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Abstract

Sensing using 3D technologies has seen a revolution in the past years

where cost-effective depth sensors are today part of accessible con-

sumer electronics. Their ability in directly capturing depth videos in

real-time has opened tremendous possibilities for multiple applications

in computer vision. These sensors, however, have major shortcomings

due to their high noise contamination, including missing and jagged

measurements, and their low spatial resolutions. In order to extract

detailed 3D features from this type of data, a dedicated data enhance-

ment is required. We propose a generic depth multi–frame super–

resolution framework that addresses the limitations of state-of-the-

art depth enhancement approaches. The proposed framework does

not need any additional hardware or coupling with different modal-

ities. It is based on a new data model that uses densely upsampled

low resolution observations. This results in a robust median initial

estimation, further refined by a deblurring operation using a bilateral

total variation as the regularization term. The upsampling operation

ensures a systematic improvement in the registration accuracy. This

is explored in different scenarios based on the motions involved in the

depth video. For the general and most challenging case of objects de-

forming non-rigidly in full 3D, we propose a recursive dynamic multi–

frame super-resolution algorithm where the relative local 3D motions

between consecutive frames are directly accounted for. We rely on

the assumption that these 3D motions can be decoupled into lateral

motions and radial displacements. This allows to perform a simple

local per–pixel tracking where both depth measurements and defor-

mations are optimized. As compared to alternative approaches, the



results show a clear improvement in reconstruction accuracy and in

robustness to noise, to relative large non-rigid deformations, and to

topological changes. Moreover, the proposed approach, implemented

on a CPU, is shown to be computationally efficient and working in

real-time.
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Notation

In this thesis, matrices are denoted by boldface, uppercase letters, M, and vectors

are denoted by boldface, lowercase letters, v. Scalars are denoted by italic letters,

e.g., x, K, α. The following mathematical notation will be used:

MT transpose of matrix M

M−1 inverse of matrix M

M ↑ upsampling of matrix M

M(`) matrix M at level or iteration `

In identity matrix of dimension n by n

0 matrix of zeros

1r vector of length r whose elements are equal to 1

‖v‖2 L2 norm of vector v

‖v‖1 L1 norm of vector v

vi the i–th element of vector v

v registered version of vector v

v̂ estimate of v

x→∞ x tends to infinity

arg min the minimizing argument

p pixel position

pit pixel position at time t under index i

Z depth surface
df
dx

derivative of f with respect to x
∂f
∂x

partial derivative of f with respect to x

p(·) probability density function

tr(M) trace of M
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cov(v) covariance of v

var(v) variance of v defined as tr(cov(v))

sign(·) sign function

divv(·) divergence with respec to v
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BF Bilateral Filter

BTV Bilateral Total Variation

CAD Computer Aided Design

CPU Central Processing Unit

eS&A enhanced Shift & Add

GPU Graphics Processing Unit

HR High Resolution

ICP Iterative Closest Point

i.i.d independent and identically distributed

JBU Joint Bilateral Upsampling

LR Low Resolution

MAP Maximum A Posteriori

ML Maximum Likelihood

MRF Markov Random Field

MSE Mean Square Error
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RAM Random Access Memory

RecUP-SR Recursive Upsampling for Precise Super–Resolution

RMSE Root Mean Square Error

S&A Shift & Add

SISR Single Image Super–Resolution

SL Structured Light

xiii



CONTENTS

SR Multi–Frame Super–Resolution

SNR Signal to Noise Ratio

SURE Stein’s Unbiased Risk Estimate

SurfUP-SR Surface Upsampling for Precise Super–Resolution

ToF Time-of-Flight

UP-SR Upsampling for Precise Super–Resolution

VBSR Variational Bayesian Super–Resolution

xiv



List of Figures

1.1 Example of depth Cameras. (a) D-IMager by Panasonic – (160

× 120) pixels [1], (b) SwissRanger SR4000 ToF camera by MESA

Imaging – (176 × 144) pixels [2], (c) CamboardNano ToF camera

by PMD – (160 × 120) pixels [3], (d) 3D MLI Sensor ToF camera

by IEE – (56 × 61) pixels [4], (e) Kinect v1 structured light camera

by PrimeSense – (640 × 480) pixels [5], (f) Kinect v2 ToF camera

by PrimeSense – (640 × 480) pixels [5]. . . . . . . . . . . . . . . . 2

1.2 3D plotting of a low resolution depth frame captured using a ToF

camera. The 3D point cloud is created by back projecting the

depth values using the camera intrinsic parameters. Distance units

on the colored bar are in mm. . . . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of the multi–frame super–resolution data model. . . . 14

2.2 Illustration of the working principle of a structured–light camera.

(Reproduced from [6]). . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Working principle of a time–of–flight camera. (Reproduced from [6]). 19

3.1 Unreliable and flying pixels in the initial estimate ẑ using state-of-
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Chapter 1

Introduction

1.1 Motivation and scope

Sensing using 3D technologies, structured–light (SL) cameras or time–of–flight

(ToF) cameras [3, 4], has seen a revolution in the past years where sensors such

as the Microsoft Kinect version 1 and 2 are today part of accessible consumer

electronics [5]. Examples of these cameras are shown in Figure 1.1. The abil-

ity of these sensors in directly capturing depth videos in real–time has opened

tremendous possibilities for applications in gaming, robotics, surveillance, health

care, etc. These sensors, unfortunately, have major shortcomings due to their

high noise contamination, including missing and jagged measurements, and their

low spatial resolutions. This makes it impossible to capture detailed 3D features

indispensable for many 3D computer vision algorithms. The face data in Fig-

ure 1.2 is an example of such challenging raw depth measurements. Running

a traditional face recognition algorithm on this type of data would result in a

very low recognition rate [14, 15, 16]. Some solutions have been proposed in the

literature for recovering these details. Most of the work proposed to enhance

the resolution of this data has been based on fusion with high resolution (HR)

images acquired with a second camera, e.g., 2D camera [10, 17, 18], stereo cam-

era [19, 20], or both 2D and stereo cameras [21]. These multi–modality methods

provide solutions with undesired texture copying artifacts in addition to being

highly dependent on parameter tuning. Moreover, using an additional camera re-

quires dealing with data mapping and synchronization issues. Also, due to cost,
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(a) D-IMager (b) SR4000 (c) CamboardNano

(d) 3D MLI (e) Kinect v1 (f) Kinect v2

Figure 1.1: Example of depth Cameras. (a) D-IMager by Panasonic – (160 × 120)

pixels [1], (b) SwissRanger SR4000 ToF camera by MESA Imaging – (176 × 144)

pixels [2], (c) CamboardNano ToF camera by PMD – (160 × 120) pixels [3], (d)

3D MLI Sensor ToF camera by IEE – (56 × 61) pixels [4], (e) Kinect v1 structured

light camera by PrimeSense – (640 × 480) pixels [5], (f) Kinect v2 ToF camera by

PrimeSense – (640 × 480) pixels [5].

in many applications it is not possible to use additional imaging chips or optical

components.

In order to obtain higher quality depth videos without additional hardware,

one may think of using concepts from multi–frame image reconstruction. The

key idea is to compensate for the limitations of the imaging system by fusing

multiple frames captured with the same system. When the reconstruction involves

resolution enhancement, we talk about multi–frame super–resolution (SR) [22].

Its goal is to recover an HR image from a set of LR images captured with the

same camera by exploring the deviations between these LR images and a reference

frame. SR approaches have been largely explored in 2D imaging. Recently,

few attempts have been carried out in order to extend 2D SR algorithms to

static depth scenes. The extension of these algorithms to depth data is not

straightforward due to the textureless nature of depth data. In [9], a dedicated

preprocessing has been proposed to achieve depth SR from a single image but
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Figure 1.2: 3D plotting of a low resolution depth frame captured using a ToF

camera. The 3D point cloud is created by back projecting the depth values using

the camera intrinsic parameters. Distance units on the colored bar are in mm.

using a large database for training. In the more challenging case of dynamic

depth scenes, this extension is even more difficult due to artifacts caused by fast

motions.

The scope of this thesis is to define a new generic depth SR framework that

addresses the limitations of state-of-art depth enhancement approaches and that

is adapted to the properties of depth data. Our objective is to use this framework

for the simpler case of static depth scenes, and most importantly to extend it to

the challenging case of a depth video with freely moving objects. In what follows

we review the challenges specific to each case.

1.1.1 Enhancement of static depth scenes

A scene is considered static if the motion from one frame to another is global where

the frames could be seen as slightly different perspectives of the same scene. In

this case, the SR estimation is usually solved numerically by iterative methods

starting from an initial image followed by an optimization step. The quality of

the initial image remains a point of weakness for most existent methods. This

image may be obtained by an operation known as Shift & Add (S&A) [7, 23]
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which includes a filling procedure based on the global relative motion of the con-

sidered LR images. In 2008, Schuon et al. proposed to apply the S&A method on

depth data in a multi–frame setup [24]. While this work showed that SR may be

used successfully on depth scenes without any training, it is still not a practical

solution because of the large number of required LR observations. Indeed, for a

weak diversity in the motions available in the LR depth images, the initial HR

image suffers from undefined pixels. As a practical remedy, it is often necessary

to capture a relatively large number of LR frames in order to increase the di-

versity in motion. An extended version of [24] has been proposed by the same

authors in [25] by defining a new cost function dedicated to depth data. Both

approaches, in [24] and [25], do not solve the limitation on the number of required

frames inherent to classical S&A; thus, they remain not practical solutions. An-

other initialization method is by aligning the LR measurements on an HR grid

and interpolating the missing points. A promising method in this category is the

work by Babacan et al. referred to as variational Bayesian SR (VBSR) [26]. In

the case of textureless depth data, such interpolation induces erroneous values

and flying pixels that are difficult to attenuate. Recently, Newcombe et al. have

presented the KinectFusion algorithm for real–time 3D reconstruction and inter-

action using a moving Microsoft Kinect camera [27]. This algorithm is based on

a dense Iterative Closest Point (ICP) tracking algorithm and hence HR depth

observations are required for the algorithm to converge.

1.1.2 Enhancement of dynamic depth scenes

Using multiple frames to recover depth details has been successful in the case

of static scenes or scenes with a global rigid motion [24, 25, 27]. Since these

methods and their immediate derivatives, the real challenge that the research

community has been facing is extending the multi–frame depth enhancement

concept to scenes with non-rigid deformations. It is these scenes that we will

refer to as dynamic depth scenes.

There have been few attempts to handle single object scanning under relative
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small non-rigidities by replacing a global rigid registration with a non–rigid align-

ment [28, 29, 30]. These techniques, however, cannot handle large deformations,

and are not very practical for real–time applications. Real–time non–rigid recon-

struction approaches have been achieved with the help of a template which is first

acquired then used for tracking of non–rigidities with a good flexibility [31, 32].

Recently, Afzal et al. have proposed the first non–rigid version of KinectFu-

sion algorithm named KinectDeform [33] and later on its extension [34]. This

method does not require any template, and similarly to KinectFusion, provides

an enhanced smoother reconstruction over time with the addition of handling

non–rigid deformations in the scene. KinectDeform has been successfully tested

on an Asus Xtion Pro Live camera [35], equivalent to Microsoft Kinect structured

light version 1. It cannot, however, perform well on lower resolution, noisier ToF

cameras such as the PMD CamboardNano [3]. Indeed, its registration module

requires denser raw acquisitions. DynamicFusion [36] is another recent non–rigid

version of KinectFusion. Thanks to a GPU implementation, it has been tested

on a Kinect camera in real–time. However, its reconstruction accuracy has not

been evaluated, and it has only been validated visually. Moreover, it builds on

the assumption of having only one moving object in the scene. In addition, its

reported limitations are its sensitivity to complex scenes and scenes with changes

in topology. Also, similarly to KinectDeform, one may suspect DynamicFusion

not to be able to perform well on a lower resolution noisier ToF camera.

1.2 Objectives and contributions

The objective of this thesis is to address the aforementioned limitations of both

static and dynamic depth enhancement methods under the SR framework. The

main contributions are listed below:

1. Upsampling for a robust depth SR: In order to be able to deploy multi–

frame SR algorithms in practice, specifically S&A, without requiring a very

high number of observed LR frames, we improve the initial estimation of

the HR frame. To that end, we propose a new data model resulting from

densely upsamled LR observations and leading to a median estimation.
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This new formulation solves the problem of undefined pixels. Moreover,

we show the impact of upsampling in increasing sub–pixel accuracy and

reducing the rounding error of motion vectors. This allows to improve the

performance of pyramidal motion estimation in the context of SR. As a

consequence, it increases the motion diversity within a small number of

observed frames, making the enhancement of depth data more practical.

Quantitative experiments run on the Middlebury dataset [37] show that

our method outperforms state-of-art techniques in terms of accuracy and

robustness to the number of frames and to the noise level.

This work has been published in [38] and [39] and some extended parts are

under review in [40].

2. Dynamic depth SR for non–rigid deformations: Most depth SR

methods available in the literature are dedicated to static depth scenes.

None of them has addressed the enhancement of dynamic depth scenes

with non–rigidly deforming objects. In this thesis, we propose the UP-SR

algorithm, which stands for Upsampling for Precise Super–Resolution, as

the first dynamic multi–frame depth video SR algorithm that can enhance

depth videos containing non–rigidly deforming scenes without any prior as-

sumption on the number of moving objects they contain or on the topology

of these objects. These advantages are possible thanks to a direct processing

on depth maps without using connectivity information inherent to meshing

as used in subsequent methods, namely, KinectDeform [33, 34] and Dynam-

icFusion [36]. The UP-SR algorithm is based on a data model that uses

densely upsampled, and cumulatively registered versions of the observed

LR depth frames. With the proposed cumulative motion estimation, a high

registration accuracy is achieved between non–successive upsampled frames

with relative large motions. A statistical performance analysis is derived in

terms of mean square error (MSE) explaining the effect of the number of

observed frames and the effect of the SR factor at a given noise level. We

evaluate the accuracy of the proposed algorithm theoretically and experi-

mentally as function of the SR factor, and the level of contamination with
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noise. Experimental results on both real and synthetic data show the effec-

tiveness of the proposed algorithm on dynamic depth videos as compared

to state-of-art methods.

This work has been published in [13] and [41]. An extended version is cur-

rently under review [40].

3. Real–time recursive SR for dynamic depth scenes with non–rigid

deformations: Although the UP-SR algorithm is able to handle dynamic

depth scenes containing multiple moving objects, it is limited to lateral mo-

tions as it only computes 2D dense optical flow and does not account for the

full motion in 3D, known as scene flow, or the 2.5D motion, known as range

flow. It consequently fails in the case of radial deformations. Moreover, it

is not practical because of a heavy cumulative motion estimation process

applied to a number of frames buffered in the memory. Thus, we define

a new recursive dynamic multi–frame SR algorithm, recUP-SR, which im-

proves over the UP-SR algorithm by keeping its advantage and solving its

limitations – not considering 3D motions and using an inefficient cumulative

motion estimation. The key idea is by directly accounting for the relative

local 3D motions between consecutive frames. We rely on the assumption

that these 3D motions can be decoupled into lateral motions and radial

displacements. This allows to perform a simple local per–pixel tracking.

The geometric smoothness is subsequently added using a multi–level L1

minimization with a bilateral total variation (BTV) regularization. The

performance of this method is thoroughly evaluated on both real and syn-

thetic data. As compared to alternative approaches, the results show a clear

improvement in reconstruction accuracy and in robustness to noise, to rel-

ative large non–rigid deformations, and to topological changes. Moreover,

the proposed approach, implemented on a CPU, is shown to be computa-

tionally efficient and working in real–time.

This work has been published in [42] and its extended version is currently

under review [43].
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4. Bilateral filter evaluation based on exponential kernels: Our work,

similarly to the S&A approach, is based on two steps; first a blurred es-

timation where the data fusion happens followed by a deblurring step.

The deblurring represents an important element in adding the geometri-

cal smoothness to the blurred estimated solution. Throughout this thesis,

we adopt a regularized L1 optimization in the deblurring phase. We use

the BTV as a regularization term [7]. This choice is motivated by the fact

that the properties of a bilateral filter, namely, noise reduction while pre-

serving edges, is now established as an appropriate method for depth data

processing [9, 27, 44]. This filter is commonly used with Gaussian kernel

functions without real justification. The choice of the kernel functions has a

major effect on the filter behaviour. We propose to use exponential kernels

with L1 distances instead of Gaussian ones. We derive Stein’s Unbiased

Risk Estimate (SURE) to find the optimal parameters of the new filter and

compare its performance with the conventional one. We show that this new

choice of the kernels has a comparable smoothing effect but with sharper

edges due to the faster, smoothly decaying kernels. We further propose a

multi–level version of the L1 optimization with a BTV regularization in a

similar fashion as in [45, 46, 47]. This process leads to effectively deblur-

ring the intermediate blurred solution while keeping fine details without

over–smoothing.

This work has been published in [48], and part of it is currently under re-

view [43].

5. Improved face recognition using LR depth cameras: Enhancing

depth data captured with cost-effective depth sensors should have an im-

portant impact on their deployment in real–world applications.

We choose face recognition as one such application and propose to tailor

our SR framework for the enhancement of 3D facial data. A new algorithm

is proposed. It is called SurfUP-SR which stands for Surface Upsampling

for Precise Super–Resolution. Considering a face as a surface in 3D, we

reformulate the UP-SR algorithm on a 3D point cloud instead of its orig-

inal formulation on a depth image. This reformulation allows an efficient
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implementation, and leads to a largely enhanced 3D face reconstruction. It

hence improves the 3D face recognition rate while using cost–effective LR

depth cameras. In addition, we provide a tool for an automatic 3D face

reconstruction from data acquired with a PMD CamboardNano camera [3].

Experimental evaluation of SurfUP-SR using a real LR 3D face dataset has

been carried out. Obtained results show an efficient enhancement in the

resolution and the quality of the raw faces. Moreover, SurfUP-SR is shown

to decrease the 3D reconstruction error, and most importantly to increase

the 3D face recognition rate.

This work has been published in [15].
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1.4 Thesis outline

The organization of this dissertation is as follows:

• Chapter 2: In order to understand the properties and challenges of the

considered depth data, necessary background on cost–effective depth cam-

eras, their principle, and characteristics are given. In addition, backgrounds

on motion estimation and multi–frame SR are reviewed.

• Chapter 3: A practical and robust multi–frame SR method for static

scenes with global lateral motions is presented. We explain the source of

the limitations of the initialization step in the S&A algorithm and give our

solution.

• Chapter 4: The UP-SR algorithm is presented as our first proposed solu-

tion for dynamic depth scenes. Its cumulative motion estimation is decribed

and evaluated experimentally. A statistical performance analysis for UP-SR

is then derived.

• Chapter 5: The UP-SR algorithm is reformulated in a recursive manner

for the sake of real–time applications. The resulting recUP-SR is presented

as our new solution to handle radial deformations in addition to lateral

ones. Qualitative and quantitative experimental evaluations are presented

and discussed.

• Chapter 6: A comparison of the performance of the bilateral filter using

Gaussian and exponential kernels is given. Furthermore, the SURE risk

function for a bilateral filter using exponential kernels is derived in order to

find the filter optimal parameters.

• Chapter 7: The UP-SR algorithm is reformulated as a new approach

on 3D point clouds and incorporated in a 3D face reconstruction pipeline.

The impact of this enhancement is illustrated experimentally for 3D face

reconstruction and validated for 3D face recognition using real data.

• Chapter 8: Concluding remarks and perspectives on future work building

on the contributions of this thesis are discussed.
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Chapter 2

Background

Chapter 2 reviews the basic concept of multi-frame SR and formulates the general

problem of this work by laying down the model and assumptions common to all

the parts of the thesis.

This work addresses the enhancement of depth videos captured with cost–effective

depth sensors. There are two components that guide the design of the algorithms

described in subsequent chapters. These components are the properties of the

data as captured by the sensors and the motions in the scene. We therefore in-

troduce the working principles of the considered sensors and their characteristics.

Finally, we review the concepts of motion estimation in 2D and in 3D.

