e. six 

values corresponding to one single basis function times the number of basis functions). In 

order to better understand the behavior of the SVD I show here, as an example, a test 

performed on a simple tensile crack.  

I follow Equation  (31) and compute the moment tensor for a vertical crack defined by 

directions ϕ=45° and θ=90° and Lamé’s parameters computed for Vp = 3221 m/s, Vs = 1860 

m/s and density ρ = 2335 kg/m3 following Equations  (11) and  (12). The volume variation 

(   ) in time is represented by a Ricker function (Equation  (42)) normalized by its 

maximal amplitude variation and multiplied by Mw (moment magnitude), with 

 

       
            (57) 
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and 

 

             (58) 
 

where ML is the Ricker Magnitude (ML=1 in this case). Applying Equation (54) I obtain six 

independent moment functions which describe the point source equivalent for the 

vertical tensile crack described above (Figure 14). I then compute the SVD on the moment  

 

Figure 14 – Six moment tensor functions for the test case of a vertical, 45° oriented, tensile crack. 
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Figure 15 – Histogram representing the six   function weights after performing SVD on the moment functions of Figure 14. 

 

Figure 16 – Six basis functions ( V
T
) after SVD decomposition of the vertical crack of Figure 14. The first basis function at 

the top shows the highest amplitude and can be considered as contributing alone to the solution.   
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functions and obtain the six   coefficients. I consider that my entire source mechanism 

can be fully described by a singular STF when the first value of   is at least double of the 

second (Lokmer et al., 2007). In this special case, the first value is way higher than the 

second (Figure 15), it means that the first basis function  VT (Figure 16) can fully explain 

the moment tensor time evolution. I end up performing an eigenvalues/eigenvectors 

decomposition on the first column of U  and, as anticipated, I obtain normal vectors 

orientation of ϕ=45° and θ=90° and eigenvalues ratio of (1:1:3) as expected for a tensile 

crack source. 

 

2.3.6 ISO, DC and CLVD decomposition 

 

The moment tensor as obtained from the MT inversion and the SVD has not a direct 

physical explanation thus, to make it easier to understand and interpret, it is decomposed 

into elementary force system. First, I express the moment tensor in its principal axis 

coordinate system by performing a diagonalization (Dufumier and Rivera, 1997). Three 

values are required to express the orientation of this system, and three other values 

specify the moments of three orthogonal dipoles oriented parallel to the coordinate axes 

(Julian et al., 1998). Thus the matrix M, after diagonalization, is decomposed into an 

isotropic force system (MISO) and a deviatoric remainder (M*).  M*
, in turn, is divided in 

compensated linear vector dipole (MCLVD) and double-couple (MDC) components as (Jost 

and Herrmann, 1989; Knopoff and Randall, 1970) 

 

                  (59) 
 

where 
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Parameter   measures the size of CLVD relative to DC (Julian et al., 1998) and is 

defined as 

 

 
   

      
 

       
  

 
(60) 

 

where       
  and       

  are the eigenvalues of deviatoric moment M* with the maximum 

and minimum absolute values, respectively. In principle,   could range between -0.5 and 

0.5, and should be zero for a perfect double-couple. In order to compute the percentage 

of each component relative to the others I use the formulas proposed by Vavryčuk, (2001) 

as 

 

 
     

 

 

     

        
     

(61) 
 

                       (62) 
 

                         (63) 
 

where        denotes the eigenvalue of M, which has the maximum absolute value. The 

DC percentage is always positive, the ISO and CLVD percentages are positive for tensile 

sources, but negative for compressive sources. The sum of their absolute values is 100%. 

The decomposition of the moment tensor can give indications on the nature of the 

source of the seismic events. Different ratios of     ,       and     can give rise to many 

different interpretations (Vavryčuk, 2015). For instance (refer to Figure 17 for wave 

radiation patterns examples of each source mechanism): 

 

1) full isotropic source (       ) can be interpreted as an explosion;  

2) shear faulting has full double couple components (     );  
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3) pure CLVD (       ) sources have a double-strength force couple along one 

axis, and unit-strength force couples in the direction of the two perpendicular 

directions (Lay and Wallace, 1995). CLVD sources have been related to tensile 

microseismic events that occur in hydraulic fracturing context (Nolen-Hoeksema 

and Ruff, 2001);  

4) mixed shear-tensile dislocation is also a possible scenario (Vavryčuk, 2001, 2015) 

where both shear and tensile faulting are combined and is characterized by non-

zero      ,       and     components. 

 

 

Figure 17 – P-wave and S-wave radiation patterns and representative moment tensors for four different seismic source 
types. CLVD denotes compensated linear vector dipole. Figure reproduced after (Eaton and Forouhideh, 2011).  

 

Vavryčuk, (2001) developed a method to get insights into a tensile earthquake 

mechanism. A tensile earthquake could be imagined as tensile faulting combined to a 
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small amount of shear faulting. It can be described using a slip vector which is not strictly 

oriented in the same plane as the fault plane, i.e. it deviates from the fault plane 

producing some kind of tensile opening or closing of the fracture. Thus, the slip vector 

(     ) forms an angle ( ) with the fault plane (Σ) as (Figure 18) 

 

 
          

    
      

 

     
        

  
  

(64) 
 

The angle between the normal to the fault and the tension (   ) axis is 

 

        /2 (65) 
 

 

Figure 18 – Mixed tensile/shear faulting earthquakes angles definition. Figure reproduced after Eyre et al., 2015. 

 

The angle (θ) between the tension axis and the vertical is computed using the 

eigenvectors of the moment tensor solution. Thus the orientation of the fault plane from 
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the vertical is computed as 

 

        (66) 
 

Vavryčuk, (2001) also proposed a simple relationship to compute the λ/μ ratio (κ) of 

the medium surrounding the source region as function of        and      as 

 

 
  

 

 
 
    

     
 
 

 
  

(67) 
  

In the next section I will give some indications on how to interpret the results after 

the moment tensor decomposition. Special attention is given to the determination of the 

volume involved in the source process with a brief discussion of the Mogi, (1958) 

problem.  

 

2.4 The Mogi Problem 
 

Trying to relate the moment tensor decomposition to a real physical mechanism is 

not straightforward. Things become harder when a single component is not predominant 

on the others. As I am dealing with shallow long-period signals recorded on volcanoes I 

assume that the source process is related to mass movements and triggered resonance 

phenomena occurring in a fracture (e.g. De Barros et al., 2011; Chouet, 1996; Chouet and 

Matoza, 2013; Gilbert and Lane, 2008; Madariaga, 2007). Both processes could take place 

in a complicate interconnected system of fractures of different dimensions which are 

traversed by a mixture of melt rocks or water and gases (e.g. Kumagai and Chouet, 2000; 

Kumagai et al., 2005; Ohminato, 1998). The movement of this mixture is supposed to be 

triggered by pressure variations (Nakano et al., 2003). Thus, part of the displacement of 

the crack walls could result in a static permanent displacement that can be connected to 

the isotropic (    ) part of the moment tensor. The simplest case I can consider is a 

spherical source without deviatoric (M*) components. I want to find the connection 

between a real system of forces, which could be the ΔP (pressure) exercised uniformly on 

the wall surface of the sphere, and the equivalent moment tensor magnitude. The aim is 
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to compute the volume variation of the hypothetical sphere to quantify the amount of 

gas/liquid involved in the process.  

Mogi, (1958) proposed an analytical formula to compute the static permanent 

displacement at the surface due to an explosion source at a certain depth. He assumed 

that the Earth’s crust is an ideal semi-infinite elastic body and that the deformation at the 

surface is caused by the spherical source with hydro-static pressure change.  The 

analytical formulas in his compact form are: 
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(69) 
 

where     and    are the radial and vertical displacement at the surface, a is the radius of 

the sphere with the hydrostatic pressure, P is the hydro-static pressure variation, f is 

depth of the center of the sphere, d is radial distance on the surface from the center and 

  is a  ame’s constant. Mogi, (1958) validated his formula by obtaining good 

correspondence between his computed values for ground deformation and field data 

collected on some Japanese volcanoes in the first half of 20th century. The good 

correspondence was obtained for a << f, it means a sphere of small radius embedded at a 

considerable depth. Even if the analytical solution has been designed for long-period 

deformations, I can apply the same to the sudden elastic displacement induced by a 

seismic source.  

 

2.4.1 Moment magnitude for an explosion 

 

The deformation of the volcanic edifice is treated like an elastic response of the 

volcano to an excess magmatic pressure at depth (Anderson, 1937; Battaglia et al., 2003; 

Bonafede et al., 1986; Delaney and McTigue, 1994; Gudmundsson, 2006; McTigue, 1987; 

Mogi, 1958). The parameters which control this static displacement are the ΔP, the radius 

of the sphere a and its depth f (Figure 19). The process producing this static permanent 
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displacement at the free surface is directly related to the volume variation of the walls of 

 

Figure 19 – Schematic representation of the Mogi problem. A ΔP is imposed on the sphere wall at depth and a static vertical 
displacement is recorded at the surface. a is the radius of the sphere, f  the sphere depth, D and d  represent the external 
and internal displacement of the wall’s sphere respectively. The analytical solution of Mogi, (1958) for the static vertical 
displacement recorded at the surface is reported as an example. The key point is how to express the M0 at source in 
function of the ΔP imposed at the sphere wall. 

 

the sphere. Two main approaches are present in literature to relate the volume expansion 

of a sphere and the isotropic moment of the signals recorded at the free surface: the first 

derived by Eshelby, (1957) 

 

 
       

 

 
     (70) 

 

 

and the second proposed by Muller, (1973) 
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              (71) 

 

in both equations    is the isotropic moment, λ and μ are the  ame’s parameters of the 

homogenous isotropic elastic medium and    and    are the tensile expansion of the 

external wall of the sphere induced by the explosion.    and    are referred to the same 

process but I use a different notation following the work of Richards, (2005) who states 

that their use is similar but they are referred to the computation of two slightly different 

volume variations. The works of Muller, (2001) and Richards, (2005) are complementary 

and both threat the issue of which of the two Equations (70) or (71) better quantify the 

energy released (by meaning of the volume variation) by an explosive source at depth. 

For Richards, (2005) Equation (70) is related to the volume variation in case the source 

has no confining hydrostatic pressure (the so called “unconfined volume change”), so it’s 

free to expand without constraints, while equation (71) should reflect the real case where 

the hydrostatic pressure at depth of the sphere is considered and the volume expansion 

is limited by the surroundings. For Muller, (2001) the two equations simply reflect two 

extreme cases of volume variation related to the shape of the source. Equation (70) 

should correspond to a crack (a volume with one dimension much smaller than the two 

others) while equation (71) should correspond to a sphere. The two computed values for 

   and    should simply give a range of possible volume variations for different source 

shapes. The best solution for the computation of the moment magnitude of our problem 

should be Equation (71) because I’m looking for the moment magnitude of a sphere 

embedded at a certain depth, so confined by a certain hydrostatic pressure. I will test 

both two approaches in order to find the best solution. 

 

2.4.2 Volume Variation 

 

The main issue is to relate the volume variation to the ΔP imposed on the wall of the 

sphere. Different approaches are present in literature to relate the ΔP to the radius 

expansion D (say from a to a + D) (Aki and Richards, 2002; Gottsmann, 2006; Masterlark, 

2007; Muller, 2001; Wielandt, 2001). Among all the different approaches I will focus on the 

solutions proposed by Aki and Richards, (2002) and Muller, (2001). Both two approaches 
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of equations (70) and (71) will be used to compute the isotropic moment (   . I obtain 

the volume variation by the displacement of the sphere’s wall using the formula (Aki and 

Richards, 2002) 

 

          
(72) 

 

where D is the external displacement of the external wall. 

 

2.4.2.1 Aky & Richards (2002) 

 

The first solution comes from Aki and Richards, (2002). In chapter 3 they propose 

some problems connected to the quantification of the radial displacement of the external 

wall of a sphere. Following their equations the pressure variation can be related to the 

external displacement by 

 

 
   

    

   
  

(73) 
 

This solution applies in the case the e pansion is able to attain his “stress-free” value, it 

means that the effects of the confining pressure of the medium are not taken in account. 

Hereafter, I refer to this solution as “Aki & Richards I”. 

 A second solution from Aki and Richards, (2002) takes in account for the 

confinement of the source region. They propose to compute a constant of 

proportionality 

 

 
   

  

     
  

(74) 
 

such that the static radial displacement of the sphere wall is 

 

      
(75) 
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Like expected the second solution leads to lower volume expansion values. 

Hereafter, I refer to this solution as “Aki & Richards II”. 

 

2.4.2.2 Muller (2001) 

 

 In the approach followed by Muller, (2001) the author makes a distinction between 

an internal and an external displacement. He imagines that the wall of the sphere, after 

the application of   , moves before outward (D) and then inward (d), the sum of the two 

displacement is D0=D+d (Figure 19). To compute such displacements he introduces a 

second constant of proportionality 

 

 
   

     

   
 

(76) 
 

then he computes the total displacement 

 

 
     

 

  
     

(77) 
 

and the external displacement 

 

 

   
    

  
     

    
 

(78) 
 

Following the definition proposed by the author, the isotropic moment is computed 

by means of Equation (70) using the D0 value for the total displacement (internal + 

external), and by means of Equation (71) using the D value for the external displacement. 

 

2.4.3 Comparison and results 

 

I will now test the different approaches solutions computed with EFISPEC3D and 

compare the results with the analytical solution of Mogi in order to validate the best 

approximation. Geometry and model parameters are as follow. The modeled medium is a 
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cube (x 50 km, y 50 km, z 50km). The large size becomes from the intent to avoid artificial 

reflections from the boundaries. I choose a homogenous medium with Vp = 3464.1 m/s, Vs 

= 2000 m/s and density ρ = 2600 Kg/m3 in order to obtain Lame’s parameters λ = μ as 

often assumed in classic seismological problems. The source is an explosive source 

(sphere source) embedded at depth. I test two different cases (one with the source at 

1000 m depth, the second with the source at 2000 m depth). According to definition 

given by Mogi, (1958) the sphere source radius is much smaller compared to the source 

 

Figure 20 – Step source time function used to simulate the static permanent displacement of the sphere wall numerically 
(top). The spectrum of the STF (bottom) with a frequency content lower than 3 Hz. 

 

Table 1 – Geometric configuration for different test cases 

Configuration Source depth (km) Sphere radius (m)    (MPa) 

1 1 100 1 

2 1 100 0.1 

3 1 10 1 

4 2 100 1 

 

depth. I test two different configurations, radius a = 100 m and a = 10 m. The source time 

function (STF) is a hyperbolic tangent function with a final static non-zero value in order 

to simulate the static permanent displacement (Figure 20). The frequency content of the 

second derivative of the STF is zero above 3 Htz in order to guarantee numerical stability 

in the simulations. I place 43 receivers along the x-axis (from x = 0 m to x = 9500 m) in  
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Table 2 - Values of MISO and ΔV for the geometric configuration 1 of Table 1 for each of the considered approaches to convert 
the ΔP in moment magnitude.   

Configuration (1) M0 x 1012 
(Nm) 

ΔV (m3) 

Aki & Richards I (2002) 5,23 301,9 

Aki & Richards II (2002) 4,18 241,5 

Muller (2001) 1,05 33 - 60 

Aki & Richards I (2002) – case Muller (1973) 9,42 301,9 

Aki & Richards II (2002) – case Muller (1973) 7,54 241,5 

 
 

Table 3 – Same as Table 2 but for geometrical configuration 2. 

Configuration (2) M0 x 1011 
(Nm) 

ΔV (m3) 

Aki & Richards I (2002) 5,23 30.2 

Aki & Richards II (2002) 4,18 24.1 

Muller (2001) 1,05 1.3 – 3.3 

Aki & Richards I (2002) – case Muller (1973) 9,42 30.2 

Aki & Richards II (2002) – case Muller (1973) 7,54 24.1 

 
Table 4 - Same as Table 2 but for geometrical configuration 3. 

Configuration (3) M0 x 109 
(Nm) 

ΔV (m3) 

Aki & Richards I (2002) 5,23 0.3 

Aki & Richards II (2002) 4,18 0.24 

Muller (2001) 1,05 0.03 – 0.06 

Aki & Richards I (2002) – case Muller (1973) 9,42 0.3 

Aki & Richards II (2002) – case Muller (1973) 7,54 0.24 
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Figure 21 – Horizontal static displacement recorded at the surface for the different values of M0 . The analytical solution of 
Mogi is the red line. Perfect correspondence is obtained with the value of ΔV computed with the “Aki & Richard I” method 
and the equation M0 obtained with Equation (71)  (Muller, 1973). Error bars appear on the numerical simulations. 

 

Figure 22 – Same as Figure 21 but for the vertical static displacement. 
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order to measure the final static permanent displacement on the vertical and radial 

components (when the final static value is reached, I choose to take values at 5 s later 

than the first S-Waves arrivals). I test two pressure values ΔP1 = 1 MPa and ΔP2 = 0.1 MPa. I 

run a simulation for each of the five M0 computed above, and I repeat the simulations for 

each geometric configuration listed in Table 1 . The computed M0 values for each 

geometric configuration are reported in Table 2, Table 3 and Table 4. As In the calculus for 

the computation of M0 from the Δ  there is no relation to the sphere depth, the values of 

M0 and ΔV computed for configuration 4 are the same as in configuration 1. With 

configuration 4 I want to test how the sphere depth, and so the intrinsic attenuation of 

the synthetic signals in the medium, can influence the solution. 

Results for configuration 1 (Figure 21 and Figure 22) show perfect matching between 

the analytical and numerical solutions for the    computed with the Aki & Richard I case 

(Equations (72) and (73)). Configuration 2, configuration 3 and configuration 4 solutions 

show analog coherent results (not showed here) thus the interpretation is conducted on 

configuration 1 solution. The M0 (Aki & Richards I, case Muller 1973, in Figure 21 and Figure 

22) at the source which shows perfect match with the analytical solution is computed by 

means of Equation (71) (Muller, 1973) which should take in account for the confining 

pressure. Some confusion arises as the corresponding   , computed following the 

solution of Aki & Richards I, should correspond to a volume variation in case the source 

has no confining hydrostatic pressure. Moreover, the analytical solution proposed by 

Mogi, (1958) takes in account for the confining pressure. The    variation at the source is 

only related to the ΔP imposed on the sphere’s wall. Thus for the Aki & Richards I case the 

volume variation           (configuration 1) is equivalent (Table 2) for both M0 

computed with Equation (70) or (71). In order to match the analytical solution 

numerically, I need a higher M0 value. As stated by Muller, (2001), the choice of Equation 

(70) or (71) for computing the    could depend on the hypothesized source mechanism 

geometry, i.e. a spherical source for Equation (71) or a crack (a source with dimension 

much smaller than the others) for Equation (70). Both two equations could reflect a 

range of possible   .  or my purposes, I’m interested in determining an order of 

magnitude for the volume of fluid or gas involved in the tensile source mechanism. As 

doubts remain on which equation better reflects reality, the     
  (Equation (59)) will be 
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interpreted as representing the tensile component of my source process and a 

quantification of the  possible range of volume material involved will be extrapolated 

using both Equations (70) and (71). The CLVD percentage coming from the decomposition 

of the deviatoric moment complicates the understanding of the solution. A pure CLVD 

source does not correspond directly to any simple physical mechanism, but in 

combination with the ISO component can be thought as a product of the tensile faulting 

(Vavryčuk, 2015). Thus, mechanism orientation will be determined either on the whole 

moment tensor M or on the deviatoric component (M*) following the interpretation of 

the source mechanism, i.e. in case of a predominant isotropic component (    ) the 

orientation of the source will be extrapolated from the deviatoric component (M*) 

decomposition. 

 

2.4.4 Conclusion of the Mogi problem 

 

The MT solution after MT inversion is of difficult interpretation. Hence I have 

investigated how the pressure exerted at the walls of a simple spherical source 

embedded at a certain depth can be related to the MT solution.  

After defining the dimension of the sphere, the pressure value imposed on the 

sphere’s wall has to be related to the volume variation of the sphere itself. Different 

approaches have been proposed in the literature to relate the volume variation and the 

pressure exerted at the sphere’s wall (Aki and Richards, 2002; Muller, 2001). Once the 

volume variation computed, the moment magnitude (M0) can be obtained by means of 

two different approaches (Eshelby, 1957; Muller, 1973). The retrieved moment 

magnitudes are used to perform some numerical simulations of the equivalent static 

displacement recorded at the free surface and compared to the analytical solution 

proposed by Mogi, (1958). The results show that perfect match is obtained for the M0 

computation (Muller, 1973) which takes in account for the hydrostatic pressure at the 

source, but the corresponding    from the pressure (Aki and Richards, 2002) does not. 

Confusion arises, but Muller, (2001) suggested that the two approaches for computing M0 

could correspond to two different source geometries, i.e. a sphere or a crack.  

The results of the numerical test suggest that even if MT solution is perfectly 
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retrieved, the interpretation of the source mechanism is not unique. The volume of the 

fluid/gas involved in the source process will thus be computed using both two M0 

equations (Eshelby, 1957; Muller, 1973) and interpreted as a range of possible volume 

variations. 
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In this chapter I will give a brief description of the geological context of Mt. Etna. I will then 

focus my attention on Long Period seismic signals recorded on the volcano making a brief 

review of the previous studies on their detection and understanding.  
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3.1 Geological context 
 

Mount Etna Volcano is located on the island of Sicily (Italy) and is the tallest volcano 

(3330 m a.s.l. Bousquet, 2004) in Europe. Certain authors refer to it as “Mongibello” 

(Mons Gibel), from Latin mons (mountain) and the Arab jebel (mountain) as to highlight its 

majesty. In recent times the name Mongibello is often used to refer to the summit craters 

and can be found in some publication at the place of Mt. Etna. It is the most active 

volcano of Europe and, after Kilauea on Hawaii, possibly the second most active volcano 

on Earth. It is almost continuously active since human records are present (2700 years 

ago), and it has shown incredible versatility in terms of eruptive styles. In the last 15000 

years it has shown explosive activity (since 12 ka ago, Coltelli et al., 2000), which 

culminated in the 122 BC largest explosive episode, a plinian eruption of basaltic magma 

(Coltelli et al., 1998) and frequent effusive activity from the summit craters and flank 

eruptions (Branca et al., 2011a). Since the second half of the 17th century the eruptive 

activity was characterized by both explosive activity at the summit craters, from 

strombolian to lava fountains, and the occurrence of flank eruption almost purely effusive 

(Branca and Carlo, 2005).  Etna has approximately 350 craters and minor vents on its 

flanks, each of which erupted only once.  

 

3.1.2 Geodynamic setting 

 

The tectonic context which gives origin to Mt. Etna is still not completely understood. 

Mt. Etna lies between the Appeninic-Maghrebian chain and the Catania-Gela foredeep 

(Bousquet, 2004). While out, in the Ionian Sea, the African plate (constituted by oceanic 

lithosphere) is subducting underneath the Calabrian arc, on the island itself the 

convergence due to subduction is blocked and the region is in a collisional regime. The 

result is mountain building going on in the Peloritani, Nebrodi and Madonie chains in the 

northern part of Sicily (Figure 23). Mt. Etna lies south, on the external boundary of this 

segment of the Alpine chain in the intersection zone of the major fault systems of eastern 

Sicily. Mt. Etna is bounded to the north by the Monte Kumeta-Alcantara faults and to the 

east by the Aeolian-Maltes fault (Bousquet, 2004). The Aeolian-Maltese fault divides the 
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calc-alkalin volcanism of the Aeolian Islands, which is in a subduction regime, to the 

collision regime of the Appeninic-Maghrebian chain. Thus, Mt. Etna lies in a quite 

 

Figure 23 – Mt. Etna region in the geodynamic framework of the central Mediterranean (reproduced after Bousquet, 2004). 
1, Continent; 2, continental margin and thin continental crus; 3, oceanic crust; 4, Appenin-Maghrebian chain; 5, Aeolian-
Maltes transform fault system; 6, active subduction front. 

 

unconventional place for a volcano. Gvirtzman and Nur, (1999) proposed that Mt. Etna 

has formed as a consequence of rollback of the Ionian slab underneath the Calabrian arc. 

The rollback mechanism could be explained as the Ionian slab slowly moving away (sout-

east) from the subduction zone due to the weight of the subducting plate. This leads to 

the opening of a gap between the Ionian lithosphere and the African plate, gap which is 

filled by viscous material coming from the asthenosphere (Gvirtzman and Nur, 1999). 

Schellart, (2010), through fluid dynamic laboratory experiments, concluded that the 

volcanism on Mt. Etna is likely due to this slab rollback process where the upwelling of 

upper-mantle flow causes decompression and melting of the upper mantle itself 
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Figure 24 – Three dimensional sketch of the south-tyrrhenian subduction zone. The asthenospheric material penetrates 
along the plate contact between the Ionian Lithosphere and the African Plate. Black arrows represent local patterns of 
mantle flow; red lines represent magma rising from the top of the slab (close-up red lines are referred to the Aeolian 
volcanic arc). Reproduced after Gvirtzman and Nur, (1999). 

 

(Figure 24) explaining the source of the volcanism of the region. Despite the complex 

geodynamic setting giving arise to the volcanism of the southern part of Italy, whose 

deep investigation is not the main aim of this work, the mechanism feeding Mt. Etna is 

very efficient.   

 

3.1.2 Geological history 

 

Geological history of Mt. Etna is quite recent, eruptive activity began in the middle of 

Pleistocene approximately 500,000 years ago (Branca et al., 2008). The geological 

evolution is subdivided in four main phases: (1) the Basal Tholeiitic phase, (2) the Timpe 

phase, (3) the Valle del Bove centers phase and (4) the stratovolcano phase (Branca et al., 
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2011a, 2004, 2008).   

The (1) Basal Tholeiitic phase groups the earliest volcanic products erupted in the Etna 

region. The first subaerial products were erupted about 330 ka ago (Branca et al., 2011b) 

along the coast of the Ionian Sea immediately to the north of Catania, leading to the Aci 

Castello formation formed by pillow lava and hyaloclastic breccia (Corsaro and 

Cristofolini, 2000, Figure 25a). To the south of the actual volcanic edifice, scattered 

fissure-type eruption generated thin lava flows succession that invaded  

 

 

Figure 25 – Eruptive centers and distribution of the product of eruptions for each of the four main phases of volcanism in 
the Etna area. a) Basal Thoeelite phase; b) Timpe phase; c) Valle del Bove phase; d) Stratovolcano phase. Figure reproduced 
after Branca et al., (2004). 
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the Simeto river paleovalley floor accompanied by a general uplift of the area (Di Stefano 

and Branca, 2002). A long period of erosion (~ 100 ka) interested this newly formed lava 

plateau and the sedimentary terrains marking the transition from the Basal Tholeiitic to 

the Timpe phase (Branca et al., 2011b). Overall, the products of the Basal Tholeiitic phase 

are tholeiitic basalts (Branca et al., 2008) with a composition similar to the magma 

currently erupted at Kilauea, Hawaii.  

The (2) Timpe phase occurred between about 220 ka and 129 ka ago (De Beni et al., 

2011) and consisted mainly of repetitive effusive eruptions through N-S oriented fissures 

along the Timpe fault system (Figure 25b) (Branca et al., 2011b). The products of this 

phase are related to the first primitive composite volcano interpreted as a lava shield 

elongated 22 km on a NNW-SSE basis in correspondence of the actual Acireale scarps on 

the east flank of the volcano (Branca et al., 2008, 2011b). During this eruptive period, 

sporadic eruptive activity interested also the lower southwestern and southeastern 

sectors of the Etna edifice. The products of this phase are mainly constituted by alkali 

basaltic lavas (Branca et al., 2008; Corsaro and Pompilio, 2004).  

The (3) Valle del Bove phase occurred about 110 ka ago and the volcanism shifted from 

the Ionian coast into the area now occupied by the Valle del Bove (Figure 25c). During this 

period the volcanic activity of Mt. Etna underwent a profound change: from the sporadic 

fissure eruption of the first two phases it shifted to a central-type polygenetic volcano 

(De Beni et al., 2011). During a period comprised from 110 ka and 65 ka ago (De Beni et al., 

2011) about seven main volcanic centers took place. The principal activity occurred from 

Trifoglietto volcano (~107 – 99 ka ago) on the southern flank of Valle del Bove. It was 

mainly characterized by effusive lava flows and explosive activity during the final phases 

which ended with a plinian eruption which generated a thick sequence of pumice and 

flow deposits (Branca et al., 2011a). The Trifoglietto edifice reached a maximal elevation of 

about 2600 m (Branca et al., 2011b). Other minor volcanic centers formed subsequently 

on the flanks of Trifoglietto and their activity continued until ~60 ka ago. 

