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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://pastel.archives-ouvertes.fr/tel-01307915


�

�

�

�

�

2013-ENST-0051

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « SIGNAL et IMAGES »

présentée et soutenue publiquement par

Sébastien FENET
le 23 septembre 2013

Empreintes Audio et Stratégies d’Indexation Associées pour
l’Identification Audio à Grande Echelle
Audio-Fingerprints and Associated Indexing Strategies
for the Purpose of Large-Scale Audio-Identification

Directeur de thèse : Gaël RICHARD
Co-directeur de thèse : Yves GRENIER

Jury
M. Frédéric BIMBOT, Directeur de Recherche, IRISA, Rennes Président

Mme Régine ANDRE-OBRECHT, Professeur, IRIT, Université Paul Sabatier, Toulouse Rapporteur

M. Sylvain MARCHAND, Professeur, Université de Bretagne Occidentale, Brest Rapporteur

M. Geoffroy PEETERS, Chargé de Recherche HDR, IRCAM, Paris Examinateur

M. Avery WANG, Founder et Chief Scientist, Shazam Entertainment, Palo Alto USA Examinateur

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr





Audio-Fingerprints and Associated Indexing Strategies

for the Purpose of Large-Scale Audio-Identification
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Abstract

Throughout this work, we explore various audio-fingerprint models associated with

indexed-based search strategies for the purpose of large scale audio-identification.

We start with the description of the audio-identification use-case, which consists

of automatically retrieving the meta-data associated to an unknown sound. Audio-

fingerprint algorithms meet this objective by extracting from the audio signals a char-

acteristic fingerprint. By learning beforehand all the fingerprints of a set of references,

the algorithm is then able to identify any signal that belongs to this set. This is done

by extracting the fingerprint from the unknown signal and looking for the closest learnt

fingerprint. The main stakes when designing an audio-fingerprint algorithm are the

scalability and the robustness to distortion. The algorithm must indeed be able to

manage a very large set of references (typical industrial databases include hundreds of

thousands of music titles). Besides, the algorithm must be able to identify any signal

that corresponds to a reference, even if it has undergone a series of distortions. As far

as the distortions are concerned, we make a specific distinction between post-processing

distortions, which are the ones that occur in the transmission channel of a given music

recording (dynamic compression, equalisation, pitch-shifting, additional noise...) and

the variations that occur when we study two different recordings of one same music

title. In the first case, we talk about exact matching whereas we use the terminology

approximate matching in the second case.

We subsequently propose an exhaustive study of the state of the art in audio-

fingerprint. Amongst the methods from the state of the art, we propose a specific

focus on the one proposed in [Wan03], commonly referred to as “Shazam’s method”.

We give a detailed explanation of the method and finally demonstrate that it lacks

robustness to the pitch-shifting distortion. Our third part is therefore dedicated to the

proposition of improvements over our initial implementation of [Wan03]. These include

the proposition of different signal models for the fingerprint and the adaptation of the

method to an extended functional perimeter.

In the last part of the work, we focus on a quite different issue. We start from the

observation that, to our knowledge, virtually no method from the state of the art in

audio-fingerprinting deals with the approximate matching use-case. We thus propose

two novel audio-fingerprint methods that meet the objectives of approximate matching.

The first approach is based on the transcription of the signal in a chords sequence. The

second one relies on an innovative representation of the signal. The latter is composed

of compact states that include both rhythmic and harmonic information.
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Chapter 1

Qu’est-ce que l’Audio-Fingerprint

1.1 Principes

L’identification audio par le contenu consiste à retrouver des méta-données (telles que, pour

une musique : le titre, l’artiste, l’album...) associées à un extrait audio. L’identification

audio a attiré l’attention de la communauté scientifique durant la dernière décade du fait de

son rôle clé dans un nombre important d’applications [CBG+02], les deux plus célèbres étant

l’identification d’un extrait audio à travers le réseau de téléphone mobile et la surveillance

automatique de contenu protégé.

L’identification audio par extraction d’empreinte (ou encore audio-fingerprint) consiste à

extraire du signal audio une empreinte. Celle-ci permet d’identifier de manière univoque le

signal qui peut alors être associé à ses méta-données. Plus précisément, le système dispose

d’une base de données de références (en pratique, ce sont des fichiers audio). Les références

correspondent à l’ensemble des signaux audio que le système sera en mesure d’identifier. Le

principe de l’audio-fingerprint est de ramener la comparaison de signaux audio à celle de

leurs empreintes. Ainsi, une base d’empreintes de références est créée à partir de la base

de références audio lors de la phase d’apprentissage (voir figure 1.1). Lorsque le système

identifie un extrait inconnu, il calcule son empreinte et cherche ensuite l’empreinte la plus

proche dans la base d’empreintes (voir figure 1.2).
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Figure 1.1: Apprentissage des empreintes de référence par l’algorithme d’audio-fingerprint.

Unknown
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Fingerprint
extraction

Matching ID result

Fingerprints
database

Figure 1.2: Identification d’un extrait inconnu par l’algorithme d’audio-fingerprint.

1.2 Enjeux

1.2.1 Robustesse aux Distorsions

L’empreinte doit idéalement permettre d’identifier chaque référence de manière univoque.

Une difficulté supplémentaire, en identification audio, est que l’on s’emploie à mettre en

œuvre des représentations qui sont invariantes par un certain nombre de distorsions du signal.

On conçoit dès lors la difficulté du domaine qui consiste à trouver un compromis entre une

empreinte suffisamment univoque pour permettre une identification correcte et une empreinte

suffisamment “souple” pour être insensible aux distorsions.

La robustesse aux distorsions couvre en fait deux situations qui, bien qu’elles peuvent

sembler parfois très proches pour l’auditeur humain, sont très dissimilaires pour une machine.

• Dans le premier cas, l’idée est d’identifier un extrait audio qui est une copie exacte d’une

référence. Le signal à identifier a cependant pu subir un certain nombre de distorsions

qui se produisent dans la châıne de traitement. Nous parlons alors de distorsions en

post-traitement ; les plus communément traitées dans les travaux en audio-fingerprint

sont présentées dans le tableau 1.1. Ce premier cas d’usage est illustré en figure 1.3 et

nous l’appelons identification exacte.

• Dans le deuxième cas, l’extrait audio n’est pas explicitement dans la base de références.

Cependant, la base contient une référence qui est musicalement très proche du signal à

14



Figure 1.3: Illustration de l’identification exacte. L’algorithme doit associer deux signaux
qui correspondent au même enregistrement avec différents post-traitements.

identifier. Typiquement, la base contient un enregistrement studio d’un titre donné et

le système doit identifier une version live du même titre. Nous disons que les signaux

sont similaires et nous parlons d’identification approchée, illustrée en figure 1.4.

Figure 1.4: Illustration de l’identification approchée. L’algorithme doit associer deux sig-
naux qui correspondent au même titre, exécuté dans des conditions différentes (arrangement
différent, musiciens différents, conditions d’enregistrement différentes, ...).

1.2.2 Passage à l’échelle

L’autre enjeu de l’audio-fingerprint est le passage à l’échelle. Dans le contexte des applications

industrielles, les bases de références contiennent typiquement des centaines de milliers de

titres, voire des millions. On peut notamment citer les bases utilisées par les sociétés de

surveillance de copyright ou encore les initiatives open-source (Music Brainz, Echo Nest)

dont les catalogues atteignent dorénavant le million de titres. La capacité d’un système à

exécuter une recherche efficace est donc au cœur du problème. Afin d’atteindre de telles

possibilités de passage à l’échelle, de nombreux travaux du domaine proposent une empreinte
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Distorsion Formule

Troncature S̃ :

∣∣∣∣∣
[0;M ]× [0; fs/2] −→ C

(t, f) 7−→ S(t+ t0, f)

Egalisation S̃(t, f) = S(t, f).h(f) with h : [0; fs/2] −→ [0; 1]

Compression dynamique S̃(t, f) = S(t, f).g(t) with g : [0;L] −→ [0; 1]

Glissement fréquentiel S̃(t, f) = S(t,Kf)

Etirement temporel S̃(t, f) = S(K ′t, f)

Ajout de bruit S̃(t, f) = S(t, f) + n(t, f)

Table 1.1: Distorsions en post-processing traitées dans les cas d’utilisation traditionnels
d’audio-fingerprint.

qui s’intègre dans un mécanisme d’indexation. L’indexation est en effet un outil classique

dans le domaine des recherches à très grande échelle. Nous le présentons en détail dans la

section suivante.

1.3 Indexation

L’indexation consiste à lister des caractéristiques d’objets d’une collection donnée. Chaque

caractéristique référencée est associée à une liste contenant tous les objets qui possèdent

ladite caractéristique. Dans la suite, nous appelons les caractéristiques listées les clés (ou

clés d’indexation) et, pour indiquer l’association entre la caractéristique et les objets la

possédant, nous disons que la clé pointe vers les objets.

Pour bien comprendre la puissance de recherche que procurent les techniques d’indexation,

il est assez parlant de se référer au cas de la recherche dans un livre. Lorsque l’on cherche

une page contenant un mot précis au sein d’un ouvrage, l’approche en “force brute” consiste

à parcourir tout le livre jusqu’à trouver la page recherchée. En revanche, si un index est

proposé à la fin du livre, il suffit de rechercher le mot au sein de l’index. Le lecteur dispose

alors instantanément des numéros de pages contenant le terme recherché. Il suffira alors

d’étudier ces pages candidates pour retrouver la page d’intérêt.

Nous pouvons noter que pour une même collection d’objets, il y a plusieurs façons de con-

struire un index. En fonction de la stratégie retenue, l’efficacité de l’index peut radicalement

changer. Par exemple, la table des matières d’un livre est également une forme d’index. Cet

index, cependant, a une efficacité plus réduite puisqu’il ne référence que les termes utilisés

dans les titres de chapitre ou de paragraphe du livre.

Les avantages d’un index ayant été exposés, nous comprenons l’intérêt de ces stratégies
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pour le problème de l’audio-fingerprint. La difficulté, cependant, est que les index sont

des processus qui sont exacts par nature. Imaginons que le lecteur cherche dans l’index

le mot ‘Barkov’ au lieu du mot ‘Markov’, il semble clair que sa recherche n’aboutira pas.

Ce problème doit être traité précautionneusement, particulièrement dans le cadre du tra-

vail avec des caractéristiques audio qui sont relativement versatiles. A travers l’exploration

des différents modèles d’empreintes de notre travail, la question centrale sera donc constam-

ment : que pouvons-nous définir comme clé d’indexation dans notre modèle ? Les questions

périphériques qui vont avec sont : comment construisons-nous les requêtes à l’index ? com-

ment traitons-nous les réponses de l’index ?
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Chapter 2

Cas d’Usage et Protocole d’Evaluation

2.1 Cas d’Usage

Les spécifications du cas d’usage ont été faites dans le cadre du projet Quaero 1 et sont basées

sur la “surveillance de diffusions multimédia”. Le principe est la mise en place d’un système

qui surveille de manière continue des flux multimédia (TV, radio, web...). Le système a

appris au préalable une base de sons de référence (typiquement des musiques copyrightées).

La tâche du système est alors de signaler toute diffusion d’un son de la base au sein du

flux. Notons que, tel qu’indiqué en section 1.2.1, le son a pu subir un certain nombre de

distorsions. Par ailleurs, il est intéressant de mentionner que le flux contient des sons de la

base mais également d’autres portions de flux qui ne sont pas référencées.

Si nous désignons par m1,m2, ...,mN les références, par m̃1, m̃2, ..., m̃N leurs versions

diffusées (et distordues) et par n le reste du flux, la tâche peut être illustrée comme en figure

2.1.

n m̃k1 n m̃k2 m̃k3 n time

detection
mk1

detection
mk2

detection
mk3

Figure 2.1: Scénario de surveillance de flux. Le système doit détecter dans un flux multimédia
toutes les diffusions de sons appartenant à une base de référence.

1http://quaero.org
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2.2 Protocole d’Evaluation

Avant chaque évaluation, la base du système est populée avec N références qui proviennent

d’une base de données industrielle actuellement utilisée en production. Lesdites références

sont des extraits de 60s de titres musicaux, chacune d’entre elles possédant un identifiant

unique mi.

Le corpus à analyser correspond à des journées de radio françaises. Afin de proposer un

corpus avec un ensemble de distorsions le plus représentatif possible, il est bon de diversifier

les sources (radios jeunes, classiques, rock, ...).

L’algorithme doit alors analyser les flux radio et signale toute détection d’item appar-

tenant à la base de références. Pour chaque son de référence détecté, l’algorithme évalué

génère une sortie qui spécifie l’identifiant de la référence détectée ainsi que la date de détection

dans le flux.

Par ailleurs, Quaero nous fournit la vérité terrain, générée “à la main” par des annota-

teurs professionnels. Ces fichiers contiennent, pour chaque diffusion d’un titre musical, une

annotation qui stipule l’identifiant de la référence ainsi que la date de début et la date de fin.

Nous proposons dans ce travail un score à deux composantes. La première composante est

le ratio de détections correctes. Les titres à détecter sont ceux listés dans la vérité terrain.

Chaque diffusion d’un titre de référence est annotée avec un identifiant mgt, une date de

début dstartgt et une date de fin dendgt .

Definition 1 Un titre diffusé est correctement détecté si : il existe au moins une sortie de

l’algorithme dont l’identifiant mout et la date de détection dout sont tels que :

{
mgt = mout

dstartgt ≤ dout ≤ dendgt

(2.1)

Une bonne pratique consiste à écrire le ratio de détections correctes sous sa forme fraction-

naire :
Nombre de titres correctement détectés

Nombre de titres à détecter

De cette façon, le lecteur a instantanément une idée de la taille du corpus.

La seconde composante est le nombre de fausses alarmes. Chaque sortie de l’algorithme

est définie par un identifiant mout et une date de détection dout.

Definition 2 Une détection est un vrai positif si : il existe une annotation dans la vérité

terrain dont les identifiant mgt, date de début dstartgt et date de fin dendgt sont tels que :

{
mgt = mout

dstartgt ≤ dout ≤ dendgt

(2.2)
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Toutes les sorties qui ne sont pas des vrais positifs sont des fausses alarmes. La seconde

composante du score est simplement le nombre absolu de fausses alarmes.

m̃i1 n m̃i2 m̃i3

time

mi1 mi2 mi3 mi3 mi3mi1

mi1 mi1 mi5 mi5

1 DT 1 DT 1 DT

1 FA 1 FA 1 FA 1 FA

Figure 2.2: Illustration de la procédure de notation. Si une sortie (représentée par une flèche)
contient l’identifiant mi et a une date de détection qui est comprise entre la date de début et
la date de fin annotées d’une occurrence du titre mi, la diffusion est comptée comme un titre
détecté (DT). Plusieurs détections de la même occurrence d’un titre sont comptées une seule
fois (comme indiqué par les accolades horizontales). A l’inverse, si l’algorithme détecte une
référence durant une plage vide (représentée par n) ou pendant une plage qui contient un
autre titre, nous comptons une fausse alarme (FA). Il n’y a pas d’intégration sur les fausses
alarmes : chaque fausse alarme est additionnée.
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Chapter 3

Focus sur la Méthode Shazam

3.1 Introduction

Une des plus célèbres applications de l’audio-fingerprint a été développée par l’entreprise

Shazam. Le travail de Shazam a été cité dans de nombreuses publications du domaine.

Plus précisément, les auteurs citent en général l’article ISMIR de 2003 publié par Wang

[Wan03]. La méthode qui y est décrite est souvent désignée par “méthode de Wang” ou

“méthode de Shazam”. Cet article constitue la seule publication de conférence au sujet de

leur travail en audio-fingerprint. Il faut cependant noter qu’en dehors de cet article, Shazam

a déposé plusieurs brevets [LcWC09, LcWSI11]. De plus, s’agissant d’une entreprise, il y a

potentiellement toujours des différences entre les programmes réellement exécutés sur leurs

machines et ce qu’ils laissent éditer de manière publique. A l’instar de la majorité des auteurs,

nous nous concentrons sur le travail présenté dans l’article [Wan03]. Dans la suite, nous y

faisons référence en tant que la méthode Shazam03.

3.2 Principes

3.2.1 Calcul de l’Empreinte

La méthode Shazam03 propose, pour le calcul de l’empreinte, de partir du spectrogramme du

signal. L’idée est ensuite de binariser ce spectrogramme en mettant au niveau ‘1’ les points

d’énergie localement maximale et au niveau ‘0’ les autres points. Une des exigences de la

méthode est par ailleurs d’assurer une répartition homogène, en temps et en fréquence, des

points à ‘1’.

Dans le but d’obtenir cette représentation binaire homogène, nous proposons une stratégie

originale, simple et efficace qui consiste à recouvrir le spectrogramme d’un pavage régulier.
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(a) (b)

(c)

Figure 3.1: Calcul du spectrogramme binaire (c) proposé dans Shazam03 grâce à un pavage
(b) du spectrogramme original (a). Dans chaque tuile du pavage, le point d’énergie maximale
est mis à ‘1’ et les autres à ‘0’.

Dans chaque tuile du pavage, le point d’énergie maximale est mis à ‘1’ et les autres à ‘0’ (voir

figure 3.1).

3.2.2 Stratégie de Recherche

Lorsque le système doit analyser un extrait inconnu, le système calcule son empreinte. La

stratégie d’identification consiste alors à chercher, parmi les empreintes de référence, celle

qui a le plus de points à ‘1’ en commun avec l’empreinte inconnue. Afin de pouvoir parcourir

rapidement de larges bases, Wang suggère la mise en place d’une stratégie d’indexation. Les

clés d’indexation proposées par Wang correspondent à des paires de points à ‘1’.

Plus précisément, lors de la phase d’apprentissage, toutes les paires de points à ‘1’ de

chaque référence sont indexées. Lorsqu’une paire est stockée comme clé dans l’index, elle est
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associée à l’identifiant de la référence la contenant, ainsi qu’à la date d’occurrence de cette

paire dans la référence.

Lors de la phase d’identification, les paires de l’extrait inconnu sont calculées. Puis,

chaque paire est utilisée comme requête à l’index. Celui-ci renvoie, à chaque fois, la liste des

références contenant la paire et les dates d’occurrence. En étudiant la corrélation temporelle

entre les occurrences des clés dans l’extrait inconnu et leurs occurrences dans les références

renvoyées par l’index, il est facilement possible de trouver la référence ayant le plus de paires

en commun avec l’extrait inconnu, à décalage temporel constant. Cette référence constituera

le meilleur candidat à l’identification.

Notons que ce procédé requiert une stratégie d’encodage des clés (le système doit pouvoir

représenter chaque paire de points). L’encodage proposé par Wang pour une paire de points

de coordonnées (t1, f1) et (t2, f2) est le vecteur : [f1, f2, t2 − t1].

3.2.3 Seuil de Détection

La stratégie décrite précédemment renvoie un meilleur candidat pour chaque requête. En

revanche, il n’est pas, à ce stade, possible de savoir s’il s’agit d’une réelle identification ou

d’une fausse alarme. Nos expériences ont montré que la mise en place d’un simple seuil sur

le nombre de clés en commun entre le meilleur candidat et l’extrait inconnu ne donnait pas

de bons résultats en termes de performance de détection.

Nous avons donc proposé un mécanisme de détection, basé sur la fusion de décisions

locales, permettant de prendre une décision fiable quant à la correspondance entre le meilleur

candidat et la requête. Globalement, la stratégie consiste à diviser la requête en plusieurs

sous-requêtes et à identifier chacune de ces sous-requêtes. Si les meilleurs candidats obtenus

pour les différentes sous-requêtes se correspondent en majorité (même référence avec un

décalage temporel cohérent), nous considérons qu’il y a identification. Dans le cas contraire,

nous considérons que l’extrait à identifier n’est en fait pas dans la base.

3.3 Expériences et Résultats

Rappelons que le protocole d’évaluation consiste à analyser des flux radiophoniques provenant

de stations de radio réelles. L’algorithme doit détecter les diffusions des titres musicaux qui

sont dans la base de références. Dans cette expérience, la base est composée de 7300 extraits

de 60s de titres musicaux et le flux analysé correspond à 7 jours de la radio française ‘RTL’.

Comme les références de la base ne proviennent du flux radiophonique analysé, elles n’ont

pas subi les mêmes post-traitements.
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Quaerodetec Detected titles / Total False Alarms

Shazam03 [Wan03] 381 / 459 (=83.0%) 0

Table 3.1: Résultats de notre implémentation de Shazam03 sur l’évaluation Quaero. La
première colonne donne le nombre de titres correctement détectés par l’algorithme sur le
nombre total de titres à détecter. La deuxième colonne donne le nombre de détections
produites par l’algorithme à tort.

Les résultats sont donnés dans le tableau 3.1. Le nombre de titres détectés est suffisam-

ment important pour déduire que l’algorithme fonctionne, au moins dans une certaine mesure.

Le nombre de fausses alarmes est très bas, ce qui prouve que le mécanisme de décision que

nous avons proposé remplit efficacement son rôle. La question en suspens concerne les 17%

de titres qui n’ont pas été identifiés par l’algorithme. L’écoute manuelle des titres concernés

a permis de porter nos soupçons sur le glissement fréquentiel.
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Chapter 4

Amélioration de la Méthode Shazam

4.1 Robustesse au Glissement Fréquentiel

Le glissement fréquentiel est une distorsion qui rend le son plus aigü ou plus grave. En termes

de spectre, cela consiste en une multiplication des fréquences par un facteur constant κ.

Dans le cadre de la méthode de Wang, nous comprenons donc qu’une paire de points étant

encodée par le vecteur [f1, f2, t2−f1] va devenir après glissement fréquentiel [κf1, κf2, t2− t1].

Compte tenu de l’utilisation, lors de la phase de recherche, d’un mécanisme d’index exact,

il semble clair que la méthode ne peut réussir à identifier un extrait sonore qui a subi un

glissement fréquentiel.

Afin de pallier ce problème, nous proposons une modification du modèle d’empreinte de

la méthode Shazam03.

Le spectrogramme de base utilisé dans la méthode Shazam03 est obtenu par des trans-

formées de Fourier. L’empreinte que nous suggérons repose sur un spectrogramme obtenu

par la concaténation de transformées à Q constant. Les bins fréquentiels que nous utilisons

sont donc espacés logarithmiquement et la résolution fréquentielle de la transformée diminue

avec la fréquence. Notons que dans le domaine à Q constant, le glissement fréquentiel n’est

plus une multiplication des fréquences mais une translation d’un facteur constant.

Les étapes suivantes sont similaires à celles de la méthode précédemment décrite. Le

spectrogramme à Q constant est pavé par des rectangles. Au sein de chaque rectangle, le

point d’énergie maximale est mis à ‘1’ et les autres à ‘0’. Le résultat est un spectrogramme

binaire. L’algorithme extrait ensuite toutes les paires de points à ‘1’. Etant donné que

nous sommes dans le domaine à Q constant, nous ne parlons plus de fréquence pour désigner

l’ordonnée d’un point mais de bin fréquentiel. Ainsi, pour deux points de coordonnées (t1, b1)

et (t2, b2), l’encodage que nous proposons de la paire de points correspondante est le vecteur
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:

[ b̂1; b2 − b1; t2 − t1]

avec b̂1 =

⌊
b1
6

⌋
, une version sous-résolue de b1.

La représentation que nous suggérons a l’avantage de bénéficier des mêmes qualités, en

termes de robustesse, que celles de la méthode Shazam03 avec en outre une robustesse accrue

au glissement fréquentiel. Nous avons effectivement démontré au cours de notre travail que,

sur le plan théorique, cette nouvelle représentation est robuste au glissement fréquentiel.

4.2 Réduction de la Complexité de Calcul

Lorsque nous avons présenté la notion de clé d’indexation, nous avons fait une analogie

avec l’index d’un livre. Les mots sont référencés avec des pointeurs vers les pages qui les

contiennent. De manière similaire, en audio-fingerprint, les clés sont référencées avec des

pointeurs vers les titres de référence qui les contiennent. Cependant, on peut observer que

dans un livre certains mots ne sont jamais indexés. En fait, seuls les mots les plus pertinents

et spécifiques sont sélectionnés. Typiquement, les articles, prépositions et adverbes ne sont

jamais indexés. Il est donc légitime de se demander si la situation se transpose au contexte

de l’audio-fingerprint. La question qui se pose est alors : “y a-t-il des clés qui sont présentes

dans quasiment toutes les références ?”. Si c’est le cas, ces clés portent peu d’information et

ne font qu’alourdir inutilement le processus de recherche.

Une façon de se rendre compte de la situation consiste à étudier la distribution du nombre

de références pointées par clé. Si nous prenons une base de références avec son ensemble de

clés extraites, nous pouvons évaluer, pour chaque clé, le nombre de références pointées. Si

nous répétons l’opération avec toutes les clés extraites, nous pouvons stocker les valeurs

dans un histogramme qui, une fois normalisé, est une estimée de la densité de probabilité

de la variable aléatoire correspondante. Un tel histogramme est montré en figure 4.1. Nous

pouvons voir sur l’histogramme qu’une proportion importante de clés pointe vers un nombre

très important de références. Il est raisonnable de penser que ces clés alourdissent inutilement

la phase de recherche. Nous proposons donc une phase optionnelle d’élagage permettant de

réduire la complexité du traitement.

Pour chaque clé k extraite de la base de références, nous nommons Nk le nombre de

références dans lesquelles la clé k apparâıt au moins une fois. N étant le nombre total de

références, nous définissons la pertinence d’une clé par :

s(k) =
N −Nk

N
(4.1)
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Figure 4.1: Représentation en histogramme du nombre de références pointées par clé. Les
clés sont extraites d’une base de 30000 titres. Le bin d’histogramme à l’abscisse x a une
ordonnée proportionnelle au nombre de clés pointant vers x différentes références.

En résumé, une clé qui apparâıt dans de nombreuses références est peu pertinente. A l’inverse,

une clé rare est très pertinente. La phase d’élagage consiste simplement à fixer un seuil Tprune

et à garder dans l’index uniquement les clés qui vérifient s(k) < Tprune.

4.3 Expériences et Résultats

4.3.1 Evaluation Comparative

Afin d’évaluer les améliorations par rapport à la méthode originale, nous conservons les con-

ditions expérimentales identiques à celles de la section 3.3. La base contient 7,300 références

correspondant à des extraits de 60s de titres musicaux. Le corpus à analyser est constitué de

7 jours de la radio française ‘RTL’.

Quaerodetec Detected titles / Total False Alarms

Shazam03 [Wan03] 381 / 459 (=83.0%) 0
Improved (CQT-based) 447 / 459 (=97.4%) 0

Table 4.1: Résultats avec notre méthode modifiée sur l’évaluation Quaero. La première
colonne montre le nombre de titres correctement détectés dans le flux sur le nombre total
de titres à détecter. La deuxième colonne montre le nombre de détections produites par
l’algorithme à tort.

Les résultats sont présentés dans le tableau 4.1. Nous pouvons y voir que le taux de

détection est beaucoup plus haut avec notre empreinte modifée qu’avec l’originale. Ceci con-
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firme que les détections manquées de la méthode originale se sont produites essentiellement

en présence de glissement fréquentiel. Ces résultats montrent également qu’en plus d’être ro-

buste aux mêmes distorsions que la méthode originale, notre modèle a une robustesse accrue

au glissement fréquentiel.

4.3.2 Evaluation du Passage à l’Echelle

Nous avons mené une deuxième expérience afin de prouver la capacité de la méthode à passer

à l’échelle. Le cadre d’évaluation est le même que dans l’évaluation précédente mais nous

exécutons maintenant l’algorithme avec une base bien plus fournie. Dans cette expérience,

le corpus est constitué de 5 jours de flux radiophoniques provenant de deux stations de radio

(‘RTL’, ‘Virgin Radio’). L’ensemble des références est bien plus large puisqu’il contient 30,000

titres.

Quaerofilter Detected titles / Total False Alarms

Improved (CQT-based) 496 / 506 (=98.0%) 0

Table 4.2: Résultats avec notre méthode modifiée sur l’évaluation Quaero. Dans cette
expérience, la base de références contient 30000 titres. La stabilité des résultats en dépit
du passage à l’échelle montre la capacité de la méthode à gérer des bases industrielles.

Les résultats sont présentés dans le tableau 4.2. Ils montrent que l’algorithme peut passer

à l’échelle. La performance de détection est en effet similaire à celle obtenue dans la première

expérience alors que la base était plus de 4 fois plus importante. Il est particulièrement

remarquable qu’en dépit de l’augmentation de la base, le système a conservé un taux de

fausses alarmes nul. Cette expérience montre en conclusion que l’algorithme proposé a la

capacité de gérer des bases de données de taille industrielle.

4.3.3 Temps de Calcul

Nous donnons ici quelques chiffres sur le temps de calcul de l’algorithme. Ces chiffres sont

obtenus sur la base de notre implémentation en Matlab R 64-bits, exécutée sur un Intel Core

2 Duo @ 3.16 GHz avec 6MB de Cache et 8GB de RAM. Notre implémentation de Shazam a

un temps de calcul de 0.08s par seconde de signal. Notre méthode améliorée (à base de CQT)

a un temps de calcul de 0.43s par seconde de signal. La différence vient principalement du

temps de calcul de la transformée à Q constant. Si nous appliquons la technique d’élagage

décrite en section 4.2 avec un seuil Tprune = 0.5, nous obtenons un gain en vitesse de 35%.

Ceci réduit donc le temps de calcul du second algorithme à 0.28s par seconde de signal avec

30



le même score d’identification. Cela montre que la technique d’élagage proposée permet un

gain en complexité significatif tout en gardant des performances similaires.
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Chapter 5

Empreinte Basée sur la Transcription

en Accords

5.1 Introduction

La méthode présentée précédemment obtient d’excellents scores de détection sur l’évaluation

proposée. Cependant, il faut noter que cette évaluation ne contient que des identifications

exactes. Il s’avère que la méthode ne peut réussir dans le cadre de l’identification approchée.

Ce n’est en fait pas surprenant étant donné que les caractéristiques extraites du signal sont

de relativement bas niveau. En conséquence, on ne peut espérer que ces caractéristiques

soient préservées lorsque l’on regarde un autre signal, même s’il existe une similitude musi-

cale. Nous avons donc cherché à proposer de nouveaux modèles d’empreintes qui reposent

sur des caractéristiques du signal suffisamment sémantiques pour permettre l’identification

approchée, autrement dit le rapprochement de deux signaux différents mais musicalement

similaires.

La première méthode que nous proposons dans cette optique repose sur la transcription

en accords du signal. C’est en fait cette transcription qui servira d’empreinte. Cependant,

nous ne considérons pas que cette empreinte est robuste aux distorsions. En conséquence,

nous associons un mécanisme de recherche approchée à cette empreinte afin de parcourir très

efficacement la base de références.

5.2 Transcription en Accords

Dans le domaine de la transcription automatique, le but ultime serait le développement

d’un algorithme qui peut estimer toutes les notes jouées par un ensemble d’instruments.
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Ce problème, qui est activement étudié par la communauté scientifique, représente un défi

extrêmement complexe et il n’existe pour l’heure pas de méthode fiable pour atteindre cet

objectif.

Une façon de contourner le problème consiste à le simplifier. On peut donc se poser la

question “n’y a-t-il pas une représentation intermédiaire qui ne nécessite pas l’estimation de

toutes les notes jouées mais qui peut cependant apporter de l’information musicale ?”. La

réponse est “oui” et l’information intermédiaire que nous pouvons cibler est en fait le contenu

harmonique. Ce dernier est plus simple à estimer que l’ensemble des notes jouées et il existe de

nombreuses méthodes basées sur l’outil chromagramme qui permettent d’estimer la séquence

d’accords correspondant le mieux à un extrait musical. Ce qui est satisfaisant avec ces

estimations du contenu harmonique est qu’elles ont une réelle correspondance perceptuelle.

L’auditeur humain est en effet très sensible à la progression harmonique d’une musique. Le

fait d’avoir à disposition des techniques qui estiment l’harmonie présente donc un réel intérêt

applicatif, notamment dans notre domaine de l’identification audio.