2.1 Multi–frame super–resolution

2.1.1 General data model

As discussed in Chapter 1, multi–frame SR may be thought of as an alternative

solution to enhancing the quality of depth images acquired with a cost–effective

depth camera. Indeed, this image processing concept has already been explored

in the case of other optical imaging systems [22, 49, 50] where additional hard-

ware cannot be added because of cost or implementational issues. The goal of

multi–frame SR is to reconstruct a higher quality image from a set of low quality

acquisitions captured with the same optical device. It is casted as an inverse

problem; so we start by first defining the data model which is assumed to be

13
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Figure 2.1: Illustration of the multi–frame super–resolution data model.

linear as follows.

gk = Lkf + nk, k = 0, · · · , N − 1, (2.1)

where gk is the kth observed measurement, Lk represents the imaging system,

and nk is a random additive noise. The HR image that we want to estimate is f .

All images are represented as column vectors following a lexicographic ordering.

The unknown image f is assumed to be of size (n × 1) while the size of gk is

(m× 1) with n = r2 ·m. The factor r is known as the SR factor and corresponds

to the targeted increase in spatial resolution.

To estimate f , a cost function C(·) has to be defined based on some definition of

closeness between the estimate and the measurements, also called fidelity. The

simplest cost function that has been traditionally adopted is the sum of least

squares where the L2 norm of residuals is to be minimized [11], as follows

f̂ = argmin
f

C(f) = argmin
f

N−1∑
k=0

‖Lkf − gk‖2
2. (2.2)

When the noise nk is zero mean white Gaussian, this solution is equivalent to the

Maximum Likelihood (ML) estimate that maximizes the conditional probability
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of the observations given the original image, i.e., p(g1, · · · ,gN/f) [11, 51]. The

solution in (2.2) is however not a stable one because SR is an ill-posed problem

with the system being often under-determined, i.e., N < r2. An undesired con-

sequence of this is the amplification of noise in the final solution. This is why

imposing some prior information on the solution by means of regularization is

necessary to reach a stable SR solution. The cost function C(·) would therefore

have an additional term such that

C(f) =
N−1∑
k=0

‖Lkf − gk‖2
2 + λΓ(f), (2.3)

where Γ(·) is the regularization function, or penalty function, that imposes the

prior information on f , and λ is a parameter that controls the strength of the

penalization.

The model of the imaging system Lk dictates the computational complexity

of minimizing (2.3), and the performance of the resulting solution. Typically, the

matrix Lk is modelled as follows

Lk = DHMk, (2.4)

with Mk being an (n×n) matrix corresponding to the geometric motion between

f and gk. The optical blur is modelled by the point spread function (PSF) of

the camera represented by the (n × n) space and time invariant blur matrix H

which is block circulant. The sampling process is modelled by the downsampling

matrix D of dimension (m× n). This model is illustrated in Figure 2.1.

By assuming that the motion is translational, the matrix Mk is consequently

block circulant and Mk and H become commutative [52]. As a result, the SR

estimation may be decomposed into two subtasks as detailed next in Section 2.1.2.

2.1.2 Two-step estimation

Given that MkH = HMk, the data model in (2.1) can be rewritten as

gk = DMkz + nk, k = 0, · · · , N − 1, (2.5)

with z = Hf being a blurred version of f . Estimating f may thus be decomposed

into two main steps: 1) Estimation of the blurred HR image z by fusion and/or
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interpolation. 2) Deblurring by an iterative optimization in order to find the final

estimate of f . Such a two-step estimation has been adopted by multiple state-

of-art approaches as it helps a computationally more efficient implementation [7,

23, 52, 53, 54].

In [23], Farsiu et al. have shown that the assumption of a Gaussian additive

noise nk is not the closest to reality. Instead, it should be more of a heavy tailed

distribution, and specifically a Laplacian distribution is considered to be a better

candidate. As a result, the first step of estimating the blurred HR image z follows

from (2.5) as

ẑ = argmin
z

N−1∑
k=0

‖DMkz− gk‖1. (2.6)

where an L1 norm is used in place of the L2 norm in (2.2). This, in turn, has

shown to provide a robust blurred solution as presented in [7, 11, 23]. When

accompanied with the proper zero-filling and motion compensation, the operation

in (2.6) is known as Shift & Add (S&A).

Afterwards, comes the deblurring step which is in general similar to (2.3) with a

slight change in the fidelity term such that

C(f) = ‖Hf − ẑ‖1 + λΓ(f). (2.7)

In addition to playing the role of deblurring, the operation in (2.7) helps in recov-

ering desired properties in the final image f̂ through an appropriate choice of the

regularization function Γ(·). In [25], Schuon et al. proposed a regularization term

tailored for depth data, leading to a new depth–dedicated SR method referred to

as LidarBoost. The aim of LidarBoost is to preserve areas with a smooth geome-

try. To that end, it implements a regularization term that is a function of spatial

gradients approximated with finite differences. The original LidarBoost uses an

L2–norm of weighted depth gradients. In order to better accommodate the needs

of detailed 3D object scanning, Cui et al. proposed a new version of LidarBoost

where the regularization term is set to be an anisotropic non–linear function of

gradients [55]. In both cases, however, the initial HR is obtained by means of

averaging, which is not appropriate for sensing cluttered depth scenes. In Sec-

tion 2.2, we review the properties of depth videos as captured by cost–effective

depth sensors.
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2.2 Cost–effective depth sensing

2.2 Cost–effective depth sensing

In less than a decade, depth sensors have become accessible devices at very afford-

able prices. The best example of such sensors is the Microsoft Kinect version 1 [5]

based on the structured–light (SL) principle, or more recently its newest version

based on the time–of–flight (ToF) principle. These two technologies fall under

the category of active sensing. Indeed, they both rely on an active source that

illuminates the scene of interest. In order to understand the properties and chal-

lenges of the data captured by these cameras, we review below their respective

working principles.

2.2.1 Working principles

• Structured–light cameras: SL cameras are composed of a projector,

e.g., a near infra–red (NIR) laser projector, and an intensity camera, e.g., a

monochrome CMOS camera. The projector emits a specially designed light

pattern on the scene of interest. The camera then sees a deformed pattern

depending on the geometry of the scene. In the illustration of Figure 2.2,

the example of a simple pattern in the form of a straight line is projected.

The camera perceives a straight line when the projection is on a flat wall.

It perceives a deformed curve when the projection is on a more complex

shape such as a cylinder. From these deformations, the depth measurement

can be extracted with the knowledge of camera intrinsic parameters.

• Time–of–flight cameras: ToF cameras are composed of an active NIR

projector and an optical sensor. The projector illuminates the scene with

a phase modulated signal. The optical sensor then captures the intensity

of the reflected signal as well as its phase. At the level of each pixel, the

difference in phase between the emitted and the received signals is used to

calculate the time it took for the signal to travel from the sensor to the scene.

This time can finally easily be converted to the corresponding distance, i.e.,

depth measurement, using the speed of light. Figure 2.3 illustrates the ToF

working principle.
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Figure 2.2: Illustration of the working principle of a structured–light camera.

(Reproduced from [6]).

2.2.2 Data properties

The following are the different challenges presented by depth data captured with

a ToF or an SL depth camera [56, 57, 58].

1. Systematic depth errors: Systematic errors are due to the low spatial

resolution of cameras. These errors are perceived mainly for objects that are

far from the camera. This results in imprecise depth measurements. Also,

because of the active illumination in both SL and ToF sensors, the random

photon shot noise, which is the dominant category of noise, increases with

the increase of the distance from the scene. In the case of ToF cameras, there

are additional errors caused by approximations of the emitted sinusoidal

signal or approximations of the demodulation function.

2. Non–systematic depth errors: Long exposure times cause over satu-

ration which in the case of SL cameras makes it difficult to detect light
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2.2 Cost–effective depth sensing

Figure 2.3: Working principle of a time–of–flight camera. (Reproduced from [6]).

patterns, and hence difficult to use outdoors. ToF cameras are equipped

with filters for background light suppression that make them relatively more

robust to background light. This light, nonetheless, causes unwanted noisy

pixels. ToF and SL sensors also suffer from inhomogeneous depth values

especially on object boundaries. They are called flying pixels for ToF–

acquired data resulting from a mixture of signals reflected from surfaces at

different depths, usually a mixture of foreground and background values.

In the case of SL cameras, occlusions may occur on boundaries where no

light reaches causing invalid pixels.

3. Motion errors: Moving objects cause special artifacts in the form of al-

tered depth measurements. For SL cameras, this is due to errors in the

detected pattern. These errors are larger for faster motions. In the case

of the ToF technology, multiple acquisitions, usually four, are used to find

the phase difference and assign a depth value to one pixel. Motions may

cause mismatches between these acquisitions which leads to errors. More
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specifically these errors have been classified in [59] as follows:

• Artifacts from lateral motions which result from mixing background

and foreground phase values at the boundary of moving objects.

• Artifacts from radial motions which are caused by phase changes for

an object moving radially and hence having a varying depth.

• Artifacts from texture changes which occur for objects of varying re-

flectivity leading to changes in phase while no depth changes actually

occur.

2.3 Motion estimation

In order to compensate for the effect of motion, an accurate motion estimation

has to be achieved. Radial motions in the depth direction combined with lateral

motions constitute the motion in 2.5D or the so–called range flow [60]. This type

of motion is often encountered in depth videos. We review below its concept.

A time–varying depth surface Z may be viewed as a mapping of a pixel position

pit = (xit , y
i
t ) on the sensor image plane, at a time instant t, and defined as follows:

Z : R2 × N → R

pit 7→ Z(xit , y
i
t ). (2.8)

The value Z(xit , y
i
t ) corresponds to the ith element of the depth image zt written

in lexicographic vector form, that we will denote in what follows as zit . The defor-

mation of the surface Z from (t−1) to t takes the point pit−1 to a new position pit .

It may be expressed through the derivative of Z following the direction of the 3D

displacement resulting in a range flow (uit , v
i
t , w

i
t ) where the radial displacement

in the depth direction wi
t =

dzit
dt

is added as the third component to the lateral

displacement mit = (uit , v
i
t ) where uit =

dxit
dt

and vit =
dyit
dt

.

Applying the depth constraint to motion, we find the range flow constraint as

first proposed in [60] and later used in [61, 62, 63, 64]. It is defined as follows:

uit
∂zit
∂xit

+ vit
∂zit
∂yit
− wi

t +
∂zit
∂t

= 0. (2.9)
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2.3 Motion estimation

The range flow equation (2.9) is usually used in a variational framework to es-

timate the range flow (uit , v
i
t , w

i
t ). However, estimating a dense range flow, i.e.,

a three dimensional vector for each point pit , for i = 1, · · · , n, is still computa-

tionally complex and not achievable in real-time, at least, not with a sub–pixel

accuracy [65]. Using RGB-D depth cameras has allowed a multi-modal approach

for range flow estimation by adding a standard 2D optical flow constraint applied

on available intensity images at−1 and at such that:

uit
∂ai

t

∂xit
+ vit

∂ai
t

∂yit
+
∂ai

t

∂t
= 0, (2.10)

where ai
t denotes the ith element of the intensity image at. A global energy func-

tional combining (2.9) and (2.10), regularized with some smoothness condition,

is then optimized [64, 66].
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Chapter 3

Robust Depth SR for Static

Scenes

We enhance the Shift & Add super–resolution approach to increase the resolution

of depth data using a set of low resolution images related by global relative motion.

In order to be able to deploy such a framework in practice, without requiring a

very high number of observed low resolution frames, we propose a new data model

that leads to a median estimation from densely upsampled low resolution frames,

hence, solving the problem of undefined pixels and increasing the motion diversity

within a small number of observed frames.

3.1 Introduction

SR is a common technique used to recover an HR reference image from a set

of observed LR images subject to errors due to the optical acquisition system

such as noise and blurring, and to deviations from the reference image due to

relative motion. The past two decades have witnessed several contributions on

SR for static scenes [7, 67, 68, 69, 70, 71, 72]. Most of the proposed methods are

dedicated to a simple translational or affine motion. As presented in [73], these

algorithms are numerically limited to small global motions even for an increased

number of LR frames. Most SR techniques start with constructing the initial

HR grid with sub–pixel accuracy by combining the LR frames by interpolation.
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3. ROBUST DEPTH SR FOR STATIC SCENES

These methods work effectively when a sufficient number1 of LR images contain

slightly different perspectives of the scene. It is critical to start with an initial HR

image that is as accurate as possible. The initial image may be obtained by an

operation commonly referred to as Shift & Add (S&A) [7] which includes a filling

operation based on the motion of the considered LR images. Another method is

by aligning the LR measurements on an HR grid and interpolating the missing

points, the most successful method is the variational Bayesian SR (VBSR) [26].

Once an initial HR image is designed, it is refined with an optimization process

by minimizing a given cost function to finally reach the desired HR image. The

main drawback of these methods is that the quality of the initial HR image is

restricted to a specific range of motions related to the SR factor. Indeed, a weak

motion diversity among the LR frames leads to undefined pixels in the initial HR

image resulting in artifacts in the final solution and a strong deterioration of the

SR performance. As a solution to this, example–based SR algorithms have been

proposed [9], and their combinations with classical multi–frame SR [74]. Such

algorithms rely on a heavy learning phase, and assume that images carry some

redundancies.

In this work we propose to release the limitations on scale and the number of

required frames of classical SR algorithms without prior assumptions on the data

and without engaging in an additional learning stage. Our method is based on

an accurate registration of frames to the reference frame resulting in an enhanced

S&A algorithm. Our strategy consists in using the efficient pyramidal optical

flow estimation starting from LR frames upsampled up to the SR factor. This is

followed by a pixel–wise median operation which guarantees that no undefined

pixels appear in the initial HR image and it is further refined by a selective

optimization.

3.2 Background

Let f be an HR depth image in the form of a column vector of length n and let

gk, k = 0, ..., (N − 1), be N observed LR depth images, where each LR image is

1Note that this number is bounded as proven in [73].
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(a) Original HR (b) S&A [7] (c) VBSR [26]

Figure 3.1: Unreliable and flying pixels in the initial estimate ẑ using state-of-

the-art SR methods (Red colors are the closest objects and green colors are the

furthest ones.)

a column vector of length m, such that n = r2 ·m, with r being the SR factor.

Every frame gk may be viewed as an LR noisy and deformed realization of f

caused by the depth acquisition system at the k-th acquisition. Using a two–step

estimation as presented in Section 2.1.2, the estimate f̂ is found as the result

of minimizing (2.7). Starting with an accurate initial blurred estimate ẑ has a

strong impact on the final solution. The classical S&A approach [7] defines z by

first setting it to a zero vector of size (n× 1).

Then, all LR images gk are used to update its pixel values. To that end, given

a reference LR image g0 chosen as the closest one to the target HR image f , the

global translational motions Mk between each image gk and g0 are estimated for

k = 1, · · · , (N−1). The estimated motions M̂k are used to register all LR images

gk with respect to the reference image g0. The resulting registered images gk are

defined as:

gk = M̂kgk. (3.1)

These images are then grouped into S sets clustered based on their relative mo-

tions mk. The frames contained in one set are fused by median filtering resulting

in one LR image g̃i per motion mi, with 1 ≤ i ≤ S ≤ N . Each frame is then used

to update the pixels of z at a given position p as follows:

z (r ◦ (p + mi)) = g̃i(p), (3.2)

where we define ◦ as an upsampling by r of a lexicographic position. This opera-

tion is known as zero–filling in the S&A approach. We note that for a successful

filling, there should be enough motion diversity in the considered LR frames, i.e.,

25



3. ROBUST DEPTH SR FOR STATIC SCENES

a sufficient number of sets S. Indeed, in order to further update the zero pixels in

z, an additional (r× r) median filtering is applied. Given that the median filter’s

breakdown point is 1
2
, a meaningful filling that does not leave pixels undefined is

achieved if the following condition is satisfied:

round

(
r2

2

)
≤ S. (3.3)

This condition is, however, not always satisfied. We show the effect of undefined

pixels in z caused by classical S&A in Figure 3.1(b). A similar phenomenon

is observed using interpolation-based initialization such as VBSR [26] as seen in

Figure 3.1(c), suggesting that interpolation is not an adequate solution to remove

undefined pixels. Moreover, it creates additional artifacts on depth data such as

jagged values on edges.

The problem of undefined pixels often occurs in practice. It is dealt with by

restricting the SR factor to low values, e.g., r = 2, and by taking a relatively large

number of frames, e.g., N > 30, thus indirectly attempting to satisfy inequality

(3.3). This in turn, limits the practical use of SR algorithms. In Section 3.3, we

propose to increase the motion diversity S by upsampling the LR frames in order

to give more freedom in the choice of r without having to increase the number of

observations N .

3.3 Enhanced pyramidal motion

In the SR problem, a highly accurate motion estimation with a ±1
2

sub–pixel

accuracy at the HR level is desired. This corresponds to a sub–pixel accuracy of

± 1
2r

at the LR level. To reach this objective, two ways may be considered:

1. Tuning the parameters of the chosen optical flow algorithm until the desired

accuracy is reached, then multiplying the LR motion vectors by the SR

factor r;

2. Upsampling the LR frames prior to estimating motion.

The main disadvantage of the former solution is that full knowledge of the used

optical flow algorithm and its parameters is needed. In addition, modifying the
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parameters in order to increase the accuracy requires increasing the number of

iterations in the optical flow related optimization process. On the other hand, the

latter solution could be seen as a more systematic option. The choice between

these two solutions is totally based on the targeted application. Either ways,

the registration has to be done at the upsampled level in order to attenuate the

rounding error of motion vectors.

In this work, we propose to follow the second option, and to upsample the ob-

served LR images even before registering them. We further detail the advantages

of this approach in the context of pyramidal motion estimation (PyrME) [75, 76].

Indeed, PyrME is the principle followed by most optical flow algorithms used

in the SR framework. PyrME uses the pyramidal strategy to increase sub–pixel

accuracy and robustness to large motions as compared to estimating motions di-

rectly from observed frames. In what follows, we describe PyrME as it is currently

used. Then, we present how we further improve its performance in the context of

the SR problem. Let mk = (uk, vk) be the motion vector between a frame gk and

the reference frame g0 at a given target point p. This motion vector is estimated

by minimizing the following error:

ξ(mk) =

p+µ∑
q=p−µ

‖g0(q)− gk(q + mk)‖2
2. (3.4)

This error is calculated within an integration disc of radius µ, which corresponds

to the largest motion that can be detected within this framework. The center of

this disc is represented by the target pixel position p. A small value of µ increases

the sub–pixel motion accuracy while a large value is preferable in order to increase

robustness to large motions. PyrME was proposed as a trade–off solution for these

conflicting characteristics. The main idea is to follow a coarse to fine strategy

that progressively downsamples the images gk and g0 starting from the bottom of

the pyramid. These images are downsampled by a factor 2(`) in the dyadic case,

where ` indicates the pyramidal level, ` = 0, · · · , L. Considering two consecutive

levels ` and (`− 1), the downsampling process may be defined as follows:

g
(`)
k (p) = g

(`−1)
k (2p) s.t. g

(0)
k = gk, ∀k. (3.5)
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In fact, the number of the pyramidal levels L is directly related to the considered

minimum size of the downsampled image at the highest level of the pyramid. Let

us define this minimum size as (d× d) pixels. Then, we may define the maximal

number of pyramidal levels as:
√
m

2L
= d ⇒ L = log2

(√
m
)
− log2 (d) . (3.6)

Starting from the top of the pyramid, the motion is first estimated from the images

of lowest resolution, i.e. at the highest level ` = L, before progressively going back

down to the images of highest resolution, i.e., at the initial level ` = 0. At each

level `, the motion m
(`)
k between the two images g

(`)
k and g

(`)
0 consists of an initial

estimate ω
(`)
k and a residual motion φ

(`)
k . The initial estimate ω

(`)
k is obtained from

the preceding level (` + 1) such that ω
(`)
k = 2 · m(`+1)

k , and initially set to zero at

the level ` = L. The two images g
(`)
k and g

(`)
0 are then pre–registered using the

initial motion vector. This pre–registration step reduces the process of finding

the optimal motion m
(`)
t to finding the optimal residual motion. The estimation

of the optimal residual motion is then defined by the following minimization:

φ
(`)
k = argmin

ν

p+µ∑
q=p−µ

‖g(`)
0 (q)− g

(`)
k (q + ω

(`)
k + ν)‖2

2. (3.7)

The optimal motion at level ` is then defined as m
(`)
k = ω

(`)
k + φ

(`)
k . In order to

have a high sub–pixel resolution accuracy, a small neighbourhood disc of radius

µ is considered in the refinement operation defined in (3.7). By repeating the

operation in (3.7) for all the levels of the pyramid, the finest motion vector is

obtained at ` = 0 defining wk as:

mk := m
(0)
k = ω

(0)
k + φ

(0)
k . (3.8)

We may also express this motion using the refined residuals at all levels as follows:

mk =
L∑
`=0

2(`)φ
(`)
k . (3.9)

The maximal pixel motion vector that can be detected at any level ` is restricted

by the initial motion vector from the preceding level and the radius of the neigh-

bourhood disc µ in (3.7). By considering all the refined residuals as in (3.9), the
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maximal overall pixel motion that can be detected at the level ` = 0 by PyrME

is within a maximum radius of:

µmax = G (L)× µ with G (L) = 2(L+1) − 1. (3.10)

From (3.10), we see that the maximal motion is controlled by the gain G (L)

and the radius of the neighbourhood disc µ. The gain G (L) is a function of the

height L of the pyramid. By considering a small µ while increasing the number of

pyramidal levels, PyrME may estimate large motions up to µmax; hence, verifying

the robustness property in addition to the accuracy one.