 After the construction of volcanoes of the Valle del Bove the volcanism shifted NNW 

giving raise to the last (4) Stratovolcano phase (Figure 25d). The composition of the 

erupted lava changed from alkali-basalt to trachytes (Corsaro and Pompilio, 2004) and 
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was marked by the construction of Ellittico volcano, the main eruptive center recognized 

in Etna region. Ellittico volcano reached a maximal elevation of about 3600 m and was 

characterized by both explosive and effusive activity, most from the summit vents and 

subordinated flank fractures (Branca et al., 2011b). Ellittico volcano began his growth 

about 57 ka ago and slowly expanded his flanks until it reached, almost 20 ka ago, its 

maximal areal expansion having a maximum diameter of about 45 km that corresponds 

to the actual boarders of Mt. Etna volcano (Figure 26). The final stage of Ellittico volcano 

was characterized by four plinian eruptions, occurring about 15.5 – 15 ka ago, which  

 

 

Figure 26 – Scheme of the outcropping deposits of the four phases of volcanism on Etna volcano. Reproduced after Branca, 
(2011). a) DEM particular of the summit of Mt. Etna with the acronym of the actual active craters, reproduced after Cannata 
et al., (2015). 
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ended the Elittico phase and produced a collapse of the summit area which formed the 

Ellittico caldera (Branca et al., 2011b). Since 15 ka ago the volcanic activity shifted to the 

actual active vents at the summit of Mt. Etna, namely the Mongibello volcano was born. 

Effusive summit eruptions gradually filled the Ellittico caldera and many flank fissures 

generated lava flows which reached the Ionian coast.  

About 10 ka ago a catastrophic collapse involved the eastern flank of the Etna edifice 

and formed the huge collapse depression of the Valle del Bove (Calvari et al., 1994). In 122 

BC the largest explosion of Mongibello occurred, this was a plinian eruption (Coltelli et al., 

1998) that produced widespread pyroclastic scoria fall deposits and huge damage to the 

ancient Roman town of Catania (Branca et al., 2011b). In 1669 the largest flank eruption of 

modern times occurred at low altitude in correspondence of Monti Rossi nearby Nicolosi. 

The lava flow which originated reached and destroyed part of the town of Catania and 

many villages on the Etna steps. Since the 17th century the eruptive activity is 

characterized by both periods of explosive activity (strombolian to lava fountains) and 

the occurrence of sporadic flank activity which appear to have no systematic relationship 

with the central activity (Branca and Carlo, 2005).  

 

3.1.3 Structural framework 

 

The structural framework of Mt. Etna results from the complex interaction between 

regional tectonic, flank instability and basement geometry (e.g. Azzaro et al., 2013; Borgia 

et al., 1992; Bousquet, 2004; Bousquet and Lanzafame, 2013; McGuire and Pullen, 1989; 

Norini and Acocella, 2011; Rasà et al., 1996; Rust et al., 2005).  

 The main structural lineaments of the unstable flanks of Mt. Etna are the following 

fault systems (Figure 27, Azzaro et al., 2013): Pernicana, Ragalna, Tremestieri-Trecastagni, 

Timpe and Ripe della Naca-Pedimonte-Calatabiano.  

The eastern sector of the volcano appears very active from a seismic point of view 

(Azzaro et al., 2013) which is in agreement with the high deformation rate recorded on 

the eastern/south-eastern flank of the volcano (e.g. Bonaccorso et al., 2006; Bonforte et 

al., 2011). The Pernicana fault system (PF) is identified as the northern boundary of this  



Chapter 3  Mt. Etna Volcano 

75 

 

 

Figure 27 – Tectonic sketch map and active faults on Mt. Etna volcano. Fault abbreviations: PF, Pernicana; RF, Ragalna; CF, 
Calcerana; TMF, Tremestieri; TCF, Trecastagni; FF, Fiandaca; ARF, Acireale; STF, S; Tecla; MF, Moscarello; SLF, S. Leonardello; 
RP, Ripe della Naca; PD, Pedimonte; CL, Calatabiano; SVF, S. Venerina. The arrows indicate the strike-slip components; the 
contour of the rift zones is in grey. Figure reproduced after Azzaro et al., (2013).   

 

unstable sector (Alparone et al., 2013 and references therein) while the southern part is 

represented by the south-rift ( Rasà et al., 1996) and the Tremestieri-Trecastagni faults 

systems (Figure 27). These structures join with a displacement plane located roughly at a 

depth of 2-4 km b.s.l. which also corresponds to the maximum depth of the earthquakes 

recorded along the Pernicana fault (Alparone et al., 2013). The sliding of the eastern flank 

of the volcano towards the sea is thought to favor the extension and the 

depressurization of the central part of the volcano thus facilitating magma ascent at 

shallower levels (Bonaccorso and Patanè, 2001). The relation between the unstable 

condition of flank sliding and the magmatic system was also confirmed by Privitera et al., 

(2012) through the computation of Coulomb stress changes retrieved from numerical 
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simulations of volcanic-tectonic events. However, these dynamics do not allow for strong 

pressurization of the shallow plumbing system as the deformation induced by magma 

emplacement is accommodated by the displacement of the eastern flank (Bonaccorso et 

al., 2011a).  

The complex geodynamic of Mt. Etna and its flanks has been proven to play an 

important role on the actual volcanism. Hence, the analyses of LP events have to be 

carried out considering the complex structural context in which they occur. 

 

3.1.4 Recent history of summit craters 

 

I give a brief description of the actual morphology of the summit of Mt. Etna volcano. 

All the acronyms and the locations of the summit craters are sketched in Figure 26a. 

 The modern central crater (CC) came into existence in the late 17th century following 

the collapse of the previous summit cone during the 1669 flank eruption (Behncke et al., 

2004). The external morphology of the CC was almost unchanged since the mid-19th 

century (Behncke et al., 2004; Guest, 1973) although its internal morphology has changed 

frequently in function of intracrater activity. The CC was completely filled after the 1964 

eruption (Behncke et al., 2004). The actual craters present at the summit of Mt. Etna are a 

product of the activity of the last 100 years (Figure 26). In particular, during the eruption 

of 1911 a new crater formed at the base of the summit cone (Ponte, 1920), later named 

the Northeast crater (NEC). The NEC was reactivated frequently during the 20th century 

and the cone reached its maximal elevation of 3350 m.a.s.l. in 1981 (Tanguy and Patané, 

1984), tough its later collapse reduced its height to 3329 m (Neri et al., 2008). The 

Voragine (VOR) formed in 1945 in the northeastern portion of the CC and in 1968 the 

Bocca Nuova (BN) appeared as a third vent (the second was called the 1964 crater) inside 

the CC.  The Southeasth crater (SEC) formed in May 1971 at the southeast base of the 

summit cone (Alparone et al., 2003; Behncke et al., 2006, 2008, 2014; Calvari et al., 1994). 

The youngest cone is the New Southeast crater (NSEC) which appeared in 2009 and grew 

during a series of lava fountaining episodes in 2011-2012 (Behncke et al., 2014).  
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3.2 Long Period activity at Mt. Etna 
 

The sustained volcanic activity of Mt. Etna offers many opportunities to scientists to 

get new information about the dynamics of the volcano during rest and unrest periods. 

The first study concerning Long Period (LP) events on Mt. Etna was proposed by 

Falsaperla et al., (2002). They studied the seismic activity recorded during the 1992 

eruption. They were able to identify four different families of LP events based on 

waveforms similarities which were interpreted as result of pressure transients in dike like 

structures located beneath the Northeast Crater (NEC). They results showed the high 

number of LP events occurring daily on the volcano and a possible source mechanism 

related to gas/fluid dynamics relying the shallow feeding system to a deep depressurizing 

magma body.  

Since November 2003 the installation of the first permanent broad-band network 

allowed for the identification of LP activity as the most common seismic signature at Mt. 

Etna (Lokmer et al., 2007, 2008; Saccorotti et al., 2007). The LP events on Etna occur in 

swarms or as independent events (Falsaperla et al., 2002) and they are also recorded 

during both rest and unrest periods of the volcano (Cannata et al., 2009a; Cauchie et al., 

2015; Lokmer et al., 2008).  Lokmer et al., (2007, 2008) and Saccorotti et al., (2007) 

focused their attention on the LP activity recorded during the 2004-2005 eruption. As 

recognized before by Falsaperla et al., (2002) for the 1992 events, the LP events recorded 

during the 2004-2005 eruption showed spectra and waveform similarities which were 

interpreted as a repetitive non-destructive source mechanism (Cannata et al., 2009a; 

Lokmer et al., 2007, 2008; Saccorotti et al., 2007). Same considerations were made lately 

in occasion of the June 2008 lava fountain by De Barros et al., (2009) who were able to 

distinguish two main families of LP events with similar waveforms. First LP analysis on Mt. 

Etna attributed the source mechanism to a resonant fluid filled crack (Falsaperla et al., 

2002; Lokmer et al., 2008; Saccorotti et al., 2007). Saccorotti et al., (2007)  analyzed the 

quality factor Q of  P’s coda waves and indicated that the most likely candidate fluid for 

sustaining the resonance of the filled crack was a bubbly basalt or a water-vapour mixture 

with very low gas-volume fractions. They also recognized a correlation between LP and 

VLP signals. They argued that the source trigger of the deeper VLP events was relied to 
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mass transfer. The subsequent mass injection in overlying cavities could have driven the 

pressurization of a reservoir filled of hydrothermal fluids, thus triggering the LP 

resonance. An analog interpretation was given by Cannata et al., (2009a) who found 

slightly different locations for the shallow LP and the deeper VLP events. They suggested 

that two different interconnected sources could explain this difference. In their model, 

slow movements of fluids between connected cracks could have driven pressure 

transients in a shallower dyke. They supported their hypothesis by the fact that the onset 

of the LP events preceded slightly the VLP record. Lokmer et al., (2008) performed the 

first moment tensor (MT) inversion of short duration LP signals on Mt. Etna. They 

suggested that “gas pulsing” from the magmatic column into an oriented crack could 

have triggered the short LP resonance. Lately De Barros et al., (2011) identified two 

families of similar LP events and performed MT inversion identifying two different 

interconnected source mechanisms. During their experiment an eruptive fissure opened 

below the source of the LP events on the flank of the volcano. In their model they 

hypothesized that two orthogonal cracks located below the summit could be excited by 

the injection of gas coming from the main conduit. They supposed that the summit 

degassing and the flank lava flow drained the cone, producing a decrease of pressure and 

a consequent destabilization of those fractures. Cannata et al., (2015) recognized an 

increase in LP amplitude just the two months preceding the explosion which occurred at 

Bocca Nuova in Spetember 2013. They suggested that this change in amplitude could be 

connected to gradual pressurization of the shallow Etna plumbing system. They 

supported their model comparing the LPs and volcanic tremor activity with CO2 gas 

measurements. Cauchie et al., (2015) analyzed a set of LP events recorded in 2005 during 

a rest period of the volcano. They performed an amplitude distribution analysis and 

compared their results with a dataset of LP events recorded on Stromboli volcano (Italy). 

They end up proposing a model where an intermittent degassing process occurring at 

depth could explain the LP activity. In absence of clear surface evidence for the degassing 

pulses (as it occurs at Stromboli) they also argued that the LP events could be indirectly 

related to the degassing at depth. They imagined that stress changes associated to the 

degassing pulses could be likely to explain the recorded amplitude and inter event time 

distribution of the LP events. These recent interpretations are implicitly consistent with 
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the recent work of (Bean et al., 2014) who developed an alternative source model based 

on the deformation of weak, compliant material of the shallow portion of the volcanic 

edifice (as described in the above section 2.2.7 ). 
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In this Chapter I investigate, through synthetic tests, the role played by the choice of a 

particular velocity model on the reliability of the MT inversion solution. An exhaustive 

summary of the work is proposed in the Abstract. The Chapter has been organized as a peer-

reviewed publication as the work has been submitted to the Geophysical Journal 

International (GJI) journal. 
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Abstract 

 

Since a few decades volcanic Long Period (LP) events have been recorded on many active 

volcanoes and their study has been recognized as an important tool to characterize volcanic 

activity. LP event analyses through moment tensor (MT) inversions have led to kinematic 

descriptions of various source mechanisms. These inversions focusing on the understanding 

of the physical origin of LP events supposed a relatively simple structure of the medium and 

few studies focused on the uncertainty derived from the choice of a particular geological 

model. We carry out several tests of inversions on Mt. Etna volcano (Italy). Four geological 

models with topography are considered with increasing vertical complexity. First, synthetic 

scenarios are computed in in the most complex model and then inverted in the other three 

geological models with/without constraining the mechanism (moment tensor and single 

forces). Although the solutions among the three velocity models are similar, the model with a 

surface layer offers the best results in terms of source location and obtained mechanism. The 

homogeneous model gives the lowest misfit value, but source location and mechanism 

decomposition are inaccurate. When a complex model different from the original one is used, 

we get high misfit values and a wrong solution.  Subsequently we perform a MT inversion of 

an LP event recorded on Mt Etna in 2008. Here we obtain very different solutions between the 

three models in terms of source location and mechanism decomposition. The overall shape of 
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the retrieved source time functions are similar, but some amplitude differences arise, 

especially for the homogeneous model. Our work highlights the importance of including the 

                                                                     ons. Complex models of 

the volcano which do not correspond to reality can lead to significant errors and to 

misinterpretation of the source mechanism.   
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4.1 Introduction 

 

The understanding of the origin of seismic signals on volcanoes is of fundamental importance 

to enhance our knowledge of volcanic systems and to monitor their activity.  Volcanoes can 

exhibit a wide variety of seismic signal types (e.g. Chouet, 1996 and references therehein). 

Here we focus our attention on long period (LP) seismic signals. LP events are characterised 

by low frequency waveforms (0.2 – 2 Hz) and are thought to have magmatic or hydrothermal 

origin (Chouet, 2003a). They are often considered to be associated with resonance of fluid 

filled cavities (Aki et al., 1977; Chouet, 1996, 2003a; Jousset et al., 2004; Nakano et al., 2003; 

Neuberg et al., 2000) and their understanding is crucial to illustrate the shallow plumbing 

system of volcanoes. Recently, Bean et al., (2014) developed the work of Harrington and 

Brodsky, (2007) and proposed a new model for explaining shallow LP seismicity. They 

analyzed the pulse-like nature of some LP events recorded on volcanoes and stated that their 

origin is likely a consequence of failure in materials close to the brittle-ductile transition. 

Their conclusions suggest that careful attention should be paid in using LP events as direct 

indicators of magmatic/hydortermal fluids. 

An important tool to describe LP sources is moment tensor (MT) inversion (Davi et al., 2010; 

De Barros et al., 2011; Jousset et al., 2004, 2013; Kumagai, 2002b; Kumagai et al., 2005; 

Lokmer et al., 2007; Nakano, 2005; Nakano et al., 2003). Many MT inversions on LP 

volcanic signals infer a tensile crack source mechanism (Eyre et al., 2013; Jousset et al., 2013; 

Kumagai, 2002b; Kumagai et al., 2005; Nakano et al., 2003) . These cracks span from sub-

horizontal to sub-vertical mechanism interpretation. A different interpretation was proposed 

by Davi et al., (2010) on Arenal volcano (Costa Rica) where their analysis of LP signals led to 

an isotropic source mechanism. Although  the inversion process itself is well estabilished 

many questions on uncertainities arise due to the lack of knowledge of the properties of 



Chapter 4  Velocity Structures on Mt. Etna Volcano 

84 

 

materials traversed by seismic waves (Bean et al., 2008; Jousset et al., 2004). The long 

wavelengths of LP events are mostly insensitive to small variations of the volcanic structure. 

Thus a homogeneous or two-layers models might be sufficient to recover the LP source 

process. However recent works show that the assumption for a homogenous model may be 

incorrect (Bean et al., 2008; Cesca et al., 2008; Kumagai et al., 2005; Neuberg et al., 2000). 

The strong lithological heterogeneity, such as fracturing of near-surface rocks and vertical 

variations in lithology (dykes), observable on volcanoes lead to an important impedance 

contrast which could strongly influence the wave propagation. Although many inversions 

were conducted in a homogeneous half-space (Kumagai, 2002b; Legrand et al., 2000), the 

complex stratigraphy of volcanoes has a strong impact on the seismic wavefield (Bean et al., 

2008; Neuberg et al., 2000). Topography is taken into account with a homogeneous medium 

(De Barros et al., 2011; Jousset et al., 2004; Lokmer et al., 2007; Ohminato and Chouet, 

1997), two-layers medium (Bean et al., 2008) or a heterogeneous medium (Davi et al., 2010; 

Eyre et al., 2015; Jousset et al., 2013). Including realistic structures in the calculation model is 

crucial to correctly obtain the source mechanism, but little is mentioned about the 

quantification of the introduced error in the case where the model is completely or partially 

incorrect. At present, detailed velocity structures of volcanoes are still rarely available (Davi 

et al., 2010). Here we develop the work of Bean et al., (2008) on the influence of the velocity 

structures on moment tensor inversion. We will analyze the effect of different geological 

models with increasing complexities regarding their influence on successful source 

inversions.  

We focus our attention on one of the most studied volcanos in the world, Mt. Etna, located in 

eastern Sicily island (Italy), the largest active volcano in Europe. More than 600.000 people 

live nearby this active volcano (Chiarabba et al., 2000). It covers an area of about 1,250 km
2
 

and reaches a maximum elevation of ~3.330 m.
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eruptive activity from its summit craters and frequent lava flow eruptions from fissures 

opened on the flanks (Patanè et al., 2011). Due to the high volcanic activity many seismic 

signals are now recorded continuously (Saccorotti et al., 2007). Since 2003 the permanent 

network of broadband stations has been installed by the INGV (Istituto Nazionale di Geofisica 

e di Vulcanologia) and LP events have been addressed in a number of strudies (Cannata et al., 

2009a, 2013; De Barros et al., 2009, 2011; Lokmer et al., 2007, 2008; Saccorotti et al., 2007). 

They appeared in periods of quiescence or during unrest episodes (Lokmer et al., 2007; 

Saccorotti et al., 2007). They are often difficult to be distinguished from the sustained 

volcanic tremor accompanying eruptions (Lokmer et al., 2008), but they may not be directly 

related to the eruption processes (De Barros et al., 2011; Saccorotti et al., 2007). The 

mechanism of the LP events suggested resonating phenomena at a relative shallow depth 

(~300-1200 m. below the summit) (De Barros et al., 2011; Lokmer et al., 2008). Recently, 

Bean et al., (2014) proposed a new model for explaining the shallow LP seismicity recorded 

in occasion of the 2008-2009 eruption of Mt. Etna (De Barros et al., 2009, 2011). They 

recognized that, while summit stations recorded pulse-like low-frequency signals, the same 

records on further stations appeared as classical resonating LP signals. They attributed the 

apparent resonance of these low-frequency seismic events caused by propagation effects and 

not being source related. Their model hypothesizes that those LP events are consequence of 

failure in materials close to the brittle-ductile transition. The brittle-ductile transition in 

shallow volcanic material is not supposed to be related to high temperature and pressure, but 

to the low friction angles of the unconsolidated shallow volcanic deposits. Similar conclusions 

have been drawn by Eyre et al., (2015) for Turrialba volcano, Costa Rica.   

In this study we carry out a synthetic inversion verification test. We build four different 

structure models with increasing geological complexity. We suppose that the fourth most 

complex model corresponds to reality (state of reality) and that the three other models 
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correspond to the best knowledge we have of the geological properties of the volcano (state of 

k  w        H      w                                                                      

data in the fourth most complex model for a tensile crack source mechanism. Thus, we will 

perform moment tensor inversion for the three models with and without constraining the 

components and varying the number of receivers. For this synthetic scenario, we will discuss 

how well the inversion procedure can reproduce the original location, mechanism and source 

time functions using the different structure models and stations configuration.The use of 

synthetic scenarios allows us to investigate if adding complexities in the model for Green 

functions computation can improve our ability to retrieve the correct source mechanism. We 

then extend the work of De Barros et al., (2011) analyzing a real event by mean of the three 

geological models investigated in this work. 

 

4.2 Models and Method 

 

4.2.1 Velocity Models 

 

Geological mappings of Mt. Etna volcano have been performed since more than a century. 

Surface units have been mapped since De Beaumont, (1836) and the first geological maps of 

Etna volcano were published in the 19
th 

century (Waltershausen, 1844, 1880). In the last 

decades, official geological maps were updated twice (Branca et al., 2011a; Romano et al., 

1979) and many geological surveys have been carried out to map deposits along the steeps of 

Valle del Bove (Calvari et al., 1994; Coltelli, 1994) and integrate in the Italian geological map 

of the surroundings (Branca et al., 2009, 2011a; Pasquare et al., 1992). On the other hand, 

many geophysical seismic surveys have been also carried out (Cardaci et al., 1993; Cauchie 

and Saccorotti, 2013; Chiarabba et al., 2000; Cristiano et al., 2010; Hirn et al., 1991; Laigle et 

al., 2000; Luca et al., 1997; Patane et al., 2002; Villaseñor et al., 1998) analyzing the velocity 



Chapter 4  Velocity Structures on Mt. Etna Volcano 

87 

 

structure properties of the edifice. Following this studies we prepare four different models of 

the velocity structure by increasing its complexity on the depth variation. All the models 

constructed with help of a meshing tool (CUBIT-13.2 from Sandia Laboratories) include 

topography from the Digital Elevation Model (DEM) of Mt. Etna with a 50 m spacing.  

Horizontally we prepare a model extending 19.6 km in the EW and 16 km in the NS direction, 

with a max height of about 3.300m (Fig. 1), large enough to minimize reflections from the 

model boundaries. 

We use 4 different models shown in Fig. 2. Model (S1) is homogeneous with P-wave velocity 

of 2000 m/s and Vp/Vs ratio of 1.73 (the value of 2000 m/s is taken from De Barros et al., 

2009) The second model (S2) takes into account a low-velocity surface layer of 300 m 

thickness inferred from Bean et al. (2008). The third (S3) and the fourth (S4) models are more 

complex. In these two models we adopt the gradient model of Mt. Etna according to the 

geological map of Branca, (2011).  The strong stratigraphic-gradient of the volcano is 

represented by different piled layers, thus are characterized by topography shape and become 

flatter with depth (towards a proportional smoothing function) until the sea level. We define 

the velocities at depth according to Patanè, (2002), Branca, (2009), Chiarabba, (2000) and 

Cristiano, (2010). Model S3 has a homogeneous surface layer of 300 m (Fig. 2). Model S4 

(Fig. 2) has a strong gradient structure in the shallow depths down to 360 m as inferred from 

Cauchie and Saccorotti, (2013). P-wave velocities (Vp) are derived from S-wave velocities 

(Vs) as,                                                  0  5  T                          

computed following the formula proposed by Potter, (1998) in function of Vp. We use models 

S1, S2 and S3                                                w           S4 is used to 

compute the synthetic data.  

In order to investigate if the four velocity models differ enough among each other at typical 

frequencies for LP events (0.2 – 2 Hz), we compare their elastodynamic response to a plane 
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wave (SH). We take advantage of a Thomson-Haskell (Haskell, 1953; Thomson, 1950) 

propagator matrix to compute the complete response of a layered structure to an impulsive 

source. We build four models consisting of the layers with the geological properties and 

thickness corresponding to the velocity models described above. Fig. 3a shows the filtered 

(0.2 – 2 Hz) velocity traces at the surface for an impulse source placed at 3 km depth. The 

shape of the impulsive source is almost unchanged for models S1 and S3 while models S2 and 

S4 are more subjected to reflections/transmission effects due to the higher velocity contrast of 

the shallow layers. Model S3 shows arrival times comparable to the reference model S4, while 

models S1 and especially model S2 arrivals are considerably delayed (~1-1.5 s). The 

amplitudes are higher for model S4 decreasing towards models S1. The frequency content of 

the recorded velocity traces (Fig 3b) shows a single peak for model S4 (f ~1.2 Hz) while the 

other models show different peaks with the main energy focused at lower frequencies. This 

simple comparison is obviously not representative of the complex Mt. Etna geological 

context. Including topography and not equally spaced layers strongly influences the recorded 

waveforms. For our purposes of the blind test, the Thomson-Haskell propagator implies that 

models S1, S2 and S3 may not represent perfectly model S4.   

 

4.2.2 Methodology 

 

In an elastic medium, the n-th component of the displacement (un) at a point x at a time t is 

given by the  convolution between the source-time function of the moment tensor/single force 

                                                  F   (Aki and Richards, 2002): 

 

                                                              

Eq (1) 
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where Mpq is the pq-component of the seismic moment, Fp is the single force acting in the p 

direction and Gnp                                                           nth-component 

displacement due to a unit single force Fp and Gnp,q means the spatial derivative with respect 

to the q-component at the source position. The asterisks indicate an operation of convolution 

and the Einstein summation convention is applied. To calculate GFs in the elastic medium 

with irregular surface topography, we use a 3D-full wavefield numerical simulation taking 

advantage of a spectral element code EFISPEC3D (De Martin, 2010, 2011). We put potential 

source positions within a volume of 1.000 x 1.000 x 800 m
3
 located below the main crater of 

Etna volcano between 2.2 km a.s.l. and 3 km a.s.l. (Fig. 1). Among the 28 receivers used in 

this study, 13 receiver locations correspond to the stations of the permanent network operated 

by INGV (Istituto Nazionale di Geofisica e Vulcanologia), 12 are from temporary surveys 

(De Barros et al., 2009; Lokmer et al., 2007; Saccorotti et al., 2004) and 3 receivers are added 

to guarantee the azimuthal coverage for our synthetic test (Fig. 1). In order to treat a large 

number of source locations we take advantage of the reciprocity (Aki and Richards, 2002) to 

calculate GFs. 

 We carry out the inversion in frequency domain for eq. (1), which is schematically 

written as a vector equation: 

     

Eq (2) 

 

where u is the data matrix, G                                    m is the moment tensor and 

single forces components that we aim to obtain. We perform the inversion for the model 

parameters m without applying any a priori constraints to the solution (hereafter called 

“                       ”   We define the misfit (R) function as: 
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Eq (3) 

 

where superscript T denotes a transposed matrix. The least-squares solution of eq. (2) is given 

by  (e.g., Menke, 1989): 

 

                

Eq (4) 

 

This inverse problem (eq. 2) can be solved either for six independent moment tensor 

components (MT) (assuming no single forces), or six moment tensor plus three single forces 

(MT+F). The inversion is carried out for each position of the source (14196 positions at 40 m 

spacing). Comparing the value of the misfit R from each inversion we can estimate the best 

fitting source position.  For analyzing the estimated solution in terms of their mechanism, we 

use the principal component analysis (PCA) through a singular value decomposition (SVD) 

(Vasco, 1989). This technique assumes the existence of a unique source time function (STF) 

for all the six components of the moment tensor (see Vasco, 1989 for further details). We then 

decompose the moment tensor solution into isotropic (MISO) and deviatoric (MCLVD + MDC) 

parts after Vavrycuk, (2001). 

 Additionally, we also perform a constrained inversion following the approach by 

Lokmer et al., (2007), assuming either a tensile crack or isotropic source mechanism. Eq. (2) 

is rewritten as  
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Eq. (5) 

 

where f is a function of strike   and dip  , independent of frequency. Our inversion reduces 

to finding a single parameter M0(ω). We perform the grid search spanning from 0° to 360° for 

strike ( ) and from 0° to 90° for dip (  , every 10° for the tensile crack mechanism. For an 

isotropic source one inversion is enough as the function f has a unique expression. 

 

4.2.3 Synthetics data 

 

 Previous inversions of LP signals on Etna volcano (De Barros et al., 2011; Lokmer et 

al., 2007) suggest quasi-vertical crack orientations. Hence we simulate, as the synthetic source 

mechanism, a point source of a vertical tensile crack (ϕ=45°, θ=90°) at two different depths 

located below the summit craters: at 2.880 m.a.s.l. (shallow source, ~400 m depth) and at 

2.240 m.a.s.l (deep source, ~1.2 km depth). We use a Ricker wavelet as source time function 

with the main energy in the frequency range 0.2 – 1.2 Hz (typical for LP events, (Chouet, 

2003a) and an amplitude of 4 x 10
10

 Nm. As already mentioned, Model S4 was used to 

calculate the data. Time step was Δt = 1 x 10
-4

 s, for a duration ttot = 20 s. A single simulation 

of 2.3 x10
6
 hexahedron elements takes about 18 hours on 192 cores on our local server  

(AMD Abu Dhabi at 1.6 GHz). 