Plus précisément, nous nous sommes appuyés dans nos travaux sur la méthode de tran-

scription en accords proposée par Oudre ??. Cette dernière utilise la représentation du signal

en chromagramme ?? pour en extraire une séquence d’accords. L’estimation se fait sur la

base d’un dictionnaire contenant les accords de référence. Chaque vecteur de chroma du sig-

nal est ensuite associé à l’accord de référence le plus proche. La méthode proposée par Oudre

prend non seulement en compte, lors de cette recherche du plus proche accord, la distance

entre le vecteur de chroma et les accords de référence mais également des statistiques plus

globales du signal intégrées au calcul de distance par le biais de l’algorithme EM ??.

5.3 Distance entre Deux Signaux

Compte tenu de la méthode de transcription en séquence d’accords présentée ci-dessus, nous

considérons maintenant que tout signal musical est représenté par une séquence d’accords

dans le système. Dans le contexte de l’audio-fingerprint, nous devons mettre en place une

méthode pour déterminer, sur la base des transcriptions en accords, si deux signaux sont

musicalement similaires. Nous proposons donc une définition de distance dans l’espace des

séquences d’accords.

Notre définition de la distance repose sur les considérations suivantes. Si nous avons une

correspondance parfaite entre deux séquences, nous considérons naturellement que les deux

signaux sont similaires. Mais il peut arriver que deux signaux qui devraient être considérés

similaires soient transcris par des séquences légèrement différentes. Il y a deux raisons à cela.

La première est que l’estimation des accords n’est pas très robuste. Il arrive notamment assez

34



fréquemment que le système puisse confondre un accord majeur avec son équivalent mineur.

Par ailleurs, l’idée de notre travail sur l’identification approchée est d’autoriser un niveau

important de distorsion entre deux exécutions d’une même musique. D’une certaine manière,

on peut espérer qu’une partie de ces distorsions vont être absorbées dans la modélisation

en accords : si deux musiques sont similaires, elles devraient en effet partager la même

progression harmonique. Cependant, il peut arriver que d’une version à l’autre, quelques

accords soient changés résultant donc en des transcriptions différentes. Par ailleurs, si les deux

exécutions ne sont pas exactement au même tempo, il peut arriver qu’une des transcriptions

ait quelques accords additionnels (rendant donc le signal plus long).

La nécessité de proposer une distance qui repose sur de la correspondance approchée

semble donc claire. La programmation dynamique ?? est une technique qui permet justement

de tenir compte des changements qui peuvent intervenir lors de l’estimation d’un accord en

particulier mais également de la présence d’accords supplémentaires qui ne sont pas dans

la transcription initiale. Nous avons donc mis en œuvre une méthode de programmation

dynamique spécifique à notre cas pour le calcul de distance entre deux séquences d’accords.

5.4 Stratégie de Recherche Rapide

Le calcul de distance présenté ci-dessus constitue une base théorique intéressante pour la

comparaison de deux signaux représentés par leur séquence d’accords. Cependant, elle est

très coûteuse en temps de calcul. En conséquence, lorsque le système doit identifier un extrait

inconnu, il serait déraisonnable de calculer sa distance à l’ensemble des références de la base.

Un tel système ne pourrait en effet pas passer à l’échelle. Nous avons donc élaboré une

stratégie de recherche qui permet de rapidement sélectionner les meilleurs candidats de la

base en termes de proximité musicale à l’extrait inconnu.

La méthode de recherche rapide que nous avons retenue est une méthode à indexation

utilisée initialement dans la bio-informatique, nommée “Basic Local Alignement Search Tool”

??. Le principe est de segmenter la transcription inconnue en plusieurs sous-séquences de

w accords. Chacune de ces sous-séquences est ensuite utilisée comme requête à un index

dans lequel sont référencées toutes les sous-séquences extraites des références. En étudiant

la corrélation temporelle des réponses de l’index obtenues pour les différentes sous-séquences

avec une référence donnée, la méthode permet de retrouver rapidement les références les plus

proches de l’extrait inconnu.

Cette méthode de recherche rapide permet d’accéder rapidement aux meilleurs candidats,

cependant, elle n’est pas très précise. Afin d’affiner les performances d’identification, nous

utilisons cette recherche ‘BLAST’ comme une heuristique : elle nous permet de sélectionner
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un nombre restreint de meilleurs candidats. Pour chacun de ces candidats, nous calculons

ensuite sa distance à l’extrait inconnu par programmation dynamique. Rappelons que cette

opération est coûteuse en temps de calcul mais elle est ici limitée à un petit nombre de

candidats, ce qui permet de préserver la capacité du système à passer à l’échelle.

5.5 Expériences et Résultats

Nous utilisons le même cadre d’évaluation que dans la section 3.3. Etant donné que les flux

constituant le corpus proviennent de vraies stations de radio, ils contiennent occasionnelle-

ment des live ou des versions acoustiques de certains titres. Si nous incluons dans la base

de références les versions studio correspondantes, nous nous retrouvons donc dans un cadre

d’identification approchée.

Nous avons pu mettre un place un corpus contenant 24h de la radio française ‘RTL’. Il

contient notamment une émission qui propose essentiellement des versions live de certains

morceaux actuels. Au total, le corpus contient 107 titres annotés, dont 99 sont des versions

studio et les 8 restant des exécutions en live. La base de références associée à ce corpus est

constituée de 2400 titres musicaux.

Les résultats de l’algorithme sont présentés sur une figure ROC classique (voir figure

5.1). Comme la plupart des systèmes de détection, la sortie de notre algorithme repose sur

la mise en place d’un seuil de détection. Rappelons en effet que les meilleurs candidats

sont sélectionnés lors de l’étape ‘BLAST’ et qu’ensuite la distance de chacun d’entre eux

à l’extrait inconnu est calculée par programmation dynamique. Pour compléter la châıne

de traitement, on peut se contenter de mettre un seuil sur la distance : seuls les candidats

plus proches qu’une certaine distance fixée donnent lieu à une sortie de l’algorithme. Dans

une telle configuration, on peut évaluer la sortie du système avec différentes valeurs de seuil.

C’est tout l’intérêt de la courbe ROC. Chaque point de la courbe correspond aux résultats

obtenus par l’algorithme avec un seuil de détection spécifique. Une telle courbe permet donc

d’observer la réponse globale de l’algorithme.

Les résultats montrent que la méthode basée sur les accords est capable d’aller plus

loin que la méthode traditionnelle (représentée en noir), qui est cantonnée au domaine de

l’identification exacte. On peut en effet vérifier que certains points de la courbe ROC rouge

ont une coordonnée en Y plus grande que le nombre de titres diffusés en version studio

dans le corpus. La contrepartie de cette souplesse accrue dans l’identification est un nombre

nettement plus important de fausses alarmes. Ce n’est qu’à moitié surprenant puisqu’en

essayant d’assouplir la représentation (afin qu’elle couvre différentes versions d’un même

titre) on favorise du même coup le risque de collisions entre deux titres différents.

36



Figure 5.1: Résultats obtenus avec l’algorithme de transcription en accords. La courbe ROC
rouge montre les taux de détection obtenus avec différents seuils de détection. La courbe
ROC typique d’un algorithme d’identification exacte est représentée en noir.
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Chapter 6

Approche Basée sur l’Harmonie et le

Rythme

Les résultats ont montré que l’approche précédente a la capacité de dépasser le cadre de

l’identification exacte. Cependant, cette capacité a été obtenue au prix d’une précision nette-

ment réduite dans l’identification. Le système proposé génère en effet un nombre important

de fausses alarmes du fait de la souplesse de sa représentation.

Nous proposons dans cette partie une approche plus complète dont la modélisation met

en jeu l’harmonie extraite du signal et également les aspects rythmiques. L’idée est qu’en

augmentant la quantité d’information présente dans le modèle, on peut espérer réduire le

nombre de fausses alarmes. La difficulté, bien sûr, consiste à ajouter de l’information tout

en conservant la capacité du système à faire de l’identification approchée.

6.1 Modèle en Etats

Le modèle de signal que nous proposons repose sur l’extraction d’instants musicalement

significatifs dans la musique. Dans la suite, nous appelons ces instants t1, t2, ..., tn les dates

d’intérêt. Dans notre cas, nous déterminons les dates d’intérêt en localisant les pics d’une

fonction de détection d’onsets du signal. Notre méthode consiste ensuite à associer à chaque

date d’intérêt tk une information ik qui caractérise localement le signal. Dans notre travail

nous avons choisi, dans la continuité de notre méthode basée sur les accords, de nous appuyer

sur une information de type harmonique. Plus précisément, nous stockons dans ik le vecteur

de chroma moyen à gauche de tk ainsi que le vecteur de chroma moyen à droite de tk. Nous

définissons finalement l’état sk comme l’association de la date d’intérêt tk avec l’information

locale ik correspondante :

sk = (tk, ik)
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La représentation du signal est au final donnée par la séquence d’états {s1, s2, ..., sn}
La figure 6.1 montre la superposition des représentations graphiques d’une fonction d’onset

(en blanc) et du chromagramme du même signal Dans notre modèle, les dates d’intérêt sont

données par les dates des triangles jaunes sur la fonction d’onset (obtenus par détection de

pics). Pour chaque date, le vecteur de chroma moyen à gauche (moyenne des vecteurs de

chroma entre le précédent triangle et le triangle courant) et le vecteur de chroma moyen à

droite (moyenne des vecteurs des vecteurs de chroma entre le triangle courant et le triangle

suivant) sont calculés puis associés à la date, le tout étant stocké dans un état. L’avantage de

ce modèle est qu’il est très compact mais conserve de l’information rythmique et harmonique.

Figure 6.1: Illustration du modèle en états proposé. La courbe blanche représente la fonction
de détection d’onsets. Les maxima locaux sont extrait par détection de pics et matérialisés
par des triangles jaunes. Le fond est le chromagramme du même signal avec les énergies les
plus fortes figurées par les couleurs les plus claires.

6.2 Distance entre Deux Signaux

Maintenant que le modèle de signal a été décrit, il faut définir la distance entre deux signaux,

autrement dit la distance entre deux séquences d’états. Pour les mêmes raisons qu’en section

5.3, nous suggérons l’utilisation d’un alignement dynamique. Celui-ci permet de gérer les

substitutions d’un état par un autre ainsi que les insertions et les suppressions d’états. Notons

que chaque état est caractérisé à la fois par une date et un contenu harmonique. Nous

proposons donc un mécanisme d’alignement qui pénalise, lors de la substitution d’un état

par un autre, d’une part la synchronisation temporelle entre les deux états et d’autre part la

ressemblance entre les harmonies portées par chacun des états.
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6.3 Stratégie de Recherche Rapide

De la même manière que pour le système basé sur les transcriptions en accords, il n’est pas

concevable de mesurer la distance du signal inconnu à toutes les références de la base. Il faut

donc mettre en place une stratégie de recherche rapide permettant de garantir le passage à

l’échelle du système.

La stratégie de recherche que nous proposons repose sur la mise en place d’un index.

Les clés d’indexation sont extraites de la représentation en séquence d’états présentée. Plus

précisément, les clés sont obtenus par une quantification vectorielle sévère de l’information

harmonique contenue dans chaque état. Les clés extraites du signal inconnu servent de

requête à l’index qui contient toutes les clés extraites des références. Pour chaque référence

renvoyée par l’index, nous établissons un diagramme en 2D permettant de visualiser les dates

d’occurrence des clés qui sont communes à l’extrait inconnu et à la référence (voir figure 6.2).

Pour chaque clé commune, nous positionnons dans le diagramme un point dont l’abscisse est

la date d’occurrence dans la référence et l’ordonnée la date d’occurrence de la même clé dans

l’extrait inconnu. Lorsqu’il est possible d’observer, dans le nuage de points résultant, une

ligne droite, cela signifie que l’extrait inconnu et la référence se correspondent. Les droites

en question sont détectées efficacement grâce à la transformée de Hough.

Figure 6.2: Diagramme aggrégeant les sorties de l’index pour une référence donnée. Chaque
point de coordonées (x, y) correspond à une clé présente au temps t = x dans la référence et
au temps t = y dans l’extrait inconnu.

Cette stratégie de recherche a l’avantage d’être rapide. Cependant, elle est assez peu

précise, notamment du fait de la quantification grossière que l’on applique sur le contenu

harmonique. De ce fait, il est bon de considérer cette phase de recherche rapide comme une

heuristique à la sortie de laquelle nous conservons un petit nombre de meilleurs candidats.
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Nous pouvons ensuite calculer la distance de chacun de ces candidats à l’extrait inconnu.

Compte tenu du faible nombre de candidats, il est en effet possible de mettre en œuvre le

calcul de distance par alignement dynamique, bien qu’il soit coûteux en termes de temps de

calcul.

6.4 Expériences et Résultats

Nous menons la même expérience que pour la méthode par transcription en séquence d’accords.

Le flux analysé correspond à 24 heures de la radio ‘RTL’ et contient 8 diffusions qui tiennent

de l’identification approchée. La base contient 2400 titres musicaux.

Les résultats sont donnés sous la forme d’une courbe ROC (voir figure 6.3). Pour la

comparaison, le graphique présente également la courbe ROC d’un algorithme d’identification

exacte (en noir) et celle obtenue avec la méthode par accords (en rouge).

Figure 6.3: Résultats de l’approche basée sur l’harmonie et le rythme sous la forme d’une
courbe ROC (en bleu). La coordonnée X donne le nombre de fausses alarmes et la coordonnée
Y le nombre de titres correctement détectés. Sont également montrées sur le graphe la
courbe ROC d’un système pour l’identification exacte (en noir) et celle du système basé sur
la transcription en accords (en rouge).

Les résultats montrent que la méthode, similairement à l’approche en accords, est capable

de dépasser le cadre de l’identification exacte. Cependant, nous pouvons observer qu’elle at-

teint cet objectif avec un nombre bien moins important de fausses alarmes que la méthode en

accords. Cela semble montrer qu’en ajoutant une composante rythmique à notre modèle nous

avons pu rendre l’empreinte bien plus discriminante, tout en restant robuste au changement

de version.
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Chapter 7

Conclusion

Au cours de ce travail, nous avons étudié la méthode Shazam03 et avons montré qu’elle

présentait une faiblesse vis-à-vis du glissement fréquentiel. Nous avons proposé une modifi-

cation du modèle qui pallie ce problème et avons observé que les résultats obtenus sur une

évaluation extrêmement réaliste devenaient alors excellents. Cette observation, ainsi que les

échanges que nous avons pu avoir dans le cadre du projet Quaero, laissent à penser que le

cas d’usage traditionnel de l’audio-fingerprint appliqué à la surveillance de diffusion mul-

timédia est un problème aujourd’hui relativement clos. Il reste cependant quelques scénarios

d’utilisation permettant de complexifier le problème tels que la détection de musique en fond

sonore.

Dans la suite de notre travail, notre objectif a été de proposer de nouveaux modèles

d’empreintes qui permettent également de gérer l’identification approchée. Nous avons pro-

posé une approche basée sur la transcription du signal en séquence d’accords qui s’avère avoir

une bonne capacité de détection mais génère beaucoup de fausses alarmes. De fait, il serait

intéressant d’étudier plus finement les fausses alarmes du système. Celles-ci correspondent

en effet à des titres musicaux différents mais qui possèdent des progressions harmoniques

similaires. Ce genre de caractéristique peut notamment s’avérer intéressant pour les logiciels

de recommandation aux DJs. Notre dernier modèle, basé sur un mélange d’informations

rythmiques et harmoniques, semble gagner sur tous les tableaux puisqu’il conserve la ca-

pacité à faire de l’identification approchée tout en générant un nombre très réduit de fausses

alarmes. Il faut cependant noter que le modèle actuel n’est pas robuste à un certain nombre

de variations : en l’état, il ne gère ni la transposition ni le changement de structure.
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Part II

Introduction, Context and Use-Case
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Chapter 8

General Introduction

8.1 What is Audio-Fingerprinting?

8.1.1 Principles

Content-based audio identification consists of retrieving the meta-data (such as, when dealing

with music signals: the title, the artist, the album ... ) associated to an audio excerpt. Audio-

identification has focused the attention of the scientific community for a decade because of

its key role in a number of applications [CBG+02], the two most famous ones being the

identification of an audio excerpt through the mobile phone network and the monitoring of

copyrighted multimedia content.

There are two popular ways to tackle the problem: watermarking and audio-fingerprint.

Watermarking consists of injecting information bits in the audio signal. These bits allow

to bring together the expected meta-data. The stake in this approach lies in the injec-

tion of the additional information bits that must not alter the audio quality of the signal.

Audio-fingerprinting consists of extracting from the raw audio signal, possibly distorted, a

fingerprint. The latter allows the identification of the signal that can then be associated with

its meta-data. We can note that according to the target application, these two approaches

are not necessarily exclusive. Audio-fingerprint can typically constitute a checking step in a

processing chain that injects watermarks in audio signals.

Audio-fingerprinting fills the requirements of audio-identification in the following manner.

The system has a database of references available (in practice, they are audio files). The

references correspond to the set of audio signals that the system will be able to identify.

The principle of audio-fingerprinting is to bring the matching of audio signals back to the

matching of their fingerprints. Thus, a database of reference fingerprints is compiled from the

database of audio references. This is the learning stage (see Figure 8.1). When identifying
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an unknown excerpt, its fingerprint is calculated then its best match is looked for in the

fingerprints database (see Figure 8.2).

Fingerprint
extraction

Fingerprints
database

Audio
references

Figure 8.1: Learning of the reference fingerprints by the audio-fingerprint algorithm.

Unknown
excerpt

Fingerprint
extraction

Matching ID result

Fingerprints
database

Figure 8.2: Identification of an unknown excerpt by the audio-fingerprint algorithm.

8.1.2 The main stakes

8.1.2.1 Robustness

The fingerprint should ideally allow to identify an audio reference in an unequivocal way.

From this point of view, audio identification resembles cryptography, where control functions

allow to check in an unequivocal way the integrity of a transmitted code (only the good code

generates the good fingerprint). There is however a major difference. Contrarily to cryptog-

raphy, where the slightest change in the transmitted message must provoke a modification of

the fingerprint, audio identification tries to use representations that, in spite of being unique

for one reference, are invariant to several modifications of the signal. This objective actu-

ally covers two situations that, in spite of their occasional indistinguishability to the human

listener, are quite unalike for a computer.

48



• In the first case, the idea is to identify an audio excerpt that is an exact copy of

one reference. We say that both signals are equivalent. The identified signal may

however have undergone several distortions that occur in the transmission chain of

the signal. Such distortions are named post-processing distortions and they are made

explicit in section 8.1.3. This configuration, illustrated in Figure 8.3, is referred to as

exact matching.

Figure 8.3: Illustration of the exact matching use-case. The algorithm has to match two
signals that correspond to the same recording with different post-processing distortions.

• In the other case, the audio excerpt is not explicitly in the reference database. On the

other hand, the database contains one reference which is musically very close to the

searched signal. In our experimental context the typical situation is the matching of two

different versions of one same title: the database contains the studio version of one song

while a live performance of the same song is to be identified. We say that the signals

are similar. The extreme example is the re-recording of a title as is. Although both

recordings will sound very similar to the human listener (it is the same title, performed

by the same group of musicians), the little variations that exist between both versions

(small rhythm shifts, melodies slightly changed -typically on the starts and ends of

the phrases-) make them two radically different signals for a computer. We talk about

approximate matching, as illustrated in Figure 8.4. Let us note that, in this context,

the signal to identify may also have undergone some post-processing distortions, as in

the first case. The approximate matching use-case is thus a strict extension of exact

matching.

8.1.2.2 Scalability

The other stake in audio-fingerprinting is the scalability of the approach. In the context of

industrial applications, the references databases do indeed contain hundreds of thousands

of music titles, not to say millions. Typical examples are the databases used by music
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Figure 8.4: Illustration of the approximate matching use-case. The algorithm has to match
two signals that correspond to the same title performed in different conditions (different
arrangement, different musicians, different singer, different recording conditions...).

right management companies, which monitor the commercial channels broadcasts. These

contain a number of titles whose order of magnitude is the million. The same holds for

the open-source initiatives (Music Brainz, Echo Nest...) whose catalogue entries now reach

the million. The ability of an audio-fingerprint system to perform an efficient search is thus

one of the fundamental requirements, if not the main requirement. In order to reach such

scalability many works propose a fingerprint model that integrates within an indexing scheme.

Indexation is indeed a traditional key to the setup of very efficient search models, which is

the issue discussed in section 8.1.4.

8.1.3 Traditional Post-Processing Distortions

As mentioned a fingerprint is expected to be robust to the distortions that a signal undergoes

in a classic transmission channel. This includes the sound processing that the broadcast

station has set up and the distortions induced when the user captures the excerpt. In this

section, we detail the major audio processings to which a fingerprint should be robust to.

The study is mostly based on the common sound-processing performed by radio stations for

the reason that they provide a very representative set of distortions for most use-cases. In

Table 8.1, we give the mathematical formulae corresponding to the described distortions. To

do so, we consider that the audio signal is represented by a function S of two variables t

(for time) and f (for frequency). It is indeed well known that an audio signal can be locally

factorized as the weighted sum of harmonic functions with frequencies comprised between 0

and fs
2
, fs being the sampling frequency of the signal. S(t0, f0) represents the weight of the

harmonic function of frequency f0 when studying the signal around t0. L being the length of
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the signal, the latter is thus entirely defined by the function:

S :

∣∣∣∣∣
[0;L]× [0; fs/2] −→ C

(t, f) 7−→ S(t, f)

When dealing with audio identification, many use-cases involve the capture of an excerpt

of audio signal. It is seldom the case that the borders of this excerpt coincide with the ones of

the signal that has to be matched with. This is why it is usually demanded that a fingerprint

system succeeds in spite of the cropping of the signal. Table 8.1 gives the expression of

a cropped signal of length M (with M < L) starting at t0 in the original signal. Before

broadcasting a signal, all radio stations perform equalisation. It consists of favouring some

frequency bands and penalising others. The typical setup for modern music favours the low

frequencies in order to emphasise the rhythmic part (drums and bass guitar). In order to limit

the dynamic range of a title, radio stations use compressors. This processing is particularly

useful when a title is listened to in a noisy environment such as a car. Compressors improve

the user experience by raising the gain in low passages. It is common that radio stations apply

a pitch-shifting on the titles they broadcast. They generally want the music to sound higher,

so that the listener has the impression that the music is more lively. From a signal processing

point a view, pitch-shifting is a dilatation of the frequencies. We can note that radio stations

perform pitch-shifting thanks to a basic resampling. In this case, pitch-shifting goes together

with time-stretching. The time dilatation factor is then the inverse of the frequency dilatation

factor (K = 1/K ′ in Table 8.1). In most use-cases, we have to deal with other effects that

are linked with the transmission channel that the signal has gone through. This includes the

intrinsic noises linked with the encoding operations, but also noises that can be added when

the signal is acquired (background noise). All this can be modelled as the addition of a noise

signal to the original signal. In accordance with the classic use-cases, we consider that the

added noise is not prevailing over the signal.

There are a number of other processings that can be applied to the signal in classic use-

cases. We can think for instance of various sound modules that radio stations use (enhancers,

stereo wideners, limiters, ...). Though, their effects are negligible compared with what has

been detailed in this section. More details about the usual radio processings can be found in

[CBMN02].
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Distortion Formula

Cropping S̃ :

∣∣∣∣∣
[0;M ]× [0; fs/2] −→ C

(t, f) 7−→ S(t+ t0, f)

Equalization S̃(t, f) = S(t, f).h(f) with h : [0; fs/2] −→ [0; 1]

Compression S̃(t, f) = S(t, f).g(t) with g : [0;L] −→ [0; 1]

Pitch shifting S̃(t, f) = S(t,Kf)

Time stretching S̃(t, f) = S(K ′t, f)

Addition of noise S̃(t, f) = S(t, f) + n(t, f)

Table 8.1: Formulae of the post-processing distortions that are handled in traditional audio-
fingerprint use-cases.

8.1.4 Indexing

Indexing consists of listing some particular features of a collection of objects. Each of the

listed feature is associated with a list of all the objects containing the feature. In the following

of the document, we call the listed features the keys (or index keys) and, to designate the

association between the feature and the involved objects, we say that the key points toward

the objects.

The appearance of indexing can be defined as “the time when man first began to do

something to make information in written records more accessible” [Wit73]. Proof of such

processes has been found up to the second millennium B.C., which makes indexing a very

ancient and well-established technique. The topic was notably of significant importance in

the libraries, where the aim is to provide the fastest access to the book of interest for the

reader. It is indeed easily understandable that an indexing strategy radically changes the

search process in a sizable collection of objects. Let us imagine that someone wants to find

a precise paper in a journal. He does not know the title but he knows that it talks about

‘Markov’. The brute force approach consists of parsing all the articles of the collection, one

by one, until the article is found. Conversely, if an index was built, the reader only has to

look for ‘Markov’ in the index. The reader will then have a set of candidate articles that

all possess the word ‘Markov’ in their content. Then, only the pointed articles need to be

parsed.

For a same collection of objects, there are many ways to build an index. According to

the chosen strategy, the efficiency of the search can dramatically change. We can talk of

the quality of the index. For example, in a book the table of contents constitutes a form of

indexing. It is however an index of poor quality: using the table of contents, our reader will

not find his article if Markov is not in the title. For that kind of query, glossaries are much
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more indicated. These do indeed index all words that are newly introduced, uncommon, or

specialised. By exposing this, we also understand that the quality of an index depends on

the expected usage of it.

Let us end these general considerations with the observation that the gain of speed in the

search step comes at the cost of the construction time of the index as well as the necessity

to store the index somewhere. The index construction must take place before the search is

performed. We say that it is an offline process.

Having exposed the advantages of an index scheme, we understand why it is a very

attractive strategy when designing an audio-fingerprinting algorithm. The tremendous gain

of search speed that it brings about is indeed of particular interest for us. The difficulty,

though, is that the index is an inherently exact scheme. If the reader looks for the word

‘Barkov’ in the glossary instead of ‘Markov’, he will never succeed in finding the desired

article. This issue must be studied with care, particularly when working with audio features

that are highly variable. Throughout the exploration of the different fingerprint models of

our work, the central question will thus consistently be: what can we define as an index

key in our model? The satellite questions that come with are: how do we build our index

queries? and how do we process the index outputs?
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8.2 My Contributions to the Domain

My PhD work has relied on three cornerstones that are: a careful study of the state of the

art, which allowed to understand the stakes and the precise contours of the domain, the set

up of a complete and realistic evaluation framework, which reflects the challenges exposed in

the works from the state of the art, and the implementation of a baseline algorithm at the

level of the state of the art. Based on these, I have further explored the domain under two

rather original angles. I have worked on the application of audio-fingerprint methods to the

detection of recurrent motives in a stream. Besides, I have got involved in the specific study

of approximate matching in the context of audio-fingerprint.

Regarding the evaluation framework, it has been the result of a collaboration with our

project partners from Quaero. More precisely, our evaluation framework is based on a use-

case that has the meaningful advantage of being representative of real-world applications. For

that matter the data that were provided all come from real-world sources and are the ones

used in the production database of the industrial partner from Quaero. Namely, this use-case

is the “automatic detection of referenced sound items in multimedia broadcasts”. Such a use-

case involves most of the challenges presented in the state of the art for the audio-fingerprint

algorithms. The elaboration of this framework gave rise to a common journal paper detailing

the proposed evaluation framework:

• Mathieu Ramona, Sébastien Fenet, Raphael Blouet, Hervé Bredin, Thomas Fillon and

Geoffroy Peeters, “A Public Audio Identification Evaluation Framework for Broadcast

Monitoring”, Applied Artificial Intelligence: An International Journal, vol. 26, no. 1-2, pp.

119-136, February 2012.

As far as the baseline algorithm is concerned, I chose, in accordance with the numerous

citations of this work in the state of the art, to implement the system described in [Wan03],

traditionally referred to as “Shazam’s system”. A particular attention has been taken in pro-

ducing a neat code since I have been targeting the management of industrial-sized databases.

There was a subsequent tuning phase during which all the parameters of the method had

to be optimally determined. When implementing the method described in the paper, it ap-

peared that the final decision step, consisting of a simple threshold, is too naive to handle

the false alarms issue with reasonably good scores on real data. For that matter, I have

implemented a more complex final step that relies on the splitting of the query in several

sub-queries followed by a a fusion of the local decisions taken on each sub-query.

Thanks to the elaborated evaluation framework, I have extensively tested my implemen-

tation of [Wan03]. A critical analysis of the results has put the light on a weakness of the
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fingerprint. More precisely it appears that it lacks robustness to pitch-shifting when handling

real-world data. This has led me to the design of a modified fingerprint and an adaptation

of the method accordingly. The much better results obtained on the same evaluation by the

method I propose show that the original weakness is overcome. Two papers were dedicated

to the description of this modified fingerprint.

• Sébastien Fenet, Yves Grenier, and Gaël Richard, “Une empreinte audio à base de CQT

appliquée à la surveillance de flux radiophoniques”, in Proceedings of the Groupe d’Etudes

du Traitement du Signal et des Images (GRETSI), Bordeaux, France, September 2011.

• Sébastien Fenet, Gaël Richard, and Yves Grenier, “A Scalable Audio Fingerprint Method

with Robustness to Pitch-Shifting”, in Proceedings of the International Society for Music

Information Retrieval (ISMIR), Miami, USA, October 2011, pp. 121-126.

An adjacent problem to the detection of referenced items in multimedia broadcasts is

the detection of recurrent motives in a stream. My study of the state of the art did show

that although the question had already been approached in some papers, the detection of

recurrent motives stays quite unusual in audio-fingerprinting. The issue is indeed usually

tackled thanks to correlation methods that are CPU-demanding. I have showed that audio-

fingerprinting methods based on indexing of keys can easily be adapted to this use-case. I

have taken advantage of this part of my work to demonstrate the general applicability of

the search strategy proposed in [Wan03]. To this aim a collaboration with M. Moussallam

has been put in place and has led to the development of a new type of fingerprint, utterly

different from the first one. This second fingerprint has been integrated in the system and

also tested on the recurrent motives use-case. Both topics that are the proposition of an

audio-fingerprint based system for the detection of recurrent motives and the demonstration

of the general applicability of the designed system are described in the following paper.

• Sébastien Fenet, Manuel Moussallam, Yves Grenier, Gaël Richard, and Laurent Daudet, “A

Framework for Fingerprint-Based Detection of Repeating Objects in Multimedia Streams”,

in Proceedings of the European Signal Processing Conference (EUSIPCO), Bucharest, Ro-

mania August 2012, pp. 1464-1468.

Another aspect that seems missing from the state of the art is the study of music similarity

in the context of audio-fingerprint. We have indeed noticed that the problem of approximate

matching is hardly considered in the works of the domain. In the best case, authors pretend

that their methods have the ability to match signals that are musically similar although their

testing is only based on exact-matching data. I however believe that there is a real research
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interest as well as practical applications in the extension of the audio-fingerprint schemes to

the case of approximate matching. Our work in the context of Quaero has notably exhibited

that such a system becomes necessary when trying to match automatic annotations with the

ones generated by human operators.

I have consequently got involved in the design of new fingerprinting methods that manage

approximate matches. The first method that I propose is based on a transcription of the

musical signal in a chords sequence. I have started from the work proposed by L. Oudre

[OFG11], which allows the generation of the chords sequence. The state of the art of ap-

proximate string matching is packed with numerous search methodologies, some of which I

have adapted to the context of chords sequence transcription. In the end, the method that

I propose uses an adaptation of the Basic Local Alignment Search Tool [AGM+90] that is

applied to the chords transcription of the signal. A paper reporting this work will be written

very soon.

• In Preparation: Sébastien Fenet, Gaël Richard, Yves Grenier, “A Chords-Transcription

Based Audio-Fingerprint Method For Approximate Matching”.

The first method shows promising results but generates a quite high number of false

alarms. The second method that I propose involves a representation of the musical signal

that contains a more complete set of information. The method uses a mixture of rhythmic

and harmonic information to compute a fingerprint. A specific search strategy has been

designed for this combined model. The results achieved with this method seem to show

that this technology is a very good compromise between what is achieved by exact-matching

methods and what is achieved by our chords-transcription method. The method is the object

of a pending patent and of a currently written paper.