In the context of the SR problem, our target is to increase the resolution of the LR

images up to the resolution of the final HR images with size (
√
n ×
√
n) pixels.

By increasing the resolution, we thus increase the number of pyramidal levels.

This gives us a natural way to further improve the performance of PyrME by

upsampling the LR frames up to the SR factor r prior to any motion estimation.

This upsampling step directly impacts the two properties of PyrME :

• Robustness:

The upsampling step leads to changing the size of the pyramid base and

hence changing the starting point in PyrME. These changes result, in turn,

to an increased pyramidal height L ↑r by log2 (r) which results in a new

and higher gain G (L ↑r):

G (L ↑r) = r ·G (L) + (r − 1), with r > 1. (3.11)

The result in (3.11) shows that, in the SR context, the robustness to

large motions for PyrME, may further be enhanced with a new larger gain

G (L ↑r).

• Accuracy:

By increasing the resolution with a factor r, the initial motion vector at the

new level can be estimated from m
(0)
k in (3.8) as ω

(− log2(r))
k = r · m(0)

k . Hence,
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the optimal refined final motion can be further defined as:

mk := m
(− log2(r))
k = ω

(− log2(r))
k + φ

(− log2(r))
k

= r · (ω(0)
k + φ

(0)
k ) + φ

(− log2(r))
k .

(3.12)

By back projecting the newly refined motion in (3.12) to the original reso-

lution at the level ` = 0, we have:

m
(0)
k = ω

(0)
k + φ

(0)
k +

φ
(− log2(r))
k

r
. (3.13)

Comparing (3.8) and (3.13), we find an increase in accuracy of δwk(r) =
1
r
· φ(− log2(r))

k . This confirms the result in [77] which shows that higher

image resolutions help in increasing the accuracy of motion estimation. We

note that the advantage of upsampling for PyrME saturates when a certain

accuracy increase is reached, i.e., limr→∞ δmk(r) = 0.

3.4 Dense upsampling

Following the result in Section 3.3, we use the enhanced PyrME and follow an

upsampling strategy as a starting point for a new improved SR algorithm. We

define the r–times upsampling of the observed LR image gk as gk ↑= Ugk, where

U is an (n×m) upsampling matrix.

Due to the specific properties of depth data, classical interpolation–based meth-

ods, such as bicubic interpolation, cannot be used as they lead to flying pixels

and to blurring effects especially for boundary pixels. Thus, the upsampling U

has to be dense, which is also known as nearest neighbour upsampling. For our

problem, it is defined by the following matrix:

U =


Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q

 , (3.14)

where 0 is a zero matrix, and Q represents the blocks of U of size (
√
nr ×

√
m).

The dense upsampling implies that

Q =

PT , · · · ,PT︸ ︷︷ ︸
r times

T , (3.15)
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where T denotes the matrix transpose, and P is a matrix of size (
√
n×
√
m) such

that:

P =


1r 0 · · · 0
0 1r · · · 0
...

...
. . .

...
0 0 · · · 1r

 with 1r = [1, · · · , 1︸ ︷︷ ︸
r times

]T . (3.16)

We assume in what follows that the upsampling matrix U is the transpose of the

downsampling matrix D. Their product UD = A gives another block circulant

matrix A that defines a new blurring matrix B = AH. The matrix A is actually

a block diagonal matrix with the square matrix QQT repeated
√
m times on

its diagonal. Considering that B and Mk are block circulant matrices, we have

BMk = MkB. As a result, the initialization described in Section 3.2 gets modified

where a new blurred HR image z = Bf is to be estimated first.

3.5 Proposed algorithm

Considering (2.1) and (2.4), the classical data model for a static scene is given

as:

gk = DHMkf + nk, k = 0, · · · , N − 1, (3.17)

We assume that the additive noise nk follows a white multivariate Laplace dis-

tribution as it has been shown to better fit the SR problem as compared to a

Gaussian noise model [23]. This distribution is defined as follows:

p(nk) =
m∏
i=1

√
2

2σ
exp

(
−
√

2|nk(i)|
σ

)
, (3.18)

where σ√
2

is a positive Laplace scale factor leading to the diagonal covariance

matrix Σ = σ2Im, with Im being the identity matrix of size (m×m).

By left multiplying (3.17) by U we find:

gk ↑= MkBf + Unk, k = 0, ..., (N − 1). (3.19)

In addition, similarly to [78], for analytical convenience, we assume that all pixels

in gk ↑ originate from pixels in f in a one to one mapping. Therefore, each row

in Mk contains 1 for each position corresponding to the address of the source
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pixel in f . This bijective property implies that the matrix Mk is an invertible

permutation. Following the result in Section 3.3, its estimate M̂k is obtained from

upsampled LR frames gk ↑, k = 0, · · · , (N − 1). The corresponding registrations

to the reference g0 ↑ are performed as

gk ↑= M̂kgk ↑ . (3.20)

Given (3.20), by left multiplying (3.19) by M̂−1
k , we find

gk ↑= Bf + νk, k = 0, ..., (N − 1). (3.21)

This finally leads to a new simplified SR data model which is analogous to a

classical image denoising problem using multiple observations, specifically

gk ↑= z + νk, k = 0, · · · , N − 1, (3.22)

where νk = M̂−1
k U · nk is an additive noise vector of length n. The permutation

M̂−1
k only reorders the elements of nk while U leads to replicating each element

r2 times. This results in a new (n × n) covariance matrix with a non–diagonal

structure Σ̃ = M̂−1
k UΣDM̂k. For simplicity of analysis, we will however assume

an independent and identically distributed (i.i.d.) Laplace random vector with

Σ̃ = σ2In. The error due to this simplification is a blurring effect that should be

largely reduced in the deblurring step.

Given the data model (3.22), the two steps of initialization and deblurring are

described below.

Step 1: Initialization

The log–likelihood function associated with (3.22) becomes

ln p(g0 ↑, · · · ,g(N−1) ↑ | z) =

= ln

(
N−1∏
k=0

√
2

2σ
exp

(
−
√

2‖gk ↑ −z‖1

σ

))

= −N ln
σ√
2
−
√

2

σ

N−1∑
k=0

‖z− gk ↑ ‖1. (3.23)
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3.5 Proposed algorithm

Maximizing (3.23) with respect to z, we obtain

ẑ = arg min
z

N−1∑
k=0

‖z− gk ↑ ‖1, (3.24)

which corresponds to the pixel–wise median estimator, i.e., ẑ = medk{gk ↑}N−1
k=0 .

The non–zero initialization in (3.24) relaxes the condition in (3.3), thus solving

the problem of undefined pixels. In order not to fall under the same artifacts

as those present with interpolation–based SR approaches, see Figure 3.1(c), it is

necessary to perform the filling operation from registered and clustered LR images

as in (3.2). Indeed, the values from LR frames remain more reliable sources of

information than the ones due to upsampling. They are further processed by a

(r× r) median filtering to smooth out noisy depth pixels. We point out that the

higher accuracy in the estimation of wk shown in Section 3.3 leads to a higher

discrimination between motions, and results in a higher diversity S and a better

update of the pixel values in z as compared to the case of classical S&A. In our

algorithm, it is more accurate to refer to this operation as initialization update

rather than filling.

Step 2: Deblurring

The deblurring given in (2.7) is slightly modified where the blur H is replaced by

B. Moreover, a diagonal weighting matrix Λ is used to assign a weight to each

pixel position. This weight is proportional to the number of measurements used

in the update of the corresponding pixels during Step 1. In our work, we adopt

the robust bilateral total variation as a regularization term ΓBTV as defined in [7],

and solve the following optimization:

f̂ = argmin
f

(
Λ‖Bf − ẑ‖1 + λΓBTV (f)

)
. (3.25)

The matrix Λ is a diagonal matrix whose diagonal corresponds to the elements

of a weighting matrix W of the same size as the HR image f . The matrix W

assigns a weight to each pixel in f such that its contribution in the optimization

(3.25) is proportional to the number of measurements used in initializing its value

in z during Step 1.
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For an efficient optimization, we propose to further use W as a mask that, simi-

larly to [79], only selects a subset of pixels to contribute in the optimization. In

our framework, this selection actually improves the estimation by only accounting

for reliable pixels, those that were updated, and setting to zero the effect of the

pixels that were not updated during the initialization of z. We illustrate the effect

of this new selective optimization in Section 3.6.1. The proposed SR algorithm

for static scenes is an enhanced version of the classical S&A, that we will refer to

as eS&A. It is summarized in Algorithm 3.1.

Algorithm 3.1 eS&A: Robust super–resolution for static scenes

1. Choose the reference frame g0.

for k, s.t., k ∈ [0, N − 1],

do

2. Compute gk ↑ using (3.14).

3. Estimate the registration matrices M̂k using enhanced PyrME.

4. Compute gk ↑ using (3.20).

end do

end for

5. Find ẑ by applying a median estimator (3.24).

6. Update ẑ using (3.2).

7. Deduce f̂ by deblurring with (3.25).

end for

3.6 Experimental results

We compare the performance of the proposed eS&A algorithm described in Algo-

rithm 3.1 with the two state-of-art methods, that are currently, to the best of our

knowledge, the best performing SR algorithms, namely, S&A [7], and VBSR [26].

We tested these methods using the software provided in [80] and [81]. As these

methods have been originally proposed for 2D data, we first evaluate eS&A on

static 2D scenes then move to static depth scenes.
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3.6.1 Static 2D scenes

Starting with the HR image “EIA” [82], we generate LR images by downsampling

with a factor r = 4, and simulating a (3 × 3) Gaussian PSF with a standard

deviation of 0.4, and further degrading by additive white Gaussian noise (AWGN).

We evaluate the robustness of the proposed algorithm against two parameters:

number of considered LR imagesN , and image contamination with noise using the

signal to noise ratio (SNR). We measure the quality of the estimated HR image

using peak signal to noise ratio (PSNR) defined as: PSNR = 10 log10
m×n
‖f−f̂‖2

.

Figure 3.2(a) shows the average PSNR for 100 different noise realizations, and

N progressively increasing from 4 to 20. In order to evaluate for relatively large

global motions, translation parameters are generated randomly between 0 and

9 pixels. Note that in [7], smaller motions have been used which explains the

difference with the result presented in this work using the same S&A algorithm.

In the overdetermined case where N ≥ r2, and for small motions, both methods

eS&A and S&A give comparable results.

We first provide the results of the non–zero initialization step using the pro-

posed eS&A (solid lines). Then we give the final results obtained after applying

the selective optimization (dashed lines) whose starting point is the output of the

previous step. To avoid any increase in computational cost, upsampled frames

can be registered using an approximation by upscaling corresponding LR motion

vectors. Note that for a fair comparison, we use the same set of parameters in

the optimization step for both the proposed method and the method in [7]. From

Figure 3.2(a), it is clear that the proposed method provides significant improve-

ments as compared to existing methods for any choice of N , even as small as 4

images. This observation holds for both the initial estimation and for the itera-

tively optimized solution. Note that the initial estimate considerably outperforms

VBSR and S&A, initial and optimized solutions.

Figure 3.3 illustrates an example of an HR estimated image using 8, 12, and 20

observed LR images. Due to the condition (3.3), it is not surprising to see the

artifacts caused by the undefined pixels, where the number of images is not suffi-

cient to cover the motion range. Moreover, it is clear that the proposed method

provides the best visually enhanced HR images as seen in Figure 3.3 (c), (f), and

35
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(a)

(b)

Figure 3.2: PSNR for different SR methods applied on (75× 75) LR frames with

r = 4 (a) for increasing N , (b) for increasing SNR levels.

(i) with sharper edges compared to other methods.

Next, we conduct a second round of experiments to evaluate the performance of

the proposed eS&A at different noise levels. We use the same 12 frames generated

previously and further degrade them by AWGN with SNR of 5, 15, 25, 35, and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.3: Results of different SR methods applied to a (75× 75) LR sequence

of a static scene with r = 4 and different frame numbers. VBSR for (a) N = 8, (d)

N = 12, (g) N = 20, and by S&A for (b) N = 8, (e) N = 12, (h) N = 20 and by

proposed eS&A for (c) N = 8, (f) N = 12, (i) N = 20.

45 dB. One may note that for a fair comparison we use this number of frames as

it guarantees an initial HR image without undefined pixels for all methods (see

Figure 3.3(d), (e), and (f)). Mean PSNR values of 100 different noise realiza-

tions are plotted in Figure 3.2(b) showing that the proposed method provides the
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(a) LR (b) S&A

(c) VBSR (d) eS&A

Figure 3.4: Results of different SR methods with r = 6 applied on real data of a

static scene, (b) S&A, (c) VBSR, and (d) proposed method eS&A.

best results among discussed SR methods across all noise levels. It is important

to note that the optimization of initial estimates ensures a final result that is

consistently more robust to noise.

Similar results and conclusions were obtained using real data. We consider

a set of 20 LR images of resolution (57 × 49) pixels of the disk dataset [82].

Figure 3.4 presents the SR results of disk images for an SR factor r = 6. It

is visually clear that the proposed method provides better results with sharper

edges and less ringing artifacts than other methods in addition to solving the

undefined pixels problem.

Finally, in order to illustrate the effect of the proposed selective optimization

as compared to the optimization proposed in [7], we ran an experiment on three
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(a)

Figure 3.5: PSNR per iteration of the proposed selective optimization in eS&A

against S&A [7] using 11 (96×96) LR images with SNR = 25dB and SR scale factor

r = 5.

initial HR images by performing 50 iterations. Initial images are obtained by

applying eS&A with r = 5 on three different sequences. Each sequence consists

of 11 (96 × 96) LR frames further degraded by AWGN with SNR = 25dB. As

shown in Figure 3.5, we may see that the proposed optimization method results in

an increase in PSNR as compared with [7]. Moreover, the number of processed

pixels decreases and varies from an image to another depending on the number of

selected pixels (e.g., 82944 pixels (36 %) and 73728 pixels (32%) processed pixels

per iteration for the “Cameraman” and “Lena” images, respectively. In contrast,

the objective function in [7] processes all pixels with a minimum weight of value 1

for unreliable pixels (e.g., for a (480×480) image, the number of processed pixels

are 230400 pixels per iteration).

3.6.2 Static depth scenes

To evaluate the performance of the proposed eS&A on static depth scenes, simi-

larly to Section 3.6.1, we test its robustness on synthetic and real depth images

against two parameters: number of considered LR images N , and image con-
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(a) Different N values

(b) Different input SNR levels

Figure 3.6: Mean PSNR values for different SR methods applied to a (75 × 75)

LR sequence of a static depth scene with r = 4.

tamination with noise measured by SNR. Each time, we compare the classical

S&A [7], and VBSR [26]. First, we run Monte–Carlo simulations on synthetic

sequences of a static scene subjected to a randomly generated global motion.

These sequences were created by downsampling the HR image “ART” from the

Middlebury dataset [37] with a factor r = 4, and PSF using a Gaussian function

with a standard deviation of 0.4, and further degrading them by AWGN. For

a fixed noise level corresponding to SNR = 45dB, and 100 different realizations,
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(a) Original (b) VBSR, N = 8 (c) S&A, N = 8 (d) Proposed, N = 8

(e) LR (f) VBSR, N = 12 (g) S&A, N = 12(h) Proposed, N = 12

(i) (j) (k) (l)

Figure 3.7: Results of different SR methods on a static ToF depth scene with

different frame numbers (N = 8, N = 12) and SR factor of r = 4.)

Figure 3.6(a) shows the average PSNR for N progressively increasing from 4 to 20

frames. It is clear that the proposed method outperforms both S&A and VBSR

across different numbers of LR frames. This difference is even more noticeable

for very low values of N , which illustrates the practicality of the proposed eS&A

method.

Next, we run another round of experiments to evaluate the performance of

eS&A across different noise levels. A sequence of 12 LR depth images of size

(75×75) pixels was used. It was generated in the same way as in the previous

experiment, and further degraded by AWGN with SNR of 5, 15, 25, 35 and

45dB. Figure 3.6(b) shows that the proposed method is consistently more robust

to noise.

Furthermore, the textureless property of depth images combined with dense

upsampling boost the performance of the proposed initial HR frame estimation,
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even for a very high noise level, e.g., SNR = 5dB, leading to comparable results

before and after optimization with (3.25) as shown, respectively, with the dashed

and continuous red lines in Figure 3.6(a) and Figure 3.6(b). This result suggests

that the non–zero initialization may be considered as a standalone approach in

the case of depth data as it does not deviate much from the assumptions related

to the data model in (3.21).

We give, in Figure 3.7, an example of an HR estimated image of “ART”

using 8 and 12 LR images in the first and second rows, respectively. Due to

the condition (3.3), it is not surprising to see the artifacts caused by undefined

pixels where the number of images is not sufficient to cover the motion range.

Moreover, as seen in Figure 3.7(d),(h), it is clear that eS&A method provides the

best visually enhanced HR depth images with sharper edges as compared to the

results of S&A and VBSR.

Finally, we teste the proposed eS&A on two real depth sequences which are

very short. The first sequence contains 8 LR depth images acquired using an IEE

MLI ToF camera of resolution (56× 61) pixels [4]. The second sequence contains

5 LR frames acquired using a PMD CamBoard nano of resolution (120 × 165)

pixels [3]. Considering an SR factor of 4, the final results are given in Figure 3.8,

clearly showing that for these practical cases with a small number of frames N ,

the proposed method nicely super–resolves the LR frames by preserving edges

and details while S&A and VBSR fail due to undefined pixels. Note that for

the sake of practical deployment, to avoid any additional computational cost in

the proposed method, the motion estimation from upsampled LR frames may be

approximated by upscaling the corresponding LR motion vectors.

3.7 Conclusion

We presented a new enhanced S&A algorithm which improves the quality of the

initialization of the HR image in the context of the SR problem. The proposed

algorithm is based on upsampling LR images before registering them. We demon-

strated that this new approach for SR provides a more accurate motion estimation

and registration. Thanks to a dense upsampling, this algorithm is shown to per-

form well on 2D and on depth data. Experimental results with both synthetic
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(a) LR (b) S&A (c) VBSR (d) Proposed method

(e) 2D Image (f) LR (g) S&A (h) Proposed method

Figure 3.8: Results of different SR methods on real LR ToF short sequences.

and real images demonstrate that the proposed algorithm gives results superior

to existing state-of-art methods such as classical S&A and VBSR under various

conditions; low number of input LR images, and different noise levels. In addition

to being robust, the proposed approach showed that it can be reliably used as

an initial guess for SR algorithms. Further optimizing this initialization ensures

a strong resilience to noise without additional computational cost. Finally and

based on the work proposed in this chapter we have developed a software tool for

HR 3D face reconstruction using an LR depth camera, see Appendix B.
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Chapter 4

Depth SR for Dynamic Scenes

Chapter 4 presents an SR algorithm for dynamic depth scenes. The proposed so-

lution can handle scenes containing one or more moving objects even non-rigidly

without prior assumptions on their shape, and without training. The proposed al-

gorithm referred to as Upsampling for Precise Super-Resolution (UP-SR) is based

on a new data model that uses densely upsampled, and cumulatively registered

versions of the observed LR frames. It is these two key components, together,

that constitute the working principle of UP-SR. While we have described the con-

cept of upsampling in Chapter 3, we herein focus on the concept of cumultative

motion estimation.