 

4.3 Results 

 

We first carry out the unconstrained inversion in order to investigate the reliability of the 

solution and the uncertainty between the different velocity models.  
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In the following, we will discuss the source location, the source mechanism and the source 

time function obtained from MT/MT+F inversions with models S1, S2 and S3. The 12 stations 

located nearby the summit, offering a proper azimuthal coverage, are used (Fig. 4 and Fig. 5). 

We choose to include only 12 stations located in the near-intermediate field as synthetic 

results (not showed here) including further stations show comparable solutions. 

 

4.3.1 Source location 

   

First, for the two given source depths (~400 m and ~1.2 km depth), we explore how well the 

inversion procedure can retrieve the original position in different structure models. We 

evaluate the misfit from the moment tensor plus single force (MT+F) inversions.  The 

comparisons of the waveforms for the shallow and deep source, respectively, are shown in 

Fig. 4 and Fig. 5 for the best hypocenter position in each model. The overall shape of the 

original signals is well reproduced by all three models and we do not recognize any 

significant difference between the solutions. The stations nearby the source location 

reproduce the original source time function (STF) shape better as the amplitude and phase are 

less subjected to attenuation, scattering and reflection phenomena. This is the case for stations 

et08, et06 and et09, while differences on the waveforms are stronger for farther stations (e.g. 

cl01 and et99). We find that model S3 tends to introduce additional phases in the coda (e.g. 

stations cl02 and et99 for the shallow source and stations cl01 and cl02 for the deep source).  

 Figure 6 shows the misfit R for the MT inversion at all possible source locations for 

each velocity model and the misfits are summarized in Tables 1 and 2. For shallow source, the 

minimal misfit found in model S2 coincides with the original source position. For models S1 

and S3 the obtained source locations are shallower than the original one, at the upper limit of 

our parameter search. For the deep source we get good (~200 m distance from the original 
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position) horizontal and vertical resolution for both S1 and S2 models. For model S2 the 

location is slightly better constrained, the lowest misfit value sharply converges to a single 

position. For model S1 we can observe a large spreading of the lowest values, even if the 

lowest misfit still points to the right source position. Model S3 points to a quite distant (~400 

m from the original position) source location and the value of misfit (Table 1) is considerably 

higher than the two other models.  

 

4.3.2 Source mechanism 

 

For the best source position obtained above, the estimated source orientations and 

isotropic/deviatoric decomposition for each model are listed in Table 1(shallow source) and 

Table 2 (deep source). 

 

   4.3.2.1 Shallow source 

  

The crack strike (ϕ) is well retrieved for both inversions (MT+F and MT only) while the crack 

dip (θ) is close to a solution of a horizontal crack rather than a vertical one for the solution 

including single forces. The minimum misfit R is found for model S1. In terms of 

isotropic/deviatoric decomposition, the MT+F inversion points to the right ratio, letting the 

predominant component in CISO, CDC tend to zero and CCLVD show values close to the given 

one for all three models. The MT inversion without single forces points to a very low CCLVD 

value and a high CDC. In this case the mechanism would be interpreted differently with a 

strong double-couple component and a mixed ISO/DC solution.  

 

4.3.2.2 Deep source  
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Table 2 shows the results for the deep vertical crack. Again the lowest misfit values are found 

for the S1 model (both MT+F and MT solutions). Model S3 shows a very high misfit value. 

The crack strike (ϕ) and dip (θ) angles are very similar to those expected for all three models, 

best solutions are obtained for model S1 (MT+F) and S2 (MT+F) leading to the expected 

values for both strike (ϕ) and dip (θ). In terms of mechanism, the decomposition for models 

S1 and S2 give a low CDC component and the crack solution is well retrieved, while model S3 

tends to overestimate the CDC component (16% for the MT+F solution).  The same 

observations are brought for the MT inversion except that we find higher misfit values and 

higher CDC component contributions.  

In summary, we find that model S1 gives the lowest misfit value for both MT+F and MT 

inversions at both depths. The crack orientation is better retrieved by model S2 such as the 

isotropic/deviatoric decomposition. The MT+F inversion gives always the best result.   

 

4.3.3 Source time function 

 

Figs. 7 and 8 show the comparison between the original source time function and the retrieved 

one for MT+F and MT inversions respectively.  

 

4.3.3.1 MT+F  

 

In the MT+F inversion the force terms show high amplitudes especially for model S1 (Fig. 7). 

This is consistent with De Barros et al., (2013) who showed that spurious single forces were 

generated to accommodate converted waves at layered interfaces. A force with an amplitude 

of 10
8
 N s is comparable to a seismic moment of 10

11
 Nm (Aki and Richards, 2002; De Barros 

et al., 2013), i.e. leading to waves of the same order of amplitude. For the shallow source 

inversions, the misfit values between the original and the retrieved source time functions 
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(considering only the MT terms) are very high for the three models. Model S1 shows the 

highest value (misfit = 28.972). Model S2 shows the best match with the original solution. 

The original STF is generally well reproduced (especially models S2 and S3), but the Mzz 

component suffers of high amplitude overestimation thus leading to the high computed misfit 

values. For the deep source, amplitudes of the seismic moment are always underestimated. 

The misfit values are considerably lower than for the shallow source with model S1 showing 

better correspondence with the original source time function. Anyway, the overall shape of 

the retrieved STF is similar and well reproduced for all different models. 

 

4.3.3.2 MT only  

 

The MT inversion (Fig. 8) shows similar results, but the misfit values are considerably lower 

than the solution including forces. Again, the Mzz component of the shallow source does not 

match the original solution especially for the simplest model S1. This is probably due to the 

quasi-horizontal layering in which the wave conversions occur and that is barely taken in 

account by the homogeneous model S1. Models S2 and S3 show comparable misfit values 

(~0.85) and the amplitudes of the moment tensor components are comparable to the original 

STF even if Mxx is underestimated. For the deep source the misfit values are lower, as seen for 

the MT+F solution. Best matching between the original and the retrieved solution is obtained 

by model S1 (misfit = 0.545). The overall amplitude of the STF is in general underestimated; 

this is particularly evident for the radial component Mxx that, as for the shallow source 

solution, shows the larger underestimation. 

 

4.3.4 Constrained Inversion 
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 Finally we perform the constrained inversions. The results under the different 

mechanisms of hypothesis (tensile crack or isotropic source) led to the lowest misfit value for 

a crack solution (Table 3). Misfit results for the crack mechanism are shown in Figs. 9 and 10. 

All models show a good solution with the lowest misfit indicating the correct angles (strike 

(ϕ) and dip (θ)) for both the shallow and the deep source in the given parameter ranges. Figs. 

11 and 13 show the comparison between the original and the retrieved STF for all three 

models and depths from the inversions with and without single forces, respectively. The 

retrieved amplitude in models S1 is overestimated in all the inversions. The amplitude is twice 

than expected for the shallow source. STF shape is well retrieved in both models S2 and S3 

for the solutions with and without singles forces. For the deep source a phase shift between 

the original and retrieved STF occurs due to the different velocity model. Generally both 

models S2 and S3 offer a good solution in both angle pairs and STF, while model S1 tends to 

overestimate the STF amplitude. 

In summary, the synthetic test shows that the deep source mechanism is correctly retrieved by 

both the MT+F and MT only solutions. The shallow source, on the opposite, suffers from high 

errors in the retrieved STF which strongly influence the mechanism decomposition. The 

MT+F solutions and the MT only solution for model S1 would be interpreted as a shallowly 

deeping tensile crack. The MT only solution for models S2 and S3 point to a quasi-vertical 

crack as expected, but the appearance of the non-existing double-couple components 

complicates the mechanism interpretation. We now extend the synthetic test by applying the 

same MT inversion configuration to a real event. 

 

4.4 Real Case: an LP event in 2008  

 



Chapter 4  Velocity Structures on Mt. Etna Volcano 

97 

 

Despite our synthetic test has been designed to reproduce reality, in the real world MT 

inversion is subject to uncertainties which strongly influence our ability in retrieving the 

correct solution. Here we want to show the influence of the choice of a particular velocity 

model on the inversion process, thus we end up performing an inversion of an LP event 

recorded on Etna in 2008 during a high resolution seismic survey (De Barros et al., 2009, 

2011). The considered event was recorded on June 19, 2008 and belongs to the second family 

of events identified in De Barros et al. (2009). The source mechanism was analyzed (De 

Barros et al., 2009, 2011): a) by locating the event with a time delay technique based on cross 

correlation and b) by identifying the source mechanism performing  a MT inversion using a 

homogeneous model (same velocities as our model S1). The mechanism was retrieved as a 

sub-vertical crack oriented ϕ=N340° E and inclined θ=50° (see De Barros et al., (2011) for 

further details). While De Barros et al., (2011) used 16 stations in their inversion, we choose 

12 stations with a good azimuthal distribution around the source (Fig. 13) in order to 

reproduce a context similar to the one chosen for our synthetic test. Fig. 13 shows the 

comparison between the original filtered data and our synthetics resulting from the MT 

inversion for the three models separately. Stations etsm and et08 show the highest amplitude 

signal and thus contribute more to the final solution. The waveforms comparison for these two 

stations shows a good correspondence between the observed and the retrieved signals for all 

three models. Farther stations do not reproduce the increased complexity in the original 

signal, for example at stations emfs and emcn.  For the MT+F inversion, the location solution 

(Fig. 14) for model S2 shows the lowest misfit value and is also closest to the location 

determined by De Barros et al. (2011); our location is shifted horizontally by about 450 m and 

vertically by 200 m. Models S1 and S3 suggest deeper locations with higher horizontal 

             ≈ 650     W              C                                               

Similar to De Barros et al., (2011), we obtain a high MISO component in both MT+F and MT 
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inversions (Table 4). Model S2 for the MT+F solution shows the lowest MISO value (79 %) 

and a relatively high MDEV (21%) component. Like De Barros et al., (2011), we perform a 

Vasco, (1989) decomposition on the MDEV part of our MT inversion solution. For model S2 

the results show a strike of ϕ=90° and a dip of θ=21°, i.e. a sub-horizontal crack instead of the 

sub-vertical one obtained by De Barros et al., (2011). The solution from models S1 and S3 

also varies, in particular in terms of strike. The dip of θ=67° from model S3 is comparable to 

the one found by De Barros et al., (2011). Fig. 15 shows the retrieved STF for the three 

models after the MT inversion. Here model S1 shows higher amplitude than the two other 

models. As MT and MT+F solutions are often used to estimate the volume of fluids or gas 

mobilized at the source (Davi et al., 2010; Hidayat et al., 2002; Jousset et al., 2013; Ohminato 

et al., 1998), the significant difference among velocity models causes high uncertainties. This 

amplitude difference is still present when we consider the existence of single forces but it is 

less remarkable. The overall shapes of the retrieved STFs for the three models are quite 

similar and model S2 shows the simplest solution. For all the three models, the diagonal of the 

moment tensor is largely dominant while non-diagonal elements show clear lower amplitude. 

Non-diagonal elements in the solution without single forces tend to be overestimated 

compared to the solution including forces. The high CISO component suggests a possible 

isotropic source mechanism and so does the constrained inversion which shows slightly lower 

misfit values for the explosion solution (Table 5). In terms of the orientation of the crack 

solution, the parameter search does not indicate a clear orientation (Fig. 16). The solution 

including forces shows a narrow range of misfit values spanning from 0.44 to 0.5 for models 

S1 and S2, and from 0.5 to 0.6 for model S3. The minimum misfit solution found for model S2 

shows a strike orientation similar to the one found by De Barros et al., (2011), but the 

inclination of the fault once again results in a sub-horizontal instead of a sub-vertical crack. 

The solution without single forces results more stable, and all three models point to the same 
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solution (ϕ= ≈ 300°     θ= ≈ 50°                                        ≈ 0 8                 

values for the constrained inversion fall in a very narrow range, the solution is subject to 

difficult interpretations, i.e. the isotropic source solution could be preferable.   

 

4.5 Discussion 

 

We performed a synthetic test to investigate the sensitivity of inversion results to the choice of 

the structural model. Defining a single model which works the best is difficult. Model S1 is 

simple and shows low misfit values, but the retrieved STFs strongly deviate from the original 

ones especially for the shallow source. On the opposite hand, the complex model (S3), which 

should better represent the complexity of model S4, does not give the better expected results. 

This could be because: 1) an intrinsic approximation is done in the velocity model 

implementation (i.e. velocities are not the same) or 2) the low velocity surface-layer of model 

S3 does not take in account for a strong velocity contrast for the unconsolidated surface 

materials. Despite the small differences in the solutions, model S2 seems to offer the best 

result in our synthetic test. It is worth nothing that the lowest misfit values obtained for the 

shallow source with model S1 do correspond to the highest misfit values computed between 

the observed and retrieved STF. Finally we analyzed a real event recorded on Mt Etna during 

a high resolution seismic campaign in 2008. Our results show that, in this particular case, the 

model with the lowest misfit value is the surface layer model S2. The solution obtained with 

model S2 is also the one which approaches more closely to the solution found by De Barros et 

al., (2011). Even at the considered long wavelengths, it seems that a major role is played by 

the low-consolidated materials present near the surface. The real LP event analysis highlights 

the influence of the choice for a particular velocity model on the retrieved solution. In the 

synthetic test the results are similar and an approximately good solution can always be 
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retrieved for each considered velocity model. On the opposite hand, the inversion performed 

for the real LP event is clearly influenced by the choice of the geological model, i.e. the 

                                                                                         w     

nothing that our results are delimited in a narrow frequency band (0.2 – 1.2 Hz) and for these 

frequencies the velocity model definition appears to play a major role in our source 

mechanism understanding. As stated by Thun, (2015) once we filter the analyzed signal we 

loose informations about the complete history of the source motion. Thus, further analysis 

including different and wider frequency ranges should be performed, i.e. find a lower limit 

frequency (if it exists) for wich the inversion process is not influenced by the velocity model. 

After our synthetic tests we can state that: 

 

1. recognized the presence of unconsolidated surface materials, a low velocity surface-

layer should be included when performing MT inversion for LP signals; on the other 

hand, careful attention should be paid in including deeper geological features which 

may not be realistic or just representative of a small volume of the volcanic edifice; 

 

2. The solutions for the shallow source are strongly influenced by the lateral 

heterogeneities of model S4 and the mechanism interpretation is misleading. Model S4 

is supposed to represent the strong velocity contrast occurring in the shallow 

unconsolidated materials typically observed on volcanoes, thus, even with good 

stations covering, shallow sources should be carefully interpreted.  

 

3. Lowest misfit values are not synonym of best solution. The lowest residual obtained 

for the shallow source towards MT+F for model S1 gives the highest misfit between 

original and retrieved STF i.e. the real STF amplitudes are strongly overestimated.  
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4. Moderately high, inexistent double-couple components arise in all models 

interpretations and are particularly important in the MT only solutions. This must be 

considered when trying to interpret real events showing non-negligible shear 

components. 

 

4.6 Conclusion 

 

We investigated the influence of the choice of a particular velocity model on the moment 

tensor (MT) inversion. Four models, including topography of Mt. Etna volcano and increased 

geological complexity, have been used in our synthetic test. The low velocity surface-layer 

model (S2) delivered better results in terms of location and mechanism understanding. Source 

locations towards MT inversion led to roughly precise positions suggesting that, when 

possible, other location methods (such as amplitude decay, cross-correlation coefficient and 

semblance e.g. Cannata et al., (2013) and references therein) should be used in locating real 

LP events. Once the event located and the unconstrained MT inversion performed we suggest 

performing a constrained MT inversion in order to find out the most plausible source 

mechanism and angles orientation. Solutions obtained for a homogenous model (S1) tend to 

overestimate the real amplitude of the source time function, hence estimations of gas/fluids 

volumes involved in the LP generation should be carefully interpreted. The retrieved solution 

                                                      w                                    

should be paid in considering the geological context where the process occurs and, if 

necessary, a deep analysis of many similar events and a better understanding of the 

contemporary state of activity of the volcano could help in constraining further the solution. 

Synthetic tests with different velocity configuration are strongly recommended before starting 
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a moment tensor inversion. The test presented in this paper can help constraining the solution 

and interpreting the results. 

We performed a synthetic test on Mt. Etna volcano, thus our results are specifically referred to 

a particular volcanic context and the conclusions presented in this work should carefully 

tested on other volcanoes. We demonstrated that adding unrealistic geological complexities in 

the velocity model can lead to misinterpretation of the source process, but our test highlights 

also the importance of including realistic geological features in moment tensor inversion. 

Further works on the understanding of the material properties of volcanoes and their response 

to waves with wider frequency content would strongly improve our understanding of the 

physical mechanism beyond LP events generation. 

 

 

 

 

 

 

 

 

 

Acknowledgments 

The research leading to these results has received funding from the People Programme (Marie 

C                                              F    w  k            F  7 007-2013) 

under the project NEMOH, REA grant agreement 289976. We are grateful to+ L. De Barros 

for providing Etna data and thanks to F. Boulahya (BRGM) for support with numerical 

simulations.   



Chapter 4  Velocity Structures on Mt. Etna Volcano 

103 

 

Figures 

1) Map of Mount Etna and receivers locations used in this study, the straight hash line 

indicates the source area for which the Green functions are calculated. 

 

2) Vs velocity profiles of the four considered models. S1, S2 and S3 are the models used for 

the inversion while S4 is the model used to prepare the synthetics. 

 

3) Average Vs velocities for the four considered models for different depths. Most complex 

model S4 shows the highest average velocity variation along the profile. Average 

velocities are computed below summit of Etna volcano vertically from 0 to 1400 m 

depth. 

 

4) Waveform comparison between the synthetic (velocity model S4) and retrieved signals 

after the inversion using velocity models S1, S2, and S3 for the shallow source. Three 

components of displacement for each station (x, y, z) are represented. The central map 

represents the stations used in the inversion. Numbers nearby each stations name are 

related to the corresponding box where waveforms are compared. The true and the 

retrieved hypocenter positions are plotted in the center panel. 

 

5) Waveforms comparison between the synthetic (velocity model S4) and retrieved signals 

after the inversion using Green’s functions from velocity models S1, S2, and S3 for the 

deep source. See also the caption of Fig. 5. 

 

6) Source location for shallow (left) and deep (right) source obtained in the inversion of 

minimum R using different structure models. Axes represent the relative source location 

with a 40 m spacing. The real source position is represented by (0,0,0). From top to 

bottom velocity models S1, S2, and S3 used for the inversion. Lowest misfit value is 

represented by the synthetic slices intersection for each velocity model. 

 

7) Comparison between original (blue) and retrieved (red) source time functions for the 

MT+F (including forces) inversion for three velocity models and for both source depths. 

Six moment tensor components and three single forces are represented. 

 

8) Comparison between original (blue) and retrieved (red) source time functions for the MT 

inversion for three velocity models and for both source depths. Six moment tensor 

components are represented for each model 

 

9) Misfit in parameter search (strike φ, dip θ) under MT+F inversion supposing a tensile 

crack. The minimum retrieved misfit is represented by a [x] and the given value by [+].   

 

10) Misfit in parameter search (strike φ, dip θ) under MT inversion supposing a tensile crack. 

The minimum retrieved misfit is represented by a [x] and the given value by [+].   
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11) Comparison between original and best retrieved source time function in the constrained 

MT+F inversion for a tensile crack. (a) Shallow source, (b) Deep source. Three structure 

models are used.  

 

12) Comparison between original and best retrieved source time function in the constrained 

MT inversion for a tensile crack. (a) Shallow source, (b) Deep source. Three structure 

models are used.  

 

13) Waveforms comparison between the filtered (0.1 – 1.2 Hz) observed signals and the 

synthetics filtered. The used receiver position and the obtained hypocenter location from 

each inversion for the LP event recorded on Mt. Etna (2008) are shown. A star represents 

the solution obtained by De Barros et al. (2009). 

 

14) Misfit with respect to the source position for the LP event. The location through MT 

inversion is conducted in three different velocity models (S1, S2 and S3 respectively). The 

axes in meters represent the relative distance to the original source location determined 

by De Barros et al. (2011). Original solution (x, longitude, 49950 Km, y, latitude, 4178450 

Km, z, height, 3 Km) 

 

15) Comparison of source time functions for each MT and MT+F inversion in each of the 

three velocity models. 

 

16) Misfit plot of the crack orientation (strike φ and dip θ) supposing a tensile crack in 

constrained MT+F and MT inversion for each structure model. 
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Table 1 Summary of the results in MT+F and MT inversions for the shallow vertical crack, using different structure models 
(S1, S2 and S3), respectively. For the best misfit in each inversion, the fault mechanism (strike, dip) are calculated and the 
decompositions are performed. 

Inversion 
Structural 

model 
Misfit ϕ θ 

ISO 

(%) 

CLVD 

(%) 
DC(%) 

 S1 0.123 53.5 17.4 54 40 6 

MT+F S2 0.155 47.1 17.4 52 35 12 

 S3 0.219 48.5 19.1 55 39 6 

 S1 0.174 44.9 27.7 55 2 43 

MT S2 0.240 41.3 65.4 45 15 40 

 S3 0.291 42.0 60.7 45 6 48 

Given 

Parameters 
S4 - 45 90 55 45 0 

 
Table 2 Summary of the results in MT+F and MT inversions for the deep vertical crack. See also the caption of Table 1. 

Inversion 
Structural 

model 
Misfit ϕ θ 

ISO 

(%) 

CLVD 

(%) 
DC(%) 

 S1 0.250 45.4 91.7 47 48 6 

MT+F S2 0.269 46.4 90.9 48 46 6 

 S3 0.412 51.8 79.0 53 31 16 

 S1 0.341 43.3 88.0 57 26 17 

MT S2 0.344 45.1 87.9 58 26 16 

 S3 0.490 50.3 83.2 55 34 11 

Given 

Parameters 
S4 - 45 90 55 45 0 
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Table 3 Obtained minimum misfit values in constrained inversion (crack and explosion) and crack orientation (φ,θ). Note 
that the given crack mechanism is a tensile with φ=45° and θ=90°. Parameter searches are performed every 10°.  

 Oriented Crack 

 MT+F MT 

 Shallow 

Structural 

model 
Misfit ϕ θ Misfit ϕ θ 

S1 0.324 40 90 0.303 40 90 

S2 0.327 40 90 0.385 40 80 

S3 0.384 40 90 0.443 40 80 

 Depth 

S1 0.358 50 90 0.470 50 90 

S2 0.404 50 90 0.485 50 90 

S3 0.550 50 90 0.608 50 90 

 Explosion 

 Shallow 

S1 0.3852 - - 0.5655 - - 

S2 0.4275 - - 0.6297 - - 

S3 0.5162 - - 0.6692 - - 

 Depth 

S1 0.8395 - - 0.9422 - - 

S2 0.8388 - - 0.9333 - - 

S3 0.8654 - - 0.9517 - - 
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Table 4 Inversion results for a LP event recorded on Etna in different inversion settings. For comparison, the result of De 

Barros et al. (2011) is also shown at the bottom. 

Inversion 
Structural 

model 
Misfit ϕ θ ISO (%) 

CLVD 

(%) 
DC(%) 

 S1 0.386 85.8 82.4 92 2 6 

MT+F S2 0.349 90.0 21.4 79 14 7 

 S3 0.453 48.1 67.2 90 3 7 

 S1 0.637 78.9 12.7 82 1 17 

MT S2 0.703 - - - - - 

 S3 0.684 27.0 71.5 78 12 10 

De Barros 

(2011) 
 - 340 50 80 - - 
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Table 5 Constrained inversion results (misfit and mechanism) for a tensile crack  and an explosion for the 2008 LP event 
occurred on Etna. 

 Crack 

 MT+F MT 

Structural 

model 
Misfit ϕ θ Misfit ϕ θ 

S1 0.454 70 70 0.806 310 50 

S2 0.446 290 20 0.833 300 40 

S3 0.544 30 40 0.817 310 60 

 Explosion 

S1 0.443 - - 0.953 - - 

S2 0.425 - - 0.629 - - 

S3 0.545 - - 0.975 - - 
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Figures 
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In this Chapter I take advantage of the lessons learned through the synthetic tests of 

Chapter 4 and I analyze three sets of LP events recorded on Mt. Etna during different states 

of volcanic activity. First, I perform some synthetic tests in order to check the uncertainties 

in the MT solution due to the station network and the velocity model. I then perform full MT 

inversion for each set of events separately. At the end of each section I propose a source 

model able to explain the recorded LP events in each characteristic volcanic activity context.   
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5.1 INGV seismic network 
 

The recent history of Mt. Etna has been characterized by frequent unrest episodes 

(Allard et al., 2006; Behncke et al., 2014; Bonaccorso et al., 2011b; Cannata et al., 2015; 

Patanè et al., 2011) accompanied by diffuse degassing activity during rest periods (Patanè 

et al., 2011). I focus my attention on three periods of observations which are 

characteristics of different states of activity of the volcano. The data sets of seismic 

traces analyzed in this study have been recorded by the permanent network of seismic 

stations deployed by INGV (Instituto Nazionale di Vulcanologia, section of Catania). The 

network consists of 19 stations closest to the summit area. These stations are equipped 

with broadband (40s cutoff period), three component Trillium seismometer 

 

Figure 28 – Mt. Etna digital elevation model and seismic stations of the permanent network of the INGV used in this study. 
Colored crosses correspond to the horizontal source locations for the synthetic tests: red) synthetic data and Green’s 
functions computed in the same velocity model; blue) synthetic data and Green’s functions computed in two different 
velocity models; blue cross corresponds to the Bocca Nuova (BN) crater location. 
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 (NanometricsTM) acquiring in real time and at a sampling rate of 100 Hz (Cannata et al., 

2015). The calculation of the GFs computed in the previous section included 14 of the 19 

stations of the permanent INGV network. All the summit stations and those deployed on 

the flank of the volcano are used (Figure 28). The network, as designed, should guarantee 

enough azimuthal coverage around the summit and on the flanks of the volcano as 

suggested by De Barros et al., (2011) and Bean et al., (2008) to make the MT inversion 

stable and accurate. The only portion of the volcano without stations is the Valle del Bove 

that, due to the inaccessibility of its flank and the frequent lava flows, is uncovered. It is 

worth nothing that station ebel was destroyed during the paroxysmal episode of 28 

February 2013, thus its recording is unavailable for the third set of analyzed events. 

 

 5.2 Synthetic test of full MT inversion 
 

5.2.1 Green’s functions and synthetics data computed in the same velocity model 

 

Before analyzing the data through full moment tensor inversion, the method itself 

has to be tested to ensure that it is implemented correctly. Further, I need to check the 

ability of the network of stations in successfully constraining the source parameters. 

Hence, I perform moment tensor inversion for different possible source types and 

orientations computed synthetically. I choose to perform the tests for an explosion and 

two differently oriented cracks (one horizontal and one vertical) as these are the most 

plausible sources for LPs on Etna (Cannata et al., 2009a, 2015; De Barros et al., 2011; 

Lokmer et al., 2007). The simulations are performed for sources at two targeted depths: 

at the top of the GF volume (499.198 km east 4179.060 km north and 2880 m.a.s.l., UTM 

coordinates, Figure 28) and at the bottom (499.198 km east 4179.060 km north and 2240 

m.a.s.l., UTM coordinates). The source time function used for simulations is a Ricker 

wavelet with a central frequency of 0.8 Hz (Figure 29), as this is similar to the most 

energetic part of LPs recorded on Etna. The simulations are computed in the same 

velocity model as the one used to calculate Green’s functions. The chosen velocity model 

is the surface layer model (S2) described in the previous chapter and the choice for this 

model is abundantly discussed in chapter 4. As the same velocity model is used for 
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synthetic and GFs, the source waveform and mechanism should be perfectly 

reconstructed by the MT inversion. 

 It is worth nothing that at the time of computing the GFs the code EFISPEC3D (De 

Martin, 2011) had a slightly different implementation for the computation of the source 

and receiver positions. Thus some small differences of the order of ~10 m could arise 

between the receivers positions computed for GFs and forward simulations.   

 

Figure 29 – top) Ricker source time function used for the computation of the observed data for the MT inversion synthetic 
test on Mt. Etna volcano; bottom) power spectral density showing the low frequency content of the source time function. 