• Sébastien Fenet, Yves Grenier, and Gaël Richard, “Génération d’une Signature d’un Signal

Audio Musical”, FR Patent Pending 1351752.

• In Preparation: Sébastien Fenet, Yves Grenier, Gaël Richard, “An Extended Audio-

Fingerprint Method with Capabilities for Similar Music Detection”.
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Chapter 9

The Quaero Project: Use-Case and

Evaluation Protocol

9.1 The Quaero Context

This work has been carried out as part of the European project Quaero1. More precisely, it

belongs to the work-package 11.4 called “Audio Identification and Fingerprinting”. We have

taken part in this work-package together with three partners.

• Ircam is another research partner whose task, like ours, has been to provide algorithms

that meet the use-case of the work-package.

• Yacast is the industrial partner of the work-package. They have proposed the use-case

and provided the necessary data.

• IRIT is a research laboratory that is in charge of the annual evaluation. Their task is

to manage the evaluation campaign and to provide the evaluation tools.

An evaluation protocol has been collectively defined [RFB+12]. This work has included

an overview of the existing techniques used by the authors from the state of the art for the

evaluation of their fingerprint methods, a critical analysis of the reported techniques and the

setup of a new evaluation framework meant to faithfully reproduce real-world conditions.

Based on the provided data and the defined protocol, an evaluation campaign has been

held every year. The evaluation constitutes an opportunity to measure the performance of

the developed algorithms within a formal framework and to locate the evaluated methods

within the state of the art.

1http://quaero.org
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9.2 Specifying the Use-Case

The specifications that have been designed in the context of Quaero are based on the “mon-

itoring of multimedia broadcasts” use-case. This use-case indeed constitutes one of the key

activities of Yacast, and more generally, of most companies using audio-fingerprint in their

businesses. The principle is the setup of a system that continuously monitors some given

multimedia streams (TV or radio channels, web...). The system has previously learnt a

database of reference audio sounds (typical examples are copyrighted music titles or com-

mercials). The task of the system is then to report any broadcast of any sound from the

reference database in the multimedia streams. Let us note that, as stated in section 8.1.3, the

broadcast sounds may have undergone some specific sound processing beforehand. Besides,

it is worth mentioning that if the broadcast contains sounds from the reference database, it

also contains unreferenced bits of stream.

If we denote by m1,m2, ...,mN the references, by m̃1, m̃2, ..., m̃N their broadcast (and

distorted) versions and by n the rest of the broadcast (considered as noise for the algorithm),

the task can be illustrated as in Figure 9.2.

n m̃k1 n m̃k2 m̃k3 n time

detection
mk1

detection
mk2

detection
mk3

Figure 9.1: Broadcast monitoring use-case. The automatic annotation system has to detect
in the stream of a multimedia channel all the broadcast sounds from the reference database.

We name a system that handles this use-case an automatic annotation system. In our

work, we have mostly worked with reference databases comprising only music titles. We

consequently refer to the reference sounds as reference music titles or reference titles. The

concepts however stay easily transposable to any kind of sound.

9.3 Evaluation

9.3.1 Traditional Evaluation Techniques

Most of the past contributions in audio-fingerprint use synthetic degradations for the eval-

uation of the methods. More precisely, the evaluation corpus consists of a subset of the

reference database, on which various distortions have been applied. This methodology has
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the drawback of skipping a large part of the false alarms issue. As the evaluation set does not

contain any item that does not belong to the reference database, this drastically reduces the

possibilities of false alarms. In order to overcome this lack, an alternative consists of adding

out-of-base items in the evaluation corpus. Another issue with this approach is the difficulty

of generating a realistic set of distortions. In order to be representative, the distortions must

be combined and tuned in a lot of different configurations, which quickly leads to an un-

tractable experiment protocol. A significant illustration of the weakness of the approach is

the lack of experiments including pitch-shifting. Previous authors seem to have considered

that it was negligible. Though, our work has shown that this processing plays a crucial role

in the performance of some methods on real use-cases.

All these considerations justify the setup of a real-world evaluation. The evaluation corpus

then consists of real broadcasts. The advantage of real-world broadcast signals is that they

contain a variety of complex combinations among all the presented distortions. Besides, these

combined distortions obviously correspond to a real-world use-case. The drawback, in return,

is that the level of distortion applied is not controlled.

9.3.2 The Quaero Evaluation Protocol

The evaluation protocol that we set up in the context of Quaero consists of the following

steps.

9.3.2.1 Reference database

Before each evaluation the partners collectively decide the size N of the reference database.

The references are extracted from an actual production database. For technical easiness, the

references are limited to 60s. One reference thus corresponds to 60s of a music title. It has

a unique identifier mi. On the computer, it is one mono 16-bits audio file with a sampling

rate of 11.025Hz, whose name is mi.

9.3.2.2 Corpus

Similarly, the partners agree on a number of days of broadcasts that will be analysed by

the algorithms. In order to provide the most representative set of distortions, it is a good

practice to use broadcasts coming from different radio channels, preferably with different

genres (young, classic, rock, ...). The streams are cut in 5 minutes-long chunks. Each chunk

is stored in an audio file whose name contains the string HHMM, with HH:MM the starting time

of the chunk in the day of broadcast. Its end time is naturally HH:MM+5.
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9.3.2.3 Outputs

Once all the data have been delivered, the participants run their algorithms. In a first

step, they have to learn the provided reference database. In a second step, they scan the

broadcasts in order to identify the broadcast of items from the database, such as detailed

in section 9.2. For each detected item, the evaluated algorithm generates an output that

specifies the identifier of the detected item as well as the detection date in the stream.

9.3.2.4 Groundtruth

Meanwhile, Yacast (the industrial partner) has provided the evaluator with groundtruth files,

manually generated by professional annotators. These files contain, for each broadcast of a

referenced music title, an annotation that stipulates the identifier of the broadcast title as

well as a start date and an end date. These dates respectively correspond to the beginning

and the end of the whole music title in the stream, as appreciated by the annotator.

9.3.2.5 Scoring

Several scoring methodologies are considered in the article [RFB+12]. The issue is notably

discussed in the light of the fact that the reference files only contain 60s of signal (which is

generally shorter than the whole music title). For the sake of clarity, we do only consider in

this work one type of score. The chosen score fits the recommendations formulated in the

article. It is constituted of two components.

The first component is the ratio of successful detections. It gives the number of correctly

detected broadcast music titles from the reference database. The titles to detect are the

ones listed in the groudtruth files. Each broadcast of a referenced title is annotated with an

identifier mgt, a start date d
start
gt and an end date dendgt .

Definition 3 One broadcast title is correctly detected if: there exists at least one output

whose identifier mout and detection date dout are such that:

{
mgt = mout

dstartgt ≤ dout ≤ dendgt

(9.1)

It is a good practise to display the ratio of successful detections under its fractional form:

Number of correctly detected titles

Total number of titles to detect

In this way, the reader gets an instant idea of the size of the corpus.

60



The second component of the score is the number of false alarms. Each detection output

by the algorithm is defined by a reference identifier mout and a detection date dout.

Definition 4 One detection is a true positive if: there exists one annotation in the groundtruth

whose identifier mgt, start date dstartgt and end date dendgt are such that:

{
mgt = mout

dstartgt ≤ dout ≤ dendgt

(9.2)

All the output detections that are not true positives are false alarms. The second com-

ponent of the score is simply the absolute number of false alarms. Given the definition of the

use-case (see section 9.2), there is indeed no theoretical limit for the number of false alarms.

It thus makes no sense to express this number in a ratio. Besides, as we will see later, the

fingerprinting algorithms produce very few false alarms. This also justifies the use of the sole

absolute value as a score.

m̃i1 n m̃i2 m̃i3

time

mi1 mi2 mi3 mi3 mi3mi1

mi1 mi1 mi5 mi5

1 DT 1 DT 1 DT

1 FA 1 FA 1 FA 1 FA

Figure 9.2: Illustration of the scoring procedure. If one output detection (figured by an
arrow) contains the identifier mi and has a detection time that lies between the annotated
start time and end time of one occurrence of the title mi, this broadcast is a detected title
(DT). Multiple detections of the same occurrence of one title are counted once (as shown
by the overbraces). Conversely, if the algorithm detects a reference during an empty slot
(denoted by n) or during a slot that contains another title, we count one false alarm (FA).
There is no integration on the false alarm counting: each false alarm output is added up.
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9.3.2.6 Detection versus tracking use-case

As such, the evaluation protocol corresponds to a pure detection problem. By this, we mean

that what is taken into account is only the ability of the evaluated system to output a localised

detection during the broadcast of a learnt sound. Indeed, the framework does not consider

any form of temporal integration. In particular, this means that the evaluated system is not

expected to detect the start and the end of the sound’s broadcast. Let us also note that

there is no penalisation for a system that would output the same detection several times

during one same sound’s broadcast. In the following, we refer to this evaluation protocol as

Quaerodetec.

There are several reasons that account for the choice of a pure detection use-case. First, it

is noticeable that this detection ability is sufficient for most applications in audio-fingerprint

(monitoring of copyrighted contents, identification through mobile network, jingle detection,

...). Second, circumscribing the scope allows to establish clear and accurate metrics whereas

assessing different aspects (such as the detection ability and the tracking ability) in a single

evaluation makes the definition of the metrics more tricky. Last but not least, our use-case

presents the additional difficulty that the boundaries of a broadcast sound are not easily

definable. Three different factors account for this situation. The first one is detailed in

[RFB+12]. Let us recall that the database only contains 60s excerpts of the music titles.

Provided the repetitive structure of most music titles, it is consequently virtually impossible

to annotate a precise location of the reference excerpt in the broadcast. The second factor lies

in the fact that one title sometimes has several edits (with different intros, codas, featurings,

solos, additional bridges...). As a result, even if we had the entire titles available as references,

it would still be impossible to state where the broadcast of the reference sound starts and

stops, when the broadcast and the reference correspond to two different edits. The third

factor is the following: it happens that a radio jingle, or the announcer, overlaps the start

and/or the end of the music title. This makes the definition of the start and the end a rather

imprecise concept.

After using the protocol Quaerodetec on some real-world broadcasts, the necessity of defin-

ing a granularity of observation has emerged. The broadcast of music titles on a radio channels

is indeed not as rigid as one could think. In addition to the expected broadcast of whole

titles, it is indeed frequent that some small bits of music titles are heard. This notably occurs

in the following situations: advertisement of a new album, radio games where the listener

has to recognise the singer, use of some particular bits of music titles as jingles, broadcast of

an excerpt by an animator in order to entertain his guests... Besides, these small broadcasts

are frequently overlapped with speech. In order to avoid as much as possible the ambiguous

situations, which generate a meaningful cost in terms of annotation and scoring decisions, we
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did elaborate a second evaluation protocol whose task is: “in the analysed stream, detect the

referenced items that are broadcast for more than 30s”. The data, output formats, scoring

are kept the same as in Quaerodetec. The only difference is that there is a filtering on the

length of the broadcast reference sounds. We refer to this second protocol as Quaerofilter.
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Part III

Existing techniques
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Chapter 10

State of the Art in Audio-Fingerprint

Audio-fingerprint has been a very active field for the last ten years. As a result, the state of

the art is packed with a lot of works on the subject. We can notably note that the domain

has drawn the attention of industrial actors (Shazam, Philips, Google).

In spite of the diversity of the approaches it is still possible to find a common basis to

the diverse audio-fingerprint algorithms that have been proposed [CBKH02]. Let us first

recall that any fingerprint system works in a two-step process: it first learns the references

database in order to be able, in a second step, to identify unknown excerpts. As for the

fingerprint calculation, it can be considered under the following general methodology. In

a first step, the signal is pre-processed. This includes a conversion in a standard format

(encoding, stereo, sample rate) and a framing with a given length and overlap. This is

usually followed by a change of representation. Audio-fingerprint techniques indeed barely

rely on the temporal waveform. The latter is too prone to changes when distortions occur.

As a result, approaches from the state of the art use representations such as the energy of

the signal, the Fast Fourier Transform (FFT), the Discrete Cosine Transform, Mel Frequency

Cepstral Coefficients, wavelets... Similarly to a digital fingerprint identification, where the

algorithms look for the accidents in the ridges (endings and bifurcations) [JRLJ96], the audio

algorithms will then work on extracting characteristic features. There is a double objective:

reducing the dimensionality of the representation (in order to make the technique scalable),

rendering the representation robust to the distortions. The extracted features are finally

gathered in what is called a fingerprint. The latter will be used to uniquely identify the

signal.

As indicated before, the main challenge in the design of an audio-fingerprint system is

the ability to efficiently browse the reference database when identifying an unknown excerpt.

This issue thus often lies at the centre of the proposed algorithms. Through the published

works, two types of search can be observed. Authors using the first type consider that
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the algorithm is able to extract features that are sufficiently robust to stay unchanged in

spite of the distortions. The consequence is that these algorithms can afford the use of

exact indexing techniques (hash-tables, B-tree...). Let us note that these algorithms use very

local characteristics of the signal (short temporal extent). Indeed, the more the extracted

feature is spread in time, the more chances it has to be distorted. The second type of

search considers that the extracted features are distorted. These systems thus use search

approximate strategies (approximate string matching, exhaustive parsing of the references

from the database, retrieval of the K-Nearest Neighbours, ...). In these algorithms, the

search step is much more complex than an exact indexing search. To minimise the cost

of the search, it is often the case that a preliminary vector quantisation is applied on the

features. This, in turn, reduces the search space. These ‘approximate search’-based systems

use longer characteristic of the signals. Any localised distortion is indeed absorbed in the

approximate-search step.

Table 10.1 references the algorithms from the state of the art that we have knowledge

of. They are presented along the mentioned axises: model of signal used as a fingerprint,

associated search strategy. Besides, the methods are ranked according to their algorithmic

similarity. They are notably grouped in four clusters. The methods from the first group

extract a fingerprint directly from the temporal representation of the signal. The method

from the second group use a Fourier spectrogram as the basis of their fingerprint model.

The spectrogram is subsequently filtered by various means in order to end with a compact

feature that locally characterises the signal. These methods usually use an index-based search

method, that hypothesises that the features are not distorted. The third group of methods

extract long-term characteristics from the spectrogram. This can for instance be done by

taking the Fourier transform of each energy band of the spectrogram, by using other algebraic

projections or by fitting statistical models on the spectrogram. The resulting features are

then looked for in the database with an approximate search method. It is noticeable that

since we are dealing with long-term features, their rate is rather low. This, in turn, diminishes

the complexity of the approximate search. The last group consists of methods that project

the signal on a finite codebook (or alphabet). The resulting representation can consequently

be seen as a string. If the projection is error-prone, authors will then use approximate string

matching methods in order to retrieve the unknown signal among the references.

In the following, we study in detail the fingerprint algorithm proposed by Wang [Wan03].

We subsequently propose a modification of this model but we keep the same search strategy.

In consequence, the work presented in this chapter falls within the scope of the second group:

extraction of robust features with a small time extent, associated with an exact indexing

scheme.
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Author Signal representation Reduction of the representation Extraction of keys Search method

FINGERPRINTS RELYING ON THE TEMPORAL REPRESENTATION OF THE SIGNAL

Lourens [Lou90] Energy envelope of the signal.

Exhaustive correlation between the un-

known energy envelope and all the refer-

ence energy envelopes.

Özer [OSM04]

Estimate of the periodicity of the

signal. The trajectory of the peri-

odicity serves as fingerprint.

The work does not deal with the search as-

pect. A measure of similarity between dis-

torted and original fingerprints is shown.

FINGERPRINTS RELYING ON SHORT-TERM CHARACTERISTICS OF THE SPECTROGRAM

Pinquier [PAO04]

Fourier transform followed by a

piecewise linear filtering resulting

in 29 coefficients.

Exhaustive search: Euclidean distance

with a sliding windows.

Wang [Wan03]

[LcWSI11]

[LcWC09]

Fourier spectrogram.
Binarisation of the spectrogram thanks

to the detection of local maxima.

Extraction of pairs of local maxima

from the binary spectrogram.

Queries to an index with the various pairs

from the unknown excerpt. Aggregation of

the outputs of the index that takes into ac-

count the temporal correlation of the pairs.

Cotton [CE10]

Matching Pursuit decomposition

of the signal in an over-complete

dictionary.

Keeping of the most energetic atoms. Extraction of pairs of atoms. Same as Wang.

Betser [BCR07]

[Bet08]

Spectrogram derived from the

Discrete Fourier Interpoltor us-

ing phase (sinusoidal estimation

method).

Asymetric extraction of the most en-

ergetic peaks: more peaks are kept in

the unknown signal than in the refer-

ence (to account for additional peaks

that would correspond to additional

noise/speech).

Only the frequencies of the peaks

are kept (no time, no amplitude).

Look for the frame in the references that

has the most peaks (i.e. frequencies) in

common. An index strategy for fast search

of the peaks is proposed in [Bet08].

Dupraz [DR10] Fourier spectrogram. Extraction of peaks.
The frequencies of the extracted

peaks are used as keys.

Look for the references having peaks in

common within a given tolerance (look-up

table). For each returned reference, esti-

mate a pitch-shifting ratio then use it to

estimate the temporal correlation between

the reference keys and the unknown keys.
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Haitsma [HKO01]

[HK03]

Fourier transform followed by a

Bark scale filtering. An additional

autocorrelation step of the Fourier

transform is proposed in [HK03] to

increase the robustness to pitch-

shifting.

Binarisation of the time-frequency rep-

resentation obtained by a thresholded

two-dimensional filtering.

Each temporal frame of the re-

duced representation is an index

key.

Look for the references having in their rep-

resentation one common key (i.e. one tem-

poral frame) through the index then com-

pare the whole reduced representation of

the signals.

Liu [LCY+09]

Similar to Haitsma + a further Dis-

crete Cosine Transform that allows

to merge the information of several

successive frames in one vector.

Same binarisation as Haitsma on the

DCTed representation.

The binarised DCT coefficients are

used as keys.
Same as Haitsma.

Schreiber [SGM11] Same as Haitsma. Same as Haitsma. Same as Haitsma.

A prioritisation strategy is proposed so

that the algorithm queries the index with

the temporal frames that most likely allow

a correct targetting of the best reference.

Accelerates Haitsma’s search.

Ke [KHS05] Same as Haitsma.

The signal is filtered thanks to binary

filters that are learnt out of a wide

family of candidates filters beforehand.

The candidates notably include the fil-

ter used in Haitsma’s algorithm.

Each frame of the filtered represen-

tation is a key.

The index is queried with the keys. The

temporal correlation of the index outputs

is evaluated with the RANSAC method.

Baluja & Covell

[BC06] [CB07]

Same as Haitsma followed by a

wavelets computation on the spec-

trogram.

The most salient wavelets are kept and

the representation is binarised by only

keeping the signs of the wavelets.

The information is packed in a re-

duced signature thanks to the Min-

Hash algorithm.

A Locally Sensitive Hashing performed

with the unknown signature returns candi-

dates. The candidates are then compared

to the unknown signal thanks to Dynamic

Programming.

FINGERPRINTS RELYING ON LONG-TERM CHARACTERISTICS OF THE SPECTROGRAM

Ramona [RP11]

[RP13]

Fourier spectrogram, filtering of

the frequencies with a Bark scale,

sone-scale amplitude compression

(similar to log-compression).

Long-term Fourier transform on each

frequency band of the first Fourier

Transform. The windows for this

Fourier Transform are synchronised

with the onsets to reduce the de-

synchronisation of the frames due to

cropping (see distortions in section

8.1.3).

Each long-term frame will be

searched for in the database.

K-Nearest Neighbours search among all

the (long-term) frames of the references

followed by a post-processing that takes

into account the temporal correlations of

the successive outputs.
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Laroche [Lar00]

Fourier spectrogram followed by a

log-compression and a filtering of

the frequency bands.

Each band undergoes an optional

smoothing step and then a finite dif-

ference filtering. A long-term Fourier

transform on each band is finally com-

puted. In order to avoid the de-

synchronisation problem due to crop-

ping, the frames of the long-term FFT

are set on local maxima of the energy

of the signal.

The long-term frames will be

searched for in the database.

Euclidean distance with all the fingerprints

from the database. The argument of the

minimum is the best candidate.

Lin [LOX06] MFCC.

Windowing of several consecutive

MFCCs, modelisation thanks to a

Gaussian Mixture Model (only weights

are estimated, the other parameters

are pre-trained).

Exhaustive comparison accelerated by an

‘active search’ (derived from time-series

theory). It consists of skipping some of the

successive comparisons in a stream thanks

to a convex bounding of the evolution of

the feature vectors.

Burges [BPJ03]

Fourier spectrogram followed by a

log-compression and a low-pass fil-

tering.

Oriented Principal Components Anal-

ysis applied to the Fourier frames in

two layers. In the first projection the

top coefficients are retained, then a

second projection on a wider time scale

is performed. The directions of projec-

tions are learnt beforehand by training.

An index-based fast approximate matching

is suggested but not detailed. The work

presents the results in terms of Euclidean

distance between the fingerprints.

FINGERPRINTS RELYING ON VECTOR QUANTISATION OF THE SPECTROGRAM

Allamanche &

Herre [AHH+01]

[HAH01]

Fourier spectrogram.

Computation of the Loudness, Spec-

tral Flatness Measure, Spectral Crest

Factor.

In a preliminary step, a vector quantisa-

tion codebook has been created for each

reference. When searching for an unknown

signal, it is decoded on each codebook.

The codebook with the lowest quantisation

error gives the best matching reference.

Cano & Batlle

[CBMN02]

[BMGC04]

Mel Frequency Cepstrum Coeffi-

cients, ∆MFCC and ∆2MFCC.

Decoding of Hidden Markov Mod-

els, called AudioGenes, thanks to the

Viterbi Algorithm.

The unknown signal is transcribed

into a sequence of AudioGenes,

which is equivalent to a string.

Approximate string matching (FASTA)

that looks for the closest transcription in

the references.

Khemiri [KCPD13]

[KPDC12]
MFCC and ∆MFCC.

Decoding of ALISP units that corre-

spond to 3-states HMMs.

Transcription of the unknown sig-

nal on the finite codebook consist-

ing of the ALISP units.

Exhaustive approximate string search.
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Weinstein [WM07] MFCC, ∆MFCC and ∆2MFCC.

Signal cut in pseudo stationary seg-

ments, projection on a codebook

of Music Phones (Gaussian Mixture

Models of the segments).

Decoding of the unknown signal

with the Music Phones.

Exact string search with an index scheme

in the form of an automaton.

Kurth [Kur02]
Time-frequency representation of

the signal.

Binarisation thanks to thresholded fi-

nite differences.

The stream is a sequence of 0

and 1, which is transcribed thanks

to preliminary learnt codewords.

For robustness, codewords were se-

lected with coding theory consider-

ations (error correcting codes).

Index-based search.

Table 10.1: Algorithms from the state of the art in audio-fingerprinting.
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Chapter 11

Focus on Shazam’s Method

11.1 What is Shazam?

One of the most famous public application of audio-fingerprinting has been developed by

Shazam. This company was the first to provide a successful music recognition service on

mobile phone. As Shazam’s work was the trigger that put audio-fingerprinting in the spot-

light, their work is cited in numerous papers of the domain. More precisely, people usually

refer to the 2003 ISMIR paper [Wan03] written by Wang. The processing that it describes

is commonly referred to as “Wang’s method” or “Shazam’s method”. We should however

be more careful than some authors when referring to this work. This paper indeed consti-

tutes, as far as we know, the only conference publication that they wrote about their work in

audio-fingerprinting. Though, the interested scientist should note that, aside from this paper,

Shazam has registered several patents [LcWC09, LcWSI11]. Besides, as we are dealing with

the work of a company, there may always be a difference between what is actually running

on their machines and what they release in the public domain through publications. As the

large majority of the authors, we focused on the work that is detailed in the article [Wan03].

In the following, we will refer to it as Shazam03.

11.2 Principles

11.2.1 Signal representation

As in the vast majority of audio-fingerprinting methods, the representation used in Shazam03

is based on a spectrogram of the signal. The raw spectrogram itself is not a robust enough

representation for a fingerprint in the sense that it is not invariant to distortions. As in many

other works, Wang’s idea is to simplify the spectrogram in order to get a lighter representation
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(a) (b)

Figure 11.1: Representation of a 5s long audio signal through its Fourier spectrogram (a)
and the binary representation suggested by Wang (b) where black points correspond to local
maxima in the original spectrogram

that shows little variability. To do so, it is suggested to assign the value ‘1’ to the points

of the spectrogram that are local maxima and ‘0’ to all the other points. In this way, the

spectrogram becomes a binary representation where active points correspond to local maxima

in the original representation (see Figure 11.1). Moreover, it is specified in [Wan03] that the

active points must be chosen according to a density criterion.

At this stage, the representation is much lighter than the original spectrogram. The

amplitudes have been removed and only local maxima matching the density criterion are

still active. In this sense, it is a sparse binary representation. The advantage of this binary

representation is that it shows much less variability to the common audio distortions. Indeed,

the fact that we do only keep the predominant information makes the representation robust to

all distortions that would add little energy to some points of the spectrogram (additive noise)

or that would modify the energy distribution without changing the local maxima distribution

(equalisation, dynamic compression).

In spite of the binarisation process, the representation is still sensitive to distortions that

would add or remove some of the active points. To cope with these distortions, the research

step consists of retrieving the database item whose binary representation contains the highest

number of common active points with the query. For the sake of scalability, Wang suggests

the setup of an index scheme rather than a linear comparison with every item of the database.
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11.2.2 Indexing keys

Given the sparse aspect of the binary representation, it seems fairly reasonable to target

the active points for the construction of an index. However, Wang’s analysis is that using a

single point as an index key would not be informative enough. In the binary spectrogram, one

point is indeed completely defined by two coordinates: its time location t0 and its frequency

location f0. As the indexing strategy is expected to be robust to cropping, it would not be

possible to use the time information of one single point. This information actually changes

when the signal is cropped. This finally means that only the frequency location of the point

could be used in the index key. This would lead to indexing queries such as: “Return all the

references containing, in their binary representations, at least one active point at frequency

f0”. Obviously, this kind of queries is unselective. Virtually all references would pop out at

each query, which would imply a meaningful post-processing cost. In order to work around

this issue, Wang suggests to work with pairs of points rather than single points. Let us for

example consider two active points of coordinates (t1, f1) and (t2, f2). We can then build

an indexing key with three complementary pieces of information. For example, Wang’s key

consists of f1, f2 and t2 − t1. The strength of this approach is that it allows the use of a

time information despite the cropping constraint. This comes from the fact that the time

information is now relative. In this way, Wang’s keys are much more informative and allow

the use of indexing queries that will be less noisy.

This, though, comes at the the cost of the robustness of the key: as it contains more

information, it is more likely to change when the signal is distorted. Besides, this approach

leads to a higher number of keys in each audio signal: instead of computing N keys, corre-

sponding to the N active points of the binary representation, one should now compute N2

keys. However, a pruning mechanism that is meant to reduce this computation is included

in Shazam03.

11.2.3 Research mechanism

When identifying an unknown excerpt, Wang’s idea is to find the reference with the highest

number of correlated keys. Indeed, if the unknown signal u is an excerpt of reference r0

starting at time d then all keys appearing in u should be found in r0. Besides, one key k with

time of occurrence tk,u in u should be found in r0 at time tk,r0 = tk,u+ d. We thus see that if

we study the set of values {tk,r0 − tk,u} for all keys k extracted from the unknown signal, we

should have a maximum accumulation around value d. So, it is suggested in [Wan03] to store,

for each reference ri, the values {tk,ri− tk,u / k key from the unknown excerpt} in a histogram
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(one histogram per reference). The histogram with the highest maximum corresponds to the

best match to the unknown excerpt (see Figure 11.2). We can also deduce that the excerpt

starting point in the reference is the argument of the histogram maximum.

Figure 11.2: Histograms built in the identification phase of an unknown excerpt. Each
histogram shows the distribution of the quantities {tk,ri − tk,u / k key from the unknown
excerpt} for one reference of the database. The maximum accumulation gives the best match
for the unknown excerpt. Here, the unknown excerpt best matches the excerpt of reference
rk that starts at 5s from the beginning.

11.3 Implementation

11.3.1 Introduction

In [Wan03], the author gives precise guidelines for the processing strategy of his system but

very few is said about the implementation details. This makes the analysis of the method

tricky since different understandings and different parameters tuning might lead to drastically

different results. In this section, we describe our implementation of Shazam03 principles as

well as our parameters tuning. This section should be particularly useful for anyone wishing

to implement Shazam03 or any identification system that would work alike.
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11.3.2 Binary spectrogram

In order to obtain the spectrogram of the signal, we use discrete Fourier transforms applied

on Hamming-windowed frames of length 64ms with a hop thop of 32ms. The temporal con-

catenation of the modules of these Fourier transforms gives the spectrogram. The next step

consists of extracting peaks that are locally maximum while respecting a density criterion.

Let us note that there is no indication on the way to proceed in [Wan03]. We suggest the

following methodology: we tile the spectrogram with rectangles of width ∆Ttile seconds and

height ∆Ftile Hertz (typical values are ∆Ttile = 0.4s, ∆Ftile = 400Hz). In each rectangle, we

set the maximum point to 1 and all the other points to 0. This processing, that is simple and

quickly computable, ensures the homogeneous peaks density that it is required in Shazam03.

The adjustments of ∆Ttile and ∆Ftile allow to independently control the density of peaks on

the time axis and on the frequency axis.

11.3.3 Extracting and encoding pairs of peaks

Theoretically, the system should then compute all possible pairs of peaks in the signal. The

extracted pairs of peaks must then be encoded. For two given peaks with coordinates (t1, f1)

and (t2, f2) Wang suggests the following encoding: [f1, f2, t2 − t1]. However, in order to

prevent an explosion of the number of pairs, a pruning technique is suggested in [Wan03].

In concrete terms, we only consider pairs of peaks whose spectral extent f2 − f1 is smaller

than a threshold ∆Fmax and whose temporal extent t2− t1 is smaller than a threshold ∆Tmax

(typical setup for this limitation is ∆Tmax = 3s and ∆Fmax =350Hz).

In his paper, Wang gives an indication at a surprisingly low level of programming, which

is that the information [f1, f2, t2 − t1] can be packed on 32 bits. In practice this comes to

allocating n1 bits for the encoding of f1, n2 bits for f2 and n3 bits for ∆t with n1 n2 and n3

such that n1+n2+n3 = 32. When encoding a variable on a given number of bits, one should

cross multiply its value so as to bring its original span to the span allocated by the number

of bits. In this way, the code for f1 is given by:

f̃1 =

⌊
f1

fmax

.(2n1 − 1)

⌋

with fmax the maximum frequency of the spectrogram. The same formula goes for f̃2 with

n2.

Due to the pruning technique applied we know that ∆t is bounded by ∆Tmax. This
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(a) (b)

(c)

Figure 11.3: Computation of the binary spectrogram (c) proposed in Shazam03 thanks to a
tiling (b) applied on the spectrogram of the signal (a). In each tile, the maximum point is
set to 1 and the others to 0. This results in the binary spectrogram with points set to 1 in
black and points set to 0 in white.
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guarantees that the following formula will not cause any overflow:

∆̃t =

⌊
∆t

∆Tmax

.(2n3 − 1)

⌋

Although this issue is not mentioned in Wang’s paper, we should take advantage of this

formula to carefully think about resolution. Indeed, in the preceding formula, the encoding

resolution of ∆t is given by ∆Tmax

(2n3−1)
. However, we have a theoretic lower bound for this

resolution. ∆t is actually extracted from the spectrogram. The resolution of the temporal

indices of the spectrogram is thop. As a consequence, the resolution of ∆t is 2thop (difference

of two time indices with resolution thop). For this reason, ∆t should never be encoded with

a finer precision. Otherwise, we would be encoding computation artifacts which may change

when analysing other recordings of the same signal (due to the possible cropping, the Fourier

transforms will not be synchronized exactly the same way ...). As a conclusion, the following

inequality should always be verified:

∆Tmax

(2n3 − 1)
< 2thop

The numerical representation of the key is finally obtained by concatenating the three

components. The concatenation in the binary domain is given by:

k̃ = f̃1 × 2n2+n3 + f̃2 × 2n3 + ∆̃t

The binary representation of this key k̃ fits inside 32 bits. The first n1 bits are the binary

representation of f1, the next n2 the binary representation of f2 and the last n1 bits the

binary representation of ∆t.