4.1 Introduction

SR techniques have been largely explored in 2D imaging. We have seen their

extension to depth data in Chapter 3. Further extending them to dynamic depth

scenes with moving objects is another challenge mainly given the additional depth

artifacts caused by motion as summarized in Section 2.2.2. Indeed, we recall that

fast motions and surface reflectivity of objects in the scene create invalid pixels

and the so–called flying pixels; thus, making most existent 2D SR algorithms fail

when directly applied on dynamic depth videos.

Even before talking about dynamic depth data, dynamic scenes in general are

challenging scenarios. They require the local motion of moving objects to be com-

puted accurately. They, hence, may face the problem of self–occlusions especially
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in the case of non–rigidly moving objects. This difficulty arises in depth videos,

but also for 2D sequences [83, 84, 85, 86]. Most of the methods in the literature

are limited due to strong assumptions on the shape and number of moving ob-

jects. Hardie et al. [83] proposed to restrict the application of SR to a masked

area inside a segmented moving object. In [84], Farsiu et al. proposed to com-

bine SR with tracking by using a Kalman filter, and van Eekeren et al. proposed

in [85] to use bilinear interpolation. Boundary pixels around the moving object

consequently can not be super–resolved, which leads to severe artifacts especially

in the case of multiple moving objects in the scene. As a solution, van Eekeren

et al. proposed a new algorithm that solves that, and enhances the resolution of

boundary pixels up to the final desired HR [86]. This method is, however, com-

putationally heavy and based upon strong assumptions wherein the background

is super–resolved first using one of the well–known SR methods for static scenes

[7, 26, 72]. Thus, this method is restricted to the SR factor and also to the size

of the moving object. Indeed if, for example, the size of the moving object covers

more than half of the LR image through the sequence, the method fails. To obtain

a complete HR image, a second step of super–resolving the moving foreground is

needed. This step assumes a single moving object with polygonal boundaries and

a simple linear motion. In addition to these strong assumptions, a segmentation

process is applied, followed by tracking to link the most similar object in each

frame to a so–called reference object. For this reason, the enhancement of the

resolution of dynamic depth scenes has been so far mostly based on fusion with

higher resolution 2D data that has to be simultaneously captured [10, 18]; thus,

requiring a perfect alignment, synchronization, and mapping of the 2D and depth

images, and assuming the correspondence of edges on the two modalities. These

methods may be computationally efficient, but unfortunately they frequently suf-

fer from artifacts caused by the heuristic nature of the enforced statistical model,

mainly copying the intensity texture of 2D images to depth images.

4.2 Problem formulation

The aim of dynamic SR algorithms is to estimate a sequence of HR images {ft0}
of size (

√
n×
√
n) from observed LR sequences. The dynamic SR problem can be
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simplified by reconstructing one HR image at a time, ft0 , for t0 ∈ N using an LR

sequence {gt}t0t0−N+1 of length N , where each LR image gt is of size (
√
m×

√
m)

pixels, with
√
n = r ·

√
m, where r is the SR factor, such that r ≥ 1. Note that for

the sake of simplicity, and without loss of generality, we assume squared images.

Every image gt may be viewed as an LR noisy and deformed realization of ft0 at

the acquisition time t, with t ≤ t0. Rearranging all images in lexicographic order,

i.e., column vectors of lengths n for ft, and m for gt, we consider the following

data model:

gt = DHMt
t0

ft0 + nt, t ≤ t0, (4.1)

where D is a matrix of dimension (m× n) that represents the downsampling

operator, and which we assume to be known and constant over time. The system

blur is represented by the time and space invariant matrix H. The vector nt is

an additive Laplacian noise at time t, as justified in [7, 23]. The matrices Mt
t0

are

(n× n) matrices corresponding to the geometric motion between the considered

HR image ft0 and the observed LR image gt prior to its downsampling.

Based on the data model in (4.1), and using an L1 norm between the observations

and the model, the Maximum Likelihood (ML) estimate of ft0 is obtained as

follows:

f̂t0 = arg min
ft0

t0∑
t=t0−N+1

‖DHMt
t0

ft0 − gt‖1. (4.2)

Using the same approach as in [7, 87], we consider that H and Mt
t0

are block

circulant matrices. Therefore: HMt
t0

= Mt
t0

H. The minimization in (4.2) can

then be decomposed into two steps; initialization by estimating the blurred HR

image zt0 = Hft0 , followed by a deblurring step to recover f̂t0 . In what follows,

we assume that gt is simply the noisy and decimated version of zt without any

geometric warp. We may thus write Mt
t = In,∀t, In being the identity matrix

of size (n × n), hence, Mt
t0

zt0 = zt = Hft. This operation can be assimilated to

registering zt0 to zt. We draw attention to the fact that in the case of static SR,

instead of a sequence, a set of observed LR images is considered, i.e., there is

no order between frames. Such an order becomes crucial in dynamic SR because

the estimation of motion, based on the optical flow paradigm, happens between

consecutive frames only. An accurate dynamic SR estimation is consequently
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highly dependent on the accuracy of estimating the registration matrices between

consecutive frames Mt−1
t , as well as the motion between non–consecutive frames

Mt
t0

with t < t0 − 1.

In Section 4.3, we present our strategy for a cumulative estimation of the non–

consecutive motion matrices Mt
t0

, leading to the final proposed UP-SR algorithm.

4.3 Novel reduced SR data model

Following the result in Section 3.3, we use the enhanced PyrME and follow an

upsampling strategy as a starting point for a new improved SR algorithm. As

shown in Section 3.3, upsampling the observed LR images gt prior to any opera-

tion should lead to a more accurate and robust motion estimation, which enhances

the registration of frames. We define the resulting r–times upsampled image as

gt ↑= U · gt, where U is an (n × m) upsampling matrix. Due to the specific

properties of depth data, the upsampling matrix U has to correspond to a dense

upsampling as defined in Section 3.4.

4.3.1 Cumulative motion estimation

Most of optical flow approaches, including the proposed enhanced PyrME, work

under the assumption of small motions. Thus, by considering the frames which

are far from the reference frame at t0, high registration errors are introduced as

compared to the errors introduced by frames that are closer to t0. Further frames

are therefore considered as outliers. To tackle this problem, we propose a new

registration method. This method is based on a cumulative motion estimation

where we use the temporal information provided by intermediary frames between

the reference frame and the frame under consideration.

Each two consecutive upsampled frames gt ↑ and gt+1 ↑ in the sequence are

related as follows:

gt+1 ↑= Mt+1
t gt ↑ + δt+1, (4.3)

where δt+1 represents the innovation which is assumed to be negligible. We

apply the enhanced PyrME strategy described in Section 3.3 to estimate the
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local motion Mt+1
t for all the pixel positions p. By so doing we obtain a dense

optical flow.

M̂t+1
t = arg min

M
Ψ (gt+1 ↑,gt ↑,M) , (4.4)

where Ψ is a dense optical flow–related cost function, in the simplest case based

on local mean squared errors as in (3.4). The motion from gt ↑ to gt+1 ↑ is

computed in a similar way; thus, leading to the registration of gt ↑ to gt+1 ↑ as

follows:

gt+1
t ↑= M̂t+1

t gt ↑ . (4.5)

The main target is to define gt0t ↑, which represents the registered version of gt ↑
to the reference gt0 ↑ by using all the registered upsampled images gt+1

t ↑, as

defined in (4.5), for t < t0, see Figure 4.1. This approach is similar to the concept

proposed in [88], with an additional improvement where we further reduce the

cumulated motion error by recomputing M̂t+1
t using the already registered frame

gtt−1 ↑ as follows:

M̂t+1
t = arg min

M
Ψ
(
gt+1 ↑,gtt−1 ↑,M

)
. (4.6)

We prove by induction (see Appendix A) the following registration equation for

non–consecutive frames:

gt0t ↑= M̂t0
t gt ↑= M̂t0

t0−1 · · · M̂t+1
t︸ ︷︷ ︸

(t0 − t) times

·gt ↑, (4.7)

where

M̂t0
t = M̂t0

t0−1 · · · M̂t+1
t . (4.8)

Note that due to the high noise level in depth raw data, we apply a preprocessing

step with a bilateral filter before motion estimation. The bilateral filter is only

used in the preprocessing step while the original depth data is mapped in the

registration step and further used in the fusion process.

4.3.2 Proposed UP-SR algorithm

The classical data model for a dynamic scene is given in (4.1). The additive

noise nt follows a white multivariate Laplace distribution as it has been shown to
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Figure 4.1: UP-SR Cumulative Motion Estimation: All intermediate registered

upsampled depth frames are used to register the pixel pt in frame gt ↑ to its

corresponding pixel at the position pt0 from the reference frame gt0 ↑ where gt ↑
and gt0 ↑ are non–consecutive upsampled frames.

better fit the SR problem as compared to a Gaussian noise model [7, 23]. This

distribution is defined as follows:

p(nt) =
m∏
i=1

√
2

2σ
exp

(
−
√

2|nt(i)|
σ

)
, (4.9)

where σ√
2

is a positive Laplace scale factor leading to the diagonal covariance

matrix Σ = σ2Im, with Im being the identity matrix of size (m×m).

Considering the reference frame ft0 , and by left multiplying (4.1) by U, we find:

gt ↑= Mt
t0

Bft0 + Unt, t < t0. (4.10)

In addition, similarly to [78], for analytical convenience, we assume that all pixels

in gt ↑ originate from pixels in ft0 in a one to one mapping. Therefore, each row

in Mt
t0

contains 1 for each position corresponding to the address of the source

pixel in ft0 . This bijective property implies that the matrix Mt
t0

is an invertible

permutation, [M̂t
t0

]−1 = M̂t0
t . Following the result in Section 3.3, and using the

cumulative motion proposed in Section 4.3.1, the motion matrix M̂t
t0

is obtained
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from upsampled LR frames gt ↑, t = t0 − N + 1, · · · , t0, as in (4.8). Thus, the

corresponding registrations to the reference gt0 ↑ are performed as

gt ↑= M̂t
t0

gt0t ↑ . (4.11)

Given (4.11), and by left multiplying (4.10) by [M̂t
t0

]−1, we find

gt0t ↑= Bft0 + νt, t < t0. (4.12)

This finally leads to a new simplified SR data model which is analogous to a

classical image denoising problem using multiple observations, specifically

gt0t ↑= zt0 + νt, t < t0, (4.13)

where νt = M̂t0
t U ·nt is an additive Laplacian noise vector of length n with mean

zero and covariance Σ̃ = M̂t0
t UΣDM̂t

t0
.

Given the data model in (4.13), the two steps of initialization and deblurring are

described below.

Step 1: Initialization

The log–likelihood function associated with (4.13) becomes

ln p(gt0t0−N+1 ↑, · · · ,g
t0
t0 ↑ | zt0) =

= ln

(
t0∏

t=t0−N+1

√
2

2σ
exp

(
−
√

2‖gt0t ↑ −zt0‖1

σ

))

= −N ln
σ√
2
−
√

2

σ

t0∑
t=t0−N+1

‖zt0 − gt0t ↑ ‖1. (4.14)

Maximizing (4.14) with respect to zt0 , we obtain

ẑt0 = arg min
zt0

t0∑
t=t0−N+1

‖zt0 − gt0t ↑ ‖1 ⇒ ẑt0 = medt{gt0t ↑}t0t=t0−N+1. (4.15)

In fact, the equation in (4.15) represents a temporal pixel–wise median filter medt,

which constitutes the fusion step in the UP-SR algorithm. Taking the median

filter as a temporal filter solves the problem of invalid pixels caused by depth

sensors [59], and guarantees that no flying pixels are generated, such erroneous

pixels are caused, in classical SR methods [25, 55], by averaging background and

foreground pixels.
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Step 2: Deblurring

In this work, we adopt Maximum A Posteriori (MAP) estimation using the ro-

bust bilateral total variation (BTV) as a regularization term as defined in [7].

This choice is motivated by the fact that the properties of a bilateral filter,

namely, noise reduction while preserving edges, is now established as an appro-

priate method for depth data processing [9, 27, 38]. The BTV regularization is

defined as follows:

ΓBTV (ft0) =
i=l∑
i=−l

j=l∑
j=−l

α|i|+|j| ‖ ft0 − SixS
j
yft0 ‖1 . (4.16)

The matrices Six and Sjy are shifting matrices that shift ft0 by i, and j pixels in

the horizontal and vertical directions, respectively. The scalar α ∈]0, 1] is the

base of the exponential kernel which controls the speed of decay [48].

The final solution is:

f̂t0 = argmin
ft0

(
‖Bft0 − zt0‖1 + λΓBTV (ft0)

)
, (4.17)

where λ is the regularization parameter. The UP-SR algorithm is summarized in

Algorithm 4.1.

Because of the complexity of dynamic scenes with moving objects, the choice

of the order of the reference frame gt0 with respect to the frames used to super–

resolve it plays a major role. Since we use a temporal median filter in fusing

the registered depth frames, taking gt0 to be in the middle is a natural choice to

estimate the corresponding HR depth image ft0 .

4.4 Statistical performance analysis

In this section we derive the performance of the UP-SR algorithm in terms of

mean square error (MSE) for a fixed noise level. This derivation helps in better

understanding the effect of the number of frames N and the effect of the SR

factor r on the performance of the UP-SR algorithm. In [89, 90], there have been

some attempts to derive the asymptotic limits of SR. However, these attempts

do not take into account the bias of an SR estimator, which is always part of an
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Algorithm 4.1 UP-SR: Upsampling for Precise Super-Resolution

for t0,

1. Choose the reference frame gt0 .

for t, s.t., t0 −N + 1 ≤ t ≤ t0,

do

2. Compute gt ↑ using (3.14).

3. Estimate the registration matrices M̂t0
t using (4.8).

4. Compute gt0t ↑ using (4.7).

end do

end for

5. Find ẑt0 by applying a temporal median estimator (4.15).

6. Estimate f̂t0 by deblurring using (4.17).

end for

image reconstruction process [91]. Moreover, a Gaussian noise model is usually

assumed while UP-SR exploits an additive Laplacian noise model [23]. Taking

into account the considered problem, we propose to adapt the affine bias model

of [92] based on a representation with patches, which leads to an approximation of

the UP-SR bias. This bias is related to two main factors, namely, the error due to

gradient–based motion estimation [91], and to the SR factor r. Few assumptions

are introduced for simplicity of analysis but we will show that they hold in the

experimental evaluation, both quantitatively and qualitatively.

Thanks to the new data model proposed in (4.13), we look into the performance

of the median estimator ẑt0 as defined in (4.15) in terms of MSE. Let us define

tr(·) and cov(·) to be the trace and the covariance functions, respectively. Then,

the MSE may be decomposed into two parts; the bias(·), and the variance var(·),

defined for a given vector z as var(z) = tr (cov(z)). By considering a known

ground truth ft0 , we may then express the MSE as follows:

MSE (ẑt0 , ft0) = var(ẑt0) + ‖bias (ẑt0) ‖2. (4.18)
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4.4.1 Bias computation

Chatterjee and Milanfar have proposed in [92] an affine bias model for image

denoising. The processing is done on patches, thus making the model in [92]

local. We have shown in Section 4.3 how the SR problem can be formulated as a

denoising problem (4.13). We may therefore apply the model in [92] after some

modifications to fit the estimation in (4.15).

We decompose the ground truth image ft0 into n patches {qt0(i), i = 1, · · · , n}
where each patch qt0(i) is of size (r × r) pixels and centered at the pixel ft0(i).

Similarly, the frames gt0t ↑ are decomposed into n overlapping patches {pt(i), i =

1, · · · , n}. In fact, the estimation in (4.15) corresponds to the process of locally

selecting the element with the highest ranking among the N patches at the same

position {pt(i), t = t0 − N + 1, · · · , t0}. Let E(·) be the expectation operator,

and Ir the identity matrix of size (r × r). By considering two frames at different

times t and t′, we may calculate the local bias per patch as explained in [41] as

follows:

bias (q̂t0(i)) = Siqt0(i) + ui, (4.19)

with

Si =
(
E
(
Wt′

t0
(i)
)
− Ir

)
qt0(i),

and

ui = E
(
Wt′

t0
(i)ηt0(i) + wt′

t0
(i)
)
,

where Wt′
t0

(i) and wt′
t0

(i) are the sub–block of M̂t′
t0

centered at position i, and

the local innovation directly related to cumulated innovations defined in (4.3),

respectively. The vector ηt0(i) represents the patch measurement error due to

noise and to blur. The final bias is then defined as:

‖bias (ẑt0) ‖2 =
n∑
i=1

‖bias (q̂t0(i)) ‖2. (4.20)

In the simple case where the average motion per patch and its innovation wt′
t0

(i)

are close or equal to zero, the per–patch bias term becomes E (ηt(i)). This bias

is in fact due to the effects of the per–patch blur and to noise. The statistical
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properties of the noise are the same as those of νt. The blur effect is due to the

(r2 − 1) pixels per patch generated by the upsampling step. Assuming that they

induce a fixed mean error ρ, the total bias may be simplified as follows:

‖bias (ẑt0) ‖2 =
n∑
i=1

‖E (ηt(i)) ‖2 = n · (r2 − 1)ρ2. (4.21)

We can see in (4.21) that, for r = 1, the estimation becomes unbiased. This is

due to the fact that there is no blur caused by the upsampling process. Generally,

the bias term is data dependent because of qt0(i) in (4.19). It also depends on

the SR factor r, and the local motions and noise. From (4.21), we conclude that

the bias is proportional to the squared SR factor r2 and to the image size n.

4.4.2 Variance computation

Assuming that the noise νt follows an i.i.d. n–multivariate Laplace distribution,

we may write: var(ẑt0) = tr (cov(ẑt0)) = n · var (ẑt0(i)), i = 1, · · · , n. Therefore,

we may define the variance as [93]

var (ẑt0(i)) = 2σ2f(N), i = 1, · · · , n, (4.22)

where for N even,

f(N) =
4N !((
N−1

2

)
!
)2

(
1

2

)N+1
2

N−1
2∑

k=0

(N−1
2
k

) (
−1

2

)k
(N + 1 + 2k)3

, (4.23)

and for N odd,

f(N) =
N !(

N
2

)
!
(
N
2
− 1
)
!

(
1

2

)N
2 ( 1

N3

(
1

2

)N
2

+

N
2
−1∑

k=0

(
N−1

2

k

)(
−1

2

)k
7N2 + 8N(k + 1) + 4(k + 1)2

N2(N + 2k + 2)3

)
. (4.24)

Our model assumes that the effect of overlapping patches is expressed in the bias

term. Thus, the variance is independent of r, which corresponds to the simple

denoising operation where no SR is involved and r = 1. It is proportional to

the noise variance σ2 and to the number of measurements N . The Cramèr Rao

bound corresponding to the variance in (4.22) is equal to σ2

2N
. Thus, for a very

long sequence, where N tends to ∞, the variance var(ẑt0) tends to 0.
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4.5 Experimental results

In order to evaluate the performance of the UP-SR algorithm, we start by sep-

arately looking at the impact of the two key components, upsampling and cu-

mulative motion estimation, designed to handle the motion of freely moving and

deforming objects in depth LR videos. Then, we provide a quantitative evalu-

ation comparing with state-of-art approaches by testing on synthetic data with

ground truth. We give qualitative examples using the same synthetic data in

addition to real data acquired in a laboratory environment. Finally, for differ-

ent SR factors and varying noise levels, we compare the obtained results to the

theoretical analysis given in Section 4.4.