 

5.2.1.1 Explosion source 

 

I begin by testing the explosion which is simulated as an isotropic source using Mxx = 

Myy = Mzz = 1 and Mxy = Mxz = Myz = 0. Results of the inversion are plotted in Figure 30. The 

Ricker wavelets are well reconstructed and the 1 : 1 : 1 : 0 : 0 : 0 ratio is correct for both 

moment + Single forces (M+F) and moments only (MT-only) inversions (λn values in Table 

5). Figure 31 shows the fit between the synthetic data and the obtained moment tensor 

convolved with the Green’s function, i.e. the reconstructed data. The fit appears almost 

perfect except for some slightly differences in the coda of some farther stations (e.g. 

eczm and empl). Finally, I apply the Vasco, (1989) and the (Vavryčuk, 2001, 2015) 

decompositions as described in section 2.3. The eigenvalues ratio (λn values in Table 5) of 

1 : 1 : 1 well represents the original isotropic source with the orientation angles   and θ  
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Figure 30 – a) MT inversion solution including forces for a shallow isotropic source and 14 stations of the INGV permanent 
network. b) MT inversion solution excluding forces for the same synthetic case as (a).  



Chapter 5                                                               MT inversion of LP signals on Mt. Etna Volcano 

135 

 

 

Figure 31 – Comparison between the synthetic observed data and the retrieved solution for an explosive source embedded 
at a shallow depth. Blue lines correspond to the observed data and red lines to the retrieved solution.  
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Figure 32 – a) MT inversion solution including forces for a shallow horizontal crack and 14 stations of the INGV permanent 
network. b) MT inversion solution excluding forces for the same synthetic case as (a). 
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Figure 33 – Comparison between the synthetic observed data and the retrieved solution for a shallow horizontal crack. Blue 
lines correspond to the observed data and red lines to the retrieved solution. 
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Figure 34 – a) MT inversion solution including forces for a shallow vertical crack and 14 stations of the INGV permanent 
network. b) MT inversion solution excluding forces for the same synthetic case as (a). 
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Figure 35 – Comparison between the synthetic observed data and the retrieved solution for a shallow vertical crack. Blue 
lines correspond to the observed data and red lines to the retrieved solution. 
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Figure 36 – a) MT inversion solution including forces for a deep vertical crack and 14 stations of the INGV permanent 
network. b) MT inversion solution excluding forces for the same synthetic case as (a). 
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Figure 37 – Comparison between the synthetic observed data and the retrieved solution for a deep vertical crack. Blue lines 
correspond to the observed data and red lines to the retrieved solution. 
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Table 5 – Results of the synthetic inversions for shallow sources. Misfit values are computed between observed and 
retrieved data. Mechanism decomposition and principal component analysis have been performed following the in 
indications of Vasco, (1989) and (Vavryčuk, 2001, 2015), see section 2.3 for details.  

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Explosion 0.005 1.0 1.03 1.05 / / 0.98 0.01 0.01 

Crack Horizontal 0.008 1.0 1.03 3.47 285 4 0.53 0.46 0.01 

Crack Vertical 0.004 1.0 1.12 3.22 45 89 0.55 0.41 0.04 

          

Only M misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Explosion 0.006 1.0 1.02 1.03 / / 0.98 0.01 0.01 

Crack Horizontal 0.009 1.0 1.01 3.23 4 1 0.54 0.46 0 

Crack Vertical 0.004 1.0 1.07 3.22 45 90 0.55 0.43 0.02 

 

Table 6 – Results of the synthetic inversions for depth sources. See caption Table 5 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Explosion 0.003 1.0 1.0 1.0 / / 1.0 0.0 0.0 

Crack Horizontal 0.008 1.0 1.02 3.35 15 0 0.53 0.46 0.01 

Crack Vertical 0.003 1.0 1.01 3.28 45 90 0.54 0.46 0.0 

          

Only M misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Explosion 0.003 1.0 1.0 1.0 / / 1.0 0.0 0.0 

Crack Horizontal 0.009 1.0 1.01 3.26 356 1 0.54 0.46 0 

Crack Vertical 0.004 1.0 1.02 3.28 45 90 0.54 0.45 0.01 

 

 

insignificant in describing an explosive source. The principal component analysis for 

describing the percentage of isotropic/deviatoric contributions still points to the right 

solution with a 98% isotropic and only 2% deviatoric part (Table 5). The moment tensor 

inversion works correctly as the original solution is well reconstructed in both the source 

time function and the fit between the observed and retrieved data. It is worth nothing 
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that the moment tensor solution including forces shows some noise on the coda of the 

retrieved STFs especially for the vertical component (Mzz, Figure 30). 

Further, the Fz component, despite it is not realistic, show a small, but still important, 

amplitude which would not be expected for such a synthetic test. The small differences in 

the synthetics signals and in the mechanism decomposition could be generated by this 

spurious force. I continue testing the other synthetic source mechanisms to highlight the 

importance of this unwanted force. 

 

5.2.1.2 Horizontal tensile crack source 

 

The second test is performed for a horizontal tensile crack. A tensile crack produces a 

λ : λ : (λ + 2μ) ratio of moment tensor eigenvalues (Aki and Richards, 2002) which is 1 : 1 : 

3.23 for a Poisson’s ratio of 0.236 as in my synthetic case for sources deeper than ~300 m 

from the free surface. This crack source is oriented horizontally and is therefore simulated 

using Mxx = Myy = 1, Mzz = 3.23 and Mxy = Mxz = Myz = 0. The moment tensor solution is 

shown in Figure 32. As for the explosion source case the Ricker wavelet STF is well 

reproduced by both M+F and only M moment tensor inversions. Again, some noise 

appears especially on the Mzz component of the solution including forces. The misfit 

between observed and retrieved solution is very low (Table 5) and the waveforms of the 

observed data are almost perfectly reconstructed (Figure 33) in both MT+F and MT-only 

solutions. Decompositions of the moment tensors give the expected results (1 : 1 : 3.23) 

for the M only solution, while the result is slightly overestimated in the third component 

for the M+  solution (1 : 1 : 3.47). I’m only interested in the inclination of the crack normal 

which should correspond to θ = 0° for a horizontal crack. The eigenvectors orientation 

point to a very close value (θ = 1°) for the M only solution, while the inclination is slightly 

higher (θ = 4°) for the solution including forces. Using the principal components analysis 

(Vavryčuk, 2001) the source is described as 54% isotropic and 46% CLVD in both cases. 

Again, the mechanism is almost perfectly reconstructed in both M+F and MT-only 

solutions. The small differences arising from the spurious single force are still present. 

Hence, I end up analyzing a vertical crack and I will then discuss the origin of the 

unwanted force. 
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5.2.1.2 Vertical tensile crack source 

 

The last case I consider is a vertical oriented ( =45° and θ=90°) tensile crack. Using 

equation (31) the oriented crack is simulated as Mxx = Myy = 1.9, Mzz = 0.9, Mxy = 1 and Mxz = 

Myz = 0 for  ame’s parameters computed using velocities and density of the second layer 

of model S2. Recall that the source is situated at the interface between the surface low 

velocity layer and the half space at the bottom hence  ame’s parameters are computed 

for the second layer. As stated before a tensile crack is described by an eigenvalues ratio 

of 1 : 1 : 3.23 for a Poisson’s ratio of 0.236 (Aki and Richards, 2002). Thus this ratio can be 

computed after diagonalization of the moment tensor. The moment tensor solution for 

this case is shown in Figure 34. The given STF is well reconstructed with correct 

eigenvalue ratio, but again the vertical component is noisy with the presence of a weak, 

but unwanted force (Fz). Synthetic comparison (Figure 35) shows good matching (misfit 

0.004 for both simulations) and the orientation of the eigenvectors point to the right 

source mechanism for both solutions (Table 5). After principal component analysis the 

isotropic/CLVD/DC ratios are well reconstructed. In order to investigate the origin of this 

unwanted single forces component I perform the same inversion for a deeper source. For 

comparison, the results for the same vertical crack embedded at a higher depth are 

shown in Figure 36. In this case the moment tensor solution with and without single 

forces is more stable without unwanted features. Synthetic comparison and moment 

tensor decomposition show analog results to the shallower crack solution (Figure 37). 

Analyzing the results all together the vertical single force appears in all shallow 

sources simulations and induces some unwanted oscillations in the vertical component 

(Mzz) of the moment tensor.  Small oscillations can be seen also for the deep source, but 

the influence of single forces is less important. An explication can be found in the spatial 

position of the far receivers. Stations empl, eczm, emfo, ecbd, emnr and emsg  are all at 

the border of the numerical domain. Thus, even if the absorbing boundaries work 

efficiently, some unexpected reflections propagate from the boarder of the model. As 

the Green’s functions have been computed taking advantage of the reciprocity theorem, 

these reflections occur earlier than in the forward simulations. Hence, a small difference 
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arises between the Green’s functions and the model used for computing the synthetic 

forward simulations. This can clearly be seen as a Ricker wavelet appearing at the 

beginning of the reconstructed signals in all the test cases especially for emsg and emfo 

stations which are closest to the boarders.  

Consequently, the degree of freedom is higher in inversion including single forces, 

the forces tend to accommodate the error (De Barros et al., 2013) originating from this 

difference producing the unwanted oscillations. The oscillation is more evident for the 

shallow sources because the unwanted wave is principally a surface wave which induces 

higher differences in phase arrivals for the forward and reciprocity simulations.  

Anyway, the synthetic test shows that I’m able to catch the most important 

information from the signals and that the inversion method is reliable. I have to keep in 

mind that for shallow sources single forces will tend to compensate errors due to the 

Green’s functions (wrong velocity model compared to the reality) and for this unwanted 

reflection from the boundaries. Thus, careful attention should be paid in the 

interpretation of the real data. 

 

5.2.1 Green’s functions and synthetic data computed in different velocity models 

 

In order to test further the network capability in reproducing the source process, I 

perform here a synthetic test following the methodology applied in Chapter 4. In this test 

the synthetic data have been computed for the complex velocity model S4 (see Chapter 

4) while the Green’s functions used for the MT inversion have been computed in the low-

velocity surface layer model (S2 in Chapter 4). I perform moment tensor inversion for 

three source types: two tensile cracks (one horizontal and one vertical) and a double-

couple source which fault plane is horizontal. The choice for a double-couple source 

comes from the fact that Bean et al., (2013) recently proposed a source model for the LP 

events which implies slow rupture brittle-failure of unconsolidated shallow materials (see 

section 2.2.7).  

The simulations and the MT inversions are performed for the three source 

mechanisms located at 499.598 km east, 4178.22 km north and 2520 m.a.s.l. in UTM 

coordinates (Figure 28). The target location is roughly below the BN (Bocca Nuova) crater 
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where many LP events on Mt. Etna have been located (e.g. Cannata et al., 2009a, 2015). 

The Ricker source time function used for the synthetic signals computation is identical to 

the one described in the previous section.  I report the original values and all the results 

for the MT inversion and the MT decomposition in Table 7. 

 

Table 7 – Results of the synthetic inversions for the three targeted sources. For each solution I report the original values of 
each source model. The Misfit values are computed between observed and retrieved data. Mechanism decomposition and 
principal component analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 2015), 
see section 2.3 for details. 

Crack Hor 
Misfit  

DATA 

Misfit 

 STF 
λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Original / / 1.0 1.0 3.0 / 0 0.56 0.44 0.0 

M+F 0.444 1.375 1.0 1.17 1.79 4 5 0.74 0.16 0.1 

M only 0.629 1.172 1.0 2.0 2.26 70 102 0.77 0.15 0.08 

           

Crack Ver 
Misfit  

DATA 

Misfit  

STF 
λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Original / / 1.0 1.0 3.0 0 90 0.56 0.44 0.0 

M+F 0.276 0.846 1.0 1.47 2.58 14 4 0.65 0.17 0.18 

M only 0.361 0.773 1.0 1.23 2.21 2 85 0.67 0.22 0.11 

           

DC 
Misfit  

DATA 

Misfit  

STF 
λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

Original / / / / / / 90 0 0 1.0 

M+F 0.351 1.387 1.0 3.25 4.63 -45 98 0.17 0.08 0.75 

M only 0.365 0.889 1.0 53.8 56.0 43 90 0.02 0.0 0.98 

 

 

As highlighted in the previous chapter, for the three source mechanisms the best fit 

between the original and the retrieved data is obtained for the solutions including single 

forces. On the opposite, the best fit between the original and the retrieved source time 

functions (STF) is obtained for the MT-only solutions (Figure 38 and Table 7). The results 

of MT inversions can be so summarized: 
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a) Horizontal crack: The original source mechanism is well reproduced. The 

misfit values between the observed and the retrieved data are considerably 

lower for the solution including single forces which is also the solution which 

points to the right orientation angles after MT decomposition. The eigenvalue 

ratio is better resolved for the solution including forces. The percentages of 

isotropic/deviatoric components point to a tensile crack source as expected. 

Despite the solution including forces introduces a strong spurious vertical 

force, the original STF is well reproduced (Figure 38a). On the opposite, the 

STF waveforms of the MT-only solution are not able to reproduce the original 

STF (Figure 38a).  

 

b) Vertical crack: misfit values are considerably lower than the horizontal crack 

solution for both the data and the STF fits. The best misfit between the 

original and the retrieved data is obtained again for the solution including 

single forces, but the MT decomposition points to an erroneous crack 

orientation (horizontal instead of vertical). The eigenvalues ratio points to a 

crack mechanism, but the second eigenvalue is slightly higher (1.47) than 

expected. The PCA shows a high spurious double-couple component which 

complicates the interpretation of the source mechanism. The original shape of 

the STF is well reproduced, but Myy component is highly underestimated, 

leading to the wrong MT decomposition (Figure 38b). The strong vertical 

single force appearing in the solution accentuates this underestimation. The 

solution for MT-only, on the opposite, points to the right orientation angles. 

The double-couple component is still present, but less remarkable. The 

original STF shape is well reproduced. Myy component is again 

underestimated (Figure 38b), but not enough to affect the MT decomposition 

and the retrieved source orientation;  

 

c) Double-couple: the DC solution is well retrieved for both MT inversions 

including and without single forces. The MT decomposition for the moment  
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only solution perfectly reproduces the original source mechanism (CDC = 98%) 

and orientation angles (θ = 90°). The STF shows the appearance of some 

unwanted waveforms in the diagonal of the MT, but the Mxy component is 

predominant as expected. The amplitude of the non-diagonal component is 

slightly underestimated in respect to the original STF (Figure 38c). The 

solution including forces points to roughly the right orientation angle (θ = 98°) 

but the PCA introduces some unwanted isotropic and CCLVD components. The 

CDC is anyway predominant (CDC = 75%) so that a DC source mechanism is 

assessed. The analysis of the retrieved STF shows slightly higher amplitudes of 

the diagonal components if compared to the solutions for MT-only (Figure 

38c).  

 

In conclusion, the horizontal crack and the double-couple source mechanisms are 

well reproduced and the MT inversions are interpreted correctly. The vertical crack 

suffers from the low summit coverage and the solution including forces is misinterpreted 

as a horizontal crack. On the opposite, the MT-only solution points to the right source 

mechanism. In this case the lowest misfit value does not correspond to the right source 

mechanism. The analysis of the real LP events on Mt. Etna will be conducted carefully 

taking advantage of the lessons learned from the synthetic tests, in particular noticing 

the limitations due to the sparse network of stations.  
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Figure 38 - Comparison between original (blue) and retrieved (red) source time functions for the MT inversions including 
(M+F) and without (M only) single forces. Six moment tensor components (both solutions) and three single forces (only the 
M+F solution) are represented. MT solutions for: a) horizontal tensile crack source; b) vertical tensile crack source; c) double 
couple source. For each solution I report the misfit between original and retrieved STF. 
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5.3 Monochromatic LPs (June 2009)  
 

The first set of data considered occurred during the 2008-2009 flank eruption. After 

the 2006 flank eruption, Mt. Etna was mainly in a recharging phase (Bonaccorso et al., 

2011b). During this recharging period the eruptive activity of Etna was characterized by 

several short duration lava fountains and explosive activity occurred at a pit crater 

 

Figure 39 – Schematic map of the lava field uploaded at 22th May 2009. Blue line represents the eruptive fissure, the red lines 
are the active lava flows and the yellow surface represents the extension of the lava field since the beginning of the 
eruption in May 2008 (INGV internal reports) 

 

formed on the eastern flank of South East Crater (SEC, Aiuppa et al., 2010; Andronico et 

al., 2008; Cannata et al., 2011; INGV internal reports; Neri et al., 2008). On the 13th May 

2008, the episodic activity of SEC culminated in a proper effusive eruption preceded by 

seismic swarms (Cannata et al.,  2009b) and pronounced ground deformation  

(Bonaccorso et al., 2011b). The eruption of the 13th of May marked the beginning of this 

new eruptive phase. Episodes of increasing and decreasing of the eruptive activity were 

recorded until July 2009 when this eruptive phase ended. The first period of the eruption 

was characterized by strombolian activity at the upper vents, while the effusive episodes 
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were mainly located on the lower flank of the SEC (Cannata et al., 2011). Overtime, the 

lava output produced a lava flow field which spread into the valle del Bove (Figure 39). 

The events analyzed in this work have been recorded in the last period of activity during 

the 5th and 6th of June 2009. During the month preceding the recordings the volcano 

showed intense degassing from the North East Crater (NEC), Bocca Nuova (BN) and the 

South East Crater (SEC). The degassing activity was mainly concentrated at the summit 

craters, but the fissure which opened on the 13th of May 2008 was still active. At this stage 

the fissure was active between 3000 and 2600 m.a.s.l. on the higher portion of the 

eastern flank of the volcano. At higher altitude (~2800/2900 m.a.s.l.) the fissure was 

mainly degassing, while at lower altitude (~2600 m) the effusive activity was still in place 

(Figure 39). Two small vents produced two distinct lava flows with some degassing 

structures located in between. The SO2 degassing measured during the two targeted days 

showed a maximum of ~3800 t/d during the 5th June and a minimum the day after (INGV 

internal reports). 

 

Figure 40 – Stack of vertical velocity traces recorded at all stations for the monochormatic set of events, source INGV. 

. 



Chapter 5                                                               MT inversion of LP signals on Mt. Etna Volcano 

152 

 

  

Figure 41 – Stack of velocity filtered (betwenn 0.2 and 1.3 Hz) seismograms for ecpn station vertical component. The high 
degree of similarity between the recorded waveforms is evident. Event numbers are reported on the right. 
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Figure 42 - a) top: x-component of velocity recorded at station ecpn for event 1. The seismic trace is filtered between 0.2 and 
1.3 Hz; middle: short time Fourier transform plot of the unfiltered velocity trace, red correspond to high power towards 
blue lower; bottom: power spectral density of the unfiltered velocity trace. b) and c) same as a), for –y and –z components 
respectively. 
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Figure 43 - a) top: x-component of velocity recorded at station emcn for event 1. The seismic trace is filtered between 0.2 
and 1.3 Hz; middle: short time Fourier transform plot of the unfiltered velocity trace, red correspond to high power towards 
blue lower; bottom: power spectral density of the unfiltered velocity trace. b) and c) same as a), for –y and –z components 
respectively. 
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5.3.1 Data 

 

The set of data spans 36 hours on the 5th and 6th of June 2009. During this time 20 LP 

events with significant energy were recorded by the permanent INGV network. An 

example of the first event recorded on 14 stations is shown in Figure 40.The events are 

characterized by emergent onset, weak amplitude (10-5 m/s) and fast decaying coda as 

usual for LPs recorded on Mt. Etna (Cannata et al., 2009a). For each recorded event, I plot 

(Figure 41) the vertical component of ecpn station which shows the simplest recorded 

waveforms as it is located close to the summit craters nearby the usual location for LP 

events (Cannata et al., 2009a; Saccorotti et al., 2007). The events filtered with a 

Butterworth band-pass filter between 0.2 and 1.3 Hz and aligned following their onset 

show a high degree of waveform similarity. Figure 42 and Figure 43 show an example for 

event 1 recorded at station ecpn and at the farther station emcn respectively. The 

influence of the complex geology of the volcano on the recorded waveforms appears 

clearly for station emcn which shows longer decaying coda and the appearance of a 

reflected wave (or another event) at the end of the recording (particularly evident in the 

vertical component at 17 s, Figure 43 c). A peculiar characteristic of these events is that 

they are highly monochromatic. In fact their frequency content is restricted in a narrow 

band between 0.5 and 1.3 Hz (Figure 42 and Figure 43). 

 

5.3.2 Location results 

 

I begin by locating the 20 events towards moment tensor inversion (the method is 

discussed in detail in Chapter 2). The velocity traces are first band-pass filtered between 

0.2 and 1.3 Hz, then integrated to displacement and detrended to ensure stability in the 

inversion and avoid contributions from very low frequencies.  The optimum position for 

each event is obtained towards a grid search among 14196 sources spaced 40 m in a 

volume (1 x 1 x 0.8 km) located below the summit craters and by taking the lowest value 

of misfit between observed and retrieved data. According to this method the events are 

located for both inversions with and without single forces. The results for all 20 LP 
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Table 8 -– MT inversion location results for the monochromatic set of 20 events. Residuals data between observed and 
synthetics are reported with the respective source coordinates. M+F corresponds to the results including forces. M only 
corresponds to the solutions without forces. At the bottom the average location for the whole set of events found by 
INGV. 

 M+F M only 

 
misfit x (km) y (km) z (m) misfit x (km) y (km) z (m) 

event_01 0.589 499.478 4179.220 2600 0.697 499.518 4179.220 2360 

event_02 0.592 499.518 4179.220 2640 0.694 499438 4179.220 2360 

event_03 0.579 499.518 4179.220 2640 0.690 499.438 4179.220 2360 

event_04 0.589 499.518 4179.220 2640 0.706 499.558 4179.220 2440 

event_05 0.596 499.478 4179.220 2600 0.720 499.558 4179.220 2320 

event_06 0.584 499.518 4179.220 2640 0.701 499.478 4179.220 2360 

event_07 0.546 499.598 4179.220 2720 0.651 499.518 4179.220 2320 

event_08 0.557 499.598 4179.220 2720 0.671 499.518 4179.220 2320 

event_09 0.595 499.518 4179.220 2600 0.702 499.438 4179.220 2360 

event_10 0.606 499.518 4179.220 2640 0.705 499.518 4179.220 2280 

event_11 0.580 499.518 4179.220 2640 0.683 499.438 4179.220 2360 

event_12 0.610 499.438 4179.220 2400 0.717 499.398 4179.220 2360 

event_13 0.603 499.518 4179.220 2600 0.708 499.438 4179.220 2360 

event_14 0.607 499.598 4179.220 2720 0.707 499.518 4179.220 2320 

event_15 0.616 499.598 4179.220 2720 0.716 499.518 4179.220 2320 

event_16 0.600 499.558 4179.220 2720 0.712 499.518 4179.180 2320 

event_17 0.580 499.518 4179.220 2640 0.691 499.438 4179.220 2360 

event_18 0.597 499.518 4179.220 2600 0.699 499.438 4179.220 2400 

event_19 0.601 499.518 4179.220 2640 0.706 499.438 4179.220 2360 

event_20 0.567 499.598 4179.220 2720 0.681 499.598 4179.220 2400 

         

INGV 

Location 

x (km) y (km) z (m) 

499.060 4178.010 2080 
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Figure 44 – Graphical representation of the location results for the first analyzed set of events reported in Table 8. a) MT 
inversion with single forces location results. The summit area of Mt. Etna with respective cuts east-west and north-south in 
UTM coordinates are represented. The dot line square corresponds to the Green’s functions area, circles are the event 
locations and blue star is the average whole family INGV location. 
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events are listed in Table 8 and shown in Figure 44. The results are similar for both cases 

demonstrating the robustness of the solutions. The solutions including single forces point 

to a structure oriented east-west and located to the top north side of the Green’s 

functions volume just below the North East Crater (NEC). The minimum residual is 

obtained for event 7 (0.546) located in UTM coordinates 499.598 km east, 4179.22 km 

north and 2720 m.a.s.l. The horizontal solution is very stable while vertically the locations 

span ~300 m from 2400 to 2720 m.a.s.l. Anyway, all the solutions are localized around 

~2650 m.a.s.l., while the only event located at 2400 m.a.s.l. is event 12 which shows a 

slightly higher misfit value (0.61) if compared to the other events (~0.58, Table 8). It is 

impossible to further constrain the solutions due to the lack of an accurate velocity 

model. The solutions without forces point to the same horizontal sector, while the events 

result in deeper locations (~2350 m.a.s.l.). For comparison, I also report the average 

location found by INGV (INGV internal reports) towards semblance + R2 method (see 

Cannata et al., 2013, 2015 for more details) of the whole set of events. The location found 

by INGV shows (Figure 44) a quasi-identical longitude location compared to my solutions, 

while latitude points to the opposite side of the Green’s functions volume towards south 

instead of north in a position roughly below BN (Bocca Nuova, Figure 26 for craters 

locations). The vertical location found by INGV is deeper than the MT solution (~2080 

m.a.s.l.) more similar to the solution without single forces. It is worth nothing that the 

INGV solution is located outside the Green’s functions volume (~150 m far from the south-

west corner). In Figure 45 I explore how converged the inversion results are. For three 

selected events I plot the slice contour of the obtained residuals for the whole set of grid 

points Green’s functions used to estimate the best source location. The shallowest event 

(event 7 and lowest misfit value), the deepest vertical location (event 12 and highest misfit 

value) and an intermediate one (event 1) are plotted for comparison. The solutions 

without including forces appear to be less constrained, i.e. the solutions appear to be 

dispersed in the whole Green’s functions domain both hori ontally and vertically. This 

could be due to the erroneous velocity model not representative of the complexity of the 

geology of Mt. Etna. The errors generated by mismodelling of the velocity structure 

would affect the location solutions and the single forces help “absorbing” these errors 

(De Barros et al., 2011, 2013). Hence, the solution including single forces is thought to be 
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Figure 45 – Slice plot of the residuals for the whole Green’s functions volume a) solution of MT including single forces; b) 
solution for MT only. The events are chosen on the basis of their location depth and residual value. Event 1 (top) 
intermediate location, event 7 (middle) shallowest location (and lowest absolute misfit), event 12 deepest location (and 
highest misfit). 
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more accurate.  For the solution including forces the horizontal locations point to a well-

defined cluster for all the three selected events. The vertical locations appear to be more 

dispersed. This could be due to the poor stations coverage around the source which does 

not help in constraining the solution vertically, but also to the computation of Green’s 

function and the appearance of the reflected wave from the boarders of the domain as 

investigated in the synthetic test (see section 5.2) particularly affecting farther stations. 

The dispersion along the vertical and the INGV solution could suggest a deeper location 

for the set of events. This eventuality will be explored in the next section.   

 

5.3.3 Source mechanism 

 

Moment tensor inversion is performed for all the 20 analyzed events for the 

respective lowest residual locations (Table 8). The results for the solutions including 

forces and for MT-only are reported in Table 9 and Table 10 respectively. First, I give a 

general overview of the solutions retrieved for both cases and I will then analyze deeply a 

couple of selected events.  

The retrieved solutions including forces (Table 9) are very similar between all events 

in terms of residuals and eigenvalues decomposition (λn). The isotropic component is 

high with a minimum value of 61% for event 15 and a maximum of 81% for event 12 

(average = 69%). The CLVD percentage varies a lot (between ~10 and 30%, STD = 0.078) 

while the DC component is rather constant (~10-15%, STD =0.039). Thus, it seems that the 

lower values of the isotropic component computed for some events are best 

accommodated by the CLVD more than the DC component. In first approximation, the 

orientation angles computed towards moment tensor decomposition (  = strike, θ = dip, 

Figure 2 for the coordinate system) point to a quasi-horizontal tensile crack mechanism 

for all the studied events. The solutions for MT-only (Table 10) show slightly higher misfit 

values and comparable eigenvalue ratios to the solution including forces. On the opposite 

hand, the orientation angles computed towards moment tensor decomposition (  = 

strike, θ = dip) point to a vertical instead of a horizontal crack (average θ = 91°). In order 

to better investigate this strong difference I have to deeply analyze the solutions. 
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Table 9 – Results of MT inversion including single forces for the monochromatic set of events for the lowest residual source 
location. Misfit values are computed between observed and retrieved data. Mechanism decomposition and principal 
component analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 2015), see 
section 2.3 for details. 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

event_01 0.589 1.0 1.37 2.03 -6 21 0.72 0.09 0.18 

event_02 0.592 1.0 1.3 2.14 -5 20 0.69 0.17 0.14 

event_03 0.579 1.0 1.35 2.08 -8 21 0.71 0.12 0.17 

event_04 0.589 1.0 1.34 2.08 -5 21 0.71 0.13 0.16 

event_05 0.596 1.0 1.39 2.02 -6 23 0.73 0.08 0.19 

event_06 0.584 1.0 1.31 1.97 5 17 0.72 0.12 0.16 

event_07 0.546 1.0 1.22 2.5 -1 15 0.63 0.28 0.09 

event_08 0.557 1.0 1.2 2.5 4 16 0.63 0.29 0.08 

event_09 0.595 1.0 1.29 2.24 1 18 0.67 0.2 0.13 

event_10 0.606 1.0 1.28 2.09 -1 15 0.7 0.17 0.13 

event_11 0.580 1.0 1.31 2.04 -7 20 0.71 0.14 0.15 

event_12 0.610 1.0 1.6 1.81 16 44 0.81 0.1 0.09 

event_13 0.603 1.0 1.3 2.23 1 18 0.68 0.19 0.13 

event_14 0.607 1.0 1.16 2.54 3 15 0.62 0.32 0.06 

event_15 0.616 1.0 1.18 2.59 2 14 0.61 0.32 0.07 

event_16 0.600 1.0 1.24 2.37 -2 17 0.65 0.25 0.1 

event_17 0.580 1.0 1.34 2.08 -4 22 0.71 0.13 0.16 

event_18 0.597 1.0 1.3 2.15 -1 20 0.69 0.17 0.14 

event_19 0.601 1.0 1.32 2.14 -6 20 0.69 0.16 0.15 

event_20 0.567 1.0 1.2 2.5 1 16 0.63 0.29 0.08 

          

Average 0.590 1.0 1.3 2.2 -1.0 19.6 0.69 0.18 0.13 

STD 0.018 0.0 0.1 0.2 5.6 6.3 0.05 0.09 0.04 
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Table 10 – Results of MT inversion including single forces for the monochromatic set of events for the lowest residuals 
source location. Misfit values are computed between observed and retrieved data. Mechanism decomposition and 
principal component analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 
2015), see section 2.3 for details. 