11.3.4 Storing the references keys in the database

The learning stage suggested by Wang is the following. For each reference, all its keys are

extracted and encoded in their 32-bits versions. Each key is then associated to its value

and recorded in the index engine of the system. For one given key, the associated value

contains two pieces of information: the time of occurrence t1 of the key in the audio reference,

an identifier of the reference (in concrete terms, it suffices to number the audio references

and to consider this number as an identifier). Wang recommends to encode these pieces of

information on 32 bits as well (same process as for the binary key k̃). In the end, we thus

have an index engine that must manage queries consisting of 32 bits keys and that returns

32 bits values. Let us note that one key can be found in several references at several dates,
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and that for this reason, the index engine must be able to return several values when it is

queried with one key. Conversely, it might happen that the index is queried with one key

that does not exist in the references, in which case the engine should return an empty set.

As the amount of data that will be stored is quite substantial, the choice of the index engine

is quite crucial. In the course of our work, we have tried several solutions, most of which

have appeared to be unsuitable for a scalable system.

• The first solution consists of storing all the keys in a table of the Random Access

Memory. The first difficulty is that each key can be associated with several values.

This compromises the use of a static table. The setup of a dynamic table can be done

with two tables. The first table (let us name it Ktable) contains the keys and the second

(let us name it Vtable) the values. Each stored pair key/value corresponds to an index

i. So, K[i] contains the key of the pair, whereas V [i] contains the value. Given that

a key can be associated to several values, we possibly have K[i] = K[j]. In order

to perform the searches in a reasonable time, the keys table must be sorted so that a

binary search can be performed (thus leading to a O log(n) complexity). In the end, the

search complexity is reasonable but the construction of the tables is quite challenging.

This occurs because the number of keys is not known in advance and the table must

be sorted. Let us indeed recall that inserting an element in the middle of a table, in

terms of memory accesses, corresponds to rewriting the entire table. When dealing

with extremely large datasets, this can lead to untractable construction times.

• In order to get rid of the dynamic approach (that costs O log(n) in the search complex-

ity) we have tried to implement a static approach. That consisted of allocating large

memory blocks for each key so that all values associated to this key could be written in

the block. This, in turn, led to a large memory requirement for the structure. It had to

be stored (and accessed) on the hard-disk. The conclusion was that the introduction of

Hard-Disk accesses was largely counterbalancing the gain of the binary search, leading

to an unacceptable algorithm in terms of search time.

• Given the complexity and the specificity of the use-case, we have taken the option

to look into the established database engines. We were looking for an engine that

works stand-alone (it is preferable to avoid the client-server problematic as it does

not bring any advantage in our use-case). Our testing tended to show that relational

database engines (such as SQLite [Hip13]) were not fast enough for our use-case. Let

us remember that our system queries the database with a numerous number of 32-bits

keys per second and expects the associated 32-bits values in return (exact query). The

SQL-like engines are designed to process more complex queries, with a large diversity
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of types in the entries but are not particularly fast when processing exact queries. The

solution consequently seem to lie in the field of hash-tables. We have tried Tiny CDB

[Tok12], but its memory limitations can be disturbing when going to industrial-sized

databases of audio references. Finally, Berkeley DB [Ora12], set to its Hash-Table mode,

provided us an efficient way to deal with our problem. Our Matlab programs could be

interfaced with BDB thanks to the C API that is proposed. Our initial experiments

showed that this engine was satisfyingly meeting our needs. Let us note that in the

entire rest of our work, we have kept working with BDB.

11.3.5 Merging the database outputs

In the identification phase of Shazam03, all pairs of peaks are extracted from the unknown ex-

cerpt according to the methodology described above. These are then converted into database

keys which are used to query the database engine. As detailed in section 11.2.3, the outputs

of the database engine must be stored in histograms. Practically, if, for a key k occurring at

tu in the unknown excerpt, the database engine outputs the value vi, it is decoded into its two

components: the identifier of the reference ri possessing the key k and the time of occurrence

tri of the key in this reference. Then, tri − tu is stored in the histogram corresponding to ri.

In order to build the histograms, one should choose a time resolution δt. Knowing that the

reference songs are Lref seconds long, this leaves us with histograms containing Lref/δt bins.

Finally, the entire set of histograms can be represented in a static table of size N × Lref/δt.

Each output of the database engine thus gives rise to an increment in the histogram table.

Let us note that this operation is repeated a meaningful number of times (a typical rate is

250 per second of signal). For some reason, this incremental operation (that takes place in

a large table) is quite slow in Matlab. Consequently, we have recoded this part of the code

in C. It has been interfaced with the rest through the Mex API. Finally, in order to perform

the identification we look for the reference whose histogram has the highest maximum. This

reference is considered to match the unknown signal. The argument of the maximum of the

histogram gives the start time of the unknown signal in the reference.

11.3.6 Fusion of local decisions

Whatever the query, the previous step returns the best match with its start time. This means

that the case of a query that does not correspond to any excerpt in the database (out-of-base

query) is not managed.

As far as this issue is concerned in Wang’s paper, it is suggested to setup a threshold

mechanism. More precisely, the threshold is set on the number of correlated pairs between
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the unknown excerpt and its best match (which corresponds to the height of the maximum

histogram peak). If the unknown excerpt has more than threshold pairs correlated with the

best match, the identification is correct. Otherwise it is an out-of-base query. However, our

experiments have proved that such a threshold is virtually impossible to setup on real data

with classical distortions. It happens that, due to the distortions, a best match has a low

number of pairs in common with the unknown signal even though it is a correct identification.

In terms of probability density functions: the distribution of the False Alarms has a large

overlap with the distribution of the True Positives in the domain of the correlated number of

pairs. Besides, such a threshold would depend on the transmission channel and would have

to be tuned for each different use case.

This is why we propose our own post-processing method. Let us note that this constitutes

a true theoretical contribution to the method Shazam03. The method we propose is based

on the fusion of local decisions. The idea is to give a multi-scale aspect to the problem in

order to add robustness to the decision. The unknown signal u is split into sub-signals usub
i

with a given length Lsub and overlap osub. The post-processing considers P successive sub-

signals {usub
j }j=1..P . Each of them has gone through the identification procedure described

above, resulting in a matching result (ri, si) consisting of the best candidate identifier and the

excerpt’s start time in the best candidate. If among these P identifications, more than Tvote

of them are coherent the best match is considered to be a correct identification. Otherwise,

it is an out-of-base query. Two matching results (ri, si) and (rj, sj) of the ith and the jth

sub-signals are coherent if:

{
ri = rj

si − i.Lsub.(1− osub) = sj − j.Lsub.(1− osub)
(11.1)

The tuning of Tvote determines the system’s sensitivity. Tvote can take any integer value

between 0 and P . If Tvote = P , we require that all matching results of the sub-signals are

coherent. In this way, we minimise the risk of False Alarm. The counterpart is the risk of

missing some good detections. Conversely, if Tvote is set very low, we generate a lot of False

Alarms but we maximise the good detections. In practice, a reasonable value for Tvote is:

Tvote =

⌈
P

2

⌉
(11.2)
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Name Description Value

LFFT Length of the FFT windows 64ms

thop
Hop between the FFT windows used to com-
pute the spectrogram

32ms

Lsub Length of the sub-queries 5s
osub Overlap between the successive sub-queries 0.5

∆Ttile
Width of the rectangles used for the tiling of
the spectrogram

0.4s

∆Ftile
Height of the rectangles used for the tiling of
the spectrogram

400Hz

∆Tmax
Maximum time extent between two points of
the binary spectrogram to be paired together

3s

∆Fmax

Maximum frequency extent between two
points of the binary spectrogram to be paired
together

350Hz

n1 Number of bits used to encode f1 13
n2 Number of bits used to encode f2 13
n3 Number of bits used to encode t2 − t1 6

δt Time resolution of the histograms 1s

P
Number of sub-queries used in the fusion of
local decision (post-processing)

6

Tvote
Threshold above which one best match is
considered as a correct detection

3

Table 11.1: Summary of the parameters used in our implementation of Shazam03

11.4 Experiments and Results

11.4.1 Adapting the system to continuous broadcasts

As indicated in section 9.2, our work was mostly focused on continuous broadcasts. For this

reason, the audio-fingerprinting techniques that we test are always preceded by a framing

module. The latter cuts the input broadcast in frames of length La with an overlap rate

oa. These frames are called analysis frames. For practical reasons, we take La = Lsub and

oa = osub. This means that the system performs a best match search on every analysis frame.

It then has to post-process a window of P consecutive analysis frames to make a detection

decision. The hop of the post-processing window is set to 1 analysis frame.

83



Stream Framing Fingerprint

Matching
Post-

processing
Identification

References
fingerprints

Figure 11.4: Architecture of the system. The traditional blocks of a fingerprint system are
preceded by a framing module which partitions the input stream in analysis frames of length
La with an overlap oa.

11.4.2 Proof of Concept

Before moving to the challenging real-world evaluation described in section 9.3.2, it is worth

testing the approach on a simpler task. This should allow us to determine if the designed

fingerprint is discriminative enough. This can also help checking that the code does not

contain any obvious bug. We consequently design a first evaluation step that we call Proof

of Concept (PoC) in the following way.

The idea is to build an artificial stream by concatenating all the reference titles from the

database. Each reference mi has a length li. We define ni by

ni = sup{n/nLa ≤ li}

We then define m̃i as a truncated version ofmi of length niLa. Finally, our artificial broadcast

is given by the concatenation of the truncated references: m̃1m̃2...m̃N .

In this experiment, the algorithm is in the following configuration: no overlap between the

successive analysis frames (oa = 0) and no post-processing step (which is equivalent to setting

the parameters P and Tvote to 1). This means that the algorithm will process each analysis

frame independently. For each of them, it will output the best match from the reference

database (since there is no post-processing, there is no out-of-base output). Besides, given

the construction process of the artificial stream, each analysis frame is an excerpt of one and

only one reference of the database. The scoring is straightforward. If the output corresponds

to the reference from which the analysis frame originates, it is counted as a ‘true positive’.

Otherwise, it is a ‘false alarm’. Let us note that this experiment does not include any kind

of distortion. The references are matched against themselves as is. The PoC essentially

measures the discriminative power of the fingerprint.

84



PoC True Positives False Alarms

Shazam03 [Wan03] 99.9% 0.1%

Table 11.2: Results of the Shazam03 algorithm in the PoC experiment. The algorithm
has to identify frames that are directly taken from the reference database. For each frame
(taken from one reference), if the best match computed by the algorithm corresponds to the
reference, it is counted as a True Positive. Otherwise, it is a False Alarm.

The results are given in Table 11.2. Let us note that the score obtained in the PoC

experiment does not constitute an upper bound for the real-world experiment. The PoC is

indeed scored on an instant frame-by-frame basis. The algorithm has to take one decision

per analysis frame and it is immediately counted as a true positive or a false alarm. In the

real world experiment, when a referenced title is broadcast, the algorithm has the whole

duration of the song available to make a decision. This notably explains the low number of

false alarms that is commonly achieved by the methods of the state of the art.

11.4.3 Real-world evaluation

Since the PoC gives satisfying results, we can move to the real-world evaluation, such as

described in section 9.3.2. Let us briefly recall that this evaluation consists of analysing real-

world broadcasts coming from radio channels. The algorithm has to detect the broadcast of

any music title that belongs to its reference database. In this experiment, the database is

composed of 7300 excerpts of 60s of music titles and the analysed stream corresponds to 7

days of broadcast of the French radio ‘RTL’. Since the references from the database have not

been captured on the same channel as the analysed stream, they are not post-processed in

the same way. This ensures a corpus that possesses a meaningful level of distortion. As the

dataset used in this experiment is the same as the one of the 2010 Quaero evaluation, we are

able to display the results of IRCAM’s algorithm [RP11] on this task.

Quaerodetec Detected titles / Total False Alarms

IRCAM [RP11] 445 / 459 (=96.9%) 2
Shazam03 [Wan03] 381 / 459 (=83.0%) 0

Table 11.3: Results of our implementation of Shazam03 and of IRCAM’s algorithm on the
Quaero evaluation. The first column shows the number of broadcasts of reference titles
detected by the algorithm over the total number to detect. The second column shows the
number of wrongly output detections.

The results are given in Table 11.3. The number of detected music titles is sufficiently
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high to deduce that the algorithm works, at least to some extent. The number of false

alarms is very low, thus proving that the proposed decision mechanism, based on the fusion

of local decisions, fills its role very efficiently. The remaining question concerns the 17% of

music titles that have not been identified by the algorithm. When zooming on these portions

of broadcasts, one can note that the correct music title is hardly output as a best match.

The issue is thus independent of the fusion module and lies in the fingerprint model. When

manually listening to the concerned music titles, the careful operator can notice that there

is a high pitch-shifting ratio between the database version and the broadcast version.

11.5 Limitations of the Method

Our experiments suggest that the method does not work well when dealing with signals that

are highly pitch-shifted.

Let us recall that pitch-shifting is a distortion that makes the sound higher or lower

[Ber99]. Spectrally speaking, it consists of multiplying all the frequencies of the spectrum

by a constant factor κ. It is also noticeable that pitch-shifting is often obtained simply by

reading the music faster or slower (i.e. using an output sampling rate that is different from

the input one). In this case, pitch-shifting goes together with a time-stretching effect of factor
1
κ
. We then talk about sample rate conversion.

If we consider one reference of the database, its fingerprint is calculated thanks to the

extraction of peaks in its spectrogram (see section 11.2). Considering the above presented

distortions, one can see that a point with coordinates (t1, f1) will undergo the following

transformation:

(t1, f1) 7−→ (
1

κ
t1, κf1)

Consequently, when encoding a pair of spectral peaks, we have:

[f1, f2, t2 − t1] 7−→ [κf1, κf2,
1

κ
(t2 − t1)]

We should however note that the time-stretching effect is absorbed by the encoding res-

olution of t2 − t1. The latter is indeed encoded with a resolution that is not finer that 2thop

(see section 11.3). With typical values such as the ones indicated in Table 11.1, this gives a

resolution of 0,064s. Knowing that t2−t1 is bounded by ∆Tmax, a time-stretching ratio of 5%

induces a variation of t2 − t1 that is, at maximum, 0,05s. Since 0, 05 < 0, 064 the variation

will be masked in most cases.

Conversely, we can note that the frequency resolution is given by 1/LFFT , which cor-

responds to 15Hz if we use the typical values of Table 11.1. Taking into account a 5%
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pitch-shifting, we see that for any frequency above 300Hz the shift is larger than 15Hz. The

pitch-shifting effect is thus non negligible with such a frequency resolution.

The distorted pair consequently has, in most cases, two components out of three that

have been modified. Since we use an exact index scheme, there is no way that when querying

the index with the distorted pair we obtain the value assigned to the original pair. When

processing an analysis frame of the distorted signal, the method will thus aggregate database

outputs that do not correspond to the original reference. The correct reference will not be

output as a best match. Finally, the fusion of the local decisions made on each analysis

frame will fail to output the original reference. That explains why the method fails when the

signals has undergone a sample rate conversion.
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Part IV

Exact Matching
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Chapter 12

Improving Shazam’s Method

12.1 Addition of a Tracking Step

When targeting applications with a wider functional perimeter than the sole identification

use-case, such as synchronised display of the lyrics, automatic segmentation or automatic an-

notation of multimedia broadcasts, it becomes necessary to develop audio-fingerprint methods

that have the ability to track a reference throughout its broadcast. Besides, this tracking

requirement matches our evaluation protocol Quaerofilter (see section 9.3.2), according to

which the algorithm has to control that any detected reference is broadcast for more than

30s. It is interesting to note that the fusion of local decisions module presented in 11.3

already constitutes a kind of tracking. In this context, the detection decision is only taken

if one reference appears several times in the horizon of P frames. This can thus be seen as

a tracking. However, this tracking has an observation window limited to P analysis frames

(typically corresponding to 15s of signal). Hence the necessity to add a further tracking step,

managing a wider portion of signal.

The fusion module takes into account P successive analysis frames. These constitute a

vote horizon vi. If one reference appears predominantly as a best match in the vote horizon,

the fusion module outputs the detection of this reference. We can add two other pieces of

information: the starting time t0(vi) of the first analysis frame of the vote horizon having

the detected reference as a best match, the end time tf (vi) of the last analysis frame of the

vote horizon having the detected reference as a best match. In terms of tracking, we know

that the detected reference is broadcast at least during the time interval [t0(vi); tf (vi)].

Let us call f(vi) the detected reference on the vote horizon vi (note that f(vi) can be

the empty set if there is no detected reference). When a music title m0 is broadcast, the

following structure of outputs is usually observed.
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f(vi) = m0

f(vi+1) = ∅
f(vi+2) = m0

...

f(vi+k) = m0

f(vi+k+1) = ∅
...

f(vi+k′) = ∅
f(vi+k′+1) = m0

...

f(vi+k′′) = m0

f(vi+k′′+1) = ∅
...

Several factors account for this structure. First, it might happen that the signal is ”cor-

rupted” during some vote horizons. For example, when the announcer speaks on the intro-

duction of the music title. Such a situation is illustrated by f(vi+1) = ∅. Second, we have
to keep in mind that the reference only consists of 60s of the music title. Since music titles

possess a very repetitive structure, it is likely that these 60s or at least part of them will

be repeated across the music title. That explains the detection of the reference between vi

and vi+k, then the absence of detection and finally the repetition of the 60s reference be-

tween vi+k′+1 and vi+k′′ . Last, it happens that one music title is edited with different lengths.

In concrete terms, some edits possess additional bridges, intros or codas. These additional

pieces cause the presence of empty detections during the broadcast of the music title.

In order to take into account this output structure, we suggest the following tracking

mechanism. When a reference (m0) is firstly output (at horizon vi), the tracking module

looks for the last m0 output within theM following horizons (vi+k′′). M is chosen sufficiently

long to contain a whole music title (typically 10 minutes). The music title is considered to

be broadcast between horizon vi and horizon vi+k′′ . Let us note that since the reference only

contains a portion of the music title, the estimated start and end dates are not expected to

match the actual (annotated) start and end dates of the title. More precisely, the estimated
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dates are expected to lie within the broadcast of the title and not necessarily at the boundaries

of the latter. The estimated length of the broadcast is naturally tf (vi+k′′)− t0(vi).

According to the evaluation protocol, the algorithm has to check that the reference is

broadcast for more than 30s. If so, it has to output a detection stating the identifier of the

reference as well as the time of detection. We define:

E = {vk / i < k < i+ k′′and f(vk) = m0}

The detection time dout that is output by our tracking module is:

dout = median
vk∈E

{t0(vk)}

This definition ensures that the detection date is located near the highest concentration of

vote horizons having m0 as output. This way of computing the detection date maximises

the likelihood of outputting a date that actually lies within the broadcast of the title, even if

there is a mistake in the estimation of the start (to(vi)) and/or the end of the title (tf (vi+k′′)).

12.2 Robustifying the Method against Pitch-Shifting

We have seen that the method Shazam03 is not robust to pitch-shifting (see section 11.5).

Our analysis has shown that this weakness comes from the fingerprint model. This is why

we propose here a different fingerprint model.

Shazam03 uses discrete Fourier transforms in order to compute the spectrogram on which

the fingerprint is based. The Fourier transform is a tool that gives the amount of energy of

a signal in each frequency band. The frequency bands of the Fourier transform are linearly

spaced. Yet, this spacing is not well adapted to the acoustic and musical world. Indeed, the

human perception of frequencies does not follow a linear scale. This can notably be seen in

the distribution of the musical notes frequencies, that are geometrically spaced. This also

explains that pitch-shifting, that is perceived as a transposition (the music is heard higher or

lower) physically corresponds to a multiplication of the frequencies. This mismatch between

the Fourier transform and the musical perception is the reason for Brown’s proposition of a

Constant Q Transform (CQT) [Bro91, BP92]. Similarly to the Fourier transform, the CQT

gives the amount of energy of a signal in each frequency band. However the CQT bands

are geometrically spaced. It is interesting to note that in the CQT domain, pitch-shifting

becomes a translation. A signal having energy in the frequency band b will have its energy

moved to the frequency band b+ κ when pitch-shifted.

The fingerprint we suggest relies on a spectrogram that is obtained by the concatenation
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of successive CQT transforms. Let us note that when dealing with Contant Q Transforms, we

do not think in terms of ‘frequencies’ but rather ‘frequency bins’ (that are centered around

geometrically -or logarithmically- spaced frequencies). We use a Constant Q Transform with

36 bins per octave (i.e. 3 bins per note) and a 10ms hop size.

The following steps are similar to the ones of the preceding method. The CQT spectro-

gram is tiled with rectangles of size ∆t seconds and ∆B bins of frequencies (typical values

are ∆t = 0.4s and ∆B = 18bins). In each rectangle, the maximum point is set to 1 and all

the others to 0. The result is a sparse binary CQT spectrogram. The algorithm then extracts

all pairs of active points that match the pruning constraint. For two points with coordinates

(t1, b1) (t2, b2) in the CQT spectrogram, the pruning constraint is given by: t2 − t1 ≤ ∆tmax

and b2 − b1 ≤ ∆bmax. The pairs of points are finally used as indexing keys. The encoding

that we suggest for one pair of points is the following:

[ b̂1; b2 − b1; t2 − t1]

with b̂1 =

⌊
b1
6

⌋
, a sub-resolved version of b1.

As in Shazam03, the idea is to build a representation that contains three complementary

pieces of information. Though, we did choose a different set of variables. Our concern is to

select pieces of information that are robust to distortions, and particularly to pitch-shifting.

The first component of our representation is meant to give a rough frequency location of the

pair of points. To do so, we can use the frequency information of the first point b1 (this could

equivalently be done by using b2 or a combination, like the mean, of b1 and b2). However, b1,

as such, has a resolution that is too accurate to be robust to even low levels of pitch-shifting.

A common way of robustifying the features is simply to sub-resolve them. This generally

comes at the cost of the discrimination power of the representation. In our case, this should

not be a problem since we have two more components in the representation. Finally, what

we suggest as the first component is a sub-resolved version of b1. Taking into account the

resolution of our CQT, a sub-resolution by a factor 6 leads to sub-resolved bins that cover

2 successive notes of the chromatic scale. Experimentally, this has proved to be a suitable

choice for common pitch-shifting ratios.

The second component is the frequency extent of the pair of points. Our two first com-

ponents [b̂1; b2− b1] are somehow the image of the two first components [f1; f2] of Shazam
03.

The information contained in these sets of two components can be seen as combinations of

two orthogonal information variables that are: the absolute frequency of the pair, the fre-

quency difference (that is a relative information) of the points. The main difference between

our representation and the one of Shazam03 is that we did isolate the absolute information
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(in the first component) in order to sub-resolve it.

The last component is the time extent of the pair. We keep the exact same representation

as in Shazam03. As it only contains a relative time information (the absolute information

is completely discarded from the representation), it is robust to cropping. Besides, we have

seen that, provided we use a sufficiently low resolution for the representation of t2 − t1,

this quantity is robust to time-stretching. We consequently suggest to keep the same third

component, with the same resolution.

In terms of robustness, this representation has inherited the benefits of the one from

Shazam03 (robustness to additive noise, equalisation, amplitude compression, cropping).

This comes from the conservation of the following principles: extraction of the points of

maximum energy, binarisation of the spectrogram, use of a density criterion in frequency

and time, elimination of the absolute time information. Besides, this representation has been

designed in order to get an additional robustness to pitch-shifting. A signal that has a pair of

points of coordinates (t1, b1) and (t2, b2) will have them moved at (t1, b1 + κ) and (t2, b2 + κ)

in its pitch-shifted version. The encoded pair thus becomes

[ b̂1 + κ; (b2 + κ)− (b1 + κ); t2 − t1]

Provided the low resolution that is used to represent the first component, one can predict

that, in most cases, we have:

b̂1 + κ = b̂1

It is worth mentioning that pitch-shifting will still move some values close to the border

of one sub-resolved bin to the next. However, similarly to Wang’s methodology, an exact

matching of all pairs is not required. Indeed, the histogram step described in section 11.3

only requires that the majority of the pairs are preserved. Since the sub-resolved bins are

quite large, we consider that the proportion of border values will be statistically too low to

prevent a correct identification.

We can see that the second component has also been preserved:

(b2 + κ)− (b1 + κ) = b2 − b1

The encoded pair is thus kept similar in the context of pitch-shifting. Let us finally recall

that the associated time-stretching effect, that would be obtained in the context of a sample

rate conversion, has been shown to be absorbed by the resolution used for the representation

of t2 − t1 (see section 11.5). This model consequently seems promising for an enhanced

robustness to pitch-shifting, time-stretching or sample rate conversion.
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12.3 Lowering the Complexity of the Processing

When we did introduce the notion of indexing keys in section 8.1.4, we made an analogy with

a book’s glossary. The words are referenced with pointers to the pages that contain these

words. Similarly, in fingerprinting, the keys are referenced with pointers to the reference

music titles that contain these keys. However, one should observe that a glossary does not

generally contain all the words of the book. Only the most relevant and specific words

are selected. By this, we mean that all articles, prepositions and adverbs are discarded.

Conversely, if one very specific and technical term is used in some precise sections of the

book, this term is a very good candidate for the glossary. We can thus legitimately wonder

if the situation transposes to the context of audio-fingerprinting. The question that arises is

then: “are there keys that are present in virtually all references?”. If so, these keys would

bear very little information for the identification process and would better be put aside in

the search step.

One way to get an insight of the situation is to study the distribution of the number of

pointed references per key. If we take an evaluation database with its set of extracted keys,

we can evaluate for one key the number of pointed references. This corresponds to one real-

isation of the random variable number of pointed references. If we repeat the operation with

all the extracted keys, we can store the realisations in a histogram that, once normalised,

is an estimate of the probability density function of the random variable number of pointed

references. Figure 12.1 shows such a histogram. It has been computed on a database con-

Figure 12.1: Histogram representation of the number of pointed references per key. The keys
are extracted from a 30,000 titles database. The histogram bin located on abscissa x has a
value proportional to the number of keys pointing to x different references.

taining 30,000 references corresponding to 60s-long excerpts of music titles. The number of
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keys that have been extracted in these music titles is 13,000. We can see on the histogram

that a meaningful proportion of the keys do point to a very high number of references. As

said before, it seems reasonable to think that these keys do not serve efficiency in the search

step. We consequently suggest an optional pruning step meant to decrease the complexity of

the overall processing.

Works in the domain of text information retrieval have proposed different numerical statis-

tics in order to evaluate the relevance of one word in a whole corpus [BYRN99]. We can

notably think of the tf-idf statistic, whose simplest form is given for one term t and one docu-

ment d of a collection D of documents by the product of the term frequency in the document

(i.e. its number of occurrences) and the inverse document frequency (log card(D)
card({d∈D/t∈d})

). In

our work we have tried different combinations and variations of these statistics in order to

elaborate a suitable pruning strategy. Our experiments have finally led us to the following

definition of significance. It is quite simple and natural. Though, it has proved to work

better than more complex formulae.

For each key k extracted in the references of the database, we name Nk the number of

references in which the key appears at least once. N being the total number of references,

we define the significance of a key k by:

s(k) =
N −Nk

N
(12.1)

Basically, a key which appears in many references has a low significance. Conversely, a key

which is rare has a high significance.

Let us recall that, in the proposed method, when a key is extracted from an unknown

excerpt, all references possessing this key have their histograms updated. Since a key with a

low significance appears in many references, it induces a meaningful number of updates and

so a meaningful computation cost. Statistically, this key is also more likely to be found in

any unknown excerpt (since it is a very common key). The conclusion is that a key with a

low significance, due to these two leverages, induces significantly more computations than a

key with a high significance.

Pruning the database consists of, for a given threshold Tprune, erasing from the database

all the keys verifying s(k) < Tprune. When doing so, we suppose that for any reference there

will be a sufficient number of keys preserved in order to ensure a correct identification. This,

of course, depends on the statistical distribution of the keys and on the selected threshold

Tprune. We have experimentally verified that the use of a reasonable threshold leads to a

significant complexity gain while keeping similar performances (see section 12.4.4).
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12.4 Experiments and Results

To evaluate the improvements over the original method, we keep the testing conditions similar

to the ones presented in 11.4. The system is still preceded by a framing module which slices

the continuous broadcast in analysis frames of length La and overlap oa.

12.4.1 Proof of Concept

This first experiment we suggest is based on the PoC experiment presented in section 11.4.2.

The overlap rate is set to 0 (no overlap between the successive analysis frames). The input

broadcast consists of the concatenation of the references from the database. The concatena-

tion is built in order to ensure that each analysis frame contains one and only one reference.

The modifications we brought to the initial fingerprint model are meant to bring robust-

ness in the context of sample rate conversion, hence the idea of a modified version of the PoC.

We still build a broadcast as a concatenation of the references but in this modified version,

the references are firstly distorted (with a sample rate conversion) before the concatenation

step. This experiment has the advantage of isolating the problem of the robustness of the fin-

gerprint model to this particular distortion. The scores are indeed given on a frame-by-frame

basis (no influence of the post-processing) and it is possible to control the level of distortion.

PoC True Positives False Alarms

No sample rate conversion
Shazam03 [Wan03] 99.9% 0.1%
Improved (CQT-based) 99.9% 0.1%

Sample rate conversion of 1%
Shazam03 [Wan03] 61.7% 38.3%
Improved (CQT-based) 95.8% 4.2%

Sample rate conversion of 4%

Shazam03 [Wan03] 1.4% 98.6%
Improved (CQT-based) 84.7% 15.3%

Table 12.1: Results in the PoC experiment. The algorithms have to identify frames that
are extracted from the reference database. Three different configurations are tested with
different ratios (0%, 1%, 4%) of sample rate conversion. This distortion is applied to the
frames that are to be identified.

The results presented in Table 12.1 seem to show that we reached our goal. The new

fingerprint is still discriminative in the initial PoC experiment. Besides, we can see that it

stays reliable in the presence of sample rate conversion, as opposed to the initial model whose

results collapse when the distortion ratio increases.
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12.4.2 Real-world comparative evaluation

This leads us to the conduction of real-world experiments. As a comparative experiment,

we use the same protocols and corpuses as the real-world experiment presented in 11.4.

The database contains 7,300 references corresponding to 60s-long music excerpts and the

broadcast consists of 7 days of the French radio ‘RTL’. Since the experiment corpus is the

same as in the 2010 Quaero evaluation, we can still display the performance of IRCAM’s

algorithm [RP11] on this task.

Quaerodetec Detected titles / Total False Alarms

IRCAM [RP11] 445 / 459 (=96.9%) 2
Shazam03 [Wan03] 381 / 459 (=83.0%) 0
Improved (CQT-based) 447 / 459 (=97.4%) 0

Table 12.2: Results with our improved method in the Quaero evaluation. The first column
shows the number of broadcasts of reference titles detected by the algorithm over the total
number to detect. The second column shows the number of wrongly output detections.

We can see in Table 12.2 that the detection ratio is much higher with the modified

fingerprint than the original one. As far as we can tell, this confirms the fact that the missed

detection from the original algorithm mainly occurred in the context of pitch-shifting. These

results finally show that, in addition to being robust to the same distortions as the original

model, the modified fingerprint has an increased robustness to pitch-shifting.

12.4.3 Real-world evaluation of scalability

Finally, we have led a wide-scale experiment in order to validate the scalability of the method.

The framework is the same as in the previous experiment, but we now run the algorithm

with a much larger database of references. In this experiment the stream is made of 5 days of

radio broadcast coming from 2 different French radio stations (‘RTL’, ‘Virgin Radio’). The

references set is much larger as it contains 30,000 songs. Besides, the second Quaero protocol

is used in this experiment. This means that the algorithm has to discard the broadcast of

references that are shorter than 30s. This experiments thus brings into play the tracking

module described in section 12.1.