4.5.1 Upsampling and motion estimation

To demonstrate the effect of the upsampling step on the motion estimation pro-

cess, we conduct the following experiment. We consider the “Art” depth image

from the Middlebury dataset [37]. We shift it with one pixel in both x and y

directions at the resolution r = 1. As a result, the corresponding motion vector

at a given scale r = R is wL↑
R

= (R,R) pixels, which represents the ground

truth motion. In this experiment, we take R = 8. Next, we estimate motion

vectors for different SR factors, i.e., r varying from 1 to R. These vectors are

further upscaled with the factor R
r

in order to be compared with the motion

ground truth wL↑
R

. The error of the estimated motion is calculated as follows:

εr = ‖R
r
· wL↑r − wL↑

R‖2. The obtained results are shown in Table 4.1. They

clearly support our claim where the error decreases by a factor of 1
r

by increasing

the SR factor r. We can see that estimating motion from upsampled images with

the factor r = R is more accurate than upscaling the estimated motion from the

lowest level with r = 1.

4.5.2 Cumulative registration

To illustrate the effectiveness of the cumulative registration proposed in Sec-

tion 4.3.1, we consider a challenging case of four persons moving with a large

motion in different directions. The used setup is an LR ToF camera, the 3D
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r=1 r=2 r=4 r=6 r=8

εr (pixels) 0.51 0.25 0.13 0.08 0.06

Gain in accuracy (%) 0% 50% 75% 84% 88%

Table 4.1: Errors εr between estimated motions upscaled with a factor of (Rr )

with r = 1, ..., R, and estimated motions from upsampled frames with a resolution

factor R = 8.

(a) (b) (c) (d)

Figure 4.2: UP-SR results with r = 4 using different registration techniques of

a dynamic scene with four persons moving in different directions. The sequence

consists of 9 LR (56 × 61) depth images. (a) Last frame in the LR sequence. (b)

UP-SR without cumulative motion. (c) UP-SR with cumulative motion upscaled

from LR frames. (d) UP-SR with the proposed cumulative motion from upsampled

frames. The largest measured depth in this scene is 2.5 m.

MLI [4], mounted in the ceiling and looking at the scene from the top. One of

the LR frames is shown in Figure 4.2 (a). We apply the UP-SR algorithm on this

sequence using three different registration techniques, namely, non–cumulative

registration, cumulative registration using the upscaled motion vectors estimated

from LR frames, and the proposed cumulative registration using the estimated

motion from upsampled LR frames. The corresponding results are shown in Fig-

ure 4.2 (b), (c), and (d), respectively. They show the superiority of the third

technique over the first two techniques, which confirms the advantage of using

the proposed cumultative motion estimation. We note, nevertheless, interesting

limitations in the case, for example, of intersecting or touching objects, as can

be seen within the bounding boxes in Figure 4.2 (d) and Figure 4.5 (d). This is
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due to the textureless nature of depth images which may cause two objects to be

allocated to the same depth value, and hence makes them wrongly appear as one

object.

4.5.3 Qualitative comparison

We use the “Samba” dataset available in [8], which provides a real sequence of a

3D dynamic scene with HR ground truth, Figure 4.3 (e). We downsample a sub–

sequence of 9 LR frames with a scale factor r = 4. The obtained LR sequence is of

resolution (256× 147) pixels. This sequence is degraded with additive Laplacian

noise with σ varying from 0 to 100 mm. The created LR noisy depth sequence is

then super–resolved. In order to visually evaluate the performance of UP-SR, we

plot in 3D the super–resolved results of the “Samba”–generated sequence for the

noise level of σ = 30 mm. As expected, the UP-SR algorithm provides a better

result by keeping the fine details as compared to the bicubic interpolation and to

the patch–based SISR methods. By zooming on the face part and plotting the

3D error map, it is clear that UP-SR gives the closest result as compared to the

ground truth, see Figure 4.3 for more details.

Using the same setup of the LR ToF camera mounted in the ceiling at a 2.5m

height, we captured an LR depth video of two persons sitting on chairs sliding in

two different directions. A sequence of 9 LR depth images, of size (56×61) pixels,

was super–resolved with an SR factor r = 5 using bicubic interpolation, 2D/depth

fusion [10], dynamic S&A [11], patch–based SISR [9], and the proposed UP-SR.

Visual results for one frame are given in Figure 4.4 (b), (c), (d), (e), and (f),

respectively. Obtained results show that bicubic interpolation and dynamic S&A

fail on depth data mainly on boundary pixels, while the result of the 2D/depth

fusion suffers from strong 2D texture copying on the final super–resolved depth

frame as shown in Figure 4.4 (c). We can see the results of SISR in Figure 4.4 (e),

where the inaccuracies are also observed especially on objects’ boundaries. We

show in Figure 4.4 (f) the result of the UP-SR algorithm where we obtained clear

sharp edges in addition to an efficient removal of noisy pixel values. This is mostly

due to the proposed sub–pixel motion estimation combined with an accurate

cumulative registration leading to a successful temporal fusion of the sequence.
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Figure 4.3: 3D results of different SR methods applied on the “Samba” se-

quence [8]. (a) LR noisy input. (b) Bicubic interpolation. (c) Patch–based SISR [9].

(d) UP-SR, initial estimate. (e) Ground truth. (f) Deblurred bicubic. (g) De-

blurred patch–based SISR. (h) Deblurred UP-SR. Third row represents the 3D

error maps for: (i) Bicubic. (j) Patch–based SISR. (l) Proposed UP-SR. We can

see that the obtained error using the the proposed UP-SR (l) is quite small as

compared to other methods where the bicubic interpolation leads to noisy depth

measurements in addition to the flying pixels represented by the yellow and orange

collors in the 3D error map in (i). The obtained results using the patch–based SISR

is quite smooth and lead to removing fine details, and hence, resulting in large 3D

reconstruction errors, see blue patches in (j). The depth is measured in mm.

Similar results are observed in Figure 4.5 by testing the different methods on the

challenging case of the sequence of four moving persons.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Moving chairs sequence: comparison of the results for different SR

methods with SR factor of r = 5: (a) Last frame of 9 LR (56× 61) depth images.

(b) Bicubic interpolation of the last depth frame in the sequence. (c) 2D/depth

fusion [10]. (d) Dynamic S&A [11]. (e) SISR S&A [9]. (f) Proposed UP-SR.

(a) (b) (c) (d)

Figure 4.5: Comparison of the results for different SR methods with SR factor

of r = 4. These methods are applied on a dynamic sequence of four persons with

fast motion in different directions. (a) Last frame of LR (56 × 61) depth images.

(b) Bicubic interpolation of the last depth frame in the sequence. (c) SISR [9]. (d)

Proposed UP-SR.

4.5.4 Quantitative comparison

We provide a quantitative evaluation of the proposed UP-SR algorithm as com-

pared to two methods, namely, the conventional bicubic interpolation and the
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patch–based single image SR (SISR) given in [9]. We start with the ”Samba”

dataset, where the previously created LR noisy depth sequences are super–resolved

using these methods and the proposed method. We compare the obtained results

at two levels, initial and deblurred using the deblurring step proposed in Sec-

tion 4.3. For the deblurring step we use an exhaustive search to find the best

optimization parameters corresponding to the smallest 3-D reconstruction error.

The quantitative results are reported in Figure 4.6. As expected, by applying

the conventional bicubic interpolation method directly on depth images, a large

error in the reconstructed HR depth image is obtained. This error is mainly

due to flying pixels around object’s boundaries, Figure 4.3 (b). Thus, for a fair

Figure 4.6: MSE at different noise levels for different SR methods applied to an

LR depth sequence created from the “Samba” dynamic data [8], with r = 4 and

N = 9.

comparison we run another round of experiments using a modified bicubic inter-

polation, where we remove all flying pixels by defining a fixed threshold. Yet,

the 3D reconstruction error remains relatively high. This is due to the fact that

bicubic interpolation does not profit from the temporal information provided by

the sequence. Only in the case of one moving object and a very low noise level

(less than 10 mm) the modified bicubic interpolation may be considered as shown
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by the red solid line in Figure 4.6. The performances of SISR, original and de-

blurred, are given in green lines, solid, and dashed, respectively. SISR can be

seen to be robust to noise as its performance is stable even for high noise levels.

The addition of the deblurring step of UP-SR improves the MSE of the original

SISR algorithm. The result of the proposed UP-SR algorithm is shown with a

blue dashed line. Its MSE is the lowest among all the tested methods, and is also

shown to be robust across all noise levels. This result can be explained by the

fact that SISR is a patch–based method where no temporal information is used

in recovering the fine details even after applying a deblurring step. In contrast,

the good quality of the UP-SR results is obtained thanks to the temporal fusion

using the pixel–wise median filtering after a cumulative registration. This fusion

plays a major role in attenuating the temporal noise and represents an appro-

priate process to deal with the problem of flying pixels. Moreover, the spatial

deblurring step leads to further adding a smoothing effect while keeping sharp

edges, hence, recovering fine details.

4.5.5 Statistical performance analysis

In order to illustrate the statistical analysis of the UP-SR algorithm with quan-

titative evaluation, we set up the following experiment. We use the publicly

available toolbox V-REP [94] to create synthetic data with fully known ground

truth for both dynamic and static scenes, Figure 4.7. (a), and Figure 4.7. (b),

respectively. Three depth cameras with the same field of view are fixed at the

same position. These cameras are of different resolutions, namely, 5122, 2562, and

1282 pixels. They are used to capture three sequences for each subject. These

sequences are further degraded with additive Laplacian noise with σ varying from

0 mm to 60 mm. Each sequence is super-resolved using UP-SR by considering 9

successive frames.

Starting with the static case, the corresponding MSE performance of the ini-

tialization step and the second deblurring step of UP-SR are reported in Figure 4.8

in solid and dashed lines, respectively. In the simple case where r = 1, the SR

problem is merely a denoising one where the ground truth is estimated from 9

noisy measurements. In other words, the objective is not to increase resolution,
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(a) (b)

Figure 4.7: Ground truth data used for the statistical performance analysis.

and hence there is no blur due to upsampling. Indeed, as seen in Figure 4.8, the

solid red line overlaps with the dashed-dotted black line which corresponds to the

theoretical variance for the odd case obtained using (4.24). A non-zero bias is

found for r = 2 and r = 4 where the corresponding blue and green solid lines are

above the theoretical variance. This suggests a correlation between motion and

upsampling blur as expressed by the vector ui in (4.19). We note an increased

bias for a larger SR factor r. This is justified by a larger blur effect due to the

dense upsampling and to motion. Finally, the dashed lines in Figure 4.8 confirm

the performance enhancement after applying the optimization in (4.17); thus,

ensuring an effective deblurring. We used an exhaustive search to find the best

parameters for ΓBTV . These quantitative results can be appreciated visually in

Figure 4.10 where the noise level is fixed at σ = 30 mm. The effective resolution

enhancement, with a SR factor of r = 4, and denoising power of UP-SR for a

static depth scene is seen in 3-D in Figure 4.10 (i). The average RMSE in 3-D is

shown in Figure 4.10 (l).

In the dynamic case a similar behaviour has been observed with some dif-

ferences related to the local motion estimation and data type. We can see that

even for the simple case with r = 1 a non-zero bias from the theoretical variance

is found for both the initial and optimized results, represented by the solid and

dashed red lines in Figure 4.9, respectively. This bias is mainly due to the error

caused by the self-occlusion. In the case of low resolution with r = 2 and r = 4,
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Figure 4.8: UP-SR MSE versus noise variance for a static scene.

Figure 4.9: UP-SR MSE versus noise variance for a dynamic scene.

we can see that the non-zero bias in Figure 4.9 follows the same behaviour similar

to the static case but with less shifting from the theoretical variance, especially

for low noise levels as can be seen in the corresponding blue and green solid lines.

This is directly related to the data type. Whereas, in the dynamic case we use

a CAD object Figure 4.7. (a) with less details than the one used for the static

case Figure 4.7. (b). Therefore, the downsampling process has more effect on the

static object and leads to a larger loss in details, hence a larger bias.
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4.6 Conclusion

A new multi-frame super-resolution algorithm for dynamic depth scenes has been

proposed. It has been shown to be effective in enhancing the resolution of dy-

namic scenes with one or multiple non-rigidly moving objects. The proposed

algorithm relies on two main components; first, an enhanced motion estimation

based on a prior upsampling of the observed low resolution depth frames up to

the super-resolution factor. Second, it uses a cumulative motion estimation ac-

curately relating non-consecutive frames in the considered depth sequence, even

for relatively large motions. In addition, the multi-frame super-resolution prob-

lem has been reformulated defining a simplified data model which is analogous

to a classical image denoising problem with additive Laplacian noise, and using

multiple observations. This has led to a median initial estimate, further refined

by a deblurring operation using a bilateral total variation as the regularization

term. For a thorough understanding of the impact of the different parameters,

namely, number of observed frames N and the super-resolution factor r, a statis-

tical model for the proposed approach in terms of MSE has been derived. One

important conclusion is that the blur effect is due to both upsampling, motion

and occlusions. Extensive evaluations using synthetic and real data have been

carried out, showing the consistent good performance of the proposed approach

in full correspondence with the derived theoretical statistical model.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.10: Statistical performance analysis of UP-SR for static depth scenes.

First, second and third columns correspond respectively to r = 1, r = 2, and r = 4

where (a), (b) and (c) are the noisy LR observations; (d), (e), and (f) are the result

of the Initial of UP-SR; (g), (h), and (i) are the result of deblurring step of UP-SR.

The corresponding error maps as compared with the ground truth Figure 4.7. (b)

are given in (j), (k), and (l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: Statistical performance analysis of UP-SR for dynamic depth scenes.

First, second and third columns correspond respectively to r = 1, r = 2, and r = 4

where (a), (b) and (c) are the noisy LR observations; (d), (e), and (f) are the result

of the initialization step of UP-SR; (g), (h), and (i) are the result of the deblurring

step of UP-SR. The corresponding error maps as compared with the ground truth

Figure 4.7. (a) are given in (j), (k), and (l).
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Chapter 5

Recursive Depth SR for Dynamic

Scenes

Chapter 5 presents a dynamic multi–frame super–resolution algorithm which en-

hances low resolution dynamic depth videos containing freely non–rigidly moving

objects. Existent methods are either limited to rigid objects, or restricted to

global lateral motions. The proposed algorithm in Chapter 4, in addition, handles

local lateral motions but still discards radial displacements. We herein address

these shortcomings by accounting for non–rigid displacements in 3D. In addition

to 2D optical flow, we estimate the depth displacement, and simultaneously cor-

rect the depth measurement by Kalman filtering. This concept is incorporated

efficiently in a multi–frame super–resolution framework. It is formulated in a

recursive manner that ensures an efficient deployment in real–time.

5.1 Introduction

In Chapter 4, we proposed the UP-SR algorithm as a multi–frame SR algorithm

for dynamic depth scenes. This algorithm is, however, limited to lateral motions,

and fails in the case of radial deformations. Moreover, it is not practical due

to a heavy cumulative motion estimation process applied to a certain number of

frames buffered in the memory. Alternatively, a recursive formulation may be

thought of as in [95] where an iterative SR was proposed based on a block affine

motion model resulting in a relatively efficient processing. This, however, is not
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applicable to non–lateral motions. Earlier attempts for recursive SR approaches

have proposed to use a Kalman filter formulation [78, 84, 96, 97, 98]. These

methods work only under two conditions: constant translational motion between

low resolution frames which represents the system motion model (i.e. transition

matrix), and intensity consistency assumption between each pair of images in the

video sequence. In the case of dynamic depth videos, these assumptions are not

always valid. Indeed, for such videos, individual pixel motions have to be tracked

through the video. A local motion model such as a dense 2D optical flow as

in [13] is not sufficient, it is necessary to account for the full 3D motion in the SR

reconstruction, known as scene flow, or the 2.5D motion, known as range flow.

For a reduced complexity we herein propose to approximate range flow by

estimating radial motions on top of the 2D optical flow. Moreover, we propose a

recursive depth multi–frame SR algorithm by using multiple Kalman filters. To

ensure efficiency, we propose to treat a video as a set of one–dimensional signals.

By so doing, we show that we reach an approximation of range flow; which

enables us to take radial deformations into account in the SR estimation. To

adequately preserve the smoothness properties of the depth surface, and remove

noise and blur without over smoothing, we propose to use a multi–level version of

the iterative bilateral total variation regularization given in [7]. In summary, the

contribution of this chapter is a new mutli–frame depth SR algorithm which has

the following properties: 1) Recursive, hence, suitable for real–time applications.

2) Robust to radial motions without explicitly computing range flow. 3) Accurate

depth video reconstruction thanks to the proposed multi–level iterative bilateral

regularization. An overview of the proposed algorithm is shown in Figure 5.1.

5.2 Background and problem formulation

Let us consider an LR video {gt} acquired with a depth sensor. The captured

scene is assumed to be dynamically and non–rigidly deforming without any as-

sumption on the number of moving objects. Each LR observation gt is represented

by a column vector of length m corresponding to the lexicographic ordering of

frame pixels. The objective of depth SR is to reconstruct an HR depth video {ft}
using {gt}, where each frame ft is of length n with n = r2 ×m such that r ∈ N∗
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5.2 Background and problem formulation

Figure 5.1: Flow chart of the proposed multi–frame depth super–resolution algo-

rithm for dynamic depth videos containing one or multiple non–rigidly deforming

objects.

is the SR scale factor. In the classical multi–frame depth SR problem, in order

to reconstruct a given frame ft0 ∈ {ft}, also known as the reference frame, the N

preceding observed LR frames are used.

An LR observation gt is related to the reference frame through the following data

model:

gt = DHMt
t0

ft0 + nt, t0 ≥ t, (5.1)

where D is a known constant downsampling matrix of dimension (m× n). The

system blur is represented by the time and space invariant matrix H. The (n× n)

matrices Mt
t0

correspond to the motion between ft0 and gt before downsampling.

The vector nt is an additive white noise at time instant t. Without loss of gener-

ality, both H and Mt
t0

are assumed to be block circulant commutative matrices.

As a result, the estimation of ft0 may be decomposed into two steps; estimation

of a blurred HR image zt0 = Hft0 , followed by a deblurring step to recover f̂t0 .

The UP-SR solution proposed in Chapter 4 computes a cumulative motion M̂t0
t

through the estimation of intermediate dense lateral motions M̂t+1
t between con-

secutive frames. The information in M̂t+1
t is equivalent to finding the horizontal

and vertical displacements in pixels uit and vit , respectively, for each pixel po-

sition pit = (xit , y
i
t ), i = 1, · · · , n. In the continuous case, these displacements

correspond to the lateral motions mit = (uit , v
i
t ) where uit =

dxit
dt

and vit =
dyit
dt

.
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Radial displacements in the depth direction, often encountered in depth se-

quences, are not handled. In order to address this problem, it is important to

consider and incorporate the full 3D motion per pixel or the 2.5D version of dense

optical flow [60], known as range flow, in the UP-SR framework (Section 2.3).

In this work we propose to decouple the estimation of lateral local motions

mit from the estimation of the radial displacement wi
t . This is in order to reduce

complexity, but also in order to introduce a probabilistic framework that allows

us to recursively estimate wi
t and the corrected depth value at the same point.

We propose to use (2.10) to find mit first. Then, we proceed to estimate wi
t under

a probabilistic framework where we account for radial motion uncertainties.

5.3 Proposed approach

The proposed depth video enhancement approach is based on an extension of the

UP-SR algorithm. As our goal is a real–time processing, the major difference re-

sides in replacing the cumulation of N frames in UP-SR for processing a reference

frame at time t0, by a recursive processing that only considers two consecutive

frames at (t − 1) and t where the current frame is to be enhanced each time.

We denote the ith element of a lexicographically ordered vector image x as xi.

The measurement model per pixel for each current frame may then be defined by

setting t0 = t in (4.13), resulting in

z̃it := [gt ↑]i = zit + [nt ↑]i ∀t, (5.2)

where nt ↑= Unt, with U being the upsampling matrix defined in Section 3.4.

In this work, the additive noise [nt ↑]i is assumed to be zero mean Gaussian with

the variance σ2
n, i.e., [nt ↑]i ∼ N(0, σ2

n).

The problem at hand is then to estimate zit given a noisy measurement z̃it and

an enhanced noise–free depth value zit−1 estimated at the preceding iteration.

The time–deforming depth scene is viewed as a dynamic system where the state

of each pixel is defined by its depth value and radial displacement. These states

are estimated dynamically over time using a Kalman filter. The UP-SR dynamic

model in (4.3) is directly used to characterize the dynamic system and introduce
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the uncertainties of depth measurements and radial deformations in one prob-

abilistic framework. The proposed recursive approach, that we will refer to as

RecUP-SR, is summarized in the flow chart of Figure 5.1. The main steps are

described in what follows.