M only misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

event_01 0.697 1.0 1.55 1.84 57 94 0.8 0.08 0.13 

event_02 0.694 1.0 1.7 2.2 55 89 0.74 0.05 0.2 

event_03 0.690 1.0 1.41 1.88 53 87 0.76 0.02 0.22 

event_04 0.706 1.0 1.68 2.31 63 88 0.72 0.01 0.27 

event_05 0.720 1.0 1.57 2.01 67 90 0.76 0.04 0.2 

event_06 0.701 1.0 1.47 2.11 49 89 0.72 0.06 0.22 

event_07 0.651 1.0 1.41 1.69 42 100 0.81 0.04 0.15 

event_08 0.671 1.0 1.93 2.44 50 98 0.73 0.09 0.17 

event_09 0.702 1.0 1.62 2.01 54 90 0.77 0.07 0.17 

event_10 0.705 1.0 1.44 1.91 50 89 0.76 0.01 0.23 

event_11 0.683 1.0 1.58 2.09 56 86 0.74 0.02 0.24 

event_12 0.717 1.0 1.72 2.17 52 89 0.75 0.07 0.17 

event_13 0.708 1.0 1.58 2.01 53 88 0.76 0.05 0.19 

event_14 0.707 1.0 1.78 2.01 57 94 0.79 0.13 0.08 

event_15 0.716 1.0 1.67 1.91 55 95 0.8 0.11 0.09 

event_16 0.712 1.0 1.62 1.92 73 85 0.79 0.09 0.13 

event_17 0.691 1.0 1.61 2.15 54 88 0.74 0.02 0.24 

event_18 0.699 1.0 1.76 2.39 53 90 0.72 0.04 0.24 

event_19 0.706 1.0 1.64 2.18 53 89 0.74 0.03 0.24 

event_20 0.681 1.0 1.19 1.36 -17 121 0.87 0.01 0.12 

          

Average 0.698 1.0 1.6 2.0 51.4 91.9 0.76 0.05 0.19 

STD 0.017 0.0 0.2 0.2 17.4 7.8 0.04 0.03 0.05 
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I decide to show the results for two selected events which better represent in 

average the whole set of results. I focus my attention on event 7 which shows the lowest 

misfit value and high CLVD component and on event 5 which shows a slightly higher 

residual and the highest DC component. The moment tensor results from the full moment 

tensor inversion for LP event 7 inverted for the lowest residual source location are shown 

in Figure 46. Waveforms fits between the real data and data reconstructed from the 

moment tensor solution convolved with the green’s functions can also be seen in Figure 

47. The fits are generally good for stations closest to the summit of the volcano (e.g. eplc, 

ecpn and ebel), but poor for the stations farther from the summit. Such characteristic is 

expected due to the stronger path effect contribution to distant stations. However, due 

to the low amplitudes recorded at farther stations, they contribute less to the final 

retrieved solution.  

Same procedure has been applied to event 5. The moment tensor solution is showed 

in Figure 48 and the waveforms comparison in Figure 49. Same considerations done for 

the waveform fits between observed and retrieved data for event 7 apply to event 5. It is 

worth noting that for event 7 the record for station emcn is missing. As station emcn is not 

one of the summit stations, its absence could explain the slightly lower misfit value 

obtained for this event. The maximum amplitude for the Mzz moment tensor component 

is obtained for event 5 (~ 1 1012 Nm) for the solution including forces. For both events the 

forces have comparable amplitude to the moments with Fz = ~1 109 for event 5 (De Barros 

et al., 2013), but as they tend to accommodate errors their presence cannot be taken as 

evidence of their existence. The solutions for both inversions with and without single 

forces show a slowly decaying coda (~10 s) source time functions (Figure 46b and Figure 

48a/b). This characteristic is particularly evident for event 5 and in particular for the 

solution without forces. In case of event 7, solution with forces, the decaying coda 

appears to be more a repetition of a first pulse like waveform (Figure 46b). However, the 

retrieved oscillating features cannot be directly interpreted. The apparent oscillations 

could be due either by an oscillating tensile source mechanism (Chouet, 2003a and 

reference therein) or by complex path effects due to the contribution of farther stations 

(Bean et al., 2014).  

In order to better understand the solution the moment tensors have been 
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decomposed into their principal components using SVD (singular value decomposition) 

and PCA (principal component analysis) (Chouet, 2003a; Vasco, 1989; Vavryčuk, 2001, 

2015). The results are listed in Table 9 and Table 10. For all the solutions the 

decomposition produces two shorter axis eigenvectors and a longer eigenvector. As 

discussed in the synthetic test (section 5.2) a tensile crack source mechanism produces an 

eigenvalues ratio (λ : λ : (λ + 2μ)) of 1 : 1 : 3 (Aki and Richards, 2002) for a Poisson’s ratio of 

0.25 and 1 : 1 : 2 for a Poisson’s ration of 0.35. My results for both solutions including and 

without single forces fall in this range thus, the source mechanism can be interpreted as a 

tensile crack mechanism.  

The orientations of the longest axis are consistent between events, but if for the 

solutions including forces, as hinted before, the average dip angle points to a quasi- 

horizontal crack, the solutions without forces point to a vertical mechanism. This 

opposite orientation between the two solutions is of difficult understanding. Looking at 

the source time functions (STF) of event 7 (Figure 46) and event 5 (Figure 48), for the 

solution without forces (b) the three diagonals of the STF (Mxx, Myy and Mzz) show 

comparable amplitudes and the appearance of non-negligible off-diagonal (Mxy, Mxz and 

Myz) components (~1/3 of diagonal components). In the solution including forces the off 

diagonal components show negligible amplitude if compared to the main diagonal 

components. The synthetic test of section 5.2.2 highlighted that, with the available 

network of station, vertical cracks could be misinterpreted as horizontal cracks when 

considering the MT inversion solution including forces. The PCA for the MT-only solution 

shows a strong isotropic mechanism with a high double couple component and a low 

CCLVD which suggests a source mechanism of difficult interpretation. It is difficult to 

imagine a full isotropic source with so high shear component. As I do not have any other 

element to discriminate between the solutions, I tend to the solution including single 

forces because: 1) the retrieved STF have shorter waveforms compatible with the pulse-

like nature of the summit stations records; 2) the MT decomposition and PCA seem to 

point to a more stable solution, i.e. the high CDC component of the MT-only solution is 

hard to couple with the strong isotropic source mechanism; 3)  the single forces should 

help in accommodating errors due to mismodelling of the velocity structure (De Barros et 

al., 2011, 2013). 
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In order to check the stability of my solutions, I perform full moment tensor inversion 

for the whole set of events, but for a mislocated source location. As the events were 

located far away from the average location found by INGV I perform the inversion for this 

source location. As the Green’s functions have not been computed for the I GV retrieved 

location I take the nearest source point (UTM longitude 499.078 km east, latitude 

4178.220 km north and 2200 m.a.s.l.) inside the Green’s functions volume ~100 m far from 

the original INGV location. It is worth nothing that this new location is ~ 1 km far away 

from the average source location found towards moment tensor inversion (hereafter 

called solution A for comparison). Results for all the events for the solution including 

single forces are reported in Table 11.  

The misfit values are slightly higher compared to  solution A (Table 9) with an average 

residual of ~0.69. After SVD (Vasco, 1989) the average eigenvalues ratio is 1 : 1.3 : 1.6 

which could be interpreted as a combination between a tensile crack mechanism (ratio 1 : 

1 : 2 for a Poisson’s ratio of 0.35) and an e plosion (eigenvalues ratio of 1 : 1 : 1). An 

isotropic solution is also suggested by the high CISO ratio (81 % of isotropic component in 

average for whole set of events), but the high CDC component (15% in average), if realistic, 

complicates the interpretation.  

I focus again my attention on event 5 for comparison, but inverted for the INGV 

location. The results for the moment tensor and residuals between observed and 

retrieved data are plotted in Figure 50 and Figure 51 respectively. If I focus my attention 

on the solution including forces, the amplitude of the main diagonal moment STF is 

slightly lower than the amplitude found for solution A. The three main diagonal 

components show comparable amplitude values, which was not the case for solution A 

where the Mzz component was almost double of Myy. Generally, the STF waveforms are 

more pulse-like and the oscillating feature observed in the coda of solution A is less 

remarkable. Moreover, the forces (especially Fy) seem to contribute more to the final 

solution. The comparison between synthetics and observed data (Figure 51) does not add 

any particular detail to the mechanism understanding. The full moment tensor inversion 

for the mislocated source suggests that an isotropic source mechanism cannot be 
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 Table 11 – Results of MT inversion including single forces for the monochromatic set of events for the INGV source location. 
Misfit values are computed between observed and retrieved data. Mechanism decomposition and principal component 
analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 2015), see section 2.3 for 
details. 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

event_01 0,698 1,0 1,23 1,51 59 7 0,83 0,02 0,15 

event_02 0,684 1,0 1,22 1,65 83 15 0,78 0,09 0,13 

event_03 0,705 1,0 1,36 1,59 33 11 0,83 0,05 0,12 

event_04 0,704 1,0 1,17 1,44 -65 6 0,84 0,05 0,12 

event_05 0,707 1,0 1,15 1,43 75 7 0,84 0,06 0,1 

event_06 0,702 1,0 1,28 1,56 67 13 0,82 0 0,18 

event_07 0,653 1,0 1,58 1,77 36 6 0,82 0,11 0,07 

event_08 0,677 1,0 1,23 1,69 85 19 0,77 0,09 0,14 

event_09 0,686 1,0 1,27 1,58 -16 4 0,81 0,02 0,17 

event_10 0,685 1,0 1,15 1,23 74 61 0,92 0,03 0,05 

event_11 0,689 1,0 1,33 1,63 -36 11 0,81 0,01 0,18 

event_12 0,688 1,0 1,4 1,82 -74 11 0,77 0,01 0,22 

event_13 0,704 1,0 1,25 1,77 87 10 0,76 0,1 0,14 

event_14 0,673 1,0 1,38 1,82 -73 14 0,77 0,02 0,21 

event_15 0,692 1,0 1,28 1,67 -62 9 0,79 0,04 0,17 

event_16 0,712 1,0 1,2 1,39 65 16 0,86 0,01 0,13 

event_17 0,705 1,0 1,32 1,61 73 14 0,82 0,02 0,17 

event_18 0,681 1,0 1,33 1,79 84 11 0,77 0,05 0,18 

event_19 0,707 1,0 1,29 1,6 -81 10 0,81 0 0,18 

event_20 0,671 1,0 1,35 1,65 74 11 0,81 0,02 0,18 

          

Average 0.691 1.0 1.3 1.6 24.4 13.3 0.81 0.04 0.15 

STD 0.015 0.0 0.1 0.1 65.0 11.8 0.04 0.03 0.04 
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Figure 46 – a) MT inversion solution including forces for event 7 of the monochromatic set of events for the lowest residual 
source location and 14 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same 
event. 
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Figure 47 – Comparison between the observed data and the MT solution convolved with the Green’s functions for event 7 of  
the monochromatic set of events. Blue lines correspond to the observed data and red lines to the retrieved solution. Data 
records for event 7 at emcn station are missing. 
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Figure 48 – a) MT inversion solution including forces for event 5 of the monochromatic set of events for the lowest residual 
source location and 14 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same 
event. 
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Figure 49 – Comparison between the observed data and the MT solution convolved with the Green’s functions for event 5 of 
the monochromatic set of events. Blue lines correspond to the observed data and red lines to the retrieved solution. 
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Figure 50 – a) MT inversion solution including forces for event 5 of the monochromatic set of events for the INGV source 
location and 14 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same event. 
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Figure 51 – Comparison between the observed data and the MT solution convolved with the Green’s functions for event 5 of 
the monochromatic set of events and source location found by INGV. Blue lines correspond to the observed data and red 
lines to the retrieved solution. 
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Table 12 – Results for the constrained MT inversion for the solution including and without single forces for the 
monochromatic set of events and lowest residual location. Lowest residual obtained for an isotropic mechanism (Misfit 
exp) and for a tensile crack mechanism (Misfit crack). I also report the couple of orientation angles for the lowest crack 
residual. 

 M+F M only 

 

Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 
Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 

event_01 0.792 0.765 10 40 0.927 0.885 270 80 

event_02 0.794 0.768 360 30 0.927 0.887 270 90 

event_03 0.811 0.778 180 40 0.935 0.880 270 80 

event_04 0.798 0.770 260 80 0.939 0.881 270 80 

event_05 0.799 0.775 0 40 0.940 0.885 270 80 

event_06 0.798 0.777 0 30 0.936 0.889 270 80 

event_07 0.776 0.739 190 40 0.924 0.875 180 30 

event_08 0.787 0.755 190 40 0.928 0.887 180 30 

event_09 0.800 0.772 0 30 0.924 0.891 270 80 

event_10 0.804 0.777 280 70 0.946 0.886 290 80 

event_11 0.797 0.769 180 40 0.931 0.880 270 80 

event_12 0.807 0.778 0 40 0.916 0.893 300 60 

event_13 0.805 0.775 0 30 0.935 0.891 270 80 

event_14 0.807 0.783 190 40 0.936 0.906 180 30 

event_15 0.809 0.777 270 80 0.941 0.900 180 30 

event_16 0.831 0.786 190 40 0.959 0.892 90 90 

event_17 0.793 0.768 260 80 0.929 0.880 90 90 

event_18 0.802 0.767 0 30 0.930 0.891 270 80 

event_19 0.803 0.790 270 80 0.931 0.895 270 80 

event_20 0.794 0.754 190 40 0.931 0.889 180 30 

         

Average 0.800 0.771 151 47 0.933 0.888 232 68 

STD 0.011 0.012 121 19 0.009 0.007 64 23 
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Figure 52 – Constrained inversion residuals plot for the tensile crack solution for the solution including single forces for the 
monochromatic set of events. Event number is reported on the top left of each contour plot, misfit range legend on the 
right side. Red cross indicates the lowest retrieved minima misfit. 
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Figure 53 – Constrained inversion residuals plot for the tensile crack solution for the solution without single forces for the 
monochromatic set of events. Event number is reported on the top left of each contour plot, misfit range legend on the 
right side. Red cross indicates the lowest retrieved minima misfit. 
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discharged as a possible solution.  

Hence, I perform a constrained inversion for all the set of events for the original 

lowest residual locations (solution A). The procedure is described in detail in chapter 2, 

section 2.3. During the inversion the mechanism is constrained to (1) an isotropic source 

and (2) a tensile crack with a grid search for the best possible set of angles orientations 

(azimuth and dip). Results for both solutions with and without single forces are reported 

in Table 12. Results for best tensile crack orientation angles for the solution including and 

without forces are reported in Figure 52 and Figure 53 respectively. 

The misfit values for the explosion mechanism are slightly higher (average M+F 

residual = 0.8) than those found for the crack solution (average M+F residual 0.77) for 

both the inversions including and without single forces (Table 12). If I focus on the 

orientation angles for the crack solution the results are way more dispersed than the 

solution obtained after eigenvalues decomposition (Table 9 and Table 10) with values 

spanning the whole space of possible solutions for azimuth orientation (  = 0-360°) and 

giving sub-horizontal to sub-vertical crack dips. This seems strange, but when the 

solutions are analyzed more thoroughly the reason becomes clear. The plots with the 

misfit values for all the crack angle sets considered (Figure 52 and Figure 53) show at least 

two main minima residual possible solutions.  For both the solutions with and without 

single forces at least two main minima residuals can be found for a sub-horizontal crack 

and a sub-vertical one oriented ~80°/260° azimuthally. Thus the lowest misfits fall in either 

the sub-horizontal or the sub-vertical crack for each considered event. The results for the 

constrained inversion are coherent with the eigenvalues decomposition and explain the 

opposite mechanisms found for the solutions with and without forces. The high CISO 

component found for both the solutions (M+F and MT-only) and the mislocated source 

highlight the possibility that the source mechanism could be considered as an explosion, 

this is also confirmed by the small difference between the residuals for the constrained 

crack/explosion. Anyway, as stated before, the CDC components are high and comparable 

to the CLVD components, thus a double couple component in the source mechanism 

cannot be discharged. In order to study deeply this aspect I develop the PCA (principal 

component analysis, Vavryčuk, 2001, 2015) and I try to find out the real contribution from 

the shear source. As I tend to the solution including forces the following analyses are 
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developed on this solution (Table 9).  

Here I want to check the possibility that the observed events can be thought as 

tensile earthquakes (an earthquake with tensile faulting or combining shear faulting and 

tensile faulting, e.g. Eyre et al., 2015). A tensile earthquake can be described using a slip 

vector (labeled [   ]) that is not restricted to orient within the fault plane (Σ) thus causing 

its opening or closing. The angle α (Equation (64)) represents the depart of the slip 

vector from the fault surface (Figure 18), β (Equation (65)) represents the angle between 

the normal to the fault and the tension (   ) axis and δ (Equation (66)) represents the 

orientation of the fault plane from the vertical. From the CISO/CCLVD ratio I can compute 

parameter κ (Equation (67)) which represents the λ/μ ratio of the medium surrounding 

the source region. In order to compute a unique value of κ I use the average values 

obtained from the PCA. The average values (Table 9) for the whole set of events are: CISO 

= 69%, CCLVD = 18% and CDC = 13% giving a κ of 4.25. The standard deviation for the isotropic, 

CLVD and DC components are low (5%, 8% and 4% respectively), thus validating the choice 

for the computation of κ on the average value. Following Vavryčuk, (2001), for a given κ 

the proportion of isotropic, CLVD and double couple versus the angle α can be plotted as 

shown in Figure 54. The lower the value of α, the higher is the shear faulting contribution 

to the solution as the slip vector is almost parallel to the fault plane. The average values 

for the mixed ISO/DC mechanism are: α = 54°, β = 72° and δ = -52°. The retrieved value of α 

is quite surprising as it suggests a real mixed isotropic/double-couple mechanism in 

contrast with the low computed values of CDC.. It is worth nothing that some events 

(events 7, 8, 14, 15 and 16) show a value of  α ~90°, i.e. a pure tensile mechanism. If these 

events are not taken in account in the computation of the average value of α, it becomes 

α ~40°. However, as the principal models of LP source mechanisms attribute them to 

fuids/gas oscillation processes, the double-couple components are often interpreted as 

insignificant or e plained as errors resulting from the calculation of the Green’s functions 

(Eyre et al., 2015). In such case it would be possible to interpret the source mechanism of 

the analyzed events as a tensile crack, but it would be difficult to justify the CLVD 

component while ignoring the double-couple. Moreover, the pulse-like nature of the 

waverforms recorded at the summit stations (Figure 41) is difficult to reconcile with the 

classical models for LP generation.  
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Figure 54 – Relationship between α and the double-couple (DC), isotropic (ISO) and CLVD components for the source 
mechanism of events with k=4.25 using the relationship of Vavryčuk, (2001). 

 

 

5.3.4 Interpretation of the source mechanism 

 

The best-fit mechanism for the LP events is obtained towards the MT inversion 

including forces for the lowest residual location. The solutions point to a crack 

mechanism shallowly dipping towards north at approximately 20°. A crack mechanism has 

been inferred at many volcanoes as the possible source process for the generation of LP 

signals (e.g. De Barros et al., 2011; Chouet, 1996; Eyre et al., 2013; Kumagai et al., 2005; 

Lokmer et al., 2007). The most widely source model used to interpret such signals 

attributes them to the resonance of a fluid filled cavity (Chouet, 1988). For the analyzed 

events the oscillations of the source are not clearly observable. The solution including 

forces shows rather a pulse like source mechanism than oscillations at the source (Figure 
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48). The short duration of the LP perturbation in the source time functions (~5 s) is 

coherent with the analysis performed by Lokmer et al., (2007) who identified gas 

“pulsing” as a possible trigger mechanism for the  P events recorded on Mt. Etna during 

2004. Shallowly dipping cracks were identified as the cause of LP events at Kilauea, 

Hawaii (Kumagai et al., 2005) and Kusatsu-Shirane volcano, Japan (Kumagai, 2002a). Both 

authors hypothesized that the LP events source mechanism was mainly related to 

hydrothermal fluids rather than of magmatic origin, but their model implied the 

resonance of the crack structure triggered by rapid release of pressurized fluids. A 

compatible model with the pulse like nature of  the analyzed LP events has been 

proposed by Eyre et al., (2013) on Turrialba volcano, Costa Rica. They identified in 

hydrofracturing the possible origin of the pulse like source mechanism. In their model 

uprising gas would infiltrate in quasi-horizontal fractures located around the main 

conduit. Due to the weakness of the staked up materials the fractures would propagate 

with shallow dip angles. LPs observed during hydrofracturing of shale gas reservoirs 

show similar features and are believed to be caused by slow slip induced by the high pore 

fluid pressure (Das and Zoback, 2011). Moreover, Benson et al., (2008), through 

laboratory experiments on Etna basalts, found that LP events can be generated by a 

combined result of fluid interactions within both the damage zone and the conduit, thus 

highlighting that a weak component of shear faulting would be in agreement with the 

source model for LPs. 

The hydrofracturing model (Figure 55) would be coherent with the important double-

couple component found for the analyzed events. The similarity obtained between all 

events suggests that a non-destructive source is repeatedly excited.  The slightly 

variability in the source position could be referred to fractures developed around the 

main conduit, but close to each other. For supporting such a model a source of heating 

and an important gas uprising is required to explain the LP events generation. In the days 

preceding and during the recorded events a lava flow was draining the east flank of the 

volcano at a depth comparable to the locations of the LP events (~2500 m.a.s.l.). On the 

opposite, the horizontal location of the events is not coherent with the lava flow and is 

located ~2 km far from the eruptive fissure below the summit craters. The location found 

by INGV points to a position located slightly south, but at comparable distance from the 
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active eruptive fissure. Hence, the LP signals should not be directly related to the 

magmatic activity. At the same time important degassing was recorded at the summit 

craters suggesting that the magmatic body was drained by the lateral fissure while gas 

was mainly present in the central conduits uprising towards the surface. The period 

preceding the opening of the lava flow fissure (until June 2008) could be associated to 

high fluid pressures destabilizing the edifice. This recharging period could have entrained 

the reactivation of fractures in the upper part of the volcano. Once the lava flow took 

place the cone could have been drained producing a decrease of pressure (De Barros et 

al., 2011) which could have led to instabilities of those fractures and triggered the LP 

events by uprising gas. This hypothesis is coherent with the state of the activity of the 

volcano which was in the ultimate phase of the eruption which began in summer 2008 

and ended just one month later the recorded events (July 2009).  

I compute the volume of fluid/gas involved in the source process by means of both 

Equations (70) and (71) as discussed in section (2.4). Thus the M0 value considered for the 

computation corresponds to the maximal peak to through amplitude of the retrieved 

source time functions for the lowest residual constrained crack solution. I take the peak 

to through maximum amplitude as I expect that the total displaced fluid/gas volume 

corresponds to the whole deflation inflation process occurring at the source. The  ame’s 

parameters are computed for the Vp, Vs and density of the velocity model S4 (chapter 4) 

for the location depth of the targeted event retrieved towards MT inversion. Although 

the rigidity of the medium can differ considerably from the velocity of the source region 

(Lokmer et al., 2007), I use the values from model S4 as it is the best approximation of the 

geological properties of the volcano at depth in my possession. Averaging the resulting 

volume variations for the whole set of events I obtain a ΔV = 386 – 695 m3 for the solution 

including forces. These values are higher than those found by Lokmer et al., (2007), ΔV = 

50 m3 and De Barros et al., (2011), ΔV = 15 m3
 for Mt. Etna volcano, but comparable to the 

results obtained by Jousset et al., (2013), ΔV = 220 – 2250 m3 
 for some VLP events 

recorded during the 2013 eruption of Merapi volcano, Indonesia and  ΔV = 3000 m3 
 for VLP 

events recorded at Kilauea, Hawaai (Ohminato et al., 1998). The VLP events were thought 

to be connected to magmatic injection (Jousset et al., 2013; Ohminato et al., 1998), but  
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Figure 55 – Sketch of the possible source model for the monochromatic set of events at Mt. Etna volcano. Hot, high 
pressure hydrothermal fluids within the hydrothermal system cause hydrofracture generating LP events. Hydrofracture can 
generate both tensile and shear mechanism and could take place in the unconsolidated shallow materials. Note that the 
sketch is very speculative as the structures of the hydrothermal system and the magma storage are unknown. The figure is 
not drawn to scale. 

 

for the particular context in which the LPs were recorded on Mt. Etna, gas is the most 

probable involved phase. The retrieved volume variations correspond to a normal 

displacement of 4 – 7 cm for a 100 m sided square crack which seems to be a quite large 

value for supporting the hydrofracturing model. As stated in the previous chapter, the 

volume variation could be overestimated due to errors in the velocity model used for the 

MT inversion. In order to further investigate the reliability of such volume variations I 

should compare the results with the recorded gas emissions at the surface. Such 

computation would be feasible, but it lacks precise values of gas emissions/composition, 

temperature and a reliable model for lithostatic pressure. Hence, further considerations 

on the relationship between the volume variation of the LP events and the volcanic 

activity remain difficult.  
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The pulse-like nature of the recorded LP events and the important volume variation 

computed at the source are difficult to interpret with the resonant crack model (Chouet, 

1986). On the other hand, the high double-couple component of the analyzed events 

would be more coherent with the recent model of Bean et al., (2014) involving a 

mechanical failure mechanism of the shallow volcanic edifice. Small-scale deformations of 

the upper part of the volcanic edifice due to the drainage of the eruptive fissure would be 

coherent with the hydrofracturing model and a mixed shear-tensile source mechanism 

could better explain the computed volume and the crack dimensions. Cauchie et al., 

(2015) suggested the brittle failure model as a possible explication for some LP events 

recorded on Mt. Etna in 2005. Moreover, Eyre et al., (2015) studied the relationship 

between magnitude and corner frequency of LP events recorded at Turrialba, Costarica 

and found that pulse-like LP events behaved as conventional earthquakes. Further work is 

necessary to explore the brittle failure nature of LP event generation.  
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5.4 Polychromatic LPs (October 2010) 
 

The second set of signals analyzed in this work occurred at the beginning of October 

2010. From the end of the 2008-2009 flank eruption until the first months of 2010 Mt. Etna 

was relatively quiescent (Cannata et al., 2015). The volcanic activity resumed in March 

with high-temperature degassing at the SEC (Andronico et al., 2013). Several short-lasting 

episodes of ash emissions followed at the summit craters (mainly BN and secondarily 

SEC) during the rest of 2010. The volcanic tremor recorded continuously on the volcano 

showed an increase in the root mean square (RMS) amplitude at the end of August. The 

tremor location during this period of activity was mainly restrained to a small volume of 

1km3 centered around 1500 m.a.s.l. below the east rim of the NEC (Andronico et al., 2013; 

INGV internal reports). An increasing in intensity and frequency of the explosive activity 

and a shallower tremor location were observed since November 2010. This explosive 

activity phase terminated on the 12th of January 2011 with the onset of a new lava fountain 

from the SEC (Patanè et al., 2013). Around 35 explosive events of moderate intensity were 

recorded at the summit craters during the whole year. Only three events showed 

significantly higher intensity. Despite the normal activity of Mt. Etna, this period showed a 

high frequency occurrence of explosive events. The set of data analyzed was recorded at 

the beginning of October, before the increase in the explosive activity observed in 

November. The week preceding the recorded events (1th and 2nd October 2010), the 

degassing was moderate at the summit craters (NEC and BN) without any particular 

intense explosive evidence. On 2nd of October the degassing showed an increasing in 

intensity, but still without any evidence of explosive activity (INGV internal reports).  