The results clearly show that the algorithm is scalable. It has achieved a detection

performance which is comparable to its performance in the first experiment. Though, the

references database is more than 4 times larger in this experiment. It is particularly noticeable

that in spite of the enlargement of the database, the system has still not output any false

alarm. The multiplication of the songs in the database had yet highly increased the risk of
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Quaerofilter Detected titles / Total False Alarms

Improved (CQT-based) 496 / 506 (=98.0%) 0

Table 12.3: Results with our improved method on the Quaerofilter evaluation. In this ex-
periment, the reference database contains 30000 titles. The stability of the results in spite of
the increase of the database shows the scalability of the method.

having close fingerprints for different songs. As far as the detection performance is concerned,

the results of this experiment show that the algorithm we propose has the ability to handle

industrial sized databases.

12.4.4 Runtime

We will give here some figures about the processing times of the algorithms. These figures are

given on the basis of our Matlab R 64-bits implementations, running on an Intel Core 2 Duo

@ 3,16 GHz with 6MB of Cache and 8GB of RAM. We are aware that these figures give no

absolute truth, since the processing times highly depend on the machines, the programming

language and the optimisation of the code. They nevertheless give an order of magnitude

of the runtimes with such a configuration. Besides, they allow a comparison of the different

algorithms since all running times are given on the same basis. Our implementation of

Shazam03 has a processing time of 0.08s per second of signal. The improved (CQT-based)

version has a processing time of 0.43 seconds per second of signal. The difference mainly

comes from the extra time required for the calculation of the constant Q transform. If we

apply the pruning technique described in section 12.3 with Tprune = 0.5, we obtain a speed-

up factor of 35%. This reduces the processing time of the second algorithm to 0.28 seconds

per second of signal with the exact same identification score. This shows that the suggested

pruning technique with a reasonable threshold leads to a significant complexity gain while

keeping similar performances.

We should also mention that we have led another set of experiments regarding the pruning

technique. These experiments were led at a small scale and aimed at determining the influence

of the pruning on the discrimination power of the method. Our preliminary tests showed

that pruning the database could in fact improve the discrimination power. Thanks to the

pruning technique, we could indeed prevent some false alarms in some specific cases (notably

on speech sections) and also increase the true positives rate. This positive effect has not been

observed in the large scale experiments since the post-processing and tracking aspects are

hiding the variations that occur at a frame level. However, our belief is that such pruning

techniques can improve the results in some particular conditions and use-cases.
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12.4.5 Tracking

Concerning the tracking module, it filled its role perfectly since the algorithm did not output

any broadcast that was shorter than 30s. Besides, no missed detection was due to a failure

of the tracking module.

However, our finer experiments have put the light on a loophole in our tracking method.

This loophole is linked to a specific practice that is mostly used in ”young” radio channels.

The latter sometimes broadcast a meaningful bit of a music title (between 15 and 30s) in

order to announce the actual broadcast of the title a bit later. The typical scheme is: excerpt

of the title (15 to 30s), news (1 or 2 minutes), actual title. It is clear that with this scenario,

the output of the algorithm will be composed of a succession of empty sets and the identifier of

the title. The problem is that this output structure also corresponds to the output structure

that is expected during the sole broadcast of the music title (see section 12.1). In other words,

provided the information that is available at this level of representation, the two situations

(announcement + news + music title versus music title on its own) are indistinguishable. As

a result, the tracking method mistakenly takes the start of the announcement as the start

of the music title. The length of the broadcast of the title is consequently overestimated.

However, since the detection date is computed as a median (see section 12.1), the latter will

be correctly located, i.e. within the actual music title. In the end, as the title is detected and

the detection date is correctly located, this loophole has no impact on the results obtained

in the Quaero evaluation.
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Chapter 13

Another Application of Indexed

Fingerprinting

13.1 What is Recurrent Motives Detection?

In the domain of the study of multimedia broadcasts, Herley [Her06] has brought to the

attention of the community the specific problem of the detection of recurrent motives. The

motivation comes from the observation of the broadcasts of commercial multimedia channels,

such as TV or radio channels. These streams usually contain a high level of redundancy. For

example the ads broadcast by these channels are repeated a numerous number of times per

day. The news channels usually broadcast the same news report every hour. As far as music

channels are concerned, when a new song is released they tend to broadcast it several times

a day during several months. More occasionally, an old program or a specific interview can

be re-aired on special occasions. On a smaller scale, one can note the presence of systematic

jingles before some specific sections of broadcasts (advertising, news, a specific program...).

As we can see, the repeated objects vary in nature (news, jingle, music...), length (a couple of

seconds for a jingle, more than one hour for an entire program), spacing between the different

occurrences (every hour for an ad, every half a day for a new song, once in a while for an old

program). In the end, the innovation rate of the stream is quite low and the latter essentially

consists of a concatenation of some new items and a meaningful proportion of items that

have already been broadcast.

Automatically detecting these repeating sections of broadcasts can serve several applica-

tions. The first, low-level, application we can think of is compression. Provided the streams

are quite repetitive, it indeed seems a waste of space to store the entire stream. Using the

detection of repeated sections can lead to a tremendous gain of space. Let us note that

multimedia streams often need to be stored for a meaningful time duration because of legal
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requirements. Among the applications, we can also think of automatic segmentation. Detect-

ing the repeating structures indeed gives a sketch of the segmentation of the stream. Besides,

if an automatic system is able to locate the jingles, it will be able to infer the locations of

the advertisements sections or the news sections. We can thus see that automatic detection

of recurrent motives can lead to automatic classification. An application with a narrower

functional perimeter consists of coupling a system for automatically detecting the recurrent

motives with a traditional automatic annotation system. The interest of the coupling is then

to locate repeating bits of streams that do not belong to the database of the annotation sys-

tem. If the repeating section fits some prerequisites (for example, if it has the characteristic

length of a music title), the system can warn the operator that there is a new repeating item

that is likely to be a music title and that does not belong to the current database. If it indeed

corresponds to a song release, the operator can then update the database.

The problem is traditionally handled thanks to similarity calculations such as correlation

[Her06] or Dynamic Time Warping [MGB11]. A similarity score is calculated for each new

bit of stream with the entire past stream. If the score exceeds a certain threshold, the new

bit of stream is considered to be a repeated object. The similarity calculation can be applied

directly on the signal or on spectral features extracted from the signal. The problem that

these methods face is the cost of calculating the similarity of a new bit of stream with the

entire past stream. Let us indeed recall that the spacing between the repeated objects may

vary a lot. As a result, a minimum ‘memory’ that is required for such systems is usually

one day (meaning that if the new bit of stream is a copy of a bit of stream that has been

broadcast less than 24 hours before, the system should detect it). Correlating or dynamically

aligning one bit of signal with 24 hours of reference signal obviously has a high computation

cost. In order to enlarge the scalability of their systems, the authors propose the use of

downsampling methods or bufferisation techniques.

Still, one efficient and nice way to deal with this scalability issue would be the introduction

of an indexing technique. Between this paradigm and the idea of diverting a fingerprint

method from its traditional goal of automatic annotation of a broadcast, there is a fine line.

Provided the setup of some adaptations, we will see that a fingerprint-based approach can

perfectly handle the use-case of automatic detection of recurrent motives. Let us note that

this idea of fingerprint-based systems for the recurrent motives use-case has been exploited in

the works of Burges [BDP+05] and Ogle [OE07]. However, very few technical details are given

in [BDP+05], whereas in [OE07] the problem is treated in an offline setting. Conversely, we

give in the following sections a precise description of the architecture that allows to go from

an automatic annotation system to an online system for the detection of recurrent motives

in a stream.
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13.2 A Specific Task in Quaero

A specific evaluation has been created for the detection of recurrent motives in a stream. In

order to exploit the corpuses that we have at our disposal in the context of the automatic

annotation use-case (see section 9.3.2), the focus has been set on the particular use-case

“detection of repeating music titles in a broadcast”. However, since the aim of the evaluation

is solely to assess the ability of a technology to detect the redundancy and not the ability to

classify (musical versus non musical signals), the task of the algorithm has been defined as

“in a given stream, find any pattern which lasts at least 90 seconds and which can be found

at least twice in the stream”. In the corpuses that we have available, the set of recurrent

motives that are longer than 90s indeed matches the set of broadcast music titles.

The specificity of our work is that we did include a cross-radio corpus in the evaluation.

In the state of the art, authors usually focus on an evaluation framework based on a stream

coming from one single channel. This means that the repeated items are very likely to

be broadcast with the exact same post-processing (same equalisation, compression, pitch-

shifting...). In the Quaero evaluation, two corpuses have been created. The Test3Days

corpus is composed of 3 consecutive days of the radio ‘Nostalgie’. The Test3Radios corpus

is composed of 3 simultaneous days from the 3 radios: ‘NRJ’, ‘Virgin Radio’ and ‘Chérie

FM’. Since some motives are repeated from one channel to the other, it is very likely that

this second corpus contains recurrent motives that have been broadcast with different post-

processings. As we can see, the memory capacity that is expected from the system is also

quite challenging as it corresponds to 3 days of broadcast in both corpuses.

13.3 How to adapt a Fingerprint System to this Use-

Case

The general idea of the diversion of an automatic annotation system is the following. What

a traditional fingerprint system does when it analyses an unknown excerpt is looking for the

best match to this excerpt in a database. What we have to do in order to turn this system

into a recurrent motives detection system is replacing the content of the reference database

by the past stream. So, the system will look for the best match to the analysed excerpt in

the past stream. We thus see that such a system has two simultaneous tasks to accomplish

when analysing a stream segment: looking for the best match for this segment in the past

stream, storing this new segment of stream in the database since it will be part of the past

stream when analysing the next segment of stream. However, we have to stay aware that

the analysed segment is possibly a repetition of a past section of the stream. In this case, it
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is not desirable to store the current stream segment, which is a duplicate, in the database.

The storage mechanism therefore has to take into account the possible detection in the past

stream of a match before writing the analysed segment in the database.

We give at first a general description of the corresponding architecture, shown in Figure

13.1. The different building blocks of this architecture are described below.

13.3.1 General architecture

The stream is framed and then linearly processed. Each frame undergoes a fingerprint ex-

traction. From here, the system forks. One branch is dedicated to analysing the fingerprint

(in practical terms, looking for matches in the past stream), the other is dedicated to storing

the fingerprint in the database containing the past fingerprints.

In the analysis branch, the fingerprint is matched against the database containing the

previous frames’ fingerprints. The identification scheme that we have proposed in the previous

sections relies on a post-processing step that fuses the matching results of successive analysis

frames. This process has indeed shown to be a reliable way to eliminate the false alarms while

keeping a high detection ratio. For this reason, the matching result of the current frame is

combined with the matching results of the P previous frames. Based on these matching

results, a repetition detection decision is taken. In case of a detected repetition, the storage

branch is updated so that it will not store repeated frames in the database.

As we can see, it cannot be decided whether the current analysis frame is a repetition

of a previous section of stream before processing P further frames. This justifies the fact

that in the storage branch, the frame’s fingerprint is pushed into a FIFO (First In First

Out) buffer. This buffer delays subsequent storage processing for this frame. As the current

frame fingerprint enters the buffer, the last fingerprint of the FIFO buffer is pushed into the

database. Though, this latter will be written only if it has not been detected as part of a

repeating segment.

13.3.2 Framing and fingerprinting

As in the preceding algorithms, the input stream is sliced in analysis frames fn (n ∈ N) of

length La. However, as we are dealing with a system that is meant to detect redundancy, we

avoid introducing unnecessary redundancy whenever possible. For this reason, we suggest a

non-overlapping framing (in other words, oa = 0). A typical value for La is 5s.

Each analysis frame then has its fingerprint extracted according to the methodology

described in section 12.2. In short, the CQT-based spectrogram of the signal is computed.

Local maxima of this spectrogram are set to 1 whereas all other points are set to 0, thus
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Figure 13.1: Architecture of the fingerprint-based system for recurrent motives detection in an
online stream. When analysing an incoming bit of stream, the system has to simultaneously
look for a match in the past stream and manage its storage in the database.
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leading to a binary CQT-spectrogram. Points set to 1 in the binary spectrogram are then

grouped in pairs. Each pair made of two points with coordinates (t1, b1) (t2, b2) in the

spectrogram is encoded with the following vector:

[ b̂1; b2 − b1; t2 − t1]

This vector is finally used as an index key. For a given analysis frame, the fingerprint module

thus outputs a set of keys along with their dates of occurrence. Formally, we define K the set

of keys extracted in fn. Let Ok(fn) be the number of occurrences of the key k in fn. We then

define tk(fn) = {tik(fn)}i=1..Ok(fn) the set of times of occurrence of the key k in the frame fn.

The output of the fingerprint module is {(k, tk(fn))}∀k∈K.
Let us note here that there is a slight difference of notation with the preceding system. The

times of occurrence tik(fn) are now given with respect to a global reference (time of occurrence

of the key in the stream) whereas they were given with respect to a relative reference before

(time of occurrence of the key in the analysis frame). The two formulations are theoretically

equivalent: it suffices to translate the date with the time of occurrence of the analysis frame

in the stream. However, we will see that using absolute time quantitites makes more sense

in the present use-case, which is exclusively stream-based (even the reference database is a

stream). It notably reads much simpler when formulating the post-processing step.

The database contains all the keys that have been extracted in the past stream with their

times of occurrence in the stream. As it is meant to represent the past of the stream, we use

the notation f−1 to refer to the database. Consequently, a key k appears Ok(f−1) times in

the database at times of occurrence {tik(f−1)}i=1..Ok(f−1). When querying the database with

key k, we get in output {tik(f−1)}i=1..Ok(f−1). As in the other implementations, we use the

database engine Berkeley DB set to its Hash Table mode.

13.3.3 Merging the database outputs

The analysis branch starts with the merging step, which is similar to the one described in

11.2. It aims at finding the closest match to the current analysis frame in the stream. The

main idea is that if the current frame is the repetition of a previous section of the stream,

its keys should all be stored in the database. Furthermore, all the keys extracted from the

analysis frame should be retrieved in the past with the same delay. We then adopt the

following methodology to find the best candidate in the past.

We compute the set of differences

{
{tik(fn)− tjk(f−1)}∀(i,j)∈J1;Ok(fn)K×J1;Ok(f−1)K

}
∀k∈K
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We store these time differences in a histogram. The highest peak in the histogram gives the

best candidate delay for a repetition.

Let us recall that this methodology ensures the retrieval of the best candidate. Though,

it does not require that all keys are preserved from one version to the other. It only requires

that the majority of the keys are preserved. This makes the method robust to distortions

that would corrupt part of the keys between the two versions.

13.3.4 Enhanced post-processing

We should note here that this use-case is more demanding than the initial one in terms of

identification efficiency. We were indeed dealing with a detection use-case when working

in the automatic annotation task (the system only had to output an isolated detection of

the broadcast reference item) whereas in this use-case, the system has to entirely locate the

repeated section of stream. For this reason, we took advantage of this use-case to enhance

the post-processing scheme. This enhanced scheme should minimise the risks of missing

detections at the analysis frame’s level.

This enhanced post-processing step requires, in input, the M best candidates for each

analysis frame. As a result, the output of the merging step is the M best candidate delays.

The system stores the matching results of several successive analysis frames before making

a detection decision. The merging step outputs a vector of M best candidates (that we call

Single Frame Candidates Vector - SFCV) that is integrated in a P ×M matrix that contains

the P last SFCVs. We call this matrix the Multiple Frames Candidates Matrix - MFCM.

Provided the use of absolute times of occurrences, the post-processing based on the fusion

of local decisions described in 11.3 can be generalised to the case of M best candidates in the

following way. For a given detection threshold Tvote, let Mn be the MFCM after integrating

the matching results of frame fn. Let C be the set of candidate delays that appear in Mn

and h be a function that counts the number of occurrences of a candidate in the MFCM. Let

δ be a function that is defined by:

δ(x, y) =

{
x if y > Tvote

∅ otherwise

The vote function is then defined by:

v(Mn) = δ(argmax
c∈C

{h(c)},max
c∈C
{h(c)})

However, this vote model may generate some instability when dealing with objects that

contain an inherent repetitive structure. For example, let us imagine that the database
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contains one song with two similar choruses. As a consequence, when processing an analysis

frame belonging to a chorus of the same song, the two choruses in the database will be

candidates in the MFCM. Besides, their number of occurrences in the MFCM will be very

close. The result is that, when processing the successive analysis frames of a chorus, the

detections issued by the post-processing module may look like that:

chorus1-chorus2-chorus1-chorus1-chorus2...

This, of course, is not desirable, since we would like our algorithm to consider that the

successive analysis frames all belong to the same chorus. Ideally, we would like the algorithm

to detect chorus1 when processing the first analysis frames containing a chorus and chorus2

later on in the stream.

In order to achieve this goal, we modify the preceding vote model so that it becomes auto-

regressive. The autoregressive aspect is obtained by favouring the delay that best corresponds

to the preceding vote result. This ensures a certain continuity in the algorithm detections.

So, if the start of the song has been detected, and when reaching the chorus, the algorithm

will naturally tend to select the first chorus of the song in the database. Formally it consists

of replacing function h in the vote by h̃, which is defined by:

h̃(c) =

{
h(c) + β if v(Mn−1) = c

h(c) otherwise

In our implementation, β = 1.

13.3.5 Storage

One of the principles of the architecture is to store the fingerprints of the analysis frames that

have been processed in a database. However, we do not wish to store in this database the

fingerprints of the frames that are detected as repetitions. There are two reasons for that.

First, it would be a waste of space. Second, when matching a third fingerprint that would

be alike, we would obtain two good candidates instead of one. That would uselessly jam the

matching process.

As we have seen, the algorithm requires the matching results of P analysis frames before

being able to make a decision. This is why we store in a temporary FIFO buffer the finger-

prints of the processed analysis frames. This buffer contains B > P processed fingerprints.

If further processing outputs a repetition detection for frame fn, its fingerprint in the FIFO

buffer is labeled so that it will not be written in the database.

The FIFO buffer also has a screening function. Indeed, the repetitions that occur before
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B frames are not detected (since the corresponding fingerprints have not been added to the

database). Depending on the use case, this can be useful to prevent over-segmentation. For

instance, when segmenting a radio broadcast, one would usually want repeating segments

that correspond to whole songs. Though, if there is no screening and if the songs contain

repetitive choruses, the algorithm might annotate the songs in several repeating bits (the

choruses) and unrepeated bits (the verses). By setting B to a larger value than the length

of the song, we can prevent the system from detecting repetitions within the song.

13.3.6 Output of the algorithm

The framework outputs a decision for each analysis frame. It is either considered as a

repetition of a previous frame, or as a first occurrence.

This output can be represented in a plan with the following methodology. For each

analysis frame, we define a dot with coordinates (t1, t2). t1 is taken equal to the time of

occurrence of the analysis frame in the stream. If the frame is a repetition of a past frame,

t2 is taken equal to the date of the original frame in the stream. Otherwise, we take t2 = t1.

A graphical illustration of the result is given in Figure 13.2. The origin point is the

experiment starting date. At this point the database is empty so no repetition can be found.

Points on the diagonal indicate frames detected as first occurrences. Points outside of the

diagonal indicate repeated frames. Alternatively, the output can be considered as a binary

self-similarity matrix of the streamed data. In the shown example, one can see nine repeated

sections of broadcast. Their lengths suggest that they correspond to the repetitions of music

titles.

Figure 13.2: Graphical illustration of the output of the algorithm in the fashion of a similariy
matrix. On this example, one can see that the signal broadcast between 02:11 and 02:14 is
a repetition of the signal from 00:14 to 00:17.
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13.3.7 Tracking

As stated in section 13.2, the algorithm’s task is to detect repeated sections that are longer

than 90s. Consequently, as in the Quaerofilter evaluation, there is a need to setup a tracking

mechanism in order to evaluate the length of the detected repetitions. The tracking method-

ology that we suggest is based on a clustering paradigm that apply to the output described

in the previous section. As in the first use-case, we tried to design a tracking method that is

robust to the possible imprecisions that can occur in the detection phase.

In detail, the clustering strategy is the following. The algorithm only considers the dots

that are outside the diagonal. Let d1, d2, ..., dn be these dots, sorted in the order of increasing

abscissa. By construction, we know that the abscissa are strictly increasing. One cluster Ci
is fully defined by the set of dots dk composing it. In this set we call the border dot dCi the

one with the largest abscissa. By construction, it is also the dot with the largest index.

kCi = max{k / dk ∈ Ci}

The clustering strategy is given by the following pseudo-code.

// Init

i = 0;
// Main loop

while ∃ k / ∀ l dk 6∈ Cl do
// Start a new cluster

i = i+ 1 ;
Ci = {dk0} with k0 = min{k / ∀ l dk 6∈ Cl};
// Expansion of the cluster

for j from kCi + 1 to n do
if d(dkCi , dj) < Th then

Ci = Ci ∪ {dj} ;
end

end

end

The algorithm builds the clusters one after another. It starts with one cluster C1 that contains
the single point d1. This first cluster is then expanded, from left to right. To this end, all the

dots d2, d3, ..., dn are iteratively tested. If the tested dot lies at a distance smaller than Th

from the current border point of the cluster, it is added to the cluster. In our implementation

we use the norm L∞ as the distance function. As a consequence, we can stop the inner loop

(for loop) as soon as xj > xCi + Th. Once the cluster has been expanded to its maximum

size, we start a new cluster. This new cluster is initialised with the first dot of the list that
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has not yet been included in any cluster.

In the end, we consider that each cluster corresponds to a repeated section of broadcast

that goes from min{xk} to max{xk}. The original version is located between min{yk} and
max{yk}. The duration of the repeated section is thus: max{xk} −min{xk}. According to
the evaluation guidelines, the algorithm does output the detection of the repetition only if:

max{xk} −min{xk} > 90s.

13.4 Experiments and Results

13.4.1 Evaluation on a synthetic broadcast

As for the automatic annotation use-case, we have designed a first evaluation protocol that

relies on a synthetic broadcast. The interest of such an evaluation is that it allows to get a

score that can be estimated at a frame level. Conversely, the use of real-world broadcasts

with macroscopic annotations only permits the computation of detection-based scores.

This task consists of determining for each incoming analysis frame whether it is a rep-

etition of a previous frame. If so, the exact first occurrence in the stream is retrieved. A

synthetic stream is built as a concatenation of 140 audio excerpts randomly taken from a

pop song database1. Each excerpt lasts 30 seconds, 100 of them occur twice in the stream

and the 40 remaining are not repeated. The total duration of the stream is thus 2 hours.

Analysis frames are 5 seconds long, the complete dataset therefore consists of 1440 frames,

600 of which are exact repetitions of previous frames.

Synthetic Precision Recall

CQT-based 97.8% 95.1%

Table 13.1: Results of the algorithm on a synthetic broadcast. The algorithm has to detect
the repeated analysis frames. By construction of the broadcast each analysis frame is either
an exact repetition of a previous frame or a totally new frame. The Recall is the ratio of
True Positives whereas the Precision is linked to the number of False Alarms.

The score is given in terms of precision and recall. Table 13.1 summarizes the obtained

results. The system reaches good levels of precision and recall for this frame-based evalua-

tion. The results confirm the relevance of the proposed architecture as a repetition detection

system. We can consequently move towards the real-world evaluation.

1http://quaero.org
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13.4.2 Real-world evaluation

As mentioned, it is virtually impossible to get a frame-by-frame repetition annotation on a

real broadcast. On the other hand, the use of the annotations provided within Quaero allows

a detection-based evaluation. As stated in section 13.2, the task of the algorithm is to detect

all repeating segments that are longer than 90s. The detected repetitions should then match

the repeated music titles, for which we have the manual annotations.

Two corpuses were provided. The first one consists of three days of the radio ‘Nostalgie’.

The second corpus consists of 3 simultaneous days from the 3 radios: ‘NRJ’, ‘Virgin Radio’

and ‘Chérie FM’.

Quaero Detected rep. / Total nb False Alarms

Test3Days 565 / 565 (=100%) 10
Test3Radios 626 / 644 (=97.2%) 10

Table 13.2: Repeating objects detection scores for a real-world radio broadcast. The
Test3Days corpus contains 3 days of the same channel whereas Test3Radios contains 3 si-
multaneous days from 3 channels. The latter is thus more complex since it contains the
post-processing of different channels.

The results are given in Table 13.2. In the first corpus, the algorithm did not miss any

detection. As expected the second corpus seems a little more difficult since it includes the

post-processings applied by various radio channels. The detection ratio however stays very

high. As far as our analysis of the errors could go, it seems that all of them were due to

the tracking step. More precisely, including several radio channels in the same corpus has

led to a situation where several edits of the same song are present. The difference between

the edits can be various. In this corpus, they mostly concern the structure of the song: one

edit will have an additional bridge and/or an additional introduction and/or a further verse.

Sometimes, we also have additional featuring by another singer. From the point of view

of the annotations, two different edits are considered the same music title. At the analysis

frame level, the situation is illustrated in Figure 13.3. We see that some bits of the title are

an exact copy of the previous edit whereas some other bits are new because they were not

present in the initial edit. Conversely, it might happen that there is a ‘jump’ in the detection

if the new edit skips parts of the initial edit. To some extend, our tracking methodology is

able to correctly cluster one new edit in spite of these discontinuities. This is done thanks

to the threshold Th. However, the few missed detections are due to edits which include too

many differences with the initial one. Conversely, the false alarms are linked to the presence

of small repeated portions of stream that have been mistakenly clustered together. There is

of course a trade off in the tuning of Th.
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Figure 13.3: Zoom in the binary similarity matrix on the detection of a 2nd edit while the
database contains the 1st edit. The 2nd edit is broadcast from 06:57 to 07:00 and the initial
edit from 00:33 to 00:36.

Let us finally mention that this evaluation protocol is somewhat tricky when the algorithm

stores a misleading reference in the database. Let us for example figure that the first broadcast

of one given music title is a very specific and distorted edit. This edit will be stored in the

database. If the level of distortion goes beyond the capacities of the tracking step, the

algorithm will consequently fail identifying the broadcast of the other edits. The trick is that

this will then generate one additional missed detection for each broadcast of this music title.

The undesirable initial storing of one specific edit is thus penalised several times.
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Chapter 14

Generalisation of the Search Strategy

14.1 General Formulation

A further look at the search strategy used above reveals that it is quite uncorrelated with

the fingerprint model. In fact, we will see later that this search strategy can be seen as an

application of the Basic Local Alignment Search Tool algorithm [AGM+90]. More precisely,

the only requirement for the search strategy to be applicable is that the fingerprint consists

of time-localised keys.

Formally, what we need is that for a given signal u to analyse, the fingerprint module

outputs a set of features along with their dates of occurrence. We call these extracted

features keys. We define K the set of keys extracted in the signal u. Let Ok(u) be the

number of occurrences of the key k in u. We then define tk(u) = {tik(u)}i=1..Ok(u) the set of

times of occurrence of the key k in the signal u. The output of the fingerprint module is

{(k, tk(u)}∀k∈K.

Provided a fingerprint can be put under this form, the system can then compute the time

differences of the times of occurrence of the keys in the signal and in the database (histogram

step). The further processings such as the fusion of local decisions and the tracking step can

subsequently be applied.

In order to demonstrate the general applicability of the search strategy, we have integrated

our code with a different fingerprint model. The model has been deliberately chosen very

different from the initial one. As far as the use-case is concerned, we have employed this

second fingerprint in the context of the recurrent motives detection. This, of course, does

not restrict the scope of the generalisation, which could similarly apply in the first use-case.
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14.2 A Sparse-Decomposition Based Fingerprint

The fingerprint presented above is based on a peak picking mechanism in the time frequency

domain. Alternatively one can build a fingerprint based on a sparse decomposition of the

signal in a redundant dictionary. Let u be a framed signal ∈ CN and Φ be a dictionary

of elementary waveforms φk ∈ CN called atoms. We denote ûm an m-term approximant of

u in Φ, that is to say a linear combination of m waveforms: ûm =
∑m−1

i=0 αiφi. There are

many different ways of building such approximant. A fast one is to iteratively select the φi

according to an energetic criterion:

φi = argmax
φ∈Φ

|〈u− ûi−1, φ〉|

Algorithms based on this greedy paradigm are called Matching Pursuits (MP) following the

work of Mallat et al. [MZ93].

Sparse decompositions have initially been proposed for compression purposes. Indeed, in

a variety of multimedia contexts, wavelet dictionaries (e.g. for images) and Fourier-based

transforms (e.g. MDCT for audio) have enabled a fair amount of dimensionality reduction.

The idea of exploiting sparse decompositions for fingerprinting has already been proposed

(e.g. in [CB07]).

An m-term approximant x̂u can efficiently be used as a fingerprint if: 1) its dimension

is much lower than that of u 2) two different signals would yield significantly different fin-

gerprints and 3) the fingerprints exhibit some robustness to mild distortions. Most MP-like

algorithms are only tailored for the first of these properties. However, in a fingerprint context,

we are not interested in minimizing a reconstruction error, but in maximizing a discriminating

power. Therefore, two options can be considered: either build a fingerprint from an existing

m-term approximant or modify the decomposition algorithm so as to only select elements

that will favor good fingerprint properties in ûm.

In this work we have implemented the second approach, and the following fingerprint

construction is performed. We have used a multiscale MDCT dictionary and a plain MP al-

gorithm with the additional property that atom selection in the time frequency neighborhood

of previously selected atoms is discouraged. The selection criterion at iteration i becomes:

φi = argmax
φ∈Φ

λ(φ,ΦI).|〈u−
i−1∑

j=0

αjφj, φ〉|

where ΦI is the set of previously selected atoms and λ(φ,ΦI) is a binary penalty term set to

zero if any previously selected atom is in the time-frequency neighborhood of φ.
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For a given signal u, an approximant ûm is computed and the set of keys used by the

fingerprinting system is simply the set of indexes of the m atoms chosen in the dictionary Φ.

By limiting the decomposition to a small number m of iterations, the dimensionality can be

greatly reduced. However, the fingerprint discriminative power increases with the number of

atoms selected in the decomposition.

14.3 Experiments and Results

This second fingerprint has been tested with the protocol presented in section 13.2. The

experiments are the same as the ones in section 13.4.

Synthetic Precision Recall
CPU Time
- Finger-
print

CPU Time
- Total

Memory

CQT-based 95.1% 97.8% 0.12s 0.20s 9.3MB

MP-based 94.5% 91.5% 0.33s 0.40s 2.4MB

Table 14.1: Results of the algorithms on a synthetic broadcast. The algorithms have to
detect the repeated analysis frames. By construction of the broadcast each analysis frame is
either an exact repetition of a previous frame or a totally new frame. The Recall is the ratio
of True Positives whereas the Precision is linked to the number of False Alarms.

The first experiment relies on a synthetic broadcast and consists of determining for each

analysis frame if it is the copy of a previous frame. The MP-based fingerprint has been

computed with a dictionary of 3 MDCT scales and stopped after 150 iterations (labeled

MP-150). Table 14.1 summarises the obtained results and recalls the ones obtained with

the initial fingerprint. The system reaches good levels of precision and recall for this frame-

based evaluation with both fingerprints. The recall with the CQT-based fingerprints is better

than when using the MP atom indexes. However, it is also more memory consuming. The

MP-based fingerprints are smaller, but less robust as the recall shows. The CQT-based

fingerprints are faster to compute but the matching process roughly requires the same amount

of time for both methods.

The results for the real-world experiment are given in Table 14.2. We see that the new

fingerprint slightly underperforms the initial one in the first corpus in terms of recall. The

gap however widens in the second corpus. This tends to show that this second fingerprint is

less robust to the post-processing distortions. Let us indeed recall that this second corpus is

indeed much more likely to include distortions between the different copies of one music title

since it includes several radio channels. The number of false alarms is of the same order, and
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Quaero Detected rep. / Total nb False Alarms

Test3Days Corpus
CQT-based 565 / 565 (=100%) 10
MP-based 537 / 565 (=95.0%) 7

Test3Days Corpus
CQT-based 626 / 644 (=97.2%) 10
MP-based 478 / 644 (=74.2%) 8

Table 14.2: Repeating objects detection scores for a real-world radio broadcast. The
Test3Days corpus contains 3 days of the same channel whereas Test3Radios contains 3 si-
multaneous days from 3 channels. The latter is thus more complex since it contains the
post-processing of different channels.

as said before, mostly related with the tracking strategy.