5.3.1 Lateral registration

In order to be able to carry a per–pixel processing, essential for handling non–

rigid deformations, one needs to properly align these pixels between consecutive

frames. This is achieved by registration through 2D dense optical flow that esti-

mates the lateral motion between the intensity images at−1 and at.

In the case of RGB-D cameras, these images are provided directly. Mapping and

synchronization have to be ensured, though, as in [64] and [66].

In the case of ToF cameras, the provided intensity images, known as amplitude

images, can not be used directly. Their intensity values differ significantly de-

pending on the camera integration time and on the distance of the scene from

the camera; hence, not verifying the optical flow assumption of brightness con-

sistency. Thus, in order to guarantee an accurate registration, it is necessary to

apply a standardization step similar to the one proposed in [12] prior to motion

estimation, see Figure 5.2.

If intensity images are not available, for example when using synthetic data, the

2D optical flow can be directly estimated using LR raw depth images, but after

a denoising step (e.g. using a bilateral filter). We note that this denoising should

only be used in the preprocessing step. The original raw depth data is the one

to be mapped in the registration step.

In all cases, as for UP-SR, we register the upsampled versions of the LR images

after upscaling the motion vectors estimated from the LR images. We define

the registered depth image from (t − 1) to t as z̄tt−1. Consequently, the radial

displacement wi
t may be initialized by the temporal difference between depth

measurements, i.e.,

wi
t ≈ z̃it − [z̄tt−1]

i
. (5.3)

This first approximation of wi
t is an initial value that requires further refinement

directly accounting for the system noise. We propose to do that using a per–pixel

73



5. RECURSIVE DEPTH SR FOR DYNAMIC SCENES

(a) (b)

(c) (d)

Figure 5.2: Correcting amplitude images using a standardization step [12]. (a)

and (b) show the original amplitude images for a dynamic scene containing a hand

moving towards the camera where the intensity (amplitude) values differ signifi-

cantly depending on the object distance from the camera. The corrected amplitude

images for the same scene are presented in (c) and (d), where the intensity consis-

tency is preserved.

tracking with a Kalman filter as detailed in Section 5.3.2.

5.3.2 Refinement by per–pixel tracking

According to the definition of image pixel registration, we have zit−1 := [z̄tt−1]
i
.

The dynamic model follows from (4.3) as

zit = zit−1 + µi
t ∀t, (5.4)

where µt is a noisy version of the innovation δt first introduced in the UP-SR

dynamic model in (4.3). Whereas in UP-SR this innovation is neglected, in
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RecUP-SR it is assimilated to the uncertainty considered in the dynamic model.

In this work, we assume a constant velocity model with an acceleration γit fol-

lowing a Gaussian distribution γit ∼ N(0, σ2
a). As a result, the noisy innovation

may be expressed as:

µi
t = wi

t−1∆t+
1

2
γit ∆t

2. (5.5)

The dynamic model in (5.4) can then be rewritten as:{
zit = zit−1 + wi

t−1∆t+ 1
2
γit ∆t

2

wi
t = wi

t−1 + γit ∆t
. (5.6)

Considering the following state vector:

sit =

(
zit
wi
t

)
, (5.7)

where both the depth measurement and the radial displacement are to be filtered,

(5.6) becomes:

sit = Ksit−1 + γi
t , (5.8)

with K =

(
1 ∆t
0 1

)
, and γi

t = γit

(
1
2
∆t2

∆t

)
is the process noise which is white

Gaussian with the covariance

Q = σ2
a∆t

2

(
∆t2/4 ∆t/2
∆t/2 1

)
. (5.9)

Using standard Kalman equations, the prediction is achieved as{
ŝit|t−1 = Ksit−1|t−1,

P̂i
t|t−1 = KPi

t−1|t−1K
T + Q.

(5.10)

The error in the prediction of ŝit|t−1 is corrected using the observed measurement

z̃it . This error is considered as the difference between the prediction and the

observation, and weighted using the Kalman gain matrix Gi
t|t which is calculated

as follows:

Gi
t|t = P̂i

t|t−1b
T
(
bP̂i

t|t−1b
T + σ2

n

)−1

, (5.11)

such that the observation vector is b = (1, 0)T . The corrected state vector sit|t =(
zit|t
wi
t|t

)
and corrected error covariance matrix Pi

t are computed as follows:

{
sit|t = ŝit|t−1 + Gi

t|t

(
z̃it − bŝit|t−1

)
,

Pi
t|t = P̂i

t|t−1 −Gi
t|tbP̂i

t|t−1.
(5.12)
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This per–pixel filtering is extended to all the depth frame resulting in n Kalman

filters run in parallel. Each filter tracks the trajectory of one pixel. At this level,

pixel trajectories are assumed to be independent. The advantage of the processing

per pixel is to keep all the required matrix inversions for (2 × 2) matrices. The

burden of traditional Kalman filter–based SR as in [78] will consequently be

avoided. Moreover, for a recursive multi–frame SR algorithm, instead of using the

video sequence of length N to recover one frame, we use the preceding recovered

frame f̂t−1 to estimate ft from the current upsampled observation gt ↑.
Furthermore, in order to separate background from foreground depth pixels,

and tackle the problem of flying pixels, especially around edges, we define a

condition for track re-initialization. This condition is based on a fixed threshold

τ such that: {
Continue the track if |z̃it − ẑit|t−1| < τ ;

New track & spatial median if |z̃it − ẑit|t−1| > τ.

The choice of the threshold value τ is related to the type of the used depth sensor

and the level of the sensor–specific noise.

The assumption of independent trajectories leads to blurring artifacts, and re-

quires a corrective step to bring back the correlation between neighbouring pixels

from the original depth surface Z. To that end, we use an L1 minimization where

we propose a multi–level iterative BTV regularization as detailed in Section 5.3.3.

5.3.3 Multi–level iterative bilateral TV deblurring

Similarly to the UP–SR algorithm, ft is estimated in two steps; first, finding

a blurred version ẑt, which is the result of Section 5.3.2. Then the deblurring

takes place to recover f̂t from ẑt. To that end, we apply the following deblurring

framework:

f̂t = argmin
ft

(
‖Bft − ẑt‖1 + λΓ(ft)

)
, (5.13)

where λ is a regularization parameter that controls the amount of regularization

needed to recover the original blur and noise–free frame. We choose to use a BTV

regularizer [7] in order to enforce the properties of bilateral filtering on the final

solution [48, 99, 100]. It is a filter that has been shown to perform well on depth
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data [18, 101, 102]. Indeed, it is a filter that smoothes an image while preserving

its sharp edges based on pixel similarities in both the spatial and in the intensity

domains. The BTV regularizer is defined as:

Γ(ft) =
i=I∑
i=−I

j=J∑
j=−J

α|i|+|j| ‖ ft − Si
xS

j
yft ‖1 . (5.14)

The matrices Si
x and Sj

y are shifting matrices which shift ft by i, and j pixels

in the horizontal and vertical directions, respectively. The scalar α ∈]0, 1] is the

base of the exponential kernel which controls the speed of decay.

Minimizing the cost function in (5.13) has shown to give good results in UP-

SR [41]; however, unless all the parameters are perfectly chosen, which is a chal-

lenge in itself, the final result can end up being a denoised and deblurred version

of ft, which is also over–smoothed. This issue has been addressed by iterative

regularization in the case of denoising [45, 46, 47, 103], and in the more general

case of deblurring [104].

In the same spirit, we use an iterative regularization where we propose to fo-

cus on the choice of the regularization parameter λ. Specifically, our deblurring

method consists in running the minimization (5.13) multiple times where the reg-

ularization strength is progressively reduced in a dyadic way. We define, thus, a

multi–level iterative deblurring with a BTV regularization such that the solution

at level l is

f̂
(l)
t = argmin

f
(l)
t

(
‖Bf

(l)
t − f

(l−1)
t ‖1 +

λ

2l
Γ(f

(l)
t )
)
, with f

(0)
t = ẑt. (5.15)

Combined with a steepest descent numerical solver, the proposed solution is de-

scribed by the following pseudo–code: The parameter β is a scalar which repre-

sents the step size in the direction of the gradient, I is the identity matrix, and

sign(·) is the sign function. The parameter L is the number of levels considered,

and K is the number of iterations for one level.

We note that the correct formulation of the problem at the beginning of

Section 5.3 is to use the final deblurred depth value fit−1 obtained as a solution

of (5.15) instead of zit−1.
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Algorithm 5.1 Multi-level iterative bilateral total variation deblurring.

for l = 1, · · · , L
for k = 1, · · · , K

f̂
(l,k)
t =f̂

(l,k−1)
t − β

{
BT sign

(
Bf̂

(l,k−1)
t − zt

)
+

λ

2l

i=I∑
i=−I

j=J∑
j=−J

α|i|+|j|
(
I− S−jy S−ix

)
sign

(
f̂

(l,k−1)
t − Si

xS
j
y f̂

(l,k−1)
t

)}
end for

zt ←− f̂
(l,K)
t

end for

5.4 Experimental results

In this section, we test the proposed RecUP-SR algorithm on different LR depth

videos where we evaluate its performance using: (i) synthetic depth videos with

a known ground truth, and (ii) real depth videos of dynamic scenes with non–

rigid deformations captured by a ToF camera (PMD camboard nano [3]). The

synthetic data is used in order to provide a quantitative evaluation as compared

to state–of–art methods as well as a full understanding of the contribution of the

intermediate steps of RecUP-SR on the quality of the final result. The tested

examples vary from simple scenes with one moving object to a more complex

cluttered scenes containing multiple moving objects with non–rigid deformations.

5.4.1 Evaluation on synthetic data

We evaluate the performance of the RecUP-SR algorithm at different levels. First,

we show how it is efficient in filtering both the depth value as well as the radial

displacement and hence the corresponding velocity. Then, we compare the accu-

racy of the reconstructed 3D super–resolved scene with state–of–art results. The

comparison is done by back–projecting the reconstructed HR depth images to the

3D world using the camera matrix and calculating the 3D Root Mean Squared

Error (RMSE) of each back–projected 3D point cloud with respect to the ground

truth 3D point cloud. Finally, we show the importance of the contribution of
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Figure 5.3: Tracking results for different depth values randomly chosen from the

super–resolved sequences with different SR scale factors r = 1, r = 2, and r = 4,

are plotted in (a), (b), and (c), respectively. The corresponding filtered velocities

are shown in (d), (e), and (f), respectively.

each step of the proposed RecUP-SR algorithm in improving the quality of the

final result.

5.4.1.1 Filtering of depth measurements and radial displacements

We start with a simple and fully controlled scene containing one 3D object mov-

ing radially with respect to the camera. The considered object in this experiment

is a synthetic hand. A sequence of 20 depth frames is captured with a 5 cm differ-

ence between each two successive frames, and ∆t = 0.1 seconds. The generated

sequence is downsampled with a scale factor of r = 2, and r = 4, and further

degraded with additive Gaussian noise with a standard deviation σ varying from

10 to 80 mm. We then super–resolve the obtained LR noisy depth sequences by

applying the proposed algorithm with a scale factor of r = 1, r = 2, and r = 4.

Obtained results show that by increasing the scale factor r, a higher 3D error is

introduced as seen in Figure 5.4. In the simple case where r = 1, the SR problem

is merely a denoising one, and hence there is no blur due to upsampling. In
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Figure 5.4: 3D RMSE in mm of the super–resolved hand sequence using the

proposed method with different SR scale factors. Increasing the SR factor leads

to a higher 3D reconstruction error. This is due to the blurring effects of the

upsampling process and the lower resolution of the used LR depth sequence as

compared to the one used with r = 1.

contrast, by increasing the SR factor r, more blurring effects occur leading to a

higher 3D error.

Furthermore, in order to evaluate the quality of the filtered depth data and

the filtered velocity, we randomly choose one pixel pit from each super–resolved

sequence with r = 1, r = 2, and r = 4, and a fixed noise level for σ = 50 mm. For

each one of these pixels, we track the corresponding enhanced depth value fit and

the corresponding enhanced velocity
∆fit
∆t

through the super-resolved sequence.

In Figure 5.3 (a), (b), and (c), we can see how the depth values are filtered

(blue lines) as compared to the noisy depth measurements (red lines) for all scale

factors. Similar behaviour is observed for the corresponding filtered velocities in

Figure 5.3 (d), (e), and (f).

5.4.1.2 Comparison with state–of–art methods

In order to compare our algorithm with state-of-art methods, we use a more com-

plex scene with a highly non–rigidly moving object. We use the publicly available
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Table 5.1: 3D RMSE in mm for the super–resolved dancing girl sequence using

different SR methods. These methods are applied on LR noisy depth sequences

with two noise levels. The SR scale factor for this experiment is r = 4.

σ = 25mm

Arm Torso Leg Full body

Bicubic 10.5 7.5 8.9 8.8

SISR 9.0 5.6 8.4 6.6

UP-SR 22.2 15.6 9.3 15.9

Proposed 9.6 3.6 7.5 6.3

σ = 50mm

Arm Torso Leg Full body

25.2 14.9 13.1 16.5

14.1 6.9 9.6 9.7

29.7 17.4 12.8 23.5

9.9 4.8 8.1 9.5

“Samba” [8] data. This dataset provides a real sequence of a full 3D dynamic

dancing lady scene with high resolution ground truth. This sequence contains

both non–rigid radial motions and self–occlusions, represented by arms and legs

movements, respectively. We use the publicly available toolbox V-REP [94] to cre-

ate from the “Samba” data a synthetic depth sequence with fully known ground

truth. We choose to fix a depth camera at a distance of 2 meters from the 3D

scene. Its resolution is 10242 pixels. The camera is used to capture the depth

sequence. Then, similarly to the previous set-up, we downsample the obtained

depth sequence with r = 4 and further degrade it with additive Gaussian noise

with standard deviation σ varying from 0 to 50 mm. The created LR noisy depth

sequence is then super–resolved using state-of-art methods, the conventional bicu-

bic interpolation, UP-SR [13], SISR [9], and the proposed RecUP-SR. Table 5.1

reports the 3D reconstruction error of each method at different noise levels. The

comparison is done at two levels: (i) Different parts of the reconstructed 3D body,

namely, arm, torso, and the leg, and (ii) full reconstructed 3D body. As expected,

by applying the conventional bicubic interpolation method directly on depth im-

ages, a large error is obtained. This error is mainly due to the flying pixels around

object boundaries. Thus, we run another round of experiments using a modified

bicubic interpolation, where we remove all flying pixels by defining a fixed thresh-

old. Yet, the 3D reconstruction error is still relatively high across all noise levels,

see Table 5.1. This is due to the fact that bicubic interpolation does not profit

from the temporal information provided by the sequence. We observe in Table 5.1

that the proposed method provides, most of the time, better results as compared
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Figure 5.5: 3D Plotting of one super–resolved depth frame with r = 4 using: (b)

bicubic interpolation, (c) Patch based single image SR (SISR) [9], (d) UP-SR [13],

(e) Proposed RecUP-SR algorithm with [L = 3,K = 7, λ = 2.5]. (a) 3D plotting

of one LR noisy depth frame. (f) 3D ground truth. Distance units on the coloured

bar are in mm.
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to state-of-art algorithms. In order to visually evaluate the performance of the

proposed RecUP-SR algorithm, we plot the super–resolved results of the dancing

girl sequence in 3D. We show the results for the sequence at σ = 30 mm. We note

that RecUP-SR outperforms state-of-art methods by keeping the fine details (e.g.

the details of the face) as can be seen in Figure 5.5 (e). Note that the UP-SR

algorithm fails in the presence of radial movements and self–occlusions, see black

boxes in Figure 5.5 (c). In contrast, the SISR algorithm can handle these cases,

but cannot keep the fine details due to its patch–based nature, see Figure 5.5 (d).

In addition, a heavy training phase is required.

5.4.1.3 Evaluation of the effects of different steps

In order to better understand the contribution of each step of the proposed al-

gorithm, we consider the “Facecap” data [105] which is a simple scene of a real

3D face sequence with non–rigid deformations. We use a similar setup to the

one used with the “Samba” dataset by fixing a camera at a distance of 0.7 me-

ter from the 3D face. We create a new synthetic depth sequence of the moving

face. Then, we downsample the obtained depth sequence with r = 4 and further

degrade it with additive Gaussian noise with standard deviation σ varying from

0 to 20 mm. The obtained LR noisy depth sequence is then super–resolved with

r = 4 using: 1) Kalman filter, 2) spatial deblurring, and 3) the proposed RecUP-

SR algorithm. In the deblurring process, two different techniques are considered,

one–level deblurring and the proposed multi–level deblurring. The accuracy of

the reconstructed 3D face sequences is measured by calculating the 3D RMSE. In

Figure 5.6, we report the obtained results for the super–resolved LR noisy depth

sequence with σ = 10 mm. We see how the Kalman filter attenuates the noise

gradually and hence decreasing the 3D RMSE for an increased number of frames

(black solid line). We notice that, in the presence of a non-smooth motions, the

constant velocity filtering model needs few number of iterations (frames) before

converging which affects the reconstruction quality of the super–resolved depth

frame. For example, due to the up and down non–smooth and fast motions of

the eye brows between frame number 20 to 25, the per–pixel temporal filtering is

not converged yet, and hence the 3D error increases for a few number of frames
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Figure 5.6: Effects of applying different steps separately and combined on a

sequence of 35 LR noisy depth frames with σ = 10 mm. The combination of the

Kalman filter with the spatial multi–level deblurring provides the best performance

in reducing the 3D RMSE.

before decreasing again Figure 5.6 (Black solid line).

By considering the deblurring step alone without engaging in the per–pixel tempo-

ral filtering process, we can see that the 3D RMSE is almost constant throughout

the sequence as shown in Figure 5.6 (solid blue and green lines). This can be

explained by the fact that there is no engagement of temporal information. In-

stead only a spatial filtering is applied at each frame independently of each other.

Finally, by looking at the obtained results in Figure 5.6, we find that the best

performance is achieved by combining the spatial and the temporal filters (blue

and green dashed lines), with an advantage of using the proposed multi–level

deblurring approach over the one–level conventional deblurring approach. Note

that an intensive search is applied to find the best deblurring parameters which

lead to the smallest 3D RMSE error. This combination, in fact, constitutes the

key component of the proposed algorithm. In Figure 5.7, we show the physical

effects of the previously discussed cases by plotting the corresponding 3D super–

resolved results of the last HR depth frame in the sequence. Starting from the

first column, we show the LR noisy faces for different noise levels. The filtered

84



5.4 Experimental results

Figure 5.7: 3D plotting of (starting from left column): 1) LR noisy depth frames,

2) super–resolved depth frames with r = 4 using Kalman filter, 3) super–resolved

depth frame with r = 4 using the proposed method with one–level deblurring step

with [L = 1,K = 25] 4) super–resolved depth frame with r = 4 using the proposed

method with the proposed multi–level deblurring step with [L = 5,K = 25], 5)

Error map of comparing the obtained results in forth column with the 3D ground

truth.

results using a per–pixel Kalman filtering are shown in the second column where

we see how the noise has been attenuated. The results of the proposed algorithm

using the one–level deblurring step, with L = 1 and K = 25, and the multi–level

deblurring step, with L = 5 and K = 5, are plotted in the third and fourth

columns, respectively. By visually comparing the obtained results, we find that

the proposed algorithm with the multi–level deblurring process provides the best

results and hence confirms the quantitative evaluation of Figure 5.6 (blue dashed
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Figure 5.8: Results of applying the proposed algorithm on a real sequence cap-

tured by a LR ToF camera (120×160) pixels of a non–rigidly moving face. First

and second rows contain a 3D plotting of selected LR captured frames. Third and

fourth rows contain the 3D plotting of the super-resolved depth frames with r = 4.

Distance units on the coloured bar are in mm. Full video available through this

link.

line) where it provides the lowest 3D RMSE.