 

5.4.1 Data 

 

The set of data analyzed in this study spans 20 hours on the 1th and 2nd of October 

2010. During this period 20 mixed events (events showing wide frequency content) were 

recorded by the permanent network of stations of the INGV. These events are 

characterized by a more impulsive onset, higher amplitude (10-4 m/s) and longer coda 

than the set of events analyzed in the previous section. The events are band pass filtered 
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between 0.2 and 4 Hz and stacked following their onset. The results are plotted in Figure 

56. The events show a quite high complexity and it is difficult to state if a certain degree 

of similarity between the waveforms and the length of the signals exists. The high 

frequency content prevents from making further considerations, hence I plot the same 

signals, but band pass filtered in a narrow frequency band (0.3 – 1.3 Hz, Figure 57). Apart 

for some events with low amplitude a certain similarity between the waveforms can now 

be recognized. The events look similar especially in length with the coda showing roughly 

the same amplitude as the first part of the signal. It seems that a repetition of the same 

source mechanism occurs twice inside the same record. I analyze in detail the shape and 

the frequency content for event 12 recorded at station ecpn (Figure 58) and farther 

station emcn (Figure 59). Ecpn station shows a high polychromatic frequency content. 

Several peaks in the power spectrum can be recognized with high energy content until ~5 

Hz and a very long (more than 10 s) slowly decaying coda. The same event plotted for 

emcn station shows different features. The frequency content is lower than for station 

ecpn and only one major peak in the power spectrum can be recognized around 1 Hz. The 

length of the signal is considerably longer, as expected. In order to check the different 

frequency content between the two stations, I compare the same plots, but for event 9. 

The results are shown in Figure 60 and Figure 61 for stations ecpn and emcn respectively. 

The comparison shows results coherent with the previous event. Hence, it appears that 

the high frequency component strongly attenuates far from the source. In order to 

investigate signals with such wide frequency content, I would need a better network 

resolution and Green’s function definition because high frequency signals are more 

sensitive to structure inhomogeneity. As high frequencies strongly attenuate far from the 

summit craters I suppose that I can focus my attention on the low frequency part of the 

signals (0.3 – 1.3 Hz) following the fact that the waveforms show good similarity and 

comparable lengths at all stations in this frequency range. 
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Figure 56 – Stack of velocity filtered (betwenn 0.2 and 4 Hz) seismograms for ecpn station vertical component. The high 
frequencies make difficult to identify very similar events even if a certain degree of similarity between certain events is still 
recognizable. The event number is reported on the right. 
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Figure 57 – Stack of velocity filtered (betwenn 0.3 and 1.3 Hz) seismograms for ecpn station vertical component. A certain 
degree of similarity between the recorded waveforms is recognizable. The signals are longer than the previous set of events 
analyzed. Some events show low amplitude and a low signal to noise ratio. The event number is reported on the right. 
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Figure 58 - a) top: x-component of velocity recorded at station ecpn for event 12. The seismic trace is filtered between 0.2 
and 4 Hz; middle: short time Fourier transform plot of the unfiltered velocity trace, red correspond to high power towards 
blue lower; bottom: power spectral density of the unfiltered velocity trace. b) and c) same as a), for –y and –z components 
respectively.  
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Figure 59 - a) top: x-component of velocity recorded at station emcn for event 12. The seismic trace is filtered between 0.2 
and 4 Hz; middle: short time Fourier transform plot of the unfiltered velocity trace, red correspond to high power towards 
blue lower; bottom: power spectral density of the unfiltered velocity trace. b) and c) same as a), for –y and –z components 
respectively. 
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Figure 60 - a) top: x-component of velocity recorded at station ecpn for event 9. The seismic trace is filtered between 0.2 
and 4 Hz; middle: short time Fourier transform plot of the unfiltered velocity trace, red correspond to high power towards 
blue lower; bottom: power spectral density of the unfiltered velocity trace. b) and c) same as a), for –y and –z components 
respectively. 
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Figure 61 - a) top: x-component of velocity recorded at station emcn for event 9. The seismic trace is filtered between 0.2 
and 4 Hz; middle: short time Fourier transform plot of the unfiltered velocity trace, red correspond to high power towards 
blue lower; bottom: power spectral density of the unfiltered velocity trace. b) and c) same as a), for –y and –z components 
respectively. 
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5.4.2 Location results 

 

As for the monochromatic LP events I begin by locating the set of data towards 

moment tensor inversion (the method is discussed in detail in Chapter 2). The velocity 

traces are first band pass filtered between 0.3 and 1.3 Hz, then integrated to 

displacement and detrended to ensure stability in the inversion and avoid contributions 

from very low frequencies. The optimum position for each event is obtained from a grid 

search among 14196 sources spaced 40m in a volume (1 x 1 x 0.8 km) located below the 

summit craters and by taking the lowest value of misfit between observed and retrieved 

data.  

Table 13 and Figure 62 show the results for all the analyzed 20 events with and 

without including single forces. The results are quite similar for both solutions including 

and without single forces with higher residuals for the MT-only solutions as expected. The 

residuals are slightly lower than those found for the previous set of analyzed events 

(monochromatic events, section 5.3). Almost all the events located including single forces 

are situated in a structure oriented east-west at the southern border of the Green’s 

functions domain below the BN crater. The events show a shallow location (~2900 

m.a.s.l.) apart from events 3 and 13 located deeper (2240 and 2560 m.a.s.l. respectively). 

The lowest residual is obtained for event 14 (0.489) located in UTM coordinates 499.598 

km east, 4178.22 km north and 2920 m.a.s.l.  

The locations are in general very similar and confirm the possibility of a common 

source mechanism. The solutions without single forces point to the same sector 

horizontally, but they are slightly more dispersed vertically with 4 events located ~2500 

m.a.s.l. or below (events 3, 11, 15 and 16). The similar results for the solutions including and 

without single forces prove the robustness of the MT inversion. For comparison, I also 

report the average location found by INGV (INGV internal reports) towards a semblance + 

R2 method (see Cannata et al., 2013, 2015 for more details) of the whole set of events. The 

INGV location point to a source slightly shifted towards west from the BN crater at a 

depth of 2790 m.a.s.l. The MT inversion location including forces shows many points 

located nearby the INGV solution (~150m far). The MT inversion with forces points to a 

slightly shallow source, but in general the locations are comparable with the INGV 
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Table 13 - MT inversion location results for the polychromatic set of 20 events. Residuals data between observed and 
synthetics are reported with the respective source coordinates. M+F corresponds to the results including forces. At the 
bottom is reported the average location for the whole set of events found by INGV. 

 M+F M only 

 
misfit x (km) y (km) z (m) misfit x (km) y (km) z (m) 

event_01 0.499 499.558 4178.220 2960 0.589 499.638 4178.220 3000 

event_02 0.497 499.598 4178.220 2920 0.615 499.678 4178.220 3000 

event_03 0.578 499.518 4178.220 2240 0.680 499.518 4178.220 2560 

event_04 0.496 499.598 4178.220 2920 0.608 499.678 4178.220 3000 

event_05 0.590 499.878 4179.220 2960 0.707 499.998 4178.780 2880 

event_06 0.499 499.598 4178.220 2920 0.614 499.678 4178.220 3000 

event_07 0.511 499.678 4178.220 2920 0.619 499.678 4178.220 3000 

event_08 0.521 499.558 4178.220 2960 0.620 499.638 4178.220 3000 

event_09 0.524 499.758 4178.220 2880 0.639 499.638 4178.220 3000 

event_10 0.511 499.558 4178.220 2960 0.610 499.638 4178.220 3000 

event_11 0.623 499.758 4178.340 2840 0.718 499.678 4178.220 2400 

event_12 0.511 499.638 4178.220 2960 0.619 499.758 4178.820 2960 

event_13 0.522 499.318 4178.220 2560 0.624 499.638 4178.220 3000 

event_14 0.489 499.598 4178.220 2920 0.600 499.718 4178.780 2960 

event_15 0.524 499.598 4178.220 2920 0.630 499.358 4178.220 2200 

event_16 0.526 499.598 4178.220 2920 0.632 499.358 4178.220 2200 

event_17 0.500 499.598 4178.220 2920 0.615 499.718 4178.820 2960 

event_18 0.496 499.598 4178.220 2920 0.598 499.678 4178.220 3000 

event_19 0.522 499.598 4178.220 2920 0.627 499.638 4178.220 3000 

event_20 0.511 499.638 4178.220 2920 0.612 499.638 4178.220 3000 

         

INGV 

Location 

x (km) y (km) z (m) 

499.290 4178.220 2790 
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Figure 62 - Graphical representation of the location results for the second analyzed set of events reported in Table 13- a) MT 
inversion with single forces location results. The summit area of Mt. Etna with respective cuts east-west and north-south in 
UTM coordinates are represented. The dot line square corresponds to the Green’s functions area, circles are the event 
locations and blue star is the average whole family INGV location. 
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Figure 63 - Slice plot of the residuals for the whole Green’s functions volume a) solution of MT including single forces; b) 
solution for MT only. The events are chosen on the basis of their location and residual value. Event 5 (top) dislocated in 
respect to the other events (northern boarder of the Green’s functions domain), event 11 (middle) highest absolute misfit 
value, event 14 lowest misfit. 
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solution. The locations without forces, even if are more scattered inside the Green’s 

functions volume, still show comparable results.  

Again, as for the monochromatic events analyzed in the previous section, the 

solution including forces seems to be more stable. The locations are more coherent 

among the whole set of analyzed events and eventual errors in the velocity model should 

be accommodated by single forces components (De Barros et al., 2011, 2013). For 

comparison, the whole set of residuals retrieved for the entire Green’s functions volume 

is reported in Figure 63  for three selected events (5, 11 and 14). Event 5 is chosen because 

its location is not coherent with the other location solutions. The event is located far 

towards the northern border of the Green’s functions domain. The misfit values for the 

MT- only solution are high and quite dispersed even if the eastern portion of the Green’s 

functions domain appear to be the most probable source location (Figure 63). The 

solution including forces shows a high dispersion of the residuals and a clear location 

cannot be defined.  It is worth nothing that event 5 shows a very low amplitude and signal 

to noise ratio (Figure 57) thus, retrieving a stable solution toward MT inversion can be 

difficult. Event 11 and event 14 represent the events with the highest and the minimum 

absolute misfit values respectively. The solution without single forces points to a well-

defined location only for event 14. The solutions including forces are comparable. For 

event 11 the solution seems to be well constrained horizontally while vertically all the 

locations could be possible active source points. For event 14 the solution seems well 

constrained both vertically and horizontally.  

 

5.4.3 Source mechanism 

 

Moment tensor inversion is performed for all the 20 analyzed events for the 

respective lowest residual locations (Table 13). The results for both the inversions with 

and without singles forces are reported in Table 14 and Table 15, respectively. First, I 

analyze briefly the results for the whole set of events and I will then study further 

(moment tensor decomposition and mechanism orientation) a couple of selected events. 

The solutions including forces (Table 14) show misfit values slightly lower than those 

found for the monochromatic set of events (in average misfit = 0.522). The eigenvalues 
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Table 14 – Results of MT inversion including single forces for the polychromatic set of events for the lowest residuals 

source location. Misfit values are computed between observed and retrieved data. Mechanism decomposition and principal 

component analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 2015), see 

section 2.3 for details. 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

event_01 0.499 1.0 1.06 2.27 8 9 0.64 0.34 0.03 

event_02 0.497 1.0 1.06 2.25 -6 10 0.64 0.34 0.03 

event_03 0.578 1.0 1.27 1.53 -60 17 0.83 0 0.17 

event_04 0.496 1.0 1.06 2.25 3 8 0.64 0.33 0.03 

event_05 0.590 1.0 1.15 3.1 24 17 0.56 0.39 0.05 

event_06 0.499 1.0 1.06 2.27 -9 9 0.64 0.34 0.03 

event_07 0.511 1.0 1.06 2.28 -20 10 0.63 0.34 0.03 

event_08 0.521 1.0 1.05 2.3 -1 8 0.63 0.35 0.02 

event_09 0.524 1.0 1.09 2.36 -43 11 0.63 0.33 0.04 

event_10 0.511 1.0 1.06 2.29 3 8 0.63 0.34 0.02 

event_11 0.623 1.0 1.11 2.33 -35 7 0.63 0.32 0.05 

event_12 0.511 1.0 1.05 2.28 -12 13 0.63 0.34 0.02 

event_13 0.522 1.0 1.1 1.82 77 11 0.72 0.22 0.06 

event_14 0.489 1.0 1.05 2.28 -6 11 0.63 0.34 0.02 

event_15 0.524 1.0 1.05 2.23 -3 11 0.64 0.34 0.02 

event_16 0.526 1.0 1.05 2.24 -2 10 0.64 0.34 0.02 

event_17 0.500 1.0 1.05 2.25 -6 11 0.64 0.34 0.02 

event_18 0.496 1.0 1.06 2.27 -7 11 0.64 0.34 0.03 

event_19 0.522 1.0 1.06 2.22 -4 9 0.64 0.33 0.03 

event_20 0.511 1.0 1.06 2.24 -7 7 0.64 0.33 0.03 

          

Average 0.522 1.0 1.1 2.3 -5.3 10.4 0.65 0.32 0.03 

STD 0.035 0.0 0.1 0.3 26.7 2.7 0.05 0.08 0.03 
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Table 15 – Results of MT inversion without single forces for the polychromatic set of events for the lowest residuals 
source location. Misfit values are computed between observed and retrieved data. Mechanism decomposition and 
principal component analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 
2015), see section 2.3 for details. 

M only misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

event_01 0.589 1.0 1.4 5.45 -8 12 0.48 0.45 0.07 

event_02 0.615 1.0 1.7 6.36 -13 13 0.47 0.42 0.11 

event_03 0.680 NaN NaN NaN NaN 0 NaN NaN NaN 

event_04 0.608 1.0 1.94 6.3 -22 16 0.49 0.36 0.15 

event_05 0.707 1.0 3.15 16.64 -53 11 0.42 0.45 0.13 

event_06 0.614 1.0 1.63 5.87 -17 15 0.48 0.41 0.11 

event_07 0.619 1.0 1.74 5.69 -15 13 0.49 0.38 0.13 

event_08 0.620 1.0 1.75 6.26 -9 14 0.48 0.4 0.12 

event_09 0.639 1.0 1.57 5.43 -13 14 0.49 0.41 0.1 

event_10 0.610 1.0 1.65 6.4 -6 12 0.47 0.43 0.1 

event_11 0.718 1.0 1.34 1.86 -55 76 0.75 0.06 0.18 

event_12 0.619 1.0 2.37 7.5 -22 6 0.48 0.33 0.18 

event_13 0.624 1.0 1.62 5.84 -7 13 0.48 0.41 0.11 

event_14 0.600 NaN NaN NaN NaN 0 NaN NaN NaN 

event_15 0.630 1.0 1.09 1.47 -16 92 0.81 0.13 0.06 

event_16 0.632 1.0 1.22 1.56 -11 91 0.81 0.05 0.14 

event_17 0.615 NaN NaN NaN NaN 0 NaN NaN NaN 

event_18 0.598 1.0 1.53 5.2 -15 12 0.5 0.4 0.1 

event_19 0.627 1.0 1.55 5.81 -5 12 0.48 0.43 0.09 

event_20 0.612 1.0 1.56 5.87 -5 13 0.48 0.43 0.1 

          

Average 0.629 1.0 1.7 5.9 -17.2 21.8 0.53 0.35 0.12 

STD 0.034 0.4 0.8 3.7 15.0 28.4 0.12 0.13 0.03 
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decomposition (λn) shows similar values between the whole set of events, thus an 

average ratio of 1 : 1.1 : 2.25 and a standard deviation STD = 0.3 for the major axis seem to 

suggest a common tensile crack source mechanism. The orientation angles (  = strike, θ 

= dip, Figure 2 for the reference system) are very similar for all the events with average   

= 5° and θ = 10° thus indicating a possible sub-horizontal crack source mechanism. The PCA 

(principal component analysis, Vavryčuk, 2001, 2015) shows a predominant CISO 

component (average CISO =  65%), an important CCLVD (average CCLVD = 32%) and a very low 

double-couple contribution (average CDC = 3%). Only event 03 shows a high CDC value (17%), 

but it is also the event with the highest residual (misfit=0.578) and the lowest absolute 

amplitude (Figure 56 and Figure 57). The inversion for MT-only (Table 15) shows slightly 

higher misfit than the solution including forces. The eigenvalues decomposition points to 

unrealistic values for the eigenvalues ratio with an average for the principal axis of ~5.9 

and a standard deviation of ~3.7. Orientation angles for the main eigenvector show again 

a sub-horizontal source mechanism, but slightly more sloping (average = 21.8°) with a high 

standard deviation (STD = 28.4°). The results after PCA (principal component analysis, 

(Vavryčuk, 2001, 2015) show an average CCLVD value equivalent to the solution including 

forces, a slightly lower CISO and a higher CDC (average CDC  = 12%). The solution for MT-only is 

more dispersed than the solution including forces. The high eigenvalues ratio and 

standard deviation of the MT-only solution suggest that the MT inversion including forces 

is more stable. As the decomposition results are very similar especially for the solution 

including forces and that the events seem to show a high degree of similarity a common 

source is supposed to exist. Thus, I focus my attention on two selected events: event 14 

which shows the lowest misfit value and event 13 which shows the lowest eigenvalues 

ratio (1 : 1.1 : 1.82) and the highest CISO component (Table 14).  

The moment tensor results for event 14 and event 13 are showed in Figure 64 and 

Figure 66 respectively. Waveforms fits between observed data and the moment tensor 

solution convolved with the Green’s functions are also reported in Figure 65 and Figure 

67. The moment tensor solutions between the two events (Figure 64 and Figure 66) are 

similar, but the solution for event 13 looks less complex, i.e. the oscillations are shorter. 

The source mechanism for both solutions including and excluding forces shows a 

complex time history and it is difficult to make further considerations on the source 



Chapter 5                                                               MT inversion of LP signals on Mt. Etna Volcano 

199 

 

mechanism from simple observation of the waveforms. The retrieved amplitudes are 

coherent between the two events, the Mzz component shows the highest amplitude value 

in both the solutions including (~1012 Nm) and without (~1011 Nm) single forces for both 

events. In the solution for MT-only the non-diagonal components of the moment tensor 

contribute more to the final solution with comparable amplitudes to the main diagonal 

components (excluding Mzz which amplitude is around double of the second most 

energetic STF). In the solution including forces the non-diagonal components of the 

moment tensor are negligible and do not contribute significantly to the solution. 

Synthetic and observed waveforms comparison shows good matching for stations 

located nearby the summit of Mt. Etna (ebel, ecpn, eplc), while further stations show a 

degraded solution. Noisy oscillations in the synthetic data arise especially for stations 

located at the boarder of the numerical domain (e.g. emsg, espc). However, nearest 

stations show higher recorded amplitudes, thus they contribute more to the final 

solution.   

After SVD and PCA both events show an eigenvalues ratio of 1 : 1 : ~2 for the solution 

including forces (Table 14) which,  for a Poisson’s ratio of 0.35, should correspond to a 

tensile crack mechanism. Dip orientation angles are the same for both events (θ = 11°) 

pointing to a quasi-horizontal crack. As highlighted before event 13 shows a lower CCLVD  

value (CCLVD = 22% for event 13 and CCLVD = 34% for event 14) and slightly higher CISO and CDC 

components. Even if the comparison between the MT-only solutions (Figure 64 and 

Figure 66) highlights the possibility of a different source mechanism, the PCA shows that 

the mechanism decomposition points to roughly similar results. The low double-couple 

components computed for both events coupled with the high CCLVD components suggest 

a possible tensile crack source mechanism. The solutions for MT-only (Table 15) are more 

dispersed. For event 14 the SVD condition that the first singular value must be at least 

double of the second (see section 2.3.5) is not satisfied. As highlighted in the description 

of the STF (source time function), the single forces tend to make the solution more stable 

suppressing the non-diagonal components. Hence, as errors due to mismodelling of the 

velocity structure  should be accommodated by the single forces components (De Barros 

et al., 2011, 2013) and that the MT-only decomposition seems less stable, the results 

obtained for the solution including forces should be more reliable.  
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In order to check the stability of the solution, I perform full moment tensor inversion, 

but for a mislocated source. I take as reference the location found by INGV (Table 13). The 

results of the inversion including forces for all the 20 events for the common INGV 

location are reported in Table 16. The misfit values are considerably higher than the 

previous inversion (0.691 in average for the mislocated source against 0.522 for the 

locations found towards MT inversion). Apart from the higher residuals, the solutions 

after SVD and PCA are similar. The eigenvalues decomposition shows in average a more 

limited ratio with the second and the third eigenvalues roughly similar. The source 

mechanism, as seen previously with the monochromatic set of events, could be seen as 

something in between an explosion (eigenvalues ratio of 1 : 1 : 1) and a tensile crack 

(eigenvalues ratio of 1 : 1 : 2). Anyway, despite the higher standard deviation values, the 

orientation angles are coherent with the solution for the MT inversion locations showing 

a quasi-horizontal (θ = 13.3) tensile crack mechanism. The values of isotropic, CLVD and 

double-couple are, on the opposite, quite different. The solution points in average to a 

strong isotropic component (CISO = 81%) a very low CLVD (CCLVD = 4%) and a quite high 

double-couple component (CDC = 15%).  

For comparison, I show the moment tensor solution (Figure 68) and the waveform 

fitting between observed and retrieved data (Figure 69) for event 14 and the INGV source 

location. The moment tensor solution for the mislocated source shows waveforms shape 

similar to the non-dislocated source. The amplitude ratio, on the opposite, shows a 

slightly predominant Mzz component, but in average the amplitude of the main diagonal 

components is roughly equivalent. The waveforms fit between synthetics and observed 

data is generally poorer, stations located nearby the summit of the volcano does not 

show a good fit especially for vertical component (e.g. stations ebel and ecpn) which 

were instead well reproduced for the lowest residual MT locations. In general, the 

solution for the mislocated source, as it happened for the monochromatic set of events 

(section 5.2.3), tends to a more isotropic mechanism with stronger double-couple 

components. Hence, the different source location complicates the solution and opens to 

a mixed tensile/shear source mechanism.  
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Table 16 – Results of MT inversion including single forces for the polychromatic set of events for the INGV source 
location. Misfit values are computed between observed and retrieved data. Mechanism decomposition and principal 
component analysis have been performed following the in indications of Vasco, (1989) and (Vavryčuk, 2001, 2015), see 
section 2.3 for details. 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

event_01 0.698 1.0 1.23 1.51 59 7 0.83 0.02 0.15 

event_02 0.684 1.0 1.22 1.65 83 15 0.78 0.09 0.13 

event_03 0.705 1.0 1.36 1.59 33 11 0.83 0.05 0.12 

event_04 0.704 1.0 1.17 1.44 -65 6 0.84 0.05 0.12 

event_05 0.707 1.0 1.15 1.43 75 7 0.84 0.06 0.1 

event_06 0.702 1.0 1.28 1.56 67 13 0.82 0 0.18 

event_07 0.653 1.0 1.58 1.77 36 6 0.82 0.11 0.07 

event_08 0.677 1.0 1.23 1.69 85 19 0.77 0.09 0.14 

event_09 0.686 1.0 1.27 1.58 -16 4 0.81 0.02 0.17 

event_10 0.685 1.0 1.15 1.23 74 61 0.92 0.03 0.05 

event_11 0.689 1.0 1.33 1.63 -36 11 0.81 0.01 0.18 

event_12 0.688 1.0 1.4 1.82 -74 11 0.77 0.01 0.22 

event_13 0.704 1.0 1.25 1.77 87 10 0.76 0.1 0.14 

event_14 0.673 1.0 1.38 1.82 -73 14 0.77 0.02 0.21 

event_15 0.692 1.0 1.28 1.67 -62 9 0.79 0.04 0.17 

event_16 0.712 1.0 1.2 1.39 65 16 0.86 0.01 0.13 

event_17 0.705 1.0 1.32 1.61 73 14 0.82 0.02 0.17 

event_18 0.681 1.0 1.33 1.79 84 11 0.77 0.05 0.18 

event_19 0.707 1.0 1.29 1.6 -81 10 0.81 0 0.18 

event_20 0.671 1.0 1.35 1.65 74 11 0.81 0.02 0.18 

          

Average 0.691 1.0 1.3 1.6 24.4 13.3 0.81 0.04 0.15 

STD 0.015 0.0 0.1 0.2 65.0 11.8 0.04 0.03 0.04 
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Figure 64 – a) MT inversion solution including forces for event 14 of the polychromatic set of events for the lowest residual 
source location and 14 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same 
event. 
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Figure 65 – Comparison between the observed data and the MT solution convolved with the Green’s functions for event 14 
of the polychromatic set of events. Blue lines correspond to the observed data and red lines to the retrieved solution. 
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Figure 66 – a) MT inversion solution including forces for event 13 of the polychromatic set of events for the lowest residual 
source location and 14 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same 
event. 
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Figure 67 – Comparison between the observed data and the MT solution convolved with the Green’s functions for event 13 
of the polychromatic set of events. Blue lines correspond to the observed data and red lines to the retrieved solution. 
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Figure 68 – a) MT inversion solution including forces for event 14 of the polychromatic set of events for the INGV source 
location and 14 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same event. 
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Figure 69 – Comparison between the observed data and the MT solution convolved with the Green’s functions for event 14 
of the polychromatic set of events for the source location found by INGV. Blue lines correspond to the observed data and 
red lines to the retrieved solution. 



Chapter 5                                                               MT inversion of LP signals on Mt. Etna Volcano 

208 

 

Table 17 – Results for the constrained MT inversion for the solution including and without single forces for the 
polychromatic set of events and lowest residual location. Lowest residual obtained for an isotropic mechanism (Misfit exp) 
and for a tensile crack mechanism (Misfit crack). I also report the couple of orientation angles for the lowest crack residual. 

 M+F M only 

 

Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 
Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 

event_01 0.617 0.623 150 90 0.903 0.820 350 10 

event_02 0.652 0.638 160 90 0.923 0.842 0 10 

event_03 0.734 0.752 290 50 0.886 0.863 170 80 

event_04 0.648 0.628 340 80 0.922 0.850 350 30 

event_05 0.805 0.776 0 30 0.968 0.931 100 50 

event_06 0.650 0.638 340 80 0.928 0.859 350 20 

event_07 0.670 0.638 340 80 0.917 0.828 350 30 

event_08 0.675 0.668 240 40 0.924 0.865 350 10 

event_09 0.699 0.684 80 80 0.928 0.863 0 0 

event_10 0.655 0.648 250 50 0.925 0.846 0 0 

event_11 0.827 0.790 120 40 0.951 0.891 120 50 

event_12 0.658 0.624 160 90 0.887 0.807 350 30 

event_13 0.666 0.690 90 20 0.916 0.851 230 80 

event_14 0.640 0.626 340 80 0.909 0.817 350 20 

event_15 0.677 0.658 160 90 0.912 0.824 360 10 

event_16 0.681 0.659 160 90 0.922 0.838 0 10 

event_17 0.660 0.642 340 90 0.922 0.828 350 20 

event_18 0.630 0.607 340 80 0.902 0.826 350 20 

event_19 0.675 0.670 240 60 0.919 0.843 0 10 

event_20 0.665 0.656 340 80 0.906 0.838 350 10 

         

Average 0.679 0.666 224 70 0.919 0.847 224 25 

STD 0.053 0.051 108 23 0.019 0.028 155 23 
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Figure 70 – Constrained inversion residuals plot for the tensile crack solution for the solution including single forces for the 
polychromatic set of events. Event number is reported on the top left of each contour plot, misfit range legend on the right 
side. Red cross indicates the lowest retrieved minima misfit. 
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Figure 71 – Constrained inversion residuals plot for the tensile crack solution for the solution without single forces for the 
polychromatic set of events. Event number is reported on the top left of each contour plot, misfit range legend on the right 
side. Red cross indicates the lowest retrieved minima misfit. 
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As the residuals are considerably higher, the solutions for the moment tensor 

inversion locations seem more reliable. In order to check if an isotropic source is a more 

suitable interpretation for the source mechanism, I perform a constrained inversion for all 

the set of events for the original MT inversion lowest residual locations. The procedure is 

described in detail in chapter 2, section 2.3. During the inversion the mechanism is 

constrained to (1) an isotropic source and (2) a tensile crack with a grid search for the 

best possible couple of angles orientations (azimuth and dip). Results for both solutions 

with and without single forces are reported in (Table 17). Results for best tensile crack 

orientation angles for the solution including and without forces are reported in Figure 70 

and in Figure 71 respectively. 