In conclusion, this work has shown the general applicability of the method. This second

fingerprint has been employed on the real-world use-cases with industrial data. Even though

the second model slightly underperforms, the results still seem satisfying enough to open

the door to real-world applications. Let us note that the second fingerprint model could be

further enhanced and robustified. One could for example consider the grouping of the atoms

in pairs and use a pitch-shifting robust encoding rather than using single atoms. Interestingly,

this experiment also shows that the system can be used as a test-bed for drawing comparisons

between fingerprints models in the context of a real-world use-case.
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Chapter 15

Conclusion

We have started this part with the description of our implementation of a method of the

state of the art [Wan03]. The testing of this implementation with real data led us to the

improvement of some specific aspects. The first substantial modification that we brought

is the addition of an elaborated post-processing step based on the fusion of local decisions.

More fundamentally, we proposed a change in the fingerprint model, which resulted in an

increase robustness of the method to pitch-shifting. A second step in our work has con-

sisted of adapting our audio-fingerprint methodology to a different use-case. We have indeed

showed that index-based audio-fingerprint systems could be transformed in order to handle

the detection of recurrent motives in a stream. Finally, putting things in perspective in the

proposed model, we realised that the search method is quite independent of the fingerprint

model. To demonstrate this, we did integrate a different kind of fingerprint in the same index

scheme.

All these pieces of work were extensively tested thanks to the data, evaluation frameworks

and protocols provided within Quaero. Let us recall that these evaluations were designed

to faithfully reflect real-world use-cases, notably thanks to the use of industrial corpora and

databases. The striking fact when looking at the results in our different experiments is that all

algorithms are very efficient. The post-processing unit that we proposed adequately limits the

number of false alarms and the modified fingerprint is very good at matching two equivalent

signals, even in the presence of distortions. In the detection of recurrent motives use-case,

our analysis showed that the few errors that were output were not due to the fingerprint

algorithm. They were coming from the clustering step.

More generally, we should note that IRCAM, which took part in the Quaero work-package

“audio-identification and fingerprinting”, did achieve the same kind of performance in the

corresponding evaluation. It is, in consequence, very tempting to infer that the technologies

of the succeeding companies of the domain, such as Shazam, reach this kind of scores. In
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the end, it seems that the traditional audio-identification use-case has somewhat run dry.

For a given method, it will of course always be possible to find a set of sufficiently severe

distortions to cause its failure. But the tuning of the parameters, the slight adaptation of

the model will probably allow to overcome the difficulty.

For that matter, my point of view is that the task needs to be extended with new chal-

lenges. For example, our experimental observations showed that the model we use is suitable

only for exact matching. As soon as we are dealing with two different recordings of one same

title, the method cannot match them. This is not surprising since the features extracted in

the representation are low-level features. Consequently, it cannot be expected that these will

be preserved when dealing with a different signal, even if the music sounds similar. We thus

decided to get into the development of methods that can handle the approximate match-

ing use-case (the algorithm has to detect the broadcast of items that are equivalent or only

similar to one reference). This constitutes the object of the next part.
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Part V

Approximate Matching
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Chapter 16

Introduction to Approximate

Matching

In this part, we tackle the problem of approximate matching. By this, we mean that the

task of the audio-fingerprint algorithm is redefined. It now has to identify any broadcast of a

reference item (possibly distorted in the transmission chain) but also the broadcasts of items

that are only similar to one of the references.

Within our documentary research in the field of “audio-fingerprinting”, we found only

one work mentioning the objective of approximate matching. The document is a patent from

Google [LWR12]. It describes a fingerprint representation called “intervalgram” that is a

tonality-robust summary of the chromagram around pre-determined reference times. The

summary is obtained by a non-uniform temporal sampling of the chromagram and is meant

to represent the melodic lines around the reference times. The search strategy is not included

in the description.

Given our approximate matching use-case, it is however of interest to study the field

of “cover song recognition”. The latter initially consists of methods that can evaluate the

musical similarity between two signals. Although one can find methods relying on the ex-

traction of melody [Mar06] or rhythm [HS08], most of the contributions rely on the matching

of chroma-based features [EP07, SGHS08, MKC05]. It must however be understood that the

above-mentioned methods do not include any indexing aspect. Finding the best match to a

query signal within a set of references thus comes to comparing the query to all the references.

Given the proposed matching strategies (Dynamic Time Warping or in the simplest cases a

linear product), there is no hope that these methods can scale up to large databases.

The domain of cover song has, however, slowly moved towards the problem of large

reference databases. The work in [NKM02] marks a first step in this direction. In this

work the authors propose a search speed-up for a given similarity matching. The signal
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model consists of quantised chroma vectors and the search is inspired by approximate string

matching. However the chosen search method is online, thus depriving the method from the

efficient use of an index.

More recently, the authors of [MO08] have proposed a two-steps process for the identifi-

cation of classical works independently of the performance. The first step is an index search.

The index keys consist of quantised versions of the chroma vectors. The aggregation of the

index outputs however stays quite simplistic (it is a simple counting of the index keys in

common between the query and the references). The second step is a fine comparison of

the candidates output in the first step with the query. Strangely, the fine comparison step

has nothing in common with the index search (different signal model based on spectrogram

peaks, different matching strategy based on Hidden Markov Models).

In [KM08], the authors propose an indexing scheme that builds upon the specific chroma-

based features presented in [MKC05]. To this aim, the authors introduce a further quanti-

sation of their initial feature on a finite codebook. During the learning stage, the quantised

version of each reference is computed. Each codeword is then indexed in association with

pointers to all references containing this codeword. The identification stage finally consists

of computing the quantised version of the query and use the index to retrieve the references

having a high number of correlated codewords with the query. As we will see later, this can

be seen as an application of the BLAST (Basic Local Alignment Search Tool) strategy with

a subsequence length of 1.

In 2012, the authors of [MBHF12] have proposed an approach that relies on the same

principles. In their method, the features of interest are the chromas. The quantiser that is

suggested is a chord-estimation technique. The search strategy explicitly relies on BLAST.

As far as chroma indexing is concerned, we can note the work in [BME11]. This paper is

clearly focused on the Million Song Database 1 and its associated features, which are obtained

through the Echo Nest API 2. From the available features, the authors propose the compu-

tation of a beat-synchronous chroma representation. Starting from this representation, they

suggest the extraction of indexing keys. These are computed in a way that is very similar

to [Wan03]: salient peaks are extracted and grouped together to produce index keys. The

identification finally consists of finding the reference that have the highest number of index

keys in common with the query. The authors, however, mention that the results obtained on

the Million Song Database are rather disappointing. This is how they justify the proposition

of a new matching scheme in [BME12]. In this work, the authors abandon the notion of

index. They propose to summarise the signal in a very compact vector that is meant to

1http://labrosa.ee.columbia.edu/millionsong/
2http://developer.echonest.com/
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be discriminative enough to represent the music while being invariant between similar mu-

sic pieces. These vectors correspond to the magnitude of the 2D-Fourier Transform of the

beat-synchronous chromagram, further compressed by PCA. It is shown that this represen-

tation has nice invariance properties. Finally, the identification step consists of calulating

the compact representation of the query and then searching for the nearest neighbours in the

reference database. Since the vectors are very compact, this can be done in an exhaustive

way even with a large number of references.

In the light of these works it seems clear that there is an ongoing fusion between the ini-

tially separated fields of “audio-fingerprinting” and “cover song recognition”. In the follow-

ing, we describe two fingerprinting methods that we developed for the approximate matching

use-case. The first method that we present relies on a chords transcription scheme associ-

ated with the BLAST search strategy. The second method that we propose for approximate

matching uses a mixture of rhythmic and harmonic information. As far as the first method is

concerned, it should be noted that the already cited work of [MBHF12] has been published in

2012. It was thus not available at the start of our work on the chords-based strategy. We dis-

covered a posteriori that this work and ours present strong similarities in their philosophies.

However, there are still a number of differences between them. These differences are listed

below but may be better understood after reading the detailed description of our method in

the following chapter. As far as BLAST is concerned, their implementation does not feature

any neighbourhood generation. Besides, the aggregation strategy (called filtering in their

work) is quite different from ours. The chords estimation they use is not detailed and their

method relies on a a very light dictionary of chords (each chord is represented by its sole root

note). They have specifically tackled the issue of transposition (by normalising the chords

sequences) whereas we have not studied this particular issue. Their study mostly focuses on

the optimal selection and the optimal length of the subsequences in BLAST whereas we have

put a strong emphasis on the influence of the chords model.
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Chapter 17

Chords-Modelling Approach

17.1 Overview

In this chapter, we describe an audio-fingerprint method that is based on the transcription of

the signal in a sequence of chords. More precisely, the chords sequence representing a given

signal constitutes its fingerprint. When searching for an unknown signal, the process consists

of transcribing it in a sequence of chords and then looking for the closest transcription in the

reference database. However, we do not expect the transcription in chords to be a robust

feature. For this reason, we set up a specific approximate search method.

The chapter is organised as follows. In the introduction, we give a contextual presentation

of the chords transcription problem. This includes a precise definition of what a chord is and

a quick listing of common techniques used for chords estimation. Then we move to the

specific description of our method, starting with the chords transcription model that we use.

This includes the computation of the low-level representation of the signal (chromagram) and

the estimation of the best matching chords sequence. In the next section we underline the

fact that, given our audio-identification use-case, there is a need to define a distance between

the chords sequences. This distance should ideally reflect the musical similarity between the

transcribed signals. The distance model that we propose is based on dynamic programming.

The following section details our search strategy. The idea of this search step is to bring, in

a very fast way, a set of candidates from the reference database that will be the closest to

the unknown signal, in the sense of the above defined distance. The chapter ends with the

presentation of a real-world evaluation framework on which our method has been extensively

tested.
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17.2 Introduction to Chords-Sequence Based Audio-

Identification

17.2.1 Positioning of the work

The idea here is to model any musical signal by a sequence of chords. The transcription of

music in a sequence of chords is a popular and active field in the domain of music information

retrieval. For that matter, we should note that the MIREX1 evaluation campaign has included

an “audio chord estimation” task since 2008.

The reader must keep in mind that chord estimation is a complex and complete problem.

It consequently constitutes the focus of some substantial research works. Our positioning

here is radically different. We do not aim at bringing any essential contribution to the

modelling aspect of the problem. Our work focuses on the use of existing chords modelling

technique for the purpose of audio-identification. More specifically, we have worked with a

chord estimation technique that relies on the work of Oudre [OFG11]. The approach has

proved to work well, notably through its results in the latest MIREX contests. The chord

estimation however stays mostly an input for the search part of our algorithm. The reasoning

could thus be easily transposed to other chord estimation techniques.

We now give a brief presentation of the chord modelling problem as well as a short

overview of some existing methods. The interested reader is invited to refer to more specific

works if a deeper insight is desired.

17.2.2 What is a note?

In music, a note is the result of the setting in vibration of a musical instrument. When

the latter is excited at a given frequency (the fundamental frequency), its physics involve

the generation of vibrations whose frequencies are located at or near integer multiples of

the original vibration (the harmonics) [Rig85]. However, to a human listener the resulting

auditory sensation constitutes one single musical event. The perceived height of this event is

called the pitch of the note. Psycho-acousticians define the pitch as the frequency of a pure

tone (i.e. a sinusoidal waveform) that is perceived as having the same height as the note. A

consequence of this definition is that we sometimes use, somewhat loosely, the terminology

frequency of a note when actually referring to its pitch.

Two notes with pitches whose ratio is 2 are perceived as very similar by the human audi-

tory system. This phenomenon is referred to as the periodicity of pitch-perception. Physically

speaking, two such notes share a meaningful number of harmonics (for an instrument whose

1http://www.music-ir.org
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timbre is independent of the pitch, one out of two harmonics of the lower note are common

with the ones of the higher note). These notes are said to belong to the same pitch-class and

they are given the same name N . In order to distinguish them, we use the notation Ni+1

for the note with the higher pitch and Ni for the other one. The interval between two such

notes is called an octave.

The scale in use in Western music is the equal-tempered chromatic scale. Its construc-

tion process is the following. First, one reference note must be defined. Typically, in

Europe we use the convention A4 = 440Hz. Thanks to the octave relationship described

above, we can deduce the pitches of Ai for any i. It is thus clear that the equal tempered

scale only has to be defined within an octave. The principle is to divide the octave in

twelve notes with geometrically spaced pitches. Mathematically, this means that the pitch

of the kth note is obtained by multiplying the pitch of the (k − 1)th note by 12
√
2. If we

start with A4, the names that are given to the twelve successive notes are the following:

{A4, A4♯, B4, C5, C5♯, D5, D5♯, E5, F5, F5♯, G5, G5♯, A5}.

17.2.3 What is a chord?

What we call a chord in music is the association of several notes. The notes of a chord can

be played simultaneously or one after another (we then talk about an arpeggio). In both

cases, the notes are sufficiently close in order to resonate together in the listener’s ear.

The conceptualisation of such an object is of great interest for representing polyphonic

music. As a result, music theorists and composers have put a meaningful effort in the

description of chords construction, their classification and the ruling of their succession. For

that matter, tonal harmony, which arose from the counterpoints rules that stipulate the

possible arrangements between the different voices of a music, was first expressed as a theory

on its own by Rameau (1683-1764). The rules formulated in this theory apply to most western

compositions until now.

This theory notably takes into account the fact that the auditory sensation provided by a

chord (usually called the colour of the chord) is rather octave independent. This means that

substituting any note of the chord by another note that belongs to the same pitch-class will,

to some extent, preserve the perceptual quality of the chord. As we will see, this statement

is of great importance for us. It indeed means that estimating a chord does not require the

estimation of the pitches of the notes involved: it suffices to determine their pitch-classes.

Of course, the rules of tonal harmony have evolved throughout history along with the

music styles. The theory proposes to reference all chords that are made of a superposition of

thirds (minor or major). At the time of the elaboration of the theory, the third was indeed

imposing as a consonant interval in Western music. This gives rise to the triads (root note
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+ the third + the fifth), the tetrads (root note + the third + the fifth + the seventh) and

pentads (root note + the third + the fifth + the seventh + the ninth). As for the evolution

of music styles, we can note that romantic music allowed a more generous and more flexible

use of tetrads chords than classical music. Romantic composers also tended to frequently use

pentads whereas they are hardly found in classical pieces. In jazz, composers have elaborated

a new chords notation system. The latter is much more flexible and allows the formulation

of notes combinations that are not admitted in the classical theory.

Western music strongly relies on the rules of harmony. Indeed, what music composers

do is essentially designing a chords sequence (or chords progression) that fits a melody and

that follows the rules in use in the chosen music style. This explains why chords are a very

effective way of representing music and why there has always been a chords nomenclature

throughout the ages. This truth also transposes to the listener’s side. People are indeed

sensitive to the notion of harmony. In other words, if one listens to two different melodies

that are played on the same chords progression, the listener will find that the musics present

a meaningful similarity.

17.2.4 Interest of chord estimation for audio-identification

In the domain of automatic transcription, the ultimate goal would be the development of an

algorithm that can estimate all the notes played by an ensemble of different instruments. This

problem, that is actively studied by the community, is quite challenging. One of the difficulties

comes from the fact that it is not straightforward in the common spectral representations to

distinguish the fundamental frequencies of the notes played from the associated harmonics.

If several notes are played together and the harmonics of the different notes merge, we

understand that the equation starts being very hard to invert.

One way to get round this problem is to simplify it. We can thus ask ourselves: “isn’t

there an intermediate representation that does not need the separate estimation of all notes

pitches but that can still bring some meaningful musical information ?”. The answer is “yes”

and the intermediate information that we can target is the harmonic content. The latter

is easier to characterise since it does not require the estimation of the set of notes played

together but simply the overall perceived pitch-classes. This problem is tackled thanks to the

chromagram and pitch-class profile representations. The chord estimation techniques usually

start from these representations and aim at reconstructing the original chords sequence from

the composer. In a way, they can be seen as a quantification of the information contained in

the chromagram.

The satisfying thing with these estimations of the harmonic content is that they have a

true perceptual correspondence. As stated before, listeners are indeed very sensitive to the
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harmonic progression of music. Having available techniques that can provide an estimate

of the harmony therefore presents a real applicative interest, notably in the field of audio

identification.

17.2.5 Chord estimation techniques

As mentioned, chord estimation has been an active field of research, which has received

numerous contributions. The methods have a common starting point that is the use of a

feature that estimates the harmonic content of the signal. Although there are small variations

in the way to compute it, the principle stays the same: it is a spectral representation that

gives the amount of energy for any pitch-class that falls within the scope of the equal-

tempered scale. Different names have been given to these representations but the most

general terminology is probably chroma vectors.

What the methods then do is essentially looking, for each chroma vector of the analysed

signal, for its best match among a set of pre-defined templates. Each template is meant

to be the best chroma representation of one of the chords defined in tonal harmony. The

templates can be either pre-defined [Fuj99, HS05, OFG11] or learnt by training [SE03]. Some

methods introduce some musical knowledge in their models in order to enhance the chord

estimation. In [BPP05] the succession rules of the chords are taken into account whereas

some approaches estimate the overall key (i.e. the tonality) of the signal [Sai06]. Other

works rely on the extraction of rhythmic information so that the chord estimation depends

on the chroma’s position in the bar [PP08]. Finally, some recent works propose the joint use

of multiple information (key, rhythm, bass) in order to improve the chord estimation [MD10].

17.3 Chord Model

17.3.1 Introduction

We now detail the model that we use to transcribe an audio signal in a sequence of chords.

More specifically, our strategy relies on the work of Oudre [OFG11], which can be described

in two steps. In a first section, we give a detailed description of the computation of the

chromagram. In a second section, we present the vector quantisation scheme that Oudre

proposes for the transcription of a chromagram in a sequence of chords.
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17.3.2 CQT & Chromagram

The starting point of a chord transcription method is the use of a spectral representation of

the signal. For the same reasons as the ones exposed in section 12.2, the use of a Constant-Q-

Transform (CQT)[Bro91, BP92] imposes. The chord and chromagram estimation are indeed

strongly tied to the notion of note. Let us recall that the CQT is a spectral estimation tool

that gives the amount of energy in the signal in frequency bands that follow the same spacing

as the notes of the Western scale. Provided an appropriate choice of the parameters in the

CQT computation, the frequency bands can be aligned with the frequencies of the notes.

The kth bin of the Constant-Q-Transform of an input signal x is calculated as:

X
CQT

(k) =
∣∣∣
N(k)∑

n=1

w(n, k)x(n)e−2jπfkn
∣∣∣ with fk = 2

k
12r f0

N(k) is the length of the window w(., k), which is proportional to the inverse of frequency

fk. In other words, as fk increases the resolution of the transform decreases, as it happens in

the human auditory system. The variable r corresponds to the number of bins per note: if

we set r to 1, there are twelve geometrically spaced bands between fk and 2fk. This exactly

matches the definition of the chromatic equal tempered scale. Provided we choose a starting

point f0 that matches the pitch of one of the standard notes, the set of frequencies {fk} will
be a perfect mapping of the set of pitches of the notes of the Western scale. We thus have

exactly one energy band per note.

In our implementations, we use r = 3. This means that we have three bins that match the

extent of one note of the scale. We have chosen f1 that matches the pitch of G1♯ so that the

three energy bands with centre frequencies {f0, f1, f2} match G1♯, the ones with {f4, f5, f6}
match A1 and so on...

The chroma vector is computed out of the spectrum obtained thanks to the Constant

Q Transform. The chroma aims at reflecting the perceived pitch-classes. Its domain of

definition is thus one octave, which implies that it contains 12r bins. One chroma bin is

obtained by summing all the bins of the CQT that belong to the same pitch-class [Fuj99].

Mathematically, this gives the following formula, for j ∈ {1, 2...12r}:

C(j) =
kmax∑

k=0

X
CQT

(j+12rk)

where kmax = sup{n ∈ N / 12 + 12rn ≤ fmax}. In simpler words, kmax is the total number

of entire octaves in the Constant Q spectrum. We can observe that, since the chroma vector

is an object that builds upon the periodicity of pitch-perception (see section 17.2.2), it is
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cyclic: for any pitch-class represented by bin i ∈ {1, .., 12r}, the next pitch-class is given by
bin i+ 1 (mod 12r).

The concatenation of successive chroma vectors gives the chromagram. In order to obtain

the next chroma vector, the windows w from the CQT calculation are temporally translated

by a time quantity thop. In the end, the chromagram is a function of the pitch-class j and

the time t: C(j, t).

Oudre suggests, similarly to Bello & Pickens [BPP05], a further step in the calculation of

the chromagram meant to compensate the possible detuning of a music. Given the frequency

resolution of the Constant Q Transform, we can see that the proposed chroma vector contains

r bins per note-class. In other words, one note and any of its octaves Ni is represented by the

chroma bins {kl...kl+r−1}. Let us imagine that the analysed signal consists of the performance
of one note Ni, played steadily, precisely in tune. The energy should then be focused in one

single energy bin kε. Under the conditions of a coherent tuning between the performance of

the musicians and the algorithm, we would expect:

kε = median
j∈{l,..,l+r−1}

{kj} (17.1)

However it happens that the tuning of the music does not correspond to the standard tun-

ing. First, musicians sometimes use a different tuning reference than the one we described.

Besides, even if the same tuning reference is used, it happens that the analysed signal has un-

dergone some specific post-processing that infers a shift in the pitches. In order to re-establish

a coherence between the actual tuning of the signal and the mathematical calculation, the

idea is to circularly shift the bins of the chroma until Equation (17.1) holds.

Bello & Pickens propose the use of a peak-picking technique in order to locate kε. We do

propose a simpler method in order to achieve the same objective. For i ∈ {1, .., r}, we define
the probability of having the ith bin corresponding to one actual note-class of the signal by:

P (kε = ki) =

∑tmax

t=0

∑11
k=0 C(kr + i, t)∑tmax

t=0

∑36
k=1 C(k, t)

The probability is obtained by summing for all the different note-classes the energy that they

have in their ith bin (sum over k). This principle is temporally extented by summing the

contributions of the successive chroma vectors (sum over t). The quantity is further divided

by the total energy so that the probabilities add up to 1.

The algorithm computes the probabilities P (kε = ki) for all the ki’s. Finally, the situation

with the highest probability P (kε = ki0) is considered to be the actual one. The chromagram

is then circularly shifted so that the bin ki0 becomes the median bin of the note-class.
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The representation is finally brought back to a 12 bins -corresponding respectively to the

12 notes of the scale- spectral representation. This is done by summing all the bins that

belong to a same note-class. This can be done either with a uniform weighting within the

class, or by using a weight function that favours the median bin.

17.3.3 Chord estimation

As described before, our chord estimation algorithm is based on the work of Oudre [OFG11].

The method relies on the definition of a chord dictionary. The later contains λ templates

{Wi}i∈{1,..,λ} that correspond to the output vocabulary of the algorithm. In other words, for
any input signal, the method outputs a sequence of chords that all belong to the templates.

The method associates to each temporal frame of the chromagram C(., t0) (i.e. to

each chroma vector) a template from the dictionary. For each template Wi, the distance

d(C(., t0) ; si,t0Wi) is computed. The scale parameter si,t0 accounts for the change of ampli-

tude between the template and the actual performance of the chord. The template realising

the minimum distance is retained. In [OFG11], it is underlined that what is defined as a

distance can also be seen as a probability p(C(., t0) | si,t0 ,Wi). This change of modelling

gives more flexibility in the matching and notably allows the taking into account of addi-

tional global statistics. If the mentioned statistics is denoted by α, the estimated probability

becomes p(C(., t0) |α, si,t0 ,Wi).

As far as α is concerned, Oudre’s suggestion is to bring into play the probability of

occurrence of one chord in the signal. In practice, if we denote by αi the probability of

occurrence of template Wi, we define:

p(C(., t0) |α, si,t0 ,Wi) = αi p(C(., t0) | si,t0 ,Wi)

For the computation of p(C(., t0) | si(t0),Wi), several statistical observation models are pro-

posed by Oudre. The two models that we exploit here are the following:

pgauss(C(., t0) | si,t0 ,Wi) =

exp

[
−
(

1

2σ2
d2Eucl(C(., t0) ; si,t0 Wi) +

M

2

(
log(2π) + log(σ2)

))] (17.2)

pgamma(C(., t0) | si,t0 ,Wi) = exp

[
−
(
βdIS(C(., t0) ; si,t0 Wi)+

M
(
log(Γ(β))− β log(β) + β

)
+

M∑

k=1

log
(
C(k, t0)

)
)] (17.3)
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where M is the number of bins of the chroma vector, σ and β are parameters of the models

that allow to tune the influence of α on the output of the algorithm (see [OFG11] for details

on their tuning). The notations dEucl and dIS respectively stand for Euclidean distance and

Itakura-Saito distance.

The scale parameter is fixed to the value that minimises the distance between si,t0Wi and

C(., t0). It can be analytically computed by zeroing the derivative of the above quantities

with respect to si,t0 . The obtained expressions are the following:

sgaussi,t0
=

(
C(., t0)

∣∣ Wi

)
(∥∥Wi

∥∥
2

)2 (17.4)

sgamma
i,t0

=
1

M
C(., t0)⊘W (17.5)

where (.|.) denotes the scalar product, ‖.‖2 the Euclidean norm and ⊘ the term-wise division.

In order to jointly estimate p(C(., t0) |α, s,Wi) and α, an iterative process is adopted:

// Init of α with a uniform law

∀ i ∈ {1, .., λ} αi ←
1
λ
;

// Main loop

while α has not converged do

∀ i ∈ {1, .., λ} αi ←

〈
αip

(
C(.,t)

∣∣ si,t,Wi

)
∑λ

k=1
αkp

(
C(.,t)

∣∣ sk,t,Wk

)
〉

t

;

end

The probability αi of occurrence of one chord Wi in the input signal C is estimated as the

temporal average (denoted by 〈.〉t) of the contributions ofWi in the generation of C(., t) taking

into account the current values of α. It is shown in [OFG11] that this iterative algorithm

can be directly derived from the theoretical expression of the Expectation Maximization

algorithm [DLR77].

Since we are trying to build a perceptually meaningful fingerprint out of this representa-

tion, we do not need to keep as much information as the current output. Chords are indeed

slowly varying in most music types and the listener cannot perceive fast variations in the

harmony. This justifies the idea of a downsampling of the chords rate. Besides, this will

allow to gain compactness in the fingerprint and ease the search step. A reasonable order

of magnitude for the chords rate seems to be around 1s. In our implementation, the chords

rate is taken equal to 0.8s.

137



17.4 Distance between chords sequences

17.4.1 Introduction

Given the chord transcription model described above, we now consider that any two music

signals are represented by two chords sequences. In the context of audio-identification, we

must set up a method for determining, on the basis of the chords transcriptions, whether the

two signals are musically similar. We consequently propose the definition of a distance in the

space of the chords sequences.

Our definition of the distance relies on the following considerations. If we have a full

match between both chords transcriptions we will naturally consider that the signals are

similar. But it may happen that two music signals that should be considered as similar are

transcribed by slightly different chords sequences. Two factors account for this. First, the

estimation of chords is not extremely robust to the distortions. The typical example is the

confusion between one major triad and its minor equivalent. The only difference between

these two is the third (there is a semi-tone between the respective thirds of the two chords). If

one imagine a bit of music where a chord is actually played without the third it is impossible

to determine whether we are dealing with the major or minor chord. However, the algorithm

has to choose one chord among the templates. As a result, the third that has the most

residual energy (depending on the ambient noise, the reverberation, the mixing of the other

notes harmonics) will trigger the choice of one of the two chords. However, this choice, based

on residual energy, may change when the signal is distorted. The application of equalisation,

for example, may result in the predominance of the other third and consequently the choice

of the other chord. Secondly, the idea of this work on approximate matching is to allow a fair

amount of distortion between two performances of the same item. On the one hand, one can

think that part of these distortions will be absorbed in the chords modelling. If two musics are

similar, they should indeed share the same chords progression and be transcribed in the same

way. However, it may happen that from one version to the other, some particular chords are

slightly changed (typically in the bridges) thus resulting in a different transcription. If both

performances are not at the same tempo, it may also happen that one of the transcription

has one or more additional chords in its transcription (thus making the signal longer).

Under the light of these considerations, the necessity of setting up a distance that relies

on an approximate matching strategy emerges. Dynamic programming [Bel54] is a technique

that allows to simultaneously take into account the changes that can occur in the estimation

of one precise chord (substitution) and the presence of additional chords that are not in

the initial transcription (insertions, deletions). We have consequently adopted a dynamic

programming scheme for the calculation of the distance between two chords sequences. The
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distance computation is detailed in the following section.

17.4.2 Dynamic programming

Let us consider two chords sequences Wi1 ...WiK and Wj1 ...WjL . In order to determine the

distance between these chords sequences, we compute their dynamic alignment. When dy-

namically aligning the two sequences, one has to define three types of multiplicative penalties.

• fd(Wik): penalty assigned to the deletion of chord Wik

• f i(Wik): penalty assigned to the insertion of chord Wik

• f s(Wik ,Wjl): penalty assigned to the substitution of chord Wik by Wjl .

In our implementation fd and f i are both taken constant and equal to 0.07. Taking advantage

of the fact that the template chords live in an Euclidean space, we define f s by:

f s(Wik ,Wjl) = cos(Wik ,Wjl)

With such a penalty, f s(Wik ,Wjl) = 1 if Wik and Wjl are colinear and f s(Wik ,Wjl) = 0 if

they are orthogonal.

Dynamic programming consists of iteratively filling a scoring matrix D. For any (k, l) ∈

{1..K}× {1...L}, D(k, l) contains the score of the alignment of the subsequence {Wi1 ...Wik}

with the subsequence {Wj1 ...Wjk}. D is computed in the following manner:

D(k, l) = max





D(k, l − 1).fd(Wjl)

D(k − 1, l − 1).f s(Wik ,Wjl)

D(k − 1, l).f i(Wik)





The score of the alignment of {Wi1 ...WiK} with {Wj1 ...WjL} is finally given by D(K,L).

Figure 17.1 shows an example of matrix D.

As far as the implementation is concerned, it is strongly advised to work with the log-

arithm of the quantities detailed above. In this way, the multiplications are turned into

additions and the numerical range of the processed numbers radically diminishes. This pre-

vents the risk of overflow of the numerical representations that can occur when multiplying

small numbers. Besides, the quantity − log(D(K,L)) can be considered as the distance

between the two chords sequences.
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Figure 17.1: Example of scoring matrix when dynamically aligning two chords sequences.
The values of the matrix are figured by their colours, according to the side colourbar. The
implementation of the alignment is done in an additive fashion with the logarithms of the
penalties, hence the negative values.

17.5 Fast Search Strategy

17.5.1 Introduction

17.5.1.1 Runtime considerations

The distance computation described above constitutes a relevant theoretical basis for the

comparison of two signals represented by their chords sequence. However, it is quite costly in

terms of CPU. The number of operations required to compare two sequences of size K and

L is indeed O(KL). As a consequence, when the system has to identify an unknown signal,

it would be unreasonable to compute its distance with all the references of the database.

Such a system would indeed be hard to make scalable. We have thus elaborated a fast search

strategy that is meant to quickly select in the database the references that are the closest to

the unknown signal.

17.5.1.2 Methods from the approximate string matching domain

In the domain of approximate string matching, a number of approaches have been developed

in order to perform efficient string comparisons. These methods notably target the search of

a given input string (or sequence) in a database containing a large set of reference strings,

with possible distortions. As these specifications match our use-case, it is worth studying the

state of the art of the domain. We give here a brief overview of the common techniques of

the field.

140



First, we have the online strategies [WF74, Sel80, BYN96]. These do not rely on a pre-

processing of the text and use various heuristic in order to parse the text as fast as possible.

Some of them notably exploit the redundancy that exists when the database is scanned

with a large sliding window that moves by only one character at each step [LMSS95, KP00].

However, for the reasons exposed in section 8.1.4, these methods cannot compete with index-

based strategies when the database becomes large.

The index-based methods start with a clear advantage in terms of speed but they face

the exactness problem that we mentioned in section 8.1.4. Indexes are inherently unadapted

to approximate queries. The methods from the domain consequently propose various clever

workarounds in order to make use of indexes in the context of approximate string matching.

The article [NByST00] notably groups them in three families.