5.4.2 Evaluation on real data

We run the RecUP-SR on a different LR real depth sequences captured with a

ToF camera (PMD camboard nano with resolution of 120 × 160 [3]). First, we

start with a simple scene with one non–rigidly moving face. Then, we show the

robustness of RecUP-SR to topology changes by testing it on more complex and

cluttered scene containing multiple moving objects
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Figure 5.9: Results of different super–resolution methods with a scale factor of r =

4 applied to a low resolution dynamic depth video captured with a ToF camera with

a frame rate of 50 ms per frame. (a) Raw low resolution depth frame. (b) Bicubic

interpolation. (c) Patch Based Single Image Super–Resolution (SISR) [9]. (d)

Upsampling for Precise Super–Resolution (UP-SR) [13]. (e) Proposed algorithm.

Distance units on the coloured bar are in mm.

5.4.2.1 One non–rigidly moving object

We test the proposed algorithm on a real LR depth sequence of a non–rigidly

deforming face with large motions and local non–rigid deformations. We super–

resolve this sequence using the proposed algorithm with an SR scale factor of

r = 4. Obtained results are given in 3D in Figure 5.8. They visually show the

effectiveness of the proposed algorithm in reducing noise, and further increasing

the resolution of the reconstructed 3D face under large non–rigid deformations.

Full video of results is available through this link. To visually appreciate these

results as compared to state-of-art methods, we tested the bicubic, UP-SR, and

SISR methods on the same LR real depth sequence. Obtained results show the

superiority of the RecUP-SR as compared to other methods, see Figure 5.9.

In order to show the evolution of the tracking process through the time, we

plot the filtered depth value of a randomly chosen tracked pixel Figure 5.12.

The blue line shows the filtered trajectory of this pixel as compared to its row

noisy measurement in red. Furthermore, we show in Figure 5.10 (b) how the

raw radial depth displacement is noisy and ranges from −50 mm to −10 mm

while in fact the real displacement of the face in this frame has to be smooth

and homogeneous. By applying the proposed algorithm, the noisy displacement

is refined to match the real homogeneous displacement of an approximate value
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Figure 5.10: Radial depth displacement filtering. (a) 2D optical flow calculated

from the normalized amplitude images. (b) Raw noisy depth radial depth displace-

ment. (c) Filtered radial depth displacement using Kalman filter. (d) Filtered

radial depth displacement using the proposed method. Unites in the coloured bar

are in mm.

of −20 mm, see Figure 5.10 (d). We run another experiment on a second real

sequence composed of 120 depth frames of a face moving with long hair causing

strong self–occlusions. The goal of this experiment is to show how the tracking

process is reinitialized in the self–occlusion case for all pixels representing the

self–occluded area. We super–resolve the acquired sequence with a scale factor of

r = 6. Obtained results are shown in Figure 5.11. It is interesting to see in the

third row how the tracking life for each pixel is evolving through the time with

stronger occlusions causing shorter tracking. For example, all pixels with the dark

red colors in Figure 5.11 (d) have been appeared through the full sequence and

no self–occlusion happened and hence the track continues. In contrast, for most
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Figure 5.11: Results of applying the proposed algorithm on a real sequence

captured by a LR ToF camera (120×160) pixels of a non–rigidly moving face. First

and second rows contain a 3D plotting of selected LR captured frames and the 3D

plotting of the super-resolved depth frames with r = 6, respectively. Third row

shows the tracking life for each pixel through the sequence. Units of the coloured

bar represents the tracking life (iterations).

of the boundary pixels the tracking process has been reinitialized (blue dark) and

thus a spatial median filter is applied for these pixels.

5.4.2.2 Cluttered scene

Finally, we tested RecUP-SR on a cluttered scene of moving hands transferring

a ball from one hand to another. This scene is quite complex where it contains

multiple objects moving with non–rigid deformations, and self–occlusions with

one hand passing over the second one. Moreover, the scene contains a challenging

case of topology changes represented by hands touching each other and then

separating. We note that a strong temporal filtering leads to a longer time for

convergence in the case of self–occlusions or non–smooth motions. Similarly,
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Figure 5.12: Filtered depth value profile of a tracked pixel through the super–

resolved sequence of a real face, with SR scale factor of 4.

a strong spatial filtering leads to undesired over-smoothing effects and hence

removing the fine details from the final reconstructed HR depth sequence. Thus,

in order to handle such a scene, a trade–off between the temporal and spatial

filtering has to be achieved. Obtained results in Figure 5.13 show the robustness

of the proposed algorithm in handling this kind of scenes. Full video of results is

available through this link.

5.4.2.3 Running time

The algorithm’s run–time on all sequences acquired using the (PMD camboard

nano [3]) with a SR scale factor of r = 4 is 50 ms per frame using a 2.2 GHz i7

processor with 4 Gigabyte RAM.

5.5 Conclusion

We have proposed a new algorithm to enhance the quality of low resolution noisy

depth videos acquired with cost–effective depth sensors. This algorithm is de-

signed to handle non–rigid deformations thanks to a per–pixel filtering that di-
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Figure 5.13: Results of applying the proposed algorithm on a real sequence

captured by a LR ToF camera (120×160) pixels of a cluttered scene. First row

contains a 3D plotting of selected LR captured frames. Second row contains a 3D

plotting of the corresponding super–resolved depth frames with r = 3. Full video

available through this link.

rectly accounts for radial displacements. It is formulated in a dynamic recursive

way that allowed a computationally efficient real–time implementation on CPU.

Moreover, as compared to state-of-art methods, the processing on depth maps

while estimating the local motions in 3D has allowed to maintain a good ro-

bustness against topological changes and independence of the number of moving

objects in the scene. In order to keep smoothness properties without losing de-

tails, each filtered depth frame is further refined using a multi–level iterative

bilateral total variation regularization after filtering and before proceeding to the

next frame in the sequence. In the case of self–occlusions, the proposed algorithm

needs a few number of depth measurements before converging, which is not suit-

able for some applications. Our future work will focus on increasing robustness

to self–occlusions.
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Chapter 6

Evaluation of Bilateral Filtering

The well–known bilateral filter is used to smooth noisy images while keeping their

edges. This filter is commonly used with Gaussian kernel functions without real

justification. The choice of the kernel functions has a major effect on the filter

behavior. We propose to use exponential kernels with L1 distances instead of

Gaussian ones. We derive Stein’s Unbiased Risk Estimate to find the optimal

parameters of the new filter and compare its performance with the conventional

one. We show that this new choice of the kernels has a comparable smoothing

effect but with sharper edges due to the faster, smoothly decaying kernels.

6.1 Introduction

Image denoising is a common image restoration procedure. The main challenge

is to find a good image denoising technique that removes noise while preserving

image features such as edges and texture. Over the past three decades, many

algorithms have been proposed. One common approach is to use the bilateral

filter (BF) [100]. This filter is a weighted average of the local neighborhood

pixels. The weighting is based on the product of two kernel functions; one spatial

using the distance between the location of the center pixel and the location of

the neighboring pixels. The second kernel is radiometric, and uses the distance

between the intensity of the center pixel and the intensity of the neighboring

pixels. Each weighting kernel is controlled by a parameter determining its width.

These kernels are commonly chosen to be Gaussian functions with mean zero.
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Stein’s Unbiased Risk Estimate (SURE) has been used to find the optimal widths

of the Gaussians, i.e., their standard deviations [106], [107], [108]. The objective

being to find a trade–off between image smoothing and edge preservation while

minimizing SURE risk function, an estimator of the mean square error (MSE)

between the noisy image and the filtered one.

As mentioned by Elad [99], as long as the kernel functions used in the BF are

smoothly decaying and symmetric, they can be chosen in place of the Gaussian

functions. However, very little work exists using bilateral filters with a different

kernel. In [7], Farsiu et al. used an exponential kernel in their implementation

of the BF, but no justification was given for this choice. It is clear that an

adequate choice of the kernels may lead to a good filter performance. We further

argue that a faster decaying kernel would ensure sharper edges while smoothing

the rest of the image. The question is whether exponential kernels fall under

this category. In order to answer this question we compare the performance of

the BF using Gaussian kernels, that we refer to as BFGauss, and the BF using

exponential kernels, that we refer to as BFexp. We derive the SURE risk function

for BFexp in order to find the filter optimal parameters. Our simulations show

that for different levels of noise, BFexp consistently gives a lower or equal MSE

and always provides a final image that is visually better. Given that BFexp and

BFGauss are computationally comparable, in view of our results, BFexp is at

least similar to BFGauss.

6.2 Review of bilateral filtering

Let x be a noise–free vector image of length n degraded by added zero–mean white

Gaussian noise n of variance σ2 and of the same size. The observed corrupted

image y is given by

y = x + n. (6.1)

The BF recovers the original image x by a nonlinear filtering that replaces the

noisy intensity value yi at each pixel location pi with a weighted average of the
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neighboring pixels pj, such that:

x̂i =

∑
pj∈Ni

fS(pi, pj)fR(pi, pj) · yj

∑
pj∈Ni

fS(pi, pj)fR(pi, pj)
, (6.2)

where Ni denotes the neighborhood of the pixel position pi. The weighting kernel

fS(pi, pj) is based on the distance between pi and pj, and fR(pi, pj) is based on

a radiometric distance, i.e., the difference between the two pixel intensities yi

and yj. We write the final filtered image as x̂ = BF (y,θ) with x̂ = [x̂i]
n
i=1

and θ being the vector containing the filter parameters. The two kernels have

to verify two properties: 1) symmetry, and 2) smooth decay. Conventionally,

these functions are taken as Gaussians with an L2 norm (Euclidean distance)

and parameterized by (λg, βg) . That is BFGauss is defined by:
fS(pi, pj) = exp

(
−‖ p

i − pj ‖2
2

2λg

)
fR(pi, pj) = exp

(
−|y

i − yj|2

2βg

) (6.3)

Another choice for the kernels is the exponential function with an L1 norm (Man-

hattan distance). The base of the exponential defines the width of the kernel and

needs to be in the interval ]0, 1[ to verify Property 2). The resulting BFexp is

defined by: {
fS(pi, pj) = a‖p

i−pj‖1
e = exp (‖ pi − pj ‖1 · ln ae)

fR(pi, pj) = b|y
i−yj|

e = exp (|yi − yj| · ln be)
(6.4)

with 0 < ae, be < 1. For the sake of comparison, we similarly define the bounded

parameters of BFGauss as ag = e
− 1

2λg , and bg = e
− 1

2βg . Comparing the two

filters BFGauss and BFexp passes through comparing the two parameter vectors

θg = [ag, bg]
T , and θe = [ae, be]

T . We note that the main difference between the

kernels is in the square in the exponent of the Gaussian kernels, that we will see

in Section 6.4, plays a role in the difference in performance.
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6.3 Parameter estimation for bilateral filtering

The quality of the denoised image x̂ is very dependent on the choice of the filter

parameters, θ in general. To optimally set these parameters, we use SURE as

an unbiased estimator of the MSE, obtained from the observed noisy image y.

Indeed, the quality of the denoising technique is measured by:

MSE(x̂) =
1

n
‖ x− x̂ ‖2

2 . (6.5)

An unbiased estimator of (6.5) is given in [106], and defined as the following

SURE risk function:

Rθ =
1

n
‖ y − x̂ ‖2

2 −σ2 + 2
σ2

n
divy (x̂) , (6.6)

where divy (x̂) is the divergence of the denoising filter BF (e.g., BFGauss or

BFexp) with respect to the observed image such that:

divy (x̂) =
n∑

i=1

∂x̂i

∂ŷi
. (6.7)

Finding the optimal θ follows as: θ̂ = argmin
θ

R̂θ. In practice, the noise variance

σ2 can easily be estimated from the observed data.

In case of BFGauss, (6.6) is given in [106]. The divergence term in (6.6) plays a

crucial role in the expression of SURE. In [109] we can see that the neighbouring

pixels yj are considered as a constant with respect to the center pixel yi. Thus,

the divergence of the center of the denoising kernel over the entire image will be

zero and the SURE will not give the exact estimation of the MSE, We herein give

the derivation for the case of the proposed BFexp. We first define fSR(pi, pj) =
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a
‖pi−pj‖1
e b

|yi−yj|
e , then:

∂x̂i

∂yi
=

∂


∑
pj∈Ni

fSR(pi, pj)yj

∑
pj∈Ni

fSR(pi, pj)


∂yi

= ln(be)


∑
pj∈Ni

fSR(pi, pj)sign(yi − yj)yj

∑
pj∈Ni

fSR(pi, pj)



− ln(be)


∑
pj∈Ni

fSR(pi, pj)sign(yi − yj)∑
pj∈Ni

fSR(pi, pj)



×


∑
pj∈Ni

fSR(pi, pj)yj

∑
pj∈Ni

fSR(pi, pj)

 ,
where sign(·) is the sign function. We thus find the optimal θe that ensures

the best possible denoising using BFexp. Similarly we find the optimal θg that

ensures the best possible denoising using BFGauss.

6.4 Comparison of the two bilateral filters

Both exponential and Gaussian kernel functions are symmetric and smoothly de-

caying functions as depicted in Figure 6.1. However, the decay of the exponential

kernel is faster which should achieve sharper edges.

BF is about finding a trade–off between the parameters; spatial and radiomet-

ric. These parameters, θg and θe, control the kernels decay. Small parameter

values give a simple uniform non–adaptive filtering which is known to degrade

the image edges, and large values reduce the smoothing effect. As illustrated in

Figure 6.2(b), the optimized radiometric parameters, both bg and be, are almost

the same for both kernels. On the other hand, the spatial parameters shown in
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Figure 6.1: Exponential and Gaussian kernels.

Figure 6.2(a) of the Gaussian kernel decrease by increasing the noise level com-

pared to the exponential. Thus, the exponential kernel leads to sharper edges

Figure 6.5(d) than the Gaussian kernel illustrated in Figure 6.5(c).

6.5 Experimental results

In our experiments we illustrate the performance of the bilateral filter using the

proposed kernel compared to the standard Gaussian kernel. First, we run a

Monte–Carlo simulation over 50 normalized noisy images by adding white Gaus-

sian noise with a noise variance varying from 1% to 10% corresponding to the

range from 10 dB to 20 dB. At each noise level, we denoise the images by a

bilateral filter with the proposed kernel and the standard Guassian kernel. The

spatial and radiometric smoothing parameters for both kernels were optimized

based on the SURE approach. In Figure 6.3, the average RMSE for both kernels

is illustrated, where we can see that the proposed BFexp performs better than

the standard BFGauss for this “Cameraman” example. Moreover, the proposed

kernel shows it superiority over the standard Gaussian where it leads to a visual

improvement in denoising results as shown in Figure 6.5.

Next, we test our algorithm on a 1D signal by adding a noise with a variance

of σ2 = 5%. As illustrated in Figure 6.4, the exponential kernel BFexp illustrated

98



6.6 Conclusion

in blue, gives a result that is closer to the original noise–free signal, confirming

its better performance.

6.6 Conclusion

Tomasi and Manduchi have proposed the bilateral filter as a noise removal algo-

rithm for images. In this work we have proposed to use the exponential kernel

as an alternative to the standard Gaussian commonly used by the community.

We verified that the proposed kernel is numerically better than the standard

Gaussian for image denoising. Moreover, we showed that the optimum spatial

and radiometric parameters provided by the exponential kernel lead to a better

trade–off between blurring and denoising, thus suppressing noise while preserving

edges.
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Figure 6.2: Optimized kernel parameters for increasing noise variance (%): (a)

spatial, (b) radiometric. Experiment applied on the Cameraman image
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Figure 6.3: RMSE of the bilateral filter using exponential and Gaussian kernels

for increasing noise variance (%). Experiment applied on the Cameraman image.
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Figure 6.4: Illustration on denoising a 1D signal. See the text for explanation.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Denoising example: (a) original image, (b) noisy image (σ=0.08),

(c)-(d) denoised images using Gaussian and exponential kernels, respectively.(e)-

(f) zoomed patch for BFGauss and BFexp, respectively .
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Chapter 7

Enhanced 3D Face

Reconstruction and Recognition

We address the limitation of low resolution depth cameras in the context of face

recognition. Considering a face as a surface in 3D, we reformulate the UP–SR

algorithm as a new approach on three dimensional points. This reformulation

allows an efficient implementation, and leads to a largely enhanced 3D face re-

construction. Moreover, combined with a dedicated face detection and repre-

sentation pipeline, the proposed method provides an improved face recognition

system using low resolution depth cameras. We show experimentally that this

system increases the face recognition rate as compared to directly using the low

resolution raw data.

7.1 Introduction

In the past ten to fifteen years, research on automatic face recognition has actively

moved from 2D to 3D data mostly acquired using HR laser scanners. Multiple

approaches have been developed for this kind of data. Until recently the race was

about designing sensors to capture data with higher levels of details and higher

resolutions [110]. Today much more affordable and less bulky depth cameras,

with 3D capabilities, have become accessible. They are, however, of limited

resolutions, and present a high level of noise. Some examples are the 3D MLI

by IEE of resolution (56 × 64) [4], and the PMD camboard nano of resolution
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(120 × 165) [3]. Because of their LR and the noisy nature of the acquired data,

previously defined 3D face recognition algorithms are no longer ensured to be as

effective [14].

The multi–frame super–resolution (SR) framework is an appropriate solution

where it becomes possible to recover a higher resolution frame by fusing multiple

LR ones. It has been successfully used in the case of 2D face images [111, 112].

Similar efforts have been undertaken for 3D facial data. In [113], a learning–based

method has been proposed to directly find the mapping between an LR image

and its corresponding HR image without using multiple frames. In [114], Peng et

al. proposed to use facial features in a Maximum A Posteriori SR framework.

Depth facial data may also benefit from the SR framework. Recently, Berretti

et al. proposed to use SR on facial depth images once back–projected in 3D,

and defined the superfaces approach [14]. The SR algorithm they deployed is

similar in principle to the initial blurred estimate provided in the eS&A algorithm

proposed in Chapter 3 and extended in Chapter 4 to the dynamic case where

the considered multiple realizations were ordered frames constituting a video

sequence.This corresponds to the UP–SR approach whose key component is a

prior upsampling of the observed data which is proven to enhance the registration

of frames over time. In addition, it uses a bilateral total variation framework

as a smoothness condition. In [115], a similar concept of temporal fusion was

considered for 3D facial data enhancement. However, the increase in resolution

was induced from temporal data cumulation without a real SR formulation or

upsampling. Moreover, smoothness was ensured by bilateral filtering as a post

processing operation and not included in the optimization objective function.

The contribution of this chapter is twofold; first, we reformulate UP-SR on 3D

point clouds constituting the facial surface similarly to the work in [14]. However,

by performing the deblurring phase of UP-SR, 3D face reconstruction results

are maintained, if not enhanced. Second, we show experimentally that using

these results for 3D face recognition clearly improves the recognition rate as

compared to using raw LR acquisitions. This second contribution requires a full

dedicated pipeline for automatic face acquisition from depth cameras. Moreover,

level curves equidistant from the nose tip and radially sampled are considered as

facial features for matching and comparison.
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Figure 7.1: UP-SR steps on depth data and on a surface in 3D.

7.2 Background

In what follows, we review the UP-SR algorithm. We represent all images in

lexicographic vector form. Let us consider an HR depth image f of size n, and N

observed LR images gk, k = 0, ..., (N − 1), of size m, such that n = r ·m, where

r is the SR factor. Every frame gk is an LR noisy and deformed realization of f

modeled as follows:

gk = DHMkf + nk, k = 0, ..., (N − 1), (7.1)

where Mk is an (n× n) invertible matrix corresponding to the geometric motion

between f and gk. We assume that g0 is the reference frame for which M0 = In.

The point spread function of the depth camera is modeled by the (n×n) space and

time invariant blurring matrix H. The matrix D of dimension (m×n) represents

the downsampling operator, and the vector nk is an additive noise at k which

follows a white multivariate Laplace distribution of mean zero and covariance

Σ = σ2Im, with Im being the identity matrix of size (m×m).