The residuals for the solutions including forces are almost identical (~0.66) for both 

an isotropic and a tensile crack source. The best orientation angles for the crack solution 

show a high standard deviation and point to a sub-vertical crack oriented SW-NE. The 

solution without forces shows very high misfit values (~0.9) for both an isotropic and a 

tensile crack source. The orientation angles, on the opposite, point to a quasi-horizontal 

crack slightly oriented SW-NE. Looking at the plots of the residuals for each couple of 

angles orientation (Figure 70 and Figure 71) it appears that the solution including forces is 

highly dispersed, i.e. many different orientation angles orientations show low residuals 

and the solutions are not consistent between different events. On the opposite, the 

residuals for the solutions without forces are more coherent between events and almost 

all solutions point to a quasi-horizontal crack. The similar average residuals obtained for 

the isotropic and the crack source mechanism in the solution including forces do not let 

discriminate which solution is most suitable. Thus, it seems that single forces in the 

solution help to fit the data no matter what orientation mechanism is and strongly 

influence the results of the constrained inversion. Despite the high misfit values obtained 

in the inversion without forces, the MT-only solutions seem more stable and coherent 

both between events and with the moment tensor decomposition described previously. 

Hence, a quasi-horizontal tensile crack seems the most plausible source mechanism.   

As for the previous set of monochromatic events I develop the principal component 

analysis in order to find out the possible contribution from a mixed tensile/shear 

mechanism, the procedure is explained in the previous section (section 5.2.3). As the 
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results between events for the solutions including forces are very coherent (Table 14) I 

take the average contribution of CISO, CCLVD and CDC (65%, 34% and 4% respectively) and 

following Vavryčuk, (2001, 2015) I compute κ = 2.05. For a given value of κ the proportion 

of isotropic, CLVD and double couple versus the angle α can be plotted as shown in Figure 

72. It is quite surprising that for such a value of κ, even for high values of α, the source 

mechanism could be interpreted with an important shear component. In this case, the 

 

Figure 72 – Relationship between α and the double-couple (DC), isotropic (ISO) and CLVD components for the source 
mechanism of events with k=2.05  using the relationship of Vavryčuk, (2001). 

 

average values for the mixed ISO/DC mechanism (Equations (64), (65) and (66) for the 

MT inversion of Table 14) are: α = 90°, β = 90° and ρ = -80° (Figure 18). I exclude event 03 

from the computation because the computed value of κ is unrealistic. A value of α = 90° 

means that the source mechanism is completely shear free. Thus an isotropic source or 

either a tensile crack should be the most probable source mechanisms.  

The moment tensor inversion results for the polychromatic events are coherent 

between the different decomposition methods used to interpret the source type and 
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orientation. The decomposition of the solution including forces and the constrained 

inversion for the MT-only solutions suggest a quasi-horizontal tensile crack source 

mechanism. The PCA points out that the low double-couple components are irrelevant to 

the solution. Thus, as the events show a high degree of similarity, the tensile crack 

interpretation should be a reliable source mechanism for the whole set of events. The 

implication for such source mechanism will be discussed in the next section. 

 

5.4.4 Interpretation of the source mechanism 

 

The MT inversion for the polychromatic set of events points to shallowly dipping 

tensile cracks located roughly below the BN crater. A shallowly dipping tensile crack was 

also the retrieved source mechanism for the monochromatic set of events (section 5.3.2), 

but the volcanic activity context in which occurred the polychromatic events was 

considerably different. If the monochromatic events were recorded during the so-called 

“draining phase” this second set of events is more likely related to a “recharging phase” 

of the volcano. In 2010 the behavior of the volcano became mainly explosive with around 

35 major explosions recorded at the summit craters (see section 5.4). On the 25th of 

August 2010 a powerful phreatomagmatic eruption took place from BN producing an ash 

plume that rose 1-2 km above the volcano summit (Patanè et al., 2013). In the next two 

months the volcanic activity became very weak, only some minor explosions, mainly 

related to ash emissions, took place at BN. During these two months the activity was 

mainly related to intense degassing from BN. It was at the beginning of November when 

the explosive activity resumed at BN and since the second half of November that near-

continuous ash emissions were recorded. This new reactivation phase led to a new 

eruptive cycle which took place at the beginning of 2011 from the pit crater of SEC 

(Patanè et al., 2013). The polychromatic events were recorded on 5th and 6th of October 

2010 in a period where CO2 and SO2 emissions at the summit craters were increasing and 

this anticipated the reactivation of BN (Patanè et al., 2013) at the beginning of November. 

I can presume that, at the time of the recordings, pressure was building up in the shallow 

plumbing system.  

First of all, the locations obtained towards MT inversion and the INGV location are 
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very coherent: both point to the shallow portion of the summit craters just below BN. 

Thus, as BN was the most active crater at the time of the recordings, the LP events may 

be correlated to the BN activity. Contrariwise to the monochromatic set of events, the 

summit stations for the polychromatic events do not show a “pulse-like” nature, but a 

more elongated process. A longer process can also be inferred from the retrieved source 

time functions for event 14 (Figure 68) with main component Mzz showing a ~8 s long 

source and a decaying coda until ~18 s. The higher frequency content of summit stations 

(Figure 58 and Figure 60) definitively points to a different source process compared to 

the monochromatic events, probably involving some fragile response of the rocks 

surrounding the source region induced by the low frequency source. Moreover, the PCA 

points to a full tensile mechanism. Taken all together these observations suggest that the 

events could represent the harmonic oscillation of a magmatic/hydrothermal reservoir 

repeatedly triggered by pressure steps (Lokmer et al., 2007; Saccorotti et al., 2007). The 

continuous degassing recorded at BN would suggest that only fluids and gas were 

actually permeating the shallow plumbing system supporting the hydrothermal origin of 

the shallow LP signals. Following the resonating fracture hypothesis I can get information 

about the nature of the fluids/gas involved in the process by computing the quality factor 

(Q) of the resonator. Q can be estimated from the LPs spectral content as (Saccorotti et 

al., 2007) 

 

 
   

 

  
 

(79) 
 

where f is the frequency corresponding to a given spectral peak and Δf is the width of 

that peak at half the peak’s magnitude. Q can be expressed as:        
     

   where 

  
   represents the energy losses at the fluid rock interface and   

   represents the 

intrinsic attenuation in the fluid. I apply Equation (79) to the dominant frequency peak 

(~0.6 Hz in average for all the observed events) of the most energetic component (Mzz) of 

the retrieved source time functions. The retrieved Q values (not showed here) show 

similar results between the whole set of events with average Q = ~5. This value is very 

similar to the retrieved Q = 1.5 by Saccorotti et al., (2007) who studied thousands of LP 

events recorded on Mt. Etna in 2004-2005. On the opposite, the retrieved Q is significantly 
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smaller than those observed at other volcanoes with Q values spanning the 100-500 range 

(Kumagai and Chouet, 1999; Kumagai et al., 2005). Such a small Q value is of difficult 

interpretation as it could correspond to many different fluid/gas compositions and 

combinations of   
   and   

   , (Kumagai and Chouet, 1999, 2000).  As found by 

Saccorotti et al., (2007), such a small value of Q could correspond to a crack filled with a 

basalt-gas or  water-vapour mixtures at very low gas-volume fractions. For instance, at 

the retrieved LPs hypocentral depth I would expect a lithostatic pressure in the 5-10 MPa 

range which would correspond to a basalt with a gas-volume fraction close to “0” or to a 

fracture filled with bubbly water at 1-1.5% of gas volume fraction (Kumagai and Chouet, 

2000; Saccorotti et al., 2007). For this computation I do not take in account for more 

complex fluid/gas mixtures involving other gas phases such as CO2 or SO2 which are 

strong possible candidates for explaining the acoustical properties of the shallow fluid 

filled cavities. I compute the volume of fluid/gas involved in the source process by means 

of Equations (70) and (71) as discussed in sections 2.4 and 5.3.4. Averaging the resulting 

volume variations for the whole set of events I obtain ΔV = 242 – 437 m3 for the solution 

including forces. These volume variations are lower than those computed for the 

monochromatic set of events and comparable to the value obtained by Saccorotti et al., 

(2007) for VLP events with ΔV = 200 m3. The retrieved ΔV values would correspond to a 

normal displacement of 2-4 cm for a 100 m sided square crack which is coherent with the 

size of the water-vapour filled crack source imagined by Lokmer et al., (2008) for the 

2004-2005 Mt. Etna eruption.  

The similarity between the Q values and the retrieved ΔV variations computed for the 

polychromatic set of events and the results obtained by Saccorotti et al., (2007) and 

Lokmer et al., (2008) suggest that the LPs source mechanism could be related to an 

oscillating fluid filled crack. The retrieved Q values suggest that the hydrothermal system 

is the most likely source of LP events. Nakano et al., (2003) proposed a model for the 

generation of LP seismicity at Kusatsu-Shirane volcano, Japan for a retrieved sub-

horizontal tensile crack source mechanism similar to the one encountered here at Mt. 

Etna. In such a context, a magmatic source located at higher depth could transfer 

magmatic heat towards the surface by means of hot volcanic gases. This would provide  
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Figure 73 – Eigenvector orientations plot of the MT inversion solutions for each of the considered polychromatic events. The 
eigenvectors are plotted if at least one MT component was higher than 70% of the maximal absolute peak magnitude. The 
number of the events is reported on the top left of each sketch. Blue) x-component eigenvector; Black) y-component 
eigenvector; Red) vertical-component eigenvector. 
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Figure 74 – Same plot as Figure 73, but only for the vertical-component eigenvector. The different colors represent first 
(red) and second (black) half of the STF solutions. It appears that many events show two roughly similar, but different 
orientations. 
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the energy for the generation of steam from hydrothermal water and increase the supply 

of gas in the resonator causing a gradual building up of steam pressure. Once a certain 

pressure threshold reached, the fluids would be rapidly discharged from the crack into 

the conduit causing the collapse of the fracture and the excitation of resonance along the 

crack walls (Figure 12). 

Such a model would fit with the particular state of the activity of Mt. Etna at the time 

of the recorded LP events, but the oscillations, clearly observed in the decaying coda of 

the LPs recorded at Kusatsu-Shirane (see Figure 2 in Nakano et al., 2003), are not 

recognizable here at comparable distance from the source (Figure 58, station ecpn). In 

case of the excitation of a fluid filled crack, I would expect a main source process with a 

slowly decaying resonating coda. Looking at the retrieved source time functions for the 

solution including forces for event 14, Mzz component (Figure 64) it seems that, on the 

opposite, two sources delayed in time are followed by some resonating features. If I plot 

the eigenvectors (in time) orientations for all the studied events (Figure 73) it can be 

clearly seen that the solutions are very similar and point to the same mechanism 

orientation. It can be recognized that the vertical, and most energetic component, tends 

to split in two (or three) roughly similar, but distinct, directions. If I focus only on the 

vertical component and plot with two different colors the eigenvectors for the first (red) 

and the second (black) portion of the source time functions (Figure 74) it can be seen 

that the two main directions correspond roughly to two different parts of the source time 

functions. This is particularly evident for some events (event 2, event 6, event 11, event 15 

and event 18). Instead of a resonating source, two “pulse-like” sources delayed in time are 

acting together. Lokmer et al., (2008), studying the fundamental modes of resonance of a 

vertical tensile crack, suggested that the oscillating crack could be described by two 

simultaneously acting, closely spaced sources, but with opposite signs. They argued that 

different polarizations in the wave train could have been explained by the excitation of 

perpendicular modes of source resonance. Their considerations were based on the fact 

that waves with opposite polarization were observed before and after the eruption. It is 

unlikely that such excitation of perpendicular modes would be produced by two sources 

closely spaced in time. The hypothesis that a resonant source is at the origin of the 

recorded polychromatic LPs is supported by the oscillating features observed 
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Figure 75 – Comparison between the MT plus single forces inversion solutions of event 14 using four (black) and 13 (red) 
stations of the INGV permanent seismic network.  

 

for far stations (e.g. station emcn, Figure 59 and Figure 61), but it is not recognizable at 

summit stations.  Looking at Figure 65 showing the fit between observed and retrieved 

data for event 14, almost perfect fit is obtained for summit stations ebel, ecpn and eplc, 

suggesting that, at the observed frequencies, the velocity model approximates quite well 

the real geological context in the near-field. For farther stations (e.g. espc, emfo etc.) the 

fit is poor due to accumulated errors in the velocity model and in the topography 

implementation. Hence it is inferred that the most energetic part of the retrieved MT 

solutions (Figure 66) comes mainly from summit stations while the oscillating-like coda 

contribution is mainly due to far stations and path effects or/and errors in the velocity 

model.  



Chapter 5                                                               MT inversion of LP signals on Mt. Etna Volcano 

220 

 

In order to test this interpretation, I perform MT inversion for event 14 using only four 

of the summit stations (eplc, epdn, ecpn and ebel). As expected the misfit value between 

observed and retrieved data is very low (misfit = 0.130) thus the waveforms recorded at 

the summit stations are very well reproduced (not showed here). MT decomposition for 

the MT inversion including only the four summit stations points to the same source 

mechanism found for the solution including all the available network stations (i.e. a sub-

horizontal tensile crack with no shear components). I plot the retrieved STF and I 

compare with the solution obtained including all the available stations (Figure 75). I 

remark that the solution obtained including only the four summit stations is: 

 

a) similar to the full network solution, but phase and amplitude differences arise due 

to reduced path effects; 

b) shorter compared to the full network solution, further suggesting that any 

resonating source process is occurring; 

c) split in two different “pulse like” waveforms  that can be now easily recogni ed. 

 

These founding are coherent with the model proposed by Bean et al., (2014) who stated 

that some class of LPs recorded on volcanoes could be referred to slow, quasi-brittle, 

failure of rocks driven by transient upper-edifice deformation.  

At the time of the recordings Mt. Etna was experiencing inflation at medium and low 

altitudes (Patanè et al., 2013). Close to the surface, due to reduced lithostatic pressure, 

the minimum principal stress direction would orient normal to the surface itself. The 

weak-low stiffness materials which compose the shallowest portion of the volcanic 

edifice would experience a ductile deformation and fractures could open parallel to the 

surface itself. The retrieved quasi-horizontal cracks could be expression of the stress field 

modification induced by the deformation source at depth. The intense degassing 

recorded at BN could play an important role and a clear correlation between deformation 

and seismicity has not been established yet. A simplified model for the inferred source 

mechanism interpretation is proposed in Figure 76. 
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Figure 76 – Sketch of the possible source model for the polychromatic events. Degassin of a magma body or heat/fluid 
interactions in the hydrotermal system could have triggered pressure building up in the shallow plumbing system. Pressure 
could cause a modification in the stress field thus inducing the tensile opening of horizonatal cracks in the shallow 
unconsolidated materials. Intense degassing at the BN crater and the excitiation of shallow fluid filled cavities could also 
explain the LP events generation. The two sligthly similar crack orientations found for many of the considered events are 
reported with blac and red ellipses. Note that the sketch is very speculative and the shape of the magma body, the 
hydrotermal reservoir and the network of fractures below NEC and BN craters are unknown. 
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5.5 BN explosion (September 5th, 2013) 
 

The last event considered in this study occurred on the 5th of September, 2013. The 

lava fountain which occurred at the beginning of 2011 (described in the previous section) 

marked the beginning of a new eruptive cycle which lasted until the end of 2012 leading 

to the creation of the new cone of NSEC (New South East Crater, April 2012) (Behncke et 

al., 2014). In 2013 the activity of the volcano continued rather intensely (Spampinato et al., 

2015) with episodic lava fountains occurring at NSEC and Strombolian activity at NSEC and 

BN. A period of quiescence followed this sustained eruptive cycle. In the period from May 

to September 2013 any eruptive activity was recorded (Cannata et al., 2015; INGV internal 

reports). On the 5th of September a violent explosion took place at BN. This explosion 

produced an important morphological modification of the BN crater (Figure 77) and 

marked a change in the overall activity of the volcano. In the hours and days following the 

BN explosion an increase in the explosive activity was observed at NSEC which 

culminated in a paroxysmal episode on the 26th October 2013. The paroxysmal episode 

marked the beginning of a new eruptive cycle of eight lava fountains which lasted until 

December 2013 (Cannata et al., 2015; INGV internal reports). I focus my attention here on 

the 5th September 2013 BN explosion.  

 

Figure 77 – Pictures taken by (a) Boris Behncke on 23 August and by (b) Biagio Ragonese on 7 September 2013 showing the 
inner part of BN. The solidified lava flow which covered the NW sector of BN before the explosion was replaced by a 
depression after the explosion. Figure reproduced after Cannata et al., (2015). 
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Figure 78 – Raw velocity trace of the BN explosion event recorded at station ecpn. The decomposition in part I and part II is 
highlighted by the dot lines.  
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Figure 79 – a) top: x-component of velocity recorded at station ecpn for part I of the BN event. The seismic trace is filtered 
between 0.2 and 1.3 Hz (blue) and between 0.3 – 3 Hz (red); middle: short time Fourier transform plot of the unfiltered 
velocity trace, red correspond to high power towards blue lower; bottom: power spectral density of the unfiltered velocity 
trace. b) and c) same as a), for –y and –z components respectively  
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Figure 80 - a) top: x-component of velocity recorded at station emcn for part I of the BN event. The seismic trace is filtered 
between 0.2 and 1.3 Hz (blue) and between 0.3 – 3 Hz (red); middle: short time Fourier transform plot of the unfiltered 
velocity trace, red correspond to high power towards blue lower; bottom: power spectral density of the unfiltered velocity 
trace. b) and c) same as a), for –y and –z components respectively 
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Figure 81 – – a) top: x-component of velocity recorded at station emfs for part I of the BN event. The seismic trace is filtered 
between 0.2 and 1.3 Hz (blue) and between 0.3 – 3 Hz (red); middle: short time Fourier transform plot of the unfiltered 
velocity trace, red correspond to high power towards blue lower; bottom: power spectral density of the unfiltered velocity 
trace. b) and c) same as a), for –y and –z components respectively 
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Figure 82 – – a) top: x-component of velocity recorded at station ecpn for part II of the BN event. The seismic trace is 
filtered between 0.2 and 1.3 Hz (blue) and between 0.3 – 3 Hz (red); middle: short time Fourier transform plot of the 
unfiltered velocity trace, red correspond to high power towards blue lower; bottom: power spectral density of the 
unfiltered velocity trace. b) and c) same as a), for –y and –z components respectively 
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Figure 83 – a) top: x-component of velocity recorded at station emfs for part II of the BN event. The seismic trace is filtered 
between 0.2 and 1.3 Hz (blue) and between 0.3 – 3 Hz (red); middle: short time Fourier transform plot of the unfiltered 
velocity trace, red correspond to high power towards blue lower; bottom: power spectral density of the unfiltered velocity 
trace. b) and c) same as a), for –y and –z components respectively 
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5.5.1 Data  

 

The BN explosion occurred at 15:39 on the 5th September, 2013. The seismic signal 

representing the three velocity components of the 120 s trace recorded at station ecpn is 

reported in Figure 78. Cannata et al., (2015) identified two main parts for the recorded 

signal: a) part I showing low amplitude and lasting ~20 s; b) part II more energetic with 

duration of ~15 s and a coda (Figure 78).  Cannata et al., (2015) located the two portions of 

the signal separately and obtained a very shallow source for both solutions with the part I 

slightly deeper (~2500 m.a.s.l) than the one of part II (~3100 m.a.s.l.). They interpreted the 

source mechanism of the part I as a sudden modification in the geometry of the shallow 

plumbing system while part II was interpreted as the seismic signature of the expulsion of 

the BN plug then replaced by a morphological depression. Three examples for part I 

recorded at stations ecpn, emcn and emfs are plotted in Figure 79, Figure 80 and Figure 81 

respectively. The seismic traces have been band-pass filtered in two frequency ranges 

(0.3 – 1.3 Hz and 0.3 – 3 Hz) and the spectrograms have been computed for the unfiltered 

signal. The second part of the signal is showed in Figure 82 (ecpn station) and Figure 83 

(emfs station). Station emcn (Figure 80), which was used for comparison in the analysis of 

the previous sets of events, shows very low amplitude (10-7 m/s) compared to station 

emfs (Figure 81, 10-5 m/s) which is located at a similar distance from the summit craters. 

The emcn signal shows a very low signal-to-noise ratio and many high frequency peaks 

appear in the spectrogram which are different from the other stations. Hence, ecpn 

station will not be used in the MT inversion.  

Both two parts of the signal show an emergent onset at all stations with part I 

showing considerably lower amplitude (~1 order of difference, 10-4 to 10-3 m/s). Part I of 

the signal shows a pulse-like low frequency onset more evident for station ecpn (Figure 

79). After the onset the range of frequencies slowly widens. The spectral analysis shows 

many spectral peaks in the whole band of analyzed frequencies (0-15 Hz) especially for 

the nearest station ecpn. The high frequency peaks disappear for the farther station emfs 

where the main energy is focused in the classical LP range (0.1 – 2 Hz). A weak high 

frequency process is involved in the source mechanism of part I even if the high 

frequencies are less recognizable for farther stations because of attenuation. Higher 
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frequencies are hard to interpret toward MT inversion because they are more sensitive to 

velocity variations. Moreover, the Green’s functions have been computed in a velocity 

model numerically guaranteed until ~3 Hz. Hence, the high frequency contribution to part 

I will be filtered away for the MT inversion. Thus, I will focus my attention on the low 

frequency part of the signal keeping in mind that while filtering, I’m missing some 

information about the real source process (Thun et al., 2015). On the opposite, part II 

shows a narrower frequency range (Figure 82 and Figure 83) with two main frequency 

peaks at ~1 Hz and ~2 Hz. The energy is centered in the classical LP frequency range, thus 

the source process should mainly be related to a low frequency mechanism. Hence, in 

order to have the inversion stable I will perform source location and MT inversion for a 

narrow frequency band (0.3–1.3 Hz) for both part I and part II. 

 

 

5.5.2 Location results 

 

I perform MT inversion for all the 14196 point sources in the supposed domain and 

obtain the best source location corresponding to the lowest residual between observed 

and retrieved data. The velocity traces are band-pass filtered between 0.3 and 1.3 Hz, 

integrated, detrended and then convolved with the source time function used for Green’s 

function computation. Results for both the inversions including and without forces are 

reported in Table 18, Figure 84 (part I) and Figure 85 (part II). For comparison, I also 

report the location solution found by INGV obtained towards semblance and R2 method 

(Cannata et al., 2013, 2015 for further details). 

I start with discussing the location of part II. As the signal had a clear surface 

manifestation (the collapse of BN), I expect to find the location solutions roughly around 

the BN crater. The INGV solution is exactly located below the BN crater at a very shallow 

depth (~100 m below the surface, Figure 85). Both solutions for the MT inversions 

including and without single forces point to a horizontal location slightly far (~50 m) from 

the BN crater and the INGV location. On the opposite, the locations are very deep (~2300 

m.a.s.l.) and not really coherent with the surface evidence of the BN collapse. Comparing 

the misfit values obtained for the whole Green’s functions volume (Figure 85, b and c) the 

locations for both the solutions including and without forces are better constrained 
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Figure 84 - Graphical representation of the location results for part I of the BN explosion event. a) MT inversion location 
results. The summit area of Mt. Etna with respective cuts east-west and north-south in UTM coordinates are represented. 
The dot line square corresponds to the Green’s functions area, both solutions including and without single forces are 
reported. Blue star corresponds to the INGV location. b) slice plot of the residuals for the whole Green’s functions volume 
(left) solution of MT including single forces; (right) solution for MT only.  
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Figure 85 - Graphical representation of the location results for part II of the BN explosion event. a) MT inversion location 
results. The summit area of Mt. Etna with respective cuts east-west and north-south in UTM coordinates are represented. 
The dot line square corresponds to the Green’s functions area, both solutions including and without single forces are 
reported. Blue star corresponds to the INGV location. b) slice plot of the residuals for the whole Green’s functions volume 
(left) solution of MT including single forces; (right) solution for MT only. 
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horizontally than vertically. Especially for the solution including forces, the entire vertical 

column of point sources shows a little difference in residuals. As stated in the previous 

chapter the vertical location toward MT inversion lacks of precision. The high vertical 

difference between the INGV and the MT inversion solutions could come from the lack of 

near-field stations around the source. The stations available for the inversion (Figure 28) 

are mainly located far from the summit of Mt. Etna, thus path effects strongly influence 

the MT inversion. Recall that emcn intermediate field station showed low signal to noise 

data and that ebel summit station was destroyed during the paroxysmal episode of 28 

February 2013, hence these two stations were not included in MT inversion. The lack of 

ebel station risks to strongly influence the results of the inversion because it was one of 

the four stations located nearby the summit craters and because it guaranteed good 

azimuthal coverage (De Barros et al., 2011) towards Valle del Bove in a sector poorly 

covered by seismic stations. The vertical weakly constrained location solution could be 

directly related to the low coverage of summit stations. As I cannot state a-priori which 

solution better reflects the real location, the source mechanism will be investigated for 

both the location found towards MT inversion and the location found by INGV.  

Location of part I points, for both solutions including and without single forces, to the 

NW side of the summit craters on the opposite side of BN where is located the solution 

performed by INGV (Figure 84 a). In this case the solution including forces is ~300 m 

shallower than the INGV location while the solution without forces is  

 

Table 18 – MT inversion solution location for both part I and part II of the BN explosion event. The solution is expressed in 
UTM coordinates (longitude and latitude) and elevation in meters. Left) solution including singles forces; right) solution for 
MT-only. 

 M+F M only 

 
misfit x (km) y (km) z (m) misfit x (km) y (km) z (m) 

Part I 0.404 499438 4178980 2800 0.548 499078 4179220 2200 

Part II 0.360 499158 4178220 2240 0.507 499158 4178220 2400 

 

~300 m deeper. The residuals slightly vary between sources located at the opposite sides 

of the Green’s functions domain (Figure 84 b). For both solutions with and without single 

forces the location is not well defined. The evidence of the explosion at the surface 
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suggests that the realistic location of the seismic signal should be below the BN crater. 

Due to the lack of stations coverage and to the intrinsic low resolution of the MT 

inversion location, I cannot discriminate which location is better for investigating the 

source mechanism. Thus I will perform MT inversion for the two lowest residuals 

locations and for the INGV solution.  

 

5.5.3 Source mechanism 

 

Moment tensor inversion is performed for both part I and part II independently. All 

the results for both part I and part II, for the lowest residual and for the INGV locations 

and for both the solutions with and without single forces are reported in Table 19.  

 

5.5.3.1 Part I 

 

MT inversion of part I shows misfit values between observed and retrieved data 

slightly lower than the residuals computed for the second set of events (section 5.4.3) for 

both the solutions including forces (misfit = 0.404) and MT-only (misfit = 0.548). The 

eigenvalues ratios for the two solutions are very different pointing to a crack (1 : 1.17 : 

2.65) for the solution including forces and to an explosion (1 : 1.1 : 1.16) for the MT-only 

solution. The PCA shows coherent results with the eigenvalue ratios with CISO = 61%, CCLVD = 

33% and CDC = 6% for the solution including forces corresponding to a quasi-horizontal 

(θ=11°) crack. On the opposite, the CISO = 94% for the MT-only solution strongly suggests a 

full isotropic source mechanism. The retrieved source time functions (Figure 86) show a 

complex source mechanism. For both solutions with and without single forces the source 

time functions imply a long source process (~10 s) and it is difficult to interpret them by 

any simple explication. As expected, a better fit between the observed and the residual 

data is obtained for the solution including forces (Figure 86). The original amplitudes of 

the observed signals are better recovered by the M+F solution (Figure 87 and Figure 89).  