The first type of methods [JU91, Cob95] generates a neighbourhood of the searched

sequence. More precisely, all sequences that lie at a distance smaller than a maximum

distortion threshold from the query are generated. The idea is that if the input sequence has

been slightly distorted compared with the corresponding reference, the undistorted version

should be found in the neighbourhood. The index is then queried with all the sequences

from the neighbourhood. If the undistorted sequence is actually in the neighbourhood, the

corresponding reference will be returned by the index.

The second type of methods [NBy98, Shi96] relies on partitioning. These methods also

hypothesise a maximum level of distortion on the input sequence. The idea here is that if the

input sequence is cut in ‘small’ subsequences, then a significant number of these subsequences

will be undistorted. Constraining the maximum number of distortions indeed involves that

only some of the subsequences will be hit by the distortions. The index is then queried

with all the different subsequences. Aggregating the index outputs obtained with all the

subsequences allows to determine the reference that most likely matches the entire input

sequence.

The third group of methods [Mye94, NBY00] use both described strategies. They typi-

cally split the query in subsequences and generate the neighbourhood of these subsequences.

According to [NByST00], the methods from the third group are the most promising in terms

of efficiency. The method “Basic Local Alignment Search Tool” [AGM+90], which has been

developed in the context of bio-informatics (on typical issues such as retrieving a slightly mod-

ified sequence of ADN in large database), belongs to the third group. It has become a quite

popular method for fast search and has been used in various fields. We have consequently

led some preliminary experiments in adapting the method to our use-case. These showed

that the method was successfully meeting our needs in terms of precision and efficiency. As

a result, we made the choice to integrate this search method in our final algorithm.
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17.5.1.3 Focus on the BLAST strategy

The principle of BLAST is to extract subsequences of a given length w from the query signal.

For each extracted subsequence, the algorithm generates its neighbourhood. All the resulting

subsequences are used to query an index. The reference database has been preprocessed

beforehand so that the index contains the subsequences of length w from the references. By

aggregating the index outputs obtained for each neighbouring subsequence, we can score

each reference with respect to the number of times that they were hit. It is however to be

noted that this BLAST score is not a straightforward function of the dynamic-programming

distance we described above. BLAST is mostly a heuristic that allows to target a set of

candidates among which the closest reference to the query (in the sense of the dynamic-

programming distance) will hopefully be. The success of the method notably depends on the

tuning of the parameters.

17.5.1.4 Description of our search strategy

In the following, we detail our implementation of BLAST’s principles. The presentation is

organised as follows. At first, we move back to our stream-based use-case: we detail the

framing that we apply to the input stream. Each frame is then a query signal for the fast

search method. We then detail how we extract the subsequences of length w from each query.

This is followed by a precise description of the neighbourhood generation that is applied to

each subsequence. We then explain how we gather the index outputs obtained with each

subsequence, which gives a BLAST score for each reference. Since the score is not directly

linked to the distance we elaborated, our search method is completed by a fine matching

step, which consists of computing the distance between the references with the best BLAST

scores and the query.

17.5.2 Framing of the broadcast

The work conducted in this chapter significantly differs from the one described in the chapter

about exact matching for the following reason. As we can see, the representation of the signal

is now (hopefully) representative only at a wide scale. It is indeed clear that we will not be

able to uniquely identify a reference thanks to one single chord or a a succession of two

chords. In order to spot a reference in the broadcast’s transcription in chords, we must look

for the entire set of chords composing the reference.

The framing of the broadcast must be tuned accordingly. Given the length of the refer-

ences that we use (60s) and the chords rate of our transcription method (1 chord per 0.8s),

the references are transcribed by sequences of 76 chords. The minimum length of a frame
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is thus 76 chords. In order to limit the number of searches performed, it is interesting to

manage larger bits of broadcast at once. The drawback, in return, is that increasing the

frame length increases the noise in the search. Indeed, the presence of chords that do not

belong to the target reference will generate irrelevant search queries. This particularly be-

comes true if another reference is included within the same frame. The choice of the length

of the frames must be done according to these considerations. Besides, in order to make sure

that any reference is fully included in at least one search frame, these must have an overlap

of 76 chords at least. In our implementation we have used a frame length of Lf = 240 and a

hop size of hf = 240− 76 = 164.

17.5.3 Extraction of subsequences

According to BLAST’s strategy, when analysing an unknown signal represented by its chords

sequence, the algorithm extracts subsequences of length w. In our implementation we have

selected a length w = 4, which has appeared in our experiments as a good compromise

between computation time and precision. The experiments conducted by the authors of

[AGM+90] have led them to the same choice for w in the bioinformatics context. Let us

note that the extraction of subsequences that we propose is asymmetric. In the unknown

signal, we extract subsequences of length w with no overlap (the hop is w), whereas the

subsequences of the references have been extracted with a unitary hop. We can note that

the presence of the unitary hop (on one side or the other) is necessary when using search

frames that do not have a unitary hop (such as ours). It indeed makes the index robust to

the possible shifts of the start index of the broadcast reference within the search frame. We

actually find it preferable to increase the size of the database and its construction time, which

is offline, rather than increase the number of query subsequences. The processing of the latter

indeed involves several steps (neighbourhood generation and query to the database) whose

computational cost is meaningful.

17.5.4 Generation of the neighbourhood

For each extracted subsequence, the algorithm generates its neighbourhood. For a given

threshold TNeigh, the neighbourhood is the set of subsequences whose distance to the ex-

tracted subsequence is smaller than TNeigh. Let us note that the index suggested in BLAST

only contains the subsequences from the database of length w. For that matter, it seems

delicate to take into account the insertions and deletions when generating the neighborhood

of the searched subsequences. The latter would indeed generate subsequences with a different

length, which could not be used to query the index. We consequently restrict our construc-
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tion of the neighbourhood: only subsequences obtained by substitutions are considered at

this stage of the search. Besides the fact that this seems imposed by the fixed-length index,

this presents the further advantage of limiting the computations. Building the neighbour-

hood has indeed a meaningful cost in the total computation time and enlarging the notion

of neighbourhood obviously increases this cost.

For one given subsequence Ws1 ...Wsw , we propose a computation of its neighbourhood

relying on a tree2 (see Figure 17.2). The tree we use is the one generating all subsequences

of length w. The first layer contains λ nodes corresponding to the λ possible chords. In the

node corresponding to chord Wj we store the distance d(Wj ; Ws1). The distances between

chords can advantageously be stored in a matrix so that the algorithm does not have to

compute them each time. The second layer corresponds to the possible 2 chords sequences

and therefore contains λ2 nodes. Naturally, each node of the first layer is connected to λ

nodes of the second layer corresponding to the λ different chords. In the node of the second

layer corresponding to chord Wl and that is reached by traversing the tree through the 1st

layer’s node corresponding to Wj, we store the distance d(WjWk ; Ws1Ws2). The distance

calculation here does not include the insertions and deletions. It is thus simply obtained by:

d(WjWk ; Ws1Ws2) = d(Wj ; Ws1) + d(Wk ; Ws2)

which, in terms of node, gives:

N2,k = parent(N2,k) + d(Wk;Ws2)

By iterating the process, we obtain a tree with λw leaves that correspond to all possible

subsequences of length w and that contain the distances between these subsequences and

the query subsequence. An interesting feature of the tree is that we can prune the branches

as soon as one of their nodes contains a distance above the treshold. It is indeed clear that

the distances are monotonic and increasing when traversing the tree. This allows to save a

substantial computation time.

17.5.5 Aggregation of the database outputs

For each subsequence extracted from the analysed signal, its neighbourhood is generated.

The algorithm gathers all these neighbourhoods which gives a list of subsequences. The

index is subsequently queried with these subsequences. Each query gives rise to an output

including: the references containing the subsequence and the index of this subsequence in

2For this reason, we did switch this part of the code in C. The imbricated loops involved are indeed very
badly managed by Matlab.
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d(W1 ; Ws1)

d(W1W1 ; Ws1Ws2)

d(W1...W1 ; Ws1 ...Wsw)

d(W1Wλ ; Ws1Ws2)

d(Wλ ; Ws1)

d(WλW1 ; Ws1Ws2)

d(WλWλ ; Ws1Ws2)

d(Wλ...Wλ ; Ws1 ...Wsw)

Figure 17.2: Illustration of the tree used for the neighbourhood generation. The leaves of
the tree contain the distance of any subsequence of length w to the extracted subsequence
Ws1 ...Wsw .
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the references’ overall chords sequences. We propose here an additional aggregation step of

these index outputs that is not described in the original paper [AGM+90]. The idea is that

we will not only look for references having a lot of subsequences in common with the list but

we also expect the occurrences of these subsequences in the unknown signal to be correlated

with their occurrences in the corresponding reference.

The strategy that we consequently suggest is the following. For each reference hit by

the index, we build a histogram. When for a given subsequence located at position i in the

unknown signal, the index returns a reference containing the same subsequence at position

j, we update the concerned histogram by incrementing the bin containing the value i − j.

However, we must recall that some of the query subsequences are actually extracted from

the unknown signal whereas others are simply in the neighbourhood. In order to take this

into account, the increment is a function of the distance between the actually extracted

subsequence and the query subsequence. Typically, one can go back to the penalty functions

presented in section 17.4 by taking an increment equal to e−d, where d is the distance between

the two subsequences.

For all subsequent hits concerning this reference, we fill the histogram with the corre-

sponding increments in the corresponding index shifts bins. At the end of the processing, we

thus have as many histograms as hit references. In order to locate the ‘good’ candidates for

a match, we set a simple threshold mechanism on the highest peaks of the histograms. All

references having a histogram maximum above Thist are potential matches to the unknown

signal. The argument of the maximum in the histogram gives the start index of the reference

in the unknown signal.

It is interesting to note that when designing the histograms, we have to determine the

width δhist of the bins. The index-shifts being integers, it seems natural to think of δhist = 1.

However, if one wishes to increase the robustness of the index-based search step towards

insertions and deletions, one can play on δhist. For instance, setting δhist = 2 authorises

one uncompensated insertion or deletion. In our experiments, the necessity of loosening the

search in this way has not been obvious. We have therefore kept working with δhist = 1.

17.5.6 Fine matching of the candidates

The previous step outputs a set of candidates. These have obtained a score above a cer-

tain threshold Thist in the BLAST search. However we must keep in mind that this search

step is essentially a heuristic and that the BLAST score is not a straightforward function

of the distance. We thus propose a finer matching step which consists of calculating the

actual distance between the candidates and the concerned broadcast’s sections. This is done

thanks to the methodology described in section 17.4. As mentionned, this calculation is CPU
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demanding. However, it is now only performed with a reduced set of candidates.

The algorithm finishes with a detection step, based on a post-processing of the calculated

distance. This can consist of a simple threshold on the distance or include some kind of

temporal integration (forbid the presence of two simultaneous different references, forbid the

presence of another reference in the close neighbordhood of a firstly detected one...).

17.6 Experiments and Results

17.6.1 Experimental framework

Our experiments rely on the framework described in section 9.3.2. Let us recall that the

streams we use for the evaluation of exact matching audio-fingerprint methods consist of real

radio broadcasts. As such, these occasionally feature broadcasts of live or acoustic versions

of some titles. Provided that we can put together a database of references that includes

the studio versions of the mentioned titles, we are in position to define an identification

use-case which lies in the field of approximate matching. This, of course, also requires the

adaptation of the manual annotations so that they include the XML blocks corresponding to

the broadcasts of the live/acoustic titles.

On the whole, and taking into account the dataset that we have available, putting together

such a corpus has required a meaningful and specific time investment. This explains why we

had to restrict ourselves to a middle-size experiment. More precisely, as far as the analysed

stream is concerned, we have worked with 24h of the French radio RTL. These contain one

program that essentially features live performances of contemporary titles. In total, the

stream contains 107 annotated music titles, 99 of which are studio versions whereas the

8 remaining are live performances. We consequently gathered a references database that

contains the titles that were broadcast in their studio versions plus the studio versions of the

titles that were broadcast live. Let us note that the references corresponding to the titles

broadcast in their studio versions (exact matches) were not captured on the same medium,

which involves the presence of the post-processing distortions traditionally handled in the

exact-matching use-case (see section 8.1.3). We completed the filling of the database with

various references, for which we made sure that they were exclusively music signals (no

speech, no advertisement, no corrupted signal). Under these conditions, we could assemble

a database that contains 2400 pop-rock music titles with their corresponding identifiers.

Let us note that such a database still constitutes a realistic reference set for many ap-

plications. It is for instance noticeable that the assembled database covers all the music

broadcasts of two different radio channels during two weeks. Besides, such a quantity of
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references is large enough to get a fair idea of the system’s capabilities. Given the sampling

rate of the chord estimation method, the algorithm can output the detection of any reference

every 0.8 seconds. In terms of false alarms, this means that the algorithm has the possibility

to output around 24×3600
0.8

× 2400 = 259, 200, 000 of them. This figure confirms the relevance

of the experiment.

17.6.2 Baseline experiments

The first experiment will serve as baseline. All subsequent results will be given in comparison

with the ones of the baseline in order to make possible the reading of the results evolution.

The parameters used in this experiment for the chord model are the ones recommended

in [OFG11]. The chords dictionary (see section 17.3) is composed of the 24 major/minor

binary triads, as represented in Figure 17.3(a). The distance between a chroma vector and a

chord template is evaluated thanks to the Gamma law, according to equation (17.3). In the

fine matching comparison (see section 17.4) between the candidates sequences and the asso-

ciated sections of the broadcast, we use the following permutation penalties: f s(Wi,Wj) =

cos(Wi,Wj). The associated penalty matrix is shown in Figure 17.3(b).

Finally, Figure 17.3(c) shows the results of the algorithm on a classical ROC diagram. As

most detection systems, our algorithm’s output relies on a set of candidate detections with

given scores. The candidate references are originally selected in the BLAST step and they

are finally scored thanks to a dynamic alignment. In order to complete the process, one can

simply set a threshold on the score. Only the candidates with a score above the threshold are

output by the algorithm. In such a configuration, one can evaluate the algorithm’s output

with different threshold values. This is the object of the ROC curve. Each point of the curve

corresponds to the results obtained by the algorithm with a specific threshold value. Such a

curve thus allows to observe the overall response of the algorithm and to compare different

algorithms independently of the final post-processing.

The results show that this novel method is able to go beyond the limitations of the

traditional fingerprint algorithms that are confined to exact matching. We can indeed see

that some of the points of the ROC curve have a higher Y-coordinate than the number of

exact matches in the corpus. The counterpart of this enhanced flexibility of our method is a

much higher number of false alarms. This is not surprising since by trying to enlarge the scope

of a representation (in order to cover the different versions of one same title) we necessarily

increase the risk of collision between two different titles. In the following experiments, we

will see if the tuning of the parameters can lead to a reduced number of false alarms while

keeping the same number of correct detections.
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(a) (b)

(c)

Figure 17.3: Results obtained with the chords sequence matching algorithm. The dictionary
consists of the 24 major and minor triads modelled in a binary fashion (a), the penalty
for substituting one chord by another is the cosine between their chroma representations as
shown in the penalty matrix (b). The ROC diagram (c) shows the obtained detection curve
in red. The typical ROC curve of an exact matching algorithm is plotted in black.
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17.6.3 Influence of the substitution penalty matrix

This experiment has the same parameters tuning as the first one. The difference lies in the

fact that, in this experiment, the substitutions are forbidden in the final dynamic alignment.

Mathematically this comes to using the Identity matrix as the penalty matrix, such as shown

in Figure 17.4(b).

On the ROC curves, we can see that the baseline has a better optimal operating point (at

the top left) with 103 good detections for 1794 false alarms. Conversely, we observe that for

lower detection results (lower than 100 correct detections), the second method generates less

false alarms. This comes from the fact that the penalty matrix now forbids the substitutions,

hence limiting the possibility for the second method to match different titles that present

similarities. Let us finally note that in spite of the diminishing of the number of false alarms

linked to the change of penalty matrix, the chords sequence based approach is still far less

precise (i.e. generates more false alarms) than the exact matching approach.

17.6.4 Influence of the probabilistic modelling

In the following experiment, we get rid of the probabilistic aspect in the chord modelling

strategy. This can be done by several means, let us for instance force α to be the uniform

distribution. It is remarkable that under these conditions the chords estimation algorithm

becomes strictly equivalent to the first work on chords published by Oudre [OGF09]. All

other parameters are kept identical to those of the baseline experiment.

Surprisingly, the results are much better with this simpler version of the chord estimation

technique (see Figure 17.5(c)). There are two factors that we can consider for this evolution.

First, we must keep in mind that our algorithm drastically downsamples the chord rate (we

keep around one chord per second). By doing so, we are already smoothing a lot the raw

output of the chord estimation proposed by Oudre. Yet, if we look at the benefits expected

from the introduction of the occurrences probabilities of the chords (in the distribution α),

it was mostly a smart smoothing effect on the algorithm output. Stacking the smoothing

steps is usually to be avoided since it blurs too much information. That might explain the

lower performance of the algorithm in which we have kept working with α. The second factor

that we can consider is the difference of final purpose between Oudre’s work and ours. What

Oudre’s algorithm tries to do is extracting from an unknown signal the chords sequence that

is the closest to what a human would transcribe. In our use case, the aim is to extract from

the unknown signal a chords sequence that is the closest to the one that has been extracted by

the same algorithm from the corresponding (undistorted) reference. This change of paradigm

may also explain why an additional feature might be good in one case and bad in the other.
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(a) (b)

(c)

Figure 17.4: Results obtained with the chords sequence matching algorithm when changing
the penalty matrix. The dictionary still consists of the 24 major and minor triads (a) but
the dynamic alignment virtually forbids any chord substitution (b). The ROC diagram (c)
shows the obtained detection curve in solid red while the footprint of the baseline system
is in dotted red. The typical ROC curve of an exact matching algorithm is still plotted in
black.
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(a) (b)

(c)

Figure 17.5: Results obtained with the chords sequence matching algorithm when removing
the probabilistic aspect in the chord model. The dictionary consists of the 24 major and
minor triads (a), the penalty for substituting one chord by another is the cosine between
their chroma representations as shown in the penalty matrix (b). The ROC diagram (c)
shows the obtained detection curve in solid red while the footprint of the baseline system is
in dotted red. The typical ROC curve of an exact matching algorithm is plotted in black.
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(a) (b)

Figure 17.6: Dictionary obtained thanks to the LBG algorithm (a) and its associated cosine
penalty matrix (b).

17.6.5 Change of chords dictionary

In the following experiment, we did set up an LBG quantisation strategy [LBG80] in order

to build a new dictionary of chords. At some point in our work, we did indeed wonder if the

set of template chords we used was the best. In our overall processing the chord estimation

is merely a way to quantise the chroma vectors. It can thus be thought that there may be a

quantised family of chroma vectors that better suits our problem.

In short, LBG is a learning algorithm that clusters the vectors that it has been fed with.

The output of the algorithm is the centroids of the clusters. Each centroid represents all

the vectors that are part of its cluster. The LBG was run on the chroma vectors extracted

from the references. In order to draw a fair comparison, we constrained the algorithm to a

24-clusters partition. We used the 24 corresponding centroids as the templates of the chord

estimation dictionary.

Since it has been shown that the performance increases without α, we keep working with-

out the EM algorithm. For mathematical convenience in the LBG computation, we work with

the Euclidean distance when clustering the chroma vectors (more precisely, our clustering

strategy involves the minimisation of the squared error distortion). To keep a coherence with

the further algorithm steps, we use in the chord estimation process the Gaussian observation

law (Equation (17.2)), which is also directly linked to the Euclidean distance.

The obtained dictionary is represented in Figure 17.6(a) while its associated cosine penalty

matrix is shown in Figure 17.6(b). We do not display the associated ROC curve because the

results under this configuration are actually very poor. The number of false alarms is in

fact so high that the ROC curve does not fit in the graph with the previously used scales.
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A careful analysis of the results led us to the conclusion that the underachievement may be

linked to the weak standard deviation of the penalty matrix values. It is indeed clear, looking

at the graphical representation of the penalty matrix, that the latter is far less contrasted

than the previous ones. In terms of dictionary, this means that the templates are too close

to each other.

In order to test this hypothesis we try to space out the templates in the chroma vector

space, while respecting the learning done with LBG. One simple way to do that is to binarise

the learnt templates. This is done thanks to simple threshold mechanism. The obtained

dictionary is shown in Figure 17.7(a) with its associated penalty matrix 17.7(b). The results

are far better once the vectors have been made binary. We can indeed see on the ROC curve

17.7(c) that the performance is now close to the one of the baseline system.

We can of course deduce that this approach did not bring a significant improvement of

the results. It is however worth having a look at the dictionary obtained thanks to the LBG

learning. The LBG algorithm actually exhibits the reference chords that correspond to the

minimisation of mathematical criteria. For that matter it is rather interesting to note that

some of the learnt chords, after binarisation, are close to the standard triads. We notably

notice that they possess an abundant number of fifths. This tends to prove that the standard

chords that we used in the previous experiments, inspired by music theory, actually represent

a kind of mathematical optimum. It is though noticeable that the learnt thirds are scarcer.

17.7 Synthesis

In this chapter, we have described an identification technique relying on the transcription of

audio signals in sequences of chords associated with an indexing and an alignment strategy.

This novel identification paradigm allows us to go beyond the traditional limitation of classic

fingerprint algorithms that can only identify exact matches. Indeed, our experiments show

that the transcription of the signal in a chords sequence is, to some extend, robust to the

change of performance of a given music title. However, this ability to handle approximate

matching comes at the price of a reduced precision. The presented system, due to its looseness

in the representation, generates a meaningful number of false alarms.

A careful analysis of the results led us to think that we should increase the level of

information that is included in the representation. The difficulty, of course, is to keep the

representation loose enough for the identification of approximate matches. Since the actual

information that we use deals with the harmonic content, it seemed natural to think of

rhythm as an additional piece of information. We did some preliminary testing in which the

chords search was used as a front-end processing and the rhythmic information was afterwards
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(a) (b)

(c)

Figure 17.7: Results obtained with the templates learnt thanks to LBG and then spaced out
through binarisation (a). The binarisation process leads to a penalty matrix with much more
contrast (b), which in turn allows the method to reach scores that are close to the ones of
the baseline system (c).
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used in a “checking” step. However, in addition to being unaesthetic, the approach was not

really satisfying. The correlation of pure rhythmic information that we set up tended to

be computationally expensive and not really accurate. The object of the next chapter is

thus to present a new model of signal that natively integrates both rythmic and harmonic

information.
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Chapter 18

Harmony & Rhythm Approach

18.1 Introduction

In this chapter we present a new model of signal, which natively includes both rhythmic and

harmonic information. One of the fundamental idea of our model is that rhythm can be

included in the representation thanks to an adaptive sampling. More precisely, the signal

is sampled at dates that are musically meaningful. These can typically be determined by

the salient peaks of an onset function. Each of these dates is then associated with a piece

of information that locally characterize the signal. This can include a wide variety of local

features with the possibility to concatenate several of them. In our work, we have focused on

the use of a local harmonic information extracted from the chromagram. We have designed

a search strategy according to this novel model of signal. Similarly to the one presented in

the context of chords transcription, the search consists of a two-steps process. The first one

relies on an indexing scheme that allows to efficiently target the best candidates for a match.

The second step is a finer comparison performed on the reduced set of candidates.

The chapter is organised as follows. In a first section, we present in detail the model of

signal that we have invented. This includes the definition of what we call the states of the

signal, followed by the description of the onset function that allows to determine the times

of occurrences of the states and finally the description of the harmonic local information

that is included in the states. In a second section, we define the distance between two signals

modelled according to our methodology. Our use-case indeed requires to have a measure of the

musical similarity between two signals. As for the previous system, the distance we suggest

is based on dynamic programming. In a third part, we present our search strategy. The

latter is designed to retrieve in an efficient way a set of candidates from the database which

includes the closest reference to the unknown signal. Finally, we present some experimental

results.
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18.2 The Signal Model

18.2.1 Model in states

The model that we propose relies on the extraction of musically significant instants in the

music. In the following, we call these instants t1, t2, ..., tn the dates of interest. Our method

then consists of associating to each interest date tk an additional piece of information ik.

The nature of the information can be diverse and varied. It can include multiple traditional

features that are concatenated. As a result, the mathematical nature of ik is not restricted:

it can be a vector, a matrix, a function... There are two main requirements concerning the

attached information ik. First, it must characterise the signal locally around the date of

interest tk. Second, it must include sufficient information in order to permit the computation

of the indexing keys such as described in section 18.4.

Let us note here that the diverse transforms that are used to compute the dates of interests

and the local information may involve different windowing of the signal. Typically, one does

not use the same kind of windows for the extraction of harmonic information and for the

extraction of rhythmic information. As a result, a particular care must be taken with the

synchronising of the different transforms. Notably, the implementation has to avoid the

rounding errors in the calculation of the time indexes: these can lead to a temporal drift

between the transforms. It is also preferable that all transforms use centred windows so that

the information processed belongs to the same region of signal.

We define the state sk as the association of the date of interest tk and its attached local

information ik.

sk = (tk, ik)

The representation of a signal is finally given by the sequence of its extracted states {s1, s2, ..., sn}.

18.2.2 Onsets

In our method, the dates of interest are localised thanks to an onset detection function. Here

again, the onset detection function is merely an input to our identification strategy. The

issue, however, receives a specific and active attention from the community, as illustrated by

the presence of a specific contest “Audio Onset Detection contest” in the MIREX evaluation.

Our contribution does not consist of extensively describing and studying the field. We give

a short description of the principles used in most state of the art methods and then detail

the specific implementation we made.

Klapuri [Kla99] gives an interesting definition of the onsets: “We use the term onset

detection to refer to the detection of the beginnings of discrete events in acoustic signals. A
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percept of an onset is caused by a noticeable change in the intensity, pitch or timbre of the

sound [...]. A fundamental problem in the design of an onset detection system is distinguishing

genuine onsets from gradual changes and modulations that take place during the ringing of a

sound. This is also the reason why robust one-by-one detection of onsets has proved to be very

hard to attain without significantly limiting the set of application signals.” Let us additionally

note that the above definition includes the detection of the start of harmonic notes (such as

the start of a violin note) as well as the percussive hits from a drumkit. In the first case, only

precise frequencies of the spectrum are impacted (namely the fundamental frequency of the

note and its harmonics) whereas the second case generally involves an activity in virtually

all frequencies.

Recent works in the domain all tend to use the same basis: projection of the signal

on separate frequency bands, detection of the spectral variations in each band, integration

of the results obtained in each band. The band-wise processing allows to deal with the

fact that some of the onsets have an impact that is restricted to a particular frequency

zone. Working on smaller frequency zones rather than tackling the entire spectrum at once

makes the detection of these localised changes easier. The projection of the signal on the

frequency bands is achieved thanks to filterbanks ([Kla99, Sch98]), the computation of the

Short-Time Fourier Transform spectrogram ([Lar03, ARD07]) or the reassigned Short Time

Fourier Transform spectrogram ([Pee07]).

These guidelines led us to the following implementation of an onset detection function.

In a first step, the magnitude of the spectrogram of the signal is computed.

S
FFT

(k,t) =
∣∣∣

N∑

n=1

w(n− t)x(n)e−2jπ
k
N
n
∣∣∣

A pre-processing of the spectrogram mimicking the auditory nerve response is commonly

suggested in the papers of the state of the art. It consists of a temporal filtering and a log

compression. The filtering step masks the rapid variations in the spectrogram while preserv-

ing the sharp attacks. Taking the log of the spectrogram allows to remap the amplitudes

of the signal on a scale that is closer to our perception. In a log-scale as well as in the

human auditory system, the strength of an attack is perceived relatively to the surrounding

amplitude level: a given shift in amplitude will have less impact if the starting point is a

high amplitude level than if it is a quiet level. On each frequency band of the spectrogram
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we apply the temporal filter whose transfer function is given by [ARD07]:

Φ(z) =
α + β − (αz2 + βz1z

−1)

1− (z1 + z2)z−1 + z1z2z−2
with





T1 = 15ms

T2 = 75ms

α = 1

β = 5

z1 = e−1/T1

z2 = e−1/T2

Then we log-compress the smoothed spectrogram S̃
FFT

(k,t) :

G(k, t) = log(S̃
FFT

(k,t) )

The Spectral Energy Flux is obtained by estimating the temporal derivative of the pre-

processed spectrogram. Since the differentiation process is at the heart of the strategy of the

onset detection, it is suggested in [ARD07] to be particularly careful with the calculation of

the temporal derivative. Estimating the derivative of a discrete function has nothing of a

trivial problem. The loss of information that results from the sampling process indeed makes

the tangent estimation a tough issue. One can of course opt for a first order approximation

(called the finite difference approximation) that simply consists of calculating S(., t + 1) −

S(., t). This, however, does only give a rough approximation of the derivative. The use of

higher order filters provides a much closer approximation to an ideal differentiation. The

underlying idea of these methods is to find a polynomial that best fits the discrete function.

The derivative is then estimated on the basis of this polynomial. The method that is retained

is the use of a differentiator filter of order 2L based on the formula for central differentiation

by Dvornikov [Dvo07]. The filter is given by the following transfer function:

Ψ(z) = −g(L)− g(L− 1)z−1 − ...− g(1)zL−1 + g(1)zL+1 + ...+ g(L)z2L

with g(k) defined by:

g(k) =


k

L∏

j=1
j 6=k

(
1−

k2

j2

)



−1

The application of this filter on each frequency band of G(k, t) gives an estimate of its

differential with respect to time, which corresponds to the Spectral Energy Flux.

E(k, t) ≈
∂

∂t
G(k, t)
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Since only the onsets are looked for, the next step consists of removing the impact of the

offsets (disappearance of an event leading to negative values in the differential). This can be

done thanks to a half-wave rectification.

E+(k, t) =

{
E(k, t) if E(k, t) ≥ 0

0 otherwise

Finally the information is integrated across the bands in the following way:

o(t) =
∑

k

(E+(k, t))

thus leading to a global onset detection function that shows high values at instants with a

meaningful amount of change in the spectrogram in one or several frequency bands.

Our model needs the locations of discrete instants in the signal. This can be done thanks

to the application of a peak-picking technique on the onset detection function. In order to

ease this process, we apply beforehand a peak-widening filter that consists of convolving o(t)

with a half cosine, defined for t ∈ [0; τ ] by:

h(t) =
1

2

(
1− cos

(
π
t+ τ

τ

))

with τ = 25ms. A classical peak-picking technique that looks for local maxima while respect-

ing a density criterion is finally performed on the filtered onset function. The time locations

of the extracted peaks are defined as the dates of interest.

18.2.3 Local information

In our method we have chosen, in the continuity of the previously described identification

method (see section 17), to focus on local information of harmonic type. It indeed seems

to us that rhythm and harmony are quite complementary in the task of representing music.

Besides, the state of the art provides us with efficient tools for the estimation of harmony.

The harmonic content that we extract as local information relies on the chromagram,

computed in the fashion of section 17.3. The further idea is that we expect the harmonic

content to be relatively stable between two successive dates of interest. Indeed if the onset

detection is reliable, any change in the harmony should be detected as a peak in o(t), which

would generate a new date of interest. For this reason we propose the introduction of the

feature ck,l: the mean chroma vector at the left of time tk. In practice, it is computed

by temporally averaging the chroma vectors between tk−1 and tk. In a similar fashion, we
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introduce ck,r the mean chroma vector at the right of tk. Finally, we consider as local

information the concatenation of these two features:

ik = (ck,l, ck,r)

18.2.4 Illustration

Figure 18.1 shows the superposition of the graphical representations of an onset detection

function (in white) and a chroma representation of the same signal. In our model, the

dates of interest {t1, ..., tn} would be given by the dates of the yellow triangles on the onset

function (obtained by peak-picking). For each date, the left mean chroma vector (mean

chroma vector between the previous triangle and the current) and the right mean chroma

vector (mean chroma vector between the current triangle and the next) would be computed,

associated to the date and the whole would be stored as one state. The advantage of this

model is that it is compact but still contains both rhythmical and harmonic information.

Figure 18.1: Illustration of the proposed model in states. The white curve figures the onset
detection function. The local maxima extracted through peak-picking are made explicit by
the yellow triangles. The background is the chromagram of the same signal with the higher
energies figured by the lighter colours.