One of the key components of UP-SR is to upsample the observed LR images

prior to any operation. We define the resulting r–times upsampled image as:

gk ↑= U · gk, (7.2)

where U is an (n × m) upsampling matrix. This allows to directly solve the

problem of undefined pixels in the SR initialization phase. It also leads to a

more accurate and robust estimation of the motion M̂k as it is now computed
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between gk ↑ and g0 ↑. The following registration of frames to the reference is

consequently enhanced:

gk ↑= M̂−1
k gk ↑ . (7.3)

Without loss of generality, both H and Mk are assumed to be block circulant ma-

trices. Choosing the upsampling matrix U to be the transpose of D, the product

UD = A defines a new block circulant blurring matrix B = AH. We have,

therefore, BMk = MkB. As a result, the estimation of f may be decomposed

into two steps; estimation of a blurred HR image z = Bf , followed by a deblurring

step. The data model in (7.1) becomes

gk ↑= z + νk, k = 0, ..., (N − 1), (7.4)

where νk = M̂−1
k U ·nk is an additive noise vector of length n. Using an L1–norm

‖ · ‖1, the estimate of z using the corresponding Maximum Likelihood is

ẑ = arg min
z

N−1∑
k=0

‖z− gk ↑ ‖1. (7.5)

The result in (7.5) is, by definition, the pixel–wise temporal median estimator

ẑ = medk{gk ↑}.
To recover f̂ from ẑ, an iterative optimization is performed as a deblurring

step. Considering a regularization term Γ(f), chosen to be the bilateral total

variation (BTV) given in [7], we find

f̂ = argmin
f

(
‖Bf − ẑ‖1 + λΓ(f)

)
, (7.6)

where λ is the regularization parameter. The UP-SR algorithm is given in Algo-

rithm 4.1 and its pipeline is given in Figure 7.1.

7.3 Surface upsampling for precise

super–resolution

The different steps in UP-SR as described in Section 7.2 may be directly applied

on LR depth images gk of faces as those illustrated in Figure 7.2 (a). The resulting
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reconstructed face f is shown in Figure 7.2 (c). A dedicated software tool has

been developed for automatic HR 3D face reconstruction using an LR depth

frames acquired with an LR ToF camera, see Appendix B. While it is of higher

resolution, it presents artifacts that we argue are caused by applying UP-SR

on gridded depth data. To remedy these artifacts, we propose in what follows to

back–project the gk frames, k = 0, · · · , N−1, to R3 using the intrinsic parameters

of the camera used for the acquisition. We end up with N corresponding point

clouds Gk = {pik = (xik, y
i
k, z

i
k) ∈ R3, i = 1, · · · ,m} as shown in Figure 7.2 (b).

The objective is now to reconstruct an HR point cloud F = {qi
k = (xik, y

i
k, z

i
k) ∈

R3, i = 1, · · · , n} belonging to the surface S of the original face, i.e., F ⊂ S.

We adapt the algorithm in Algorithm 4.1 to point clouds, and define a modified

version of the UP-SR algorithm that we refer to as SurfUP-SR.

The two main phases are maintained: 1) estimation of Z, a blurred version of X; 2)

deblurring by optimization as in (7.6). The steps of upsamling and registration

need to be adapted as described in the following sections. An illustration of

differences between UP-SR and SurfUP-SR is given in Figure 7.1.

7.3.1 Surface upsampling

Assuming that the point cloud Gk is a sampling of a surface Sk, the upsampling

of Gk may be reformulated as a problem of interpolating the surface Sk from

scattered points. The surface Sk may be defined implicitly by a function f as:

f(x, y, z) = 0, ∀ p = (x, y, z) ∈ Sk, or equivalently by using the interpolant Pf

as:

Pf (x, y) = z, ∀ p = (x, y, z) ∈ Sk. (7.7)

The m points in Gk verify (7.7), hence they form a system of m equations, from

which Pf may be defined. A solution using kernel regression has been proposed

in [87]. An efficient GPU implementation has been given in [116]. We used

the Matlab scatteredInterpolant function in our implementation. Once Pf is

found, it is used to define (r− 1) ·m additional points belonging to Sk for chosen

(x, y)–positions. As a result, a denser point cloud Gk ↑ containing a total of n
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Figure 7.2: Face reconstruction with UP-SR using (a) depth images, (b) point

clouds. The corresponding results are shown in (c) and (d), respectively.

points is found such that

Gk ↑= Gk ∪ {pik = (xik, y
i
k, z

i
k) ∈ R3, i = m+ 1, · · · , n}, (7.8)

and (xik, y
i
k) ∈ [−1, 1]× [−1, 1].

7.3.2 Surface registration

The motion estimation and registration steps in UP-SR are replaced by directly

using classical 3D point cloud registration techniques. We use iterative closest

points (ICP) to rigidly register each point cloud Gk ↑ to the reference G0 ↑. This is
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7.4 Proposed face recognition pipeline

Figure 7.3: Preprocessing step of the facial acquisition pipeline using a depth

camera.

done by estimating the optimal transformation parameters, namely, 3D rotation

R̂k, translation t̂k, and global scaling factor α̂k that minimize the distance Err(·)
between the transformed and the reference point clouds such that

[R̂k, t̂k, α̂k] = argmin
R,t,α

Err (αRGk ↑ +t,G0 ↑) . (7.9)

The registered point cloud Gk ↑ is then computed as:

Gk ↑= α̂kR̂kGk ↑ +t̂k. (7.10)

With these modifications, the new SurfUP-SR algorithm is given in Algorithm 7.1.

Its visual impact is shown in the example of Figure 7.2 (d).

7.4 Proposed face recognition pipeline

Our proposed pipeline is composed of three main stages: preprocessing of raw

data, feature extraction and matching.

7.4.1 Preprocessing

The preprocessing step is an essential step in the design of a face recognition

system as it affects the performance of the system significantly. We implement
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Algorithm 7.1 SurfUP-SR: Surface Upsampling for Precise Super–Resolution.

1. Choose the reference frame G0.

for k, s.t., k = 1, · · · , N ,

do

2. Compute Gk ↑ using (7.8).

3. Estimate R̂k, t̂k, and α̂k using ICP as in (7.9).

4. Compute Gk ↑ using (7.10).

end do

5. Find Ẑ by applying a median estimator (7.5).

6. Deduce F̂ by deblurring using (7.6).

end for

fast and efficient techniques to detect the face region and the nose tip for an

effective segmentation and alignment. We apply a face detection algorithm on the

amplitude or 2D image only, then we map the face region with the corresponding

depth image to obtain the corresponding 3D facial region. In this work, the

Viola–Jones [117] face detection algorithm is used for its computational efficiency

and high detection rate. Once we detect the depth face region, we detect the

nose tip represented by the point with the smallest depth value. The nose tip is

used as a basic feature for our segmentation and alignment. Using a spherical

cropping centered at the nose tip, we discard the ear, hair and part of the neck

areas. Finally, the ICP registration is used for alignment.

7.4.2 Feature extraction

We use spherical curves and their radial discretization as features to represent

each face. A spherical curve is obtained by intersecting the facial surface with

a sphere. In order to have smoother and continuous curves, we apply the inter-

polation technique proposed in [118]. Spherical curves are discretized radially by

slicing the spherical intersection curves using a plane that is parallel to the face

normal and that intersects the spherical curves radially at uniform angles. Each

face is represented by an indexed collection of M × L points in 3D, where M

denotes the number of curves per sample face and L is the number of points in
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(a) (b)

Figure 7.4: Feature extraction step using: (a) Observed LR 3D face with texture

from amplitude or 2D images. (b) Extracted level curves.

each curve. We end up with a feature vector of size M ×L× 3 for each face. An

example of the extracted feature curves is shown in Figure 7.4.

7.4.3 Matching

The matching step aims to associate each probe 3D face to the the closest 3D

face in the database by comparing their extracted features. The comparison is

carried out by an appropriate distance measure on the space of the extracted

feature curves. We choose the cosine distance in our experiments as we found

it to be the best performing one. This is confirmed by the survey of Smeets et

al. [119].
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Figure 7.5: 3D face reconstruction results. (a) 3D laser scan ground truth. (b)

One of the LR 3D faces. (c) Results of the superfaces algorithm. (d) Results of

the proposed SurfUP-SR algorithm. (e) 3D error map corresponding to the 3D LR

face. (f) 3D error map corresponding to the superfaces results. (g) 3D error map

corresponding to the proposed SurfUP-SR.

.

7.5 Experimental part

We evaluate the performance of the proposed system for both 3D face recon-

struction and recognition. First, to evaluate the quality of the reconstructed 3D

faces, we use the publicly available superfaces dataset [120]. It has been acquired

using the well known Kinect camera [35]. A sequence of 2D and depth images

for 20 different subjects are provided. Moreover, an HR scanned version for each

subject is available as ground truth. The dataset has only one realization for

each subject which makes it not appropriate for recognition purposes. Thus, we

built our real dataset using 10 subjects with two different realizations for each

subject. The dataset is acquired using the PMD camboard nano time of flight

camera with a resolution of (120× 165) pixels [3].

7.5.1 Reconstruction

In order to evaluate the quality of the reconstructed faces, we use the above

mentioned real dataset [120]. The faces in the depth frames are of low resolution

due to the object distance from the camera. To improve its quality, we conduct
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Figure 7.6: Extracted level curves from 3D faces for: (a) Ground truth. (b) LR.

(c) superfaces. (d) SurfUP-SR.

the following test. We apply SurfUP-SR, and show the results for two subjects

(01 and 19) using 5 LR frames. An LR frame for each subject is shown in

Figure 7.5.(b), first and second rows, respectively. Obtained results show that

the proposed algorithm provides a visually improved HR 3D faces as seen in

Fig. 7.5.(d) as compared to the LR captured data Figure 7.5.(b). Moreover, our

algorithm provides better visual results than the recently proposed superfaces

algorithm [14], Figure 7.5. (c). This is due to the fact that SurfUP-SR includes

an additional deblurring step. Our results are of sufficient quality for many

applications such as 3D face recognition. In order to provide a quantitative

evaluation, we measure the reconstruction error of SurfUP-SR and superfaces

against the laser scanned ground truth. In Figure 7.5. (f) and (g), we may see

the color–coded reconstruction error of the superfaces method [14] and SurfUP-

SR, respectively. As expected, obtained results show that SurfUP-SR is at least

as good as superfaces and sometimes better. Moreover, by taking a look to the

error range bar in Figure 7.5, we note that in most areas the errors are below 0.5

cm.
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(a) (b)

Figure 7.7: Confusion matrices. (a) Using the LR 3D observed faces. (b) Using

the super–resolved 3D faces by the proposed SurfUP-SR.

7.5.2 Recognition

In order to test the impact of SurfUP-SR on a face recognition algorithm, we eval-

uate the performance of the pipeline presented in Section on the raw LR faces in

our database. We then run the same pipeline on the super–resolved faces of our

database. We may see in Figure 7.6 the enhancement incurred by SurfUP-SR

on the quality of the extracted feature curves. Indeed, their extraction from LR

faces leads to noisy curves. For the same subject, these curves become smoother

and less noisy if extracted from super–resolved data. The quality of these curves

directly affects the final result of the face recognition algorithm. The correspond-

ing confusion matrices are given in Figure 7.7(a) and in Figure 7.7(b). We notice

an improved recognition rate from 50% to 80% when super-resolving. This con-

firms the importance of having a higher resolution for an increased recognition

rate and the effectiveness of the proposed SurfUP-SR.
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7.6 Conclusion

7.6 Conclusion

In this chapter we proposed a new multi–frame super–resolution algorithm SurfUP-

SR which improves 3D face recognition rate using low resolution, and cost–

effective depth cameras. We reformulated the UP-SR algorithm on a 3D point

cloud instead of its original formulation on a depth image. In addition, we pro-

vided a full automatic 3D face acquisition from depth cameras. Experimental

evaluation of SurfUP-SR using a real low resolution 3D face dataset has been

carried out. Obtained results show an efficient enhancement in the resolution

and the quality of the captured low resolution 3D faces. Moreover, we showed

the impact of the proposed algorithm in decreasing the 3D reconstruction error,

and most importantly in increasing the 3D face recognition rate.
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Chapter 8

Conclusions

In this thesis, we proposed a general depth multi–frame super–resolution frame-

work that addresses the limitations of state-of-art depth enhancement approaches.

The proposed framework does not need any additional hardware or coupling with

different modalities. It is based on reformulating the classical super–resolution

problem into an image denoising one by assimilating the effect of downsampling

to a blur effect once multiplied by its reverse operation, that is, by upsampling.

This has resulted in a robust median initial estimate, further refined by a de-

blurring operation using a bilateral total variation as the regularization term.

Furthermore, we showed that the upsampling operation ensures a systematic im-

provement in the registration accuracy. It is chosen to be a dense nearest neighbor

upsampling in the case of depth data.

This upsampling property has been explored in three cases, which has led to

three algorithms. The considered cases can be described based on the motions

involved in the video.

First, in the case of relative global lateral motions, the considered video or

set of images describe a static depth scene. For this case, we have proposed the

eS&A algorithm, presented in Chapter 3, which was our first attempt in using

the upsampling property. In addition to increasing the registration accuracy with

respect to the reference frame, eS&A naturally solves the problem of undefined

pixels inherent to classical SR by a non-zero initialization of the estimate of

the HR depth frame. While the original S&A algorithm [23] ensures robust

reconstruction of static scenes, and was successfully extended to scanning of static
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objects [25], it has been made more practical with the proposed modifications.

Indeed, the eS&A method ensures at least the same performance as S&A with a

lower number of observations.

Second, the case of local lateral motions was considered. This corresponds to

dynamic scenes with objects non-rigidly deforming with a deformation assumed

to be parallel to the image plane. For this case, we have proposed the UP-SR

algorithm, described and analyzed in Chapter 4. The robustness of this algorithm

to local deformations is obtained through the combination of the upsampling

property with a cumulative motion estimation. The order among the observed

frames becomes crucial in this case and helps in processing videos with relative

large deformations between the first and last frame. This is as long as the motion

between consecutive frames is small enough in order to verify the new data model

in (4.13) with the combined blurring operator. Moreover, we noted that the UP-

SR algorithm may present errors when different objects are touching over multiple

frames, specifically more than half of the total number of considered frames in

one sequence. Indeed, two objects may be wrongly assigned to the same object.

Third, in the more general case of local lateral and radial motions, objects can

deform non-rigidly in full 3D. Consequently, the dense lateral motions estimated

in UP-SR with optical flow had to be extended to dense range flow. The algo-

rithm RecUP-SR was introduced as a solution in Chapter 5. It was designed

with keeping its practicality in mind; thus, favoring an approximation of range

flow by decomposing it into lateral motions and radial ones. Furthermore, this

algorithm was formulated in a dynamic recursive way that allowed a computation-

ally efficient real–time implementation on CPU. As compared to state-of-the-art

methods, the processing on depth maps while approximating local 3D motions

has allowed to maintain a good robustness against topological changes and inde-

pendence of the number of moving objects in the scene. This property is a clear

advantage over most recent methods that explicitly compute a flow in 3D and

apply a processing on meshed point clouds [33, 36].

Supported by the experimental results on both synthetic and real data, we

believe that the proposed SR framework opens new possibilities for computer

vision applications using cost-effective depth sensors in dynamic scenarios with

non-rigid motions.
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We have looked into 3D face recognition as one possible application. We have

developed a tool based on UP–SR for automatic 3D face reconstruction as pre-

sented in Appendix B. Furthermore, we have adapted UP–SR for a more robust

and accurate reconstruction resulting in the SurfUP-SR algorithm presented in

Chapter 7. It is based on reformulating UP-SR on a 3-D point cloud instead of

its original formulation on a depth image. We showed that this improvement has

an impressive positive impact on the final recognition rate of 3D faces captured

with a cost-effective depth camera.

The thesis has addressed an important and timely problem in computer vision.

The current results have triggered new research questions as described below:

• Considering full 3D motions: In our work we have progressively moved

from considering global lateral motions, to local lateral motions, and finally

to considering local lateral and filtered radial motions. This last model

ensured a new level of robustness in handling objects with non-rigid defor-

mations. One would expect to reach a further improved performance in case

the true 3D motion is incorporated in the proposed SR. We have started

investigating this direction by proposing a first tentative in [33] by defin-

ing the KinectDeform algorithm. More research is still required to have a

practical version of KinectDeform that can work in real-time and that can

handle sparse and noisy observations.

• Considering extra prior information: In the current work, we have

started from scratch in studying dynamic depth videos and their enhance-

ment. We therefore naturally started from relative simple models and as-

sumptions on data properties and motion models. While current results are

promissing, we see further potential enhancements, concretely in consider-

ing extra information as prior to be incorporated by regularization. One

option is to consider extending the BTV regularization to a multi-modal

one, where intensity is fused with depth data. We see this in the same

spirit as the join bilateral upsampling concept already tested for depth

data enhancement but this time it would be by deriving its total varia-

tional version. Another way to incorporate extra contextual information

would be to consider learning combined with filtering, which would lead
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to a combination of a single image SR framework with a multi-frame SR

framework. This is expected to bring robustness to the challenging cases of

large self-occlusions.

• Exploiting results for pattern recognition: In view of the current

results, and after testing their usefulness for at least one application, i.e., 3D

face recognition, we foresee a large line of work where cost–effective depth

cameras can be deployed in many pattern recognition–based applications.

We name, for example, gesture control, face expression recognition, and

action recognition. In these applications the dynamic depth videos represent

the first source of information. We note that in addition to benefiting from

the enhanced geometrical features, we expect further exploitation of the

enhanced motions in 2.5D.
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Appendix A

Proof of the Cumulative Motion

Estimation

We prove by induction the following ζ(n) statement:{
Mt0

t0−ngt0−n ↑ = gt0t0−n ↑,
s.t. Mt0

t0−n = Mt0
t0−1M

t0−1
t0−2...M

t0−n+1
t0−n

· · · ζ(n).

Let us consider that ζ(n− 1) is true, i.e.{
Mt0

t0−(n−1)gt0−(n−1) ↑ = gt0t0−(n−1) ↑,
s.t. Mt0

t0−(n−1) = Mt0
t0−1M

t0−1
t0−2...M

t0−(n−1)+1
t0−(n−1)

(A.1)

From (A.1) we have:

Mt0
t0−(n−1)M

t0−(n−1)
t0−n = Mt0

t0−n (A.2)

Base case: When n = 1 we have

Mt0
t0gt0 ↑= gt0t0 ↑, (A.3)

and

Mt0
t0M

t0−1
t0 = Mt0−1

t0 . (A.4)

Both (A.3) and (A.4) are verified because Mt0
t0 = In. Then,

Induction step: We need to show that ζ(n− 1)⇒ ζ(n).

Given two consecutive frames: yt0−n and yt0−(n−1), we have:

M
t0−(n−1)
t0−n gt0−n ↑= g

t0−(n−1)
t0−n ↑, (A.5)
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where

M̂
t0−(n−1)
t0−n = arg min

M
Ψ
(
gt0−(n−1) ↑,gt0−n ↑,M

)
. (A.6)

Multiplying (A.5) by Mt0
t0−(n−1) we find

Mt0
t0−(n−1)M

t0−(n−1)
t0−n gt0−n ↑= Mt0

t0−(n−1)g
t0−(n−1)
t0−n ↑ . (A.7)

From (A.2) and (A.7) we have

Mt0
t0−ngt0−n ↑= gt0t0−n ↑ .
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Appendix B

Tool for Automatic 3D Face

Reconstruction

Figure B.1: Tool for automatic HR 3D face reconstruction from acquired low

resolution depth images.

We have developed a software tool for automatic HR 3D face reconstruction
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using an LR depth camera. The objective of this software tool is the implemen-

tation of the proposed SR algorithms in Chapter 3. A snapshot of the developed

tool is shown in Figure B.1 where we show a sample of an acquired LR depth

image and its corresponding amplitude image.

Some specific features of the software are:

• The input LR sequence is directly acquired using an LR depth camera.

• The user is able to specify the number of the acquired LR depth frames N .

• The user is able to specify the SR scale factor r.

• Motion estimation is done automatically by the software.

• The output is HR super–resolved depth frames which can be plotted in 3D

and saved in .mat format.

• The software tool allows a direct mapping between the super–resolved depth

frame and the corresponding super–resolved 2D (amplitude) image.

• The mapped super–resolved images can be plotted in 3D as illustrated in

Figure B.2.
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(a) LR acquired face

(b) HR super–resolved face

Figure B.2: HR 3D face reconstruction. (a) LR 3D Face acquired using the PMD

camera. (b) Super–resolved 3D Face using the proposed method with 30 acquired

LR frames.
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