I perform a constrained inversion for both solutions including and without single 

forces for an explosion and a crack source mechanism. The results are listed in Table 20 

and Figure 90. The explosion solution shows a slightly higher residual than the crack 
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Figure 86 – a) MT inversion solution including forces for part I of the BN explosion event for the lowest residual source 
location and 12 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same event. 
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Figure 87 – Comparison between the observed data and the MT solution convolved with the Green’s functions for part I of 
the BN explosion event. Blue lines correspond to the observed data and red lines to the retrieved solution. Data records for 
station ebel are missing. Data records for station ebel are missing. Data records for station emcn show a very signal to noise 
ratio and have been not considered for the MT inversion. 
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Figure 88 – a) MT inversion solution including forces for part I of the BN explosion event for the INGV source location and 12 
stations of the INGV permanent network. b) MT inversion solution excluding forces for the same event. 
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Figure 89 – Comparison between the observed data and the MT solution convolved with the Green’s functions for part I of 
the BN explosion event for the source loction found by INGV. Blue lines correspond to the observed data and red lines to the 
retrieved solution. Data records for station ebel are missing. Data records for station emcn show a very signal to noise ratio 
and have been not considered for the MT inversion. 
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Table 19 – Results of MT inversion including single forces for BN explosion event for the lowest residuals source location 
and for the INGV location. Misfit values are computed between observed and retrieved data. Mechanism 
decomposition and principal component analysis have been performed following the in indications of Vasco, (1989) and 
(Vavryčuk, 2001, 2015), see section 2.3 for details. 

Lowest residual location 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

part I 0.404 1.0 1.17 2.65 -39 11 0.61 0.33 0.06 

part II 0.360 1.0 1.14 1.52 59 22 0.80 0.11 0.09 

          

M only misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD  

part I 0.548 1.0 1.1 1.16 -51 142 0.94 0.02 0.04 

part II 0.507 1.0 1.21 1.76 -40 94 0.75 0.13 0.12 

 

INGV location 

M+F misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD CDC 

part I 0.435 1.0 1.22 1.66 6 8 0.78 0.08 0.14 

part II 0.443 1.0 1.02 2.54 75 11 0.60 0.39 0.01 

          

M only misfit λ1 λ2 λ3   (°) θ (°) CISO CCLVD  

part I 0.572 1.0 1.42 1.58 -64 44 0.84 0.08 0.08 

part II 0.577 1.0 1.89 10.56 -72 6 0.43 0.08 0.49 

 

 

Figure 90 - - Constrained inversion residuals plot for orientation angles of the MT inversion solution for part I obtained for 
the MT inversion location. Left) solution including single forces (M+F); right) solution without single forces (M only). Red 
cross indicates the lowest retrieved minima misfit. 

 

solution. For both the solutions including and without single forces the best orientation 

angles point to a sub-horizontal crack slightly more inclined for the  MT-only solution (θ = 

20° and θ = 30° for the solution including and without single forces respectively). The 
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residuals in both solutions are quite well constrained. I finish by computing κ and α values 

after the PCA. Κ value for the MT-only solution is unrealistic (κ = 57). On the opposite, κ = 

1.77 for the solution including forces is similar to the value computed for the second set of 

events (κ = 2.05, section 5.4.3) and the corresponding α = 90° infers a full tensile source.  

SpurioFor comparison, the MT inversion is performed also for the source location 

found by INGV. The misfit values are slightly higher than the solution for the lowest 

residual location. Both M+F and MT-only solutions lead to an eigenvalues ratio which 

would suggest an isotropic source mechanism. The PCA confirms the predominant 

isotropic component with CISO = 78% and CISO = 84% for the solutions with  

 

Table 20 – Constrained inversion results for an explosive source and a crack source. For the crack source I also report the 
best retrieved orientation angles (azimuth and dip). Results are for both solutions including and without single forces.  

MT inversion location 

 M+F M only 

 

Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 
Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 

part I 0.582 0.531 230 20 0.879 0.757 10 30 

part II 0.577 0.546 170 60 0.881 0.797 160 70 

INGV location 

 M+F M only 

 

Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 
Misfit 

exp 

Misfit 

crack 

  (°) θ (°) 

part I 0.596 0.618 160 80 0.894 0.823 110 30 

part II 0.625 0.591 310 60 0.865 0.794 250 20 

 

and without single forces respectively. On the opposite, the double-couple components 

result in higher values for the INGV location (CDC = 14% and CDC = 8% for the solutions with 

and without single forces respectively). The retrieved source time functions for the 

solution including forces (Figure 88) show an amplitude almost one order of magnitude 

smaller than the solution found for the lowest residual location (Figure 86). This 

difference comes from the different depths of the source and so the different velocity 
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configuration between the source and the stations. The source time functions show an 

oscillating behavior, which is different from the pulse-like nature of the other solution. In 

case of a fluid-filled resonating crack I can get information about the nature of the 

fluid/gas involved in the process by computing the quality factor (Q, see section 5.4.4 for 

further details). A computed Q = 7.5 is roughly equivalent to the average quality factor 

obtained for the polychromatic set of events (Q ~5) which would correspond to a crack 

filled with a basalt-gas or water-vapor mixtures at very low gas-volume fractions. The 

solution for MT-only shows again a complex and long source mechanism, but more 

oscillatory than the solution found for the lowest residual location. If I perform a 

constrained inversion for an explosion or a tensile crack source (Table 20 and Figure 91) 

the retrieved misfit values are slightly lower for an explosion source thus supporting the 

high isotropic component found with the PCA and pointing to a full isotropic source 

mechanism.  

 

Figure 91 - Constrained inversion residuals plot for orientation angles of the MT inversion solution for part II obtained for 
the INGV location. Left) solution including single forces (M+F); right) solution without single forces (M only). Red cross 
indicates the lowest retrieved minima misfit. 

 

5.5.3.2 Part II 

 

MT inversion of part II for the lowest residual location shows slightly lower misfit 

values than part I (misfit = 0.360 for the solution including forces and misfit = 0.507 for 

the MT-only). The eigenvalues decomposition is similar between the two solutions which 

point to an eigenvalue ratio that can be attributed to an explosive source mechanism. The 

eigenvalues ratio is (1 : 1.14 : 1.52) including forces while it is (1 : 1.21 : 1.76) for MT-only. The 

PCA highlights the high isotropic component with CISO = 80% for the solution including 

forces and CISO = 75% for the MT-only. The source time functions for both the solutions 

(Figure 92) show pulse-like waveforms which appear more stable for the 
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Figure 92 – a) MT inversion solution including forces for part II of the BN explosion event for the lowest residual source 
location and 12 stations of the INGV permanent network. b) MT inversion solution excluding forces for the same event. 
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Figure 93 – Comparison between the observed data and the MT solution convolved with the Green’s functions for part II of 
the BN explosion event. Blue lines correspond to the observed data and red lines to the retrieved solution. Data records for 
station ebel are missing. Data records for station emcn show a very signal to noise ratio and have been not considered for 
the MT inversion. 
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Figure 94 – a) MT inversion solution including forces for part II of the BN explosion event for the INGV source location and 12 
stations of the INGV permanent network. b) MT inversion solution excluding forces for the same event. 
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Figure 95 – Comparison between the observed data and the MT solution convolved with the Green’s functions for part II of 
the BN explosion event for the INGV source location. Blue lines correspond to the observed data and red lines to the 
retrieved solution. Data records for station ebel are missing. Data records for station emcn show a very signal to noise ratio 
and have been not considered for the MT inversion. 
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Figure 96 - Constrained inversion residuals plot for orientation angles of the MT inversion solution for part II obtained for 
the MT inversion location. Left) solution including single forces (M+F); right) solution without single forces (M only). Red 
cross indicates the lowest retrieved minima misfit. 

 

 

Figure 97 - Relationship between α and the double-couple (DC), isotropic (ISO) and CLVD components for the source 
mechanism of events with k=8.94  using the relationship of Vavryčuk, (2001). 

 

solution including forces. Source time functions amplitudes are comparable for both 

solutions (1012 Nm) as expected because the locations are very similar. The comparison 

between the observed and the retrieved data (Figure 93) shows a very good match 

especially for nearest stations (e.g. ecpn and eplc). The retrieved synthetic data appear to 

be more stable than the solution obtained for part I. In fact for part I some stations (e.g. 

eczm, emsg, emfo etc., Figure 89) show some spurious oscillations at the beginning of the 
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signals. In part II these oscillations do not appear because the more precise source 

location and the higher signal to noise ratio of the second part of the event. 

I perform a constrained inversion with and without single forces for an explosion and 

a crack source mechanism. The results are listed in Table 20 and Figure 96. The explosion 

solution show a misfit value (misfit = 0.577) slightly higher than the crack solution (misfit 

= 0.546) for the inversion including forces. The best orientation angles for the crack 

mechanism point to a north-south oriented crack inclined ~60° for both solutions. In order 

to investigate the role of the quite high double-couple component (CDC = 9% and CDC = 12% 

for the inversions including and without single forces respectively) I compute the values 

of κ and α after PCA. Both the solutions show a quite high value of κ = 8.9 (inversion 

including forces) and κ = 7 (inversion for MT-only). The corresponding values of α are very 

similar with α = 56° for the solution including forces and α = 52° for the MT-only. I plot the 

angle α in function of the respective percentages of CISO, CCLVD and CDC for the κ value 

(Vavryčuk, 2015) of the solution including forces (Figure 97). For the computed values of α 

the contribution of the double-couple component to the solution is very weak. This 

supports the hypothesis that the source involves a strong isotropic process.  

For comparison I perform MT inversion for the location found by the INGV. The 

results are listed in Table 19. The misfit values are slightly higher (misfit = 0.443 for the 

solution including forces). The eigenvalue/eigenvector decomposition points to an 

 

Figure 98 - Constrained inversion residuals plot for orientation angles of the MT inversion solution for part II obtained for 
the INGV location. Left) solution including single forces (M+F); right) solution without single forces (M only). Red cross 
indicates the lowest retrieved minima misfit. 

 

unrealistic eigenvalue ratio for the MT-only solution (1 : 1.89 : 10.56) thus the 

decomposition appears unstable. The eigenvalues ratio for the solution including forces 

points to a crack mechanism (1 : 1.02 : 2.54). I perform a constrained inversion for both 

solutions including and without single forces for an explosion and a crack source 
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mechanism, the results are listed in Table 20 and Figure 98. Lowest misfit value is 

obtained for the solution including forces for a tensile crack dipping 60° and oriented 

roughly NE-SW. The results for all the possible angle couples (Figure 98) show that in the 

solution including forces appear two sectors with minima residuals, i.e. the solution is not 

well constrained. The solution for MT-only is more coherent with the retrieved 

eigenvectors orientation pointing to a shallowly dipping tensile crack. The PCA shows 

typical values for a crack mechanism with CISO = 60% and CCLVD = 39%.. The computed κ 

value (κ = 1.36) is comparable to the one computed for the polychromatic set of events 

with angle α = 90° pointing to a full tensile source. Finally, the force components are 

considerably higher (Fz ~ 1010 against Fz ~ 109) than the solution obtained for the lowest 

residual source location and most of the energy comes from the force terms. 

 

5.5.4 Interpretation of the source mechanism 

 

The interpretation of the BN explosion event is not straightforward. The locations 

performed towards MT inversion of part I and part II are far between them (~ 1 km). On 

the opposite, the locations performed by INGV are consistent with the surface evidence 

of the event pointing to two sources located below BN and suggesting an evolution from 

a deeper (part I) to a shallower (part II) manifestation. Intuitively the location found by 

INGV could be correct. Cannata et al., (2015) used an amplitude decay method to locate 

the two portions of the signal. The amplitude decay method does not need for a fixed 

velocity model of the volcano, moreover, they used seven summit stations instead of the 

three used for the MT inversion solution. As stated in the previous chapter, MT inversion 

location is strongly influenced by the velocity model and the network of stations. If 

horizontally the MT inversion location of part II is coherent with the INGV location, the 

high vertical difference could come from the wrong velocity model and the lack of ebel 

summit station. On the opposite, location of part I is too far away from BN and it is hard 

to trust the solution. If I take for granted the locations found by the INGV, the MT 

inversion solutions point to an explosion mechanism for part I and to a vertical opening, 

horizontal tensile crack for part II.   

Since the end of May the shallow plumbing system of Mt. Etna was becoming 
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progressively pressurized (Cannata et al., 2015). The authors argued that the BN plug, 

which formed during effusive eruptions in 2012/2013, could have limited the degassing at 

BN itself thus creating the conditions for the plumbing system pressurization. Part I of the 

signal could correspond to the response of the system to a fast transient pressure 

occurred in the main conduit just before the removal of the BN plug. The oscillatory 

behavior of the STF retrieved for the INGV location (Figure 88) suggests that fuids/gas 

could be involved in the source process (Chouet, 2003a and references therein). 

Moreover, the intense and shallow LP and volcanic tremor activity in the months 

preceding the explosion (Cannata et al., 2015) would be in agreement with a shallow fluid 

filled pocket containing either hydrothermal fluids or magma. An uprising hydrothermal 

or magmatic gas slug (Viccaro et al., 2014) could have caused pressure building up at the 

bottom of the BN plug, thus triggering the retrieved explosive seismic radiation.  Cannata 

et al., (2015) imagined that the second, and most energetic part of the signal, 

corresponded to the seismic signature of the BN plug expulsion. Once the material failure 

threshold is reached, the sudden release of pressure at the bottom of the plug would 

have triggered the sudden removal of the plug itself.  The strong vertical force appearing 

in the MT solution (Figure 94) would be in agreement with the downward directed drag 

force resulting from the rapid expulsion of the plug. A vertical expansion constrained by 

the rigid walls of the BN conduit would results in a horizontal crack signature in the MT 

decomposition. 

I compute the volume involved in the process for both sources using equations (70) 

and (71) as explained in section 5.3.4. For the solutions including forces the computed 

volumes are ΔV = 318 – 572 m3 and ΔV = 1704 – 3068 m3 for part I and part II respectively. 

As expected the highest values are found for the most energetic part II. The computed 

volume variations for part I (which retrieved source mechanism is an explosion) would 

correspond to a displacement of the external sphere wall of D = 25 – 44 cm for a sphere of 

radius r = 10 m or to D = 1 – 2 cm for a sphere of radius r = 50 m. For part II, the retrieved 

volume variations would correspond to a normal displacement of 17 – 30 m for a 10 m 

sided square crack or to a normal displacement of 0.68 – 1.23 m for a 50 m sided square 

crack. The surface evidence of the BN collapse would suggest that the retrieved volume 

variations are consistent with the energetic nature of the event.  
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Figure 99 – Sketch of the possible source model for the seismic event accompanying the explosion occurred at the BN 
crater. The first part of the event could correspond to pressure building up at depth below the BN plug resulting in an 
explosion signature. The second part of the events, located shallower and just below the BN plug, could correspond to the 
seismic signature of the removal of the plug itself. Blue arrows indicate degassing. Note that the sketch is speculative and 
the shape of the magma and hydrotermal reservoirs are not known. 

 

It is noteworthy that the solutions for the lowest residual MT inversion locations 

point contrariwise to: a) a horizontal tensile crack source for part I and b) to an explosive 

source for part II. The comparison between the retrieved and the observed seismic traces 

for part I shows the appearance of many parasite wavelets (Figure 87 and Figure 89) 

which make me doubting about the reliability of the solutions for both source locations. 

On the opposite, the solutions for part II are more stables. The large vertical difference 

between the MT inversion and INGV locations could strongly influence the MT inversion 

and thus the retrieved eigenvalues ratio. The appearance of the strong drag force for the 

shallower INGV location is consistent with the hypothesized source mechanism and the 

surface manifestation at the BN crater, thus I lean towards this mechanism interpretation 
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to explain the origin of the seismic trace accompanying the BN collapse (see sketch for 

the interpreted source mechanism in Figure 99).                                                                                                                                                          
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6.1 General summary 
 

I performed MT inversion for three set of events recorded during different states of 

activity of Mt. Etna volcano (Chapter 5). I summarize in the following the MT inversion 

solutions and the corresponding interpretations: 

 

 Emergent onset: all the analyzed LP events show emergent onset and it is 

impossible to distinguish between P-waves and S-waves arrivals; 

 

 Similarity: high degree of similarity among then events in the same set. This 

suggest that, for each considered set of events, a common source process exists; 

 

 Frequency content: the first set of events is highly monochromatic with main 

spectral energy in the typical frequency range for LP events (0.2 – 1.3 Hz). The  

second and the third set of events are instead polychromatic, i.e. the frequency 

content is not restricted in a narrow frequency band, but spans a wider frequency 

range (0.1 - ~5Hz). The higher frequencies are observable at summit stations (e.g. 

ecpn, ebel) while for farther stations (e.g. empl, emfo etc)  the higher frequencies 

attenuate and the spectral content becomes highly monochromatic; 

  

 “Pulse like” nature: Summit stations show “pulse like” (Lokmer et al., 2007) 

waveforms. This feature is clearer for the monochromatic events. I have showed 

that the polychromatic events show instead two consecutives “pulse like” 

waveforms. Farther stations show a more oscillatory behavior. This suggests that 

the oscillating features are more path related (Bean et al., 2013) than generated 

by resonance phenomena occurring at the source; 

 

 MT inversion solutions: all the MT inversion solutions (except part I of the BN 

e plosion for which solution I’m less confident) point to quasi-horizontal tensile 

cracks. It is noteworthy that the monochromatic set of events seems to be 
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characterized by a mixed isotropic/shear source. The similarity between the 

solutions and the fact that no clear resonance phenomena are observed in the MT 

inversion solutions suggest that the source processes could not directly involve 

fluids/gas, but could be consequence of slow rupture within the volcanic edifice 

(Bean et al., 2013). 

 

All these considerations taken together suggest that the LPs on Mt. Etna analyzed in 

this study cannot be explained by the classic fluid-filled cavity model proposed by Chouet, 

(1986) and Neuberg et al., (2000).  

An alternative model based on brittle failure of melt (section 2.2.5) is proposed by 

Neuberg et al., (2006) for LP hybrid events recorded at Soufriere Hills, Montserrat. In 

their model the magma flow transition at a certain depth from a ductile to a friction 

controlled regime should trigger brittle rupture of magma. The released seismic energy 

could trigger the resonance of an adjacent resonator filled with low viscous fluids. 

Conditions for magma ruptures imply high viscosity magma (Tuffen et al., 2003) and that 

the product of shear strain rate and shear viscosity exceeds a critical value (Dingwell and 

Webb, 1989). Tuffen and Dingwell, (2005) and Tuffen et al., (2003) found a field evidence 

for brittle failure of magma in dissected rhyolitic conduits at Torfajokull, Iceland. Giordano 

and Dingwell, (2003) studied the viscosity of Etna alkali basalts and found that for water 

contents higher than 1.5 wt% their viscosity is comparable to that of the rhyolitic melt. 

They argued that the crystallinity of Etna basalts is unlikely to shift the viscosity to high 

enough values to generate strain-rate induced brittle failure, but that external forcing via 

edifice collapse or rapid cooling of magma due to rock-water interaction could. The 

polychromatic events could meet some of the conditions for a brittle failure of magma, 

but the retrieved shallow locations suggest that the high flow rate of magma imposed by 

Neuberg et al., (2006) would be hardly matched in the shallow plumbing system of Mt. 

Etna which, at time of the recording, was prevalently showing degassing at the summit 

craters. Without detailed magma models I cannot speculate further. Brittle failure of 

magma could explain some of the LPs recorded at Mt. Etna, but the low frequencies are 

supposed to be triggered by high frequency seismic energy which implies the existence 

of a resonator and recognizable oscillatory features in the recorded waveforms, also for 
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near stations. This is in contrast with the “pulse like” nature of the recorded waveforms, 

thus another source model should be invoked to explain the origin of LP events at Mt. 

Etna. 

The “pulse like” nature of the waveforms recorded at summit stations and the 

oscillatory behavior recorded at far stations well match with the slow rupture model 

proposed by Bean et al., (2013). LP events could behave as conventional earthquakes 

(Eyre et al., 2015) and slow brittle failure at the source could occur, thus a mixed 

tensile/shear source mechanism (Vavryčuk, 2001, 2011, section 2.3.6)  could be invoked. 

The orientation angles of the mixed source can be retrieved directly from the MT 

inversion solution (Vavryčuk, 2001) as done in this thesis, or through a non-linear inversion 

directly from the seismic observations  (Vavryčuk, 2011).  

The synthetic tests performed in Chapter 4 and section 5.2.2 show that unrealistic 

double-couple components may be misled in the solution for an original full, tensile 

source mechanism. On the opposite, further test (section 5.2.2) for a pure double-couple 

source shows that the MT inversion solution introduces unexpected isotropic 

components when including single force terms in the MT inversion. The synthetic tests 

highlight that the choice of an incorrect velocity model, which is anyway a simplification 

of the real geological context, may produce a fluctuation in the MT inversion solution and 

may lead to misinterpretation of the results. Thus, full isotropic or full double-couple 

source mechanisms happened to be misinterpreted as mixed tensile/shear sources. 

Generally, including single force terms in the MT inversion, even if they are unrealistic, 

“helps” in stabilizing the solution and the amount of unwanted isotropic or double-

couple is reduced compared to MT-only inversion.  

Another source of uncertainties comes from the station coverage. De Barros et al., 

(2011) pointed out that at least ten stations in the very-near field should be included in the 

MT inversion to obtain a reliable solution. The network available for my MT inversions of 

the real LP events consisted of only four Mt. Etna summit stations. The synthetic tests of 

section 5.2.1 highlighted that a vertical tensile crack could be misinterpreted as horizontal 

one in this particular network configuration. For the polychromatic set of events, the MT-

only solution is less stable than the solution including forces, thus I tend to the horizontal 

crack interpretation. For the monochromatic set of events, both the solutions including 
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and without single forces are stable, but point to two opposite mechanism orientations.  

The horizontal crack interpretation is preferable because of the small residual in the 

solution. Anyway the solution is not perfectly constrained and another source mechanism 

could be possible. 

Synthetic tests comparing the results of MT inversions performed with different 

velocity models and station network configurations can strongly improve the 

understanding and the interpretation of the source mechanism, but uncertainties still 

remain. In the following last section I try to give some suggestions about the designing of 

a MT inversion for the study of LP events on volcanoes and a brief description of the 

future trends in volcano seismology. 

 

6.2 Perspectives 
 

If uncertainties related to the structural model can be reduced by performing 

numerous and targeted synthetic tests, the source model itself must be addressed 

cautiously. One of the major issues related to the LP events understanding is that many 

different source models have been proposed to explain their occurrence on volcanoes 

(Chouet and Matoza, 2013 and references therein).  None of these models can be verified 

or neither falsified because of the lack of direct observations of the physical mechanism 

at their origin. Nowadays, models are commonly validated by taking the model which 

shows the best fit between the observed data and the moment tensor solution 

convolved with the Green’s functions. Bean et al., (2008) pointed out that models which 

give the best fit to the observed data are not necessarily representative of the true 

source model. The synthetic tests of Chapter 4 support this remark as the best fit is 

always obtained for the wrong MT solution. Similarly, a vertical crack could be 

misinterpreted as a horizontal one when taking the lowest misfit solution (section 5.2.2).  

In the synthetic tests the source representation is the same in the direct and in the 

inverse problem. Thus, it is not the source model which is tackled itself, but the ability of 

the inverse problem in retrieving the original known solution. The new source models 

proposed in the last decades (e.g. Bean et al., 2014; Iverson, 2008; Neuberg et al., 2006) 

are counterpoised or complementary to the most accepted resonating crack LP source 
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model (Chouet, 1986; Neuberg et al., 2000). At present, LP events show similar frequency 

content with different, but very common features everywhere. Hence, the question is 

whether any of the source models mentioned above is applicable and adjustable for each 

context. However, the observations may contain additional information about the 

physical source processes which have not been investigated yet.  

  One example of new implications for LP seismicity was investigated recently by  

Thun et al., (2015). The authors were able to uncover a step-like displacement component 

from LP signals, outside the common spectral range of analysis for this kind of events. LP 

events could contain information about both translational and rotational motion when 

analyzed in a broader frequency band. At present, rotational motion is measured with tilt 

meters or GPS while translational motion through seismometers. It is well known that 

horizontal components of seismometers are also sensitive not only to translational 

motion but also to tilts (Graizer, 2005; Rodgers, 1968) which is normally interpreted as 

very long period noise in the recorded signal. Fournier et al., (2011) suggested that 

translational motion and ground tilt contribution to tilt meters and seismometers could 

be quantified by comparing with high-rate GPS measurements, but only in case the 

deformation amplitude is large enough (> 1 mm, due to the low signal to noise ratio of 

GPS data). Van Driel et al., (2015) and Maeda et al., (2011) proposed to compute directly 

the Green’s functions including both the seismometer’s response to translational motion 

and the tilt contribution. Chouet and Dawson, (2015) successfully applied this approach to 

some VLP (very long period) events recorded at Kilauea Volcano, Hawaii and were able to 

recognize one cycle of inflation/deflation of a volumetric source.  

The tilt contribution to the signal should be relevant only when considering VLP 

events, but if in general events are to be analyzed in a broad frequency band, such an 

approach can be useful. For example, Thun et al., (2015) investigated the step-like 

displacement component associated to LP seismicity. An issue is that displacement steps 

have a broad spectrum, including static (or zero) frequencies. The authors suggested the 

implementation of a moving median filter to overcome this problem and successfully 

applied their method to displacement steps obtained in laboratory controlled 

experiments. The median filter was applied to some LP events recorded on Turrialba 

volcano, Costarica and Mt. Etna and they found that numerous “pulse like”  P events 
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included step-like displacement. If LP events are expression of both translational motion 

and ground deformation, two main issues arise concerning MT inversion: 

 

1. Frequency content: in order to get stability, MT inversion is performed for 

filtered signals. In my case the signals have been band-pass filtered between 

0.3-1.3 Hz. Thus any information relative to any possible static displacement (0 

Hz) is lost during filtering; 

 

2. Green’s functions: Green’s functions for the seismic response of the Earth’s 

medium are usually not designed to take in account for static displacement.  

 

 

One recent approach to get more insights into volcano seismicity is the 

multiparametric study of different monitoring parameters (e.g. Cannata et al., 2015; 

Jousset et al., 2012, 2013; Patanè et al., 2013; Rivet et al., 2014; Spampinato et al., 2015; 

Takeo et al., 2006). By comparing volcano seismicity with other monitoring techniques, 

the seismic source can be constrained to a certain range of possible physical processes 

and uncertainties accompanying the interpretation of the solution in MT inversion can be 

reduced. If LP events are suspected to contain static ground displacement, joint-analysis 

with InSar, tilt or GPS techniques would help in minimizing the intrinsic error of the MT 

inversion.  

In conclusion many lessons have been learned through the synthetic tests and the MT 

inversions of real Mt. Etna LP events recorded during different states of the volcanic 

activity. Hopefully these will contribute to design future analysis of LP events in volcanic 

contexts with a special regard to Mt. Etna volcano. Many of the points highlighted in this 

thesis are consistent with the other recent works (e.g. Bean et al., 2008; Cesca et al., 

2008; De Barros et al., 2011; Eyre et al., 2015; Lokmer et al., 2007, 2008). 

Recommendations include: 

 

 Synthetic tests: synthetics tests should always be performed in order to better 

design the MT inversion and help in constraining and interpreting the solution. 
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Three main points should be addressed when designing a synthetic test: 

 

1. Velocity model: if possible, different velocity models should be 

compared. Computing the Green’s functions for different velocity 

models is computationally expensive, but the results can help in 

constraining the solution when dealing with real data; 

 

2. Number of stations and distribution: use a dense network of stations 

especially in the summit region (close to the source). At least one 

station should be located as close as possible nearby the source in 

order to accurately extract the source signature; 

 

3. Source models: different source mechanism and orientations should be 

simulated in order to test the sensitivity of the MT inversion to the 

velocity model and the network of stations. 

 

 Source location from different methods: source location from MT inversion 

lead sometimes to rough locations (especially vertical location). Other 

location methods such as amplitude decay, cross-correlation coefficient and 

semblance (e.g. Cannata et al., 2013 and references therein) should instead be 

used;  

 

 Multiparametric approach: comparing volcano seismicity with other 

monitoring techniques such as fluid/gas geochemistry, acoustic and 

deformation will strongly improve the understanding of the source 

mechanism of LP events; 

 

 Green’s function including ground tilt contribution: if tilt is recognized to play 

an important role in the observed LP events, implementation of ground tilt in 

the Green’s functions will help in getting a wider picture of the source process 

and its link to the volcanic activity; 
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 Filtered signals: Careful attention should be paid when filtering the LP events. 

Important information relatives to the source may be lost during the filtering 

process. 

 

All these considerations taken together should lead to a better understanding and 

interpretation of LP activity and could help in clarifying its significance in terms of an 

eruption forecasting tool. 
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