18.3 Distance

18.3.1 Introduction

Now that the model has been made explicit, there is a need to define the distance between

two signals i.e. the distance between two sequences of states. For the same kind of reasons
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as the ones detailed in section 17.4 we suggest the use of a dynamic alignment. Our task

is then to align two sequences of time-localised states. For that matter, we can note that

Gillet proposes an alignment strategy that fits the issue in [GR05]. His model is however

restricted to the representation of drum loops and does therefore not cover the harmonic

aspect of the matching. We consequently propose a meaningful extension of his work to the

general case of music signals. We firstly present the motivations for the choice of a dynamic-

programming based distance, then we present the detailled computation of the distance

between two sequences of states.

18.3.2 Motivations for a dynamic-alignment based distance

The reasons that account for the choice of an approximate matching scheme, such as a

dynamic alignment, are the following. A state corresponds to an onset location together

with the surrounding harmonic content. Examining both cases of approximate and exact

matching leads to the conclusion that the representation will certainly be distorted.

In the context of exact matching, the features that we use probably lack robustness to the

usual post-processing distortions. We can indeed imagine that the harmonic representation

(mean chroma vectors extracted from the chromagram) will have its levels of energy moved

depending on the equalisation and enhancers used. As for the onsets, the presence of limiters

and amplitude compressors in the processing chain may be very harmful for the quality of

the onset detection. The latter will of course also be very sensitive to the additive impulse

noises.

In the case of approximate matching, it is all the more clear that the harmonic features

will vary. We hope for a similar harmonic colour between one performance and the other but

the change of instruments, playing conditions, reverberation, arrangement... are very likely

to result in different values for the harmonic feature. As far as the onsets are concerned,

we must be aware that some artists will sometimes modify the rhythm of one title when

playing live. Typically, they will play a chord repeatedly at the end of a phrase whereas the

studio version contains a steady chord. Conversely, when playing a title at the guitar the

artist may simplify some rhythms that are quite hectic in the studio version. As a result,

from one version of a music title to the other, we see that some of the states may have

disappeared (removal or addition of an onset) and that the preserved ones may have their

harmonic features modified, while hopefully keeping the same colour.
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18.3.3 Dynamic alignment

Let the first sequence of states be denoted by {s1...sm} and the second one by {σ1...σn}. When

dynamically aligning two sequences of states, one has to define three types of penalties.

• fd(si): penalty assigned to the deletion of state si

• f i(si): penalty assigned to the insertion of state si

• f s(si, σj): penalty assigned to the substitution of state si by state σj.

In our implementation fd and f i are both taken constant and equal to 0.3. Knowing that

si = (ti, (ci,l, ci,r)) and σj = (τj, (γj,l, γj,r)), we define f
s by:

f s(si, σj) = cos(ci,l, γj,l). cos(ci,r, γj,r).e
|ti−τj |

c

The first cosine term penalises the resemblance of the mean chroma vector at the left of si

with the one at the left of σj. The second cosine term does the same for the mean chroma

vector at the right. The exponential term penalises the timing error between the occurrence

of state si and the occurrence of state σj.

Dynamic programming then consists of iteratively filling a scoring matrix D in the same

way as in section 17.4. The score of the alignment of {s1...sm} with {σ1...σn} is finally given

by D(n,m).

18.4 Keys and Search Strategy

18.4.1 Introduction

For the same reason as in the chords transcription system (see section 17.5), it is not conceiv-

able to test one unknown signal against the whole reference database thanks to the distance

methodology described above. We thus need to set up an indexing strategy that will speed

up the search and make the algorithm scalable.

The search method we propose consists of extracting index keys from the representation in

states that we introduced. The keys from the unknown signal are used to query an index that

contains all the keys extracted from the references. By aggregating the index outputs obtained

with the different keys of the unknown excerpt, we are able to determine the references that

most likely correspond to the unknown signal. As we will see, the proposed keys are not very

discriminative. This is a necessary condition for the ability of the index-based search to find

the correct reference even when the unknown signal is the same title as the reference but
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in a different version. The role of the index-based search is therefore limited to outputting

a set of candidates that possibly match the unknown signal. These candidates are finally

compared to the unknown signal thanks to the dynamic-alignment based distance described

above.

18.4.2 Framing strategy

The broadcast has been previously transcribed as a long sequence of states si. The first step

of the search consists of extracting from the entire sequence the frames that will be searched

for. The framing is chosen according to the same considerations as in section 17.5.2. The

subtlety here is that, given the non-uniform sampling of the model, a given temporal length

does not correspond to a constant span of states indexes. The frames must consequently be

designed with respect to the dates of interest assigned to the states.

Typically, in our implementation we chose a frame length of La = 120s. In order to ensure

the whole capture within a frame of a 60s reference, the hop is taken equal to thop = 60s.

This means that a frame starting at state si will end at state sl such that:

sl = sup
j∈N
{sj / tj ≤ tl + La}

Similarly, the following frame will start at state s′i such that:

s′i = sup
j∈N
{sj / tj ≤ tl + thop}

For the sake of mathematical rigour, let us additionally clarify that the order relationship on

the set of states is naturally defined by: si ≤ sj ⇔ ti ≤ tj.

18.4.3 Index keys

In this context we must define the indexing keys. Let us recall that the indexing scheme

only processes exact queries. The crucial point is thus to set up distortion-invariant keys,

while still sufficiently discriminating. The invariance to the distortions should handle the

classical post-processing distortions (equalisation, pitch-shifting, ...) but also the recording

of the same music title in different conditions (matching of similar items).

The idea is to index the references by their harmonic content. However, the local infor-

mation that we defined, as such, is far too variable to provide a robust key. The traditional

reasoning in this typical indexing issue leads us to the set up of a vector quantisation method.

In the preceding identification system (see section 17), we did propose a projection of the
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chroma vectors on a chords dictionary. This, of course, was a way of quantising the harmonic

information. Here, however, we suggest the use of a much simpler quantiser.

We propose the following keys generation mechanism. For each state sk one key is gener-

ated. The key is a binary version of the mean chroma vector at the right of tk. Practically,

for any bin b of the chroma vector, the binary chroma vector c̃k,r is given by:

c̃k,r(b) =

{
1 if ck,r(b) > ck,r

0 otherwise

with ck,r the mean value of vector ck,r.

Let us note that the possible lack of robustness of the quantisation process could be

counterbalanced by the generation of a neighbourhood, similarly to what is done in BLAST

(see section 17.5). Instead of calculating one single quantised vector c̃k,r, one would then

generate a set of possible vectors by moving the bins that are close to the threshold. For

now, we have not implemented such an extension since our experiments did not show that it

was necessary.

18.4.4 Aggregation of the index outputs

The index is queried with keys that are quantised versions of the harmonic features. All the

references possessing a state with a similarly quantised harmony is then output by the index

engine. The output contains the identifier of the concerned reference as well as the date of

interest of the state(s) containing this harmony. As for the previous methods, there is a need

to aggregate these index outputs. This is particularly true in this case since the queries are

quite unselective. One can actually expect that a meaningful number of references do possess

a given harmony. Besides, this harmony has good chances to repeat several times within one

reference containing it.

Similarly to the methods described in section 17.5 and 11.2, for one reference hit at least

by one key we gather all the index outputs that involve this reference. More precisely, let k

be the key extracted from state sq(k) whose date of interest is tq(k) in the query. Let us say

that the same key k was extracted from several states of reference r with dates of interests

t1r(k), ..., t
M
r (k) during the learning stage. These pieces of information were consequently

stored in the index. When querying the index with the key k, we thus get in output the

identifier of reference r together with the dates {tjr(k)}. We gather these pieces of information

by storing the couples (t1r(k), tq(k)), ..., (t
i
r(k), tq(k)) in a scatter plot dedicated to reference

r (we build one scatter plot per reference output at least once by the index). We do the same

for all the references that were output by the index when querying it with k and we iterate

the process for all the keys extracted from the query.
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The histogram process described in 11.2 can in fact be seen as the search for a linear

relationship in the scatter plot (i.e. a linear relationship between the times of occurrences

of the keys in the unknown signal and their times of occurrences in the reference signal).

However, this search is limited to straight lines having a unitary slope. In our context, we

do not expect the actual keys to have a unitary linear relationship between their times of

occurrences. This firstly comes from the fact that different versions of a same title may be

performed with slightly different tempos. Besides, since in the approximate matching context

we perform the identification process on wide frames, the time-stretching effect sometimes

used in post-processing also induces a perceptible effect on the linear relationship.

Let us indeed consider that the query is an excerpt of the reference r starting at time

t0. Let us also consider that the query is time-stretched by a factor κ (either because of

some specific post-processing or because the query is another record of the same song with

a slightly different tempo). Then, the key k extracted from the query at time tq(k) should

be retrieved in the reference r at time κ(tq(k)− t0). This means that, in the scatter plot of

reference r, all these corresponding keys produce dots that are located on the straight line:

Y =
1

κ
X + t0

Though, the scatter plot will also contain a meaningful number of dots that are outside this

line. These correspond to keys that are found in the query and that occur several times in the

reference. We must indeed keep in mind that the keys we defined are not very discriminative.

Figure 18.2 shows an example of such a scatter plot.

Figure 18.2: Scatter plot aggregating the index outputs for one reference. Each dot with
coordinates (x, y) corresponds to a key that was extracted at time t = x in the reference and
that occured at time t = y in the broadcast frame.
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In order to locate the most likely linear relationship in the scatter plot, we use Hough’s

algorithm [DH72]. This accumulation technique allows to find the straight line that contains

the highest number of points in the graph. The nice thing with this technique is that the

slope and the intercept are jointly estimated in a very efficient way. This is of particular

interest since scalability is still at the heart of our problem.

The implementation of Hough’s algorithm relies on the setup of an accumulator. The

latter is a two-dimensional array that we name A. The first dimension is representative of

the slope parameter. The second dimension stands for the intercept. In A(m, p), one reads

the number of points of the graph that belong to the straight line Y = mX + P . If the K

dots of the scatter plot are denoted by dk = (xk, yk), the processing is the following:

for m from mmin to mmax do
for k from 1 to K do

p = y −mx ;
A(m, p)← A(m, p) + 1;

end

end

In order to locate the most likely straight line in the graph, we only have to look for the

maximum value in the accumulator. Its argument (m0, p0) gives the parameters of the line.

In the end, we have, for each reference, the parameters of the best line (corresponding to

the time-stretching ratio κ and the start time t0) and the number of dots (i.e. the number

of keys) that match this line. The M references with the highest number of matching keys

are considered as the M best matches to the query. They are selected as candidates.

18.4.5 Fine matching of the candidates

Similarly to the method proposed in section 17.5, the indexed search is followed by a fine

matching step which consists of calculating the distance between the candidates and the

query. It is here quite obvious that the processing involved in the distance calculation allows

a much more refined evaluation of similarity than the study of the correlation of the quantised

harmonic keys. Let us note for that matter that the model can easily be extended through

the addition of features as local information in the states. These would not be taken into

account in the key generation process and in the indexed search, but they could easily be

integrated in the distance calculation. One final recall is that the dynamic programming

involved in this step is CPU costly but, once again, we are working with a reduced set of

candidates.
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18.5 Experiments and Results

We conduct the exact same experiment as for the chords transcription method (see section

17.6). The analysed stream corresponds to 24 hours of the French radio ‘RTL’ and contains

8 broadcasts of references that lay in the field of approximate matching. The database is

composed of 2400 excerpts of 60s of music titles.

The results are presented under the same form of a ROC curve (see Figure 18.3), with

no other post-processing than a varying threshold that parametrises the trajectory of the

curve. For comparison, the graph still shows the ROC curve of an exact matching algorithm

from the state of the art. We also display the best results we had with the chords sequence

identification system.

Figure 18.3: Results of the Harmony & Rhythm identification system under the form of a
ROC curve (in blue). The X coordinate gives the number of false alarms whereas the Y
coordinate gives the number of correctly detected titles. The graph shows the ROC curve of
a traditional system for exact matching in black and the one of a chords-based system in red.

The results show that the method, similarly to the one relying on chords transcription, is

still able to go beyond the traditional limitation of exact matching. However, we can see that

it succeeds in this task with a much lower number of false alarms than the preceding one. This

tends to show that by adding a further rhythmic component in the model, we could make

the fingerprint a lot more discriminative while still being very robust. The results achieved

indeed show that the method is robust to the traditional post-processing distortions but it

can also match different versions of one same title. For that matter it is interesting to note

that, in the algorithm’s present state, the scores do not classify the broadcasts according

to their level of perceived distortion. Indeed, some items that are sounding really different

from the reference (different version with different instrumentation) have a better score than
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others that are only post-processed (strong amplitude compression but the version is the

same). This behaviour could easily be modified by extending the features list (for example

by adding timbra descriptors) that is taken into account in the local information of the states

and in the final distance computation.
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Chapter 19

Conclusion

In the part “Exact Matching” we did set the focus on a method that turned out to be an

exact matching algorithm. The objective of the current part was to propose new methods

that have the ability to handle the problem of approximate matching. Given this objective,

we took a particular care in the choice of the features. These indeed have to be representative

of our perception of music.

The first method we proposed is based on an automatic transcription of music in chords

sequences. This kind of technology is nowadays well established and achieves sufficiently

high scores in order to be used as a front-end in our audio-identification paradigm. We

however always kept in mind that the chords transcription is error-prone and we adapted our

research mechanisms accordingly. More precisely, our search strategy is inspired from the

field of approximate string matching. The resulting system was tested with the same Quaero

evaluation protocol as for our initial exact matching system but we took care of including in

the corpus some broadcasts which were only similar to their corresponding references. These

broadcasts were actually live performances of music titles whose studio version was in the

database. The good news is that the results clearly show that the method has the ability

to handle the approximate matching case. It is clear on the displayed ROC curves that the

exact matching method is confined to a domain whose borders are overstepped by the chords-

sequence method. The other side of the coin however is that this method generates much

more false alarms. One nice characteristic of the initial system is indeed that it produces very

few false alarms. The precise study of these false alarms however reveals that they rely on

confusions that are harmonically justified. The mistaken output generally corresponds to a

chords sequence that is very close to the input sequence. Although this cannot be considered

as a correct identification in the field of audio-identification, it can still present some interest

for other applications.

In order to improve the results, we tried to develop another model with additional in-
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formation in the representation. The challenge of course consists of making the model more

precise while keeping its ability to handle the similar items. The chosen solution consisted

of adding a rhythm aspect in the modelling. In order to integrate nicely both pieces of

information that are rhythm and harmony, we proposed a model based on an adaptive sam-

pling. This induced the necessity to develop an appropriate search strategy. We tested this

approach on the same evaluation framework as the chords-sequence based approach. The

results are quite satisfying since the approach allowed to dramatically reduce the number of

false alarms while still having the ability to match similar items. A deeper analysis of the

results showed that, surprisingly, the detections with the lowest score are not necessarily the

least similar. As far as we could see, it seemed that the most penalised items are the one

which underwent an important dynamic compression. In this case the rhythmic information

is quite badly estimated. In other words, the weakest link of the algorithm in its present

state is the onset detection function. For that matter it would be worth working on onset

functions with an increase robustness to compression.
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Part VI

General Conclusion
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Chapter 20

Synthesis

Throughout this work, we have explored various audio-fingerprint models associated with

indexed-based search strategies for the purpose of large scale audio-identification.

We have started with a description of the audio-identification use-case, which consists

of automatically retrieving the meta-data associated to an unknown sound. We have then

made precise that audio-fingerprint algorithms meet this objective by extracting from the

audio signals a characteristic fingerprint. By learning beforehand all the fingerprints of a

set of references, the algorithm is then able to identify any signal that belongs to this set.

This is done by extracting the fingerprint from the unknown signal and looking for the

closest learnt fingerprint. We have completed our description of the use-case by emphasising

the main stakes when designing an audio-fingerprint algorithm. First, the algorithm must

be able to identify any signal that corresponds to a reference, even if it has undergone

a series of distortions. Second, the algorithm must be able to manage a very large set

of references (typical industrial databases include hundreds of thousands of music titles).

As far as the distortions are concerned, we have made a specific distinction between post-

processing distortions, which are the ones that occur in the transmission channel of a given

music recording (dynamic compression, equalisation, pitch-shifting, additional noise...) and

the variations that occur when we study two different recordings of one same music title.

In the first case, we talk about exact matching whereas we use the terminology approximate

matching in the second case.

In the second part, we have specified the use-case of interest in this work: the automatic

annotation of broadcast streams. In this context, the input to the algorithm is a continuous

stream that contains, amongst others, the broadcast of some references which were learnt

beforehand by the algorithm. The use of real-world radio streams in our experiments ensures

a meaningful level of post-processing distortion in the corpus. The radio stations indeed

apply numerous processings to the sound before broadcasting. The task of the algorithm is
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to detect all the broadcast references. We have finally proposed an associated scoring metric.

The set up of this evaluation framework, associated with the definition of the corpus and of

the metrics, is the object of the following paper.

• Mathieu Ramona, Sébastien Fenet, Raphael Blouet, Hervé Bredin, Thomas Fillon and

Geoffroy Peeters, “A Public Audio Identification Evaluation Framework for Broadcast

Monitoring”, Applied Artificial Intelligence: An International Journal, vol. 26, no. 1-2, pp.

119-136, February 2012.

In the next part, we have proposed an exhaustive study of the state of the art in audio-

fingerprint. We have identified four groups of methods, according to the way the fingerprint

is calculated. In the first group, the fingerprint is directly extracted from the temporal

representation of the signal. In the second group, the methods extract short-term features

from the spectrogram of the signal. The underlying idea is that these short features will not

be distorted. The methods consequently use these features as keys in an exact index scheme.

The methods from the third group rely on the extraction of long term characteristics of the

spectrogram. These are subject to variations when the signal is distorted so that the methods

are associated with approximate search strategies. In the last group, the spectrogram is

transcribed in a string of symbols thanks to a vector quantisation scheme. The search for a

reference similar to the unknown signal subsequently becomes a string matching problem.

Amongst the methods from the state of the art, we have focused on the one proposed

by Wang in [Wan03], commonly referred to as “Shazam’s method”. We have reminded

the reader of the principles of the method: binarisation of the spectrogram thanks to the

extraction of local maxima then constitution of index keys by grouping the maxima in pairs.

We have additionaly proposed a post-processing step that is not described in the original

paper and which allows to drastically reduce the number of false alarms. The part ends

with an exhaustive testing of our implementation of the method. In these experiments, the

method actually shows a lack of robustness to the pitch-shifting distortion.

Our third part is dedicated to the proposition of improvements over our initial imple-

mentation of [Wan03]. These include two separate aspects: the proposition of different

signal models for the fingerprint and the adaptation of the method to an extended functional

perimeter. At first, we have elaborated a tracking method that processes the outputs of our

automatic annotation algorithm. The resulting system has the ability to track a reference

throughout its broadcast. We have then proposed the use of the Constant Q Transform

for the computation of the spectrogram. This, in turn, allows the definition of a new fin-

gerprint that shows an increased robustness to pitch-shifting. We have also proposed an

optional pruning step that speeds up the search. These contributions are described in the

two following papers.
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• Sébastien Fenet, Yves Grenier, and Gaël Richard, “Une empreinte audio à base de CQT

appliquée à la surveillance de flux radiophoniques”, in Proceedings of the Groupe d’Etudes

du Traitement du Signal et des Images (GRETSI), Bordeaux, France, September 2011.

• Sébastien Fenet, Gaël Richard, and Yves Grenier, “A Scalable Audio Fingerprint Method

with Robustness to Pitch-Shifting”, in Proceedings of the International Society for Music

Information Retrieval (ISMIR), Miami, USA, October 2011, pp. 121-126.

Furthermore, we have proposed an adaptation of the architecture of our modified method

to deal with a different use-case: the automatic detection of recurrent motives within a

stream. We have also taken advantage of this work to try the approach with a radically

different model of fingerprint, which is based on a sparse decomposition of the signal in a

redundant dictionary. This work constitutes the object of the following paper.

• Sébastien Fenet, Manuel Moussallam, Yves Grenier, Gaël Richard, and Laurent Daudet, “A

Framework for Fingerprint-Based Detection of Repeating Objects in Multimedia Streams”,

in Proceedings of the European Signal Processing Conference (EUSIPCO), Bucharest, Ro-

mania August 2012, pp. 1464-1468.

In the following part, we have focused on a quite different issue. We start from the

observation that, to our knowledge, virtually no method from the state of the art in audio-

fingerprinting deals with the approximate matching use-case. We however believe that there

is a real research interest as well as practical applications for this issue. We have thus

dedicated the last part of our work to the proposition of methods that meet the objectives

of approximate matching.

At first, we propose an audio-fingerprint algorithm which is based on the transcription of

the signal in chords sequences. The chords transcription can equivalently be seen as a vector

quantiser. It thus transcribes any audio signal into a string. Amongst the available techniques

from the domain of approximate string matching, we have chosen to adapt the BLAST

strategy [AGM+90] to our context. In the end, we have an audio-fingerprint algorithm

that uses sequences of chords as fingerprints, and whose fast search strategy relies on an

approximate string matching method. A paper reporting this work will be written.

• In Preparation: Sébastien Fenet, Gaël Richard, Yves Grenier, “A Chords-Transcription

Based Audio-Fingerprint Method For Approximate Matching”.

The final approach relies on an innovative representation of the signal. The latter is

composed of compact states that include both rhythmic and harmonic information. Based
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on this representation, we present an efficient search strategy that allows to quickly find the

references most likely corresponding to an unknown signal. The representation of the signal

and the search strategy have been designed in a way that makes the approach robust to the

change of version of a music title. A pending patent describes the method and a paper on

the topic is in preparation.

• Sébastien Fenet, Yves Grenier, and Gaël Richard, “Génération d’une Signature d’un Signal

Audio Musical”, FR Patent Pending 1351752.

• In Preparation: Sébastien Fenet, Yves Grenier, Gaël Richard, “An Extended Audio-

Fingerprint Method with Capabilities for Similar Music Detection”.
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Chapter 21

Conclusion and Perspectives

21.1 Exact Matching

As far as exact matching is concerned, the following observations can be made. Our original

implementation of [Wan03] shows a weakness in the specific case of pitch-shifting. This has

been corrected thanks to the modification of the fingerprint model. Once this has been done,

one can observe that the results obtained in the real-world experiments are barely improvable.

Besides, it is also observable in our report that the performance of IRCAM’s algorithm is of

the same order. In spite of the lack of wide scale evaluation campaign in the domain, one

can infer that most methods at the level of the state of the art somehow have the ability to

reach such scores.

In conclusion, I would say that nowadays challenge does not lie anymore in the improve-

ment of the scores on such a use-case. While mentioning a direction which does not represent

a challenge anymore for the researchers of the domain, let us mention two other issues that

should not be considered as research challenges.

First, we should say that reducing the size of the query does not constitute a challenge.

The same goes for increasing the compactness of the fingerprints. We have indeed seen

that the state of the art offers a wide variety of methods, some of them use very localised

features (as in [HKO01]) while others use long term descriptors (as in [RP11]). Both above

mentioned problems can thus be solved simply by choosing the most adapted strategy within

the state of the art. Second, one can also think of the scalability challenge, which involves

the set of questions: can we prune the database? can we perform parallel computing with

the approach? can we divide the search with a front-end database (containing the most likely

queries) and a back-end database? These issues, however, lie at the border between research

and engineering. In other words, once a “sufficiently scalable” approach has been designed,

the tuning of the code, the adaptation of the parameters and a good knowledge of computers
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should allow to move to industrial databases.

On the other hand, a problem that is not explicitly studied in the state of the art is

the detection of background music. It would be interesting to focus on signals with a very

low Signal to Noise Ratio, such as: a phone conversation which takes place in a pub with

a background music, the background soundtrack of a TV show when the actors speak, the

broadcast of a title as background sound while the presenter speaks in a radio show, ...

The fingerprint extraction should then take into account the fact that most of the spectral

information is not linked with the music to identify. Two ways could be considered to this end.

The first solution would consist of using source separation techniques in order to isolate the

target information. Then a classical audio-fingerprint model would be applied to the isolated

music signal. The second, more integrated, solution would consist of designing a fingerprint

model that inherently isolates the most interesting bits of information. This could be done

according to statistics consideration (for example: if the music is a background signal, its

spectral components should show a lower magnitude).

Another way of extending the problem of approximate matching lies in our second use-

case (automatic detection of recurrent motives). Our current system has the ability to detect

the redundancies at a frame level. A rather naive clustering strategy allows to group the

frames in what should correspond to songs. Our experiments have however showed that the

clustering was too simple for the discrimination of songs versus other long repeating sections

of streams. This essentially occurs because the clustering strategy we proposed treats each

cluster independently. Designing a clustering technique that takes into account, at once,

all the repeated sections that include the same set of frames should allow a more realistic

discovery of the songs. More precisely, for each cluster of frames that have been repeated,

the algorithm would study the structure of these repeated frames (thanks to a dynamic

programming approach for instance) through all their different repetitions. In spite of refining

the determination of whether a cluster corresponds to a song or not, this strategy should make

the algorithm able to discover and store the various edits of one same title. Finally, having

such a strategy available, the algorithm could automatically clean its database. The latter

would then only contain the sections of broadcast that correspond to music titles. The overall

memory of the system could in consequence dramatically increase, allowing the algorithm to

process much more days of broadcast with the same database.

21.2 Approximate Matching

When tackling the problem of approximate matching, our aim was to provide new fingerprint

models, associated with their search strategies, that would be able to identify items that are
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similar to one of the references. Our first (chords-based) approach has proved to be able

to do so. However, this has come at the cost of a dramatic increase in the number of false

alarms. Let us indeed recall that the exact matching audio-fingerprint algorithms have a

very low rate of false alarms.

In a sense, the result was predictable. The description of a music based on its succession of

chords is a rough simplification of the musical content. On the one hand, this approximation

permits the detection of similar item. On the other hand, it is not rare that two distinct

music titles possess the same harmonic progression.

For that matter, it is interesting to note that the false alarms produced by the algorithm

are harmonically coherent. Two signals that are detected as similar share a common chord

progression. For this reason, it would be interesting to study the issue further. One could

notably try to cluster the references according to their distance in the chords sequences space.

When identifying an unknown signal, one would then not obtain a single reference that

matches the signal but a cluster of references that possess a common harmonic configuration.

Such a system could for instance be used as an automatic recommendation algorithm for the

DJs. Given the distance model that we set up, it should indeed be possible to superimpose

two titles from the same cluster in a nice sounding way.

Our second approximate matching approach has proved to possess the same ability in

detecting the similar items as the first one, with the additional benefit of generating a much

lower number of false alarms. Let us recall that this method relies on a novel representation

of the signal that includes both rhythmic and harmonic information.

The conclusion is that the introduction of a rhythm component in the model could make

the fingerprint much more discriminative while keeping its robustness to a change of version

of a music title.

It is however to be noted that given the current search strategy and distance model, there

are at least two variations against which the method will not be robust. First, the harmonic

features we derive are not robust against transposition. There are numerous ways to render

a method robust to transposition, some of which can be found in [SGHS08] or [HK03]. It

would thus be interesting to see if we can adapt our model accordingly. The other issue

that comes with cover versions is the change of structure. The search for straight lines in

the scatter plots of our current search strategy ensures that the method cannot deal with

different versions of one title in which the structure has been modified. For this matter, one

would have two options. The first one would consist of using sufficiently short query frames

so that the structure problem does not show. The second option would consist, in the scatter

plot analysis, of looking for more complex patterns than a straight line. The issue, however,

is to keep the scatter plot processing as efficient as possible, since it is a necessary condition
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for the scalability of the approach.

While talking about scalability, it would be worth studying the impact of the distances

that we introduced. Let us indeed recall that the approximate matching models we suggest

are both associated with perceptually meaningful distance measures. The space in which the

fingerprints live is then a metric space. This can in turn be used in the search step. Let us

for instance imagine that we have pre-processed the references so that we know the distance

between any two references. When searching an unknown signal, one could then compute the

distance between this signal and one given reference. Imagining that this reference is found

to be far from the query signal, one could eliminate from the search, thanks to the triangle

inequality, all references that are close to this initial reference. Such a process would lead to

a radically different search scheme. It would be interesting to study the scalability of such

an approach.

In a more global point a view, we can note that the perspectives in the domain of approx-

imate matching stay quite open. Indeed, our study of the state of the art has exhibited only

a few works dealing with the detection of similar items within large reference databases. It

is thus interesting to consider the proposition of new fingerprint models with such character-

istics. These should ideally allow the algorithms to increase their precision in the detection

problem (i.e. reduce the number of false alarms) while keeping the ability to detect similar

items. An alternative to this compromise would consist of developing algorithms that are

able to tell whether the detected item is an exact match or an approximate match. With

such a system, one would expect a low number of false alarms for the exact matches whereas

the tolerance would be wider when dealing with approximate matches.
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Appendix A

Working with industrial data

This work has been carried out in the context of a partnership with a company. As such,

it has appeared very beneficial to adopt some best practices. The latter can indeed allow

to better deal with: the meaningful volume of data that has been used in this work, the

regular transmission of new data, the adaptation to the changes of API of the partner, the

adaptation to the decisions taken with the other partners concerning the evaluations (size of

the database, the scope of the analysed broadcasts, output format...). The work methodology

adopted should thus include the following concepts.

Md5 checking Every exchange of data should always include an integrity verification such

as the calculation of an md5 code. This ensures that none of the partner is working with

corrupted data, which can cause meaningful wastes of time.

Symbolic links In our context, the industrial partner has sent us meaningful volumes

of data that correspond to the reference database. This database is not always used as a

whole: some steps like the testing of the evaluation protocol involve the use of a subset of

the database. Some evaluation campaigns have also included different tasks with different

sizes of databases. In order to modulate the database, several approaches can be considered.

It can for example be handled in the fingerprint algorithm. However, we rather recommend

the setup of a specific folder for each test, that contains all the files of the tested database.

This methodology makes it easier to keep track of the successive testings. Though, since

the concerned files represent a substantial weight, it would be a waste of space and time to

make a different copy of each reference file for each test database! This is why we suggest

the use of symbolic links. In the end, the reference files are physically stored in one single

folder. Each test database is represented by a specific folder that contains symbolic links to

the physical folder. In this way, we keep track of the database used in each testing, with no
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waste of space and copy time.

Network hard-disks Since the calculations involved in the fingerprint tasks can be really

heavy, it must be considered that the evaluation campaigns may require the use of several

computer units. In order to ease the setup of these, we recommend to store all the data

linked with the testing on network hard-disks.

Separation of the APIs It is a general good practice to ensure a good modularity in any

code. In our particular case, the fingerprint algorithm must get the data in the files provided

by the industrial. This can be done thanks to the specification of an API together with the

partners. However, experience has shown that these APIs may evolve along with the project.

The consequential modifications in the code may be substantial and hard to debug if the

issue has not been foreseen. This is why we recommend to explicitly separate all the bits of

code that access the data provided by the partners. This modularisation limits the scope of

the modifications when the data format evolves.
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[KPDC12] H. Khemiri, D. Petrovska-Delacrétaz, and G. Chollet, “Une empreinte audio à
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Empreintes Audio et Stratégies d’Indexation Associées pour
l’Identification Audio à Grande Echelle

Audio-Fingerprints and Associated Indexing Strategies
for the Purpose of Large-Scale Audio-Identification

Sébastien FENET

RESUME : Dans cet ouvrage, nous définissons précisément ce qu’est l’identification audio à grande

échelle. En particulier, nous faisons une distinction entre l’identification exacte, destinée à rapprocher deux

extraits sonores provenant d’un même enregistrement, et l’identification approchée, qui gère également la

similarité musicale entre les signaux. A la lumière de ces définitions, nous concevons et examinons plusieurs

modèles d’empreinte audio et évaluons leurs performances, tant en identification exacte qu’en identification

approchée.

MOTS-CLEFS : identification, extraction d’empreintes, indexation, apprentissage, fouille de données.

ABSTRACT : In this work we give a precise definition of large scale audio identification. In particular,

we make a distinction between exact and approximate matching. In the first case, the goal is to match two

signals coming from one same recording with different post-processings. In the second case, the goal is to

match two signals that are musically similar. In light of these definitions, we conceive and evaluate different

audio-fingerprint models.

KEY-WORDS : identification, audio features, indexing, machine learning, data mining.


